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“I? What am I?” roared the President, and he rose slowly to an incredible height, like some

enormous wave about to arch above them and break. “You want to know what I am, do you?

Bull, you are a man of science. Grub in the roots of those trees and find out the truth about

them. Syme, you are a poet. Stare at those morning clouds. But I tell you this, that you will

have found out the truth of the last tree and the top-most cloud before the truth about me. You

will understand the sea, and I shall be still a riddle; you shall know what the stars are, and not

know what I am. Since the beginning of the world all men have hunted me like a wolf - kings

and sages, and poets and lawgivers, all the churches, and all the philosophies. But I have never

been caught yet, and the skies will fall in the time I turn to bay. I have given them a good run

for their money, and I will now.” (Sunday, ch.13)

G. K. Chesterton - The Man Who Was Thursday.

Science furthers ability, not knowledge. The value of having for a time rigorously pursued a

rigorous science does not derive precisely from the results obtained from it: for in relation to the

ocean of things worth knowing these will be a mere vanishing droplet. But there will eventuate

an increase in energy, in reasoning capacity, in toughness of endurance; one will have learned

how to achieve an objective by the appropriate means. To this extent it is invaluable, with regard

to everything one will afterwards do, once to have been a man of science.

F. Nietzsche - Human, All Too Human.



Abstract

The dissertation deals with the problems of stabilization and control of nonlinear systems with de-

terministic model uncertainties. First, in the context of uncertain systems analysis, we introduce

and explain the basic concepts of robust stability and stabilizability. Then, we propose a method

of stabilization via state-feedback in presence of unmatched uncertainties in the dynamics. The

recursive backstepping approach allows to compensate the uncertain terms acting outside the

control span and to construct a robust control Lyapunov function, which is exploited in the

subsequent design of a compensator for the matched uncertainties. The obtained controller is

called recursive Lyapunov redesign. Next, we introduce the stabilization technique through “Im-

mersion & Invariance” (I&I) as a tool to improve the robustness of a given nonlinear controller

with respect to unmodeled dynamics. The recursive Lyapunov redesign is then applied to the

attitude stabilization of a spacecraft with flexible appendages and to the autopilot design of an

asymmetric air-to-air missile. Contextually, we develop a systematic method to rapidly evaluate

the aerodynamic perturbation terms exploiting the deterministic model of the uncertainty. The

effectiveness of the proposed controller is highlighted through several simulations in the second

case-study considered. In the final part of the work, the technique of I&I is reformulated in the

digital setting in the case of a special class of systems in feedback form, for which constructive

continuous-time solutions exist, by means of backstepping and nonlinear domination arguments.

The sampled-data implementation is based on a multi-rate control solution, whose existence is

guaranteed for the class of systems considered. The digital controller guarantees, under sampling,

the properties of manifold attractivity and trajectory boundedness. The control law, computed

by finite approximation of a series expansion, is finally validated through numerical simulations

in two academic examples and in two case-studies, namely the cart-pendulum system and the

rigid spacecraft.

Keywords. Nonlinear control, robust control, robust control Lyapunov function, uncertainty

modeling, robust backstepping, Lyapunov redesign, recursive Lyapunov redesign, Immersion and

Invariance, nonlinear sampled data control, multi-rate control, missile autopilot design, attitude

stabilization, flexible spacecraft
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Introduction

Automatic control design of nonlinear systems affected by disturbances and model un-

certainties is a central topic of interest for the whole scientific community involved in

feedback control system analysis and synthesis. In the present work, we develop a proce-

dure to achieve practical asymptotic stabilization of nonlinear systems with matched and

unmatched uncertainties, mostly representing modeling errors in the parameters of the

system and time-varying disturbances. The core idea is to unify the existing results of

Lyapunov redesign and robust backstepping into a single stabilizing controller, which we

call recursive Lyapunov redesign. This tool merges the multi-step philosophy of robust

backstepping with the implicit control definition of Lyapunov redesign to counteract the

effects of both matched and unmatched uncertainties in system dynamics. The property

of stability which can be achieved is that of practical robust global asymptotic stability,

meaning that the closed-loop trajectories converge to an arbitrarily shrinkable com-

pact set surrounding the origin. Such an approach results particularly suited to design

control laws for aerospace systems, whose dynamics is usually highly nonlinear, with

time-varying uncertain parameters and disturbances. We apply the proposed technique

to two case studies, the attitude stabilization of a spacecraft with flexible appendages

and the autopilot design for an asymmetric tail-controlled air-to-air missile.

The construction of a nonlinear stabilizing controller working in the presence of system

uncertainties of various nature has captured the attention of control scientists since the

early Eighties, starting from linear systems with matched uncertainties [21, 41, 70], next

relaxing the matching conditions [8, 9] and finally approaching nonlinear systems [22]

and the application to chemical processes [64]. However, it was only in the early Nineties

that constructive solutions of robust controllers for nonlinear systems started to appear

in the literature, beginning with the work of Isidori and Astolfi [54], mainly devoted

to the problem of disturbance attenuation in the nonlinear H∞ setting. The robust

backstepping approach was first introduced in 1993 by Freeman and Kokotović [31]

and by Marino and Tomei [81], from different points of view. A similar construction,

however, was found one year before, in 1992, by Qu in [103]. In the following years,

the techniques became more and more refined and several important results on robust

1



Introduction 2

nonlinear stabilization were obtained [32, 59, 104, 105], also paving the way for the

publication of two fundamental books in the field, the first by Freeman and Kokotović

[36] and the second by Qu [106]. Depending on applications, design constraints and

methodological improvements, the original core ideas have been progressively specialized

and detailed into different areas of interest, like robust adaptive nonlinear control [33,

56, 102, 107], output feedback stabilization and observer design [3, 11–13, 79, 80, 122],

saturated feedback problems [34, 123], inverse optimality results [35, 100] and so on.

New successful concepts were also developed struggling in making a nonlinear control

system robustly stable with respect to external disturbances, one and for all Input-

to-State Stability (ISS) [117], with all her friends and cousins, for instance integral

Input-to-State Stability (iISS) [2], set Input-to-State Stability [39], incremental stability

[1], incremental norm [38] and contraction theory [75]. We cannot keep from mentioning

sliding modes. The old idea of sliding surface and the corresponding sliding mode

control laws represent the simplest tools guaranteeing robust nonlinear stabilization

[128]. They have the advantage of ensuring a finite-time convergence on the surface

where the desired behavior of the system is enforced. However, the discontinuity of the

control laws obtained may cause serious implementation issues, one for all the problem

of “chattering”. A solution has been proposed with higher-order sliding modes, which

involve a dynamic extension of the system [10, 30]. Sliding mode control theory and its

applications have been explored high and low during the years, with modifications of

the original to improve robustness and embrace a broader class of uncertain systems.

Notable extensions of the theory lead to sliding-mode observer designs via the super-

twisting algorithm [29] and other applications to the measurements feedback case [71].

The basic ideas exploited in robust backstepping design to counteract the effect of the

unmatched uncertainties are those of recursion and virtual control. Moreover, this tech-

nique provides a systematic way of construction of a control Lyapunov functions for

systems in pure-feedback or strict-feedback form. These ideas were already introduced,

although in an embryonic form, in the work of Feuer and Morse [28]. Later, they were

developed simultaneously by Byrnes and Isidori [15], Kokotović, Sontag and Sussmann

[63, 120] and further refined by Tsinias in the early Nineties [125]. In the Nineties,

these ideas were also deeply exploited in adaptive controller design and revealed them-

selves to be particularly suited in several application domains, as widely shown in [60]

and in the book by Krstic, Kanellakopoulos and Kokotović [65]. In the following years,

the ideas of backstepping were extended to different system structures. The forwarding

technique was introduced to construct nonlinear stabilizer for systems in feedforward

form [55, 89, 111], while the interlacing technique to stabilize systems in interlaced form

[73, 112]. The reader should be warned with the fact that some of this ideas were al-

ready introduced, under slightly different forms, in the most cited book in the control
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literature by Alberto Isidori [52], and further developed in [53].

The design of robust controllers for nonlinear systems arouses the interest of the aerospace

community, since most of the physical systems in the aerospace domain present nonlinear

and uncertain dynamics. Let us consider, for instance, the problem of missile autopilot

design, which concerns highly nonlinear dynamics with uncertain, rapidly varying, pa-

rameters. Starting from the late Seventies the problem has been faced using classical and

Linear Quadratic regulators based upon dynamical models linearized around fixed oper-

ating points. These methods lead naturally to the design of several linear time-invariant

(LTI) point-regulators around equilibria defined on stationary conditions, usually involv-

ing Mach number, altitude and weight. The controller, resulting from the interpolation

of the fixed-point regulators, guarantees global stability only in the case of slowly varying

conditions on both the states and the parameters. This technique, named gain schedul-

ing, still represents the state-of-the-art in control system design for missile autopilots;

this is mostly due to the simplicity of implementation of gain-scheduled regulators, which

also ensure relatively good performance. Classical gain scheduling design are presented,

for instance, in [98] and [40]. In the Nineties, extensions of these techniques brought

several improvements, like guaranteed stability margins and performance levels ([113],

[99], [7], [109] and references therein). Robustness issues have also been addressed using

suitable extensions of H∞ techniques in [37] and [38]. The breakthrough of LPV (lin-

ear parameter-varying) and quasi-LPV approaches in the last two decades has guided

the research and the designers towards new, more systematic and rigorous methodolo-

gies. Main features of these new approaches are the sounder robustness/performance

criteria used and the simplified control synthesis process adopted. The price to pay,

especially for quasi-LPV controllers, is an increased level of conservatism due to the

non-uniqueness of LPV representations of a given nonlinear system. See, for instance,

[130], [121] and [23]. Most of these approaches, with the notable exception of quasi-

LPV designs, are still based on local linearizations of the dynamics around operating

points. Nevertheless, the introduction of new technologies (e.g. high maneuvrability

and stealth), together with the developments of nonlinear control methods, has pushed

towards new control design methods which take into account the intrinsic nonlinearity

of the dynamics. This led to a first generation of nonlinear autopilots based on the

inversion of the dynamics [110], on feedback linearization techniques [47], [42], [24], and

on sliding modes [124]. New solutions have been proposed in the last decades using the

more recent control methods: Lyapunov stabilization techniques [129], L1 adaptive con-

trol [16], Immersion & Invariance control [69] and the state-dependent Riccati equation

approach [18]. The solutions so far proposed in the nonlinear and/or adaptive context

fail in presence of large unstructured uncertainties in the dynamics; moreover, the strict

requirements on the speed of response cannot often be fulfilled in presence of adaptation



Introduction 4

laws. Therefore robust nonlinear approaches based on the geometric theory, as in [49],

and others which make extensive use of Lyapunov direct criterion, as in [51] and [50],

have also been proposed, with good performances at high angle-of-attack. It should also

be pointed out that the solutions based on these methods have only been applied in sim-

ple single-input/single-output (SISO) cases, disregarding the dangerous couplings and

nonlinearities that arise between lateral and longitudinal dynamics when dealing with

Bank-To-Turn maneuvers. Furthermore, these controllers do not take into account Mag-

nus effect and cross-couplings between control channels due to the differential of pressure

acting on the tail fins. Notable exceptions are in the works of Jim Cloutier [19], [72] and

[96]. In this work we design a robust nonlinear autopilot for an asymmetric air-to-air

missile in order to counteract matched and unmatched uncertainties in a MIMO context.

Such aim is achieved using the recursive Lyapunov redesign approach introduced in this

dissertation, exploiting recursion and virtual control to reach the nested part of the dy-

namics. Since very little is known about the aerodynamic parameters, uncertainties are

mostly treated as unstructured, thus reducing the modeling effort and avoiding the need

of a linear parametrization as in adaptive approaches. Moreover, a systematic method

to evaluate the uncertain aerodynamic terms is proposed for the first time. Performance

is radically increased in both Bank-To-Turn and Skid-To-Turn maneuvers with respect

to the standard backstepping design, at the expense of an inevitable increase in control

effort during the transient response. Embracing the nonlinear behavior of the system,

the proposed controller is suitable to guarantee the fulfilment of both maneuvers, with

slight changes in its equations.

A similar discussion can be made about the design of robust nonlinear controllers for

flexible spacecraft. The fundamental advantage of the robust nonlinear control tech-

niques presented in this work relies in the fact that they exploit as much as possible

the knowledge of the model of the system. This modeling effort reflects itself on the

construction of a proper model of the uncertain terms, as it will be shown later in the

work. The attitude stabilization of spacecraft with flexible appendages has been widely

studied, but very few are the results employing robust nonlinear stabilizers [25, 48].

Furthermore, there is no evidence of results obtained employing robust backstepping or

Lyapunov redesign approaches, as done in the present work.

Uncertainty modeling represents a crucial point in robust nonlinear control design, so

that in the present work we establish a systematic procedure to evaluate complex aggre-

gates of uncertain terms using a deterministic representation of the uncertain parameters

through the ∆-operator and the deviation function. Several techniques of uncertainty

modeling were developed in different fields, from linear robust control theory [114, 132]

to the nonlinear counterparts [66]. Several kinds of models of uncertain environment

were developed, for instance, in the robotics field [27]. A wise exploitation of a good



Introduction 5

modeling effort in order to robustify preexisting control laws is one of the nice features

characterizing the Immersion & Invariance (I&I) stabilizing controllers. Such technique,

first introduced in [6], still represents a strong tool to define and solve stabilization

problems, opening new horizons in both the physical and mathematical sides of control

theory, as extensively shown in [5]. The basic ingredients of I&I stabilization are the con-

cepts of manifold invariance and immersion of a target system, representing a reduced

dynamics with desired properties, often a-priori known as a controlled sub-system of the

process to be stabilized. The method is particularly effective when applied to systems

with triangular structures, whereas Lyapunov techniques provide constructive solutions.

Moreover, it is specifically suited for adaptive controller design [74], also in the discrete-

time case [61],[131]. This nonlinear stabilization technique is robust in the sense that it

exploits an increased modeling effort in order to “add robustness” to a nominal control

law developed on the system disregarding higher-order dynamics. The I&I controller

can thus be viewed as a robust version of a preexisting control law which neglects such

unmodeled dynamics. These higher-order dynamics are usually faster and in physical

systems they often correspond to actuator’s first or second-order dynamics, flexible mo-

tions and so on. In this work, a continuous-time solution of the I&I stabilization problem

is found for a special class of systems in feedback form. Then, we propose its digital im-

plementation, namely when the control input is maintained constant over time intervals

of fixed length, called sampling periods. We obtain approximate sampled-data single

rate and multi-rate solutions [91] which follow the continuous-time closed-loop trajec-

tories to ensure manifold attractivity. Trajectory boundedness and manifold invariance

are preserved under sampling. The digital controllers are applied to two academic ex-

amples and two case-studies, the cart-pendulum system and the rigid spacecraft. Their

effectiveness is thus shown by several simulations in different scenarios at increasing

sampling periods. The performance improvement of the proposed controllers relies in a

remarkable increase of the Maximum Allowable Sampling Period (MASP) with respect

to the direct implementation with zero-order hold of the continuous-time solution, which

is emulated control (see [97]).

Three fundamental ingredients participate in characterizing a good recipe for robust

nonlinear control design: the notion of control Lyapunov function, the representation

of system uncertainty together with its, well defined, bounds, and the concept of gain

of a nonlinear system. The first is set up to find out whether a nonlinear system is

stabilizable or not; the second is strictly related to the robustness issue and yields the

concept of robust control Lyapunov function, while the third is instrumental in ensuring

what is commonly called the performance of a system. This work is devoted to develop

the theoretical instruments which come along with these three ingredients, with the final

aim of constructing a general purpose robust nonlinear stabilizer. The main contribution
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of the work lies in the construction of a robust nonlinear stabilizer capable of handling

matched uncertainties multiplying the control, using the technique called recursive Lya-

punov redesign. This feature has a certain impact on aerospace applications, especially

in the case of the tail-controlled air-to-air missile used as case study in this work. It

is also, at least to our knowledge, the first time that the technique of the recursive

Lyapunov redesign is employed to stabilize the attitude of a spacecraft with flexible ap-

pendages, exploiting the particularly control-friendly kinematic representation based on

the modified Cayley-Rodrigues parameters. Another contribution is the introduction of

a systematic method of evaluation of the uncertain terms, which is based on a particular

deterministic model of uncertainty. We show how to propagate easily complex groups of

uncertainties into system dynamics, reducing the computational effort in the expression

of the corresponding bounding functions. Furthermore, a partially novel contribution

lies in the construction of an I&I stabilizer for a particular class of feedback-systems,

for which constructive solutions exist. The design employs one step of backstepping and

nonlinear domination arguments to show the global asymptotic stability of the controlled

system.

The work is organized as follows.

Chapter 1 contains some recalls of the notions of stability and stabilizability of un-

certain time-varying nonlinear systems. We start with the definitions of semi-global

and practical stability, which are of sure interest in the context of applications, since the

properties introduced take into account that there are bounded set of feasible initial con-

ditions and that the steady-state error could also be “sufficiently small” and not exactly

zero. Then we introduce the important concepts of Input-to-State Stability (ISS) and

Control Lyapunov Function (CLF), which are related to the problems of disturbance

attenuation and nonlinear systems stabilizability. Next, we introduce the problem of

robust nonlinear stabilizability and the corresponding definitions of nonlinear uncertain

system and practical robust stabilizability. Finally, we introduce the concept of robust

control Lyapunov function (RCLF), which is the core-idea of the robust nonlinear control

design techniques presented later in the work.

In Chapter 2, the definition of uncertain nonlinear system introduced in Chapter 1

is refined and particularized using a suitable uncertainty representation. Moreover, we

specialize the class of systems considered into that of input-affine nonlinear uncertain

systems and we give examples of unstabilizable uncertain systems, highlighting the most

common sources of instability which uncertainty can bring. Next, we introduce the fun-

damental notion of matching conditions together with the corresponding relaxed version,

that of generalized matching conditions. Both these conditions set some constraints on

system structure which are strictly related to robust stabilizability. In the final part
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of the chapter, we propose a deterministic model of the uncertain terms exploiting the

concepts of ∆-operator and deviation function. Moreover, we establish some rules to

evaluate the complex uncertain terms and a systematic method to propagate them into

system dynamics.

In Chapter 3 we establish the main result of the work. We begin by recalling the

Lyapunov redesign technique and introducing a revisited version of it, exploiting suitable

differentiable sigmoid functions, which we call “robust control functions”, in order to

avoid the problem of chattering in the implementation phase. Next, we recall the robust

backstepping technique, and finally we present our main result, consisting of the fusion

of the two approaches, the technique called recursive Lyapunov redesign. This technique

allows to compensate also control-dependent uncertainties, which are common in certain

nonlinear aerospace dynamics, like missile dynamics. In the last part of the chapter, we

recall the stabilization technique of Immersion & Invariance as a tool of robustification of

nonlinear control laws with respect to higher-order dynamics. We propose a solution in

the case of a particular class of systems in feedback form using one step of backstepping

and a nonlinear domination argument.

In Chapter 4, the robust nonlinear control techniques introduced are applied to the

dynamics of a spacecraft with flexible appendages. First, the dynamic model is made

more effective by using the modified Cayley-Rodrigues parameters for a global and

non-redundant attitude representation. Then, stability of the kinematic-flexible sub-

system under a linear control law is demonstrated to simplify the subsequent recursive

Lyapunov redesign. Application of robust nonlinear control results in practical robust

uniform global asymptotic stability (P-RUGAS) of the closed loop system.

In Chapter 5 the recursive Lyapunov redesign technique is employed to design the

autopilot of an asymmetric air-to-air missile, in order for it to perform Skid-To-Turn

and Bank-To-Turn maneuvers. After a detailed derivation of the dynamical uncertain

model, the problem setting and the construction of a nominal backstepping controller,

we design compensators for the matched and unmatched uncertainties of the dynamics

using the techniques introduced above. P-RUGAS of the closed-loop system is then

shown and several simulations demonstrate the effectiveness of the proposed control law

in different scenarios.

In Chapter 6, we reformulate the I&I stabilization solution found in Chapter 3 into

the sampled-data framework, i.e. when the control input is maintained constant over

intervals of fixed length, namely the sampling period. For the particular class of systems

considered, a digital multi-rate control solution does exist, and we propose an approx-

imate version for application purposes. The approximate sampled-data single rate and

multi-rate solutions found directly match the continuous-time closed-loop trajectories
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at the sampling instants to ensure manifold attractivity. Trajectory boundedness and

manifold invariance are preserved under sampling. The digital controllers are then ap-

plied to two academic examples and to the cart-pendulum system, with simulations

showing how the presence of the first-order corrector term enhances the performance

and ensures stability at sampling times higher than in the case of direct zero-order hold

implementation.

In Chapter 7 the problem of attitude stabilization of the rigid spacecraft, robustly

with respect to first-order actuator dynamics is considered. A continuous time control

solution is found using a two-step backstepping transformation and, subsequently, the

I&I approach is used to handle actuator dynamics as a dynamic extension of the system.

Stabilization is achieved via a nonlinear domination argument. The digital single-rate

version of the controller, tailored to the multiple input nature of the system, is then

proposed. Its effectiveness is shown by several simulations in two scenarios at increasing

sampling periods.



Chapter 1

Robust stability and

stabilizability of nonlinear

systems

In this chapter, we present and discuss some quite basic facts about the notions of sta-

bility and stabilizability of uncertain time-varying nonlinear systems. We start with

the definitions of semi-global and practical stability, which are of sure interest in the

context of applications, since the properties introduced take into account that there are

bounded set of feasible initial conditions and that the steady-state error could also be

“sufficiently small” and not exactly zero. Then we introduce the important concepts of

Input-to-State Stability (ISS) and Control Lyapunov Function (CLF), which are related

to the problems of disturbance attenuation and nonlinear systems stabilizability. Next,

we introduce the problem of robust nonlinear stabilizability and the corresponding def-

initions of nonlinear uncertain system and practical robust stabilizability. Finally, we

introduce the concept of robust control Lyapunov function (RCLF), which is the core-

idea of the robust nonlinear control design techniques presented later in the work.

1.1 Lyapunov stability of uncertain systems

As the technical definitions of system stability according to Lyapunov should be very

well known by the reader, we simply state it as the property of an equilibrium point, a

motion or a set of a system to react to perturbations in the initial conditions containing

or making vanish their effect on the solution with time. Let us just recall the concept of

domain (or, alternatively, basin) of attraction as the subset of the state space containing

all the initial states which lead to asymptotic convergence to a certain equilibrium point,

9
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also known as attractivity. These definitions [62] can be extended to the context of

uncertain nonlinear systems introducing the concept of practical stability. For, let us

start by introducing some useful stability and boundedness definitions for time-varying

nonlinear systems of the form

ẋ = f(t, x) (1.1)

where t ∈ R+
0 represents the time, x ∈ Rn is the state and f : R+

0 ×Rn → Rn is assumed

to satisfy Carathéodory conditions and to be locally Lipschitz in x. More specifically,

for each compact set Q of R+
0 × Rn, we assume that there exists an integrable function

lQ : R+
0 → R+

0 such that, for all (t, x) ∈ Q and all (t, y) ∈ Q,

‖f(t, x)− f(t, y)‖ ≤ lQ(t) ‖x− y‖ . (1.2)

The Carathéodory conditions plus the Lipschitz condition ensure both existence and

uniqueness of the solutions (1.1) [46]. Note that a large variety of physical systems can

be described by this equation, which is the starting point to understand stability and

stabilizability concepts of uncertain dynamical systems as well. Moreover, the study of

time-varying, or nonautonomous, nonlinear systems is useful to solve trajectory tracking

problems and, also, in the context of the stabilization of systems which do not satisfy

Brockett’s necessary condition [14]. These kind of systems are, in fact, not stabilizable

by means of a continuous time-invariant state feedback, making the class of time-varying

and/or discontinuous controllers eligible for feedback design. This fact is certainly rel-

evant in space systems applications, since underactuated spacecraft belong to the class

of systems depicted just above.

In the following, we state stability and boundedness definitions with respect to the origin

of (1.1), denoting with D a closed subset of Rn containing the origin and with Br the

ball of radius r centered in the origin.

Definition 1.1.0.1 (UB/UGB). The solutions of (1.1) are said to be uniformly bounded on

D if, for any non-negative constant r, there exists a non-negative c(r) such that, for all t0 ∈ R+
0 ,

the flow φ satisfies

x0 ∈ D ∩Br ⇒ ‖φ(t, t0, x0)‖ ≤ c, ∀t ≥ t0. (1.3)

If D is Rn, then the solutions are uniformly globally bounded. ♦

The concept of uniform stability is given according to the ε-δ definition for time-varying

systems.
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Definition 1.1.0.2 (US/UGS). The origin of (1.1) is said to be uniformly stable on D if the

solutions starting from it are uniformly bounded on D and, given any positive constant ε, there

exists a positive δ(ε) such that, for all t0 ∈ R+
0 , the solution of (1.1) satisfies

‖x0‖ ≤ δ ⇒ ‖φ(t, t0, x0)‖ ≤ ε, ∀t ≥ t0. (1.4)

If D is Rn, then the origin is uniformly globally stable. ♦

Note that the difference between the two concepts of boundedness and stability mainly

relies in the intrinsic “locality” of the ε-δ definition 1.1.0.2. On the other hand, (1.1.0.1)

is of practical interest because it is not uniquely related to a given equilibrium point like,

for instance, the origin, while rather to an entire domain of initial conditions starting

from which the trajectories remain bounded.

When the characteristics of the boundedness property are ensured for every positive

ε, arbitrarily small, irrespective of the initial conditions in a given set surrounding the

origin, we have the notion of attractivity of the origin.

Definition 1.1.0.3 (UA/UGA). The origin of (1.1) is said to be uniformly attractive on D if,

for all positive numbers r and ε, there exists a positive time T (r, ε) such that, for all x0 ∈ D∩Br
and all t0 ∈ R+

0 , the solutions of (1.1) satisfy

‖φ(t, t0, x0)‖ ≤ ε, ∀t ≥ t0 + T. (1.5)

If D is Rn, then the origin is uniformly globally attractive. ♦

Uniform stability plus uniform attractivity yields the property of uniform asymptotic

stability.

Definition 1.1.0.4 (UAS/UGAS). The origin of (1.1) is said to be uniformly asymptotically

stable on D if it is both uniformly stable and uniformly attractive on D. If D is Rn, then the

origin is uniformly globally asymptotically stable. ♦
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Remark 1.1.0.5 (Uniformity and robustness). As detailed in [68], the property of unifor-

mity guarantees a certain robustness towards external disturbances, since UAS of the origin of

ẋ = f(t, x, 0) ensures stability with respect to constantly acting disturbances d(t) of ẋ = f(t, x, d),

under the assumption of f locally Lipschitz in x uniformly in t. This concept, first introduced by

Malkin [78], is known as total stability and states that the solutions remain arbitrarily small at

all time if the initial state and the disturbance signal are sufficiently small. In some sense, total

stability is the progenitor of the concept of input-to-state stability which will be given in the

following. This robustness property, however, is strictly related to the uniformity assumption:

it is in fact possible to design an arbitrarily small input d(t) such that a GAS (not uniformly)

system ẋ = f(t, x, 0) becomes unstable under it. ♦

In the presence of “large”, bounded but non-vanishing, disturbances, asymptotic sta-

bility cannot be ensured anymore. In this setting, convergence to, eventually large,

neighborhoods of the operating points should be established under the name of uniform

ultimate boundedness [62].

Definition 1.1.0.6 (UUB/GUUB). The solutions of (1.1) are said to be uniformly ultimately

bounded if there exist positive numbers %m and c such that, for every % ∈ (0, %m), there exists a

positive time T (%) such that, for all x0 ∈ B% and all t0 ∈ R+
0 , they satisfy

‖φ(t, t0, x0)‖ ≤ c, ∀t ≥ t0 + T. (1.6)

If the result holds for arbitrarily large %, then the solutions satisfy the global uniform ultimate

boundedness property. ♦

Further definitions of stability and boundedness can be given by refining the notation

and introducing new concepts. In the literature [43, 133], the concept of stability of a set

is proposed, under the assumption of forward completeness, to simplify the analysis of

the uncertain systems considered. However, when dealing with the synthesis of a control

system, this extension results particularly useful only in adaptive control design, there-

fore we leave further details to the reader and simply state the following instrumental

definition.
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Definition 1.1.0.7 (UAS/UGAS of a set). Assume that (1.1) is forward complete on D.

The set P is said to be uniformly asymptotically stable on D for the system if it is both uni-

formly stable and uniformly attractive on D. If D is Rn, then the set P is uniformly globally

asymptotically stable. ♦

For brevity we choose not to state the definitions of uniform stability and attractivity

of a set, for which the reader is referred to [17], main source of the definitions given in

this section.

We should underline that the above definitions can be equivalently expressed in terms

of K and KL functions (see the Appendix, [45, 119]), paving the way to the Lyapunov

constructions instrumental in control design. We reserve the usage of these functions for

later considerations about stability and stabilizability of uncertain nonlinear systems.

1.1.1 Semiglobal and practical stability

These results can be extended to specialize the analysis on the transient behavior of the

system and to take into account different kinds of sets to which the trajectories may

converge. As a matter of fact, non-vanishing disturbances, parametric uncertainties and,

generally speaking, perturbations on the system result in steady-state errors, impeding

the exact convergence to the desired operating condition. Therefore, it makes sense to

consider a set of operating points to which the trajectories may converge. In particular,

we should investigate to what extent it is possible to reduce the dimension of the set

of convergence using the external action of a control input, irrespective of all the initial

conditions in a prescribed set, which should be on the other hand arbitrarily enlargeable.

To do this, it is necessary to move from the analysis point of view to that of systems

with inputs, and to consider explicitly the uncertainties into the state-space representa-

tion. The notions of practical and semi-global stability introduced in the following are

instrumental to this aim.

Let us define the parametrized nonlinear non-autonomous system

ẋ = f(x, t, µ) (1.7)
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where x ∈ Rn, t ∈ R+
0 , µ ∈ Rm is a tuning parameter and f : Rn × R+

0 × Rm → Rn is

locally Lipschitz in x and satisfies Carathéodory conditions for all µ in the domain of

interest.

Definition 1.1.1.1 (SUAS). Let M ⊂ Rm be a set of tuning parameters. The system (1.7) is

said to be semi-globally uniformly asymptotically stable on M if, given any R > 0, there exists an

allowable tuning parameter µs(R) ∈ M such that the origin is uniformly asymptotically stable

with BR as domain of attraction for the tuned system ẋ = f(x, t, µs). ♦

Definition 1.1.1.2 (PUGAS). Let M ⊂ Rm be a set of tuning parameters. The system (1.7)

is said to be practically uniformly globally asymptotically stable on M if, given any % > 0, there

exists an allowable tuning parameter µp(%) ∈ M such that the ball B% is uniformly globally

asymptotically stable for the tuned system ẋ = f(x, t, µp). ♦

Definition 1.1.1.3 (SPUAS). Let M ⊂ Rm be a set of tuning parameters. The system (1.7) is

said to be semi-globally practically uniformly asymptotically stable on M if, given any R > % > 0,

there exists an allowable tuning parameter µsp(%,R) ∈ M such that the ball B% is uniformly

asymptotically stable with BR as domain of attraction for the tuned system ẋ = f(x, t, µsp). ♦

These definitions do have a practical relevance, also in aerospace applications. They take

into account the presence of design parameters µ representing gains (or other tunable

variables) of a control law designed to ensure such properties to an uncertain nonlinear

system, for instance a missile or a spacecraft. Moreover, the allowed design parameters

belong to the set M, which in practical situations is bounded due to actuators limita-

tions. Thus, good performance in a robust nonlinear control system means achieving the

smallest % possible, guaranteeing the largest estimate of R through exploitation of the

allowable parameter set M. We stress that practical stability is more useful in applica-

tions than uniform ultimate boundedness, since the latter does not allow the possibility

of reducing the dimension of the ultimate bound at will and does not guarantee sta-

bility. Moreover, the semi-global feature is just in principle less strong than the global



Chapter 1. Robust stability and stabilizability of nonlinear systems 15

one, since in real applications the set of all the feasible initial conditions is usually a

bounded, closed, set surrounding the operating point of interest. In addition, note that

also the basin of attraction BR can be made large at will using control parameters.

Juxtaposition between “ideal” stability and semi-global/practical stability also finds

reasons in the behavior of physical systems, usually perturbed by external disturbances

and whose state-space representation suffers from modeling errors, neglected dynamics

and other uncertainties. Non-vanishing perturbations usually yield practical stability

results, while neglecting high-order nonlinearities result in relaxing into semi-global the

properties. As a consequence, these two properties taken alone or combined together

give a measure of the robustness of a nonlinear, non-autonomous, system. Finally, we

should note that using the concepts of stability of sets, the origin is not required to be

an equilibrium point for the system considered anymore, as expressed by Def. 1.1.1.2

and 1.1.1.3. This is an appealing feature, because several practically stable systems do

not have an equilibrium at the origin [17].

