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RÉSUMÉ

Résumé:
Dans le domaine de la biologie développementale, un des principaux défis est de comprendre
comment des tissus multicellulaires, à l’origine indifférenciés, peuvent engendrer des formes
aussi complexes que celles d’une fleur.

De part son implication dans l’organogenèse florale, l’auxine est une phytohormone ma-
jeure. Nous avons donc déterminé son réseau binaire potentiel, puis y avons appliqué des
modèles de clustering de graphes s’appuyant sur les profils de connexion présentés par ces
52 facteurs de transcription (FT). Nous avons ainsi pu identifier trois groupes, proches des
groupes biologiques putatifs: les facteurs de réponse à l’auxine activateurs (ARF+), ré-
presseurs (ARF-) et les Aux/IAAs Nous avons détecté l’auto-interaction des ARF+ et des
Aux/IAA, ainsi que leur interaction, alors que les ARF- en présentent un nombre restreint.
Ainsi, nous proposons un mode de compétition auxine indépendent entre ARF+ et ARF-
pour la régulation transcriptionelle.

Deuxièmement, nous avons modélisé l’influence des séquences de dimérisation des FT
sur la structure de l’interactome en utilisant des modèles de mélange Gaussien pour graphes
aléatoires. Les groupes obtenus sont proches des précédents, et les paramètres estimés nous
on conduit à conclure que chaque sous-domaine peut jouer un rôle différent en fonction de
leur proximité phylogénétique.

Enfin, nous sommes passés à l’échelle multi-cellulaire ou, par un graphe spatio-temporel,
nous avons modélisé les premiers stades du développement floral d’A. thaliana. Nous avons
pu extraire des caractéristiques cellulaires (3D+t) de reconstruction d’imagerie confocale, et
avons démontré la possibilité de caractériser l’identité cellulaire en utilisant des méthodes
de classification hiérarchique et des arbres de Markov cachés.
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ABSTRACT

Abstract:
A striking aspect of flowering plants is that, although they seem to display a great diversity
of size and shape, they are made of the same basics constituents, that is the cells. The
major challenge is then to understand how multicellular tissues, originally undifferentiated,
can give rise to such complex shapes.

We first investigated the uncharacterised signalling network of auxin since it is a major
phytohormone involved in flower organogenesis. We started by determining the potential
binary network, then applied model-based graph clustering methods relying on connectivity
profiles. We demonstrated that it could be summarise in three groups, closely related to
putative biological groups. The characterisation of the network function was made using
ordinary differential equation modelling, which was later confirmed by experimental obser-
vations.

In a second time, we modelled the influence of the protein dimerisation sequences on the
auxin interactome structure using mixture of linear models for random graphs. This model
lead us to conclude that these groups behave differently, depending on their dimerisation
sequence similarities, and that each dimerisation domains might play different roles.

Finally, we changed scale to represent the observed early stages of A. thaliana flower
development as a spatio-temporal property graph. Using recent improvements in imaging
techniques, we could extract 3D+t cellular features, and demonstrated the possibility of
identifying and characterising cellular identity on this basis. In that respect, hierarchical
clustering methods and hidden Markov tree have proven successful in grouping cell depending
on their feature similarities.
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General introduction

Developmental biology is the study of the processes by which multi-cellular organisms grow

and develop. Therefore organogenesis and morphogenesis are the two main processes stud-

ied. Over a large variety of organisms studied, it has been repeatedly demonstrated that

shaping a tissue or an organ requires multiple regulatory mechanisms such as hormonal

signalling, homeotic/positional genes, cell-cell communication and mechanical cues. These

diverse regulatory systems often present redundancies, multiple feedback loops and levels of

controls to ensure the robustness of the shaping process and its outcome. Being fixed in their

location by a root system and pursuing most of their development after embryonic develop-

ment, plants are totally dependant on their faculty to adapt and respond to environmental

cues. By continuously maintaining stem cells at the Shoot Apical Meristem (SAM) and Root

Apical Meristem (RAM), plants possess the ability to initiate and produce different organs.

This faculty of continuous organogenesis during their whole life is an important difference

between plants and animals. For animals, organogenesis indeed takes place during embryo-

genesis and post-embryonic development then follows the previously established plan, rarely

presenting de novo organ formation (except for animals presenting a larval stage) as seen in

plants.

Understanding morphogenesis, the coordinated cell behaviour shaping an organism, thus

requires uncovering, piece by piece, the complex mechanisms at work and their various lev-

els of interplay. Historically, the reductionist paradigm has prevailed in biology whereby

a complex system is the sum of its parts and understanding each fundamental parts and

their relations is sufficient to explain causality. However, considering the issued questions

in developmental biology, it has been shown that this paradigm fails to explain some high-

order processes, notably emergent properties undefined in each fundamental processes or

1



GENERAL INTRODUCTION

relations. These problems thus require an holistic approach, often called Systems Biology,

which presents a shift in paradigm where the goal is to understand how properties of the

system emerge by taking into account the pluralism of both cause and effect into the model,

plus the intertwined complexities in between. One way to achieve this is through the quan-

titative measurement of the multiple processes under study and a rigorous mathematical

formalisation, leading to a comprehensive view of the problem and the identification of pat-

terns and emergent properties.

In Arabidopsis thaliana, as for in angiosperms, the male and female reproductive organs,

stamens and carpels are set up during flower development. It is known that organogenesis

initiation is controlled by a spatio-temporal pattern of phytohormones, that lead to the defi-

nition of a group of founder cells (initium), which will later grow into the lateral organ. The

local accumulation of on such hormone, auxin, by polar transporters triggers a developmental

response, initiating the formation of a new organ. Auxin is therefore an important morpho-

genetic regulator triggering developmental responses. Explaining its downstream signalling

network is a necessary step to further understanding the observed cellular patterns that lead

to shape changes at the organ scale. As we can see, we are facing a multi-scale problem

where proteins can be organized as a network of interactions, locally present in each cell and

where their output is finally integrated at tissue or even organ scale. Naturally many other

levels of interplay exist quantifying the inputs and outputs of the system should help us to

identify the rules regulating these phenomena.

Auxin signal transduction (perception, integration and transmission) is believed to be

achieved by a transcription factor (TF) family made up of 52 interacting proteins (ARFs

and Aux/IAA) (reviewed inChapman and Estelle [2009]). Before our extensive analyses,

little was known about the structure of this interaction network since only few components

had been characterised. Moreover, only hypotheses were made regarding its function and

no integrative views or testable models were available. Furthermore, the previous biological

framework presenting the auxin signalisation mechanisms, as reviewed by [Leyser, 2006;

2



GENERAL INTRODUCTION

Chapman and Estelle, 2009], did not account for nor explain (observed) homo-dimerisation

within the Aux/IAA subfamily.

Using genetical modification of the GAL-4 protein, Chien et al. [1991] proposed a high-

throughout synthetic method to test for protein-protein interaction in Yeast. To create this

synthetic system, they separated the DNA binding domain (BD) and the activation domain

(AD) of the protein, which normally activate GAL-4 expression after binding to its promoter.

In this configuration the transcription of the reporter gene placed downstream the targeted

DNA sequence is not possible. Testing the interaction capacity of two proteins thus requires

to fused each to one domain, AD or BD, hence the name two-hybrid (or yeast-two-hybrid if

achieved in Yeast). Finally in the case that the tested protein are interacting, by bringing

together the AD and BD domains, they activate the expression of the reporter gene whose

transcripts are detected.

To analyse the structure of such interaction network (undirected graph with loops), a

standard solution consists of applying graph clustering methods. These methods often fo-

cus on community detection whose aim is to find groups of vertices that are highly intra-

connected and poorly inter-connected [Schaeffer, 2007; Fortunato, 2010]. Interaction net-

works exhibit connectivity patterns that differ strongly from community structures and we

looked for graph clustering methods that do not make strong a priori on the connectivity

patterns. We selected a model-based clustering method relying on the stochastic block struc-

ture model introduced by Nowicki and Snijders [2001]. The aim of this mixture model for

random graphs is to group vertices with similar connectivity profiles at the cluster scale and

it has been shown by Daudin et al. [2007] that this can be used to model various types of

graph structures (e.g. community structures but also scale-free networks or star patterns).

This mixture model has been extended to valued graphs and explanatory variables have been

incorporated in such models [Mariadassou et al., 2010]. We chose to apply this modelling

framework to test the influence of phylogenetic distances on the connectivity patterns of

transcription factors involved in auxin signaling.

Switching scales from protein network, we now address the problem of auxin response at

scale of a developing organ: the flower. In the last 15 years, a huge effort has been made to

3



GENERAL INTRODUCTION

identify the genes patterns implicated in the floral morphogenesis. This has led to identifi-

cation of gene networks, and the introduction of a model of floral organ patterning, known

as the ABC model. However, these models are mostly descriptive, meaning they are not

mathematically or computationally testable since they are not defined as a set of equations.

Therefore these models cannot be used to identify patterns or emergence of properties, nor

to quantitatively link different scales, for instance genes and organ shape. Furthermore, it is

neither possible to account for intermediary scales (e.g. cells and tissues), nor to define the

rules and hierarchy in between them. Nevertheless they are an interesting basis to develop

quantitative model, often by providing simplifying assumptions or higher order rules. In a

quantitative modelling paradigm, hormones, genes and mechanical cues can be considered as

inputs of the morphogenetic process, then cell and tissue shape can be viewed as the output.

Being able to quantify some of the inputs and the output simultaneously should greatly

facilitate understanding of what is happening “in-between”. Our goal is therefore to enable

a quantitative linking between genes and shape by characterising dynamic geometrical cell

features. We are confident that it will permit us to identify cellular patterns, and shifts in

those patterns related to changes of genetic identity or external cues. In addition, comparing

flower displaying phenotypic differences

Recently, promising developments have been made regarding the quantification of plant

morphogenesis. A surface reconstruction of Anagallis arvensis developing SAM by Dumais

and Kwiatkowska [2002] focused on enabling the extraction of surfacic cellular features with

a non-destructive moulding method. The repeated moulding of the same SAM permitted, for

the first time in plant, the extraction of live surfacic quantitative data at cellular resolution.

Applying this technique to A. thaliana SAM, the authors could observe and quantify growth

rate differences in the different SAM zones, coherent with the putative dynamical patterns

of the SAM [Kwiatkowska, 2004]. They also detected a previously unsuspected phenomenon

with their precise cellular quantification: a crease is forming at the periphery of the meristem

before the bulge defining the FM initium appears [Kwiatkowska, 2006].

Clonal analyses of the developing petal of Antirrhinum [Rolland-Lagan et al., 2003; Coen
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et al., 2004; Green et al., 2010] have led to a better understanding of growth pattern distri-

bution in time and space. By developing a mechanistic in sillico dynamic growth model they

tested the effects on shape change of modifying the values of certain observed parameters

such as growth rate, anisotropy and direction of growth. They concluded that the amount of

anisotropy was responsible for stretching the petal while petal asymmetry was determined

by the principal growth direction [Rolland-Lagan et al., 2003]. However the local variations

of the parameters where not implicated in generating petal asymmetry since using their av-

erage observed values where sufficient to reproduce it. Finally they proposed the presence of

a long range signal maintaining growth direction along the proximodistal axis, quantitatively

linking for the first time long-range signal to directional growth and generation of shape.

Hence quantitatively linking “genes” and shape. It provide an interesting framework to

quantitatively test and assess the interplay between genes and shape for the mature flower.

However, this model is based on data acquired at larger scale than cellular resolution, has

only been applied to nearly mature flowers (need apparent petal) and was first proposed in

2D. Recently an improved version of the growing tissue framework was propose to model

growth in 3D, although it model the growing tissue as a continuous sheet of material with

two surfaces and a thickness, termed a canvas. This model is therefore not yet applicable to

non-flat tissue like the SAM or the root.

Live-imaging of the whole tissue is a recent breakthrough in microscopy and it enables us

to access the spatio-temporal events taking place during growth at a cellular level. Acquiring

cell membrane positions (with a membrane marker) at several time points during tissue

development allows for a quantitative description of its growth at cellular level using cell-

based segmentation algorithms. Moreover, adding fluorescent genes or hormone reporters in

the digitally-acquired organism can give us access to their spatial distribution and dynamics

at a cellular level. Finally, even if the effort required to produce these data still limits the

number of observed gene or protein expression patterns or hormones signalling pathways that

may be simultaneously acquired, when compared compared to other omics tools, live-imaging

is non-destructive for the sample and give us access to precise spatio-temporal information.
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This therefore provides new opportunities to shed light on morphogenesis and its links to

the spatio-temporal activities of genes and hormones at multiple scales.

The need for adequate solution to highly complex pattern recognition problems has

emerged with the advent of an increase in biological dataset size and complexity. It has

been faced by many scientists working in fields as diverse as biomedical engineering, com-

puter science, applied mathematics and also image analysis or computer vision. Therefore

I would like to stress the importance in exchanges between the fields of biology, mathe-

matics, physics and computer science in order to progress toward a more integrative and

comprehensive view of developmental biology.

The main drawback in the extensive use of live imaging is that the data generated (voxel-

based 3D stacks) are extremely complex, since they represent the biological object under

study. Creating algorithmic tools to tackle the time-consuming work of pattern recognition

is a true challenge for all engineers and researchers facing those data. Indeed, going through

the manual segmentation of thousands of cells for several time-series present too many draw-

backs: too time-consuming, unrepeatable, open to user interpretation and so on. Our brain

is naturally trained to recognise objects based on inputs (color, shape...) and spotting a cell

nucleus, identifying a cell wall or interpreting the visual result of a reaction/test is often

no challenge even in the case of partially missing data. However these tasks are extremely

complex to encode mathematically and computationally. Pattern recognition and more gen-

erally pattern theory are fields providing concepts and tools that have proven successful in

addressing the extraction and identification of highly complex patterns in communication,

imaging, simulation (forecasting) and large networks.

As we have seen, the local accumulation of auxin triggers a developmental response

leading to organogenesis by regulating its downstream gene networks through a perception

network of transcription factors. These genes will impact on cell proliferation and differen-

tiation, leading to changes in cell geometrical patterns, which overall will drive the shape

changes at organ scale In the following chapters I will develop the work carried out on the

characterisation of the auxin perception network and explain the contribution of my work
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in deciphering network structures with graph clustering models. We will then see that even

when changing scale to analyse flower morphogenesis, graph representations and clustering

techniques still prove useful in organising and formalising the spatio-temporal evolution of

the biological object.

Pattern theory is therefore a relevant framework for the two main biological problems

we are facing, since it proposes to achieve a mathematical formulation of a small set of ideas

through the identification of the patterns explaining both the structure and the variability

of our data. Both developing tissues and the transcription network can be viewed as graphs

where a cell or a transcription factor is a vertex and a wall or an interaction is an edge.

In this way we encode the regularity and structure of the biological object and then aim to

partition variability and quantify uncertainty in our data thanks to mathematical formalisa-

tions leading to pattern identification. It is therefore a powerful algebraic framework helping

to organize a finite number of both local and global combinatory operations.

In the following sections I will present a summary of the literature regarding the auxin

signalling pathway and early floral patterning. I will explain some of the genetic models,

describe some of the diverse scientific approaches used and , when limited, those available

that present the potential to go beyond these limitations. In addition, I will address the

insights they have provided as a basis for a more integrative approach of the biological

system.
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State of the art

1 The Shoot Apical Meristem: a self-maintained struc-

ture initiating new organs like flowers.

Flowering plants (Angiosperms) possess two primary meristematic zones, located at the tip

of shoots and roots, that are responsible for the development of the aerial and underground

parts of the plants, respectively. The apical meristematic zone, Shoot Apical Meristem

(SAM), contain a domain of centrally located pluripotent stem cells (central zone), sur-

rounded by a much larger region of multipotente cells that are competent to differentiate

(peripheral zone). The meristematic zone is self-maintained and can modulate its develop-

mental activity in response to external cues, providing the necessary flexibility to modulate

plant shape and growth in response to varying environmental conditions. The SAM is re-

sponsible for a continuous organogenesis of leaves, internodes, axillary meristems and flowers

[Traas and Doonan, 2001] throughout the plant life (see figure 1a).

1.1 Structural and functional zonation of the SAM.

One can distinguish two levels of cellular organisation at the SAM, a structural organisation

in layers, consisting of the tunica (outer layers) and the corpus (inner layers), as well as a

functional organisation in zones, of often specific cellular identity (figure 1b). In addition to

this structural organisation, the SAM is partitioned in zones: mainly the central zone, the

peripheral zone and the initiums. The central zone comprise slowly dividing cells, a charac-

teristic of the stem cell function of self-maintenance. It is indeed essential to preserve these

cells otherwise the organogenesis activity would stop [Laux et al., 1996]. At the periphery of

this zone, cells accelerate their growth rate and may enter into a differentiation step, leading
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a. Top view. b. Cross-section view.
Figure 1: SAM functional and structural organisations in A. thaliana. a. External top view of a
–cleaned– SAM displaying the precise spatial disposition of the floral meristems (FM) in green. The
SAM is indicated in pink. It is possible to appreciate the three first morphological stages of flower
development from the floral initium (i) to a stage 3 FM (largest one at south-east of the picture) by
successive counter-clockwise rotations of 137.5◦. b. Cross-section view of a SAM highlighting the L1
and L2 tunica layers structure. Floral meristems (FM) and initium (i) can be observed on the sides.
AS1, STM, WUS and CLV3 are introduced later. In both figures, CZ refers to the Central Zone and
PZ to the Peripheral Zone, i to initium

to the formation of new lateral organs. Primordium initiation begin with the definition of

a group of founder cells, that will give rise to a lateral organ, just outside the central zone.

Several studies, like those from Grandjean et al. [2004] and Reddy et al. [2004], show that

a small group of 4 to 10 founder cells emerge at the margins of the central zone in the first

layer (L1), leading to organ formation.

1.2 Main regulators of the SAM.

Some of the main regulator involved in controlling SAM maintenance and function have

been identified in the last twenty years. First, the SHOOTMERISTEMLESS (STM ) gene

has been shown to be necessary for SAM formation and post-embryonic maintenance. It

belongs to the KNOX gene family that encode homeodomain transcription factors, and it

is expressed throughout the meristem, except in the early developing primordia where it is

down-regulated [Long et al., 1996]. Another important homeodomain transcription factor,

WUSCHEL (WUS) has been shown to be responsible for stem cell niche maintenance [Laux

et al., 1996]. The gene is expressed in the organising center, a small area located in the

corpus below the central zone (figures 1), preventing the stem cells to differentiate [Mayer
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et al., 1998]. A feedback loop between WUS and the CLAVATA genes (CLV ) is responsible

for controlling the size of the central zone [Schoof et al., 2000; Brand et al., 2000]. It has been

demonstrated that the WUS protein moves to the central zone, thus establishing a gradient

necessary for proliferation control [Yadav et al., 2011]. When doing so, it is perceived by a

CLV1-2 receptor complex [Fletcher et al., 1999; Ogawa et al., 2008; Nimchuk et al., 2011],

activating CLV3 expression [Kondo et al., 2006]. This peptide likely diffuses broadly and

acts non-autonomously to restrict WUSCHEL expression domain to the organising center,

thus controlling its size by feedback. Finally, the over-expression of both WUS and STM is

sufficient to induce SAM identity, even in root tissues [Brand et al., 2002].

Discussion.

Phyllotaxy refers to the specific disposition of the newly formed organs along the axis of

the stems. Some cells at the periphery of the stem cell niche, enter into a differentiation

state and lose their meristematic identity by repressing STM function, thus permitting the

expression of the transcription factor ASYMETRIC LEAVES 1 (AS1 ), which is normally

repressed by STM in the SAM. This antagonistic mechanism therefore allows for a proper

distinction between meristem and organ identity, whose development follows the activation

of a set of genes controlling the size, the polarity and the identity of the organ.

However, these genes are downstream from a dynamic regulatory mechanism controlling

organ initiation sites and rhythms. Hypothesised in 1868 by Hofmeister, who first observed

that the emergence of a new organ was periodic and located in the largest space available

between previously formed organs, it was not until 1913 that Schoute proposed the influence

of chemical inhibitors produced by surrounding organs as a control mechanism. Since phyl-

lotaxy implies the precise control of organ initiation sites and since auxin is a major inducer

of organogenesis, it is highly important to further investigate how auxin signalling occurs.
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2 Auxin control organ initiation and patterning.

The first demonstration of a moving signal mediating growth was made by Charles Darwin

in 1880, who postulated the involvement of a “transmissible signal” in the regulation of

organ growth in plants. Later in 1934, indol-3-acetic acid (IAA) or auxin was characterised

as the first phytohormon [Paciorek and Friml, 2006], but it was not until the 1970s that a

chemio-osmotic model for polar auxin transport was proposed [Rubery and Sheldrake, 1974;

Raven, 1975].

Figure 2: Effects of ectopic auxin application
(red) on auxin-related mutants in A. thaliana. a,
auxin induce lateral organ formation on pid mutant.
b, auxin does not induce organ formation on mp
mutants. Source: Reinhardt et al. [2003]

Since, many efforts have been made

to determine the physiological effects of

auxin. The developmental processes in

which auxin plays a role are legions: root

and shoot patterning, fruit and embryo de-

velopment, elongation and tropistic growth,

apical dominance and organogenesis [Pa-

ciorek and Friml, 2006]. In 2003, Reinhardt

et al. demonstrated the unique potential

of auxin, by triggering organ (leaf) forma-

tion after ectopic application of auxin in the

SAM peripheral zone of pinoid (pid) mutants (normally incapable of generating organs)

(figure 2a). Around the same time, the first auxin biosynthesis sites were identified as the

young leaves and the young, proliferating part of shoots and roots, as well as developing

seeds [Ljung et al., 2001, 2005].

2.1 Auxin levels are spatially controlled by efflux and influx car-

riers.

Even if the details of auxin perception, regulation and transport remain partially elusive, it is

clear that auxin is actively transported through the plant. In fact both polar and non-polar

transports of auxin takes place at the same time in plants, and it can be explained by the
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chemio-osmotic model of Raven [1975]. Auxin being a weak acid, it can either be protonated

or deprotonated depending on the local pH. The extracellular space possess a pH around

5.5, and auxin is then present in its acidic (protonated - uncharged) form, making it free

to diffuse through the plasma membrane to enter the cell. Non-polar transport is achieved

through diffusion process (along the gradient) in the phloem.

In addition, auxin influx can be facilitated by the AUX1/LAX family of influx trans-

porters [Bennett et al., 1996; Yang et al., 2006], AUX1 being specifically expressed in the L1.

However, in the cytoplasm whose pH is close to 7, auxin is in its basic form (deprotonated

- negatively charged) and can not diffuse through the membrane any more. Auxin efflux

is then only possible thanks to active transport by PIN-FORMED1 (PIN1 ) efflux carriers

[Gälweiler et al., 1998] which are more specifically expressed in the L1. pin-1 mutants pos-

sess a SAM capable of initiating leaves, but an SAM incapable of initiating flowers [Okada

et al., 1991]. Finally, polar auxin transport can go against the gradient since it is an active

process taking place in the vascular cambium.

2.2 Polar auxin transport regulation or self-organisation?

As demonstrated by Reinhardt et al. [2003], local accumulation of auxin is sufficient to

trigger the various developmental roles of auxin, notably organ initiation at the periphery of

the SAM apex (figure 2a). This auxin gradient is the result of complex interplays between

auxin synthesis, degradation and active directed inter-cellular transport by influx and efflux

carriers. However, if most of the major players have been identified, some aspects of polar

auxin transport remains elusive.

It is indeed still unclear how the PIN1 efflux transporter polarisation is controlled at

tissue scale. We know that PIN transporters are under the control of a rapid and complex

mechanism of transcytosis at cellular scale. Moreover, recent studies suggest that auxin itself

modify both expression levels and the polarity of PIN1 by inhibiting the latter mechanism

[Heisler et al., 2005; Paciorek et al., 2005]. This has led to several theoretical cell-based

models explaining self-organisation of the polar auxin transport (for review, see van Berkel

et al. [2013]). The main drawback of the two main families of computational models, con-
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Figure 3: Localisation of PIN1 pro-
tein (red) in A. thaliana inflorescence
and floral meristems. k, PIN1 local-
isation in inflorescence meristem (im)
cross-section; arrowhead indicate initi-
ation site. l, PIN1 localisation in young
(stage 2) FM cross-section; arrowhead
indicate sepal initiation site. m, PIN1
localisation in older FM (stage 3) cross-
section; arrowhead indicate anthers ini-
tiation site. (P) indicate flower primor-
dia, and white arrows indicate vascula-
ture. Source: adapted (white outlines)
from Reinhardt et al. [2003]

centration and flux-canalisation based models, cannot account for PIN1 dynamic pattern

both in the L1 (organ initiation) and the vasculature (figure 3). Hybrid models have been

developed and can reproduce a realistic pattern, but the existence of dual mechanisms seems

unlikely. However they offers the merit to explain PIN1 polarisation mechanisms by using a

simple feedback between auxin and its polar transport.

Anyhow, these models does not take into account the molecular mechanisms of auxin

signalling network. Futhermore, since auxin modifies PIN polarisation through its signalling

mechanism, it might play a role in regulating polar auxin transport. By incorporating auxin

transport (influx and efflux) together with extracellular auxin receptor inhibiting PIN traf-

ficking upon binding and PIN transcriptional regulation through nuclear signalling, Wabnik

et al. [2010] proposed a model where patterns of PIN1 polarities are generated from synergy

of intracellular and extracellular auxin signalling. This model successfully reproduces PIN

distribution patterns both during formation of vascular systems and organogenesis in the

L1. Finally, it is important to note that some of these models need sources of auxin, and

if we understand “how” auxin is synthesised, the “where” is still unclear below organ scale.

Knowing the latter would definitely help working on an even more realistic in sillico dynamic

model for auxin spatio-temporal patterning and polar transport.
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Discussion.

Many models attempting to explain (self-)organisation of polar auxin transport have been

proposed and the latests seems to reproduce quite faithfully the observed patterns of trans-

porters as well as auxin distribution patterns. One could regret that these models were

developed and tested for the SAM and not the FM. We can indeed clearly see similar ex-

pression patterns of PIN1 in the L1, the vasculature and at organ initiation sites in the FM as

in the SAM (figures 3). Also, most attention was given to auxin mediated response after lo-

cal accumulation by polar auxin transport, and most of the genes undergoing a modification

of their expression levels in response to auxin (downstream) are identified.

However, as we will see in the next section, auxin response is mediated by a co-receptors

and a network of transcription factors. This lead to a complex and tissue specific response

to auxin signal, likely through the specific spatio-temporal expression patterns of the pro-

teins implicated in the perception pathway leading to organogenesis. For example it has been

shown that the apex of the SAM is insensitive to auxin local accumulation, since even though

polar auxin transport accumulate auxin in the apex, no organ is initiated there. Auxin sig-

nalling pathway should therefore either be actively repressed there or absent. Finally, the

signalling pathways between auxin and its response genes might modify the dynamic between

auxin input and output since it implicate protein degradation and others non-instantaneous

mechanisms as we will see in the next two sections.

We therefore worked at creating an expression map of proteins implicated in the auxin

signalling pathway -receptors and transcription factors- to understand further the spatial

regulation of auxin signalling pathway. This later phenomena will be detailed in the next

section. Together with the analysis of the auxin transcription network structure I conducted,

our work has enabled the modelling of a simplified version of the signalling pathway leading

to a new dynamic model of auxin perception. We propose to explore the details of auxin

transduction pathway in the following sections.
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3 Auxin signal transduction is ensured by a TF net-

work.

We call early auxin-related genes or auxin response elements (AuxRE) the genes contributing

to the perception and transduction of the signal and late auxin-related genes those activated

downstream the transduction pathway. Micro-array experiments demonstrate that hundreds

of genes change their expression levels in response to auxin [Pufky et al., 2003] but how such

a small phytohormon can modify early and late auxin-related gene expression levels?

Another experiment by Reinhardt et al. [2003] demonstrated that MONOPTEROS (MP)

/ AUXIN RESPONSE FACTOR 5 (ARF5 ) is essential for the SAM to enable the auxin

response capacity since mp/arf5 mutant meristems are insensitive to ectopic application of

auxin (figure 2b). This indicate that, at least MP/ARF5, and maybe other transcription

factors are recruited by auxin to regulate late auxin-related gene.

Made of 52 proteins in total, the Auxin Response Factor (ARFs) and Aux/IAA tran-

scription factor family compose the perception network and are responsible for activating

or repressing auxin-related genes. We will first discuss about their molecular and functional

structures, then present the currently accepted descriptive model of auxin transduction path-

way.

3.1 ARFs - Aux/IAA molecular and functional structures.

DBD III IVAD

DBD III IVRD

I III IVII
IAA:

ARF:

ARF5,6,7,8,19

ARF1,2,4,9,10,11,12,13,14,15,16,18,20,21,22

ARF3,17

ARF23

Figure 4: Schematic representation of the ARF
and Aux/IAA structures as found in Arabidopsis
thaliana. DBD: DNA binding domain. I: Aux/IAA
specific putative homo-dimerisation domain. AD:
Activation domain. RD: Repression domain. II:
Aux/IAA specific degradation domain. III & IV:
protein dimerisation domains. Arrowed lines indi-
cate the extend of each inhibiting ARF structure.
Source: adapted from Hagen and Guilfoyle [2002];
Guilfoyle and Hagen [2007] with the notable differ-
ence that we found domains III ans IV when aligning
full length protein sequences for ARF13.

Using a limited Yeast-2-Hybrid study, Kim et al. [1997] first proposed that protein-protein
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interactions among the tested Aux/IAA proteins could regulate late auxin-related genes. The

Aux/IAA possesses two domains unknown to the ARFs, domains I and II. While domain I

function is unclear (putative homo-dimerisation function), domain II has been found to be

responsible for the Aux/IAA instability [Hagen and Guilfoyle, 2002], targeting these proteins

to the proteasome in presence of auxin.

Later, the ARFs dimerisation capacity was also proposed as a potential regulator of late

auxin-related genes by Ulmasov et al. [1999b], their regulatory activity depending on their

conserved middle domain amino-acid composition [Ulmasov et al., 1999a]. In addition, the

authors also uncovered the capacity of ARFs to bind to promoting sequences of these AuxRE

by the intermediate of a DNA binding domain (DBD) found in N-terminal position of the

proteins. The domains conserved across the two sub-families are protein-protein dimerisation

domains, called domains III and IV, found in C-terminal position in both ARFs and Aux/IAA

(see figure 4). These domains are conserved for nearly all the transcription factors except

ARFs 3, 17 and 23.

The knowledge of the whole Arabidopsis thaliana genome finally extended the com-

plex ensemble constituting the auxin transduction pathway to 23 ARF and 29 Aux/IAAs.

A phylogenetic study by Remington et al. [2004] highlighted the strong conservation of

function-specific domains in each sub-family, and two other conserved domains in both fam-

ilies (dimerisation domains III and IV). They showed that these two sub-families are long

related through genes duplication and mutation-selection.

3.2 Auxin transduction pathway model.

Aux/IAA

Aux/IAA

ARF

Auxin

Auxin-responsive Gene

DNA

ARF

Auxin-responsive Gene

DNA

ARF

No effect

Activation

DBD

Repression

Figure 5: Model of auxin transduction pathway.
Activation and repression activities depend on ARF
middle domain amino-acid composition. DBD in-
dicate the DNA binding domain found usptream of
auxin-inducible genes. In absence of auxin Aux/IAA
are dimerise with the ARFs, preventing them to exert
their artivating or repressing activity. When auxin is
present, it target the Aux/IAA to the proteasome
leaving the ARF free to dimerise and exert their
regulating activity. Source: adapted from Chapman
and Estelle [2009].
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Starting from an initial situation without auxin, expressed ARF bind to the TGTCTC

sequence of AuxRE found in their promoter [Ulmasov et al., 1999b; Hagen and Guilfoyle,

2002; Pufky et al., 2003]. In this configuration, expressed Aux/IAAs form hetero-dimers with

ARF, thus preventing the ARF to regulate AuxRE expression levels. However, when auxin

accumulate locally, the Aux/IAAs are degraded, because targeted to the proteasome by

ubiquitation of the domain II by an SCF/TIR1 complex (for review see Paciorek and Friml

[2006]; Leyser [2006]; Guilfoyle and Hagen [2007]; Chapman and Estelle [2009]). In turn,

this enable locally expressed ARFs to exert their activator or repressor activity, depending

on the amino-acid composition of their middle domain. The proposed model is summarised

in figure 5.

3.3 Auxin perception is spatially regulated.

In addition to the control of auxin spatial distribution at the SAM, the spatial regulation

of the auxin perception pathway has also been observed. The phytohormon is first per-

ceived by a co-receptor complex made by the TIR1/AFB family of F-box proteins acting

together with Aux/IAAs. Parry et al. [2009] demonstrated that TIR1 and AFB2-3 are post-

transcriptionnaly regulated by a microRNA miR363, thus identifying an element involved in

the spatial regulation of the auxin perception. However, we should stress that the precise role

of each member of the TIR1/AFB family is still unclear. Nevertheless, they could observe a

complementary expression pattern between the microRNA and the auxin co-receptors in the

root, further suggesting the possibility of a differential sensitivity to auxin depending on cell

identity. The AFB family is not limited to AFB2-3, and working on seed, Greenham et al.

[2011] have shown that AFB4 and 5 interact in an auxin-dependent manner with IAA3, thus

enlarging the family of auxin co-receptors. Also, by generating AFB4:AFB4-GUS reporter

line, they observed a spatial restriction of AFB4 expression pattern. This supports again

the idea of auxin competent zones and of a cell-specific regulation of auxin co-receptors.
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Discussion.

Only a limited amount of protein-protein interactions have been tested, and the models

proposed by Leyser [2006] and [Chapman and Estelle, 2009] does not to take into account

that Aux/IAAs can dimerise with proteins from the same subfamily. The presence of five

activators (ARF 5,6,7 and 19) among the 23 ARF, while the others are repressors, has

not been taken into account in the model of auxin transduction pathways. The descriptive

model is thus an interesting framework to understand the auxin signalling pathway but

it does not fully integrate our knowledge on the subject. Finally a recent study linked

MP/ARF5 as a direct activator of genes initiating FM fate [Yamaguchi et al., 2013], making

the characterisation of the network even more interesting.

Y2H is an adequate technique to test protein-protein interaction at large scale and we used

it to determine and characterise the structure of the “potential” auxin perception network.

Potential because, as said earlier, the whole network is spatio-temporally regulated, thus

not not present as a whole in every cells. We could therefore hypothesise two to three levels

of control, one depending on the dimerisation capacity, another depending on activation-

repression by the transcription factors and finally one depending on the spatio-temporal

control of TF expression patterns. The determination of auxin perception network structure

would thus be an important contribution to the field, as well as a primary step toward

its structure characterisation by statistical analysis. To further understand the perception

network structure, we used proteic dimerisation sequences similarities to explain the origin

of preferential mode of connexions. This led us to hypothesise a possible preferential use of

one dimerisation domain out of two depending on the functional group of each interacting

protein.

4 Growth patterns during floral morphogenesis lead to

a stereotypic shape.

I now focus on a more macroscopic scale and examine the morphological events taking place

during early flower development subsequent to its initiation by local auxin accumulation
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and auxin response pathway. One striking aspect of flowers is that they are all made of four

distinct organ types organised in concentric whorls: the sepals, the petals, the stamens and

the carpels. Also, flowers from the same species display a great robustness in their overall

shape, and organ numbers. Being responsible for seed production and pollen dispersion, the

flowers execute a very important function of gene transmission.

Overall, flower developmentcan be separated into three main steps. First the floral meris-

tem identity genes determine the floral meristem fate. Second the floral organs identities are

determined, later appearing as concentric whorls. Finally floral organ genes activate down-

stream effectors that specify the various tissues and cell types that constitute the different

floral-organ types [Krizek and Fletcher, 2005].

4.1 Morphological description of early flower development.

The first description of flower development as a series of morphological events was made by

Smyth et al. [1990]. This start when the floral meristem outgrowth begins on the flanks

of the SAM (stage 1), and goes up to the finale mature flower (stage 12) characterising

each morphological change as a new stage. Stage 2 starts when the flower bud is separated

from the SAM by th appearance of a small crease between the two meristems. Stage 3 is

characterized by the emergence of the sepals from the sides of the floral meristem. These are

therefore the three first morphological events displayed by the young floral meristem (FM)

during its development (figure 6)

4.2 Induction of floral meristem fate.

According to Bossinger and Smyth [1996] the floral initium is made up of a group of four

cells, which divide and expand radially, producing the group of cells from which all floral

tissues are derived. In A. thaliana, the repression of STM and induction of AS1 result in the

expression of two key genes, LEAFY (LFY ) [Weigel et al., 1992] and APETALA 1 (AP1 )

in the flower primordium. Mutating one these genes indeed results in a partial conversion of

flowers into shoot-like organs; the lfy ap1 double mutant shows a stronger phenotype. On

the contrary, SAM can be converted to FM by the ectopic expression of LFY and AP1. In
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Figure 6: The three first stages of A. th. FM morphogenesis. a. Stage 1, no clear distinction between
the FM and the SAM; b. Stage 2, a clear boundary is visible between the SAM and the FM(+26h);
c. Early stage 3, sepals start emerging at the sides of the FM (+69h); d. Stage 3, the sepals are
clearly visible (+80h). Green fluorescent marker: AHP6::erGFP. Source: Images acquired at the RDP
by Pradeep DAS.

opposition to LFY and AP1 the SAM fate is specified by TERMINAL FLOWER 1 (TFL1 ).

Promoted by Gibberellin [Blazquez et al., 1998], a phytohormone, LFY is one the first

identity gene indicating flower primordium formation [Weigel et al., 1992] and so one of the

most upstream genes coding for a transcription factor. It targets downstream genes like

AP1, SEPALATA (SEP) and other uncharacterised genes and putative transcription factors

and signalling molecules detected by whole genome approach such as DNA microarray and

Chromatin immunoprecipitation (Chip-chip).

Lastly, the boundary between the Inflorescence Meristem and the Floral Meristem is

also controlled by a specific set of genes. The three known members of CUP-SHAPED

COTYLEDON (CUC ) family as well as LATERAL ORGAN BOUNDARIES DOMAIN

(LBD) are known to play a role in establishing this boundary. However, no model linking

gene or hormonal patterns to shape change is yet available to explain the SAM/FM boundary

formation.

4.3 Floral meristem patterning by homeotic genes: the ABCmodel.

As shown in figure 7, three classes of genes were first identified by Coen and Meyerowitz

[1991] to determine floral organ identity by analysing mutations affecting flower structure. In

the wild-type background (fig.7a), all three classes are present and organise the four whorls.

Mutating APETALA 2 (AP2 ), the flowers produce carpels where sepals should be, and
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stamens in position of the petals (fig.7b). Flowers of apetala 3 and pistillata (pi) mutant

plants does not display petals and stamens any more but -respectively- sepals and carpels

instead. Finally the AGAMOUS flowers show an homeotic transformation of stamens into

petals and carpels into sepals. AG also act as a termination signal for the flower, meaning

when mutated ag flower from new ones inside the previous one, adding extra whorls of sepals

and petals. Another key aspect is that class A and C genes function in an antagonistic

manner, such that when class C genes are absent or non-functional, class A genes activity

expand into class C and vice versa. This simple model provides a conceptual framework for

explaining how the individual and combined activities of the ABC genes produce the four

whorls of organ in most Angiosperm.

Figure 7: The ABCE model for floral-organ patterning illustrated with A. thaliana flower. a. the
wild-type display four whorls of organs: the sepals, the petals, the stamens and the carpels. b. An
ap2 mutant flower, thus lacking class A genes, show the loss sepals and petals, replaced by carpels and
stamens, respectively, subsequent to the expansion of class C genes throughout the flower. c. A pi
mutant flower posses sepals and carpels instead of petals and stamens, respectively, subsequently to the
absence of class B genes. d. An ag mutant flower, lacks class C genes activity, thus displaying sepals,
two whorls of petals and further repeating the patterns in interior whorls. e. A SEPALLATA mutant
flower for four sep genes (sep1-4) present reiterating whorls of leaf-like (le) organs subsequently to the
lack of class E genes impairing the activity of ABC class genes, ultimately leading to loss of floral organ
determinacy. Source: Krizek and Fletcher [2005].

Pelaz et al. [2000] first extended the ABC model by demonstrating the necessity of 3

additional MADS-box genes, the SEPALATA1/2/3 (SEP1/2/3 ) genes for the activity of B

and C class genes. Moreover, SEP3 as a flower-specific expression that restricts the action

of the ABC genes to the flower [Honma and Goto, 2001]. Flowers of sep1 sep2 sep3 triple
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mutants indeed displays only sepals and SEP4 is required redundantly with the other three

SEP genes to confer sepal identity and contribute to the development of the petals, stamens

and carpels [Ditta et al., 2004].

Even though the details of the molecular mode of interaction between the homeotic genes

remained a mystery for quite a while, the finding that MADS domain proteins can associate

into higher-order complexes by Theissen [2001] shed light on the molecular aspect of floral

organ identity. It is now accepted that MADS-domain proteins form ternary and quaternary

complexes [Honma and Goto, 2001] known as the quartet model [Theissen, 2001; Krizek and

Fletcher, 2005]. Thus the quartet model directly links floral organ identity to the action of

four different tetrameric transcription factor complexes comprised of MADS-domain proteins

[Theissen, 2001].

4.4 Structural and functional zonation of the early FM.

Subsequently to the change of identity from SAM to inflorescence meristem (IM), both IM

and FM maintain the same layered structure as found in the SAM [Vaughan, 1955; Tilney-

Bassett, 1991]. Studies of sectioned buds by Hill and Lord [1989] and Crone and Lord

[1994] indicate that the first cell divisions generating sepals, petals and stamens usually

occur in the L2 layer, whereas carpels might come from either L2 or L3 cells (figure 8).

Overall, the L1 gives rise to the epidermis of all floral organs and to other tissues in the

sexual organs (stamens and gynoecium), while the L2 and L3 gives rise to the mesophyll

and other internal tissues [Jenik and Irish, 2000]. Since these three layers participate to

tissue formation, they are called histogenetic. As reported by Jenik and Irish [2000], it is the

control of the orientation of cell division that prevent layer mixing during morphogenesis.

In addition, when dividing periclinally, the daughter cells are integrated into another layer

and the development still proceed normally, leading to the idea that the final fate of a cell

depends on its position rather than its lineage. Using a clonal analysis on ap3-3 and ag-1

mutants, Jenik and Irish [2000] found that cell division are regulated differently at early and

late stages of FM development. Bossinger and Smyth [1996] suggested that the initiation

and establishment of floral organ identity are separable processes; it is therefore of great
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Figure 8: Contribution of the SAM
histogenetic layers to floral organ tissues.
L1 is in green, L2 in red and L3 in blue.
The L1 gives rise to the epidermis of all
floral organs and to some other tissues.
L2 and L3 give rise to the mesophyll and
other internal tissues. Source: Jenik and
Irish [2000]

importance to quantify, in time and space, the patterns of lineage to more closely examine

the cell fate determinacy.

4.5 Regulation of flower size.

The size of a mature flower can vary greatly between closely related species, but is usually

invariant in any single species. Surprisingly, experimentally altering cell number or size is

often not sufficient to change the size of the mature flower [Krizek and Fletcher, 2005].

First discovered by Elliott et al. [1996], AINTEGUMENTA (ANT ) was originally as-

sociated to ovule development control, since ant mutants in A. thaliana displays partially

developed ovules. Moreover, ant ap2 double mutant plants display a total absence of floral

organ [Elliott et al., 1996]. Krizek [1999] linked ANT to cell growth regulation by observ-

ing cell features in a 35S::ANT background. The authors observed that the increased size

of 35S::ANT sepals was the result of increased cell division, whereas the increased sizes of

35S::ANT petals, stamens, and carpels where in fact due to increased cell expansion [Krizek,

1999]. Another study revealed that ANT cell cycle regulation was, at least partially, the

result of a prolonged expression of CYCD3;1, a D-type cyclin implicated in cell cycle regula-

tion [Oakenfull et al., 2002]. Following ANT identification, other actors that participate in

the large network of cell proliferation regulation were also discovered. Acting downstream of

auxin signalling, ARF2 appears to have a role in control of organ size and cell proliferation,
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by promoting [Hu et al., 2003] and prolonging [Schruff et al., 2006] ANT and CYCD3;1

expression. Schruff et al. [2006] observed that arf2 mutant plants display thicker stems

and larger seeds, embryos, sepals and leaves. The putative role of ARF2 is transcriptional

repression of auxin response genes, and ANT expression is negatively regulated by ARF2.

AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE (ARGOS), is highly induced

by auxin and is also involved in organ size control, since transgenic plants expressing sense

or anti-sense ARGOS cDNA display enlarged or reduced aerial organs, respectively. More

recently, new genetic evidence by Krizek [2009]; Yamaguchi et al. [2013] have demonstrated

that ANT acts redundantly with AIL6/PLT3, another member of the AINTEGUMENTA-

LIKE/PLETHORA family.

Discussion.

Over the years, most of the effort to understand flower morphogenesis is related to the genetic

determinacy of cell identity leading to organ initiation and organ development. However,

a direct link between genes and shapes, as well as a precise quantification of the morpho-

logical events taking place during flower development, is still missing. Also, according to

Vaughan [1955] floral organ growth in Arabidopsis thaliana is actually initiated from internal

cells, making the sole observation of surface cells less informational regarding the potential

sources of variation leading to shape change. Together with the previous details on struc-

tural zonation of the FM also lead to conclude that observing only the surface should not

be enough.

In-depth live-imaging of growing tissues, together with the proper segmentation and

lineage tools, allow us to explore and quantify the morphological events taking place during

morphogenesis at cellular scale. We will develop in the next chapter the huge advances and

tremendous potential that in-depth live-imaging of growing tissues bring to developmental

biology.
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5 Fluorescence live-imaging enable genes, shape and

growth quantification at cellular scale.

