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Notations

General rules

x, X: a scalar.
x: a vector.
xi: the ith component of the vector x.
X: a matrix.
Xij : the component (i, j) of the matrix X.
Xi: the ith column of the matrix X.
x(j): a wavelet coefficients set at a dyadic scale j.
X(j): a subspace at a scale j.

Operators and matrix

X�: transpose of X.
X†: pseudo inverse of X.
X∗: adjoint operator.
I: the Identity matrix.
� x �2, � x �: Euclidean norm.
� x �p: where p > 0, the lp norm defined as � x �p= (

�
i |xi|p)1/p.

� x �0: the pseudo norm l0, the number of non zero components of x.
� x �∞: the infinity norm defined as the maximum component of x.
∗: convolution.

Acronyms

1D: one-dimensional.
2D: two-dimensional.
APERTIF: APERture Tile In Focus.
ASKAP: Australian SKA Pathfinder.
BP: Basis Pursuit.
BPDN: Basis Pursuit Denoising.
CS: Compressed Sensing theory.
CS-CLEAN: Cotton Schwab CLEAN.
DR: dynamic range.
FFT: Fast Fourier Transform.
IS/N : input signal to noise ratio.
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IUWT: Isotropic Undecimated Wavelet Transform.
LOFAR: the LOw Frequency ARray.
MEM: Maximum Entropy Method.
MORESANE: MOdel REconstruction using ANalyis-Synthesis Estimators.
MP: Matching Pursuit.
MRC: Multi-Resolution CLEAN.
MSCLEAN: Multiscale CLEAN.
MWA: Murchison Widefield Array.
PSF: Point Spread Function.
SARA: Sparsity Averaging Reweighted Analysis algorithm.
SKA: the Square Kilometre Array.
SKA1: the Square Kilometre Array - phase one.
S/N : signal to noise ratio.
Tb: Tera-bytes.

Terminology

x: true image of the sky.
y: observed image of the sky, i.e. dirty image.
N : size of the true sky image.
h: the PSF.
v: visibilities.
H: convolution operator; circular matrix corresponding to the PSF.
M: diagonal matrix of size (N,N) with 0 and 1 entries on the acquired visibilities.
B: the CLEAN beam, an elliptical Gaussian corresponding to the resolution of the
instrument.
J : decomposition scale for wavelet analysis.
A: analysis dictionary.
S: synthesis dictionary.
εεε: noise on the visibilities.
n: noise on the image domain.
γ: loop gain.
τ : tolerance parameter.
σ: noise standard deviation.
w(j): wavelet coefficients set at a scale j.
a(j): approximation coefficients set at a scale j.
A(j): subspace at a scale j.
sk(j): structure at a scale j.



Résumé

La problématique

Un radio interféromètre mesure la corrélation du champ électrique reçu par chaque cou-
ple d’antennes dont il est constitué. Considérons un champ électrique monochromatique
(à la fréquence ν), les mesures radio Vν(u, v, w), dites visibilités, sont données par:

Vν(u, v, w) =

�
Iν(l,m)e−2πi(lu+mv+nw) dldm√

1− l2 −m2
, (1)

où Iν(l,m) est l’intensité ou brillance surfacique de la source, (u, v, w) sont les fréquences
spatiales, (l,m) sont les coordonnées en cosinus de la source appartenant au ciel as-
tronomique (voir Fig.1.1).
En faisant l’hypothèse que le champ de vue du télescope est petit et que les antennes
sont placées sur un plan, les visibilités sont réduites à la transformée de Fourier bidi-
mensionnelle de la carte d’intensité Iν(l,m) de la source observée.

Vν(u, v) =

�
Iν(l,m)e−2πi(lu+mv)dldm. (2)

En réalité, le nombre d’antennes étant limité, nous ne disposons que des échantillons de
la transformée de Fourier de l’intensité. Les fréquences spatiales échantillonnées sont
données par la configuration de l’interféromètre et le temps total d’observation. Le
modèle discret de l’imagerie radio-astronomique, que l’on peut écrire en une dimension,
dans l’espace de Fourier est donc le suivant:

v = MFx+ εεε, (3)

où v ∈ RN est un vecteur représentant les visibilités, F est la transformée de Fourier,
x ∈ RN est l’image du ciel de taille N , εεε est un bruit blanc Gaussien qui correspond au
bruit théorique dû aux récepteurs et M ∈ RN×N est une matrice diagonale qui décrit
la fonction d’échantillonnage, la fonction d’étalement (PSF) est donc h = F† diag(M)

où F† est la transformée de Fourier inverse. Dans l’espace image, le modèle devient:

y = F†MFx+ n = Hx+ n, (4)

où y ∈ RN est l’image observée généralement appelée dirty image, H ∈ RN×N est
l’opérateur de convolution; il s’agit d’une matrice dont les colonnes sont des versions
translatées de la réponse de l’instrument h (PSF) à chaque pixel et n ∈ RN est le bruit
dans l’espace image, ce dernier est Gaussien et corrélé.
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Le problème de l’imagerie radio-astronomique consiste alors à la reconstruction de
l’image du ciel x à partir de l’image observée y. Ceci est un problème inverse mal-posé
à cause du sous-échantillonnage; en effet, il existe une infinité de solutions pouvant en-
gendrer les mêmes observations (visibilités ou image observée). L’objectif est d’estimer
la solution la plus approximative à la vraie image du ciel, ceci n’étant possible qu’en
ajoutant une information à priori sur x telle que la positivité s’agissant d’une image de
brillance surfacique.

Malgré les hypothèses de champ de vue petit et antennes coplanaires, ce problème est
d’autant plus complexe, s’agissant de la restauration des images à très forte dynamique
comme c’est le cas des amas de galaxies. Cette scène astronomique contient une variété
de sources, avec des galaxies de morphologies différentes et des sources étendues et
de très faible intensité, qu’on appelle les halos radios. Ces sources sont, en général,
difficilement détectables car elles sont contaminées par le bruit et surtout noyées dans
les lobes secondaires de la PSF.

Figure 1: Image simulée d’un amas de galaxie en échelle logarithmique et de taille
512× 512 (Dabbech, A. et al. 2015; Ferrari et al. 2014)

.

Dans la suite, je présenterai l’outil standard de reconstruction d’images en radio
interférométrie, à savoir l’algorithme CLEAN ainsi que la nouvelle approche qui fait
l’objet du présent travail.

Algorithme standard en radio interférométrie: CLEAN

Proposée par Högbom (1974), l’algorithme CLEAN est l’outil standard de la recon-
struction d’image radio-astronomique. CLEAN doit son succès à sa simplicité et son
efficacité. L’idée de CLEAN consiste à supposer que le ciel est un ensemble de sources
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ponctuelles. A partir de cette hypothèse, CLEAN cherche d’une manière itérative les
points ou les pixels les plus lumineux dans l’image observée, puis enregistre les positions
de ces pics et leurs intensités. La contribution de ces pics est par la suite soustraite
de l’image observée progressivement. L’algorithme s’arrête lorsque le nombre maximale
d’itérations ou le seuil définis par l’utilisateur sont atteints. La carte des positions des
pics et leurs poids correspond à la solution x̂ proposée par CLEAN. Étant constituée
uniquement des points sources (positifs et négatifs), cette image n’a pas de signification
physique. En effet, elle est convoluée par une Gaussienne elliptique (en général, corre-
spondante au lobe primaire de la PSF), à laquelle on additionne la carte du résidu. La
carte finale, appelée l’image restaurée (restored map) est celle qui sera exploitée par les
radio-astronomes.

CLEAN ne réussit pas à bien reconstruire les sources étendues puisqu’il les mod-
élise par des points. Plusieurs variantes de CLEAN ont été proposées dans le but de
l’optimiser (Clark 1980; Schwab 1984) et de s’affranchir de cette limite intrinsèque par
des approches multi-résolution (Wakker & Schwarz 1988; Starck & Bijaoui 1992; Corn-
well 2008). Pourtant, les performances de CLEAN sont conditionnées par l’interaction
de l’utilisateur. En effet, pour en optimiser les résultats, le radio-astronome doit ori-
enter la recherche des pics à travers des boites délimitant les zones de l’image observée
pouvant contenir d’éventuelles sources. A défaut, CLEAN peut détecter de fausses
sources liées au bruit, aussi bien qu’aux artefacts liés à la PSF ou encore à la phase de
calibration des visibilités.

Acquisition comprimée et représentations parcimonieuses

Avec le succès des techniques basées sur l’acquisition comprimée (Compressed Sens-
ing) (Donoho 2006a; Candes et al. 2006), de nouvelles approches ont été développées
récemment montrant la potentiel de cette théorie dans le cadre de l’imagerie radio-
astronomique (Li et al. 2011; Dabbech et al. 2012; Carrillo et al. 2012; Garsden et al.
2015). Ces méthodes permettent de trouver des solutions au problème de reconstruction
d’images radio (en espace Fourier Eq.3 où espace image Eq.4) en ajoutant des régular-
isations de parcimonie de la solution dans des espaces de représentations afin de mieux
contraindre le problème.

La parcimonie de la solution est imposée selon deux approches, à savoir l’approche
par synthèse et l’approche par analyse. S’agissant de la synthèse, elle consiste à supposer
que le signal à reconstruire est une combinaison linéaire d’un nombre petit d’atomes
d’un dictionnaire de synthèse redondant S ∈ RN×M (M � N) c.à.d. x = Sγγγ, s.t. γγγ ∈
RM est parcimonieux.
Le problème Eq.4 devient:

y = HSγγγ + n, avec γγγ est parcimonieux. (5)
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La solution x̂ est alors obtenue par x̂ = Sγ̂̂γ̂γ.
L’approche par analyse suppose que la projection du signal x dans un dictionnaire
d’analyse A ∈ RN×M (M � N)) est parcimonieuse, c.à.d. γ̃̃γ̃γ = A�x est parcimonieux
Le problème Eq.4 devient:

y = Hx+ n, avec A�x est parcimonieux. (6)

Ainsi x̂ est une solution directe du problème.
La parcimonie selon les deux approches est une contrainte morphologique où le signal
est décrit par une famille de fonctions (vecteurs pour la cas discret) déjà fixée. Le choix
des dictionnaires est crucial et dépend de la nature du signal à reconstruire.

Les deux approches sont équivalentes si les dictionnaires S et A sont inversibles.
Or, en général on a intérêt à utiliser des dictionnaires redondants pour favoriser la
parcimonie ainsi avoir une modélisation fine de la solution. Les solutions proposées par
les deux a priori de parcimonie varient selon les dictionnaires, les mesures de parcimonie
et la stratégie adoptée pour résoudre le problème (méthodes gloutonnes ou méthodes
d’optimisation globale).

Nouvelle approche de déconvolution: MORESANE

Dans le présent travail, nous proposons une nouvelle approche de reconstruction d’images
radio-astronomiques basée sur les représentations parcimonieuses, appelée MORESANE
(Model reconstruction by synthesis-analysis estimators). L’approche est hybride dans
ses a priori de parcimonie. En effet, l’image du ciel est modélisée comme étant la super-
position de sources, constituant les atomes d’un dictionnaire de synthèse X, ce dernier
étant inconnu, contrairement à la parcimonie par synthèse conventionnelle,

x =
P�

i

o(i), où o(i) = θθθiXi. (7)

Les atomes du dictionnaire de synthèse X, c.à.d. ses colonnes, sont les sources normal-
isées o(i)

||o(i)||2 présentes dans l’image du ciel à reconstruire, θθθ est le vecteur de coefficients
de synthèse. Au tel cas, le problème Eq.4 devient:

y =

P�

i

Ho(i) + n = HXθθθ + n. (8)

Ces atomes sont estimés à partir de l’image observée par des contraintes de parcimonie
par analyse, en utilisant les ondelettes isotropes non décimées (IUWT). Ces ondelettes,
très utilisées dans l’imagerie astronomique (Starck & Murtagh 2006; Starck et al. 2007;
Starck et al. 2011), donnent lieu à des dictionnaires redondants. Leur particularité
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réside dans leur capacité à construire un arbre d’objets à partir des coefficients d’analyse
(Bijaoui & Rué 1995). Nous exploitons cette propriété dans le cadre de la déconvolution
afin d’imposer des contraintes de parcimonie par analyse sur les sources à estimer.

A chaque itération i, le résidu r(i), initialement donné par l’image observée y, est
analysé par le dictionnaire d’analyse. Le vecteur d’analyse ααα(i) = A�r

(i) est débruité
par un seuillage brut où les statistiques du bruit sur les plans d’ondelettes sont estimées
en utilisant la variation de l’écart absolu à la médiane (MAD) (Johnstone & Silverman
1997; Starck et al. 2011). Une fois le coefficient d’analyse maximal wmax localisé, le plan
d’ondelette j qui lui correspond ainsi que la structure à laquelle appartient la position
de wmax sont identifiés. Cette structure est associée à la source la plus brillante dans
r(i). Les structures de la même échelle j ayant un niveau de brillance similaire sont
également identifiées. Toutes ces structures sont par la suite connectées à celles aux
échelles précédentes, moyennant une loi de connexion inter-échelle (Bijaoui & Rué 1995).
L’ensemble de ces structures constitue α̃αα(i), la signature des sources les plus brillantes
dans le résidu r(i) à l’itération i. Ainsi, ces sources sont estimées conjointement comme
étant un seul objet ô(i), à partir de la signature α̃αα(i) comme suit:

ô(i) = argmin
o(i)

� α̃αα(i) −Wo(i) �22, où (H�A)�o
(i)

est parcimonieux. (9)

W = D(i)A�H, où D(i) une matrice diagonale ayant comme entrées 0 et 1; D(i)
kk = 1

si α̃αα(i)
k > 0 and 0 sinon. La parcimonie imposée sur la projection de l’objet o(i) dans

le dictionnaire H�A est structurée puisqu’elle est donnée par les coefficients d’analyse
α̃αα(i) identifiés comme expliqué précédemment.

On impose également la positivité de ô(i). Pour résoudre Eq.9, on utilise l’algorithme
de Gradient Conjugué (Biemond et al. 1990). Une fois estimée, uniquement une fraction
de la contribution de ô(i) est soustraite du résidu dans le but d’éviter les artefacts liées
à la sur-estimation des objets. L’algorithme s’arrête lorsque le bruit sur le carte du
résidu est atteint, sinon, on recommence la recherche et l’estimation des objets les plus
brillants à l’itération suivante.

L’algorithme est adapté aux images du ciel constituées par des sources compactes
brillantes (ponctuelles ou résolues) et des sources étendues de faible intensité, tel est le
cas des amas de galaxies (voir Fig.1). Les sources brillantes sont estimées en premier
d’une manière itérative et leur contribution est soustraite progressivement de l’image
observée. Ainsi, les sources de faible luminosité, en particulier les sources étendues sont
estimées en dernier.

Afin d’étudier la performance de MORESANE, nous avons effectué des simulations
d’observations réalistes en utilisant l’interféromètre MeerKAT (un précurseur de SKA) à
l’aide du logiciel Meqtrees (Noordam & Smirnov 2010). Les données correspondent à des
observations d’un amas de galaxie, dont l’image (voir Fig.1) est une simulation réalisée
par l’outil FARADAY (Murgia et al. 2004). La comparaison avec l’algorithme CLEAN
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et sa variante multi-échelle MS-CLEAN montrent que MORESANE est beaucoup plus
performant. MORESANE a été comparé avec de nouvelles approches d’acquisition
comprimée telles que SARA (Carrillo et al. 2012) et IUWT-based CS (Li et al. 2011).
En particulier, SARA est à présent l’état de l’art pour la reconstruction d’images en
radio astronomie. Il s’agit d’une approche favorisant la parcimonie par analyse en
utilisant une concaténation de huit dictionnaires. Les résultats de comparaison de
MORESANE avec SARA sur deux images de test (l’image d’ un amas de galaxie et
l’image de l’émission HII dans la galaxie Andromède) montrent que MORESANE est
très compétitif (voir 4.4).

Nous avons également appliqué MORESANE à des images d’amas de galaxies
simulées avec SKA1 (SKA dans sa première phase de construction). L’émission syn-
chrotron donnant lieu à la composante non thermique (telle que le halo radio) dans
les amas de galaxies est jusqu’à présent peu détectée vu sa faible brillance surfacique.
Grâce à la sensibilité de SKA, on s’attend à observer cette émission, si elle existe dans
un amas de galaxies.

Des simulations d’observations d’un amas de galaxies avec SKA1 pour des décalages
vers le rouge différents montrent qu’avec les nouveaux algorithmes de reconstruction
d’images, notamment avec MORESANE, on sera capable de détecter, en conséquence,
étudier la composante non thermique dans l’amas de galaxie jusqu’à un décalage vers
le rouge z = 1, ceci n’étant pas possible avec les outils de reconstruction d’images
standards, à savoir CLEAN et sa variante multi-échelle MS-CLEAN.



Introduction

Nous vivons actuellement la renaissance de la radio astronomie grâce à la nouvelle
génération des radio interféromètres, s’agissant des instruments déjà existants et mis
à jours (à titre d’exemple, JVLA aux États Unis, ATCA en Australie, APERTIF aux
Pays-bas) ou bien de radio interféromètres nouvellement construits à travers le monde
(LOFAR, ASKAP, MeerKAT, MWA ..). Tous ces instruments sont entrain d’ouvrir la
voie pour le plus large radio télescope au monde qui sera construit à partir de 2017, le
Square Kilometre Array (SKA). Ce dernier doit son nom à sa surface collectrice effective
qui sera approximativement égale à un kilomètre carré.

Ces instruments vont opérer à des fréquences radio entre 30MHz et 14GHz, avec
une largeur de bande allant jusqu’à 1GHz; ils permettront ainsi une analyse détaillée
de l’index spectral de l’émission synchrotron (tel est le cas dans les amas de galaxies,
considérés dans ce travail). Leur surface collectrice totale (issue des dizaines voire
milliers d’antennes avec des bases maximales arrivant à des centaines de kilomètres)
assurera une très haute sensibilité aux sources radio de très faible brillance surfacique.
En outre, leur champ de vue très large nous permettra d’observer des régions très
étendues du ciel à la fois. Grâce à ces caractéristiques, nous aurons accès à des relevés
du ciel très profonds, dotés d’une très haute résolution angulaire.

SKA couvrira un domaine de recherche très large, allant des sujets galactiques à
l’extra-galactiques; à savoir, la nature de la gravité, l’origine et l’évolution du mag-
nétisme cosmique, l’époque de la ré-ionisation et l’étude de la formation et de l’évolution
des galaxies. L’impact scientifique de SKA en liaison avec les observations du contin-
uum radio est récemment étudié par Prandoni, Seymour et le SKA Continuum Surveys
Science Working Group (Prandoni & Seymour 2014a,b), dans le cadre de la préparation
scientifique de SKA.

La belle science à laquelle on s’attend avec SKA donne lieu à des difficultés tech-
niques à relever. En effet, les observations brutes de SKA seront caractérisées par leur
taux de données énorme (420 Gb/s par antenne et 16 Tb/s par réseau d’antennes).
Elles devront ainsi être traitées en temps réel. Seules les images finales seront archivées,
tandis que les données brutes seront jetées. Il est alors indispensable de développer
des nouvelles techniques de traitement de données très avancées, capables de corriger
avec précision les erreurs de propagation et des récepteurs, aussi bien que des tech-
niques d’imagerie robustes capables de reconstruire des images astronomiques à très
forte dynamique.

Dans ce travail, on s’intéresse au problème d’imagerie en radio astronomie, qui con-
siste à restaurer la vraie image du ciel à partir de l’image observée, celle ci étant la
transformée de Fourier inverse des visibilités. L’image observée n’est autre que l’image
du ciel altérée par la réponse impulsionnelle de l’instrument et contaminée par le bruit.
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Figure 2: Les relevés de référence de SKA1 en comparaison avec les relevées exis-
tants/planifiés dans le futur par ses précurseurs, uniquement les relevés à fréquence
entre 1-3 GHz sont présentés; l’axe x représente la profondeur (à la limite du flux 5σ)
et l’axe y représente la surface du ciel couverte (Prandoni & Seymour 2014b).

Vu le sous-échantillonnage des visibilités, la solution n’est pas unique, ainsi le prob-
lème est mal-conditionné. L’algorithme standard utilisé en radio astronomie est le
CLEAN. Malgré son succès depuis quarante ans, dû à sa simplicité, son efficacité est
souvent fortement dépendante de l’interaction du radio astronome. L’objectif est alors
de développer une nouvelle approche de reconstruction d’images capable de fournir une
approximation très fiable du ciel observé.

Dans le premier chapitre de ce manuscrit, je décris le problème d’imagerie en radio
astronomie dans sa forme bidimensionnelle simplifiée, où les effets de la propagation
sont négligés. Je présente également une vue d’ensemble des différentes techniques de
reconstruction d’images utilisées. Dans le deuxième chapitre, j’introduis les représen-
tations parcimonieuses et leur application en imagerie radio. Le troisième chapitre est
destiné au modèle de vision multi-échelle, initialement proposé par Bijaoui & Rué (1995)
dans le cadre de l’extraction des sources astronomiques (galaxies, étoiles..) en utilisant
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des dictionnaires redondants et invariants par translation.
Je propose une extension de ce modèle pour la déconvolution dans le quatrième

chapitre, comme étant des a priori de régularisation afin de mieux conditionner le prob-
lème radio. Je présente par la suite le nouveau algorithme de déconvolution qu’on
appelle MORESANE. La méthode est gloutonne et combine deux types d’a priori de
parcimonie; la parcimonie par synthèse où le dictionnaire de synthèse est initialement
inconnu; ses atomes sont les sources astronomiques présentes dans le ciel à restaurer,
estimés avec des a priori de parcimonie par analyse. J’expose les résultats obtenus par
MORESANE sur des simulations réalistes d’observations en comparaison avec les outils
standards ainsi que les approches récemment proposées dans la littérature. Dans le
cinquième chapitre, MORESANE est appliqué dans le cadre d’une étude de faisabilité
avec SKA1, dont le but consiste à enquêter la détéctabilité de l’émission synchrotron
dans les amas de galaxies, en particulier, les sources radio diffuses, étendues et de très
faible brillance surfacique.





Introduction

We are currently living in the so-called "renaissance" of radio astronomy thanks to
the upgrade of existing radio telescopes (such as the JVLA in the United States, The
ATCA in Australia and the APERTIF at the WSRT in the Netherlands) and the huge
development of new radio telescopes all over the world that are paving the way to the
largest radio telescope ever built: the Square Kilometre Array (SKA). The instrument
owes its name to its receivers collecting areas, reaching one square kilometer when added
up. SKA pathfinders such as LOFAR are being built to help in the preparation of the
SKA science and technology, along with its precursors (ASKAP, MWA, MeerKAT)
which will be part of the SKA.

The extended spectral coverage (30MHz–14GHz) of all these telescopes, as well as
their wide bandwidth (up to 1GHz) will allow us to perform detailed analysis of the
synchrotron spectral index of sources of synchrotron radiation (such as galaxy clusters
considered in this work). The total collecting area of these arrays (made up by tens
or even hundreds of antennas up to maximum baselines of hundreds of kilometers) will
ensure high angular resolution and sensitivity and to very faint radio sources and low
confusion. Their big field of view will give us the possibility to observe huge regions
of the sky simultaneously. These properties result in the unprecedented capacity of
performing deep, extended and high resolution radio continuum surveys of the sky (see
Fig.3), that is of great interest for the science case related to this work.

A very wide research area will be covered, going from galactic to extra-galactic
topics, which include the nature of gravity, the origin and evolution of cosmic mag-
netism, the epoch of re-ionization and the study of galaxies formation and evolution.
The big impact of the SKA on science cases related to continuum radio observations has
been recently reviewed by Prandoni, Seymour and the SKA Continuum Surveys Sci-
ence Working Group (Prandoni & Seymour 2014a,b), in the framework of the scientific
preparation to the SKA.

The beautiful science expected by the SKA gives rise to technical challenges. SKA
raw observations are characterized by their huge data rate (420 Gb/sec per dish and
16 Tb/sec per aperture array). As a matter of fact, they will have to be processed on
real time, only the recovered images will be archived, while the raw collected data will
be shortly thrown away. Therefore, there is an urgent need for highly advanced data
processing techniques, able to correct accurately for propagation and receivers errors,
and for robust imaging techniques able to recover astronomical images with a very high
dynamic range.

In this study, we focus on the radio imaging problem which consists in the recovery
of the true sky image out of the observed sky, that is the inverse Fourier transform of
the visibilities. The observed image is the true sky blurred with the impulse response
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Figure 3: SKA1 reference surveys in comparison with existing and/or planned surveys
for the near future with SKA pathfinders, where only surveys with observing frequencies
in the range 1-3 GHz are shown; the x-axis represents depth (5σ flux limit) and the
y-axis is the covered area (Prandoni & Seymour 2014b).

of the instrument to a point like source of unit brightness at the phase center and is
contaminated by the noise. The imaging problem is an ill-posed inverse problem since
the solution is not unique due to the sub-sampling of the collected data on the Fourier
domain. The standard imaging technique is the CLEAN algorithm. Despite its success
during the past forty years for its simplicity and rapidity as an algorithm, CLEAN is
highly user dependent. We aim to develop a new image reconstruction technique which
gives the best meaningful approximation of the true sky image and able to recover
images with very high dynamic range.

In the first chapter of the manuscript, we provide the description of the radio in-
terferometric imaging problem in its simplified two-dimensional theoretical formalism,
where we ignore the propagation effects and suppose an accurate modeling of the in-
strument response. We also present an overview of standard imaging tools in radio
astronomy. In the following chapter, we present sparse representations and an overview
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of recent research carried out in this area for the application to radio imaging.
In the third chapter, we explain the multiscale vision model, originally developed

by Bijaoui & Rué (1995) for source extraction (i.e. galaxies, stars..) in astronomical
images based on redundant shift-invariant dictionaries. We provide its extension in the
framework of image deconvolution in the fourth chapter, as a regularization prior to the
imaging problem. We describe the new deconvolution algorithm named MORESANE.
The algorithm is greedy and iterative, combining complementary types of sparse re-
covery methods; a synthesis approach is used for reconstructing images, in which the
synthesis atoms, representing the unknown astronomical sources, are learned from the
observed image. We also present the results of the algorithm on fully realistic simula-
tions of radio images with a comparison of its performance to the standard tools and
the newly developed algorithms. In the fifth chapter, we apply MORESANE in the
framework of a feasibility study with the SKA1 aiming to investigate the detectability
of non-thermal emission in galaxy clusters, observed as faint extended and very low
surface brightness sources.





Chapter 1

Radio interferometric imaging
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Introduction

An antenna measures electromagnetic waves coming from a distant cosmic source. Since
the distance of the emitting source from Earth is very large, the radial information i.e.
the depth of its intensity distribution can not be measured. What we really measure is
the projection of its surface brightness on the so-called celestial sphere, defined as the
sphere with the largest radius R within which there is no radiating source.

A radio interferometer, that is an array of two antennas or more, measures the
spatial coherence of the electric field Eν at a pair of locations r1 and r2, defined as
Vν(r1, r2) = �Eν(r1),E

∗
ν(r2)�. The van Cittert-Zernike theorem relates the spatial co-

herence Vν(r1, r2) to the intensity distribution Iν(s) of the incoming radiation on the
celestial sphere and the direction r1 − r2, called baseline (Thompson et al. 2001). In
fact, the relation can be reduced to a two-dimensional Fourier transform in some cir-
cumstances.

1.1 The radio-interferometric imaging problem

In this section, we will explain the van Cittert-Zernike theorem, based on Chengalur
et al. (2007); Taylor et al. (1999), in order to derive the radio interferometric imaging
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problem considered in this study. For simplicity reasons, let us consider a monochro-
matic component Eν(r) of the electric field at a frequency ν (note that the total electric
field can be easily determined by a summation of all the frequency components). Let
us also assume that the electric field is a scalar instead of a vector phenomenon, thus
ignoring polarization.