1.1.2 Input-to-state stability

Another (quite new) relevant idea that fits into the framework of robust nonlinear stabi-

lization is that of input-to-state stability (ISS), introduced by Sontag in [117]. The notion

is more general than asymptotic stability, since it requires that the norm of the state

trajectory be bounded by a function of the norm of the external input plus an asymp-

totically vanishing term in the initial state. However, because the ISS notion results to

be in many cases too strong and restrictive, a weaker version has been introduced in

[2], that of integral input-to-state stability (iISS), which is even more general than the

classic ISS. Instead of establishing a connection between the state and the supremum of

the input, iISS takes into account an estimate of the energy that the input brings into

the system. Just like the ISS, iISS entails global asymptotic stability of the system with

zero input and guarantees a certain degree of robustness against external disturbances.

A big result in this direction is given by Sontag in [118]: if the energy furnished by the

input is finite, the asymptotic state behavior is not affected.

Let us consider, this time, autonomous systems with input of the form

ẋ = f(x, u) (1.8)

where x ∈ Rn is the state, u is the locally measurable and essentially bounded (or, more

simply, piecewise continuous norm-limited) input signal and f : Rn×Rp → Rn is locally

Lipschitz. The definitions of ISS and iISS are given as follows.
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Definition 1.1.2.1 (ISS). The nonlinear system (1.8) is said to be input-to-state stable if there

exists a class KL function β and a class K∞ function γ such that, for all x0 ∈ Rn and any

admissible input signal u(t), the solution satisfies

‖φ(t, x0, u)‖ ≤ β(‖x0‖ , t) + γ (‖u‖∞) , ∀t ∈ R+
0 . (1.9)

where by ‖u‖∞ we identify supτ∈[0,t](‖u(τ)‖). The function γ is called ISS gain of (1.8). ♦

Definition 1.1.2.2 (iISS). The nonlinear system (1.8) is said to be integral input-to-state stable

if there exists a class KL function β and class K∞ functions γ and µ such that, for all x0 ∈ Rn

and any admissible input signal u(t), the solution satisfies

‖φ(t, x0, u)‖ ≤ β(‖x0‖ , t) + γ

(∫ t

0

µ(‖u‖) dτ
)
, ∀t ∈ R+

0 . (1.10)

The function µ is called iISS gain of (1.8). ♦

It is evident that these concepts are suitable to describe the robustness of a GAS nominal

system affected by disturbances or, more in general, by uncertainties. Namely, ISS

and iISS guarantee the global asymptotic stability property of a ball whose amplitude

depends on the amplitude (respectively, the energy) of the input signal. Nevertheless

these properties don’t require that, for a fixed input function u(t), the dimension of

such a ball can be arbitrarily decreased by a proper choice of a design parameter. Thus,

ISS and iISS, still describing a very interesting feature of a nonlinear system, don’t own

the points of strength of practical and semi-global stability, “tactical” in view of control

design. Instead, in view of solving the particular problem of disturbance attenuation

(which is a sub-case of the robust stabilization problem in the nonlinear context), these

two properties will result powerful since they embed a notion of gain of a nonlinear

system.

1.2 Control Lyapunov Function

After having detailed the notions of stability in the nonlinear uncertain systems frame-

work, we need to establish the sufficient conditions under which such properties are
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guaranteed. The classic Lyapunov direct criterion [77] establishes that, given a non-

linear system, the existence of a smooth positive definite function with the property of

having a non-positive derivative along the solutions implies that the origin of the system

is stable. If such derivative happens to be negative, the origin is asymptotically stable.

If, in addition, the function, which is called Lyapunov function of the system, is radially

unbounded, then the origin is globally asymptotically stable. Furthermore, converse

Lyapunov theorems ensure that the existence of a Lyapunov function is also a neces-

sary condition for stability. The classic Lyapunov result for a nonlinear nonautonomous

system [44] is recalled in what follows.

Theorem 1.2.0.3 (Lyapunov direct criterion). The origin of (1.1) is uniformly globally

asymptotically stable if and only if there exists a C1 class function V : Rn×R+
0 → R+

0 and class

K∞ functions α, α and α such that, for all x ∈ Rn and all t ∈ R+
0

α(‖x‖) ≤ V (x, t) ≤ α(‖x‖) (1.11)

V̇ =
∂V

∂x
(x, t)f(x, t) +

∂V

∂t
(x, t) ≤ −α(‖x‖) (1.12)

♦

We recall that the property of uniform asymptotic stability is desirable in terms of

robustness against perturbations and disturbances. Another powerful tool for stability

analysis is given by the following theorem due to LaSalle and Yoshizawa [65].

Theorem 1.2.0.4 (LaSalle-Yoshizawa). Let the origin be an equilibrium point of (1.1) and

suppose f is locally Lipschitz in x uniformly in t. Let V : Rn×R+
0 → R+

0 be a C1 function such

that, for all x ∈ Rn and all t ∈ R+
0

γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖) (1.13)

V̇ =
∂V

∂t
+
∂V

∂x
(x, t)f(x, t) ≤ −γ(x) ≤ 0 (1.14)

where γ1 and γ2 are class K∞ functions and γ is a continuous function. Then, all the solutions

of (1.1) are globally uniformly bounded and satisfy

lim
t→∞

γ(x(t)) = 0. (1.15)

Moreover, if γ(x) is positive definite, then the equilibrium x = 0 is globally uniformly asymptot-

ically stable. ♦
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This result is very useful when there is the need to establish convergence to a set defined

by γ(x) = 0, as in most nonlinear adaptive control designs and in their robust versions.

We introduce the fundamental concept of invariant set for a given time-invariant system

ẋ = f(x) (1.16)

which fulfills the forward completeness assumption.

Definition 1.2.0.5 (Invariance of a set). A setM is called an invariant set of (1.16) if any

solution x(t) that belongs toM at some time instant t1 must belong to it for all future and past

time:

x(t1) ∈M⇒ x(t) ∈M, ∀t ∈ R. (1.17)

A set Ω is positively invariant if the above fact is only verified for all future time:

x(t1) ∈ Ω⇒ x(t) ∈ Ω, ∀t ≥ t1. (1.18)

♦

Convergence to a desired invariant set can be shown using the well-known results pro-

vided by LaSalle’s Invariance Principle and its corollary.

Theorem 1.2.0.6 (LaSalle). Let Ω be a positively invariant set of (1.16) and V : Ω→ R+
0 be

a C1 function V (x) such that V̇ (x) ≤ 0, ∀x ∈ Ω. Moreover, let E =
{
x ∈ Ω|V̇ (x) = 0

}
, and

let M the largest invariant set contained in E. Then, every bounded solution x(t) starting in Ω

converges asymptotically to M. ♦

Corollary 1.2.0.7 (Asymptotic stability). Let x = 0 be the only equilibrium point of (1.16)

and V : Ω→ R+
0 be a C1, positive definite, radially unbounded function V (x) such that V̇ (x) ≤

0 ∀x ∈ Rn. Let E =
{
x ∈ Rn|V̇ (x) = 0

}
, and suppose that no solution other than the trivial

x(t) ≡ 0 can stay forever in E. Then the origin is globally asymptotically stable. ♦
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It is clear from these results that the convergence properties of a given nonlinear system

are stronger if the dimension ofM is lower. In the ideal case of asymptotic stability,M
coincides with the origin of the considered system.

This work is about control design, therefore we need to introduce an extension of the

Lyapunov function concept, the control Lyapunov function (CLF), which helps us estab-

lish the stabilizability of a given nonlinear system. We consider again nonlinear systems

with input in the form of (1.8), satisfying f(0, 0) = 0. Our aim is to design a feedback

control law u = α(x) in such a way that the equilibrium x = 0 of the closed-loop system

ẋ = f(x, α(x)) (1.19)

is GAS. Exploiting Theorem 1.2.0.3, we may seek for a couple (V (x), α(x)) satisfying,

in a domain of interest D ⊂ Rn, the differential inequality

∂V

∂x
(x)f(x, α(x)) ≤ −γ(x) (1.20)

with γ(x) positive definite function. This is in general really hard to achieve. A stabiliz-

ing control law for (1.8) may exist but we may be unable to find proper V (x) and γ(x)

to satisfy (1.20). If a suitable choice for V (x) and γ(x) exists, then the system admits

a CLF, as detailed in the following definition.

Definition 1.2.0.8 (Control Lyapunov Function). A smooth, positive definite and radially

unbounded function V : Rn → R+
0 is a control Lyapunov function (CLF) for (1.8) if, for all x 6= 0,

inf
u∈U

{
∂V

∂x
f(x, u)

}
< 0, (1.21)

where U is a convex set of admissible values for the control variable u. ♦

As a result, a CLF is simply a candidate Lyapunov function whose derivative can be made

negative pointwise by a proper choice of u. It is then clear that, since f is continuous

by assumption, if there exists a continuous state feedback α(x) such that the origin of

(1.19) is a GAS equilibrium point, then by converse Lyapunov theorems [36] there must

exist a CLF for system (1.8). Moreover, if f is affine in the control variable, then the

existence of a CLF for (1.8) is also a sufficient condition for stabilizability via continuous

state feedback.

If the existence of a CLF implies the existence of an admissible stabilizing u for (1.8)

and, vice-versa, the global asymptotic stabilizability of the origin of (1.19), by converse
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theorems, implies the existence of a CLF, we can finally state that the existence of a

CLF is equivalent to the stabilizability of ẋ = f(x, u) [4].

The CLF concept was introduced by Artstein [4] and Sontag [115] as generalization of

the Lyapunov design results by Jurdjevic and Quinn [57]. In the case of systems affine

in the control

ẋ = f(x) + g(x)u (1.22)

with f(0) = 0, the inequality (1.20) takes the form

∂V

∂x
f(x) +

∂V

∂x
g(x)α(x) = LfV (x) + LgV (x)α(x) ≤ −γ(x) (1.23)

Suppose we know a V (x) CLF for (1.22), then one stabilizing control law α(x) of class

C∞ for all non-zero x is given by the universal construction known as Sontag’s formula

[116]

αS(x) =


−

(
c0 +

a(x) +
√
a2(x) + (bT (x)b(x))2

bT (x)b(x)

)
b(x) if b(x) 6= 0

0 if b(x) = 0

(1.24)

where a(x) = LfV (x) and b(x) = (LgV (x))T . The control law (1.24) renders V̇ evaluated

along the closed-loop trajectories negative definite. Namely, for x 6= 0, we obtain

V̇ = a(x)− p(x)bT (x)b(x) = −
√
a2(x) + (bT (x)b(x))2 − c0b

T (x)b(x) < 0 (1.25)

where

p(x) =

c0 +
a(x) +

√
a2(x) + (bT (x)b(x))2

bT (x)b(x)
if b(x) 6= 0

c0 if b(x) = 0

(1.26)

We stress that c0 > 0 is not a necessary requirement for a negative definite V̇ since,

away from x = 0, a(x) and b(x) never vanish together due to (1.23) being satisfied only

if
∂V

∂x
g(x) = 0⇒ ∂V

∂x
f(x) < 0, (1.27)

This results in the following expression for γ(x)

γ(x) =
√
a2(x) + (bT (x)b(x))2 > 0 (1.28)

for all non-zero x. Note that the stabilizing feedback α(x), defined on Rn, is such that

α(0) = 0 and is smooth on the open (and dense) subset Rn\ {0} of Rn. In addition,

α(x) is continuous at x = 0, i.e. it has the property of being an almost smooth function,

if and only if the corresponding CLF V (x) satisfies the so-called small control property.
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Definition 1.2.0.9 (Small control property). A control Lyapunov function V (x) is said to

satisfy the small control property if, for each ε > 0, there exists a δ(ε) > 0 such that, if x 6= 0

satisfies 0 < ‖x‖ < δ, then there is some u with ‖u‖ < ε such that

∂V

∂x
(f(x) + g(x)u) = LfV (x) + LgV (x)u < 0. (1.29)

♦

The small control property represents a mild assumption on V . In fact, let us consider

the open set

Ξ = {x|b(x) 6= 0 or a(x) < 0} (1.30)

complemented by Ξc = Rn\Ξ. Note that, inside Ξ, the control law (1.24) is a smooth

function of x if a and b are smooth, because

a+
√
a2 + (bT b)2

bT b
b (1.31)

seen as a function of a ∈ R and b ∈ Rm is analytic when b 6= 0 or a < 0. When V is

a CLF, the set Ξ is the whole state space except for the origin, because of the strict

inequality (1.23). As a consequence, Ξc is just the origin x = 0. If Ξc were to include

points other than the origin, which happens when γ(x) is only positive semi-definite, the

continuity of the control law (1.24) would require the small control property to hold at

every point of Ξc. This is a quite restrictive assumption, and also the reason for which

the CLF concept is defined only with a strict inequality.

The idea of control Lyapunov function represents in some sense a breakthrough in non-

linear control design, but it still remains very difficult to find a CLF for a given nonlinear

system. It is sometimes harder to focus in finding the CLF than to design directly a

stabilizing controller. A way to construct recursively a control Lyapunov function and a

stabilizing control law is provided by the backstepping procedure [28, 125]. This method-

ology represents a powerful tool for the state-feedback stabilization of nonlinear systems

in feedback form, the following lower-triangular structure

ż = f(z, ξ1)

ξ̇1 = a1(ξ1, ξ2)

ξ̇2 = a2(ξ1, ξ2, ξ3)

. . .

ξ̇n = an(ξ1, ξ2, . . . , ξn, u).

(1.32)
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The control Lyapunov function obtained is non-quadratic in the state variables and the

control law is intrinsically robust, since the approach is based on an energetic descrip-

tion of the system and avoids wasteful cancellations, unlike feedback linearization. The

nonlinear backstepping methodology will be deeply analyzed, also in its robust exten-

sions. As a matter of fact, this approach has a remarkable impact on space systems

applications of nonlinear control, as will be highlighted in Chapter 3.

Another interesting tool for stabilization is that of forwarding [55, 89], which applies to

systems in feedforward form, the following upper-triangular structure

ξ̇1 = f1(ξ1) + ψ1(ξ1, ξ2, . . . , ξn, z, u)

ξ̇2 = f2(ξ2) + ψ2(ξ2, . . . , ξn, z, u)

. . .

ξ̇n−1 = fn−1(ξn−1) + ψn−1(ξn−1, ξn, z, u)

ż = a(z) + b(ξn, z)ξn

ξ̇n = u

(1.33)

where the subsystems ξ̇i = fi(ξi) are globally stable with a Lyapunov function W (ξ),

i.e. LfW (ξ) ≤ 0 for all ξ, the interconnection term ψ(ξ, z) satisfy a not-higher-than-

linear growth condition in ξ and ż = a(z) is GAS and locally exponentially stable with

a Lyapunov function U(z). A CLF for the following simplified version of the cascade

(1.33)

ξ̇ = f(ξ) + ψ(ξ, z)

ż = a(z)
(1.34)

is of the form

V (ξ, z) = W (ξ) + U(z) + Ψ(ξ, z) (1.35)

where W (ξ) for ξ̇ = f(ξ) and U(z) for ż = f(z) are known and the cross term Ψ must

be constructed to satisfy Ψ̇ = −LψW , so that

V̇ = LfW + LaU ≤ 0 (1.36)

In this kind of constructive design, however, a severe critical point relies in the evaluation

of the line integral

Ψ(ξ, z) =

∫ ∞
0

LψW (ξ̃(t, ξ, z), z̃(t, z)) dt, (1.37)

along the solutions of ξ̃(t, ξ, z) and z̃(t, z) of (1.34) starting from (ξ, z) at t = 0. In

many cases, numerical integration is required. To obtain closed-form solutions, f(·) and

a(·) should be linear in their arguments and the cross-term ψ(ξ, z) = p(z) a polynomial
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function of z only. Nonlinear forwarding design usually leads to very complex control

laws, often without analytic solutions, which are easier to implement in many control

applications. Thus, it is not really suitable for real-time implementation, also due to

lack of robustness improvements, unlike backstepping.

Backstepping and forwarding are also useful tools in recursive feedback passivation of

nonlinear systems, as extensively shown in [111]. As a matter of fact, while the first

overcomes the relative degree zero or one requisite, the second bypasses the weak min-

imum phase condition. Both the designs fail in the presence of systems which do not

exhibit neither the feedback nor the feedforward forms. Nevertheless, their combined

application may lead to constructive designs for the extended class of interlaced systems

[73, 112], which covers a broad variety of physical systems.

1.3 Robust nonlinear stabilization

To formulate the problem of robust nonlinear stabilization, it is mandatory to define

properly the concept of nonlinear uncertain system, the notion of practical-robust uni-

form global asymptotic stability (P-RUGAS) and the core-idea of robust control Lya-

punov function (RCLF), first introduced by Freeman and Kokotovic in [36].

1.3.1 Nonlinear uncertain systems

Consider three finite-dimensional Euclidean spaces: the state space X, the control space

U and the uncertainty space W. Given a continuous function f : X×U×W×R+
0 → X,

the following system of differential equations depicts a very general representation of a

nonlinear and non-autonomous uncertain system:

ẋ = f(x, u, w, t) (1.38)

where x ∈ X is the state vector, u ∈ U is the control inputs vector, w ∈ W is the

uncertainties vector, and t ∈ R+
0 is the independent (time) variable. Together with this

state-space representation, we consider the constraints given by the set of admissible

uncertainties, W , and that of admissible controls, U . Note that we could take into

account also an uncertain output equation and a measurements vector assuming values

in a certain set, but in this work we are interested in state-feedback problems, so we

will assume that the output coincides with the state: y = x. For the output-feedback

version of these results, the reader should refer to [36], which also provides part of the
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contents of this section. Let us characterize with precision the spaces above defined in

terms of their set-valued constraints.

We define uncertainty for (1.38) a function w : X × U × R+
0 → W such that w(·, ·, t) is

continuous for each fixed t ∈ R+
0 and w(x, u, ·) is locally L∞ for each fixed (x, u) ∈ X×U.

Given an uncertainty constraint W : X×U×R+
0  W, we define an uncertainty w(x, u, t)

admissible when w(x, u, t) ∈ W (x, u, t) for all (x, u, t) ∈ X× U× R+
0 . This kind of rep-

resentation covers a broad class of admissible static uncertainties, including exogenous

and feedback disturbances and other plant and input perturbations. Moreover, this de-

scription is at the foundations of the guaranteed stability framework for robust nonlinear

control [21, 41, 70].

A control for (1.38) is a function u : X×R+
0 → U such that u(·, t) is continuous for each

fixed t ∈ R+
0 and u(x, ·) is locally L∞ for each fixed x ∈ X. Given a control constraint

U : X × R+
0  U, we define a control u(x, t) admissible when u(x, t) ∈ U(x, t) for all

(x, t) ∈ X× R+
0 and it is jointly continuous in (x, t).

The vector-field f , together with the two set-valued constraints U and W , constitute the

uncertain nonlinear dynamical system Σ = (f, U,W ). With the expression “solution”

to Σ we mean a solution x(t) to the initial value problem:

ẋ = f(x, u(x, t), w(x, u(x, t), t), t), x(t0) = x0 (1.39)

given an uncertainty vector w(x, u, t), a control u(x, t) and an initial condition (x0, t0) ∈
X × R+

0 . The regularity assumptions guarantee that the right-hand side of (1.39) is

continuous in x and locally L∞ in t, and it follows from classical existence theorems

that solutions of Σ always exist, at least locally in t, but need not be unique. Figure 1.1

shows the signal flow diagram of the system.

The system Σ = (f, U,W ) is time-invariant, or autonomous, when the mappings f , U

and W do not explicitly depend on time t. In this case, with slight abuse of notation,

we write f(x, u, w), U(x) and W (x, u). In the same way, we say that a control is time-

invariant when u(x, t) = u(x). Although we have included only static uncertainties and

controls in our formulation, we can accommodate fixed-order dynamics by redefining Σ

according to what is done in [36].

1.3.2 Practical-robust stability and stabilizability

Recall that in Section 1.1.1 we have introduced the notion of PUGAS for a nonlinear

non-autonomous parametrized system. We want to re-define and extend the notion to
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u ∈ U(x, t)

dx/dt = f(x, u, w, t)
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Figure 1.1: Nonlinear robust control paradigm.

the context of nonlinear uncertain systems with control input. With this in mind, we

examine the behavior of the set of solutions of Σ or, which is the same, of (1.38), for all

initial conditions and admissible uncertainties and try to determine which stabilization

property can be achieved with a suitable choice of the robust nonlinear control law u(x).

When every solution of (1.38) converges to a compact residual set Ω ⊂ X containing

a desired operating point (for convenience, the origin 0 ∈ X), we will say that these

solutions (or, equivalently, Ω) are robustly (uniformly globally asymptotically) stable

according to the following definition.

Definition 1.3.2.1 (RUGAS-Ω). Given a control law and a compact set Ω ⊂ X , containing

the origin, the solutions of the nonlinear uncertain system Σ are robustly uniformly globally

asymptotically stable with respect to Ω (RUGAS-Ω) when there exists a class KL function β

such that for all admissible uncertainties and initial conditions (x0, t0) ∈ X × R+
0 , all solutions

x(t) exist for all t ≥ t0 and satisfy

|x(t)|Ω ≤ β(|x0|Ω, t− t0) (1.40)

for all t ≥ t0. Moreover, the solutions of Σ are RUGAS when they are RGUAS-{0}. ♦
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Note that the RUGAS-Ω implies that the residual set Ω is (robustly) positively invari-

ant. In particular, RUGAS (the particular case with Ω = {0}) implies that the origin is

a equilibrium point (in forward time) for every admissible uncertainty and initial con-

dition, which is clearly not necessary using the relaxed RUGAS-Ω property. The robust

stabilization problem for an uncertain nonlinear system Σ which emerges from Definition

(1.3.2.1) is to construct an admissible control law such that the solutions of (1.38) are

RUGAS-Ω for some residual set Ω. In particular, we seek for a practical version of such

property, since we would like to reduce the dimension of Ω at will exploiting control

design parameters. With this in mind, and without loss of generality, let us consider the

extended system Σµ = (f, U,W,M), containing the set M ⊂ Rm of admissible tuning

control parameters. The corresponding state-space representation is then

ẋ = f(x, u(µ), w, t) (1.41)

with µ ∈ M vector of admissible design parameters. It is therefore possible to extend

Definition (1.3.2.1) in the following fashion.

Definition 1.3.2.2 (P-RUGAS). Let M ⊂ Rm be a set of tuning parameters. The uncertain

system (1.41) is said to be practically-robustly uniformly globally asymptotically stable on M

if, given any %(Ω) > 0, with B%(Ω) biggest ball contained in the desired convergence set Ω,

there exists an allowable vector of tuning parameters µp(%(Ω)) ∈ M such that the solutions of

ẋ = f(x, u(µp(%(Ω))), w, t) are robustly uniformly globally asymptotically stable with respect to

B%(Ω) (RUGAS-B%(Ω)). ♦

According to how small we can make the set of convergence of the solutions by a suitable

choice of the control law tuning parameters, we define three types of robust stabilizability

as follows.

Definition 1.3.2.3 (Robust stabilizability). The system Σ is robustly uniformly glob-

ally asymptotically stabilizable when there exists an admissible control and a compact set

Ω ⊂ X , containing the origin, such that the solutions to Σ are RUGAS-Ω. This means that

the distance between the trajectories and the origin of the state space depends strictly on the

dimension of Ω, and cannot made arbitrarily small. When Ω collapse to the origin, the sys-

tem stabilizability property is the simple RUGAS. The system Σµ is practically-robustly

uniformly globally asymptotically stabilizable when for every %(Ω) > 0 there exists an

admissible control and a compact set Ω ⊂ X, satisfying 0 ∈ B%(Ω) ⊂ Ω, such that the solutions
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to Σµ are RUGAS-B%(Ω). This means that the distance between the trajectories and the origin

of the state space can be made arbitrarily small by an opportune choice of the control design

parameters µ. ♦

Clearly RUGAS with respect to the origin implies practical robust (uniform global

asymptotic) stabilizability, which in turn implies robust (uniform global asymptotic)

stabilizability with respect to a fixed (irreducible in dimension) set Ω.

1.3.3 Robust Control Lyapunov Function

The existence of a Lyapunov function is the most significant necessary and sufficient

condition for the stability of a nonlinear system. The sufficiency was proved by Lyapunov

[76], and the necessity was established half a century later with the advent of the so-

called converse theorems [67]. Since Lyapunov theory deals with dynamical systems

without inputs, it has traditionally been applied only to closed-loop control systems,

that is, systems for which the input has been replaced by a state-feedback control law.

Starting from the early Sixties, some authors began exploiting Lyapunov functions for

feedback design by “making the Lyapunov derivative negative” with proper choice of the

control law [58, 82]. Such ideas have been progressively activated with the introduction

of the concept of control Lyapunov function, of which we have generously discussed in

Section 1.2. This idea can be extended to the class of uncertain nonlinear systems,

introduced in the previous sections, by defining the robust control Lyapunov function,

whose existence, as we are going to show, is a necessary and sufficient condition for

robust nonlinear stabilizability. Most of the contents of this section are rearranged from

[36].

Recall from Section 1.3.1 that an uncertain nonlinear system Σ consists of the triple

(f, U,W ) with continuous generating function f and sets of admissible controls U and

disturbances W . Denote by V(X) the set of all C1 functions V : X×R+
0 → R+

0 satisfying,

for all (x, t) ∈ X× R+
0 , the inequality

α(‖x‖) ≤ V (x, t) ≤ α(‖x‖) (1.42)

with α and α K∞ functions. The set V(X) is the set of all candidate Lyapunov functions

for testing the robust stability of a nonlinear uncertain system Σ. This set V(X) is

contained in the broader set P(X) of functions which need not to be differentiable or

radially unbounded, that is, the set of all continuous functions α : X × R+
0 → R+

0 such
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that there exist χ1, χ2 ∈ K satisfying χ1(‖x‖) ≤ α(x, t) ≤ χ2(‖x‖) for all (x, t) ∈ X×R+
0 .

Given V ∈ V(X) and an uncertain nonlinear system Σ, namely ẋ = f(x, u, w, t), we define

the Lyapunov derivative along the motion LfV : X×U×W×R+
0 → R by the equation

LfV (x, u, w, t) :=
∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x,w, u, t) (1.43)

Clearly LfV is continuous, and it follows from (1.42) that LfV (0, ·, ·, ·) ≡ 0. Now we

are ready to give the definition of robust control Lyapunov function.

Definition 1.3.3.1 (Robust control Lyapunov function). A function V ∈ V(X) is called

a robust control Lyapunov function (RCLF) for an uncertain nonlinear system Σ if there exists

cv ∈ R+
0 and αv ∈ P(X) such that

inf
u∈U(x,t)

sup
w∈W (x,u,t)

(LfV (x, u, w, t) + αv(x, t)) < 0 (1.44)

for all t ∈ R+
0 and all c > cv. ♦

The RCLF extends the CLF in different directions. First, the definition takes into

account not only the control variable, but also the uncertainties, disturbances or generic

perturbations. Second, this notion can be easily extended to measurement feedback as

well. Last, but not least, the parameter cv potentially encompasses all three types of

stabilizability introduced in section 1.3.2, not just asymptotic stabilizability.

This definition particularizes to the special case of autonomous (or time-invariant) sys-

tems in the following fashion.

Definition 1.3.3.2 (Time-inviariant RCLF). A time invariant function V ∈ V(X) is called

a robust control Lyapunov function for an autonomous uncertain nonlinear system Σ if and only

if there exist cv ∈ R+
0 and a time invariant function αv ∈ P(X) such that

inf
u∈U(x)

sup
w∈W (x,u)

(LfV (x, u, w) + αv(x)) < 0 (1.45)

whenever V (x) > cv. ♦
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The inequality (1.45) can be interpreted as follows: for every fixed x there exists an

admissible value u for the control such that the Lyapunov derivative is negative for any

admissible value w of the uncertainty. This is a natural generalization of the control

Lyapunov function concept for systems with disturbance inputs.

Example 1.3.3.3 (feedback linearizable systems). Consider a feedback linearizable

system (g1(ξ) nonsingular for all ξ) perturbed by a disturbance input w

ξ̇ = Hξ + L (g0(ξ, w) + g1(ξ)u) (1.46)

Suppose that there is no control constraint, i.e. U(x) ≡ U, and suppose that the

disturbance constraint is such that W (x,U) is bounded for every x ∈ X. Let P be the

symmetric, positive definite, solution to the matrix Riccati equation

HTP + PH − PLLTP + I = 0 (1.47)

The function V (x) = ΦT (x)PΦ(x) = ξTPξ with the selection αv(x) = 1
2ξ
T ξ is such that

inf
u∈U

sup
w∈W (x,u)

(LfV (x, u, w) + αv(x))

= inf
u∈U

sup
w∈W (x,u)

[
ξT (HTP + PH)ξ + 2ξTPL (g0(ξ, w) + g1(ξ)u) +

1

2
ξT ξ

]
= inf

u∈U
sup

w∈W (x,u)

[
−1

2
ξT ξ + ξTPL

(
LTPξ + 2g0(ξ, w) + 2g1(ξ)u

)]

=

−
1
2ξ
T ξ when ξTPL = 0

−∞ when ξTPL 6= 0

(1.48)

Thus we deduce from Definition 1.45 that V is RCLF for system (1.46) with cv = 0. With

this example, we would like to stress that V is also a CLF for the unperturbed version of

system (1.46), the one with w = 0. However, note that not every CLF become a RCLF

when uncertainties perturb a “nominal” dynamics. Generally speaking, this happens

only when the source of uncertainty is matched with the control input, i.e. when the

disturbance w enters the system through the same channel as the control u. Another

way to say this is that the disturbance is in the span of the control action. We will

return later on this point, crucial for robust stabilizability. ♦

1.3.3.1 RCLF in absence of disturbance input

The RCLF is a concept more general than that of CLF, since it takes into account

uncertainties, measurement feedback and non-constant control constraints. We are in-

terested in determining whether or not the RCLF and the CLF coincide. We consider
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an autonomous system Σ with perfect state measurement, constant control constraint

(U(x) ≡ U), and no uncertainties or disturbance inputs. Recall that a CLF V ∈ V(X)

for ẋ = f(x, u) satisfies

x 6= 0⇒ inf
u∈U

LfV (x, u) < 0 (1.49)

Clearly, every RCLF for Σ is also a CLF: we want to find out whether or not every CLF

is also a RCLF in this restricted case.

Suppose V is a CLF with the additional property that the left-hand side of the inequality

is bounded away from zero for large x, i.e. for all c > 0 there exists δ > 0 such that

V (x) ≥ c⇒ inf
u∈U

LfV (x, u) ≤ −δ (1.50)

Every CLF with this additional property is a RCLF according to the definition. As a

matter of fact, if (1.50) is true, then we can find a time-invariant function αv ∈ P(X)

such that adding αv(x) to the left-hand side of (1.49) preserves the inequality. On the

other hand, if a given CLF does not satisfy such extra property, it is not a RCLF because

a suitable function αv does not exist. However, given a CLF not satisfying (1.50), it is

always possible to construct another CLF V satisfying it, and being therefore a RCLF,

see [36] fore more details.

1.3.3.2 RCLF implies robust stabilizability

In [36] several assumptions under which the existence of a robust control Lyapunov func-

tion for a system Σ implies its robust stabilizability, according to Definition 1.3.2.3, are

investigated. There are constraints to be imposed on control and uncertainty spaces U

and W , in terms of lower/upper semi-continuity and, in general, regularity. Another set

of conditions to be fulfilled concerns the structure of the vector field f , which determines

the dynamics of the system Σ, and the structure of W . The first must be a map affine in

the control input, while the second should be independent of u, i.e. W (x, u, t) = W (x, t).

This second set of assumptions could be relaxed when the map f is jointly affine in u

and w: the condition on W changes in that it can be dependent on u, in particular it

must be convex in u. Thus we can state the following sufficiency theorem, whose proof

is detailed in [36].

Theorem 1.3.3.4 (RCLF ⇒ robust stabilizability). Suppose a nonlinear uncertain sys-

tem Σ satisfies some regularity assumptions on U and W , detailed in [36], plus the structural

conditions on f and W . If there exists a RCLF for Σ, then Σ is robustly stabilizable. If,

furthermore, cv = 0, then Σ is practically-robustly stabilizable. Moreover, if Σ and V are
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time-invariant, then the robustly stabilizing admissible control can always be chosen to be time-

invariant. ♦

1.3.3.3 Small control property

Finally, defining a suitable small control property for nonlinear uncertain systems like

Σ, it is possible to relate the existence of a robust control Lyapunov function to the

robust asymptotic stabilizability of the system considered. Fore more details about the

extension of such a property to the framework of nonlinear uncertain systems, the reader

is again referred to [36]. Substantially, the existence of a robust control Lyapunov func-

tion V which satisfies the small control property, together with all the other conditions

briefly presented above, implies robust asymptotic stabilizability of Σ. Also, if Σ and V

are time-invariant, then the robustly stabilizing admissible control can always be chosen

to be time-invariant.

1.3.3.4 Robust stabilizability implies RCLF

The necessity theorem about robust control Lyapunov functions applies to systems of

the form

ẋ = F (x, d) (1.51)

where F is locally Lipschitz and d(t) is an L∞ exogenous input assuming values in a

nonempty compact convex subset D of a finite-dimensional Euclidean space. First, we

state the following converse theorem.