I will now illustrate the great potential of fluorescence in-depth live-imaging, whose notable

difference with nowadays -omic approaches, is to provide quantitative and dynamic data

at single cell resolution. In this section, we will focus on methods using fluorophore-based

biosensors which are widely used. The main reason for this success, especially for fluorescent

protein, reside in its capacity to be synthesised by the cell, and therefore to label specific

proteins by genetic manipulation. Hence it is possible to qualitatively and quantitatively

observe these proteic biosensors inside the living tissue. I do not propose extensive reviews

of every fluorescent biosensor (for review see Okumoto et al. [2012]), neither do I aim to

describe all possibilities offered by fluorescence-based live-imaging techniques, but rather

my aim is to simply their potential.

5.1 From staining to labelling.

To further grasp the full potential of these proteic biosensors, let’s compare them to more tra-

ditional markers (not necessarily fluorescent) used in optical microscopy. Optical microscopy

does not permit to see the inner parts of the tissue and thus require it to be sectioned. Un-

fortunately, after sectioning the biological object, light absorption/re-emission properties of

the material are close to null, making the distinction of the tissue structures difficult. We

call staining the external application of a dye, thus used to create a contrast by colouring

parts of the tissue. They work by reacting to, or concentrating in, specific parts of a tissue,

and using several dyes at once is possible to highlight different structures within a tissue.

Some of these dyes also possesses a fluorescent activity(emitting photons after excitation),

making them useful for in-depth imaging, like the FM4-64 which selectively stain membranes.

Although they present some limitations like being toxic at high doses and the fact they cannot

label specific proteins.

The alternative to staining and the solution for labelling specific proteins is to create sta-

ble transgenic lines using proteic fluorophores. The first fluorescent protein that was isolated
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is the green fluorescent protein (GFP) from the jellyfish Aequorea victoria by Shimomura

et al. [1962]. Being a protein the GFP is producible by any cell possessing its DNA sequence,

hence using a construct made of a gene of interest fused to the GFP gives the possibility

to track (after maturation of the GFP) the resulting expressed protein inside the tissue.

However, as we will see later, protein-GFP fusions also present some limitations.

Other techniques have been developed to label biological material, notably RNA, and

they are reviewed in Dean and Palmer [2014].

5.2 What to label ?

Choosing what to label obviously depends on the goal of the experiment, on the biological

object to work with, as well as the employed imaging technique. For instance it might not

be possible to easily proceed to genetical modifications of the organism, in such cases the

options are limited to staining as introduced earlier.

With the possibility to label proteins with a fluorescent marker, comes the possibility

to follow crucial aspects of its dynamic such as its degradation, localisation or diffusion.

Obviously, knowing the whole expression pattern of some proteins or of an hormone (indi-

rectly) at cellular resolution may be crucial in understanding complex regulatory systems

with multiple feedbacks and levels of control.

For example, using a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS,

Brunoud et al. [2012] managed to obtain a (negative) map of relative auxin distribution at

cellular resolution in different tissues (SAM and RAM). Indeed the constitutively expressed,

and rapidly maturating, DII-VENUS fluorescent protein is degraded in the presence of auxin,

hence locally reducing the signal. This is due to the action of the DII domain (from the

Aux/IAAs, see sections 3.1 and 3.2) that cause the protein to be addressed to the proteasome

in the presence of auxin. Together with another auxin activity reporter (DR5-VENUS), the

analysis of their respective signals have shed light on the buffering capacity of the auxin

perception network, which translates a fluctuating input (observed with DII-VENUS) into

a stable output (observed with DR5-VENUS) [Vernoux et al., 2011].

Another example of the unique potential of in-depth fluorescence live-imaging techniques
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is the existence of biochemical sensitive fluorophore. For instance, some fluorescent biosen-

sors are pH sensitive and acquiring their emitted signals, it is possible to quantify the pH

levels of the cytoplasm. By targeting the fluorescent proteins toward specific sub-cellular

compartments it is possible to obtain their pH [Kneen et al., 1998] (for review see Bizzarri

et al. [2009]). Although these pH-nanosensors are not perfect yet [Zhang et al., 2013], they

have been used to visualise fundamental processes like synaptic transmission [Miesenböck

et al., 1998], exocytosis and endocytosis of insulin [Ohara-Imaizumi et al., 2002] or to detect

primary and metastatic breast tumors [Lee et al., 2011].

Ultimately, the key aspect of fluorescent proteins is their ability to provide quantitative

data. A relationship indeed exist between the amount of fluorescence and the concentration

of proteins given quantum yield and the dye extinction rate. In the case of fluorescence,

quantum yield Φis defined as:

Φ = number of photons emitted
number of photons absorbed .

However this information is not always available and there are other means to obtain quan-

titative measurements of proteins concentrations. We will not explain here the principles

of qunatitative imaging, but for an extensive review of the available quantitative biosensors

and their use see Okumoto et al. [2012]. Nevertheless, the numerous insights that available

biosensors provide can be summarises as follows:

• quantitative protein tracking: localization (if membrane-localised, enables access to

cell geometry), turnover and redistribution;

• quantitative protein dynamics: interaction and translocation (sub-cellular redistribu-

tion);

• quantification of biochemical properties provided by pH-sensitive, voltage-sensitive

[Akemann et al., 2012] or calcium sensing fluorochrome [Tada et al., 2014].

Regarding diffusion or transport processes, adding a fluorescent protein to the protein of

interest, might alter these processes by making a too “big” (context dependant) protein.

Some alterations of the protein functionality have also been reported.
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In summary, it is clear that live-imaging is a powerful tool to track fluorescents marker

in the depth of the sample at high resolution (spatial: sub-cellular; temporal: minutes). All

this at single-cell resolution but with a low genomic resolution. For an extensive review of

the available quantitative biosensors and their use see Okumoto et al. [2012].

5.3 A 5D universe to compare -omic tools and live-imaging.

The idea of a 5D molecular universe was introduced in their review by Megason and Fraser

[2007]. It is an interesting way of representing the problems faced in developmental biology.

Noting ‘xyz’ the first three spatial dimensions, ‘t’ the temporal dimension and ‘g’ the genomic

dimension, we thus face a molecular universe made of five dimensions ‘xyztg’. Picturing

strengths and weaknesses of each techniques, in imaging or others conventional -omic, is

facilitated by comparing how they will slice this multidimensional pie.

In order to further illustrate the differences with numbers, Megason and Fraser [2007] use

the example of acquiring zebrafish genes expression patterns at near cellular resolution during

its embryonic development (see figure 9). It possesses roughly 25 000 genes in its genome,

would require a theoretical 100 points across each spatial dimension (high spatial resolution)

and 1000 time points representing a temporal resolution of a few minute. With in toto live

imaging technique, 25 000 developmental time-series would be required to build an atlas of

genes expression patterns (if we label gene per genes). With conventional -omics much more

data would be required (number of cells x number of time-points ∼ 1, 000, 000, 000) and we

would still face the challenge of synchronisation.

Spatial dimension. Quite obviously, the conventional -omic techniques perform “poorly”

in the spatial dimension since they require a lot more biological material than available in a

single cell. Therefore the results of these methods are averaged over various tissues in case

of multicellular organisms, and unsynchronised individuals in case of unicellular organisms.

Another solution would be to do cell-sorting to only select the cells we are interested into.

However, if we are interested in analysing a developmental process, it requires to be able

to synchronise either the biological object development or the sampling to investigate the

process at the same stage. In practice, this is often very difficult to do, even for single cell
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organisms. On the contrary, with imaging techniques, it is possible image the development of

the organism at single cell resolution, even sub-cellular resolution can be achieved in certain

cases.

Figure 9: Theoretical example of a molecular uni-
verse for in toto imaging of zebrafish embryogenesis.
The ‘xyz’ space correspond to spatial dimension, ‘t’
to temporal dimension and ‘g’ to genomic dimen-
sion. Source: Megason and Fraser [2007].

Temporal dimension. Considering the

temporal (also called longitudinal) dimen-

sion, for they are destructive techniques,

conventional -omic strategy are difficult to

implement in time. Indeed, destroying the

sample, these techniques impose a synchro-

nisation between the samples, making the

acquisition of accurate temporal data almost

impossible. Conversely, being non-invasive,

live-imaging techniques are perfect to ac-

quire temporal data since they permit to fol-

low the development of the same object in

time. We will note that, there are a few limitations to this assertion, since fluorochrome

labelling can sometimes limit the temporal resolution or coverage of the acquisition by inter-

fering with the normal development of the organism under study, or even kill it. Nevertheless

fluorescent imaging also suffer of time-dependant drawbacks, inherent to the acquisition tech-

nique, like photo-bleaching (fluorophores extinction rate superior to maturation rate) then

demanding greater time-interval between successive acquisitions.

Genomic dimension. On the contrary, for the genetic dimension, conventional -omics

techniques are far more powerful (in term of resolution) than imaging. It is the very strength

of -omics techniques that can analyse thousands of gene expression levels at once. However,

-omics techniques relying on mRNA like microarray also posses a drawback. In case of

regulating networks for example, it is often the proteins that apply the function. Knowing

that there are several steps between mRNA and proteins, implies that mRNA quantification

does not necessarily mean protein quantification. Gygi et al. [1999]; Greenbaum et al. [2003]
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worked at establishing this correlation between mRNA and protein levels, in yeast and other

multicellular tissues. Their finding indicates that it is quite poor (r ∼ 0.4 − 0.6) and can

vary greatly depending on the cell type, developmental stage and category of proteins. On

the other side, it is imperative for imaging techniques to label (with a fluorochrome) the

desired object under study to acquire it. Protein quantification can be achieved by several

means but remains a tricky task. Nevertheless obtaining its spatio-temporal pattern or

relative expression level only require to attach a fluorochrome to the protein. This process

can be limiting for organism where genetic transformation techniques are difficult to set-up.

Moreover, tracking several proteins at once require spectrally non-overlapping fluorochromes,

so their respective signals can be separated. The number of such fluorochromes currently

available is still limited in number compared to the number of genes of most organism.

5.4 Examples of live-imaging in animals morphogenesis.

I propose to illustrate the excellent capacity of live-imaging to study morphogenesis by using

examples from the animal community. Some model animals like the nematode Caenorhabditis

elegans, ascidian Ciona intestinalis, zebrafish Danio rerio or fruit fly Drosophila melanogaster

have proven adequate experimental subjects to advance in the field of developmental biology.

In depth live-imaging of these biological models is indeed possible because most technical

requirements are met: small size (fit as a whole under the microscope), short developmen-

tal time, transparency (good signal to noise ratio in the deeper parts of the tissues) and

possibility to genetically modify the object. As we can see, it is the combination of the

latest developments in every field (optic, biochemistry, image analysis...) that allow these

acquisitions and analyses.

For example in the case of C. elegans the developmental plan of this worm is so precise

that both lineage and cell fate are invariants from one individual to another [Bao et al.,

2006; Murray et al., 2008]. Starting from the zygote, 13 hours later (larval stage 1) the

organism is made of 558 cells. It will reach 959 cells at its adult size of about 1 millimetre

long [Bao et al., 2006]. Being easily genetically transformable and presenting a stereotypic

development, this organism is perfect for making a 3D digital atlas (of the first larval stages)
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at cellular resolution [Long et al., 2009] and analysing genetic expression profiles of genes

implicated in its embryogenesis [Murray et al., 2008]. The 3D reconstruction of cell nuclei

positions was made possible by segmentation algorithms after straightening the curved body.

An interesting outcome of this 3D reconstruction is the possibility to estimate de degree of

precision of cell nuclei positions by computing the average standard deviation of the cell

nuclei position. Along the antero-posterior axis, the average standard deviation of the cell

nuclei position is equal to 1.87µm, demonstrating the extreme precision of the developmental

plan.

Another illustration of image based approach to understand morphogenesis is given by

the work of Bosveld et al. [2012] on Drosophila melanogaster thorax morphogenesis. They ac-

quired fruit fly dorsal thorax using multi-scale imaging of ubiquitously expressed E-Cadherin

(cell-cell adhesion proteins) fused with GFP. This time-lapse was made over 26 hours every

five minutes, which after watershed segmentation yielded 2.8 millions cells overall. Using

physical modelling, notably cells velocity map, they revealed how the Fat/Dachsous/Four-

Jointed planar cell polarity pathway control morphogenesis of the thorax. They indeed first

observed that the planar polarisation is first established by Dachsous which polarizes the

myosin Dachs, then promoting anisotropy of junction tension. Finally using physical mod-

elling on the basis of quantitative image analysis, they could demonstrate that this junction

tension anisotropy is defining the pattern of local tissue contraction, in turn contributing to

the epithelium shaping mainly via oriented cell rearrangements.

5.5 Imaging cell geometry to quantify shape and growth at cellu-

lar scale.

To access information on cells geometry, an obvious solution is to obtain a signal that marks

cell outlines. Two different solutions to that end can be considered: either externally staining

or using wall- or membrane-based fluorescent labelling.

For instance, external application of a fluorescent dye may be achieved using FM4-64

which selectively stain vacuolar membranes with red fluorescence (excitation/emission max-

ima 515/640 nm). However, the main drawback of most vital dyes is that they are lethal
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at high doses and therefore not always well suited to study living tissues.

Labelling specific proteins with a fluorescent protein is possible if the organism is genet-

ically transformable. Then using membrane addressing sequences, like LTI6b [Cutler et al.,

2000], fused to -say- a GFP it is possible to image the cells outlines.

Finally, on the basis of the outline, it is possible to manually measure 2D features but

most of the time, due to the large number of cells, it is advisable to reconstruct an abstracted

representation of the tissue by delimiting cells individually. In image analysis this process is

called segmentation. Some have using Delaunay triangulations based on the cells nucleus to

reconstruct the cells outline. We argue that quantifying geometrical features on such artificial

reconstructions is erroneous, notably because the nucleus is not always at the center of its

cell. However it can be use for illustration purpose, or 3D digital atlas construction as seen

before with C. elegans [Long et al., 2009].

5.6 Image processing: from intensity-based to object-based rep-

resentations.

Going from a pixel (2D) or voxel (3D) based representation of intensity-based data to an

abstracted object-based representation of the tissue is the core of pattern recognition meth-

ods. Implementing automated algorithms to carry out this task is a pre-requisite towards

the large-scale quantification of spatio-temporal (or at least spatial) data. The main idea is

to “explain” to the computer how to recognise a cell (outline) or a nucleus, a task the human

brain achieve so easily (at least in 2D).

More and more trouble arises with missing information (e.g. absence or holes in the

membrane signal) or noise (auto-fluorescence or random errors), which will introduce seg-

mentation errors such as over segmentation (too many cells) or fused cells (e.g. if the cell

contours are too thin). This is why it is of the greatest importance to obtain the best pos-

sible images, and also why intensity-based image filtering and corrections is also an active

research area. Ultimately, segmentation algorithms will reconstruct cell shapes or recover

cell nuclei positions in space, thus quantification of cell features, comparison between series

and their statistical analysis will be possible.
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Figure 10: Illustration of intensity based image (left) transformed into a cell-based image (right).
Source: Images and segmentation were generated at the RDP.

In the wake of a great increase in image acquisitions, and the relative youth of the image

3D reconstruction field, many dedicated segmentation tools have been built depending on

their intended application and the nature of the object to recognise (e.g. cell shape, cell

nucleus, neurons...). This resulted in a rather large choice of libraries, packages or software.

I will focus on presenting 3D cell shape reconstruction algorithms since we want to achieve

a statistical analysis of the spatio-temporal data. For a review about biological imaging

software see Eliceiri et al. [2012].

Among the integrative platforms, we can cite ImageJ [Abràmoff et al., 2004], Fiji [Schin-

delin et al., 2012] and BioImageXD [Kankaanpää et al., 2012]. ImageJ is the oldest of the free

image analysis platforms and is widely used. Fiji is a bundled version of ImageJ containing

plug-ins and features oriented toward microscopy images analysis. In both case, it is possible

to readily use the integrated segmentation algorithms, and even to write or integrate your

own.

Recently, dedicated 3D images analysis libraries have been developed, such as the In-

sight toolkit (ITK) [Yoo et al., 2002]. However, except for its integration in BioImageXD,

this library requires expert programmer to be used. Nevertheless, it offers many different

3D segmentation possibilities: Geodesic Active Contour, Shape Detection Level Set, Fast

Marching Level Set, Region Growing and Watershed segmentation. In addition it integrate

intensity-based image filters as well as segmentation correction tools and classification anal-

ysis methods.
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Another software that is gaining in popularity is MorphographX [Kierzkowski et al., 2012],

which propose a graphical interface and the possibility to rapidly edit the segmentation using

various correction tools. Initially proposing 3D surfacic segementation, it will soon integrate

the segmentation algorithms of the ITK library, thus offering full 3D segmentation.

Lastly, I cite the multi-angle reconstruction and segmentation - automatic lineage track-

ing (MARS-ALT) software [Fernandez et al., 2010], which presents the unique feature to

combine multiple views of the same object. It was developed to solve the problem of the

lower resolution in z-direction (orthogonal to the focal plane), thus after deforming and fus-

ing several images, even with a low tilt angle, it returns a 3D stack with the same resolution

in all three directions (e.g. from 0.2× 0.2× 1µm to 0.2× 0.2× 0.2µm) This reconstruction

step is semi-automated since manual definition of landmarks is necessary to initiate the rigid

and non-linear transformations. The segmentation algorithm used by MARS is based on a

watershed algorithm. It has been fully automated using automatic seed detection, necessary

to initialise the watershed algorithm, but it might be necessary to play with some of the

parameters to achieve a reasonable segmentation.

Discussion.

Fluorescent live-imaging is still in its youth but it is rapidly growing and necessitates a lot of

computational, storage and processing means. The possibilities offered are tremendous and

there is no doubt that it will accelerate many research fields like biology and medicine. New

or more powerful methods and hardware are invented every year, and we are already talking

about the next generation of microscopy, the one that will get rid of optical limits: the

“super-resolution” fluorescence microscopes Huang et al. [2009]. Conventional fluorescence

microscopy is indeed limited in terms of spatial resolution because of the diffraction of light.

This diffraction limit, permit to image up to 200-300nm in the lateral direction (xy) and

500-700nm in the axial direction (z). This is sufficient to properly image the cells, but it

remains comparable or larger than most sub-cellular structures, thus it is not possible to

observe them in details.

Also, in-depth imaging of the tissue requires energy (photons) to pass through the bio-
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logical sample in order to activate a fluorescent molecule. This process sometime interfere

with the normal development of the biological object under study, and can even kill it.

Another important challenge is obtaining signal with the best signal to noise ratio, causing

the segmentation methods to fail and images to be blurry. In that view, Schleifenbaum et al.

[2010] have proposed a method to enhance the contrast of the images, using differences in

decay dynamic of both signals (true signal and auto-fluorescence). Other researches have

focused on improving the signal quality by proposing monomeric fluorescent protein, with

higher quantum efficiency, faster maturation and more photo-stability [Shaner et al., 2004].

To conclude, many improvements can still be made at various levels (imaging hardware,

biochemistry and image processing), but due to the widespread use of these still-emerging

methods, many researchers are working toward this end.

Conclusions and questions

We have seen that plants present structures with zones of active organogenesis called meris-

tems. The primary meristem of the plant aerial parts, the SAM, is responsible for the

architecture of these aerial part by spatially and temporally regulating the site and rhythms

of organs initiation. It is therefore an organising center with unique features like the presence

of a stem cell niche located at the very tip, whose maintenance is essential for organogenesis

to carry on. In the case of the angiosperms, the SAM is also responsible for the organogen-

esis of the reproductive organs: the flowers. FM organogenesis (initiation and development)

then appears as a biologically crucial process.

The resulting distribution of organs along the stem axis is called phyllotaxis, and we

have seen that it involves phytohormones that are distributed in spatio-temporal patterns

and perceived by protein networks. These networks seems to act upstream developmental

genes regulating the organ morphogenesis. However, if the regularity and stability of the

phyllotaxy is attributable to spatio-temporal hormonal patterns, what could be the use and

function of the auxin perception network?

Some preliminary results indicate that the auxin perception network could also be spatio-
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temporally regulated, since in-situ hybridisation of some members of the network displays

specific expression patterns. Moreover, three groups of distinct biological functions are

believed to structure the network. Under the assumption that the auxin perception network

structure is linked to its function, I first thought at determining its structure. It then proved

crucial for ordinary differential equation modelling of the network, notably by simplifying

the equation system, ultimately leading to propose putative function for the perception

network. Ultimately, model validation came through the extensive characterisation of the

TF expression patterns as well as the observation of the auxin distribution (input) and

transcriptional (output) patterns.

In addition, it as been demonstrated that the TF composing the network are phyloge-

netically linked, since they originate from events of sequences duplication and mutation. In

that wake, amidst some rare exceptions (ARFs 3, 17 and 23), they all present two highly

conserved domains responsible for their dimerisation capacity. To further explain the TF

network structure, I therefore thought it could be interesting to model the influence of

phylogenetic distances between dimerisation sequences on the auxin signalling interactome

structure.

After organ initiation comes morphogenesis, the organ shaping phase, controlled by the

organ-specific developmental plan encoded in the homoetic genes. As demonstrated in all

studied multi-cellular organisms, morphogenesis is a highly complex process involving genes

regulatory networks, hormonal signals and mechanical feedbacks from the growing tissues.

Moreover, these mechanisms act at different scales (molecular, cellular and tissular). This

complexity has led some researchers to make use of modelling techniques to try to link

gene functions and shape emergence into a growth framework. However, we still lack a

precise 3D spatio-temporal cellular features quantification of a real growing tissue to test

such predictive models. Nevertheless, fluorescent live-imaging has recently enabled this and

we can thus ask if quantifying real spatio-temporal cellular features, together with dedicated

statistical methods, can help the identification of morphogenetic patterns.

To do so, I will first define and organise the features extractable from a growing multi-
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cellular tissue. Then using statistical methods, I will try to identify and characterise links

between genes, local changes in cellular features, and shape emergence.

A striking aspect of both auxin perception network and morphogenesis is that they are

both spatio-temporally regulated. Therefore, both the TF network and the growing tissue

can be represented as graph. The TF network have been summarised as an undirected binary

and valued graph as we tried to explain its function by analysing its structure. The grow-

ing tissue has been formally defined as an attributed spatio-temporal graph, summarising

the spatial adjacency relations as undirected edges and the lineage as directed edges. The

vertices and both types of edges can receive attribute describing the observed development

of the FM. Finally, under the assumption that hidden functional patterns are in both cases

structuring these graphs, we have used clustering methods to identify closely related vertices

of the graphs that led to the characterisation of fundamental patterns.

To summarise, the main questions I will address in this thesis are:

• can we relate the structure and function of the auxin perception network?

• is the phylogenetic information relevant to the network structure?

• is it possible to identify and characterise morphological patterns of a growing floral

meristem on the basis of its observed geometrical features at cellular scale?
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CHAPTER 1.

Abstract

The plant hormone auxin is thought to provide positional information for patterning during de-

velopment. It is still unclear, however, precisely how auxin is distributed across tissues and how

the hormone is sensed in space and time. The control of gene expression in response to auxin

involves a complex network of over 50 potentially interacting transcriptional activators and repres-

sors, the Auxin Response Factors (ARFs) and Aux/IAAs. Here we perform a large-scale analysis

of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based pat-

terning controls organogenesis. A comprehensive expression map and full interactome uncovered

an unexpectedly simple distribution and structure of this pathway in the shoot apex. A math-

ematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with

spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a

novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with

the published DR5 transcriptional output reporter. Our results provide evidence that the auxin

signalling network is essential to create robust patterns at the shoot apex.
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1 Introduction

Auxin is a key morphogenetic signal involved in the control of cell identity throughout plant

development. A striking example of auxin action is in the regulation of organogenesis at the

shoot apical meristem (SAM). The SAM, a population of stem cells generating the aerial

parts of the plant [Traas and Doonan, 2001], continuously produces new organs at precise

positions at its periphery [Vernoux et al., 2010]. The dynamics and robustness of organ

positioning and patterning is thought to depend on local accumulations of auxin, generated

by the PIN-FORMED1 (PIN1) efflux carrier controlling the direction of auxin polar fluxes

[de Reuille et al., 2006; Bayer et al., 2009; Gälweiler et al., 1998; Heisler et al., 2005; Jönsson

et al., 2006; Reinhardt et al., 2003; Smith et al., 2006; Vernoux et al., 2000] together with

the AUX1/LAX influx carriers [Bainbridge et al., 2008; Reinhardt et al., 2003]. While the

role of polar auxin transport has received extensive attention in the recent years, both auxin

distribution and the contribution of its signal transduction pathway to patterning in the

SAM are still largely uncharacterized.

A complex ensemble of 29 Aux/IAAs and 23 ARFs is central to the regulation of gene

transcription in response to auxin (for review: Chapman and Estelle [2009]; Guilfoyle and

Hagen [2007]; Leyser [2006]). Protein-protein interactions govern the properties of this trans-

duction pathway [Del Bianco and Kepinski, 2011]. Limited interaction studies suggest that,

in the absence of auxin, the Aux/IAA repressors form heterodimers with the ARF tran-

scription factors (For review: Guilfoyle and Hagen [2007]) and recruit co-repressors of the

TOPLESS (TPL) family, preventing the ARFs from regulating target genes [Szemenyei et al.,

2008]. In the presence of auxin the Aux/IAA proteins are targeted to the proteasome, by an

SCF E3 ubiquitin ligase complex [Chapman and Estelle, 2009; Leyser, 2006]. In this process,

auxin promotes the interaction between Aux/IAA proteins and the TIR1 F-box of the SCF

complex (or its AFB homologs) that acts as an auxin co-receptor [Dharmasiri et al., 2005a,b;

Kepinski and Leyser, 2005; Tan et al., 2007]. The auxin-induced degradation of Aux/IAAs

would then release ARFs to regulate transcription of their target genes. This includes ac-

tivation of most of the Aux/IAA genes themselves, thus establishing a negative feedback

loop [Guilfoyle and Hagen, 2007]. Although this general scenario provides a framework for
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understanding gene regulation by auxin, the underlying protein-protein network remains to

be fully characterized. In addition, while auxin predominantly activates transcription (Pa-

ponov et al. [2008] and references therein), sequence analysis and transient assays suggest

that most of the 23 ARFs act as transcriptional repressors while only 5 (ARF5, 6, 7, 8 and

19) of them are activators [Guilfoyle and Hagen, 2007], further highlighting the need for an

integrated view of this pathway.

Expression map
In situ hybridization or GUS 

translational lines
 for TIR1/AFB co-receptors, 

ARFs and Aux/IAAs

ARF-Aux/IAA 
Interactome

High-throughput yeast two-
hybrid

Statistical 
Clustering

Simplified Map

ODE model

Predictions
1- Differential sensitivity
2- Buffering capacities

Class-specific stereotypic 
interaction properties

Identification of general 
trends in expression 

patterns

Aux/IAA

ARF

INPUT
(Auxin & 

perception)
OUTPUT

(Transcription)

DII-VENUS
Development
of a sensor of

auxin signaling input

Live Imaging
of auxin signaling 
input (DII-VENUS) 

and output 
(DR5::VENUS)

Experimental 
validations of 
predictions

Figure 1.1: Flowchart representation of the strategy and main findings. The experimental parts of
the work are shown in light green boxes. The connections between the different parts of the work are
represented by directed arrows.

To understand how the Aux/IAA-ARF pathway contributes to sensing auxin in space

and time, we have conducted a large-scale analysis of the Aux/IAA-ARF network in the

inflorescence SAM. Our strategy and findings are summarized in the flowchart presented in

Figure 1.1. A comprehensive expression map and full interactome uncovered a relatively

simple distribution and structure of this pathway in the shoot apex. Using Ordinary Differ-

ential Equation (ODE) modelling, we then predicted spatial differences in auxin sensitivity

and a strong buffering capacity of the Aux/IAA-ARF network in the SAM. Lastly, the de-

velopment of a novel auxin signalling sensor allowed us to dynamically visualize the input
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into the signalling pathway (a parameter that depends on both auxin concentration and

perception) and to confirm the predictions of our model. Taken together, our data provide

evidence that robust patterning at the shoot apical meristem depends not only on auxin

distribution but also on the local properties of the Aux/IAA-ARF signalling network.

2 Result and Discussion

2.1 Auxin signalling is spatially regulated in the shoot apical meris-

tem

To fully understand how auxin signalling is regulated in the SAM, we analysed the expression

patterns of the F-box co-receptors as well as of the Aux/IAA and ARF genes. First, we used

translational fusions to the GUS reporter gene to study the expression of the AFB1-3 and

TIR1 auxin co-receptors in the inflorescence (figure 1.2A-C; Supplementary Figure S1.1A-D

for serial sections) [Parry et al., 2009]. We found that AFB1 is the most abundant auxin

co-receptor (based on GUS activity), homogeneously expressed in the meristem, while AFB3

is expressed in tissues below the meristem. AFB2 is undetectable in the meristem proper.

TIR1 is weakly expressed throughout the meristem and shows a reduced expression in the L2

and L3 layers at the centre. Auxin receptor activity of the AFB4 and AFB5 F-box proteins

was also recently demonstrated [Greenham et al., 2011]. We thus used in situ hybridisation

to study the expression patterns of the corresponding genes in the SAM. While AFB4 could

not be detected at significant levels, we did detect a low expression of AFB5 throughout the

meristem that was slightly higher in the L2 and L3 layers of organ primordia (figure 1.2D,

Supplementary Figure S1.1E,F). Hence, our results suggest that TIR1, AFB1 and AFB5

control auxin-induced degradation of Aux/IAAs in the inflorescence meristem.

We next used systematic RNA in situ hybridisation to obtain the patterns of all ARFs and

Aux/IAAs (with the exception of ARF15 and 21 for which we could not obtain a cDNA). We

found 13 ARFs and 12 Aux/IAAs expressed in the meristem (figure 1.2E-ZC, Supplementary

Figure S1.2-S1.3 for serial sections). Expression was confirmed using quantitative RT-PCR

on total RNA from dissected meristems (Figure ZD), except for ARF4 and IAA12 that could
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Figure 1.2: Spatial regulation of Aux/IAA-ARF signalling in the inflorescence. (A-D). Expression
patterns of TIR1/AFB F-box co-receptors. Expression was analyzed using GUS translational fusions
for TIR1, AFB1 and AFB3 and in situ hybridisation for AFB5. The relative levels of the protein are
indicated for AFB1 and TIR1, as revealed by GUS activity detection time (TIR1: 48h; AFB1: 8h).(E-
ZC) Expression patterns of ARFs and Aux/IAAs revealed by RNA in situ hybridization. (ZD) Detection
of Aux/IAA and ARF expression by RT-qPCR in the inflorescence meristem. The analysis was done in
duplicate on meristem mRNAs. Error bars represents the range of values.(ZE) Schematic representation
of the Aux/IAAs and ARFs distribution in the meristem. The meristem is represented as a dome (PZ:
peripheral zone; CZ: central zone, in grey; SC: stem cells; OC: organizing centre). Global tendency in
expression levels are indicated by the size of the + sign. A dashed line was drawn between the upper
and lower part of the centre to indicate differences in signalling capacities since ARF4 and IAA18 are
expressed in the inner core. The primordia (P) have been delineated by a dashed line in the PZ to
indicate that several Aux/IAAs and ARFs shows an even high accumulation in the organ primordia.
Several Aux/IAA and ARF are also more specifically associated with vasculature (V; see main text).
Median or near-median sections are shown. Scale bar: 50 μm.

not be amplified, as well as IAA2 and 11 that were amplified but not detected by in situ

hybridisation. The expression of 2 ARFs (ARF11 and 19 : figure 1.2O,Q) and 4 Aux/IAAs

(IAA20, 26, 29 and 30 : figure 1.2Y,Z,ZB,ZC) appeared to be restricted to the presumptive

vasculature in the organ primordia or just a few cells in the epidermis (see also Supplementary

Figure S1.2 and S1.3) while ARF9 and 10 showed a weak homogenous expression (figure

1.2M,N and Supplementary Figure S1.2). Most strikingly, all the other ARF and Aux/IAA

genes (9 and 8 genes respectively) were expressed at higher levels at the periphery and at

lower levels in the centre of the meristem (figure 1.2E-ZC and Supplementary Figure S1.2-

S1.3) [Hardtke and Berleth, 1998; Pekker et al., 2005; Sessions et al., 1997; Wu et al., 2006].

Amongst these, ARF1, 2, 5, 7, 8, 18 and IAA12, 13, 18, 27 were expressed homogeneously

throughout the periphery of the meristem (although with different intensities), while ARF3,

4, 6 and IAA8, 9 showed an even stronger expression in organ primordia. ARF4 and IAA18

were also expressed higher in the inner core of the meristem, below the stem cells at the

centre of the meristem.

These in situ hybridisation results show that the expression of the Aux/IAA and ARF

genes defines 5 different domains in the meristem (figure 1.2ZE). However the general ten-

dency observed for most of the 25 ARFs and Aux/IAAs detected in the SAM is a differential

expression with low levels at the centre of the meristem (where the stem cells are located) and

high levels at the periphery of the meristem (where organ initiation takes place). For some

of the genes an even higher expression is observed in the organ primordia. This differential
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expression of auxin signalling regulators is also paralleled by a lower expression of TIR1

in the inner core of the meristem and the higher expression of AFB5 in the internal part

of primordia. Furthermore our data show that ARF activators and repressors are largely

co-expressed, suggesting a role for this co-expression in the regulation of transcription in

response to auxin.

2.2 The Aux/IAA-ARF interaction network has a simple struc-

ture

To understand the functional significance of the distribution of ARFs and Aux/IAAs in

the SAM, we next investigated the global structure of the Aux/IAA-ARF network using a

high-throughput yeast two-hybrid approach. This analysis revealed 433 positive interactions

amongst 1225 tested, indicating a highly connected network (figure 1.3A and Supplementary

Table S1.1). 78% (51 in 65) of the interactions tested in the literature were confirmed in our

data, indicating a very good coverage (Supplementary Table S1.2 and references therein). We

also confirmed 28 interactions out of 31 (90%) tested in planta using bimolecular fluorescence

complementation, further supporting the biological significance of our data (Supplementary

Figure S1.4).

To explore the organization of this network, we applied a graph clustering method [Pi-

card et al., 2009] that groups proteins based on their connectivity profile (i.e. proteins with

similar interactors). Three well separated clusters, characterised by contrasting probabilities

for within- and between-cluster connectivity, were uncovered (figure 1.2B, Supplementary

Figure S1.5): proteins in cluster I were strongly and similarly connected to each other and

to the proteins of cluster II; proteins of the cluster II were strongly connected to those of

cluster I, but sparsely to themselves; finally, proteins from cluster III showed a low connec-

tivity to the rest of the network and to each other. Similar results were obtained when we

restricted the analysis to the subset of ARFs and Aux/IAAs present in the SAM, indicating

a similar interactome topology (Supplementary Figure S1.6). Further examination showed

that cluster I contained mainly Aux/IAAs, cluster II mainly ARF activators and cluster

III ARF repressors (figure 1.2C,D, Supplementary Figure S1.5-S1.6). For the SAM-specific
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IAA28, IAA15, IAA12, IAA27, IAA19, IAA14, IAA17, IAA20, IAA30, IAA7, IAA31, 
IAA33, IAA32.

cluster II (9 proteins):  ARF5,  ARF19,  ARF8,  ARF7,  ARF6, IAA5,  ARF9, IAA9, 
IAA34.

cluster III (18 proteins): ARF11, ARF14, ARF3, ARF1, ARF13, IAA6, ARF4, ARF18, 
ARF16, ARF17, ARF10, ARF2, ARF12, ARF20, ARF22, IAA11, IAA29, IAA26.

cluster I (11 proteins): IAA18, IAA13, IAA16, IAA8, IAA12, IAA27, IAA19, 
IAA20, IAA29, IAA30, IAA26.

cluster II (7 proteins):  ARF5,  ARF8,  ARF7,  ARF19,  ARF9,  ARF6, 
IAA9.

cluster III (7 proteins):  ARF1,  ARF2,  ARF4,  ARF11,  ARF3,  ARF10,  
ARF18

D E

Figure 1.3: Structure the auxin signalling network. (A) Visual representation of the Aux/IAA-
ARF interactome using Cytoscape (www.cytoscape.org). The proteins are grouped according to their
biological identity as indicated. Note the global differences in connectivity of the three biological groups
(B-D) Connectivity graph and clusters identified by the MixNet algorithm. The probabilities associated
with the connectivity structure for the global network are indicated in (B). The three clusters are mainly
composed of Aux/IAA (I), ARF activators (II) and ARF repressors (III) as indicated in brackets in (B).
The identity of the proteins in these clusters for both the global network (C) and the SAM-specific
network (D) is shown. The proteins are ordered from the most to the least central in each cluster based
on the distance of the protein to the cluster. (E) The topology of the network relies on stereotypic
interaction capacities for the different classes of proteins as represented. ARF+: ARF activators; ARF-:
ARF repressors.

network (figure 1.2D) the only exceptions were the ARF9 repressor and IAA9, which showed

a connectivity profile closer to the ARF activators and were assigned to cluster II.

Our results thus indicate that the topology of the whole network, as well as of the

SAM specific network, relies on three principal features (figure 1.2E): (i) Aux/IAA proteins
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interact with themselves, (ii) Aux/IAA proteins interact with ARF activators and (iii) ARF

repressors have no or very limited interactions with other proteins in the network.

2.3 The structure of the Aux/IAA-ARF network provides a plau-

sible model for auxin signalling

Having obtained the structure of the Aux/IAA-ARF network, we next investigated the im-

pact of this structure on transcriptional regulation in response to auxin. The results of our

interaction analyses suggest a model for the Aux/IAA-ARF signalling pathway in the SAM

where transcriptional activation by ARF activators would be negatively regulated by two

independent systems, one involving the ARF repressors and the other, the Aux/IAAs. The

presence of auxin would remove the inhibitory action of Aux/IAAs but leave the ARF repres-

sors to compete with ARF activators for promoter binding sites. To explore the regulatory

properties of this signalling network involving multiple elementary reactions and a feedback

loop, we developed a mathematical model using ODEs.

In addition to data on the Aux/IAA-ARF interactome, the model was based on a set

of four other general considerations. First, that ARF activators and ARF repressors may

regulate the same target genes, since they can bind the same AuxRE element found in

promoters of auxin-induced genes [Goda et al., 2004; Nemhauser et al., 2004; Pufky et al.,

2003; Ulmasov et al., 1999b]. Second, that the promoters of auxin-induced genes have one or

two AuxREs, though a few may contain three or more [Goda et al., 2004]. Third, that all the

Aux/IAA genes expressed in the SAM except IAA16 and 27 are induced by auxin (Paponov

et al. [2008] and references therein). Fourth, that amongst the 23 ARF genes, only ARF4

and ARF19 expression can be induced by auxin [Paponov et al., 2008], thus indicating that

expression of the majority of ARFs is independent of auxin.

These experimental observations lead to the reaction scheme shown in figure 1.4A (a

more detailed version of this scheme is given in Figure 1 of Note S1) where:

1. the interactions between proteins occur according to figure 1.3E;

2. target genes promoter contains two AuxREs;
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3. target genes are regulated by both ARF activators and ARF repressors;

4. the target genes include the Aux/IAA genes but no ARF genes;

In this scheme we also considered three additional assumptions:

5. A cooperative effect occurs when two ARF activators are bound on target gene pro-

moters as suggested by Ulmasov et al. [1999b]

6. binding of auxin to TIR1/AFB co-receptors and Aux/IAAs is a faster process than

ubiquitination, implying that the effect of auxin on the system can be directly described

as an increase of Aux/IAA degradation rate (see Note S1 for further details).

7. the auxin-mediated degradation affects the stability of both Aux/IAA monomers and

dimers. In the latter case, the partner of the Aux/IAA (ARF activator or Aux/IAA)

is released.

Concentrations of populations of Aux/IAAs, ARF activators, ARF repressors and of

mRNA of auxin-induced genes were then described mathematically using a system of 5 ODEs

(figure 1.4A; see Material and Methods for full description of the model). For the analysis

of gene transcription in response to auxin, the most important aspect of this mathematical

description is that it allows analysing the transcriptional output R as a function of the

auxin level x. It is important to stress that, upon assumption (6), the auxin level x directly

modulates the Aux/IAA degradation rate as a function of both auxin concentration and

perception of auxin (see Material and Methods). The parameter x can thus be viewed more

generally as the input into the signalling pathway and changes in this parameter can reflect

either changes in auxin concentrations or changes in the TIR/AFB co-receptors levels.

We performed a mathematical and numerical study of the model (detailed in Note S1).

The main conclusions of this analysis are as follows:

1. We proved that in a range of plausible parameters, the system always reaches a unique

steady state. Simulations performed by varying the different parameters further indi-

cate that this steady state is stable. The effect of modifying the auxin concentration

x was to shift the system to a new value of the steady state, in other words to change

the level of all variables and notably the transcriptional output R.
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Figure 1.4: Mathematical model of the auxin signalling network. (A) Reaction scheme considered
for the model. The numbers in brackets indicate the 5 populations of molecule described by ODEs in
the model. (B) Effect of the level of ARF activators (middle panel) and ARF repressors (bottom panel)
on target gene induction capacity upon an increase in auxin (upper panel). (C) 3D representation of
the induction capacity as a function of ARF levels and ARF activator to ARF repressor ratio. The
surface has been obtained by calculating the transcription fold-change, i.e. the ratio of the mRNA
levels at equilibrium before and after a step increase in auxin. A colour map representing the parameter
values is shown. (D) Effect of the level of ARF activators (middle panel) and ARF repressors (lower
panel) on the stability of target gene induction upon varying auxin level. Transcription in response to
sinusoidal changes in auxin levels (upper panel) has been studied. Two situations, corresponding to the
centre (CZ) or the periphery (PZ), were considered. The effect of increasing ARF activators was tested
for the first situation (CZ + ARF+) and of decreasing ARF repressors for the second (PZ - ARF-).
For simplicity mRNA levels are shown in (B,D) for only the higher and the lower concentration of the
variable parameter used in the simulation. See figures 4 and 5 of Note S1 for the full range of values.

2. The model reproduced gene activation in response to an increase in the auxin concen-

tration x for all tested parameters. More generally, all variables of the system displayed

stereotypical response curves upon variations in auxin concentration showing the ro-

bustness of our model.

Both the robustness and the ability to reproduce a biological observation support the

plausibility of this model and prompted us to use it for investigating the role of auxin
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signalling in SAM function.

2.4 The auxin signalling model allows predicting differential sensi-

tivity to auxin and buffering capacities for the Aux/IAA-ARF

pathway in the meristem

Our expression study suggested a simplified view of the meristem where the same population

of Aux/IAAs, ARF activators and ARF repressors exhibit a low expression at the centre and

a high expression in the peripheral zone (figure 1.2). In order to study the significance of

such a spatial distribution for auxin-regulated patterning, we used the auxin signalling model

described above.

As could be intuitively expected, the ARF repressors limit the intensity of target gene

induction by ARF activators in our model (figure 1.4B; see also Figure 4,5 in Note S1), which

implies that the activation level of transcription in response to auxin (or more generally to an

increase in the auxin signalling input) depends on both the absolute levels and the balance

between ARF activators and repressors. This can be visualised by a 3D plot representing

the gene induction levels in response to auxin as a function of both the absolute levels of

ARF proteins (both ARF activators and repressors) and the ratio between ARF activators

and repressors (figure 1.4C). For a given ARF activator-to-repressor ratio, the gene induction

capacity increases with the absolute levels of ARF proteins, although with a slight decrease at

the highest concentrations of proteins when this ratio is elevated. Based on these simulations

we propose that, at the periphery of the meristem and notably in the organ primordia, the

higher expression of ARF activators might allow for a high capacity of induction of gene

transcription in response to auxin, despite the high expression of ARF repressors. On the

other hand, the low expression of ARF activators at the centre of the SAM would create

a low sensitivity to auxin. However, the fact that the expression of ARF repressors is also

reduced at the centre of the SAM might allow these cells to not be completely insensitive

to auxin. In addition, the distribution of the TIR1/AFB co-receptors could also contribute

to creating a difference in sensitivity between the centre and the periphery of the SAM by

reducing it in the L2 and L3 layers at the centre (lower TIR1 expression) and increasing it
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Figure 1.5: Spatial control and dynamics of auxin signalling at the inflorescence meristem.
(A) Schematic representation of signalling parameters monitored by DII-VENUS as compared to
DR5::VENUS. (B-D) Expression of DII-VENUS (B), mDII-VENUS (C) and DR5::VENUS (D) visu-
alized by confocal microscopy. Insets: overlay of the VENUS signal (Green) with the autofluorescence
signal (red). In (B) and (D) the 3 first primordia (P) are indicated and numbered from the youngest to
the oldest. Two initia (I) are indicated and numbered from the oldest to the youngest following stan-
dard nomenclature. (E) Auxin-dependent binding of IAA28 domain II to TIR1/AFB auxin co-receptors.
Anti-FLAG immunoblots of IAA28 domain II peptide pull-down assay with TIR1-FLAG, AFB1-FLAG or
AFB5-FLAG. IAA treatments are as indicated. (F,G) Time-course of DII-VENUS (F) and DR5::VENUS
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in the internal tissues of the organ primordia (higher AFB5 expression). In conclusion, we

predict that the differential expression of the ARF activators and repressors in the meristem

(figure 1.2) generates differences in auxin sensitivities between the centre (low sensitivity) and

the periphery (high sensitivity), and thus leads to a differential expression of the Aux/IAAs

(prediction 1).

Next, we sought to use our model to investigate the effects of altered auxin levels on the
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auxin signalling, since it is known that auxin levels can be modified in response to various

environmental factors (e.g. Gray et al. [1998]; Stepanova et al. [2008]; Tao et al. [2008]).

We analysed the transcriptional response to changing auxin concentrations by simulating

sinusoidal variations. These variations in auxin trigger oscillations in the transcriptional

level of target genes for all the parameter tested (see Note S1). However, we observed

that increasing the level of ARF repressors for a fixed level of ARF activators leads to an

attenuation of the amplitude of the fluctuations. Decreasing the level of ARF activators

for a fixed level of ARF repressors gave a similar result (see Note S1). This suggests that

the ARF activator-to-repressor ratio can affect the stability of gene expression in response

to auxin, or more generally to fluctuations in the auxin signalling input. This result can

be related directly to our simplified representation of the SAM by simulating a situation

equivalent to the centre of the meristem, where both ARF repressors and activators are

present at similarly low levels. This simulation showed a low, but stable induction of target

genes when the auxin input varies ("CZ" in figure 1.4D middle panel). Likewise a situation

equivalent to the periphery of the meristem with high levels of both ARF activators and

ARF repressors ("PZ" in figure 1.4D lower panel) also resulted in a relatively stable output.

