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SUMMARY 

Investigating morpho-functional plasticity of CA3 axons in living brain slices by a 
combination of STED microscopy and electrophysiology. 
 
Abstract:  
Millisecond timing precision in the transfer of information between neurons is essential for 
the synchrony and plasticity of neural circuits in the brain. Axons are neuronal extensions 
that ensure the communication via brief electrical impulses called action potentials (AP). 
Because they are unmyelinated and are extremely thin, hippocampal axons propagate APs 
slowly and thus generate long delays of conduction (up to 100 ms) that are traditionally 
considered invariant. However, recent studies have shown that activity changes the 
morphology of axons and modulate the latency of transmission, thus raising the question 
whether axons undergo activity-dependent structural changes that could influence the 
propagation of APs. 
 
The diameter of hippocampal axons (ranging between 100-350 nm) are usually too thin to be 
properly resolved by conventional light microscopy. However, the development of super 
resolution STED imaging now enables the observation of their detailed morphological 
dynamics in living tissue. 
 
Using a novel combination of STED microscopy, field recordings, patch-clamp 
electrophysiology in mouse brain slices and computer simulations we discovered that CA3 
axons undergo long-lasting enlargement in their diameter after the induction of long term 
potentiation (LTP). We provide strong evidence that this diameter enlargement increases AP 
conduction velocity.  
 
Taken together, our findings indicate that axons can dynamically tune AP propagation delays 
by changing their diameters, thereby altering the timing of information transfer in neural 
circuits. This study suggests a novel and powerful structural mechanism for neural plasticity. 
 
Keywords: axon, plasticity, nanoscale, STED 
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RÉSUMÉ 
 
Etude de la plasticité morpho-fonctionnelle des axones du CA3 sur tranches de cerveau 
vivantes par la microscopie STED et l’électrophysiologie. 
 
Résumé:  
Une précision à l’échelle de la milliseconde dans le transfert d'informations entre les 
neurones est essentielle pour la synchronisation et la plasticité des circuits neuronaux dans le 
cerveau. Les axones sont des prolongements neuronaux qui assurent la communication via 
des impulsions électriques ou des potentiels d’action (PA). A cause du manque de myéline et 
de leur diamètre très fin, les axones de l'hippocampe propagent les PA lentement et ainsi 
générer des délais de conduction très long  (jusqu’à 100 ms) qui sont traditionnellement 
considérés comme invariants. Cependant, plusieurs études ont montré que l'activité change la 
morphologie des axones et module le temps de latence de la transmission. Il convient donc de 
se demander si le diamètre des axones varie en fonction de l'activité pouvant influencer la 
propagation des PA. 
 
Les diamètres des axones non-myélinisés de l’hippocampe (compris entre 100-350 nm) sont 
généralement trop petits pour être résolu par la microscopie photonique conventionnelle. Le 
développement récent de l’imagerie super résolution STED  permet désormais l'observation 
de la dynamique de leur morphologie détaillée dans le tissu vivant. 
 
En combinant la microscopie STED, l’électrophysiologie avec enregistrements en champs et 
patch-clamp dans des tranches de cerveau de souris et des simulations informatiques, nous 
avons découvert que les axones du CA3 subissent un élargissement de leur diamètre après 
l'induction de la potentialisation à long terme (PLT). Nous démontrons que cet élargissement 
de diamètre augmente la vitesse de conduction des PA. 
 
Dans l'ensemble, nos résultats indiquent que les axones peuvent réguler leur diamètre de 
manière dynamique changeant le délai de conduction des PA, ce qui modifie le timing du 
transfert d’information dans les circuits neuronaux. Cette étude suggère l’existence d’un 
nouveau type de mécanisme structurel dans le compartiment axonal jouant un rôle pour la 
plasticité neuronale. 
 
Mots clés: axones, plasticité, super-résolution, STED 
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ABSTRACT 

 

Millisecond timing precision in the transfer of information between neurons is essential for 

the synchrony and plasticity of neural circuits in the brain. Axons are neuronal extensions 

that ensure the communication via brief electrical impulses called action potentials (AP). 

Because they are unmyelinated and are extremely thin, hippocampal axons propagate APs 

slowly and thus generate long delays of conduction (up to 100 ms) that are traditionally 

considered invariant. However, recent studies have shown that activity changes the 

morphology of axons and modulate the latency of transmission, thus raising the question 

whether axons undergo activity-dependent structural changes that could influence the 

propagation of APs. 

The diameter of hippocampal axons (ranging between 100-350 nm) are usually too thin to be 

properly resolved by conventional light microscopy. However, the development of super 

resolution STED imaging now enables the observation of their detailed morphological 

dynamics in living tissue. 

Using a novel combination of STED microscopy, field recordings, patch-clamp 

electrophysiology in mouse brain slices and computer simulations we discovered that CA3 

axons undergo long-lasting enlargement in their diameter after the induction of long term 

potentiation (LTP). We provide strong evidence that this diameter enlargement increases AP 

conduction velocity.  

Taken together, our findings indicate that axons can dynamically tune AP propagation delays 

by changing their diameters, thereby altering the timing of information transfer in neural 

circuits. This study suggests a novel and powerful structural mechanism for neural plasticity.
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Résumé détaillé en français 

 

Un neurone est une cellule excitable électriquement et hautement polarisée qui reçoit, traite et 

transmet les informations au moyen de signaux électriques et chimiques. Les neurones 

peuvent se connecter les uns aux autres par l'intermédiaire de contacts appelés synapses et 

former des réseaux neuronaux. Typiquement, un neurone est composé de trois 

compartiments, un corps cellulaire (soma), une arborisation dendritique qui reçoit les signaux 

d’autres neurones et l’axone qui envoie l’information vers les neurones suivants. 

L'axone est une extension protoplasmique mince et allongée qui part du corps cellulaire et qui 

s’étend jusqu’aux terminaisons nerveuses. Sa fonction est de conduire l'information par 

l'intermédiaire d'impulsions électriques, généralement des potentiels d'action (PA) partant du 

soma, se propageant pour atteindre différent neurones. 

 

Traditionnellement les axones sont perçus comme des transmetteurs fiables de l’information 

générée au soma en véhiculant un code purement digital. Toutefois, les examens attentifs de 

l'organisation structurelle, de la composition en canaux et des différentes propriétés 

fonctionnelles des axones ont commencé à remettre en question cette vision simpliste. En 

effet, de nombreuses études ont démontré que la structure de l'axone peut exercer une 

influence profonde sur l'intégration d'entrée neuronale et la modulation de sortie, indiquant 

ainsi que le répertoire des axones fonctionnel est beaucoup plus large qu'on ne le pensait 

traditionnellement. 

Un timing précis de la décharge neuronale est essentiel pour la synchronisation du réseau et 

la plasticité circuit dans le cerveau. Une synchronisation à l’échelle de la milliseconde est 

extrêmement importante dans l’intégration des signaux excitateurs et inhibiteurs qui module 
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la fonction de sortie d’un neurone. En outre, la coïncidence entre les événements synaptiques 

et les décharges dendritiques est connue pour réguler la force de la transmission synaptique 

dans un processus communément appelé la plasticité dépendante du timing de décharge (en 

anglais: spike-timing dependent plasticity ou STDP). En ce qui concerne ces fonctions 

importantes du cerveau, le délai de conduction axonale des potentiels d'action (PA) est un 

paramètre souvent négligé, mais peut être très long. Du moment de l'initiation jusqu’à la 

terminaison nerveuse présynaptique, ce délai peut varier sensiblement d’une à plusieurs 

centaines de millisecondes. 

 

Dans le cerveau des mammifères, la vitesse et la fiabilité de propagation des PA peuvent être 

assurées de deux manières : un large diamètre axonal ou la myélinisation. Cependant, la 

plupart des axones dans l'hippocampe sont non-myélinisés et ont des diamètres très minces 

qui expliquent les importants délais de propagation. Par exemple, en plus de leur topologie 

très ramifiée et de leur morphologie irrégulière du aux boutons présynaptiques dits ‘en 

passants’, les axones CA3 présentent de longues branches collatérales (jusqu'à 20 mm) et des 

diamètres compris entre 100-300 nm. 

La difficulté d'isoler et d'évaluer les propriétés biophysiques de ces axones minces a forgé 

notre point de vue où le délai de la conduction axonale est un paramètre fixe qui ne contribue 

pas au codage de l'information. Néanmoins, quelques études indiquent que le délai de 

conduction des PA pourrait être régulé de manière dynamique. Des études de microscopie à 

deux photons ont révélé un important remodelage structurel des connexions synaptiques dans 

l'hippocampe durant des protocoles de plasticité synaptique. Cela représente la preuve la plus 

convaincante que la morphologie des axones est sensible à l'activité qui pourraient donc 

modifier la vitesse de conduction des PA. De plus, une régulation dynamique du diamètre 
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axonal a déjà été suggérée par plusieurs études qui ont signalé des changements dans les 

latences synaptiques durant l’activité et pourrait être liés à un changement de délais axonaux. 

Parce que la microscopie optique conventionnelle ne parvient pas à résoudre correctement la 

morphologie des axones allant bien au-dessous de 500 nm et la microscopie électronique ne 

peut pas être combinée avec des tests fonctionnels, c’est une possibilité encore inexplorée de 

savoir si minces axones non-myélinisés subissent des changements de diamètre dépendants 

de l'activité qui pourraient influencer la propagation des PA. 

Par conséquent, la microscopie à super résolution STED, dont le pouvoir de résolution n'est 

pas limitée par la diffraction de la lumière, est bien adaptée pour l'imagerie des axones dans 

des tranches de cerveau vivant. 

 

Dans cette étude, nous avons examiné si les axones peuvent être régulés de manière 

dynamique par l’activité. Nous avons combiné la microscopie STED, l’électrophysiologie 

avec des enregistrements d’activité de champs et de neurone unique en ‘patch-clamp’ sur des 

tranches en culture de cerveau de souris et des simulations informatiques afin de corréler les 

changements morphologiques dépendants de l'activité d'axones de la vitesse de conduction 

des PA. Nos résultats montrent que de façon concomitante avec l’induction de protocoles 

d’activité de potentialisation synaptique, le diamètre des axones s’élargit et la vitesse de 

conduction des PA augmente AP de conduction. Ces données suggèrent l’existence d’un 

nouveau type de plasticité par laquelle les diamètres des axones contrôlent dynamiquement 

les délais synaptiques dans les réseaux neuronaux. 

 

Le travail de cette thèse comprend également le développement d’un nouveau genre de 

microscope à super-résolution STED qui permet d’observer les fines structures du système 

nerveux plus profondément dans des tranches de cerveau adulte mais également sur animal 
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vivant. Les premiers développements de microscopes STED étaient basés sur une excitation à 

simple photon qui limite les observations sur les structures superficielles de culture de 

neurones dissociés ou de tranches fines de cerveau en culture. En revanche, la microscopie 

deux-photon est actuellement la méthode de choix pour l’imagerie dans des échantillons 

vivant épais que ce soit dans les tranches aigues ou sur animal vivant. Etant une méthode de 

microscopie photonique classique, la résolution spatiale d’un microscope deux-photon est 

limitée à environ 350 nm à cause de la diffraction de la lumière, et donc ne permet pas 

l’observation détaillée d’importantes structures neuronales comme les épines dendritiques ou 

les axones. 

Nous avons construit un nouveau microscope basé sur une excitation à deux photons et à 

déplétion stimulée pulsée. Sa polyvalence permet l’imagerie des fluorophores classiquement 

utilisés comme la GFP, YFP et Alexa488. Nous illustrons le potentiel du microscope pour la 

résolution de structures cérébrales minces telles que des épines dendritiques, les axones et les 

prolongements microgliaux dans des tranches de cerveau aigues à plus de 50 micromètres de 

la surface. Nous montrons aussi le potentiel de l'imagerie super résolution à deux couleurs en 

utilisant des algorithmes de séparations de canaux appelé ‘unmixing linéaire’. Sa conception 

verticale et son objectif à eau à grande distance de travail offre un accès pour combiner 

l'imagerie de super-résolution avec enregistrement électrophysiologique et permet aussi une 

évolution vers l’imagerie sur animal vivant. 
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INTRODUCTION 

1 The axon as a transmission cable 

1.1 General introduction 

A neuron is an electrically excitable and highly polarized cell that receives processes and 

transmits information through electrical and chemical signals. Neurons can connect to each 

other via contacts called synapses and form neuronal networks. Typically, a neuron is 

composed of 3 compartments, the cell body (or soma), the input region called dendrites and 

the output region called axon. 

The axon (from Greek, axis) is a thin and elongated protoplasmic protrusion that projects 

away from the cell body to terminal endings. Its function is to conduct information via 

electrical impulses, typically action potentials (APs) from the soma to different neurons, 

muscles or glands. Its discovery, during the 19th century, is usually attributed to the German 

anatomist Otto Friedrich Karl Dieters (Deiters, 1865) being the first to distinguish the axon 

from the dendrite which is the other type of neuronal protrusions that receive information 

from other neurons via synapses (Figure 1). The functional role of the axon as the output 

compartment of the neuron was first suggested by the pioneer work of the Spanish anatomist 

Santiago Ramón y Cajal (Ramon y Cajal, 1897). A few years later, Julius Bernstein (1902) 

correctly postulated the fundamental biophysical properties of the neuronal membrane. He 

used the term “membrane breakdown” to describe the transient lost of membrane negativity 

during the propagation of an AP. In the 1930’s, Cole and Curtis experimentally measured the 

change in membrane resistance in the squid giant axon during the passage of an AP (Cole & 

Curtis, 1939). This work was then followed by Hodgkin,  Huxley and Eccles who received 
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the Nobel prize in physiology and medicine in 1963 for the discovery the ionic mechanisms 

involved in the excitation and inhibition of the nerve membrane (Hodgkin, 1939). 

Ever since, axons were seen as reliable transmission cables, conveying a purely digital code, 

where information is composed of the rate and timing of stereotypical APs traveling to 

downstream targets. However, close examination of the structural organization, various 

channel compositions and functionally diverse properties of axonal arbors has begun to 

challenge this simplistic view. Indeed, numerous studies have demonstrated that the axon 

structure can exert profound influence on neuronal input integration and output modulation, 

thus indicating that the functional repertoire of axons is much broader than traditionally 

thought (Bucher & Goaillard, 2011; Debanne, 2004; Debanne et al, 2011).  

 

Figure 1: Drawings of stained neurons in the spinal cord with soma, nucleus, dendrites 

and axons, by Otto F K. Deiters, 1865.  
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1.2 The action potential 

When an excitatory synapse is activated, an excitatory postsynaptic potential (EPSP) is 

generated and transiently depolarize the membrane. If the depolarization reaches a certain 

threshold such as through the simultaneous activation of several synapses, the neuron fires an 

AP which will travel down the axon. In contrast to EPSPs that spreads electrotonically; APs 

actively propagate along axons due to the voltage dependence of their ionic conductances. 

This makes the AP a self-supporting or regenerative process. 

The AP is an electrical impulse propagating rapidly along the axon. They are generated by 

sequential opening of various voltage-gated sodium and potassium channels (Nav and Kv 

channels, respectively) at the cell membrane. When the membrane is at its resting potential, 

Nav channels are closed but rapidly open when the potential reaches a specific threshold. 

This produces an inward flow of positively charged, sodium ions that quickly increase the 

membrane potential (depolarization phase). This depolarization causes a change of membrane 

polarity which leads to the inactivation of the Nav channels. The depolarization also activates 

Kv channels allowing an outward flow of potassium ions returning the membrane potential to 

its resting potential (repolarisation phase). Their slow inactivation kinetics produces an 

undershoot called after-hyperolarisation. For chemical synapses, when the AP arrives at the 

presynaptic terminal, the change in membrane potential activates voltage-gated calcium 

channels (Cav channels) creating an inward current of calcium ions into the presynaptic 

terminal. Typically, this rise of calcium triggers the fusion of vesicles, liberating 

neurotransmitters into the synaptic cleft. As a consequence, the neurotransmitter molecules 

activate postsynaptic receptors which produce post synaptic currents. 
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A single AP is followed by an absolute refractory period during which another AP cannot be 

evoked, and a relative refractory period during which a stronger stimulus is required to elicit 

an AP. At the end of the depolarization phase, when Nav channels are closing, they enter in 

an inactivated state before going back to a resting state which makes them insensitive to any 

change in membrane potential – this phase corresponds to the absolute refractory period. This 

aspect is mainly responsible for the unidirectional propagation of AP. Indeed, in a 

propagating AP, the segment of axon behind the actively spiking part is refractory to the 

change in potential. The segment in front, yet not having been activated, is capable of being 

stimulated by the depolarization from the AP.  

After the absolute refractory period, the axon undergoes the relative refractory period where 

activation of Nav channels can induce APs, albeit only after strong stimulation. This is due to 

an outward flow of potassium ions as a fraction of Kv channels are still open (slow kinetics 

of the Kv channels).  

1.3 Classification of axons 

Across species, organs and even within the same anatomical region, axons are very diverse in 

their structures and properties. Two main types of axons can however been distinguished: 

unmyelinated and myelinated axons. Myelinated axons refer to axons that are enwrapped by a 

myelin sheet from Schwann cells in the peripheral nervous system (PNS) or the 

oligodendrocytes in the central nervous system (CNS). These axons conduct electrical 

impulses much faster than their unmyelinated kin. The myelin sheath, arranged in segments 

along the axon and separated by the nodes of Ranvier, acts as an electric insulator preventing 

the electrical current from leaving the axon and hence, restricting the ionic exchanges to the 

nodes of Ranvier. Indeed, when impulses propagate continuously as waves along 
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unmyelinated axons, relying on channel kinetics, they seem to hop from node to node in a 

combination of fast electrotonic spread and active propagation. This phenomenon is called 

the saltatory conduction and dramatically increases conduction speed. 

In the mammalian CNS, the classification into grey and white matter arises from a whiteness 

of the myelin revealing the regions containing the fast conducting fibers. By opposition, the 

grey matter that does not contain myelin gets its color from the neuronal cell bodies, neuropil, 

glial cells and capillaries. Grey matter is found at the surface of the cerebral cortex and 

cerebellum, as well as in the depths of the cerebrum (thalamus; hypothalamus; subthalamus, 

basal ganglia - putamen, globus pallidus, nucleus accumbens; septal nuclei), cerebellar (deep 

cerebellar nuclei - dentate nucleus, globose nucleus, emboliform nucleus, fastigial nucleus), 

brainstem (substantia nigra, red nucleus, olivary nuclei, cranial nerve nuclei) and spinal grey 

matter (anterior horn, lateral horn, posterior horn). The white matter is composed of bundles 

of myelinated fibers connecting the various grey matter areas. For instance, the corpus 

callosum is the largest white matter structure of the brain and its role is to facilitate 

interhemispheric communication. 

1.4 Hippocampal axons 

The hippocampus, part of the grey matter, is one of the most studied regions of the brain. 

There are two main reasons for this great interest. First, it is now well established that the 

hippocampus has a critical role in learning and memory processes. For instance, the 

hippocampus is involved in remembering information that can be described in a propositional 

or declarative manner (Andersen, 2007). During the last decades, all the work that has 

focused on the function of the hippocampus has shaped our current concepts about memory 

organization in the brain. The second reason that gathers attention around the hippocampus is 
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its extremely well oriented cellular organization that makes the hippocampal formation 

relatively easy to study (Figure 2). Indeed, neurons are organized in densely packed layers 

that are easily recognizable at low magnification. In this organization, two types of excitatory 

glutamatergic cells can be found: the pyramidal neurons and granule cells. The cell bodies of 

the granule cells compose the granular layer of the dentate gyrus (DG) whereas the cell 

bodies of pyramidal neurons lie in a single densely packed layer called stratum pyramidale 

that can be divided into four regions: Cornu Ammonis 1, 2, 3 and 4 (CA1 to 4).These cells 

form a tri-synaptic excitatory circuit where cells from entorhinal cortex send their axons 

through the perforant path to the DG granule cells. The granule cells contact CA3 pyramidal 

neurons via mossy fiber collaterals. Then, CA3 neurons send axonal projections called 

Schaffer collaterals (named after the Hungarian anatomist-neurologist Károly Schaffer) that 

contact pyramidal neurons of the CA1 layer (Andersen, 2007). 

The two types of connections DG to CA3 and CA3 to CA1 involve two very distinct types of 

synapses. The mossy fibers display large varicosities (5-10 µm) named mossy fiber boutons 

due to their cushiony appearance. They form synapses with CA3 pyramidal cells in the 

proximal part of their dendrites on elaborate spines called “thorny excrescences”. The CA3-

CA1 connection involves a more typical excitatory glutamatergic synapse in the cortex. For 

this reason, many scientists use the Schaffer collateral synapse as a sample synapse, to study 

and identify the rules by which synapses undergo plastic changes. 
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Figure 2: The structural organization of the hippocampus. 

The dentate gyrus (DG) that exclusively receives inputs from the entorhinal cortex (EC) is 

composed of granule cells. Typically, granule cells project to the CA3 area via the 

morphologically distinct mossy fibers. The CA3 is composed of excitatory pyramidal neurons 

and sends projections called Schaffer collaterals to the CA1 region. Similarly, CA1 is 

composed of excitatory pyramidal cells that are projecting toward the Subicullum and other 

layers of the entorhinal cortex.(modified drawing from Ramon y Cajal, 1911) 
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2 Physiology and morphology of unmyelinated axons 

2.1 Organization of the axonal compartment 

2.1.1 Axon initial segment 

The axon initial segment (AIS) is the site of initiation of the AP. This highly excitable axonal 

compartment was first identified by the Swiss Rüdolf Alber von Kölliker (Kölliker, 1849) 

and the German Robert Remak (Remak, 1855). The AIS has a variable length of around 

25µm and can be located directly at the axon hillock or up to tens of microns away from the 

hillock. The Nav and Kv channels composition of the AIS as well as its length and distance 

from the soma contributes to the spiking properties of the neuron. The AIS is characterized 

by a high density of Nav and Kv channels compared to the rest of the axon and the adjacent 

cell body. Combining electrophysiological recordings and computer simulations, sodium 

channels density in the AIS was evaluated to be 20 to 1 000 fold higher than in the soma or 

dendrite (Mainen et al, 1995; Moore et al, 1983; Rapp et al, 1996) resulting in a boost of 

inward sodium current that initiates the AP. 

The structural organization of the AIS is very different from the rest of the axon. Electron 

microscopy observations indicated several specific features of AIS. The AIS is rich in 

microtubule bundles and their membrane is rich in proteins similar to what was observed in 

the nodes of Ranvier of myelinated fibers (Bender & Trussell, 2012; Palay et al, 1968). Later, 

electrophysiological and immunocytochemical techniques provided evidence for a specific 

arrangement of Na+, K+ and Ca2+ channels that determines action potential generation and 

shape. Indeed, the distribution of Nav channel subtypes in the AIS is highly polarized. 