Theorem 1.3.3.5. Suppose there exists a class KL function β such that, for every initial con-

dition (x0, t0) ∈ X×R and every L∞ exogenous input d(t) taking values in D, the solution x(t)

of (1.51) exists for all t ≥ t0 and satisfies ‖x(t)‖ ≤ β(‖x0‖ , t − t0) for all t ≥ t0. Then, there

exist time-invariant functions V ∈ V(X) and αv ∈ P(X) such that

sup
d∈D

(LFV (x, d) + αv(x)) ≤ 0 (1.52)

for all x ∈ X. ♦
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This converse theorem is useful in showing that, at least in the locally Lipschitz case,

the existence of a RCLF is necessary for robust stabilizability. At the same time, we

present the result for robust asymptotic stabilizability, showing the necessity of the small

control property. Again, for the proof the reader is referred to [36].

Theorem 1.3.3.6 (Robust stabilizability ⇒ RCLF). Let Σ be a time-invariant uncer-

tain nonlinear system with generating function f locally Lipschitz. Let the disturbance admis-

sible space W be locally Lipschitz too, with nonempty compact convex values. If Σ is robustly

asymptotically stabilizable via locally Lipschitz time-invariant state-feedback, then there exists a

time-invariant RCLF for Σ satisfying the small control property. ♦



Chapter 2

Structure of an uncertain

nonlinear system

Robust nonlinear control, as already stated, takes into account stabilization problems

of systems whose dynamics is not completely known. A really important role in this

framework is played by the representation used for the uncertain parts of the dynamics,

more briefly the uncertainty. In this section, we define with more details what does the

term “uncertainty” means in the present setting and how uncertainties can be classified.

The most important assumption needed in this context is the possibility to define a

deterministic model of the uncertainty, exploiting it in the subsequent robust nonlinear

design. In particular, only the knowledge of the bounds of these models will be required

to obtain the desired control law. Moreover, we refine the representation of nonlinear

uncertain system and illustrate some of its structural properties. We specialize the class

of systems considered into that of input-affine nonlinear uncertain systems and we give

examples of unstabilizable uncertain systems, highlighting the most common sources of

instability which uncertainty can bring. Next, we introduce the fundamental notion of

matching conditions together with the corresponding relaxed version, that of generalized

matching conditions. Both these conditions set some constraints on system structure

which are strictly related to robust stabilizability. In the final part of the chapter,

we propose a deterministic model of the uncertain terms exploiting the concepts of ∆-

operator and deviation function. As a result, we establish some rules to evaluate the

complex uncertain terms and a novel systematic method to propagate them into system

dynamics.

33
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2.1 Uncertainty representation

Uncertainty represents a part of a physical system that cannot be easily modeled or

precisely known. This means that the model of the system is only partially known. In

the sequel, we will assume that system dynamics can be divided in a nominal, perfectly

known, part and in an uncertain, only partially known, part. Uncertainty is not com-

pletely unknown, because the designer can count on the information about its bounds,

assumed to be known. Note that the use of a partially known model to describe a physi-

cal system not only reflects the reality, but also makes it possible for us to study the way

of designing controls that compensate for the unknowns and achieve better performance

in modern sophisticated systems, like those in the aerospace domain. Recall that the

approach described in this work is totally deterministic, and so are the models and the

uncertainties considered.

Typical uncertainties in deterministic models of physical systems include, but are not

limited to, constant or time-varying parameters of the system, unmodeled dynamics,

modeling errors, unknown inputs such as disturbances, measurement noise, environmen-

tal perturbations of various nature, sampling, quantization noise, etc. In this work we

are going to describe uncertainties as a “lumped”, thus extremely synthetic and practi-

cal, description of all the phenomena that are not depicted in the nominal system model.

Below, we follow in part the classification made by Z. Qu in [106].

There are different ways of classifying the uncertainties, for instance according to:

• functional dependence and structure;

• relationship to the control input;

• size of the bounding functions;

• continuity and other regularity assumptions;

• location in system equations.

A first notable distinction to make is between dynamic (with memory) uncertainties and

static (memoryless) uncertainties.

1. Dynamic uncertainties, also called unmodeled dynamics, are quite difficult to

consider in control design, so they are usually neglected due to their high-frequency

response. Sometimes, their effect on system dynamics is studied using approxima-

tions or asymptotic methods like singular perturbations, center manifold theory

or more practical time-scales separation arguments. If neglected, these uncertain
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terms may lead to instability of the closed-loop system. They are due to a lack of

dynamic description of the model used for control design, often highly simplified

to make the design phase easier. A remarkable example of unmodeled dynamics

is the high-frequency actuator dynamics of an air-to-air missile, one of the case-

studies analyzed in the following. Also the equations of the flexible modes in a

spacecraft with appendages can be considered unmodeled dynamics.

2. Static uncertainties can be taken into account more easily in control design,

nonetheless they still represent a danger for stability. Usually, they are para-

metric uncertainties, modeling errors or disturbances. Typical examples of static

uncertainties, that may be time-varying, state, and control dependent, are the

aerodynamic forces and moments in the missile equations of motion. Another no-

table example is the parametric uncertainty in the inertia moments of a flexible

spacecraft, as in one of the application studies made in this work.

Another very important distinction emerges between unstructured and structured un-

certainties.

1. Unstructured uncertainties are those that are bounded by a function of the

state and time in some norm and can assume any arbitrary value or function within

the size of the given bounding function. There is no additional information upon

the uncertainty structure, only that of its bounding function.

2. Structured uncertainties are those for which some information in addition to

their bounding functions is available. This information is related to the functional

structure of the uncertainty itself.

Consider a deterministic time-domain uncertainty ∆(x, t), for instance a scalar function,

such that:

|∆(x, t)| ≤ ‖x‖ (2.1)

where x ∈ Rn. Without any information about ∆(x, t) other than its bounding function

‖x‖, the uncertainty is said to be unstructured. This particular uncertainty ∆(x, t) is

also called sector-bounded as its bounding function is linear with respect to the norm

of the state. Uncertainty ∆(x, t) is said to be structured if its functional dependence

on the state and time can be described to some extent. The most common type of

structured uncertainties is the class of so-called parametrizable uncertainties, that is,

uncertainties that can be characterized through a certain, more or less defined, func-

tional expression. If the function is known except for a finite number of unknown,

possibly time-varying, parameters, the uncertainty is called linearly parametrizable. An
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example of linearly parametrizable uncertainty is ∆(x, t) = aT (t)x, where a(t), with

‖a(t)‖ ≤ 1, is a vector of unknown time-varying or constant parameters. If otherwise,

for instance, ∆(x, t) = bT (x, t)x where ‖b(x, t)‖ ≤ 1, the uncertainty is said to be non-

linearly parametrizable. It should be noted that several levels of information may be

obtained for uncertainties, particularly for structured ones. As an example, consider

again the structured uncertainty ∆(x, t) = bT (x, t)x with ‖b(x, t)‖ ≤ 1. Once the non-

linear parametrization is given, we can continue to specify if the uncertain vector b(x, t)

is structured. For vector uncertainty b(x, t) to be structured, the expressions of its

uncertain elements are important. If

b(x, t) = c(x, t)
x

1 + ‖x‖2
(2.2)

with ‖c(x, t)‖ ≤ 2, the same question of being structured or not can be raised again

for the vector c(x, t). This process of exploring uncertainty information stops when

all physical understandings of the system are exhausted. At the end the uncertainties

should be either unstructured or linearly parametrized.

Given a bounding function, the unstructured uncertainties entailed by it constitute a set

of infinite elements. Obviously, structured uncertainties are special, deterministic, real-

izations of unstructured uncertainties bounded by the same bounding function. Hence,

treating structured uncertainty as unstructured inevitably enlarges the set of admissible

elements and in turn makes analysis and control design conservative. It will be shown

in some examples that the location of the uncertainties in system dynamics and their

nature may determine whether the uncertain system is stabilizable, and that exploiting

such structural information is a crucial point in control synthesis. Nevertheless, available

analysis techniques and control design procedures are not capable of taking into account

every piece of information known about uncertainties. As a result, uncertainties being

unstructured at a certain level are often much easier to be handled in analysis and con-

trol design than structured uncertainties. It is in these cases that a conservative result

may have to be concluded. There is clearly a compromise to deal with concerning the

complexity of the design and its conservatism.

Once defined in an accurate way the concept of uncertainty, we are now ready to present

the general problem of robust nonlinear control.

Definition 2.1.0.7 (Robust nonlinear control problem). The problem of controlling non-

linear uncertain systems, also referred to as the robust nonlinear control problem, is to

design a fixed (i.e. uncertainty independent) controller which guarantees design requirements in



Chapter 2. Structure of an uncertain nonlinear system 37

the presence of significant uncertainties bounded in size by either some constant or some well-

defined functions of the state and time. If it exists, such a stabilizing control is called robust

nonlinear control, and must be suited to achieve stability and a desired level of performance

for the closed-loop system. ♦

The adjective “robust” is used to reflect the fact that the specific property holds for all

possible uncertainties within their bounds (or bounding functions). The other two key

phrases in the above definition are “significant” and “bounded in size”. Insignificant

uncertainties need not be considered since all stable feedback control systems possess a

certain level of robustness against small perturbations. Moreover, the boundedness of

uncertainties is a compulsory requirement for the success of nonlinear robust control syn-

thesis. Note that, however, robust nonlinear control laws can be designed merely know-

ing the existence of some bounds or bounding functions of the uncertainties, without

requiring the knowledge of the bounds amplitude itself, but with compulsory limitations

on the performance of the control system. This happens to be the case, for instance, of

the famous redesign technique called nonlinear damping presented in [62]. Therefore,

the superiority of robust control and its difference from other design methodologies are

due to the fact that uncertainties are only required to be bounded. In fact, in compar-

ison, classical adaptive control and learning control can be used to handle only those

systems with linearly parametrized uncertainties. For systems with both unstructured

and parametrizable uncertainties, a combination of robust and adaptive control can have

success.

Basically, the design phase of robust nonlinear control consists of three steps:

• Study the nominal system (in which system uncertainties are assumed to be zero)

and design a stabilizing nominal control.

• Find a Lyapunov function for the uncertain system.

• Develop a robust controller through a Lyapunov argument in which enlargement

and size domination will be employed.

Robust control design is usually based on a nominal control design for the nominal

system, since the presence of uncertainties complicates the synthesis and because robust

control reduces to the nominal as the size of uncertainties becomes zero. There are

two additional reasons why a nominal design is required. First, stability analysis of

uncertain systems is always done with respect to the equilibrium point of the nominal



Chapter 2. Structure of an uncertain nonlinear system 38

system. Second, the Lyapunov function for the uncertain system, at least in solving the

easiest problems, can be chosen to be that of the nominal system. Nominal control design

and robust control design may be combined together to achieve stabilization. In some

cases, it is easier to neglect some known dynamics to develop a simpler nominal control

and treat them as uncertainties to handle in the following robust control synthesis. The

enlargement process consists in exploiting the knowledge of the bounds to develop the

Lyapunov derivative inequality, enlarging the uncertainties to their known maximum

possible sizes. This implies that a robust nonlinear control design is, in essence, a

worst-case design. Size domination, finally, means that the control law developed makes

the Lyapunov derivative satisfy the dissipation inequality by dominating in size all the

uncertain terms in it. For further conceptual considerations about the philosophy of

nonlinear robust control, the reader could refer to [106].

2.2 Input-affine nonlinear uncertain systems

The generic state-space representation of a nonautonomous uncertain nonlinear system

was already given as (1.38). However, it is very difficult to develop a robust nonlinear

controller for a system with such a highly-nonlinear structure. Therefore, we are going

to take into account for the rest of the work the input-affine version of (1.38), because

the control techniques that we will present need this structure to be properly applied.

More in detail, we consider systems of the form

ẋ = a(x,w, t) +B(x,w, t)u (2.3a)

:= f(x, t) + ∆f̄(x,w, t) +G(x, t)u+ ∆Ḡ(x,w, t)u (2.3b)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ Rp is the control inputs vector, t ∈ R+
0 is

the time, and w ∈ W ⊂ Rs is the vector of time-varying uncertain variables. In (2.3a),

w is simply a lumped description of all the uncertainty of the system. The second

representation (2.3b) is a structured version of (2.3a). As a matter of fact, f and G

are the known, nominal, parts of a and B respectively, while ∆f and ∆G represent

their uncertain components. Thus, the representation (2.3b) emphasizes a structural

separation between the nominal dynamics and the uncertain one.

To guarantee existence and uniqueness of the solutions of (2.3), some regularity assump-

tions on system equations are needed. A näıf assumption could be restricting the vector

field a+Bu to be sufficiently smooth. However, this could be too restrictive and could

cause a lack in the representation power of (2.3). As a consequence, we employ the

following two assumptions [106], which are indeed less restrictive.



Chapter 2. Structure of an uncertain nonlinear system 39

Assumption 2.2.0.8. In the nonlinear uncertain system (2.3), the vector field a+Bu

is Carathéodory, and the uncertain vector w is Lebesgue measurable. ♦

Assumption 2.2.0.9. In the nonlinear uncertain system (2.3), the vector field a+Bu

is locally uniformly bounded. ♦

If we make the extra assumption of a state-dependent, time-varying, vector of uncer-

tainties w(x, t), we can further simplify (2.3a) and (2.3b) into:

ẋ = f(x, t) + ∆f(x, t) +G(x, t)u+ ∆G(x, t)u (2.4)

which is the representation used throughout the rest of the work to construct a robust

nonlinear controller.

2.2.1 Examples of unstabilizable uncertain systems

Although it would be ideal if robust control could be designed to stabilize all uncertain

systems in the fully nonlinear form (1.38), the following examples show that this is too

hard to even conceive, since not all the uncertain systems are stabilizable [106].

Example 2.2.1.1 (Structural change). Consider the second-order system:

ẋ1 = x2 + ∆(x1, x2)

ẋ2 = u
(2.5)

in which the uncertainty ∆(·, ·) is bounded as follows

|∆(x1, x2)| ≤ 2 + x2
1 + x2

2 (2.6)

One can easily see that the system is not stabilizable since one possibility of additive

uncertainty within the given bounding function is −x2 + x1. Physically, the system

becomes unstabilizable since uncertainty can change its structure in a critical manner.

Note that, as a matter of fact, part of system dynamics becomes unstable and, also,

decoupled from the rest of the system and from the control input. As will be shown

later, such an uncertainty causing the loss of controllability belongs to the class of so-

called unmatched uncertainties. ♦

Example 2.2.1.2 (Unknown control direction). Consider the scalar system

ẋ = x+ (1 + ∆(x))u (2.7)
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where uncertainty is bounded as |∆(x)| ≤ C for some C ≥ 1. The system is not

stabilizable since ∆(x) could be −1, and so the system is not subject to any control and

is simply unstable. The uncertain term may also be such that the whole sum 1+∆(x) is

uncertain because of C > 1, and therefore any control introduced may have an adverse

effect on stability, since it may cause the state to grow out of bound more quickly. In

these cases, keeping the control input at zero is the best choice, and the system would

be unstabilizable if any control is needed. ♦

Example 2.2.1.3 (Unidirectional control). Consider the scalar system

ẋ = ∆(x)x+ u2 (2.8)

where uncertainty is bounded as 0 < ∆(x) ≤ 1. The system is not stabilizable since, no

matter what choice is made for u, the control action in ẋ is always unidirectional (pos-

itive). In fact, any scalar uncertain system is not stabilizable if the designer cannot make

ẋ be both positive and negative upon his choice through selecting in appropriate way u

(specifically, through choosing robust control to dominate all possible uncertainties). ♦

Although the dynamics of the above examples are quite simple, they furnish intuitive

explanations of what may lead uncertain systems to be unstabilizable. In particular, we

may distinguish two categories of issues:

1. Loss of controllability, due to either the combination of a broken input-output

chain and unstable dynamics, as in example 2.2.1.1, or the presence of both feed-

back and feedforward paths.

2. Unknown or unidirectional control contribution to the differential equations,

as in examples 2.2.1.2 and 2.2.1.3.

The ultimate objective of robust control theory and design of nonlinear uncertain systems

is twofold.

1. First, if necessary, determine the least requirements, called structural conditions,

on the system (2.3) such that it can be stabilized or, in general, controlled. This

is done in the two sections below.

2. Second, find procedures under which robust control u can be systematically de-

signed. The key issue in the design is the search for robust control Lyapunov func-

tions and their associated robust controllers, which may be different for achieving

different types and levels of performances. This is done in the final sections of this

part of the work.
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2.2.2 Matching conditions

To find a suitable robust control for (2.4), we need to analyze further the structure of the

representation in terms of the uncertainties. The main structural property characterizing

the uncertain terms in (2.4) is the matching condition, under which the dynamics assume

the form:

ẋ = f(x, t) +G(x, t) [u+ ∆(x, u, t)] (2.9)

As before, the vector fields f and G represent the known functions of the nominal system

model, while ∆(x, u, t) is an unknown function which lumps together various structured

and unstructured uncertainties. Note that the uncertainty ∆(x, u, t) enters the system

in the same channel of the control input u. This property is recognized by the fact that

∆(x, u, t) is multiplied by the same matrix function G as the control input.

Let us define more precisely the matching conditions for systems of the form (2.4) as

follows.

Definition 2.2.2.1 (Matching conditions). Consider an input-affine uncertain system of the

form

ẋ = f(x, t) + ∆f(x, t) +G(x, t)u+ ∆G(x, t)u (2.10)

with all the properties of (2.4). The above system is said to satisfy the matching conditions if

the uncertain terms can be factorized as follows:

∆f(x, t) = G(x, t)∆f ′(x, t)

∆G(x, t) = G(x, t)∆G′(x, t)
(2.11)

and if there exists a positive constant ε such that

‖∆G′(x, t)‖ ≤ 1− ε (2.12)

The uncertainties satisfying the matching conditions are called matched uncertainties. ♦

According to Definition 2.2.2.1, the matched uncertainties act “along” the distribution

spanned by G(x, t), whereas unmatched uncertainties are off-the-distribution compo-

nents. Roughly speaking, matched uncertainties represent variations of the intensity in

the direction of the control action, while unmatched uncertainties act on directions on

which there is no apparent control authority.
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To illustrate the rationale for the inequality condition (2.12), let us rewrite system (2.4),

assuming satisfied conditions (2.12), as follows

ẋ = f(x, t) +G(x, t)
[
∆f ′(x, t) + (1 + ∆G′(x, t))u

]
(2.13)

Recalling some basic notions about necessary conditions for output controllability, we

observe that if the bounds of the uncertain term multiplying the control are allowed to

be greater than unity: ∥∥∆G′(x, t)
∥∥ > 1 (2.14)

then the control direction cannot be determined, thus any control input may cause the

system to grow unstable. Furthermore, if the uncertain term multiplying the control

input is such that: ∥∥∆G′(x, t)
∥∥ = 1 (2.15)

then a singularity occurs when ∆G′(x, t) = −1. In such a case, with no control authority,

stabilization cannot be achieved.

It can be seen for instance from the above example 2.2.1.2, that if the unknown functions

were replaced by known bounding functions satisfying the matching conditions, then one

could easily choose a control law to cancel their effects and stabilize the system. This

is the basic idea of the robust control design methodology called Lyapunov redesign,

presented later in Section 3.1.

2.2.3 Generalized matching conditions

A step forward in nonlinear robust control design is made by taking into account systems

which do not satisfy the matching conditions, i.e. systems containing the so-called

unmatched uncertainties, which do not enter the system dynamics in the input channel

as the matched ones. For this category of systems, very frequent in applications, recent

investigations of the concept of robust control design have been directed toward the

discovery of robust stabilizing controllers. Important results can be found in [108]. These

results were formulated by considering the idea of a stability margin of the stabilized

nominal system. Qu and Dorsey demonstrated that uncertain systems with arbitrarily

large unmatched uncertainty can be stabilized if the nominal system can be stabilized

with an arbitrarily large convergence rate (i.e. arbitrarily large stability margin). Qu,

in [103], proposed a robust control design for a relaxed set of conditions referred to as

equivalently matched uncertainties (or EMUs). The main concept for the EMU based

design is to take advantage of the non-uniqueness of the Lyapunov function candidates,

and demonstrates a set of conditions on the unmatched uncertainties that allows them
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to be handled in the Lyapunov argument as if they were matched. These results were

still fairly restrictive in scope, and limited in practical applications. After some results

for linear systems, the concept of generalized matching condition (or GMCs) was finally

introduced in an important paper of Qu [104]. In this paper, it was also proposed

a systematic robust control design procedure to guarantee global stability under the

GMCs.

The definition of generalized matching conditions is somewhat very technical and lies

outside the purpose of this work. The only conceptual question is in describing the

general structure of an uncertain nonlinear system which meets the GMCs, as follows:

ẋ1 = f1(x1, t) + ∆f1(x1, w1, t) + g1(x1, x2, w1, t)

. . .

ẋi = fi(x1, . . . , xi, t) + ∆fi(x1, . . . , xi, wi, t) + gi(x1, . . . , xi+1, wi, t)

. . .

ẋm = fm(x1, . . . , xm, t) + ∆fm(x1, . . . , xm, wm, t) + gm(x1, . . . , xm, u, wm, t)

(2.16)

where col(x1 . . . xm) is the state vector of the system, which is decomposed into state

sub-vectors xi ∈ Rni , i = 1, . . . ,m. Clearly, one must have

n1 + n2 + . . .+ nm = n (2.17)

with n dimension of the state space. The vector u ∈ Rnm+1 contains the control inputs

of the subsystems. The variables wi = 1, ...,m, represent the uncertain time-varying

parameters, and their domain is a prescribed compact set of Rpi . The conditions that

(2.16) should fulfill to satisfy GMCs are fully presented in [106], to which the reader

should refer for a deeper understanding. The reader should only be acknowledged that

these conditions impose constraints on the dimensions of the subsystems, in a lower

triangular form fashion, on the factorization of the gi vector fields (that should also be

Lipschitz functions) and, of course, on the boundedness of the uncertain terms, namely:

‖∆fi(x1, . . . , xi, wi, t)‖ ≤ ρi(x1, . . . , xi, t), ∀ (x1, . . . , xi, wi, t) (2.18)

Note that ρi are known continuous functions that are uniformly bounded w.r.t. t, and

locally uniformly bounded w.r.t. x.

Moving ahead to a more general structure of system, we should consider the generic

class of uncertain systems which do not satisfy matching conditions, nor the generalized

matching conditions. Qu and Kaloust addressed this problem in [59] and developed a
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generic procedure for robust nonlinear control design of these systems. In the follow-

ing, we will consider separately the problem of stabilization of a system which meets

the matching conditions, using the approach named Lyapunov redesign, and the (more

difficult) one of stabilizing a system satisfying just the generalized matching conditions,

using the so-called robust backstepping approach. The fusion of these two methods re-

sults in a novel approach, which we call recursive Lyapunov redesign, whose aim is the

stabilization of systems with a more general structure, in which the matched uncertain-

ties may be control-dependent.

2.3 Uncertainty modeling

The first step in robust controller design for nonlinear systems is to model the uncertainty

which affects the nominal equations in terms of deviations from the nominal values of

system parameters. In this part of the work, we propose a novel approach to rapidly

evaluate the deterministic model of such uncertainty.

First, we need to assume that system (2.4) may be simplified as follows

ẋ = f(x) + f̃(t) + ∆f(x, t) +G(x)u+ G̃(t)u+ ∆G(x, t)u (2.19)

so that we can consider the time-varying terms as part of the uncertain terms, namely

∆f(x, t) = f̃(t) + ∆f(x, t)

∆G(x, t) = G̃(t) + ∆G(x, t)
(2.20)

Thus, disregarding the ·̄ for simplicity of notation, system (2.19) can be written in the

following form:

ẋ = f(x) + ∆f(x, t) + [G(x) + ∆G(x, t)]u. (2.21)

Note that f(x) and G(x) are completely known vector and matrix functions. As a

consequence, we can further define

fact(x, t) = fnom(x) + ∆f(x, t)

Gact(x, t) = Gnom(x) + ∆G(x, t)
(2.22)

where clearly fnom(x) = f(x) and Gnom(x) = G(x) are the nominal values of the func-

tions, perfectly known, while with fact and Gact we denote the actual, true, values that

the vector function f and the matrix function G assume at time t. The gap between the

real and the nominal values is embedded into the uncertainty functions ∆f and ∆G,

which are time-varying, deterministic perturbations of the nominal values of system’s
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vector and matrix functions. The first thing to do to define these uncertainty functions

is to define the scalar ∆ operator, which applies point-wisely to the nominal compo-

nents of system’s vectors and matrices giving, one by one, the components of the vector

uncertainty functions.

Definition 2.3.0.1. [∆-operator and deviation function] The ∆-operator, when applied to

the nominal value of a function f depending on uncertain parameters, gives a measure of the

gap between that value and its actual one. The way the ∆ operator perturbs a nominal value

really depends on the design purposes and on modeling necessities. The straightforward choice

we make is that of using what we call deviation function σ(t), such that

∆f = σ(t)fnom (2.23)

where σ(t) has the form

σ(t) = k sin(ωt)ept (2.24)

Its amplitude k represents the amount of uncertainty which perturbs the nominal value of the

function to which σ(t) is applied. We let it be a constant value, but in fact it could be allowed to

depend on time. The frequency ω describes the speed of variation of the actual function’s value

around the nominal one. The constant p, less or equal than zero, defines if the perturbation is

transient or permanent: throughout the study we will put this equal to zero, considering only

persistent uncertainties. ♦

By definition, the ∆-operator acts on known values like the derivative operator acts on

constant values. When a parameter p or a function is considered known, its nominal

value coincides with the actual one, and the ∆ operator gives zero as result, namely:

∆(pnom) = 0 (2.25)

Nevertheless, its real purpose is acting as a perturbation operator when applied to an

unknown parameter. In this simple case it returns the product of the deviation function

with the nominal value of the parameter.

∆(p) = σp(t) · pnom = ∆p (2.26)

When ∆ is applied to a generic function f depending on an uncertain vector of param-

eters p, it takes the general form

∆(f(·, p)) = ∆f (·, pnom, σp1 , . . . , σpN ) (2.27)
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with a different deviation function σpi for each parameter in p.

In the sequel, with in mind our case study, we characterize the structure of ∆f when

applied to functions with polynomial dependence on the uncertain parameters. These

functions depend also on known parameters ai and show an affine dependency on them.

We start by considering the case of a single uncertain parameter z:

f = arz
r + ar−1z

r−1 + · · ·+ a1z + a0 (2.28)

The application of the ∆ operator preserves the affinity:

∆(f) = ar∆(zr) + ar−1∆(zr−1) + · · ·+ a1∆(z) (2.29)

In a way similar to the derivative operator, ∆ acts on the polynomial uncertain term zr

in this way:

∆(zr) = ∆(z · z · · · z) = (∆z)r + rzr−1∆z +
r(r − 1)

2
zr−2(∆z)2

+ . . .+
r!

i!(r − i)!
zr−i(∆z)i + . . .+ r(∆z)r−1z

(2.30)

that means that it is distributed across the polynomial according to the rule of simple

combinations without repetitions. At each application of ∆ we need to group i dis-

tinct elements into a subset, and the number of these subsets is given by the Newton

coefficient. This procedure is of direct derivation from the Leibniz rule for the differen-

tiation of a product, with the notable difference that multiple ∆-products are allowed,

since we are dealing with finite values and not infinitesimal ones. Keeping in mind that

∆z = ∆(z) = σ(t)z1 and consequently grouping powers of z, we obtain:

∆(zr) = σr(t)zr + rσ(t)zr +
r(r − 1)

2
σ2(t)zr

+ . . .+
r!

i!(r − i)!
σi(t)zr + . . .+ rσr−1zr

(2.31)

Or in a more compact form, re-ordering and post-multiplying by zr:

∆(zr) =

(
r∑
i=1

r!

i!(r − i)!
σi(t)

)
zr (2.32)

1For simplicity, in the following we omit the subscript nom, since it is clearly the nominal value of the
parameter z the one we refer to when applying the deviation function.
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Applying repeatedly the same arguments on every power of z in f we obtain:

∆(f) = ar

(
r∑
i=1

r!

i!(r − i)!
σi(t)

)
zr

+ ar−1

(
r−1∑
i=1

(r − 1)!

i!(r − 1− i)!
σi(t)

)
zr−1 + . . .+ a1σ(t)z

(2.33)

Since we use simple combinations without repetitions, the whole calculus developed is

valid also for polynomial functions of r different parameters z1, z2, . . . , zr. Thus the

following proposition holds.

Proposition 2.3.0.2. Let fnom be the nominal value of a scalar function depending on known

terms ar, ar−1, . . . , a1, a0 and unknown terms whose nominal values are z1, z2, . . . , zr.

fnom = ar · (z1 · z2 · · · zr) + ar−1 · (z1 · z2 · · · zr−1) + . . .+ a1 · z1 + a0 (2.34)

The application of the ∆ operator with the associated deviation function σ(t) results in:

∆(fnom) = ar

(
r∑
i=1

r!

i!(r − i)!
σi(t)

)
fr

+ ar−1

(
r−1∑
i=1

(r − 1)!

i!(r − 1− i)!
σi(t)

)
fr−1 + . . .

+ ar−j

(
r−j∑
i=1

(r − j)!
i!(r − j − i)!

σi(t)

)
fr−j + . . .+ a1σ(t)f1

(2.35)

where fr = z1 · z2 · · · zr, fr−1 = z1 · z2 · · · zr−1 and so on until f1 = z1. ♦

Proof. The ∆ operator applies to the sets of r parameters z of fr by constituting subsets

using simple combinations without repetitions, more in detail:

• 1-subset the first subset is only one and given by the simultaneous application of

∆ to all the r parameters, i.e. set1 = ∆z1∆z2 · · ·∆zr.

• r-subsets There are two subsets composed by r elements, the first given by the

application of ∆ to the single elements, one-by-one, and the second given by the
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application of ∆ to r − 1 groups of elements, both r times:

first r− subset :

∆z1(z2z3 · · · zr) + ∆z2(z1z3 · · · zr) + . . .+ ∆zr(z1z2 · · · zr−1)

second r− subset :

(∆z1∆z2 · · ·∆zr−1)zr + (∆z1 · · ·∆zr−2∆zr)zr−1

+ . . .+ (∆z2∆z3 · · ·∆zr)z1

(2.36)

• Going on with the analysis, we find other two subsets composed by r(r−1)
2 elements

obtained through the application of ∆ to 2 and r − 2 elements at once.

• The iterative perturbation process goes on, using always simple combinations to

form the remaining couples of subsets, each of them formed by the same number

of elements given by the Newton coefficient.

The associative property of the deviation function allow for the simplification, so we

obtain:

∆(fr) = σr(t)(z1z2 · · · zr) + rσ(t)(z1z2 · · · zr)

+
r(r − 1)

2
σ2(t)(z1z2 · · · zr) + . . .

+
r!

i!(r − i)!
σi(t)(z1z2 · · · zr) + . . .+ rσr−1(t)(z1z2 · · · zr)

=

(
r∑
i=1

r!

i!(r − i)!
σi(t)

)
fr

(2.37)

This procedure clearly still holds for all the other terms of the polynomial, from fr−1 to

f1. The linearity of the ∆ operator then yields (2.35).

In the following, we will need to evaluate the uncertain envelopes of quotients between

uncertain parameters. With this aim, it is possible to establish the following result.

Proposition 2.3.0.3. Let fnom be a function expressed by the quotient of two uncertain param-

eters, whose nominal values are z1 and z2, multiplied by a known value a

fnom = a · z1

z2
(2.38)

The application of the ∆ operator results in the following uncertain envelope:

∆fnom = fnom
σ1(t)− σ2(t)

1 + σ2(t)
(2.39)

where σ1 and σ2 are the deviation functions associated to, respectively, z1 and z2. ♦
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Proof. By definition, we have:

z1 =
1

a
fnomz2 (2.40)

the linearity-in-the-known-terms of ∆ yields:

∆1z1 =
1

a
(∆fnom∆2z2 + ∆fnomz2 + fnom∆2z2) (2.41)

With ∆i we underline that we are applying to the parameter zi the deviation function

σi(t). Grouping and rearranging equation (2.41) we obtain:

∆fnom =
a∆1z1 − fnom∆2z2

∆2z2 + z2
(2.42)

Finally, substituting into the right member the expression of fnom in terms of the other

parameters and using the deviation functions σ1 and σ2, we obtain:

∆fnom = a
z1

z2

σ1(t)− σ2(t)

σ2(t) + 1
= fnom

σ1(t)− σ2(t)

σ2(t) + 1
(2.43)

which is exactly (2.39), q.e.d.

We are going to massively use these results in missile autopilot design, where the complex

structure of the aerodynamics parameters requires simplified procedures to evaluate the

uncertain envelopes.
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Robust nonlinear control design

In this chapter we establish the main results of the work. We begin by recalling the

Lyapunov redesign technique and introducing a revisited version of it, exploiting suit-

able differentiable sigmoid functions, the robust control functions, in order to avoid the

problem of chattering in the implementation phase. Next, we recall the robust back-

stepping technique, and finally we present our main result, consisting of the fusion of

the two approaches, the technique called recursive Lyapunov redesign. This technique

allows to compensate also control-dependent uncertainties, which are common in certain

nonlinear aerospace dynamics, like tail-controlled missile dynamics. In the last part of

the chapter, we recall the stabilization technique of Immersion & Invariance as a tool

of robustification of nonlinear control laws with respect to higher-order dynamics. We

propose a solution in the case of a particular class of systems in feedback form using one

step of backstepping and a nonlinear domination argument.