Let εν(q) be the distribution of the electric field on the celestial sphere at a radial
direction q, the measured electric field Eν(r) by an antenna at a location r is given by:

Eν(r) =

�
ε(q)

e2πiν||q−r||/c

||q− r|| dS, (1.1)

where c is the speed of light and dS is a surface element on the celestial sphere. The
cross correlation of the electric fields received by two antennas, termed visibility, is thus
given by:

Vν(r1, r2) =

� �
εν(q1)ε

∗
ν(q2)

e2πiν||q1−r1||/c

||q1 − r1||
e−2πiν||q2−r2||/c

||q2 − r2||
dS1dS2. (1.2)

Assuming the spatial incoherence of the cosmic source’s radiation i.e. �εν(q1), ε
∗
ν(q2)� =

0, ∀q1 �= q2 and the great distance of the sources from the celestial sphere and Earth
i.e. ||q− r|| � ||q|| = R, Eq. 1.2 becomes:

Vν(r1, r2) =

�
Iν(s)e

−2πiν(||Rs−r2||−||Rs−r1||)/cdΩ. (1.3)

where Iν(s) ≡ �εν(s)2� is the intensity at the location s ≡ q

R
on the celestial sphere

and the element dΩ = dS
R2 . Considering the coordinate system (x, y, z) whose origin

is on the baseline r1 − r2, the z−axis pointing towards the source reference point s0
on the celestial sphere, the (x, y) plane is perpendicular to the z−axis and selected
according to the Earth’s rotation. In radio interferometry, it is customary to rather
use the coordinates (u, v, w) in units of wavelength, that are u = x/λ, v = y/λ and
w = z/λ, with λ = c/ν. On the other hand, in the same system (x, y, z), the coordinates
of a location s on the celestial sphere is given by (x�, y�, z�) with x� = R cos(θx) = Rl,
y� = R cos(θy) = Rm and z� = R cos(θz) = Rn, (l,m, n) are called direction cosines
and verify l2 +m2 + n2 = 1 and dΩ = dldm√

(1−l2−m2)
. Let (u, v, w) be the components of

r1 − r2 and (l,m, n), the components of s, Eq.1.3 becomes:

Vν(u, v, w) =

�
Iν(l,m)e−2πi(lu+mv+nw) dldm√

1− l2 −m2
. (1.4)

Obviously, the spatial coherence depends on the baseline and not the individual loca-
tions of the antennas.
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Figure 1.1: A distant source observed by a pair of antennas.

The spatial coherence of the electric field described by Eq.1.4 can be reduced to a
2D Fourier transform in two cases; the radio interferometer is planar, meaning measure-
ments are confined on the plane (u, v) which implies w = 0 and/or the source is within
a very narrow field of view, hence n ≡

√
1− l2 −m2 � 1. Under both assumptions,

which we will adopt in this work, the visibility Vν(u, v) reduces to the Fourier transform
of the source surface brightness Iν(l,m):

Vν(u, v) =

�
Iν(l,m)e−2πi(lu+mv)dldm. (1.5)

If the measurements of the visibilities are provided for all the points in the (u, v) domain,
then the image of the sky, that is the source intensity Iν(l,m), can be recovered directly
by the inverse Fourier transform of the visibilities.

Iν(l,m) =

�
Vν(u, v)e

2πi(lu+mv)dudv. (1.6)

In practice, we are limited by a finite number of antennas in the array. Hence, we
do not have access to a complete (u, v) domain, but rather, to sampled visibilities on
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specific (u, v) points. Yet, it is possible to further fill the (u, v) domain without adding
more antennas. Since the radio sky is not changing, with the exception of transient
radio sources, with an array of a pair of antennas, we can measure the required Fourier
components only by moving one antenna with respect to the other. The process of
filling the (u, v) domain gradually is called aperture synthesis. Doing so by using only
a couple of antennas is not practical, luckily Earth is doing it much faster. In fact, as
the Earth rotates, the coordinates (u, v) of a baseline r1 − r2 change continuously as
the reference system depends on the reference source s0 in the radio sky. And so, the
sampling of the (u, v) domain gets denser, especially with longer observation time, see
Fig.1.2.

Figure 1.2: Simulated uv-coverage of the MeerKAT telescope with 64 antennas. From
left to right, uv-coverage for 8 hours and 2 hours of observations.

The available (u, v) measurements define the so-called uv−coverage which depends
on the configuration of the array (i.e. the positions of the antennas), the minimal and
maximal distances between the pair of antennas, the frequency bandwidth, the total
time of the observations and the time slot for averaging the electric signals received by
a pair of antennas (Levanda & Leshem 2010).

A sampling function M(u, v) mapping the available visibilities is thus introduced
and the measured visibilities are given by:

V mes
ν (u, v) = M(u, v)

�
Iν(l,m)e−2πi(lu+mv)dldm, (1.7)

and the observed image of the sky, usually referred to by the dirty image, is:

Iobsν (l,m) =

�
M(u, v)Vν(u, v)e

2πi(lu+mv)dudv. (1.8)



1.1. The radio-interferometric imaging problem 19

From Eq.1.8, the dirty image Iobsν (l,m) turns out to be the true sky Iν(l,m) convolved
with the so-called Point Spread Function B(l,m), that is the inverse Fourier transform
of the sampling function M(u, v), also known as the dirty beam.
In practice, the antenna is sensitive to the direction of the radio signal, it is then more
accurate to introduce its reception pattern Aν(l,m), the so-called primary beam, in the
description of the spatial coherence function as follows:

V mes
ν (u, v) = M(u, v)

�
Aν(l,m)Iν(l,m)e−2πi(lu+mv)dldm. (1.9)

Usually, the primary beam is taken into account after imaging, where the intensity
image Îν is simply divided by Aν (if all the antennas are identical). By doing so, we
correct for the intensity estimation, yet errors are amplified in the regions far from the
tracking center, this is due to the structure of the pattern Aν which falls rapidly to zero
except in the vicinity of the tracking direction. Therefore, the correction of the primary
beam in practice is to be done with care during calibration, in particular for sources
far from the center. Since we consider small fields of view, we will ignore it throughout
this study.

The measured visibilities are contaminated by an additive noise coming mainly
from the receivers. The noise in each receiver is independent. Therefore, the noise on
the visibilities is usually approximated to be a Gaussian white noise on both real and
imaginary parts of the visibilities with the same statistics. The zero-frequency (u, v) =

(0, 0) is usually not considered in radio interferometry. In fact, the autocorrelation of
the signal received by one antenna amplifies the noise, unlike the cross correlation of
two different measurements of the electric signal from a pair of antennas which reduces
the noise. As a consequence, the total flux of the true sky image, an information given
by the zero-frequency component, is missing and in fact, it is null on the dirty image.
On the other hand, due to the finite sampling on the Fourier domain, the PSF has
infinitely decreasing sidelobes and because of the missing (u, v) = (0, 0) component,
these sidelobes have positive and negative values, see Fig.1.3.
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Figure 1.3: Simulated dirty beams of the MeerKAT telescope with 64 antennas. From
left to right, the dirty beams for 8 hours and 2 hours of observations.

1.1.1 Data processing prior to imaging

Visibilities are subject to linear operations prior to obtaining the dirty image with the
inverse Fourier transform, known as calibration. In order to be able to use the Fast
Fourier Transform, visibilities have to be on a regular and rectangular 2D grid (i.e.
matrix). To do so, the continuous measurements are interpolated using a convolution
kernels corresponding to truncated functions (to avoid aliasing) and then sampled on
the regular grid. This operation, called gridding, is part of the calibration process and is
compulsory for practical computational approximation. Calibration also include other
operations that are beyond the aim of this study, to correct for the propagation and
receivers errors and take into account the primary beam. To preserve the simplicity of
the radio imaging problem, we are interested in the weighting operation only. Let M

be the number of measurements in the (u, v) gridded plane.
The weighting consists in assigning different weights on the visibilities to indicate

their reliability and to monitor the shape of the dirty beam, thus affecting the final
dirty image in terms of resolution and sensitivity depending on the scientific goal (the
observed radio sky). The weighting function can be written as (Taylor et al. 1999):

W (u, v) =

M�

1

RkTkDkδ(u− uk, v − vk), (1.10)

The function Rk indicates the reliability of the visibilities with respect to the ther-
mal noise. The latter depends on the temperature of system, the integration time and
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bandwidth on which the visibilities are averaged. The tapering function Tk is a smooth-
ing function of radius, usually a Gaussian, it allows to deemphasize visibilities on the
boundaries of the (u, v) plane. It is equivalent to a convolution with a Gaussian in
the image domain, and so it lowers the dirty beam sidelobes yet, at the expense of
the resolution. The density function Dk is used to have a good compromise on the
sensitivity and resolution in the dirty image depending on the scientific goal. There are
three schemes of density weighting:

• Dk = 1, called the natural weighting, this means that all visibilities are treated
alike, preserving the natural S/N peak of the array. Usually, we have more low
spatial frequencies than the higher ones. Hence, the resolution of the dirty image
is low and the sensitivity is high (see left of Fig.1.4).

• Dk = 1/Ns(k), called the uniform weighting where Ns(k) is the number of mea-
surement within a symmetric region of the (u, v) plane and s is the characteristic
width of the region. This scheme gives more weight on the high spatial frequencies,
since they are usually less sampled than the lower ones (see middle of Fig.1.4).
Consequently, it enhances the resolution yet compromises the sensitivity.

• The Briggs weighting, called the robust weighting is a hybrid scheme of the uni-
form and the natural weighting and provides a good trade off between the sensi-
tivity and resolution (see right of Fig.1.4).

In practice, combining the three weighting functions has to be done with care to reach
the scientific goal.

Figure 1.4: Simulated PSFs of the MeerKAT telescope for 8 hours of observations,
corresponding to different weighting schemes. From left to right: natural, uniform and
Briggs weighting schemes.
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1.1.2 Imaging formalism

Hereafter, images will be considered as vectors for simplicity reasons. In the formalism
of the imaging problem, we assume that visibilities lie on a perfect grid. The radio
imaging problem in Fourier domain is:

v = MFx+ εεε, (1.11)

where F is the Fourier transform, M is a diagonal weighted sampling matrix and x is
the sky image of size N , εεε is a white Gaussian noise. The radio imaging problem in the
image domain is:

y = F†MFx+ n = Hx+ n, (1.12)

where F† is the inverse Fourier transform, H is the convolution operator; a circular
matrix of size N×N , whose columns are shifted versions of the point spread function h

at every pixel position, n is the noise in the image domain which is now Gaussian and
correlated, due to the sampling. The theoretical noise εεε on the visibilities corresponds
to the thermal noise. For identical antennas, the standard deviation of the thermal
noise on both real and imaginary parts of the complex visibility is the same and is
given by (Thompson et al. 2001):

σ =

√
2kTsys

Aeff

√
Δντ

. (1.13)

The noise is inversely proportional to the square root of the bandwidth Δν and the inte-
gration time τ . The rest of the equation depends on the antennas and the receiver. The
system temperature Tsys is a combination of the receiver temperature representing the
internal noise from the receiving amplifiers and the antenna temperature representing
the noise from the antenna coming from ground radiation, atmospheric emission, cosmic
background and other sources. Note that the effective temperature T is expressing the
power P of a random noise and is given by T = P

kΔν , where k is Boltzmann’s constant.
The effective aperture also called the effective area Aeff represents the power captured
from a given plane wave and delivered by the antenna. In practice, calibration errors
are added to the noise. Hence, reaching the thermal noise level after deconvolution is
strongly dependent to the calibration process.
Let np = 1

2na(na − 1) be the combination of all pairs of antennas, na is the number of
antennas. The standard deviation of the noise in the image domain is given by:

σim ∝ 2kTsys

Aeff

�
na(na − 1)Δντ0

, (1.14)

where τ0 is the total observation time.
The reconstruction of the true sky image out of the dirty image is a deconvolution

problem. Because of the missing measurements on the (u, v) plane, the solution is not
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unique and the problem Eq.1.12 is ill-posed. Therefore, priors should be added to the
problem in order to have a better conditioning.

In this work, we are interested in the deconvolution of galaxy clusters’ radio im-
ages. Galaxy clusters host a wide variety of sources with a very high dynamic range:
unresolved and resolved very bright radio galaxies with different morphologies (point
like sources, elongated sources..), and diffuse extended faint emission such as the radio
halos. Image recovery of galaxy clusters is difficult due to the high dynamic range;
faint diffuse emission is usually completely buried in the PSF sidelobes of bright radio
galaxies and the noise which makes it challenging to recover.

Figure 1.5: Simulated image of a radio galaxy cluster of size 512 × 512, shown in log
scale because of its high dynamic range.

1.2 Standard deconvolution algorithms for radio imaging

The radio imaging problem is a deconvolution problem, where the aim is to remove the
PSF from the dirty image. In this section, we will expose two common algorithms: the
CLEAN and the Maximum Entropy Method. We will focus mainly on CLEAN since it
is the reference algorithm in radio-interferometric imaging.

1.2.1 The CLEAN algorithm and its variants

The CLEAN algorithm is the mainstream algorithm for the deconvolution of radio
images. Besides its efficiency, CLEAN owes its success in radio imaging for its simplicity,
where no knowledge in optimization is required, and its rapidity as a technique. The
main idea behind CLEAN comes essentially from the definition of the dirty beam that is
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simply the dirty image of a point source in the sky. Hence, the dirty image is considered
as a set of δ functions convolved with the PSF, in other words, CLEAN assumes that
the radio sky is made of point sources within an empty background.

1.2.1.1 Basic CLEAN algorithms

Several variants of CLEAN, originally introduced by Högbom (1974), have been devel-
oped to optimize the search for point sources, two main variants are explained in the
following: Clark CLEAN and Cotton-Schwab CLEAN.

Högbom CLEAN
The classical CLEAN proceeds as the following; at each iteration, it looks for the
highest peak in the dirty image. At the very same pixel position, CLEAN removes a
PSF multiplied by the peak intensity and a dumping factor γ, called the loop gain. The
pixel position and the amplitude are added to the CLEAN model image (i.e. the solution
of the deconvolution) as a δ function, usually referred to by a CLEAN component. The
algorithm stops when a threshold (dependent on the noise level in the dirty image) or
a maximum number of iterations is reached.

The subtraction of the CLEAN components is done either on the image domain or on
the (u, v) domain. The second option is usually adopted to overcome the inaccuracies
induced by the gridding. Because the model image of CLEAN does not have any
physical meaning (extended sources are modeled by a collection of points sources), the
final restored CLEAN image is the CLEAN model image convolved with the so-called
CLEAN beam, usually an elliptical Gaussian fitting the primary lobe of the PSF, and
to which the residual image is added.

The loop gain γ, usually set to be in [0.01, 0.2] plays an essential role in the stability
of the algorithm; in fact it prevents the over estimation of the point source’s pixel value.
Furthermore, CLEAN takes into account negative point sources in order to compensate
for the spurious positive components, hence ensuring the stability of the technique. In
addition, user defined areas, believed to host genuine sources are usually considered in
CLEAN during the search of peaks. These are termed CLEAN boxes ; they are binary
masks allowing to better constrain the degrees of freedom in the problem of the data
fitting. However, the use of such constraints implies a continuous interaction of the
radio astronomer. In fact, during deconvolution, when the brightest peaks are removed,
fainter sources start to appear in the residual images and so new boxes have to defined.

Clark CLEAN
The Clark variant of CLEAN was developed by Clark (1980). The algorithm is a faster
implementation of the classical CLEAN through the use of minor and major cycles.
During the minor cycle, the Clark variant looks for the peak’s pixel position in the
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residual image (that is initially the dirty image), where it subtracts rather a beam
patch, that is a truncated PSF consisting of the primary lobe and the first sidelobe
only. The recovered CLEAN components in the minor cycle are above a brightness
limit corresponding to a fraction of the highest pixel. The fraction is defined from the
beginning of the major cycle as the ratio of the highest peak in the dirty image over the
highest sidelobe of the PSF outside the beam patch. While the removal of only a part of
the PSF during the minor cycle creates inaccuracies in the residual image, artifacts are
corrected for in the major cycle, where their contribution is removed at once directly
from the ungridded visibilities.

Cotton-Schwab CLEAN (CS-CLEAN)
In Schwab (1984), the author presents an improved variant of the Clark CLEAN, where
the CLEAN components are subtracted from the ungridded visibilities during the minor
cycle. An additional advantage of the CS-CLEAN algorithm is its ability to proceed
by multiple sources removal at each iteration from the minor cycle, by working at
separate patches of the dirty image. CLEAN components from all the fields are removed
simultaneously from the visibilities during the major cycle.

1.2.1.2 Advanced CLEAN variants

Inherently, CLEAN is designed for the recovery of point sources. While the loop gain, by
mitigating the influence of bright point sources, allows to recover the extended emission
which is detected through several peaks, CLEAN is still suboptimal in the recovery of
such emission and usually leaves part of the extended source in the residual. Advanced
CLEAN algorithms have been proposed in the literature to overcome this limitation.

Multi-Resolution CLEAN (MRC)
Multi-Resolution CLEAN, developed by Wakker & Schwarz (1988), consists in decom-
posing the dirty image into two images; the first is a smoothed version of the dirty image
(it corresponds to low spatial frequencies in the dirty image, where extended emissions
lie) and the second is the difference image (it corresponds to the high spatial frequencies
in the dirty image, where point sources lie). A basic CLEAN algorithm is applied on the
smooth image and the difference image, separately, using the respective scaled, smooth
dirty beam and difference dirty beam. Restored images are obtained using a smooth
CLEAN beam and a difference CLEAN beam and are then combined to obtain the
final restored image. The MRC requires 3 parameters; the smoothing function and two
loop gain factors used during the cleaning of each image. The main advantage of this
strategy lies in recovering the extended emission with much less components. While it
is faster in the presence of extended sources in the dirty image, it can be very slow in
comparison with the classical CLEAN when the dirty image contains compact sources.
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In Starck & Bijaoui (1992), authors provide a generalization of MRC using wavelets.
The idea is to apply the classical CLEAN on each wavelet plane in order to determine
the pixel positions of the peaks, the strengths of the CLEAN components at each wavelet
plane are estimated iteratively in order to minimize the distance between the measured
visibilities and the estimated visibilities and so no loop gain is used. The approach is
generally more robust than the MRC as the noise statistics can be estimated directly
from the wavelets, and thus only significant peaks with respect to noise are removed
from the data.

Multiscale CLEAN (MSCLEAN)
Cornwell (2008) proposes a multiscale generalization of CLEAN where extended sources
are recovered using extended components instead of Dirac components. While MRC
works on the different scales sequentially, MS-clean considers all the scales at the same
time. The idea is to convolve the dirty image with scaling functions having a finite
extension in order to be able to use CLEAN boxes. A paraboloid is generally preferred
as a scaling function. At the scale zero, it becomes the Dirac function, thus ensuring
an optimal recovery of point sources.

The detection of the highest peak is done globally i.e. on all the versions of the dirty
image at the different scales. Once its position and scale are identified then stored, its
contribution is removed from all the convolved images. Iteration stops when a user
threshold or a maximum number of iterations is reached. By this procedure, each
CLEAN component added to the estimated model image will have the extension of its
scale of detection. MSCLEAN proved to outperform CLEAN in general, especially for
the reconstruction of extended sources. However, the good performance of MSCLEAN
strongly depends on the choice of scales which are specified by the user a priori.

1.2.2 The Maximum Entropy deconvolution Method (MEM)

Together with CLEAN, the Maximum Entropy deconvolution Method (Jaynes 1957) is
a standard algorithm for radio imaging, yet it is less popular than CLEAN. As infinity
number of solutions can fits the measured visibilities, the MEM solution is the one
that satisfies the positivity constraint and most likely has been created randomly. The
formalism in MEM is an optimization problem with a regularization prior that is the
entropy. The regularization factor α which is a trade off between the fidelity to data
and the entropy has to be chosen with care; large values of α lead to a smooth solution
hence a loss of resolution, while small values lead a solution with a lot of irregularities
on the model image. Different variants of MEM have been developed using wavelets
and multi-resolution techniques, improving the efficiency of the method (e.g. Starck &
Pantin 1996; Maisinger et al. 2004).
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Conclusion

The radio imaging problem can be simplified to a 2D inverse problem. So far, the
CLEAN and its variants have shown to be very efficient in the reconstruction of radio
images. However, CLEAN requires a strong and careful user interaction. However, the
new generation of radio telescopes, in particular the SKA, require real time and auto-
matic imaging techniques. During the last twenty years, compressive sensing techniques
have been very successful in several image precessing applications. Since the radio imag-
ing problem fits within the framework of the compressive sensing theory (Wiaux et al.
2009a,b), substantial work has been carried out so far in this direction. In the next
chapter, we will present an overview of the application of sparse representations and
compressive sensing to radio imaging.
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Introduction

Sparsity consists in assuming that a signal can be described using only few elements.
This concept has induced tremendous achievements in diverse signal processing appli-
cations. One of the earliest application is compression (JPEG, JPEG2000), which is
natural given that a signal is reduced to few elements in a specific domain. Sparsity
has been further adopted in other applications such as denoising, inverse problems, in-
painting (that is the process of reconstructing the missing or deteriorated parts of an
image, Bertalmío et al. 2000), etc. During the last decade, sparsity has been extended
to the compressed sensing theory (CS), that is based on the principle that if a signal is
inherently sparse in some domain, it can be recovered through optimization techniques
using only very small number of samples below the Shannon-Nyquist sampling rate,
provided that the sparsity domain is incoherent with the sensing operator (CS, Donoho
(2006b); Candès et al. (2006)). The radio interferometric imaging problem in its sim-
plified form seemed a natural application of the CS theory, where data are acquired on
few points from the Fourier domain. Yet, in practice, some assumptions made in CS do
not necessarily hold, such as a random acquisition system. In radio interferometry, the
sampling function has a pattern defined by the array configuration and the observation
time (see Fig.1.2). Nevertheless, sparse representations, which remain a key ingredient
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of the CS theory have proved to be very promising in solving the radio-interferometric
imaging problem.

2.1 Sparsity and data representations

2.1.1 Definition of sparsity

Considering discrete signals in RN , a signal is said to be strictly sparse if only few
of its components are nonzeros. In such case, only the positions and values of these
components are required. The sparsity measure of a signal x is given by the �0 pseudo-
norm:

� x �0= #(i|xi �= 0), (2.1)

that is the number of its nonzero elements.
In general, signals are not strictly sparse. Hence, the sparsity definition is relaxed; a

signal is called weakly sparse or compressible, if it has very few significant components
while the remaining ones are of very low magnitudes. The signal can be easily ap-
proximated by its significant components where the most of the energy is concentrated
(the energy of the signal is given by its euclidean norm � x �22). The approximation
error depends on the energy left on the low-magnitude components of the signal. The
sparsest approximation possible of the signal is given by the number of its significant
elements.

2.1.2 Data representations

A real signal x is not necessarily sparse even in the sense of the relaxed sparsity. How-
ever, it can be approximated by a sparse signal y on a specific space/domain depending
on its morphology. Intuitively, let us consider the signal of size N , x ∈ RN where
xi = 1, ∀i. The signal x can be easily sparsified in the Fourier basis, where it is repre-
sented by one component, a Dirac. Sparse representations can be generalized to more
domains.

Considering the space D defined by a spanning set of unit-norm vectors D =

{d(i)}i=1...M , where M ≥ N . The sparse representation γγγ of a signal x in the space D

is such that:
x ≈

�

i

γγγid(i), (2.2)

where γγγi are the decomposition coefficients or the weights. The space D is called a
dictionary and {d(i)}i=1...M are called its atoms. The signal x is approximated as
x ≈ Dγγγ.
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The sparse approximation problem becomes:

min
γγγ

� γγγ �0, s.t. x ≈ Dγγγ. (2.3)

The dictionary D does not have to be orthogonal. In fact, the more redundant the
dictionary D is (i.e. M � N , and in this case it is called over-complete), the more sparse
the representation γγγ can be, thanks to the wide range of elements in the dictionary.
When doing the analogy with languages, the richer the language is, the fewer words
you need to express an idea into a sentence. Yet, the choice of the representation space is
crucial and depends on the nature of the signals. A wide variety of data representations
have been developed in the literature, such as discrete cosine transform (DCT, 2-D
plane waves), wavelets (localized patterns in time and frequency), ridgelets (Candès &
Donoho 1999), curvelets (elongated and curved patterns Starck et al. 2003), to name
a few (see Mallat 2008; Starck et al. 2010, for details on these representations.). An
over-complete dictionary D can be a concatenation a several sub-dictionaries (Chen
et al. 1998; Gribonval & Nielsen 2003).

2.1.3 Sparsity measures

The natural sparsity measure is the �0 norm given by Eq.2.1. However, computing a
sparse approximation of the signal x by minimizing the �0 norm is combinatorial and
is proved to be NP-hard problem (Davis et al. 1997). The �0 norm is not convex, the
solution can not be found with polynomial complexity algorithms. Therefore, the �0
norm is often relaxed with the �1 norm, that is the sum of the absolute values of the
signal elements, and so the approximation problem becomes convex:

min
γγγ

� γγγ �1, s.t. x = Dγγγ. (2.4)

In Donoho (2006c), the author shows that, under some sparsity conditions, the �1 so-
lution is an approximation of the �0 solution. While �1 norm is the most common
sparsity measure, �p norms1 can also be adopted for 0 < p < 1 since they promote spar-
sity (�p norms, p > 1 do not), however they yield non convex optimization problems.

2.2 Sparsity promoting approaches in deconvolution

Inverse problems in real applications (say, astronomical and biomedical imaging) are ill-
posed, and so they do not have a unique stable solution, but rather an infinite number
of solutions which can fit the acquired data. Hence, maximum likelihood approaches
aiming to estimate the signal that best fits the data are not sufficient to solve such
problems. Therefore, additional information on the solution is required and can be

1For a vector x, �pp =
�

i |xi|p.
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added to the inverse problem as regularization terms. Besides the positivity prior, the
sparsity priors have been very successful in image reconstruction.
When injecting priors into the inverse problem, the problem becomes of the form:

min
x

φfidelity(y,x) + φprior(x), (2.5)

with:

• φfidelity(y,x) is the fidelity to data term, that is the distance between the available
noisy data y and the possible measured data given the signal x, depending on
the noise statistics. The distance is the euclidean norm (�2 norm) for an additive
independent and identically distributed Gaussian noise.

• φprior(x) is the regularization term corresponding to the additional information
on the signal to be estimated, i.e. its sparsity in some domain in the present case,
often given by the �1 norm.

In the literature, two sparse priors are considered: the synthesis prior and the analy-
sis prior. While both approaches are equivalent for complete (invertible) and under-
complete (M < N) dictionaries, they are shown to be very different in the case of
over-complete dictionaries (Elad et al. 2007).

Synthesis-based approach
The synthesis-based sparsity approach assumes that the signal to be recovered is a linear
combination of few atoms (i.e. columns) of a given over-complete synthesis dictionary
S ∈ RN×M (M � N).

x = Sγγγ, with γγγ ∈ RM is sparse. (2.6)

The model in the image domain given by Eq.1.12 becomes:

y = HSγγγ + n, with γγγ sparse. (2.7)

With this regularization, the problem is solved indirectly by finding the sparsest
representation γγγ of the signal x in the fixed synthesis dictionary S. The estimated
model is then synthesized through the sparse synthesis vector γγγ as x = Sγγγ.

Analysis-based approach
The analysis-based sparsity approach assumes that the projection of the signal x to
be recovered onto a given over-complete analysis dictionary A ∈ RN×M (M � N) is
sparse.

γ̃̃γ̃γ = A�x is sparse. (2.8)

The model becomes:
y = Hx+ n, with A�x sparse. (2.9)
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The estimated model is the direct solution to the problem and the sparsity is implied
on γ̃̃γ̃γ, the projection of the signal x on the analysis dictionary A.

In the synthesis approach, the atoms of the dictionary S correspond to geometrical
features that are likely to describe the unknown signal, while in the analysis approach,
the atoms of the analysis dictionary A impose geometrical constraints. Both approaches
can be solved using greedy approaches 2or global optimization approaches.

The cost function to minimize using a greedy approach includes only a fidelity to
data term and the sparsity in its strict sense (�0 sparsity) is achieved by construction.
A general method promoting sparsity is the Matching Pursuit (MP). In the synthe-
sis framework, Mallat & Zhang (1993) present an algorithm consisting in a sequential
search for atoms from the synthesis dictionary S that are decreasing the fidelity to data
term. These atoms are the ones that best correlate with the data. Once identified,
their weight is computed and added to the synthesis vector γγγ and their contribution is
removed from the data. The estimated image is synthesized at last as x̂s = Sγγγ.