Whereas dense clusters of fast activating and fast inactivating Nav1.6 channels are located at 
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the distal part of the AIS to promote AP initiation, the proximal Nav1.2 channels contribute 

to AP back-propagation at the soma and dendrites (Hu et al, 2009). In the same way, Kv 

channels are distributed at high densities in the AIS. In layer 5 of the cortex and in CA3 

pyramidal cells, Kv1.1 and 1.2 are mainly located distally, together with Nav1.6 (Lorincz & 

Nusser, 2008). Other neuron types have different Kv1 subunit distribution and even though it 

is known that Kv1.1 and 1.2 have different kinetics (Grissmer et al, 1994) it remains unclear 

how the difference in Kv subunit composition affects AIS function. In addition, Kv7.3 and 

Kv7.4 are also present in the AIS of CA3 and CA1 pyramidal neurons and were shown to 

play a critical role controlling the resting membrane potential and action potential threshold 

(Pan et al, 2001; Shah et al, 2002; Shah et al, 2008; Yue & Yaari, 2006). More recently, 

Bender et al., reported the presence of Cav channels in the AIS and demonstrated their 

implication in AP initiation and control of AP firing pattern (Bender et al, 2010; Bender & 

Trussell, 2009; Bender et al, 2012). 

Initial segments also contain high concentration of GABAA receptors (Brunig et al, 2002; 

Christie & De Blas, 2003). Indeed, GABAergic Chandelier cells projects and form axo-

axonic contacts on the AIS of hundreds of principal cells acting as “master breakers” of 

excitatory circuits.  

The molecular organization of the AIS is mainly dependent of the scaffolding protein 

Ankyrin G (AnkG). Shortly after the beginning of the axon development, AnkG is targeted 

with a high degree of specificity to the proximal part of the axon and underlies the AIS 

formation. The localization of the AIS is mediated by -IV-spectrin, a protein associated to 

the actin cytoskeleton that binds to AnkG (Yang et al, 2007). It is also well established that 

AnkG retains Nav channels and is therefore responsible for their high density in the AIS 

(Jenkins & Bennett, 2001; Zhou et al, 1998). The fine tuning of Nav localization in the AIS is 
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thought to also depend on auxiliary proteins such as Nav and intracellular fibroblast growth 

factors (iFGFs) that promote their surface expression (Grieco et al, 2005; Laezza et al, 2007). 

2.1.2 Axon shaft 

The axon trunk is the main part of the axon. Its role is to conduct APs generated at the AIS 

down to the presynaptic terminal. The channel composition in the distal axon can be very 

diverse. In the widely studied squid giant axon or more generally for invertebrates, the 

literature has described initiation and propagation typically based on only a few subtypes of 

Nav channels giving rise to a fast sodium current and few Kv channels that produce a delayed 

rectifier potassium current (Goldin, 2002; Hodgkin & Huxley, 1952a; Loughney et al, 1989). 

However, in mammals, it is well known that many axons, myelinated or unmyelinated, 

central or peripheral, are equipped with many more Nav and Kv channel subtypes. Yet, the 

role of every channel subtype, their cooperative effect and the consequence for AP 

propagation are poorly understood. In thin unmyelinated axons, even less is known as their 

small diameter increases the difficulty to detect the channel composition reliably by 

immunolabeling. Therefore, the presence of channel types should be determined indirectly 

performing extracellular recordings and pharmacology (Moalem-Taylor et al, 2007; Sasaki et 

al, 2011; Sasaki et al, 2012a).  

Nevertheless immunohistochemical labeling has revealed that in CA3 Schaffer collateral 

axons, mainly contain Nav1.2 (Gong et al, 1999) and Kv1.2 (Veh et al, 1995), but it believed 

that many more isoforms populate the axon with variable expression levels and localizations. 

This diversity is reflected in the number of genes that encode for the eleven channel types 

named Nav1.1 through Nav1.9 and two additional Nax for which the function remain 

undefined. Although the expression and distribution of Nav channel subtypes in the axon is 

not well understood, several studies indicate various behavior in the gating properties of Nav 
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channels that populate the axon. For instance, it was demonstrated that a sodium current can 

be activated upon hyperpolarized membrane potential and inactivate slowly (Baker & 

Bostock, 1997; Stys et al, 1993; Tokuno et al, 2003). Such regulation in sodium current was 

shown to be important for sub threshold excitability and repetitive firing (Bostock & 

Rothwell, 1997; French et al, 1990; McIntyre et al, 2002).  

The diversity is even higher concerning Kv channels. Due to their overall slower kinetics 

compared to Nav channels, they have a critical influence on the AP waveform and 

excitability during repetitive firing. In unmyelinated central axons, Kv1.1, Kv1.2 (producing 

sustain currents) and Kv1.4 (producing transient currents) are widely expressed. They usually 

form heteromeric complexes within the family as well as with other auxiliary subunits like 

Kv3.4 and produce a wide variety of gating properties (Rettig, 1994; Trimmer and Rhodes, 

2004). 

Our view on the structural organization of the cytoskeleton of the axon trunk has completely 

changed recently. Using immunolabeling techniques combined with superresolution STORM 

(Stochastic Optical Reconstruction Microscopy) imaging of cortical neurons, Xu et al., have 

discovered a ring-shaped actin arrangement inside axons in contrast to the linear bundles in 

dendrites (Xu et al, 2013). Surprisingly, those actin-rings were found to be evenly spaced 

along the axon with a periodicity of ~180-190 nm. In addition, they found a similar periodic 

arrangement for spectrin, adducin and Nav (Figure 3). This new information about the unique 

cytoskeleton layout in axons will certainly change our understanding on how axons develop 

and how electrical signals propagate within this compartment. 
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Figure 3: Structural arrangement of actin, spectrin and associated proteins in the axon 

trunk. 

(Top) Super resolution STORM microscopy reveals the periodic structural organization of 

actin in the axon. Conventional fluorescence image of the actin (green) and dendritic marker, 

MAP2 (magenta), in a cultured hippocampal neuron fixels at 7 DIV (D). 3D STORM image 

of actin in a region containing axons (E). (Bottom) Periodic organization of the 

cytosketeton,with actin that forms rings and its associated proteins in the axon trunk.(adapted 

from Xu et al., 2013) 
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2.1.3 Presynaptic compartment 

The most fundamental function of the presynaptic compartment is to regulate the release of 

neurotransmitter via the fusion of synaptic vesicles with the presynaptic plasma membrane. 

Typically, the presynaptic compartment of a chemical synapse is composed of synaptic 

vesicles, an active zone, scaffolding molecules, and trans-synaptic adhesion molecules (Li & 

Jimenez, 2008; McAllister, 2007). 

The number of synaptic vesicles ranges between hundreds to thousands and can be divided 

into the readily releasable pool, located in the active zone, and the reserve pool. The 

segregation of those pools is mediated by the calcium sensitive phosphatase, calcineurin. The 

activation of calcineurin through the elevation of Ca2+ concentration in the presynaptic 

bouton, dephosphorylate synapsin that is responsible for the clustering of the reserve pool 

vesicles, thus allowing vesicles to migrate to the active zone and become part of the readily 

releasable pool (Cesca et al, 2010). The active zone, sometimes called presynaptic density, is 

the site of the presynaptic compartment mediating neurotransmitter release. It is formed by 

the presynaptic membrane and a protein dense material that tightly integrate in the membrane 

whereby neurotransmitter vesicles are tethered. The fusion of neurotransmitter vesicles at the 

membrane is highly regulated and utterly depends on the formation of a protein assembly 

called the SNARE complex (Soluble N-ethylmaleimide-sensitive factor Attachment protein 

Receptor complex). The increase of presynaptic Ca2+, following the arrival of an AP, forces 

vesicles to fuse to the plasma membrane due to a change in conformation of molecules in the 

SNARE complex.  

The assembly and stability of the synaptic cleft is mediated by trans-synaptic adhesion 

molecules that are thought to regulate structure and function of mature synapses during 

activity (Knott et al, 2002; Toni et al, 1999). 
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The elevation of calcium concentration in the presynaptic boutons is mediated by Cav 

channels present at their membrane. Pharmacological effects of specific Ca2+ blockers has 

allowed to determine that Cav2.1 constitute the majority of the Cav channels involved in 

transmitter release (Burke et al, 1993; Geer et al, 1993; Llinas et al, 1989; Mintz et al, 1992; 

Turner et al, 1992; Uchitel et al, 1992), Cav2.2 constitutes only by a smaller fraction (Burke 

et al, 1993; Pocock et al, 1992; Reynolds et al, 1986). In addition, Cav1.2 channels were 

found to be sparsely expressed in hippocampal presynaptic boutons (Tippens et al, 2008). 

The presynaptic compartment also displays various types of receptors that act as modulators 

of the synaptic transmission. G protein coupled receptors (GPCRs) such as GABAB, 

cannabinoid and adenosine receptors can either inhibit Cav channels or enhance Kv channels 

activation leading to the inhibition of transmitter release. Ionotropic glutamate receptors were 

also found to be present at the presynaptic compartment and also modulate transmitter 

release. For instance, kainate receptors (KARs), AMPAR, NMDAR exert presynaptic action 

by modulating transmitter release at certain synapses in the CNS (Engelman & MacDermott, 

2004; Kamiya, 2002; Rossi et al, 2008; Rusakov, 2006). 

2.2 Morphology of axons 

2.2.1 Complexity of axonal arborization 

Axons can contact neighboring cells that are few tens of microns away or project to other 

brain areas several centimeters away. Some neurons have a very simple axonal morphology, 

for instance, granule cell axons in the cerebellum are characterized by a single T-shaped 

branch node from which two parallel fibers extend. Others, like basket cell interneurons, that 

are present in the molecular layer of the cerebellum, the hippocampus and the cortex, densely 

collateralized in a confined area of tens of microns (Andersen, 2007). This topology allows 
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basket cells to synchronize firing of hundreds of principal cells through their divergent axon 

(Cobb et al, 1995). 

CA3 axons are traditionally seen as simple axons projecting in the CA1 area and are also 

known as Schaffer collaterals. In fact, CA3 pyramidal cells give rise to highly divergent 

projections in all areas of the hippocampus. In vivo reconstructions of CA3 axons in the rat 

have revealed their complex topology (Ishizuka et al, 1990; Ropireddy et al, 2011; Wittner et 

al, 2007) (Figure 4). These axons can form more than 350 branch points and contact 20 000 

to 60 000 neurons (Andersen et al, 1994; Li et al, 1994; Major et al, 1994; Wittner et al, 

2007). They contact neurons in the CA3, CA2 (associational connections) accounting for 1/3 

of the connections, CA1 (Schaffer collaterals) representing 2/3 of the connections, and a 

small fraction in the dentate gyrus, in both the ipsilateral and contralateral hippocampus via 

the commissural pathway. The total length of the CA3 axon collaterals can exceed half a 

meter while its collaterals length ranges between hundreds of microns up to 20 mm(Wittner 

et al, 2007).  
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Figure 4: NeuroLucida reconstruction of a CA3 pyramidal neuron. 

(a) Coronal view of the entire axonal arbor. The green triangle shows the location of the cell 

body, the axons are white, the dentate granule cell layer is marked with yellow line, CA1-3 

pyramidal cell layer with red line. D dorsal, V ventral, L lateral, M medial, A anterior, P 

posterior. (b) This rotated view shows that CA3 pyramidal cell axon collaterals follow the 

curve of the Cornu Ammonis. (c) View of the axonal arbor from dorsal. (d) View from 

medial.(from Wittner et al., 2007) 
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2.2.2 Morphological heterogeneity of individual axons 

Axon morphology is a fundamental parameter that determines its biophysical properties such 

as propagation of electrical signals (Hodgkin & Huxley, 1952b), likely influences 

biochemical diffusion and possibly active transport. The first noticeable feature of axon 

morphology is their calibers which greatly differ between 0.08 – 10 µm in the CNS. Larger 

axons conduct APs faster and with high fidelity but are space and energy consuming. A 

variation in caliber which positively correlates with conduction speed was shown to be a 

compensatory mechanism of axon length to ensure synchronous depolarization of their 

synaptic targets (Salami et al, 2003; Stanford, 1987; Sugihara et al, 1993). In addition to their 

mean diameter, unmyelinated axons always exert irregular geometries (Greenberg et al, 1990; 

Shepherd & Harris, 1998) which have often been neglected in two dimensional EM 

morphometric analyses by representing axons as straight cylinders. 

As the presynaptic compartment is a large regulatory machinery of neurotransmitter release, 

it requires space and makes the axon a varicose structure. In the neocortex, presynaptic 

boutons can be classified in two morphologically distinct categories, terminaux boutons and 

en passant boutons. Terminaux boutons resemble dendritic spines with a head containing the 

release machinery and a neck that links the head to the axon trunk. En passant boutons are 

presynaptic elements that are displayed in a “beads-on-string” fashion along the axon 

segment. Whereas layer 2, 3, 5 axons mostly exhibit en passant boutons, layer 6 axons 

display a high content of the terminal form (Figure 5). Interestingly, long term in vivo 

imaging revealed that terminaux boutons of layer 6 were more dynamic (De Paola et al, 

2006) whereby neck length adjustment allows for more potential synaptic partners 

(Chklovskii et al, 2004; Stepanyants et al, 2002). The frequency of presynaptic boutons on an 

axon is also a cell specific feature that depends on the number and location of the synaptic 
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partners. For instance, en passant boutons are on average spaced every 3µm along CA3 axons 

and also greatly vary in size ranging from 0.011-0.572µm3 (Shepherd & Harris, 1998). 

 

 

Figure 5: Morphology of boutons in the neocortex. 

The 2 types of boutons that can be observed in the neocortex are the terminaux boutons and 

en passant boutons, which are cell-type specific. Layer 2, 3, 5 axons preferentially exhibit en 

passant boutons whereas layer 6 axons exhibit more terminaux boutons. 

 

The irregularity of the axon shaft, the segment between two presynaptic elements, is often 

under-appreciated due to the lack of resolution in conventional light microscopy. For 

example, the cross section diameter of the axon shaft of CA3 pyramidal neurons can 

substantially vary from 80 to 300 nm within a few microns distance (Shepherd & Harris, 

1998) (Figure 6). The presences of organelles, such as mitochondria or synaptic vesicles 

often larger than 40nm contribute to its irregular shape. 
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Figure 6: Electron micrograph and 3D reconstruction of CA3 axons. 

Left, Full-field view of a representative micrograph from the stack of images used for three-

dimensional reconstructions. The shaft and two varicosities (var) of an axon are indicated. 

Right, Eight reconstructed axons from serial sections, at the same scale as the micrograph. 

Some axons extend beyond the area of the micrograph because of the three-dimensional 

perspective. The axons travel in many different directions, rather than parallel to each other. 

Scale bar, 1.0 µm.(from Shepherd and Harris, 1998). 
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3 Conduction of action potentials 

3.1 Biophysical properties of axons 

3.1.1 Cable theory 

In mathematical neuroscience, the cable theory can be used to describe how an electrical 

impulse is passively propagating along the axon. It consists of partial differential equations 

directly derived from the work of William Thomson (later known as Lord Kelvin) in the 

1850s that developed the theory to describe the signal decay in submarine telegraphic cables. 

The membrane properties of the axon can be defined by the membrane resistance, rm, and 

capacitance, cm, both expressed per membrane length unit (.m and F/m). Both parameters 

depend on the specific membrane resistance (Rm), capacitance (Cm) and the circumference of 

the axon (of radius a) following the equations: 

௠ݎ =
ܴ௠
 (1) ܽߨ2

ܿ௠ =  (2) ܽߨ௠2ܥ

  

The axoplasmic resistance (or axial resistance) affects the travel rate of APs down the axon. 

The amount of molecules that are not electrically conductive is responsible for this resistance. 

As a consequence, this will cause more ions to flow across the axolemma than laterally 

through the axoplasm. The axoplasmic resistance (ri) is defined by the specific axoplasmic 

resistance (Ri), and the cross section area (of radius a) of the axon following the equation: 

௜ݎ =
ܴ௜
πܽଶ (3) 
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Figure 7: Electrical model of a passive axonal cable. 

The model is composed of parallel segments of capacitances cm and resistance rm. The 

resistance in series along the fiber ri characterize the intracellular movement of electric 

charges. 

 

The length constant, , defines the distance for which a graded electric potential passively 

travels along the axon (Figure 7). In other words, this represents the axonal distance whereby 

a passive spread of potential can depolarize the membrane to threshold. Interestingly, a large 

length constant can contribute to spatial summation in the axon. It depends on the membrane 

resistance (rm), the axoplasmic resistance (ri) and the extracellular resistance (ro) following 

the equation: 

ߣ = ඨ
௠ݎ

௜ݎ + ௢ݎ
 (4) 

 

Knowing that the effect of the extracellular resistance is negligible in normal conditions, the 

equation can then be simplified as: 
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ߣ = ඨ
௠ݎ
௜ݎ

 (5) 

 

To understand how the length constant changes, one has to consider that the membrane 

resistance is a function of the number of open ion channels and that the axoplasmic resistance 

is inversely correlated with the axon diameter. A given voltage (Vmax) will decay as a function 

of the distance (x) from the source following the equation: 

(ݔ)ܸ = ௠ܸ௔௫(1− ݁ି
௫
ఒ) (6) 

 

A given voltage decays therefore by approximately 37% after travelling a distance 

corresponding to one length constant (). 

 

The time constant, , defines the duration for which the membrane potential of the axon 

changes in response to a current change in the axoplasm. It describes how much the 

capacitance delays full depolarization. The time constant depends on the membrane 

resistance and membrane capacitance following the equation: 

߬ =  ௠ܿ௠ (7)ݎ

 

The following cable equation including the time and length constant then describe how an 

electrical current injected at the position x travels along the axon: 

ଶߣ
߲ଶܸ
ଶݔ߲ = ߬

߲ܸ
ݐ߲ + ܸ (8) 

 



Introduction 
 
 
 

34 

3.1.2 The Hodgkin-Huxley model for active propagation 

In addition to the cable theory, the Hodgkin-Huxley model describes how an AP actively 

propagates along an unmyelinated axon. In 1952, by impaling a squid giant axon with an 

electrode, Hodgkin and Huxley were the first to experimentally measure intracellular APs 

(Hodgkin & Huxley, 1952a). From those measurements, they could establish a conductance-

based model that explains the ionic mechanisms underlying the initiation and propagation of 

action potentials in axons. 

It integrates voltage-gated ion channels with non-linear conductance (g) and leak ion 

channels with linear conductance (GL); the membrane capacitance (Cm); the equilibrium 

potential (E) for sodium, potassium and leak; m, n and h are steady-state values for activation 

and inactivation: 

௘௫௧ܫ = ௠ܥ
߲ܸ
ݐ߲ + ݃̅ே௔݉ଷℎ(ܸ − (ே௔ܧ + ݃̅௄݊ସ(ܸ − (௄ܧ + ܸ)௅ܩ −  ௅) (9)ܧ

 

This equation faithfully reproduces many well known characteristics of AP propagation such 

as the sodium and potassium currents during an AP, the all-or-none firing pattern of AP, the 

AP waveform, the refractory period and the periodic firing properties.  

3.1.3 AP propagation including geometrical constraints (Rall model) 

Cable theory and Hodgkin-Huxley model set the fundamental basis for AP propagation in a 

fixed axonal cylinder. However, irregularities such as changes in diameter and bifurcations 

can have a large impact on AP propagation. Rall has established several numerical models to 

understand how AP propagation is affected by those irregularities (Goldstein & Rall, 1974; 

Holmes & Rall, 1992; Rall, 1962). In those studies, Rall and collaborators demonstrated that 

for an AP approaching a step decrease in the axon diameter, both velocity and AP peak 
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amplitude increases while an AP approaching a step increase of axon diameter causes a 

decrease of velocity and peak height. Exploring the effect of tapering, they found that the 

velocity was proportional to the length constant when a linear change in diameter over the 

distance is taken in account. 

As mentioned above, most axons in the mammalian brain are highly collateralized. From the 

hillock, an axon can give rise to many branches that can innervate different areas. In 1974, 

Goldstein and Rall, later followed by others, mathematically describe how an AP propagates 

through branch points (Goldstein & Rall, 1974; Manor et al, 1991). They defined a 

geometrical parameter called geometric ratio (GR) that describes the ideal diameter (d) 

relationship between mother and daughter branches: 

ܴܩ =
݀ଷ/ଶ

ௗ௔௨௚௧௛௘௥	ଵ + ݀ଷ/ଶ
ௗ௔௨௚௧௛௘௥	ଶ

݀ଷ/ଶ
௠௢௧௛௘௥

 (10) 

 

For the case where the ratio equals 1, there is a perfect impedance matching and the AP 

propagates in the 2 daughter branches without alteration of waveform or velocity. When the 

ratio is higher than 1, the electrical load approaching the branch point is not sufficient to 

activate both daughter branches therefore the conduction is delayed and the waveform is 

transiently altered. In an extreme case, the AP could even fail to propagate, stopping at the 

branch point. 

Although theoretically possible, it still remains unclear whether the axonal compartment uses 

such mechanism to filter information within its arborization. Modeling studies have 

suggested that action potentials could fail at branch points in an activity-dependent manner 

(Luscher & Shiner, 1990). Propagation failures have been reported experimentally in large 

invertebrate axons under specific conditions (Luscher et al, 1994; Parnas, 1972; Smith, 

1980a; Smith, 1980b). In more complex arborizations (e.g., CA3 axons or basket cell axons) 
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such mechanism has not been reported so far. Because of their small diameter (Shepherd & 

Harris, 1998), those thin unmyelinated axons remained out of reach for direct 

electrophysiological measurements. Calcium imaging of presynaptic terminals revealed a 

high reliability of AP propagation through branch points in cortical pyramidal neurons (Cox 

et al, 2000) but those measurement were confined to the proximal part of the arbor where 

collaterals are the largest. New emerging techniques, like direct extracellular recording of 

APs (Sasaki et al, 2011; Sasaki et al, 2012b) at axons collaterals and latest improvement of 

voltage-sensitive dyes (Foust et al, 2010) will certainly help to provide a definitive answer. 

3.1.4 Axon diameter and conduction velocity 

The conduction velocity in axon is mainly dependent on membrane capacitance, membrane 

resistance, axial resistance and the types and density of voltage-gated ions channels (Del 

Castillo & Moore, 1959; Hodgkin, 1939; Hodgkin & Huxley, 1952a; Katz, 1947; 

Renganathan et al, 2001; Waxman & Ritchie, 1993). Therefore, the action potential velocity 

depends on both, passive propagation parameters and the non-linear membrane conductance 

that define the active propagation. As described above, the passive propagation is defined by 

the length and time constants of the membrane that are dependent on the membrane 

capacitance, resistance and axial resistance which in turn depends on the diameter. From the 

equations described above, large axons have large length constants and small time constants 

which propagate the impulses rapidly. A small time constant means that a depolarization 

affects more rapidly an adjacent section which brings it to threshold sooner and therefore 

increases the propagation velocity. For a large length constant, a potential change in a given 

segment spreads a greater distance along the axon and brings further distal segment to 

threshold sooner. The equation of the length constant can be written differently to highlight 

its diameter (d) dependence: 
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ߣ = ඨ
ܴ݀௠
4ܴ௜

 (11) 

 

The propagation velocity is directly proportional to the length constant () and inversely 

proportional to the time constant () as illustrated by the following equations: 

 

	ݕݐ݅ܿ݋݈ܸ݁ ∝  (12) ߬/ߣ	

	ݕݐ݅ܿ݋݈ܸ݁ ∝ 	
1
௠ܥ

ඨ
݀

4ܴ௠ܴ௜
 (13) 

 

Thus, for given specific membrane properties in unmyelinated axons, velocity is proportional 

to the square-root of the axon diameter (Dayan & Abbott, 2001; Hodgkin & Huxley, 1952a). 