3.1 Lyapunov redesign revisited

To handle matched uncertainties it is possible to use a classical technique presented

in [62], the Lyapunov redesign. This method is of sure effectiveness, but leads to a

discontinuous control law. We propose here a revisited version of this method that

yields a C1 (continuous with its first derivative) control law. The procedure applies to

systems which satisfy the matching condition, namely:

ẋ = f(x, t) +G(x, t) [u+ ∆(x, u, t)] (3.1)

where x ∈ Rn and u ∈ Rm. Note that ∆ is an unknown function lumping together various

structured and unstructured uncertainties and satisfying the matching condition, since

50
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it lies in the span of the control input. Suppose that the nominal system

ẋ = f(x, t) +G(x, t)ψ(x, t)

is stabilized by a known nominal1 feedback control law (for instance, feedback lineariza-

tion or backstepping) u = ψ(x, t). Such state feedback renders the nominal closed-loop

system

ẋ = f(x, t) +G(x, t)ψ(x, t) (3.2)

uniformly globally asymptotically stable (UGAS). Suppose further that we know a Lya-

punov function for (3.2), i.e. a continuously differentiable function V (x, t) that satisfies

the inequalities:

α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖)
∂V

∂t
+
∂V

∂x
[f(x, t) +G(x, t)ψ(x, t)] ≤ α3(‖x‖)

(3.3)

where α1, α2 are class K∞ functions, while α3 is a class K function. Assume that, with

u = ψ(x, t) + v, the uncertain term satisfies the inequality:

‖∆(x, ψ(x, t) + v, t)‖ ≤ ρ(x, t) + k0 ‖v‖ , 0 ≤ k0 < 1 (3.4)

where ρ is a non-negative continuous function. The above inequality defines the bound-

ing function of the uncertain term ∆, and it is the only information we need to know

about it. The bounding function ρ represents a measure of the maximum size the uncer-

tainty may assume: we will not require it to be small, only to be known. We want to find

an expression for v such that, under the overall control u = ψ(x, t) + v, the uncertain

system (3.1) is UGAS. The uncertain closed-loop system under the feedback u is:

ẋ = f(x, t) +G(x, t)ψ(x, t) +G(x, t) [v + ∆(x, ψ(x, t) + v, t)] . (3.5)

We exploit the same Lyapunov function of the nominal system (from this re-use, the

name “re-design”) as a robust control Lyapunov function for the uncertain system. The

derivative along the motion takes the form (omitting for brevity the arguments of the

various functions):

V̇ =
∂V

∂t
+
∂V

∂x
(f +Gψ) +

∂V

∂x
G (v + ∆) ≤ −α3(‖x‖) +

∂V

∂x
G (v + ∆) . (3.6)

1Here and throughout the work we call “nominal” a control law which is designed using only the
perfectly known (nominal) parts of the dynamics.
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Set wT =
∂V

∂x
G and rewrite the last inequality as:

V̇ ≤ −α3(‖x‖) + wT v + wT∆. (3.7)

Note that, due to the matching conditions, the uncertain term ∆ appears on the right-

hand side exactly at the same point where v appears. Consequently, it is possible to

choose v to cancel the (eventually destabilizing) effect of ∆ on V̇ . Exploiting inequality

(3.4), we obtain:

wT v + wT∆ ≤ wT v + ‖w‖ ‖∆‖ ≤ wT v + ‖w‖ [ρ(x, t) + k0 ‖v‖] . (3.8)

Taking

v = −η(x, t) · w

‖w‖
(3.9)

with η non-negative function, we obtain

wT v + wT∆ ≤ −η ‖w‖+ ρ ‖w‖+ k0η ‖w‖ = −η(1− k0) ‖w‖+ ρ ‖w‖ . (3.10)

Choosing then

η(x, t) ≥ ρ(x, t)

1− k0
(3.11)

for all (x, t) ∈ Rn × [0,∞) yields

wT v + wT∆ ≤ −ρ ‖w‖+ ρ ‖w‖ = 0. (3.12)

Hence under the nonlinear robust control (3.9), the derivative along the trajectories of

the uncertain closed-loop system (3.5) is negative definite, and so the feedback system

obtained is UGAS.

The control law (3.9) is clearly discontinuous in w = 0. This can bring serious im-

plementation issues, one for all the problem of chattering (see [62] for further details).

Notice that in the scalar case, (3.9) takes the simple form:

v = −η · (x, t)sign(w). (3.13)

Our revisited version of this control law is based on its approximation using a C1 ap-

proximation of the signum function, so avoiding the problem of chattering. The function

employed is a sigmoid, dependent on a tracking error s, which we call robust control func-

tion, as stated by the following definition.
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Definition 3.1.0.4. [Robust (virtual) control function] A robust control function is a sig-

moid of the form

v(s, σs) = sign(s)(1− e−σs|s|) = sigm(s, σs). (3.14)

Its structure emulates a discontinuous function, but it can also be used in a two-step recursive

procedure as virtual control input, since it has a continuous first derivative:

∂v

∂s
= σse

−σs|s| (3.15)

♦

Remark 3.1.0.5. The robust control function (3.14), which has the property of size-domination

of the uncertain terms, approximates better the signum function by increasing the value of the

sigmoid slope σs (Fig. 3.1), namely:

lim
σs→∞

sigm(s, σs) = sign(s) (3.16)

♦
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Figure 3.1: Sigmoidal function represented for three different values of the slope.

Remark 3.1.0.6. Note that the second derivative of (3.14) with respect to s

∂2v

∂s2
= −σ2

ssign(s)e−σs|s| (3.17)
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is not continuous anymore. This technical obstruction can be overcome for higher order systems,

by raising the sigmoidal function to odd powers. For instance:

sigm3(s, σs) =
[
sign(s)(1− e−σs|s|)

]3
(3.18)

is a continuous approximation of the signum function, which admits continuous first and second

derivatives with respect to s, hence it is suitable for a third-order system design. ♦

With this in mind, we can revisit the Lyapunov redesign control law as follows:

v = −η(x, t)sigm(w, σ) = −η(x, t)sign(w)(1− e−σ|w|). (3.19)

It must be underlined that, being (3.19) only an approximation of the discontinuous

stabilizing control law (3.13), the UGAS cannot be guaranteed anymore. However, due

to the fact that the approximation can be made arbitrarily precise by increasing the value

of σs, which indeed is a design parameter, we can conclude that a “practical” UGAS

can always be obtained using in a smart manner all the degrees of freedom of (3.19).

Therefore the residual regulation (or tracking) error in the steady-state can be made

arbitrarily small by increasing σs, as will be shown in detail in the following sections.

3.2 Robust Backstepping

The recursive approach of backstepping can be used to construct a robust control Lya-

punov function for a nonlinear uncertain system which do not satisfy the matching

conditions. Such a modification of the nominal control law is called robust backstep-

ping and it was first introduced in [31]. The design procedure is based on the idea of

exploiting the virtual control input to compensate the unmatched uncertainties. For a

detailed discussion and explanation of the procedure in the general case, see [36]. Let

us illustrate the core-idea of robust backstepping design in the case of a simple second

order uncertain nonlinear system of the form

ẋ1 = x2 + ∆1(x, t)

ẋ2 = u+ ∆2(x, t)
(3.20)
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Remark 3.2.0.7. System (3.20) is the feedback linearized version of the generic second order

system

ẋ1 = f1(x1, x2, t) + g1(x1, x2)u

ẋ2 = f2(x1, x2, t) + g2(x1, x2)u.
(3.21)

The uncertainties ∆1(x, t) and ∆2(x, t) represent the errors committed in the feedback cancella-

tion and inversion of the functions describing the system. Again, as done in 2.3, we assume that

the time-varying part of the drift functions can be embedded into the uncertain terms. ♦

Note that ∆f1(x, t) is an unmatched uncertainty. For system (3.20) to fulfill the gen-

eralized matching conditions, the uncertain terms should satisfy the following lower-

triangular inequalities

|∆1(x, t)| ≤ ρ1(x1)

|∆2(x, t)| ≤ ρ2(x1, x2)
(3.22)

with ρ1 and ρ2 suitable bounding functions, allowed to grow faster than linear. For the

sake of simplicity, we assume ρ1(0) = 0 and ρ2(0, 0) = 0.

The procedure starts with the observation that ∆1 is not matched with u, but in fact

it is matched with x2. Thus we design a robust virtual control law φr(x1) to achieve

P-RUGAS of the x1 dynamics, using V = 1
2x

2
1 as RCLF. The derivative along the motion

V̇ = x1 [φr(x1) + ∆1(x, t)] ≤ x1φr(x1) + |x1|ρ1(x1) (3.23)

is made negative definite, for instance, by the choice

φr(x1) = −x1 − sign(x1)ρ1(x1) (3.24)

Note that this choice is not practical in a recursive control design, since the derivative

of φr would not be defined in the origin. We propose, thus, a modified version using the

following choice for the robust virtual control function

φr(x1) = −x1 − sigm(x1, σ1)ρ1(x1) = −x1 − sign(x1)
(

1− e−σ1|x1|
)
ρ1(x1) (3.25)

With this choice, if x2 = φr(x1) we would obtain P-RUGAS of the x1 dynamics, in fact

V̇ ≤ −x2
1 + ρ1(x1)|x1|e−σ1|x1| ≤ −x2

1 + ρ1(σ−1
1 )σ−1

1 e−1 (3.26)
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is negative whenever x1 >
√
ρ1(σ−1

1 )σ−1
1 e−1. This means that the x1 solution converge

towards the set of radius
√
ρ1(σ−1

1 )σ−1
1 e−1, which can be made arbitrarily small by

increasing σ1. In other words, we can conclude the P-RUGAS of the x1 dynamics.

The backstepping procedure continues by defining the error ζ = x2 − φr(x1) and the

corresponding RCLF for the whole system (3.20)

W = V +
1

2
ζ2 =

1

2
x2

1 +
1

2
(x2 − φr(x1))2 (3.27)

which is non-quadratic in the state x. We compute the derivative along the motion,

obtaining

Ẇ = V̇ + (x2 − φr(x1))

(
u+ ∆2 −

∂φr
∂x1

(x2 + ∆1)

)
≤ −x2

1 + ρ1(σ−1
1 )σ−1

1 e−1 + (x2 − φr(x1))

(
x1 + u+ ∆2 −

∂φr
∂x1

(x2 + ∆1)

) (3.28)

where, this time, umatches the composite uncertainty ∆o(x, t) = ∆2(x, t)−∂φr
∂x1

(x)∆1(x, t),

for which a bounding function ρo can be computed such that |∆o| ≤ ρo(x). Choosing

then

u = − (x2 − φr(x1))− x1 −
∂φr
∂x1

x2 − ρo(x)sigm(ζ, σ2) (3.29)

yields

Ẇ ≤ −x2
1 + ρ1(σ−1

1 )σ−1
1 e−1 − ζ2 + ρmax

o σ−1
2 e−1 (3.30)

with ρomax the value of ρo at ζ = σ−1
2 . Inequality (3.30) is equivalent to P-RUGAS of

the origin of (3.20), with residual set Ω defined by:

Ω :=

{
(x1, ζ) ∈ R2 :

√
x2

1 + ζ2 ≤
√
ρ1(σ−1

1 )σ−1
1 e−1 + ρmax

o σ−1
2 e−1

}
. (3.31)

The results obtained can be extended to more general system structures, also in the case

of more than one control input [36, 86]. We may also assume a more general bounding

inequality for the unmatched uncertainty ∆1, namely |∆1(x, t)| ≤ ρ1(x) where ρ1 is

allowed to depend also on x2. This modification leads to a slightly different Lyapunov

inequality in which the control input appears multiplied by the term
(

1 + ∂φr
∂x2

)
, since

the robust virtual control function φr is now a function of the full state, through the

bounding term ρ1, namely

φr(x1, x2) = −x1 − sigm(x1, σ1)ρ1(x1, x2). (3.32)

We will discuss this modification with more detail later, when dealing with missile au-

topilot design.
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3.3 Recursive Lyapunov redesign

In this section we introduce a design method which combines robust backstepping and

Lyapunov redesign to deal with different kinds of uncertainties in the dynamics. We call

it recursive Lyapunov redesign, since it merges the recursion of backstepping with the

ability to deal with control-dependent uncertainties of Lyapunov redesign. Let us show

the core idea by extending system (3.20) in the following fashion:

ẋ1 = x2 + ∆1(x, t)

ẋ2 = (1 + ∆3(x, t))u+ ∆2(x, t)
(3.33)

where ∆3(x, t) multiplies directly u and it is dangerous because it may alter control

direction. We need the following two assumptions before stating our result.

Assumption 3.3.0.8. We know a robust backstepping control law ub = ψ(x) which

renders the system without ∆3, namely

ẋ1 = x2 + ∆1(x, t)

ẋ2 = ψ(x) + ∆2(x, t)
(3.34)

practically-robustly uniformly globally asymptotically stable. Such a control law ex-

ists, as shown in section 3.2, and depends on the bounding functions of ∆1 and ∆2.

Contextually, we know the corresponding robust control Lyapunov function W (x), as

determined in (3.27). ♦

Assumption 3.3.0.9. The uncertain term ∆3, with the control law u = ψ(x) + ur,

satisfies the inequality:

|∆3(x, t)(ψ(x) + ur)| ≤ ρ3(x, t) + k0|ur|, 0 ≤ k0 < 1 (3.35)

where ρ3 is a continuous and non-negative bounding function. ♦

Assumption 3.3.0.8 is essential for the design of the complete control law, while assump-

tion 3.3.0.9 is necessary for ∆3 not to alter control direction. In fact, inequality (3.35)

can be split in two as follows:

|∆3(x, t)ψ(x)| ≤ ρ3(x, t) (3.36)

|∆3(x, t)| ≤ k0, (3.37)

where (3.37) ensures that control direction is not modified by the uncertain term. We

are now ready to establish our result in the following theorem.
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Theorem 3.3.0.10. Consider a system of the form (3.33), for which assumptions 3.3.0.8,

3.3.0.9 are satisfied. The control law

ur(x) = −η(x, t)sigm(w, σr) (3.38)

with wT = ∂W
∂x2

and η(x, t) non-negative function such that

η(x, t) ≥ ρ3(x, t)

1− k0
(3.39)

renders the closed-loop system

ẋ1 = x2 + ∆1(x, t)

ẋ2 = (1 + ∆3(x, t)) (ψ(x) + ur(x)) + ∆2(x, t)
(3.40)

practically-robustly uniformly globally asymptotically stable. ♦

Proof. From assumption 3.3.0.8 we know the RCLF W (x), hence we apply the Lyapunov

direct criterion on system (3.40), obtaining

Ẇ =
∂W

∂x1
(x2 + ∆1(x, t)) +

∂W

∂x2
(ψ(x) + ∆2(x, t)) (3.41)

∂W

∂x2
[ur(x) + ∆3(x, t)(ψ(x) + ur(x))] (3.42)

Note that the first part of Ẇ , namely (3.41), is bounded from above as in (3.30). For

the sake of simplicity, let us rename the residual term as follows

ρ1(σ−1
1 )σ−1

1 e−1 + ρmax
o σ−1

2 e−1 = res(σ1, σ2) (3.43)

and simplify (3.41)-(3.42) into

Ẇ ≤ −x2
1 − ζ2 + res(σ1, σ2) +

∂W

∂x2
[ur(x) + ∆3(x, t)(ψ(x) + ur(x))] . (3.44)

Using assumption 3.3.0.9, setting ur(x) as in (3.38) and w = ∂W
∂x2

, inequality (3.44) is

developed as follows

Ẇ ≤ −x2
1 − ζ2 + res(σ1, σ2) + wur(x) + wρ3(x, t) + wk0ur(x)

≤ −x2
1 − ζ2 + res(σ1, σ2)− wη(x, t)sigm(w, σr) + |w|ρ3(x, t) + wk0η(x, t)sigm(w, σr)

= −x2
1 − ζ2 + res(σ1, σ2)− η|w|+ ηresr(σr) + |w|ρ3(x, t) + |w|k0η + k0ηresr(σr)

(3.45)
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where resr(σr) = σ−1
r e−1. Note that choosing η as in (3.39) reduces the expression to

Ẇ ≤ −x2
1 − ζ2 + res(σ1, σ2) + ηresr(σr) + k0ηresr(σr)

≤ −x2
1 − ζ2 + res(σ1, σ2) + ηmaxresr(σr) + k0η

maxresr(σr)
(3.46)

where ηmax is an opportune, constant, upper-bound. Inequality (3.46) is equivalent to

P-RUGAS of the origin of (3.40), with residual set Ωr defined by:

Ωr :=

{
(x1, ζ) ∈ R2 :

√
x2

1 + ζ2 ≤
√

res(σ1, σ2) + σ−1
r e−1ηmax(1 + k0)

}
. (3.47)

which concludes the proof.

In the following sections, we extend the proposed robust nonlinear stabilization proce-

dure of recursive Lyapunov redesign to more general system structures, not in lower-

triangular form and with more than one control input. First, we use it to stabilize the

attitude of a spacecraft with flexible appendages. Second, we develop a robust nonlinear

missile autopilot, simultaneously introducing a novel systematic calculus procedure for

the uncertain terms in aerodynamic forces and moments, which can be easily extended

to other mechanical systems.

3.4 Stabilization via Immersion & Invariance

The technique of Immersion & Invariance (I& I), first introduced in [6], is a tool for

the stabilization of nonlinear systems via state-feedback. The existence of a globally

asymptotically stable target dynamics into which the system to be controlled can be

“immersed” plus the invariance and attractivity of the corresponding manifold, together

with the boundedness of the trajectories of an extended system are sufficient conditions

for the GAS of a chosen equilibrium of the controlled system. The method is specifically

suitable for systems that admit a fast-slow dynamics decomposition, e.g. singularly

perturbed systems, systems in feedback form but also underactuated systems requiring

non-standard control solutions. I&I can be regarded as a tool to robustify a given

nonlinear controller with respect to higher-order dynamics, exploiting at its best the

knowledge of such dynamics during the control design phase. Thus, this approach can

be considered, at least in part, “robust” nonlinear control.

Let us recall the continuous-time I&I main result in the general case [5].
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Theorem 3.4.0.11. Consider the nonlinear system

ẋ = f(x) + g(x)u (3.48)

with state x ∈ Rn, control input u ∈ Rm and an equilibrium point x∗ ∈ Rn to be stabilized.

Suppose that (3.48) satisfies the following four conditions.

H1c (Target System) - There exist maps α(·) : Rp → Rp and π(·) : Rp → Rn such that the sub-

system ξ̇ = α(ξ) with state ξ ∈ Rp, p < n, has a (globally) asymptotically stable equilibrium

at ξ∗ ∈ Rp and x∗ = π(ξ∗).

H2c (Immersion condition) - For all ξ ∈ Rp, there exist maps c(·) : Rp → Rm and π(·) : Rp →
Rn such that

f(π(ξ)) + g(π(ξ))c(ξ) =
∂π

∂ξ
(ξ)α(ξ) (3.49)

H3c (Implicit manifold - M) - There exists a map φ(·) : Rn → Rn−p such that the identity

between sets {x ∈ Rn|φ(x) = 0} = {x ∈ Rn|x = π(ξ) for ξ ∈ Rp} holds.

H4c (Manifold attractivity and trajectory boundedness) - There exists a map ψ(·, ·) : Rn×(n−p) →
Rm such that all the trajectories of the system, with initial condition z0 = φ(x0)

ż =
∂φ

∂x
[f(x) + g(x)ψ(x, z)] (3.50a)

ẋ = f(x) + g(x)ψ(x, z) (3.50b)

are bounded and satisfy limt→∞ z(t) = 0.

Under these four conditions, x∗ is a (globally) asymptotically stable equilibrium of the closed-loop

system

ẋ = f(x) + g(x)ψ(x, φ(x)) (3.51)

♦

The following definition is straightforward.

Definition 3.4.0.12 (I&I Stabilizability). A nonlinear system of the form (3.48) is said to

be I&I stabilizable with target dynamics ξ̇ = α(ξ), if it satisfies conditions H1c to H4c of Theorem

3.4.0.11. ♦

Note that the target dynamics is the restriction of the closed-loop system to the manifold

M, implicitly defined in H3c. The control law u = ψ(x, z) is designed to steer to zero the
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off-the-manifold coordinate z and to guarantee the boundedness of system trajectories.

On the manifold, the control law is reduced to ψ(π(ξ), 0) = c(ξ), and it renders M
invariant according to H2c. The complete control law can thus be decomposed in two

parts:

u = ψ(x, φ(x)) = ψ(x, 0) + ψ̃(x, φ(x)) (3.52)

with ψ(π(ξ), 0) = c(ξ) on the manifold and ψ̃(x, 0) = 0. While ψ(x, 0) can be seen as a

nominal control law, designed on the model of the dynamics restricted on the manifold to

obtain a GAS target dynamics, the term ψ̃(x, φ(x)) is a robustness-improving addendum

which takes into account the off-the-manifold behaviors. The overall control law provides

the I&I “robust” nonlinear stabilizer.

3.4.1 The class of systems under study

We consider the following special class of nonlinear system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x2, x3)

ẋ3 = u

(3.53)

where x1 ∈ Rp, x3, u ∈ R, x2 is a dynamic extension of the x1 dynamics, and x1 = 0

is a GAS equilibrium point of ẋ1 = f1(x1, 0). For simplicity, in the sequel we will

assume x2 ∈ R, hence n− p = 2. We assume also f1(0, 0) = 0 and f2 smooth function,

f2(0, 0) = 0.

Remark 3.4.1.1. System (3.53) “extends” the class of pure-feedback systems of the form

ẋ1 = f(x1, x2)

ẋ2 = u
(3.54)

with the same dimensions and properties, except that n−p = 1. As shown in [6], conditions H1c,

H2c and H3c are trivially satisfied by (3.54), with target dynamics α(x1) = f1(x1, 0) : Rp → Rp

and reduced control c(x1) = 0. The attractivity and boundedness condition can be verified using

a weak control Lyapunov function with a stabilizing feedback of the form

u = −k(x1, x2)x2 (3.55)

with k(·, ·) > 0 for any (x1, x2). ♦
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Note that system (3.53) satisfies the first three conditions for I&I stabilization. H1c is

trivially fulfilled with target dynamics ξ̇ = α(ξ) = f1(ξ, 0). The maps

x1 = π1(ξ) = ξ(
x2

x3

)
= π2(ξ) =

(
0

0

)
(3.56)

with π1 : Rp → Rp, π2 : Rp → R2 and so π : Rp → Rn, are such that the immersion

condition H2c holds with the choice c(ξ) = 0. The implicit manifold condition H3c is

verified, with the following choice for the off-the-manifold coordinates

φ(x) =

(
x2

x3

)
− π2(π−1

1 (x1)) =

(
x2

x3

)
. (3.57)

3.4.2 Control design

In the following, we investigate under which conditions (3.53) satisfies the attractivity

and boundedness requirements of H4c.

Assumption 3.4.2.1. We assume that system (3.53) can be written in the form

ẋ1 = f1(x1, 0) + g1(x1, x2)x2

ẋ2 = f2(x2, 0) + g2(x2, x3)x3

ẋ3 = u

(3.58)

with g1 and g2 smooth functions of proper dimensions. ♦

Assumption 3.4.2.2. We assume that, for system (3.58), g2(x2, x3) = 1. ♦

Note that assumption 3.4.2.1 is always verified if the vector-fields of (3.53) are smooth,

while assumption 3.4.2.2 is only made to simplify the control design procedure. It can

be replaced by the weaker requirement that g2(x2, x3) 6= 0 for all (x2, x3) in a domain

of interest. We are now ready to state the following result.

Theorem 3.4.2.3. Consider system (3.53) and suppose it satisfies assumptions 3.4.2.1 and

3.4.2.2. Then, it fulfills condition H4c of theorem 3.4.0.11, i.e. it is I&I stabilizable, with the
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control law

u =− x2 −
(
∂f2

∂x2
+ k1(x1, x2) +

∂k1

∂x2
x2

)
(x3 + f2(x2, 0))

− ∂k1

∂x1
(f1(x1, 0) + g1(x1, x2)x2)x2

− k2 (x3 + f2(x2, 0) + k1(x1, x2)x2)

(3.59)

for suitable choices of k1(x1, x2), k2 > 0. ♦

Proof. Since assumptions 3.4.2.1 and 3.4.2.2 are satisfied, let the dynamics

ẋ1 = f1(x1, 0) + g1(x1, x2)x2

ẋ2 = f2(x2, 0) + x3

ẋ3 = u.

(3.60)

The subsystem (x2, x3) is stabilizable by means of backstepping, so it is possible to

construct a feedback

ub = b(x2, x3) = −x2 −
(
∂f2

∂x2
+ k1

)
(ζ − k1x2)− k2ζ (3.61)

with virtual error ζ = x3 − x3d = x3 + f2(x2, 0) + k1x2, and gains k1, k2 > 0 such that

ẋ2 = f2(x2, 0) + x3

ẋ3 = b(x2, x3)
(3.62)

has a GAS equilibrium in φ(x) = (x2, x3)T = (0, 0)T , thus ensuring manifold attractiv-

ity. In closed-loop with the backstepping controller and written in ζ coordinates, system

(3.60) takes the form

ẋ1 = f1(x1, 0) + g1(x1, x2)x2

ẋ2 = −k1x2 + ζ

ζ̇ = −x2 − k2ζ

(3.63)

Recall that ẋ1 = f1(x1, 0) has a GAS equilibrium in the origin, so for the Lyapunov

converse theorems there exists a positive definite function V (x1) such that

∂V

∂x1
f1(x1, 0) < 0 (3.64)
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for all ‖x1‖ ≥M > 0. With this in mind, let us up-augment the backstepping Lyapunov

candidate, obtaining

W = V (x1) +
1

2

[
x2

2 + ζ2
]

(3.65)

whose derivative along the trajectories

Ẇ =
∂V

∂x1
f1(x1, 0) +

∂V

∂x1
g1(x1, x2)x2 − k1x

2
2 − k2ζ

2

≤
∥∥∥∥ ∂V∂x1

∥∥∥∥2

‖g1(x1, x2)‖2 x2
2 − k1x

2
2 − k2ζ

2

(3.66)

can be made negative definite by allowing k1 to be a function of x1 and x2, using a

nonlinear domination argument. Redesigning the classical backstepping control law ub

to accomplish this goal results in the final expression for the I&I stabilizer

u =− x2 −
(
∂f2

∂x2
+ k1(x1, x2) +

∂k1

∂x2
x2

)
(ζ − k1(x1, x2)x2)

− ∂k1

∂x1
(f1(x1, 0) + g1(x1, x2)x2)x2 − k2ζ

(3.67)

which, written in terms of state variables, coincides with (3.59). This control law ensures

the negativity of (3.66), for all ‖x1‖ ≥M , with the choice

k1(x1, x2) >

∥∥∥∥ ∂V∂x1

∥∥∥∥2

‖g1(x1, x2)‖2 ≥ 0. (3.68)

Thus (3.59) ensures manifold attractivity and boundedness of the trajectories of (3.53),

i.e. condition H4c, which concludes the proof.

Note that the continuous-time controller designed is zero when φ(x) = 0. The same

result holds in the case of x2 having more than one dimension. Moreover, we focus on

the single-input case, but extensions to vector inputs are straightforward and based on

the multi-input version of backstepping design.



Chapter 4

Attitude stabilization of a flexible

spacecraft

In this section we study the problem of robust attitude stabilization of a spacecraft with

flexible appendages. The kinematic model is made more effective by using the modified

Cayley-Rodrigues parameters for a global and non-redundant attitude representation.

The parametric uncertainty in the coupling matrix of the flexible dynamics propagates

unto the rigid dynamics and its destabilizing effects are counteracted using recursive

Lyapunov redesign. Stability of the kinematic-flexible sub-system under a linear control

law is demonstrated to simplify the subsequent recursive Lyapunov redesign. Application

of robust nonlinear control results in practical robust uniform global asymptotic stability

(P-RUGAS) of the closed loop system.

4.1 Dynamic model

The kinematic model used is based on the modified Cayley-Rodrigues parameters, which

provide a global and non-redundant parametrization of the attitude of a rigid body [126].

In the following, we denote by S(·) the three-dimensional skew-symmetric matrix, which

for a generic vector r ∈ R3 takes the form

S(r) =


0 r3 −r2

−r3 0 r1

r2 −r1 0

 (4.1)

65
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Defining ρ ∈ R3 the modified Cayley-Rodrigues parameters vector and ω ∈ R3 the

angular velocity in a body-fixed frame, the kinematic equations take the form

ρ̇ = H(ρ)ω (4.2)

where the matrix-valued function H : R3 → R3×3 denotes the kinematic jacobian matrix

of the modified Cayley-Rodrigues parameters, given by

H(ρ) =
1

2

(
I − S(ρ) + ρρT − 1 + ρTρ

2
I

)
(4.3)

where I denotes the 3 × 3 identity matrix. The matrix H(ρ) satisfies the following

identity [127]

ρTH(ρ)ω =

(
1 + ρTρ

4

)
ρTω (4.4)

for all ρ, ω ∈ R3.

The flexible appendages of the satellite may be, for instance, solar arrays or antennas,

as in the case of the Mars Express Orbiter, depicted in Fig. 4.1.

Figure 4.1: Artist’s impression of the lander Beagle2 leaving the orbiter Mars Express
(courtesy of ESA) c©.

The dynamical model of the spacecraft with flexible appendages is built employing the

extended Euler laws, as done in [25]. Using the conservation of angular momentum, it

is possible to write the coupled rigid and flexible equations as follows:

Jω̇ +NT η̈ = S(ω)
[
Jω +NTψ

]
+ u

η̈ + Cη̇ +Kη = Nω̇
(4.5)
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where u ∈ R3 is the control torques vector and η, ψ ∈ RM are the elastic coordinates,

with ψ = η̇, in the case of M flexible modes. The matrix N ∈ RM×3 is the coupling

matrix between the attitude and the flexible motions, C ∈ RM×M is the damping matrix

and K ∈ RM×M is the stiffness matrix. The inertia matrix, evaluated along the principal

axes, is diagonal:

J =


Jx 0 0

0 Jy 0

0 0 Jz

 (4.6)

The angular velocity equation can be written as

ω̇ = J−1
eq

[
G+NT (Cψ +Kη − CNω) + u

]
(4.7)

where Jeq = J + NTN is the equivalent inertia matrix and G = S(ω)
[
Jeqω +NTψ

]
is

the gyroscopic term. Hence we obtain the overall dynamical model as follows:

ω̇ = J−1
eq

[
S(ω)

(
Jeqω +NTψ

)
+NT (Cψ +Kη − CNω) + u

]
η̇ = ψ −Nω

ψ̇ = − (Cψ +Kη) + CNω

(4.8)

The coupling matrix is assumed to be unknown, while we assume to have good estimates

of the values of C and K. Following the results in [83], we decompose N into its nominal

and its deterministic, uncertain, part, as follows:

N = Nn + ∆N (4.9)

The uncertain matrix ∆N is given by the element-wise Hadamard product, identified

by the symbol ◦, of a matrix νN , whose elements are measures of the percentage of

uncertainty ν ∈ [0, νmax], with a matrix W , whose elements are sinusoidal functions of

time at the different frequencies wij , representing the speed of variation of the actual

values of the elements of N , nij , around their nominal values.

∆N =


νn11 νn12 νn13

...
...

...

νnM1 νnM2 νnM3

 ◦


sinw11t sinw12t sinw13t
...

...
...

sinwM1t sinwM2t sinwM3t

 = νN ◦W (4.10)

The elements of the matrix W are indeed the deviation functions introduced in 2.3. For

the sake of simplicity, but without any loss of generality, we consider the real number ν

fixed for all the elements of N . We assume to know upper and lower bounds for ∆N ,
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namely

‖∆N‖2 =
√
λmax(∆NT∆N) ≤ ρN (4.11)

‖∆N‖◦ ≤


ρn11 ρn12 ρn13

...
...

...

ρnM1 ρnM2 ρnM3

 = RN (4.12)

where ρnij ≥ νnij . For consistency of notation in the following calculations, we use two

different kind of norms: the first is the classical induced L2 norm and the second is an

element-wise norm suitable when dealing with Hadamard products.

4.2 Control design

System dynamics can be put in strict-feedback form in order to apply the backstepping

stabilizing procedure. First, let us define the nominal system matrices as follows:

F =

(
0 IM

−K −C

)
B =

(
−N
CN

)
(4.13)

with IM identity matrix of dimension M , and

fn(ω, η, ψ) =
(
Jneq
)−1 [

S(ω)
(
Jneqω +NT

n ψ
)

+NT
n (Cψ +Kη − CNnω)

]
(4.14)

where Nn is the nominal value of the decoupling matrix and Jneq the nominal value of the

equivalent inertia matrix, namely Jneq = J+NT
n Nn. Next, we define the uncertain terms

in the dynamics propagating the uncertainty of the coupling matrix ∆N , obtaining:

∆f(ω, η, ψ) = ∆̃J−1
eq

[
S(ω)

(
∆Jeqω + ∆NTψ

)
+ ∆NT (Cψ +Kη − C∆Nω)

]
(4.15)

where the uncertain term

∆Jeq = ∆NTNn +NT
n ∆N + ∆NT∆N (4.16)

is such that Jeq = Jneq + ∆Jeq. Note that the term

∆̃Jeq = −
(
Jneq
)−1

[(
Jneq
)−1

+ ∆Jeq

]−1 (
Jneq
)−1

(4.17)
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comes from the direct application of the matrix inversion lemma to
(
Jneq + ∆Jeq

)−1
. The

kinematic and the dynamics of the flexible spacecraft can thus be written as follows:

ρ̇ = H(ρ)ω (4.18)(
η̇

ψ̇

)
= F

(
η

ψ

)
+Bω (4.19)

ω̇ = fn(ω, η, ψ) + ∆f(ω, η, ψ) +
[(
Jneq
)−1

+ ∆̃Jeq

]
u (4.20)

Note that the matrix B still contains unmatched model uncertainties, but we will

highlight them later in the design. System (4.18)-(4.19)-(4.20) satisfies the general-

ized matching conditions, thus it is possible to apply the recursive Lyapunov redesign

procedure as one step of robust multi-input backstepping to compensate the unmatched

uncertainties ∆N and ∆f plus compensation of the matched uncertainty ∆̃Jeq. We

assume to know suitable bounding functions for the uncertain terms, namely

‖∆f(ω, η, ψ)‖ ≤ ρf (ω, η, ψ) (4.21)∥∥∥∆̃Jeq

∥∥∥
1
≤ 1

3
ρ̃J 0 ≤ ρ̃J ≤ 3 (4.22)

where ‖·‖1 stands for the matrix induced L1 norm.