In the analysis framework, an example of the MP algorithm, proposed in Nam et al.
(2011) aims to identify the set of atoms that are the least correlated to the signal x,
hence it gives the freedom to the signal to correlate with the remaining atoms of the
analysis dictionary A. The set is initially the dictionary A. After each update of the
signal x, the atom that correlates the most with it is removed from the set. Iteratively,
the number of the correlated atoms to the solution increase.

The MP methods do not necessarily reach the global optimum solution to the prob-
lem, rather an approximation of it. When using orthogonal dictionaries, MP gives
satisfactory results when the adequate dictionaries are considered with respect to the
nature (i.e. morphology) of the desired signal. However, in the case of redundant dic-
tionaries, where atoms are correlated, the algorithm might choose the wrong atoms in
the beginning, then has to correct such mistake afterwards (Chen et al. 1998).

The global optimization approaches aim to solve the problem by minimizing the
cost function that includes both the fidelity to data term and the sparsity term. Using
the Lagrangian, and in the case of independent and identically distributed Gaussian
noise, both synthesis x∗

s and analysis x∗
a solutions are given by:

x∗
s = S.{argmin

γγγ

1

2
� HSγγγ − y �22 +µ � γγγ �pp}, (2.10)

x∗
a = argmin

x

1

2
� Hx− y �22 +µ � A�x �pp . (2.11)

2A greedy approach addresses the problem locally, i.e. at each step, it looks for the immediate
solutions (set of objects) to rather small instances of the problem. However, the optimal solutions to
smaller instances do not necessarily yield the optimal overall solution. A drawback of such approach,
is that once a decision has been made, it can not be reconsidered.
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The hyper-parameter µ is a trade off between the fidelity to data penalty and the
sparsity prior penalty. The minimization problem corresponding to the particular case
p = 1 is called the Basis Pursuit denoising (BPDN) in optimization (Chen et al. 1998).
Several algorithms are proposed in the literature to solve this problem (e.g., Beck &
Teboulle 2009; Combettes & Pesquet 2011; Chambolle & Pock 2011).

Analysis versus Synthesis
The sparsity-promoting approach aims to sparsify the signal in a sparse representations
space whether through its sparse projection γ̃̃γ̃γ = A�x or its reconstruction as a linear
combination of few atoms x = Sγγγ. In the case of invertible dictionaries, the synthesis
and analysis approaches are equivalent; the synthesis and analysis dictionaries satisfy
SA� = I and γγγ = γ̃̃γ̃γ. However, solutions depart when dictionaries are over-complete.
In fact, results differ depending on the choice of dictionaries, the sparsity measures (�p
norms) and also the strategy to solve the problem (greedy method or global optimization
method). Yet, in Elad et al. (2007), authors show in Theorem 4, that for any analysis
approach of the form Eq.2.11 using the �1 norm as a sparsity measure, it exists a
synthesis dictionary describing an equivalent synthesis approach of the form Eq.2.10,
the reverse is not true. Hence, synthesis-based sparsity approach is more general in this
sense.

So far, there is no definite answer regarding which sparsity promoting approach
is better. Intuitively, the synthesis approach seems to take more advantage of the
dictionaries’ redundancy, allowing it to have a fine modeling of complex signals. While
in the analysis approach, the projection of the signal will be less sparse as the signal will
agree with a large number of atoms. On the other hand, the number of the unknowns
in the synthesis approach might be very large as it is the number of the atoms, while
in the analysis case it remains the number of the components in the signal.

Regarding robustness, the analysis approach is usually preferred. In the synthesis
approach, important weight is given to the selected atoms in the reconstruction of the
desired signal, any wrong choice of atoms may lead to more erroneous selections, thus
affecting badly the final solution. The analysis approach, in this sense, does not specify
how the signal is correlated to specific atoms, instead it determines the atoms with
which the signal is not correlated, meanwhile giving it the freedom to correlate with
the remaining atoms with equal chances. More general and theoretical results on how
both approaches compare remain an active and growing research subject.

2.3 Sparse representations in radio interferometric imaging

The CLEAN, that is the reference algorithm for image reconstruction of the radio-
interferometric data, fits indeed within the sparse representations framework. In fact,
CLEAN is a matching pursuit algorithm (Mallat & Zhang 1993), where the synthesis
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dictionary is the identity matrix I. The highest correlations of the data with the dictio-
nary H ∈ RN×N made of PSFs (its atoms are shifted versions of the PSF in every pixel
position) are identified and their contribution is removed from the data. The CLEAN
solution is synthesized with point sources at the positions of the highest correlations.

In radio astronomy, several approaches have been proposed solving the inverse prob-
lems of the forms Eq.2.7 and Eq.2.9, whether in the image domain or the Fourier domain.
The choice of dictionaries is crucial though. Wavelets dictionaries have been extensively
used in astronomy, yet they are limited when describing anisotropic sources. Other dic-
tionaries have been designed to well describe such sources, as an example, the curvelets,
designed to recover elongated and filamentary sources. A concatenation of dictionaries
have been also adopted in order to describe the most possible features in the astronom-
ical scene.

Among the recent works, four publications using different sparsity priors have shown
very promising results in image reconstruction on realistic simulations of radio obser-
vations related to the pathfinders and the precursors of the SKA. We will focus here on
these methods since they are considered as the state of the art algorithms.

Partial Fourier CS-based and IUWT CS-based
The CS-based algorithm presented in Li et al. (2011), is a synthesis approach solving
the radio interferometric imaging problem in the Fourier domain (see Eq.1.11) and
formulated in the following:

min
γγγ

� MFSγγγ − v �22 +λ � γγγ �1 . (2.12)

The problem is solved using the fast shrinkage-thresholding algorithm (FISTA) (Beck &
Teboulle 2009). Two different synthesis dictionaries are used: the identity matrix I for
the Partial Fourier CS-based and the isotropic undecimated wavelet transform (IUWT)
for the IUWT CS-based. The first dictionary is suitable to recover a sky made of point
sources while the second is more relevant for a sky with extended sources. The choice
of either dictionaries depends on the scientific goal.

The LOFAR sparse image reconstruction
The proposed approach in Garsden et al. (2015) is a synthesis approach solving the
augmented Lagrangian form:

min
γγγ

� TSγγγ − v �22 +
�

j

λj |γγγ(j)|. (2.13)

where λj is a regularization parameter dependent on the decomposition scale j of the
synthesis dictionary S. The operator T is not restricted to the sampling function as
in Eq.1.11, instead it includes the instrumental and propagation direction-dependent
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effects (assumed to be corrected for during calibration and ignored in Eq.1.11). The
problem is solved using FISTA. Unlike the synthesis approach in Li et al. (2011), the
regularization parameter λ is not fixed; it is scale dependent and estimated through
noise statistics on the decomposition scales, and so the algorithm is more robust to
false detections. Garsden et al. (2015) adopts two different synthesis dictionaries: the
curvelets and the IUWT dictionaries. So far, it is the only new approach applied on
real LOFAR data.

SARA/PURIFY
The SARA algorithm proposed in Carrillo et al. (2012) is an analysis-based approach
solving the problem of the form Eq.2.9 with �1 minimization in order to promote average
sparsity on the analysis prior:

min
x

� WA�x �1 s.t. � v −MFx �2< ε, (2.14)

where W ∈ RM×M is a diagonal matrix with positive weights. The dictionary A is a
concatenation of the first 8 orthonormal Daubechies wavelets basis, the first basis is the
Haar wavelet basis, used to preserve the edges and the remaining bases are promoting
smooth sparse decomposition. The parameter ε is a bound on the �2 norm of the fidelity
to data term that is fixed a priori for an i.i.d white Gaussian noise on the visibilities. The
problem is a re-weighted BPDN solved using the Douglas-Rachford splitting algorithm
(Combettes & Pesquet 2011).

SARA has been extended to PURIFY (Carrillo et al. 2013). PURIFY is designed to
handle continuous visibilities and proposes an algorithmically sophisticated framework
enabling scalability to large-scale problems using the simultaneous-direction method of
multipliers (SDMM).

Hybrid synthesis-by-analysis approach
Dabbech et al. (2012) has proposed a hybrid analysis-by-synthesis greedy approach
solving for the radio interferometric problem in the image domain given by Eq.1.12.
The desired signal x is modeled as a sum of few objects, which, unlike the classical
synthesis priors, are unknown. These atoms are learned through structured IUWT-
analysis-based sparsity from the observed image. The MORESANE algorithm that we
propose in this work is an elaborated version of this algorithm, adapted to realistic
radio interferometric observations.

Conclusions

In this chapter, we have introduced the sparse representations theory which has a huge
success in image processing. Sparsity priors are very powerful regularizations to better
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constrain the ill-posed inverse problems. We have described two sparsity promoting
approaches; the synthesis and the analysis models and we have exposed the new de-
convolution algorithms, promoting one of the two sparsity approaches, that are now
defining the new state of the art for radio interferometric imaging.
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Introduction

The Isotropic Undecimated Wavelet Transform (IUWT) and its reconstruction are
widely used in astronomical imaging. Thanks to their translation invariance, redun-
dancy along with their isotropy, IUWT dictionaries allow fine modeling of astronomical
sources usually more or less isotropic (stars, galaxies . . .).

Bijaoui & Rué (1995) presents a multiscale vision model allowing an automatic
detection and extraction of astronomical sources, which tend to be hierarchically dis-
tributed. Starck et al. (2011), introduced an extension of the vision model to deconvo-
lution problem, however the approach requires a sufficiently well behaved PSF (i.e.with
very shallow sidelobes) in order to converge.

3.1 The IUWT: translation invariant dyadic transform

Considering ψ a normalized wavelet function, with zero average, its corresponding
wavelet transform decomposes one dimensional signal f ∈ L2(R) over a dictionary
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D, whose atoms are shifted and dilated wavelets,

D = {ψu,s(t) =
1√
s
ψ(

t− u

s
)}(u,s)∈R×R+ (3.1)

into the following analysis coefficients

Wf(u, s) = �f,ψu,s� =
� +∞

−∞
f(t)

1√
s
ψ(

t− u

s
) dt = f ∗ ψ̄s(u), (3.2)

where
ψ̄s(t) = ψs(−t) =

1√
s
ψ(

−t

s
). (3.3)

If a real wavelet function ψ satisfies the weak admissibility condition, that is:

cψ =

� +∞

0

|ψ̂(ω)|2
ω

dω < +∞, (3.4)

where ψ̂ stands for the Fourier transform of ψ, then any continuous real function f

satisfies:

f(t) =
1

cψ

� +∞

0

� +∞

−∞
Wf(u, s)

1√
s
ψ(

t− u

s
) du

ds

s2
(3.5)

and � +∞

−∞
|f(t)|2 dt =

1

cψ

� +∞

0

� +∞

−∞
|Wf(u, s)|2 du

ds

s2
. (3.6)

In such a case the wavelet function ψ is complete and ensures energy conservation of
any signal f ∈ L2(R). Note that the admissibility condition imposes that the wavelet
function has a zero average.

When the wavelet transform is available only for scales s < s0, a complementary
information which corresponds to wavelets on the missing scales is required in order
to recover the signal f . A function φ, called the scaling function, is introduced as the
aggregation of the remaining low-frequency information of the signal f for scales higher
than 1 (Mallat 2008) and the modulus of its Fourier transform verifies:

|φ̂(ω)|2 =
� +∞

1
|ψ̂(sω)|2ds

s
=

� +∞

ω

|ψ̂(ξ)|2
ξ

dξ. (3.7)

Adopting the sampling of the scale s through an exponential sequence {v j}j∈Z, in
particular a dyadic sequence (v = 2), the dyadic wavelet transform of a real signal f is
defined by (Mallat 2008):

Wf(u, 2j) = �f,ψu,2j � =
� +∞

−∞
f(t)

1√
2j

ψ(
t− u

2j
)dt = f ∗ ψ̄2j (u). (3.8)
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In Mallat (2008), the author shows that the dyadic wavelet transform defines a complete
and stable representation.

For the discrete case, let’s consider a continuous function f0(t) ∈ L2(R) defined over
[0, 1] and f [n] the discrete signal obtained by low-pass filtering of f0 through a uniform
sampling at intervals 1

N . With the assumption that both φ and f are periodic, the
discrete dyadic wavelet transform of f [n] is given by:

Wf [n, 2j ] =

N−1�

0

f [n]ψ∗
2j [n− k], (3.9)

where ψ2j [n] = 2−jψ( n
2j
).

The following notations will be adopted from now on for clarity reasons.

• w(j) denotes a vector, it corresponds to the analysis coefficients set at a dyadic
scale j,

• w(j)[k] denotes the k-th component of the vector w(j).

With an abuse of language, we will refer to dyadic scales using the index j.

3.1.1 Multiresolution analysis

A multiresolution scheme has been introduced by Mallat (2008), where the signal f [n]
is projected on embedded subspaces V0 ⊃ V1 ⊃ ...Vj−1 ⊃ Vj ... of approximations
corresponding to 1

2j
resolution. The initial subspace V0 corresponds to the full resolution

that is the original discrete signal f [n], that is a low-pass filtered version of a continuous
function denoted f0 (see previous paragraph). The subspace Vj−→∞ corresponds to the
coarsest version of the signal with no details. Each subspace Vj is invariant by any
translation proportional to the dyadic scale j and contains all the information needed
to obtain a coarser approximation at a resolution 1

2j+1 .
The approximations a(j) = {a(j)[k]}k∈Z are the inner products of the signal and a

dilated at scale 2j and translated version of a scaling function φ, defining the subspace
Vj . From a 1-Dimensional prospect, for a given pixel position k, the approximation
coefficients at the dyadic scale j are:

a(j)[n] = �f(x), 1

2j
φ(

x

2j
− n)�. (3.10)

The scaling function φ verifies the dilation equation:

1

2
φ(

x

2
) =

�

m

h[m]φ(x−m), (3.11)
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hence, ensuring the embedding of the subspaces Vj . h is a discrete, low-pass, analysis
filter whose impulse response is given by:

∀k ∈ Z, h[k] =
1

2
�φ(x

2
),φ(x− k)�. (3.12)

The initial approximation a0[n], is thus the inner product of the original continuous
signal f0 and {φ(x−m)}m∈Z:

a0[n] = f [n] = �f0(x),φ(x− n)�. (3.13)

Considering a wavelet function ψ, the wavelets coefficients at the dyadic scale j are:

wj [n] = �f(x), 1

2j
ψ(

x

2j
− n)�. (3.14)

This coefficients set belongs to the detail subspace Wj . The latter is defined by the
dilated and scaled version of the wavelet function that is generated from the scaling
function φ by:

1

2
ψ(

x

2
)

� �� �
∈W1⊂V0

=
�

m

g[m]φ(x−m) (3.15)

where g is a discrete, high-pass, analysis filter. The choice of the low-pass filter h and
the high-pass filter g is such that both subspaces Wj and Vj are complementary in the
subspace Vj−1.

The wavelet coefficients wj are indeed the lost information on the signal during its
projection from the subspace Vj−1 to the smoother subspace Vj . In this scheme, wavelets
and approximations are down-sampled by a factor of 2 from one scale to another:

a(j+1)[n] =
�

k

h[k − 2n]a(j)[k], (3.16)

w(j+1)[n] =
�

k

g[k − 2n]a(j)[k]. (3.17)

The signal is recovered only if the basis is orthogonal. In such a case, the multiresolution
is well defined through the scaling function, more precisely the low-pass filter only. The
high-pass filter, hence the wavelet function, is derived in the following way:

∀n ∈ Z, g[n] =
1

2
�ψ(x

2
),φ(x− n)� = (−1)1−nh[1− n]. (3.18)

To recover the original signal f [n], two other filters h̃ and g̃ are introduced as
conjugate filters of h and g. These filters define the dual functions φ̃ and ψ̃ of the
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respective scaling function φ and the wavelet function ψ. The reconstruction of the
signal is obtained according to the following scheme:

a(j)[n] = 2
�

l

a(j+1)[l]h̃[n+ 2l] +w(j+1)[l]g̃[n+ 2l] (3.19)

For an exact recovery, the filter bank [h, g, h̃, g̃] must verify

• the dealising condition

ĥ[ν +
1

2
]
ˆ̃
h[ν] + ĝ[ν +

1

2
]ˆ̃g[ν] = 0, (3.20)

• the exact restoration condition

ĥ[ν]
ˆ̃
h[ν] + ĝ[ν]ˆ̃g[ν] = 1. (3.21)

The analogy between multiresolution and filter banks has been initially demonstrated
for orthogonal basis Mallat (2008) and extended for a larger class of filter banks by
Daubechies (Daubechies 1988). Although orthogonal wavelets have demonstrated their
efficiency on several applications such as compression, they are limited in image recovery
because of their lack of translation invariance (due to the recursive downsampling) which
usually results in artifacts related to the misalignment between the features of the signal
and the wavelets. In the following, we explain the à trous algorithm which provides a
discrete dyadic transform with a well preserved translation invariance.

3.1.2 The à trous algorithm

The à trous algorithm, originally proposed by Holdschneider et al. (1989), adopts the
same logic as Mallat filtering with low-pass and high-pass filters to obtain approxima-
tions and wavelets at each dyadic scale. In this scheme, both the wavelet and the scaling
functions verify the dilation equations:

1

2
φ(

x

2
) =

�

m

h[m]φ(x−m) (3.22)

1

2
ψ(

x

2
) =

�

m

g[m]φ(x−m) (3.23)

The particularity of the à trous algorithm consists in considering interlaced approx-
imations, where no subsampling is conducted as in the case of the orthogonal wavelets
explained in the previous paragraph. Given the initial approximation a(0), at each
dyadic scale j, the approximations set a(j−1) is filtered separately by both the low-pass
and high-pass filters to obtain the coarser approximations set a(j) and the wavelets set
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w(j). The filtering is performed on the even samples and the odds samples separately.
Then, the two filtered samples are interlaced to have a coefficients set (wavelets set or
approximations set) of the same size as the original signal.

Analytically speaking, at each dyadic scale j, the approximation coefficients are:

a(j)[n] =< f(x), 2−jφ(
x− n

2j
) > . (3.24)

The dilation equations Eq.3.22, Eq.3.23 lead to:

a(j+1)[n] =
�

m

h[m]a(j)[n+m2j ] = (h(j) ∗ a(j))[n], (3.25)

w(j+1)[n] =
�

m

g[m]a(j)[n+m2j ] = (g(j) ∗ a(j))[n]. (3.26)

where h(j)[k] = h[k] if k/2j is integer and 0 otherwise, i.e. it contains 2j − 1 zeros
(holes, which explains the name of the algorithm) between its nonzero elements. The
filter g(j) follows the same scheme.

The implementation of the à trous algorithm consists in conducting convolutions
of each approximation a(j) with the filters h(j) and g(j) to obtain the approximations
set a(j+1) and the wavelets set w(j+1). Note that the original signal is of size N . The
number of zeros in the filters h(j) and g(j) will exceed the number of pixels in the
signal after a certain scale j. In fact, starting from J = log2(N), only one pixel will
be considered during convolutions, leading to a constant decomposition. Therefore, the
decomposition ends at the dyadic scale J = log2(N), with (J + 1) analysis coefficients
coefficients sets, each of size N . The analysis vector using this translation invariant
wavelet transform is of size N × (J + 1) and is given by:

ααα = [ {w�
j }1≤j≤J , a

�
J ]. (3.27)

The synthesis of a0 from ααα is obtained by the iterative recovery of each a(j) using
the filters h̃ and g̃, for j = J − 1 . . . 0,

a(j)[k] = (h̃(j) ∗ aj+1)[k] + (g̃(j) ∗wj+1)[k], (3.28)

To ensure the exact reconstruction of the original signal, the filter bank {h, g, h̃, g̃}
must verify �

m

(h̃[m]h[l −m] + g̃[m]g[l −m]) = δ(l), (3.29)

that is, in the z-transform domain:

H(z−1)H̃(z) +G(z−1)G̃(z) = 1. (3.30)
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Extension of the à trous algorithm to 2-Dimensional signal

The extension of the à trous algorithm in two-dimensional (2D) space can easily be
done by considering the following 2D scaling function:

1

4
φ(

x

2
,
y

2
) =

�

m,n

Hm,nφ(x−m, y − n), (3.31)

where H is a 2D convolution filter. The 2D approximations Aj+1 are then obtained by:

Aj+1k,l =
�

m,n

Hm,nAjk+2jm,l+2jn. (3.32)

Similarly, the 2D wavelet function, generated from the scaling function φ is obtained
by:

1

4
ψ(

x

2
,
y

2
) =

�

m,n

Gm,nφ(x−m, y − n). (3.33)

Thus, the 2D wavelet coefficients Wj+1 are obtained from approximations coefficients
Aj by:

Wj+1k,l =
�

m,n

Gm,nCjk+2jm,l+2jn. (3.34)

In practice, the 2D scaling function is chosen as the product of two separate 1D scaling
functions, which makes the algorithm faster as convolutions are done on the rows then
on the columns.

3.2 IUWT: the filter banks

The isotropic undecimated wavelet transform is based on the à trous algorithm. Ac-
cording to (Bijaoui et al. 1994), the filter bank is to be chosen in order to satisfy the
following conditions:

• Compactness: filters must be finite to assure the compactness of φ and ψ.

• Regularity: the regularity of φ and ψ can avoid a great amount of artifacts that
may occur otherwise.

• Symmetry: filters has to be even-symmetric to guarantee the isotropy property
of the transform (h = h, g = g).

• Separability: Convolutions are performed on the rows then on the columns, al-
lowing a fast transform. This condition is not necessary but preferable for com-
putational time.
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Bijaoui et al. (1994) states that interestingly B-spline functions of order n > 1 fits
well with most of the criteria above (compactness, regularity, quasi-symmetry, separa-
bility). In the literature, three filter banks are proposed in (Starck et al. 2007) based
on the B-spline function of order 3 yielding to three variants of the IUWT: the classical
IUWT, the classical IUWT with positive reconstruction and the IUWT of second gen-
erations. Convolutions usually raise the border effects problem and different strategies
can be adopted depending on the application such as zero-padding, periodic, continue
and mirror boundaries. The latter is used to handle the boundaries artifacts related to
convolutions.

3.2.1 The Classical IUWT analysis and its synthesis transforms

The IUWT has been firstly introduced by (Bijaoui et al. 1994) using the following filter
bank:

{H,G = δ −H, H̃ = δ, G̃ = δ}

where δ is defined as δ0,0 = 1 and δk,l = 0 if (k, l) �= (0, 0) and H is the tensor products
of two one-dimensional (1D) filter h1D.

h1D =
1

16
[1 4 6 4 1]�,

Hk,l = h1D[k]h1D[l],

Gk,l = δk,l −Hk,l. (3.35)

The 1D scaling function φ1D is the B-spline of order 3. Assuming separability, its
corresponding 2D scaling function φ and wavelet function ψ are:

φ1D(x) =
1

16
(|x− 2|3 − 4|x− 1|3 + 6|x|3 + |x+ 2|3 − 4|x+ 1|3),

φ(x, y) = φ1D(x)φ1D(y),

1

4
ψ(

x

2
,
y

2
) = φ(x, y)− 1

4
φ(

x

2
,
y

2
). (3.36)

Given the initial signal a(0) as input, the IUWT analysis up to a scale J is illustrated as:

a(0) h(0) h(1) a(2) a(J)a(J−1) h(J−1)

w(1) w(2) w(J)

a(1)
...

−
+

−
+

−
+
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Through this analysis filter bank, wavelets are simply the difference between two succes-
sive resolutions. The recovery of the original signal is straightforward as the summation
of the analysis coefficients.

a(J) a(1)+ + +a(J−2) a(0)

w(J) w(J−1) w(1)

a(J−1)
...

Since the transform is redundant, the synthesis filter bank is not unique. In fact,
for the same analysis filter bank, Starck et al. (2007) demonstrates that {H̃ = H, G̃ =

δ + H} ensures the exact reconstruction of the signal. This reconstruction is illus-
trated in the following diagram. Interestingly, the signal is recovered from smoothed

wavelets coefficients unlike the simple summation of wavelets in classical IUWT. This
property decreases significantly artifacts related to thresholding for example, in several
applications such as denoising and image reconstruction.

3.2.2 The IUWT of ’second generation’

The third filter bank, proposed by Starck et al. (2007), consists in the analysis filter
bank [H,G = δ −H ∗H]. Its corresponding synthesis filter is [H, G̃ = δ]. In this filter
bank, the low-pass filter corresponds to its conjugate filter H̃ = H. H is the tensor
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product of two B-spline filters of order 3. The filter bank is:

h1D =
1

16
[1 4 6 4 1]�,

Hk,l = h1D[k]h1D[l], k, l = −2, ..., 2

g1D =
1

256
[−1 − 8 − 28 − 56 186 − 56 − 28 − 8 − 1]�,

Gk,l = g1D[k]g1D[l]. k, l = −3, ..., 3

H̃ = H,

G̃ = δ. (3.37)

Having the initial image a0 as input, the IUWT analysis up to a scale J is illustrated
as:

a(0) a(2) a(J)a(J−1)h(0) h(1) h(J−1)

h(0) h(1) h(J−1)

w(1) w(2) w(J)

a(1)
...

−
+

−
+

−
+

During reconstruction there are only convolutions of approximations by H as shown by
the diagram below:
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a(J)

w(J)

w(J−1)

w(1) a(0)

a(1)

h(J−1)

h(J−2)

h(0)

+

+

+

a(J−1)

a(J−2)

......

3.3 Choice of dictionaries

The isotropic undecimated wavelet transform up to a dyadic scale J analyzes a signal
y of size N into an analysis vector ααα = [ {w�

j }1≤j≤J , a
�
J ], of size (J + 1) ×N , where

{wj}1≤j≤J are the wavelet coefficient sets and aJ is the coarsest approximation of the
original signal y. Reasoning in terms of dictionaries, the analysis vector ααα can be seen
as the projection of the signal y onto the analysis dictionary A, which is derived from
the analysis filter bank [h, g].

The dictionary A is a concatenation of J+1 sub-dictionaries A(j) and is of size (J+

1)×N2. The columns of each sub-dictionary A(j) is a shifted version of the elementary
analysis atom d(j) in every pixel position. Thus, every wavelet coefficients set w(j) is
the convolution of the analysis atom d(j) and the signal y, so is the approximation
coefficients set aJ = A�

(J+1)y = d(J+1) ∗ y.
In a similar way, the signal y is synthesized using the synthesis dictionary S =

[S(1) . . .S(J+1)] of size (J + 1) × N × N , generated by the synthesis filter [h̃, g̃]. The
columns of each sub-dictionary are shifted versions at every pixel position of the elemen-
tary synthesis atom s(j). The dictionaries A and S are redundant and verify A�S = I,
where I is the identity.

In (Starck et al. 2007), authors show that the IUWT of second generation gives
better results than the classical IUWT and its synthesis dictionaries. In order to show
this, we have conducted a simple comparison of the three families of dictionaries on a
denoising application. Simulations are based on an astronomical scene with compact
and extended sources, contaminated by additive white Gaussian noise with different
Signal-to-Noise ratios. The noise statistics are estimated from the wavelet coefficients.
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A hard-thresholding is applied to remove the noisy wavelet coefficients and the signal
is estimated from the significant wavelet coefficients.

The input signal to noise ratio (IS/N) is defined as:

IS/N = 20log10
||x||2
||n||2

. (3.38)

and the signal to noise ratio S/N on the estimated image x̂, evaluating the quality of
the denoising, is:

S/N = 20log10
||x||2

||x− x̂||2
. (3.39)

In Fig.3.1, we show a plot of the denoising results using the different filter banks.

Figure 3.1: Denoising test with the families of the IUWT dictionaries. The x−axis
corresponds to the input S/N of the images, contaminated with additive white Gaussian
noise. The y−axis corresponds to the S/N on the recovered images.