In both cases, stability was perturbed when the balance between positive and negative ARFs

was altered (figure 1.4D). Increasing ARF activator levels when ARF repressor levels are low

("CZ + ARF+" in figure 1.4D middle panel), or decreasing ARF repressor levels when ARF

activator levels are high ("PZ - ARF-" in figure 1.4D lower panel), caused strong fluctuations

in target gene transcription levels. Thus, we predict that the signalling pathway buffers its

response to the auxin input via the balance between ARF activators and repressors, in turn

generated by their differential spatial distributions (prediction 2).

2.5 A novel signalling sensor, DII-VENUS, reports on the auxin

signalling input in the meristem

To test the predictions from our model experimentally, we needed to assess both the input

(auxin level and/or perception) and the output (target gene induction) of the signalling

cascade. For measuring the transcriptional output, the widely used DR5 reporter which
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consists of several ARF binding sites driving the expression of a reporter gene, is perfectly

adapted (figure 1.5A) [Benková et al., 2003; Heisler et al., 2005; Sabatini et al., 1999; Ulmasov

et al., 1997]. For assaying pathway input, given the absence of tools to visualize auxin in situ,

we designed a novel auxin signalling sensor that relates more directly to auxin concentrations.

This sensor comprises a constitutively expressed fusion of the auxin-binding domain (termed

domain II or DII) [Dreher et al., 2006; Tan et al., 2007] of several Aux/IAA proteins (IAA8,

9 and 28: see material and methods; Vernoux et al., in preparation) to a fast-maturating

variant of YFP, VENUS [Nagai et al., 2002]. By design, these fusion proteins should monitor

local degradation of Aux/IAAs, and thus the input in the signalling pathway depending on

auxin levels and/or on local differences in auxin perception (figure 1.5A). Confocal imaging

revealed that the strongest fluorescence signal was obtained using a nuclear-targeted VENUS

sequence fused to the IAA28 domain II (Vernoux et al., in preparation), which we henceforth

refer to DII-VENUS.

DII-VENUS fluorescence could be detected in both shoot and root apical tissues where

it showed clear differential distributions (figure 1.5B, Supplementary Figure S1.7A; Vernoux

et al., in preparation). Using root tissues, we showed that DII-VENUS abundance is depen-

dent on auxin and the TIR1/AFB1-3 receptors (Vernoux et al., in preparation). We also

observed that the disruption of ubiquitin-dependent breakdown of Aux/IAA proteins using

a proteasome inhibitor blocks the auxin-induced degradation of DII-VENUS in the SAM

(Supplementary Figure S1.8). In addition, introducing a mutation in domain II of DII-

VENUS (mDII-VENUS), which disrupts the interaction between Aux/IAAs and the auxin

co-receptors [Tan et al., 2007] largely abolished the differential distribution of fluorescence in

the SAM (figure 1.5C, Supplementary Figure S1.7B). We conclude that DII-VENUS abun-

dance is regulated by auxin via TIR1/AFB activities, consistent with the model for Aux/IAA

degradation [Chapman and Estelle, 2009].

We next tested auxin-dependent binding of the domain II of IAA28 to several TIR/AFB

co-receptors, to estimate their relative contributions to DII-VENUS degradation. Pull-down

experiments revealed that TIR1, AFB1 and AFB5 exhibited auxin-enhanced binding to

domain II of IAA28 (figure 1.5E). Similarly to what had been observed for other Aux/IAAs
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[Parry et al., 2009], the strongest binding was with TIR1 while the binding and the magnitude

in the auxin-induced increase in binding with AFB1 appeared lower. Binding to IAA28

domain II was also low for AFB5. Hence, in the SAM, the homogenous expression of AFB1

(figure 1.2B) might not be sufficient to ensure a homogenous degradation capacity of DII-

VENUS throughout the structure. The lower expression of TIR1 in the L2 and L3 layers at

the centre of the meristem (figure 1.2A) might significantly diminish DII-VENUS degradation

capacity in this part of the meristem, while AFB5 might lead to a more limited increase of

this capacity in the internal layers of primordia (figure 1.2D). Taken together, our results

suggest that DII-VENUS reports auxin signalling input in the SAM. DII-VENUS thus likely

provides information on auxin distribution but the differential of TIR1 and AFB5 needs to

be taken into account.

2.6 Auxin signalling sensors distribution and dynamics confirm

the model predictions

The degradation patterns displayed in the SAM from the DII-VENUS line indicated a high

auxin signalling input in flower primordia and a low input in the cells immediately surround-

ing the primordia, in agreement with the organ-specific expression pattern of DR5::VENUS

(figure 1.5B,D) [Heisler et al., 2005]. A low DII-VENUS signal was also observed at the

centre of both inflorescence and vegetative SAM (figure 1.5B, Supplementary Figure S1.7A).

DII-VENUS is thus efficiently degraded at the centre of the meristem, despite the lower

expression of TIR1 in most cells of this domain. This demonstrates a high auxin signalling

input at the centre of the meristem, in contrast to the complete exclusion of DR5::VENUS

expression from these cells (figure 1.5D), indicating that the signalling pathway limits gene

activation in response to auxin at the meristem centre. These results confirm the prediction

that ARF distribution in the meristem creates a differential sensitivity to auxin between the

centre and the periphery (prediction 1), thus contributing to patterning of the meristem and

higher expression of Aux/IAAs at the periphery of the SAM.

To test the buffering capacities of the signalling pathway (prediction 2), we next took

advantage of the dynamic properties of DII-VENUS by carrying out live imaging experiments
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to monitor DII-VENUS levels in real time (figure 1.5F) [Fernandez et al., 2010]. Our initial

intention was to perform auxin treatments to test the prediction. However, this turned out

to be unnecessary as we observed notable fluctuations in DII-VENUS signal intensities that

occurred naturally and without any treatments in the SAM. These variations were most

evident in the epidermal (L1) layer in a zone connecting the centre to the sites of initia I1

and I2. This demonstrates the presence of important temporal variations in the overall auxin

signalling input, especially in the centre and during the earlier steps of organ initiation. In

contrast to DII-VENUS, the auxin signalling output, visualized with DR5::VENUS, did not

show such global variations: the fluorescence remained stable in the organs after initiation

and no signal was ever detected outside the organs (figure 1.5G; see notably I2 and I3). Since

the VENUS protein does not appear to be unduly stable (Supplementary Figure S1.9), we

conclude that the stable expression of DR5::VENUS over time reflects a stable output of

the signalling pathway. Taken together, our results thus indicate that the Aux/IAA-ARF

network in the SAM buffers fluctuations in the auxin signalling input and stabilises the

activation of genes in response to auxin, thus providing biological evidence in support of the

second prediction made by our model.

3 Discussion

It has been proposed that the plant could modulate auxin signalling during development

by combining subsets of regulators in specific domains of tissues [De Rybel et al., 2010;

De Smet et al., 2010; Muto et al., 2007; Weijers et al., 2005]. Our results, showing that

ARF and Aux/IAAs are generally expressed at a lower level at the meristem centre and

at a higher level at the periphery (figure 1.2) lead to an alternative scenario for the SAM,

where the network is at least partially regulated by alterations in global expression levels.

By combining expression data with the interactome, mathematical modelling and two auxin

related markers (Figure 1), we provide evidence that this simple mode of regulation helps

to establish a differential sensitivity between the centre and the periphery of the SAM that

would be instrumental in translating dynamic auxin distributions into robust patterns.

A notable exception to this general regulatory principle at the SAM seems to be the
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provascular tissue where specific expression of most notably IAA20 and 30 could provide

different signalling properties to the cells (figure 1.2). It has been demonstrated that IAA20

and 30 lack a conserved domain II and are likely insensitive to auxin [Dreher et al., 2006;

Sato and Yamamoto, 2008]. They could thus locally diminish auxin sensitivity during the

patterning of the provascular tissue. Further analyses of the corresponding mutants will likely

help understand how these two non-canonical Aux/IAAs contribute to the development of

the vasculature in the shoot apex.

In contrast to most Aux/IAAs, the expression of 10 of the 12 ARF active in the SAM is

independent of auxin [Paponov et al., 2008]. This indicates that the distribution of ARFs is

most likely the primary factor controlling auxin sensitivity in the SAM and could be regulated

by auxin-independent patterning factors. Recent evidence indicating that modifying the

activities of two stem cell regulators, CLAVATA3 and WUSCHEL, can affect the expression

level of the auxin-inducible DR5 reporter supports this hypothesis [Yadav et al., 2010],

although the precise link between these patterning genes and auxin signal transduction

remains to be established.

We have also identified a differential regulation of the TIR1/AFB co-receptors in the

SAM (figure 1.2). Genetic evidence indicates that the TIR1/AFB genes act redundantly in

the regulation of auxin responses although with different contributions [Dharmasiri et al.,

2005b; Parry et al., 2009]. Previous work has shown that the Aux/IAA proteins IAA3 and

IAA7 exhibit a stronger interaction with TIR1 than with AFB1 [Parry et al., 2009] Our

analysis of the interactions between TIR1/AFBs and the domain II of IAA28 (figure 1.5)

are consistent with these observations [Dharmasiri et al., 2005b; Parry et al., 2009] and sup-

ports the conclusion that at least one important component of the differences in TIR1/AFB

co-receptor function relates to a broad variation in the affinity of their interactions with

Aux/IAAs. Taken together, this suggests that each of the F-box co-receptors present in the

SAM might be able to interact with the Aux/IAAs with a different affinity: high affinity for

TIR1 and lower affinity for AFB1 and AFB5. Although further analysis will be needed to

confirm these ideas, spatial changes in one of the TIR1/AFBs would therefore affect globally

the capacity to degrade Aux/IAAs. The distribution of TIR1/AFB co-receptors in the SAM
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would thus be expected to participate in the control of auxin sensitivity in parallel with

the ARFs by lowering the Aux/IAA degradation capacity at the centre (lower expression of

TIR1) while increasing it in the organs (higher expression of AFB5).

In our theoretical analysis of auxin signalling in the SAM (figure 1.4), we use a model that

appears to be the simplest possible interpretation of our current understanding of auxin signal

transduction. It is largely based on the rather simple topology of the network revealed by the

Aux/IAA-ARF interactome (figure 1.3). In this network, the vast majority of the Aux/IAAs

interact with all the ARF activators, suggesting that most Aux/IAAs have the potential

to act as repressors of the transcriptional activity of ARF activators. In addition, the

limited connectivity of ARF repressors suggests that the role of these transcription factors is

essentially auxin-independent and that they might simply compete with the ARF activators

for binding to the promoter of auxin-inducible genes. Whereas this general scenario most

likely applies to the SAM, it is important to point out that more specific interactions might

affect the dynamics of the ARF-Aux/IAA signalling pathway elsewhere in the plant. For

instance, ARF9 is the only repressor that interacts with a high number of Aux/IAAs thus

suggesting a different mode of action for this ARF compared to the other repressors. Its

weak homogenous expression in the SAM suggests that it likely does not play a dominant

role in the SAM. However it might be dominant in other tissues and identification of the

local network together with simulations using a modified version of our model would help

unravelling a putative function in these tissues. A limited number of interactions between

the other ARF repressors and some of the Aux/IAAs have also been detected, even in the

SAM-specific network. It is thus possible that such interactions participate in regulating the

activity of the auxin signalling network but further analysis will be necessary to explore this

possibility and understand its functional significance.

The development of the DII-VENUS sensor was instrumental in confirming the pre-

dictions made by our model (figure 1.5). Although the level of DII-VENUS depends on

both absolute auxin concentrations and the levels of the TIR/AFB co-receptors, given the

TIR1/AFB expression patterns DII-VENUS levels can be used to estimate relative auxin

levels in the SAM. Both TIR1 and AFB1 appear to be homogenous throughout the periph-
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ery of the SAM, while AFB5 is expressed specifically in the internal tissue of the primordia

(figure 1.2). Thus, given the low affinity of AFB5 for IAA28, the degradation of the DII-

VENUS sensor in the organ primordia and its accumulation in the organ frontiers likely

indicate a high concentration of auxin in the organ primordia and a low concentration in the

surrounding cells. In the centre of the SAM, the lower TIR1 expression in the internal tissues

should lead to less degradation of the DII-VENUS sensor and thus to an under-estimation

of the auxin parameter. The low level of DII-VENUS in these cells is thus most likely due to

a high auxin concentration at the centre of the SAM. Whereas high concentrations of auxin

at young organ primordia have been predicted, for instance based on the high activity of the

DR5-promoter [de Reuille et al., 2006; Benková et al., 2003; Heisler et al., 2005; Reinhardt

et al., 2003; Smith et al., 2006], the presence of auxin at the meristem summit was still

a matter of debate. Low DR5 activity in the central zone seemed to indicate low auxin

levels [Smith et al., 2006], but this was contradicted by the patterns of PIN transporters

at the SAM suggesting that auxin was preferentially transported to the meristem centre

[de Reuille et al., 2006]. Here we provide a simple explanation for this apparent discrep-

ancy, showing that significant amounts of auxin do accumulate at the meristem centre, but

without resulting in a high transcriptional output due to the low sensitivity there.

In conclusion, our work supports a key role for local auxin signalling in the regulation of

patterning at the SAM. It also provides a plausible auxin distribution map in the structure

that will need to be taken into account when further exploring the role of auxin in the SAM.

In this context, it will be also important to further analyze the mechanisms controlling DII-

VENUS level fluctuations in the SAM that might be linked to changes in auxin concentration

and to explore a potential physiological role for these fluctuations.
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4 Materials and methods

4.1 Plant material, growth conditions and plant treatments

All transgenic plants (see below) were generated in the Columbia (Col-0) ecotype of Ara-

bidopsis thaliana. Plants expressing translational fusion of TIR1, AFB1, AFB2 and AFB3

to GUS have been described [Dharmasiri et al., 2005b; Parry et al., 2009]. For the live

imaging, plants were grown on soil at 20◦C in short-day conditions (8h light/16h darkness)

for 4 weeks before being transferred in long-day conditions (16h light/8h darkness). The

chemical treatments were done by immerging dissected inflorescence apices into liquid MS

supplemented with the chemicals. Indole-acetic acid (IAA; Sigma) was dissolved in ethanol

and used at the indicated final concentration. MG132 was dissolved in DMSO and used

at the final concentration of 50 μM for 2h30. For MG132/IAA co-treatments plants were

pre-treated with MG132 for 1h30 before adding IAA and waiting an extra hour.

4.2 Analysis of gene expression

RNA in situ hybridization was performed as described [Vernoux et al., 2000] with at least 3

independent experiments for each probe tested. Analysis of GUS expression in the inflores-

cence meristem was done according to Vernoux et al. [2000]. The RT-qPCR was performed

on a Step one plus cycler (Applied Biosystems) using the SYBR green reagent kit (Roche).

mRNA were extracted from around 100 dissected inflorescence meristems (with all the flow-

ers older than the P1 stage removed) from soil-grown plants. The primers used are from

Czechowski et al. [2004] except for ARF8, IAA29 and IAA32 (Table S3). Expression of

several ARF genes could not be assessed due to non-reliable amplification (ARF1, 9, 15,

20, 21, 22 and 23). Expression of the TCTP gene (Table S3) was used as a standard and

calculations were as described (Pfaffl, 2001). Expressions were analyzed on 2 independent

mRNA extractions.
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4.3 Confocal microscopy and live imaging

Live imaging of living shoot apical meristems was performed as described previously [Fer-

nandez et al., 2010]. Observations were done either on a LSM-510 laser-scanning confocal

microscope (Zeiss, Jena, Germany) or a SP5 spectral detection confocal Microscope (Leica,

Germany).

4.4 Generation of plasmids and transgenic plants

The DR5::VENUS plasmid has been described in Heisler et al. [2005]. The DII-VENUS

and mDII-VENUS binary vectors were generated using Gateway technology and following

the Multisite Gateway three-fragment vector construction kit instructions (Invitrogen). Full

details of the cloning are given elsewhere (Vernoux et al., in preparation). Briefly we used

the degron region of IAA8, 9 and 28 starting from the conserved lysine to the end of domain

II (IAA8: 107-178, IAA9: 120-195, IAA28: 28-61) [Dreher et al., 2006]. To generate mDII-

VENUS, we introduced the previously described P53L mutation [Rogg et al., 2001] in the

wild-type IAA28 degron sequence. These sequences were then fused in frame to VENUS

tagged with the N7 nuclear localization signal [Heisler et al., 2005] and put under the control

of the strong constitutive 35S promoter. The different plasmids were then introduced in

plants by floral dipping [Clough and Bent, 1998].

For the plasmids used for generating the pull-down data (see below), a plant expression

vector containing a 3xFLAG tag was created by annealing the 3xFLAG-F and the 3xFLAG-

R oligonucleotides (Table S3) and cloned into a pFP101 binary vector (digested with HindIII

and BamHI to remove the 2x35SPro). A Gatewayr Cassette B (Invitrogen) was cloned in the

Klenow filled-in HindIII site flanking the 3xFLAG fragment to form the pFPGW-3xFLAG

vector. The coding sequences for TIR1, AFB1, and AFB5 (obtained form ABRC) were

PCR-amplified to add Gateway attB sites (table S3) and recombined into pDONR P5-P2

Gateway entry vector (Invitrogen). The TIR1/AFBs were then recombined in a multi-gene

Gateway reaction with pDONR P1P5r (Invitrogen) containing the cauliflower mosaic virus

35S promoter (CaMV35S) into the pFPGW-3xFLAG vector, in frame with the 3xFLAG

tag, to create the plasmids pFPGW-35S-TIR1/AFB-3xFLAG. The TIR1/AFB-3xFLAG
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sequence (without the promoter) was PCR-amplified from the pFPGW-35S–TIR1/AFB-

3xFLAG plasmid by using oligonucleotides AsiSIAFB1, AsiSITIR1 and FLAGPmeI (Ta-

ble S3) and cloned as an AsiSI-PmeI fragment into the pF3A WG (BYDV) Flexir vector

(Promega).

A 6xHIS tag was fused at the N-terminus of the ASK1 coding sequence by PCR using

oligonucleotide ASK1PmeI successively with the nested primers HISASK1 and AsiSIHIS,

and cloned as an AsiSI-PmeI fragment into the pF3A WG vector (generating the pF3A WG

ASK1 vector).

The 35S:AFB5:3xFLAG (AFB5-FLAG) transgenic line used for pull-down assays from

plant extract (see below) was created by first transforming pFPGW-35S-AFB5-3xFLAG

into Agrobacterium tumefaciens strain GV3101 [Koncz and Schell, 1986] by electroporation.

Transgenic plants were generated using the floral dip method [Clough and Bent, 1998] and

transformants were selected by seed coat fluorescence. In the T2 generation, lines showing

a 3:1 ratio of seed coat fluorescent:non-fluorescent plants, were selected for further study.

Homozygous lines were selected from the T3 generation.

4.5 In vitro transcription/translation of TIR1/AFB tagged pro-

teins, immunoprecipitations and pull-down assays

For pull-down assays with TIR1-FLAG and AFB1-FLAG expressed in wheat germ ex-

tract, the pFPGW-35S-TIR1/AFB-3xFLAG and pF3A WG ASK1 plasmids were used with

the TnT SP6 High-yield Wheat Germ Protein Expression System (Promega) to synthe-

size TIR1/AFB–3xFLAG co-expressed with HIS-ASK1 by in vitro transcription/translation

(IVTT) in accordance with the manufacturer’s instructions.

Pull-down assays with wheat germ expressed TIR1/AFB–3xFLAG were performed by

combining 22 μl of IVVT reaction extract with 6.5 μg of biotinylated IAA28 domain II peptide

(biotinyl-NH-EVAPVVGWPPVRSSRRN-COOH, synthesized by Thermo Scientific), 70 μl

50% streptavidin-agarose suspension and 440μl of extraction buffer (EB; 0.15 M NaCl, 0.5%

Nonidet P40, 0.1 M Tris-HCl pH 7.5, containing 1 mM phenylmethylsulphonyl fluoride, 1

μM dithiothreitol, 10 μM MG132 and 1 mg.ml-1 BSA (Sigma) with auxin treatments as
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indicated. The assays were incubated for 1 hour at 4◦C with mixing then washed three

times for 5 minutes in EB containing the auxin treatment.

For pull-down assays with plant-expressed AFB5-FLAG, extracts of 10 day old AFB5-

FLAG seedling were made as described previously [Kepinski and Leyser, 2005] and used in

pull-down assays by combining 2.5 mg of crude extract with 6.5 μg of biotinylated IAA28

domain II peptide, 70 μl 50% streptavidin-agarose suspension. The assays were incubated

for 1 hour at 4◦C with mixing then washed three times for 5 minutes in EB containing the

auxin treatment.

The final processing of all pull-down assays including electrophoresis and western transfer

were performed as described previously [Kepinski and Leyser, 2005]. The immunodetection

of TIR1/AFB-FLAG was performed with a 1:10000 dilution of anti-FLAG 2-Peroxidase

(HRP) antibody (Sigma) followed by chemiluminescent detection with ECL plus reagents

(Amersham).

4.6 Protein interaction analyses

For generating the different constructs for the interaction analyses, full-length cDNA for all

the Aux/IAAs and ARFs (except ARF15 and ARF21 ) were either obtained from ABRC

for the majority of them or RIKEN (for ARF4 ) or cloned by RT-PCR from cDNA libraries

obtained from various tissues (for ARF6, ARF14, IAA8, IAA9 and IAA28 ). Gateway tech-

nology was then used to generate the different constructs following the Multisite Gateway

three-fragment vector construction kit instructions (Invitrogen). For the Y2H analysis, full

length cDNAs were used for all the Aux/IAA and ARF3, 13 and 17 (ATG to Stop). Par-

tial cDNAs encoding domain III and IV were used for the other ARFs and corresponded to

the following region of the proteins: ARF1: 538-Stop; ARF2: 727-Stop; ARF4: 660-Stop;

ARF5: 788-Stop; ARF6: 790-Stop; ARF7: 1030-Stop; ARF8: 699-Stop; ARF9: 519-Stop;

ARF10: 575-Stop; ARF11: 500-Stop; ARF12: 500-Stop; ARF14: 497-Stop; ARF16: 570-

Stop; ARF18: 482-Stop; ARF19: 948-Stop; ARF20: 484-Stop; ARF22: 498-Stop. The

cDNAs or parts of cDNA were cloned directionally in pENTR/D-Topo (Invitrogen). They

were then systematically transferred by recombination to a Gateway-compatible pACT2-
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based vector (downstream of Gal4-AD) and a pGBKT7-based vector for the ARFs (down-

stream of Gal4-BD). The Y2H screen was performed using the mating method in a microtiter

plate format as described [Boruc et al., 2010]. Briefly, each interaction was tested in the two

directions (each protein was used alternatively as a bait or as a prey) and using two inde-

pendent reporters (LacZ and HIS3 ). LacZ activity was detected visually in the presence

of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal; Blue staining). HIS3 activity

was detected by the restoration of growth in the absence of histidine (See below for details

on the analysis of the Y2H data). We also tested expression in yeast for all the constructs

using standard Western blot analysis with an anti-HA antibody (clone 3F10, Roche) for

the fusions to Gal4-AD and a Gal4-BD monoclonal antibody (Clontech) for the fusions to

Gal4-BD. We confirmed expression for all the Gal4-BD fusions but a few Gal4-AD fusion

were very weak or could not be detected indicating that the number of interactors might

be underestimated for ARF9, ARF17, IAA11, IAA20 and IAA30. For BiFC analysis, we

tested various interactions (see Supplementary Figure S1.4) between ARF5, ARF6, ARF9,

ARF18 and/or the following stabilized Aux/IAAs: IAA8 P172S, IAA12 P74S, IAA17 P88L,

IAA18 P101S and IAA28 P53L. These mutations have been described for IAA12, 17 and

28 [Hamann et al., 2002; Rogg et al., 2001; Rouse et al., 1998] and similar mutations were

introduced in IAA8 and 18. The full-length cDNAs were fused in frame to YFP molecule

halves and interactions were tested by transient expression in Nicotiana Benthamina leaves

as described [Desprez et al., 2007]. Empty vectors were used as a negative control. Each

interaction was tested independently 2 to 4 times and similar leaves areas were scanned for

the different tests. The protein interactions from this publication have been submitted to

the IMEx (http://imex.sf.net) consortium through IntAct (pmid 19850723) and assigned the

identifier IM-15409.
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4.7 Cluster analysis of Aux/IAA-ARF interaction network

4.7.1 Construction of the interaction network on the basis of the yeast-2-hybrid

data

The output of the X-gal test took the form of a mark chosen from among the following

ordered marks: -; +; ++; +++. The output of the HIS3 test took the form of an optical

density (OD) ratio reflecting the efficiency of recovery (ratio of the OD in the absence of

histidine to the OD in the presence of histidine). The Spearman’s rank correlation coeffi-

cient between the outputs of the X-gal and HIS3 tests was approximately 0.7, suggesting

a partial but good agreement between these two tests. We thus chose to build a decision

rule that exploits the redundancy between the X-gal and HIS3 tests and the two possi-

ble configurations for a given pair of proteins. This decision rule involved two thresholds,

one for the X-gal and another for the HIS3 test. In order to determine these thresholds,

we analyzed the empirical distributions of the optical density ratio (HIS3 test output) for

each possible X-gal test output using Gaussian mixtures estimated with the mclust R pack-

age (http://www.stat.washington.edu/fraley/mclust). In particular, the empirical optical

density ratio distribution for the ‘+’ X-gal test mark was well fitted by a two-component

Gaussian mixture where the component of lowest mean was interpreted as false positives.

This interpretation was supported by the fact that the Gaussian component of lowest mean

almost disappeared in the empirical optical density ratio distribution for the ‘++’ and ‘+++’

X-gal test marks (i.e. for higher stringency of the X-gal test). On the contrary it was over-

represented for the ‘-’ mark. Based on this statistical analysis, the thresholds were fixed

between ‘-’ and ‘+’ for the X-gal test and at 0.45 for the HIS3 test. We finally defined

the following decision rule in order to minimize false positives: there is interaction between

proteins if at least an X-gal test and an HIS3 test are positive.

4.7.2 Cluster analysis

Structuring connectivity patterns were uncovered using a probabilistic clustering method

implemented in the MixNet software [Daudin et al., 2007; Picard et al., 2009]. The key

feature of the MixNet model is to give a probabilistic summary of the connectivity structure
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by uncovering clusters of proteins that share the same connectivity profiles. Briefly, instead

of directly describing the clustered structure of vertices, the MixNet model describes the

topology of the network using connectivity probabilities πq,` i.e. the probability for a vertex

from class q to be connected with a vertex from class `. The protein interaction network was

modelled as a random graph with (Xij; i, j = 1, . . . , N) representing its adjacency matrix,

such that Xij = 1 if vertices i and j are connected and 0 otherwise. The idea of the MixNet

model is to consider that vertices can be spread into Q connectivity clusters that are hidden,

with Q being unknown as well. The parameters of this model are the proportions of each

cluster α = (αq; q = 1, . . . , Q), and the connectivity probability matrix Π = (πq,`; q, ` =

1, . . . , Q). To this extent, Π is a summary of the connectivity of the protein interaction

network at the cluster level. For a given number of clusters Q, the outputs of the MixNet

algorithm are the estimated model parameters α̂ and Π̂ and the probabilities of assignment

of vertices to clusters (τiq; i = 1, K,N ; q = 1, K,Q). The posterior distribution (τiq; q =

1, . . . , Q) represents the probabilistic assignment of vertex i to the clusters.

4.7.3 Analysis of the adequacy of the clustering

We assessed the adequacy of the clustering obtained by the MixNet algorithm by evaluating

the separability of the clusters and the dispersion of the proteins within the clusters. Since,

in our case, the assignment of proteins to clusters is almost deterministic (i.e. τiq ≈ 1 for

a unique cluster q and τi` ≈ 0 for ` 6= q), this assignment can be viewed as a partition.

The model parameters (πq`), which parameterized the edges of the graph, cannot be used

directly to define dispersion measures of the vertices assigned to a given cluster. We thus

used the edges incident to the vertices to derive dissimilarity measures for the vertices using

the adjacency information. The Sokal-Michener distance between vertices i and j defined

as Di,j = ∑
k I(xik 6= xjk)/N , where I denotes the indicator function, is the proportion of

mismatches or disagreement between the ith and jth rows of the adjacency matrix. This

distance naturally expresses the difference in connectivity profiles between vertices. The
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distance between vertex i and cluster q is then given by:

D (i, q) =
∑

j 6=i τjq
∑

k I(xik 6= xjk)(∑
j 6=i τjq

)
N

If the vertices are deterministically assigned to a given cluster, this distance simplifies to

D (i, q) =
∑

j∈q;j 6=i

∑
k I(xik 6= xjk)

(nq − 1)N , if i ∈ q

D (i, q) =
∑

j∈q

∑
k I(xik 6= xjk)
nqN

, if i 6∈ q

where nq is the number of elements of cluster q.

The distance between cluster q and cluster ` is given by:

D(q, `) =
∑

i,j;i6=j τiqτjl
∑

k I(xik 6= xjk)(∑
i,j;i6=j τiqτjl

)
N

If the vertices are deterministically assigned to a given cluster, this distance simplifies to

D(q, q) =
∑

i,j∈q;i6=j

∑
k I(xik 6= xjk)

nq(nq − 1)N

D(q, `) =
∑

i∈q

∑
j∈`

∑
k I(xik 6= xjk)

nqn`N
, if q 6= `

4.7.4 Graphical representation of proteins preserving pairwise distances be-

tween them

We applied a multidimensional scaling (MDS) method [Hastie et al., 2009] to visualize the

proteins. Briefly, the MDS approach allowed us to find a low-dimensional projection of the

data such as to preserve, as closely as possible, the pairwise distances between data points

{D(i, j); i, j = 1, . . . , N}.
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4.8 Modelling of the Aux/IAA-ARF signalling pathway

4.8.1 Model description

Except for gene transcription, we assumed that all reactions involved in this network are well

described using mass action law kinetics. Variables are denoted using upper case characters,

and parameters with lower case. Let I and A denote the concentrations of the IAA and

ARF proteins respectively, and DII and DIA the concentration of the dimers formed by

these proteins. R denotes the total concentration of mRNA that is transcribed from a pool

of auxin responsive genes. This set of genes includes Aux/IAAs, so that I has a production

rate proportional to R. Auxin is represented by the variable x appearing in decay rates

involving Aux/IAA proteins. The system can be written as follows:

dI

dt
= πIR + 2k′IIDII − 2kIII

2 + k′IADIA − kIAIA+ δII(x)DII − δI(x)I
dA

dt
= πA + k′IADIA − kIAIA+ δIA(x)DIA − δAA

dDII

dt
= kIII

2 − (k′II + δ∗II + δII(x))DII

dDIA

dt
= kIAIA− (k′IA + δ∗IA + δIA(x))DIA

dR

dt
= h(I, A,DIA)− δRR

where h is the transcription rate of the target genes, which depends on the levels of the

different transcription factors. This function was determined based on thermodynamic as-

sumptions, as described e.g. in Bintu et al. [2005]:

h(I, A,DIA) =
1 + f

Bd

+ A

(
1 + fAωA

Bd

A

)

1 + A

Bd

(
1 + ωA

Bd

A
)

+ ωI

KdBd

AI + ωD

Bd

DIA + κ−A

These equations include the following parameters:

• πI is the rate of translation of mRNA (R) into Aux/IAA (I).

• πA is the production rate of ARF activators, supposed constant.

• The parameters k′IX and kIX for X ∈ I, A respectively denote dissociation and associ-
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ation rates of the dimer forming reactions.

• κ−A represents a background level of transcriptional repression, due to ARF repressors.

• f and fA represent the strength of transcriptional enhancement due to a single ARF

activator and two ARF activators being bound to the promoter, respectively.

• Kd (Bd respectively) is the dissociation constant of the ARF:Aux/IAA dimerization

reaction (resp. ARF to promoter binding reaction). Hence, Kd = k′IA/kIA.

• The coefficients ωA, ωI and ωDA represent cooperativity effects induced by the binding

of two ARF activators (ωA) on the promoter or by ARF:Aux/IAA dimer formation (ωI

and ωDA). For the latter, the occurrence of two terms, proportional to IA and DIA,

is due to the fact that ARF and Aux/IAA may dimerise either prior to DNA binding,

or on the promoter after ARF binds to DNA.

• The parameters of the form δX denote degradation rates. In case of Aux/IAA proteins,

the latter is auxin dependent. Then, δI(x) takes the form of saturating functions of

the auxin level : δI(x) = γIδI
Kx

1 +Kx
, which was obtained by applying a quasi- steady

state assumption to the equations governing the kinetics of auxin mediated degradation

(see Note S1). In this function, the parameters δI , γI and K respectively represent the

basal decay rate of Aux/IAAs, the maximum fold increase in decay rate that can be

induced by auxin and the affinity of auxin to TIR1/AFB co-receptors.

• As mentioned above, we have also assumed that even bound in a dimer, Aux/IAA

proteins are accessible to auxin and degraded, freeing the other protein involved in the

dimer. Hence the terms δII(x) and δIA(x) in the equations above, which take the same

form as δI(x). An additional decay rate of the form δ∗II has been included as well, to

account for the natural decay of the dimers.

4.8.2 Numerical simulations

All simulations were performed using tools from the scientific library Scipy (www.scipy.org)

of the programming language Python (www.python.org). More specifically, after preliminary
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tests of different solvers, we have chosen to use the odeint routine, which relies on lsoda, an

adaptive step-size solver for stiff and non-stiff systems from the FORTRAN library odepack.

All figures were produced using the Matplotlib (2D) and Mayavi2 (3D) libraries. A python

script containing the main routines can be provided upon request. The model is also available

with this paper as an SBML file and has been deposited in the Biomodels database (model

accession number: MODEL1105290000).
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Supplementary Materials

Supplementary text: Model of the ARF-Aux/IAA signalling network.
See separate file NoteS1.pdf, available at http://onlinelibrary.wiley.com/doi/10.1038/msb.
2011.39/suppinfo.

Supplementary material: SBML version of the ARF-Aux/IAA signalling model.
See separate file AuxinSignalingODEmodel.xml, available at http://onlinelibrary.wiley.com/
doi/10.1038/msb.2011.39/suppinfo.

Table S1.1: Results of the yeast two-hybrid analysis.
See separate file SuppTable1.xls, available at http://onlinelibrary.wiley.com/doi/
10.1038/msb.2011.39/suppinfo.

Table S1.2: Summary of Aux/IAA-ARF interactions tested in the literature.

Interaction Results Method used References Full data

IAA1/IAA1 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA1 positive Y2H/LacZ (2)

IAA1/IAA2 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA3 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA4 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA8 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA9 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA16 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA17 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA18 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA19 positive Y2H/His3 - LacZ (1) positive

IAA1/IAA20 positive Y2H/His3 - LacZ (1) negative

IAA2/IAA2 positive Y2H/His3 - LacZ (1) positive

IAA3/IAA17 positive Y2H/LacZ (3) positive

IAA6/IAA6 positive Y2H/LacZ (2) negative

IAA12/IAA12 positive Y2H/LacZ (4) positive

IAA12/IAA12 positive BiFC (5)

IAA13/IAA13 positive Y2H/LacZ (2) positive
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IAA17/IAA17 positive Y2H/LacZ (3) positive

IAA19/IAA19 positive Y2H/LacZ (2) positive

IAA19/IAA19 20% dimerization1 FCCS (6)

ARF1/ARF1 positive2 Y2H/LacZ (3) negative

ARF5/ARF1 positive2 Y2H/LacZ (3) negative*

ARF5/ARF1 negative Y2H/LacZ (7)

ARF5/ARF2 negative Y2H/LacZ (7) negative

ARF5/ARF4 negative Y2H/LacZ (7) negative

ARF5/ARF5 positive2 Y2H/LacZ (7)

ARF5/ARF5 positive2 Y2H/LacZ (2) negative*

ARF5/ARF5 No association FCCS (6)

ARF5/ARF6 negative Y2H/LacZ (7) negative

ARF5/ARF7 positive Y2H/LacZ (7) negative*

ARF5/ARF7 <20% dimerization3 FCCS (6)

ARF5/ARF8 negative Y2H/LacZ (7) negative

ARF5/ARF9 negative Y2H/LacZ (7) negative

ARF5/ARF11 negative Y2H/LacZ (7) negative

ARF7/ARF1 negative Y2H/LacZ (7) negative

ARF7/ARF2 negative Y2H/LacZ (7) negative

ARF7/ARF4 negative Y2H/LacZ (7) negative

ARF7/ARF6 positive Y2H/LacZ (7) negative

ARF7/ARF7 positive Y2H/LacZ (7)

ARF7/ARF7 <20% dimerization3 FCCS (6) negative*

ARF7/ARF7 positive2 Y2H/LacZ (2)

ARF7/ARF8 positive2 Y2H/LacZ (7) negative

ARF7/ARF9 negative Y2H/LacZ (7) negative

ARF7/ARF11 negative Y2H/LacZ (7) negative

ARF8/ARF8 negative Y2H/LacZ (2) negative
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ARF1/IAA12 positive Y2H/LacZ (8) negative

ARF1/IAA13 positive Y2H/LacZ (8) negative

ARF1/IAA17 positive Y2H/LacZ (3) negative

ARF5/IAA1 positive Y2H/LacZ (2) positive

ARF5/IAA3 positive Y2H/LacZ (9) positive

ARF5/IAA6 positive Y2H/LacZ (2) negative

ARF5/IAA12 positive Y2H/LacZ (4)

ARF5/IAA12 positive Y2H/LacZ (7) positive

ARF5/IAA12 positive Y2H/LacZ (9)

ARF5/IAA12 positive BiFC (5)

ARF5/IAA13 positive Y2H/LacZ (2) positive

ARF5/IAA14 positive Y2H/LacZ (10) positive

ARF5/IAA17 positive Y2H/LacZ (3) positive

ARF5/IAA19 positive Y2H/LacZ (2) positive

ARF5/IAA19 100% dimerization FCCS (6)

ARF6/IAA1 positive Y2H/His3 - LacZ (1) positive

ARF7/IAA1 positive Y2H/His3 - LacZ (1) positive

ARF7/IAA1 positive Y2H/LacZ (2)

ARF7/IAA6 positive Y2H/LacZ (2) negative

ARF7/IAA12 positive Y2H/LacZ (7) positive

ARF7/IAA13 positive Y2H/LacZ (2) positive

ARF7/IAA14 positive Y2H/LacZ (10) positive

ARF7/IAA18 positive Y2H/LacZ (11) positive

ARF7/IAA19 positive Y2H/LacZ (2)

ARF7/IAA19 positive Pull-down (2) positive

ARF7/IAA19 100% dimerization FCCS (6)

ARF8/IAA1 positive Y2H/LacZ (2) positive

ARF8/IAA6 positive Y2H/LacZ (2) negative
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ARF8/IAA13 positive Y2H/LacZ (2) positive

ARF8/IAA19 positive Y2H/LacZ (2) positive

ARF11/IAA1 positive Y2H/His3 - LacZ (1) negative

ARF19/IAA3 positive Y2H/LacZ (9) positive

ARF19/IAA12 positive Y2H/LacZ (9) positive

ARF19/IAA14 positive Y2H/LacZ (10) positive

ARF19/IAA18 positive Y2H/LacZ (11) positive

The method used to test the interactions is indicated along with the reporter systems for yeast

two-hybrid (Y2H). Divergent interaction results in the full interactome analysis are indicated in

bold and * indicates divergent results in the literature. 1 Statistically different from al controls; 2

Low LacZ activity; 3 Not statistically different from all controls.
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Table S1.3: Oligonucleotides used in this study.

Targets names Forward Reverse

RT-qPCR

ARF8 5’TGGCAGCTTGTATTCGTTGA3’ 5’CCAAACGTTATTCACAAATGACTC3’

IAA29 5’CCGAGTCTTCAATAGTTTACGATG3’ 5’CGAATATGACGATGATGATAACTACC3’

IAA32 5’AGGGTGGTGGGGTAATCG3’ 5’CATACCCGTCGAGACCTATCAT3’

TCTP 5’ACACCCAAGCTCAGCGAAGAA3’ 5’CATGCATACCCTCCCCAACAA3’

In vitro transcription/translation of TIR1/AFB tagged proteins

3xFLAG 5’AGCTTAGACTACAAAGACCATGACGGTG
ATTATAAAGATCATGACATCGATTACAAGG
ATGACGATGACAAGTGATATCG3’

5’GATCCGATATCACTTGTCATCGTCATC
CTTGTAATCGATGTCATGATCTTTATAATC
ACCGTCATGGTCTTTGTAGTCTA3’

TIR1; F: attB5;
R: attB2

5’GGGGACAACTTTGTATACAAAAGTTGAA
GCATGCAGAAGCGAATAGC3’

5’GGGGACCACTTTGTACAAGAAAGCTGGG
TATAATCCGTTAGTAGTAA3’

AFB1; F: attB5;
R: attB2

5’GGGGACAACTTTGTATACAAAAGTTGAA
GCATGGGTCTCCGATTCCCACC3’

5’GGGGACCACTTTGTACAAGAAAGCTGGG
TACTTTATGGCTAGATGTG3’

AFB5; F: attB5;
R: attB2

5’GGGGACAACTTTGTATACAAAAGTTGAA
GCATGACACAAGATCGCTC3’

5’GGGGACCACTTTGTACAAGAAA
GCTGGGTATAAAATCGTGACGAACTTTGGT
GC3’

TIR1-3xFLAG 5’ATTGCGATCGCATGCAGAAGCGAATAGC
C3’ (AsiSITIR1)

5’ACCGTTTAAACTCACTTGTCATCGTCAT
CC3’ (FLAGPmeI)

AFB1-3xFLAG 5’ATTGCGATCGCATGGGTCTCCGATTCCC
3’ (AsiSIAFB1)

(FLAGPmeI)

AFB2-3xFLAG 5’ACCGCGATCGCATGAATTATTTCCCAG3’
(AsiSIAFB2)

(FLAGPmeI)

6xHISASK1 5’GCATCATCACCATCACCATATGTCTGCG
AAGAAGATTGT3’ (HISASK1)

5’AGCTTTGTTTAAACTCATTCAAAAGCCC
ATTGGTTCTC3’ (ASK1PmeI)

6xHISASK1 5’GTGTGCGATCGCCATGCATCATCACCAT
CACCAT3’ (AsiSIHIS)

(ASK1PmeI)
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Supplementary Figure 1. TIR1/AFB expression patterns in the inflorescence 

meristem.

Serial sections showing expression of TIR1/AFB proteins fused to GUS (A-D) or 

AFB4/5 mRNA as visualized by  RNA in situ hybridization (E,F). The name of the gene 

is indicated on the figure. Scale is identical in all images for each serial section.

Figure S1.1: TIR1/AFB expression patterns in the inflorescence meristem. Serial sections showing
expression of TIR1/AFB proteins fused to GUS (A-D) or AFB4/5 mRNA as visualized by RNA in situ
hybridization (E,F). The name of the gene is indicated on the figure. Scale is identical in all images for
each serial section.
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Supplementary Figure 2. ARF expression patterns in the inflorescence meristem.

(A-M) Serial sections showing expression of ARF genes as visualized by RNA in situ 

hybridization. The name of the gene is indicated on the figure. Scale is identical in all 

images for each serial section. 

Figure S1.2: ARF expression patterns in the inflorescence meristem. (A-M) Serial sections showing
expression of ARF genes as visualized by RNA in situ hybridization. The name of the gene is indicated
on the figure. Scale is identical in all images for each serial section.
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Figure S1.3: Aux/IAA expression patterns in the inflorescence meristem. (A-L) Serial sections
showing expression of Aux/IAA genes as visualized by RNA in situ hybridization. The name of the gene
is indicated in the figure. For each serial section, scale is identical in all images.

!"

Supplementary Figure 4. In planta analysis of Aux/IAA-ARF interactions.

Bimolecular Fluorescence complementation (BiFC) was used to test 31 Aux/IAA-ARF 

interactions in planta. The set of interactions included both positive and negative 

interactions as predicted from the Y2H interactome analysis. (A) Summary of the 

results of the BiFC analysis. All the results were coherent with the results from the Y2H 

analysis except for 3 interactions (result indicated in bold). (B) Confocal images for a 

selection of the tested interactions showing results of BiFC in Nicotiana Benthamina 

leaves. Yellow: YFP; Red: autofluorescence; Grey levels: transmission channel. Scale is 

identical in all images. 

Figure S1.4: In planta analysis of Aux/IAA-ARF interactions. Bimolecular Fluorescence comple-
mentation (BiFC) was used to test 31 Aux/IAA-ARF interactions in planta. The set of interactions
included both positive and negative interactions as predicted from the Y2H interactome analysis. (A)
Summary of the results of the BiFC analysis. All the results were coherent with the results from the
Y2H analysis except for 3 interactions (result indicated in bold). (B) Confocal images for a selection
of the tested interactions showing results of BiFC in Nicotiana Benthamina leaves. Yellow: YFP; Red:
autofluorescence; Grey levels: transmission channel. Scale is identical in all images.

87



SUPPLEMENTARY MATERIALS CHAPTER 1.

!#

Supplementary Figure 5. Cluster analysis of the global Aux/IAA-ARF interactome 

using MixNet.