4.2.1 Robust backstepping

Backstepping design is based on the observation that the kinematics and the flexible

dynamics (4.18)-(4.19) can be stabilized by the virtual control law

ωd = −kρ (4.23)

with k ∈ R+. First note that, as a matter of fact, the drift term in equation (4.19) is

globally exponentially stable, since the flexible dynamics is inherently damped. Thus,

there exists a unique, symmetric and positive definite, solution P of the equation

P

(
0 I

−K −C

)
+

(
0 I

−K −C

)T
P = −2Q (4.24)

for each fixed matrix Q, symmetric and positive definite. Suppose we know a solution

of the Lyapunov equation (4.24) and let us exploit identity (4.4) to show that, under

the virtual control input (4.23), the kinematic equations are also GES. The closed-loop

kinematic sub-system under virtual control becomes

ρ̇ = −kH(ρ)ρ (4.25)
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Consider now the Lyapunov function

V (ρ) = ρTρ (4.26)

Using (4.4), the derivative of V along the trajectories of (4.25) is given by

V̇ = −2kρTH(ρ)ρ = −2k

(
1 + ρTρ

4

)
ρTρ ≤ −k

2
V (4.27)

which yields global exponential stability with rate of decay k/2. It is then straightforward

to show that, under the same virtual control law (4.23), the whole kinematic plus flexible

sub-system is GES. The “virtual” closed-loop system takes the form

ρ̇ = −kH(ρ)ρ (4.28)(
η̇

ψ̇

)
= F

(
η

ψ

)
+

(
kN

−kCN

)
ρ. (4.29)

Define ξ = col(η, ψ) and consider the Lyapunov function

W = V (ρ) + ξTPξ. (4.30)

Evaluating the derivative of W along the trajectories of (4.28)-(4.29), we obtain

Ẇ = −kρTH(ρ)ρ+ 2ξTP

[
Fξ +

(
kN

−kCN

)
ρ

]

≤ −k
2
ρTρ+ 2ξTPFξ + 2ξTP

(
kN

−kCN

)
ρ

≤ −
(
ρT ξT

) k

2
I 03×2M

2kPB 2Q


︸ ︷︷ ︸

R

(
ρ

ξ

)
≤ −λmin(R) ‖col(ρ, ξ)‖2

(4.31)

where 03×2M is a block of zeros of dimension 3× 2M, with M number of flexible modes.

Clearly, the matrix R ∈ R(3+2M)×(3+2M) has all positive eigenvalues, hence global expo-

nential stability of the kinematic plus flexible dynamics is established.

Remark 4.2.1.1. Note that the linear control law (4.23) achieves GES of (4.18)-(4.19) irre-

spective of the uncertain decoupling matrix N , thus for all the possible unmatched uncertainties

acting on the kinematic-flexible subsystem. However, since (4.23) is just a virtual control law,

we will have to deal with such unmatched terms in the actual robust backstepping design. ♦
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A graphical interpretation of this result can be given by looking at (4.28)-(4.29) as the

cascade of two GES systems, the first nonlinear and the second linear, as shown in Fig.

4.2.

NONLINEAR GES LINEAR GES

GLOBALLY EXPONENTIALLY STABLE CASCADE

Figure 4.2: The nonlinear GES kinematic sub-system cascaded with the linear GES
flexible sub-system yields a nonlinear GES cascade.

Linearity of the “sink” flexible sub-system implies the absence of finite-escape times, thus

avoiding peaking during the transient and ensuring the GES of the cascade. Note that,

if the second subsystem was nonlinear, we should have invoked the stronger property of

input-to-state stability to ensure at least the GAS of the cascade.

The backstepping approach takes advantage of this result by introducing the error co-

ordinate

ζ = ω − ωd = ω + kρ (4.32)

and defining accordingly the mixed state-error system

ρ̇ = H(ρ) [ζ − kρ](
η̇

ψ̇

)
= F

(
η

ψ

)
+B [ζ − kρ]

ζ̇ = fn(ω, η, ψ) + ∆f(ω, η, ψ) +
(
Jneq
)−1

u+ kH(ρ) [ζ − kρ]

(4.33)

At this first step of the overall design, we disregard the matched uncertainty ∆̃Jeq.

Since we already know a Lyapunov function W for the (ρ, η, ψ) subsystem, we can build
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a robust control Lyapunov function for (4.33) as follows

U = W (ρ, ξ) +
1

2
‖ζ‖2 . (4.34)

Evaluating the derivative of (4.34) along the trajectories of (4.33) we can find the ro-

bust backstepping control law which renders U̇ negative definite outside a compact set,

which can be made arbitrarily small by properly choosing some control parameters (P-

RUGAS). The derivative of U takes the form:

U̇ = Ẇ (ρ, ξ) + ζT
[
fn(ω, η, ψ) + ∆f(ω, η, ψ) +

(
Jneq
)−1

u+ kH(ρ) (ζ − kρ)
]

= ρTH(ρ)ζ − kρTH(ρ)ρ+ 2ξTPFξ + 2ξTPBζ − 2kξTPBρ

+ ζT
[
fn(ω, η, ψ) + ∆f(ω, η, ψ) +

(
Jneq
)−1

u+ kH(ρ) (ζ − kρ)
]

≤ −
(
ρT ξT

)[kH(ρ) 03×2M

2kPB 2Q

](
ρ

ξ

)
+ ρTH(ρ)ζ + 2ξTPBnζ + 2ξTP∆Bζ

+ ζT
[
fn(ω, η, ψ) + ∆f(ω, η, ψ) +

(
Jneq
)−1

u+ kH(ρ) (ζ − kρ)
]
.

(4.35)

where the local variable ∆B depends solely on ∆N , namely

B = Bn + ∆B =

(
−Nn

CNn

)
+

(
−∆N

C∆N

)
. (4.36)

The presence of this unmatched uncertainty in inequality (4.35) has to be dealt with

robust backstepping design. We can define a bounding function for ∆B using an element-

wise upper-bound estimate, as done previously for ∆N in (4.12), as follows

‖∆B‖◦ ≤ ρB


b11 b12 b13

...
...

...

b2M1 b2M2 b2M3

 = RB (4.37)

The control law which solves this first stabilization step is now of straightforward eval-

uation:

uu =− Jneq [fn(ω, η, ψ) + ρf (ω, η, ψ)sigm(ζ, σf ) + kH(ρ) (ζ − kρ)

+HT (ρ)ρ+ 2BT
nPξ + 2RTB ◦Σ(ζ, σB)Pξ + kζζ

] (4.38)
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where kζ ∈ R+ is a design gain introduced to force the negativity of U̇ , σB, σf ∈ R+ are

the sigmoid slopes and the vector sigmoid functions take the form

sigm(ζ, σf ) =


sign(ζ1)(1− e−σf |ζ1|)
sign(ζ2)(1− e−σf |ζ2|)
sign(ζ3)(1− e−σf |ζ3|)

 (4.39)

Σ(ζ, σB) =


sign(ζ1)(1− e−σB |ζ1|) · · · sign(ζ1)(1− e−σB |ζ1|)
sign(ζ2)(1− e−σB |ζ2|) · · · sign(ζ2)(1− e−σB |ζ2|)
sign(ζ3)(1− e−σB |ζ3|) · · · sign(ζ3)(1− e−σB |ζ3|)

 (4.40)

Note that Σ(ζ, σB) ∈ R3×2M is introduced for consistency purposes to compensate

the unmatched uncertainty ∆B. For this reason, we need to use the element-wise

(Hadamard) matrix product, identified by the symbol ◦, to bound from above the deriva-

tive of U using the control.

Under (4.38), (4.35) can be reduced to

U̇ ≤−
(
ρT ξT

)
R

(
ρ

ξ

)
− kζ ‖ζ‖2

+ 2ρBζ
TBT

n ◦RESB(|ζi|, σB)Pξ + ρf (ω, η, ψ)

3∑
i=1

|ζi|e−σf |ζi|
(4.41)

where the matrix RESB(|ζi|, σB) ∈ R3×2M has for elements the approximation errors

made in using sigmoid functions instead of discontinuities, namely

RESB(|ζi|, σB) =


sign(ζ1)e−σB |ζ1| · · · sign(ζ1)e−σB |ζ1|

sign(ζ2)e−σB |ζ2| · · · sign(ζ2)e−σB |ζ2|

sign(ζ3)e−σB |ζ3| · · · sign(ζ3)e−σB |ζ3|

 . (4.42)

A further simplification of (4.41) leads to

U̇ ≤−
(
ρT ξT

)
R

(
ρ

ξ

)
− kζ ‖ζ‖2

+ 2ρBresB(|ζi|, σB)Pξ + ρmax
f

3∑
i=1

|ζi|e−σf |ζi|
(4.43)

where ρmax
f is a upper-bound on ρf for all ω ∈ R3, (η, ψ) ∈ R2M and the row vector

res(|ζi|, σB) ∈ R2M can be expressed as

resB(|ζi|, σB) =
(∑3

i=1 b1i|ζi|e−σB |ζi|
∑3

i=1 b2i|ζi|e−σB |ζi| · · ·
∑3

i=1 b2Mi|ζi|e−σB |ζi|
)

(4.44)
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It is easy to show that the terms |ζi|e−σB |ζi| and |ζi|e−σf |ζi| attain a maximum at |ζi| =
σ−1
B and |ζi| = σ−1

f , respectively. Moreover, since P is known and constant and ξ are

the flexible variables, bounded solutions of a linear damped system, it is again possible

to bound from above U̇ as follows

U̇ ≤−
(
ρT ξT

)
R

(
ρ

ξ

)
− kζ ‖ζ‖2

+ 2ρBresmax(σB)Pξmax + ρmax
f 3σ−1

f e−1

(4.45)

where

resmax(σB) =
(
σ−1
B e−1

∑3
i=1 b1i σ−1

B e−1
∑3

i=1 b2i · · · σ−1
B e−1

∑3
i=1 b2Mi

)
(4.46)

Note that the non-negative terms in (4.45) can be shrunk by increasing the sigmoid slopes

σB and σf . Let us rearrange the negative terms defining x̃ = col(ρ, ξ, ζ), obtaining

U̇ ≤ −x̃T
[
R 0

0 kζI

]
x̃+ 2ρBresmax(σB)Pξmax + ρmax

f 3σ−1
f e−1

≤ −min {λmin(R), kζ} ‖x̃‖2 + 2ρBresmax(σB)Pξmax + ρmax
f 3σ−1

f e−1.

(4.47)

As a result, U̇ is negative definite provided that

‖x̃‖ >

√
2ρBresmax(σB)Pξmax + ρmax

f 3σ−1
f e−1

min {λmin(R), kζ}
:= Ω(σB, σf ) (4.48)

thus P-RUGAS of the full-state trajectories is established, since they converge to an

“arbitrarily shrinkable” compact set containing the origin.

4.2.2 Recursive Lyapunov redesign

As we have shown in the previous section, the robust backstepping design stabilizes

the flexible spacecraft dynamics by compensating the unmatched uncertainties. To deal

with the matched uncertainty ∆̃Jeq, of which we know the bounding term ρ̃J , it is

straightforward to use the recursive Lyapunov redesign introduced in section 3.3. The

robust backstepping control law (4.38) can be expressed as a function of the full-state

x = col(ρ, ξ, ω), namely

uu = ψ(ρ, ξ, ω) = ψ(x). (4.49)
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Moreover, we group system equations and matrices defining

F (x) =


H(ρ)ρ

Fξ +Bω

f(ξ, ω)

 G =


03×3

02M×3(
Jneq
)−1

 (4.50)

so that the full flexible-spacecraft dynamics can be expressed as

ẋ = F (x) +G
[
∆̃Jequ+ u

]
(4.51)

Recall that we know a robust control Lyapunov function for system (4.51) in the case

∆̃Jeq = 0, namely

U(ρ, ξ, ω) = ρTρ+ ξTPξ + ‖ω + kρ‖2 . (4.52)

Under the robust backstepping control law (4.49), U(x) satisfies inequality (4.45), so

that (4.51) is P-RUGAS with ∆̃Jeq = 0. Moreover, the matched uncertainty ∆̃Jeq is

such that the inequality∥∥∥∆̃Jeq(ψ(x) + um)
∥∥∥

1
≤ ρr(x) +

1

3
ρ̃J ‖um‖1 0 ≤ ρ̃J < 3 (4.53)

holds, with um recursive Lyapunov redesign control law to be determined and ρr(x) ≥∥∥∥∆̃Jeqψ(x)
∥∥∥

1
is a suitable bounding function. Since assumptions 3.3.0.8 and 3.3.0.9

are fulfilled, we can apply the recursive Lyapunov redesign procedure to system (4.51),

which in closed loop with u = ψ(x) + um takes the form

ẋ = f(x) +Gψ(x) +G
[
∆̃Jeq (ψ(x) + um) + um

]
. (4.54)

Set

(
∂U

∂x

)T
= w. The derivative of U along the trajectories of (4.54) takes the form

U̇ =

(
∂U

∂x

)T
(f(x) +Gψ(x)) + w∆̃Jeq (ψ(x) + um) + wum

≤
(
∂U

∂x

)T
(f(x) +Gψ(x)) + ‖w‖1

∥∥∥∆̃Jeq (ψ(x) + um)
∥∥∥

1
+ wum

≤ −min {λmin(R), kζ} ‖x̃‖2 + resu(σB, σf ) + ‖w‖1 (ρr(x) + ρ̃J ‖um‖1) + wum

(4.55)

where resu(σB, σf ) is the residual term in (4.45), namely

resu(σB, σf ) = 2ρBresmax(σB)Pξmax + ρmax
f 3σ−1

f e−1. (4.56)

Setting now

um =
ρr(x)

1− ρ̃J
sigm(w, σJ) (4.57)
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and accordingly evaluating the induced 1-norms in (4.55), yields

U̇ ≤−min {λmin(R), kζ} ‖x̃‖2 + resu(σB, σf )

+ ‖w‖1

[
ρr(x) +

1

3
ρ̃J

(
3ρr(x)

1− ρ̃J
+

3ρr(x)

1− ρ̃J

3∑
i=1

e−σJ |wi|

)]

+ w

 ρr(x)

1− ρ̃J


sign(w1)e−σJ |w1|

sign(w2)e−σJ |w2|

sign(w3)e−σJ |w3|

− ρr(x)

1− ρ̃J


sign(w1)

sign(w2)

sign(w3)




(4.58)

Simplifying and taking the maximum values of the residual terms, we obtain

U̇ ≤ −min {λmin(R), kζ} ‖x̃‖2 +resu(σB, σf )+9
ρ̃Jρ

max
r

1− ρ̃J
σ−1
J e−1 +3

ρmax
r

1− ρ̃J
σ−1
J e−1 (4.59)

so that the trajectories of the closed-loop system (4.54) converge to the compact set

Ω̃(σB, σf , σJ) :=

√√√√resu(σB, σf ) + 9 ρ̃Jρ
max
r

1−ρ̃J σ
−1
J e−1 + 3 ρ

max
r

1−ρ̃J σ
−1
J e−1

min {λmin(R), kζ}
. (4.60)

P-RUGAS of the origin of (4.54) can thus be concluded. As a result, the flexible space-

craft described by the equations (4.18)-(4.19)-(4.20) is robustly stabilized by the recur-

sive Lyapunov redesign control law u = uu(x) +um(x), with uu(x) defined in (4.38) and

um(x) in (4.57).



Chapter 5

Missile autopilot design

In this chapter, the recursive Lyapunov redesign technique is employed to design the

autopilot of an asymmetric tail-controlled air-to-air missile, in order for it to perform

Skid-To-Turn and Bank-To-Turn maneuvers. After a detailed derivation of the dynami-

cal uncertain model, the problem setting and the construction of a nominal backstepping

controller, we design compensators for the matched and unmatched uncertainties of the

dynamics using the techniques introduced above. The recursive Lyapunov redesign can

handle the uncertainties in the dynamics of a non-minimum phase airframe, thus it is

particularly suited for missile autopilot design. P-RUGAS of the closed-loop system is

shown and several simulations demonstrate the effectiveness of the proposed control law

in different scenarios. The chapter follows the work presented in [86].

5.1 Dynamic model

The missile considered is a very generic, tail-controlled, air-to-air aerodynamic missile

in a non axially-symmetric configuration which allows both Skid-To-Turn and Bank-

To-Turn maneuvers. An example of such an airframe may be Meteor (Fig. 5.1), the

innovative active radar guided beyond-visual-range air-to-air missile (BVRAAM) pro-

duced by MBDA. While wings act as lifting surfaces, the four tail-fins are the control

surfaces which twist and steer the vehicle. The typical use of this kind of missile is that

of intercepting aircraft, anti-aircraft missiles and high-speed ballistic missiles in flight.

The hybrid maneuvering capabilities of the airframe do require an autopilot able to en-

sure tracking of different kind of signals on different dynamic behaviors, with slight or

even none change of the control laws. These requirements can be fulfilled by using the

recursive Lyapunov redesign approach.

The modeling process is based on some quite common assumptions.

77
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Figure 5.1: Meteor is an active radar guided beyond-visual-range air-to-air missile
(BVRAAM) being developed by MBDA missile systems. Meteor will offer a multi-shot
capability against long range manoeuvring targets in a heavy electronic countermea-
sures (ECM) environment with range in excess of 100km. The picture is taken from

defenseindustrydaily.com, all rights reserved c©.

• The considered dynamics is governed by rigid body mechanics, that means flexible

modes due to aeroelasticity are neglected.

• Reference position for aerodynamic data coincides with the center of mass (abbr.

c.o.m.), where all the sensors are mounted.

• Trustworthy measurements or estimates for the angle-of-attack, sideslip angle, an-

gular velocities and bank angle are available through high quality inertial mea-

surement units.

• Thrust force is assumed to be zero, or equivalently fully compensated by drag

force.

• As a consequence of the previous assumption, velocity is assumed to be slowly

varying (increasing) for the first half-window of simulation and constant during

the terminal phase. Wind velocity will be treated as a disturbance.

• Gravity is neglected since it acts on time-scales much longer than those of the

autopilot.
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• We also assume constant height of operation h, which determines certain known

thermodynamic characteristics of the local atmosphere, such as constant air density

ρ and speed of sound Vs.

Note that the presence of aeroelastic effects can be treated, as usual, in the frequency-

domain framework, taking care to give the appropriate open-loop attenuation near the

flex-mode frequencies (see, for instance, [94] and [95]). On the other hand, a reference

position shifted from the c.o.m. does not pose a problem, since it can be compensated

by introducing simple correction terms. Furthermore, while the angular velocities are

usually available for feedback, α and β angles need to be estimated somehow, since the

nonlinear control law developed is in the form of full state-feedback. Finally, last four

assumptions are quite usual in autopilot design. In supersonic and hypersonic regimes,

particularly in the terminal phases of the flight, it is not such an issue to consider zero-

gravity conditions and the missile operating in the so-called glide-phase, at zero thrust.

Starting from the Newton linear momentum and the Euler angular momentum laws eval-

uated along the missile body unit-axes (x̂b, ŷb, ẑb)
T (body frame fixed on the c.o.m.),

introducing the inertia tensor and differentiating the equations using the Coriolis the-

orem, the 6-DOF equations of motion of a rigid body with slowly varying mass and

inertia are obtained. These six equations are used to represent missile dynamics in the

wind-axes reference frame, after a coordinate transformation [20]. Velocity Vm(t) is as-

sumed to be slowly and linearly increasing in the first part of the simulation window,

according to the following Mach number variation:

M(t) ∈ [2.5, 3.2] (5.1)

in such a way that V0 = 2.5Vs and Vf = 3.2Vs. The second half of the flight envelope is

therefore with constant velocity Vf .

A non axially-symmetric airframe is considered, with inertia matrix (determined con-

sidering the principal inertia axes coincident with the body axes):

I(t) =


Ix(t) 0 −Ixz(t)

0 Iy(t) 0

−Ixz(t) 0 Iz(t)

 (5.2)

also slowly time-varying, in particular linearly decreasing in the first part of the flight

envelope due to propellant consumption. For instance, we consider this time profile for
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the longitudinal inertia moment:

Ix(t) =

−
(
Ix0−Ixf

tf

)
t+ Ix0 if t ≤ tf

Ixf if t > tf

(5.3)

A similar time evolution has been assigned to the slowly time-varying mass m(t). At

t = tf , when all the propellant has been consumed, the so-called glide-phase starts: the

velocity becomes constant and so the inertia matrix and the mass of the system.

The complete 6-DOF equations of motion are therefore:

ϕ̇ = p

ṗ = Lpqpq + Lqrqr +
Iz

IxIz − I2
xz

Mx +
Ixz

IxIz − I2
xz

Mz

q̇ = Mprpr +Mp2p
2 +Mr2r

2 +
1

Iy
My + Cm1pα

ṙ = Npqpq +Nqrqr +
Ixz

IxIz − I2
xz

Mx +
Ix

IxIz − I2
xz

Mz + Cm2pβ

α̇ = − cos2(α) tan(β)p+ q − sin(α) cos(α) tan(β)r + Cm3pα+

Qαβ
mVm

Fz + sin(α) cos(α) tan(β)
Qαβ
mVm

Fy − sin(α) cos(α)Q2
αβ

V̇m
Vm

β̇ = cos2(β) tan(α)p+ sin(β) cos(β) tan(α)q − r + Cm4pβ+

Qαβ
mVm

Fy + sin(β) cos(β) tan(α)
Qαβ
mVm

Fz − sin(β) cos(β)Q2
αβ

V̇m
Vm

(5.4)

with

Lpq =
Ixz(Ix − Iy + Iz)

IxIz − I2
xz

Npq =
Ix(Ix − Iy) + I2

xz

IxIz − I2
xz

(5.5)

Lqr =
Iz(Iy − Iz)− I2

xz

IxIz − I2
xz

Nqr =
Ixz(Iy − Iz − Ix)

IxIz − I2
xz

(5.6)

Mpr =
Iz − Ix
Iy

Mp2 = −Ixz
Iy

Mr2 =
Ixz
Iy

(5.7)

and

Qαβ =
√

1 + tan2(α) + tan2(β) (5.8)

The overall velocity derivative w.r.t. time V̇m is thought as an additional input, because

a fixed velocity profile has been imposed. Actually, since it is not going to be taken into

account in control design, it will act as a disturbance. Aerodynamic forces and moments
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have the following expressions:

Fy =
1

2
ρV 2

mSCNy

Fz =
1

2
ρV 2

mSCNz

Mx =
1

2
ρV 2

mSd(Cl +Gp)

My =
1

2
ρV 2

mSd(Cm +Gq)

Mz =
1

2
ρV 2

mSd(Cn +Gr)

(5.9)

They depend on the aerodynamic coefficients, which can be written this way:

CNy = ay1β + ay2β|β|+ ay3β
2 + ay4β

3 + (by1β + by2β
2)δP+

(by3β + by4β
2)δY

CNz = az1α+ az2α|α|+ az3α
2 + az4α

3 + (bz1α+ bz2α
2)δP+

(bz3α+ bz4α
2)δY

Cl =
d

2Vm
Clpp

Gp = LδR(α, β)δR + LδP (α)δP + LδY (β)δY

Cm = Cmαφm(α) + Cmαβαβ
2 +

d

2Vm
Cmqq +

d

2Vm
Cnpββp

Gq = CmδP δP

Cn = Cnβφn(β) + Cnαβα
2β +

d

2Vm
Cnrr +

d

2Vm
Cnpααp

Gr = NδY δY

(5.10)

and:

LδR(α, β) = d1 + d2α
2 + d3β

2

LδP (α) = d4α

LδY (β) = d5β

NδY = CnδY

φn(β) = n1β + n2β|β|+ n3β
2 + n4β

3

φm(α) = m1α+m2α|α|+m3α
2 +m4α

3

(5.11)

We would like to stress the presence, in the equations of motion, of the Magnus effect

aerodynamic terms: Cm1, Cm2, Cm3 and Cm4. These terms describe the fact that spin-

ning missiles deviate from a rectilinear trajectory in the direction given by the spin.

This is clearly going to be considered during control system design, since it is a nonlin-

ear coupling dangerous for stability which can be encountered during bank maneuvers.
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The same can be said about the nonlinear cross-couplings which arise between the three

control inputs in the expressions of (5.10). These couplings are produced by the differ-

ential of pressure acting on the wings and tail-fins, a phenomenon particularly relevant

in asymmetric airframes.

Finally, control allocation and actuator dynamics are introduced to make the dynamic

model even more realistic. Control inputs produced by the autopilot have to be trans-

formed in physical reference signals to the four actuated control surfaces placed on the

tail-fins of the missile. In missile dynamics, only the overall deflections produced by the

simultaneous combined deflection of the surfaces are considered, and the same is made

in autopilot design. These three overall deflections are the classical roll, pitch and yaw

ones around the three body axes, namely:

δR = u1

δP = u2

δY = u3

(5.12)

These deflections can be thought as commands to tail-fin dynamics, conceptually sep-

arated in an aileron dynamics, which produces as a final result the roll control torque,

an elevator dynamics, which is the cause of the pitch control torque, and a rudder dy-

namics, producing a yaw control torque. Due to this fact, control inputs generated by

the autopilot are often renamed:

δR = δa (command to aileron dynamics)

δP = δe (command to elevator dynamics)

δY = δr (command to rudder dynamics)

(5.13)

The transformation between these overall control deflections elaborated by the autopilot

and the actual signals to the four wings (δw1, δw2, δw3, δw4)T is represented by the

control allocation matrix : 
δw1

δw2

δw3

δw4

 =


−1 −1 0

−1 0 −1

1 −1 0

1 0 −1



u1

u2

u3

 (5.14)

Actuator dynamics on the four fins is an approximation of the fast dynamics of low level

control loops, whose aim is to produce torques on the actuators moving the fins in order

to follow the reference time-profile associated to δwi. After a small time, these low level

control loops achieve their aim and produce the desired torques, giving as output the
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desired δi:

δi =
1

1 + τs
δwi (5.15)

The time constant τ is a measure of the speed of response of actuators. Between the

commands δwi and the inputs δi there are also a saturation limit of ±45 deg and a rate

limit of 500 deg per second. These inputs are therefore anti-transformed in overall input

torques to airframe dynamics by pseudo-inverting the control allocation matrix


δR

δP

δY

 =


−1

4 −1
4

1
4

1
4

−1
2 0 −1

2 0

0 −1
2 0 −1

2



δ1

δ2

δ3

δ4

 (5.16)

Actuator dynamics and control transformation are not considered as part of the control

design process, therefore they are simply part of the overall simulation model, acting as

unmodeled dynamics of the system.

5.1.1 Modeling for nominal control

Equations of motion (5.4) can be rearranged to form the following nonlinear dynamical

system

ẋ = fx(x, t) + g1
x(x)z + g2

x(x, z, t)u

ż = fz(x, z, t) + gz(x, t)u
(5.17)

The state variables are x = (ϕ, α, β)T and z = (p, q, r)T . Control inputs, represented

by the tail fins’ deflection angles, are u = (δR, δP , δY )T . The vector-fields and matrices
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of the system have this structure:

fx(x, t) =


0

fα(x, t)

fβ(x, t)

 g1
x(x) =


1 0 0

ξα(x) 1 χα(x)

ξβ(x) χβ(x) −1



g2
x(x, t) =


0 0 0

0 gα1(x, z, t) gα2(x, z, t)

0 gβ1(x, z, t) gβ2(x, z, t)



fz(x, z, t) =


fp(x, z, t)

fq(x, z, t)

fr(x, z, t)



gz(x, t) =


gp1(x, t) gp2(x, t) gp3(x, t)

0 gq(x, t) 0

gr1(x, t) gr2(x, t) gr3(x, t)



(5.18)

The functions fi, gi, ξi and χi are easily constructed by looking at the dynamics of

(5.4). System (5.17) well represents the complex nonlinear and time-varying behavior

of the missile in the simulation window considered. It involves highly nonlinear non-

stationary aerodynamic terms, mainly in the fi drift terms, highly coupled and nonlinear

differential kinematic terms as g1
x(x)z and, furthermore, the cross-couplings between the

control inputs, due to the different pressure acting on the wings and the tail-fins during

maneuvers, especially at high α and β angles. These couplings are going to be taken

into account directly in control system design, using a nonlinear MIMO approach.

For the nominal controller design, system equations are going to be simplified into

ẋ = fx(x) + g1
x(x)z

ż = fz(x, z) + gz(x)u
(5.19)

in which we have dropped the input influence on the second and third equations and we

have made the assumption of constant velocity, mass and inertia during the portion of

flight considered.

5.1.2 Modeling for robust control

The nonlinear dynamical model developed in the previous section is particularly suited

to design nonlinear control laws which are based on cancellations of nominal terms in

system equations. However, it is really difficult to obtain good estimates of aerody-

namic coefficients and Magnus effect terms, which are barely known. Even in the luckier



Chapter 5. Missile autopilot design 85

situations the designer only knows their nominal, often incorrect, value. As a conse-

quence, nonlinear control laws are frequently failing in real applications. This issue led

the control systems research community to think about robust versions of the nonlinear

controllers already available for stabilization and tracking.

To model the very complex aerodynamic uncertain terms of missile dynamics, we need to

exploit the results introduced in Section 2.3 to rapidly evaluate the uncertain envelopes.

As an example of application of proposition 2.3.0.2, let us consider the calculus of the

uncertainty associated to the aerodynamic force Fy. We assume that the air density ρ

and the cross-sectional area S are perfectly known parameters. On the other hand we

group the perturbations deriving from time-variance and uncertainty into the velocity

Vm and the aero-coefficient CNy, of which we only know the nominal values and the

maximum gap k between them and their actual values, according to the specific definition

of deviation function.

Example 5.1.2.1. Consider the nominal expression of the force along ŷb

Fy =
1

2
ρV 2

mSCNy

and separate the known part 1
2ρS = c from the uncertain part V 2

mCNy, which can be

seen as a cubic function of three parameters when written as VmVmCNy. To calculate

the uncertain envelope of Fy we use the ∆ operator in the following fashion

∆(Fy) = ∆(cVmVmCNy) = c∆(VmVmCNy)

= c(∆Vm∆Vm∆CNy + Vm∆Vm∆CNy + ∆VmVm∆CNy+

V 2
m∆CNy + ∆Vm∆VmCNy + ∆VmVmCNy + Vm∆VmCNy)

(5.20)

Keeping in mind that it is possible to decompose the single uncertainties in terms of the

deviation function σ and assuming that it is the same for every function, we obtain:

∆(Fy) = σ3Fy + 2σ2Fy + σFy + σ2Fy + 2σFy

= (σ3 + 3σ2 + 3σ)Fy
(5.21)

which can be generalized for a generic polynomial nominal function as shown in 2.3.0.2.

Clearly, in the case of a quadratic nominal function, we obtain:

∆(V 2
m) = ∆(VmVm) = ∆Vm∆Vm + Vm∆Vm + ∆VmVm

= σ2Vm + σVm + σVm = (σ2 + 2σ)Vm
(5.22)

which also fits into 2.3.0.2. ♦
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Remark 5.1.2.2. The procedure can be extended to the case of multiple deviation functions.

Since we are limiting ourselves to the case of two different deviation functions for at most three

uncertain parameters in the same uncertain envelope, we show the results in this case, omitting

for brevity the time-dependence of σi’s.

• Two uncertain parameters as in the case of Mx, in which Vm is not squared and Clp

is the other one. The computation of the uncertain envelope gives:

∆(VmClp) = ∆1Vm∆2Clp + Clp∆1Vm + Vm∆2Clp

= (σ1σ2 + σ1 + σ2)VmClp
(5.23)

where σ1 embeds the variations of Vm and σ2 those of Clp .

• Three uncertain parameters as in the previous case of Fy. Easy calculations result in:

∆(V 2
mCNy) = ∆1Vm∆1Vm∆2CNy + Vm∆1Vm∆2CNy

+ ∆1VmVm∆2CNy + V 2
m∆2CNy + ∆1Vm∆1VmCNy

+ ∆1VmVmCNy + Vm∆1VmCNy

= (σ2
1σ2 + 2σ1σ2 + 2σ1 + σ2 + σ2

1)(V 2
mCNy)

(5.24)

♦

Looking at the equations of motions in (5.4) we find out that there are not only products

between uncertain parameters, but also quotients, as in the terms with Vm at denomi-

nator in α̇ and β̇ right members. Therefore, to compute the uncertain envelopes of the

complete dynamics, we also need to use Proposition 2.3.0.3.