The IUWT of second generation gives better performance in denoising. An example of
denoising is displayed in Fig.3.3 for a noisy image with IS/N = 10 dB, using the three
families of IUWT.
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Figure 3.2: Left: the original image, that is a simulation of a galaxy cluster. Right, the
noisy image with IS/N = 10 dB. Both images are in log scale.

Figure 3.3: Top left: the original image. Denoising results; from top right to bottom left:
denoised image corresponding to the IUWT of second generation (26.32 dB), classical
IUWT (23.80 dB)and the IUWT with positive synthesis (25.33 dB), all images are
displayed in log scale.
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Although the classical filter bank, designed by Bijaoui et al. (1994), is the fastest
since less convolutions are required for the analysis and the synthesis cascade, it gives
less realistic estimation of the signal, especially for the extended emission. This is due
to its corresponding synthesis dictionary, that is composed only of Diracs. On the other
hand, for the second family of dictionaries that shares the same analysis dictionary, its
synthesis dictionary is built with positive atoms which are the sum of positive Diracs
and B-splines (derived from the synthesis filter bank {H̃ = H, G̃ = δ + H}). This
results in a good approximation of the extended features in the signal, yet a smoother
estimation of compact and point like sources. As for the IUWT of second generation, its
synthesis dictionaries contains both a Dirac sub-dictionary (corresponding to the scale
1) and B-splines sub-dictionaries, hence it is suitable for both compact and extended
sources. These results highly motivated the choice of the dictionaries based on the
IUWT of second generation.

3.4 Vision with the IUWT

We shall consider some definitions from Starck et al. (2011) to start with:

• an object is an astronomical source (galaxy, star ..), belonging to the true astro-
nomical scene to be reconstructed. An object is defined by its wavelet coefficients
in the wavelet domain.

• a structure is a set of spatially connected pixels, corresponding to wavelet coeffi-
cients at a specific scale.

Let us consider the radio image of the Supernova Remnant 3C397, where we can see two
point sources in the field and the supernova remnant in the central part of the image.
Its analysis with the IUWT up to scale 5 gives the analysis vector shown in Fig.3.4.
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Figure 3.4: IUWT decomposition of the radio image of the supernova remnant 3C3971.
Right: 3C397 radio image. Left: from top left to bottom right: IUWT analysis co-
efficients of 3C397 up to the dyadic scale J = 5; w�

(1), . . . ,w
�
(5) corresponding to the

wavelets sets at dyadic scales j = 1 . . . 5 and a�(5) is the remaining information at scales
j ≥ 5 or the approximation at scale 5.

When analyzing an astronomical image with the isotropic undecimated wavelet
transform, it is noticeable to the naked eye that each astrophysical source live on spe-
cific scales. However, each object of the initial signal x leaves its signature on all scales.
The weight of this signature varies from one scale to another depending on the bright-
ness of the object and its morphology as well; point like and compact objects live more
significantly at the lower scales which correspond to the higher spatial frequencies of
the image, while extended objects have a more important signature on higher scales,
those correspond to the low spatial frequencies.

In Bijaoui & Rué (1995), authors present the Multiscale Vision Model, where a tree
of objects can easily be extracted from the analysis vector ααα = A�x by means of an
interscale relation, defined in order to trace the signature of each object in the wavelet
domain by connecting structures from different wavelet planes as follows:

Two structures sk(j) and sl(j+1), belonging to two successive dyadic scales j and j+1,
are connected if the pixel position of the maximum wavelet coefficient of the structure
sk(j) belongs to the set sl(j+1). Both structures, sk(j) and sl(j+1) can be associated to the
same object.

1https://casaguides.nrao.edu/index.php/Sim_Inputs
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Figure 3.5: Graph describing the interscale relation.

Relying only on spatial connectivity through the interscale relation, two close struc-
tures at a scale j might be connected to the same structure at the upper and smoother
scale j+1 as shown in Fig. 3.5, even if both of these structures might correspond to two
different objects in the original image x. In fact, almost all structures may be merged
to one single object at the last scale. Therefore, additional considerations based on the
intensity of the wavelet coefficients are required to separate the branches of the tree.

Considering the following definitions:

• wm
j,k is the maximum wavelet coefficient of the structure sk(j),

• wm
j−1,l is the maximum wavelet coefficient of a structure sl(j−1) on the scale j − 1

and connected to sk(j),

• wm
j+1,n is the maximum wavelet coefficient of the structure sn(j+1), at the scale j+1

and containing the pixel position of the wavelet coefficient wm
j,k.

The idea proposed in Starck et al. (2011) is the following: an object o is first identified by
the structure sk(j) at a scale j which has a local maximum with respect to the structures
located at similar pixel positions at higher and lower scales j + 1 and j − 1. In other
words, the structure sk(j) fulfills the following conditions:

wm
j,k > wm

j+1,n, (3.40)

wm
j,k > wm

j−1,l. (3.41)

The condition Eq.3.41 reflects that a new object can be defined by sk(j) since it lives at
scale j most significantly through sk(j). All the structures at smaller scales l (l < j) that
are connected to sk(j) and verify the condition Eq.3.41, are merged into the new object
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oi. If Eq.3.40 is not fulfilled by sk(j), then the object to which belongs sk(j) initially, lives
at the scale j + 1 more significantly.

Let jmax be the scale where an object o is identified at first. The scale jmax is
considered to be the scale of the object and so scales higher than jmax are ignored from
the signature of the object. The deblending strategy is performed starting from the
lower to the higher scales in order to avoid the overlapping of objects and to ensure
that a structure, once associated to an object, is isolated from the rest of the tree.

From its sparse signature α̃αα, an object z can be estimated using the following criteria:

ẑ = argmin
z

� α̃αα−DA�z �2, s.t. z ≥ 0 (3.42)

D is formally a diagonal matrix of size (N × (J + 1), N × (J + 1)) defined by Dkk = 1

if α̃ααk > 0 and 0 otherwise. This problem is solved using a gradient descent algorithm.
The estimated object z using Eq.3.42 is also sparse.

3.5 Denoising on the wavelet domain

So far, we have considered noise free images, however, in practice, the object identifica-
tion strategy is performed on the significant wavelet coefficients with respect to noise.
Let us assume that the image y is contaminated by a correlated Gaussian noise with a
standard deviation σ (this is the case of the radio images), the standard deviation of its
wavelet coefficients A�y is scale dependent and constant within each scale. Therefore,
it is natural to consider a level-dependent approach to determine the support of the
significant wavelet coefficients with respect to noise.

For each scale of the IUWT analysis, the wavelet coefficients set is of the same size
N as the image y. Significant wavelet coefficients corresponding to sources are assumed
to be very few with respect to N . Hence, the standard deviation σj at each scale j can
be estimated from the wavelet coefficients set w(j). To do so, we have chosen to use the
simple, yet, robust MAD estimator, where MAD stands for median absolute deviation
from 0 (Johnstone & Silverman 1997; Starck et al. 2011).

σ̂j = MAD(w(j))/0.6745 = median | w(j) | /0.6745. (3.43)

For each wavelet coefficients set w(j), the significant coefficients are obtained by ωj-
hard thresholding ρωj ,

ρωj (x) = { x if |x| ≥ ωj

0 if |x| ≤ ωj
(3.44)

ωj is typically in the range [3σ̂j 5σ̂j ]. This method is robust on the low scales, where
the noise lives usually. However, on very high scales, where the signal is smoother, the
latter may not be sparse. The noise may be over-estimated and so very faint extended
signal can be wiped out from the support of the significant wavelet coefficients on these
scales.
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Conclusions

We have explained an object identification strategy by means of the isotropic undec-
imated wavelet transform. Objects (associated to astronomical sources) are identified
by a tree of structures (i.e. spatially connected pixels) in the wavelet domain. In the
framework of inverse problems, the selection of specific wavelet coefficients considered
as the projection of a signal on the wavelet domain, is actually a regularization prior
on the signal. In the next chapter, we will develop this prior and present the new
deconvolution algorithm for radio imaging.
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Introduction

Let us recall the 2D simplified radio interferometric problem that we address in this
work:

y = Hx+ n, (4.1)

where y is the so-called dirty image and x is the astronomical scene to be recovered,
which is a map of the sky brightness distribution. The matrix H ∈ RN × RN is the
convolution operator corresponding to the radio interferometer’s PSF and n ∈ RN is
the noise in the image domain, that is a correlated Gaussian noise. H is a circulant
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matrix operator, where every column is a shifted version of the PSF for every pixel
position. The imaging problem described in Eq.4.1 is an ill-posed inverse problem due
to the missing measurements in the Fourier domain. In fact, there is infinity number
of solutions which can fit the same Fourier measurements, hence reproducing the same
dirty image.

To solve this problem, we have developed a new deconvolution approach called
MORESANE: MOdel REconstruction by ANalysis-Synthesis Estimators. MORESANE
is a greedy approach based on sparse representations originally designed for the difficult
problem of reconstructing astronomical scenes consisting of faint diffuse sources, usually
buried in the PSF sidelobes of the bright compact and point-like sources.

The sky image x can be modeled as a sum of P objects o(i). Within the synthesis-
sparsity framework, we can write the sky model as the linear combination of a small
number of atoms of a synthesis dictionary X.

x =

P�

i

o(i) = Xθθθ, where o(i) = θθθiXi. (4.2)

The atoms of the synthesis dictionary X i.e. its columns, are simply the normalized ob-
jects o(i)

||o(i)||2 present in the astronomical scene (which can be any kind of radio sources
such as galactic or extra galactic objects, both compact and diffuse). The synthesis
dictionary X in this formalism is of course unknown. Using Eq.4.2, the radio interfero-
metric problem becomes:

y =
�

i

Ho(i) + n = HXθθθ + n. (4.3)

In MORESANE, the goal is to estimate the objects ô(i), or equivalently, the atoms
of the dictionary X and their corresponding weights θθθ. The sky model x̂ is recovered
following Eq.4.2. To do so, the objects ô(i) are estimated using sparse analysis priors.
Their contribution in the dirty image y is removed progressively. The bright objects
in the data, usually compact sources (say, bright radio galaxies) are first estimated (in
the way described in the next section) and removed, allowing then the recovery of faint
objects, in particular extended diffuse sources (say, radio halos). MORESANE is indeed
in the same flavor of CLEAN; yet, instead of subtracting point sources described by
delta functions, MORESANE reconstructs objects which are spatially connected pixels
associated to a source in the sky image to be recovered.

4.1 Objects estimation

As shown in Sect.3.4, the IUWT allows to have a multiscale vision model, where an
object o(i) present in the astronomical scene x can be identified with a tree of structures
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living at different scales. Its characteristic scale jo(i) is the scale to which belongs the
wavelet coefficient ||A�o(i)||∞.

In the dirty image y, an object o(i) is blurred with the PSF and contaminated by
the noise. By applying the multiscale vision model on the dirty image, we can extract
the sparse vector ααα(i) corresponding to the blurry version of the object o(i) from the
IUWT analysis vector ααα = A�y. The object is estimated from its signature ααα(i) in
the wavelet domain (Starck & Bijaoui 2000; Starck et al. 2011) using the following cost
function:

ô(i) = argmin
o(i)

� ααα(i) −Wo(i) �22, s.t. A�Ho
(i)

sparse and o(i) > 0, (4.4)

where W = D(i)A�H, D(i) is a diagonal matrix mapping the nonzero wavelet coeffi-
cients in ααα(i), i.e. D

(i)
kk = 1 if ααα(i)

k > 0 and 0 otherwise. In order to have a physically
meaningful estimated model image x̂ of the astronomical scene, that is a surface bright-
ness image, it is relevant to impose the positivity constraint on the estimated model
of the astronomical scene x̂ and consequently its estimated objects ô(i). The positivity
constraint reduces ringing artifacts and enhances the resolution of the recovered model
(Puetter et al. 2005).

4.1.1 Object’s identification

In this section, we explain the estimation of the unknown synthesis dictionary X, or
equivalently, of the objects o(i) of the estimated sky model x̂, using structured sparsity
by analysis priors.

The tree of an object o(i) is defined from its highest correlation with the IUWT
analysis dictionary A. In the data y, we have access to its blurred version Hoi and
its wavelet coefficients ααα(i). The scale j

(i)
max at which the object o(i) is firstly identified

corresponds to the wavelet component w
(i)
max = ||A�Ho(i)||∞. Due to the blur induced

by the PSF, j(i)max might be higher than its characteristic scale jo(i) .
In order to take into account the blur due to the PSF, the pixel position of the

highest correlation of Ho(i) with the dictionary A, or equivalently of the object o(i)

with the dictionary H�A, is given by:

k(i) = arg max
k∈[1,(N+1)×J ]

A�
k Ho(i)

�A�
k H�2

. (4.5)

As we are aiming to deconvolve the brightest object at first, it is easy to estimate the
pixel position of its highest correlation with the analysis dictionary:

kmax = arg max
k∈[1,(N+1)×J ]

ααα
(i)
k

�A�
k H�2

= arg max
k∈[1,(N+1)×J ]

αααk

�A�
k H�2

. (4.6)
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Once the highest wavelet coefficient wmax is identified at scale jmax, the tree of struc-
tures is built using the object identification strategy explained in the previous chapter.
This tree is ααα(i). It corresponds to the sparse analysis vector of the brightest object
through which this object will be estimated using Eq.4.4. We do not consider scales
higher than jmax in the tree for two reasons. First, the wavelet coefficients of the object
on these scales are more likely to be contaminated by the contribution of other objects,
mainly more extended sources. Second, as the scale jmax might be higher than jo(i)

(the characteristic scale of the non blurred object) limiting the signature of the object
to be only at lower scales than jmax is a sort of a regularization of the support of the
object. The selection of the signature of the object is crucial and determines the quality
of the restoration.

While building the tree ααα(i), only positive wavelet components are considered. Since
the sky model is positive, objects are more likely to live mainly on the pixel positions of
the positive wavelet components. In fact, we have noticed that, if negative structures on
the wavelet domain (negative wavelet components) are considered in ααα(i), the estimated
object will have non zero signal, even though very faint, on these pixel positions. Of
course, this signal does not correspond to a true source in the sky and it is rather
a deconvolution artifact. Since we aim to recover high dynamic range images, any
deconvolution artifacts caused by the overestimation of the bright objects will definitely
influence badly the recovery of the fainter sources.

Objects with relatively the same morphology, size and brightness level live signif-
icantly at the same scales. After conducting different tests (see Sect.4.3.3), we have
found that it is wise to estimate such objects jointly, not only for rapidity reasons but
also to take into account their corresponding PSF’s sidelobes simultaneously in the
deconvolution step. Otherwise, deconvolution artifacts might occur, especially if these
objects are close spatially. Therefore, we include in ααα(i) the wavelet coefficients of those
objects as significant as the brightest object o(i) living at jmax and at smaller scales.
Consequently, from now on, the object o(i) will correspond to sources in the dirty image
with similar wavelet scales.

The selection of such sources, more precisely their corresponding wavelet coefficients,
is initiated from scale jmax: a structure sk(jmax)

, which has a maximum wavelet coef-
ficient wm

jmax,k
> τ × wmax, is added to ααα(i) and so are its connected structures from

smaller scales. Note that wavelet coefficients corresponding to the PSF’s sidelobes of
the selected sources are not included in ααα(i) as they are usually much less bright than the
structures belonging to the objects. In general τ is chosen to be > 0.2 to avoid picking
up the sidelobes’s signature, which if considered, will correspond to fake components in
ô(i), hence compromising the stability of the greedy algorithm.
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4.1.2 Object’s deconvolution

In our algorithm, objects are estimated by solving Eq.4.4. This is a minimization
problem with convex projection onto the positive orthant. It can be seen as an analysis
sparsity promoting problem. However, the sparsity of the l0 norm is structured and is
achieved by the object’s identification from the data y through a tree of a small number
of wavelet components ααα(i).

In order to solve Eq.4.4, we use the conjugate gradient algorithm, known for its
high speed of convergence. Besides its appealing simplicity as an iterative algorithm,
the choice of the conjugate-gradient is highly motivated by the fact that it involves only
the operator W = DA�H, with no need to use its adjoint operator W∗ = H�A�∗

D.
The operator W∗ involves the convolution with the transpose of the PSF at last, which
means it re-introduces the PSF sidelobes in the estimated model thereby a correction for
it is required and the regularization on the support of the object, ensured by structured
sparsity on (H�A)�o

(i), is compromised.
Substantial work have been conducted to optimize the conjugate-gradient for con-

strained problems, however the iteration scheme introduced by Biemond et al. (1990)
remains very interesting for its simplicity and, most importantly, it converges in the
present case.

The conjugate-gradient starts from an initial guess of the estimated image o(i),(0),
that is usually null, and computes the initial negative gradient, in the image domain
(that is the object domain) rather than in the wavelet domain.

r(0) = Sααα(i) − SWo(i),(0), (4.7)

where S is the IUWT synthesis dictionary verifying SA� = I; I being the identity
matrix. The initial conjugate-gradient direction v(0) is set to v(0) = r(0). During each
iteration �, the new estimated image o(i),(�+1), which minimizes the cost function Eq.4.4,
is given by:

o(i),(�+1) = o(i),(�) + δ�v
(�), (4.8)

the gradient r(�+1) is computed from that location as:

r(�+1) = r(�) − δ�SWv(�), (4.9)

and the new conjugate-gradient direction v(�+1) is computed using:

v(�+1) = r(�+1) + β�v
(�). (4.10)

The non-negativity of o(�) is simply imposed by setting its negative values to zero. Since
this projection is not linear, the conjugacy of the conjugate gradient is not maintained;
suitable stepsizes δ� and β� has to be employed according to Biemond et al. (1990) in
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order to ensure convergence. The stepsize β� is obtained using a line search method
minimizing the distance � ααα(i) − Wo(i),(�) �22. In this work, we use the Golden line
search (Luenberger & Ye 2008) for its simplicity and rapidity. The stepsize β� is chosen
to ensure the conjugacy of the conjugate-gradient directions, if δ� is the minimizer.
Several famous formulas for β� are proposed in the literature (Dai 2003), in particular
the Fletcher-Reeves (FR), the Polak-Ribière-Polyak (PRP), the Hestenes-Stiefel (HS),
the conjugate descent (CD).

βFR =
� r(�+1) �22
� r(�) �22

, (4.11)

βPRP =
�r(�+1) − r(�), r(�+1)�

�r(�), r(�)� , (4.12)

βHS =
�r(�+1) − r(�), r(�+1)�
�r(�+1) − r(�),v(�+1)� , (4.13)

βCD =
− � r(�+1) �22
�v(�), r(�)� . (4.14)

While both (FR) and (PRP) formulas ensure convergence, our tests have shown that
the (FR) formula gives better results in general.

Each new estimate o(i),(�+1) is projected onto the positive orthant by setting to zero
its negative values in order to have the positive estimate P+(o

(i),(�+1)) (P+ denotes
the projection). This projection implies that the direction v(�) is not the one that led
to P+(o

(i),(�+1)), but rather v
(�)
+ = 1

δ�
(P+(o

(i),(�+1)) − o(i),(�)). In practice, we found
that it is compulsory for convergence reasons to update the new negative gradient and
conjugate gradient accordingly:

r(�+1) = r(�) − δ�SWv
(�)
+ , (4.15)

v(�+1) = r(�+1) + β�v
(�)
+ . (4.16)

The conjugate-gradient is stopped once the estimated object does not change signif-
icantly with respect to the criterion ||o(i),(�+1)−o(i),(�)||2

||o(i),(�)||2 < ε . At first iterations, the
conjugate-gradient fits the low frequencies, higher frequencies being then fitted at fur-
ther iterations. In Puetter et al. (2005), the author states that the conjugate gradient
tends to over fit the high frequencies if not stopped be-forehead. We have noticed this
effect; therefore, we set ε ∈ [0.01, 0.0001] in practice.

4.2 The algorithm

We recall that MORESANE is an iterative greedy algorithm where the astronomical
scene is synthesized by atoms, identified to objects, which are estimated by an analysis
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structured sparsity approach. The estimation of the synthesis atoms being explained in
the previous section, we present now the MORESANE algorithm.

The initial residual is set to be the dirty image r(0) = y. Considering the analysis
and synthesis dictionaries of the IUWT up to scale J , at each iteration i we look for
the brightest wavelet analysis coefficients ααα(i) of the residual r(i) corresponding to the
brightest sources, considered as one single object o(i). Using the conjugate-gradient,
we estimate the object ô(i), hence the synthesis normalized atom X̂i =

ô(i)

||ô(i)||2 and its

weight θ̂θθi = ||ô(i)||2. The atom X̂i is then added to the synthesis dictionary X. Only a
fraction of the atom X̂i’s contribution is removed from the residual r(i) by means of the
loop gain factor γ in order to avoid artifacts related to the overestimation of the weight
θ̂θθi. Since the approach is greedy, any significant artifacts occurring in the residual image
would be very hard to correct for as subtraction is done only with positive atoms, unlike
for example the CLEAN , which corrects artifacts by adding negative delta functions
in the estimated model image.

This procedure, shown in Fig.4.1, is performed at J successively increasing scales
and it is stopped when only noise is left on the wavelet planes from 1 to J . The
starting scale is determined by means of the PSF: let A = [A(1) . . .A(Jmax)] be the
analysis dictionary up to scale Jmax = log2(N) − 1, where N is the size of the dirty
image y considered as 1D for the simplicity of the formalism (for images of size (N,N),
Jmax = log2(N)− 1), we define the scale of the PSF as:

JPSF = argmax
j

A�
(j)h,where h is the PSF. (4.17)

However, the scale of the PSF might be not well defined due to the surrounding side-
lobes, which when significant (in particular the primary sidelobes) push the value of
JPSF to a higher scale. Therefore, we propose to consider the scale of the PSF at the
full width at half maximum. This scale, J∗

PSF , is usually the previous scale to JPSF ,
if not the same. By doing so, we provide a better constraint on the resolution of the
estimated model. Taking the example of an unresolved object, say a point-like object,
its resolution is conditioned by the scale of its detection, that is JPSF . If J∗

PSF is smaller
than JPSF , it gives a less smooth approximation of the point-like source, as J∗

PSF is
closer to the characteristic scale of the point-like source, that is scale j = 1.

While it is possible to consider a maximum scale Jmax = log2(N)−1, and then fetch
for the brightest analysis coefficients belonging to the brightest objects (i.e. objects with
the highest correlation with the analysis dictionary), we found that artifacts might
occur by doing so. Considering the case in which an object with very large spatial
extensions (thus living mainly at large scales) is overlapping with a compact or point-
like object, the wavelet components of the latter will be added into the tree of structures
of the extended object leading to artifacts surrounding the compact source. It is thus
reasonable to fetch for compact sources firstly at low scales and for the extended sources
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Figure 4.1: Description of the MORESANE algorithm at scale J.

afterwards. This is particularly important for typical radio astronomical images, since
compact and point-like objects are more likely to be very bright within the field, while
diffuse sources are faint and extended.

Another possible strategy is to start with scale J = 1. While this strategy leads to
a good convergence in terms of the quality of the final residual, the estimated model
might be over-structured and has a grainy aspect, since most objects are estimated from
the wavelet coefficients at scale J = 1 (note that, in MORESANE, we proceed to the
next scale only if no significant signal is detected in the current scale J). This results in
a less realistic approximation of the sky model. Therefore, we have found that starting
MORESANE at scale J∗

PSF is a very good compromise to have an estimated model



4.3. Choice of parameters 65

with both reasonable smoothness and a good residual.

4.3 Choice of parameters

Apart from the classical parameters to stop iterative algorithms like the precision on
the estimated model, or the variation of the residual image (see, Dabbech, A. et al.
2015), two parameters are introduced in MORESANE in order to ensure fast and stable
convergence. These are the loop gain parameter γ and the tolerance parameter τ . In this
section, we study the performance of MORESANE with respect to these parameters.
Note that all images in this chapter are in units of Jy/pixel.

4.3.1 Simulations of a toy example

For the study of γ and τ , we have simulated toy radio interferometric observations
following the simple formalism:

y = F†MFx+ εεε = Hx+ n, (4.18)

where M is the sampling function (the so-called uv-coverage with 0 and 1 entries), the
zero-frequency is set to 0, and εεε is an independent and identically distributed white
Gaussian noise on the Fourier domain. In the image domain, the noise n is Gaussian
and correlated due to sampling. We consider a sampling function with only 13.5%
measurements in the Fourier domain. It is a binary mask derived from the MeerKAT
PSF for two hours of observations (see right panel Fig.1.3). The sky model is of size
128 × 128 (see Fig.4.2), it corresponds to a galaxy cluster simulation characterized by
a high dynamic range (� 1/10000). Let us consider the metric IS/N = 20log10

||Hx||2
||n||2 .

We simulate dirty images with different IS/N ∈ {−0.4, 10, 20, 40, 60, 80} dB, displayed
in Fig.4.3.

4.3.2 The study of the parameter γ

The loop gain parameter γ, originally inspired from the CLEAN algorithm, allows us
to remove a fraction of the estimated object’s contribution. This parameter is essential
especially in case of astronomical scenes with high dynamic range where sources with
different brightness level might overlap spatially. The loop gain allows to remove the
brightest sources without "stealing" part of the emission of the fainter source. Setting
the parameter τ to 0.4, we apply MORESANE on several dirty images, displayed in
Fig.4.3, with different input IS/N for γ ∈ [0, 1].

Deconvolution results for the different values of γ ∈ [0, 1] on the dirty images,
evaluated by the S/N metric (defined as S/N = 20log10

||x||2
||x−x̂||2 ) are shown in Fig.4.4.

Clearly, the S/N does not change significantly for γ values smaller than 0.4; at the
opposite, for γ > 0.4 the quality of the recovery deteriorates drastically.
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Figure 4.2: From left to right: input sky model in log scale, simulated uv-coverage and
its corresponding PSF.

Figure 4.3: From top left to bottom right: simulated dirty images with IS/N ∈
{−0.4, 10, 20, 40, 60, 80} dB. Note that differences in the dirty images with IS/N ≥ 10

are not noticeable because the noise is below the PSF sidelobes corresponding to the
three brightest objects in the image.

Considering the case of IS/N = 60dB, the examination of the estimated sky models
and the residual images in Fig.4.7 confirms that high values of γ lead to instability of
the algorithm. In fact, reconstructed objects, when overestimated and removed from
the residual image, leave negative holes in the residual image which are not corrected
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for since subtraction is only done using positive objects. Moreover, these negative
holes have positive signature in the wavelet domain and so are considered as objects.
This explains the fake components in the estimated sky models noticeable for γ > 0.6.
Therefore, the value of γ ∈ [0.1, 0.2] is a good compromise between the stability of the
algorithm and the computational cost.

Figure 4.4: Plot of the reconstruction quality on the different dirty images. The x-axis repre-
sents the values of γ ∈ [0, 1], and the y-axis represents the S/N values of the estimated model
images.

4.3.3 The study of the parameter τ

The parameter τ defines the tolerance on structures’ selection at scale jmax where the
highest wavelet coefficient wmax = ||A�r(i)||∞ is localized from the analysis vector of
the residual image using the IUWT analysis dictionary A. Structures from jmax, whose
maximum wavelet coefficient is in the range [τ × wmax, wmax] , where τ ∈ [0, 1], are
selected and added to the sparse analysis vector of the brightest objects ααα(i). Once
these structures are identified, their connected structures from smaller scales are also
added to ααα(i) and their corresponding objects are estimated jointly.

The motivation behind the parameter τ comes essentially from a frequent configu-
ration where two sources are spatially close. In the dirty image, both sources contami-
nate each other with their PSF sidelobes and so do their respective wavelet components.
Therefore, for a more accurate estimation of their brightness in the reconstructed model
image, we decide to estimate these sources jointly so that their PSF sidelobes are taken
into consideration simultaneously.

In Fig.4.5, we present the quality of the MORESANE reconstruction applied to
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the dirty images shown in Fig.4.3, with a parameter γ set to 0.2. For τ < 0.9, the
S/N values do not change significantly, while for higher value of τ , the quality of the
recovery gets significantly worse. Nevertheless, for values of τ smaller than 0.2, despite
good S/N results in dirty images with high IS/N , the reconstructed model images
present artifacts corresponding to PSF sidelobes since they are above the noise level,
as shown in Fig.4.6. Note that significant sidelobes of the PSF are usually within the
range 1% to 10% of the signal intensity (Taylor et al. 1999).