To double the velocity in an axon, it is necessary to quadruple the diameter. It is important to 

mention that this relation does not hold true for myelinated axons. The coating of axons with 

a thick insulating sheath of myelin represents another way to decrease the membrane 

capacitance and therefore increasing the propagation velocity. In this case, with early 

empirical (Gasser & Grundfest, 1939; Hursh, 1939) and later theoretical investigations 

(Rushton, 1951), it is generally agreed that there is a linear relationship between the 

conduction velocity of myelinated axons and their diameter.  

To determine the velocity of an actively propagating AP, it is possible to derive the Hodgkin 

and Huxley equation based on voltage-clamp data and include passive spread properties from 

the cable theory giving the following equation: 

݀
4ܴ௜

߲ଶܸ
ଶݔ߲ = ௠ܥ

߲ܸ
ݐ߲ + ݃̅ே௔݉ଷℎ(ܸ − (ே௔ܧ + ݃̅௄݊ସ(ܸ − (௄ܧ + ܸ)௅ܩ −  ௅) (14)ܧ
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By numerically solving this equation, the AP propagation velocity remains proportional to 

the square-root of the axon diameter. The accumulation of experimental measurements has 

confirmed that the axon diameter is a good indicator of the propagation velocity within and 

across species. For examples, the squid giant axon can approach a millimeter in diameter and 

propagate APs at a speed range of 10-25 m/s (Rosenthal & Bezanilla, 2000). Peripheral 

crustacean axons display velocities of 1-10 m/s with a diameter range of 1-10 µm (Young et 

al, 2006). At the other end of the spectrum, CA3 axons, which are among the smallest axons 

with a diameter range of 100-350 nm, the speed of AP propagation was estimated to be 

around 0.25-0.38 m/s (Andersen et al, 2000; Meeks & Mennerick, 2007). 

3.2 Short-term dynamics of action potential propagation 

The various types of voltage-gated ion channels in the membrane can have substantially 

different voltage-dependences and time constants associated with activation and inactivation. 

Therefore, properties of AP propagation, such as excitability and conduction velocity can 

change during repetitive stimulation. The first systematic inquiry on activity-dependent 

changes in spike conduction using earthworm lateral giant axon and frog sciatic A-fibers 

revealed a change in both excitability and conduction velocity (Bullock, 1951). When the 

interval between the two stimuli was only several milliseconds, excitability and conduction 

velocity were reduced (subnormal period). Interestingly, when the interval was longer, up to 

100 ms, excitability and velocity were increased. This phenomenon is referred as the 

supernormal period. A similar change in excitability of CA3 Schaffer collaterals was showed 

later by Soleng et al. by using antidromic stimulation and recording from the soma (Soleng et 

al, 2004). They found that the passage of a single AP initially reduces the excitability of the 

membrane for the first 15 ms and then increases excitability for the next 200 ms.  
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The shape of the presynaptic AP carries the electric load that determines the Ca2+ current 

flow in the presynaptic compartment and hence neurotransmitter release. The AP waveform 

has long been considered highly stereotypical and faithful when propagating along axons. 

However, several studies have shown that the amplitude and the duration of APs can be 

regulated by activity and hence modulate transmitter release (Byrne & Kandel, 1996; Shapiro 

et al, 1980). 

Geiger and Jonas were the first to demonstrate that the duration of APs is not fixed in the 

hippocampus (Geiger & Jonas, 2000). By performing whole-cell recording of mossy fiber 

boutons from granule cells in the dentate gyrus, they found that APs get broader during 

repetitive stimulation. Kv channels, responsible for the AP broadening, rapidly inactivate 

during high frequency stimulation and slowly recover from inactivation. In addition, they 

measured the subsequent increase of presynaptic Ca2+ inflow. 

Performing extracellular recording on CA3 axons, Sasaki et al. demonstrated that the AP 

waveform broadens locally in response to local application of glutamate and adenosine A1 

receptor antagonist on the axon shaft (Sasaki et al, 2011). The authors demonstrated that 

axonal AMPA receptors activation causes a local depolarization that broadens APs while 

traveling down the axon. As a consequence of large APs, they showed that synaptic 

transmission is enhanced. In addition, they provided evidence that astrocytes, known to play 

an important role in local synaptic transmission, could regulate peri-axonal glutamate 

concentration and be responsible for the local broadening of APs in the distal part of the 

axon. 

Later, using a similar approach, Sasaki et al. demonstrated that network activity, responsible 

for sustained depolarization of the resting membrane potential in the soma, does broaden APs 

in the proximal part of CA3 axons (Sasaki et al, 2012a). They could show that somatic 

depolarization of CA3 pyramidal cells facilitates neighboring CA3 to CA3 but not distal CA3 
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to CA1 synaptic transmission. Moreover, they illustrated the importance of the axonal 

topology showing that AP broadening decays with the distance from the soma and the 

branching pattern. 
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4 Long-term plasticity of unmyelinated axons 

4.1 Presynaptic changes associated with synaptic plasticity 

4.1.1 Synaptic plasticity 

Learning and memory refers to the ability of the brain to encode, store and retrieve 

information. This ability relies on the plastic nature of neural networks, allowing the brain to 

adapt itself in response to experience. Among these adaptations, synaptic strength enduring 

patterns of activity can be modulated in a phenomenon known as synaptic plasticity. The 

concept was first introduced by Donald Hebb more than 60 years ago: ‘When an axon of cell 

A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some 

growth process or metabolic changes takes place in one or both cells such that A’s efficiency, 

as one of the cells firing B, is increased’ (Hebb 1949). However, it took more than 20 years to 

get the first experimental evidence of synaptic plasticity. In 1973, by stimulating the 

perforant path and recording field potentials in the dentate gyrus in anesthetized rabbits, Bliss 

and Lømo discovered that strong synaptic activity can result in a persistent increase of 

synaptic strength, a phenomenon referred as long-term potentiation (LTP) (Bliss & Lomo, 

1973). The functional counterpart of LTP that is an activity-dependent and input specific 

decrease of synaptic strength, known as long-term depression (LTD), was experimentally 

demonstrated a few years later (Lynch et al, 1977). 

Since then, LTP and LTD are the most extensively studied paradigms of plasticity and were 

shown to occur in most synapses of the brain (Cooke & Bliss, 2006). To date, LTP and LTD 

are believed to be important cellular correlates of learning and memory.  

Over the past 40 years, much attention was focused on understanding the structural and 

functional changes occurring at the post-synaptic compartment. Many forms of synaptic 
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plasticity have been described involving several biochemical pathways. The most 

stereotypical form of LTP and LTD occurs at the Schaffer collaterals-CA1 synapse and 

depends on the activation of postsynaptic NMDA receptors. Typically, expression of LTP 

and LTD can be decomposed in an early and a late phase. During LTP, NMDA receptors 

activation produces a rapid and high increase of Ca2+ in the post-synapse that leads to the 

phosphorylation of CaM-kinase II. In the early phase, AMPA receptors sensitivity increases 

usually producing a large potentiation of the synapse. Later, the increase of the global 

phosphorylation rate in the post-synaptic compartment leads to a long lasting recruitment of 

AMPA receptors to the synaptic membrane increasing the synaptic efficacy (Lisman, 1989). 

On the other hand, LTD is induced by a moderate and prolonged increase of Ca2+ 

concentration that leads to the activation of calcineurin. The phosphatase activity of 

calcineurin reduces the synaptic weight by decreasing the number of AMPA receptors at the 

synapse. 

Many structural correlates have been established to underlie the expression of synaptic 

plasticity. The recruitment of receptors to the postsynaptic density that is responsible for the 

synaptic strengthening during LTP is often correlated with an increase in spine volume 

(Harvey & Svoboda, 2007; Kopec et al, 2006; Matsuzaki et al, 2004; Yang et al, 2008). 

Similarly, LTD  causes spine shrinkage (Zhou et al, 2004). Although, it is often assumed that 

the presynaptic compartment also undergoes structural and morphological changes reflecting 

structural modifications during synaptic plasticity, there is surprisingly no clear evidence in 

the literature. It is possible however that significant functional changes occurring at 

presynaptic boutons might be reflected in much more subtle structural and morphological 

modifications compared to what spines experience. 
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4.1.2 Functional and structural modifications of the presynaptic compartment during 

synaptic plasticity 

The involvement of the presynaptic compartment in the change of synaptic strength has been 

debated for long. Some argue for a dominant role of the postsynaptic compartment (Bredt & 

Nicoll, 2003; Malenka & Bear, 2004; Malenka & Nicoll, 1999; Malinow & Malenka, 2002; 

Song & Huganir, 2002), while others indicate that the presynaptic sites also contribute to the 

increase in synaptic strength (Bolshakov & Siegelbaum, 1995; Choi et al, 2000; Emptage et 

al, 2003; Malinow, 1991; Stevens & Wang, 1994; Stricker et al, 1999; Voronin et al, 2004). 

In the series of events occurring during the classical NMDAR-dependent LTP, the 

strengthening of the synapse is not homogenous across the pre and postsynaptic 

compartments. These processes include a rapidly developing postsynaptic component and a 

slowly developing presynaptic component (Lisman & Raghavachari, 2006). By monitoring 

the level of neurotransmitter release together with synaptic activity at CA3-CA1 synapses, 

Bayazitov et al. explored the differential contribution of the pre and postsynaptic 

compartment during the strengthening of synapses (Bayazitov et al, 2007). The induction of 

LTP was performed by different stimulation protocols. They found that 50 Hz and short 

theta-burst stimulation (TBS) favors postsynaptic strengthening while 200 Hz and TBS 

promotes a compound LTP that is expressed both pre- and postsynaptically. In this compound 

LTP expression, the postsynaptic component is fast and strongly dependent on the activation 

of NMDA receptors whereas the presynaptic component is slower and requires the activation 

of L-type Cav channels (Grover & Teyler, 1990; Zakharenko et al, 2001) and depends on 

protein kinase A (PKA) activation (Castillo, 2012) (Figure 8). Other investigations showed 

that R-type Cav channels are involved in the presynaptic component of LTP in the mossy 

fiber CA3 pathway (Breustedt et al, 2003; Dietrich et al, 2003). Along with the increase in 

release probability following the induction of LTP, Bourne et al. have shown that 
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ultrastructural modifications occur in the presynaptic compartment (Bourne et al, 2013). 

Performing 3D reconstructions of axons from serial section electron microscopy 30 minutes 

and 2 hours after induction of LTP, they observed a persistent reduction of the vesicle pool of 

around 30% and a transient decrease in the readily releasable pool. 

 
Figure 8: Expression mechanism of presynaptic LTP and LTD: prototypical 

mechanisms. 

Voltage-gated calcium channel mediated Ca2+ influx responsible for neurotransmitter release 

is involved in some forms of presynaptic LTP/LTD. The activation of mGluR7 produces a 

depression of P/Q types Cav channels via the activation of the PKC pathway hence reducing 

neurotransmitter release during LTD. During LTP, R type Cav channels are thought to 

activate the PKA pathway facilitating neurotransmitter vesicle fusion.(adapted from Castillo, 

2012) 

 

LTD induction has been shown to be associated with a long-lasting depression of the 

presynaptic Ca2+ transients at mossy-fiber stratum lucidum interneuron synapses (Pelkey et 

al, 2006). The activation of mGluR7 produces irreversible depression of P/Q type Cav 
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channels that could possibly involve the protein kinase C (Figure 8) (Perroy et al, 2000). 

Interestingly, major structural rearrangements accompany the induction of LTD. By 

combining electrophysiology with timelapse two-photon imaging and monitoring the activity 

and synaptic morphology, Becker et al. and Bastrikova et al. discovered that the turnover of 

presynaptic boutons significantly increase after LTD induction in addition to synapse 

elimination (Bastrikova et al, 2008; Becker et al, 2008). 

4.2 Activity-dependent plasticity of intrinsic excitability 

The plasticity of intrinsic excitability is a type of non-synaptic plasticity whereby the 

threshold voltage for the initiation of APs is regulated upon activity. A change in 

postsynaptic excitability was already suggested in the early descriptions of LTP at 

hippocampal synapses (Bliss & Lomo, 1973) and it is now well established that changes in 

pre- and postsynaptic intrinsic excitability plays an important role in synaptic plasticity 

(Campanac & Debanne, 2007; Debanne et al, 2003; Debanne & Poo, 2010; Zhang & Linden, 

2003). As the excitability of the cell membrane depends on the ionic environment and the 

channel composition, it is becoming increasingly clear that every sub-cellular compartment 

can differentially regulate their own excitability. This is certainly true for dendrites, where an 

increase of local excitability has been measured following the induction of LTP (Campanac 

et al, 2008; Frick et al, 2004). Concerning the axonal compartment, there are only a few 

reports indicating a change in excitability associated with synaptic plasticity. Xu et al. have 

demonstrated a synergic effect between the induction of synaptic LTP in CA1 pyramidal cells 

and an increase in the sensitivity of Nav channels for more hyperpolarized potentials in the 

presynaptic cell (Xu et al, 2005). Interestingly, this presynaptic change in excitability was 

blocked by NMDA receptor antagonist APV, Ca2+ chelators, CaM kinase inhibitors and 

protein synthesis inhibitors. This indicates that the change of excitability shares common 
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mechanisms with the late phase of synaptic LTP. However, since the presynaptic effects were 

recorded at the soma, it remains unclear whether the locus of expression of this change in 

excitability is in the axonal trunk or in the AIS. Earlier, a similar concomitant change of 

synaptic strength and presynaptic excitability was found in cultured hippocampal neurons 

(Ganguly et al, 2000). The authors could prevent the increase of intrinsic excitability by 

inhibiting a retrograde signaling pathway involving presynaptic PKC. This would suggest 

that the change in excitability occurs near the presynaptic compartment, hence the axonal 

trunk.  

The AIS is a key structure that controls the overall excitability of neurons. In 2010, two 

groups have reported novel mechanisms of activity-dependent change in neuronal excitability 

involving structural modifications of the AIS.  

By labeling and imaging the AIS in dissociated hippocampal neurons, Grubb and Burrone 

showed that neurons can regulate the position of the entire AIS compartment according to 

ongoing activity (Grubb & Burrone, 2010). The AIS moves away from the soma in response 

to a persistent increase of extracellular potassium. Performing current-clamp recording 

combined with AIS imaging, they demonstrated that the AIS relocation is associated with a 

decrease in neuronal excitability. In another study, Kuba et al. demonstrate that deprivation of 

auditory input in avian brainstem auditory neuron also leads to structural changes of the AIS 

(Kuba et al, 2010). Interestingly, unlike the relocation of the AIS described by Grubb and 

Burrone, using similar labeling techniques, they found that the auditory deprivation increases 

the length of the AIS but not the distance from the soma. Similarly, they correlated the 

increase in AIS length with an increase of neuronal excitability via patch-clamp recordings.  
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4.3 Long-term change of action potential conduction velocity 

As described above, the conduction velocity in axons is mainly defined by two parameters: 1) 

the morphology by considering the core diameter of the axon and its irregularities and 2) the 

excitability of the axon membrane defined by types and numbers of ion channels. Because of 

their low optical and electrophysiological accessibility, so far, no study has shown an 

activity-dependent correlative change between the biophysical properties and conduction 

velocity. 

Although there are few evidences demonstrating that axonal conduction delay can be a plastic 

feature. Variations in conduction delay were measured by electrophysiological recordings in 

rabbit visual corticotectal and callosum axons in vivo (Swadlow, 1982; Swadlow, 1985). 

Indeed, for some of the recorded axons, delays were continuously increasing or decreasing 

over several months period. By culturing cortical neurons on a multi-electrode array (MEA), 

Bakkum et al. could to induce, detect and track changes of a small neuronal network and 

measure how they adapt to various patterns of stimulation. Using this approach, they 

demonstrated that along with changes in synaptic efficacy, APs propagation delays and 

amplitude were modulated (Bakkum et al, 2008). Performing repeated stimulation patterns 

(0.5 Hz) at various location of the reduced network, they observed that, in some axons, the 

conduction velocity and the amplitude of APs were modulated. The absence of correlation 

between AP amplitude and velocity may indicate changes in the morphology in addition to 

channel densities. 

However, there are numerous reports on both, structural modifications (Bastrikova et al, 

2008; Becker et al, 2008; De Paola et al, 2006) and excitability changes (Bi & Poo, 2001; 

Ganguly et al, 2000; McNaughton et al, 1994) in axons; those were always the result of local 

measurements or from reduced preparation. For this reason, people could not reliably assess 

conduction velocity measurements on such short axonal distance.  
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5 STED microscopy 

5.1 Basic optical principle of STED microscopy 

Fluorescence microscopy is one of the most widely used and powerful techniques in the life 

sciences, enabling the visualization of cell-biological structures and processes with extremely 

high specificity and sensitivity in living tissue samples. Fluorescence is the phenomenon 

whereby a fluorophore absorbs a photon (i.e., 488 nm for GFP) and produces the emission of 

another photon of lower energy (525 nm) defined by the Stoke shift. Interestingly, when the 

molecule is in the excited state, it can directly be de-excited by a photon that matches the 

energy difference between the excited state and the ground state (595 nm for GFP). Upon 

interaction of the photon with the excited fluorophore, the molecule returns to the ground 

state before spontaneous fluorescence emission can occur in a process called stimulated 

emission (Figure 9).  

Stimulated emission depletion (STED) microscopy is an imaging technique that uses these 

non-linear properties of fluorophores described above to achieve super resolution. It was 

invented by Stefan W. Hell who first described its principle in 1994 (Hell & Wichmann, 

1994), and demonstrated it experimentally in 1999 (Klar & Hell, 1999). In neuroscience, 

STED microscopy enables the observation of nanoscale dynamics of the finest structures of 

neurons and glia previously inaccessible with traditional light microscopy techniques. 

In conventional light scanning microscopy like confocal or two-photon microscopy, the 

resolution of the optical system is limited by the diffraction of light. This means that when 

light is focused through a lens or objective, a pattern of diffraction is formed, called point 

spread function (PSF), and defines the volume of excitation of the fluorophores for a given 

position in the focal plane. The size of the PSF depends on the excitation wavelength and the 

numerical aperture (NA) of the objective. From this, it is then possible to determine the 
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theoretical resolution limit (r) of the system given by Abbe’s formula with , the 

wavelength used to excite the fluorophore and NA, numerical aperture of the objective. 

ݎ∆ ≅
ߣ

 (15) ܣܰ	2

 

Figure 9: Simplified Jablonski diagram of GFP for fluorescence and stimulated 

depletion. 

(A) The GFP molecule is excited from its ground state (S0) to a higher energy level (mostly 

S1) by a blue photon (488 nm). After vibrational relaxation to the lowest S1 level, the 

molecule emits a red-shifted photon (green) and returns back to its ground state by a process 

called fluorescence.  

(B) In case of stimulated depletion, similarly, the GFP molecule is excited from its ground 

state (S0) to a higher energy level (S1) by a blue photon (488 nm). Before spontaneous 

fluorescence occurs, a red-shifted photon (595 nm) de-excites the molecule from (S1) to its 

ground state (S0) which leads to the emission of a photon has the same properties (such as 

wavelength, polarity) as the incident photon. 
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STED microscopy circumvents the diffraction limit of light by spatially controlling the 

excited states of fluorescent molecules. 

This is achieved by 1) taking advantage of stimulated emission, a process that competes with 

spontaneous fluorescence, efficiently preventing the fluorophores from emitting fluorescent 

signals and 2) by spatially controlling the fluorescence quenching which restricts the 

fluorescence signal to be emitted in the center of the excitation PSF. 

 

5.1.1 PSF engineering 

The second requirement to achieve super-resolution imaging using stimulated depletion is the 

ability to shape the PSF of the depletion beam at the focal plane in order to allow the excited 

molecule to emit exclusively in the center of the excitation PSF. This is achieved by the use 

of a helical vortex phase plate that allows the Gaussian STED beam to destructively interfere 

in the center so that a vortex of light is created. When an optical vortex travels through a 

focusing lens or an objective and is projected onto a flat surface, its intensity distribution will 

form a doughnut-like pattern in the focal plane (Figure 10). That way, the azimuthally 

distributed photons of the doughnut will quench the fluorescence at the rim of the excitation 

PSF. It is critical to the performance of a STED microscope that the center of the doughnut 

remains at a minimal value throughout the power range. For this reason, a /4 wave plate is 

used to create circular polarization of the STED light in the focal plane. 
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Figure 10: Point spread function engineering for STED microscopy. 

(A) Reflections of the laser beams from gold particles used for visualization and spatial 

alignment of the excitation and STED beams. The laser beams are routed through a pellicle 

beam splitter so that the reflections can be detected by a photomultiplier tube. This allows for 

the characterization of the excitation and STED beams and illustrates the doughnut-like 

intensity distribution of the STED laser. Scale bar: 200 nm.  

(B) Intensity profiles along the optical axis of the excitation and STED PSF shown in (A), 

indicated by the white dashed line. 

 

5.1.2 Improvement in spatial resolution 

For STED microscopy, in addition to the excitation wavelength and the NA, the optical 

resolution will also be defined by the intensity of depletion saturation of the fluorophore 

image. The fluorescent photon yield of a molecule does not increase linearly with the 

excitation intensity. This non-linear process also exists for stimulated depletion and is 
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responsible for the theoretically unlimited resolution. Indeed, using high intensity doughnut-

like depletion beam allows the saturation of the quenching process around the excitation PSF. 

As a result, the fluorescence is allowed to be emitted only from the center of the doughnut, 

giving an effective PSF below the diffraction limit of the optical system. 

STED microscopy was the first technique that was not limited by the diffraction barrier of 

optical microscopy. The resolution in STED imaging is theoretically unlimited and can be 

expressed by a modified Abbe’s equation where I is the STED beam intensity used and Is is 

the STED beam intensity required to reduce the fluorescence by a factor of 1/e (Harke et al, 

2008): 

ݎ∆ ≅
ߣ

ට1	ܣܰ.2 + ܫ
௦ൗܫ

 (16) 

 

In theory, STED microscopy could provide an unlimited resolution. This implies that the 

power used for depletion is infinite. In practice, there are technical limitations such as the 

property of lasers which deliver a finite amount of light power. To date, the record for the 

best resolution in STED goes to Rittweger et al. where in 2009, by using nitrogen vacancies 

diamond and an average of 850 mW STED power, they achieved to obtain a resolution of 

~5.8 nm (Figure 11) (Rittweger et al, 2009). In this case, the power remains a limiting factor 

to improve even more the resolution. 
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Figure 11: Stimulated emission depletion microscopy reveals densely packed nitrogen-

vacancy centres in diamond. 

Confocal (a) and STED (b) images from the same crystal region. (c) The individual centers 

resolved in b automatically yield the effective PSF of the STED recording whose y-profile 

exhibits a FWHM of y = 16.0 nm. (d) The coordinate of each centre can be calculated with 

0.14 nm precision. Comparing (a) with (d) highlights the dramatic gain in spatial resolution 

resulting from the unique increase in resolution. (e,f) Applying ImaxSTED = 3.7 GW cm-2 

shrinks a confocal spot of 223 nm diameter (FWHM) down to 8 nm. Note that the increase in 

resolution is a purely physical phenomenon.(from Rittweger et al., 2009) 

 

5.2 Development of STED imaging in living tissue 

To perform STED imaging on live cells, the high light power can damage the integrity of the 

structure. The photo-damage is a consequence of light absorption by the biological tissue and 

hence produces heat. Therefore it is necessary to use modest amounts of light without 

compromising resolution. By using pulsed lasers, it is possible to image with low average 

STED power to preserve the sample and high peak intensity to obtain super resolution. This 
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requires that both excitation and depletion pulses are synchronized and differentially delayed. 