The results established in Section 2.3 yield a simple procedure to construct the uncertain

envelopes of system’s vectors and matrices by using the ∆-operator in an element-wise

fashion. Aerodynamic forces and moments are in fact given by products between some

parameters considered known (i.e. scarcely varying around their nominal values), as

S, d, ρ and the inertia moments, and others considered uncertain (i.e. with significant

variations around their nominal values), as Vm (since it embeds all the flight conditions

between 2.5 and 3.2 Mach in a single value), V̇m and all the aero-coefficients together with

the Magnus effect terms. The polynomial-in-the-state structure of most aerodynamic

coefficients and their consequent linearity-in-the-parameters implies that the application

of the ∆ operator to each of them results simply in the product of the corresponding

deviation function with the nominal value of the coefficient, as implicitly taken for

granted in the calculations above:

∆(CNy) = σy(t)CNy ∆(CNz) = σz(t)CNz (5.25)
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therefore, being σV the perturbation associated to Vm, we have:

∆(Fy) = (σ2
V σy + 2σV σy + 2σV + σy + σ2

V )Fy

∆(Fz) = (σ2
V σz + 2σV σz + 2σV + σz + σ2

V )Fz
(5.26)

furthermore, paying attention to the power of Vm

∆(Mx) =
1

4
ρSd2p∆(VmClp) +

1

2
ρSd∆(V 2

mGp)

= c1(σV σlp + σV + σlp)VmClpp

+ c2(σ2
V σGp + 2σV σGp + 2σV + σGp + σ2

V )(V 2
mGp)

∆(My) =
1

4
ρSd2(q∆(VmCmq) + βp∆(VmCnpβ ))

+
1

2
ρSd(φm(α)∆(V 2

mCmα) + αβ2∆(V 2
mCmαβ ) + δP∆(V 2

mCmδP ))

= c1((σV σmq + σV + σmq)VmCmqq + (σV σnpβ + σV + σnpβ )VmCnpββp)

+ c2(φm(α)(σ2
V σmα + 2σV σmα + 2σV + σmα + σ2

V )V 2
mCmα

+ αβ2(σ2
V σmαβ + 2σV σmαβ + 2σV + σmαβ + σ2

V )V 2
mCmαβ

+ δP (σ2
V σP + 2σV σP + 2σV + σP + σ2

V )V 2
mCmδP )

∆(Mz) =
1

4
ρSd2(r∆(VmCnr) + αp∆(VmCnpα ))

+
1

2
ρSd(φn(β)∆(V 2

mCnβ ) + α2β∆(V 2
mCnαβ ) + δY ∆(V 2

mCnδY ))

= c1((σV σnr + σV + σnr)VmCnrr + (σV σnpα + σV + σnpα )VmCnpααp)

+ c2(φn(β)(σ2
V σnβ + 2σV σnβ + 2σV + σnβ + σ2

V )V 2
mCnβ

+ α2β(σ2
V σnαβ + 2σV σnαβ + 2σV + σnαβ + σ2

V )V 2
mCnαβ

+ δY (σ2
V σY + 2σV σY + 2σV + σY + σ2

V )V 2
mCnδY )

(5.27)

where c1 = 1
4ρSd

2, c2 = 1
2ρSd and the various subscripts for σ are needed to distinguish

between different deviation functions. Applying the results of Proposition 2.3.0.3 it is

possible to combine the envelopes found for Fy and Fz with those of Vm and V̇m, whose

deviation function is σV̇ . We obtain, i = y, z:

∆

(
Fi
Vm

)
=
Vm∆(Fi)− Fi∆(Vm)

Vm(Vm + ∆(Vm))

=
Vm(σ2

V σi + 2σV σi + 2σV + σi + σ2
V )Fi − FiσV Vm

Vm(Vm + σV Vm)

∆

(
V̇m
Vm

)
=
σV̇ − σV
1 + σV

V̇m
Vm

(5.28)
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Finally, the uncertainties of the Magnus terms are simply ∆(Cmi) = σMiCmi, for i =

1, . . . , 4.

Organizing the uncertain envelopes found by splitting them into drift parts, identified by

the superscript D, depending only on state variables and parameters, and control parts

linear in the control inputs it is straightforward to define the uncertain terms affecting

system’s vector and matrices in the following way:

∆fϕ = 0

∆fα = pασM3Cm3 +
Qαβ
m

∆

(
FDz
Vm

)
+ sαcαtβ

Qαβ
m

∆

(
FDy
Vm

)
− sαcαQ2

αβ∆

(
V̇m
Vm

)

∆fβ = pβσM4Cm4 +
Qαβ
m

∆

(
FDy
Vm

)

+ sβcβtα
Qαβ
m

∆

(
FDz
Vm

)
− sβcβQ2

αβ∆

(
V̇m
Vm

)

∆fp =
Iz

IxIz − I2
xz

∆MD
x +

Ixz
IxIz − I2

xz

∆MD
z

∆fq =
1

Iy
∆MD

y + pασM1Cm1

∆fr =
Ixz

IxIz − I2
xz

∆MD
x +

Ix
IxIz − I2

xz

∆MD
z + pβσM2Cm2

(5.29)

moreover, for i = 1, 2

∆gαi = (σV σαi + σV + σαi)gαi

∆gβi = (σV σβi + σV + σβi)gβi
(5.30)

and for j = 1, 2, 3

∆gpj = (σ2
V σpj + 2σV σpj + 2σV + σpj + σ2

V )gpj

∆gq = (σ2
V σP + 2σV σP + 2σV + σP + σ2

V )gq

∆grj = (σ2
V σrj + 2σV σrj + 2σV + σrj + σ2

V )grj

(5.31)

Such uncertain envelopes can be divided in two groups: matched and unmatched uncer-

tainties. The distinction follows the core Definition 2.2.2.1 given in Section 2.2.

Once defined the uncertain terms it is possible to rearrange them into vectors and

matrices to compose a model suited for robust nonlinear control design. Splitting into

the two sub-systems and highlighting the Magnus effect’s terms in ∆fα and ∆fβ with



Chapter 5. Missile autopilot design 89

the purpose of gain more structure, we obtain:

∆fxu =


0

∆f ′α

∆f ′β

+


0 0 0

∆Cm3α 0 0

∆Cm4β 0 0

 z

+


0 0 0

0 gα1 + ∆gα1 gα2 + ∆gα2

0 gβ1 + ∆gβ1 gβ2 + ∆gβ2

uM

∆fz =


∆fp

∆fq

∆fr

 ∆gz =


∆gp1 ∆gp2 ∆gp3

0 ∆gq 0

∆gr1 ∆gr2 ∆gr3



(5.32)

Clearly ∆fxu = ∆fxu(x, z, uM , t), ∆fz = ∆fz(x, z, t) and ∆gz = ∆gz(x, t). We de-

note with uM an estimate for the upper-bound of control inputs vector, considered as

structured uncertainty when it acts on the first part of the dynamics causing the non-

minimum phase behavior of the airframe. The uncertain system then can be expressed

as

ẋ = fx(x, t) + ∆fxu(x, z, uM , t) + g1
x(x)z

ż = fz(x, z, t) + ∆fz(x, z, t) + [gz(x, t) + ∆gz(x, t)]u
(5.33)

Note that, disregarding the uncertain terms and the explicit time-dependence of system’s

equations, this model reduces to the nominal one (5.19).

The unmatched uncertainties ∆fu are those acting directly on f :

∆fu(x, z, uM , t) =

(
∆fxu(x, z, uM , t)

∆fz(x, z, t)

)
(5.34)

while the matched uncertainties ∆gm appear in the same channel of the control inputs

∆gm(x, t) =

(
0 0

0 ∆gz(x, t)

)
(5.35)

This system representation will be used to design robust control once defined the bound-

ing functions of the uncertain terms, which are of straightforward calculation using the

properties of the deviation functions introduced in Section 2.2. For instance, we can eval-

uate the bounds of the uncertainties on FDy and FDz by simply replacing the deviation

functions with the corresponding gains kV , ky and kz

ρFDy = (k2
V ky + 2kV ky + 2kV + ky + k2

V )|FDy |

ρFDz = (k2
V kz + 2kV kz + 2kV + kz + k2

V )|FDz |
(5.36)
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The same can be done for the Magnus effect terms, for which we obtain, i = 1, . . . , 4:

ρCmi = kMi|Cmi| (5.37)

Similar but much more complicated expressions, which we omit for brevity since their

calculation is also straightforward, can be found for ∆MD
x , ∆MD

y and ∆MD
z , resulting

in bounding functions ρMD
x

, ρMD
y

and ρMD
z

. Furthermore it is possible to define the

bounding functions for the terms ∆
(
FDi
Vm

)
and ∆

(
V̇m
Vm

)
, for i = y, z, as:

ρFDi /Vm
=

∣∣∣∣∣VmρFDi − FikV |Vm|)Vm(Vm + kV |Vm|)

∣∣∣∣∣
ρV̇m/Vm =

∣∣kV̇ − kV ∣∣
1 + kV

∣∣∣∣∣ V̇mVm
∣∣∣∣∣

(5.38)

After the derivation of these critical bounds, it is pretty simple to calculate the bounding

functions ρfi of all the uncertain envelopes introduced in (5.29), i = α, β, p, q, r. We give

just the example of calculus of ρfα , because the other ones are very similar to this.

|∆fα| ≤ ρfα =

∣∣∣∣pαkM3|Cm3|+
Qαβ
m

ρFDz /Vm

+sαcαtβ
Qαβ
m

ρFDy /Vm − sαcαQ
2
αβρV̇m/Vm

∣∣∣∣ (5.39)

Finally, we can evaluate bounding functions for (5.30), i = 1, 2, and (5.31), j = 1, 2, 3:

|∆gαi| ≤ ρgαi = (kV kαi + kV + kαi)|gαi|

|∆gβi| ≤ ρgβi = (kV kβi + kV + kβi)|gβi|

|∆gpj | ≤ ρgpj = (k2
V kpj + 2kV kpj + 2kV + kpj + k2

V )|gpj |

|∆gq| ≤ ρgq = (k2
V kP + 2kV kP + 2kV + kP + k2

V )|gq|

|∆grj | ≤ ρgrj = (k2
V krj + 2kV krj + 2kV + krj + k2

V )|grj |

(5.40)

Remark 5.1.2.3. The values of the gains ki are chosen to the extent of size-domination of

the particular uncertain terms considered. Together with the choice of the overall ρi bounding

functions, they determine the level of robustness and associated conservatism of the closed-loop

system under the robust nonlinear control. For instance, choosing the ki gains exactly equal

to the deviation functions amplitudes guarantees the right compromise between robustness and

performance, since no extra-effort than that closely needed is put into uncertainty compensa-

tion. ♦
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Grouping the bounding functions into vectors and matrices we are finally able to write:

ρfxu(x, z) =


0

ρfα

ρfβ

+


0 0 0

ρCm1α 0 0

ρCm2β 0 0

 z

+


0 0 0

0 gα1 + ρgα1 gα2 + ρgα2

0 gβ1 + ρgβ1 gβ2 + ρgβ2

uM

ρfz(x, z) =


ρfp

ρfq

ρfr

 ρgz(x, z) =


ρgp1 ρgp2 ρgp3

0 ρgq 0

ρgr1 ρgr2 ρgr3



(5.41)

Remark 5.1.2.4. The estimate uM is a vector formed by the absolute values of the nominal

control inputs that are evaluated before designing the robust control law. This choice results

in underestimating the effects of u on the x sub-dynamics and it is made exclusively to reduce

conservatism and complexity of the design. ♦

5.2 Control design

After having defined the problem and the control objectives, as first step, a nominal

control law disregarding the uncertainties is designed using a MIMO backstepping ap-

proach. The second step is the construction, on the shoulders of the nominal design, of a

robust control law which is able to counteract the effect of the unmatched uncertainties.

The third and final step consists in using a C1, revisited version of Lyapunov redesign

to compensate for the matched uncertainties.

5.2.1 Control objectives

Control objectives are twofold, since we would like to design a very general autopilot

capable of achieving both Skid-To-Turn and Bank-To-Turn maneuvers, independently

of the particular airframe on which it is applied and with slight changes in the equa-

tions when necessary. This can be done since the equations of motion introduced in

Chapter 5.1 and used for control purposes represent an hybrid airframe capable of both

movements, as already stressed.
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The problem of controlling the motion of a missile achieving maneuvers can be inter-

preted as the problem of achieving P-RUGAS of a nonlinear uncertain system using an

opportune control law. As a consequence, we are able now to formulate the two control

problems to be solved in terms of the two main maneuvers.

Skid-To-Turn maneuver

The autopilot has to rapidly steer the bank angle ϕ to a constant desired value (usually

zero or near zero) and so to bring to zero the roll-rate p for the purpose of inertially

decoupling the longitudinal from the lateral motion. This is not necessary since the

approach is nonlinear, but it is a common practice. We could also track a time-varying

motion in ϕ, but this would not correspond to the typical STT maneuver we want to

make. Once the bank angle is regulated, rapidly changing time-profiles in α and β have

to be tracked to guarantee the pursuit of the desired vertical and lateral commanded

accelerations, respectively az and ay, produced by the guidance system. Viewed in terms

of P-RUGAS, control objectives for the STT maneuver are:

ϕ(t)→ ωϕ(ϕd) = ωϕ(0)

α(t)→ ωα(αd(t))

β(t)→ ωβ(βd(t))

(5.42)

ωi represent the limit sets of convergence of the state trajectories: according to Def.

1.3.2.2 they can be made arbitrarily small through an opportune choice of control design

parameters; we will show this peculiarity in the next sections.

Bank-To-Turn maneuver

The autopilot has to rapidly steer the sideslip angle β to a constant desired value (usually

zero or near zero) and so to bring to zero the yaw-rate r to prevent the air-breathing

engine typical of BTT missiles from flaming out. The first part of the maneuver, the

twisting, consists in reaching the desired value of ϕ corresponding to the direction of the

commanded acceleration in terms of ay and az. Secondly, the missile has to gain the

desired angle of attack, given by the desired acceleration magnitude in that direction:

this is called the steering part of the maneuver. Viewed in terms of P-RUGAS, control

objectives for the STT maneuver are:

β(t)→ ωβ(βd) = ωβ(0)

ϕ(t)→ ωϕ(ϕd(t))

α(t)→ ωα(αd(t))

(5.43)
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5.2.2 Nominal control law

To apply backstepping we start from (5.19), which has a suitable structure, and define

the error variable ex = xd − x, that incorporates the desired values of α, β and ϕ

according to the selected maneuver. Suppose there exists a function φ(x) such that the

error-subsystem

ėx = ẋd − ẋ = ẋd − fx(x)− g1
x(x)φ(x) (5.44)

is globally asymptotically stable (abbr. GAS ) with a Lyapunov function V (ex). This

means that

V̇ (ex) =
∂V

∂ex

(
ẋd − fx(x)− g1

x(x)φ(x)
)
≤ −w(‖ex‖) (5.45)

where w(·) is a class K∞ function (see [62]). Define the following change of coordinates

ζ = z − φ(x) (5.46)

under which the system can be written in terms of the error ζ between the virtual control

input z and its desired value zd = φ(x)

ėx = ẋd − fx(x)− g1
x(x) (ζ + φ(x))

ζ̇ = fz(x, z) + gz(x)u− ∂φ

∂x

[
fx(x) + g1

x(x) (ζ + φ(x))
] (5.47)

The obtained representation is mixed in ex, x, z and ζ. Define now the augmented

Lyapunov function

W (ex, ζ) = V (ex) +
1

2
ζT ζ (5.48)

which is a candidate Lyapunov function for the transformed system (5.47). The deriva-

tive along the motion

Ẇ (x, ζ) =
∂V

∂ex

[
ẋd − fx(x)− g1

x(x) (ζ + φ(x))
]

+ ζT
[
fz(x, z) + gz(x)u− ∂φ

∂x

(
fx(x) + g1

x(x) (ζ + φ(x))
)]

≤ −w(‖ex‖)−
∂V

∂ex
g1
x(x)ζ

+ ζT
[
fz(x, z) + gz(x)u− ∂φ

∂x

(
fx(x) + g1

x(x) (ζ + φ(x))
)]

(5.49)

is made negative definite by the following choice of u:

u = g−1
z (x)

[
−fz(x, z) +

∂φ

∂x

(
fx(x) + g1

x(x) (ζ + φ(x))
)

+

(
∂V

∂ex
g1
x(x)

)T
−Kζζ

] (5.50)
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which yields:

Ẇ (x, ζ) ≤ −w(‖ex‖)− ζTKζζ (5.51)

A possible choice for φ(x) is that of a dynamic cancellation with eigenvalue assignment

to the error dynamics:

φ(x) =
[
g1
x(x)

]−1
(−fx(x) + ẋd +Kxex) (5.52)

With this choice, the simple quadratic-in-the-error Lyapunov function

V (ex) =
1

2
eTx ex (5.53)

ensures GAS for the error dynamics. The closed loop system(
ėx

ζ̇

)
=

(
−Kx −g1

x(x)

g1
x(x)T −Kζ

)(
ex

ζ

)
(5.54)

is then GAS with Lyapunov function W (ex, ζ) = 1
2e
T
x ex + 1

2ζ
T ζ, such that Ẇ (ex, ζ) ≤

−eTxKxex − ζTKζζ with the (nominal) control law (5.50).

Remark 5.2.2.1. The approach used is called backstepping since it is recursive and exploits

the concept of virtual control (φ(x) in our case) to stabilize the inner part of the dynamics,

in some sense stepping back from the last subsystem up to the first. The recursion is given

by the change of coordinates, which can be extended to more complex systems that still have

a lower-triangular structure, called strict-feedback form. This change of coordinates allows for

the construction of a non-quadratic (in the original coordinates) Lyapunov function, making the

problem of finding a globally stabilizing control law for the whole system much easier. ♦

This first result only implies that the nominal system, with the uncertain terms kept

to zero, is GAS. To ensure P-RUGAS of the uncertain system we need to make the

backstepping robust against both matched and unmatched uncertainties.

5.2.3 Robust nonlinear control

The robustification of (5.50) is split up into two parts: the first is the construction of a

control law uu to counteract unmatched uncertainties and the second is the determina-

tion of another term um which can face the effects of matched uncertainties. Renaming
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(5.50) as un, the overall robust nonlinear control law will have the form:

u = un + uu + um (5.55)

Unmatched control

Unmatched control, otherwise known as robust backstepping, is built “on the shoulder”

of the nominal design, from which inherits recursion and virtual control concepts. In

order to compensate for the unmatched uncertain terms, we exploit the concept of robust

control function, introduced in Definition 3.1.0.4, which we adapt to the present context

with the following straightforward element-wise extension

Definition 5.2.3.1 (Element-wise robust control function). The robust control function

can be extended to a vector context by smartly using both matrix product and the element-wise

vector and matrix Hadamard product, denoted by the symbol “◦”. For instance, if ρu is a three-

dimensional vector of uncertain terms and so are the independent variables s and σs, we define

the element-wise robust control function as follows:

ρu ◦ v(s, σs) = ρu ◦ sign(s) ◦ (1− e−σs◦|s|) = ρu ◦ sigm(s, σs) (5.56)

where

1 =
(

1 1 1
)T

sign(s) =
(

sign(s1) sign(s2) sign(s3)
)T

e−σs◦|s| =
(
e−σs1

|s1| e−σs2
|s2| e−σs3

|s3|
)T (5.57)

and, as a consequence:

sigm(s, σs) =


sigm(s1)

sigm(s2)

sigm(s3)

 =


sign(s1)

sign(s2)

sign(s3)

 ◦


1− e−σs1
|s1|

1− e−σs2
|s2|

1− e−σs3
|s3|

 (5.58)

♦

We consider this model for unmatched control design:

ẋ = fx(x) + ∆fxu(x, z, u, t) + g1
x(x)z

ż = fz(x, z) + ∆fz(x, z, t) + gz(x)u
(5.59)

and prove the following result on trajectory tracking using robust backstepping in the

presence of unmatched uncertainties.
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Theorem 5.2.3.2. Given the system with unmatched uncertainties (5.59), the robust backstep-

ping control law :

u′ = un + uu

= geqz (x, z)−1

[
(eTx g

1
x(x))T − feqz (x, z) +

∂φr
∂x

(
ẋd +Kxex + g1

x(x)ζ
)

−Kζζ − ρeqfz ◦ sigm(ζ) +
∂φr(x)

∂x
ρfxu ◦ (1− sigm(ex))

] (5.60)

where

geqz (x, z) = gz(x)− ∂φr
∂z

gz(x) feqz = fz −
∂φr
∂z

fz(x) (5.61)

and ρeqfz is the bounding function of the equivalent uncertainty ∆feqz = ∆fz− ∂φr

∂z ∆fz(x), together

with the robust virtual control input:

φr(x, z) =
[
g1
x(x)

]−1
(−fx(x) + ẋd +Kxex − ρfxu(x, z) ◦ sigm(ex)) (5.62)

and robust control Lyapunov function (depending on ζ = z − φr(x, z)):

Wr(ex, ζ) =
1

2
eTx ex +

1

2
ζT ζ (5.63)

renders the closed-loop system (5.59)-(5.60) P-RUGAS about the desired trajectory xd(t) =

(ϕd(t), αd(t), βd(t)). ♦

Proof. The partial change of coordinates:(
x

ζ

)
=

(
x

z − φr(x, z)

)
(5.64)

transforms system (5.59) into the following mixed representation:

ẋ = fx(x) + ∆fxu + g1
x(x) (ζ + φr(x, z))

ζ̇ = fz(x, z) + ∆fz + gz(x)u

− ∂φr
∂x

[
fx(x) + ∆fxu + g1

x(x) (ζ + φr(x, z))
]

− ∂φr
∂z

[fz(x, z) + ∆fz + gz(x)u]

(5.65)
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which, by substituting the expression of the robust fictitious control φr(x, z) (first step

of the procedure), can be simplified into:

ẋ = ẋd +Kxex + g1
x(x)ζ + ∆fxu − ρfxu(x, z) ◦ sigm(ex)

ζ̇ = feqz (x, z) + ∆feqz + geqz (x, z)u

− ∂φr
∂x

[
ẋd +Kxex + g1

x(x)ζ + ∆fxu − ρfxu(x, z) ◦ sigm(ex)
] (5.66)

In the second step, we close the loop by applying the actual control law (5.60) which,

keeping in mind that ex = xd − x, yields:

ėx = −Kxex − g1
x(x)ζ + ∆fxu − ρfxu ◦ sigm(ex)

ζ̇ =
(
eTx g

1
x(x)

)T
+ ∆feqz − ρ

eq
fz
◦ sigm(ζ)

− ∂φr
∂x

(∆fxu − ρfxu ◦ sigm(ex))

+
∂φr
∂x

ρfxu ◦ (1− sigm(ex))−Kζζ

(5.67)

We now apply Lyapunov direct criterion to show that (5.67) is P-RUGAS. The aug-

mented candidate Lyapunov function we choose is Wr(ex, ζ) = 1
2e
T
x ex + 1

2ζ
T ζ. Its

derivative along the trajectories of (5.67) is:

Ẇr(ex, ζ) = eTx ėx + ζT ζ̇

= −eTxKxex − eTx g1
x(x)ζ + eTx (∆fxu − ρfxu ◦ sigm(ex))

+ ζT
(
eTx g

1
x(x)

)T
+ ζT

(
∆feqz − ρ

eq
fz
◦ sigm(ζ)

)
− ζT ∂φr

∂x
(∆fxu − ρfxu ◦ sigm(ex))

+ ζT
∂φr
∂x

ρfxu ◦ (1− sigm(ex))− ζTKζζ

= −eTxKxex − ζTKζζ + eTx∆fxu − (ex ◦ sign(ex))Tρfxu

+ (ex ◦ sign(ex))Tρfxu ◦ e−σx◦|ex| + ζT∆feqz − (ζ ◦ sign(ζ))Tρeqfz

+ (ζ ◦ sign(ζ))Tρeqfz ◦ e−σζ◦|ζ| − ζT ∂φr
∂x

∆fxu + ζT
∂φr
∂x

ρfxu

(5.68)

in which we have used commutativity and associativity of the Hadamard product. In

the following, we define in tensorial notation the vector given by the absolute values of

ex and ζ components, which is clearly related to the L1 norm structure:

(ex ◦ sign(ex))T = |ex|T =
(
|ex1 | |ex2 | |ex3 |

)T
(ζ ◦ sign(ζ))T = |ζ|T =

(
|ζ1| |ζ2| |ζ3|

)T (5.69)
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Using this notation, the expression of the derivative along the motion is bounded from

above and therefore simplified to:

Ẇr(ex, ζ) ≤ −eTxKxex − ζTKζζ (5.70a)

+ |ex|Tρfxu − |ex|Tρfxu + |ζ|Tρeqfz − |ζ|
Tρeqfz

+ |ex|Tρfxu ◦ e−σx◦|ex| + |ζ|Tρeqfz ◦ e−σζ◦|ζ|

− ζT ∂φr
∂x

ρfxu + ζT
∂φr
∂x

ρfxu

= −eTxKxex − ζTKζζ (5.70b)

+ |ex|Tρfxu ◦ e−σx◦|ex| + |ζ|Tρeqfz ◦ e−σζ◦|ζ| (5.70c)

The differential inequality (5.70) obtained implies that P-RUGAS is ensured for the

closed-loop system, as stated in a simpler case in [85] and [84], since Ẇr is nega-

tive outside a compact set Ω. In fact, each of the indefinite in sign terms in (5.70c)

is bounded and attains a maximum. Consider for instance the residual scalar term

|ex|T
(
ρfxu ◦ e−σx◦|ex|

)
, which is the following three-variables function

res(|ex|) = |e1
x|ρ1

fxue
−σx1 |e

1
x| + |e2

x|ρ2
fxue

−σx2 |e
2
x| + |e3

x|ρ3
fxue

−σx3 |e
3
x| (5.71)

The critical point for the function is found by zeroing the gradient

∂ res

∂ |ex|
=


ρ1
fxu
e−σx1 |e

1
x|(1− σx1 |e1

x|)
ρ2
fxu
e−σx2 |e

2
x|(1− σx2 |e2

x|)
ρ3
fxu
e−σx3 |e

3
x|(1− σx3 |e3

x|)

 (5.72)

obtaining:

|ex|∗ =

(
1

σx1

1

σx2

1

σx3

)T
(5.73)

Therefore the diagonal Hessian matrix diag(|eix|ρifxuσ
2
i e
−σi|eix| − 2ρifxuσxie

−σxi |e
i
x|) eval-

uated at |ex|∗

Hres||ex|∗ =


−ρ1

fxu
σx1e

−1 0 0

0 −ρ2
fxu
σx2e

−1 0

0 0 −ρ3
fxu
σx3e

−1

 (5.74)

is negative definite for all (x, z) in the domain of interest being the bounding functions

and the sigmoid slopes always greater than zero. As a consequence, |ex|∗ is a global

maximum point for the term res(|ex|). An identical result can be stated for the term
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res(|ζ|) =
∑3

i=1|ζi|ρ
eqi
fz
e−σζi |ζ

i|, whose maximum is attained at |ζ|∗ =
(

1
σζ1

1
σζ2

1
σζ3

)T
.

The maximum values are easily calculated:

max
|ex|

res(|ex|) = e−1
3∑
i=1

1

σxi
ρifxu (5.75)

max
|ex|

res(|ζ|) = e−1
3∑
i=1

1

σζi
ρeqifz (5.76)

As a result, inequality (5.70b)-(5.70c) can be further simplified to

Ẇr(ex, ζ) ≤ −eTxKxex − ζTKζζ

+ |ex|Tρfxu ◦ e−σx◦|ex| + |ζ|Tρeqfz ◦ e−σζ◦|ζ|

≤ −
(
ex ζ

)T (Kx 0

0 Kζ

)(
ex

ζ

)
+ e−1

(
3∑
i=1

1

σxi
ρifxu +

3∑
i=1

1

σζi
ρeqifz

) (5.77)

Grouping control gains in the diagonal matrix Kb, errors in the vector eb, sigmoid slopes

in the vector σ−1
b and unmatched bounding functions into ρu we obtain:

Ẇr(ex, ζ) = Ẇr(eb) ≤ −eTb Kbeb + e−1σ−1
b · ρu

≤ −λmin(Kb) ‖eb‖2 + e−1σ−1
b · ρu

(5.78)

which is negative definite provided that

‖eb‖ >

√
σ−1
b · ρu

e λmin(Kb)
:= ω (5.79)

Where the radius ω defines the set (an hyper-sphere) in the error space

Ω = {‖eb‖ ≤ ω(σ−1
b , λmin(Kb))} (5.80)

Let now S be the smallest level set of W containing the hyper-sphere of radius ω. The

derivative of W along the trajectories is negative definite as long as the error does not

enter S, in symbols:

eb /∈ S ⇒ Ẇ (eb) < 0 (5.81)

which is P-RUGAS or global uniform ultimate boundedness of the closed-loop trajecto-

ries.
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Remark 5.2.3.3. The dimension of the set Ω, and so the dimension of S, can be reduced by

acting on the gains in Kb and on the sigmoid slopes, as shown by the expression of the radius

(5.79). Otherwise, we can use the Hadamard product to derive an alternative version of (5.78)

in terms of the following elementwise inequalities, i = 1, 2, 3

|exi
| >

√
ρifxu

kxi
σxi

e
(5.82)

|ζi| >

√
ρeqifz

kζi σζi e
(5.83)

which are chosen using a more conservative upper estimate than that of (5.79), but give more

degrees of freedom and flexibility to the design, since it is possible to individually set control

gains and sigmoid slopes for each error component. ♦

Matched control

Matched uncertainties are finally compensated using a revisited version of a classic

Lyapunov redesign technique (see [62] for the details). The model used for matched

control design is simply derived from (5.33), disregarding the time dependence in the

nominal part:

ẋ = fx(x) + ∆fxu(x, z, u, t) + g1
x(x)z

ż = fz(x, z) + ∆fz(x, z) + gz(x)
[
I3 + ∆g′z(x, t)

]
u

(5.84)

whereas, clearly by definition of matched uncertainty:

∆g′z(x, t) = g−1
z (x)∆gz(x, t) (5.85)

Lyapunov redesign is usually built on the shoulders of a control law and a Lyapunov

function which work for a system without uncertainties. Our extension is instead based

on the unmatched control law (5.60), u′, which is already a robust control law, and on

the associated robust control Lyapunov function Wr. We define the final control law as

the sum of the nominal plus unmatched law u′ with the matched law um

u = u′ + um (5.86)

In addition to the assumption of ∆gz being a matched uncertainty, we need a further

hypothesis which is strictly related to the already stated matching condition, in order

to avoid problems given by a possibly unknown control direction.
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Assumption 5.2.3.4. The following inequality holds for the matched uncertainty:

∥∥∆g′z(x, t)u
∥∥ =

∥∥∆g′z(x, t)
(
u′(x, z) + um

)∥∥
≤
∥∥∆g′z(x, t)u

′(x, z)
∥∥+

∥∥∆g′z(x, t)
∥∥ ‖um‖ ≤ ρLR(x, z) + k0 ‖um‖

(5.87)

where, as intuition suggests, ρLR(x, z, t) ≥ ‖∆g′z(x, t)u′(x, z)‖ is the Lyapunov redesign

bounding function, and k0 ≥ ‖∆g′z(x, t)‖ is a scalar design parameter which takes values

in the interval [0, 1). ♦

Clearly assumption 5.2.3.4 can be satisfied only if ‖∆g′z(x, t)‖ < 1 and easy calculations

show that this is the case if the bounding functions in ρgz , taken for simplicity with a

single deviation function, are such that k < −1 +
√

(2). If this is true, the following

inequalities hold:

∥∥∆g′z(x, t)
∥∥ ≤ ∥∥g−1

z (x)
∥∥ ‖∆gz(x, t)‖ ≤ ∥∥g−1

z (x)
∥∥ ‖ρgz(x)‖ (5.88)

and assumption 5.2.3.4 is fulfilled. The condition on K clearly limits the maximum

amount of matched uncertainty that can be compensated by um, whose standard ex-

pression is the following:

um = −η(x, z, t)

1− k0
· w

‖w‖
(5.89)

where η(x, z, t) ≥ ρLR(x, z, t) in the domain of interest and

wT =
∂Wr

∂(ex, ζ)

(
g2
x(x)

gz(x)

)
= eTx g

2
x(x) + ζT gz(x)

This control law is discontinuous for w = 0, thus potentially bringing serious implemen-

tation problems like chattering. This issue is bypassed using once again the elementwise

sigmoid function, which has continuous first derivative. As a result, the complete robust

control law is

u = u′ + um

= geqz (x, z)−1

[
(eTx g

1
x(x))T − feqz (x, z) +

∂φr
∂x

(
ẋd +Kxex + g1

x(x)ζ
)

−Kζζ − ρeqfz ◦ sigm(ζ) +
∂φr
∂x

ρfxu ◦ (1− sigm(ex))

]
− η(x, z, t)

1− k0
sigm(w)

(5.90)
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5.3 Simulation and results

Simulations are made in MATLAB-Simulink c©environment. Two different maneuvers

have to be pursued by the missile in order to compare the two controllers (simple non-

linear backstepping and robust backstepping) performances in several scenarios with

different amounts of uncertainty.