Figure 4.5: Plot of the reconstruction quality on the different dirty images. The x-axis repre-
sents the values of τ ∈ [0, 1], and the y-axis represents the S/N values of the estimated model
images.



4.3. Choice of parameters 69

Figure 4.6: Left: estimated sky model, right: residual image. From top to bottom,
deconvolution results for τ = {0.05, 0.1, 0.2, 0.3} on the dirty image with IS/N = 60dB.
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Figure 4.7: Left: estimated sky model, right: residual image. From top to bottom,
deconvolution results for γ ∈ {0.05, 0.2, 0.6, 0.8, 0.99} on the dirty image with IS/N =

60dB.
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4.4 MORESANE results on realistic simulations of radio
observations

In order to study the performance of MORESANE with respect to the standard al-
gorithms, we have simulated realistic radio observations by means of the MeqTrees
Software (Noordam & Smirnov 2010). Meqtrees is a tool for the simulation and cali-
bration of radio interferometric data based on the so-called measurement equation that
models the observed signal, hence characterizing the instrument. Meqtrees design lies
on representing functions as trees whose definitions are in Python, and values are calcu-
lated in C++ modules on a grid of time slots and frequencies. The software has shown
to be a powerful tool for calibration where direction dependent effects can be simulated
and solved for.

In this section, we present the paper describing the MORESANE algorithm, recently
published in Astronomy and Astrophysics. In this preliminary study of the algorithm,
simulations of radio observations have been conducted with the configuration of the
MeerKAT radio telescope. Results of MORESANE are compared to the standard algo-
rithms, namely the CLEAN and its multiscale variant as well as to new deconvolution
algorithms available in the literature.
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ABSTRACT

Context. Recent years have been seeing huge developments of radio telescopes and a tremendous increase in their capabilities (sensi-
tivity, angular and spectral resolution, field of view, etc.). Such systems make designing more sophisticated techniques mandatory not
only for transporting, storing, and processing this new generation of radio interferometric data, but also for restoring the astrophysical
information contained in such data.
Aims. In this paper we present a new radio deconvolution algorithm named MORESANE and its application to fully realistic
simulated data of MeerKAT, one of the SKA precursors. This method has been designed for the difficult case of restoring diffuse
astronomical sources that are faint in brightness, complex in morphology, and possibly buried in the dirty beam’s side lobes of bright
radio sources in the field.
Methods. MORESANE is a greedy algorithm that combines complementary types of sparse recovery methods in order to reconstruct
the most appropriate sky model from observed radio visibilities. A synthesis approach is used for reconstructing images, in which the
synthesis atoms representing the unknown sources are learned using analysis priors. We applied this new deconvolution method to
fully realistic simulations of the radio observations of a galaxy cluster and of an HII region in M 31.
Results. We show that MORESANE is able to efficiently reconstruct images composed of a wide variety of sources (compact point-
like objects, extended tailed radio galaxies, low-surface brightness emission) from radio interferometric data. Comparisons with the
state of the art algorithms indicate that MORESANE provides competitive results in terms of both the total flux/surface brightness
conservation and fidelity of the reconstructed model. MORESANE seems particularly well suited to recovering diffuse and extended
sources, as well as bright and compact radio sources known to be hosted in galaxy clusters.

Key words. methods: numerical – methods: data analysis – techniques: image processing – techniques: interferometric

1. Introduction

In the past 40 years, the radio community has mainly been us-
ing, as a reliable and well-understood method for deconvolving
interferometric data, the CLEAN algorithm and its different (in-
cluding multiresolution) variants (e.g., Högbom 1974; Wakker
& Schwarz 1988; Cornwell 2008). Even if other methods have
been designed during this period (see for instance Magain et al.
1998; Pirzkal et al. 2000; Starck et al. 2002; Giovannelli &
Coulais 2005) none has become as popular and as widely used
as CLEAN in practice.

Deep and/or all-sky radio surveys characterized by sub-mJy
sensitivity and arcsec angular resolution, as well as by high
(>1000) signal-to-noise and wide spatial dynamic ranges (chal-
lenging features for a proper deconvolution and reconstruction of
both bright and diffuse radio components) will be available in the
next decades thanks to incoming and future radio facilities, such
as the Low Frequency Array (LOFAR), the Australian Square
Kilometre Array Pathfinder (ASKAP, Australia), and the Karoo
Array Telescope (MeerKAT, South Africa). These revolution-
ary radio telescopes, operating in a wide region of the electro-
magnetic spectrum (from 10 MHz to 15 GHz), are the technical

and scientific pathfinders of the Square Kilometre Array (SKA).
With a total collecting area of one square kilometer, SKA will
be the largest telescope ever built1.

Recently, much attention has been paid in various fields of
the signal- and image-processing community to the theory of
compressed sensing (CS, Donoho 2006; Candès et al. 2006).
Although the current theoretical results of CS do not provide
means of reconstructing realistic radio interferometric images
more accurately, there is one key domain that allows doing so,
and the applied CS literature often builds on this domain: sparse
representations. Sparse approximation through dedicated repre-
sentations is a theory per se, and it has a very long history (Mallat
2008). In the signal processing community and, in particular, in
denoising and compression, sparsity principles opened a new
era when Donoho and Johnstone (Donoho & Johnstone 1994)
proved the minimax optimality of thresholding rules in wavelet
representation spaces. We propose in Sect. 3 a survey of the use
of sparse representations in radio interferometry.

In this paper we describe a new deconvolution al-
gorithm named MORESANE (MOdel REconstruction
by Synthesis-ANalysis Estimators), which combines
1 See https://www.skatelescope.org/
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complementary types of sparse representation priors.
MORESANE has been designed to restore faint diffuse
astronomical sources, with a particular interest in recovering the
diffuse intracluster radio emission from galaxy clusters. These
structures are known to host a variety of radio sources: compact
and bright radio galaxies, which can present a tailed morphology
modeled by the interaction with the intracluster medium (ICM;
e.g., Feretti & Venturi 2002); radio bubbles filling holes in the
ICM distribution and rising buoyantly through the thermal gas
observed in X-rays (e.g., de Gasperin et al. 2012); Mpc-scale,
very low surface-brightness sources of radio emission, which
are related to the presence of relativistic electrons (Lorentz
factors γ � 1000) and weak magnetic fields (∼µGauss) in the
ICM (e.g., Ferrari et al. 2008).

An increased capability of detecting diffuse radio emission
is, of course, very relevant not only for galaxy cluster studies,
but also for other astronomical research areas, such as supernova
remnants (e.g., Bozzetto et al. 2014), radio continuum emission
from the Milky Way (e.g., Beck & Reich 1985), star-forming
regions in nearby galaxies (e.g., Paladino et al. 2006), and possi-
bly, in the near future, filaments of diffuse radio emission related
to electron acceleration in the cosmic web (Vazza et al., in prep.).

After an introduction to the radio interferometric model and
sparse representations, in Sects. 2 and 3 respectively, we justify
and describe our new algorithm in Sects. 4 and 5, respectively.
Applications of MORESANE to both simplified and fully real-
istic simulations of test images are presented in Sect. 6. We con-
clude with a discussion of our results and list several evolutions
for MORESANE (Sect. 7).

A word on the notations before starting. We denote matrices
by bold upper case letters (e.g., M), vectors either by bold lower
case letters (e.g., u) or by indexed matrix symbols when they
correspond to a column of a matrix (e.g., Mi is the ith column of
M). Scalars (and complex numbers) are not in boldface except
if they correspond to components of a vector (e.g., ui is the ith
component of u) or of a matrix (e.g., Mi j is the component at the
ith row and jth column of M).

2. Radio interferometric imaging
Radio interferometric data are obtained from the response of the
radio interferometer to the electric field coming from astrophys-
ical sources. The electro-magnetic radiation emitted by all the
observed celestial sources will arrive at an observation point r,
producing a total received electric field (Eν(r)) that we consider
as a scalar and quasi monochromatic quantity. For the sake of
simplicity, we omit the index ν in the following.

For an interferometer, each radio measurement, called com-
plex visibility, corresponds to the spatial coherence of the elec-
tric field measured by a pair of antennas that have coordinates r1
and r2 (Thompson et al. 2001):

V(r1, r2) = �E(r1)E∗(r2)� , (1)

where �·� represents time averaging and ∗ the complex conjugate.
The spatial coherence function of the electric field E depends

only on the baseline vector r1 − r2, and it is correlated to the
intensity distribution of incoming radiation I(s) (where s is the
unit vector denoting the direction on the sky) through

V(r1, r2) ≈
�

I(s)e−2πiνs�(r1−r2)/cdΩ. (2)

In the equation above, � stands for transpose, c is the speed of
light, dΩ the differential solid angle, and we assume an isotropic
antenna response. Since interferometer antennas have a finite

size, an additional factor can enter into (2). This is the primary
beam pattern, which describes the sensitivity of the interferom-
eter elements as a function of direction s.

In the previous equation, the baseline vector b = r1 − r2
can be expressed with components measured in units of wave-
length (u, v, w), where w points in the direction of the line of sight
and (u, v) lie on its perpendicular plane. The direction cosines
(l,m, n) define the position of a distant source on the celestial
sphere, with (l,m) measured with respect to (u, v) axis. In the
adopted formalism, l2+m2+n2 = 1, so the coordinates (l,m) are
sufficient to specify a given point in the celestial sphere. Using
this formalism; (2) can be written as

V(u, v, w) =
� �

I(l,m) e−2πi(ul+vm+wn) dl dm√
1 − l2 − m2

· (3)

In the particular cases where all measurements are acquired in a
plane (i.e. w = 0, such as with east-west interferometers) and/or
the sources are limited to a small region of the sky (i.e. n � 1, for
small fields of view, which is the case considered in this paper);
(3) reduces to a two-dimensional Fourier transform.

In the impossible case of visibilities measured on the whole
(u, v) plane, inverse Fourier transform of V(u, v) would thus di-
rectly yield the sky brightness image I(l,m). In practice, visi-
bilities are measured at particular points of the Fourier domain,
defining the (u, v) coverage of the observations. The set of sam-
ples depends on the configuration and number of the antennas,
the time grid of measurements, and the number of channels, be-
cause the baselines change with the Earth’s rotation. A sampling
function M(u, v) is thus introduced, which is composed of Dirac
delta function where visibilities are acquired.

After the necessary calibration step on the visibilities (not
described here; see, e.g., Fomalont & Perley 1999), the measured
visibilities can be written as

Vmes = M · (V + �), (4)

where � corresponds to a white Gaussian noise coming essen-
tially from the sky, receivers, and ground pick up. In addition,
a weighted sampling function can be applied to the data, with
different weights assigned to different observed visibilities, de-
pending on their reliability, their (u, v) locus (tapering function),
or their density in the (u, v) plane (density weighting function)
(Briggs et al. 1999).

The image formed by taking the inverse Fourier transform
of Vmes is called a dirty image, which is defined as the convo-
lution of the true sky surface brightness distribution I(l,m) with
the Fourier inverse transform of the sampling function M(u, v)
(known as the dirty beam or the point spread function (PSF) of
the array). In practice, fast Fourier transforms (FFT) are used
where observed visibilities must be interpolated on a regular grid
of 2N × 2M points, generating an N ×M pixel image with a pixel
size taken to be smaller (∼1/3−1/5) than the angular resolution
of the instrument. Different ways can be adopted to optimize the
FFT interpolation (Briggs et al. 1999), whose discussion goes
beyond the purpose of this paper.

In this framework, the model for the visibility measurements
can be written in matrix form as

u =MFx +M���, (5)

where u ∈ RN is a column vector that contains the measured vis-
ibilities for the sampled frequencies and zeroes otherwise; M is
a diagonal matrix with 0 and 1 on the diagonal, which expresses
the incomplete sampling of the spatial frequencies; F (resp. F†)
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corresponds to the Fourier (resp. Fourier inverse) transform, and
the vector x ∈ RN is the sky brightness image. Equivalently, the
dirty image y is obtained by inverse Fourier transform of the
sparse visibility map:

y = F†u = Hx + n, (6)

where H = F†MF,H ∈ RN × RN is the convolution operator
corresponding to the array’s PSF and n ∈ RN is the noise in the
image domain. In this setting H is a circulant matrix operator,
where every column is a shifted version of the PSF for every
pixel position.

Finally, in Model (6), the noise is additive Gaussian and
correlated because of the missing points in the (u, v) domain
(Thompson et al. 2001).

We hereafter restrict ourselves to the simplified acquisition
model described above. As we shall see, accurate image decon-
volution is already challenging in this case, especially for as-
trophysical scenes containing faint diffuse sources, along with
brighter and more compact ones.

3. Sparse representations in radio interferometry

3.1. CLEAN

Radio interferometry has a long acquaintance with sparse rep-
resentations. Högbom’s CLEAN algorithm (Högbom 1974) and
the family of related methods (Wakker & Schwarz 1988; Starck
& Bijaoui 1992; Cornwell 2009; Schwarz 1978) implement
ideas similar to matching pursuit (Friedman & Stuetzle 1981;
Mallat & Zhang 1993) and to �1 penalization (Solo 2008). In
fact, in the radioastronomical community CLEAN refers to a
family of algorithms (Clark’s CLEAN, Cotton-Schwab CLEAN,
MultiResolution CLEAN, etc.).

A remarkable fact is that the CLEAN method remains a
reference and a very well known tool for almost all radio as-
tronomers. There may be several reasons for this. First, CLEAN
is a competitive algorithm, with best results on point-like sources
and less accurate recovery of extended sources. In CLEAN, the
CLEAN factor does a lot: following Högbom’s original version
of the algorithm, the point source’s contribution, which is the
one most correlated to the data, is only partly subtracted from
the data (in contrast to matching pursuit, which makes the resid-
ual orthogonal to this atom). This has the effect of creating de-
tections at many locations and of mitigating the influence of the
brightest sources. These numerous localized spikes mimic ex-
tended flux components and somewhat compensate for the point-
like synthesis of the restored image once the detection is recon-
volved by the clean beam. Besides, after the stopping criterion is
met, the residual is added to the restored image, with the same
compensating effect.

From a practical viewpoint, CLEAN is easy to implement
and does not require any optimization knowledge. It is also easy
to build modular versions of CLEAN with deconvolution by
patches, for instance, allowing direction-dependent effects to be
accounted for and image restoration and calibration processes to
be coupled (Tasse et al. 2013).

Finally, the greedy structure of CLEAN was probably a ma-
jor advantage for devising an operational spatio-spectral radio
deconvolution algorithm (to our knowledge the only algorithm
allowing visibility data cubes to be deconvolved), the multiscale-
multifrequency CLEAN implemented in LOFAR data process-
ing (van Haarlem et al. 2013). As a matter of fact, CLEAN
algorithms are implemented in many standard radio-imaging
softwares.

3.2. Recent works: sparse representations

In the second half of the 2000s, stellar interferometry was iden-
tified as a typical instance of compressed sensing (CS, Candès
et al. 2006; Donoho 2006) acquisition. Since the theoretical re-
sults of CS had shed new mathematical light on the random
Fourier sampling of sparse spikes, radio interferometry has ap-
peared as a natural case of CS, and major achievements were
foreseen in this domain from CS theory. Looking back at the
literature from this period to now, it seems that innovation in
recent radio interferometric reconstruction methods has grown
less from CS theorems (because their assumptions are most often
not satisfied in practical situations) than from an unchained re-
search activity in sparse representations and convex optimization
(Norris et al. 2013). Although these domains existed long before
CS, they certainly benefited from the CS success. A survey of
the evolution of sparse models in the recent literature of radio
interferometric image reconstruction is proposed below. These
models fall into two categories, sparse analysis or sparse synthe-
sis, a vocabulary that stems from frame theory and was studied
in the context of sparse representations by Elad et al. (2007).

3.3. Sparse synthesis

This approach assumes that the image to be restored, x, can be
sparsely synthesized by a few elementary features called atoms.
More precisely, x is assumed to be a linear combination of a
few columns of some full rank �2- normalized dictionary S, of
size (N, L), with L usually greater than N:

x = Sγγγ, where γγγ ∈ RL is sparse. (7)

With (7), model (5) becomes

u =MFSγγγ +M���, with γγγ sparse. (8)

The simplest and most intuitive sparsity measure is the number
of non-zero entries of x (i.e., the �0 pseudo-norm), but �0 is not
convex. To benefit from the properties of convex optimization,
the �0 penalization is often relaxed and replaced by �12, which
still promotes strict sparsity and thus acts as a variable selection
procedure (�p

p with 0 < p < 1 also, but leads to more difficult
-non convex- optimization problems; �p

p, p > 1 does not).
In a sparsity-regularized reconstruction approach, a typical

regularization term corresponding to such penalties (but there
are many others) has the form µp � γγγ �pp, with a regularization
parameter µp ∈ R+ and it is added to the data fidelity term (the
squared Euclidean norm of the error for i.i.d. Gaussian noise).
The vectors γγγ that will minimize the cost function:

js(γγγ) =
1
2
�MFSγγγ − u�22 + µp � γγγ �pp , 0 ≤ p ≤ 1, (9)

will then tend to be sparse for sufficiently high values of µp.
Synthesis-based approaches thus lead to solutions of the form3

x∗s = S ·
�

arg min
γγγ

1
2
||MFSγγγ − u�22 + µp � γγγ �pp

�
. (10)

The minimization problem corresponding to the particular case
p = 1 is called basis pursuit denoising (BPDB) in optimization
(Chen et al. 1998).

2 For a vector x, �p
p =
�

i |xi|p.
3 MFS is assumed to have unit-norm �2 columns. If this is not the
case, the components of γγγ should be weighted accordingly (see, e.g.,
Bourguignon et al. 2011).
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3.4. Sparse analysis

In this approach, regularity conditions on x are imposed by an
operator A�. The sparse analysis approach consists in finding a
solution x that is not correlated to some atoms (columns) of a
dictionary A of size (N, L). The sparse analysis model therefore
assumes that A�x is sparse.

Adopting a regularization term that imposes this sparsity
constraint, sparse analysis approaches usually seek solutions of
the form

x∗a = arg min
x

1
2
�MFx − u�22 + µp � A�x �pp, 0 ≤ p ≤ 1. (11)

3.5. Representations and dictionaries

The sparsity expressed through S on γγγ or on A�x requires that
the signal is characterized by low dimensional subspaces. They
can be orthonormal transforms (corresponding to orthonormal
bases) or more generally redundant (overcomplete) dictionaries.
These subspaces correspond to mathematical representations of
the signal: the columns of S correspond to geometrical features
that are likely to describe the unknown signal or image, while
the columns of A impose geometrical constraints (in analysis).

A wide variety of such representations has been elaborated
in the image-processing literature, such as canonical basis (cor-
responding to point-like structures), discrete cosine transform
(DCT, 2D plane waves), wavelets (localized patterns in time and
frequency), isotropic undecimated wavelets (Starck & Murtagh
1994), curvelets (elongated and curved patterns Starck et al.
2003), ridgelets (Candès & Donoho 1999), shapelets (Réfrégier
2003), and others (see Mallat 2008; Starck et al. 2010, for de-
tails on these representations and their applications.).

The choice of a dictionary is made with respect to a class
of images. In astronomy, wavelet dictionaries are widely used;
however they are known not to be appropriate for the repre-
sentation of anisotropic structures. In such cases, other trans-
forms have been designed to capture main features of specific
classes of objects. Among them, curvelets sparsify well-curved,
elongated patterns (such as planetary rings or thin galaxy arms),
while shapelets sparsify, for instance, various galaxy morpholo-
gies well. All of them have shown empirical efficiency and can
be used in the dictionary.

To accurately model complex images with various features,
one possibility is indeed to concatenate several dictionaries into
a larger dictionary. However, the efficiency of a dictionary also
critically depends on its size and on the existence of fast oper-
ators, without which restoration algorithms (that are iterative)
cannot converge in a reasonable time. Concatenation or unions
of representation spaces are now classically used in denoising
and inverse problems because they can account for more com-
plex morphological features better than standard transforms used
separately (an approach advocated early in Mallat & Zhang
1993; and Chen et al. 1998; see also Donoho & Huo 2001;
Gribonval & Nielsen 2003; Starck et al. 2010). Such unions
may allow maintaining a reasonable computational cost if fast
transforms are associated to each representation space. They also
provide a natural feature separation through the decomposition
coefficients associated to each subdictionary. This property is in-
deed interesting for astronomy, where a celestial scene may con-
tain features as different as point-like sources, rings, spirals, or
smooth and diffuse components, with various spatial extensions.

3.6. Synthesis versus analysis

Analysis and synthesis priors lead to different solutions (and al-
gorithms) for redundant dictionaries. When A and S are square
and invertible, as for orthonormal bases, a change of variables
with S−1 = A� shows that the approaches in (10) and (11) are
equivalent. A seminal study is proposed in Elad et al. (2007),
whose first result shows that when S is taken as A�† (the
pseudo-inverse of A�), the analysis model is restricted to a space
with a lower dimension than the synthesis one. More generally,
Theorem 4 of the same paper shows by more involved means
that, for p = 1 and L ≥ N, a dictionary S(A�) exists for any �1
MAP-analysis problem with full-rank analyzing operator A� de-
scribing an equivalent �1 MAP-synthesis problem. The converse
is not true. In this sense, sparse synthesis is more general than
analysis and in theory it allows better reconstruction results.

The question of how the two approaches compare in practice
for usual transforms remains open, however, even for the case
p = 1. The works of Carlavan et al. (2010) propose an inter-
esting numerical comparison of the two approaches for various
transforms and dictionaries in the framework of noisy deconvo-
lution. Their conclusion is that synthesis approaches seem to be
preferable at lower noise levels, while analysis is more robust at
higher noise regimes.

Arias-Castro et al. (2010) report numerical experiments with
redundant dictionaries showing empirically that �1-synthesis
may perform as well as �1-analysis, while other papers high-
light better results for analysis models (Carrillo et al. 2012). A
clear and well-identified issue with synthesis is that the number
of unknown (synthesis coefficients) may rapidly become pro-
hibitive for large dictionaries, while in analysis the number of
unknowns remains constant (as it corresponds to the number of
image parameters in x). On the other hand, sticking to a syn-
thesis approach with dictionaries without enough atoms may
lead to rough and schematic reconstructed sources. Obtaining
more theoretical and general results on the analysis vs synthesis
comparison is a very interesting, active, and growing subject of
research4.

In radio interferometry, each recent reconstruction algorithm
has its own sparse representation model. Explicit sparse priors
were indeed first expressed in the direct image space, which
is typically appropriate for (but limited to) fields of unresolved
stars (Mary & Michel 2007; Mary et al. 2008). In this case, the
restored image can be obtained by solving the BPDN problem
associated to (10) with S = I (or to (11) with A = I). This is also
the approach of Wenger et al. (2010).

To efficiently recover more complex images, sparse synthesis
models involving a dictionary S taken as union of bases with a
union of canonical, DCT, and orthogonal wavelets bases were
proposed in Mary (2009), Vannier et al. (2010) and Mary et al.
(2010). The restored image is in this case obtained by solving
(10) with p = 1. The Compressed Sensing imaging technique
BP+ of Wiaux et al. (2009a,b) solves a synthesis problem (10)
with p = 1 subject to an image positivity constraint, and S is a
redundant dictionary of wavelets.

In Li et al. (2011), the Compressed Sensing-based deconvo-
lution uses the isotropic undecimated wavelet transform (IUWT,
Starck et al. 2010) for S and solves (10) under a positivity con-
straint. We show results of this method in the simulations. The
works of McEwen & Wiaux (2011) consider an analysis-based
prior (total variation), for which A� implements the �1 norm of

4 See for instance the references of http://small-project.eu/
publications
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the discrete image gradient:

x∗a = arg min
x
�x�TV s.t. �y −WMFx||2 < �, (12)

where � is a prescribed fidelity threshold.
Recently, the sparsity-averaging reweighted analysis

(SARA) (Carrillo et al. 2012) focused on an analysis criterion
with a solution of the form (11) with p = 1, a positivity
constraint on x and a union of wavelet bases for A. The work of
Carrillo et al. (2013) presents large scale optimization strategies
dedicated to this approach. Clearly, sparse models allied to
optimization techniques have attracted a lot of attention in this
field during the past seven or eight years.

4. Motivation for an analysis-by-synthesis approach

The imaging system described in Sect. 2 describes a linear fil-
ter whose transfer function is described by the diagonal of M.
In Fourier space, this transfer function has many zeros, making
the problem of reconstructing x from y underdetermined and
ill-posed. In image space, the PSF has typically numerous and
slowly decreasing sidelobes owing to the sparse sampling per-
formed by the interferometer. The PSF extension and irregular-
ity make the recovery of faint objects particularly difficult when
surrounding sources that are orders of magnitude brighter.

The specific problem of restoring faint extended sources sub-
merged by the contribution of the sidelobes of brighter and
more compact sources has led us to explore a fast restoration
method in Dabbech et al. (2012), which exploits positivity and
sparse priors in a hybrid manner and where MORESANE is an
elaborated version. Several essential changes have been intro-
duced in MORESANE with respect to the prototype algorithm
by Dabbech et al. (2012) in order to be able to apply it on realis-
tic radio interferometric data. The main developments include:

– identification of the brightest object, which is now done by
taking the PSF behavior into account in the wavelet domain;

– introduction of parameters τ and γ to improve rapidity and
obtain a more accurate estimation of the sky image;

– use of the conjugate gradient instead of the projected
Landweber algorithm for rapidity;

– deconvolution scale by scale, which does not oblige the user
to specify the number of scales in the IUWT.

Comprehensive surveys of the vast literature in image recon-
struction methods for radio interferometric data can be found
in Starck et al. (2002) (including methods from model fitting
to non parametric deconvolution) and in Giovannelli & Coulais
(2005), who emphasize the particular problem of reconstruct-
ing complex (both extended and compact) sources. On this spe-
cific topic, very few other works can be found. In Magain et al.
(1998) and Pirzkal et al. (2000), the point-like sources are writ-
ten in a parametric manner based on amplitudes and peak po-
sitions. Extended morphologies are accounted for in Magain
et al. (1998) using a Tikhonov regularization and in Pirzkal et al.
(2000) by introducing a Gaussian correlation. In Giovannelli &
Coulais (2005), a global criterion is minimized (subject to a pos-
itivity constraint), where the penalization term is the sum of the
�1 norm of the point-like component and the �2 norm of the gra-
dient of the extended component.

Radio interferometric image reconstruction is a research
field where synthesis and analysis-sparse representations have
been extensively and, in fact, almost exclusively investigated in
the last few years. To be efficient on recovering faint, extended,
and irregular sources in scenes with a high dynamic range, the

approach we propose is hybrid in its sparsity priors and builds
somewhat on ideas of Högbom (1974) and Donoho et al. (2006).
We use a synthesis approach to reconstructing the image, but we
do not assume that synthesis atoms describing the sources are
fixed in advance, in order to allow more flexibility in the source
modeling. The synthesis dictionary atoms are learned iteratively
using analysis-based priors. This iterative approach is greedy
in nature and thus does not rely on global optimization proce-
dures (such as l1 analysis or synthesis minimization) of any kind.
The iterative process is important for coping with high dynamic
scenes. The analysis approach allows a fast reconstruction.

5. Model reconstruction by synthesis-analysis
estimators

We model the reference scene x as the superposition of P
objects:

x =
P�

t=1

θθθtXt = X θθθ, (13)

where Xt, columns of X, are �2-normalized objects composing x.
An object may be a single source or a set of sources sharing sim-
ilar characteristics in terms of spatial extension and brightness.
The matrix X is an unknown synthesis dictionary of size (N, P),
P � N, and θθθ is a vector of amplitudes of size P with entries θθθt.
The radio interferometric model (6) becomes

y = HX θθθ + n. (14)

This model is synthesis-sparse, since the image x is recon-
structed from few objects (atoms) Xt. In the proposed approach,
however, the synthesis dictionary X and the amplitudes θθθ are
learned jointly and iteratively through analysis-based priors us-
ing redundant wavelet dictionaries. Because bright sources may
create artifacts spreading all over the dirty image, objects θθθtXt
with the highest intensities are estimated at first, hopefully en-
abling the recovery of the faintest ones at last.