(A) Results of the MixNet algorithm for the global interactome. We applied the MixNet 

algorithm to the ARF-Aux/IAA protein network for Q = 2 to 10 clusters. The model 

selection criterion favours 4 clusters. Since this model selection criterion is only 

asymptotically  valid (i.e. for large N), this number of clusters should only be considered 

as indicative in our case and we thus explored neighbouring solutions. The results are 

presented for Q = 3 clusters. The proteins are ordered from the most to the least central 

in each cluster based on the distance of the protein to the cluster (D(i,q); data not 

shown). The connectivity  probability  matrix  and the cluster distance matrix 

 are given. The three clusters differ strongly in terms of 

connectivity profiles; compare the rows of matrix . The three clusters are also well 

separated; compare the diagonal elements of the cluster distance matrix  

Figure S1.5: Cluster analysis of the global Aux/IAA-ARF interactome using MixNet. (A) Results of
the MixNet algorithm for the global interactome. We applied the MixNet algorithm to the ARF-Aux/IAA
protein network for Q = 2 to 10 clusters. The model selection criterion favours 4 clusters. Since this
model selection criterion is only asymptotically valid (i.e. for large N), this number of clusters should
only be considered as indicative in our case and we thus explored neighbouring solutions. The results
are presented for Q = 3 clusters. The proteins are ordered from the most to the least central in each
cluster based on the distance of the protein to the cluster (D(i, q); data not shown). The connectivity
probability matrix Π̂ and the cluster distance matrix {D(q, `); q, ` = 1, . . . , Q} are given. The three
clusters differ strongly in terms of connectivity profiles; compare the rows of matrix Π̂. The three
clusters are also well separated; compare the diagonal elements of the cluster distance matrix {D(q, `)}
corresponding to within-cluster distances to the off-diagonal elements corresponding to between-cluster
distances. The proteins in italics form the fourth cluster when the MixNet algorithm is applied for Q
= 4 clusters. In this case, the 3 most peripheral proteins of cluster I are grouped with the 4 most
peripheral proteins of cluster II to form a second Aux/IAA cluster. This fourth cluster is not well defined
(the within-cluster distance D(IV, IV) = 0.34 is larger than the between-cluster distance D(II, IV) = 0.3
(data not shown), indicating that the 3-cluster solution is the most adequate. (B) Visualization of the
clusters using MDS. The first two MDS coordinates were deduced from the pairwise distances between
proteins {D(i, j); i, j = 1, . . . , N}. These first two coordinates account for 61.9% of the total variation.
The proteins from cluster I, II and III are figured in green, blue and red respectively. Note that the
clusters are compact (except for a few outliers) and well separated. The proteins that are in the 4th
cluster when the MixNet algorithm is applied for Q = 4 are found amongst the outliers (labelled in
purple).
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Supplementary Figure 6. Cluster analysis of the meristem Aux/IAA-ARF 

interactome using MixNet.

 (A) Results of the MixNet analysis for the SAM interactome. We applied the MixNet 

algorithm to the SAM subnetwork for Q = 3 clusters. The three clusters obtained are 

almost nested in the three clusters obtained for the complete network, the only 

exceptions being IAA29 and IAA26, peripheral in cluster III, which are then assigned to 

cluster I with almost all the other Aux/IAAs. As in the case of the complete network, the 

Figure S1.6: Cluster analysis of the meristem Aux/IAA-ARF interactome using MixNet. (A) Results
of the MixNet analysis for the SAM interactome. We applied the MixNet algorithm to the SAM
subnetwork for Q = 3 clusters. The three clusters obtained are almost nested in the three clusters
obtained for the complete network, the only exceptions being IAA29 and IAA26, peripheral in cluster
III, which are then assigned to cluster I with almost all the other Aux/IAAs. As in the case of the
complete network, the proteins are ordered from the most to the least central in each cluster based on
the distance of the protein to the cluster (D(i, q); data not shown) (B). A graphic representation of the
structure of the network using Cytoscape (www.cytoscape.org) is given. The Aux/IAA, ARF activator
(ARF+) and repressors (ARF-) have been grouped. The vertices are colored according to their MixNet
cluster: blue for cluster I, green for cluster II and pink for cluster III. (C) Visualization of the clusters
using MDS. The first two MDS coordinates were deduced from the pairwise distances between proteins
{D(i, j); i, j = 1, . . . , N} and explain 67.9% of the total variation. The proteins assigned to cluster I, II
and III are figured in green, blue and red respectively. Note again that the clusters are compact (except
for a few outliers) and well separated.
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Supplementary Figure 7. Distribution of DII-VENUS and mDII-VENUS in 

vegetative shoot meristem.

DII-VENUS (A) and mDII-VENUS (B) expression was analyzed in 5 day old plantlets 

using confocal microscopy. VENUS fluorescence is in green. The red channel visualizes 

auto-fluorescence. One cotyledon has been peeled out to reveal the meristem 

(arrowhead). The two first  leaves (L) are indicated. Note the absence of DII-VENUS 

signal at  the centre of the meristem and the homogenous distribution of mDII-VENUS. 

Scale is identical in (A,B). Scale bar: 40 µm.

Figure S1.7: Distribution of DII-VENUS and mDII-VENUS in vegetative shoot meristem. DII-
VENUS (A) and mDII-VENUS (B) expression was analyzed in 5 day old plantlets using confocal mi-
croscopy. VENUS fluorescence is in green. The red channel visualizes auto-fluorescence. One cotyledon
has been peeled out to reveal the meristem (arrowhead). The two first leaves (L) are indicated. Note
the absence of DII-VENUS signal at the centre of the meristem and the homogenous distribution of
mDII-VENUS. Scale is identical in (A,B). Scale bar: 40 μm.
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Supplementary Figure 8. Proteasome inhibitors interfere with DII-VENUS  auxin-

induced degradation in the SAM.

Images were obtained by confocal microscopy. DII-VENUS is in green. The red 

channel visualizes auto-fluorescence in the inflorescence meristem. All the images were 

taken using the same settings. Plants were treated either with DMSO (control; A), 1 µM 

IAA (B) or co-treated with IAA and the MG132 proteasome inhibitor (C). Note that  the 

degradation of DII-VENUS induced by auxin is largely blocked by MG132. Scale is the 

same in (A-C). Scale bar: 40 !m.

Figure S1.8: Proteasome inhibitors interfere with DII-VENUS auxin-induced degradation in the
SAM. Images were obtained by confocal microscopy. DII-VENUS is in green. The red channel visualizes
auto-fluorescence in the inflorescence meristem. All the images were taken using the same settings.
Plants were treated either with DMSO (control; A), 1 μM IAA (B) or co-treated with IAA and the
MG132 proteasome inhibitor (C). Note that the degradation of DII-VENUS induced by auxin is largely
blocked by MG132. Scale is the same in (A-C). Scale bar: 40 μm.
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Supplementary Figure 9. Instability of VENUS  visualized in DR5::VENUS plants 

upon chemical inhibition of auxin transport.

To verify  that the stability  of DR5::VENUS fluorescence observed in inflorescence 

meristem was not solely due to the stability of the VENUS protein, we germinated 

DR5::VENUS plants on the auxin transport inhibitor NPA to generate pin-like 

inflorescences in vitro. The plant were then transferred on a new NPA-free medium and 

DR5::VENUS expression was followed over time as described (Hamant et al, 2008). 

Due to the perturbation of auxin transport, we often observed in these conditions 

transient peaks of DR5::VENUS expression that were not followed by organ induction. 

Representative results from 2 independent time-courses are shown (A,B). Arrows 

indicates group of nuclei showing rapid decrease in fluorescence. Note that in each 

cases drastic diminution in VENUS fluorescence could be observed after 4 hours, 

suggesting a half-life for the protein in that time range. Scale is identical in all images. 

Scale bar: 20 µm.

Figure S1.9: Instability of VENUS visualized in DR5::VENUS plants upon chemical inhibition of auxin
transport. To verify that the stability of DR5::VENUS fluorescence observed in inflorescence meristem
was not solely due to the stability of the VENUS protein, we germinated DR5::VENUS plants on the
auxin transport inhibitor NPA to generate pin-like inflorescences in vitro. The plant were then transferred
on a new NPA-free medium and DR5::VENUS expression was followed over time as described in Hamant
et al. [2008]. Due to the perturbation of auxin transport, we often observed in these conditions transient
peaks of DR5::VENUS expression that were not followed by organ induction. Representative results from
2 independent time-courses are shown (A,B). Arrows indicates group of nuclei showing rapid decrease
in fluorescence. Note that in each cases drastic diminution in VENUS fluorescence could be observed
after 4 hours, suggesting a half-life for the protein in that time range. Scale is identical in all images.
Scale bar: 20 μm.
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Abstract

Auxin is a major phytohormone involved in many developmental processes by controlling gene ex-

pression through a network of transcriptional factors. In Arabidopsis thaliana, the auxin signalling

network is made of 52 potentially interacting transcription factors, activating or repressing gene

expression. Since the network was not characterised, we first sought at experimentally testing

for all possible interactions. To get a clear picture of the mechanisms at work, we then applied

model-based graph clustering methods relying on connectivity profiles between transcription fac-

tors. Incorporating phylogenetic distances as explanatory variables, we modelled the influence

of the protein dimerisation sequences on the auxin interactome structure using mixture of linear

models for random graphs. Our results provide evidence that the network can be simplified into

three groups, closely related to biological groups. Ultimately we found that these groups behave

differently, depending on their dimerisation sequence similarities, and that the two dimerisation do-

mains might play different roles. We propose here the first pipeline of statistical methods combining

Yeast-2-Hybrid data and phylogenetic distances for analysing protein-protein interactions.

94



CHAPTER 2. 1. INTRODUCTION

1 Introduction

Auxin is a key signal in plant development that regulates organogenesis from embryogenesis on-

ward. This major phytohormone achieves this morphogenetic activity notably by regulating many

downstream genes through transcription factors (TFs). In Arabidopsis thaliana the control of

gene expression in response to auxin involves a complex network of 52 TFs, consisting in 29

AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) and 23 AUXIN RESPONSE FACTOR (ARF)

acting either as transcriptional activators or repressors (for review, see Leyser [2006]; Guilfoyle and

Hagen [2007]). The present molecular model of the auxin signaling pathway implicates the forma-

Aux/IAA

Aux/IAA

ARF

Auxin

Auxin-responsive Gene

DNA

ARF

Auxin-responsive Gene

DNA

ARF

No effect

Activation

DBD

Repression

Figure 2.1: Model of auxin transduction path-
way. Activation and repression activities depend on
ARF middle domain amino-acid composition. DBD
indicate the DNA binding domain found usptream of
auxin-inducible genes. In absence of auxin Aux/IAA
are dimerise with the ARFs, preventing them to exert
their artivating or repressing activity. When auxin is
present, it target the Aux/IAA to the proteasome
leaving the ARF free to dimerise and exert their
regulating activity. Source: adapted from Chapman
and Estelle [2009].

tion of hetero-dimers between ARFs and Aux/IAAs in absence of auxin (see figure 2.1). According

to Remington et al. [2004] these transcriptional regulators interact through a C-terminal dimeri-

sation domain (CTD), made of two conserved sub-sequences known as domains III and IV (figure

2.2). ARFs can bind to DNA thanks to a DNA binding domain (DBD), and depending on the

amino-acid composition of their intermediate domain they act as activators (ARF+) or repressors

(ARF-) of the auxin-responsive genes transcriptional activity (figure 2.2). It should be noted that

Aux/IAAs do not have a DBD domain and therefore are thought to be unable to regulate alone the

transcription of auxin-responsive genes. When auxin accumulates in cells as a result of the activity

of AUX1/LAX [Reinhardt et al., 2003] influx carriers and PIN-FORMED1 (PIN1) [Gälweiler et al.,

1998; Vernoux et al., 2000; Reinhardt et al., 2003] efflux carrier or of changes in biosynthesis, auxin

perception targets Aux/IAAs to the proteasome [Leyser, 2006] leading to their degradation. This

subsequently frees the ARFs from the Aux/IAA and leads to the regulation of the gene acting down-

stream of auxin. It is only recently that global information on the topology of the Aux/IAA-ARF

network were obtained. A two-way Yeast-2-Hybrid (Y2H) [Joung et al., 2000] experiment using

Aux/IAA and ARF proteins has allowed to test for all possible interactions (with the exception of
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DBD III IVAD

DBD III IVRD

I III IVII
IAA:

ARF:

ARF5,6,7,8,19

ARF1,2,4,9,10,11,12,13,14,15,16,18,20,21,22

ARF3,17

ARF23

Figure 2.2: Schematic representation of the ARF
and Aux/IAA structures as found in Arabidopsis
thaliana. DBD: DNA binding domain. I: Aux/IAA
specific putative homo-dimerisation domain. AD:
Activation domain. RD: Repression domain. II:
Aux/IAA specific degradation domain. III & IV:
protein dimerisation domains. Arrowed lines indi-
cate the extend of each inhibiting ARF structure.
Source: adapted from Hagen and Guilfoyle [2002];
Guilfoyle and Hagen [2007] with the notable differ-
ence that we found domains III ans IV when aligning
full length protein sequences for ARF13.

ARF15, 21 and 23, see Vernoux et al. [2011] and Methods). To explore the organization of this

network, a model-based graph clustering method [Daudin et al., 2007] that groups proteins on the

basis of their connectivity profile (i.e. similar interactors) was applied. Three clusters of proteins,

that were very close to known biological groups (ARF+, ARF- and Aux/IAAs), were found using

Bernoulli mixture models for random graphs [Vernoux et al., 2011], thus demonstrating rather

stereotypical interaction properties within these three groups.

Here we extended this approach in order to analyse the contribution of the primary sequences

of the conserved DIII-DIV dimerisation domains to the interaction capacities between or within

known biological groups. To this end, we used a recently proposed generalisation of the mixture

models for random graphs that offers the possibility to deal with valued graphs and to include

explanatory variables [Mariadassou et al., 2010]. This integrative statistical model constitute the

core of a pipeline of methods to analyse how phylogenetic distances between dimerisation domains

influence protein-protein interactions.

2 Result and Discussion

Y2H data

Preferential
connexion structureInformations

Preferential
connexion structure

&
biological effects

ValuedBinary Network

GM, LM modelsBM model
Structure
analysis

StandardisationPre-processing Binarisation

Figure 2.3: Methodological options to analyse Yeast-2-Hybrid and other interaction data.
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A binary network is often easier to interpret than a valued one. However, in our case, it does

not fully represent the actual biochemical behaviour of the signalling pathway since the “true”

biochemical model would depend several properties, such as dimerisation strength, proteins con-

centration, spatial expression and synthesis/degradation dynamics of the TFs. We will first recall

how the binary network was build and analysed in Vernoux et al. [2011]. Then we will compare this

previous approach with the determination and analysis of a valued network, before investigating

the incorporation of phylogenetic distances in such a modelling framework.

2.1 Y2H experiment and data

Our raw experimental data are the Y2H outputs obtained when testing the auxin perception net-

work, made of 52 members belonging to the Aux/IAA and ARF family. The Y2H technique is a

bio-engineered tool based on the GAL-4 transcription factor from yeast Saccharomyces Cerevisiae

[Chien et al., 1991]. It is a powerful tool to test for potential interaction between two proteins, and

is now widely used, even though it is an heterologous system in most cases.

In order to be thorough, each interaction have been tested both ways, since the tested proteins

were fused to both activation domain (AD) and binding domain (BD) portions of the split Gal-4.

In addition, two separate repetitions and two reporter genes have been used (HIS3 and X-Gal).

Lastly, we were able to test the interaction of 49 transcription factors, except for three ARFs (15,

21 and 23), thus making a total of 2401 combinations. We give in table 2.1 an example of the

results.

Table 2.1: Example of Yeast-2-Hybrid data, with the name of the tested proteins, the side they were
attached to and the each output provided by the reporter genes.

Bait(BD) Prey(AD) X-Gal HIS3 Bait(BD) Prey(AD) X-Gal HIS3
BD-ARF1 AD-ARF1 − 12%
BD-ARF2 AD-ARF1 − 14% BD-ARF1 AD-ARF2 − 14%
BD-ARF3 AD-ARF1 − 15% BD-ARF1 AD-ARF3 − 13%

...
...

...
...

...
...

...
...

BD-IAA2 AD-ARF5 ++ 90% BD-ARF5 AD-IAA2 +? 119%
BD-IAA3 AD-ARF5 ++ 90% BD-ARF5 AD-IAA3 ++ 121%
BD-IAA4 AD-ARF5 ++ 121% BD-ARF5 AD-IAA4 + + + 70%

...
...

...
...

...
...

...
...

A preliminary analysis of these 4802 results showed a high correlation between the two tests

X-Gal and HIS3 (Spearman rank correlation coefficient ρsp = 0.7). This led us to hypothesize that

the two tests provide complementary information regarding protein-protein interactions.
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2.2 Building a binary network from Y2H data

2.2.1 Determination of interaction threshold per biological test

Creating a binary network imply to choose thresholds for both tests in order to define them as

positive or negative, and to define decision rules to combine the four test results to determine the

presence or absence of the interaction. Looking for a structure in the data that could hep us define

a threshold for the X-Gal test, we first examined the empirical distributions of the optical density

(OD) ratios (HIS3 test) for each mark of the X-Gal test. A gradual shifting of the mean OD ratio

for successive marks ‘+?’, ‘+’, ‘++’ and ‘+++’ can be observed in supplementary figure S2.1.

Moreover, the OD ratios distribution for the ‘+’ mark presents a remarkable bimodal structure,

the component of highest mean being rather similar to the OD ratios distribution for ‘++’ (see

supplementary figure S2.1). The component of lowest mean should be considered as false positive

for the X-Gal test. We thus chose to summarize the output of the X-Gal test as a threshold between

the successive marks ‘+?’ and ‘+’.

In order to define a threshold value for the HIS3 test, we then represented the overall OD ratios

distribution as cumulative frequencies separating X-Gal marks < ‘+’ (in red) and X-Gal marks ≥

‘+’ (in green) as seen in figure 2.4. This histogram shows a hump around 0.15 corresponding to

negative interactions followed by a long and flat tail, leading to the idea of distinct populations

(at least two) being mixed in the representation. One population clearly defining the absence of

interaction (low mean OD ratio) and a less obvious one defining the presence of interaction (high

mean OD ratio) in the tail. To separate them, we applied a Gaussian mixture model using the

mclust R-package on the basis of the overall OD ratio sample. Three components were selected

by the Bayesian information criterion (BIC). The two first Gaussian components correspond to

almost only X-Gal marks inferior to ‘+’ while the last one corresponds mostly to marks superior or

equal to ‘+’. We therefore fixed a threshold at 0.45 for the HIS3 test, which correspond roughly to

the limit where the posterior probability of the third component exceeds the posterior probability

of the second one and where the proportion of X-Gal marks superior or equal to ‘+’ exceeds the

proportion of marks inferior to ‘+’. We also generated the binary graphs with an HIS3 threshold at

0.3 and 0.65. However, they only slightly modify the binary networks (see supplementary figures

S2.2 and S2.3).
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Figure 2.4: Three-component Gaussian mixture model estimated for the the OD ratios. The optical
density has here an upper limit of 1.7 for graph readability reasons.

2.2.2 Defining the decision rules

Finally, having two possible configurations for each protein (AD and BD or bait and prey) for

the two biological tests (X-Gal and HIS3) we have to define decision rules to combine the four

biological tests outputs, to ultimately define the presence or absence of interaction (see Methods

4.2.2). Building five configurations as described in Methods 4.2.2, and relying on four of them, we

then obtained a binary network as presented on the form of an adjacency matrix in supplementary

figure S2.4.

2.3 Building a valued network from Y2H data

Combining the Y2H experiment outputs in a single interaction distance requires a standardization

procedure (see Methods 4.4). The objective of standardization is to suppress the dependency upon

elementary distance type and scale. It is important to point out that, in our case, the valued

network does not represent affinity between proteins, but reflect the likelihood of interactions. In

order to combine the four test outputs into one standardised interaction distance, we tested several

weightings of the returned values for the two reporter genes X-Gal and HIS3. To explore the effects

of the weighting, we used the three following weighted networks:

• network A: wX-Gal = 0.75 and wHIS3 = 0.25

• network B: wX-Gal = 0.5 and wHIS3 = 0.5

• network C: wX-Gal = 0.25 and wHIS3 = 0.75
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Figure 2.5: Empirical distribution of the
standardised interaction distances for the A, B
and C (top-down) networks.

To this end, we simply visualized the stan-

dardised distance distributions corresponding to no-

interaction (red) and interaction (green) according

to the previously defined binary assignment (figure

2.5). We could observe that network C tends to

spread ‘no-interactions’ on a wide range of standard-

ised interaction distances, thus presenting a rather

large overlap with ‘interactions’. Network A tends to

concentrate ‘no-interactions’ around a small range of

standardised interaction distances, and to separate

them from ‘interactions’. Finally, corresponding to

the balanced weighting, network B presents accept-

able properties in terms of dispersion and overlap

between ‘no-interactions’ and ‘interactions’. We will thus present the clustering results for net-

works A and B. Lastly, we here want to highlight that comparing the distributions for the three

weighted networks indicates that, in our case, the X-Gal test seems more reliable than the HIS3

test, probably because of the very long tail corresponding to ‘interaction’ for this test (see figure

2.4).

2.4 Network analysis using Bernoulli and Gaussian mixture mod-

els

To gain insight into the network structure, we sought at grouping the TFs on the basis of their

connectivity profiles [Vernoux et al., 2011]. We applied the model-based graph clustering method

introduced in Mariadassou et al. [2010]. The key feature of the mixture model for random graph is to

give a probabilistic summary of the connectivity structure by uncovering clusters of TFs that share

the same connectivity profiles. The parameters of the model are the cluster weight distribution and

the connectivity distributions for each pair of clusters. In the case of a binary adjacency matrix,

the connectivity distributions are Bernoulli distributions parametrized by connectivity probabilities,

that is the probability for proteins of two clusters to interact.

Zij |{i ∈ Cq, j ∈ C`} ∼ B(πq`), (2.1)
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where Z is the binary adjacency matrix, Zij is a connexion between vertices i and j, belonging to

clusters q and ` respectively. This can be read as follow: the probability of a connexion between

vertices i and j knowing that i belong to cluster q and j to ` follows a Bernoulli distribution of

parameter πq,`.

In the case of a weighted adjacency matrix, the connectivity distributions are Gaussian distri-

butions.

Xij |{i ∈ Cq, j ∈ C`} ∼ N (µq`, σ
2), (2.2)

where X is the weighted adjacency matrix.

The inference of such models is not restricted to the estimation of the cluster weight and

connectivity distributions but encompasses the inference of the number of clusters using a penalized

likelihood criterion. The principle of penalized likelihood criteria such as the ICL criterion consists

in making a trade-off between an adequate fitting of the model to the data and a reasonable number

of parameters to be estimated. Compared to classical model selection criteria such as BIC, the ICL

criterion takes account of the clustering objective and is expected to favour model such that the

uncertainty of protein assignment to clusters is low. Jeffreys’ rules of thumb [Kass and Raftery,

1995] suggest that a difference of ICL of at least log(100) = 4.6 is needed to deem the model with

the higher ICL substantially better.

2.4.1 Binary or valued graph and associated models

The presented clustering results using Bernoulli mixture (BM) model slightly differ from those

presented in Vernoux et al. [2011]. We here indeed excluded ARFs 3 and 17, because they do not

possess the conserved domains III and IV. Therefore we cannot compute phylogenetic distances

between the dimerisation sequences in order to use them as covariables in the models presented in

section 2.5.

2.4.2 Comparing model selection criterion and clusters composition returned

by the BM and GM models

BM models ICL criterion, posterior probability and clusters composition. When

estimating BM models on the basis of the 46 protein binary network, the ICL criterion favours the

6-clusters BM model (see Table 2.2) while with 48 proteins, the ICL criterion favours the 4-cluster

BM model [Vernoux et al., 2011]. However, in both cases the 4- and 6-clusters BM models were

101



2. RESULT AND DISCUSSION CHAPTER 2.

close in terms of ICL criterion. Moreover for the 46 protein binary network, the ICL difference

between the 4- and the 6-clusters BM models was not significant according to Jeffreys’ rules of

thumb: ∆ICL≤ 2. Since the ICL criterion is only asymptotically valid (i.e. for large N), the

number of clusters given by this criterion should be considered as indicative. After exploring the

clusterings outputs for different cluster numbers, we have chose to present the 4-clusters BM model.

Number of Clusters 2 3 4 5 6 7
ICL -527.3548 -521.8064 -506.7471 -511.0779 -504.9562 -507.8915

Posterior probability 0 0 0.136 0.002 0.818 0.043
Table 2.2: ICL and corresponding posterior model probabilities for the BM model.

Cluster 1 ARF5 (0.19), ARF19 (0.212), ARF8, ARF7, ARF6 (0.258), IAA5 (0.299),
ARF9, IAA9, IAA34

Cluster 2 ARF14 (0.087), ARF1 (0.096), ARF13, ARF16 (0.115), IAA6, ARF4, ARF10,
ARF18, ARF2 (0.137), ARF12 (0.154), ARF20 (0.189)

Cluster 3 IAA3 (0.198), IAA8 (0.205), IAA4 (0.222), IAA2, IAA18, IAA1, IAA16, IAA28
(0.25), IAA15 (0.261), IAA10, IAA12, IAA13, IAA27, IAA19 (0.284), IAA14 (0.296),
IAA17, IAA20 (0.307), IAA30 (0.33), IAA7

Cluster 4 IAA11 (0.333), ARF22 (0.337), IAA26, IAA29 (0.348), IAA33 (0.377), IAA32,
IAA31 (0.435)

Table 2.3: Composition of the four clusters obtained using the BM model. The ARF activators are
in bold. The distance D(i, q) between protein i and cluster q to which its is assigned is given for the
most central, the most peripheral and some other proteins of interest for interpretation.

Exploring the composition and the properties of the four clusters (table 2.3), we found three

clusters corresponding to biologically meaningful groups (ARF+, ARF- and Aux/IAA respectively)

and an “outliers” cluster (see the protein-cluster distances for this cluster compared to the three

others in table 2.3) grouping one ARF- and six Aux/IAAs. As we will see later, this view of

a clustering with three biologically meaningful clusters and an “outliers” cluster is shared by the

different models and will therefore be used for clustering comparison returns by the different models.

Number of Clusters 1 2 3 4 5 6 7
ICL -595.221 -333.666 -283.778 -268.434 -258.972 -260.468 -268.91

Posterior probability 0 0 0 0 0.817 0.183 0
Table 2.4: ICL and corresponding posterior model probabilities for network A based on a GM model.

Number of Clusters 1 2 3 4 5 6 7
ICL -617.343 -344.357 -306.136 -286.626 -279.985 -265.725 -278.627

Posterior probability 0 0 0 0 0 1 0
Table 2.5: ICL and corresponding posterior model probabilities for network B based on a GM model.
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GM models ICL criterion, posterior probability and clusters composition. The

ICL criterion values for the GM models are summarized in tables 2.4 and 2.5 for networks A and

B respectively. Comparing these tables (2.4 and 2.5) highlights that the X-Gal test is more reliable

than the HIS3 test, as foreseen when analysing figure 2.5. By giving more weight to the X-Gal

test in network A, than the balanced situation of B, the best GM model estimated for network A

(table 2.4) has one less cluster than the best GM model estimated on the basis of network B (table

2.5). We suspect that this may be due to the high dispersion of OD ratio corresponding to protein

interaction (see figure 2.4).

Cluster 1 ARF5 (0.01), ARF7, ARF8, IAA9, ARF19, ARF6 (0.019)
Cluster 2 ARF1 (0.012), ARF10, IAA6, IAA11, ARF4 (0.013), ARF14, ARF16, ARF18,

IAA29, ARF20 (0.014), ARF12 (0.015), ARF13, ARF2 (0.016)
Cluster 3 IAA15 (0.028), IAA10, IAA31, IAA2, IAA14, IAA1 (0.031), IAA12, IAA18, IAA4

(0.033), IAA17, IAA27, IAA19 (0.034), IAA3, IAA8, IAA16, IAA28, IAA34, IAA5
(0.036)

Cluster 4 IAA33 (0.019), ARF22, IAA13, IAA7, IAA26, IAA30, ARF9 (0.024), IAA20, IAA32
(0.024)

Table 2.6: Composition of the four clusters obtained using the GM model applied to network A.
The ARF activator are in bold. The proteins that are attributed to two clusters in the 5-clusters GM
model are in blue and cyan. The distance D(i, q) between protein i and its cluster q is given for the
most central, the most peripheral and some other proteins of interest for interpretation purposes. See
supplementary figures S2.5 and S2.6 for the distance plot.

One should note a specificity of cluster 3 (IAA) in table 2.6 whose lowest protein to cluster

distance (0.028) is greater than the highest protein to cluster distances (0.019, 0.016, 0.024) found

in the three other clusters. This very different scale of distances for cluster 3 can be explained

by the greater dispersion of the HIS3 test values (OD ratio) for ‘interaction’ with respect to ‘no-

interaction’ (see figure 2.4) and is reflected by the higher dispersion of the standardised interaction

values for ‘interaction’ with respect to ‘no-interaction’ (see figure 2.5-Network A).

BM and GM models comparison on the basis of the clusters composition. The

comparison of cluster composition between networks A and B gives 96% of match (44/46) for four,

five and six clusters (see table 2.11). The compositions of the four clusters obtained using the BM

model (see table 2.3) and the GM model (see table 2.6) are rather similar: 78% of match between

BM and GM-A (10 differences in cluster assignment). It should be noted that the differences in

cluster assignment concern almost only peripheral elements in clusters and that the core of the four

clusters are very similar.
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BM and GM models comparison on the basis of the between-clusters distance

matrix. An important criterion to ascertain the validity of a clustering model is the between-

clusters distance matrix D(q, `). Considering the 4-clusters BM model, the ARF+, ARF- and

Aux/IAA clusters present smaller within-cluster distances (diagonal) than between-clusters dis-

tances (off diagonal), showing a strong definition of these clusters (DBM (q, `) given below, model

parameters given in S2.2 and clustered network representation given in S2.7). The “outliers” cluster

is mainly composed of Aux/IAAs and its within-cluster distance is higher than the within-cluster

distance of the ARF+, ARF- and Aux/IAA clusters. In addition, its within-cluster distance is

larger that its distance to ARF- group. This configuration can be interpreted in the framework of

density-based clustering (Kriegel et al. [2011] and references therein) where the ARF+, ARF- and

Aux/IAA clusters are characterized by rather high density of elements with respect to the density

of elements of the “outliers” cluster. These outliers can be explained for a part by biological noise

in the Y2H experiments.

DBM (q, `) =



ARF+ ARF- IAA Outliers

0.257 0.533 0.364 0.512

0.533 0.124 0.524 0.314

0.364 0.524 0.260 0.435

0.512 0.314 0.435 0.354


.

For the GM model, the models selected by the ICL criterion comprise five clusters. Consider-

ing the four clusters given by the GM models, we note that they are poorly defined, since the

within-cluster distance for the Aux/IAA cluster is greater than some between-clusters distances

(see supplementary table S2.1).

2.4.3 Conclusions on the presented models

The binarisation of the interactions is likely to remove experimental noise but may also introduce

errors (false positives or negatives) depending on the used threshold. On the opposite, the stan-

dardization is a more objective approach, since it scales the results of the X-Gal and HIS3 tests to

make them comparable and limits the loss of information. Although the standardization does not

remove experimental noise which here seems to be a shortcoming.

Lastly, one key output of the random graph mixture model to validate the clustering is the
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posterior probabilities of protein assignment to clusters. For each protein, these posterior distribu-

tions are degenerate (probability of 1 for a given cluster and 0 for the others). This situation eases

the interpretation of the model parameters.

2.5 Influence of the phylogenetic distance between dimerisation

sequences on the interaction network

2.5.1 Building the phylogenetic distance matrix

To build a distance matrix corresponding to the differences in terms of amino-acid sequences, we

started by aligning the full proteic sequence of every TF presenting a C-terminal dimerisation (CTD)

domain using CLUSTAL-W [Thompson et al., 1994]. ARFs 3 and 17 having no referenced III and

IV domains have been excluded from the analysis. Since it was not possible to test interactions in

Y2H experiment for ARFs 15, 21 and 23, and since no interaction was observed for ARF11, these

four TFs were also excluded from the analysis. We thus finally worked on a network of 46 potentially

interacting TFs. To recover domains III and IV amino-acid sub-sequences we searched for conserved

patterns among the aligned sequences using Gblocks [Castresana, 2000]. Two conserved blocks,

corresponding to domains III and IV were found at the C-terminal part of the sequences and were

thus considered as the two domains (see Methods 4.3 and supplementary figure S2.13). To test for

model robustness and to try to include a small omitted portion of the putative domain III sequence

we did an expert version of these sequences. The later analysis revealed that there was no significant

difference between the two versions, subsequently the expert version will not be presented.

The per-site protein distance matrix has been calculated with PROTDIST (belonging to the

PHYLIP package) implementing amino-acid substitution models. Three different substitution mod-

els were tested: PAM, JTT and PMB (see Methods 4.5). Since PMB performed very poorly and

gave results far from those in Remington et al. [2004] we did not used this model. PAM and JTT

models, which are very close in their methodology, yielded similar results. We thus chose to focus

on protein distance matrices obtained with the PAM substitution model.

In order to test for specific influences of domains III and IV, we also computed two separate

distance matrices, corresponding to domains III and IV respectively, and to be used in models with

two explanatory variables.
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2.5.2 Introduction of phylogenetic distances as an explanatory variable

The linear regression model with a single explanatory variable is written as follows:

Xij |{i ∈ Cq, j ∈ C`} ∼ N (µq` + βq`Yij , σ
2), (2.3)

where X is the weighted adjacency matrix (response distance matrix) and Y the explanatory

phylogenetic distance matrix.

Number of Clusters 1 2 3 4 5 6 7
ICL -570.028 -343.172 -277.012 -272.276 -282.175 -290.605 -316.304

Posterior probability 0 0 0.009 0.991 0 0 0
Table 2.7: ICL and corresponding posterior model probabilities for network A based on a LM model
with III & IV as a single explanatory variable.

Linear regression model with a single explanatory variable. Introducing an explana-

tory variable enables to reduce the number of clusters selected by the ICL criterion (four clusters

for the LM(A) model instead of five clusters for the GM(A) model); see tables 2.4 and 2.7. As

for the BM- and GM-models, the posterior probabilities of protein assignment to clusters are de-

generate (probability very close to 1 for a cluster and 0 for the others), making model parameters

interpretation straightforward.

Cluster 1 ARF5 (0.022), ARF6, ARF7, ARF8, ARF19 (0.024), IAA31 (0.027), IAA7
(0.029), IAA13 (0.029)

Cluster 2 ARF1 (0.012), ARF10, ARF16, IAA6, IAA11, ARF4 (0.013), ARF14, ARF18,
ARF2 (0.015), ARF13, ARF12 (0.016)

Cluster 3 IAA10 (0.029), IAA15, IAA14 (0.03), IAA12 (0.031), IAA1, IAA2, IAA18, IAA27
(0.033), IAA17, IAA19, IAA28, IAA4 (0.035), IAA16, IAA34, IAA3, IAA5, IAA8,
IAA9 (0.037)

Cluster 4 IAA29 (0.018), ARF22, IAA33, ARF20, IAA26, IAA32, IAA20, IAA30, ARF9
(0.026)

Table 2.8: Proteins clustering for network A based on a 4-clusters LM model with one explanatory
variable. The distance D(i, q) between protein i and cluster q to which its is assigned is given for the
most central, the most peripheral and some other proteins of interest for interpretation purposes. See
supplementary figure S2.8 for the distance plot.

A quick look at table 2.8, presenting the clusters composition, ascertains the fact that we still

have biologically meaningful clusters. Moreover matching the elements found in each clusters for

the 4-clusters models (table 2.11) highlights the clusters composition coherence regarding the to

previously introduced models (87% match with GM and 76% with BM). The estimated slopes of the

106



CHAPTER 2. 2. RESULT AND DISCUSSION

linear regression models with a single explanatory variable are as follows (see also supplementary

figure S2.9 for a graphical representation):

β̂LM,III&IV(q, `) =



ARF+ ARF- IAA Outliers

1.024 0.097 0.305 0.701

0.097 −0.092 −0.057 0.119

0.305 −0.057 −0.031 −0.014

0.701 0.119 −0.014 −0.081



In light of the previous matrix, when self-interacting, the TFs found in the ARF+ cluster are

under a positive linear influence (β̂(ARF+,ARF+) = 1.024) linking interaction and phylogenetic

distance, meaning that the closer the dimerisation sequences, the less ARF+ will self-interact.

However, as shown in table 2.8, the ARF+ cluster composition is not only made of ARF+ but

also IAA31, 7 and 13. A closer look at supplementary figure S2.9 shows that the linear influence

detected for self interaction of cluster ARF+ might come from these IAA, since the plot seems to

present two groups. One with a low interaction and phylogenetic distances, for which no interaction

was detected and therefore most probably the ARF+ of the cluster, and another one presenting the

opposite behaviour, thus most probably the IAA of the cluster. The supplementary figure S2.10

ascertains this observation.

Considering the ARF+ cluster interactions with the Aux/IAAs cluster, there is a weak but

positive linear effect (β̂(ARF+, IAA) = 0.305) of the primary proteic sequence on the interaction

capacity. Surprisingly, we cannot observe any effect of the phylogenetic distances on Aux/IAA

self-interactions likelihoods (β̂(IAA, IAA) = −0.031). Apart for the –difficult to interpret– inter-

action between ARF+ and outliers clusters, no other influence of the dimerisation sequence upon

interaction capacities between TFs can be identified with this model.

Linear regression model with specific domains III & IV explanatory variables:

Using the same linear regression model with two explanatory variables, one for each dimerisation

domain, it was possible to test for a differential influence of these two domains. The single covariable

model given in equation (2.3) can be re-written as a model with two explanatory variables as follows:

Xij |{i ∈ Cq, j ∈ C`} ∼ N (µq` + βIII,q`YIII,ij + βIV,q`YIV,ij , σ
2), (2.4)

107



2. RESULT AND DISCUSSION CHAPTER 2.

Number of Clusters 1 2 3 4 5 6
ICL -532.263 -334.018 -293.711 -295.069 -312.373 -354.551

Posterior probability 0 0 0.795 0.205 0 0
Table 2.9: ICL criterion and corresponding posterior model probabilities for network A based on a
LM model with two explanatory variables.

The ICL criterion computed for each clusters number attached to the LM model with two

explanatory covariables is given in table 2.9. According to the ICL criterion in this table, the

relevant clustering for network A comprises three or four clusters (preferentially three for network

A and four for network B, data not shown). Using linear regression models with two explanatory

variables, for each conserved domains, therefore improved our understanding of the interaction

network by yielding simpler models (i.e. with fewer clusters).

Cluster 1 ARF5 (0.022), ARF6, ARF7, ARF8, ARF19 (0.024), IAA31 (0.027), IAA7
(0.029), IAA13 (0.029)

Cluster 2 ARF1 (0.012), ARF10, IAA6, IAA11, ARF4 (0.013), ARF14, ARF16, ARF18,
IAA29, ARF20 (0.014), ARF12 (0.015), ARF13, ARF2 (0.016)

Cluster 3 IAA10 (0.029), IAA15, IAA14 (0.03), IAA12 (0.031), IAA1, IAA2, IAA18, IAA27
(0.033), IAA17, IAA19, IAA28, IAA4 (0.035), IAA16, IAA34, IAA3 (0.036), IAA5,
IAA8, IAA9 (0.037)

Cluster 4 IAA33 (0.018), ARF22, IAA30, ARF9, IAA20, IAA26, IAA32 (0.025)
Table 2.10: Proteins clustering for network A based on a 4-clusters LM model with two explanatory
variables. The distance D(i, q) between protein i and cluster q to which its is assigned is given for the
most central, the most peripheral and some other proteins of interest for interpretation purposes. See
supplementary figure S2.11 for the distance plot.

Analysing the clusters composition again proves their biological relevance, since an over-representation

of each known biological group is achieved for three clusters. In addition, matching their TFs com-

position (see table 2.11) shows the strong coherence of this two-covariate 4-clusters model with the

single covariate (95%) and the GM(A) (91%) ones. The estimated slope of linear regression models

for each domains in case of the network A are as follows (see also supplementary figure S2.12 for a

graphical representation):

β̂III(q, `) =



ARF+ ARF- IAA Outliers

0.021 0.079 0.294 0.569

0.079 0.004 0.194 0.088

0.294 0.194 −0.268 −0.219

0.569 0.088 −0.219 −0.050


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β̂IV(q, `) =



ARF+ ARF- IAA Outliers

0.887 0.109 0.052 0.069

0.109 −0.045 −0.138 0.037

0.052 −0.138 0.297 0.208

0.069 0.037 0.208 0.004



Considering ARF+ cluster self-interaction capacities, domains IV (DIV) show a positive lin-

ear effect of the phylogenetic distances upon interaction likelihoods (β̂IV (ARF+,ARF+) = 0.887),

meaning the closer the dimerisation sequences, the less they will interact. However, domains III

(DIII) primary sequences seem to have no influence onto interaction capabilities (β̂III(ARF+,ARF+) =

0.021). Therefore, there is a domain specific response for ARF+ homo-dimerisation, where DIV

plays a more important role than DIII. The previously detected strong effect of the dimerisation

sequences by the LM(A) model with a single explanatory variable (β̂(ARF+, ARF+) = 1.024)

was thus attributable to DIV. But again we will qualify this conclusion remembering it applies to

all members of the ARF+ cluster, also made of three IAA, again crucial for the detected relation

attributed to DIV.

Aux/IAAs cluster on the other hand, when self-interacting, present an antagonistic behaviour

for their dimerisation domains: closely related DIII will interact better (β̂III(IAA, IAA) = −0.268),

when the farther the DIV sequences are, the more they can interact (β̂IV (IAA, IAA) = 0.297).

Again, we observe a domain specific response for Aux/IAA homo-dimerisation capacities regarding

their protein primary sequences. This –almost equally– antagonistic behaviour can explain why we

could not observe any effect of the phylogenetic distances onto the interaction likelihoods with the

single explanatory variable model (β̂(IAA, IAA) = −0.031).

Another domain specific response also appears for the interaction between ARF+ and Aux/IAA

clusters. DIII sequences are indeed positively related to interaction (β̂III(ARF+, IAA) = 0.294),

but no –or a very limited– effect of DIV is observed (β̂IV (ARF+, IAA) = 0.052). This is in agree-

ment with the detected relationship (β̂(ARF+, IAA) = 0.305) by the single explanatory variable

LM model.

Finally, while having a few detected interactions between ARF- and Aux/IAA clusters in the

binary network, with the two-covariate LM(A) clustering model we detect a weak antagonistic effect

(β̂III(ARF-, IAA) = 0.194 and β̂IV (ARF-, IAA) = −0.138) of each domains relating dimerisation
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sequences to interaction capabilities. Again this could not be inferred from the single explanatory

variable model (β̂(ARF-, IAA)− 0.057).

BM GM A GM B LM A 34 LM B 34 LM A 3/4 LM B 3/4
BM 46 36 34 35 34 35 36

GM A 46 44 40 39 42 37
GM B 46 40 39 42 37

LM A 34 46 41 44 38
LM B 34 46 43 37
LM A 3/4 46 38
LM B 3/4 46

Table 2.11: Cluster composition matching for 4-clusters models.

2.5.3 Interpretation of the patterns found within the auxin interactome

The initial BM model led us to the conclusion that the auxin transcription network could be sim-

plified in three biologically meaningful clusters (roughly the ARFs+, ARF- and Aux/IAA groups).

The strong connectivity between ARFs+ and Aux/IAAs was expected from the putative molec-

ular model reviewed in Guilfoyle and Hagen [2007]. This suggest that most Aux/IAAs repress

the transcriptional activity of ARFs+ when a low concentration of auxin is encountered. How-

ever, the weak interaction between ARFs- and Aux/IAAs or ARFs- and ARFs+ was a surprising

conclusion that was highlighted by the binary graph. We thus propose that ARF- might simply

act as competitors for DNA binding against ARF+, and therefore might be auxin independent.

Also, the existence of more than one TFs binding site for some auxin-inducible genes might suggest

an unknown transcription mechanism as a supplementary control [Cherry and Adler, 2000]. Any-

way, further experiments and analyses need to be conducted to unveil the complete transduction

mechanism.

Using LM models to investigate the influence of phylogenetic distances on the auxin signalling

network is a first attempt to establish a direct link between the proteic primary sequences and the

interaction network structures. By first using a single explanatory variable model built from the

global protein distance matrix of domains III and IV, we observed contrasted modes of interaction.

While TFs within the ARF+ cluster tend to homo-dimerise when their domains are different,

Aux/IAAs preferentially interact with phylogenetically close relatives. It is quite surprising to

observe such an easy auto-dimerisation knowing the repressor role of Aux/IAA against ARF+.

Ultimately, ARF+ cluster interact with Aux/IAAs cluster when their dimerisation sequences are

different.
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The two-covariables LM models yielded a more precise view of a very probable domain specific

behaviour. Domains III seems indeed to be important for Aux/IAAs to interact with everyone, in-

cluding themselves. Although the relations might be of few importance for Aux/IAAs dimerisation

with ARF-. Domain IV is mostly important for homo-dimerisation of the TFs within the ARF+

cluster, while it present the particularity to interact through phylogenetically distant domains IV.

We compared compositions of the outliers cluster for the different models (BM, GM A, LM A

34 and LM A 3/4). Four transcription factors (ARF22, Aux/IAA 26, 32 & 33) were systematically

assigned to the outliers cluster while three others (ARF9, Aux/IAA20, 30) were assigned to the

outliers cluster for models estimated on the basis of the valued graph (GM A, LM A 34 and LM

A 3/4). There is thus a high commonality of outliers between the different clusterings models, and

this can be interpreted as a consequence of the Y2H experiments.

3 Conclusions

Being able to establish the biological meaning of the auxin interactome based on its connectivity

structure, itself extracted from a –noisy– hight-throughout experiment like Y2H was not obvious

at first. However by first using a model-based clustering method for binary graph (BM) we have

highlighted the possibility of simplifying the auxin signalling interactome structure in three clusters

[Vernoux et al., 2011]. These three clusters where highly coincidental with known biological groups,

but which were established by generalisation of specific knowledge established by working on sub-

parts of the network [Hardtke and Berleth, 1998; Hardtke et al., 2004] together with phylogenetic

analyses like [Remington et al., 2004].

In this work, using a valued version of the network, instead of a binary graph, we overcome

the difficulty of defining thresholds for each Y2H tests, and we could model the –even limited–

self-interacting capacities of the ARF+ (which had been removed during the binarisation step).

Comparing the outputs of the BM and GM graph clustering models led us to the conclusion that

the binarisation is likely to remove experimental noise, therefore helping the model to perform

better. However, we would like to stress that this transformation of the data can induce a bias

from both thresholds selection and decision rules definition.