The values of the parameters describing the airframe are listed in tab. 5.1

Table 5.1: Missile airframe parameters

Symbol Definition Value Unit

m0 mass at t0 185 Kg
Ix0 inertia moment at t0 0.73 Kg ·m2

Iy0, Iz0 inertia moments at t0 205.7 Kg ·m2

Ixz0 inertia moment at t0 0.42 Kg ·m2

Ixf inertia moment at tf 0.64 Kg ·m2

Iyf , Izf inertia moments at tf 180.73 Kg ·m2

Ixzf inertia moment at tf 0.38 Kg ·m2

mf mass at tf 137.5 Kg
l fuselage length 3.65 m
d fuselage diameter 0.178 m
S reference area 0.0249 m2

M Mach number [2.5, 3.2] -

V s nominal speed of sound 285.4 m/s
ρ nominal air density 0.542 Kg/m3

τ actuator dynamics time-constant 5 ms

5.3.1 Skid-To-Turn maneuver

The first maneuver performed is the Skid-To-Turn, which requires less effort from the

controller, since it does not enhance the couplings and nonlinearities of the airframe

dynamics. Both controllers are tested in two scenarios, the first with the 30 % of

uncertainty and the second, harder to be dealt with, with the 60 % of deviation from

the nominal parameters’ values.

Nominal controller The nominal controller behaves good when dealing with low un-

certainty, ensuring a rapid convergence to the desired trajectories with small overshoots

and control effort. However, increasing the level of the perturbation results in too big

deviations from the reference signals and so in a dangerously peaking control signal. In

this second scenario the level of performance is clearly unsatisfactory and the nominal

autopilot is not able anymore to follow the acceleration commands produced by the

guidance system (Fig. 5.2, 5.3, 5.4, 5.5).
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Figure 5.2: STT maneuver - Angle of Attack tracking response at two different levels
of uncertainty: nominal controller.
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Figure 5.3: STT maneuver - Angle of Sideslip tracking response at two different levels
of uncertainty: nominal controller.
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Figure 5.4: STT maneuver - Bank Angle regulation response at two different levels
of uncertainty: nominal controller.
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Figure 5.5: STT maneuver - Norm of the control inputs vector at two different levels
of uncertainty: nominal controller.

Robust controller The robust controller behaves good in both scenarios, with a level of

performance a bit poorer when uncertainty is at 60 %, nevertheless maintaining precision

and speed of response sufficient to achieve guidance objectives. In the 60 % scenario

it should be highlighted the very nervous transient in the control inputs, which is a

somewhat structural feature of the robust nonlinear approaches [32] (Fig. 5.6, 5.7, 5.8,

5.9).
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Figure 5.6: STT maneuver - Angle of Attack tracking response at two different levels
of uncertainty: robust controller.

Comparison A comparison between the two closed-loop behaviors shows the superiority

of the robust nonlinear approach in both scenarios, since it ensures higher tracking

precision at lower energy (propellant) consumption (Fig. 5.10, 5.11).
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Figure 5.7: STT maneuver - Angle of Sideslip tracking response at two different levels
of uncertainty: robust controller.
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Figure 5.8: STT maneuver - Bank Angle regulation response at two different levels
of uncertainty: robust controller.
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Figure 5.9: STT maneuver - Norm of the control inputs vector at two different levels
of uncertainty: robust controller.
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Figure 5.10: STT maneuver - Norm of the tracking error vector and energy of the
control inputs vector at low uncertainty: comparison between nominal and robust con-

trollers
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Figure 5.11: STT maneuver - Norm of the tracking error vector and energy of the
control inputs vector at high uncertainty: comparison between nominal and robust

controllers

5.3.2 Bank-To-Turn maneuver

The second maneuver performed is the Bank-To-Turn, which is the more stressful be-

cause it does increase the couplings and nonlinearities of the airframe dynamics. Again,

the two controllers are tested in two different scenarios, at low (30 %) and high (60 %)

levels of uncertainty.

Nominal controller During the Bank-To-Turn maneuver the system exhibits an even

more nonlinear and coupled behavior, thus increasing the destabilizing effect of uncertain

terms. The nominal controller cannot handle the guidance system requests in both

scenarios, because tracking of α is not possible anymore. Tracking of ϕ and regulation

of β can still be achieved, but this is clearly not sufficient for a successful implementation
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of the autopilot: the need for a robust version is therefore evident (Fig. 5.12, 5.13, 5.14,

5.15).
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Figure 5.12: BTT maneuver - Angle of Attack tracking response at two different
levels of uncertainty: nominal controller.
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Figure 5.13: BTT maneuver - Angle of Sideslip regulation response at two different
levels of uncertainty: nominal controller.

Robust controller Robust controller is a bit imprecise in the AoA tracking, while

its behavior is very good in both ϕ tracking and β regulation. Furthermore, the con-

trol inputs vector norm is of acceptable amplitude. As a consequence, such controller

should be able to follow any acceleration commands given by an external guidance loop,

overcoming in performance the nominal one (Fig. 5.16, 5.17, 5.18, 5.19).

Comparison As already stressed before, also in the case of a Bank-To-Turn maneuver

the robust version of backstepping is superior to the classic implementation, both in

terms of speed and accuracy of the response and even considering the energy exploited.

However, the overall performance is definitely worse than in the case of the STT maneu-

ver, especially in tracking of the AoA (Fig. 5.20, 5.21). This fact opens new questions

about the need of adaptive versions of the robust backstepping controller, in order to
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Figure 5.14: BTT maneuver - Bank Angle tracking response at two different levels
of uncertainty: nominal controller.
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Figure 5.15: BTT maneuver - Norm of the control inputs vector at two different
levels of uncertainty: nominal controller.
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Figure 5.16: BTT maneuver - Angle of Attack tracking response at two different
levels of uncertainty: robust controller.
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Figure 5.17: BTT maneuver - Angle of Sideslip regulation response at two different
levels of uncertainty: robust controller.
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Figure 5.18: BTT maneuver - Bank Angle tracking response at two different levels
of uncertainty: robust controller.
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Figure 5.19: BTT maneuver - Norm of the control inputs vector at two different
levels of uncertainty: robust controller.
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maintain a better tracking along the whole reference trajectory even when uncertain

terms act in a more aggressive way (i.e. during agile BTT maneuvers).
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Figure 5.20: BTT maneuver - Norm of the tracking error vector and energy of the
control inputs vector at low uncertainty: comparison between nominal and robust con-

trollers
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Figure 5.21: BTT maneuver - Norm of the tracking error vector and energy of the
control inputs vector at high uncertainty: comparison between nominal and robust

controllers



Chapter 6

Immersion and Invariance under

sampling

The chapter is devoted to the implementation of the Immersion & Invariance stabiliza-

tion technique under sampling, when, i.e., the control input is maintained constant over

intervals of fixed length, namely the sampling period. This approach is not robust in

the sense that it counteracts the effects of model uncertainties and disturbances, as the

recursive Lyapunov redesign does. More precisely, the I&I technique adds robustness to

existing nonlinear controllers with respect to neglected dynamics, usually disregarded

because faster than the dominant dynamics or, in general, because considered less impor-

tant in control design. In several cases, such dynamics can critically affect the stability of

the closed-loop system, whereas the I&I approach is meant to preserve the desired prop-

erties exploiting, at least in part, the knowledge of the model of such dynamics. Often,

the presence of higher-order dynamics leads to time-scale separation designs, singular

perturbation and center manifold techniques to simplify the design. Such dynamics, for

instance associated to fast flexible motions or to actuator dynamics, usually neglected

at a first stage of the design, can be suitably handled in the I&I setting.

In this chapter, we reformulate in the sampled-data context the I&I stabilization paradigm

for a class of nonlinear systems in feedback form and we propose a constructive solution

based on the multi-rate control design philosophy. The main idea is to ensure, via a dig-

ital multi-rate construction, the matching of the closed-loop continuous-time evolution

of the function φ(x), describing implicitly the manifold, with the same trajectory under

digital control, at the sampling instants. The asymptotic dependency from the sampling

period of the multi-rate equivalent model allows for computable approximate solutions.

The sampled data design, by reproducing the behavior of φ at the sampling instants,

111
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directly guarantees manifold attractivity. Boundedness of the trajectories and the prop-

erties of system immersion and manifold invariance are preserved under sampling [93]

[90] [87]. The performance improvement of the proposed controllers relies in a remark-

able increase of the Maximum Allowable Sampling Period (MASP) with respect to the

direct implementation through zero-order hold of the continuous-time solution, which is

emulated control. The effectiveness of the proposed control strategy is evaluated on two

academic examples and a case study, the cart-pendulum system.

6.1 Sampled-data I&I control design

We consider the problem of I& I stabilization of systems of the form (3.54)-(3.53) and we

propose sampled-data solutions in terms of single-rate and multi-rate controllers, which

we apply to two academic examples. Next, we apply the digital single-rate solution to

the cart-pendulum system.

Problem setting Assume that the control input u is maintained piecewise constant

on intervals of fixed length, which is the sampling period. We look for a possibly

sampling-dependent controller, which maintains the stability properties achieved by the

continuous-time control law under sampling. In particular, the digital controller should

verify the sampled-data versions of conditions H1c-H4c of Theorem 3.4.0.11, achieving

manifold attractivity and keeping the boundedness of the trajectories under sampling.We

seek a sampled-data controller which, following the closed-loop continuous-time evolu-

tion of the function φ(x), ensures attractivity of M and boundedness under sampling.

The closed-loop system under digital control should be globally asymptotically stable.

To begin with, let us briefly recall the sampled-data equivalent dynamics under single

and multi-rate sampling.

6.1.1 Sampled-data equivalent models

The single-rate sampled-data equivalent model is the discrete-time dynamics reproducing,

at the sampling instants, the solution of (3.54) when the control variable u(t) is kept

constant over time periods of length δ, namely u(t+ τ) = u(t) = uk for 0 ≤ τ < δ, t =

kδ, k ≥ 0. It is described by the δ-parametrized map F δ(., uk) (the pair u, F δ) admitting

the Lie exponential series expansion:

xk+1 = F δ(xk, uk) = eδ(f+ukg)xk (6.1)
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On the other hand, the multi-rate sampled-data equivalent model of order m - MRm -

reproduces, at the sampling instants, the continuous-time behavior of (3.53) when u(t)

is maintained constant at values uik, over intervals of length δ̄ = δ
m for τ ∈ ((i−1)δ, iδ).

Over each δ = mδ̄, it is described by the δ̄-parametrized map (the pair ui, F
mδ̄ for

i = 1, . . .m)

xk+1 = Fmδ̄(xk, u1k, · · · , umk) (6.2)

= eδ̄(f+u1kg) ◦ ... ◦ eδ̄(f+umkg)xk

From the computational point of view, it is convenient to define the approximate versions

of these representations, namely the approximate single-rate ( resp. multi-rate) sampled-

data model of degree ν, with reference to truncations of the expansions (6.1) (resp. (6.2))

at finite order ν in δ, i.e.

F δ(x, u) = F δ[ν](x, u) +O(δν) (6.3)

Fmδ̄(x, u1, ..., um) = Fmδ̄[ν](x, u1, ..., um) +O(δν) (6.4)

Remark 6.1.1.1. With ν = 1 (approximation in O(δ2)), one recovers the well known Eu-

ler sampled-data dynamics xk+1
∼= xk + δf(xk) + δukg(xk), preserving the structure of the

continuous-time system. ♦

6.1.2 Main result

The sampled-data control is designed employing a multi-rate strategy (see [92]) of order

n − p, which achieves manifold attractivity under sampling by matching the evolu-

tion of φ(x), under continuous-time control (3.59), at the sampling instants. Since the

continuous-time assumptions are fulfilled, we expect φ to vanish asymptotically. Bound-

edness under sampling is ensured by matching between the sampled-data trajectory and

the continuous-time one. The behavior on the manifold is reduced to that of the target

system under sampling, yielding the global asymptotic stability of the digital control

system.
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Theorem 6.1.2.1. Consider the class of feedback systems (3.53) satisfying assumptions 3.4.2.1

and 3.4.2.2, with n− p = 2, with an equilibrium x∗ to be stabilized. There exists an order m = 2

multi-rate sampled-data control law of the form

ud1 = ψδ1(xk, φ(xk))

ud2 = ψδ2(xk, φ(xk))
(6.5)

such that x∗ is a globally asymptotically stable equilibrium of the closed-loop dynamics

xk+1 = F 2δ̄(xk, ψ
δ
1(xk, φ(xk)), ψδ2(xk, φ(xk))) (6.6)

♦

Proof. Following assumptions H1c to H4c of the continuous-time result, we can define

for (3.53) a sampled-data equivalent target system, with state ξ ∈ Rp

ξk+1 = αd(ξk) (6.7)

where αd(ξ) = eδf1(ξ,0)ξ has a globally asymptotically stable equilibrium at ξ∗ ∈ Rp and

x∗ = π(ξ∗). Condition H2c can be reformulated as follows

F 2δ̄(π(ξk), 0) = π(αd(ξk)) (6.8)

which, exploiting the properties of the exponential representation, yields that π is equal

to the identity function for the first p components, while it is necessarily equal to zero

for the remaining n− p components. Thus invariance under sampling is ensured. Keep

in mind that, for the class of systems at study, c(ξ) = 0. As a consequence, the implicit

manifold condition H3c is verified under sampling with the choice φ1(x) = x2, φ2(x) =

x3. The existence of a multi-rate controller of the form (6.5) for (3.53) is ensured

provided the following rank condition [93] is fulfilled

rank[g, adfg, ad2
fg, . . . , adpfg, . . .] ≥ n− p. (6.9)

When applied to (3.53), condition (6.9) results verified if ∂f2∂x3
6= 0, which is true thanks to

the assumptions 3.4.2.1 and 3.4.2.2. Consider now the extended system under sampling

(i = 1, 2)

zk+1 = φ(F̃ (n−p)δ̄(xk, ψ
δ
i (xk, zk)) (6.10)

xk+1 = F̃ (n−p)δ̄(xk, ψ
δ
i (xk, zk)) (6.11)
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where z = φ(x) = (xn−1, xn)T . Attractivity ofM is ensured by matching the continuous-

time trajectories of φ(x), which for the systems under study reduces to a simple input

to partial-state matching, achieved by the existing multi-rate solution according to the

results in [93]. As a consequence, limk→∞ zk = 0. Boundedness of the trajectories of

(6.10) is guaranteed by one-step consistency property plus forward completeness of the

vector fields of (3.53), hence the thesis.

Remark 6.1.2.2. In general, with x2 of dimension q, the sampled-data I&I solution is given

by a multi-rate control law of order m = q + 1. The multi-rate controller is built to follow the

closed-loop continuous-time evolution of the function φ(x). ♦

In the following, we are going to develop an approximate version of the proposed digital

controller (6.5), leading to a computable control law.

6.1.3 Sampled-data approximate design

We derived the continuous-time I&I stabilizing control law (3.59) for a special class of

systems in the case n− p > 1, establishing that a sampled-data multi-rate control logic

is well suited to solve the problem in a digital setting. Now we look for constructive,

approximate, solutions according to (6.3).

6.1.3.1 Single-rate solution

For the class of systems (3.54), with n − p = 1, the continuous-time solution (3.55),

namely γ(x), yields a single-rate sampled-data controller ud designed to match at the

sampling instants the controlled x2 dynamics. The matching condition is

eδf(.,ud)x2 = eδf(.,γ)φ|x1,x2 (6.12)

with f(x1, x2, u) = f1(x1, x2) ∂
∂x1

+u ∂
∂x2

. In this case, since ẋ2 = u, (6.12) is satisfied by

the single-rate sampled-data control law

ud = γ(x) +
δ

2!
γ̇(x) +

δ2

3!
γ̈(x) +

∑
i≥3

δi

(i+ 1)!
u(i)
c (x) (6.13)
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According to (6.3), an approximate version of (6.13), truncated at the first term in

O(δ2), can be given as follows:

ud = ud0 +
δ

2
ud1. (6.14)

Note that the term ud0 = γ(x)|xk is the emulated controller, with xk = x(t = kδ) and

ud1 = u̇c(x)|xk = ∂γ
∂x(f + gγ(x))|xk .

In this particular case, the digital control can be directly expressed in terms of the

continuous-time control input as follows:

ud =
1

δ

∫ (k+1)δ

kδ
uc(τ)d τ, (6.15)

which is exactly the average of the continuous control signal evaluated on the sampling

period.

6.1.3.2 Multi-rate solution

For systems in the form (3.53), the multi-rate solution is better suited as well as of

straightforward derivation. In the case n− p = 2, a multi-rate controller of order m = 2

can be designed to match the continuous-time controlled trajectories of φ(x) = (x2, x3)T

at the sampling instants. Recall that the continuous-time solution (3.59) is of the form

ψ(x1, φ(x)). The input to partial-state matching conditions in this case are given by

eδ(f+ud1g) ◦ eδ(f+ud2g)x2 = eδ(f+ψ(·,·)g)φ1|x1,z

eδ(f+ud1g) ◦ eδ(f+ud2g)x3 = eδ(f+ψ(·,·)g)φ2|x1,z
(6.16)

where f = (f2(x2, x3), 0)T , g = (0, 1)T . As stated by Theorem 6.1.2.1, there exists a

multi-rate sampled-data control law of order 2, satisfying (6.16), of the form

ud1 = ud10 +
∑
i≥1

δ
i

(i+ 1)!
ud1i over [0, δ)

ud2 = ud20 +
∑
i≥1

δ
i

(i+ 1)!
ud2i over (δ, δ]

(6.17)

The approximate control laws which solve the problem up to an error in O(δ3) (in x3),

arresting the expansions (6.17) at i = 2, are given by the following expressions for the

udji terms

ud10 = ud20 = ψ(x1, z)

ud11 =
2

3
uc1 ud21 =

10

3
uc1

(6.18)
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where uc1 = ψ̊(x). Substituting (6.18) into (6.17) yields

ud1 = ψ(x) +
δ

3
ψ̊(x) ud2 = ψ(x) +

5δ

3
ψ̊(x) (6.19)

with δ = 2δ. On the first sub-interval [0, δ) the control applied is ud1, which switches

to ud2 in [δ, δ). The obtained multi-rate control law (6.19) renders the origin of (3.59)

GAS under sampling, if δ is chosen small enough. The approximate single and multi-

rate controllers (6.14)-(6.19) overcome in performance the emulated control laws ud0 =

ud10 = ud20, preserving stability for increasing values of δ as shown in the two examples

below.

6.2 Example with single-rate control

The results can be illustrated through an academic example discussed in [6]

ẋ1 = −x1 + x3
1x2

ẋ2 = u
(6.20)

with x1 and x2 ∈ R. In this particular case, z = φ(x) = x2 and, on the manifold,

uc = −
(
2 + x8

1

)
x2|x2=0 = 0. Exploiting the arguments presented in [6], the continuous-

time stabilizing I&I control law is found to be

uc = −
(
2 + x8

1

)
x2. (6.21)

The computation of the sampled feedback is made according to the approximate sampled-

data controller (6.14) which, truncated at the first term in O(δ), gives

ud = −(2 + x8
1)x2 +

δ

2
x2

(
x1

16− 8x2x
1
10 + 12x8

1 + 4
)

(6.22)

We compare the target system and the continuous-time trajectories with those under

emulated control ud0 and those under ud, for increasing values of the sampling period

δ. In the first scenario, with δ = 0.01 s, both controllers behaves very well and the

difference in performance is imperceptible. In the second scenario, with δ = 0.2 s, the

state trajectories under ud0 and ud track the target dynamics and the continuous time

evolution very well, with a slightly increased performance under ud (Fig. 6.1, 6.2, 6.3).

In the third scenario, with δ = 0.8 s, the state trajectories convergence under ud is

still more than acceptable: boundedness and attractivity are preserved. However, as

expected, the behavior under ud0 is unstable as shown in Fig. 6.4, 6.5 and 6.6.
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Figure 6.1: x1 evolutions and comparison with the target system when δ = 0.2 s.
In black the target system, in red the continuous-time evolution, in blue the evolution

under ud and in green that under ud0.
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Figure 6.2: x2 evolutions when δ = 0.2 s. In red the continuous-time evolution, in
blue the evolution under ud and in green that under ud0.
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Figure 6.3: u when δ = 0.2 s. In red the continuous-time input, in blue ud and in
green ud0.
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Figure 6.4: x1 evolutions and comparison with the target system when δ = 0.8 s.
In black the target system, in red the continuous-time evolution, in blue the evolution

under ud and in green that under ud0.
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Figure 6.5: x2 evolutions when δ = 0.8 s. In red the continuous-time evolution, in
blue the evolution under ud and in green that under ud0.
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Figure 6.6: u when δ = 0.8 s. In red the continuous-time input, in blue ud and in
green ud0.
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6.3 Example with multi-rate control

Let us consider the nonlinear system

ẋ1 = −x1 + x2
1x

2
2

ẋ2 = x2
2 + x3

ẋ3 = u

(6.23)

which is a system of the form (3.58) with target dynamics ξ̇ = −ξ, α(·) : R → R. In

this case p = 1, hence n − p = 2. Due to the lower-triangular structure of the system,

conditions H2c and H3c hold with c(ξ) = 0 and z = φ(x) = (x2, x3)T . Manifold

attractivity and boundedness of the trajectories are achieved using simple nonlinear

domination arguments, thus applying (3.59) with the choice k1 = 2 + x4
1, k2 > 0, results

in the control law:

u = −x2 −
(
2x2 + 2 + x4

1

) (
x3 + x2

2

)
− 4x2x

3
1

(
−x1 + x2

1x
2
2

)
− k2

(
x3 + x2

2 + 2x2 + x2x
4
1

) (6.24)

which ensures limz→∞ = 0 and boundedness of the trajectories choosing

W̃ =
1

2
x2

1 +
1

2

(
x2

2 +
(
x3 + x2

2 + 2x2 + x2x
4
1

)2)
(6.25)

Remark 6.3.0.1. The Lyapunov function (6.25) represents a quite strong choice. In fact, it

is possible to relax the choice of V , using a weak Lyapunov function, with derivative negative

outside a compact set containing the origin, or even a semidefinite Lyapunov function: the

boundedness property required for x1 is still maintained. Other issues, as reducing the dimensions

of the (ultimate) bound or the time of convergence, can be taken into account exploiting further

design parameters. ♦

The sampled-data design aims at following the closed-loop behavior of the two-dimensional

function φ = (x2, x3)T with a multi-rate controller of order two. The classical solutions

with m = n − p = 2 are truncated at the first order in δ, so we apply (6.19) directly.
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Setting k2 = 4, the expression of uc1 takes the form

uc1 = 4x9
1x

3
2 + x8

1x
2
2 + x8

1x3 − 20x6
1x

5
2 − 8x5

1x
4
2 + 44x5

1x
3
2

− 16x5
1x

2
2x3 + 2x4

1x
3
2 + 16x4

1x
2
2 + 2x4

1x2x3

+ 9x4
1x2 + 16x4

1x3 − 2x4
2 + 12x3

2 − 4x2
2x3

+ 45x2
2 + 12x2x3 + 54x2 − 2x2

3 + 27x3.

(6.26)

Note that the multi-rate solution combines the emulation of the continuous controller

with its weighted derivative in closed-loop. Again, we compare the target system and

the continuous-time trajectories with those under emulated control ud10−ud20 and those

under ud1 − ud2, for increasing values of the sampling period δ.

In the first scenario, with δ = 0.05 s, both the emulated and the multi-rate solutions

behave well in steering to zero system trajectories (Fig. 6.7, 6.8). However, a nervous

transient behavior can be observed in the emulated case, especially in the control input

(Fig. 6.9). In the second scenario, with δ = 0.1 s, it is clear from Fig. 6.10, 6.11 and
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Figure 6.7: x1 evolutions and comparison with the target system when δ = 0.05 s.
In black the target system, in red the continuous-time evolution, in blue the evolution

under multi-rate and in green that under ud10 − ud20.

6.12 that the emulated controller cannot guarantee stability anymore, while the behavior

under multi-rate control is still more than acceptable.

Next, we propose the application of the single-rate digital controller to an underactuated

system with relative degree one, the cart-pendulum. Also in this case, the continuous-

time solution has been studied and proposed in [5].
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Figure 6.8: x2 and x3 evolutions when δ = 0.05 s. In red the continuous-time
evolution, in blue the evolution under multi-rate and in green that under ud10 − ud20.
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Figure 6.9: u when δ = 0.05 s. In red the continuous-time input, in blue the multi-rate
and in green the emulated.
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Figure 6.10: x1 evolutions and comparison with the target system when δ = 0.1 s.
In black the target system, in red the continuous-time evolution, in blue the evolution

under multi-rate and in green that under ud10 − ud20.
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Figure 6.11: x2 and x3 evolutions when = δ = 0.1 s. In red the continuous-time
evolution, in blue the evolution under multi-rate and in green that under ud10 − ud20.
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Figure 6.12: u when δ = 0.1 s. In red the continuous-time input, in blue the multi-
rate and in green the emulated.

6.4 The cart-pendulum system

Following [6], we develop a sampled-data controller for a classical example based on

an underactuated system with three state variables, the cart-pendulum. The partially-

linearized and normalized cart-pendulum system equations of motion are

ẋ1 = x2

ẋ2 = sin(x1)− u cos(x1)

ẋ3 = u

(6.27)

where (x1, x2) ∈ S1 × R are the pendulum angle (w.r.t. the upright vertical) and its

velocity, x3 ∈ R is the velocity of the cart and u ∈ R is the control input. We want to

stabilize the pendulum in its upward position, with the cart stopped, corresponding to
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the equilibrium x∗ = 0. Usually, a smart target-system choice for this kind of systems is

the unactuated part of the mechanism to which has been assigned a desired dynamics,

in this case that of a fully actuated pendulum

ξ̇1 = ξ2

ξ̇2 = −V ′(ξ1)−R(ξ1, ξ2)ξ2

(6.28)

with R(·) damping function, R(0, 0) > 0, V (ξ1) potential energy function, V ′(0) = 0

and V ′′(0) > 0, and H(ξ1, ξ2) = 1
2ξ

2
2 + V (ξ1) total energy function. A natural selection

of the mapping π(·) is

π(ξ) =


ξ1

ξ2

π3(ξ1, ξ2)

 (6.29)

The choice π3(x1, x2) = −k1x1 − k2
cos(x1)x2 with k1 > 0 and k2 > 1 yields the following

continuous-time control law

u(x) =
1

k2 − 1

[
γ

(
x3 + k1x1 +

k2

cos(x1)
x2

)
+ k1x2 + k2 tan(x1)

(
x2

2

cos(x1)
+ 1

)] (6.30)

which, with γ > 0, solves the problem of I&I stabilization of the origin of the cart-

pendulum system. For a detailed discussion of the continuous-time control design, see

[6] and the references therein.

Since the relative degree of (6.27), considering x1 as output function, is one, the compu-

tation of the sampled feedback can be done according to (6.13), which for the first term

in O(δ2) gives

u̇(x) =

(
g

(
k1 + k2x2 sin(x1)

cos(x1)2
+ k2 tan(x1)2 + 1

)(
x2
2

cos(x1)
+ 1

)
+
k2x

2
2 sin(x1) tan(x1)

cos(x1)2(k2 − 1)

)
x2 +

(
k1 +

gk2
cos(x1)

+
2k2x2

tan(x1) cos(x1)(k2 − 1)

)
× (sin(x1) − cos(x1)u(x)) +

g

(k2 − 1)
u(x)

(6.31)

Simulations are carried out to highlight the difference in performance between the em-

ulated controller, which is (6.30) evaluated at the sampling instants t = kδ, and the

digital controller with the first order corrector term defined in (6.31). Two scenarios are

considered: the first with sampling time T = 0.1 s and the second with T = 0.3 s.

When the sampling time is sufficiently small, as in the case of T = 0.1 s, both the

emulated and the first-order controllers behave well in reaching asymptotically the target

system evolution, as shown in Fig. 6.13, 6.14, 6.15. The continuous-time trajectories are



Chapter 6. Immersion and Invariance under sampling 125

well followed by both the controllers. However, note that the transient response shown

by the system controlled using the first-order correction term is smoother and shows

less overshoot than the emulated response. Similar observations can be made for the

control inputs transient responses in Fig. 6.16. The superiority of the controller with

correction term is mostly due to the predictive action of u̇, which increases damping. In

the following figures we show in black the target system evolution, in red the continuous-

time one, in green the evolution under emulation of the continuous-time controller and

in blue the state trajectories of the system in closed-loop with the first order correction

controller.
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Figure 6.13: Pendulum heading angle w.r.t. the vertical, comparison between con-
tinuous (red) and sampled-data controllers (emulated in green and first order in blue)

at T = 0.1 s
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Figure 6.14: Pendulum angular velocity, comparison between continuous (red) and
sampled-data controllers (emulated in green and first order in blue) at T = 0.1 s

In the second scenario, the sampling time is increased at the value of T = 0.3 s. This

seems to be a critical value for the system, since the emulated controller doesn’t work

anymore, while the first-order corrected controller is still able to follow the target system

behavior, as shown in Fig. 6.17, 6.18, 6.19, 6.20.
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Figure 6.15: Cart velocity trajectory, comparison between continuous (red) and
sampled-data controllers (emulated in green and first order in blue) at T = 0.1 s
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Figure 6.16: Control input, comparison between continuous (red) and sampled-data
controllers (emulated in green and first order in blue) at T = 0.1 s
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Figure 6.17: Pendulum heading angle w.r.t. the vertical, comparison between con-
tinuous (red) and sampled-data controllers (emulated in green and first order in blue)

at T = 0.3 s



Chapter 6. Immersion and Invariance under sampling 127

0 2 4 6 8 10 12

−20

−15

−10

−5

0

5

10

15

Figure 6.18: Pendulum angular velocity, comparison between continuous (red) and
sampled-data controllers (emulated in green and first order in blue) at T = 0.3 s
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Figure 6.19: Cart velocity trajectory, comparison between continuous (red) and
sampled-data controllers (emulated in green and first order in blue) at T = 0.3 s
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Figure 6.20: Control input, comparison between continuous (red) and sampled-data
controllers (emulated in green and first order in blue) at T = 0.3 s



Chapter 7

Robust attitude stabilization via

digital I&I

In this chapter, we face the problem of robust nonlinear attitude stabilization of a

rigid spacecraft. An Immersion and Invariance robust attitude stabilizer is proposed,

taking into account actuator dynamics in control design. The proposed continuous-

time controller is then implemented under sampling using an approximated single-rate

strategy to match, at the sampling instants, the zero-going evolution of the off-the-

manifold coordinates. The results illustrated in section 6.1 for the single-rate solution

are easily extended to the case of more than one control input. Simulations show the

effectiveness of the proposed controller. The chapter follows the paper [88] submitted

to the first MICNON conference and waiting for review.

7.1 Introduction

A nonlinear control strategy to stabilize the attitude of a rigid spacecraft robustly with

respect to actuators dynamics is proposed. The control law is applied under sampling

using a single-rate digital approach with first order corrector term, which overcomes in

performance the direct implementation through zero-order hold, as shown by simula-

tions. A robust attitude stabilizer is necessary for long range communications satellites,

especially when a high throughput is involved. The capability of the spacecraft to

maintain a fixed orientation despite external disturbances and modeling uncertainties

is crucial when dealing with satellite internet access at high data speeds [101]. In this

work we propose an I&I solution for systems in strict-feedback form which is particu-

larly suited to counteract the degrading effect of unmodeled actuator dynamics on the

overall control systems. In fact, I&I can be regarded as a tool to robustify a given

128
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nonlinear controller with respect to higher-order dynamics, exploiting at its best the

knowledge of such dynamics during the control design phase. Thus, this approach can

be considered “robust” nonlinear control. The obtained continuous-time controller is

then implemented under sampling using a single-rate control strategy with truncation

of series expansions at the second order in the sampling period. Simulations at increasing

sampling times show the effectiveness of using a first order corrector term with respect

to the simpler implementation through zero-order hold device (emulated control [97]).

In particular, the maximum allowable sampling period (MASP) is increased, thus the

sampled-data controller shows robustness w.r.t. δ.

7.2 Spacecraft dynamic modeling

Consider a symmetric rigid spacecraft characterized by a diagonal inertia matrix J ,

namely

J =


Jx 0 0

0 Jy 0

0 0 Jz

 .

The kinematic model used is based on the modified Cayley-Rodrigues parameters, which

provide a global and non-redundant parametrization of the attitude of a rigid body ([26]).

In the following, S(·) denotes the three-dimensional skew-symmetric matrix, which for

a generic vector r ∈ R3 takes the form

S(r) =


0 r3 −r2

−r3 0 r1

r2 −r1 0

 (7.1)

Defining ρ ∈ R3 the modified Cayley-Rodrigues parameters vector and ω ∈ R3 the

angular velocity in a body-fixed frame, the kinematic equations take the form

ρ̇ = H(ρ)ω. (7.2)

The matrix-valued function H : R3 → R3×3 denotes the kinematic jacobian matrix of

the modified Cayley-Rodrigues parameters, given by

H(ρ) =
1

2

(
I − S(ρ) + ρρT − 1 + ρTρ

2
I

)
(7.3)
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where I denotes the 3 × 3 identity matrix. The matrix H(ρ) satisfies the following

identity ([127])

ρTH(ρ)ω =

(
1 + ρTρ

4

)
ρTω (7.4)

for all ρ, ω ∈ R3.