Several studied have demonstrated that STED imaging is compatible with live-cell 

observations achieving a spatial resolution of around 60-100 nm with STED intensities 

comparable to what is being used for two-photon imaging (Nagerl et al, 2008; Rankin et al, 

2011; Willig & Nagerl, 2012). 

 

5.3 STED imaging of the dynamics of axon morphology  

Unmyelinated axons in the hippocampus are often too small to be properly resolved by 

conventional light microscopy (Shepherd & Harris, 1998). STED microscopy allows the 

observation of  nanoscale features and permits quantitative morphological analysis of the 

axonal structure by extracting precise estimates of axon diameters. To understand how to 

perform measurements based on collected signal intensity, it is important to discriminate the 

evaluation of the performance of the optical system and the measurement of a biological 

structure. 

The home-built STED microscope in the laboratory uses an excitation wavelength at 485 nm 

and a 1.4 NA objective. Applying Abbe’s formula, the theoretical resolution limit in confocal 

mode of the system is then 173 nm. The experimental validation of the instruments resolution 

should be tested by using, for example, fluorescent nanobeads that are significantly smaller 

than the theoretical resolution of the system and can be approximated as point sources of 

light. In confocal imaging, the PSF at the focal point follows a 2D-Gaussian distribution in 

the lateral (xy) dimension. The distribution of the fluorescent signal must then be 

mathematically approximated as a 2D-Gaussian distribution and therefore the full width at 

half-maximum (FWHM) from the Gaussian fit gives the best approximation on the resolution 
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of the system. If the measured FWHM value matches the theoretical resolution, the system is 

fully optimized and can be regarded as being truly diffraction limited.  

The calculation of the theoretical resolution in STED imaging implies to have a good 

understanding of the photo-physical properties of the fluorophores which are likely to change 

depending on their environment (temperature, pH, medium). It is therefore easier to test 

experimentally the resolution using fluorescent beads. In STED microscopy, the resulting 

effective PSF at the focal plane is the result of the combination of the excitation beam and a 

doughnut shape depletion beam. In condition of saturated depletion of the fluorophore, the 

effective PSF is then following and well approximated by a Lorentzian distribution. By 

imaging 40 nm fluorescent beads in STED mode, the FWHM measurement that reflects the 

performance of the system can be around 40 nm when the system is optimized; therefore the 

size of the bead becomes a limiting factor to assess the resolution. For the experiments, we 

typically consider 40 nm as our resolution limit for STED imaging which is well below the 

size of the thinnest axons measured in electron microscopy (~ 80 nm) (Shepherd & Harris, 

1998). 

The improvement of resolution provided by STED microscopy enables to study the structural 

complexity of axon. In order to assess the diameter of axons, we measure the FWHM of the 

fluorescence intensity profile from the axon section area. The FWHM represents the extend 

of the intensity distribution and therefore is directly linked to the axon diameter. In 

opposition to the resolution of an optical system that purely depends on the size of the PSF, 

the measurement of a fluorescent structure is considered to be much larger than the resolution 

limit. In that case, no assumption can be made on the fluorescence distribution of a volume 

labeled axon. Therefore, the FWHM is directly extracted from the raw intensity profile and 

reflects the best estimate of the true size of the structure. 
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6 Aims of the study 

In contrast to the somato-dendritic region, much less is known about if and how axonal 

compartment is dynamically regulated. Axons are classically viewed as static transmission 

cables that reliably transmit APs over long distances. However, recent studies have 

questioned this view, indicating that they are structurally and functionally dynamic. 

Given that geometrical features shape the passive electrical properties of axons and hence 

should influence AP propagation, we wanted to explore the possibility that axons undergo 

dynamic modifications in their morphology in response to electrical stimulation. However, 

because axon morphology cannot be fully resolved in live tissue, little is known about their 

structural dynamics, let alone what its impact is for axon function. I overcame this technical 

limitation by using superresolution STED microscopy, allowing me to investigate the 

structure and function of CA3 axons in living hippocampal slices.  

The central aims of my PhD thesis were the following: 

1) To establish STED microscopy for imaging axon morphology in living brain slices in 

parallel with electrophysiological analyses. 

2) To develop semi-automated image analysis tools for rapid and reliable quantification of 

axon morphology imaged by STED microscopy. 

3) To examine the morphological dynamics CA3 axons by by time lapse imaging under 

control conditions. 

4) To investigate activity-dependent structural changes in presynaptic boutons and axon 

shafts axons using common plasticity paradigms like LTP and LTD. 

5) To evaluate the functional impact of the morphological changes on AP propagation using 

electrophysiological recordings and computer simulations. 
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MATERIALS AND METHODS 

Animals 

Wild-type mice were kept under 12 h light/ 12 h dark cycle with ad libitum access to food 

and water (strain from Jackson Labs, Bar Harbor, ME). All experiments were in accordance 

with the National Code of Ethics on Animal Experimentation (Carte Nationale d'éthique sur 

l'expérimentation animale; Ministère de l'enseignement supérieur et de la recherche, 

Ministère de l'agriculture de l’agroalimentaire et de la forêt) and approved by the Committee 

of Ethics of Bordeaux. 

 

Organotypic hippocampal slice cultures 

Organotypic hippocampal slices were prepared from 5-7 days old wild-type mice and 

cultured for 3–5 weeks using the Gähwiler technique (Gahwiler, 1987; Gahwiler et al, 1997). 

The main advantage of this culturing method is the very good optical accessibility for an 

inverted setup as the slice grows directly on a coverslip. Moreover, it can easily be combined 

with electrophysiology. 

The first step of the protocol consists in the preparation of the coverslips. 12x24 mm, 0,17 

µm thick coverslips are first heated in ethanol for 30 minutes. Then the coverslips are dryed 

and heated in an oven for at least 3 h at 225 °C. After this step, they are then coated with a 

poly-L-lysine solution for 20-30 minutes. After drying, the coverslips are washed in distilled 

water for 20 minutes. The dissection itself consists of the extraction of the hippocampi from 

the 5-7 days old mice by decapitating the mice, removing the scalp, opening the skull, 

removing and submerging the brain in cooled and freshly prepared dissection solution with 

the following composition: 98 ml GBSS (containing in g/L: 0.220 CaCl2 * 2 H2O; 0.740 KCl;  

0.030  KH2PO4; 0.210 MgCl2 * 6 H2O; 0.070 MgSO4 * 7 H2O; 8 NaCl; 0.227 NaHCO3; 
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0.120 Na2HPO4; 1.100 D(+)-Glucose * H2O); 18,92 mg of kynurenic acid; and 1 ml of 

glucose solution (1.1g in 1mL of distilled water). The pH was adjusted with 1M HCl to 7.2, 

sterile filter and stored at 4 °C. The hippocampi are then isolated and placed on the teflon 

disk of the tissue chopper (McIlwain) that is equipped with a razor blade. Coronal slices of 

350 µm are produced and transferred in a new petri dish containing cooled dissection solution 

for 30-60 minutes. The next step consists in mounting the slices on the glass coverslips by 

embedding them into a clot of thrombin and chicken plasma. 10 µL of chicken plasma is 

deposited on the center of the coverslip. A slice is then transferred on the chicken plasma 

drop before adding 10 µL of thrombin solution (742.5 μl of GBSS; 7.5 μl of glucose solution; 

500 μl of thrombin). The chicken plasma and the thrombin are then mixed before leaving the 

clot to coagulate around the slice for 30 minutes. The coverslips are then transferred into 

delta tubes (Nunc) before adding 750 µL of culture medium with the following composition: 

100 ml of BME medium; 50 ml of HBSS; 50 ml of horse serum;  1 ml of glutamine; 2 

ml of glucose. The tubes containing the slices are then placed on a roller-drum incubator set 

at 35 °C with a rotation speed of 0.1 rpm. 

 

Recording solutions 

For the imaging experiments, slice cultures were mounted into a heated recording chamber 

(32°C) and continuously perfused with carbogenated (95% O2, 5% CO2) artificial 

cerebrospinal fluid (ACSF) at pH 7.4 with an osmolarity of 300-310 mOsm containing 124 

mM NaCl, 3mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 1.25 mM NaH2PO4, 26 

mM NaHCO3, 2.5 mM sodium L-ascorbate, 2 mM trolox (Sigma-Aldrich). The use of 

antioxydants, ascorbic acid and Trolox helps preventing toxicity due to sample illumination 

by free radicals from reactive oxygen species. 
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For the experiments that didn’t involve imaging, the composition of the ACSF was identical 

except that neither Trolox nor ascorbic acid was used. 

 

Viral infection 

For specifically labeling CA3 neurons, a glass micropipette backfilled with Sinbis-GFP 

diluted in TNE buffer containing 0.1 M NaCl, 0.05M Tris-Cl pH8, 0.5 M EDTA, 0.001% 

Tween-20, connected to a Picospritzer (Parker), and placed in the cell body layer of the CA3 

area. The virus was injected into the tissue by applying a few pressure pulses (50-150 ms; 10-

15 psi). The size of the injection area, which appears dark in transmission mode and was 

visually inspected to keep it confined so that approximately 30-50 neurons get infected 

(Figure 12).  

 
Figure 12: Local infection CA3 pyramidal neurons using sinbis-GFP. 

Left. A glass pipette filled with sindbis-GFP viral particles solution is inserted into the 

stratum pyramidale of the CA3 area. Few pulses of positive pressure are applied and the 

affected area is controlled by visual inspection by contrast change (dotted red circle). Right. 

High magnification fluorescence image of the CA3 pyramidal layer 36 h post-infection. Only 

a small section of CA3 pyramidals are labeled. Scale bar: 20 µm.  
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Experiments were conducted 36-48 h post-infection giving optimal GFP expression while 

(Ehrengruber et al, 1999) preserving the physiological health of the cells (Jeromin et al, 

2003). 

 

Extracellular field recordings 

For the imaging experiments, field excitatory postsynaptic potentials were recorded from the 

CA1 stratum radiatum using a glass microelectrode (3-5 M) filled with ACSF. In order to 

maximize the number of CA3 labeled fibers undergoing the stimulation, a glass 

microelectrode (3-5 M) filled with ACSF was placed in the middle of the labeled CA3 

somata area. Short (0.2 ms) current pulses were delivered from a stimulus isolator (AMPI). 

The stimulus strength (ranging between 10-35 µA) was adjusted to elicit a fEPSP of 50% of 

the maximal amplitude for LTP and control experiments and 66% for LTD experiments. The 

fEPSPs were recorded from Digidata 1440A and Multiclamp 700B (Axon CNS; Molecular 

Devices). Amplifier gain was set at 20 and a Bessel filter of 2 kHz was applied. A test pulse 

was recorded every 15 s (0.067 Hz) through the whole experiment. The stimuli protocols 

consisted of 3 trains with 20 s interval of 100 pulses delivered at 100 Hz to induce LTP; 900 

pulses delivered at 1 Hz to induce LTD and started after recording a baseline of 20 min. The 

initial slopes of the fEPSPs were determined with Clampfit 10.1 (Axon instruments). Some 

experiments were performed in the presence of the NMDA receptor antagonist, D-APV, to 

prevent the induction of an LTP. 

For the electrophysiological experiments that involved patch-clamp recording of CA3 

pyramidal neurons, the stimulation pipette was placed in the CA1 radiatum in between the 

extracellular field recording electrode (placed in the distal part of the CA1) and the CA3. 
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Patch-clamp recordings 

Current-clamp recordings were obtained from CA3 pyramidal cells to record the arrival time 

of an antidromic AP generated distally on the axon. 

Patch-clamp glass electrodes (1.5 x 1.17mm, Harvard Apparatus, 3-5 MΩ) were filled with 

the following solution (in mM) : 115 KMeSO3, 10.3 Na+ (NaOH, Na-ATP, Na-GTP), 4.6 

MgCl2, 40 HEPES, 1 EGTA, 4 ATP, 0.3 GTP, osmolarity =275–280, pH: 7.3. Once the seal 

between the cell membrane and the glass electrode reached 1GΩ, whole-cell mode was used 

and cells were clamped at -70mV. Those presenting an access resistance (Ra) greater than 25 

MΩ or and injected current greater than -100 pA were excluded from the experiment. CA3 

cells were recorded in current clamp with a dynamic current injection correction to maintain 

the resting membrane at -70 mV. Amplifier (Multiclamp 700A) gain was set at 1 and a Bessel 

filter of 2 kHz was applied. To elicit an antidromic AP, a glass electrode back-filled with 

ACSF was placed in the distal part of the CA1 and then moved toward the CA3 until an AP 

could be recorded reliably at the soma. Short (0.1 ms) current pulses were delivered from a 

stimulus isolator (AMPI) with a stimulation strength ranging between 25-75 µA. Excitatory 

field recordings was performed simultaneously with the same stimulation electrode in order 

to monitor the induction of plasticity. 

 

Inverted single-photon STED setup 

For live-cell imaging of hippocampal brain slice cultures, we use a custom-built STED 

microscope based on pulsed excitation and pulsed depletion in the visible range of the 

spectrum (Figure 13). A standard commercial inverted microscope (DMI 6000 CS Trino, 

Leica, Mannheim, Germany) equipped with a high-numerical-aperture objective lens (PL 

APO, 100×, oil, NA 1.4, Leica) served as a base. For excitation, a pulsed-laser diode (PDL 

800-D, Picoquant, Berlin, Germany) was used delivering 90 ps pulse duration at 485 nm 
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wavelength. For fluorescence quenching, 595 nm wavelength laser pulses for the STED beam 

were produced by an optical parametric oscillator (OPO BASIC Ring fs RTP, APE, Berlin, 

Germany) pumped by a Ti:Sapphire laser (MaiTai, Spectra-Physics, Darmstadt, Germany), 

operating at 80 MHz and emitting at 800 nm. The pulses of originally 200 fs duration were 

stretched to ∼68 ps by first dispersion in a glass rod 25 cm long (SF6) and then in a 

polarization-preserving fiber (Schäfter & Kirchhoff, Hamburg, Germany) of 20 m length. To 

create the STED focal doughnut, a polymeric phase plate (RPC Photonics, Rochester, NY) 

was introduced into the STED beam path. The STED and excitation pulses were 

synchronized at 80 MHz via external triggering of the laser diode using an electronic delay 

generator. The laser beams were combined using a dichroic mirror (AHF Analysentechnik, 

Tübingen, Germany). We used a telecentric beam scanner (Yanus IV, TILL Photonics, 

Gräfelfing, Germany) in combination with scan and tube lenses from the microscope 

manufacturer to stir the laser beams across the sample. The fluorescence signal was detected 

in a descanned fashion and separated from the excitation by a dichroic mirror (499 nm long-

pass), then cleaned with a 525/50 band-pass filter and finally focused onto a multimode 

optical fiber connected to an avalanche photodiode (SPCM-AQR-13-FC, PerkinElmer, 

Waltham, MA). Image acquisition was controlled by the custom-written software IMSpector 

(IMSpector). 
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Figure 13: Optical design of the home-built inverted STED microscope for opto-

physiology in brain slices. 

The diode laser used for excitation is routed through a beam scanner into an upright 

microscope and synchronized with the STED laser (Ti:Sa/optical parametric oscillator 

(OPO)). Femtosecond pulses emitted from the Ti:Sa/OPO are broadened by a 20-m-long 

polarization-preserving single-mode fiber. The doughnut is formed by a helical phase mask 

(Vortex phase plate). An oil immersion objective is used. /2, half-wave plate; /4, quarter-

wave plate; DC, dichroic mirrors, NA, numerical aperture; t, pulse broadening fiber; xy-

scan, scanner for x and y dimension; APD, avalanche photodiode; EOM, electro-optical 

modulator. 
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Image acquisition 

The parameters of acquisition were originally defined so that neither apparent photodamage 

nor excessive photobleaching was detected over the time course of the experiment. All the 

image acquisitions were performed with an excitation power of 4-6 µW and a STED power 

of ~8 mW (objective back aperture measurements). The images stacks were acquired with a 

voxel size of 19.5 nm (xy); 375 nm (z) and dwell time of 15 µs, unless stated otherwise. 

Imaging depths into the slice, determined by the z-piezo focus, the fluorescence on top of the 

slice defining the zero z-position, was ranging between 5-15 µm. For the plasticity 

experiments, an area containing multiple and well separated axon stretches was selected. Z-

stacks of 30x20x3µm (x, y and z dimensions respectively) were acquired every ~10 min for 1 

hour. Two acquisitions were performed before the stimulus and four after.  

 

Image analysis 

Images were exported from the IMSpector software into an 8-bit tiff file format. We used 

NIH ImageJ for processing the acquisitions. Image analysis was done on raw data and images 

presented in the figures were filtered by a 1-pixel median filter to reduce noise. A screening 

by visual inspection was performed and only the signal of the axon stretches that were fully 

contained into the volume of acquisition at all time points was selected for the morphometric 

analysis. A maximum intensity projection was performed on the regions of interest. To 

realize the automated morphometric measurement, a reference image that consist of a line of 

pixels running along the axon stretch was produced by first, thresholding and binarize the 

picture, then we used the skeletonize plugin from ImageJ. A custom written Matlab program 

was used to automatically measure the FWHM along the axon image using the reference 

image that determines the position of the measurement. At every position, it automatically 

estimates the best tangential fit and plots the intensity profile from its orthogonal. To reduce 
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the noise coming from the measurement and the imaging, an average of 5 parallel lines is 

done. Considering that the cytoplasmic fluorescence concentration might be inhomogeneous, 

no assumption was made on the intensity plot profile distribution; therefore the FWHM was 

directly extracted from the raw intensity profile. Diameter profiles of full axon stretches 

could then be generated and analyzed further. For the plasticity experiments, 1 µm axon shaft 

portions were selected from the automatically generated FWHM profiles excluding the 

varicosities by visual inspection. Average diameters were calculated over time for each 1 µm. 

To determine the bouton size change over time, all boutons from all the experiments were 

automatically analysed by measuring the FWHM along the boutons. Bouton areas could be 

determined by summing all the FWHM measured and multiplied by the pixel size. 

 

Simulations 

 The propagation of action potentials into axon branches was simulated using the 

compartment model program NEURON version 7.3 (Carnevale & Hines, 2006). The 

properties of each compartment can be defined independently. Axon branches were measured 

with the STED microscope (see above). A text file containing the diameter profile along the 

studied branch was used to build a simulation model. The simulation model was composed of 

unmyelinated excitable compartments, described by standard (Hodgkin & Huxley, 1952a; 

Hodgkin & Huxley, 1952b) channel kinetic equations. 

Geometry 

 The simulation model was made of 4 sections: to give the model a realistic behavior 

(i.e. in order to avoid sealed effects from interfering with the analysis), the simulated branch 

(3) was included after a 500 µm proximal axon (2) (used to simulate realistic incoming 

spike), and before a distal axon (4) of 200 µm in which spikes propagate after traveling in the 

simulated branch. Spikes were initiated in an initial segment (1) in which a current pulse was 
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generated before accessing the 500 µm axon. In each section, the number of segments was 

calculated to get a length/diameter ratio <=5. The temporal integration step was 100 µs. 

Passive properties 

The intra-compartmental potential, E, is described by the differential equation  

      
cm

III
dt
dE chcore 


leak  

where Ileak is the passive leakage current: Ileak = (Eleak-E)  Gleak 

and Eleak and Gleak are the equilibrium potential and the leak conductance, respectively. 

Icore is the axial current to neighboring compartments summed over all neighbors 
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where diam and l are diameter and length of the compartment (in cm), respectively ; Ra is the 

specific resistance of the axoplasm (in .cm). 

Ich in equation (1) is intrinsic currents. Intracellular current injection can be modeled 

by adding current to the compartment. The parameter cm (µF) describes the capacitance of 

the compartment 

     cm = Cm x area 

(area is the membrane surface of the compartment in cm2, Cm  is the specific capacitance in 

µF.cm-2) 

All compartments had the same specific membrane resistance (Rm) set to 10000 

.cm2. All computations were carried out assuming a specific capacitance, Cm of 1µF/cm2 

and a specific axoplasmic resistance, Ra, of 100 .cm. 
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Sodium and potassium channels 

 Sodium (Na+) current is computed as: INa = (ENa-E).GNa.m3.h 

The activation variable m is described by    dm
dt

m mm m   . .1  

with rate functions m and m 
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The inactivation variable h is computed in a similar way.    dh
dt
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In most computations, we used the following values for the Na+ channel parameters (IS):  

Activation m: 

Am = 1 ms-1 ; km = 0.1 mV-1; dm = -40 mV; 

Am = 4 ms-1; km = -0.055 mV-1; dm = -65 mV 

Inactivation h: 

Ah = 0.07 ms-1; kh = -0.05 mV-1; dh = -65 mV; 

Ah = 1 ms-1; kh = -0.1 mV-1; dh = -35 mV 

The maximum conductance density for Na+ channels in a given compartment was 

GNa Max = 0.6 S.cm-2 in the initial segment, and GNa Max = 0.012 S.cm-2 in other sections of 

the model. The equilibrium potential for Na+ ions was set ENa = +50 mV. 

 

Potassium (K+) current is computed as:    IK = (EK-E).GK.n4 
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Its activation variable, n , is described by the equation :   dn
dt

n nn n   . .1  

with rate functions n and n  
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In all computations, we used the following values for the K+ channel parameters: 

An = 0.1 ms-1; kn = 0.1 mV-1; dn = -55 mV; 

An = 0.125 ms-1; kn = -0.0125 mV-1; dn = -65 mV 

The maximum conductance density was GKMax = 0.19 S.cm-2 in the initial segment, and 

0.0036 S.cm-2 in the other sections of the model. The equilibrium potential for K+ ions was 

EK = -77 mV. 

 

Statistics 

For the plasticity experiments, we expressed the values as normalized mean ± standard error 

of mean. We performed a two-way repeated ANOVA, to test the effect of time, the 

interaction between groups and change over time, and the effect between groups. The 

homogeneity of variances for every timepoints was tested using a Levene test, for the 

timepoints that were not significant, a post-hoc Bonferroni test was performed otherwise we 

performed a post-hoc Dunnett test. 
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RESULTS 

 

The results section is composed of two parts: 

Part 1 is a research article in preparation and formatted in the style of a scientific journal 

describing the activity-dependent regulation of axon morphology and function in living brain 

slices. In this project, I designed, performed and analyzed the imaging and 

electrophysiological experiments. The computer models were built by our collaborator, 

Daniel Cattaert; he and I ran the simulation-based experiements. 

Part 2 is a research article published in Biophysical Journal on February 2013 describing the 

development of a novel type of STED microscope based on two-photon excitation. In this 

project, I contributed to the design and building off the microscope. 
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Part 1: Activity-dependent morphological dynamics of CA3 axons and modulation of 

action potential conduction velocity. 

 

Aim of the study: 

According to the traditional view axons are faithful and static conductors of action potentials 

(AP) generated at the cell body. However, recently it has become evident that axons can 

strongly and dynamically influence AP propagation, e.g. AP speed and waveform, which is 

thought to powerfully broaden the computational repertoire of neural circuits. 

Axon morphology is likely to be an important determinant of AP propagation within the 

axonal tree, because basic structural parameters (such as axon diameter) largely define the 

passive electrical properties of axons. However, because most axons in the central nervous 

system are so thin, it has been impossible to image axons, let alone their activity-dependent 

dynamics, in live tissue using conventional light microscopy, which does not offer nearly 

enough spatial resolution. 