In addition, the strength of valued graph approach (GMmodel), is that it allowed us to make use

of –existing– more complex models to explain interaction likelihoods using covariables such as the

phylogenetic distances. Using the valued graph and phylogenetic distances as a global covariable,
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we could demonstrate an increase of the interaction likelihoods between the ARF+ and Aux/IAAs

clusters with an increase of the phylogenetic distance between the III-IV dimerisation domains.

These observations lead to the surprising conclusion that interactions between less related proteins

are favoured by an increase of the phylogenetic distance between their dimerisation domains. For

the cluster to which ARF+ belong, we detected a positive relation between phylogenetic distances

and the interaction likelihoods. However this is likely an artefact due to the presence of Aux/IAAs

in this cluster, preventing us from drawing conclusion from this observation.

Then, separately analysing the influence of subdomains (DIII and DIV) phylogenetic distances

upon the clusters interaction capacities, highlighted that the previously observed phenomena is

linked to different conserved blocks of dimerisation sequences. For interactions between ARF+

and Aux/IAA clusters, their likelihoods are modulated by domain IV phylogenetic distances. In

the same time, it has been demonstrated by Nanao et al. [2014] and Korasick et al. [2014] that

DIII-DIV mediates interactions between ARF+ and Aux/IAA through two charged interfaces: one

face mostly positive and one face mostly negative. In addition, these interactions are bi-directional.

DIII contributes principally to the positive face, while DIV contributes to the negative face of these

interaction domains. Our results on the impact of phylogenetic distances upon the interaction

likelihoods between ARF+ and Aux/IAA clusters suggest that changes in the primary sequence

of DIV unlikely modify the corresponding charged face, but rather impact the entire interaction

domain, thus contributing to the global interaction capacity of the ARF+ and Aux/IAA clusters.

So far DIII-DIV structures have been obtained only for ARF5 and 7. Obtaining further struc-

tures, although challenging, could allow testing the hypotheses emerging from our clustering ap-

proach. Other strategies would also allow testing further the link between interaction capacities

and phylogenetic distances:

• creating a library of mutated version of DIII-DIV for each elements of the network to artifi-

cially enlarge the size of the population;

• generating similar Y2H data for other species, such as rice or tomato, which also posses large

families of auxin related transcription factors.

This would be particularly useful for small clusters like ARF+ where there is only few members,

limiting the regression model.
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4 Methods

4.1 Construction of the Aux/IAA-ARF interaction network on

the basis of the yeast-2-hybrid data.

4.1.1 Yeast-2-hybrid protein interaction testing:

We managed to clone full-length cDNA for all members of the Aux/IAA-ARF family except for

ARF 15 and 21. We were therefore unable to test for their interaction and conducted the initial

screening on 50 transcription factors, representing 1275 interactions to test for. To ensure the

robustness of the biological test, all the interactions were tested both ways, as bait and prey (e.g.

AD-ARF1 v.s. BD-ARF2 and AD-ARF2 v.s. BD-ARF1). Finally, knowing that this screening

method can present false positives, two independent biological tests were conducted for each way,

representing a total of 5000 test results. The Y2H experiment is a bio-engineered tool based on

the Gal-4 transcription factor from yeast Saccharomyces Cerevisiae. The Gal-4 transcription factor

protein is made of an N-terminal DNA binding domain (BD) and a C-terminal activation domain

(AD). These two parts have been artificially separated so each part can receive two proteins to test

for their eventual interaction. In order to be thorough each interaction have been tested both ways,

meaning each protein has been append to both AD and BD in two separate repetitions. Also, two

reporter genes have been used. The β-galactosidase (β-gal), which is an enzyme hydrolysing the

X-Gal (or 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranosid) into a blue compound revealing its

activity. The other reporting gene, HIS3, is also coming from S. Cerevisiae and allow the yeast to

produce histidine, and therefore to survive in a medium without it. The output of the biological test

is a ratio of optical densities (OD): OD no histidine medium
OD histidine rich medium. It can be viewed as an estimation

of histidine synthesis capacity upon function recovery.. For detailed explanations on the constructs

used in the Y2H screen, see Vernoux et al. [2011].

4.1.2 Data description:

The X-Gal test is based on a blue coloration of the media where yeasts are developing. The output of

the tests then took the form of a mark chosen among the following ordered marks: −; +; ++; +++.

The HIS3 test is based on the capacity of yeasts to synthesise histidine in a histidine depleted liquid

media. To assess for this synthesis capacity a ratio of optical density between yeasts growth in a
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media without histidine and with histidine -normalise the OD for each test- was used. This reflect

the efficiency of histidine synthesis function recovery. For detailed explanations on the tests outputs

used in the Y2H screen, see Vernoux et al. [2011].

4.2 Network binarisation.

4.2.1 Mixture model over OD ratios under the X-Gal ‘+’ mark:

We estimated a three-component Gaussian mixture model
∑3

i=1 αifi(z;µi, σ
2
i ) using the mclust R

package Fraley and Raftery [2006].

4.2.2 Decision rules:

Because it is a two-way two-reporting-gene experiment (for each potential interaction), there is

several possible configurations for which the interaction tests should define the presence or absence

of interaction. In the following tables we define a given test as “positive” (+) and “negative” (-)

when its result is respectively above or below the defined thresholds:

Configuration 1 : all tests are positive (see table 2.12),

Table 2.12: Table for decision rule 1.
X-Gal HIS3

Way 1 + +
Way 2 + +

Configuration 2 : only one test is not positive (see table 2.13),

Table 2.13: Tables for decision rule 2.
X-Gal HIS3

Way 1 − +
Way 2 + +

or
X-Gal HIS3

Way 1 + −
Way 2 + +

or or
X-Gal HIS3

Way 1 + +
Way 2 − +

or
X-Gal HIS3

Way 1 + +
Way 2 + −

Configuration 3 : only one way is positive for both reporter genes (see table 2.14),

Configuration 4 : one reporter gene is positive in each way (see table 2.15),

Configuration 5 : only one reporter gene is positive both ways (see table 2.16),
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Table 2.14: Tables for decision rule 3.
X-Gal HIS3

Way 1 − −
Way 2 + +

or
X-Gal HIS3

Way 1 + +
Way 2 − −

Table 2.15: Tables for decision rule 4.
X-Gal HIS3

Way 1 − +
Way 2 + −

or
X-Gal HIS3

Way 1 + −
Way 2 − +

Table 2.16: Tables for decision rule 5.
X-Gal HIS3

Way 1 − +
Way 2 − +

or
X-Gal HIS3

Way 1 + −
Way 2 + −

An analysis -not detailed here- allowed us to state that the fifth configuration (only one reporter

gene is positive both ways, table 2.16) is unreliable. We therefore discarded this case when defining

the presence or absence of interaction for the binary network.

4.3 Phylogenetic data

Protein sequences were obtained using the 49 accession numbers of Aux/IAA and ARF proteins

presenting a III-IV dimerisation domains (ARFs 3, 17 and 23 were thus excluded); see availability of

supporting data for list of AGIs. Sub-sequences corresponding to domains III and IV were obtained

by first making a multiple alignment of the whole protein sequences using ClustalW Thompson et al.

[1994], then we searched for highly conserved regions using Gblocks 0.91b Castresana [2000]; see

availability of supporting data for list of used parameters. We found in this way 3 conserved

regions, the two last corresponding to the III and IV interacting domains (for more information see

additional file S2.13).

The detected flanking position of domains III and IV of full Aux/IAAs and ARF sequences

were respectively [1275-1307] and [1344-1376]. Both selected conserved domains have a length of

32 amino-acids. The sequences for the III-IV domain is made of the concatenation of the two

separate domains. We also conducted an analysis with a slightly different flanking position: [1272-

1307] and [1344-1376], but this did not lead to significant changes in the analysis outcomes.
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4.4 Response distance matrix: standardized distances between

transcriptional factors

The Y2H analysis involves two independent tests, the X-Gal and the HIS3 tests. The output of

the X-Gal test takes the form of a mark chosen from among the following ordered marks: -; +?;

+; ++;+++. The output of the HIS3 test takes the form of an optical density ratio reflecting

the efficiency of recovery (ratio of the OD in the absence of histidine to the OD in the presence

of histidine). Each possible interaction was tested in the two possible configurations where each

protein was alternatively the bait and the prey protein.

The output of the X-Gal test can be interpreted as a distance defined on an ordinal scale

(from no interaction to strong interaction) while the output of the HIS3 test can be interpreted

as a distance defined on a ratio scale (between 0 and 1.5). Combining these observed distances

requires a standardization procedure. The objective of standardization is to avoid dependency on

the elementary distance type and scale. In the case of an ordinal distance (X-Gal test), observed

distances are replaced by ranked distances

Rank(yij) = 1
2 +

yij−1∑
n=0

fn +
fyij

2 ,

where yij is the output of the X-Gal test for the ith and jth proteins and fn is the frequency of

mark n (the possible marks are assumed to be represented as contiguous positive integers).

In this case, the normalization quantity is the mean rank
(
1 +N2) /2, where N is the number of

proteins. The ratio-scaled distance (HIS3 test) can be either treated as an interval-scaled distance

or as an ordinal distance. Considering that the response curve of the HIS3 test is monotone but

highly non-linear and is close to a Michaelis–Menten kinetics, we chose to consider the output of

the HIS3 test as a distance defined on an ordinal scale for standardization. Observed distances are

replaced by ranked distances and the standardized distances are:

xij = wX-Gal
Rank(yij) + Rank(yji)

1 +N2 + wHIS3
Rank(zij) + Rank(zji)

1 +N2 .

It should be noted that a single marginal distribution was considered for each test used in the

two possible configurations in order to standardize the distances. In the case of missing test values,
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the distances can be straightforwardly adapted. If zji is missing, we obtain:

xij = wX-Gal
Rank(yij) + Rank(yji)

1 +MX-Gal
+ wHIS3

Rank(zij)
(1 +MHIS3)/2 ,

where MX-Gal is the number of X-Gal test values, MHIS3 the number of HIS3 test values.

The distance matrices {xij ; i, j = 1, . . . , N} corresponding to (wX-Gal, wHIS3) = (1, 0), (0.75, 0.25),

(0.5, 0.5), (0.25, 0.75), (0, 1) were built and tested.

4.5 Phylogenetic distance matrix

To use the primary sequence information as an explanatory variable in the mixture model for

random graph, we have to define a distance between two protein sequences. Protdist belong

to the PHYLIP package (http://evolution.genetics.washington.edu/phylip.html) and al-

low to compute such distance by using protein substitution models. One can choose between

five different models, and we tested three of them PAM, JTT and PMB. PMB which performed

poorly was not used in the analyses. For more information about the proteins substitution mod-

els, see the PROTDIST documentation (http://evolution.genetics.washington.edu/phylip/

doc/protdist.html).

4.6 Assessing the adequacy of the clustering

We assessed the adequacy of the clustering obtained by evaluating the separability of the clusters

and the dispersion of the proteins within the clusters. Since, in our case, the assignment of proteins

to clusters is almost deterministic (i.e. τiq ' 1 for a unique cluster q and τi` ' 0 for ` 6= q

where τiq is the posterior probability of assigning protein i to cluster q), this assignment can

be viewed as a partition. The model parameters, which parameterized the edges of the graph,

cannot be used directly to define dispersion measures of the proteins assigned to a given cluster.

We thus used the adjacency information to derive dissimilarity measures for the proteins. The

distance D(i, j) =
∑

k |xik−xjk|/N between the ith and jth rows of the weighted adjacency matrix

{xij ; i, j = 1, . . . , N} quantifies the difference in connectivity profile between proteins i and j.

In the case of the binary adjacency matrix, this distance is the Sokal-Michener distance between

proteins i and j Kaufman and Rousseeuw [1990] D(i, j) =
∑

k I(xik 6= xjk)/N , where I( ) denotes

the indicator function. This is the proportion of mismatches between the ith and jth rows of the
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adjacency matrix.

The distance between protein i and cluster q is given by

D(i, q) =
∑

j 6=iτjq
∑

k|xik − xjk|{∑
j 6=iτjq

}
N

.

If the proteins are deterministically assigned to a given cluster, this distance simplifies to

D(i, q) =
∑

j∈q;j 6=i

∑
k |xik − xjk|

(nq − 1)N i ∈ q,

D(i, q) =
∑

j∈q

∑
k |xik − xjk|
nqN

i /∈ q,

where nq is the number of proteins assigned to cluster q.

The distance between cluster q and cluster ` can be directly derived as

D(q, q) =
∑

i,j∈q;i6=j

∑
k |xik − xjk|

nq(nq − 1)N ,

D(q, `) =
∑

i∈q

∑
j∈`

∑
k |xik − xjk|

nqn`N
q 6= `.

The within- and between-cluster distances can then be defined as

Dwithin(q) = D(q, q) within cluster,

Dbetween(q) =
∑

i∈q

∑
j /∈q

∑
k |xik − xjk|

nq(N − nq)N between cluster.

4.7 Availability of supporting data

4.7.1 Original Yeast-2-Hybrid data for Aux/IAA - ARFs interaction tests

All Yeast-2-hybrid interaction results for X-Gal and HIS3 reporters are available in supplementary

data of Vernoux et al. [2011].

4.7.2 Aux/IAA - ARFs protein sequences

Protein sequences can be found within Arabisopsis thaliana proteins banks like http://pfam.

sanger.ac.uk using the following 49 AGIs:

At1g59750, At2g28350, At2g46530, At1g34310, At1g34170, At1g35540, At1g35520, At4g30080,

At3g61830, At1g19220, At5g62000, At1g35240, At1g34410, At1g34390, At5g60450, At1g19850,
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At1g30330, At5g20730, At5g37020, At4g23980, At4g14560, At1g04100, At4g28640, At1g04550,

At2g33310, At4g14550, At1g80390, At3g04730, At1g04250, At1g51950, At3g15540, At3g23030,

At2g46990, At3g16500, At4g29080, At5g25890, At4g32280, At1g04240, At3g62100, At3g17600,

At2g01200, At5g57420, At1g15050, At5g43700, At1g15580, At1g52830, At3g23050, At2g22670,

At5g65670.

4.7.3 Domains III and IV sub-sequences

To obtain protein sub-sequences corresponding to conserved domains III and IV we used the fol-

lowing parameters:

• Minimum Number Of Sequences For A Conserved Position: 25

• Minimum Number Of Sequences For A Flanking Position: 25

• Maximum Number Of Contiguous Nonconserved Positions: 8

• Minimum Length Of A Block: 10

• Allowed Gap Positions: With Half

• Use Similarity Matrices: Yes

See supplementary figure S2.13 for a detailed view of the aligned sequences and selection of con-

served sub-sequence.
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Supplementary Materials

Frequency distibution of OD ratio for '+?' X-Gal results
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Frequency distibution of OD ratio for '++' X-Gal results
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Frequency distibution of OD ratio for '+++' X-Gal results
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Figure S2.1: Histograms of OD ratios per X-Gal marks for the successive marks ‘+?’, ‘+’, ‘++’ and
‘+++’. The OD ratio values have an upper limit of 1.5 for histogram readability reasons.
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Figure S2.2: Adjacency matrix of detected interaction (red) the the tresholds: HIS3> 0, 3 and
X-Gal>’+’.

Table S2.1: Distance between clusters matrix D(q, `) for network A based on a GM model.

DGM,A(q, l) =


ARF+ ARF- IAA Outliers
0.015 0.016 0.032 0.024
0.016 0.013 0.016 0.016
0.032 0.016 0.032 0.022
0.024 0.016 0.022 0.022


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Figure S2.3: Adjacency matrix of detected interaction (red) the the tresholds: HIS3> 0, 65 and
X-Gal>’+’.

Table S2.2: Estimated model parameters for the 4-cluster BM model. α̂ are the cluster proportions
and Π̂ is the connectivity probability matrix.

α̂ = (0.200, 0.238, 0.400, 0.162), Π̂ =


ARF+ ARF- IAA Outliers
0.317 0.136 0.901 0.567
0.136 0.036 0.052 0.186
0.901 0.052 0.769 0.301
0.567 0.186 0.301 0.136

.

Number of Clusters 1 2 3 4 5 6 7
ICL -597.206 -354.034 -294.248 -285.443 -290.408 -301.826 -320.95

Posterior probability 0 0 0 0.993 0.007 0 0
Table S2.3: ICL and corresponding posterior model probabilities for network B based on a LM model
with III & IV as one global explanatory variable.
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Figure S2.4: Adjacency matrix of detected interaction (red) the the tresholds: HIS3> 0, 45 and
X-Gal>’+’.
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Figure S2.5: Ranked vertex distances to assigned cluster for network A based on a 4-clusters GM
model.
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model.
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Figure S2.7: Connectivity graph and associated probabilities for the 4-cluster BM model restricted
to the ARF+, ARF- and Aux/IAA clusters. The connectivity probability matrix describes the topology
of the network at the cluster scale (πq` is the probability for a protein of cluster q to be connected with
a protein of cluster `). This matrix show the heterogeneous behaviour of the 3 clusters corresponding
to ARF+, ARF- and Aux/IAA. Instead of classical graph clustering methods which would present
highly intra-connected and poorly inter-connected clusters (high probabilities on the diagonal and low
elsewhere), the 3-clusters model captured the latent structure of the binary graph. The connectivity
probabilities highlight that ARF- are very poorly connected to the rest of the network, ARF+ being on
the other hand well-connected to Aux/IAAs, themselves well-connected to each other.
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Figure S2.9: Linear regressions for network A based on a 4-clusters model with one explanatory
variable for the different pair of groups: ARF+ v.s. ARF+, Aux/IAA v.s. Aux/IAA and ARF+ v.s.
Aux/IAA. The outliers cluster is also presented in the graphic.
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Figure S2.10: Details of the linear regression for network A based on a 4-clusters model with one
explanatory variable for the interaction of clusters ARF+ v.s. ARF+.
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Figure S2.12: Linear regressions for network A based on a 4-clusters model with one explanatory
variable for the different pair of groups: ARF+ v.s. ARF+, Aux/IAA v.s. Aux/IAA and ARF+ v.s.
Aux/IAA. The outliers cluster is also presented in the graphic.
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Figure S2.13: Detail of the multiple alignment curated by Glocks showing the domains III and IV.
Every proteic sequences of the 49 AGI-accessible Aux/IAA and ARF have been used. The blue boxes
indicate the conserved sequences found by Gblocks. Coloured letter represent highly conserved amino-
acids. The dashes (-) represent gaps created by the multiple-alignment method (CLUSTAL-W) to align
conserved segments of the sequence.
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Chapter 3

An attributed spatio-temporal graph
framework for characterizing floral
morphogenetic patterns in
Arabidopsis thaliana
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CHAPTER 3.

Abstract

A major challenge in biology is to understand how multicellular tissues can give rise to complex ani-

mal or plant architecture. In order to do that we need to explain how the known genetics molecular

patterns influence, and are influenced by, the cellular and tissular patterns. It is therefore crucial to

be able to quantify and explain these geometrical patterns taking places during morphogenesis. To

unravel the complexity of organ morphogenesis, several recent improvements in imaging techniques

enabled access to live 3D images (time series), with a resolution sufficient to extract cell features,

even for the inner parts of the tissues.

We will address this issue by showing that through a precise quantification of cell features,

together with an open-source python based temporal property graph architecture and analysis

model, we can identify groups of cells, not only based on their genes differentiation states, but on

the outcome of the underlying mechanical, genetical and hormonal events. We will illustrate this

methodology during the early stages of Arabidopsis thaliana flower development.
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CHAPTER 3. 1. INTRODUCTION

1 Introduction

Developmental biology is the study of the processes by which multi-cellular organisms grow and

develop. Organogenesis and morphogenesis, meaning the initiation and the shaping of an organ

or a tissue, are therefore the two main processes studied. Coordinated and differential growth of

a multi-cellular tissue implies active and passive processes to organise morphogenesis to properly

shape an organ.

Many experimental protocols have been built by biologist to access (qualitative or quantitative)

information about these processes at different scales. For example, quantification of gene expression

levels at tissular scale is possible using the microarray technology coupled with dedicated statistical

analyses [Schena et al., 1995]. Detection at cellular scale of specific RNA transcripts is possible

using in situ hybridisation techniques. AFM techniques can measure physical behaviour of the

epidermis by quantifying its stiffness at a sub-cellular scale (for review see Kasas et al. [1997]).

Recent breakthroughs in microscopy have enabled the live-imaging of developing tissues, provid-

ing access to the inner parts of tissues (3D) through time (3D+t). Recently, several contributions

to 3D segmentation from membrane-stained live-images (stacks) [Yoo et al., 2002; Fernandez et al.,

2010] have enabled the 3D reconstruction of tissues at cellular resolution. Additionally, automatic

determination of the lineage of cells between consecutive images has been made possible by the

automatic lineage tracking (ALT) algorithm described in Fernandez et al. [2010]. It is particularly

useful for inner parts of volumetric structures which are difficult to access visually.

A major challenge is to relate the observed gene and hormone activities to the observed tissue

shape. It is in Erickson [1976], that was first propose the use of four spatio-temporal parameters

to describe growth properties of a 2D tissue: growth rate, anisotropy, direction and rotation. It

generalizes to nine for a 3D tissue, but using a combination of the same four parameters [Coen

et al., 2004]. Using the somatic clonal technique with appropriate markers, Rolland-Lagan et al.

[2003]; Coen et al. [2004] measured changes of growth and shape in A. majus sepals at a supra-

cellular level thanks to cloning technique, and incorporated these data in a mechanical growing

framework. They then related shape changes to the proposed action of a long-range signal that

controls growth directionality, rather than ro local differences in growth rate [Rolland-Lagan et al.,

2003; Coen et al., 2004]. Successfully reproducing in silico the observed shapes of the petal lobe

of A. majus is clearly a major advance and demonstrate the necessary use of modelling to study

morphogenesis. However, they relied on rather abstract regions (non uniform patches of cells).
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To achieve a deeper understanding of morphogenesis, we argue that the whole structure of the

object under study should be considered at a cellular level. Then the comparison of quantified

spatio-temporal data with those obtained from the growing model will help improving our knowl-

edge about morphogenesis. This require several steps, starting with the precise quantification of

the cellular features in 3D, made possible by segmentation and lineaging of live-images. Several

papers describing segmentation algorithms are available (for review ), and so far one have introduce

automated reconstruction of the lineage [Fernandez et al., 2010]. We will briefly discuss some of

them if the next section, but we here propose to accomplish the next step (toward a better under-

standing morphogenesis) by proposing a generic framework empowering the analysis of such data.

In that view we will introduce the attributed spatio-temporal graph representation of the tissue.

We believe it is the natural representation of the tissue, since it extract and relate (spatial and

temporal edges) its natural constituents: the cells (vertices). The computable features are of five

different orders: enumeration, dimension, position, shape and growth. Attributing them to their

related representation (e.g. volume to vertex, wall area to spatial edge and growth to temporal

edge) will then complete the necessary step of data processing prior to analysis.

Finally, we propose to identify cellular patterns on the basis of the previously quantified spatio-

temporal features using a clustering approach. A cellular pattern will therefore be a group of cell

displaying a closely related behaviour regarding defined features. We will introduce a dedicated

method to build cell/vertex pairwise distance matrix (used by clustering algorithm), enabling the

use of several features at once to define groups of cells. Overall, to use geometrical features to

identify cellular patterns and relate them to known gene expression domains would then be a

important step toward a direct link between genes and shape.

To illustrate our approach, we applied it on cell-segmented and lineaged data of the early stages

of A. thaliana flower development. It is indeed a unique feature of plants to be able to produce

organ after embryogenesis compared to animals (with the exception of those presenting a larval

stage). Entering a reproduction phase, plants develop a new type of organs, the flowers, which we

then can observe its early morphogenetic processes. Developing flowers are called floral meristem

(FM).
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1.1 Background and requirements

By continuously maintaining stem cells at the shoot apical meristem (SAM) and the root apical

meristem (RAM), plants possess the ability to initiate and produce different organs throughout their

whole life. The meristematic zone is self-maintained and can modulate its developmental activity

in response to external cues, providing the necessary flexibility to modulate the aerial plant shape

and growth in reaction to environmental conditions. When generating flower, the SAM is also

called inflorescence meristem (IM), and can be named interchangeably; see Figure 3.1a.

A. thaliana flowers are made of four distinctive organ types organised in concentric whorls:

sepals, petals, stamens and carpels. In addition, flowers display a great robustness in their overall

shape, and organ numbers; see Figure 3.1b.

a. b.
Figure 3.1: A. thaliana early and mature flower structure. a. IM structural organisations, CZ refers
to the Central Zone (organising center) and PZ to the Peripheral Zone; i indicate the initium and FM
the developing floral meristems. b. Whorled organisation of the flower made of 4 sepals, 4 petals, 6
stamens and a gynoecium made of 2 carpels.

1.1.1 Morphological description of the early FM development

The first description of flower development as a series of morphological events was carried out in

1990 by Smyth et al.. This started from the initiation of the floral meristem as a small bulge

(being a stage 1) on the flank of the IM, and went up to the finale mature flower (being a stage

12) characterising each morphological change as a new stage. Stage 2 starts when the floral bud is

separated from the IM by a small crease between the two meristems. Stage 3 is characterized by the

emergence of the sepals from the sides of the floral meristem, growing to overlie the primordium.

These are therefore the three first morphological events displayed by the young floral primordia

during its development. Figure 3.2 presents the first three stages we are interested in.
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Figure 3.2: The three first stages of A. th. FM morphogenesis. a. Stage 1, no clear distinction
between the FM and the IM; b. Stage 2, a clear boundary is visible between the IM and the FM(+26h);
c. Early stage 3, sepals start emerging at the sides of the FM (+69h); d. Stage 3, the sepals are
clearly visible (+80h). Vital dye FM4-64 used for wall staining is in red. Green fluorescent marker:
AHP6::erGFP. Source: Images acquired at the RDP lab by Pradeep DAS.

1.1.2 Quick overview of segmentation and lineage tools.

Several 3D cell-based segmentation algorithms have been developed in the past ten years. unfor-

tunately most of them are algorithmic libraries like ITK [Yoo et al., 2002] which are not readily

usable for non expert programmer.

Some softwares propose semi-automated segmentation methods where you have to manually

define the edges of the cells (often by detecting the cells vertices) or using Delaunay triangulations

based on the cell’s nucleus to recreate their contours. The latter method is obviously biased since

it assume that the nucleus is at the center of the cell. Manual detection of the cell edges is accurate

but extremely time-consuming, and limited to 2D or surfacic 3D.

In the OpenAlea [Dufour-Kowalski et al., 2007] integrated version of MARS (multi-angle re-

construction and segmentation) [Fernandez et al., 2010], it is possible to combine multiple views of

the same object to obtain a 3D stack with the same resolution in the three directions (e.g. from

0.2 × 0.2 × 1µm to 0.2 × 0.2 × 0.2µm). This is a unique feature, developed to solve the problem

of the lower resolution in z-direction (orthogonal to the focal plane). Combining several images,

even with a low tilt angle, is then sufficient to enhance the signal quality of the image used for

segmentation. This reconstruction step is semi-automated since manual definition of landmarks is

necessary to initiate the rigid and non-linear transformations. However the segmentation is fully

automated, although you might have to play with some of the parameters to achieve a reasonable

segmentation (seed detection and watershed are sensitive to noise and missing information). All

these functions are called through a python command-line terminal.
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Another popular software, MorphographX [Kierzkowski et al., 2012] propose a full GUI and the

possibility to rapidly edit the segmentation using various correction tools. It success is also based

on the large choice of segmentation algorithms through integration of the ITK library. However

only the epidermal layer is accessible since it propose a cell based 3D surfacic reconstruction of the

tissue and there is no automatic lineage algorithm yet.

Other integrative platforms like Fiji [Schindelin et al., 2012] or BioImageXD [Kankaanpää et al.,

2012] also integrate segmentation tools. The segmentation algorithms are often an integration of

separately published methods, but sometimes also dedicated algorithms. For biologists, one key

feature to choose between these tools and platforms is the presence of a graphical user interface

(GUI), but also the variety of the segmentation algorithms proposed and the possibility to visually

check and correct the segmentation.

1.1.3 Obtaining the segmented and lineaged data.

To obtain the 3D segmented images of developing flowers we used the MARS software [Fernandez

et al., 2010]. However, using a segmentation algorithm based on a 3D watershed, we faced many

errors whenever the walls were to shallow or holes in it. Manual segmentation was therefore

necessary to suppress fused cells, but this task was tricky since no well-adapted tools were available

for this specific task. In addition watershed can sometimes produce cells whose contours are a

bit erratic, and to solve this issue we applied a cell shape correction algorithm whose task was

to correct the small bumps at the surface. An overlay view of both segmented and fused image

confirm us that the algorithm did not change the morphology of the tissue. Finally, the lineage

was generated by hand since we could not get the automated lineage tracking (ALT) working.

The various difficulties encountered in obtaining reliable data for the inner layers are the reasons

why we are presenting this work on the basis of the epidermal layer (L1). We are confident that

our first approach with the L1 will provide evidences of the capacity of our open-source python

based temporal property graph architecture and analysis, allowing to go forward with the whole

developing flower.

1.2 Relation to previous works

As morphogenesis is an crucial biological process, several biologists, together with physicists, com-

puter scientists and mathematicians have already taken interest in gaining a better understanding
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of this process. Several approaches have been developed to tackle the problem in parts or entire

organisms as diverse as Drosophila melanogaster (fruitfly), Danio rerio (zebrafish), Caenorhabditis

elegans (nematode), Antirrhinum majus (snapdragon) or Arabidopsis thaliana.

It should be stressed that growth quantification has a long history since measuring overall shape

changes, or computing deformations on the basis of natural or manual landmarks (e.g. obtained

by addition of a dye), have been attempted for many years. However, cell growth quantification

is only accessible since the development of confocal microscopy, first allowing access to in-depth

live-imaging of the tissue, when before only external layers could be observed without destroying

the object under study [Megason and Fraser, 2007; Oates et al., 2009].

As mentioned before, Rolland-Lagan et al. [2003] have successfully reproduced A. majus flower

lobe development in an in silico growing framework. Combining genes network, mechanical defor-

mations and supra-cellular acquired data in their framework, they could test for various growth

scenario and concluded to upon the action of a long range signal, rather than local differences in

growth rate for being responsible of shape changes. This major advance in morphogenesis illus-

trate the necessary use of modelling in biology, allowing to use computational models to predict

behaviours or test hypothesis. However, we can regret they did not achieve single-cell resolution,

and also note that their technique (clonal analysis) is not applicable to all tissues and organisms.

Around the same period, the work of Dumais and Kwiatkowska [2002] has enabled the extraction

of surfacic 3D data for the Anagallis arvensis SAM. Using successive stereoscopic reconstructions of

moulded SAM, they could reconstruct a 3D surface of the SAMs, and then calculate 2D parameters

like epidermis cell wall area and curvature. Then using temporal differentiation functions they

were able to extract growth features (scalars) and using cell vertices as landmarks they were able

to extract deformation features (tensors). Using their analysis pipeline, they could compare a

wild-type SAM with a pin-formed1 (pin1 ) mutant -which does not produce lateral organs such

as flowers- and observed a faster surfacic expansion for pin1. In addition, they uncovered the

presence of regions with distinct deformation rates (strain) in both wild-type and pin1, in the latter

case corresponding to the geometrically distinguished central and peripheral zones (fig. 3.1a). In

addition to these works, many other researches on animal development have shed light on the

necessity to quantify growth and morphogenesis.

We have therefore based our approach on these studies, trying to go further doing several

contributions. First we propose a generic (open-source) attributed spatio-temporal framework
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to analyse tissues from voxel-based segmented images, instead of ad hoc framework. Then we

introduce 3D+t quantification of the cell features, when 2D+t is yet the commonly used data in

morphogenesis studies. Finally, we propose dedicated statistical methods to analyse the obtained

3D+t data, particularly those corresponding to the concept of pattern identification.

1.3 Principal contribution of our methods

Here we present several contributions to the field of quantitative developmental biology, notably

by enabling cellular feature and growth event quantification at cellular scale. Such spatio-temporal

data being far to complex to be left to intuitive interpretation, we will introduce adapted statistical

methodology necessary to their analysis.

The main contribution of our methods are:

• Introduction of the spatio-temporal graph, an intuitive structured representation of the de-

veloping tissue, allowing us to access the cells spatial and temporal relationships;

• Extraction of many 3D and 3D+t cellular features from segmented and lineaged images

leading to an attributed spatio-temporal graph;

• Introduction of several statistical methods enabling the mathematical identification and char-

acterisation of biologically relevant cellular patterns based on the quantified spatio-temporal

features (complementary to the classic genetical identity).

The whole framework is open-source and have been developed under python programming

language within the OpenAlea platform. It is not bound to any specific segmentation algorithm

although it is based on voxelized images, thus meshed images and others would require a trans-

formation script. Finally, the nature of the tissue should be a regular -compact- cell arrangement

(e.g. unlike neural tissues).

2 Methods

We will now present the many possibilities our framework offers to identify and characterise cel-

lular patterns from the rich and complex spatio-temporal data that arise from developing tissues

reconstructed at cellular level.
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2.1 Spatio-temporal graph provides a natural framework for 3D+t

data.

As explained earlier, the data consists of segmented and lineaged (at cellular level) time-series of

images of early stage floral meristems (figure 3.3). These 3D+t data, observable in most multi-

cellular tissues, are highly complex and present structure and dependencies in space and time. In

this context, it is important to first develop an abstracted model of the tissue that would describe

and organise the natural constituents of a multi-cellular tissue. Such a structure model would be

considered interesting if efficiently representing the in silico.

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
Figure 3.3: Example of segmented and lineaged time-series. Each color giving the lineage from
a mother cell at the initial time point passed on to all its daughter up until the last segmented and
lineaged time point. Only cells with a complete lineage from the initial to the last time point have been
coloured.

Due to acquisition as well as computational limitations (regarding the maximal size of the

object), we restricted our analysis of the FM development to the 3 first morphological stages

introduced in figure 3.2. As explained earlier, this early stages displays morphological changes.

Therefore, the acquired data set, introduced in its segmented and lineaged form in figure 3.3, will

be use to develop, test and illustrate our ideas.

Structuring a segmented tissue refers to defining the spatial and temporal topology of its con-

stituents. This can be achieved in two steps: first by decomposing the object into its natural

constituents (cells), then by determining how these constituents (vertex) are connected between

each others in both space and time (edges).

Spatial graph. As an input, we have a set of N segmented images Si with i ∈ [0, N ] that gives

information at cellular level. Having first abstracted cells as vertices, we then characterise their

spatial relationships (neighboorhood) by adding adjacency relations as undirected edges, therefore

obtaining a spatial graph. A spatial edge will thus be added between pairs of cells if they are

physically in contact.
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Volume
Genetic identity
Curvature...

Wall orientation
Contact surface
Wall curvature ...

Volumetric growth
Strain rates ...

a. Topological graph b. Spatio-temporal graph
Figure 3.4: Illustration of the spatio-temporal graph creation from segmented and lineaged images.
a. Topological graph extraction form segmented images; Coloured circles represent the vertices; Plain
green links are the topological relations between cells. b. Spatio-temporal graph framework; Dashed
red links are temporal relations between cells (lineage); In black we indicate the graph structured that
will receive the cell features introduced later.

Such a graph is formalized as Gs,i = (Vi, Es,i) with Vi a set of vertices representing the different

cells at time i, and Es,i the set of undirected spatial edges that link vertices of Vi to represent their

spatial relationships at time i.

Temporal graph. The temporal or lineage information present a structured information about

the cells organisation in time. This is a directed tree-like representation where each initial parent

cell is linked to its descendants.

The tree analogy is applicable because the vertices are only linked by their common root (in our

case the unknown initial cell). Such a relation is modelled by a graph T = (V,Et) that relates each

parent vertex V to its descendants by directed edges Et. It gives a partial ordering relationships

between the vertices. Such a graph is called a forest since its made of a set of directed trees.

Spatio-temporal graph. Merging both views, we obtain a model where the cells are abstracted

as vertices V and are related by undirected spatial and directed temporal edges. Doing so, we

obtain a structured version of the developing tissue, while creating a conveniently organised in

silico database.

This can be formalized as a graph G = (Vi, Es,i, π, φ) with Es,i representing the spatial relation-

ship between vertices Vi at time i, π the temporal relationship between vertices and φ is defined as

a surjective mapping φ : V → [t0, ..., tN ] that map vertices to their original time points. Note that

temporal constraints can be formalized on such structure. In particular, if two cells have spatial

relation, we can check that they have a common parent or their distinct parents have also a spatial
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relation:

∀ei = (vi, vj) ∈ E ⇔


∃ek = (π−1(vi), π−1(vj)) ∈ E;

π−1(vi) = π−1(vj);
(3.1)

Such constraints helps us checking the integrity of the structure.

Spatio-temporal graph with attributes. After defining the spatio-temporal relations be-

tween the cells, the obtained spatio-temporal graph can be used to store basic spatial cell features

such as their volume (example are given in table 3.1). Attributing the basic features to their related

vertex will then keep the positional and geometrical information about the cells. As described later

in 2.2.2 and 2.2.4, it is possible to compute other features using differentiation and transformation

functions applied on these basic information. Spatial edges can also receive related information like

contact surfaces areas, for example, or transporters directionality. Temporal edges will account for

temporally differentiated features (described in 2.2.3).

Thus certain temporal information (e.g. division or siblings numbers) and spatial relations (e.g.

ranked distance or neighbourhood) can then be inferred on the fly from the graph structure itself

and does not need to be saved explicitly.

However, it is important to note that the lineage can be incomplete. Indeed, it is subject to

missing data, for example when descendants cells partially or fully escape the acquisition frame so

some tn cell have no descendants at tn+1. This is an experimental problem and it should not be

mistaken for cell apoptosis (which has not been detected yet during flower organogenesis). It is also

possible that the acquisition windows has been extended at tn compared to tn−1 and some lineage

will not present root at the initial time-point t0. Again, it shall not be confused with “appearance”

of a cell file.

Finally, it should be noted that, due to acquisition time-intervals, the division process may not

be binary (i.e. two descendants per parents). Multiple divisions of a parent cell can indeed occur

between successive acquisitions. To solve this and obtain a full binary tree we manually annotated

the lineage to reconstruct a sub-lineage corresponding to the binary process of division. Since

only a maximum of four descendant cells (two parallel or three division occurrences) were found in

the data, we were able to recover every binary division event. This reconstruction of the L1 cells

binary tree has been achieved manually using epidermis wall areas, cell volumes and positional

informations (topology and division wall orientation). We hypothesized that the division plane of

a cell is orthogonal to its main axis of inertia and the resulting division yields two daughters of
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roughly the same volume. In case of the Markov tree approach, where the only structure used is

the set of temporal relationships between vertices (forest), it was a necessary step.

2.2 Quantifying cellular features of a 3D segmented tissue and

enabling graph analysis.

It is noteworthy thatthe geometrical descriptors we use have been previously introduced in the

literature. However, the methods and formulations we use sometimes differs from those used in

Dumais and Kwiatkowska [2002], Coen et al. [2004] and others since we are working in 3D on

voxel-based data. We could have first transformed our data in a meshed structure like used in

Dumais and Kwiatkowska [2002], however, meshing a discrete spatial representation comes with a

whole suite of problems by itself.

2.2.1 Cellular features data

The basic cellular features that are accessible from static, voxel-based segmented images are essen-

tially the following enumeration, positional, dimensional, and shape descriptors:

1. enumeration, such as cell numbers, are scalar data usually self-contained within the spatio-

temporal graph;

2. Dimension descriptors, such as cell volumes, are also scalars;

3. Position descriptors, such as the cell barycenters, are 3D vectors;

4. Shape descriptors, such as the inertia tensor, are rank-3.

In table 3.1 I list two examples per type of variable.

Enumeration Dimension Position Shape descriptor (tensors)
Cells Area Barycenters Inertia axis

Neighbours Volume Landmarks Principal curvatures and normal (wall)
Table 3.1: Examples of basic spatial information extractable from segmented image.

Basics enumeration descriptors

Number of cells on the whole image is easily defined as the number of unique labels (ids)

attributed to each cell by the segmentation algorithm.
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Number of neighbours is defined as the number of cells sharing a wall with a reference

cell. It can be filtered according to a minimum contact area.

Basics dimensional descriptors

Area is computed is a specific fashion due to the voxel-based (discrete) nature of the images.

Biologically, we can make a difference between three types of surface:

• Contact areas: there are as many contact areas as cells in contact with the reference cell;

• Epidermis area: can be considered as a particular type of contact surface since it is defined

for the outer layer of cells (also called the ‘L1’) that are in contact with the surrounding

environment;

• Cell area: the sum of all contact surface areas.

Volume is easily computed due to the voxel-based (discrete) nature of the images, by count-

ing voxels of each label. To obtain the volume in the metric system (real world units) one just need

to multiply the previous count of voxels by the image resolution.

Basics positional descriptors

Center of mass defines the relative position of the cell in the image with respect to the

referential of the image. Since we cannot infer the mass distribution within each cell, we will

suppose that it is homogeneous, therefore it will be equivalent to the barycentre.

We used the function center_of_mass available in scipy.ndimage.measurements from the scipy

library [Oliphant, 2007].

Landmarks are a set of reference points, suchs as cells vertices, that can be associated in time.

Extracting cell vertex positions in space and associate them through time allows us to compute the

deformation undergone by cells while growing in a constrained environment like a tissue.

However, as we will illustrate with examples later, cell vertices are not robust landmarks be-

cause of potential segmentation errors. The origin of the limited robustness of cells vertices to

segmentation errors comes from their geometrical definition in a 3D space. To better understand

this, we give the vertices, edges, walls and cells geometrical definition in 3D. Remembering that a

segmented image is a 3D array of voxels whose values correspond to the cell they belong to, in 3D

we define:
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a. Before deformation b. After deformation
Figure 3.5: 2D example of cell vertices used as landmarks (green points) associated between time
points tn (a) -before- and tn+1 (b) -after observed growth. The black lines indicates the cell outlines.
Coloured lines indicate the surrounding cells that have divided and the resulting new adjacent walls.
This representation is a simplification of a real tissue.

• a cell as the set of voxels with the same value;

• a wall as the set of coordinates where two voxels with different values (i.e two cells) are in

contact at a minimum of one voxel face;

• an edge as the set of coordinates where three voxels with different values (i.e two walls or

three cells) are in contact at a minimum of one voxel edge;

• a cell vertex as the coordinate where four voxels with different values (i.e three edges or four

cells) are in contact at their common vertex;

It is to note that segmentation algorithm are not precise at the scale of individual voxels. Indeed,

some voxels may have different values in alternative segmentations obtained with slightly different

segmentation parameters (seeds, h-min, ...) in particular at the frontiers of the cells A change of

value of one voxel (from cell A to B, its neighbour) will not greatly alter the definition of the cell

(usually made up of thousands of voxels) or of the wall (made of hundreds of voxels), but will have

a slight effect on the associated edge and an even greater effect on the cell vertex position.

Due to this sensitivity to segmentation imprecision, it is difficult to automatically define re-

liable landmarks using cell vertices on a time series of segmentations. Indeed various topological

incoherences such as :

• Changes of topology occur when for instance (see figure 3.6) two cells, A and D, are at tn in

contact with B and C (which are themselves not in contact), whereas at tn+1 that relation is

inverted (i.e. B and C are now in contact with A and B, themselves not in contact any more).
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Plants have rigid walls that forbid cell rearrangement in space and therefore constraint the

topology to be conservative. Using figure 3.6 as an example, vertices i, j are defined as

i : {A,B,D} and j : {A,C,D}. Without topological errors we would have automatically

associated them with i′ : {A′, B′, D′} and j′ : {A′, C ′, D′}, however we have k : {A′, B′, C ′}

and l : {B′, C ′, D′};

A
B

C
D

A'
B'

C' D'
i

j

l

k

a. Before deformation b. After deformation
Figure 3.6: 2D example of segmentation error leading to impossibility to associate landmarks at time
tn: (i, j) with those at tn+1 : (k, l). Coloured cells indicate their lineage. The black lines indicates the
cell outlines. This representation is a simplification of a real tissue.

• Segmentation presenting “holes”, in our case in the epidermis layer (L1), can cause the failure

of vertex detection (fig. 3.7 white arrows) if the hole is close to supposed vertices;

• “Fused” vertices are another case where the epidermis might present a specific problem when

two separate cells vertices are too close. This is a specific to the external side of the L1. An

example is shown in figure 3.8, where four cells have a common vertex. Counting the outside

world makes five jointed 3D shape defining one vertex, instead of four as presented earlier,

then breaking the imposed geometrical rules;

Instead of developing specific methods to correct detected errors, we thought of using the cell

wall medians in 3D, as well as the edge geometrical median in 2D as presented in figure 3.9, for

the quantification of cell deformation. As mentioned above, these geometrical reference points fulfil

the pre-requisite of a landmark (notably coherent positioning through time) and less susceptible to

segmentation errors.
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Figure 3.7: Example of a segmentation error leading to the indeterminacy of vertices. Red and blue
cells in the center of the image (gray dots) are below the epidermal layer. Since the orange cell present
a missing portion we cannot detect the vertices marked by white arrows. This representation is a real
tissue where only wall associated voxels are presented as coloured points indicating cells.

Figure 3.8: Example of a segmentation error leading to the indeterminacy of two vertices by presenting
only one. The indeterminacy is shown in the yellow dotted ellipse. This representation is a real tissue
where only wall associated voxels are presented as coloured cubes indicating cells.

Topological distance define the distance in terms of walls separating two cells. It is

computed according to a shortest path methods since there is several “paths” joining two cells

by moving between their neighbours. We have implemented a version of Dijkstra’s algorithm. It

is a graph search algorithm that solves the single-source shortest path problem for a graph with

non-negative edge path costs, producing a shortest path tree.

Euclidean distance is a metric distance here defined between two cell barycenters in 3D

or geometric median of their epidermis wall for surfacic 3D. It can be computed by using the norm
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a. Before deformation b. After deformation
Figure 3.9: 2D example of cell wall median used as landmarks (green points) associated between
time points tn (a) -before- and tn+1 (b) -after observed growth. The black lines indicates the cell
outlines. Coloured lines indicate the surrounding cells that have divided and the resulting new adjacent
walls. This representation is a simplification of a real tissue.

between their two barycentres (centres of mass) or geometric medians. The Euclidean distance

between two points p and q in R3 is the length of the line segment connecting them (p̄q). In R3

with Cartesian coordinates, p and q are commonly defined as p = (xp, yp, zp) and q = (xq, yq, zq).