5.1. Isotropic undecimated wavelet transform

In the proposed method, each atom from the synthesis dictio-
nary X will be estimated from its projection (analysis coeffi-
cients) in a suitable data representation. One possible choice
for this representation, which will be illustrated below, is the
isotropic undecimated wavelet transform (IUWT) (Starck et al.
2007). IUWT dictionaries have proven to be efficient in as-
tronomical imaging because they allow an accurate modeling
through geometrical isotropy and translation invariance. They
also possess an associated fast transform.

We now recall some principles related to IUWT because
they are important for understanding the proposed algorithm.
Analyzing an image y of size N with the IUWT produces anal-
ysis coefficients that we denote ααα = A�y. Those are composed
of J + 1 sets of wavelet coefficients, where each set is the same
size as the image (see Fig. 1) and J ≤ log2 N − 1 is an integer
representing the number of scales of the image decomposition.
Formally ααα can be written as ααα = [w�(1), . . . ,w

�
(J), a

�
(J)]
�, where

the {w( j)}Jj=1 are wavelet coefficients (for which j = 1 represents
the highest frequencies), and a(J) is a set of smooth coefficients.
Important is that the data y can be recovered by y = Sααα, where
S is the IUWT-synthesis dictionary corresponding to A.
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Fig. 1. Bottom right: a galaxy cluster model im-
age, with a galaxy circled in yellow. From top
left to bottom middle: IUWT analysis coeffi-
cients w�(1), . . . ,w

�
(4) and a�(4) of the galaxy clus-

ter up to the dyadic scale J = 4. The red circles
show the most significant part of the galaxy’s
signature in the analysis coefficients.

An interesting feature of the IUWT is that astrophysical
sources yield very specific signatures in its analysis coefficients.
As an illustration, Fig. 1 highlights a galaxy in the original image
of a model galaxy cluster (see below for a more detailed descrip-
tion) with the analysis coefficients generated by this galaxy (in-
side the red circles). The fingerprint let by this object is clearly
visible in the first three scales. This suggests that each source can
in principle be associated to a set of a few coefficients (w.r.t. the
number of pixels N), which capture the source signature at its
natural scales. Conversely, we may try to reconstruct the sources
from the sparse set of corresponding analysis coefficients.

This is the strategy followed below, and it actually requires
two steps. First, obviously, the image that we must consider for
identifying the sources is the dirty image, which is noisy. This
means that all analysis coefficients ααα are not genuinely related
to astrophysical information, and some of them should be dis-
carded as noise. Using standard procedures (see, e.g., Starck
et al. 2011), the noise level can be estimated scale by scale from
the wavelet coefficients using a robust median absolute devia-
tion (MAD) (Johnstone & Silverman 1997), for instance. The
resulting significant analysis coefficients, which we denote by α̃αα,
are obtained from the analysis coefficients ααα scale by scale, by
leaving the coefficients larger than the significance threshold un-
touched and setting the others to 0.

Second, we need a procedure that will estimate which frac-
tion of the significant analysis coefficients α̃αα characterizes the
brightest source(s) (because we want to remove them to see what
is hidden in the background). We call this step object identifi-
cation and describe it below. We will then be in a position to
present the global reconstruction algorithm.

5.2. Object identification

The brightest object in the dirty image is defined from a sig-
nature defined by a subset of significant coefficients α̃αα, which
we denote by αααmax. The starting point for obtaining the bright-
est object is to locate the most significant analysis coefficient.
The IUWT analysis operation A�y = A�Hx may be seen as the
scalar product between the atoms {Ak}N×(J+1)

k=1 and Hx, or equiva-
lently of {H�Ak}N×(J+1)

k=1 with x. We denote the pixel of maximal
correlation score between x and one of the convolved dictionary

atoms {H�Ak}N×(J+1)
k=1 by

kmax = arg max
k∈[1,(N+1)×J]

A�k Hx
�A�k H�2 = arg max

k∈[1,(N+1)×J]

α̃ααk

�A�k H�2 · (15)

This normalization ensures that if x was pure noise, kmax would
pick up all atoms with the same probability. The third part of
the equation is indeed valid only if α̃αα contains nonzero coeffi-
cients. We also let αmax be the wavelet coefficient at the pixel po-
sition kmax defined by (15) and jmax be the corresponding scale.

To formalize the object identification strategy, we now need
two definitions from multiscale analysis (Starck et al. 2011).
First, a set of spatially-connected nonzero analysis coefficients
at the same dyadic scale j is called a structure and is denoted
by s. (This vector is thus a set of contiguous analysis coeffi-
cients.) Typically, the red circles of Fig. 1 encircle instances of
structures. Second, an object will be characterized by a set of
structures leaving at different scales and connected from scale to
scale. Typically, the structure in the red circles of Fig. 1 would
be connected from scales j = 3 to scale j = 1 because they are
vertically aligned. (More precisely, the position of the maximum
wavelet coefficient of the structure at the scale j−1 also belongs
to a structure at the scale j.) In the case of Fig. 1, the structures
associated to this object correspond to only one source − the cir-
cled galaxy in Fig. 1.

To estimate the whole fingerprint of the brightest object (say,
the circled galaxy), we proceed as follows. First, we identify kmax

and the structure smax, on scale jmax, to which the pixel posi-
tion kmax belongs. The other structures of this object are searched
only at lower scales ( j = 1, . . . , jmax − 1), where its finest details
live significantly. The resulting set of connected structures con-
stitutes the significant coefficients identifying the signature of
the brightest object in the data. These coefficients are stored in a
sparse vector αααmax of dimension N × (J + 1).

Of course, instead of detecting and using only the most sig-
nificant coefficient kmax in α̃αα, it can be more efficient to select
a fraction of the largest coefficients on the scale jmax (see, e.g.,
Donoho et al. 2006). In this case, the algorithm simultaneously
captures structures corresponding to other sources that have in-
tensities and natural scales that are similar to the brightest object
defined only by kmax and its associated structures. In our algo-
rithm, structures on the scale jmax are allowed to have their max-
imum wavelet coefficient as low as τ × αmax, where τ is a tuning

A7, page 6 of 16

4.4. MORESANE results on realistic simulations of radio observations 77



A. Dabbech et al.: MORESANE

parameter, which needs to be selected. The joint estimation of
these objects reduces deconvolution artifacts significantly since
their sidelobes in the data are taken into account simultaneously.
The choice of τ within a wide range (e.g., [0.6 0.9]) does not af-
fect the final results significantly. Only low values of τ (say 0.1)
can lead to convergence problems because the fainter objects are
dominated by the brighter ones. In this case, αααmax will capture
the signature of several sources in the dirty image. The detailed
description of the resulting object-identification strategy is given
by Algorithm 1.

In this algorithm, the significant analysis coefficients αααmax

are found as in Sect. 5.1, as well as the maximally significant
coefficients αmax, its position kmax and scale jmax (Steps 1 and 2).
In Step 3, we find and label all structures on scales smaller than
or equal to jmax, and we collect their number µµµ j per scale j in
µµµ = [µµµ1..µµµ jmax ]. In Step 5 we store the position of the maximum
wavelet coefficient of the ith structure of scale j in the entry Ki j
of a matrix K. The value of this coefficient is then αααKi j . Step 6
involves a recursive loop. Its purpose is to look for each signif-
icant structure si, jmax

on scale jmax, whether there is a structure
on scale jmax − 1, whose maximum is vertically aligned with it.
Such a structure is included in αααmax. The process is repeated for
this structure on the lower scale. This process creates a tree of
significant structures that describes the object’s signature.

Once the signature of a bright object has been obtained, the
object is deconvolved using αααmax by solving approximately the
following problem:

ẑ = arg min
z
� αααmax − DA�Hz �22, s.t. z ≥ 0, (16)

where D maps the analysis coefficients to the nonzero values of
αααmax and z ≥ 0 means that all components of z are non-negative,
and D is formally a diagonal matrix of size (N × (J + 1),N ×
(J + 1)) defined by Dkk = 1 if αααmax

k > 0 and 0 otherwise.

5.3. The MORESANE algorithm

These ideas lead to the following iterative procedure. At each
iteration i, we identify a sparse vector ααα(i), using Algorithm 1,
which contains the signature of the brightest object in the resid-
ual image within a range controlled by τ. The flux distribution
of this object (that may correspond to several sources belonging
to the same class in term of flux and angular scales) is estimated
at each iteration i as one object z(i) using the extended conjugate
gradient Biemond et al. (1990) as described in Algorithm 2. In
the conjugate gradient, since the conjugate vector and the esti-
mate are no longer orthogonal due to the nonlinear projection
on the positive orthant, a line search method must be deployed
to estimate the stepsize δ. The estimated synthesis atom corre-
sponding to z(i) is simply �Xi =

z(i)

�z(i)�2 and �θθθi = �z(i)�2. The
influence of this object can be removed from the residual image
by subtracting Hz(i) = �θθθiH �Xi. However, the complete removal
of the bright sources contribution at each iteration could create
artifacts in the residual image. Those are caused by an overesti-
mation of the bright contributions, which in turn can impede the
recovery of the faint objects. This fact is reminiscent of issues re-
garding proper scaling of the stepsize in descent algorithms and
of CLEAN loop factor (Högbom 1974). To provide a less ag-
gressive and more progressive attenuation of the bright sources’
contribution, we have introduced a loop gain γ in MORESANE
as in CLEAN. Values of γ that are close to 1 lead to instability in
the convergence. On the other hand, values that are too low lead
to very slow convergence. We found that γ ∈ [0.1 0.2] is a good
compromise. The version with γ is presented in Algorithm 3.

The formal number of objects may become significantly large
when using γ.

In the reconstruction of specific examples (see the next sec-
tion), it appears that when large features are deconvolved at
first, they somewhat capture the contribution of smaller sources,
which are then not accurately restored during the subsequent it-
erations on small sales (they incur significant artifacts, in partic-
ular on the border of the sources). Therefore, we have opted for
a general strategy (described in Algorithm 4) where Algorithm 3
is run iteratively for J = JPSF up to log2 N − 1, where J = JPSF is
the scale corresponding to the highest correlation of the PSF with
the analysis dictionary AT . As the considered number of scales
become larger, we also include all smaller scales in the dictio-
nary, because small structures may become significant once the
contributions of other sources have been removed. At iteration 1,
the input of Algorithm 3 is the dirty map y, and at the subsequent
iterations (J > JPSF), the input is the final residuals produced
by Algorithm 3 at the previous iteration (with J − 1 scales).
Iterations may stop before J reaches log2 N − 1 if no significant
wavelet coefficients are detected at some point.

Algorithm 1 Object identification

Input: ααα, τ.
Output: αααmax.
• Identify the significant analysis coefficients α̃αα as in Sect. 5.1.
• Identify kmax (15) and its corresponding αmax and jmax.
• Find and label all structures of α̃αα on scales j = 1 to jmax.
• Determine µµµ (µµµ j is the number of structures on a scale j).
• Determine the pixel position of the maximum wavelet coefficient of
the ith structure (denoted by si, j) on each scale j ( j = 1 to jmax), and
store it in a matrix entry Ki j. The value of its wavelet coefficient is α̃ααKi j .• for i = 1 to µµµ jmax

1. if α̃ααKi jmax ≥ τ × αmax

1.1. Add si, jmax
to αααmax.

1.2. Initialize � = 1.
1.3. for t = 1 to µµµ jmax−l

if Kt jmax−l is in the support of si, jmax−l+1

1.3.1. Add st, jmax−l to αααmax.
1.3.2. Set � = � + 1.
1.3.3. Repeat 1.3. until � = jmax.

end if.
1.4. end for.

2. end if.

• end for.

Algorithm 2 Conjugate gradient method: minor cycle

Input: ααα, D, Litr, H, J, �.
Output: deconvolved objects ẑ.
• Initialize � = 0, iteration index, r(0) = Sααα, residual image, u(0) = r(0),
gradient, ẑ(0) = 0, DA�H ≡W.
• while � < Litr do

1. z(�+1) = P+(z(�) + δu(�)), P+ is a projection operator on RN
+ , and the

stepsize δ is calculated using a line search method.

2. r(�+1) = r(�) − δ SWu(�).

3. β = �r(�+1)−r(�) ,r(�+1)�
�r(�) ,r(�)� ·

4. u(�+1) = r(�+1) + βu(�).
5. Set � = � + 1.

Iterations stop if
� z(�+1) − z(�)�2
� z(�)�2 < �.

• end while.
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Algorithm 3 Object estimation

Input: r, H, τ, γ, J, ε, Nitr.
Output: �X,�θθθ, residual r.
• Initialize i = 0, major iteration index, r(0) = r, �X = 0,�θθθ = 0.
• Determine ααα(0), the sparse analysis vector corresponding to the
brightest objects in r(0) using Algorithm 1, and thus D(0).
• while ααα(i) � 0 and i < Nitr do

1. Analysis based deconvolution step: Compute

ẑ(i)=arg min
z
� ααα(i) − D(i)A�Hz �2, s.t. z ≥ 0, using Algorithm 2

2. �Xi =
ẑ(i)

� ẑ(i)�2 and�θθθi = � ẑ(i)�2
3. Update r(i+1) = r(i) − γ�θθθiH�Xi.
4. Determine ααα(i+1), using Algorithm 1, and D(i+1).
5. Set i = i + 1.

Iterations stop if
� σr(i) − σr(i−1)�2
� σr(i−1)�2 < ε, where σr(i) is the standard

deviation of the residual r(i).
• end while.

Algorithm 4 MORESANE

Input: y, H, τ, γ, Nitr.
Output: reconstructed image x̂.
• Compute JPSF corresponding to the scale of the highest correlation of
the PSF with the IUWT-analysis dictionary.
• Initialize J = JPSF, number of scales for the IUWT-decomposition,
r(0) = y.
• while J < log2 N − 1

1. Determine�θθθ(J) and �X(J) using Algorithm 3.
2. Update dictionary �X = [�X �X(J)].
3. Update weights�θθθ = [�θθθ �θθθ(J)].
4. Update residual r(J) = r(J−1) − γ�X(J)�θθθ(J).
5. Set J = J + 1.

iterations stop if �X(J) = 0.
• end while.
• Synthesis step: x̂ = γ�X�θθθ.

6. Application of MORESANE and the benchmark
algorithms

In this section, we evaluate the performance of the deconvo-
lution algorithm MORESANE in comparison with the exist-
ing benchmark algorithms. We provide two families of tests. In
the first scheme, we apply MORESANE to realistic simulations
of radio interferometric observations. The results are compared
to those obtained by the classical CLEAN-based approaches
(Högbom CLEAN and Multiscale CLEAN) and the deconvo-
lution compressive sampling method developed in 2011 by Li
et al. (IUWT-based CS method in the following). In the second
scheme, we apply MORESANE to simplified simulations of ra-
dio data, where the considered uv-coverage is a sampling func-
tion with 0 and 1 entries in order to compare MORESANE with
the SARA algorithm developed in 2012 by Carrillo et al. The
published code of the latter is currently applicable only to a bi-
nary uv-coverage and could not therefore be applied to the first
set of our simulations.

The simulated data presented in this paper concern two
kinds of astrophysical sources containing both complex ex-
tended structures and compact radio sources. We first consider
a model of a galaxy cluster. Similar to observed galaxy clusters
(see, e.g., Fig. 1 in Govoni et al. 2006), the adopted model hosts
a wide variety of radio sources, such as a) point-like objects,
corresponding to unresolved radio galaxies; b) bright and elon-
gated features related to tailed radio galaxies, which are shaped
by the interaction between the radio plasma ejected by an active
galaxy and the intracluster gas observed in X-rays (e.g., Feretti
& Venturi 2002); and c) a diffuse radio source, the so-called ra-
dio halo, revealing the presence of relativistic electrons (Lorentz
factor γ � 1000) and weak magnetic fields (∼µGauss) in the
intracluster volume on Mpc scales (e.g., Ferrari et al. 2008). So
far, only a few tens of clusters are known to host diffuse radio
sources (see, e.g., Feretti et al. 2012; Brunetti & Jones 2014, for
recent reviews), which are extremely elusive owing to their very
low surface brightness. The model cluster image adopted in this
paper (courtesy of Murgia and Govoni) has been produced using
the FARADAY tool (Murgia et al. 2004) as described in Ferrari
et al. (in prep.). We then analyze the toy image of an HII re-
gion in M 31 that has been widely adopted in most of previous
deconvolution studies (e.g., Li et al. 2011; Carrillo et al. 20125)
owing to its challenging features, i.e. high signal-to-noise and
spatial dynamic ranges. In the following, all the maps are shown
in units of Jy/pixel.

6.1. Results for simulations of realistic observations

We simulated observations performed with MeerKAT. The radio
telescope, currently under construction in South Africa, will be
one of the main precursors to the SKA. By mid 2017, MeerKAT
will be completed and then integrated into the mid-frequency
component of SKA Phase 1 (SKA1-MID). In its first phase,
MeerKAT will be optimized to cover the L-band (from ≈1 to
1.7 GHz). It will be an array of 64 receptors, among which 48
will be concentrated in a core area of approximately 1 km in di-
ameter, with a minimum baseline of 29 m (corresponding to a
detectable largest angular scale of about 25 arcmin at 1.4 GHz).
The remaining antennas will be distributed over a more extended
area, resulting in a distance dispersion of 2.5 km and a longest
baseline of 8 km (corresponding to maximum achievable reso-
lution of about 5.5 arcsec at 1.4 GHz). Both the inner and outer
components of the array will follow a two-dimensional Gaussian
uv-distribution, which produces a PSF whose central lobe can be
nicely reproduced with a Gaussian shape.

Our test images are shown in the top panels of Fig. 3. Their
brightness ranges from 0 to 4.792 × 10−5 Jy/pixel and from
−2.215×10−9 to 1.006 Jy/pixel for the cluster and M 31 cases, re-
spectively (with 1 pixel corresponding to 1 arcsec). The center of
the maps is taken to be located at RA = 0 and Dec = −40 degrees
(MeerKAT will be located at latitude ∼−30 degrees). To sim-
ulate realistic observations, we used the MeqTrees package
(Noordam & Smirnov 2010). We considered a frequency range
from 1.015 GHz to 1.515 GHz, with an integration time of
60 s and a total observation time of eight hours. We adopted
a robust weighting scheme (with a Briggs robustness parame-
ter set to 0) and a cell size of 1 arcsec, corresponding to ∼1/5
of the best angular resolution achievable by MeerKAT. The
resulting standard deviation of the noise in the simulated maps is
1.73× 10−6 Jy/pixel. The simulated image sizes were selected to

5 See also http://casaguides.nrao.edu/index.php?title=
Sim_Inputs
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Fig. 2. Left: (u, v) coverage of MeerKAT for 8 h of observations, colors
correspond to the same baseline. Right: its corresponding PSF.

be 2048×2048 pixels, corresponding to roughly one-third of the
primary beam size of MeerKAT (≈1.5 deg at 1.4 GHz). The sky
images shown in Fig. 3, originally both of size 512 × 512 pixels,
were padded with zeros in their external regions.

CLEAN-based approaches are performed directly on the
continuous visibilities using the lwimager software implemented
in MeqTrees, a stand-alone imager based on the CASA libraries
and providing CASA-equivalent implementations of various
CLEAN algorithms. Whereas both MORESANE and IUWT-
based CS, written in MATLAB, take the PSF and the dirty image
for entries and work on the gridded visibilities using the FFT.

The uv-coverage and corresponding PSF of the simulated
observations are shown in Fig. 2. The main lobe of the PSF is
approximated by a Gaussian clean beam (10.5×9.9 arcsec, PA =
−28 deg). The resulting dirty images provided by MeqTrees are
shown in the middle panel of Fig. 3.

Owing to the important dynamic range (≈1:10 000) of the
cluster model map, the diffuse radio emission of the radio halo
in the dirty map is completely buried into the PSF side lobes
of bright sources (see top panel of Fig. 3). To perform the de-
convolution step with MORESANE, we consider the following
entries. The gain factor γ that controls the decrease of the resid-
ual is set to γ = 0.2. The parameter τ that controls the number
of detected objects per iteration is set to τ = 0.7 and the max-
imum number of iterations to Nitr = 200 and ε = 0.0001. For
the wavelets denoising, we use 4σ clipping. For the minor cy-
cle, we fix the maximum number of iterations in the extended
gradient conjugate Litr to 50, (tests have shown that conver-
gence is usually reached before) and the precision parameter
� to 0.001. MORESANE stops at J = 7. For both Högbom
and Multiscale CLEAN tests, we set γ = 0.2, the threshold to
3σ and the maximum number of iterations to Nitr = 10 000.
More specifically to the Multiscale CLEAN, we use seven scales
[0, 2, 4, 8, 16, 32, 64] and γ = 0.2. For the IUWT-based CS, we
use its reweighted version implemented in MATLAB6. We set
the level of the IUWT-decomposition to 6, the threshold to 5 per-
cent of the maximum value in the Fourier transform of the PSF,
the regularization parameter λ = 10−8, the threshold to 3σ and
the maximum number of iteration Nitr = 50.

The dirty image corresponding to M 31 is displayed in the
bottom panel of Fig. 3. The source is completely resolved and
above the noise level. To deconvolve it, we set the parameters
of MORESANE to τ = 0.7, γ = 0.2, Nitr = 200, ε = 0.0005,
and 5σ clipping on the wavelet domain. In the minor loop, we
set the precision parameter � = 0.01. MORESANE stops at

6 Found at https://code.google.com/p/csra/downloads

J = 7. In the case of the Högbom CLEAN, we set γ = 0.2,
Nitr = 10 000, and a 3σ threshold. For Multi-Scale CLEAN we
adopt: γ = 0.2, Nitr = 10 000, a 3σ threshold and seven scales
([0, 2, 4, 8, 16, 32, 64]). Finally, the parameters set for the IUWT-
based CS method are: seven scales, the threshold to 5 percent
of the maximum value in the Fourier transform of the PSF,
λ = 10−4, the threshold to 3σ, and the maximum number of
iteration Nitr = 50.

To numerically quantify the quality of the image recovery
by MORESANE with respect to the benchmark algorithms, in
terms of fidelity and dynamic range, we use two indicators de-
scribed in the following.

i) The signal-to-noise ratio (S/N) is defined as the ratio of the
standard deviation σx of the original sky to the standard de-
viation σx̂−x of the estimated model from the original sky:

S/N = 20 log10
�x�2
�x̂ − x�2 · (17)

The CLEAN algorithm provides a very poor representation of
the original scene, since it is assumed to be only composed of
point sources. Therefore, the S/N of the CLEAN model is in-
herently very low. For a more reliable evaluation of the image
recovery given by the four algorithms, we use the S/N metric
on the model images convolved with a clean beam. The latter
is usually a two-dimensional elliptical Gaussian that fits the pri-
mary lobe of the PSF. These images are considered to be more
reasonable from the astrophysics point of view, especially in
the case of the CLEAN algorithm and its variants. Hereafter,
we call a beamed image, an image convolved with a clean
beam.

Radio astronomers usually refer to the restored map ỹ
given by

ỹ = Bx̂ + r. (18)

where B is the convolution matrix by the clean beam and r is the
residual image of the deconvolution.

ii) The dynamic range metric (DR) is defined in Li et al. (2011),
as the ratio of the peak brightness of the restored image to the
standard deviation σr of the residual image,

DR =
||ỹ||∞
σr
· (19)

Figure 5 shows the deconvolution results obtained on the galaxy
cluster. The model images, the beamed images, the beamed
error images, and the deconvolution residual images are dis-
played. From a qualitative inspection of Fig. 5, MORESANE
and the IUWT-based CS method provide better approxima-
tions of the original scene than CLEAN, since the morpholo-
gies of the different objects are estimated in a more accurate
way. MORESANE is additionally more robust to false detec-
tions: while the two versions of CLEAN and the IUWT-based CS
method detect a large number of fake components, almost all ob-
jects in the MORESANE model correspond to genuine sources
when checked against the true image.

For a more quantitative comparison between the different
methods, we compared the photometry of the reconstructed
models versus the true sky. In the case of the galaxy cluster, the
total flux density of the true sky over the central 512 × 512 pixel
area is 4.10 × 10−3 Jy. The total flux values that we get in the
cases of Högbom CLEAN, Multi-scale CLEAN, IUWT-based
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Fig. 3. Top: simulated galaxy cluster data.
Bottom: simulated M 31 data. From left to right:
input images of size 512 × 512 pixels (shown
respectively on log scale for the galaxy cluster
and linear scale for M 31), dirty images of size
2048 × 2048 pixels and zoom on their central
regions of size 512 × 512 pixels.

Fig. 4. Left: considered uv-coverage; middle and right: dirty images corresponding to the galaxy cluster and M 31, respectively.

Table 1. Numerical comparison of the different deconvolution algorithms for the realistic simulations.

Högbom CLEAN Multi-scale CLEAN IUWT-based CS MORESANE

Galaxy cluster
S/N of the beamed models [dB] 24.9012 27.5243 20.2848 33.44

DR 456.21 498.43 502.21 543.40
M 31

S/N of the beamed models [dB] 55.7455 51.6475 43.9001 59.3224
DR [×104] 1.5405 0.6881 0.4356 1.8541

CS, and MORESANE are 3.4 × 10−3, 3.6 × 10−3, 8.3 × 10−3,
and 4 × 10−3, respectively. We also compared the photome-
try pixel by pixel as shown in Fig. 7, where we plot the esti-
mated model images on the y-axis against the true sky image
on the x-axis. In both tests, MORESANE is the method that
gives better results in terms of total flux and surface brightness.
MORESANE also gives better results in terms of S/N on the
beamed models introduced before (see top part of Table 1).

The results of M 31 reconstruction confirm the better perfor-
mance of MORESANE. In Fig. 6, we do not show the beamed
models where the differences, unlike for the non-beamed
versions, are negligible. Instead, we show both the error images

x − x̂ (Fig. 6b) and its beamed version Bx − Bx̂ (Fig. 6c).
While the IUWT-based CS gives a very good estimation of the
model source, as confirmed by inspection of Figs. 6a and 8, it
is still less competitive than MORESANE when comparing fi-
delity tests and dynamic range results (bottom part of Table 1).
This is strongly related to false detections. The total flux of
the sky image is 1495.33 Jy. The reconstructed total flux by
Högbom CLEAN, Multi-scale CLEAN, IUWT-based CS, and
MORESANE are 1495, 1495.7, 1533, and 1495.8, respectively.
Both MORESANE and CLEAN conserve very well the flux,
while the high false detection rate of the IUWT-based CS method
explains its higher total flux value.
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Table 2. Numerical comparison of SARA and MORESANE for the toy
simulations.

SARA MORESANE
Galaxy cluster

S/N of the models [dB] 13.31 16.34
S/N of the beamed models [dB] 26.17 29.47

DR 395.41 397.07
M 31

S/N of the models[dB] 23.19 17.22
S/N of the beamed models [dB] 47.67 38.81

DR [×107] 1.38 0.0007

6.2. Results for simplified simulations of observations

To compare the performance of MORESANE with the algo-
rithm SARA, we used toy simulations of radio interferometric
images, where the considered uv-coverage is a binary sampling
function. The latter is derived from the previously generated
PSF of MeerKAT. Considering the central part of the PSF of
size 512 × 512 pixels, Fourier samples with very low magnitude
(<0.01 of the maximum) are set to zero, as is the central fre-
quency. The remaining values are set to 1, keeping only 4% of
the measurements. The resulting new PSF is simply the inverse
Fourier transform of the new uv-coverage. Within this configura-
tion, simulated radio images corresponding to the galaxy cluster
and M 31 are shown in Fig. 4. An additive white noise of stan-
dard deviation 6 × 10−8 Jy/pixel is added to the visibilities in
order to mimic a similar noise level to the previous simulations.

The SARA algorithm has shown its superiority to the IUWT-
CS-based algorithm in Carrillo et al. (2012). Therefore, in this
paragraph the performance of MORESANE is studied with re-
spect to SARA alone. To do so, we used the MATLAB code of
the SARA algorithm7. In this set of simulations, visibilities lie
on a perfect grid. MORESANE results are obtained using the
same parameters as for the preceding test.