To overcome this limitation and to investigate the plastic structural changes of hippocampal 

axons in living brain slices, we used a novel combination of superresolution STED 

microscopy, electrophysiology and biophysical modeling using the NEURON simulation 

environment. 

 

Methodology: 

We used a custom-built STED microscope (spatial resolution around 50 nm) for visualizing 

the structural dynamics of GFP-labeled Schaffer collateral axons. Axon diameters were 

monitored using quantitative analysis in baseline conditions and after HFS-induced LTP of 

CA3-CA1 synapses. Using the STED morphology data, we built a realistic NEURON model 

of Schaffer collateral axons to systematically explore the influence of nanoscale axon 
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morphology on AP propagation. We performed antidromic AP latency measurements using 

patch-clamp recordings and extracellular stimulations of the axon. 

 

Results: 

STED imaging revealed that live CA3 axons are on average 200 nm wide, ranging from 100 

to 350 nm, in keeping with previous EM reports. Axons can undergo local fluctuations in 

diameter under baseline conditions. However altogether, the populations of axons were very 

stable over a period of an hour. Interestingly, induction of LTP caused a significant and 

persistent enlargement of axon diameters. Using patch-clamp recordings and antidromic 

stimulation, we correlated the axon diameter increase with an increased conduction velocity 

of APs following LTP induction. 

Taken together, our findings indicate that axons dynamically tune AP propagation by 

changing their diameters, thereby alter the timing of information transfer in neural circuits, 

suggesting a novel and powerful structural mechanism for neural plasticity. 
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ABSTRACT 

Precise timing of electrical signalling is critically important for many kinds of computations 

performed by neural circuits, such as action potential firing, spike-timing dependent synaptic 

plasticity and temporal coding of sensory inputs. 

The transmission of APs over unmyelinated axons is an inherently slow process, which 

causes major time delays for synaptic communication, taking up to hundreds of milliseconds. 

While it is clear that travel distance and morphological properties of the axon largely set this 

conduction delay, very little is known about whether and how it may be physiologically 

regulated.  

We combined time-lapse superresolution stimulated emission depletion (STED) microscopy 

with electrophysiology and computer simulations to investigate the relationship between axon 

morphology and AP conduction in CA3 pyramidal neurons in living mouse organotypic 

hippocampal brain slices.  

Our study reveals that axon morphology, which is very heterogeneous, is largely stable under 

baseline conditions. By contrast, after the induction of LTP in the CA3-CA1 synaptic 

pathway we observed remodelling of presynaptic boutons and axon shafts that correlates with 

bi-directional changes in AP conduction velocity measured by patch clamp recordings and 

predicted by biophysical modeling. 

Our findings indicate that AP propagation delay is regulated by activity-driven changes in 

axon morphology, suggesting a novel structural mechanism for fine-tuning the timing of 

information transfer in neural circuits. 
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INTRODUCTION 

Precise timing of neuronal activity is essential for network synchrony and circuit plasticity in 

the brain. Timing variations of synaptic inputs on the order of a few milliseconds can decide 

over action potential firing1 and the direction of synaptic plasticity2, 3.  

Neural timing ultimately is defined by the anatomy and biophysics of the underlying neural 

structures, which impose characteristic time delays on electrical signals as they get integrated 

and transmitted. The possibility that time delays are plastic variables has not been explored 

much experimentally, for technical reasons but also because neural plasticity is mostly 

studied as a change in signal amplitude (rather than signal timing). Hence, we know very 

little about whether and how time delays are physiologically regulated and what this may 

mean for information processing in the brain. 

A major source of time delay arises from the conduction of action potentials (AP) along 

axons. It can take tens of milliseconds for an AP to travel from the axon initial segment (AIS) 

to the presynaptic terminal, depending on distance4. To conduct APs at very high speed axons 

need to be myelinated or have large core diameters. However, most axons in the 

hippocampus, including the Schaffer collaterals from CA3 neurons, are unmyelinated and 

extremely thin (between 100-300 nm5), conducting APs at a speed of less than 300 m/msec4, 

6. This imposes long delays on AP propagation (between 5-10 milliseconds), despite short 

travel distances to postsynaptic targets in the CA1 area (less than a few millimeters).  

The experimental difficulty to record electrophysiologically from single axon fibers and to 

measure accurately their nanoscale morphology in living tissue has hampered our ability to 

investigate whether the delay of axonal AP propagation is a dynamically regulated variable, 

let alone if and how it may be affected by structural changes in the axon. Recent studies 
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based on two-photon imaging and/or electrophysiology have discussed this as a possibility, 

demonstrating that the induction of synaptic plasticity causes in tandem morphological and 

functional changes in axonal compartments7-10.  

However, it remains an open question whether thin unmyelinated axons undergo activity-

dependent changes in their diameter that might influence the propagation of APs. This 

knowledge gap is largely because conventional light microscopy does not provide enough 

spatial resolution and electron microscopy cannot be used for longitudinal studies. By 

contrast, STED microscopy can faithfully resolve axon morphology and is compatible with 

functional assays in living brain tissue11, 12.  

Here, we used a combination of time-lapse STED imaging, electrophysiology and 

biophysical modelling to investigate activity-dependent structural plasticity of axons and 

assess its impact on AP propagation in organotypic brain slices.  

We demonstrate that the induction of LTP leads to orchestrated increases in presynaptic 

boutons and axon shafts, which are correlated with bidirectional changes in AP conduction 

velocity. Our study suggests a novel type of morpho-functional plasticity whereby axon 

morphology dynamically regulates AP conduction delays in hippocampal axons. 
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METHODS 

Animals 

Wild-type mice were kept under 12 h light/ 12 h dark cycle with ad libitum access to food 

and water (strain from Jackson Labs, Bar Harbor, ME). Experimental procedures were in 

accordance with the French National Code of Ethics on Animal Experimentation and 

approved by the Committee of Ethics of Bordeaux (no. 50120202). 

Organotypic hippocampal slice cultures 

Organotypic hippocampal slice cultures (Gähwiler type) were dissected from 5- to 7-day old 

pups of wild-type mice and cultured 3–5 weeks at 35 °C in a roller drum at 10 revolutions per 

hour as previously described 13, 14. In brief, hippocampi were chopped coronally at 350 μm 

using a tissue chopper and embedded in a freshly mixed plasma/thrombin clot on the surface 

of a poly-l-lysine (PLL)-coated glass coverslip. After coagulation, the slice on the coverslip 

was cultured in a roller tube in 0.5 ml of medium consisting of 50% Eagle’s basal medium, 

25% horse serum and 25% Hank’s balanced salt solution, supplemented with glutamine to a 

final concentration of 1 mM and glucose (11 g/l) (all from Sigma). The Gähwiler cultures are 

optically very accessible, as synapses close to the coverslip can be imaged on an inverted 

microscope setup. 

Recording solutions 

For the imaging experiments, slice cultures were mounted into a heated recording chamber 

(32°C) and continuously perfused with carbogenated (95% O2, 5% CO2) artificial 

cerebrospinal fluid (ACSF) at pH 7.4 with an osmolarity of 300-310 mOsm containing 124 

mM NaCl, 3mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 1.25 mM NaH2PO4, 26 

mM NaHCO3, 2.5 mM sodium L-ascorbate, 2 mM trolox (Sigma-Aldrich). The use of 

antioxydants, ascorbic acid and Trolox helps preventing toxicity due to sample illumination 

by free radicals from reactive oxygen species. For the experiments that didn’t involve 
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imaging, the composition of the ACSF was identical except that neither Trolox nor ascorbic 

acid was used. 

Viral infection 

For specifically labelling CA3 neurons, a glass micropipette backfilled with Sindbis-GFP 

viral particles diluted in TNE buffer containing 0.1 M NaCl, 0.05M Tris-Cl pH8, 0.5 M 

EDTA, 0.001% Tween-20, connected to a pressure-injection device (Picospritzer, Parker), 

and positioned into the cell body layer of the CA3 area of the hippocampus. The virus was 

injected into the tissue by applying a few pulses of positive pressure (50-150 ms; 10-15 psi). 

The size of the injection area, which appears dark in transmission mode and was visually 

inspected to keep it confined so that approximately 30-50 neurons get infected. Experiments 

were conducted 36-48 h post-infection giving optimal GFP expression15 while  preserving the 

physiological health of the cells 16. 

Electrophysiology 

For the imaging experiments, field excitatory postsynaptic potentials were recorded from the 

CA1 stratum radiatum using a glass microelectrode (tip resistance 3-5 M) filled with 

ACSF. In order to maximize the overlap between fibers that are labelled and that experience 

the stimulation, a monopolar stimulating electrode (glass microelectrode 3-5 M filled with 

ACSF) was placed in the middle of the area of labelled CA3 cell bodies. Brief (0.2 ms) 

current pulses were delivered from a stimulus isolator (AMPI). The stimulus strength 

(ranging between 10-35 µA) was adjusted to elicit fEPSP corresponding to 50% of their 

maximal amplitude. The fEPSPs were recorded using a patch clamp amplifier (Multiclamp 

700B; Molecular Devices). Amplifier gain was set at 20X and a Bessel filter of 2 kHz was 

applied. A test pulse was recorded every 15 s (0.067 Hz) throughout the experiment. The 

stimulus protocol consisted of 3 trains of 100 pulses delivered at 100 Hz and 20 seconds apart 

to induce LTP and started after recording a baseline of 20 min. The initial slopes of the 
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fEPSPs were determined with Clampfit 10.1 (Molecular Devices). Some experiments were 

performed in the presence of the NMDA receptor antagonist, D-APV. 

Whole-cell patch clamp recordings were performed using glass capillaries (tip resistance 3-

5 M) with the following solution (in mM): 115 KMeSO3, 10.3 Na+ (NaOH, Na-ATP, Na-

GTP), 4.6 MgCl2, 40 HEPES, 1 EGTA, 4 mM ATP, 0.3 GTP, osmolarity = 275–280 

mosmol, pH 7.3. Recordings where the access resistance (Ra) exceeded 25 MΩ or with 

holding currents greater than -100 pA were excluded from analysis. CA3 cells were recorded 

in current clamp mode with a dynamic current injection correction to maintain the resting 

membrane at -70 mV. The gain of the patch clamp amplifier was set at 1X and a Bessel filter 

of 2 kHz was applied. To elicit an antidromic AP, a glass electrode back-filled with ACSF 

was placed in the distal part of the CA1 area and then moved toward the CA3 until an AP 

could be recorded reliably at the soma. Short (0.1 ms) current pulses were delivered from a 

stimulus isolator (AMPI) with a stimulation strength ranging between 25-75 µA. Excitatory 

field recordings was performed simultaneously with the same stimulation electrode in order 

to monitor the induction of plasticity. 

STED microscopy 

For live-cell imaging of hippocampal brain slice cultures, we used a home-built STED 

microscope based on pulsed excitation and pulsed depletion in the visible range of the 

spectrum. A standard commercial inverted microscope (DMI 6000 CS Trino, Leica, 

Mannheim, Germany) equipped with a high-numerical-aperture objective lens (PL APO, 

100×, oil, NA 1.4, Leica) served as a base. For excitation, a pulsed-laser diode (PDL 800-D, 

Picoquant, Berlin, Germany) was used delivering 90 ps pulse duration at 485 nm wavelength. 

For depletion, 595 nm wavelength laser pulses for the STED beam were produced by an 

optical parametric oscillator (OPO BASIC Ring fs RTP, APE, Berlin, Germany) pumped by a 

Ti:Sapphire laser (MaiTai, Spectra-Physics, Darmstadt, Germany), operating at 80 MHz and 
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emitting at 800 nm. The pulses of originally 200 fs duration were stretched to 68 ps by first 

dispersion in a glass rod 25 cm long (SF6) and then in a polarization-preserving fiber 

(Schäfter & Kirchhoff, Hamburg, Germany) of 20 m length. To create the STED focal 

doughnut, a polymeric phase plate (RPC Photonics, Rochester, NY) was introduced into the 

STED beam path. The STED and excitation pulses were synchronized at 80 MHz via external 

triggering of the laser diode using an electronic delay generator. The laser beams were 

combined using a dichroic mirror (AHF Analysentechnik, Tübingen, Germany). We used a 

telecentric beam scanner (Yanus IV, TILL Photonics, Gräfelfing, Germany) in combination 

with scan and tube lenses from the microscope manufacturer to stir the laser beams across the 

sample. The fluorescence signal was detected in a descanned fashion and separated from the 

excitation by a dichroic mirror (499 nm long-pass), then cleaned with a 525/50 band-pass 

filter and finally focused onto a multimode optical fiber connected to an avalanche 

photodiode (SPCM-AQR-13-FC, PerkinElmer, Waltham, MA). Image acquisition was 

controlled by the custom-written software IMSpector 17. 

Image acquisition 

The parameters of acquisition were originally defined so that neither apparent photodamage 

nor excessive photobleaching was detected over the time course of the experiment. All the 

image acquisitions were performed with an excitation power of 4-6 µW and a STED power 

of 8 mW (measured at the objective back aperture). The images stacks were acquired with a 

voxel size of 19.5 nm (xy); 375 nm (z) and dwell time of 15 µs. Imaging depths into the slice, 

determined by the z-piezo focus, the fluorescence on top of the slice defining the zero z-

position, was ranging between 5-15 µm. For the plasticity experiments, an area containing 

multiple and well separated axon stretches was selected. Z-stacks of 30x20x3µm (x, y and z 

dimensions respectively) were acquired every 10 min for 1 hour. Two acquisitions were 

performed before the stimulus and four after.  
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Image analysis 

Images were exported from the IMSpector software into an 8-bit tiff file format. We used 

NIH ImageJ for processing the acquisitions. Image analysis was done on raw data and images 

presented in the figures were filtered by a 1-pixel median filter to reduce noise. A screening 

by visual inspection was performed and only the signal of the axon stretches that were fully 

contained into the volume of acquisition at all time points was selected for the morphometric 

analysis. A maximum intensity projection was performed on the regions of interest. To 

realize the automated morphometric measurement, a reference image that consist of a line of 

pixels running along the axon stretch was produced by first, thresholding and binarize the 

picture, then we used the skeletonize plugin from ImageJ. A custom written Matlab program 

was used to automatically measure the FWHM along the axon image using the reference 

image that determines the position of the measurement. At every position, it automatically 

estimates the best tangential fit and plots the intensity profile from its orthogonal. To reduce 

the noise coming from the measurement and the imaging, an average of 5 parallel lines is 

done. Considering that the cytoplasmic fluorescence concentration might be inhomogeneous, 

no assumption was made on the intensity plot profile distribution; therefore the FWHM was 

directly extracted from the raw intensity profile. Diameter profiles of full axon stretches 

could then be generated and analyzed further. For the plasticity experiments, 1 µm axon shaft 

portions were selected from the automatically generated FWHM profiles excluding the 

varicosities by visual inspection. Average diameters were calculated over time for each 1 µm. 

To determine the bouton size change over time, all boutons from all the experiments were 

automatically analysed by measuring the FWHM along the boutons. Bouton areas could be 

determined by summing all the FWHM measured and multiplied by the pixel size. 
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Simulations 

The propagation of action potentials into axon branches was simulated using the 

compartment model program NEURON version 7.318. The properties of each compartment 

can be defined independently. Axon branches were measured with the STED microscope (see 

above). A text file containing the diameter profile along the studied branch was used to build 

a simulation model. The simulation model was composed of unmyelinated excitable 

compartments, described by standard19, 20 channel kinetic equations. 

Geometry of model axon 

The simulation model was made of 4 sections: to give the model a realistic behavior (i.e. in 

order to avoid sealed effects from interfering with the analysis), the simulated branch (3) was 

included after a 500 µm proximal axon (2) (used to simulate realistic incoming spike), and 

before a distal axon (4) of 200 µm in which spikes propagate after traveling in the simulated 

branch. Spikes were initiated in an initial segment (1) in which a current pulse was generated 

before accessing the 500 µm axon. In each section, the number of segments was calculated to 

get a length/diameter ratio ≤5. The temporal integration step was 100 µs. The tested 

sequences consisted in a mirrored repetition of diameter profiles obtained after automated 

analysis of axon stretches acquired in STED mode and normalized to a length of 500 nm in 

order to avoid edge effects. 

Passive electrical properties 

The intra-compartmental potential, E, is described by the differential equation  

        (Equation 1) 

where Ileak is the passive leakage current: Ileak = (Eleak-E)  Gleak  (Equation 2) 

and Eleak and Gleak are the equilibrium potential and the leak conductance, respectively. 

cm
III

dt
dE chcore 


leak



Results 
 
 
 

82 

Icore is the axial current to neighboring compartments summed over all neighbors 

      (Equation 3) 

The parameter Gcore (in S) denotes the core conductance from the compartment in question to 

the neighboring compartment:  

where diam and l are diameter and length of the compartment (in cm), respectively ; Ra is the 

specific resistance of the axoplasm (in .cm). 

Ich in equation (1) is intrinsic currents. Intracellular current injection can be modeled by 

adding current to the compartment. The parameter cm (µF) describes the capacitance of the 

compartment 

     cm = Cm x area 

(area is the membrane surface of the compartment in cm2, Cm  is the specific capacitance in 

µF.cm-2) 

All compartments had the same specific membrane resistance (Rm) set to 10000 .cm2. All 

computations were carried out assuming a specific capacitance, Cm of 1µF/cm2 and a specific 

axoplasmic resistance, Ra, of 100 .cm. 

Sodium and potassium channels 

Sodium (Na+) current is computed as: INa = (ENa-E).GNa.m3.h 

The activation variable m is described by    

with rate functions m and m 

I E E Gcore c core
c neighbors

  
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diam
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The inactivation variable h is computed in a similar way.    

With rate functions h and h 

    

In most computations, we used the following values for the Na+ channel parameters (IS):  

Activation m: 

Am = 1 ms-1 ; km = 0.1 mV-1; dm = -40 mV; 

Am = 4 ms-1; km = -0.055 mV-1; dm = -65 mV 

Inactivation h: 

Ah = 0.07 ms-1; kh = -0.05 mV-1; dh = -65 mV; 

Ah = 1 ms-1; kh = -0.1 mV-1; dh = -35 mV 

The maximum conductance density for Na+ channels in a given compartment was 

GNa Max = 0.6 S.cm-2 in the initial segment, and GNa Max = 0.012 S.cm-2 in other sections of 

the model. The equilibrium potential for Na+ ions was set ENa = +50 mV. 

Potassium (K+) current is computed as:    IK = (EK-E).GK.n4 

Its activation variable, n , is described by the equation :   

with rate functions n and n  

    

In all computations, we used the following values for the K+ channel parameters: 

An = 0.1 ms-1; kn = 0.1 mV-1; dn = -55 mV; 
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An = 0.125 ms-1; kn = -0.0125 mV-1; dn = -65 mV 

The maximum conductance density was GKMax = 0.19 S.cm-2 in the initial segment, and 

0.0036 S.cm-2 in the other sections of the model. The equilibrium potential for K+ ions was 

EK = -77 mV. 

Statistics 

For the plasticity experiments, we expressed the values as normalized mean ± standard error 

of mean. We performed a two-way repeated ANOVA, to test the effect of time, the 

interaction between groups and change over time, and the effect between groups. The 

homogeneity of variances for every timepoints was tested using a Levene test, for the 

timepoints that were not significant, a post-hoc Bonferroni test was performed otherwise we 

performed a post-hoc Dunnett test. 
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RESULTS 

Quantitative analysis of axon morphology at the nanoscale 

To visualize axonal projections in 3-5 weeks organotypic hippocampal slices, CA3 pyramidal 

neurons were locally infected using Sindbis virus expressing GFP (Fig. 1a,b). The Schaffer 

collateral projections were imaged in the CA1 stratum radiatum by STED microscopy. Our 

home-built STED microscope offers a spatial resolution in the focal plane of around 50 nm 

(Fig. S1), providing sufficient resolution to reliably quantify morphological parameters of 

thin unmyelinated axons that can be as small as 100 nm regarding previous electron 

microscopy studies5. 

The images reveal irregular geometries of axon morphologies and high variability across 

axon segments (Fig. 1c). In order to comprehensively analyze axonal morphology, we 

measured both inter-varicosity shaft segment diameters and presynaptic boutons sizes. Axon 

shaft diameters were symmetrically distributed around a median of 203 nm, ranging from 70 

to 420 nm (n = 26574, only values above 0.1% were represented, Fig. 1d), while median 

bouton size was 0.53 µm² ranging between 0.2–2.2 µm² (n = 319, Fig. 1e). The distributions 

of the morphological parameters appeared smooth and unimodal (Fig. 1d,e).  

We observed slight dynamic changes in the axonal morphology, however the overall aspect 

of the structure is stable over the course of an hour (Fig. 1g,h). Both boutons size and shaft 

diameter did not undergo directional changes over time (Kruskall-Wallis test Pbouton>0.40, 

n=63, Pshaft>0.54, n=113 segments of 1µm; Fig. 1i-k) indicating that the morphology of those 

structures are largely stable over periods of an hour and that repeated STED imaging did not 

induce visible photodamage. 
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LTP induction leads to structural plasticity in axons 

We investigated how CA3 axons morphology changes during LTP at CA3-CA1 synapses. 

We measured field excitatory postsynaptic potentials (fEPSPs) in the CA1 stratum radiatum 

after electrical high-frequency stimulation (HFS) in the CA3 pyramidal layer in order to 

maximize the overlap between stimulated and imaged axons (Fig. 2a). HFS led to a strong 

increase in fEPSP responses (potentiation at 30-40 minutes post-induction, 81%; Fig. 2b; 

average potentiation at 30-40 minutes post-induction, 65 ± 16%, n=8, p<0.002; Fig. 2d). At 

the same time, STED image stacks were acquired around every 12 minutes, with two 

reference stacks before the stimulation and four stacks after it. 

The STED time lapse imaging series revealed a substantial increase in the diameter of CA3 

axon concomitant with LTP induction (Fig. 2c with corresponding LTP recording Fig. 2b). 

The effect appears to be evenly expressed along axons and builds up over tens of minutes 

after LTP induction (at 45 minutes: 5.0 ± 0.8%; LTP: n=8; Fig. 2e) leading to statistically 

significant differences between "before" and "after" stimulation groups (p<0.05), as well as 

between stimulated and unstimulated conditions (control: n = 7; p<0.05).  

Because LTP might not be evenly expressed throughout the CA1 stratum radiatum and that 

the imaging protocol limits us to relatively small fields of view, we sorted LTP experiments 

by the ones that showed in average the largest diameter increase over the ones that showed a 

minimal change (Fig. 2f). The average diameter increase for the experiments that showed the 

largest change is about 7% (at 45 minutes: 6.9 ± 0.6%; n=4) which amounts to a 14% 

increase in axonal cross section over the control conditions. 

In order to check whether the morphological effect induced by HFS depends on the 

expression of LTP, we repeated the experiments in the presence of an NMDA receptor 
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antagonist (50µM APV). Whereas the induction of LTP was completely abolished by bath 

application of the drug (Fig. 2d), the morphological effect on axon diameter was only visible 

at 45 minutes after HFS (3.6 ± 1.6%, n=6) (Fig. 2f). However, it appears to build up more 

slowly compared to without the drug. 

We also compared the distributions of diameter changes for individual axon segments in an 

hour for the control condition and after LTP induction (Fig. 2g). This analysis reflects the 

important variability in diameter change in both control and LTP condition. It also further 

support the hypothesis that some of the axons did not experience the stimulation as a small 

fraction showed almost no change (fraction 0%;).  