Then the distance from p to q, or from q to p is given by:

d(p, q) = d(q, p) =
√

(xq − xp)2 + (yq − yp)2 + (zq − zp)2

The topological distance is a metric distance between two cells. It can be computed by using the

norm between their two barycentres (centres of mass) or geometric medians.

Basics shape descriptors I fully introduce two shape descriptors: the inertia tensors (fig.

3.10a) and principal curvatures (fig. 3.11a). These two tensors are also given for the whole object

at t4 for temporally linked vertices, in figures 3.10b for inertia tensor and 3.11b for the princi-

pal curvature estimated on a local radius of 70 voxels around the geometric median point of the

epidermis wall (origin of curvature estimation).

Inertia tensors have their origin at the barycentre of the cell and the length and direction of

the axis describe the shape in three directions. To compute this tensor we assumed that the density

of the cell is homogeneous. The main axis of inertia can be viewed as the axis that would present

the maximum resistance to increasing the rotation speed of a body about that axis. Assuming the
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body density is homogeneous, this corresponds roughly to the axis presenting the maximal length

of a convex body. A detailed 2D illustration on one cell wall is given in figure 3.10a, with the main

axis in blue and secondary in green. The epidermis wall in gray is first projected in a 2D subspace

(flattened into a plane).

a. Detailled example of inertia axis (2D) b. Cell inertia axis at t4 (3D)
Figure 3.10: Illustration of the inertia tensor shape descriptors: detailed illustration of a 2D inertia
tensor for a cell wall (a) and the representation of computed 3D inertia tensors at t4(b). a. Repre-
sentation of the 2D inertia tensor with the main and secondary axes in blue and green respectively,
obtained using the rank-2 subspace projection (plane defined by the red dots) of the 3D cell wall (gray).
b. Inertia tensor with decreasing sorted vectors in red, green and blue; the tensors are centred on the
barycentre of the cells. The epidermis cells outlines is given in white.

Inertia tensor computation use a Singular Value Decomposition of the variance-covariance

matrix. This assume that the cell density is homogeneous, but since we have no information about

cell density, we will admit this approximation.

We have a voxel based segmented image and therefore, each cell is made of a set of N points

Xi in R3. The variance-covariance matrix is given by:

C = 1
N
X̄X̄T ,

where X̄ is the the barycenter of the Xi. Applying an SVD on C yields:

C = UΛV T ,
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where the diagonal terms of Λ are the eigenvalues and U and V the left and right eigenvector

respectively.

Principal curvatures describe the directions and extent of how a surface is bent at a given

point using the geometrical median of the wall. At this point, the normal vector to the surface

(fig. 3.11a black arrow) define the tangent plane in which the vectors of principal curvature will

be defined. The curvature is said to be positive (fig. 3.11a blue arrow) if the curve turns in the

same direction as the surface’s chosen normal, and otherwise negative (fig. 3.11a green arrow).

In addition to the point were to realise the curvature estimation, a sampling surface also have to

be provided. In case of an internal wall, providing all the voxel positions defining the wall, thus

the estimated surface will be “wall-defined”. However, for the epidermis surface, it is possible to

extend the sampling surface used to do the estimation since epidermis walls are contiguous. Then

it is possible to define a regular sampling surface by selecting all epidermis voxels within a given

distance from the estimation origin point. A good approximation would be to imagine a circle

fitted to the surface, centred on the origin point. We believe the regular aspect of the sampling

surface will provide a less biased curvature estimator than the “wall-defined” sampling, especially

for cells with a highly anisotropic shape.

Principal curvatures estimation has been possible using the CGAL library [Fabri and

Pion, 2009] in which there is an appropriate method for principal curvature estimation. The idea

is to fit a degree-two curved plane to the set of point defining a wall. Then it is possible to ex-

tract the main axis of curvature, defined by the direction presenting the maximum curvature and

a secondary curvature value, which direction is orthogonal to the main axis. We then obtain two

principal curvature directions and their associated values k1 and k2 with k1 > k2. CGAL also

return the normal orientation to the surface.

To select which points to use for the estimation, several possibilities arise depending on the

type of estimation desired (local or cell wall based) and were we are in the object (epidermal layer

or inner calls). The first obvious option for this estimation, is to use all voxels defining a cell

wall. This make the estimation doable for all walls, but the “sample” of voxel used will therefore

change depending on the area they define. This potentially affected the quality of the estimation

depending on the size of the wall. The quality of the estimation will then also depend on the image
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Planes of
principal

curvatures Vectors of
principal

curvatures

Normal
vector

Tangent
plane

a. Detailled example of principal curvatures b. Epidermis principal curvatures at t4 (2D)
Figure 3.11: Detailed illustration of principal curvature descriptors: the principal curvatures of a
saddled surface (a). a. Saddle illustrating the principle curvature estimation; the origin point where
to do the estimation must be provided; the red lines indicate the direction of maximal curvature in
both directions, defining therefore a rank-3 tensor made of the two vectors of principal curvature (blue
and green arrows) and the normal vector (black arrow). b. Epidermis curvature computed for a radius
of 70 voxels from the epidermis wall median (origin of the vectors); the normal to the surface is not
represented here for readability reasons; the epidermis cells outlines are given in white in both figures.

resolution, which directly defines the number of voxels per wall. The quality of the segmentation,

that depends on many parameters (raw image quality, segmentation algorithm, ...), will also be

crucial.

In the particular case of the epidermis, it is possible to extend the estimation area by selecting

the voxels belonging to neighbours at rank-1 or more. However, we think it could be a biased way

of doing the estimation since the selected area will depend on the areas of the cell and its selected

neighbours.

In order to overcome this problem we selected the voxels at a maximal distance of 70 voxels

from the geometric median (see section 2.3.8) of the epidermis wall as presented in figure 3.12.

With our resolution of 0.2 × 0.2 × 0.2µm.voxel−1, this define a circle of 616µm2. The observed

mean epidermal cell area is around 70µm2 and in average a cell is surrounded by 8 neighbours,

therefore the rank-1 neighbours define roughly an area around 560µm2
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100vox
80vox

70vox
60vox

Figure 3.12: Illustration of four different local sampling radius around the geometric median (green
cube) of two epidermal cell walls. The yellow, magenta, blue and red discs are voxels selected at a
distance of 60, 70, 80 and 100 voxels respectively.

Wall orientation. We used the CGAL library for curvature estimation with a degree 0

fitted plane. It then return the plane orientation axis and the normal to the plane, therefore

defining the plane orientation.

2.2.2 Spatial differentiation functions

Scalar spatial features can be spatially differentiated through spatial filters like laplacian (eq. 3.2)

or mean absolute deviation (eq. 3.3). Their interpretation is usually straightforward and will give

an idea of local variations in cell features, usually given a topological rank distance of 1 (direct

neighbours), though rank-n computation is also possible (see supplementary figure S3.6). Several

other functions can be implemented and designed, but the more complex their formulation is, the

more complex their interpretation becomes. For sake of simplicity, we chose the following two

definitions.

For a cell c surrounded by N neighbours, its laplacian (L) and mean absolute deviation (MAD)

for any scalar feature x are defined as:

L(c) = xc −
1
N

N∑
n=1

xn, (3.2) MAD(c) = 1
N

N∑
n=1
|xc − xn|, (3.3)
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a. b. c. d. e.

Figure 3.13: Examples of spatial differentiation functions Laplacian and mean absolute deviation
applied on AHP6 signal (genetic marker) for rank-1 and 2 (topological distance) at t2 (+44h). Top
view projection of a. AHP6 signal feature; b. rank-1 laplacian; c. rank-2 laplacian; d. rank-1 mean
absolute deviation; e. rank-2 mean absolute deviation. The colormaps of each illustration (a. to e.)
are scale ranging their max and min values over the whole time series.

Adapting such differentiation functions on a graph G = (V,E) with vertices V and edges E,

lets consider a function φ : V → R associating a value to each vertices of the graph. The discrete

Laplacian ∆ acting on φ at rank 1, is then defined as:

(∆φ)(v) =
∑

w: d(w,v)=1
[φ(w)− φ(v)] (3.4)

where d(w, v) = 1 is a spatial distance of 1 between vertices w and v. Thus the Laplacian sum is

taken over the nearest rank-d neighbours of the vertex v, hence we compare it value to their mean.

This function is often used in graph theory, simulation or physics to study diffusion processes, as it

highlights spatial fluctuations of the variable of interest. As an example, in figure 3.13b we cannot

observe any gradient, but in figure 3.13c, using the rank-2 discrete Laplacian, we observe a diffusive

decreasing gradient of the AHP6 signal from the abaxial and lateral sides to the top of the dome.

2.2.3 Temporal differentiation functions

Using the known parameters of acquisitions, especially the time intervals between each acquisitions,

the temporal differentiation of scalar cell features is straightforward and will yield growth-related

metrics like volumetric growth if applied on volumetric information. However, it is possible to

compute various “growth functions” like absolute or relative temporal changes and others. the

following illustrate four different growth functions and their differences, so the decision of which

one to select will be adapted to the context (i.e. what conclusions I want to draw or what analysis

I will do).

Absolute and relative temporal change.

For each parent cell c having j = {1, ..., D} descendants, the temporal change (3.5) and the
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relative temporal change (3.6) are defined as:

TC(c) = 1
∆t

 D∑
j=1

xj − xc

 , (3.5) RTC(c) = 1
∆t

(∑D
j=1 xj − xc

xc

)
, (3.6)

where xi is the value of cell i for any scalar feature attached to a cell.

t3 t4 t3 t4

a. Temporal change3→4(volume) b. Absolute temporal change3→4(volume)
Figure 3.14: Examples of temporal differentiation functions temporal change (a) and relative tem-
poral change (b) applied on ’volume’ between t3 and t4, represented at tn and tn+1 (same data). When
using the relative temporal change instead of the temporal change, the extrema of the observed changes
(volumetric growth) are highlighted, here showing the boundary between the central dome of the FM
and its emerging sepals. The colormaps for (a) and (b) both range between their respective minima and
maxima. a. Observed temporal change in volume. b. Observed relative temporal change in volume.

As we can observe in figure 3.14, dividing the difference between the sum of descendants cell

volumes and that of the parent by the initial value of the parent allows to suppress the bias of the

initial state. Comparing the standardized version of each observed distribution (fig. 3.16a) clearly

illustrate the fact that these two function return different information. Dividing by the initial vol-

ume using the RTC formulation seems to redistribute the growth related values on a wider range

when the TC formulation return value accumulating around the mode.

Temporal rate and log temporal rate.

For each parent cell c having j = {1, ..., D} descendants, the temporal rate (3.7) and log temporal

rate (3.8) are defined as:
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TR(c) = 1
∆t

∑D
j=1 xj

xc
, (3.7) LTR(c) = 1

∆t ln
(∑D

j=1 xj

xc

)
, (3.8)

where xi is the value of cell i for any scalar feature attached to a cell.

t3 t4 t3 t4

a. Temporal rate3→4(volume) b. Log temporal rate3→4(volume)
Figure 3.15: Examples of temporal differentiation functions temporal rate (a) and log temporal rate
(b) applied on ’volume’ between t3 and t4, represented at tn and tn+1 (same data). Using the log ratio
impose a symmetry between increase and decrease growth rate for temporally differentiated values. The
log temporal rate(b) representation seems less interesting, but only because of the biased repartition of
the values around the mean value. The colormaps for (a) and (b) both range between their respective
minima and maxima. a. Observed temporal rate in volume. b. Observed log temporal rate in volume.

Using the temporal rate, the values associated to growth increase are defined in ]1,+∞[, when

the decrease is defined in ]0, 1[. The values are thus defined on a larger range in the case of an

increase than for a decrease, which makes their comparison harder. Taking the log of the ratio has

the effect of imposing a symmetry between growth increase (∈]0,+∞[) and decrease (∈]−∞, 0[).

In the given representation of both function (fig. 3.15), the log temporal rate values projection

(fig. 3.15b) seems to return higher growth rate values than the temporal rate values projection (fig.

3.15a), but it is only a matter of the colormap representing the values distribution (scaled by the

min and max values of the data).

Figure 3.16b clearly show the symmetry restoration using the log values:

• when using the temporal rate, the standardized observed data are mostly between [−2, 5],

with a mode below the mean;

• when using the log temporal change, the standardized observed data are mostly between
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a. b.

Figure 3.16: Observed standardized distributions of temporally differentiated volume values com-
puted with the given four temporal differentiation functions. a. Comparing temporal change and relative
temporal change highlight the redistribution of the values by dividing by the initial values allowing to
compare the effective volumetric growth independently for this initial values. b. Comparing temporal
rate and log temporal rate show that the log function restore a symmetry in the distribution allowing
for a better relation between increase and decrease.

[−3, 3], with a mode close to the mean;

These equations are not fully independent, since they are based on the same variables, and they

provide slightly different information. Therefore depending on their mathematical formulation and

their properties (symmetry, mode, variance, limits...), the interpretation of the returned values

should be adapted.

Division Rate.

For each cell c having j = {1, ...,D} descendants, the division rate is defined by:

DR(c) = D

∆t

2.2.4 Features transformation functions

We hereafter introduce functions applied on features of higher dimension than scalars like vectors

of tensors, either to express them as scalar (at cost of loss of information) or to combine them so

they express other high dimensional features.

Dimensionality reduction functions transforms tensor shape descriptors into scalar. An

example is transforming the inertia axis into a scalar describing shape anisotropy using the or-

thogonal axis norms. These transformation functions reduce the dimensionality of the space in

which the feature is defined, though some information is lost in the process It is therefore crucial

to understand the limits of such reduction functions to choose wisely.
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Shape anisotropy scalar descriptor. Describing with one scalar the shape anisotropy

is not easy, and there is many physical and mathematical definitions, mostly based on inertia-like

properties. Here we propose to use the magnitudes of the inertia vectors to compute a 3D shape

anisotropy scalar called fractional anisotropy [Basser and Pierpaoli, 1996]. As described before

(section 2.2.1) the inertia tensor is obtained by SVD of the variance-covariance matrix.

Using the three eigenvalues λ1, λ2, λ3 obtained by SVD, we can extract the fractional anisotropy

defined in [0, 1] as:

FA =
√

3
2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ2
1 + λ2

2 + λ2
3

,

with the trace λ̂ = (λ1 + λ2 + λ3)/3.

a. Inertia tensors b. Shape Anisotropy

Figure 3.17: Example of tranformation of a tensor (3D) shape descriptors into a scalar (1D) shape
descriptor for t4 segmented image. a. Inertia tensor with decreasing sorted vectors in red, green and
blue; the tensors are centered on the barycenter of the cells. b. Fractional anisotropy describing shape
anisotropy defined in [0, 1].

Another and probably better solution would be to directly compare the tensors, though this

require a common spatial reference system for all observations. Since between successive acquisi-

tions the object under study may move (by itself or to be put back in growing conditions) it is

not always possible to define this common reference system. This could be solved using biological

landmarks, or computed from registration of all images to define a self reference system. The last

solution being as good as the observed deformations between successive time points are small, it is
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again not an universal solution. In our case, we have no means yet to do such tensor comparisons

since no biological landmark exists (in the acquisition frame) and the deformations are important

between successive images.

Curvature estimators are based on the previously defined principals curvature values k1

and k2, it is possible to compute several estimators. Here we give the formula for two of them, the

Gaussian and mean curvature.

The Gaussian curvature of a cell c is the product of both curvature values:

GC(c) = k1k2

The mean curvature of a cell c is the mean of both curvature values:

MC(c) = k1 + k2
2

Subspace projection. For each cell, we therefore have a set of N landmarks Xi in R3.

Finding the best representation of those points on a 2D hyperplane found by least square fitting is

equivalent to the Singular Value Decomposition of X :

X = USV T ,

Here U is an N × 3 orthogonal matrix (UTU = I3) whose columns uj are the left singular vectors;

V is a 3 × 3 orthogonal matrix (V TV = I3) whose rows vj the right singular vectors, and S is a

3 × 3 diagonal matrix, with diagonal elements s1,1 ≥ s2,2 ≥ s3,3 ≥ 0 are the singular values (and

off-diagonal elements equal to zero).

If we denote X2 the projection of X onto its rank-2 subspace, then for each point Xi their or-

thogonal projection on the plane is: X2 = V:,2⊗V T
:,2Xi = H2Xi,∀i ∈ [i,N ] , where V:,2 is the 2 first

columns of V (vj , j ∈ [1, 2]), and ⊗ the dot product.

Landmark definitions and transformations are often used to compute deformation and

stress associated descriptors.

Below I detail the stretch matrix computation leading to the strain tensor characterisation as
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Figure 3.18: Example of a rank-2 pro-
jection (green) computed from the set of
voxels defining the real initial shape of the
wall (blue). In blue are the voxels defining
the true wall. In green are the voxels po-
sition computed through rank-2 subspace
projection of the blue ones. This repre-
sentation has been generated from rank-
2 computation and representation of real
wall from our data.

well as the formal definition of the landmarks.

Defining the landmarks as the cell wall medians. For each cell, we therefore have

a set of N landmarks Xi in R3 computed from the geometric median function (see Methods 2.3.8).

We will denote X and Y the N ×3 matrix of coordinates before and after deformation respectively.

We also define X̄ and Ȳ the barycenters of the Xi and Yi for i ∈ [1, N ].

An important question to characterize cell geometry dynamics is to quantify the deformation

that undergo its walls. To compute the deformation matrix of a wall in a rank-2 subspace (to

obtain a 2D deformation), we present a general version of the stretch matrix computation [Hastie

et al., 2009]. It is notably useful to compute the areal strain rate of a wall by getting rid of its

potential “bending” due to osmotic pressure, and essentially act as a plane regression (see figure

3.18). For the details about subspace projection see 2.2.4.

Stretch matrix computation. I consider the observed deformation as affine and introduce

least-square regression for its estimation. With d being the dimensionality (here d = 2 or 3), the

affine deformation is:

Ȳd = X̄dAd + εd, (3.9)

where Ad is the N × d matrix of deformation or stretch matrix, and εd the N × d matrix of errors.

The estimation of the affine transformation matrix A in equation (3.9) and the error matrix ε is

done using a least-square estimation [Hastie et al., 2009].
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In figure 3.19 we give an illustration of the method. This enables the computation of the strain

tensor (axis and values) as well as the rotation undergone by the cell. This is illustrated in figure

3.19, where after deformation, the initial centered black cross, now in dashed grey, has been affected

by a rotation ~R and a dilation d1 along the main deformation axis and d2 along an axis orthogonal

to ~d1.

A

a. Before deformation b. After deformation
Figure 3.19: Stretch matrix 2D illustration with cell wall medians used as landmarks before deforma-
tion at tn (green) and after at tn+1 (blue). The red line illustrate the error made by the affine regression
(rotation and non-isotropic dilation) that may not be able to match perfectly tn and tn+1 landmarks
(obviously in the case of a non-affine deformation). After deformation, the initial centered black cross,
now in dashed grey, has been affected by a rotation ~R and a dilation d1 along the main deformation axis
and d2 along an orthogonal axis to ~d1. The black lines does not indicates the cell outlines, but represent
the closed shape. Coloured point indicate the wall medians. This representation is a simplification of a
real tissue.

Strain magnitude and directions. The singular value decomposition of the previously

computed stretch matrix A gives also the main axis and magnitude of the deformation. Writing

the SVD of A as:

A = RDQT ,

this decomposition expresses the stretch matrix A as the product of three matrices: two rota-

tion matrices R and QT , and the dilation matrix D (with off-diagonal elements equal to zero).

Columns of R and QT are the strain directions before and after deformation, respectively.

The dk diagonal entries of D are the stretch ratios, that can be related to the strain rates by

the following equation [Dumais and Kwiatkowska, 2002]:

σk = 1
∆t ln(dk), k ∈ [1, 3] in R3 (3.10)
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Areal strain rate define the amount of areal dilation (if positive) or contraction (if negative)

of a given surface (wall) of the object. It is defined per cell wall and their comparison make sense

for the epidermis wall (L1). We define it as the sum of strain rates as defined in equation (3.10) if

projected into a 2D subspace (because then σ3 = 0):

ΣR2 = σ1 + σ2 (3.11)

Another direct way of computing the areal strain rate is to use the log temporal change formula

(eq. 3.8) with the epidermis area:

ΣR2 = 1
∆t ln

(
Atn+1

Atn

)
, (3.12)

where Atn and Atn+1 are the cell area before and after deformation.

To compare the two formulation, we plotted the returned values against each other in figure

3.20. As we can see the two functions are correlated as expected. The values returned by the

Figure 3.20: Aeral strain rate computational methods comparison between the ‘LTC version’ (eq.
3.12) and the ‘SVD version’ (eq. 3.11). The ‘LTC version’ slightly over-estimating the areal strain rate
since using non-flattened surfaces of the external wall of epidermal cells.

log temporal change is slightly higher than those from the SVD formulation since they use ‘non-

flattened’ surface, therefore slightly over-estimating the areal strain rate. This ‘LTC version’ (eq.

3.12) is however much simpler and faster than the ‘SVD version’ (eq. 3.11).
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Volumetric strain rate define the amount of volumetric dilation (if positive) or contrac-

tion (if negative) of an object. It is defined for all cells and a “true” 3D strain computation is

necessary. We define it as the sum of strain rates defined in equation (3.10):

ΣR3 = σ1 + σ2 + σ3

Again another direct way of computing the Volumetric Strain Rate is to use the log temporal

change formula (eq. 3.8) with the volume:

ΣR2 = 1
∆t ln

(
Vtn+1

Vtn

)
,

where Vtn and Vtn+1 are the cell volumes before and after deformation.

2.3 Adaptating the clustering framework to spatio-temporal prop-

erty data.

The identity of a cell if defined on the basis of its differential genetic state, under the assumption

that cells in the same state will behave the same way. Looked at differently, I propose that groups of

cells that behave similarly with respect to specific morphogenetic features may have similar genetic

state.

To identify relevant cell behaviour, we use clustering methods that consists of grouping individ-

uals behaving the same way and separating those that do not, depending on a chosen metric. It is

based on a matrix of pairwise distances between individuals. We aim to define a distance combining

count dimension, shape and growth features. Such distance first requires data standardisation to

make them of the same magnitude and therefore comparable.

2.3.1 Creating a standardised pairwise distance matrix.

Creating a pairwise distance matrix consists of computing distances between each pair of cells. The

same way knowing all the distance amongst a set of cities allows us to find their relative positions

in space, the obtained pairwise distance matrix is a representation of the neighbouring or distant

cells.
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To compute distances between cells, we sought to combine variables attached to cells, tempo-

rally differentiated variables, and either the spatial ranked distance between cells, or the Euclidian

distance between either centroids or geometrical medians of cells.

We aimed at applying a global clustering to all vertices defining tissues acquired at successive

time points. This entailed:

• a global standardization of all the cells of one (or several) meristem(s) along time,

• taking into account topological or Euclidian distances between cells belonging to a given

meristem at a given time t,

• managing side effects induced by missing data potentially arising in several cases:

– for temporally differentiated variables: depending on the convention for attaching these

variables to cells at tn instead of tn+1 there will be no variables at the last observation

date;

– inability to compute a variable (e.g. inability to auto-associate landmarks leading to

no areal strain rate), or to remove it (e.g. in case of outliers);

– non-existence of the variable (e.g. no topological nor Euclidian distances between cells

that are not at the same time-point);

This distance then compares between all selected quantified features of the two cells i and j as

follows [Guédon et al., 2003; Hastie et al., 2009]:

Dij = wtopo
dij

absdtopo
+
∑

e

we
δ(xi,e, xj,e)

absde
+
∑

f

wf
|∆xi,f/∆ti −∆xj,f/∆tj |

absdf
(3.13)

where:

• wtopo, we and wf are the weights of topological, spatial and temporal information, respec-

tively;

• with: wtopo +
∑

ewe +
∑

f wf = 1;

• dij (if it exists) is the topological distance between cells i and j or the Euclidian distance

between centroids or geometrical medians (for robustness) of cells i and j expressing cell

spatialisation;

• δ(xi,e, xj,e) is the distance for the eth spatial variable;

• ∆xi,f/∆ti −∆xj,f/∆tj is the distance for the f th temporally differentiated variable.
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The aim of standardization is to make the local distances independent of the type of the elemen-

tary variables (nominal, ordinal, interval-scale, ratio-scale, circular . . . ) and also independent of

the choice of the measurement units. See section 2.3.2 for definition of dispersion measuresabsdtopo,

absde and absdf .

Some weights that are chosen in a subjective way on the basis of application knowledge can

be introduced. We here propose to chose the weight for each variable category (i.e. wtopo,
∑

ewe

and
∑

f wf ) and to assume that the different variables have the same weight within each category

(see section 2.3.3). In addition, handling missing data is done through re-weighting, respecting

wtopo +
∑

ewe +
∑

f wf = 1 as explained in section 2.3.3.

2.3.2 Data standardisation.

Seeking to combine variables attached to cells, temporally differentiated variables and topological

relations between cells, we need to standardise the data. The L1 metric approach is less sensitive to

outliers than the L2 metric approach since the basic quantities are not squared in the computations

(equations (3.14) and (3.15)).

e-th variable: Depending on the type of variable δ(xi,e, xj,e) is defined as follow:

• for a nominal variable: δ(xi,e, xj,e) = I(xi,e 6= xj,e), with I( ) the indicator function;

• for an interval-scale variable and the L1 metric: δ(xi,e, xj,e) = |xi,e − xj,e|

L1 metric and pairwise distances: We therefore used the L1 metric (mean absolute differ-

ence):

absde = 1
N(N − 1)

∑
i6=j

|δ(xi,e, xj,e)| (3.14)

where δ(xi,e, xj,e) is the distance between cells i and j for the e-th variable.

For the L1 metric, the standardized distances Dij between cells i and j is written as :

Dij = wtopo
dij

absdtopo
+
∑

e

we
δ(xi,e, xj,e)

absde
+
∑

f

wf
|∆xi,f/∆ti −∆xj,f/∆tj |

absdf

where :

• wtopo, we and wf are the weights of -respectively- topological, spatial and temporal informa-

tion,
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• all those weight sum up to 1: wtopo +
∑

ewe +
∑

f wf = 1,

• dij (if it exists) is the topological distance between cells i and j or the Euclidian distance

between centroids or geometrical medians (for robustness) of cells i and j expressing cell

spatialisation,

• δ(xi,e, xj,e) is the distance for the eth spatial variable,

• ∆xi,f/∆ti −∆xj,f/∆tj is the distance for the f th temporally differentiated variable.

L2 metric and pairwise distances: One could choose the L2 metric (mean square difference):

quade = 1
N(N − 1)

∑
i6=j

(δ(xi,e, xj,e))2 (3.15)

where δ(xi,e, xj,e) is the distance between cells i and j for the e-th variable.

For the L2 metric, the standardized distances Dij between cells i and j is written as :

Dij =

√√√√wtopo

d2
ij

quadtopo

+
∑

e

we
δ(xi,e, xj,e)2

quade

+
∑

f

wf
(∆xi,f/∆t,i −∆xj,f/∆t,j)2

quadf

, (3.16)

where:

• quadtopo = 1/(N(N − 1))
∑

i6=j d
2
ij is the measure of dispersion for the standardization of the

topological variable.

• quade = 1/(N(N −1))
∑

i6=j δ(xi,e, xj,e)2 is the measure of dispersion for the standardization

of the e-th elementary variable

• quadf = 1/(N(N − 1))
∑

i6=j(∆xi,f/∆t,i −∆xj,f/∆t,j)2 is the measure of dispersion for the

standardization of the temporal variable.

2.3.3 Re-weighting and handling missing data.

Missing topological variables: If cells i and j belong to different time points, there is no

topological distance dij , therefore it is the same as if wtopo = 0 and that no longer fulfil the constrain

wtopo+
∑

ewe+
∑

f wf = 1, hence a re-weighting is necessary. In such case, the standardized distance
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(3.13) can be rewritten as:

Dij =
∑

e

we

1− wtopo

δ(xi,e, xj,e)
absde

+
∑

f

wf

1− wtopo

|∆xi,f/∆t,i −∆xj,f/∆t,j |
absdf

(3.17)

Missing temporal variables: If cells i or j belong to the first observation date assuming that

the temporally differentiated variables are attached to the final date (and not to the initial date),

the standardized distance (3.13) can be rewritten as:

Dij = wtopo

1−
∑

f wf

dij

absdtopo
+
∑

e

we

1−
∑

f wf

δ(xi,e, xj,e)
absde

(3.18)

The two rewritings (3.17) and (3.18) can be seen as two examples of managing missing variables

in the computation of standardized distances between cells.

2.3.4 Clustering a pairwise distance matrix.

The aim of cluster analysis is to group data into homogeneous groups or clusters [Kaufman and

Rousseeuw, 1990; Gordon, 1999]. Cluster analysis can be viewed as an exploratory tool revealing the

structure embedded in a pairwise matrix of distances between individuals. The two main categories

of clustering methods are partitioning methods and hierarchical methods, whose advantages and

drawbacks are thoroughly discussed in Kaufman and Rousseeuw [1990]. For partitioning methods,

the resulting set of clusters, whose number is fixed by the user, satisfies the requirements of a parti-

tion: each cluster must contain at least one individual; each individual must belong to exactly one

cluster. Considering hierarchical methods, a hierarchically-nested set of partitions is constructed.

These hierarchical methods are either agglomerative or divisive. Agglomerative methods start with

each individual in a unique cluster and iteratively merge the two closest clusters. Divisive methods

work the other way around by splitting the cluster presenting the highest within-cluster distance

into two clusters. Both methods are therefore computationally expensive since they consider at

every step all the possible merges or divisions.

We chose to make use of the clustering algorithms available in Scikit-learn [Pedregosa et al.,

2012], with a particular focus on selecting those presenting the capacity to detect non-convex

clusters. Therefore we selected two methods available in the software:

• Ward clustering is an agglomerative hierarchical method that minimizes the sum of squared

differences within all clusters. It is thus a variance-minimizing approach, similar to the k-

166



CHAPTER 3. 2. METHODS

means objective function but not limited to convex cluster detection and with the possibility

to add connectivity constrains [Pedregosa et al., 2012];

• Spectral clustering performs a low-dimension embedding of the pairwise distance matrix,

followed by a K-means in the low dimensional space. K-means is bound to convex cluster

detection, however the dimensionnality reduction might change that and non-convex clusters

and even embedded (i.e. clusters within) clusters can be obtained when coming back to the

original space [Pedregosa et al., 2012].

Assessment and post-processing methods (e.g. multidimensional scaling methods) will be used

as presented later in 2.3.6.

Finally, it is important to stress that in our context, clustering methods focus mainly on the

spatial dimension of data, the temporal dimension being achieved by the inclusion of temporally

differentiated variables assigned to vertex, either at tn or tn+1.

2.3.5 Managing outliers for the standardisation step.

Both the clustering and the standardisation step are sensitive to outliers. As presented in section

2.3.2 and in equation 3.13, rely on a measure of data dispersion. By modifying data dispersion,

outliers contribute modifying the distance distribution between variables.

It is possible to select these outliers in two ways: manual definition of a threshold for each cell

feature, or automatic detection. The first one is simple and straightforward, however it may not

be repeatable. On the opposite, a reliable automatic detection of outliers is hard to achieve.

Finally, handling those detected outliers is also a tricky task. Removing them from the stan-

dardisation value computation process will preserve distances between core elements (those close

to the mean value), but will make the outliers even more obvious for the clustering. On the other

hand keeping them when standardizing will artificially make outliers comparable to the absolute

largest values of other features. One solution would be to exclude them from standardisation and

clustering analysis beforehand (i.e. form the pairwise distance matrix) and either add them as an

extra cluster or group them with the cluster presenting the highest (or lowest if negative values)

values for the property where these outliers comes from. This will also be challenging when using

multivariate clustering. The safest solution would therefore be to exclude them from the analysis

altogether and tag those data as “impossible to explain” with the selected model.
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Some clustering methods such as the density-based clustering method DBSCAN [Ester et al.,

1996] apply such ideas by labelling and excluding outliers when detected. Another great strength of

this method is its capacity to automatically define the number of clusters. However we were unsuc-

cessful when testing this clustering method with our data since the two parameters of this method

(maximum distance between two individuals and the number of individuals in a neighbourhood for

a point to be considered as a core point) defining the “density” were difficult to adjust properly.

As noted in Ester et al. [1996], it works well for data that contains clusters of similar density, but

we have no a priori knowledge regarding that property for our data.

2.3.6 Clusters assessment and inspection.

When a clustering is achieved, either from a manual annotation or from an algorithmic method,

the quality of the clusters must first be assessed using data and clusters representations. Since

clustering is computed based on a standardized pairwise distance matrix, therefore even in the

case of manually defined clusters it is necessary to select which features to use and their respective

weights, to build this matrix before interpreting the clusters.

This inspection step is important to assess the validity of the clustering, but also to gain insight

into how the clusters are made and what limitations to apply to our mathematical and biological

conclusions.

Vertex to cluster distance allows the ordering of the vertex by ascending average distance

D(i, q) to other cells assigned to the same cluster i.e. from the least (most central) to the most

outlying. For a vertex i, it distance to cluster q is computed as follow:

D(i, q) =
∑

j∈q;j 6=iDij

Nq − 1 if i ∈ q,

D(i, q) =
∑

j∈q Dij

Nq
if i /∈ q,

where Nq is the number of cells assigned to cluster q.

In a representation, the vertices are usually indexed (rank) by their distance to their cluster.

We then can readily detect the well-classified individuals inside the cluster since they will show only

a small increase in their distance compared to the previous ranked element. On the contrary, those

who present a drastic increase in term of distance (highlighted by the ranked distribution in the

other axis) can be declared as poorly classified. The presence of a large group of poorly classified
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elements in one or more clusters can indicate the necessity of adding supplementary clusters to

obtain a potentially better defined clustering. These poorly classified elements are always found at

the margin of a meaningful cluster.

Within- and between-cluster distances are important criteria to consider since they

quantify cluster-compactness (within-cluster distances) and cluster-separation (between-cluster dis-

tances).

Dwithin(q) = D(q, q) =
∑

i,j∈q;i6=j Dij

Nq (Nq − 1) ,

Dbetween(q) = D(q, `) =
∑

i∈q;j∈`Dij

NqN`
if q 6= `.

where N =
∑

q Nq is the total number of cells, Nq and N ` the number of cells in clusters q and `.

The within/between-cluster distance matrix is therefore a crucial tool to assess the quality of a

clustering. Indeed a good clustering should have at least smaller within-cluster distances (diagonal)

than between-cluster distances (off diagonal). This ascertain the absence of overlapping clusters

in their original high-dimensional space. See methods 2.3.6 for the definition of global between- or

within-cluster distances.

Global between- or within-cluster distances can be computed from the D(q, q) within-

clusters and D(q, `) between-clusters distances as follow:

Dwithin =
∑

q

∑
i,j∈q;i6=j Dij∑

q Nq (Nq − 1) =
∑

q

Nq (Nq − 1)∑
`N` (N` − 1)

∑
i,j∈q;i6=j Dij

Nq (Nq − 1) =
∑

q

Nq (Nq − 1)∑
`N` (N` − 1)Dwithin(q),

Dbetween =
∑

q

∑
i∈q;j /∈q Dij∑

q Nq (N −Nq) =
∑

q

Nq (N −Nq)∑
`N` (N −N`)

∑
i∈q;j /∈q Dij

Nq (N −Nq) =
∑

q

Nq (N −Nq)∑
`N` (N −N`)

Dbetween(q).

These indicators will be relevant if the clusters are convex. Otherwise, other indicators (e.g. the

average distance to the k-nearest neighbors within the cluster that take account of the density-based

clustering assumption) should be proposed.

Multi-dimensional scaling (MDS) can give a representation of the original high-dimensional

distance problem (tackled by the clustering) by reducing it to a 2D or 3D representation. This

dimensionality reduction method is comparable to other multi-dimensional methods like principal

component analysis (PCA) or singular value decomposition (SVD). They indeed present the par-
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ticularity to compute and select the most representative dimensional axes of a given dataset. By

selecting 2 or 3 of the most representative axes it is then possible to represent the data in a lower

dimension (i.e. observable dimensions like 2D or 3D).

MDS is different from PCA and SVD since it is specifically designed to preserve the distance

metric separating the elements simultaneously to completing the representative axes research. How-

ever, it is possible that the 2 or 3 first selected axes represent only a small percentage of the overall

information (sum of the firsts eigenvalues divided by the sum of all eigenvalues). In that case,

the MDS representation is not meaningful and should be discarded. Plotting the elements of the

pairwise distance matrix with a color code corresponding to cluster association can give a represen-

tation of the spatial distribution within the cluster (elements at the core or margins of the clusters).

This representation will be as close to the within/between-cluster distance matrix as the selected

axis are representative of the overall information.

Features distribution per cluster highlight feature contribution to their respective cluster

therefore enabling clusters characterisation (e.g clusters with high, medium and low volumes). It

can also be helpful in detecting a split or absence in the data distribution property by adding or

removing a cluster in a range of clusters for the same feature combination. It is coherent with a

view where the clustering algorithm could yield a mixture-like structure when attributing cells to

groups. Looking at the properties distribution per cluster could then assess the presence of well

defined mixture component by showing their overlap or separation.

Projecting clusters on the segmented image allow us to picture the output of the clus-

tering in a spatial fashion. It is a simple representation, but very important in order to correlate

and analyse this information in their biological context.

Clustered spatio-temporal graph representations provide a synthetic view of the temporal

evolution of the patterns at a cluster level. There are actually two ways to look at it: where do

the cells come from and where are they going? These ideas and representations are a good door to

more detailed analysis of the temporal process at a sub-tissular level (groups of cells behaving the

same way temporally is an identity specific pattern) by hidden Markov tree.
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2.3.7 Clusterings comparison with bipartite matching of cluster composition.

To compare clustering we sought at matching cluster composition to get a clearer picture of the

differences. In the case of nested-clusters obtained from hierarchical clustering methods, this is even

more pertinent since we can then keep coherent clusters ids for a given range of clusters number.

For instance, comparing a 3- and 4-clusters model with bipartite matching gives us the id of the

new cluster.

Cost function matching elements of ensemble i to those of ensemble j is defined as follow:

cost function({i}, {j}) = 2 ∗ {i} ∩ {j}
ni + nj

,

where {i} means ensemble i (i.e. set of vertex ids in cluster i), ni is the number of elements in

ensemble i and ∩ means ensemble intersection.

Bipartite matching is then obtained by computing the cost function for each ensembles i ∈ I

with respect to all ensembles j ∈ J . For each ensemble from i we then take the sum of the cost

function minimising the overall sum.

2.3.8 Supplementary function definitions.

Geometric Median The geometric median of a discrete set of N sample points Xi in a Eu-

clidean space (R3) is the point minimizing the sum of distances to the sample points. This gener-

alizes the 1D-median (minimize the sum of distances for one-dimensional data) as follow:

Geometric Median = arg min
y∈Rn

m∑
i=1
‖xi − y‖2 , (3.19)

where arg min
y∈Rn

is the value of the argument y which minimizes the sum, meaning the point y from

where the sum of all Euclidean distances to the Xi is minimum.
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3 Results

3.1 Exploratory analysis of the temporal property graph

I now introduce some example of possible exploratory analyses. Starting with a simple test of

collinearity between vectors, I will show that it is possible to verify the “universal rule for symmetric

division” demonstrated in Besson and Dumais [2011]. Then, on the basis of a manual annotation

(morphology oriented) of the last time point, I will highlight the necessity of using unsupervised

methods to define relevant regions on the basis of geometrical features. Finally, using the clustered

version of an acquired genetical signal, I will present a first evidence of a link between gene and

shape.

3.1.1 Taking the “universal rule for symmetric division” presented in Besson

and Dumais [2011] to the third dimension

Here I consider the case were one is interested in using the spatio-temporal graph framework for the

inspection of known or putative properties of the tissue. Empirical evidences suggest that tensional

forces within the cytoskeleton provoke division plane to align along the plane that minimise its

area. This empirical property of cell division, known as the Errera’s rule, thus yields two daughters

of equal size. Using a mechanistic model of division and a maximum entropy formulation, Besson

and Dumais [2011] confirmed that the probability of observing a particular division configuration

increases inversely with its relative area, independently of the cell size and shape. In addition, they

confirmed that this properties was imputable to tensional forces within the cytoskeleton who is

positioning the cell nucleus during mitosis.

Size symmetry among the siblings.

Besson and Dumais [2011] tested this hypothesis and built their model using 2D features and 2D

observation of cells. Later on Yoshida et al. [2014] analysied in 3D the division patterns found in

the developing embryo of A. thaliana, but to my knowledge no-one have ever looked it with 3D+t

data. I do not pretend to demonstrate in 3D+t the rule, but merely test if the size symmetry

among the siblings holds when using the observed division statistics of 3D+t data. To that end, I

have first compared the observed volumes of sibling cells, as well as their ratios. We here need to

assume that, between the successive time-points, the descendant did not undergone too important
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deformation after the establishment of the division wall. In order to be thorough I thus computed

the ratio for sibling cells coming from a binary division (i.e. only two descendants) as well as those

detected within the sublineage (hand-made) to compute volumetric ratios for all cells presenting a

division even in the case of parallel divisions (4 cells).

a. Bi-plot of sibling against sibling b. Distribution of siblings volume ratios
Figure 3.21: Comparison of sibling volumes similarity computed over the whole time-series. a. Each
coloured point represent the coordinate defined by the two siblings volumes; the blue line represent
the coordinates for a perfect symmetry in terms of volume. The abscissa present the sibling with the
minimum volume and the ordinate the one with the maximum volume, thus all the information is on
the same side of the ‘prefect ratio line’. However, the orthogonal distance to this ‘prefect ratio line’
is not linear for the sibling volumes ratios, since bigger cells can be further away from this line than
smaller cells but present the same ratio. I thus coloured the points according to their respective volume
ratios and given three others ratios lines: 1/3, 1/2 and 2/3 to help reading the illustration. b. Boxplot
per time-point (top), distribution (middle) and cumulative distribution (bottom) of the sibling volume
ratios over the whole time-series; the vertical lines indicate the percentage of sibling under the curve
starting from 1 (the perfect ratio) to the line defined ratio (e.g. 42.6% of the ratios are superior to 0.8).
The box extends from the lower to upper quartile values of the data, with a line at the median. The
whiskers extend from the box to show the range of the data as follow: Q3 + 1.5 ∗ IQR, where IQR =
interquartile range (i.e. Q3−Q1). Flier points are those past the end of the whiskers.

Using figure 3.21a plotting siblings coordinates on the basis of their volumes, we observe that

the smaller cells tend to present more divergence in their volumetric ratio than bigger cells. Al-

though this conclusion is limited by the difference in terms of individuals within each population

(large for small and limited for big cells). The boxplot I present at the top row of figure 3.21b

indicate that the dispersion of the interquartile value does not change over time. Although a slight

decrease in the median can be observed, this seems to be the result of a greater variability of the

‘extreme’ values highlighted by the extension of the whiskers over time. This can be interpreted

173



3. RESULTS CHAPTER 3.

either as an increase in segmentation errors over time, or by the presence of more divisions go-

ing against Errera’s rule. Analysing middle and bottom illustrations of figure 3.21b giving sibling

volume ratios, highlight a correct adequacy of the observed ratios to Errera’s rule. Indeed, nearly

84% of the siblings present a volume ratio superior to 0.6, and nearly half (42.6%) of these ratios

are above 0.8. This is quite good considering the potential error rate of the segmentation algorithm.

All these representation and their interpretations are limited by the absence of spatial informa-

tion. To further analyse the ratio, I thus give in figure 3.22 a spatial projection of the ratio onto the

segmented time-series. Observing these illustration, we can observe that the ratios do not present

a spatial bias, meaning that no obvious spatial regularity can be found in the spatial distribution

of the ratios. In addition, as shown by the top figure 3.21b, t1 seems to present a high coherence

to Errera’s rule, but for t2 to t4 the spatial information does not highlight any temporal changes

in the sibling volumetric ratio (except a limited amount of data for t4, but this is consistent with

the low division number observed between t3 and t4; see supplementary figure S3.5).

t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)

Figure 3.22: Spatial projection (top and abaxial views) of the siblings volume ratio at tn +1. In order
to be thorough we uses the sublineage (hand-made) to compute volumetric ratios for all cells presenting
a division The t4 present a limited amount of data, but this is consistent with the low division number
observed between t3 and t4 (see supplementary figure S3.5).

I may now finally test the independence of the volumetric ratio to cell size and shape,and to that

end we present in figure 3.23 two representations of the volumetric ratio against each of the sibling
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volume sums (figure 3.23a) and the 3D shape anisotropy obtained from the inertia tensor computed

with the fused-siblings (figure 3.23b). Analysing figure 3.23a, we observe a slight tendency of small

a. Sibling volume sums b. Sibling fused 3D shape anisotropy
Figure 3.23: Representation of the sibling volume ratio correlation to (a.) the sibling volume sums
and (b.) the 3D shape anisotropy obtained from the inertia tensor computed with the fused-siblings.

cells to sometimes present a low ratio. Appart from that the dispersion of the rest of the data do

not display any correlation. In addition, observing figure 3.23b, we note that it is also impossible

to distinguish any correlation between the volumetric ratio and the shape anisotropy. We can

therefore conclude to the independence of this volumetric ratio respectively to size and shape.

Division plane orientation respectively to the main axis of inertia.

The key statement of the “universal rule for symmetric division” is that plant cell walls are suppose

to divide a parent cell along a plane that minimizes its area. This is for the tensional forces within

the cytoskeleton to be minimized, positioning the cell nucleus close to the barycenter of the cell,

which is the origin of the tensor of inertia. The division plane should thus be orthogonal to the

main axis of inertia, since the main vector is oriented along the maximum length of the cell and

the two others form an orthogonal plane close to the one of minimal area.

Possessing the division wall orientations and being able to compute the main axis of inertia, I

thought at computing their collinearity in a 3D space. Since the division wall can only be observed

at tn+1, we have to compute the inertia tensors at this time point too. Therefore I thought at

“fusing” the descendants before computing their inertia tensor. I here had to hypothesise that the

descendants shapes are close to the mother shape right before division.
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The illustrations of figure 3.24 present the spatial projection of the vectors collinearity results

as computed at tn+1 (see supplementary figure S3.2 for the same data projected at tn). Analysing

those results, the developing L1 of the acquired FM seems to follow the proposed pattern of Besson

and Dumais [2011]. Indeed, most of the descendants cells present a division wall orthogonal to the

main inertia axis computed on the fused siblings, since 92% of the vectors present a collinearity of

at least 0.8 (see figure 3.25).