According to Euler’s law, the kinematic and dynamic equations can be written as

ρ̇ = H(ρ)ω (7.5)

ω̇ = J−1S(ω)Jω + J−1u. (7.6)

If first-order actuator dynamics with time-constants Ti (i = 1, 2, 3) are considered, equa-

tions (7.5)-(7.6) are dynamically extended as follows

ρ̇ = H(ρ)ω (7.7)

ω̇ = J−1S(ω)Jω + J−1τ (7.8)

τ̇ = Aτ + u. (7.9)

where τ ∈ R3 represents the torque generated by the actuators according to the refer-

ence torque u ∈ R3 and A = diag(− 1
T1
,− 1

T2
,− 1

T3
) is a Hurwitz diagonal matrix whose

eigenvalues, all negative real, depend on the time constants of the actuators.

7.3 Immersion and Invariance stabilization

7.3.1 Recalls

Let us recall the continuous-time I&I main result in the general case (the proof is detailed

in [5]).

Theorem 7.3.1.1. Consider the nonlinear system

ẋ = f(x) + g(x)u (7.10)

with state x ∈ Rn, control input u ∈ Rm and an equilibrium point x∗ ∈ Rn to be stabilized.

Suppose that (7.10) satisfies the following four conditions.

H1c (Target System) - There exist maps α(·) : Rp → Rp and π(·) : Rp → Rn such that the sub-

system ξ̇ = α(ξ) with state ξ ∈ Rp, p < n, has a (globally) asymptotically stable equilibrium

at ξ∗ ∈ Rp and x∗ = π(ξ∗).
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H2c (Immersion condition) - For all ξ ∈ Rp, there exists a map c(·) : Rp → Rm such that

f(π(ξ)) + g(π(ξ))c(ξ) =
∂π

∂ξ
(ξ)α(ξ) (7.11)

H3c (Implicit manifold - M) - There exists a map φ(·) : Rn → Rn−p such that the identity

between sets {x ∈ Rn|φ(x) = 0} = {x ∈ Rn|x = π(ξ) for ξ ∈ Rp} holds.

H4c (Manifold attractivity and trajectory boundedness) - There exists a map ψ(·, ·) : Rn×(n−p) →
Rm such that all the trajectories of the system, with initial condition z0 = φ(x0)

ż =
∂φ

∂x
[f(x) + g(x)ψ(x, z)] (7.12a)

ẋ = f(x) + g(x)ψ(x, z) (7.12b)

are bounded and satisfy limt→∞ z(t) = 0.

Under these four conditions, x∗ is a globally asymptotically stable equilibrium of the closed-loop

system

ẋ = f(x) + g(x)ψ(x, φ(x)) (7.13)

♦

The following definition is straightforward.

Definition 7.3.1.2 (I&I Stabilizability). A nonlinear system of the form (7.10) is said to be

I&I stabilizable with target dynamics ξ̇ = α(ξ), if it satisfies conditions H1c to H4c of Theorem

7.3.1.1. ♦

Note that the target dynamics is the restriction of the closed-loop system to the manifold

M, implicitly defined in H3c. The control law u = ψ(x, z) is designed to steer to zero the

off-the-manifold coordinate z and to guarantee the boundedness of system trajectories.

On the manifold, the control law is reduced to ψ(π(ξ), 0) = c(ξ), and it renders M
invariant according to H2c. The complete control law can thus be decomposed in two

parts:

u = ψ(x, φ(x)) = ψ(x, 0) + ψ̃(x, φ(x)) (7.14)

with ψ(π(ξ), 0) = c(ξ) on the manifold and ψ̃(x, 0) = 0. Note that ψ(x, 0) can be seen as

a nominal control law, designed on the model of the dynamics restricted on the manifold

to obtain a GAS target dynamics. In this sense, the term ψ̃(x, φ(x)) is a robustness-

improving addendum which takes into account the off-the-manifold behaviors generated,

for instance, by higher-order actuator dynamics. The overall control law provides the

I&I “robust” nonlinear stabilizer.
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7.3.2 The class of systems under study

In this work, we consider the problem of state-feedback stabilization of the following

class of systems in feedback form

ξ̇ = f(ξ) + g(ξ)η

η̇ = u
(7.15)

where ξ ∈ Rp, η ∈ Rn−p, u ∈ Rm (with m = n− p), x = col(ξ, η) and ξ = 0 is a globally

asymptotically stable equilibrium of ξ̇ = f(ξ). It is also assumed that we know a radially

unbounded Lyapunov function V (ξ) such that

∂V

∂ξ
f(ξ) < −w(‖ξ‖) (7.16)

with w(·) K∞ function. Note that the existence of V is guaranteed by the converse

Lyapunov theorems, although in many cases its knowledge or construction could be

difficult to achieve. For systems like (7.15) constructive solutions of the I&I stabilization

problem do exist, as shown with more detail in [5]. In fact, the target dynamics condition

H1c is trivially satisfied by ξ̇ = f(ξ). Moreover, the mappings

x =

[
π1(ξ)

π2(ξ)

]
=

[
ξ

0

]
u = c(ξ) = 0 φ(ξ, η) = η (7.17)

are such that conditions H2c and H3c hold. Since the off-the-manifold component z = η

is a partial-coordinate, condition H4c is verified if it is possible to find a control law

u = ψ(ξ, η) such that the trajectories of the closed-loop system

ξ̇ = f(ξ) + g(ξ)η

η̇ = ψ(ξ, η)
(7.18)

are bounded and limt→∞ η(t) = 0 (manifold attractivity). To this end, it is possible to

relax the assumption on V to be a weak Lyapunov function, namely such that (7.16)

holds for all ‖ξ‖ > M > 0, for a proper, problem-dependent, choice of M (see [5] for

more details). With this in mind, we can state the following result.

Theorem 7.3.2.1. Consider system (7.18) with all the related properties and assumptions. The

system satisfies condition H4c, i.e. manifold attractivity and trajectory boundedness, with the
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following choice for the control law:

ψ(ξ, η) = −(µ(ξ) + kη)η

µ(ξ) >

∥∥∥∥∂V∂ξ g(ξ)

∥∥∥∥ kη > 0.
(7.19)

♦

Proof. Substituting (7.19) into (7.18) yields

ξ̇ = f(ξ) + g(ξ)η

η̇ = −(µ(ξ) + kη)η.
(7.20)

Consider now the Lyapunov function

W (ξ, η) = V (ξ) +
1

2
ηT η. (7.21)

The derivative of (7.21) along the trajectories of (7.20) takes the form

Ẇ =
∂V

∂ξ
f(ξ) +

∂V

∂ξ
g(ξ)η − µ(ξ)ηT η − kηηT η

≤ −w(‖ξ‖) +

∥∥∥∥∂V∂ξ g(ξ)

∥∥∥∥ ‖η‖2 − µ(ξ) ‖η‖2 − kη ‖η‖2

≤ −w(‖ξ‖) +

(∥∥∥∥∂V∂ξ g(ξ)

∥∥∥∥− µ(ξ)

)
‖η‖2 − kη ‖η‖2

≤ −w(‖ξ‖)− kη ‖η‖2

(7.22)

which is negative definite for all ‖ξ‖ > M > 0 thanks to the proper choice of µ(ξ) and

kη, thus condition H4c is verified, which concludes the proof.

7.3.3 Problem setting

Assume now that the control input u is maintained piecewise constant on intervals of

fixed length, namely the sampling period. We seek a possibly sampling-dependent con-

troller, which maintains the stability properties achieved by the continuous-time control

law under sampling. In particular, the digital controller should verify the sampled-data

versions of conditions H1c-H4c of Theorem 3.4.0.11, achieving manifold attractivity and

keeping the boundedness of the trajectories under sampling.
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7.4 Sampled-data control design

We seek a sampled-data controller which, following the closed-loop continuous-time evo-

lution of the function φ(ξ, η) = η, ensures attractivity of the manifold M and bound-

edness of the closed-loop trajectories under sampling. The closed-loop system under

digital control should be globally asymptotically stable. To begin with, let us briefly

recall the sampled-data equivalent dynamics under single-rate sampling. In order to

simplify the problem and to fit it to that of attitude stabilization of the rigid spacecraft,

the following two assumptions are straightforward.

Assumption 7.4.0.1. Consider system (7.15). With the aim of designing the sampled-

data controller, it is assumed that the dimension of the vector ξ is equal to that of η

and u, namely p = m, thus n = 2m. As a consequence, the matrix g(ξ) is squared,

g(x) ∈ Rm×m. ♦

Assumption 7.4.0.2. Consider system (7.15). For the sake of simplicity of the sampled-

data control design it is assumed that the matrix g(ξ) is diagonal and does not depend

on ξ, namely g(ξ) = G. Moreover, it is assumed that it is non-singular, i.e. detG 6= 0.♦

Next, let us rewrite system (7.15) in the following form (i = 1, . . . ,m):

ẋi = f̄i(x) + uiḡ (7.23)

where xi = col(ξi, ηi), ui is the ith component of the control input, f̄i(x) = col(fi(ξ) +

Giηi, 0), Gi is the ith row-ith column element of G and ḡ = col(0, 1). In this way, the

n-dimensional multi-input system is decomposed into m single-input systems, each of

dimension two.

The single-rate sampled-data equivalent model is the discrete-time dynamics reproducing,

at the sampling instants, the solution of (7.23) when the control variable ui(t) is kept

constant over time periods of length δ, namely ui(t + τ) = ui(t) = uik for 0 ≤ τ <

δ, t = kδ, k ≥ 0. It is described by the δ-parametrized map F δi (., uik) (the pair ui, F
δ
i )

admitting the Lie exponential series expansion:

xi(k+1) = F δi (xik, uik) = eδ(f̄i+uik ḡ)xik (7.24)

The sampled-data control is designed employing a single-rate strategy (see [92]), which

achieves manifold attractivity under sampling by matching the controlled continuous-

time evolution of φ = η at the sampling instants. Since the continuous-time conditions

are fulfilled by (7.19), φ will vanish asymptotically. A digital control law reproducing

the φ behavior is proposed to steer system trajectories on the manifold. The behavior on
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the manifold is reduced, by construction, to that of the target system under sampling,

yielding global asymptotic stability of the digital control system.

Theorem 7.4.0.3. Consider the class of feedback systems (7.15) satisfying assumptions 7.4.0.1

and 7.4.0.2 with an equilibrium x∗ to be stabilized. Moreover, consider the stabilizing continuous-

time control law (7.19), ψ(ξ, η) ∈ Rm. There exist sampled-data control laws of the form (i =

1, . . . ,m)

udi = ψδi (ξk, ηk) (7.25)

such that x∗ is a globally asymptotically stable equilibrium of the closed-loop dynamics (i =

1, . . . ,m)

xi(k+1) = F δi (xik, ψ
δ
i (ξk, ηk)) (7.26)

♦

Proof. Following assumptions H1c to H4c of the continuous-time result, we can define

for (7.15) a sampled-data equivalent target system, with state ξ ∈ Rp

ξk+1 = fd(ξk) (7.27)

where fd(ξ) = eδf(ξ)ξ has a globally asymptotically stable equilibrium at ξ∗ ∈ Rp and

x∗ = π(ξ∗). Condition H2c can be reformulated as follows, for i = 1, . . . ,m,

F δ(π(ξk), 0) = π(fd(ξk)) (7.28)

which, exploiting the properties of the exponential representation, yields that π is equal

to the identity function for the first p components, while it is necessarily equal to zero

for the remaining n − p = m components. Thus invariance under sampling is ensured.

Keep in mind that, for the class of systems at study, c(ξ) = 0. As a consequence,

the implicit manifold condition H3c is verified under sampling with the choice φ1(x) =

xp+1, φ2(x) = xp+2, . . . , φn−p(x) = xn or, alternatively, φ(x) = η. The existence of a

single-rate controller of the form (7.25) for (7.15) is ensured provided a controllability-

like condition [93] is fulfilled. For systems in strict-feedback form like (7.15) satisfying

assumption 7.4.0.1, such condition translates in requiring that det g(ξ) 6= 0, which is

automatically ensured by assumption 7.4.0.2, thus the sampled-data control law exists.

Consider now the extended system under sampling (i = 1, . . . ,m)

zi(k+1) = φ(F δi (xik, ψ
δ
i (ξk, ηk)) (7.29)

xi(k+1) = F δi (xik, ψ
δ
i (ξk, ηk)) (7.30)
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Attractivity of M is ensured by matching the continuous-time trajectories of φ(x),

which for the systems at study reduces to a simple input-state matching, guaranteed

by the existing single-rate solution according to the results in [93]. As a consequence,

limk→∞ zk = 0. Boundedness of the trajectories of (7.29) is guaranteed by one-step

consistency property plus forward completeness of the vector fields of (7.15), hence the

thesis.

7.5 Attitude stabilization of the rigid spacecraft

We consider the dynamical model introduced in section 7.2 to design a robust nonlinear

control law in continuous-time using the result introduced in 7.3 and implementing it

under sampling using the result provided in 7.4.

7.5.1 Continuous-time control design

The basic idea of continuous-time control design lies in the exploitation of identity (7.4)

to show global exponential stability of the kinematic subsystem with a virtual feedback

linear in ρ, namely ω = −kρ, yielding the closed-loop kinematic subsystem

ρ̇ = −kH(ρ)ρ (7.31)

With this aim, consider the Lyapunov function

V (ρ) = ρTρ. (7.32)

Using (7.4), the derivative of V along the trajectories of (7.31) is given by

V̇ = −2kρTH(ρ)ρ = −2k

(
1 + ρTρ

4

)
ρTρ ≤ −k

2
V (7.33)

which yields global exponential stability with rate of decay k/2. With this in mind, in

the following it is shown how the dynamical model of the spacecraft (7.5)-(7.6)-(7.9)

can be cast into the form (7.15) using simple transformations. First, we perform the

classical backstepping transformation ζ = ω + kρ, which transforms the dynamics into

ρ̇ = −kH(ρ)ρ+H(ρ)ζ (7.34)

ζ̇ = J−1S(ω)Jω + J−1τ − k2H(ρ)ρ+ kH(ρ)ζ (7.35)

τ̇ = Aτ + u. (7.36)
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Now, it is possible to “virtually” stabilize sub-system (7.34)-(7.35) using the backstep-

ping control law

τb(ρ, ω) = τ1(ρ, ω) + τ2(ρ, ω)

τ1(ρ, ω) = −J
[
S(ω)Jω − k2H(ρ)ρ+ kH(ρ)ζ

]
τ2(ρ, ω) = −kζζ −

1

2

(
1 + ρTρ

)
ρ.

(7.37)

As a consequence, the resulting target-dynamics when τ = τb in (ρ, ζ) coordinates takes

the following form

ρ̇ = −kH(ρ)ρ+H(ρ)ζ

ζ̇ = −kζζ −
1

2

(
1 + ρTρ

)
ρ.

(7.38)

Since τb is not the actual control law, because non-negligible actuator dynamics are

considered, we need to introduce the further change of coordinates

z = τ − τb (7.39)

under which the dynamics in (ρ, ω) coordinates takes the form

ρ̇ = H(ρ)ω (7.40)

ω̇ = J−1S(ω)Jω + J−1τb + J−1z (7.41)

ż = Aτ + u− τ̇b. (7.42)

Setting now u = −Aτ + τ̇b + v, the representation reduces to a strict-feedback form like

(7.15), namely (
ρ̇

ω̇

)
=

[
H(ρ)ω

J−1S(ω)Jω + J−1τb(ρ, ω)

]
+

[
03×3

J−1

]
z (7.43)

ż = v (7.44)

where the drift term in (7.43) is exactly the GAS target dynamics.

Keeping in mind that in our case a proper Lyapunov function for the target dynamics

is known from backstepping design, namely

W (ρ, ζ) = ρTρ+
1

2
ζT ζ (7.45)
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we can directly apply the result of theorem (7.3.2.1), obtaining the continuous-time

control law:

v = −(µ(ρ, ζ) + kz)z

µ(ρ, ζ) >
∥∥col(ζ1J

−1
x , ζ2J

−1
y , ζ3J

−1
z )T

∥∥ kz > 0
(7.46)

which ensure global asymptotic stabilization of the attitude of the rigid spacecraft.

7.5.2 Sampled-data control design

Taking as output z, the vector relative degree of system (7.43)-(7.44) is equal to 3, thus it

is possible to design three digital single-rate control laws to bring z to zero, by matching

the continuous-time control law at the sampling instants. In particular, let us consider

the controlled sub-system:

ω̇ = J−1S(ω)Jω + J−1τb(ρ, ω) + J−1z (7.47)

ż = −µ(ρ, ζ)z − kzz (7.48)

for which assumption 7.4.0.1 and 7.4.0.2 are satisfied, since dim(ω) = dim(z) and J−1 ∈
R3×3 is squared, diagonal, constant and non-singular. We want to construct a digital

version of the linear part of the continuous-time controller, i.e. vl = −kzz, which is

exactly the component bringing to zero the off-the-manifold coordinate z = φ. With

this aim, let us express (7.47)-(7.48) in the following way, for i = 1, 2, 3:(
ω̇i

żi

)
=

(
f̄i(ρ, ω, zi)

−µ(ρ, ζ)zi

)
+

(
0

1

)
vli = fi(ρ, ω, zi) + givli (7.49)

where

f̄i(ρ, ω, zi) =
[
J−1S(ω)Jω + J−1τb(ρ, ω) + J−1z

]
i

vli(zi) = −kzzi
(7.50)

The matching equations for the i-th component of the digital control law take the form

eδ(fi(·,·,·)+vdigi)zi|(ρ,ω,zi) = eδ(fi(·,·,·)+vli (zi)gi)φi|(ρ,ω,zi). (7.51)

The corresponding digital control laws, truncated at the first term in O(δ2), are, for

i = 1, 2, 3,

vdi = vdi0 +
δ

2
vdi1 (7.52)



Chapter 7. Robust attitude stabilization via I&I 139

or, in more compact form, vd = vd0 + (δ/2) vd1, with vd0 = vl(z)|zk emulated controller,

and vd1 = v̇l(z)|zk first order corrector term, for which we simply obtain:

vd1 =
(
k2
zz + kzµ(ρ, ζ)z

)
|(ρk,ζk,zk) (7.53)

7.5.3 Simulations

The performance of the proposed sampled-data controller (7.52)-(7.53) is tested through

numerical simulations in comparison with the emulated controller vd0 at different sam-

pling periods. The rigid spacecraft introduced in section 7.2 is characterized by the

inertia moments listed below in Tab. 7.1 The following initial conditions in modified

Table 7.1: Inertia moments

Jx 30.08 kg ·m2

Jy 30.12 kg ·m2

Jy 29.89 kg ·m2

Cayley-Rodrigues (CR) parameters, angular velocities and torques are considered:

(ρ1(0), ρ2(0), ρ3(0)) = (4, 8, 12)

(ω1(0), ω2(0), ω3(0)) = (6, 3, 9) [rad/s]

(τ1(0), τ2(0), τ3(0)) = (10, 11, 8.5) [N ·m].

In the first scenario, the emulated and first-order corrector controllers are tested when

the sampling period is T = 0.2 s. Figures from 7.1 to 7.4 illustrate the results: even

if both controllers achieve asymptotic stabilization, the improved performances of the

proposed controller in the transients of τ(t) and z(t) are evident. Moreover, the result is

obtained with a control effort which is smaller even in comparison with the continuous-

time controller (Fig. 7.5). In all the figures below, the closed-loop continuous-time

trajectories are depicted in red, those under emulated control in green and those under

the improved controller in blue. In the second scenario, the emulated and first-order

corrector controllers are tested when the sampling period is T = 0.5 s. As shown in Fig.

7.6, 7.7, 7.8, 7.9 and 7.10 the emulated controller cannot achieve stabilization, while the

proposed controller still behaves well, also in terms of control effort.

Note that the maximum allowable sampling time for the emulated controller is about

TMASP = 0.4 s, a sampling period at which the improved controller still works.
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Figure 7.1: T = 0.2 s Modified CR parameters trajectories ρ(t).
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Figure 7.2: T = 0.2 s Angular velocities trajectories ω(t).
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Figure 7.3: T = 0.2 s Torques trajectories τ(t).
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Figure 7.4: T = 0.2 s z(t) trajectories.
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Figure 7.5: T = 0.2 s Control inputs trajectories u(t).
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Figure 7.6: T = 0.5 s Modified CR parameters trajectories ρ(t).
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Figure 7.7: T = 0.5 s Angular velocities trajectories ω(t).
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Figure 7.8: T = 0.5 s Torques trajectories τ(t).
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Figure 7.9: T = 0.5 s z(t) trajectories.
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Figure 7.10: T = 0.5 s Control inputs trajectories u(t).

7.6 Concluding remarks

A robust nonlinear stabilizer for a rigid spacecraft has been developed taking into ac-

count actuator dynamics in control design. The proposed control law is a special case

of I&I stabilizer and it has been implemented under sampling using a single-rate con-

trol strategy with first-order corrector term. The effectiveness of the proposed control

solution is shown in several simulations at two different sampling periods.



Conclusions and perspectives

In this work, we have discussed the problem of robust stabilization of nonlinear systems

affected by uncertainties in the dynamics. After some recalls on stability and stabi-

lizability of nonlinear systems in the control Lyapunov function framework, we have

introduced the reader to the corresponding activated concepts in the context of un-

certain nonlinear systems, namely subject to modeling uncertainties and disturbances.

The digression culminates with the definition of robust nonlinear stabilizability via the

concept of robust control Lyapunov function and with the corresponding property of

practical-robust global asymptotic stability (P-RUGAS). The trajectories of the system

converge to a compact set containing the origin and such set can be made arbitrarily

small by properly setting some tuning parameters, an idea particularly useful and ex-

ploited in the related robust nonlinear controller design phase. The representation of

uncertain nonlinear system gains structure throughout the first two chapters: we start

with a generic nonlinear dynamics depending on a vector of uncertain inputs to arrive at

an input-affine representation in which the time-varying parts of the system are enclosed

in additive uncertain terms, describing modeling errors, disturbances and uncertain pa-

rameters. Next, we have classified the uncertainties according to their structure and

their influence on the dynamics and given examples of unstabilizable nonlinear uncer-

tain systems, introducing the critical concepts of matching conditions and generalized

matching conditions. Uncertainty is modeled using the concepts of ∆-operator and

deviation function, defined in the second chapter together with some novel systematic

rules of evaluation of complex aggregates of uncertain parameters, often emerging in

missiles and launchers aerodynamics. These rules are also massively helpful in shaping

the so-called uncertain envelopes, in order to define proper bounding functions for the

uncertain terms. Such functions overestimate, with as less conservatism as possible, the

size of the uncertain terms taking into account physical limits of variation of system

parameters, maximum size of modeling errors and external disturbances. With all this

in mind, we have proceeded to the construction of a differentiable version of the clas-

sic Lyapunov redesign controller, to counteract the unmatched uncertainties in system

dynamics, and then to the development of a robust backstepping control law. Unifying
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these two controllers, we have obtained the recursive Lyapunov redesign, a two-step

procedure which can handle both matched and unmatched uncertainties, ensuring P-

RUGAS of the closed-loop system. The core idea of the design are the robust (virtual)

control functions, i.e. sigmoid-like functions emulating a discontinuity, with the aim

of dominating in size the uncertain terms when bounding from above the Lyapunov

derivative along the trajectories of the closed-loop system. Adjusting the slopes of these

sigmoids, it is possible to reduce the size of set of convergence of the closed-loop trajec-

tories, recovering indeed the property of P-RUGAS. The proposed controller is applied

to the problem of attitude stabilization of a spacecraft with flexible appendages and

to design an autopilot for an air-to-air aerodynamic missile with non-minimum phase

characteristics. In the final part of the work we have translated in the digital context the

Immersion & Invariance stabilization technique recalled in Chapter 3. In particular, we

have developed a controller employing one step of backstepping plus a nonlinear domina-

tion argument for a special class of systems in feedback form, for which solutions of the

I&I stabilization problem do exist and are constructive. The I&I approach can be viewed

as a tool of robustification of a given nonlinear controller with respect to certain un-

modeled dynamics, e.g. higher-order dynamics which entails a fast-slow decomposition

of the system. Approximate single and multi-rate control strategies are then proposed,

assuming that the continuous-time control input is hold constant over intervals of fixed

length, the sampling periods. The sampled-data controllers aim at zeroing the off-the-

manifold coordinates, so ensuring manifold attractivity, while trajectory boundedness

and manifold invariance are preserved under sampling. Two academic examples show

how the sampled-data multi-rate controller with first order correction term overcomes

in performance the emulated continuous-time control law, allowing the implementation

at higher sampling periods. The single-rate controller shows its effectiveness in the cart-

pendulum system stabilization. In the final part of the work, its multi-input version has

been applied to the attitude stabilization of a rigid spacecraft, robustly with respect to

actuator dynamics.

Future works should take into account explicitly in control design the presence of ac-

tuator bandwidth and saturation limits, to understand to what extent it is possible to

robustly stabilize a given nonlinear system under such constraints. One possibility is to

search for “softer” solutions by shaping suitably the robust control Lyapunov function,

in order to obtain control laws with less overshoot in the transient. Hard constraints

may also be included in control design exploiting the nonlinear optimal control setting,

which however comes along with the Hamilton-Jacobi-Bellmann equation, difficult to

solve in the unconstrained disturbance attenuation framework of nonlinear H∞ con-

trol. To bypass this obstruction, it is convenient to find out whether a given robustly

stabilizing controller, with the associated RCLF, is inverse optimal with respect to a
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meaningful cost functional, which exists in general and whose construction depends on

the particular problem to be solved. Input-to-State Stability interpretations of this

class of problems have also to be put in light. The links between robust backstepping

design satisfying hard constraints, optimality and inverse optimality of such controller,

passivity and stability margins should also be investigated and contextualized. In the

sampled-data context, we should encompass the problem of a variable sampling time.

This can be viewed as an event-triggered system stabilization problem, in which state-

dependent triggering conditions yield a maximum allowable inter-event time, critical for

the performance of the whole control system. In fact, suitable choices for the triggering

criteria could reduce the control effort, avoiding wasteful interventions of the control

action, and even satisfy optimality conditions. Hybrid systems analysis tools could also

be helpful in this setting. Applications rely mostly in the domain of cyber-physical and

networked control systems, but the approach can be helpful, for instance, in shaping

shooting-time conditions for micro/nano satellites orbital controllers, whereas limited

actuator resources constitute a rigid constraint of the design. Other actuator-level con-

trol problems can be addressed, such as jet-engine compressor, propulsion engine and

thrust-vectoring for space launchers and power converters control. Robustness issues

may also be addressed, since stabilizability and stability margins depend upon the trig-

gering conditions and the related inter-event times through suitable thresholds on the

Lyapunov function.



Resumé

La thèse porte sur le développement des techniques non linéaires robustes de stabilisation et

commande des systèmes avec perturbations de model. D’abord, on introduit les concepts de

base de stabilité et stabilisabilité robuste dans le contexte des systèmes non linéaires. Ensuite,

on présente une méthodologie de stabilisation par retour d’état en présence d’incertitudes qui ne

sont pas dans l’image de la commande (“unmatched”). L’approche récursive du “backstepping”

permet de compenser les perturbations “unmatched” et de construire une fonction de Lyapunov

contrôlée robuste, utilisable pour le calcul ultérieur d’un compensateur des incertitudes dans

l’image de la commande (“matched”). Le contrôleur obtenu est appelé “recursive Lyapunov

redesign”. Ensuite, on introduit la technique de stabilisation par “Immersion & Invariance” (I&I)

comme outil pour rendre un donné contrôleur non linéaire, robuste par rapport à dynamiques non

modelées. La première technique de contrôle non linéaire robuste proposée est appliquée au projet

d’un autopilote pour un missile air-air et au développement d’une loi de commande d’attitude

pour un satellite avec appendices flexibles. L’efficacité du “recursive Lyapunov redesign” est

mis en évidence dans le deux cas d’étude considérés. En parallèle, on propose une méthode

systématique de calcul des termes incertains basée sur un modèle déterministe d’incertitude. La

partie finale du travail de thèse est relative à la stabilisation des systèmes sous échantillonnage.

En particulier, on reformule, dans le contexte digital, la technique d’Immersion et Invariance.

En premier lieu, on propose des solutions constructives en temps continu dans le cas d’une

classe spéciale des systèmes en forme triangulaire “feedback form”, au moyen de backstepping

et d’arguments de domination non linéaire. L’implantation numérique est basée sur une loi

multi-échelles, dont l’existence est garantie pour la classe des systèmes considérée. Le contrôleur

digital assure la propriété d’attractivité et des trajectoires bornées. La loi de commande, calculée

par approximation finie d’un développement asymptotique, est validée en simulation de deux

exemples académiques et deux systèmes physiques, le pendule inversé sur un chariot et le satellite

rigide.

Mots-clés. Contrôle non linéaire, contrôle robuste, fonction de Lyapunov contrôlée robuste,

modelisation de l’incertitude, backstepping robuste, “Lyapunov redesign”, “recursive Lyapunov

redesign”, “Immersion and Invariance”, contrôle non linéaire sous échantillonnage, contrôle

multi-échelles, projet d’autopilote pour missile, stabilisation d’attitude, satellite flexible
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Appendix

Notation for the continuous-time control part.

Throughout the work, we employ a quite common notation, widespread in control theory

and applied mathematics literature. Here we introduce and explain the most commonly

used terms and symbols.

We denote the non-negative real numbers with the notation R+
0 and the positive real

numbers with R+. We denote by Br the closed ball in Rn of radius r centered at the

origin, i.e. Br := {x ∈ Rn : |x| ≤ r}.

A class K function is a continuous function α(·) : [0, a) → [0,∞), which is strictly

increasing and such that α(0) = 0. A class K∞ function is a class K function with

a = ∞ and such that limr→∞ α(r) = ∞. A class KL function is a continuous function

β(·) : [0, a)× [0,∞)→ [0,∞) such that:

• for each fixed s, the function β(r, s) belongs to class K;

• for each fixed r, the function β(r, s) is decreasing with respect to s and it is such

that β(r, s)→ 0 for s→∞.

A function f : R+
0 × Rn → Rn satisfies the Carathéodory conditions if f(·, x) is mea-

surable for each fixed x ∈ Rn, f(t, ·) is continuous for each fixed t ∈ R+
0 and, for each

compact U of R+
0 × Rn, there exists an integrable function mU : R+

0 → R+
0 such that

|f(t, x)| ≤ mU (t) for all (t, x) ∈ U .

A function f : Rn → Rn is said to be locally Lipschitz if, for any compact set Q ∈ Rn,

there exists a constant lQ ∈ R+
0 such that |f(x) − f(y)| ≤ lQ|x − y| for all (x, y) ∈ U .

We say a function is locally L∞ when it is (essentially) bounded on a neighborhood of

every point.

The notation |·|Ω represents the euclidean point-to-set distance function, that is, |·|Ω :=

d(·,Ω).
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A given dynamical system ẋ = f(x) + g(x)u, with f and g locally Lipschitz functions,

is said to be forward complete if for every initial condition x0 and every input signal u,

the corresponding solution is defined for all t ≥ 0.

Given a smooth vector field f and a scalar function V , LfV = ∂V
∂x f(x) is the Lie

derivative of the function V along f .

With the notation col(x1, x2, . . . xn) we denote the column vector whose elements are

the column vectors x1, x2, . . . xn.

With the expressions “GAS system” or “GES system” we mean that the origin of that

system is GAS or GES.

With ‖·‖2 we denote the induced L2 matrix norm, also called spectral norm, while when

not specified in the text the symbol ‖·‖ denotes the vector Euclidean norm, namely

for vinRn, ‖v‖ :=
√
v2

1 + v2
2 + . . .+ v2

n. The symbol ‖·‖1 denotes the vector L1 norm,

namely for v ∈ Rn, ‖v‖ :=
∑n

i=1 vi.

Notation for the sampled-data control part.

All the functions, maps and vector fields are assumed smooth and the associated dy-

namics forward complete.

Given a vector field f , Lf denotes the associated Lie derivative operator, Lf =
n∑
i=1

fi(·) ∂
∂xi

,

eLf denotes the associated Lie series operator, ef := 1 +
∑
i≥1

Lif
i! .

For any smooth real valued function h, the following result holds efh(x) = efh|x =

h(efx) where efx stands for eLf Id|x with Id the identity function on Rn and (x) (or

equivalently |x) denotes the evaluation at a point x of a generic map.

The evaluation of a function at time t = kδ indicated by “|t=kδ” is omitted, when it is

obvious from the context.

The notation O(δp) indicates that the absolute value of the approximation error in the

series expansions is bounded from above by a linear function of |δ|p, for δ small enough.
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And then dance if you wanna dance

Please brother take a chance

You know they’re gonna go

Which way they wanna go

All we know is that we don’t know

How it’s gonna be

Please brother let it be

Life on the other hand

Won’t make us understand

We’re all part of the Masterplan.



Maybe I just want to fly

I want to live, I don’t want to die

Maybe I just want to breath

Maybe I just don’t believe

Maybe you’re the same as me

We see things they’ll never see

You and I are gonna live forever.
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