We analyzed the bouton morphology separately from the shaft segments. We observed a 

much more subtle increase of the bouton size during LTP and no significant difference in 

APV conditions (Fig. 2h). 

Taken together, the combination of time lapse STED microscopy and electrophysiological 

experiments reveals that axons can undergo activity-dependent structural plasticity whereby 

electrical stimulation leads to nanoscale changes in axon diameter. 

LTP leads to an increase of APs conduction velocity 

Knowing that AP conduction is largely predicted by morphological parameters, we 

investigated whether a change in AP velocity would corroborate the morphological data. We 

performed patch-clamp recordings from CA3 pyramidal neurons together with direct axonal 

stimulation in the CA1 stratum radiatum. We monitored simultaneously antidromic AP 

propagation latencies at the soma and fEPSP in the CA1 stratum radiatum during LTP 

induction (Fig. 3a). The current-clamp waveform following the electrical stimulation was 

characterized using drugs to discriminate AP generated by direct axonal stimulation and 
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synaptically evoked AP (Supplementary Fig. 4a). In addition, synaptic transmission was 

blocked by 2mM kynurenic acid (KYN) at the end of every recording to validate the 

experiment (Supplementary Fig. 4b). 

Interestingly, we found a significant long-lasting reduction of APs latencies 20 minutes after 

LTP induction reflecting an increase of conduction velocity in the axonal compartment (Fig. 

3c,d with corresponding LTP recording Fig. 3b). In average, we found that the AP latency 

was significantly reduced by 2.2 ± 0.77% at 30-40 minutes after induction of LTP (n=10, 

P<0.02, with an average potentiation at 30-40 minutes post-induction of 81 ± 22%, P<0.006) 

and this change was completely abolished when LTP was blocked (APV, n=8, at 30-40 

minutes post-induction: average decrease of latency of 0.12 ± 0.42%, p>0.78; average 

potentiation of 11 ± 9%, p>0.26) (Fig. 3e-g).  

LTP induction increases boutons 

In order to know if morphological changes of the axon geometry could explain the initial 

slow down of conduction velocity, we imaged CA3 axons right after HFS. Interestingly, we 

observed that 2 minutes after HFS, boutons undergo an increase in size by 20 ± 2.5% (n=148, 

from 4 experiments; p<0.05) while the axon shaft diameter increases by 2.3 ± 1.4% (n=148, 

p>0.05; Fig. 4a-c). This rapid change appears to be transient as the 8 minutes after the 

stimulation, the size of the bouton partially decreases (9.8 ± 2.7%, n=148, p<0.05) while the 

axon shaft diameter keeps increasing by 3.8 ± 1.5% (n=148, p<0.05; Fig. 4b,c). In addition, 

by plotting the relative change of bouton size with the measured adjacent shaft diameter, we 

show that the irregularity of the axon structure is much greater 2 minutes after the stimulation 

compared to after 8 minutes (Fig. 4d). 
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These results indicate that HFS transiently increases irregularity of the axon structure could 

be the cause for the initial slow down in conduction velocity observed previously. 

Axon structural plasticity correlates with changes in AP propagation delays during LTP 

While basic biophysical principles explain directional changes of geometry and AP 

conduction velocity, we investigated their correlation based on realistic model simulations. In 

the model used, we tested different axon stretch geometry based on real morphological data 

(Fig. 5a). We found a high correlation between AP conduction velocity and the square-root 

of the average axon shaft tested (r² = 0.94) (Fig. 5b). We also tested the impact of the degree 

of irregularity generated by the average increase of boutons size on an axon segment (Fig. 5c 

and Supplementary Fig. 6). The increase by 10 and 20% of the bouton size increases the 

delay of propagation hence decreases the conduction velocity. The changes in conduction 

velocity calculated from the AP latency recordings correlates well with the simulation based 

on the morphological changes after HFS and during the establishment of LTP (Fig. 5d).  
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DISCUSSION 

Our experimental approach based on a combination of STED microscopy (with a spatial 

resolution of around 50 nm) and electrophysiology in living brain slices made it possible to 

visualize nanoscale changes in axon morphology and to carry out electrophysiological 

experiments to induce synaptic plasticity and to assess the impact on AP propagation.  

We obtained direct evidence that axons become wider and propagate APs faster after the 

induction of LTP. Both the morphological and functional effects were rapidly expressed and 

persisted for at least an hour, suggesting a novel form of neural plasticity, which may have 

important implications for temporal coding in neural circuits of the mammalian brain. 

Morphological dynamics of axons in living brain slices 

Hyperthin unmyelinated axons are an anatomical hallmark of the hippocampus, with shaft 

diameters oftentimes narrower than 200 nm5. As conventional light microscopy does not 

provide sufficient spatial resolution for accurate measurements on this spatial scale, very little 

is known about the morphological dynamics of axon shafts, let alone its regulation by 

neuronal activity or its effects on AP propagation. 

By contrast, the morphological dynamics of presynaptic boutons, which are much larger than 

axon shafts, have been studied before by two-photon microscopy, revealing that they undergo 

a modest amount of structural remodelling under baseline conditions, but significantly reduce 

their contacts with dendritic spines after the induction of long-term depression (LTD) at 

hippocampal synapses9, 10.  
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Coordinated changes in axon morphology and function  

Consistent with the previous work, we observed very little structural remodelling of 

presynaptic boutons and axon shafts under baseline conditions. However, the induction of 

LTP led to clear-cut bouton enlargement and shaft widening, which were detectable within 

minutes and persisted for more than one hour after stimulation. The time-lapse data indicate 

that the structural changes followed a differential time course, where the boutons swelled up 

transiently before the shafts became wider.  

Importantly, these changes would be entirely invisible to conventional light microscopy, 

because they were on the order of tens of nanometers, necessitating the use of superresolution 

microscopy. 

LTP induction also led to clear changes in AP propagation delay, which at first increased, and 

then decreased to significantly below baseline levels for the remainder of the experiment. 

These findings confirm and extend previous reports on changes in synaptic latency after LTP 

induction. However, these changes were attributed to activation of silent synapses21 or to 

changes in presynaptic release probability7. In contrast, our experiments provide direct 

evidence for a drop in AP propagation delay after LTP, which is consistent with a study in 

cultured neurons using multi-electrode arrays8. 

The changes in shaft diameter and AP propagation delay after LTP correspond well with 

cable theory that predicts that the speed of AP conduction in unmyelinated axons depends on 

the square root of axon diameter22, indicating that the decreased AP propagation delays 

reflect a widening of axon shafts that accelerates AP conduction, as opposed to axon 

excitability changes independent of any structural effects. Moreover, the model simulations, 

which were based on accurate morphological reconstructions using the STED data, also 
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corroborate the conclusion that AP conduction velocity is increased after LTP. Interestingly, 

the model predicted the increase in AP propagation delay from the transient swelling of the 

boutons after LTP induction. 

Potential mechanisms of axon widening 

The increase in axon diameter after LTP implies a gain in surface area of the axon, which 

must be sourced either by de novo membrane synthesis or redistribution of existing 

membrane pools. A local redistribution of membranes cannot account for the net gain, 

because the effect was globally expressed and affected the average diameter. Moreover, 

according to membrane biophysics, stretching or unfolding of axon membranes can also be 

ruled out as mechanisms, because lipid bilayers are unlikely to be elastic enough or to behave 

like an accordion. 

Alternatively, a substantial increase in surface membrane could derive from the exocytosis of 

presynaptic vesicles due to the intense electrical stimulation of the axons during the induction 

of LTP. The estimated size of the total membrane added by the release of synaptic vesicles, 

based on the net loss of vesicles seen ultrastructurally after LTP23, could in fact readily 

account for the increase in bouton size and axon diameter. The differential time course we 

observed for the structural changes suggests a scenario where the addition of the membrane 

of the vesicles first drives an expansion of the boutons, which then diffuses laterally to cause 

widening of the adjacent axon shafts, providing a plausible cell biological mechanism, which 

is both rapid and metabolically cost-efficient. However, the partial blockade of the 

morphological effects by APV experiments argue somewhat against this model, because a 

priori APV should not affect the release of synaptic vesicles during LTP induction. 
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Functional implications for neural timing 

The changes in AP propagation delay during LTP were recorded over relatively short 

distances, and hence amounted to just a couple of hundreds of microseconds. However, if 

axon widening affects AP conduction uniformly along the axon, the reduction of AP 

propagation delay should scale with the length of the axons. Given that CA3 axons can be as 

long as 20 mm in vivo in rats24, the AP propagation delay for distal synapses would build up 

to several tens of milliseconds, which would be expected to strongly impact synaptic 

integration in the postsynaptic neurons.  

What is the functional significance of variations in axonal delays for network performance? 

Propagation delays could be important in the context of spike-timing dependent plasticity 

(STDP). The time window for supralinear summation of calcium caused by dendritic spikes 

and synaptic events is on the milliseconds scale and determines whether synapses get 

potentiated or depressed. Given that STDP might be responsible for the formation of 

synchronized groups of neurons that are strongly interconnected, slight variations in 

propagation delays could remodel those poly-synchronous groups25 . Variations in delay at 

excitatory synapses may also produce substantial changes in the temporal integration by 

changing the balance during di-synaptic inhibition and therefore may change the output 

properties. 

Several studies have indicated that CA3 axons, known to branch extensively24, 26 do not 

propagate APs reliably throughout their complex arbor and might exhibit failures at branch 

points under certain conditions27-29. The enlargement of axon shafts may affect the reliability 

of AP propagation by altering the impedance mismatch at branch points. 



Results 
 
 
 

94 

Finally, the concept whereby axons act as dynamic delay lines for information transfer has 

been debated for a long time. In the auditory system, the interaural time difference to achieve 

coincidence detection in sound localisation requires sub-millisecond precision and was 

thought to rely on axon length30 (i.e. Jeffress model31). But recent findings showed that the 

topological organization of delays were poorly correlated with axon length and demonstrated 

that axon diameters and distances between nodes of Ranvier were mechanisms for adjusting 

interaural delay differences32. 

In summary, our study amends the classic view of structural plasticity as primarily reflecting 

a change in synaptic strength by demonstrating structural changes that dynamically regulate 

the speed of AP conduction and hence are likely to substantially impact the timing of 

information transfer in neural circuits. 
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Figure 1 Heterogeneity and dynamics of CA3 axons 

(a-c) Viral injection of Sindbis-GFP in the CA3 pyramidal layer yielded a sparse set of 

brightly labeled axons whose hyperthin morphology could be readily imaged by STED 

microscopy. (a) Schematic of the viral injection approach. (b) Confocal image of the CA3 

pyramidal layer approximately 36 hours post-injection showing a compact subset of labeled 

neurons (scale bar, 20 µm). (c) STED images of axons in the stratum radiatum. The image is 

a maximum-intensity projection of eight z-planes 375 nm apart (raw images in 

Supplementary Figure 1). Intensity profiles of axons shafts and boutons (white); full-width 

half maximums (FWHMs) indicate axon diameters (scale bar, 1 µm). 

(d-e) Distribution of morphological parameters of axons. (d) Distribution of axon diameters 

(n=26574). Curved line is a Gaussian fit, where R²=0.99. The inset shows median diameter; 

203 nm, interquartile and range. (e) Distribution of bouton size (n=319). Curved line is a log-

normal fit, where R²=0.98. The inset shows median size; 0.53 µm², interquartile and range. 

(f) Example of an axon segment imaged over more than an hour (scale bar, 1 µm) 

(g) Diameter profile of the axon shown in (f). The average diameter in time is represented 

(black line) with SD (grey). 

(h) Time-lapse imaging over 1 hour (geometric mean with 95% CI) for boutons (n=85) and 1 

µm axon shaft segments (n=113). 

(i-j) Standard deviation of the normalized changes over 1 hour. 
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Figure 2 Structural plasticity of axon shafts and boutons during LTP 

(a) Recording configuration (S.: stimulating electrode; R.: recording electrode). The GFP 

labeled neurons were imaged in the CA1 stratum radiatum. 

(b-c) Example of morphological change observed during LTP. (b) Normalized fEPSP slope 

recordings during baseline and LTP induction. The inset shows representative fEPSP traces 

before (1) and after induction of LTP (2). (c) STED images showing morphological changes 

before and after LTP induction. Top: overview; Bottom: magnified view corresponding to the 

region on the left image (Intensity profiles and FWHMs reported on the images illustrate the 

increase of axon shaft diameter after LTP induction). 

(d) Average time course of the fEPSP slope (normalized to baseline) during LTP induction 

(orange; average potentiation at 30-40 minutes post-induction 65 ± 16% of baseline, n=8, 

p<0.002). LTP was not induced in the presence of the NMDA receptor blocker APV (grey, 

n=6, p>0.58). The recordings were stable in control conditions (black, n=7, p>0.18); mean ± 

SEM shown. 

(e) Normalized axon shaft diameter during LTP (orange) shows a sustained increase over the 

course of 45 minutes after induction (orange, n=8) over the control condition (black, n=7). 

(f) Normalized axon shaft diameter for LTP experiments that showed the most pronounced 

enlargement (red, n=4) compared to experiments that showed a smaller enlargement (n=4) 

and when LTP was blocked with APV (n=6). 

(g) Frequency distribution of average diameter change per axon stretch at +45 minutes 

compared to -15 minutes for control and LTP experiments (all experiments pulled). 

(h) Normalized bouton size for the three groups (Control, n=7; LTP, orange, n=8; APV, grey, 

n=6) 
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Figure 3 LTP induction leads to changes in AP propagation delay 

(a) Recording configuration of antidromic AP latencies of CA3 pyramidal neurons (Whole 

cell rec.: whole-cell recording; S.: stimulating electrode; R.: recording electrode). 

(b-d) Example of reduction of antidromic latency during LTP. (b) Normalized fEPSP slope 

recordings during baseline (black circles) and LTP induction (red circles). The inset shows 

representative fEPSP traces before (black) and after induction of LTP (red). (c) AP latency 

recordings measured as the onset of AP waveforms at the soma during the course of LTP was 

stable during baseline (black) typically increases and recovers over few minutes and show a 

stable latency reduction from 20 minutes after induction (red). (d) Representative waveforms 

recorded at the soma following direct axonal stimulation before (black) and after induction of 

LTP (red). 

(e) Average time course of the fEPSP slope (normalized to baseline) during LTP induction 

(orange; average potentiation at 30-40 minutes post-induction 81±22% of baseline, n=10, 

p<0.02). LTP was not induced in the presence of APV (grey, n=8). The recordings were 

stable in control conditions (black, n=8); mean ± SEM shown. 

(f) Average AP latency recordings for the three groups 
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Figure 4 LTP induction increases presynaptic boutons  

(a) Effect of HFS on the axonal structure. STED images showing the enlargement of boutons 

identified by the arrowheads, 2 and 8 minutes after HFS. 

(b-c) Normalized change in bouton size (b) and axon shaft diameter (c) following HFS. Error 

bars, SEM. 

(d) Normalized bouton size change plotted against normalized axon shaft diameter showing 

the relative change between 2 minutes versus before (top) and 8 min versus 2 minutes after 

the stimulation. 
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Figure 5 Biophysical modeling of impact of axon structural plasticity on AP 

propagation 

(a-b) Conduction velocities were determined based on simulated AP propagation through real 

morphological data extracted from STED images (a). Ten axon segments were tested for 

conduction velocity and plotted against their axon shaft diameters (b). The conduction 

velocity is proportional to the square-root of the axon diameter (R²=0.94). 

(c) A ball and stick model was used to simulate the increase of bouton size during HFS. The 

shaft diameter used was 200nm and bouton dimensions were 0.5µm width, 1µm long with an 

oblong shape. Data illustrate longer delays of propagation when the average bouton size is 

larger. 

(d) Comparison between the conduction velocity based on predictions from AP latency 

recordings and simulations based on the morphology. 
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Figure S1 Resolution improvement of STED microscopy over confocal microscopy. 

Imaging 40 nm fluorescent beads reveals a substantial gain in spatial resolution by STED 

over confocal microscopy. Intensity profiles corresponding to the dotted lines in the images 

are depicted in the graph (raw data, dots). The FWHM from Lorentzian fits on the STED 

intensity profiles (red line) illustrate the gain in resolution whereas in confocal mode it was 

not possible to discriminate the two beads (black line). 
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Figure S2 Raw data of the maximum intensity projection image shown in Figure 1. 

(a) The image z-stack depicted as a maximum intensity projection in Fig. 1c, covering 8 

sections 375 nm apart. All sections shown are raw images (scale bar, 5 µm). 

(b) The maximum intensity projection of the raw image sections (scale bar, 1 µm). 
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Figure S3 Example of axon shaft diameter increase after LTP induction 

(a) STED images of the same axon segments before and after induction of LTP showing 

slight enlargements of axon diameters between boutons (scale bar, 1 µm). 

(b-c) Comparison between the average inter-bouton diameters from the four axon segments 

shown in A before and after LTP. (c) Most of the axon shaft regions increase in diameter 

during LTP.  Every segment is color-coded from the schematic in (b) (top part of the plot). 

Normalized and average change in axon diameters for the four axon segments (bottom of the 

plot).  
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Figure S4 Electrophysiological approach to measure axonal propagation delays of APs. 

(a) Comparison between waveforms from direct axonal stimulation and synaptically-evoked 

AP. Typical AP waveform from direct axonal stimulation shows a sharp rising depolarization 

phase and a depolarization phase combined with an EPSP. A synaptically-evoked AP consists 

of an initial slow rising phase corresponding to the EPSP and generation of a somatic AP 

when the potential reaches the threshold. The blockade of glutamatergic synaptic 

transmission with APV and NBQX vanishes the synaptically-evoked AP where axonal AP 

remains. 

(b) Blocking glutamatergic transmission with 2 mM kynurenic acid (KYN) vanish the fEPSP 

while the AP waveform recorded at the soma remains, confirming that the AP is generated 

from direct axonal stimulation. 
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Figure S5 Velocity comparison between orthodromic and antidromic AP propagation. 

(a) The reconstruction of the proximal axon arborization of a CA3 pyramidal neuron was 

used for this simulation. An antidromic AP generated in the distal axon and recorded at the 

soma was compared with an orthodromic AP generated at the soma and recorded at the axon 

(red arrows stimulation and recording sites in both conditions). The antidromic propagation is 

slower with a latency of 5.725 ms (conduction velocity, 0.15 m/s) compared to orthodromic 

propagation (5.1 ms, conduction velocity, 0.17 m/s). 

(b) Phase plot analysis of the antidromic and orthodromic AP waveforms shows large 

differences in terms of width and amplitude. 
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Figure S6 Boutons swelling slow down conduction velocity. 

(a) Schematic of a simplified “balls and sticks” model used for the simulation. A 1mm long 

sequence was tested (only samples of the sequence is represented) with a fixed axon shaft 

diameter of 200 nm and boutons of 3 µm periodicity and of dimensions 1 µm long and 500 

nm width in control and 1 µm width after swelling. 

(b) AP recordings from the beginning (1) and the end (2) of the sequences in control (top) 

and after boutons swelling (bottom) tested. The traces show the reduction in conduction 

velocity (around 18%) for the large boutons (control: 0.175 m/s; boutons swelling condition: 

0.144 m/s). 
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Part 2: Development of two-photon excitation STED microscopy in two colors in acute 

brain slices

 

Aim of the study: 

To understand how neural cells shape and react in physiological and pathological conditions, 

it is necessary to observe them in the most intact preparation. STED microscopy enables for 

observing nanoscale dynamics of cellular morphology and organelles where conventional 

light microscopy failed to resolved them. However, the first developments of STED 

microscopy were based on single photon excitation thus limiting observations to superficial 

structures in dissociated cultures and organotypic brain slices. On the other hand, two-photon 

microscopy is currently the method of choice for imaging in thick living tissue preparations, 

both in acute brain slices and in vivo. As a conventional light microscopy method, the spatial 

resolution of a two-photon microscope is limited to ~350 nm by the diffraction of light, hence 

missing important structural details like spine and axon morphological features.  

We aimed to develop a 2-photon excitation STED depletion microscope providing 

unprecedented spatial resolution and excellent experimental access in acute brain slices.  

 

Results: 

We built a new microscope based on two-photon excitation and pulsed stimulated depletion. 

Its versatility allows for imaging the classical green fluorophores such as GFP, YFP and 

Alexa488. We illustrate the potential of the microscope for resolving thin brain structures 

such as dendritic spines, axons and microglia processes in acute brain slices at more than 

50µm from the surface. We also show the potential for two colors superresolution imaging 

using linear unmixing. Its upright design and the long-working distance water dipping 
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objective provides access to combine superresolution imaging with electrophysiological 

recording as well as performing in vivo STED imaging. 
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Additional results 

 

Morphological dynamics of CA3 axons during LTD 

We found that LTP modulates the axonal morphology by overall increasing the diameter of 

the axonal shafts. We also investigated whether LTD (i.e. functional counterpart of LTP) that 

leads to synaptic depression could also produce a directional change in the axonal 

morphology and examine whether the morphological effect observed on the axons during 

LTP depended on the type of electrical stimulation and the direction of synaptic plasticity. 

Indeed, the application of LFS (900 pulses, 1 Hz), which reliably induced LTD (Figure 14a), 

led to a small but statistically significant decrease in the diameter of CA3 axon shafts 

coinciding with the LTD induction phase. However, the effect was only short-lived and the 

axon diameters recovered at 45 minutes after LFS (Figure 14b). In addition, no 

morphological change was observed on boutons (Figure 14c). 

These results indicate that LTD leads to a different type of morphological change on axon 

whereby the axon shaft diameters transiently decrease after LFS and recover later. The 

morphological dynamics of CA3 axons is specific to the type of stimulation and synaptic 

plasticity. 
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Figure 14: Structural plasticity of axon shafts and boutons during LTD. 
 

 (a) Average time course of the fEPSP slope (normalized to baseline) during LTD induction 

(blue; average depression at 30-40 minutes post-induction 24 ± 6% of baseline, n=4). The 

recordings were stable in control conditions (black, n=7); mean ± SEM shown. 

(b) Normalized axon shaft diameter during LTD (blue) shows a transient decease at 21 

minutes after induction (n=4) over the control condition (black, n=7); mean ± SEM shown. 

(c) Normalized bouton size dynamics during LTD (Control, black, n=101; 7 experiments; 

LTD, blue, n=65; 4 experiments); mean ± SEM shown. 
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Characterization of the FWHM measurement 

 

Figure 15: The inhomogeneous distribution of fluorophores in the axon structure makes 

intensity-based measurement of diameters inaccurate. 

(A) STED image of an axon acquired in the CA1 stratum radiatum. (B, C) Comparison 

between the FWHM measurement (black) and estimation of the axon diameter based on the 

relative change of intensity (blue). The red arrows points to the large difference observed on 

the boutons (B) and on the shaft (C). 
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Figure 16: The imaging of axonal structures was performed in non-saturated 

conditions. 

(A) Plot representing the number of counts performed by the APD detector increasing the 

flux of photons (a low power green diode was used as a light source). The data is well fitted 

by a exponential curve (R²=0.96; red line). The detection starts to be highly non-linear after 

75 counts in 15 µs (black dotted rectangle). (B) Histogram of intensity distribution from 10 

representative imaging sessions (30x20x3 μm maximum intensity projections, containing 6 

timepoints each, pulled together acquired with a 15 μs dwell time). The inset shows the 

expanded y-axis scale showing that less than 0.3% of the pixels are detected non-linearly. 
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Figure 17: The FWHM measurement does not depend on the intensity of the signal. 