Deconvolution results for the galaxy cluster are shown
in Fig. 9. Clearly MORESANE provides a better model than
SARA, as confirmed numerically in Table 2. The total flux den-
sity of the true sky is 4.10×10−3 Jy. The total flux values that we
get in the cases of SARA and MORESANE are 4.32 × 10−3 and
4×10−3, respectively. In the case of M 31 reconstruction, SARA
has proved to perform better deconvolution than MORESANE,
as shown in Fig. 10. The total flux of the sky image is 1495.33 Jy,
and its estimated values by SARA and MORESANE are 1496.1
and 1496.7. Furthermore, SARA provides better DR and S/N.

In SARA, very faint false components are reconstructed all
over the field. Our understanding of this effect is that the method
minimizes the difference between the observed and modeled
visibilities within an uncertainty range, which is defined in-
side the algorithm with respect to the noise level. Small er-
rors in the modeled visibilities give rise to weak fluctuations
within the whole reconstructed image (in this case a factor of
≈0.01 lower than the minimum surface brightness of the source).
The SARA estimated model is the one that describes the visibili-
ties best, within an error margin and subject to an analysis-sparse
regularization. This strategy results here in a residual image with
very low standard deviation, despite the artifacts visible all over
the field (see Fig. 11, middle panel).

The righthand panel of Fig. 11 shows that MORESANE
model includes a weak (a factor of ≈0.1 lower than the min-
imum surface brightness of the source) fake emission at the

7 Found at https://github.com/basp-group/sopt

edge locations of M 31. Because MORESANE uses dictionar-
ies based on isotropic wavelets, edges are less well preserved
in the current case where the source is fully resolved, ex-
tended, and significantly above the noise level. On the other
hand, the MORESANE method does not produce false detec-
tions in the field surrounding the source, because source detec-
tion (Algorithm 1) and reconstruction (Algorithm 2) are done
locally in the wavelet and image domains, respectively.

7. Summary and conclusions

In this paper, we present a new radio deconvolution algorithm –
named MORESANE (MOdel REconstruction by Synthesis-
ANalysis Estimators) – that combines complementary types of
sparse recovery methods in order to reconstruct the most appro-
priate sky model from observed radio visibilities. A synthesis ap-
proach is used for reconstructing images, in which the unknown
synthesis objects are learned using analysis priors.

The algorithm has been conceived and optimized for restor-
ing faint diffuse astronomical sources buried in the PSF side
lobes of bright radio sources in the field. A typical example of
important astrophysical interest is the case of galaxy clusters,
which are known to host bright radio objects (extended or un-
resolved radio galaxies) and low-surface brightness Mpc-scale
radio sources (≈µJy/arcsec2 at 1.4 GHz, Ferrari et al. 2008).

To test MORESANE capabilities, in this paper we simulated
realistic radio interferometric observations of known images, in
such a way as to be able to directly compare the reconstructed
image to the original model sky. Observations performed with
the MeerKAT array (i.e., one of the main SKA pathfinders,
which is being built in South Africa) were simulated using the
MeqTrees software (Noordam & Smirnov 2010). We considered
two sky models, including the image of an HII region in M 31,
which has been widely adopted in most of previous deconvolu-
tion studies, and a model image of a typical galaxy cluster at ra-
dio wavelengths, which has been produced using the FARADAY
tool (Murgia et al. 2004). We then compared MORESANE de-
convolution results to those obtained by available tools that can
be directly applied to radio measurement sets, i.e., the classical
CLEAN and its multiscale variant (Cornwell 2008) and one of
the novel compressed sensing approaches, the IUWT-based CS
method by Li et al. (2011).

Our results indicate that MORESANE is able to efficiently
reconstruct images of a wide variety of sources (compact point-
like objects, extended tailed radio galaxies, and low-surface
brightness emission) from radio interferometric data. In agree-
ment with the conclusions based on other CS-based algorithms
(e.g., Li et al. 2011; Garsden et al. 2015), the MORESANE out-
put model has a higher resolution than CLEAN-based methods
(compare, e.g., the second and fourth images in the first column
of Fig. 5) and represents an excellent approximation of the scene
injected in the simulations.

Results obtained in the galaxy cluster case (Figs. 5 and 9), as
well as the fidelity tests summarized in the top part of Tables 1
and 2, clearly indicate that MORESANE provides a better ap-
proximation of the original scene than the other deconvolution
methods. In both sets of simulations, the new algorithm proved
to be more robust to false detections: while multiscale CLEAN,
the IUWT-based CS, and SARA methods detect a large num-
ber of fake components, almost all objects in the MORESANE
model correspond to genuine sources when checked against the
true image. In addition, MORESANE gives better results when
comparing the correspondence between the true sky pixels and
those reconstructed (see Fig. 7). This proves that MORESANE
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(a) (b) (c) (d)

Fig. 5. Reconstructed images of the galaxy cluster observations simulated with MeerKAT. The results are shown from top to bottom for Högbom
CLEAN, Multi-scale CLEAN, IUWT-based CS and MORESANE. From left to right, model images a), beamed images b), error images of the
beamed models with respect to the beamed true sky c) and residual images d).

is robust in the case of a noise level that is significantly higher
than the weakest source brightness in the field. These are valu-
able results for getting an output catalog of sources from radio
maps. New radio surveys coming from SKA and its pathfinders
will allow getting all-sky images at (sub-)mJy level, thus requir-
ing extremely efficient and reliable source extraction methods
(Norris et al. 2013, and references therein). In addition, thanks
to the huge data rate of the new generation of radio telescopes
(300 Gigabytes per second in the case of LOFAR, which will
increase by a factor of at least one hundred with SKA), ob-
servations will not be systematically stored, but data reduction
will have to be completely automatized and done on the fly.
We plan to develop MORESANE further to automatically ex-
tract an output catalog of sources (position, size, flux, etc.) from

its reconstructed model. This would allow our new image re-
construction method in pipelines to be easily inserted for auto-
matic data reduction, based also on the fact that our tests indicate
that, unlike the IUWT-CS method, the settings of parameters of
MORESANE do not need a fine tuning of the user, but can be
easily optimized for generalized cases.

The results of M 31 reconstruction are less conclusive for
the best deconvolution method. On the realistic simulations,
while the IUWT-based CS gives a very good estimation of the
model source, it is still less competitive than MORESANE when
comparing fidelity tests and dynamic range results owing to
the high rate of false model components. However, for the toy
simulations of M 31, SARA outperformed MORESANE with a
higher dynamic range and fidelity. In the considered M 31 toy
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(a) (b) (c) (d)

Fig. 6. Reconstructed images of M 31 observations simulated with MeerKAT. The results are shown from top to bottom for Högbom CLEAN,
Multi-scale CLEAN, IUWT-based CS and MORESANE. From left to right, model images a), error images of the model images with respect to
the input image b), error images of the beamed models with respect to the beamed sky image c) and residual images d).

model, the source is fully resolved and has a lower noise level
than the intensity of its weakest component. We stress here that
in true observations, these criteria are only met when observing
bright sources with long exposure times and within small filed
of views.

These results are extremely encouraging for the application
of MORESANE to radio interferometric data. Further develop-
ments are planned, including comparing our tool to other ex-
isting algorithms that are, for the moment, not publicly avail-
able (e.g., Garsden et al. 2015), taking the variations in the PSF

across the field-of-view of the instrument into account, studying
other possible analysis dictionaries, reconstructing spectral im-
ages, and testing performances on poorly calibrated data. Tests
of MORESANE on real observations, which will be the object
of a separate paper, are ongoing and promising. The results of
this paper were obtained by using MORESANE in its origi-
nal version written in MATLAB. PyMORESANE, a recently
developed Python implementation of MORESANE8, is now

8 The implementation only depends on the most common Python mod-
ules, in particular SciPy, NumPy, and PyFITS.
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Fig. 7. From left to right: results of the galaxy cluster recovery using Högbom CLEAN, MS-CLEAN, IUWT-based CS and MORESANE. Plots of
the model images (y-axis) against the input sky image (x-axis).

Fig. 8. From left to right: results of M 31 recovery using Högbom CLEAN, MS-CLEAN, IUWT-based CS and MORESANE. Plots of the model
images (y-axis) against the input sky image (x-axis).

(a) (b) (c) (d)

Fig. 9. Reconstructed images of the galaxy cluster toy simulations. The results are shown for SARA (top) and MORESANE (bottom). From left to
right, model images a), beamed images b), error images of the beamed models with respect to the beamed true sky c) and residual images d).
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(a) (b) (c) (d)

Fig. 10. Reconstructed images of M 31 toy simulations. The results are shown for SARA (top) and MORESANE (bottom). From left to right,
model images a), error images of the model images with respect to the input image b), error images of the beamed models with respect to the
beamed sky image c), and residual images d).

Fig. 11. From left to right, input model image of M 31 and reconstructed models by SARA and MORESANE on a log scale, respectively. The
figures in the top and bottom lines show exactly the same images, but with different flux contrasts to highlight features within the source and its
background.
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freely available to the community under the GPL2 license9.
PyMORESANE is a self-contained tool that includes GPU
(CUDA) acceleration and that can be used on large datasets,
within an execution time that is comparable to the standard im-
age reconstruction tools.
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4.5 Extended comparison of MORESANE with the new
techniques

In Dabbech, A. et al. (2015), MORESANE has shown to outperform the standard
CLEAN algorithm and its multiscale variant as well as the recent method developed by
Li et al. (2011), referred to by IUWT-based CS method. Preliminary comparison with
SARA, has shown the competitiveness of MORESANE with this approach (Dabbech,
A. et al. 2015). The SARA algorithm (and its advanced version PURIFY) has demon-
strated its supremacy over the existing tools (Carrillo et al. 2012, 2013) and is now the
state of the art in radio imaging. Therefore, we extend in this section the comparison
of MORESANE with the SARA algorithm. We also include results of IUWT-based CS
method. Note that we restrict the comparison to these two algorithms because of the
availability of both corresponding MATLAB codes for the community.

We shall recall here that the MORESANE algorithm solves for the radio imaging
problem in the image domain:

y = F†MFx+ n, (4.19)

where y ∈ RN is the dirty image and H ∈ RN×N is the convolution operator with the
PSF.
Both SARA and the IUWT-based CS solve for the radio imaging problem in the Fourier
domain:

v = MFx+ εεε, (4.20)

where v ∈ CN are the visibilities and M ∈ RN×N is a diagonal matrix corresponding
to the sampling.

4.5.1 Simulations

In Carrillo et al. (2012) and Dabbech, A. et al. (2015), the algorithm SARA has proved
to outperform the existing tools including MORESANE on the simulated observations of
M31 (note that this model image is widely used in publications of image reconstruction
algorithms in radio interferometry because of its complexity as a source). Therefore,
we will focus here only on the simulations of the galaxy cluster observations; such
astronomical scene is characterized by its very high dynamic range and is challenging
to recover.

We adopt two different uv-coverages, displayed in Fig.4.8, that are binary masks,
where the central frequency is set to 0 to mimic radio interferometric measurements.
In order to study the performances of the algorithms, for each configuration (i.e.
uv-coverage), we simulated dirty images with varied IS/N values, where IS/N ∈
{−0.4, 10, 20, 40, 60, 80, 100} dB.
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To quantify the quality of reconstruction in the following sections, we adopt the
metrics given by:

• S/N : the signal-to-noise ratio on the model images,

S/N = 20log10
||x||2

||x− x̂||2
, (4.21)

• S/Nb: the signal-to-noise ratio on the so-called beamed model images, these are
the model images convolved with the clean beam, considered here as the primary
lobe of the PSF, let B denote the convolution operator,

S/Nb = 20log10
||Bx||2

||Bx−Bx̂||2
, (4.22)

• DR: the dynamic range, that is the ratio of the peak brightness of the restored
image defined as ỹ = Bx̂+ r to the standard deviation σr of the residual r.

DR =
||ỹ||∞
σr

, (4.23)

• eflux: the error on the total flux,

eflux =
|�xi −

�
x̂i|�

xi
. (4.24)

4.5.2 Results on uv-1 simulations

In the first family of tests, the adopted configuration of the uv-coverage uv-1 is suitable
for the compressed sensing theory in general, since the sensing matrix M is highly
incoherent with the sparse representation space (dictionaries) (Candes et al. 2006).

Deconvolution results are obtained for the different algorithms using the following
parameters (determined after several tests): in MORESANE, we set γ = 0.15 and
τ = 0.4, for denoising in the wavelet domain, 2σ-clipping is used for IS/N > 40 db and
3σ-clipping for lower IS/N . In SARA, both parameters β (responsible for calculating
the weights) and tolerance ν are set to 10−6. In the IUWT-based CS, the level of
the IUWT-decomposition is set to 6, the regularization parameter is λ = 2 × 10−8 for
IS/N > 20 db and λ = 10−7 for lower IS/N and the maximum number of iterations to
200. We noticed that the IUWT-based CS method is highly dependent on the choice of
λ and the number of iterations, in particular for very small variation of λ results may
change drastically.

The numerical results displayed in Fig.4.9 indicate that both SARA and MORE-
SANE outperform the IUWT-based CS method, that is in agreement with the results
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Figure 4.8: Top, left: uv-coverage with a random profile, denoted uv-1 ; the sampling
is denser at the low spatial frequencies in order to mimic radio interferometric patterns
(Carrillo et al. 2012) and the number of samples is M = 0.05 × N , middle: its corre-
sponding PSF, right: a zoom on the latter’s central part. Bottom, left: uv-coverage,
denoted uv-2, that is a binary mask derived from the uv-coverage of the MeerKAT
telescope for two hours of observations (see right panel of Fig.1.3) and the number of
samples is M = 0.14×N , middle: its corresponding PSF, right: a zoom on the latter’s
central part.

shown in Carrillo et al. (2012) and Dabbech, A. et al. (2015). From the inspection of
the top panels in Fig.4.9, clearly SARA provides the best reconstruction for IS/N > 40

dB, while MORESANE shows to be more robust to noise for IS/N ≤ 40. This is due
to the denoising performed in the wavelet plane within MORESANE (see Sect.3.5).

On the other hand, assuming that the noise on the visibilities is known a priori,
SARA minimizes the distance ||v−MFx||2 up to a bound ε given by the noise statis-
tics (see Eq.2.14). By doing so, the residual of SARA algorithm (which is a global
optimization algorithm) reaches the noise level. This is also confirmed by the very high
DR values shown in bottom-left panel of the same figure. MORESANE residual reaches
however a sort of a plateau for IS/N ≥ 40 dB. The latter results from the fact that
MORESANE is a greedy algorithm working in the image domain; deconvolution errors,
although very small and localized in the image, are spread on all the visibilities, hence
preventing from reaching the noise level.

Deconvolution results obtained by the different algorithms, more precisely the model
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images x̂, the residual images r = y − Hx̂ and the restored images ỹ = Bx̂ + r are
displayed in Fig.4.10 - Fig.4.16. The visual inspection of the results is in agreement with
the numerical results. The IUWT-based CS model image is grainy and contains lots of
artifacts related to noise for low IS/N values. While the SARA model image for very
high IS/N approximates the best the true sky, for IS/N < 40 db, it is also contaminated
with deconvolution artifacts. Yet these artifacts are not noticeable when inspecting the
restored images, since they are buried in the noise. In general, MORESANE gives a
very good approximation of the sky model. In particular for low IS/N , MORESANE
is the most robust to false detections.

Figure 4.9: Deconvolution numerical results for the configuration uv-1. From top left to
bottom right: the y-axis are S/N , S/Nb, DR (in log10 scale) and eflux (in log10 scale),
the x-axis represents the IS/N .
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Figure 4.10: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 28.34

dB, IUWT-based CS S/N = 24.35 dB and MORESANE S/N = 25.93 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 100 dB.
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Figure 4.11: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 29.16

dB, IUWT-based CS S/N = 24.39 dB and MORESANE S/N = 25.89 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 80 dB.
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Figure 4.12: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 29.98

dB, IUWT-based CS S/N = 24.24 dB and MORESANE S/N = 25.93 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 60 dB.
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Figure 4.13: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 27.83

dB, IUWT-based CS S/N = 24.14 dB and MORESANE S/N = 25.68 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 40 dB.
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Figure 4.14: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 15.88

dB, IUWT-based CS S/N = 14.35 dB and MORESANE S/N = 19.87 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 20 dB.
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Figure 4.15: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 9.98

dB, IUWT-based CS S/N = 8.52 dB and MORESANE S/N = 15.11 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 10 dB.
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Figure 4.16: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 3.57

dB, IUWT-based CS S/N = 0.72 dB and MORESANE S/N = 10.09 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 0.4 dB.

4.5.3 Results on uv-2 simulations

In the second family of tests, the adopted configuration of the uv-coverage uv-2 is
derived from the uv-coverage of MeerKAT for two hours of observations. The resulting
PSF has more structured sidelobes in comparison with the previous simulations (see
Fig.4.8).

Deconvolution is performed using the same parameters as the previous test, except
for the IUWT-based CS; better results are obtained using 5 scales in the IUWT de-
composition instead of 6. The numerical results are displayed in Fig.4.17. Surprisingly,
the IUWT-based CS is very competitive in terms of S/N and S/Nb with SARA and
MORESANE, however the visual inspection of the results in Fig.4.18- Fig.4.24 indi-
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cates that model images of the IUWT-based CS are highly contaminated by irregular
artifacts. Clearly in this case the S/N metric is not sufficient to judge the quality of
the reconstruction. In fact, because of the very high dynamic range of the sky image,
the quality of the recovery of the very bright sources (the three galaxies in the center
of the image) highly affects the value of the S/N on the whole image.

Figure 4.17: Deconvolution numerical results for the configuration uv-2. From top left
to bottom right: the y-axis are S/N , S/Nb, DR (in log10 scale) and eflux (in log10
scale), the x-axis represents the IS/N .

In the case of very high IS/N > 40, interestingly SARA recovers a fake background,
while the achieved residual is at the noise level (see top-middle panel of Fig.4.18 and
the DR plot in Fig.4.17). This can be explained by the fact that the problem is solved
globally at the Fourier domain, hence any suboptimal estimation of a Fourier compo-
nent leads to artifacts on the whole image. In MORESANE, the residual again reaches
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a plateau for high IS/N , that is above the noise level. Yet, the final restored image of
MORESANE has the best quality; despite the very low residual of SARA, the back-
ground in the model image when convolved with the clean beam adds up to the noise.
For lower IS/N , again MORESANE seems to be more robust to the noise. More-
over, the measures of the errors on the total flux confirm the very good performance of
MORESANE. Both numerical results and visual inspection confirm the superiority of
MORESANE in this test.

Figure 4.18: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 17.05

dB, IUWT-based CS S/N = 17.38 dB and MORESANE S/N = 18.37 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 100 dB.
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Figure 4.19: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 17.35

dB, IUWT-based CS S/N = 17.57 dB and MORESANE S/N = 18.43 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 80 dB.
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Figure 4.20: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 17.12

dB, IUWT-based CS S/N = 17.64 dB and MORESANE S/N = 18.37 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 60 dB.
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Figure 4.21: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 16.17

dB, IUWT-based CS S/N = 17.02 dB and MORESANE S/N = 17.04 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 40 dB.
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Figure 4.22: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 9.84

dB, IUWT-based CS S/N = 12.27 dB and MORESANE S/N = 15.43 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 20 dB.
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Figure 4.23: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 6.28

dB, IUWT-based CS S/N = 7.19 dB and MORESANE S/N = 13.87 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 10 dB.



106 Chapter 4. MORESANE: a sparse deconvolution algorithm

Figure 4.24: From top to bottom: Deconvolution results of SARA, IUWT-based CS
and MORESANE. From left to right: model images (in log scale); SARA S/N = 2.69

dB, IUWT-based CS S/N = −3.36 dB and MORESANE S/N = 8.10 dB, residual
images (in linear scale), restored images (in log scale) on the simulated dirty image
with IS/N = 0.4 dB.

4.5.4 Discussion

In practice, tests indicate that the IUWT-based CS is very sensitive to the choice of
parameters, more precisely the regularization parameter and the number of iteration.
This is a serious drawback, as it needs a substantial a priori on the image to reconstruct
from the radio-astronomer. Better results might be achieved by SARA for more careful
choice of parameters. In this section, we have tried to study the performance of MORE-
SANE in comparison with these benchmark algorithms, using the best parameters in
our knowledge.

MORESANE has shown to be very competitive for the reconstruction of the galaxy
cluster image, characterized by its high dynamic range. In fact, the model image pro-
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posed by MORESANE is a very good approximation of the sky model; it is mainly
composed of genuine objects or sources estimated iteratively with respect to the noise
in the data. The denoising on the wavelet domain ensures the robustness of MORE-
SANE to false detections.

Through out this analysis, we have used the MATLAB versions of the three al-
gorithms. The IUWT-based CS is in general substantially faster than MORESANE
and SARA. Both SARA and MORESANE computational time depends on the choice
of the parameters (e.g. the precision/tolerance on the solution, the γ parameter in
MORESANE). While we have restricted the comparison to the MATLAB codes for
fairness reasons, in the future a study of the computational cost using Purify, the ad-
vanced version of SARA and PyMORESANE that is an implementation of MORESANE
into Python with CUDA acceleration (developed by J.S. Kenyon during his Masters in
Rhodes University) is planned. Also, comparison with the newly proposed approach in
Garsden et al. (2015) will be conducted upon availability of the code.
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Abstract

Clusters are known to host a variety of extended radio sources: tailed radio galaxies
whose shape is modeled by the interaction with the intra-cluster medium (ICM); radio
bubbles filling cavities in the ICM distribution and rising buoyantly through the thermal
gas; diffuse giant radio sources (“halos” and “relics”) revealing the presence of relativistic
electrons and magnetic fields in the intra-cluster volume. It is currently the subject of
an active debate how the non-thermal components that we observe at radio wavelengths
affect the physical properties of the ICM and depend on the dynamical state of galaxy
clusters.

In this work we start our SKA1 feasibility study of the “radio cluster zoo” through
simulations of a typical radio-loud cluster, hosting several bright tailed radio galax-
ies and a diffuse radio halo. Realistic simulations of SKA1 observations are obtained
through the MeqTrees software. A new deconvolution algorithm, based on sparse rep-
resentations and optimized for the detection of faint diffuse astronomical sources, is
tested and compared to the classical CLEAN method.
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with SKA1

5.1 Science case

The discovery of diffuse radio sources up to Mpc scales (called “halos”, “mini-halos”
or “relics”, depending on their position in the cluster, size, morphology and polariza-
tion properties) in more than 70 galaxy clusters has pointed out the existence of a
non-thermal (NT) component (relativistic electrons with Lorentz factor >>1000 and
magnetic fields of the order of µG) in the intracluster volume (e.g. Ferrari et al. (2008);
see also Chapters by Cassano et al.; Govoni et al.; Gitti et al., this Volume). Through
NT studies of galaxy clusters we can estimate the cosmic-ray and magnetic field en-
ergy budget and pressure contribution to the intracluster medium (ICM), as well as
get clues about energy redistribution during cluster mergers. NT analyzes can eluci-
date non-equilibrium physical processes whose deep understanding is essential to do
high-precision cosmology using galaxy clusters (Vazza et al. 2012a).

A detailed understanding of the origin of the intracluster NT component is still
missing. A current status of this research area is summarized here and is presented in
more detail in the Chapter by R. Cassano et al. While magnetic fields have been proved
to be ubiquitous in the intracluster volume (Bonafede et al. 2011), it is still debated
how the thermal electrons of the ICM can be accelerated to relativistic energies. Since
the radiative lifetime of electrons is much shorter than their crossing time over Mpc
scales, cosmic ray acceleration has to be related to “in situ” physical processes. Diffuse
radio emission has generally been detected in massive merging clusters. The most
widely accepted acceleration models are thus those that predict electron acceleration
by shocks (in the case of relics) and turbulence (in the case of halos) that develop
within the ICM during cluster interactions (e.g. Brunetti & Jones 2014). Note, however,
that recently Bonafede et al. (2014b) have pointed out the existence of a giant radio
halo in a cluster characterized by a cool-core, i.e. either a nearly relaxed or a minor
merger system. Relativistic electrons are also expected to be produced in clusters as a
secondary product of hadronic collisions between the ions of the ICM and relativistic
protons, characterized by significantly longer lifetime compared to relativistic electrons
(Enßlin et al. 2011, and refs. therein). Even if most evidence indicates that secondary
electrons are not expected to give rise to diffuse radio emission at levels detectable
by current instruments (but see Enßlin et al. 2011), they could provide the seeds for
further re-acceleration by merger induced turbulence and shocks. There is therefore still
the need to disentangle their possible contribution to the total cluster radio emission
through the next generation of radio telescopes (Brunetti & Lazarian 2011). Theoretical
models of electron acceleration need to be compared to statistical samples of clusters
emitting at radio wavelengths, while only a few tens of radio relics and halos are known
up to now and mostly at low/moderate redshift (z � 0.4, Feretti et al. 2012). Of great
importance for characterizing the origin of intracluster cosmic rays is the possibility to
perform spectral analyzes of diffuse radio sources (e.g. Orrù et al. 2007; Stroe et al.
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2013). While currently deep pointed radio observations have allowed to detect radio
emission from a few cases of high-z clusters (z > 0.5, see van Weeren et al. 2014, and
references therein), it is crucial to perform radio studies of statistical cluster samples
up to z∼1 (to follow the assembly process from the epoch of massive cluster formation)
and get detailed information about the mass and dynamical state of “radio loud” vs.
“radio quiet” clusters (e.g. Govoni et al. 2004; Cassano et al. 2013).

Apart from radio halos and relics, galaxy clusters host a wider variety of extended
radio sources, such as tailed radio galaxies whose shape is modeled by the interaction
with the ICM (e.g. Dehghan et al. 2011; Pfrommer & Jones 2011; Pratley et al. 2013)
and radio bubbles filling holes in the ICM distribution and rising buoyantly through the
thermal gas (e.g. de Gasperin et al. 2012; Gitti et al. 2012). Joint studies of all types
of extended radio sources in clusters allow us to address the complex physical processes
regulating the interaction between the different components of galaxy clusters (e.g.
Bonafede et al. 2014a). For this, it is of course crucial to be able to identify separately
the different kinds of radio sources in galaxy clusters (i.e. to discriminate between the
radio emission related to active galaxies or to the NT ICM). In this paper we start
our SKA1 feasibility study of the “radio cluster zoo” through a model radio-loud cluster
presented in Sect. 5.2.1. Realistic simulations of SKA1 observations of this model cluster
are described in Sect. 5.2.2. Sect. 5.3 focuses on the results of a new deconvolution
algorithm ( MORESANE, Dabbech et al. 2012; Dabbech, A. et al. 2015) optimized for
the detection of faint diffuse astronomical sources. We conclude with some remarks
about the feasibility of cluster studies with SKA1 and with future plans in Sect. 5.4.

5.2 Simulations of a radio-loud galaxy cluster

5.2.1 The model cluster

While with current facilities radio halos have been mostly discovered in low-redshift
clusters (< z >∼ 0.2, Feretti et al. 2012), with this study we aim at analyzing up to
which redshift we can detect diffuse cluster radio emission with SKA1. We are partic-
ularly interested to test if we can reach the epoch in which massive clusters that we
observe today are forming, i.e. z ≈ 1. By modeling both the gas and energy density dis-
tributions of the thermal and relativistic electron populations, and the characterization
of the magnetic field fluctuation and radial scaling similarly to Govoni et al. (2006),
we perform simulations of a galaxy cluster at z=0.5 using the FARADAY tool (Mur-
gia et al. 2004). The resulting model cluster hosts a diffuse radio halo, several tailed
radio galaxies and point sources (see Fig. 5.1). The total power of the simulated radio
halo is P1.4 GHz ∼ 1.2 × 1024 W/Hz, roughly corresponding to the luminosity limit of
currently detected radio halos (left panel of Fig. 1 in Cassano et al., this Volume). The
overlaid radio galaxy population is extracted from the galaxy cluster A 2255 (Govoni
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Figure 5.1: Simulated radio emission at
1.4 GHz from a galaxy cluster ( FARA-
DAY tool, Murgia et al. 2004) at z=0.5.
The radio galaxy population is extracted
from the cluster A 2255 (Govoni et al.
2006).

et al. 2006). The simulated model cluster is then redshifted up to z=1.0 by taking into
account the scaling of size, surface brightness and radio luminosity with redshift (e.g.
Enßlin & Röttgering 2002).