As for the sibling volume ratios, no temporal bias can be observed although for the last time-

point (t4) it seem that more cells deviate from the –globally observed– high collinearity (see figure

3.25, left illustration). However, this may be due to a possible spatial dependency displayed by

the vectors collinearity measure that seems to present more orthogonal main axis of inertia and

division plane at the bottom of the abaxial side (figure 3.24).

t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)

Figure 3.24: Main axis of inertia and division wall normal vectors correlations at tn+1. Collinear
vectors have a value close to 1 and orthogonal vectors close to 0. We use the inertia axis obtained with
the fusion of the daughters since the division wall is defined at tn+1. Only the cells presenting a binary
division (i.e. only for two siblings) are presented.

Finally, the main axis of inertia and division plane collinearity does not seem to be influenced

by neither the volume of the cell, nor its shape (see figure 3.26). This property seems independent

of both size and shape of the cell, but may be spatially influenced as seen on the abaxial views

(bottom row of figure 3.24), although the limited number of observations prevents us to drawn

general conclusions.
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Figure 3.25: Distribution of main axis of inertia and division plane normal vector collinearity com-
puted over the whole time-series and attributed at tn. Boxplot per time-point (left), distribution (middle)
and cumulative distribution (right) of the sibling volume ratios over the whole time-series; the vertical
lines indicate the percentage of sibling under the curve starting from 1 (the perfect ratio) to the line
defined ratio (e.g. 92.6% of the ratios are superior to 0.8). The box extends from the lower to upper
quartile values of the data, with a line at the median. The whiskers extend from the box to show the
range of the data as follow: Q3 + 1.5 ∗ IQR, where IQR = interquartile range (i.e. Q3 −Q1). Flier
points are those past the end of the whiskers.

a. Sibling volume sums b. Sibling fused 3D shape anisotropy
Figure 3.26: Representation of the vectors collinearity in correlation to (a.) the sibling volume sums
and (b.) the 3D shape anisotropy obtained from the inertia tensor computed with the sibling fused.

3.1.2 Mathematical relevance of user defined regions.

One of the most obvious ways to explore morphogenesis is by exploring the behaviour of known,

predicted or putative groups of cells within a tissue. It might be of importance indeed to assess

previous biological studies quantitatively, meaning to test the features distribution in groups of

cells predicted by gene expression or morphological studies. For example, the t4 introduced in

figure 3.3, is a stage 3 with its attendants morphological features such as the emerging sepals on

the sides, and a central dome in the middle, separated by a boundary region it between. Manual

annotation of each apparent morphological region by an expert biologist define what we call an

“expert defined clustering” as presented in figure 3.27. Since we have defined a way to compute a
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standardised pairwise distance matrix (see equation 3.13 section 2.3.1), we can assess this ‘expert

defined’ clustering regarding selected features.

Figure 3.27: Example of morphol-
ogy related regions defined on the last
time point (t4). We manually de-
fined the boundary (dark blue) re-
gion between the central dome and
the sepals. The central zone (blue) is
surrounded by a peripheral zone (light
blue). Each sepals are reported in
different colors (abaxial: ligth green;
adaxial: yellow; left: dark red; right:
orange).

Before building a pairwise adjacency matrix, we need to select, among the available features,

those displaying differences by regions. To help select regions with a differential behaviour in terms

of feature, I first represented the distribution of the features by cluster as boxplots in figure 3.28.

Such representation provides preliminary insights into the cell feature distributions by regions.

Figure 3.28: Example of features distributions by morphologically defined regions (at t4).

As it was expected, using manually defined regions of the basis of morphological features, we

are far from regions defined by mixture models (i.e. with non-overlapping distribution for a cell
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feature). Although, it is possible to obtain some information that might be crucial when using

unsupervised partitioning. Indeed, the boundaries present the lowest median and overall values for

the following features: volume, Gaussian curvature, log volumetric growth rate and areal strain

rate. Especially for the two temporally differentiated feature (log volumetric growth rate and areal

strain rate) it is quite clear that using them within an unsupervised framework would reveal the

boundary by grouping cells presenting low values.

As presented in figure 3.2 (p. 136), the expression domain of a gene called ARABIDOPSIS

HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6 ) has been acquired. AHP6 is a negative

regulator of cytokinin signalling, that is expressed very early during flower primordia initiation

and during sepal initiation at morphological stage 3 [Bartrina et al., 2011; Besnard et al., 2014].

Considering this acquired genetical signal, it should be noted that only the central and peripheral

zone display a rather concentrated distribution of values, when other region seems more spread out

(figure 3.28). With the notable exception of the adaxial sepals with a a high median but a small

number of individual defining the region, the medians of the other regions seems comparable. This

seems contradictory with the previous observation, but this is in fact due to the large number of

individual composing the sepals regions, thus grouping rather different AHP6 levels that lead to a

high dispersion, but not apparent differences in the medians.

The shape anisotropy feature seems incapable of differentiating any regions, except maybe for

the abaxial sepal which display a large distribution due to highly anisotropic cells a the base of

this sepal. This abaxial sepal also present high values for the temporally differentiated feature (log

volumetric growth rate and areal strain rate). In a less obvious fashion, the adaxial and right sepal

also present higher values for those temporal features. The left sepals might be late in its formation

since it display globally lower values for those features even presenting a median close to the central

and peripheral zones. In the perspective of defining cellular identities on the base of growth related

features, using the temporally differentiated features, log volumetric growth rate and areal strain

rate, would therefore be a good idea to separate biologically relevant regions such as the sepals,

the boundary and the central dome.

Finally, I would stress that the regions can be defined by morphology or genetic identity. In

that respect, using a gene atlas (maps of gene expression domain) or an embedded fluorescent

marker will also enable a statistical comparison between genetic and feature patterns. Although
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in the case of the atlas, which does not exist yet in a numerical form at cell resolution for A.

thaliana, it would also be necessary to have it at a developmental stages as close as possible to

our acquisitions.In addition, we have seen that the genetic signal, AHP6, was not well defined by

the manual annotation and since using such important features as developmental genes might be

crucial in understanding the link between gene and shape, I propose to explore it further in the

next section using unsupervised methods.

3.2 Cellular pattern identification on the basis of geometrical fea-

tures clustering

The main aim and interest when doing clustering analyses is to simplify complex data by grouping

individuals presenting similar features, thus summarising and highlighting their similarities and

differences. It is therefore an helpful tool for researchers to understand the main mechanism at

work and their relations within complex data. It prove particularly useful to simplify quantitative

data in a modelling perspective where only a limited amount of structure can be modelled (e.g.

ordinary differential equations) and a quantified variability can be introduced.

The major challenge having all those different features and many ways to combine them with

different weightages is that the resulting number of possible analyses is very large. Therefore

I begin by explaining univariate clustering below, to illustrate the possibilities and outcomes of

such analyses. I will first illustrate the capacity of the spatio-temporal graph framework to test

the potential relation between an acquired gene pattern against geometrical features in order to

determine their morphological function. We here want to test if a direct relation can be done within

the 3D+t geometrical features. The capacity of the clustering methods to groups individuals of

comparable genetic signal will provide groups for which we will analyse the features distributions.

3.2.1 Relating genetic spatio-temporal patterns to quantitative feature changes

by clustering AHP6 signal.

Acquiring genetic spatio-temporal patterns is indeed a key possibility offered by live-imaging tech-

niques, allowing us to follow the expression and distribution patterns of a tagged protein through

time. Tagging proteins with fluorescent markers is becoming a common tool in many model organ-

ism like A. thaliana. It is also possible to follow several proteins by tagging them with fluorescent
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marker emitting at different wavelengths. Indirect tracking of other biological mechanisms like

hormone concentration or activity is also possible [Brunoud et al., 2012]. However these “simple”

constructions usually do not provide a quantitative marker, meaning that changing acquisition pa-

rameters, between acquisition for instance, will artificially alter the amount of signal in the image.

Nevertheless, for a single image, the relative levels are correlated to fluorescent protein concentra-

tion, although not necessarily in a linear manner. Therefore, considering as identical the signal

levels from successive acquisitions of the same object (or between different objects) is wrong, but

they are comparable. Many artefacts can indeed change the relative levels of expression:

• repetitive acquisition in a short time frame can induce photo-bleaching, i.e. quench the

fluorochrome molecules;

• large or unequal intervals of acquisition can result in large variations of fluorochrome-tagged

protein levels subsequently to changes in the metabolic activity (daily and long term regu-

lated);

• change in confocal acquisition parameters.

To begin to correlate genetic patterns to morphogenetic features, I have made use of the clus-

tering method to group individuals by features proximity to discretize the acquired genetic signal.

There are several ways of discretising the genetic signal, but binarisation (presence/absence) and

3-4 clusters (None, Low, Medium and High) are the most interesting cases biologically speaking.

Binarisation should be indeed useful to create an atlas of the tracked genetic patterns, and the

categorisation into 3 or 4 signal levels should enable interesting correlations with other features.

Figure 3.29 (top row) shows the AHP6 signal projected onto the cell-segmented reconstruction.

Using only the AHP6 signal spatial feature to build the pairwise distance matrix and applying a

4-group hierarchical Ward clustering method, we obtained a clustering given in figure 3.29 (bot-

tom row). Comparing the two rows of figure 3.29, it is easy to understand the meaning of each

cluster holds even without looking at the feature distribution values of every clusters (figure 3.30).

Furthermore, representing the distribution of the signal per cluster in figure 3.30 (AHP6 signal),

it is clear that the clustering acts as a mixture model, separating individuals into non-overlapping

groups of signal levels. We can further explore this by now considering the other features (Gaussian

curvature, volume, log volumetric growth rate and division rate) and observing their relation to the

discretised signal levels (figure 3.30. In that respect, cell volumes does not seem to be significantly

influenced by the activity of AHP6. The shape anisotropy might be related to the signal levels,
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
Figure 3.29: Example of an acquired genetical marker: AHP6 signal (top) and the associated 4-
groups clustering by ward method (bottom). In the top row the colormap range from low-intensity
signal in dark blue to high-intensity signal in dark red. The highest intensities have not been reproduce
for lower signal readability reasons. The threshold used is presented in supplementary figure S3.1. In
the bottom row the colormap is made as follow: no-signal = dark blue; low-intensity signal = orange;
medium-intensity signal = light green; high-intensity signal = light blue.

Figure 3.30: Cell features boxplot per groups obtained from 4-clusters Ward clustering of AHP6
signal. We give the distribution of AHP6 signal, 3D shape anisotropy, volume, log volumetric growth
rate and division rate. It seems that the log volumetric growth rate and division rate are related to
AHP6 signal level since both show an increase relate to the increase of signal. Volume property seems
inversely proportional to AHP6 signal levels, but it might be a secondary effect of increased growth and
division rate.

since a slight reduction of the data dispersion around the median placed below those of the other

level-related groups. Although I may point out that this could be circumstantial since the num-

ber of individual is significantly smaller and for this feature the data dispersion might be biased.

Finally, it seems that volumetric growth rate, areal strain rates and division rate are positively

related to AHP6 signal level since they all display an increase related to the increase of signal. At

least high levels of AHP6 could induce an increase of the cell growth rates, and a a more graduated
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response for the division rates can be observed.

Finally, I would like to stress that it is better to search for relations between signal-discretised

groups and geometrical features rather than a full linear or more complex relation, since:

• these are noisy data and the obtained correlation would be poor;

• there are uncertainties coming from the fact that the signal is not quantitative, and especially

that relative levels between acquisitions might change slightly.

3.2.2 Univariate clusterings on the basis of geometrical features.

In the following paragraphs I present two univariate clusterings on different features to illustrate

the kind of insight one can get from such methods. We here focus on finding biologically relevant

clusters using the Ward hierarchical agglomerative method, for the two reasons that follows:

• its capacity to detect non-convex clusters;

• to obtain hierarchically-nested cluster (clustering tree).

This second property, together with a bipartite graph matching of cluster composition, makes the

analysis of clustering outputs for successive numbers of clusters much easier. Indeed, going up

(fewer clusters) or down (more clusters), will result in the merging of two clusters or the splitting

of one cluster without the possibility of redistributing of the individuals to other clusters. This

make the successive clusterings highly coherent and therefore facilitates their analysis.

Before starting the analysis of the unsupervised clustering outcomes, I would like to stress that

I do not expect the methods to explain all relations between all measured geometrical features for

every time point with a high biological coherence! This is because I use algorithmic clustering,

as opposed to model-based clustering, and thus the absence of a spatio-temporal model will limit

the capacity of the methods to explain several identities at once. Indeed there are many complex

(multi-scale, inter-dependent, ...) relations between all these features, making it impossible to

unravel at once!

In the case of univariate clustering I expect to find at least one strongly biologically relevant

cluster per feature, and using a reasonably small range of clusters numbers (e.g. from 4- to 6-

cluster clusterings, which might ‘disappear’ by being split if the number of cluster is too high).

This cluster, then, tells us which cells behave the same way regarding the used features and how

(and to what extent) they are different from the other clusters. These others clusters are retained
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however, since they do hold a meaning regarding the feature, but being less obviously related to

known biological patterns it might be more difficult to draw conclusions about them. Ultimately,

we expect univariate clustering to act as a mixture model, separating the used feature values into

non-overlapping clusters.

Regarding multi-variate clustering, the separation of the used feature into non-overlapping clus-

ters is not always expected since the pairwise distance matrix will be a weighted linear combination

of those features. However I would expect to enhance or strengthen the definition of known patterns

and also to obtain new ones (not obtainable from univariate clustering) since I will try to relate

biologically linked features a biological meaning.

Finally, we define high spatial coherence as spatially well separated clusters, and inversely low

spatial coherence as a random distribution of the cluster across the flower meristem. In the same

way, high temporal coherence means that the cells follow coherent states changes through their

lineage, as opposed to random and mixed state changes.

Ward 4-cluster analysis on ‘epidermis area’ feature starts with the visualisation of

the obtained clusters onto the segmented time series given in figure 3.31. This figure shows that

it is possible to detect a cluster (3, orange) that is close to the boundary cluster on t4, although

some cells belonging to this cluster also appear on earlier time points, making it non-exclusive to

the boundary representation. Nevertheless, as shown by the cluster distance heatmap (t0 bottom

series) this cluster is well defined since presenting the lowest within-cluster distance. Moreover,

looking at the feature distribution boxplot (figure 3.32b) we get back the expected property that

boundary have smaller cells and therefore smaller epidermis surface, if under a slower growth rate

as observed when manually defining regions (figure 3.28).

However, one could note a somewhat random disposition of the clusters that are not cleanly

separated leading to the idea of an overall poor spatial coherence of this clustering, including

the “boundary-like” cluster. Even without a precise knowledge of the lineage we also note a low

temporal coherence, mostly for cluster 0 (dark blue) and 1 (light blue) where cells seems to alternate

between these two states. This low temporal coherence could be linked to the low spatial coherence

detected earlier. Although noting that these two clusters cover the average values of the feature

(figure 3.32 b) and represent many cells (figure 3.32a) one could argue that both clusters are in

fact a single undifferentiated state. Keeping in mind that cell epidermis area is dependant on the

cell cycle, we may hypothesise that this cyclic state changes of cluster 0 into 1 is the reflection of
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the cell cycle, where a small cell (stage 0) grow (up to stage 1) then divide into small cells again

(going back to stage 0). Therefore the apparent low temporal coherence might be a false impression

since the other two clusters, 2 and 3, are quite coherent (apart from the earlier time points where

their presence is limited) despite the total lack of temporal information. It would therefore be

interesting in the case of a multi-factorial analysis if topological information or other features could

help enhance the spatial and temporal coherence.

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

Figure 3.31: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
‘epidermis area’ feature (a-e,g-j), and the cluster distances associated heatmap (f).
All illustrations similar to those presented in figures 3.31 and 3.32 are part of automatically generated features
and clusterings reports made with the temporal property graph structure from FM time-series segmented data.

a. b.

Figure 3.32: Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based on ‘epidermis area’ features.

These previous biological conclusions are ascertained by the good quality of the clustering.

Indeed in the clustering heatmap, we observe a low within-cluster distance (diagonal) and a high

between-cluster distances (figure 3.32f). One caveat here could be that the within-cluster distance

of cluster 2 is higher than the distance between clusters 0 and 3. Although observing figures 3.32 a

and b, I note that cluster 2 present the largest distribution (fig. 3.32 b), even larger than the sum

of both clusters 0 and 3 (ranging on 100 units against 150 units for cluster 3). As figure 3.32 a
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highlights, cluster 2 contains three outliers represented by the major increase of the distance for its

last three points (around 2.5 fold), artificially enlarging the within-cluster distance as represented.

These considerations lead us to conclude to a valid clustering.

Ward 4-cluster analysis on ‘volumetric log temporal rate’ feature at tn+1 displays

a more spatially coherent (well separated groups) clustering than the one previously made in the

same conditions with the feature ‘epidermis area’. This clustering reveals the boundary (cluster

3 orange) with the lowest volumetric log temporal rate (fig. 3.34 b.) and the emerging abaxial

sepal (cluster 2 green) with the highest rate (fig. 3.34 b.). This boundary clustering is better

defined than with the use of the epidermis area feature, suggesting a higher control of local growth

rate than the epidermis area, the later being subject to fluctuations linked to cell growth cycles.

Again, two clusters are detected in the intermediary growth rate values. Cluster 1 (light blue) has

the higher rate of those two and is detected at t1 and might be linked to the emergence of the

dome shaped aspect of the FM. Later this same cluster is present at the emergence positions of

abaxial and adaxial sepals (t2) and then lateral ones (t3). Finally, as suggested in figure 3.34a, by

the presence of cell with a null distance to the cluster center, the 5-cluster model separates cells

without temporally differentiated values (t0 cells and others without ancestors).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

Figure 3.33: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
‘volumetric log temporal rate’ feature at tn+1(a-e,g-j), and the cluster distances associated heatmap
(f).

Having demonstrated the capacity of univariate clustering to identify and define biologically

coherent patterns on the basis of the extracted geometrical features, we now address the same

questions for a multi-variate clustering, with the aim of shedding light on the relations between the
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a. b.

Figure 3.34: Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based on ‘volumetric log rate’ features.

combined features.

3.2.3 Multi-variate clusterings analysis.

Ward 4-cluster analysis on combined ‘epidermis area’ and ‘topology’ features

were realised with increasing weights of topological information (10%, 20%, 30% and 40%); see

supplementary figures S3.7, S3.8, S3.9 and S3.10.

Surprisingly, adding 10% of topological information improves neither spatial nor temporal co-

herence compared to univariate clustering. Almost no effect of adding 10% of topology is detected.

However, from 20% and above, the topological information modify dramatically modifies the ob-

tained clustering, leading to a high spatial coherence and a virtual temporal coherence. We can

hypothesise that the spatial coherence is somewhat artificially imposed by the low number of clus-

ters and the absence of topology between successive time points, constraining the definition of a very

limited number of cluster per time point. This effect can be seen when increasing the percentage

of topological information (supplementary figures S3.8, S3.9 and S3.10).

Finally, increasing the number of cluster did not solved the problem (data not shownn). Indeed

as hypothesised before, the topological constrain is to important and it result in over-definition of

clusters since clusters with similar epidermis area distribution are found repetitively at different

times points.

Ward 4-cluster analysis on combined ‘volumetric log temporal rate’ and ‘topol-

ogy’ features were also realised with increasing weights of topological information (10%, 20%,

30% and 40%); see supplementary figures S3.11, S3.12 (same as fig. 3.35), S3.13 and S3.14. Con-

trary to what was observed when adding a limited amount (up to 20%) of topological information

to epidermis area, here we observe a structuring effect of the topology without disrupting the

structure observed with the univariate clustering, brought about by the volumetric growth rate
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feature. Using the weighted combination of 80% volumetric rate and 20% topological information,

we enhance the previously detected effect with only volumetric growth rate information (figure

3.35): a sepal-to-dome boundary (cluster 1, light blue) with a low growth rate at t4, a high growth

rate for the emerging abaxial sepal (cluster 2, green) at t3 and a higher rate for one of the two

undifferentiated states (cluster 3, orange) preceding dome and sepal emergence.

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

Figure 3.35: Spatial projection of the clustering obtained using a 4-cluster Ward model based on 80%
‘volumetric log temporal rate’ + 20% ‘topology’ features features (a-e,g-j), and the cluster distances
associated heatmap (f).

a. b.

Figure 3.36: Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based 80% ‘volumetric log temporal rate’ + 20% ‘topology’
features.

Again increasing the number of clusters to 5 separates the low growth rate and no-growth rate

(cells without ancestors) as may be predicted from figure 3.36a, since cluster 0 shows a gap between

cells having low temporal rate values and those that do not have temporally differentiated values.

Figure 3.36b illustrate the definition of good clusters whose distributions are well separated.

Finally, as shown in supplementary figures S3.13 and S3.14, from 30% of topological information

and above, we lose the structure of the growth rate information, switching again to a highly

constrained spatial distribution of the cells among clusters.
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Ward 4-cluster analysis on combined ‘volumetric log temporal rate’ and ‘Gaus-

sian curvature’ features was made to to compare a growth scalar with a shape descriptor.

The Gaussian curvature of the epidermis, is computed using a radius (here of 70 voxels) which make

this descriptor a interesting one to describe how the growth have impacted the shape of the tissue,

both locally and globally. Indeed, the curvature is defined at cellular scale, but it is the integrated

result of tensions, themselves imposed by local changes of growth rates, that act at a much larger

scale. I thus wondered if it was possible to find common groups for both volumetric growth rates

and Gaussian curvature, and what properties they could have. To that end, we present in figure

3.37, a balanced (50/50) 4-cluster Ward clustering made using volumetric log growth rate and a

Gaussian curvature estimated with a radius of 70 voxels (around the geometric medians of the

epidermal wall of each cell).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

Figure 3.37: Spatial projection of the clustering obtained using a 4-cluster Ward model based on 50%
‘volumetric log temporal rate’ + 50% ‘Gaussian curvature’ features (a-e,g-j), and the cluster distances
associated heatmap (f).

a. b.

Figure 3.38: Ordered vertex distance to their cluster center (a) and clusters feature distributions (b)
obtained using a 4-cluster Ward model based on 50% ‘volumetric log temporal rate’ + 50% ‘Gaussian
curvature’ features.

To validate this clustering, let’s first look at the distance matrix heatmap in figure 3.37f. As
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we can see, cluster 2 have a large within cluster distance, but that can be explained by the large

dispersion of the two features for this group. In addition , this groups is relatively small compared

to the others (see figure 3.38a). Cluster 3 also present a rather large within-cluster distance, but

it is inferior to all other between-clusters distances (off diagonal). I thus declare the clustering as

valid.

Now, looking at the spatial projection of the clustering (see figure 3.37 a-e,g-j), we can observe

that cluster 0 define the boundaries, at t0 with the other FM growing on its right side (left of the

image), at t1 to t3, with the SAM, and at t4 between the central dome and the sepals (mainly

abaxial and adaxial). Figure 3.38b confirm that this group present quasi-exclusively cells with a

negative curvature, together with a rather low to null growth rate, typical of boundary regions.

Cluster 1 seem to define the undifferentiated state, since spatial projections show this zone at

every time point associated to no apparent morphological structure. Figure 3.38b also present

intermediary distributions for the two selected feature, enforcing the idea of an undifferentiated

state. Cluster 2 meaning is not clear while looking up at the spatial projection, but the boxplots

(figure 3.38b) highlight that these region is made on the basis of the most negative curvature values,

associated to low to null growth values. This cluster might be considered as secondary regarding the

displayed property, even if strongly defined by the clustering and present in a 3-cluster clustering

(data not shown), since we have reasons to believe that some of the values are outliers. Cluster 3

seems to define emerging dome-like regions when looking at the spatial projections, while looking

at the boxplots we confirm this impression noting that this cluster posses the highest distributions

for the two features.

Finally, after validating and analysing the results of the clustering, I would like to stress the

high coherence displayed by the two features clustered distributions, where low growth values are

associated to null or low Gaussian curvature, and high growth values are associated with highly

positive curvature.

Multivariate clustering analysis using shape, growth, genetic signal and spatial

topology features was finally possible to try to include all the players previously identified.

Also, since we are interested in linking genes, growth and shape in a spatially coherent manner,

such clustering may prove crucial in validating the method. In that respect, we have combined the

following features: ‘volumetric log temporal rate’, ‘Gaussian curvature’, ‘AHP6 signal’ and ‘spatial

topology’. Except for the spatial topology which, as we noted before, be used with a low weight and
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was thus limited to 10% of the combined information, the other 3 features have the same weight,

hence each representing 30% of the combined information. This, time, I have chosen to present

the 5-cluster model (figure 3.39), since I find it to be more relevant than the 4-cluster (presented

in supplementary figure S3.15).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

Figure 3.39: Spatial projection of the clustering obtained using a 5-cluster Ward model based on 30%
‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’ + 10% ‘spatial topology’
features (a-e,g-j), and the cluster distances associated heatmap (f).

a. b.

Figure 3.40: Clusters feature distributions comparison for the 4- (a) and 5-cluster (b) Ward model
based on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’ + 10% ‘spatial
topology’ features. In the 5-cluster model, cluster 1 and 4 have been obtained splitting cluster 1 from
the 4-cluster model.

As when using ‘volumetric log temporal rate’ and ‘Gaussian curvature’, we observe that cluster

0 define the boundaries, and for the same reasons as before. For the same reasons than in the

previous paragraph, I will consider cluster 1 to remains the undifferentiated state. I will again

consider cluster 2 as marginal, since presenting a high intra-cluster distance and a low number

of individual, its spatial projections does not seems informative. Also, its spatial proximity with

cluster 3 in the spatial projections at t0 and t4 is not coherent with the extreme difference this two

clusters displays in terms of features distributions (figure 3.40b). Cluster 3 represent the emerging
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dome-like structure, such as the early dome and the sepals, and posses the highest distribution for

AHP6 feature. I would like to stress that compared to the previously presented clustering, cluster

1 and 3 now posses a much higher cluster distance related to the addition of AHP6 signal feature.

Finally, cluster 4 is often found surrounding cluster 3, and as highlighted by the cluster distance

matrix (figure 3.39f) it seems close to cluster 1. Comparing the 5-cluster (figure 3.39) to the 4-

cluster (supplementary figure S3.15) configuration, we observe that adding a fifth cluster result

in the separation of cluster 1 into cluster 1 and 4. Looking at the cluster distance matrix (figure

3.39f) it seems that this cluster is artificial since the obtain distance between clusters 1 and 4 is

low (D1,4 = 0.87), and lower than cluster 3 within-cluster distance (also much lower than cluster

2 within-cluster distance but which is considered as marginal). However looking at the boxplots

esenting the feature distributions obtained for the 4- (figure 3.40a) and 5-cluster (figure 3.40b)

configurations, adding the fifth cluster create correctly separated distributions for the volumetric

growth and AHP6 features. I thus consider this fifth cluster meaningful.

Focussing on the features distribution (figure 3.40b) it is possible to, mathematically and bio-

logically, characterise the identified growth patterns as follows:

• cluster 0 can be identified as the boundary, characterised by a low to null volumetric growth,

associated with negative curvature and a rather low AHP6 activity;

• cluster 1 can be identified with an undifferentiated region, characterised by a quasi-absence

of AHP- activity and an average growth rate and low positive curvature;

• cluster 2 cannot be biologically identified since regroups mostly outliers for the shape and

growth features;

• cluster 3 can be identified as emerging dome-like structures, characterised by high AHP6

activity, relatively high growth rates and positive curvature;

• cluster 4 can be identified as the fast-growing zone around the emerging structure, surprisingly

characterised by slightly higher growth rate than cluster 3 but a much lower activity of AHP6;

3.3 Cellular pattern identification on the basis of Markov tree

analysis of the lineage and geometrical features

The algorithmic clustering methods we applied focus mainly on the spatial structuring, and even if

we accounted for temporal information using temporally-differentiated variables such as volumetric
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growth, these methods do not explicitly model temporal relationships. A shortcoming of algorith-

mic clustering compared to model-based clustering is the lack of inferential procedures with a firm

mathematical basis to select the number of clusters and to characterize the latent space (corre-

sponding in our context to the possible assignments of cells to clusters). Model-based clustering

relies on mixture models and these models have been generalized to various structures (sequences,

tree-graphs or images) leading in particular to diverse families of hidden Markov models. We chose

to investigate a specific family of hidden Markov models for tree data in order to characterize the

cell lineages. These models that focus on the cell division process are thus complementary from the

algorithmic clustering previously presented that focus on cell neighbourhood. We thus expected in

this way to gain more information about the temporal processes taking place during early stages

of floral development.

3.3.1 Definition of hidden multi-type branching processes

In order to investigate cell lineage, we built a hidden multi-type branching process. This is a

two-level model where at the first level, the cell division process is represented by a multi-type

branching process. A multi-type branching process is defined by two subsets of parameters:

1. Initial distribution to model which is the cell identity at the root of a lineage tree;

2. Generation distributions to model the cell identities of the children of a cell of a given identity

along a lineage tree. Each generation probability is the joint probability of having n0 children

in state 0, n1 children in state 1 . . . given the parent state P (N0 = n0, N1 = n1, . . . |Su = j),

simplified in Γj(n0, n1, . . .), such that
∑

i ni = 2 in our case of a binary tree

Hence the types or states of the branching process represent the cell identities. The cell iden-

tities are assumed to be not directly observable but only indirectly through different features (e.g.

dimension such as the cell volume, shape descriptor such as the anisotropy, hormone signal...).

A hidden multi-type branching process adds a third subset of parameters to the two subsets of

parameters of the non-observable branching process:

3. Observations distributions to model a descriptor for a given cell identity.

An observation distribution was thus estimated for each state and each descriptor. We chose as

possible observation distributions Gaussian and Gamma distributions. In our case where several

features were observed for each cell, the observed variables were assumed to be conditionally inde-

pendent (given the state).
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A multi-type branching process can also be viewed as a Markov unordered out-tree model (a

finite state process defined on a tree without children ordering) that models the parent/children

local dependencies including direct dependencies between children. Hidden Markov unordered out-

tree models are thus direct generalizations of the hidden Markov out-tree models with conditionally

independent children discussed in Durand et al. [2004]. The maximum likelihood estimation of the

parameters of a hidden multi-type branching process requires an iterative optimization technique,

which is an application of the expectation-maximization (EM) algorithm. Once a hidden multi-

type branching process has been estimated, the most probable lineage tree labelled in terms of cell

identities with its associated posterior probability can be computed for each observed multivariate

lineage tree using a restoration algorithm. The EM and the restoration algorithms are direct

generalizations of the similar algorithms proposed by Durand et al. [2004] in the context of hidden

Markov out-tree models with conditionally independent children.

Although the selection of the number of states and the initialisation of the iterative estimation

algorithm of such model require some expertise, we have been able to use them to characterise

the temporal relations of the 3D+t data. Contrarily to clustering methods which are spatial by

nature, we here consider the lineage tree as the observed structure, and use the cell features as

multivariate data to restore unobservable cell identities. Obviously, using temporally differentiated

features would not be a relevant idea, since the model relies on temporal dependencies. Finally,

even if the only spatial structuring taken into account corresponds to siblings with respect to a

given parent cell, this minimal spatial information is particularly relevant for plants where cells

cannot migrate.

3.3.2 Multivariate hidden multi-type branching process model outputs.

Figure 3.41 represents the spatial projection of the states restored for each cell using the estimated

hidden multi-type branching process.

This figure indicates that:

• the central dome has been assigned to state 2 which presents a high spatio-temporal coherence

from t0 to t4;

• the sepals are have been split in 2 states (0 and 3);

• the boundary zone has been assigned to state 1.

State 2 is the main state of the first time point. Despite an early stage of meristem differentiation at

t0, few cells are already identified to putative sepals. At subsequent time points, the multiplication
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Figure 3.41: Spatial projection of the four states obtained using a multivariate hidden multi-type
branching process computed using the epidermis area, the internal area (i.e. between the L1 and L2),
the volumes, the Gaussian curvature, the shape anisotropy and the AHP6 signal. State 0 is in dark
blue, state 1 in light blue, state 2 in yellow and state 3 in dark red. Sepals are mostly identified by
considering state 0 and 3, the dome by state 2 and boundary cells by state 1.

of sepal and dome cells with the apparition of boundary cells, delimiting the frontier between sepals

and the dome zone, is observed. The apparition of boundary cells is unobtrusive in t1 and t2 but

significant as the continuous border is clearly identified starting from t3. In fact, at this time point

and the next, state 2 clearly correspond to the dome, state 0 and 3 to the sepals and state 1 to the

boundary.

The model has been estimated using the following geometrical features: the epidermis area, the

internal area (i.e. between the L1 and L2), the volumes, the principal and secondary curvatures, the

shape anisotropies and the AHP6 signal. As for the clustering, we expect non-structuring features

not to alter the result since the method is robust to them. Using figure 3.42, it is quite clear that the

epidermal area, internal area, the volume and the curvatures of the cells are structuring features in

the model, since the estimated observation distributions for the different states are well separated

for this five features. These observation distributions allow us to characterize the different states:

• state 1 correspond to small cells with both curvatures almost of the same norm and mostly

negatives (saddle form) which is coherent with boundary cells;

• states 0 and 3 correspond to big cells and are mostly differentiated with their curvatures

(both positive for state 3 and negative for state 0);

• state 2 is in-between considering size but with clearly positive curvatures corresponding to a

dome area.

States do not have marked differences with respect to anisotropies and AHP6 signal (data not

shown).
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Figure 3.42: Observed histogram and mixture of observed distributions for each structuring feature.
State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in dark red (same than in the
spatial projections). Areas and volumes have been modelled by Gamma distributions and curvatures by
Gaussian distribution. Combining separations induced by areas and volume in one hand and curvatures
in the other hand indicates that states are well separated using only these features.

Recall that Γj (n0, n1, n2, n3) denotes the probability of having jointly nk children in state k for

k ∈ {0, 1, 2, 3}, considering a parent cell in state j. Temporal changes in cell identity are highlighted

by the highest estimated probabilities in each generation distribution:

A graphical representation of the generation laws is provided in figure 3.43. The reproduction

and emergence of cell identities underlined by generation distributions are consistent with biological

beliefs. The state 3 is a hub as transition from the state 2 at t0 to other states at subsequent time

points. Transition from state 0 to state 3 corresponds to transition from early cells to late ones
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State 0 State 1 State 2 State 3
Γ0 (0, 0, 0, 2)=0.05
Γ0 (1, 0, 0, 0)=0.33
Γ0 (1, 0, 0, 1)=0.06
Γ0 (2, 0, 0, 0)=0.56

Γ1 (0, 0, 0, 1)=0.12
Γ1 (0, 1, 0, 0)=0.52
Γ1 (0, 2, 0, 0)=0.35

Γ2 (0, 0, 0, 1)=0.17
Γ2 (0, 0, 0, 2)=0.08
Γ2 (0, 0, 1, 0)=0.2
Γ2 (0, 0, 1, 1)=0.17
Γ2 (0, 0, 2, 0)=0.33

Γ3 (0, 0, 0, 2)=0.17
Γ3 (0, 0, 1, 1)=0.13
Γ3 (0, 0, 2, 0)=0.05
Γ3 (0, 1, 0, 1)=0.22
Γ3 (0, 2, 0, 0)=0.32
Γ3 (2, 0, 0, 0)=0.03

in sepals. Transition from state 3 to state 1 corresponds to emergence of border cells induced by

sepal formation, it is a passive phenomena more than an active one.

S0

S2S1

0.560.33

0.2 0.33

0.12
0.17

0.52 0.35

S3
0.17

0.17

0.32

0.130.22

S2S1

S3

Figure 3.43: Representation of the generation distributions by states. Generations distribution
relates to the evolution to the cell state in time, meaning the state of its descendants (either binary or
no division). For graph readability reasons, only generation laws with a probability higher than 0.1 where
represented. A single line indicates generation law of undivided cell when double lines and two parts
arrows indicate a binary division. The thickness of the line is proportional to its associated generation
probability, which are also given as plain numbers. The state colors are the same than in the spatial
projection and the distribution histograms.
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4 Discussion and perspectives

The attributed spatio-temporal graph.

The first aim of this paper was to introduce an effective representation of developing tissue that

has led to the cell-based spatio-temporal graph. Extracting the cells neighbourhood information,

first permits the definition of a spatial graph (vertices and spatial edges), then using the lineage

(temporal edges) we obtain a spatio-temporal graph. This formal definition of the graph thus

corresponds to the natural decomposition of a developing tissue into its basic constituents. It was

thus an important step as it lead us to an adequate in silico representation of the tissue.

The subsequent task was then to search for adequate geometric descriptors for the cells, as well

as spatial and temporal differentiation functions, robust landmark definition and tensor transforma-

tion functions. We have proposed a deformation estimator robust to segmentation errors using cell

wall medians as landmarks, instead of the traditional use of cell vertices. Introducing the spatial

and temporal differentiation functions allow us to expand the number of features and to compute

spatial variations (Laplacian) or temporal variations (growth rates). Again the graph structure

allows an efficient programming of these differentiation functions. We stress that the framework is

independent of the segmentation and lineage algorithm, but is currently limited to the analysis of

voxel-based segmented images.

Finally, this generic formalisation and implementation of the attributed spatio-temporal graph

constitutes a powerful database, which architecture is based on the natural decomposition of the

segmented tissue, allows to efficiently organise the extracted features. This is indeed another key

aspect of the presented work, to propose a large number of 2D and 3D geometrical cell features.

Overall it is an important contribution to morphogenesis quantification, since previous works in

the field where based on ad hoc methods made either in 2D, or surfacic 3D, therefore proposing 2D

description of the shape (e.g. shape and strain anisotropy).

Regarding that aspect of the work, the spatio-temporal graph idea in itself, I do not see much

space for improvements, although its python implementation and the proposed functions can still

be improved. New differentiation functions could be added as well as cellular features. Ulti-

mately, I think that a graphical interface allowing to generate the spatio-temporal graph from the

cell-segmented images and to display the computed information would be important. Although

an intermediary solution could be to compute automatically (as it is already possible) all fea-
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tures, and then to make use of existing 3D visualisation software such as BioImageXD. Using the

spatio-temporal as a database within such software, it should then be possible to display and nav-

igate seamlessly among the extracted cell features, clustering or other information. Talking about

database, I argue here that it should be of the uttermost importance to make use of one to organise,

version control and save the whole process, from image acquisition to segmentation and analysis.

Indeed, the whole pipeline starts with the images acquisition, followed by their segmentation, two

step presenting an incredible number of parameters that should be kept. In case of successive

corrections of the lineage or use of various parameters to segment, these information would then be

available, and for instance would help preventing mixed-up analysis. Finally, facing many caveats

and limits using the MARS-ALT software, and its development currently being on hold, it would

be interesting to test the segmentation tools proposed by ITK and integrated in BioImageXD.

Exploratory analysis to uncover links between genes, growth and shape.

In a second phase I demonstrate on the basis of live-3D segmented data of developing floral meris-

tem, the advantages of relying on attributed spatio-temporal graph structures. Using the introduced

framework, it is possible to compare and differentiates many features, thus proposing an efficient

exploratory analysis of the data. This a priori approach of the data is facilitated by 3D representa-

tion of the segmented tissue as well as diverse dedicated graphical representation of the data given

their nature (property plots). In addition, unsupervised methods allows to define cellular patterns

and identities on the basis of geometric and genetic features. Altogether this provide a clear picture

of the data for a biologist to confront his knowledge and searches for hypothesised behaviours of

the tissue.

The data I presented here, are cell-segmented images of a particular morphological event, that

is the organogenesis of the flower of A. thaliana. The floral development see a growing tissue taking

shape and we know that mutations in major developmental genes, such as LFY or AG, can alter

dramatically the aspect of the flower. In that respect, I have tried to demonstrate links between

genes, growth and shape.

I first started by using the attributed spatio-temporal graph to test the “universal rule for

symmetric division” as introduced in Besson and Dumais [2011] with 3D+t data and highlighted

a first relation between shape and growth. Since the main vector is oriented along the maximum

length of the cell, the two others thus form an orthogonal plane close to the barycentre and the
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minimal area, which is consistent with the division plane alignment. Comparing the division plane

collinearity with the main axis of inertia has allowed to observe that the large majority of the cells

respect Errera’s rule (figure 3.25) . Using the inertia tensor obtained from the fused-siblings, we

could observe a possible difference of the abaxial sepal that seems to display more exceptions to the

rule. In addition, relating the vector collinearity to the sibling volume sums and sibling fused 3D

shape anisotropy we could not observe any correlations (figure 3.26). Therefore we can conclude

that the orientation of the division plane is made independently of its size or degree of anisotropy.

According to the authors observations and models, the cell nucleus is positioned close to the

barycenter of the cell subsequently to the tensional forces within the cytoskeleton reaching an

equilibrium, thus dividing a parent cell along a plane that minimizes its area. The shape of the

cell, by modifying the tensional force and the barycenter position, thus yield two descendants of

identical size. Visualising the spatial projection of the sibling volumetric ratio for all known siblings

did not revealed a spatial pattern, however, a temporal pattern could be present (figure 3.21b top

row) Again, comparing the sibling volumetric ratio to the sibling volume sums and sibling fused

3D shape anisotropy we could not observe any correlations (figure 3.23), thus concluding to the

independence of the volumetric ratio regarding size and shape.

Going further in my a priori analyses, I have manually defined cell regions corresponding to

observable and known morphological patterns at the last segmented time point (t4). The fours

sepals, as well as the boundary separating them from the central and peripheral zones were de-

fined. This yielded geometrical features distributions that were not clearly separated (figure 3.28),

but it was to be expected since we defined the regions without considering them. Nevertheless,

it was an interesting preliminary analysis since it revealed that the growth related features (volu-

metric growth rates and areal strain rates) could help discriminate regions potentially close to the

manually defined sepals, boundary and central zone. Ultimately, the genetic feature distributions

were also not well separated (figure 3.28), but since the manually defined abaxial sepal display

high levels of genetic signal and it coincide with the region presenting the maximal growth rate, I

thought at correlating a discretised version of the genetic feature to the geometrical ones.

Many other exploratory analysis are possible with the framework and command-line accessible

methods. For example, to go further in our understanding of the division wall orientation, it

could be interesting to use microtubule impairing-function genes and tissue shape or division plane
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orientation. It could also be possible to inspect growth impact on genes by monitoring genes activity

while altering the formation of the division wall like in the case of endoreduplication, where the

genetic material is duplicated but no division occurs. This phenomenom occurs frequently in

the epidermal layer of the sepals during their formation [Roeder et al., 2010] (observable at latter

developmental stages than those presented). In that respect, the first presented use of the framework

for exploratory analysis purpose, is to be taken as an example of the multiples of the possibilities

it offers.

The second use however, when testing the manual definition of the cluster, was a necessary step

to gain knowledge about the potential structure among the data, prior to the unsupervised analysis.

It also opened perspectives in proving the feasibility of a 3D+t atlas of genes expression domains for

the developing flower, or other tissue for that matter. Building this atlas would probably require,

or at least push toward, a generic growing floral meristem, that could be achieved in 3D using

growing mechanistic models. Later on, using such growing framework with known genes spatio-

temporal patterns it would be possible to test their relation to known features or even recreate

their interaction networks and make predictions about their functions before doing the experiment.

Unsupervised analysis to identify cellular patterns linking genes, growth and

shape.

In a first time, I used univariate clustering methods to explore the behaviour of some cellular

features. Using unsupervised methods to groups individuals based on their similarity can indeed

be a way to discretise a distribution. Applying a 4-cluster Ward clustering on the AHP6 signal

yielded regions that were later characterised as none, low, medium and high signal levels. Using

the obtained regions, I have presented the features distribution for each regions and we could see

a significant link between increasing levels of AHP6 and increase in volumetric growth rates, areal

strain rates and division rate. This confirmed the presence of links between genes activity and

local changes in growth related parameters within the 3D+t data, which have been successfully

identified and characterised using the proposed framework.

In addition, I have proposed to define cellular patterns using clustering technique based on the

geometrical features. Again, we designed dedicated methods to transform the attributed spatio-

temporal graph structure, into data suitable for multivariate clustering analysis using standardised

distance. However, analysing a single time-series of the early stages of a wild-type developing

flower, I could only propose preliminary analyses of the detected biological processes.
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Nevertheless, I demonstrated the capacity of the proposed unsupervised method to identify and

characterise cellular patterns on the basis of univariate clustering. I was indeed capable of identi-

fying biologically relevant regions as the boundary between the central dome and the sepals of the

flowers using both static (epidermis area; see figure 3.31) and dynamic (volumetric log temporal

rate; see figure 3.33) features. This was suggested by the explanatory analysis, were a manually

defined boundary displayed lower growth rate an epidermis area. In addition the emerging sepals

and central dome were also identified as separate regions on the basis of the volumetric log tem-

poral rate. The emerging sepals indeed displayed the highest growth rate, when the central zone

an intermediate one. These cluster were both spatially and temporally coherent, and without the

explicit use of temporal information.

In a second time, using multivariate clustering, I showed that the spatial topological information

could be used to increase spatial coherence of the clusters. Indeed using topological information in

addition to the volumetric log rate, I could obtain more coherent cluster (compare figures 3.33 and

3.35). However, this information is mathematically defined only within each time point, and thus

giving to much weight to that information could lead to a radical transformation of the clusters

found without spatial topology. Then, I presented a balanced (50/50) 4-cluster clustering made

on the basis of growth and shape descriptors (figure 3.37). I was able to characterise the clusters

as the boundary, emerging dome-like structure, undifferentiated region and an outliers groups. I

there demonstrated the spatio-temporal coherence of growth and shape feature, as illustrated by

the good relation between ‘volumetric log temporal rate’ and ‘Gaussian curvature’ in figure 3.38b.

Biologically we have shown that the shape (and thus dome and sepals) emergence is not only

subsequent to an accelerated growth rate for the sepals but also present a dramatic reduction for

the boundary.