(A) STED images from the same axon stretch acquired with high and low excitation power in 

a living sample. The scale of pixel intensities is represented in the top right corner. (B) 

Comparison of the FWHM measurement along the axon stretch shown in A. The two profiles 

are very similar and highlight the independence of the measurement from the fluorescence 

intensity of the structure. The slight differences observed denote the dynamic fluctuations of 

the structure. 
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Topological organization of CA3 axon trees 

The rules whereby an AP propagates through a complex unmyelinated axonal arborization 

are still elusive. When some studies show that once initiated, APs reliably reach their 

presynaptic targets (Cox et al, 2000; Hu & Jonas, 2014), others indicate that geometric 

constrains might alter propagation and even produce conduction failures (Goldstein & Rall, 

1974; Luscher et al, 1994).  Branch points represent a biophysical constrain that may alter 

this propagation. A large geometrical ratio (GR) calculated between the cross sectional 

diameter of a mother branch and its two daughter branches can serve as an indication to 

predict if AP may slow down passing through branch point or even fail to propagate in one of 

the daughter branches. Preliminary results show that due to large diameters the GR ratio is 

often close to 1 in the proximal part of the arborization and substantially increase in the distal 

part of the axon when the collaterals are much thinner (Figure 18). These data indicate the 

proximal part of the tree should conduct APs reliably whereas it could be altered in the distal 

region. Further investigations will be required to determine whether rules of propagation are 

different between the proximal and distal part of the axon. 
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Figure 18: Geometric ratio measurement on the proximal axon tree. 

(a) Confocal image of a GFP-labeled CA3 pyramidal neuron by single-cell Sindbis-GFP 

viral infection. The axon branches extensively and contacts local CA3 neurons (axon around 

the dendritic tree) and CA1 neurons (extensions on the right part of the image). 

(b) Tracing of the proximal part of the axon and STED image corresponding to the region 

shown in the schematic (red square). Axon diameters and calculated geometric ratio (GR) 

are shown. The arrow indicated the direction of orthodromic AP propagation. 

(c) GR ratio as a function of the mother branch diameter.  

(d) GR ratio as a function of the branch point order. 
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DISCUSSION 

 
Our current view of the axon compartment has considerably changed in the last few years. As 

advanced electrophysiological and imaging techniques have emerged, interesting properties 

on axon physiology have been discovered (Ganguly et al, 2000; Geiger & Jonas, 2000; Grubb 

& Burrone, 2010; Kuba et al, 2010; Sasaki et al, 2011; Sasaki et al, 2012a). Even though is 

now well established that important structural modifications occurs presynaptically during 

neuronal activity (Bastrikova et al, 2008; Becker et al, 2008; Bourne et al, 2013), it is less 

clear whether the structure of the axon proper undergoes structural changes that might affect 

its functions. 

While EM studies have exquisitely described geometry and ultrastructure of unmyelinated 

axons of principal neurons in fixed preparations, little is known about their dynamics in 

living tissue. Limited by the diffraction of light, conventional light microscopy has failed to 

study their dynamics at the nanoscale hence calling for a novel imaging approach. The 

development of superresolution STED microscopy, overcoming light diffraction limit and 

providing a optical resolution down to 50 nm, bridges this gap allowing for live observations 

of these hyperthin structures.  

 

Summary of the findings 

In this study, we report a new type of plasticity whereby axons can dynamically modulate 

their diameters hence changing its properties for the propagation of APs. We combined 

STED imaging and electrophysiology in life brain tissue and computer simulations to 

investigate the activity-dependent dynamics of axons. We found that HFS-induced LTP leads 

to a persistent increase of axon shaft diameters that is largely repressed when the LTP 

expression is pharmacologically prohibited. In addition, we observed that boutons swell 
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transiently shortly after the HFS stimulus, thus, increasing the morphological irregularity of 

the structure. Extracting conduction latencies from antidromically propagating APs, we show 

that AP conduction velocity is altered by the induction of LTP with an initial slowing down 

followed by a persistent increase of the velocity during the establishment of LTP. These data 

strongly corroborate what was observed in superresolution imaging experiments, hence 

confirmed by simulation models using our acquired morphological data. 

Knowing now that the geometry of axons can be modulated by activity raises many new 

questions to understand the causes and the consequences for the physiology of the neuron and 

the impact on the neuronal circuitry and network behaviour.  

 

Effect of structural factors on AP propagation 

There are two structural mechanisms employed by axons that warrant fast AP propagation. 

One of the strategies, largely used by invertebrates, is to set up large axon diameters. For 

instance, the well studied squid giant axon has a typical 0.5 mm cross sectional diameter and 

can conduct AP at 25 m/s. Myelination, specific to vertebrates, insulate axons and ensure fast 

propagation through saltatory conduction. None of those strategies are used by CA3 axons in 

the hippocampus where axon diameters range around 200 nm and myelination is absent 

(Ishizuka et al, 1990; Meeks et al, 2005; Shepherd & Harris, 1998; Soleng et al, 2003a; 

Westrum & Blackstad, 1962). Hence, APs are conducted slowly, increasing the importance of 

the topological organization of the synaptic targets which will receive the information with a 

variable temporal delay. Do the differences in axonal latencies influence hippocampal 

function?  

First, regarding that some hippocampal rhythms such as gamma (20-70 Hz) and ripples 

waves (140-200 Hz) are very fast, the synchronization within a millisecond might be 

important. Gamma oscillations are known to be important for exploratory behaviour and 
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sharp wave ripples play a role in memory consolidation during rest. Those network rhythms 

have to be extremely precise and utterly depend on neuronal connectivity, therefore axonal 

delays could substantially modify those oscillation patterns. Second and partially related to 

the first argument, few milliseconds difference may be critical in the context of disynaptic 

inhibitory signals. Third, in the context of STDP, excitatory synapses are either potentiated or 

depressed in a time window of 10-20 ms which reflects the maximal supralinear calcium 

summation between dendritic spike and synaptic event. 

 

Morpho-functional changes on axons depend on LTP induction 

In this study we found that the axonal structure was sensitive to the HFS-induced LTP. This 

type of stimulation protocol has been widely used in the literature to explore and unravel 

synaptic plasticity mechanisms at CA3-CA1 synapses. While postsynaptic NMDA receptors 

are an established mediator of the expression of LTP, there are also indications for either 

direct or indirect structural and functional modifications on the presynaptic element. Indeed, 

some studies suggest that the functions of the pre- and postsynaptic elements are enhanced in 

a well coordinated fashion (Lauri et al, 2007). Following a fast postsynaptic potentiation, a 

slow presynaptic component was shown to appear during LTP (Bayazitov et al, 2007). It 

consists in the enhancement of the release probability of vesicles and depends on the 

activation of L-type voltage-gated calcium channels. Furthermore, it has been shown that 

LTP induction enhances presynaptic neuronal excitability (Ganguly et al, 2000; Li et al, 

2004).  

Even though there is an extensive literature on the postsynaptic morphological changes, little 

is known about the structural modifications on axons during LTP. Recent studies revealed 

that the number of synaptic vesicles was persistently reduced after LTP induction (Bourne et 
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al, 2013) and that bouton sizes increase following glutamate uncaging protocols to strengthen 

synapses (Meyer et al, 2014).  

In our experiments, we partially but not fully blocked the increase of axon shaft diameter 

when LTP was blocked by the NMDAR antagonist APV, although we did not observe a 

reduction of AP latencies. Knowing that NMDA receptors are present at the axon membrane 

(Li et al, 2004; Pina-Crespo & Gibb, 2002; Siegel et al, 1994), we can hypothesize that the 

blockade of axonal NMDA receptors during HFS could either reduce axonal membrane 

excitability. 

 

Putative mechanisms axon structural plasticity 

We can emit several hypotheses that could explain the dynamic modulation and more 

specifically the enlargement of axons during HFS-induced LTP. Some would involve 

mechanical tension of the plasma membrane and others involve dynamic redistribution of 

membrane. 

The recent discovery of unique cytoskeleton architecture of the axon proper triggers the 

imagination for novel axonal properties (Xu et al, 2013). The actin rings displayed along the 

axon and periodically spacing every 180-190 nm with an incredible accuracy raise new 

questions. First being: are those rings regulated by activity? In the case of our study, we could 

assume that the global axon enlargement is the consequence of the modulation of those actin 

rings. Every ring could be seen as a tunable pattern imposing a form on the axon that could 

both modulate its electrical and biochemical compartmentalization.  

A possible scenario involves the release machinery of presynaptic boutons. Even though we 

have a good understanding of the molecular and structural determinants of neurotransmitter 

release through the fusion of vesicles at the plasma membrane, it is not yet clear how the 

presynaptic compartment deals with this membrane dynamics. We wondered whether the 
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source of membrane producing the enlargement of axons could come from neurotransmitter 

vesicles. A strong argument supporting this hypothesis comes from recent studies. First of all, 

in vivo studies have clearly shown that the number of presynaptic vesicles in boutons scales 

with the surface area of the postsynaptic density (Harris & Stevens, 1989; Harris & Sultan, 

1995; Lisman & Harris, 1993; Schikorski & Stevens, 2001). Since the postsynaptic density 

size increases with LTP, one could assume that the number of vesicles increases as well. 

Although, early EM observations from single section analyses suggested that the number of 

presynaptic vesicles was reduced after induction of LTP (Applegate et al, 1987; Fifkova & 

Van Harreveld, 1977; Meshul & Hopkins, 1990). This was recently confirmed through 3D 

reconstructions from serial EM sections revealing a strong depletion of about 100 vesicles out 

of 300 in average, 30 minutes and 2 hours after LTP induction (Bourne et al, 2013). Thus, 

one could suspect that this depletion of vesicles represents the source of membrane that 

contributes to the overall increase of axon diameter. 

Knowing that the size of a vesicle is about 40 nm in diameter, and on average, the axon 

structure is composed of an axon shaft of 200 nm and displays oblong-shaped boutons of 1 

µm long and 500 nm large with a frequency of 3 µm along the axon; the exocytosis of 100 

vesicles per bouton would yield an average axonal diameter increase of ~ 20%. Performing 

the reverse calculation from a 5-7% increase in axonal diameter observed in our study, we 

could estimate a depletion of about 20-30 vesicles in average per bouton. This difference with 

the study from Bourne et al. might be due to the type of preparation and stimulation 

employed therefore giving different probability of vesicular release during HFS and bulk 

endocytosis mechanisms following exocytosis (Bourne et al, 2013). 
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Figure 19: Proposed mechanism of axonal diameter enlargement. 

High-frequency stimulation of axons promotes the exocytosis of neurotransmitter release in 

the presynaptic element leading to an increase in the size of the bouton. This makes the 

overall axonal structure more irregular hence slowing down AP conduction velocity. The 

excess of membrane in boutons subsequently diffuses in the adjacent axon shaft enlarging its 

cross sectional diameter concomitantly with LTP induction. In consequence, larger axon 

diameter and fewer irregularities lead to faster propagation of APs. 

 

The release probability at hippocampal synapses was shown to be highly heterogeneous and 

positively correlates with bouton volume and active zone area (Holderith et al, 2012). This 

parameter is also non-linear with the frequency of stimulation. Typically, HFS produces a 

facilitation quickly followed by a depletion of the readily-releasable pool (Dobrunz, 2002; 

Dobrunz & Stevens, 1997). Considering the stimulus protocol employed in our study (3 times 
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1 second at 100 Hz) and taking a conservative estimate of the release probability at single 

boutons of 0.2 in average (Dobrunz, 2002; Hanse & Gustafsson, 2001; Holderith et al, 2012), 

an average of 60 vesicles have fused to every boutons on the axon during the stimulation.  

In addition, a recent study brought the evidence that exocytosis of neurotransmitter was 

followed by rapid bulk endocytosis within 50-100 ms (Watanabe et al, 2013) which means 

that a part of the membrane coming from the 60 vesicles calculated would be endocytosed. 

Altogether, this scenario involving a net change in the number of vesicles after LTP could 

explain the overall increase axon diameter (Figure 19).  

 

Functional impact of axonal AP velocity modulation on information processing in the 

brain 

The timing of signal transmission between neurons in the hippocampus can be substantial but 

is most of the time ignored in computational studies. This delay in transmission is generally 

described as the sum of axonal conduction that depends on the conduction velocity, the 

axonal length, and the synaptic delay.  

In that regard, CA3 axons conduct APs relatively slowly (0.37 m/s (Meeks et al, 2005); 0.2 

m/s (Soleng et al, 2003b)) because there are thin, irregular and unmyelinated ((Ishizuka et al, 

1990; Meeks et al, 2005; Shepherd & Harris, 1998; Soleng et al, 2003a; Westrum & 

Blackstad, 1962). In addition, an in vivo reconstruction of a full CA3 axon arborisation in the 

rat revealed that some of its collaterals can extend up to 20 mm (Wittner et al, 2007). 

Therefore, propagation times in axons can be as long as 100 ms.  

In our study, we observed a consistent change in the population of axons measured. However, 

STED microscopy limits the imaging to a set of axon stretches in a relatively small field of 

view (~ 30 x 20µm). Therefore, we cannot rule out that the increase of diameter is 

homogenous throughout the axon arborisation. But, assuming that the change is global, the 
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acceleration of the conduction could shorten the AP arrival time by a few milliseconds in the 

distal axon (Figure 20). There is evidence that milliseconds time difference would have a 

significant impact on several hippocampal functions. First, some hippocampal rhythms such 

as gamma (20-70 Hz) and ripples (140-200 Hz) are very fast and suggest that sub-

milliseconds synchronization may be important. Second, delays of propagation are crucial in 

the context of spike-timing dependent plasticity (STDP). The time window for supralinear 

summation of calcium caused by dendritic spikes and synaptic events is on the milliseconds 

scale and determines whether synapses are potentiated or depressed. Knowing that STDP is 

responsible for the formation of synchronized groups of neurons that are strongly 

interconnected, a slight change in axonal delay could remodel those polysynchronous groups 

(Izhikevich, 2006). Third, a few milliseconds change in delay of propagation could largely 

alter the disynaptic inhibition of the postsynaptic neuron.  

Thus, it will be interesting to evaluate whether axon geometry-dependent variations in AP 

delay further increase storage capacity. 

In addition to the modulation of AP propagation properties, it would be interesting to 

investigate whether structural modifications of axon morphology are reflected in a change in 

diffusive properties which would impact axonal transport.  

 

Outlook 

This work, going along with recent discoveries, outline more generally that the computational 

power of axons and their functional impact has been largely underestimated. In biology, it is 

considered that the level of structural complexity scales with the diversity of functions. In 

that regard, both the diversity of the large scale organization of axonal trees, the 

ultrastructural organization of the axon trunk and presynaptic boutons gives us as many 

indications for a variety of functions that remains to be discovered. 
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For instance, by picturing the complexity of axon arborisations in the hippocampus (Major et 

al, 1994; Wittner et al, 2007), emerging ideas supported by biophysical principles are 

challenging the view that APs have a smooth ride from the soma to the presynaptic targets. 

The highly collateralized organization and the presence of many varicose en passant boutons 

may substantially decrease conduction speed and could even lead to failure of propagation. It 

would be interesting to see whether in non-pathological conditions, axons use such 

mechanism to control APs propagation in an arborisation. One could imagine that every 

branch points within a tree would act as a gate for allowing or blocking the passage of an AP. 

This failure of AP propagation was suggested many times (Bucher & Goaillard, 2011; 

Debanne, 2004; Debanne et al, 2011) and experimentally shown, but only in specific 

conditions (Luscher et al, 1994; Manor et al, 1991). 

Another aspect to consider is that the axonal protrusion can be very isolated biochemically 

and electrically from the neuronal cell body. For some cell types, axons can extend up to 

several meters making any signalling from the soma a very slow and non-reliable process. It 

is then likely that the distal axon would be largely influenced by local signalling from its glial 

environment. This concept has emerged recently with two studies from the same group. One 

of those studies demonstrated that the distal part of the axon is electrically isolated as 

compared to the proximal part (Sasaki et al, 2012a). The other shows the influence of 

astrocytes on the local regulation of AP propagation (Sasaki et al, 2011). 

 

Concluding remarks 

In conclusion, this work serves us with novel indicators that beyond the classical scope of AP 

propagation, axons are capable of many structural rearrangements for the plasticity of 

neuronal circuitry.  
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We showed that the morphology with both the irregularity of the structure and the average 

diameter can be directly modulated by neuronal activity. Biophysical theory, computer 

simulations as well as electrophysiological recordings indicate that changes in AP conduction 

velocity are the direct result of structural changes in the axons. 

The emergence of new technologies and the conceptual refinement about axonal properties 

will help to discover many interesting facets of axon physiology and unravel its significance 

for neural computations. 
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Figure 20: Hippocampal axons may serve as dynamic delay lines for information 

transfer. 

The activity-dependent modulation of axonal geometry leading to a change in conduction 

delay could represent a novel type of plasticity whereby axons could control delays of 

transmission impacting several important functions in the hippocampus. 
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APPENDIX 

 

The following pages correspond to the algorithm written in Matlab used for the automated 

analysis of the axon diameters. 

It consists in a main program called ‘axomorph’ and a series of functions used in this 

program. 

 

The figure next page illustrates how the automatic measurement is performed by the program. 

From the image of an axon stretch, a reference line of pixels corresponding to the center of 

the axon stretch (or skeleton) is generated using ImageJ or the home-made function 

‘refcreator’ (A). In order to realize the measure of the cross section diameter, it is necessary 

to find the best orthogonal line at every position. Therefore, for every position (pixel of the 

reference line) a linear fit is performed based on a group of pixels around the position. Then, 

the orthogonal line passing thru the pixel position is calculated (B). The pixel coordinates of 

the orthogonal line are used to collect the intensity values of the axon cross section for the 

position and built the Gaussian-like intensity profile (C). From this, the FWHM value is 

extracted by detecting the edges of the curve at 50 % the maximum. The maximum is defined 

as the average of the three brightest pixels. Then the measurement is reported for the position 

and repeated for the next pixel of the reference line (D). 
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function result = axomorph 
(axoimage,ref,pixsizenm,linewidth,nf,flip,visual) 
  
%% Function that plots the FWHM of an axon at any given section. The x-axis 
% is in µm and the y-axis is in nm. 
%%%%%% Ronan Chéreau %%%%%%% REVISION: November 29, 2012 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%INPUTS: axoimage = the real image containing the axon to be measured 
%        ref = reference line going thru the center of the axon (usually a 
skeletonization of the axon in imagej) 
%        pixsizenm = enter the value of the pixel size resolution of the 
picture (assuming that the pixel is not rectangular) 
%        (auto defined) lfitvector = number of pixels used to make the 
linear fit at every section 
%        (auto defined) limplot = number of pixels value from the axoimage 
to plot at every step 
%        linewitdh = width of the line in pixels 
%        nf = noise filter: allow the user to choose the number of data 
%        points to average in order to smoothen the plot 
%        flip = if you want to inverse the data, flip=1 
%        visual = if you want to visualize the measurement process,visual=1 
% 
%OUTPUTS: 
%        In the figure: show the original axon image; the reference line; 
%        the plot of all the raw data collected; the linear transformation 
%        of the axon and the plot of the calculated FWHM over the distance. 
  
%% Set default value in the inputs if nothing entered 
if nargin==2, pixsizenm=19.5; linewidth=3; nf=2; flip=0; visual=0; end 
if nargin==3, linewidth=3; nf=2; flip=0; visual=0; end  
if nargin==4, nf=2; flip=0; visual=0; end  
if nargin==5, flip=0; visual=0; end 
if nargin==6, visual=0; end 
  
%% Determination of few variables 
taille=size(axoimage);%for later, I will need those limits to avoid the 
program to look for pixels outside of the real image 
%this module is here the correct the reading of the ref. If the values of 
%the background is 255 and the line is 0 then it will make the negative so 
%it does not bug. 
binref=ref>0; %binarize the image 
%binref=check_ref(binref); %invert the values of the image in case the 
background is 1 and the line is 0. automatic check 
  
%% Finds the coordinates of the pixels in the reference image 
xyline=findline2(binref);%see findline2 function 
  
%% Orientation of image for result by determining the distance of the 2 
ends of xyline from the left side of the axoimage. 
dist2ref_1=(xyline(1,1)-fix (size (ref, 1)/2))/(xyline (1, 2)-1); 
dist2ref_2=(xyline(size (xyline,1),1)-fix (size (ref, 1)/2))/(xyline ( size 
(xyline, 1) , 2)-1); 
  
%to delete in the future 
%dist2ref_1=sqrt((xyline(1,1)-fix (size (ref, 1)/2))^2 + (xyline (1, 2)-
1)^2); 
%dist2ref_2=sqrt((xyline(size (xyline,1),1)-fix (size (ref, 1)/2))^2 + 
(xyline ( size (xyline, 1) , 2)-1)^2); 
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if dist2ref_2> dist2ref_1, 
    %flip findline points 
    xyline=flipud(xyline); 
end 
xline=xyline(:,1); yline=xyline(:,2); %just to separate the coordinates in 
2 vectors so the writing is easier for what is coming 
  
%% if a filtering has been applied to the axon picture, sometimes pixels 
has 
%negative values, this puts them to 0. 
for ix=1:taille(1), 
    for iy=1:taille(2), 
        if axoimage(ix,iy)<0, 
           axoimage(ix,iy)=0; 
        end 
    end 
end 
  
%% then I have to be able to use the first 'lfitvector' pixels coordinates 
do all bunch 
%of things and select the next 'lfitvector' pixels at the next pixel and 
repeat etc... 
npoint=size(xyline,1); %returns the number of points in my line 
index=0; 
  
if pixsizenm<=20, lfitvector=30; limplot=30; 
    elseif pixsizenm<=30, lfitvector=30; limplot=24; 
        elseif pixsizenm<=40, lfitvector=22; limplot=30; 
            elseif pixsizenm<=50, lfitvector=10; limplot=8; 
    else lfitvector=8; limplot=10; disp('Warning: the pixel size of the 
image is too big for measuring axons, result might not be accurate...Give 
me more resolution!!!') 
end 
flip_pic=0; 
  
%% Determines the best tangential for a given segment of the axon 
  
%Preallocation of variables 
for ic=1:npoint;  
     if ic+lfitvector<=npoint, 
        index=index+1; 
     end 
end 
axonprofile=zeros(index,2*limplot+1); 
index=0; 
for ic=1:npoint-lfitvector; 
    if ic+lfitvector<=npoint, 
        index=index+1; 
    end 
end 
pixdistfactor=NaN(1,index); 
FWHMraw=NaN(1,index); 
FWHMfilter=NaN(1,index-nf); 
cumul=NaN(1,index); 
line_limit(1,(1:index))=250; 
index=0; 
% 



Appendix 
 
 
 