The last multivariate clustering I hereby present, successfully combined four distinct types of

features: shape, growth, genetic and spatial topology. Using a 5-cluster Ward clustering on the

basis of 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’ + 10%

‘spatial topology’, I was indeed capable of characterize 5 mathematically and 4 were biologically

relevant. Using the features distribution (figure 3.40b) I could demonstrate that the boundary

are characterised by a low volumetric growth, associated with negative curvature and a rather low

AHP6 activity. Moreover, the sepals are likely to come from emerging dome-like structures and
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they are characterised by high AHP6 activity, relatively high growth rates and positive curvature.

The same phenomenon might also explain the transition from morphological stages 1 to 2, where we

observe the bulging of the floral primordia. I was also able to identified an undifferentiated region,

coherently characterised by a quasi-absence of AHP6 activity and an average growth rate and low

positive curvature. A cluster (c2 fig. 3.39) could not be biologically identified, but since it regroups

mostly outliers for the shape and growth features I define it at marginal. Lastly I could observe a

fast-growing zone around the emerging structure, characterised by slightly higher growth rate than

cluster 3 but a much lower activity of AHP6. A broad observation of the spatial representation

could have led us to think that the emerging structures (c3 fig. 3.39) have a higher growth rate

than its surrounding regions (c4 fig. 3.39). However, observing the growth feature distributions,

its not the case. One way to explain this would be the possible existence of a delay between AHP6

expression and its effect, thus I hypothesise a potential indirect action of AHP6 on growth.

Having demonstrated the capacity of the unsupervised approach to identify and characterise

biologically relevant geometric patterns at cellular resolution, we believe that using contrasted sit-

uations, e.g. comparing a wild-type flower with a mutant presenting a different phenotype, will

make biological conclusions easier. For example the ettin mutant displays a fifth sepal usually

appearing as a double abaxial sepal. ETTIN is a transcription factor, also know as ARF3, impli-

cated in the signalling pathway of auxin. We have tried to obtain those ettin data, however due

to difficulties to obtain confocal acquisition suitable for a proper segmentation, I could not realise

this analysis. The fluorochome used to stain the cells’ membrane is the FM4-64 vital-dye, however

the fluorescent signal is not detected in the same amounts as for the WT tissue. Since the dye

is lethal at high dosages it could not be raised, and the watershed segmentation algorithm failed.

Although a study by Cutler et al. [2000] has identified (among others) a membrane protein called

LOW TEMPERATURE INDUCIBLE 6b (LTI6b), which added to a fluorochrome should enable

us to acquire those data. Possessing a powerful framework capable to extract numerous features

and to identify changes in cellular patterns, we are confident that it will help explaining the origin

of this fifth sepal.

Another mutant, perianthia (pan), also present a five sepal phenotype. PERIANTHIA is a tran-

scriptional factor necessary in short days conditions to activate AGAMOUS [Maier et al., 2009], a

major developmental gene for the flower. It could thus be interesting to compare the features and
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patterns display by this mutant to those obtained using ettin flowers. There might then be several

ways of doing a fifth sepal.

Finally, those data and their analysis will be strengthen by the increasing capacity in acqui-

sition rate and resolution for the experimental aspect and by the development of robust full 3D

segmentation and lineaging algorithm in image processing. Moreover, possessing several overlap-

ping time-series will increase the reliability of the conclusions. Although some statistical methods

might require the temporal alignment of the different time-series, the clustering will be able to

analyse several at once thanks to the standardisation step. For time-series with the same genetical

background, it should be possible to obtain a relative ordering of the static images. This should

also be robust to changes in the floral meristem growth dynamics, since relying on those feature at

a cellular level.

Using hidden multi-type branching processes to characterise temporal evolution

of cell states. The previously presented clustering analysis have focused on identifying spatial

structure within the pairwise distance matrix to groups cells on this basis. However, except from

what is contained within the temporally differentiated variables, no temporal information is used.

To overcome this issue, we have used hidden Markov models for tree data in order to characterize the

cell lineages. Using the temporal topology as structure and the cell features as hidden variables,

the model estimated observation distribution for each state and each descriptor, as well as the

generation distributions.

We found that the first observable state (S2) at t0 is coherently found over time, up to the

last time point where it defines the central dome (figure 3.41). Consistently with the clustering

analysis, the boundary (S1) is defined by a low volume, areas and negative curvature. Surprisingly

however, the generation laws (figure 3.43) indicate that it is established from a state (S3) defined

by large volumes and areas, and with a high primary curvature. State 3 thus seems to act as a hub

generating the boundary (S1) and central dome (late S2). Finally we observed the sepal state (S0)

to be very conservative.

Since the roots of lineage trees are not systematically at time t0, it would be relevant to orient

the lineage trees from the leaf vertices at the last time point to the roots. This leads to the

hidden Markov in-tree model, which is parametrized by transition probabilities from the children
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states to the parent state. The transition probability matrix is thus similar to that of a high-

order or variable-order Markov chain where, in the context of tree structures, the variable number

of child vertices plays the role of the order. This model can be viewed as a hidden coalescence

process (branching viewed backward is coalescence). We expect this model to give complementary

information, with respect to the hidden multi-type branching process, regarding in particular the

cell identities identified at the first time points on the basis of cell identities propagated from the

last time points.
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Supplementary Materials

Figure S3.1: Distribution of AHP6 signal by time point. The red dots on the boxplot (right) and
upper limits on the histogram (left) give the outliers positions estimated from a mean absolute deviation
estimator.

t0 t1 (+26h) t2 (+44h) t3 (+56h)

Figure S3.2: Main axis of inertia and division wall normal vectors correlations projected at tn.
Collinear vectors have a value close to 1 and orthogonal vectors close to 0. We use the inertia axis
obtained with the fusion of the daughters since the division wall is defined at tn+1. To be coherent
with the assumption of a ’small deformation’ between successive time-points, we only represented cells
presenting a binary division (i.e. only for two siblings).

206



CHAPTER 3. SUPPLEMENTARY MATERIALS

t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)

Figure S3.3: Spatial projection (top and abaxial views) of the siblings volume ratio at tn +1. In order
to be thorough we uses the sublineage (hand-made) to compute volumetric ratios for all cells presenting
a division The t4 present a limited amount of data, but this is consistent with the low division number
observed between t3 and t4 (see supplementary figure S3.5).

t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)

Figure S3.4: Main axis of inertia and division wall normal vectors correlations projected at tn+1.
Collinear vectors have a value close to 1 and orthogonal vectors close to 0. We use the inertia axis
obtained with the fusion of the daughters since the division wall is defined at tn+1. Only the cells
presenting a binary division (i.e. only for two siblings) are presented.
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)

Figure S3.5: Top and abaxial view of the division rates projected at tn+1.
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)

a. Top view of AHP6 signal feature.

b. Top view of AHP6 signal feature rank-1 laplacian.

c. Top view of AHP6 signal feature rank-2 laplacian.

d. Top view of AHP6 signal feature rank-1 mean absolute deviation.

e. Top view of AHP6 signal feature rank-2 mean absolute deviation.
Figure S3.6: Examples of spatial differentiation functions Laplacian and mean absolute deviation
applied on AHP6 signal (genetic marker) for rank-1 and 2 (topological distance).
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.7: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
90% ‘epidermis area’ + 10% ‘spatial topology’ features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions (l).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.8: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
80% ‘epidermis area’ + 20% ‘spatial topology’ features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions (l).
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.9: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
70% ‘epidermis area’ + 30% ‘spatial topology’ features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions (l).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.10: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
60% ‘epidermis area’ + 40% ‘spatial topology’ features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions (l).
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.11: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
90% ‘volumetric log rate’ + 10% ‘spatial topology’ features, (a-e,g-j), and the cluster distances asso-
ciated heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions
(l).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.12: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
80% ‘volumetric log rate’ + 20% ‘spatial topology’ features, (a-e,g-j), and the cluster distances asso-
ciated heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions
(l).
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.13: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
70% ‘volumetric log rate’ + 30% ‘spatial topology’ features, (a-e,g-j), and the cluster distances asso-
ciated heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions
(l).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.14: Spatial projection of the clustering obtained using a 4-cluster Ward model based on
60% ‘volumetric log rate’ + 40% topological features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature distributions (l).
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t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.15: Spatial projection of the clustering obtained using a 4-cluster Ward model based
on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’ + 10% ‘spatial
topology’ features, (a-e,g-j), and the cluster distances associated heatmap (f), ordered vertex distance
to their cluster center (k) and clusters feature distributions (l).

t0 t1 (+26h) t2 (+44h) t3 (+56h) t4 (+69h)
a. b. c. d. e.

f. g. h. i. j.

k. l.

Figure S3.16: Spatial projection of the clustering obtained using a 4-cluster Ward model based
on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’ + 10% ‘spatial
topology’ features, (a-e,g-j), and the cluster distances associated heatmap (f), ordered vertex distance
to their cluster center (k) and clusters feature distributions (l).
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Figure S3.17: Backward temporal projections of two manually defined regions: boundary and central
zone. On the left we can observe the backward projection of the regions onto the 4 time points preceding
t4 presented in figure 3.27. on the right are represented the distributions of the volumetric growth rate
for those two regions. In both case, we can observe a dramatic reduction of the growth rate over time,
with the most significant reduction between t4 and t5. The time points are here numbered from t1 to
t5 unfortunately.
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General perspectives

As illustrated along the three chapters of this thesis, making use of network or spatio-temporal graph

representations has allowed us to summarise, organise and relate the –often complex– information

within the data. In the same time, unsupervised methods such as clustering methods (algorithmic

or model-based) and modelling are powerful methods to analyse complex data, as they posses the

capacity to identify and characterise emerging properties and patterns of the system under study.

Considering the analysis we have conducted about the auxin signalling network, it could be ar-

gued that the used network is only the “potential” network as we used every (testable) transcription

factors of the network, however it is known that the TFs expression patterns are spatio-temporally

regulated. Using the methods to analyse live-images, it could be interesting to create this spatio-

temporal map at the scale of the SAM of the FM. We would indeed be able to identify TFs

combinations by cells, allowing to create groups of commonly expressed auxin-signalling proteins,

which combined to the quantified geometrical features, would permit to establish putative role

of the sub-network regarding growth and shape processes. In addition, the identification of the

auxin-responsive genes downstream-regulated by each TFs would thus allow to predict expression

patterns of these genes.

In a second time, using the phylogenetic information we could hypothesise a probable domain-

specific interaction capacity. Although, the relatively small size of the network may have limited

the regression model and thus the biological conclusions. It would therefore be possible to enlarge

the modelled network by using mutated versions of the transcription factors dimerisation domains

and experimentally test their interacting capacities. Noting that the key amino-acids and their

positions have been identified [Nanao et al., 2014], mutating the TF randomly could result in the

alteration of these precise 3D conformations. The simple proteic distance might thus be not the

more adequate metric for computing the co-variables to use in the regression model. However, rice

and tomato also present the Aux/IAA-ARF family, with different versions of the proteins present

in A. thaliana. Re-conducting the analysis with those plants would thus allows to compare if they
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display similar mode of dimerisation and the same buffering capacity.

Regarding the development of alternative strategies to analyse the growing tissue, the growth

analysis by means of tensors fields on D. melanogaster presented in Bosveld et al. [2012] is very

interesting. Although it require to posses a reference system common to every images, I believe

that, by means of registrations systems and the increase of temporal resolution offered by the

new in-depth fluorescent imaging microscopes, we can achieve decent interpolation of the growth

dynamic. Another solution would be to limit the exposure of the sample by only imaging the

surface, but at higher frequencies, in a framework allowing to measure and model of the surface

shapes changes and movements. The registration of the in-depth images could then be made on

the basis of the previously built model. In that respect, using the work of Boyer and Lipman [2011]

would certainly be of a great help, since they propose algorithms to automatically quantify the

geometric similarity of anatomical surfaces.

A good strategy to increase the temporal coverage, seems to successively acquire partially

overlapping times frames (stage 1 to 3, then S2-S4, S3-S5 and so on) while repeating the coverage.

The quality of the model surface will indeed be directly linked to the number and quality of time-

series. In turn we would also be able to registrate any static data to the model thus opening the

door to new data otherwise impossible to integrate.

This would most probably push towards the creation of an in sillico 3D growing tissue, using

mechanical modelling of the cell walls [Smith et al., 2006], incorporating cell division process [Smith

et al., 2006] and the possibility to add equations including fundamental biological processes such

as diffusion or transport processes [Jönsson et al., 2006; de Reuille et al., 2006] and genetic spatio-

temporal patterns [Jönsson et al., 2005; Robinson et al., 2011; Yadav et al., 2013]. The mechanical

model could in turn be refined by modelling microtubules behaviour (for review see Deinum and

Mulder [2013]).

Using backwards temporal projection of manually defined regions, boundary and the central

zone, we have been able to observe dramatic decrease in volumetric growth rates (see supplemen-

tary figure S3.17 from chapter 3). This was expected from the putative biological functions of

these regions. However, this could be use as temporal landmarks such as the activation of the

repression of majors developmental genes can be. Referencing those features changes could thus

give a morphogenetic time-line, that could serve to compare time-series between them and align or

compare with other ecotypes or species. This analysis could be made in combination of the hidden
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Markov in-tree model, which is parametrized by transition probabilities from the children states to

the parent state.

When looking at figure 3.3 in section 2.1, I get puzzled by the external shape similarity between

the initial lineage-coloured cells and the shape displayed by their descendants. That could be

explained by the symmetric rule of division, but yet for a tissue layer undergoing a lot of mechanical

stress and growing rapidly, this is striking. In addition, we have observe that this tissue present

local differences in growth rates, that should have distorted the layer. Although such behaviour

would fit in the hypothesis of a protective layer made quasi-exclusively by periclinal divisions, which

role is to restrain the anisotropic growth of the inner corpus thus yielding coherent shapes.

This observation of the shape steadiness bring another question regarding the origin of the cells

genetical identity. Indeed, how is it possible, if we only consider the lineage to be responsible, that

the boundary cross all those patches of different cells (as observable at t4 fig. 3.3). There must

be a spatial signal that activate sepal emergence only when the floral bulb is big enough. To test

whether an acquired genetic or hormonal patterns are lineage dependant or not, the introduced

hidden Markov tree models could prove helpful by computing generation law probabilities on the

basis of such signals. Quantitative versions of the signal would be advised, but it would be possible

to work with other type of data such as ordered interval-scaled or binary variables.

On larger perspectives about live-imaging techniques, technological advances will continues to

provides better spatio-temporal resolutions by proposing methods to acquire several angles at once

for instance. Super resolution fluorescence microscopy Huang et al. [2009] present the new frontier

to fluorescence imaging since they achieved a spatial resolution that is not limited by the diffraction

of light. This technology thus allow to measure interactions and record dynamic processes in living

cells at the nanometer scale. Overall, these perspectives suggest that in-depth live-imaging will

soon become a preponderant method in developmental biology.
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the sides. AS1, STM, WUS and CLV3 are introduced later. In both figures, CZ
refers to the Central Zone and PZ to the Peripheral Zone, i to initium . . . . . . . . 10

2 Effects of ectopic auxin application (red) on auxin-related mutants in A. thaliana.
a, auxin induce lateral organ formation on pid mutant. b, auxin does not induce
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initiation site. l, PIN1 localisation in young (stage 2) FM cross-section; arrowhead
indicate sepal initiation site. m, PIN1 localisation in older FM (stage 3) cross-
section; arrowhead indicate anthers initiation site. (P) indicate flower primordia, and
white arrows indicate vasculature. Source: adapted (white outlines) from Reinhardt
et al. [2003] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Schematic representation of the ARF and Aux/IAA structures as found in Ara-
bidopsis thaliana. DBD: DNA binding domain. I: Aux/IAA specific putative homo-
dimerisation domain. AD: Activation domain. RD: Repression domain. II: Aux/IAA
specific degradation domain. III & IV: protein dimerisation domains. Arrowed lines
indicate the extend of each inhibiting ARF structure. Source: adapted from Hagen
and Guilfoyle [2002]; Guilfoyle and Hagen [2007] with the notable difference that we
found domains III ans IV when aligning full length protein sequences for ARF13. . . 16

5 Model of auxin transduction pathway. Activation and repression activities depend
on ARF middle domain amino-acid composition. DBD indicate the DNA binding
domain found usptream of auxin-inducible genes. In absence of auxin Aux/IAA
are dimerise with the ARFs, preventing them to exert their artivating or repressing
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the ARF free to dimerise and exert their regulating activity. Source: adapted from
Chapman and Estelle [2009]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 The three first stages of A. th. FM morphogenesis. a. Stage 1, no clear distinction
between the FM and the SAM; b. Stage 2, a clear boundary is visible between the
SAM and the FM(+26h); c. Early stage 3, sepals start emerging at the sides of
the FM (+69h); d. Stage 3, the sepals are clearly visible (+80h). Green fluorescent
marker: AHP6::erGFP. Source: Images acquired at the RDP by Pradeep DAS. . . . 21
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7 The ABCE model for floral-organ patterning illustrated with A. thaliana flower. a.
the wild-type display four whorls of organs: the sepals, the petals, the stamens and
the carpels. b. An ap2 mutant flower, thus lacking class A genes, show the loss
sepals and petals, replaced by carpels and stamens, respectively, subsequent to the
expansion of class C genes throughout the flower. c. A pi mutant flower posses sepals
and carpels instead of petals and stamens, respectively, subsequently to the absence
of class B genes. d. An ag mutant flower, lacks class C genes activity, thus displaying
sepals, two whorls of petals and further repeating the patterns in interior whorls. e.
A SEPALLATA mutant flower for four sep genes (sep1-4 ) present reiterating whorls
of leaf-like (le) organs subsequently to the lack of class E genes impairing the activity
of ABC class genes, ultimately leading to loss of floral organ determinacy. Source:
Krizek and Fletcher [2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Contribution of the SAM histogenetic layers to floral organ tissues. L1 is in green,
L2 in red and L3 in blue. The L1 gives rise to the epidermis of all floral organs
and to some other tissues. L2 and L3 give rise to the mesophyll and other internal
tissues. Source: Jenik and Irish [2000] . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Theoretical example of a molecular universe for in toto imaging of zebrafish embryo-
genesis. The ‘xyz’ space correspond to spatial dimension, ‘t’ to temporal dimension
and ‘g’ to genomic dimension. Source: Megason and Fraser [2007]. . . . . . . . . . . 30

10 Illustration of intensity based image (left) transformed into a cell-based image (right).
Source: Images and segmentation were generated at the RDP. . . . . . . . . . . . . . 34

1.1 Flowchart representation of the strategy and main findings. The experimental parts
of the work are shown in light green boxes. The connections between the different
parts of the work are represented by directed arrows. . . . . . . . . . . . . . . . . . . 42

1.2 Spatial regulation of Aux/IAA-ARF signalling in the inflorescence. (A-D). Expres-
sion patterns of TIR1/AFB F-box co-receptors. Expression was analyzed using GUS
translational fusions for TIR1, AFB1 and AFB3 and in situ hybridisation for AFB5.
The relative levels of the protein are indicated for AFB1 and TIR1, as revealed by
GUS activity detection time (TIR1: 48h; AFB1: 8h).(E-ZC) Expression patterns
of ARFs and Aux/IAAs revealed by RNA in situ hybridization. (ZD) Detection of
Aux/IAA and ARF expression by RT-qPCR in the inflorescence meristem. The anal-
ysis was done in duplicate on meristem mRNAs. Error bars represents the range of
values.(ZE) Schematic representation of the Aux/IAAs and ARFs distribution in the
meristem. The meristem is represented as a dome (PZ: peripheral zone; CZ: central
zone, in grey; SC: stem cells; OC: organizing centre). Global tendency in expression
levels are indicated by the size of the + sign. A dashed line was drawn between
the upper and lower part of the centre to indicate differences in signalling capacities
since ARF4 and IAA18 are expressed in the inner core. The primordia (P) have
been delineated by a dashed line in the PZ to indicate that several Aux/IAAs and
ARFs shows an even high accumulation in the organ primordia. Several Aux/IAA
and ARF are also more specifically associated with vasculature (V; see main text).
Median or near-median sections are shown. Scale bar: 50 μm. . . . . . . . . . . . . . 45
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1.3 Structure the auxin signalling network. (A) Visual representation of the Aux/IAA-
ARF interactome using Cytoscape (www.cytoscape.org). The proteins are grouped
according to their biological identity as indicated. Note the global differences in
connectivity of the three biological groups (B-D) Connectivity graph and clusters
identified by the MixNet algorithm. The probabilities associated with the connec-
tivity structure for the global network are indicated in (B). The three clusters are
mainly composed of Aux/IAA (I), ARF activators (II) and ARF repressors (III) as
indicated in brackets in (B). The identity of the proteins in these clusters for both
the global network (C) and the SAM-specific network (D) is shown. The proteins
are ordered from the most to the least central in each cluster based on the distance
of the protein to the cluster. (E) The topology of the network relies on stereotypic
interaction capacities for the different classes of proteins as represented. ARF+:
ARF activators; ARF-: ARF repressors. . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.4 Mathematical model of the auxin signalling network. (A) Reaction scheme consid-
ered for the model. The numbers in brackets indicate the 5 populations of molecule
described by ODEs in the model. (B) Effect of the level of ARF activators (middle
panel) and ARF repressors (bottom panel) on target gene induction capacity upon
an increase in auxin (upper panel). (C) 3D representation of the induction capacity
as a function of ARF levels and ARF activator to ARF repressor ratio. The surface
has been obtained by calculating the transcription fold-change, i.e. the ratio of the
mRNA levels at equilibrium before and after a step increase in auxin. A colour map
representing the parameter values is shown. (D) Effect of the level of ARF activa-
tors (middle panel) and ARF repressors (lower panel) on the stability of target gene
induction upon varying auxin level. Transcription in response to sinusoidal changes
in auxin levels (upper panel) has been studied. Two situations, corresponding to
the centre (CZ) or the periphery (PZ), were considered. The effect of increasing
ARF activators was tested for the first situation (CZ + ARF+) and of decreasing
ARF repressors for the second (PZ - ARF-). For simplicity mRNA levels are shown
in (B,D) for only the higher and the lower concentration of the variable parameter
used in the simulation. See figures 4 and 5 of Note S1 for the full range of values. . . 50

1.5 Spatial control and dynamics of auxin signalling at the inflorescence meristem. (A)
Schematic representation of signalling parameters monitored by DII-VENUS as com-
pared to DR5::VENUS. (B-D) Expression of DII-VENUS (B), mDII-VENUS (C)
and DR5::VENUS (D) visualized by confocal microscopy. Insets: overlay of the
VENUS signal (Green) with the autofluorescence signal (red). In (B) and (D) the 3
first primordia (P) are indicated and numbered from the youngest to the oldest. Two
initia (I) are indicated and numbered from the oldest to the youngest following stan-
dard nomenclature. (E) Auxin-dependent binding of IAA28 domain II to TIR1/AFB
auxin co-receptors. Anti-FLAG immunoblots of IAA28 domain II peptide pull-down
assay with TIR1-FLAG, AFB1-FLAG or AFB5-FLAG. IAA treatments are as in-
dicated. (F,G) Time-course of DII-VENUS (F) and DR5::VENUS (G) expression
followed by confocal microscopy (VENUS fluorescence in green). Images were taken
at indicated time after t0. The initia (I1 to 3) and the localization of the centre of
the meristem (C) are indicated. Scale is the same in all images. Scale bar: 50 μm. . 52

S1.1 TIR1/AFB expression patterns in the inflorescence meristem. Serial sections show-
ing expression of TIR1/AFB proteins fused to GUS (A-D) or AFB4/5 mRNA as
visualized by RNA in situ hybridization (E,F). The name of the gene is indicated
on the figure. Scale is identical in all images for each serial section. . . . . . . . . . . 79

S1.2 ARF expression patterns in the inflorescence meristem. (A-M) Serial sections show-
ing expression of ARF genes as visualized by RNA in situ hybridization. The name
of the gene is indicated on the figure. Scale is identical in all images for each serial
section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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S1.3 Aux/IAA expression patterns in the inflorescence meristem. (A-L) Serial sections
showing expression of Aux/IAA genes as visualized by RNA in situ hybridization.
The name of the gene is indicated in the figure. For each serial section, scale is
identical in all images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

S1.4 In planta analysis of Aux/IAA-ARF interactions. Bimolecular Fluorescence comple-
mentation (BiFC) was used to test 31 Aux/IAA-ARF interactions in planta. The
set of interactions included both positive and negative interactions as predicted from
the Y2H interactome analysis. (A) Summary of the results of the BiFC analysis.
All the results were coherent with the results from the Y2H analysis except for 3
interactions (result indicated in bold). (B) Confocal images for a selection of the
tested interactions showing results of BiFC in Nicotiana Benthamina leaves. Yellow:
YFP; Red: autofluorescence; Grey levels: transmission channel. Scale is identical in
all images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

S1.5 Cluster analysis of the global Aux/IAA-ARF interactome using MixNet. (A) Re-
sults of the MixNet algorithm for the global interactome. We applied the MixNet
algorithm to the ARF-Aux/IAA protein network for Q = 2 to 10 clusters. The
model selection criterion favours 4 clusters. Since this model selection criterion is
only asymptotically valid (i.e. for large N), this number of clusters should only be
considered as indicative in our case and we thus explored neighbouring solutions.
The results are presented for Q = 3 clusters. The proteins are ordered from the
most to the least central in each cluster based on the distance of the protein to the
cluster (D(i, q); data not shown). The connectivity probability matrix Π̂ and the
cluster distance matrix {D(q, `); q, ` = 1, . . . , Q} are given. The three clusters differ
strongly in terms of connectivity profiles; compare the rows of matrix Π̂. The three
clusters are also well separated; compare the diagonal elements of the cluster dis-
tance matrix {D(q, `)} corresponding to within-cluster distances to the off-diagonal
elements corresponding to between-cluster distances. The proteins in italics form
the fourth cluster when the MixNet algorithm is applied for Q = 4 clusters. In this
case, the 3 most peripheral proteins of cluster I are grouped with the 4 most pe-
ripheral proteins of cluster II to form a second Aux/IAA cluster. This fourth cluster
is not well defined (the within-cluster distance D(IV, IV) = 0.34 is larger than the
between-cluster distance D(II, IV) = 0.3 (data not shown), indicating that the 3-
cluster solution is the most adequate. (B) Visualization of the clusters using MDS.
The first two MDS coordinates were deduced from the pairwise distances between
proteins {D(i, j); i, j = 1, . . . , N}. These first two coordinates account for 61.9%
of the total variation. The proteins from cluster I, II and III are figured in green,
blue and red respectively. Note that the clusters are compact (except for a few out-
liers) and well separated. The proteins that are in the 4th cluster when the MixNet
algorithm is applied for Q = 4 are found amongst the outliers (labelled in purple). . 88
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S1.6 Cluster analysis of the meristem Aux/IAA-ARF interactome using MixNet. (A)
Results of the MixNet analysis for the SAM interactome. We applied the MixNet
algorithm to the SAM subnetwork for Q = 3 clusters. The three clusters obtained
are almost nested in the three clusters obtained for the complete network, the only
exceptions being IAA29 and IAA26, peripheral in cluster III, which are then assigned
to cluster I with almost all the other Aux/IAAs. As in the case of the complete net-
work, the proteins are ordered from the most to the least central in each cluster based
on the distance of the protein to the cluster (D(i, q); data not shown) (B). A graphic
representation of the structure of the network using Cytoscape (www.cytoscape.org)
is given. The Aux/IAA, ARF activator (ARF+) and repressors (ARF-) have been
grouped. The vertices are colored according to their MixNet cluster: blue for cluster
I, green for cluster II and pink for cluster III. (C) Visualization of the clusters us-
ing MDS. The first two MDS coordinates were deduced from the pairwise distances
between proteins {D(i, j); i, j = 1, . . . , N} and explain 67.9% of the total variation.
The proteins assigned to cluster I, II and III are figured in green, blue and red re-
spectively. Note again that the clusters are compact (except for a few outliers) and
well separated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

S1.7 Distribution of DII-VENUS and mDII-VENUS in vegetative shoot meristem. DII-
VENUS (A) and mDII-VENUS (B) expression was analyzed in 5 day old plantlets
using confocal microscopy. VENUS fluorescence is in green. The red channel visu-
alizes auto-fluorescence. One cotyledon has been peeled out to reveal the meristem
(arrowhead). The two first leaves (L) are indicated. Note the absence of DII-
VENUS signal at the centre of the meristem and the homogenous distribution of
mDII-VENUS. Scale is identical in (A,B). Scale bar: 40 μm. . . . . . . . . . . . . . . 90

S1.8 Proteasome inhibitors interfere with DII-VENUS auxin-induced degradation in the
SAM. Images were obtained by confocal microscopy. DII-VENUS is in green. The
red channel visualizes auto-fluorescence in the inflorescence meristem. All the images
were taken using the same settings. Plants were treated either with DMSO (control;
A), 1 μM IAA (B) or co-treated with IAA and the MG132 proteasome inhibitor (C).
Note that the degradation of DII-VENUS induced by auxin is largely blocked by
MG132. Scale is the same in (A-C). Scale bar: 40 μm. . . . . . . . . . . . . . . . . . 90

S1.9 Instability of VENUS visualized in DR5::VENUS plants upon chemical inhibition of
auxin transport. To verify that the stability of DR5::VENUS fluorescence observed in
inflorescence meristem was not solely due to the stability of the VENUS protein, we
germinated DR5::VENUS plants on the auxin transport inhibitor NPA to generate
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S2.13Detail of the multiple alignment curated by Glocks showing the domains III and
IV. Every proteic sequences of the 49 AGI-accessible Aux/IAA and ARF have been
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3.10 Illustration of the inertia tensor shape descriptors: detailed illustration of a 2D
inertia tensor for a cell wall (a) and the representation of computed 3D inertia
tensors at t4(b). a. Representation of the 2D inertia tensor with the main and
secondary axes in blue and green respectively, obtained using the rank-2 subspace
projection (plane defined by the red dots) of the 3D cell wall (gray). b. Inertia
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(green cube) of two epidermal cell walls. The yellow, magenta, blue and red discs
are voxels selected at a distance of 60, 70, 80 and 100 voxels respectively. . . . . . . 152
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tn+1 (same data). When using the relative temporal change instead of the temporal
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puted with the given four temporal differentiation functions. a. Comparing tempo-
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3.17 Example of tranformation of a tensor (3D) shape descriptors into a scalar (1D) shape
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Fractional anisotropy describing shape anisotropy defined in [0, 1]. . . . . . . . . . . 157
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3.18 Example of a rank-2 projection (green) computed from the set of voxels defining the
real initial shape of the wall (blue). In blue are the voxels defining the true wall. In
green are the voxels position computed through rank-2 subspace projection of the
blue ones. This representation has been generated from rank-2 computation and
representation of real wall from our data. . . . . . . . . . . . . . . . . . . . . . . . . 159

3.19 Stretch matrix 2D illustration with cell wall medians used as landmarks before de-
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outlines, but represent the closed shape. Coloured point indicate the wall medians.
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are superior to 0.8). The box extends from the lower to upper quartile values of
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3.25 Distribution of main axis of inertia and division plane normal vector collinearity
computed over the whole time-series and attributed at tn. Boxplot per time-point
(left), distribution (middle) and cumulative distribution (right) of the sibling volume
ratios over the whole time-series; the vertical lines indicate the percentage of sibling
under the curve starting from 1 (the perfect ratio) to the line defined ratio (e.g.
92.6% of the ratios are superior to 0.8). The box extends from the lower to upper
quartile values of the data, with a line at the median. The whiskers extend from
the box to show the range of the data as follow: Q3 + 1.5 ∗ IQR, where IQR =
interquartile range (i.e. Q3−Q1). Flier points are those past the end of the whiskers.177

3.26 Representation of the vectors collinearity in correlation to (a.) the sibling volume
sums and (b.) the 3D shape anisotropy obtained from the inertia tensor computed
with the sibling fused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3.27 Example of morphology related regions defined on the last time point (t4). We
manually defined the boundary (dark blue) region between the central dome and
the sepals. The central zone (blue) is surrounded by a peripheral zone (light blue).
Each sepals are reported in different colors (abaxial: ligth green; adaxial: yellow;
left: dark red; right: orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.28 Example of features distributions by morphologically defined regions (at t4). . . . . 178
3.29 Example of an acquired genetical marker: AHP6 signal (top) and the associated

4-groups clustering by ward method (bottom). In the top row the colormap range
from low-intensity signal in dark blue to high-intensity signal in dark red. The
highest intensities have not been reproduce for lower signal readability reasons. The
threshold used is presented in supplementary figure S3.1. In the bottom row the
colormap is made as follow: no-signal = dark blue; low-intensity signal = orange;
medium-intensity signal = light green; high-intensity signal = light blue. . . . . . . . 182

3.30 Cell features boxplot per groups obtained from 4-clusters Ward clustering of AHP6
signal. We give the distribution of AHP6 signal, 3D shape anisotropy, volume, log
volumetric growth rate and division rate. It seems that the log volumetric growth
rate and division rate are related to AHP6 signal level since both show an increase
relate to the increase of signal. Volume property seems inversely proportional to
AHP6 signal levels, but it might be a secondary effect of increased growth and
division rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

3.31 Spatial projection of the clustering obtained using a 4-cluster Ward model based on
‘epidermis area’ feature (a-e,g-j), and the cluster distances associated heatmap (f). . 185

3.32 Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based on ‘epidermis area’ features. . . . . 185

3.33 Spatial projection of the clustering obtained using a 4-cluster Ward model based
on ‘volumetric log temporal rate’ feature at tn+1(a-e,g-j), and the cluster distances
associated heatmap (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

3.34 Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based on ‘volumetric log rate’ features. . 187

3.35 Spatial projection of the clustering obtained using a 4-cluster Ward model based on
80% ‘volumetric log temporal rate’ + 20% ‘topology’ features features (a-e,g-j), and
the cluster distances associated heatmap (f). . . . . . . . . . . . . . . . . . . . . . . 188

3.36 Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based 80% ‘volumetric log temporal rate’
+ 20% ‘topology’ features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

3.37 Spatial projection of the clustering obtained using a 4-cluster Ward model based on
50% ‘volumetric log temporal rate’ + 50% ‘Gaussian curvature’ features (a-e,g-j),
and the cluster distances associated heatmap (f). . . . . . . . . . . . . . . . . . . . . 189

244



LIST OF FIGURES

3.38 Ordered vertex distance to their cluster center (a) and clusters feature distributions
(b) obtained using a 4-cluster Ward model based on 50% ‘volumetric log temporal
rate’ + 50% ‘Gaussian curvature’ features. . . . . . . . . . . . . . . . . . . . . . . . . 189

3.39 Spatial projection of the clustering obtained using a 5-cluster Ward model based
on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’
+ 10% ‘spatial topology’ features (a-e,g-j), and the cluster distances associated
heatmap (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

3.40 Clusters feature distributions comparison for the 4- (a) and 5-cluster (b) Ward model
based on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30%
‘AHP6’ + 10% ‘spatial topology’ features. In the 5-cluster model, cluster 1 and 4
have been obtained splitting cluster 1 from the 4-cluster model. . . . . . . . . . . . . 191

3.41 Spatial projection of the four states obtained using a multivariate hidden multi-type
branching process computed using the epidermis area, the internal area (i.e. between
the L1 and L2), the volumes, the Gaussian curvature, the shape anisotropy and the
AHP6 signal. State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state
3 in dark red. Sepals are mostly identified by considering state 0 and 3, the dome
by state 2 and boundary cells by state 1. . . . . . . . . . . . . . . . . . . . . . . . . . 195

3.42 Observed histogram and mixture of observed distributions for each structuring fea-
ture. State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in
dark red (same than in the spatial projections). Areas and volumes have been mod-
elled by Gamma distributions and curvatures by Gaussian distribution. Combining
separations induced by areas and volume in one hand and curvatures in the other
hand indicates that states are well separated using only these features. . . . . . . . 196

3.43 Representation of the generation distributions by states. Generations distribution
relates to the evolution to the cell state in time, meaning the state of its descen-
dants (either binary or no division). For graph readability reasons, only generation
laws with a probability higher than 0.1 where represented. A single line indicates
generation law of undivided cell when double lines and two parts arrows indicate a
binary division. The thickness of the line is proportional to its associated generation
probability, which are also given as plain numbers. The state colors are the same
than in the spatial projection and the distribution histograms. . . . . . . . . . . . . . 197

S3.1 Distribution of AHP6 signal by time point. The red dots on the boxplot (right)
and upper limits on the histogram (left) give the outliers positions estimated from a
mean absolute deviation estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

S3.2 Main axis of inertia and division wall normal vectors correlations projected at tn.
Collinear vectors have a value close to 1 and orthogonal vectors close to 0. We
use the inertia axis obtained with the fusion of the daughters since the division
wall is defined at tn+1. To be coherent with the assumption of a ’small deformation’
between successive time-points, we only represented cells presenting a binary division
(i.e. only for two siblings). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

S3.3 Spatial projection (top and abaxial views) of the siblings volume ratio at tn + 1. In
order to be thorough we uses the sublineage (hand-made) to compute volumetric
ratios for all cells presenting a division The t4 present a limited amount of data,
but this is consistent with the low division number observed between t3 and t4 (see
supplementary figure S3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

S3.4 Main axis of inertia and division wall normal vectors correlations projected at tn+1.
Collinear vectors have a value close to 1 and orthogonal vectors close to 0. We use
the inertia axis obtained with the fusion of the daughters since the division wall is
defined at tn+1. Only the cells presenting a binary division (i.e. only for two siblings)
are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

S3.5 Top and abaxial view of the division rates projected at tn+1. . . . . . . . . . . . . . . 208

245



LIST OF FIGURES

S3.6 Examples of spatial differentiation functions Laplacian and mean absolute deviation
applied on AHP6 signal (genetic marker) for rank-1 and 2 (topological distance). . . 209

S3.7 Spatial projection of the clustering obtained using a 4-cluster Ward model based on
90% ‘epidermis area’ + 10% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

S3.8 Spatial projection of the clustering obtained using a 4-cluster Ward model based on
80% ‘epidermis area’ + 20% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

S3.9 Spatial projection of the clustering obtained using a 4-cluster Ward model based on
70% ‘epidermis area’ + 30% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

S3.10Spatial projection of the clustering obtained using a 4-cluster Ward model based on
60% ‘epidermis area’ + 40% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

S3.11Spatial projection of the clustering obtained using a 4-cluster Ward model based on
90% ‘volumetric log rate’ + 10% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

S3.12Spatial projection of the clustering obtained using a 4-cluster Ward model based on
80% ‘volumetric log rate’ + 20% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

S3.13Spatial projection of the clustering obtained using a 4-cluster Ward model based on
70% ‘volumetric log rate’ + 30% ‘spatial topology’ features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

S3.14Spatial projection of the clustering obtained using a 4-cluster Ward model based
on 60% ‘volumetric log rate’ + 40% topological features, (a-e,g-j), and the cluster
distances associated heatmap (f), ordered vertex distance to their cluster center (k)
and clusters feature distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

S3.15Spatial projection of the clustering obtained using a 4-cluster Ward model based
on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’
+ 10% ‘spatial topology’ features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature
distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

S3.16Spatial projection of the clustering obtained using a 4-cluster Ward model based
on 30% ‘volumetric log temporal rate’ + 30% ‘Gaussian curvature’ + 30% ‘AHP6’
+ 10% ‘spatial topology’ features, (a-e,g-j), and the cluster distances associated
heatmap (f), ordered vertex distance to their cluster center (k) and clusters feature
distributions (l). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

S3.17Backward temporal projections of two manually defined regions: boundary and cen-
tral zone. On the left we can observe the backward projection of the regions onto
the 4 time points preceding t4 presented in figure 3.27. on the right are represented
the distributions of the volumetric growth rate for those two regions. In both case,
we can observe a dramatic reduction of the growth rate over time, with the most
significant reduction between t4 and t5. The time points are here numbered from t1
to t5 unfortunately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

246



List of Tables

S1.1 Results of the yeast two-hybrid analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 72
S1.2 Summary of Aux/IAA-ARF interactions tested in the literature. . . . . . . . . . . . 72
S1.3 Oligonucleotides used in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.1 Example of Yeast-2-Hybrid data, with the name of the tested proteins, the side they
were attached to and the each output provided by the reporter genes. . . . . . . . . 97

2.2 ICL and corresponding posterior model probabilities for the BM model. . . . . . . . 102
2.3 Composition of the four clusters obtained using the BM model. The ARF activators

are in bold. The distance D(i, q) between protein i and cluster q to which its is
assigned is given for the most central, the most peripheral and some other proteins
of interest for interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.4 ICL and corresponding posterior model probabilities for network A based on a GM
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.5 ICL and corresponding posterior model probabilities for network B based on a GM
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.6 Composition of the four clusters obtained using the GM model applied to network A.
The ARF activator are in bold. The proteins that are attributed to two clusters in
the 5-clusters GM model are in blue and cyan. The distance D(i, q) between protein
i and its cluster q is given for the most central, the most peripheral and some other
proteins of interest for interpretation purposes. See supplementary figures S2.5 and
S2.6 for the distance plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.7 ICL and corresponding posterior model probabilities for network A based on a LM
model with III & IV as a single explanatory variable. . . . . . . . . . . . . . . . . . . 106

2.8 Proteins clustering for network A based on a 4-clusters LM model with one explana-
tory variable. The distance D(i, q) between protein i and cluster q to which its is
assigned is given for the most central, the most peripheral and some other proteins of
interest for interpretation purposes. See supplementary figure S2.8 for the distance
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.9 ICL criterion and corresponding posterior model probabilities for network A based
on a LM model with two explanatory variables. . . . . . . . . . . . . . . . . . . . . . 108

2.10 Proteins clustering for network A based on a 4-clusters LM model with two explana-
tory variables. The distance D(i, q) between protein i and cluster q to which its is
assigned is given for the most central, the most peripheral and some other proteins of
interest for interpretation purposes. See supplementary figure S2.11 for the distance
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.11 Cluster composition matching for 4-clusters models. . . . . . . . . . . . . . . . . . . 110
2.12 Table for decision rule 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.13 Tables for decision rule 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.14 Tables for decision rule 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.15 Tables for decision rule 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.16 Tables for decision rule 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
S2.1 Distance between clusters matrix D(q, `) for network A based on a GM model. . . . 121

247



LIST OF TABLES

S2.2 Estimated model parameters for the 4-cluster BM model. α̂ are the cluster propor-
tions and Π̂ is the connectivity probability matrix. . . . . . . . . . . . . . . . . . . . 122

S2.3 ICL and corresponding posterior model probabilities for network B based on a LM
model with III & IV as one global explanatory variable. . . . . . . . . . . . . . . . . 122

3.1 Examples of basic spatial information extractable from segmented image. . . . . . . 143

248



LIST OF TABLES

249


	Résumé
	Abstract
	Mots-clefs
	Keywords
	Table of contents
	General introduction
	State of the art
	The Shoot Apical Meristem: a self-maintained structure initiating new organs like flowers.
	Structural and functional zonation of the SAM.

	Auxin control organ initiation and patterning.
	Polar auxin transport regulation or self-organisation?

	Auxin signal transduction is ensured by a TF network.
	ARFs - Aux/IAA molecular and functional structures.
	Auxin perception is spatially regulated.

	Stereotypic shape of flowers
	Morphological description of early flower development.
	Induction of floral meristem fate.
	Floral meristem patterning by homeotic genes: the ABC model.
	Structural and functional zonation of the early FM.

	Fluorescence live-imaging enable genes, shape and growth quantification at cellular scale.
	From staining to labelling.
	What to label ?
	A 5D universe to compare -omic tools and live-imaging.
	Examples of live-imaging in animals morphogenesis.
	Imaging cell geometry to quantify shape and growth at cellular scale.
	Image processing: from intensity-based to object-based representations.

	Conclusions

	The auxin signalling network translates dynamic input into robust patterning at the shoot apex
	Abstract
	Introduction
	Result and Discussion
	Auxin signalling is spatially regulated in the shoot apical meristem
	The Aux/IAA-ARF interaction network has a simple structure
	The structure of the Aux/IAA-ARF network provides a plausible model for auxin signalling
	The auxin signalling model allows predicting differential sensitivity to auxin and buffering capacities for the Aux/IAA-ARF pathway in the meristem
	A novel signalling sensor, DII-VENUS, reports on the auxin signalling input in the meristem
	Auxin signalling sensors distribution and dynamics confirm the model predictions

	Discussion
	Materials and methods
	Plant material, growth conditions and plant treatments
	Analysis of gene expression
	Confocal microscopy and live imaging
	Generation of plasmids and transgenic plants
	In vitro transcription/translation of TIR1/AFB tagged proteins, immunoprecipitations and pull-down assays
	Protein interaction analyses
	Cluster analysis of Aux/IAA-ARF interaction network
	Modelling of the Aux/IAA-ARF signalling pathway

	Acknowledgements
	Author contributions
	Supplementary Materials

	Modelling the influence of phylogenetic distances between dimerisation sequences on the auxin signalling interactome
	Abstract
	Result and Discussion
	Y2H experiment and data
	Building a binary network from Y2H data
	Building a valued network from Y2H data
	Influence of the phylogenetic distance between dimerisation sequences on the interaction network

	Conclusions
	Methods
	Construction of the Aux/IAA-ARF interaction network on the basis of the yeast-2-hybrid data.
	Network binarisation.
	Phylogenetic data
	Response distance matrix: standardized distances between transcriptional factors
	Phylogenetic distance matrix
	Assessing the adequacy of the clustering
	Availability of supporting data

	Author contributions
	Supplementary Materials

	An attributed spatio-temporal graph framework for characterizing floral morphogenetic patterns in Arabidopsis thaliana
	Abstract
	Introduction
	Relation to previous works
	Principal contribution of our methods

	Methods
	Spatio-temporal graph provides a natural framework for 3D+t data.
	Quantifying cellular features of a 3D segmented tissue and enabling graph analysis.
	Adaptating the clustering framework to spatio-temporal property data.

	Results
	Exploratory analysis of the temporal property graph
	Cellular pattern identification on the basis of geometrical features clustering
	Cellular pattern identification on the basis of Markov tree analysis of the lineage and geometrical features

	Discussion and perspectives
	Author contributions

	General perspectives
	Bibliography
	List of figures
	List of tables