167 

for ic=1:npoint-lfitvector; 
    if visual==1, 
        axoimage_rep=axoimage; %images represented in the results with line 
moving 
        ref_rep=ref; 
    end 
    if ic+lfitvector<=npoint, 
        index=index+1; %save the position for the returned value 
        Xvectorpass=xline(ic:ic+lfitvector-1);%takes the x coordinates of a 
group of 'lfitvector' pixels  
        Yvectorpass=yline(ic:ic+lfitvector-1);%takes the y coordinates of a 
group of 'lfitvector' pixels  
        %next step is to find how to make a linear regression with this 
        coeff = pixlinefit_5(Xvectorpass,Yvectorpass); %homemade function 
        xrefpix=xline(ic+round(lfitvector/2)); 
yrefpix=yline(ic+round(lfitvector/2)); %determines the coordinates of the 
pixel in the middle of the lfitvector section 
        plotindex=0; %for indexation of the pixel values of the real axon 
image 
        %x=1/coeffortho, see explanation for the if condition 
        if coeff==0; %return the coeff of the perpendicular 
            coeffortho=999999999999999999999999; 
        else coeffortho=-1/coeff; 
        end 
        bortho=yrefpix-(coeffortho*xrefpix); %in the equation of the 
orthogonal line, this determines b in y=ax+b 
        if abs(coeff)<=1, 
            pixdistfactor(index)=sqrt(1+(coeff^2)); 
        else pixdistfactor(index)=sqrt(1+((1/coeff)^2)); 
        end 
         
        for icp=-limplot:1:limplot; %with a big coeff I collect the pixel 
values moving the cursor along the y axis 
            plotindex=plotindex+1; 
            if abs(coeff)<=1, 
            Yplotpoint=yrefpix+icp; 
            Xplotpoint=round((Yplotpoint-bortho)/coeffortho); 
            else Xplotpoint=xrefpix+icp; 
                 Yplotpoint=round((coeffortho*Xplotpoint)+bortho); 
            end 
            bmove=Yplotpoint-(coeff*Xplotpoint); 
            lwindex=0;%index for profile values 
            %preallocation of profilevalue 
            for lwiter= -fix((linewidth-1)/2):ceil((linewidth-1)/2); 
                lwindex=lwindex+1; 
            end 
            profilevalue=zeros(lwindex,1); 
            lwindex=0; 
             
            for lwiter= -fix((linewidth-1)/2):ceil((linewidth-1)/2); 
                lwindex=lwindex+1; 
                numval2avg=0;  %to make the average, I have to size the 
vector excluding the NaN 
                if abs(coeff)<=1, 
                    avgX=Xplotpoint+lwiter; 
                    avgY=round((avgX*coeff)+bmove); 
                else avgY=Yplotpoint+lwiter; 
                     avgX=round((avgY-bmove)/coeff); 
                end 
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                if and(avgY>0,avgY<taille(2)), 
                    if and(avgX>0,avgX<taille(1)), 
                        profilevalue(lwindex)=axoimage(avgX,avgY); 
                        if visual==1, 
                            if flip_pic==0, 
                                axoimage_rep(avgX,avgY)=255; 
                                ref_rep(avgX,avgY)=255; 
                            end 
                        end 
                        numval2avg=numval2avg+1; 
                    else profilevalue(lwindex)=NaN; 
                    end 
                else profilevalue(lwindex)=NaN; 
                end 
                if  numval2avg==0, 
                    axonprofile(index,plotindex)=NaN; 
                else axonprofile(index,plotindex)= 
nansum(profilevalue)/numval2avg; 
                end 
            end 
        end 
    end 
     
    Xmorpho=pixdistfactor*pixsizenm/1000;%returns the real distances in nm 
between the pixels sections  
     
  
     
  %% Calculation of the FWHM with all the profiles collected 
    if visual==0, 
        
FWHMraw(index)=fwhmraw(double(axonprofile(index,:)))*pixsizenm*pixdistfacto
r(index); 
    elseif visual==1, 
        FWHMraw_withline=fwhmraw(double(axonprofile(index,:)),1); 
        FWHMraw(index)=FWHMraw_withline(1)*pixsizenm*pixdistfactor(index); 
        min_linelimit=FWHMraw_withline(2)*pixsizenm*pixdistfactor(index); 
        max_linelimit=FWHMraw_withline(3)*pixsizenm*pixdistfactor(index); 
        halfmax_linelimit=FWHMraw_withline(4); 
    end 
  
     for in=1:index, cumul(in)=sum(Xmorpho(1:in)); end 
  
%% Layout of the result in visualization mode 
if visual==1, 
    min_intensity=min(axoimage(:)); 
    max_intensity=max(axoimage(:)); 
    %normalization for the intensity profile plot 
    axonprofile_norm=axonprofile; 
    for i_plot=1:limplot*2+1, 
        
axonprofile_norm(index,i_plot)=axonprofile(index,i_plot)/max(axonprofile(in
dex,:)); 
    end 
    %halfmax_linelimit=halfmax_linelimit/max(axonprofile(index,:)); 
    %x values for the plot 
    xval_axonprofileindex=NaN(limplot*2+1,1); 
    for i_xval=1:2*limplot+1, 
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xval_axonprofileindex(i_xval)=i_xval*pixsizenm*pixdistfactor(index); 
    end 
     
    figure (1); 
    set(gcf, 'color', 'white'); 
    subplot(5,5,[1:4 6:9]); 
    if taille(2)>taille(1), 
        imshow(axoimage_rep,[min_intensity max_intensity]);figure(gcf); 
    else imshow(axoimage_rep',[min_intensity max_intensity]);figure(gcf); 
    end 
    title('STED image','fontsize',15); 
     
    subplot(5,5,[11:13 16:18]); 
    if taille(2)>taille(1), 
    imshow(ref_rep);figure(gcf); 
    else imshow(ref_rep');figure(gcf); 
    end 
    title('Reference image','fontsize',15); 
    %imshow(axonprofile'/linewidth,[min_intensity 
max_intensity]);figure(gcf); 
    %title('Axon linearization','fontsize',15); 
    colormap(hot) 
  
    subplot(5,5,[10 15 20]); 
    plot(xval_axonprofileindex,axonprofile_norm(index,:),'-
blacko',[min_linelimit max_linelimit],[halfmax_linelimit 
halfmax_linelimit],'r');figure(gcf) 
    set(gca, 'box', 'off') 
    xlabel('(nm)','fontsize',12) 
    ylabel('Normalized intensity','fontsize',12) 
    axis([0 1500 0 1]) 
    title(['FWHM = ', num2str(FWHMraw(index), '%4.0f'), ' 
nm'],'fontsize',15); 
  
    subplot (5,5,21:25); 
    plot(cumul,FWHMraw,'black',cumul,line_limit,'r:');figure(gcf) 
    set(gca, 'box', 'off') 
    xlabel('Position (µm)','fontsize',12) 
    ylabel('FWHM (nm)','fontsize',12) 
    axis([0 16 0 610]); 
    title('Diameter profile','fontsize',15) 
     
    %if FWHMraw(index)<= 200, 
    %    title ('Diameter profile','color','red','fontsize',15); 
    %    hold off 
    %else 
    %    title ('','color','white','fontsize',15); 
    %    hold off 
    %end 
    hold on 
    %saveas(gcf, ['visual' num2str(index)], 'tif'); 
end 
end 
  
%% feature that allow the user to choose how many data point to average in 
order to smoothen the plot. 
for i=1:index-nf, 
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        FWHMfilter(i)=(median(FWHMraw(i:i+nf-1))); 
        cumulfilter=cumul(1:i); 
         
 end 
  
if flip==1; 
cumulfilter=abs(max(cumulfilter)-cumulfilter); 
end 
  
result=[cumulfilter;FWHMfilter]; 
result=result'; 
  
%% Layout of the result in normal mode 
if visual==0, 
    figure (1); 
    set(gcf, 'color', 'white'); 
    subplot(4,4,[1:3 5:7]); 
    if taille(2)>taille(1), 
    imshow(axoimage,[min(axoimage(:)) max(axoimage(:))]);figure(gcf); 
    else imshow(axoimage',[min(axoimage(:)) max(axoimage(:))]);figure(gcf); 
    end 
    title('STED image','fontsize',15); 
     
    subplot(4,4,9:12); 
    imshow(axonprofile'/linewidth,[min(axoimage(:)) 
max(axoimage(:))]);figure(gcf); 
    title('Axon linearization','fontsize',15); 
    colormap(hot); 
     
    subplot(4,4,[4 8]); 
    plot(axonprofile(index,:));figure(gcf) 
    xlabel('Position (µm)','fontsize',15) 
    ylabel('Fluo. intensity','fontsize',15) 
    title(['FWHM = ', num2str(FWHMraw(index), '%3.1f'), 
'nm'],'color','red','fontsize',15); 
     
    subplot (4,4,13:16); 
    plot(cumulfilter,FWHMfilter);figure(gcf) 
    xlabel('Position (µm)','fontsize',15) 
    ylabel('FWHM (nm)','fontsize',15) 
    hold on 
end 
 
 
 
function continuousline=findline2(binref) 
  
%%%%%%%%%%%%%%%%%REVISION: Aug 20, 2012%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%rev Aug 20, 2012: the line is simplified, it looks for the diag pix before 
%horizontal or vert. 
  
%The idea of this is to avoid mistakes for complex forms of axons where in 
%an extreme case, it would make loop, therefore in this case the find 
%function is not strong enough 
%detect the succession of pixels in a line 
%The first part is to identify one end of the line by screening the binary 
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%matrix 
%The second part collect the pixels in a new matrix going from one end to 
%the other 
  
%Made for axomorph 
  
  
%The contour of the image has to be zero in order the the program to not 
%look at the neighbor outside of the picture. And also to make sure that 
%there was no weired processing that gives a contour line on the image. 
binref=binref>0; 
size_mat=size(binref); 
binref(1,:)=0; 
binref(:,1)=0; 
binref(size_mat(1),:)=0; 
binref(:,size_mat(2))=0; 
  
  
%since I'm going to erase the values to find one end of the line, I have to 
%duplicate the matrix. 
binref1=binref; 
  
%%%%1st part: take the coordinates of any pixel of the line%%%% 
[xlin,ylin]=ind2sub(size(binref),find(binref)); %find(binref) returns only 
the pixels containing a 1 
%ind2sub use the size of the matrix to transform the values in x,y 
%coordinates because by default it gives 
% 1 position value per pixel (i.e. 2050 > (50,20)) 
x=xlin(1); y=ylin(1); %this returns the coordinates of the first pixel in 
the %find list pixel which is not necessarily the first of the line 
  
%%%%%2nd part: finding the pixel coordinates of one of the 2 end of the 
%%%%%line. It's screening the positive pixels in the neighourhood, and 
%%%%%since we want to go over all the pixels, it's looking first in 
%%%%%horizontal, then vertical, then both diagonals. Horizontal and 
%%%%%vertical have the priority because in some cases one pixel can have 2 
%%%%%postives neighbours. 
for i=1:size(xlin), 
%    if x<size(binref1(1))-1 & y<size(binref1(2))-1, 
    if binref1(x+1,y)==1, 
        binref1(x,y)=0; %I turn the current positif pixel off, since I 
found %the next. 
        %This way the cursor is polarized and will not go backward    000 
        x=x+1; %it moves the cursor once the condition is verified    011 
              %                                                       000 
    else 
       if binref1(x-1,y)==1,                                       %  000 
           binref1(x,y)=0;                                         %  110 
           x=x-1;                                                  %  000 
       else 
           if binref1(x,y+1)==1,                                   %  010 
               binref1(x,y)=0;                                     %  010 
               y=y+1;                                              %  000 
           else 
               if binref1(x,y-1)==1,                               %  000 
                   binref1(x,y)=0;                                 %  010 
                   y=y-1;                                          %  010 
               else 
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                   if binref1(x+1,y+1)==1,                         %  001 
                       binref1(x,y)=0;                             %  010 
                       x=x+1; y=y+1;                               %  000 
                   else 
                       if binref1(x+1,y-1)==1,                     %  000 
                           binref1(x,y)=0;                         %  010 
                           x=x+1; y=y-1;                           %  001 
                       else 
                           if binref1(x-1,y+1)==1,                 %  100 
                               binref1(x,y)=0;                     %  010 
                               x=x-1; y=y+1;                       %  000 
                           else 
                               if binref1(x-1,y-1)==1,             %  000 
                                   binref1(x,y)=0;                 %  010 
                                   x=x-1; y=y-1;                   %  100 
                               else 
                               end 
                           end 
                       end 
                   end 
               end 
           end 
       end 
    end 
 %   else 
  %  end 
     
end %end of the for loop 
  
%%%%%3rd part: Now that I found one end of the line, I use the same logic 
%%%%%moving the cusor, but now I collect the coordinates along the way 
  
  
linex=0; 
liney=0; 
for idx=2:size(xlin), 
    if binref(x+1,y+1)==1; 
        linex(idx-1)=x+1; 
        liney(idx-1)=y+1; 
        binref(x,y)=0;binref(x+1,y)=0;binref(x-
1,y)=0;binref(x,y+1)=0;binref(x,y-1)=0; 
        x=x+1; y=y+1; 
    else 
    if binref(x+1,y-1)==1; 
        linex(idx-1)=x+1; 
        liney(idx-1)=y-1; 
        binref(x,y)=0;binref(x+1,y)=0;binref(x-
1,y)=0;binref(x,y+1)=0;binref(x,y-1)=0; 
        x=x+1; y=y-1; 
    else 
    if binref(x-1,y+1)==1; 
        linex(idx-1)=x-1; 
        liney(idx-1)=y+1; 
        binref(x,y)=0;binref(x+1,y)=0;binref(x-
1,y)=0;binref(x,y+1)=0;binref(x,y-1)=0; 
        x=x-1; y=y+1; 
    else 
    if binref(x-1,y-1)==1; 
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        linex(idx-1)=x-1; 
        liney(idx-1)=y-1; 
        binref(x,y)=0;binref(x+1,y)=0;binref(x-
1,y)=0;binref(x,y+1)=0;binref(x,y-1)=0; 
        x=x-1; y=y-1; 
    else 
        if binref(x+1,y)==1;                           %  000 
        linex(idx-1)=x+1;                              %  011 
        liney(idx-1)=y;                                %  000 
        binref(x,y)=0; 
        x=x+1; 
    else 
    if binref(x-1,y)==1; 
        linex(idx-1)=x-1; 
        liney(idx-1)=y; 
        binref(x,y)=0; 
        x=x-1; 
    else 
    if binref(x,y+1)==1; 
        linex(idx-1)=x; 
        liney(idx-1)=y+1; 
        binref(x,y)=0; 
        y=y+1; 
    else 
    if binref(x,y-1)==1; 
        linex(idx-1)=x; 
        liney(idx-1)=y-1; 
        binref(x,y)=0; 
        y=y-1; 
    else 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
end 
  
continuousline=[linex',liney']; 
  
end 
  
 
function coeff = pixlinefit_5(X,Y) 
  
%%%%%%REVISION: Nov 29, 2012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Function that returns the coefficient of a linear regression from pixel 
%coordinates 
%Made for axomorph 
  
nbpix=size(X,1); 
X=X'; Y=Y';   
%I will calculate coefficients the lines using pairs of points from the 
%center to the edges of the serie of coordinates, applying a coefficient of 
%importance following a gaussian distribution. The contribution of the 
%values found in the middle is more important than on the edges, I hope it 
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%will give me a very accurate result. 
  
for i=1:fix(nbpix/2), 
    flip_meas=0; 
    if X(i)-X(nbpix-i+1)==0, 
        coeff_pairs(i)=Inf; 
        %what if I could have some +Inf and -Inf 
        else 
            coeff_pairs(i)=(Y(i)-Y(nbpix-i+1))/((X(i)-X(nbpix-i+1))); 
    end 
end 
  
if abs(mean(coeff_pairs))>100,%before was >1, to see for later 
    flip_meas=1; 
    for i=1:fix(nbpix/2), 
    if Y(i)-Y(nbpix-i+1)==0, 
        coeff_pairs(i)=Inf; 
    else coeff_pairs(i)=(X(i)-X(nbpix-i+1))/((Y(i)-Y(nbpix-i+1))); 
    end 
    end 
end 
%coefficient from a normal function in the interval [-2;0] 
s_coeff=size(coeff_pairs,2); 
count=0; 
  
  
for i=-2:4/(2*(s_coeff-1)):0,  
count=count+1; 
y(count)=(1/(sqrt(2*pi))*exp((-i^2))/2); 
end 
%normalization of the gaussian value to 1 
  
for i=1:size(y,2), 
    norm_y(i)=y(i)/sum(y); 
end 
y=norm_y; 
  
tan_coeff=atan(coeff_pairs); 
calc_coeff=zeros(1,s_coeff); 
for i=1:s_coeff, 
    calc_coeff(i)=tan_coeff(i)*y(i); 
end 
sum_tancoeff=sum(calc_coeff); 
if flip_meas==1, 
    coeff=1/(tan(sum_tancoeff)); 
else coeff=tan(sum_tancoeff); 
end 
  
%for test% 
%image=zeros(100,100); 
%for i=1:size(X,1), 
%    image(X(i),Y(i))=1; 
%end 
 
 
function fwhmraw = fwhmraw(plot) 
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%%%%%%%REVISION: April 15, 
2011%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%function that determines the full width half-maximum from a vector that is 
%gaussian-like distributed. 
%plot is the serie of data 
%Made for axomorph 
  
sizeplot=size(plot); 
sizeplot=sizeplot(2); 
avgmin=(nansum(plot(1:5))+nansum(plot(sizeplot-4:sizeplot)))/10; %calcultes 
the minimum of the plot looking at the first 5 values and the 5 last values 
and make an average of it 
maxval=max(plot); %finds the maximum value of the plot 
rankmaxplot=fix(sizeplot/2); 
for i=1:sizeplot, %this loop is just to find the rank of the maxvalue of 
the plot 
    if  plot(i)==maxval, 
        rankmaxplot=i; 
    else 
    end 
end 
  
halfmax=((maxval-avgmin)/2)+avgmin; %obvious enough 
  
index=1; 
minrankhm=0;  
maxrankhm=0; 
  
for ia=-(rankmaxplot-1):-1,      %finds the ranks of the 2 edges of the 
FWHM 
    if  plot(abs(ia))<halfmax,   %starts from the maxvalue and look for the 
ranks that are lower than halfmax, i keep the first found value 
        minrankhm(index)=abs(ia); 
        index=index+1; 
    else 
    end 
end 
  
minrankhm=minrankhm(1); 
index=1; 
  
for ib=rankmaxplot+1:sizeplot, 
    if  plot(ib)<halfmax, 
        maxrankhm(index)=abs(ib); 
        index=index+1; 
    else 
    end 
end 
  
maxrankhm=maxrankhm(1); 
if minrankhm==0,  %from the rank, it determines excatly where it cuts the 
plot at half max (determination of xmin and xmax) 
   xmin=NaN; 
else if plot(minrankhm+1) ~= halfmax, 
        coeffmin=plot(minrankhm+1)-plot(minrankhm); 
        xmin=((halfmax-plot(minrankhm))/coeffmin)+minrankhm; 
     else xmin=minrankhm+1; 
     end 
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end 
  
if maxrankhm==0, 
   xmax=NaN; 
else if plot(maxrankhm-1) ~= halfmax, 
        coeffmax=plot(maxrankhm-1)-plot(maxrankhm); 
        xmax=maxrankhm-((halfmax-plot(maxrankhm))/coeffmax); 
    else xmax=maxrankhm-1; 
    end 
end 
  
if or(isnan(xmin), isnan(xmax)), 
   fwhmraw=NaN; 
else fwhmraw=xmax-xmin; 
end 
 
 
function result=check_ref(binref) 
  
%Revision Setp 13, 2011 
%USED BY AXOMORPH 
%check the reference image that the values of the line is positive and 
%above 0 and that the background is 0, otherwise it does a negative of the 
%image 
  
%returns binref with 0 values for background and 1 values for the line 
  
  
size_binref=size(binref); 
size_x=size_binref(1); 
size_y=size_binref(2); 
%find the coordinates of the pixel in the center of the image 
test_pix_x=fix(size_x); 
test_pix_y=fix(size_y); 
%I look for the ratio of positive pixels in a cross that is representing 
%10% of the picture and in a square. If more than 50% are positive, I 
%inverse the picture 
index_cross_x=0; 
count_x=0; 
for cursor_x=-ceil(0.1*size_x):1:+fix(0.1*size_x), 
    if binref(test_pix_x+cursor_x,test_pix_y)==1, 
        index_cross_x=index_cross_x+1; 
    end 
    count_x=count_x+1; 
end 
  
index_cross_y=0; 
count_y=0; 
for cursor_y=-ceil(0.1*size_y):1:+fix(0.1*size_y), 
    if binref(test_pix_x,test_pix_y+cursor_y)==1, 
        index_cross_y=index_cross_y+1; 
    end 
    count_y=count_y+1; 
end 
  
index_cross_x1=0; 
count_x1=0; 
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for cursor_x=-ceil(0.1*size_x):1:+fix(0.1*size_x), 
    if binref(test_pix_x+cursor_x,test_pix_y-ceil(0.1*size_y))==1, 
        index_cross_x1=index_cross_x1+1; 
    end 
    count_x1=count_x1+1; 
end 
  
index_cross_y1=0; 
count_y1=0; 
for cursor_y=-ceil(0.1*size_y):1:+fix(0.1*size_y), 
    if binref(test_pix_x-ceil(0.1*size_x),test_pix_y+cursor_y)==1, 
        index_cross_y1=index_cross_y1+1; 
    end 
    count_y1=count_y1+1; 
end 
  
index_cross_x2=0; 
count_x2=0; 
for cursor_x=-ceil(0.1*size_x):1:+fix(0.1*size_x), 
    if binref(test_pix_x+cursor_x,test_pix_y+ceil(0.1*size_y))==1, 
        index_cross_x2=index_cross_x2+1; 
    end 
    count_x2=count_x2+1; 
end 
  
index_cross_y2=0; 
count_y2=0; 
for cursor_y=-ceil(0.1*size_y):1:+fix(0.1*size_y), 
    if binref(test_pix_x+ceil(0.1*size_x),test_pix_y+cursor_y)==1, 
        index_cross_y2=index_cross_y2+1; 
    end 
    count_y2=count_y2+1; 
end 
  
all_pixels=count_x+count_x1+count_x2+count_y+count_y1+count_y2; 
all_positive=index_cross_x+index_cross_x1+index_cross_x2+index_cross_y+inde
x_cross_y1+index_cross_y2; 
ratio=all_positive/all_pixels; 
  
%make the negative of the image if the ratio is 50% 
if ratio>0.5, 
    for ix=1:size_x(1), 
    for iy=1:size_y(2), 
        if binref(ix,iy)==0, 
            binref(ix,iy)=1; 
        else binref(ix,iy)=0; 
        end 
    end 
end 
end 
  
result=binref; 
 
 
function ref_image= refcreator(nbtimepoints) 
  
%directly converts the axon image into a reference line to analyse after in 
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%axomorph 
  
dir=cd; 
if nargin==0, nbtimepoints=1; end 
  
for i=1:nbtimepoints; 
  
%auto open the axon images 
axoimage=importfile(['ax' num2str(i) '.tif']); 
  
%sequence of operation to create the reference line 
mean_intensity=mean(axoimage); 
mean_intensity=mean(mean_intensity); 
thres=mean_intensity*3; 
bin_image=axoimage>thres; 
  
a=bwmorph(bin_image,'fill'); 
b=bwmorph(a,'close'); 
c=bwmorph(b,'erode'); 
d=bwmorph(c,'thin',1); 
e=bwmorph(d,'dilate',10); 
  
%result 
ref_image=bwmorph(e,'thin',100); 
  
%save the ref file in the same folder 
imwrite(ref_image,['ref' num2str(i) '.tif'],'tif'); 
  
end 
  
figure (1) 
imagesc(ref_image(i));figure(gcf); 
 
 