5.2.2 Simulations of SKA1-MID and SKA1-SUR observations

In this work, we start from our model cluster described in Sect. 5.2.1 and we perform
realistic simulations of SKA1-MID and SKA1-SUR observations using the MeqTrees
software (Noordam & Smirnov 2010). We provide as input currently available antenna
configurations and, similarly to the “SKA1 imaging science performance” document by
R. Braun, a total observing time of 8h. Note that, based on the bigger field-of-view
(FoV) of SKA-SUR with respect to SKA1-MID (∼ 18 deg2 vs 0.38 deg2 at 1.4 GHz),
the first instrument would approximately allow an all-sky survey within 2 years with
the adopted observation time per field. Conversely, the higher sensitivity of SKA1-
MID provides a significantly better detection of cluster radio emission, as discussed in
the following. In order to limit the simulated data volume, a 60s integration time is
assumed and no time averaging is applied. A 50 MHz bandwidth of a single channel
and starting at 1415 MHz is considered. The simulated observations are treated as
essentially monochromatic. No primary beam corrections are applied: the size of the
input model map is selected to be 2048 × 2048 pixels2, with the 512 × 512 pixels2 sky
image shown in Fig. 5.1 padded with zeros in its external regions. We use SEFDs1 as
set out in the baseline design (Dewdney et al. 2013) and rescale the noise to simulate
the 8 hours of synthesis.

1System Equivalent Flux Densities
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Figure 5.2: Dirty maps resulting from simulated observations of the model cluster at
z=0.5 for Cases A, B and C (from left to right). Top panels show results for SKA1-MID,
bottom panel for SKA1-SUR.

We have performed different imaging tests both for SKA1-SUR and SKA1-MID
with w-projection correction included and no other wide-field effects simulated. In
the following we will present results for: Case A) a uniform weighting scheme with 1
arcsec taper; Case B) a uniform weighting scheme with 5 arcsec taper; Case C) natural
weighting. Examples of the resulting dirty maps for the cluster at z=0.5 are shown in
Fig. 5.2. Despite the fact that nearly no convolution artifacts are present in the images,
at the highest resolution (Case A) only the brightest radio sources are visible and the
diffuse radio emission is completely below the noise. The diffuse emission of the radio
halo is instead already distinguishable on the dirty map in Case B.

Note that our approach, based on simulated observations, differs from the feasibility
study presented by Cassano et al., this Volume. In that case, similarly to Ferrari (2011),
the authors use a criterion based on a threshold in surface brightness to estimate if a
radio halo of a given luminosity can be detected by SKA. For this, they need to assume a
certain, generalized surface brightness profile for radio halos (e.g. Cassano et al. (2015)
assume that about half of the total halo flux is contained in about half halo radius,
while Ferrari (2011) adopts a brightness profile as a function of radius derived from
Govoni et al. (2001)).

5.3 New deconvolution and source detection method

We run both Högbom and Multi-Scale ( MS- CLEAN)2 algorithms (Högbom 1974;
Cornwell 2008) on the dirty maps down to 2σ level. In both cases, we use the lwimager
software implemented in MeqTrees, a stand-alone imager based on the CASA libraries

2Eigth scales are used for MS- CLEAN: [0,2,4,8,16,32,64,128].
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Cases A at z=0.5 B at z=0.5 C at z=0.5 A at z=1.0 B at z=1.0 C at z=1.0

SKA1-MID

Resolution [arcsec] 1.8 4.5 10.4 1.8 4.5 10.4

Sensitivity [µJy/beam] 2.4 1.7 0.8 2.5 1.9 1.2

SKA1-SUR

Resolution [arcsec] 1.8 4.9 7.4 1.8 4.9 7.4

Sensitivity [µJy/beam] 6.9 7.0 5.6 6.5 7.0 6.0

Table 5.1: Final resolution and rms sensitivity of the restored maps obtained with a
total observing time of 8 hours and using MS-CLEAN (see Sect. 2.2 for more details).

and providing CASA-equivalent implementations of various CLEAN algorithms. No
CLEAN boxes are used in our tests, since we aim at verifying results for a fully auto-
matic data reduction (as required for SKA). The rms sensitivity and final resolution
(determined by a combination of the adopted taper, weighting and uv-coverage) of the
restored maps both for SKA1-SUR and SKA1-MID tests are given in Table 5.1. The
MS-CLEAN components (convolved at the same resolution of simulated observations)
and maps of residuals are shown in the fourth and fifth columns of Figs. 5.3 and 5.4.

We then run the deconvolution algorithm MORESANE (Dabbech et al. 2012;
Dabbech, A. et al. 2015) on dirty maps. MORESANE, whose results are shown
in the second and third columns of Figs. 5.3 and 5.4, belongs to the family of new al-
gorithms based on the theory of Compressed Sensing (see Sect. 4.4.2 in Norris et al.
2013). More specifically, MORESANE allies complementary types of sparse image
models (Dabbech, A. et al. 2015). The clear advantage is that its reconstructed im-
age allows the detection of both extended and compact radio sources, reproducing in
a accurate way their morphologies (see Fig. 5.3). Further tests indicate that flux mea-
surements can be derived as a direct output of MORESANE, since the photometry of
the input model sky is conserved in the deconvolved image (Dabbech, A. et al. 2015).
The algorithm has been conceived and optimized for the detection and characterization
of very low-surface brightness and extended radio sources, resulting in the case pre-
sented here in the non-trivial detection of the very weak radio halo as well as in the
good recovery of tailed radio galaxy morphologies. In addition, contrarily to CLEAN,
the contamination by fake model components has been proved to be extremely weak,
when not absolutely zero. Based on all these elements, the output of MORESANE
can therefore be used for source catalog purposes (see Dabbech, A. et al. 2015, for a
detailed description of MORESANE and a quantitative comparison with other existing
deconvolution methods).
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Figure 5.3: Results of deconvolution for the model cluster at z=0.5 (top) and z=1.0 (bot-
tom) observed with SKA1-MID and adopting the imaging parameters of Case A. From
left to right: model cluster map convolved at the same resolution of simulated obser-
vations; source model resulting from MORESANE deconvolution algorithm convolved
at the same resolution of simulated observations; MORESANE maps of residuals;
MS-CLEAN components convolved at the same resolution of simulated observations;
MS-CLEAN maps of residuals. The model images are saturated at the same level.

Figure 5.4: Results of deconvolution for the model cluster at z=0.5 (top) and z=0.7
(bottom) observed with SKA1-SUR and adopting the imaging parameters of Case C.
Columns are the same as in Fig. 3.
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Thanks to the image reconstructed by MORESANE, we can conclude that 8 hour
observations with SKA1-MID will allow us to easily detect the different components of
our model cluster (from tailed radio galaxies to the low surface brightness radio halo)
up to z=1 and with an excellent resolution (∼ 1 arcsec, Case A). Through 8 hours of
observation with SKA1-SUR, we are instead able to get hints of the possible presence
of a diffuse radio source up to z ∼ 0.7 only when adopting a higher sensitivity natural
weighting scheme (Case C).

5.3.1 Notes on SKA1-LOW

Diffuse intracluster radio sources are generally characterized by steep synchrotron spec-
tra. This, together with their low-surface brightness and the possible spectral steepening
at high radio frequencies due to electron ageing, make them more easily detectable at
long wavelengths. In addition, a unique prediction of turbulence acceleration models is
the existence of ultra-steep radio halos, not associated to major cluster mergers, but to
less energetic merging events (Cassano et al. 2013). Low-frequency observations are re-
quired to detect this kind of sources, as well as old population of electrons, for instance
in dying or re-started radio galaxies at the center of galaxy clusters.

With a maximum baseline of 100 km, we can expect a maximum resolution of about
5 arcsec at 150 MHz and about 9 arcsec at 70 MHz, resulting in surface brightness
confusion levels of the order of 140 and 245 nJy/arcsec2 (see Fig. 4 in Ferrari et al.
2013, courtesy J. Condon)3. This imposes a much more severe limit in the sensitivity
of SKA1-LOW to diffuse emission from clusters compared to, for instance, the lowest
frequency part of SKA1-MID (see Fig. 6 in Ferrari et al. 2013). Higher resolution
SKA1-LOW observations could not only allow us to achieve a higher sensitivity to
diffuse radio emission by removing point sources and by re-imaging at lower resolution
the subtracted data (see e.g. Vazza et al. 2015), but are also absolutely required to
discriminate between the radio emission from active galaxies and from diffuse intra-
cluster radio sources, particularly at high-redshift (z�1). Current resolutions achieved
by SKA1-LOW are therefore limiting low-frequency high/intermediate-z cluster science
in Phase 1.

5.4 Conclusions and future plans

In this work, based on simulated SKA1 observations of galaxy clusters, we show that
prospects are good for the study of non-thermal cluster physics, in particular thanks
to new developments in the deconvolution and source detection steps that are here
optimized for the analysis of extended and diffuse radio sources. Note that, in our
simulations, we adopt a narrow band-width (50 MHz, Sect. 5.2.2). The quality of the

3Assuming a confusion noise that scales proportionally to ν−0.7, as a typical radio source.
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Figure 5.5: Frequency vs.
largest angular scale (LAS)
detectable as a function of
three different array mini-
mum baselines (Bmin). The
angular scale corresponding
to a typical 1 Mpc intra-
cluster radio source at dif-
ferent redshifts is also indi-
cated (we assume a ΛCDM
cosmology with ΩΛ = 0.7

and ΩM = 0.3).

results indicate that we will be able to get multi-frequency images of diffuse cluster
radio sources within each of the large SKA1 bands, thus enabling detailed spectral
index studies of galaxy clusters, an essential tool for our understanding of their NT
physics (e.g. Orrù et al. 2007).

Based on the results highlighted in Sect. 5.2.2, we conclude that SKA1-MID is an
extremely powerful instrument for radio analyzes of galaxy clusters: relatively deep (�8
hours) follow-up observations of interesting targets from multi-wavelength (optical, X-
ray, Sunyaev-Z’eldovich, ..., see the Chapter by Grainge et al., this Volume) cluster
catalogs can allow detailed studies of both tailed radio galaxies and relatively low-
luminosity (P1.4 GHz ≈ 1024 W/Hz, see Sect. 5.2.1) diffuse radio halos up to at least
z=1.0. A 2-years all-sky survey with SKA1-SUR can provide a completely independent
interesting catalog of new candidates of diffuse cluster sources up to z∼0.7, to be possibly
followed up with SKA1-MID.

On a final cautionary note, Fig. 5.5 shows the largest angular scale (LAS, in ar-
cmin) that can be detected as a function of the observed frequency and minimum array
baseline. For reference, we show the angular scale corresponding to a typical 1 Mpc
intra-cluster radio source at different redshifts. We can note, for instance, that, at 1.4
GHz, a minimum baseline of approximately 20-30 m does not allow to detect struc-
tures larger than ∼ 1 Mpc at z < 0.05. In order to image giant radio sources down
to very low–redshifts, we can either combine single-dish and interferometric data to
completely fill in the gap down to 0m-spacing or perform coherent mosaicking observa-
tions by scanning the interferometer over the extended source with a regular (at least
Nyquist–spaced) grid (see e.g. Holdaway 1999, and references therein).

The analysis developed in this paper will be extended in future works, in particular:

• the detectability with SKA1 of simulated radio relics and radio bubbles (e.g. Vazza
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et al. 2012b; Roediger et al. 2007) will be investigated and compared to similar
feasibility studies for SKA precursors and pathfinders (JVLA, LOFAR, GMRT,
MeerKAT, ASKAP, . . . ). Polarization studies for targeted observations might
also be included;

• due to the importance of low-frequency observations for cluster science, a more
extended feasibility study will be taken into account for SKA1-LOW;

• on longer time-scale, we would like to develop similar observational simulations
for the Phase 2 configuration of the SKA array. At present, we are limited by
computer resources for performing this part of the work.
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Conclusions and Perspectives

In this work, we have assumed a simplified radio imaging model where visibilities are
free from the propagation and instrumental effects, except for an additive Gaussian
noise, that is the thermal noise. We have also considered a monochromatic electric
field. The imaging problem, although idealized is still a complex problem when deal-
ing with images of the sky with very high dynamic range (like galaxy clusters) where
faint emissions are usually buried in the PSF sidelobes and the noise. The standard
techniques, namely CLEAN despite their efficiency in general, they require an extensive
user interaction, a luxury that will not be possible for the SKA data, which necessitates
real time processing.

In the recent years, algorithms based on sparsity have demonstrated very promising
results for radio imaging. In this framework, we have proposed a new technique called
MORESANE using sparse representations. MORESANE is a greedy approach where
the sky model is assumed to be synthesized by atoms corresponding to real sources.
The bright sources are estimated and subtracted iteratively using a structured analysis
approach, allowing faint emission to appear gradually in the residual image and to be
deconvolved at last. The method provides a very good approximation to the true sky,
with high fidelity to the observations, compared to the standard algorithms CLEAN
and MS-CLEAN. MORESANE has also shown to be very competitive with the recent
compressive sensing approaches, in particular Carrillo et al. (2012) and Li et al. (2011).
This comparison is to be extended for more realistic data.

We have also performed a feasibility study with the SKA1 for the study of non-
thermal emission from galaxy clusters. By simulating observations of SKA1 using the
MeqTrees software and applying MORESANE, we have shown that the diffuse emission
in galaxy clusters can be detected up to a redshift z = 1.

The results of MORESANE in this work have been obtained using its MATLAB
version. PyMORESANE, that is an implementation of MORESANE into Python, op-
timized to deal with big images (4096×4096 pixels) using CUDA acceleration, has been
developed by J.S. Kenyon during his masters. PyMORESANE is currently available
for the community.

The algorithm has to be extended to more realistic radio imaging model where
the assumptions of a planar array and a small field of view have to be relaxed for
the preparation to the SKA. In such cases, the PSF is variable across the field of
view. Moreover, since the SKA will be able to make observations with huge bandwidth,
reaching almost 1GHz, MORESANE has also to be extended to multi-frequency imaging
and so to deal with image cubes.

A promising feature within MORESANE is source extraction, since the approach
is cleaning the dirty image by packet of sources, those are living similarly at a specific



120 Conclusions and Perspectives

sale of the IUWT analysis. Two strategies are to be deployed; a strategy to merge
or separate sources detected and estimated at the same scale followed by a strategy
to connect sources from one scale to another based on their spatial position and their
intensity. In this way, we can have a catalog of sources as an output of the deconvolution.



Conclusions et Perspectives

Dans ce travail, nous avons adressé le problème d’imagerie radio simplifié où les visi-
bilités ne sont pas affectées par des erreurs de propagation et instrumentales, excepté
le bruit théorique, qui est additive Gaussian blanc, appelé le bruit thermique. Mal-
gré sa simplicité apparente, ce problème reste complexe s’agissant de la reconstruction
des images du ciel à très forte dynamique où les sources de faible brillance surfacique
sont complètement noyées dans les lobes secondaires de la PSF correspondant aux
sources brillantes et dans le bruit. Les algorithmes standards, à savoir le CLEAN et ses
variantes, nécessitent une forte interaction de la part du radio astronome malgré leur
efficacité en général. Ceci étant un luxe s’agissant des données fournies par SKA qui
exigent un traitement en temps réel.

Nous avons proposé une nouvelle approche basée sur les représentations parci-
monieuses, nommée MORESANE. Cette dernière est une approche gloutonne, où le ciel
est modélisé comme étant une superposition d’un nombre limité de sources ou objets,
correspondant aux atomes d’un dictionnaire de synthèse inconnu et qui sont estimés par
des aprioris d’analyse structurés. Les sources les plus brillantes sont reconstruites en
premier et leur contribution est soustraite progressivement de l’image observée. Ainsi
les sources de faible intensité commencent à apparaitre graduellement et sont recon-
struites en dernier. L’algorithme fournit une approximation du ciel très fiable tout en
restant fidèle aux observations. Par ailleurs, MORESANE s’est montré beaucoup plus
performant que les outils standards tels que CLEAN et sa variante multi-échelle et très
compétitif avec les nouvelles approches favorisant la parcimonie, notamment les algo-
rithmes SARA (Carrillo et al. 2012) et IUWT CS-based (Li et al. 2011). Néanmoins,
cette comparaison devra s’étendre à des données réalistes voire même réelles.

Nous avons appliqué MORESANE dans le cadre d’une étude de faisabilité avec
SKA1 ayant pour objectif l’investigation de la détectabilité de l’émission synchrotron
dans les amas de galaxie, observée sous forme de sources très étendues et à faible inten-
sité. A travers des simulations d’observations d’amas de galaxies à différents décalages
vers le rouge, nos résultats indiquent que, avec SKA, nous serons capables de détecter
cette émission à l’époque de la formation des amas de galaxies massives (z � 1), ce qui
n’est pas possible avec les instruments actuels.

Tous les résultats montrés dans ce travail sont réalisés avec le code de MORESANE
sous MATLAB sur des images de tailles relativement petites. Une implémentation en
Python de MORESANE (PyMORESANE), développée par J.S. Kenyon dans le cadre
de son Master à Rhodes University, est à présent disponible pour la communauté.
PyMORESANE est optimisé pour les images de grande taille (4096×4096 pixels) grâce
à l’accélération CUDA intégrée.

L’adaptation de MORESANE aux observations réelles est à développer, où les hy-
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pothèses d’un champ de vue petit et de réseau d’antennes coplanaires doivent être
assouplies. Au tel cas, la PSF varie dans l’image observée. En outre, sachant que les
observations de SKA seront réalisées sur des bandes de fréquence très larges (allant
jusqu’à 1GHz), il est indispensable d’étendre MORESANE à l’imagerie multi-fréquence
où on aura à des cubes de données à traiter.

Une propriété très prometteuse de MORESANE est l’extraction des sources, sachant
que MORESANE procède par l’estimation de plusieurs sources astronomiques à la fois,
ayant l’échelle de détection dans le domaine d’ondelettes comme caractéristique com-
mune. Pour ce faire, deux stratégies sont alors à envisager, à savoir une stratégie pour
séparer ou fusionner les sources détectées à la même échelle et une stratégie de connex-
ion des sources d’une échelle à l’autre, en se basant sur les positions en pixel ainsi que
leur intensité. Nous aurons alors comme résultat de la déconvolution, à part l’image
modèle du ciel, un catalogue de sources.
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ABSTRACT

This paper deals with the deconvolution of faint diffuse astronomi-
cal sources buried in the PSF sidelobes of surrounding bright com-
pact sources, and in the noise. We propose a sparsity promoting
restoration model which is based on highly redundant, shift invari-
ant dictionaries, and which is hybrid in its sparsity priors. On one
hand, the image to be restored is modelled using sparse synthesis
priors as a sum of few atoms (objects) which, as opposed to classi-
cal synthesis-based priors, are unknown. On the other hand, these
objects are iteratively estimated and deconvolved through analysis-
based priors. The faint diffuse source is deconvolved once the data
has been cleaned from all brighter sources’ contributions. Compara-
tive numerical results show that the method is efficient and fast.

Index Terms— Sparse priors, Analysis, Synthesis, Deconvolu-
tion, Wavelets
1. INTRODUCTION: DATA MODEL AND SPARSE PRIORS

A new generation of radio interferometers (LOFAR, ASKAP,
MeerKAT,. . . ) are being built as instrumental and scientific pathfind-
ers of the world’s largest radio telescope, the Square Kilometre
Array. Thanks to the exploitation of massive computing, dedicated
signal processing, innovative antenna design, and to the consequent
increase both of their bandwidth and of their instantaneous field
of view, these instruments will allow to survey the sky at unprece-
dented sensitivity and resolution in a wide region of the radio band.
Surely with these telescopes will come new astrophysical science,
but new image processing challenges as well, in particular the ability
of restoration algorithms to recover faint and diffuse radio sources.

In this paper, X denotes a matrix, X an operator, x and Xi (the
ith vector column of X) are vectors, x[k] is the kth entry of x, x and
X are scalars. Without loss of generality, images are considered as
vectors. With these notations, the data model in radiointerferometry
reads [1]:

y = F†M†WMFx+ n = Hx+ n, (1)

where y ∈ RN represents the data, also called the dirty map, F is the
Fourier transform and F† its conjugate transpose, W is an N × N
diagonal weighting-matrix including various operations (calibration,
signal to noise weighting), M is an N × N diagonal matrix with
ones and zeros on the diagonal, whose ones select available Fourier
samples, x ∈ R+N is the unknown image of size N , n ∈ RN is
the noise. This imaging system corresponds essentially to an op-
tical linear filter whose transfer function is described by WMF.

∗We acknowledge financial support by the Agence Nationale de la
Recherche through grant ANR-09-JCJC-0001-01. We also thank Matthew
Whiting of the CSIRO ASKAP project for providing the point spread func-
tions used in our work.

This transfer function has many zeros, making the problem of re-
constructing x from y under-determined and ill-posed. The ma-
trix H = F†M†WMF corresponds to a convolution, with a shifted
version of the Point Spread Function (PSF) as each of its columns.
In radiointerferometry, the PSF has typically numerous, slowly de-
creasing sidelobes due to the sparse sampling of the Fourier-space.
This makes the recovery of faint objects particularly difficult when
surrounding sources are orders of magnitude brighter.

In this framework, satisfying restoration methods must use a pri-
ori knowledge on x, such as positivity or information about the ge-
ometry of the image. Besides, the restoration algorithms used in ra-
dioastronomy cannot have arbitrary computational costs, as the con-
sidered images have millions of pixels. The problem of restoring
faint diffuse sources which are submerged by the contribution of the
sidelobes of brighter sources has lead us to a fast restoration method
which exploits positivity, and sparse priors in a hybrid manner.

Considering model (1), where n is assumed for now to be an
independent and identically distributed (i.i.d.), zero-mean, unit vari-
ance white Gaussian noise, sparsity-promoting models can build on
two kinds of priors: synthesis and analysis [2].

In the synthesis approach, the solution x is sparsely synthesized
by atoms of a given full rank dictionary S of size (N,L): x is written
as x = Sγγγ, where γγγ (the synthesis coefficients vector) is sparse. The
sparse synthesis solution x∗

S , also interpretable as a Maximum A
Posteriori (MAP) solution, is obtained by:

x∗
S = S.{argmin

γγγ

1

2
� HSγγγ − y �2 +µp � γγγ �pp}, (2)

where µp is a hyper parameter that tunes the a priori penalty (µp is
related in the MAP framework to the parameters of a Generalized
Gaussian prior on γγγ). The l0 quasi-norm is the most natural sparsity
measure. Yet, to ensure the convexity of the resulting cost function,
it is often replaced by the l1 norm ||.||1, which still promotes sparsity
and correspond to a Laplacian prior on γγγ.

In contrast, the analysis approach consists in finding the solution
x that is not correlated with some atoms of a dictionary A of size
(N,L): ATx is sparse. The sparse analysis solution is:

x∗
A = argmin

x

1

2
� Hx− y �2 +µp � ATx �pp . (3)

Note that the synthesis prior is on the synthesis coefficients γγγ, while
the analysis one is on the projection a = ATx of the signal on an
analysis dictionary A.

While both approaches are equivalent when A and S are square
and invertible, with A = S−1, they yield in general different solu-
tions for overcomplete dictionaries (N < L) - which are required
for efficient image restoration [2]. Since natural images can be ap-
proximated by few atomic elements in such dictionaries, the synthe-
sis approach is considered as more intuitive. Its design simplicity
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(in greedy approaches) has also made it more popular in image pro-
cessing applications. However, the solution is restricted to a column
subspace of the synthesis dictionary, so that the significance of each
selected atom is important. On the other hand, the analysis approach
may be more robust to false detections since the signal is not built
from a few number of atoms [2]. The present paper does not intend
to investigate how the two approaches compare, but rather proposes
a method mixing both approaches.

For large images, greedy approaches are often preferred to opti-
mization methods solving (2) or (3), thanks to their lower complex-
ity. In classical greedy approaches (typically CLEAN [3] in radio
interferometry - an algorithm similar to the Matching Pursuit , using
H as a dictionary of shifted PSFs- and its multiresolution variants),
selection or removal of atoms is done one by one. These approaches
have the capability of progressively revealing faint features initially
buried in the contribution of brighter elements. However, for im-
ages with millions of pixels and even more analysis and synthesis
coefficients, they can be very time-consuming.

These considerations have led us to consider an approach that
consists in analysing the data with a highly redundant dictionary
adapted to astronomical images (Isotropic Undecimated Wavelet
Transform, IUWT, Sec. 2), and localizing the sparse significant
analysis coefficients by packets. Each object assigned to a set of
significant analysis coefficients is then deconvolved and subtracted
in a synthesis manner. The deconvolved objects are thus considered
as atoms that are estimated from the data (Sec. 3).
2. ISOTROPIC UNDECIMATED WAVELET TRANSFORM

The IUWT [4] presents interesting features for the considered prob-
lem. First, its adaptability to astronomical objects, since most of
them are quasi isotropic (stars, galaxies, galaxy clusters...). Second,
its rapidity as a transform. Third, the non decimation of the IUWT
guarantees a fine modelling through its translation invariance.
2.1. Analysis and Synthesis with the IUWT
The IUWT decomposes an image of size N up to a level J into a
set of analysis coefficients a = [wT

1 , ...,w
T
J , c

T
J ]

T , where cJ is the
smoothest approximation of the original image and wj are the detail
coefficients sets at the scale indexes j = 1, . . . , J (the indexing is
such that j = 1 represents the highest frequencies).

An efficient way to obtain a is to use the à trous algorithm [5].
Starting from the original image as the initial approximation coef-
ficients set c0 = x, the approximation and detail coefficients can
respectively be obtained iteratively by:

cj+1[k] =
�

m

h[m]cj [k +m2j ] = (h
(j) ∗ cj)[k], (4)

wj+1[k] =
�

m

g[m]cj [k +m2j ] = (g(j) ∗ cj)[k]. (5)

where h
(j)

[k] equals h[−k] if k/2j is integer and 0 otherwise, same
for g(j)[k]. The decomposition ends up with a vector a of (J+1)N
analysis coefficients.

The reconstruction or synthesis of c0 from a=[wT
1 , . . . ,w

T
J , c

T
J ]

T

is obtained by the iterative recovery of each cj :

cj [k] = (�h(j) ∗ cj+1)[k] + (�g(j) ∗wj+1)[k], (6)

for j = J − 1, . . . , 0, where �h and �g constitute the synthesis part of
the filter bank.

The cascade analysis-synthesis guarantees perfect reconstruc-
tion if the filter bank {h, g, �h, �g} verifies, in the z-transform do-
main, the condition: H(z−1) �H(z) + G(z−1) �G(z) = 1 (no anti-
aliasing condition is required thanks to redundancy). In addition, the

filters should be i) compact since we are doing successive convolu-
tions, ii) regular to avoid artifacts, iii) even-symmetric to guarantee
the isotropy of the transform (h = h, g = g). Separability of the
filters is not required but it allows fast computations since convolu-
tions is then done successively on the rows and on the columns. The
extension of the à trous algorithm above in two dimensions is in this
case straightforward [5]. In [4], three different IUWT filter banks
are exposed. In the results below, we focus on the filter bank called
of ”second generation” for which we obtained better results. In this
bank, the synthesis atoms are positive and h = �h. The high pass
filter h is derived from the B-spline function since it nearly satisfies
the three conditions i)−iii) evoked above. The high pass analysis
filter is g = δ − h ∗ h, its corresponding synthesis filter is �g = δ.
2.2. IUWT Filter bank : analysis and synthesis dictionaries

Fig. 1. Atoms of the analysis and synthesis dictionaries obtained by
the considered IUWT filter bank for J = 4.

Reasoning now in terms of dictionaries, the IUWT analysis coef-
ficients vector a can be seen as a = [wT

1 , . . . ,w
T
J , c

T
J ]

T = AT c0,
where A is the IUWT analysis dictionary resulting from the filters
{h, �h,g, �g}. A can be written as A = [A(1), . . . ,A(J+1)], where
each A(j) is a sub-dictionary of size (N,N ), having shifted ver-
sions of the same analysis atom d

(a)
j at all pixels positions (Fig.1,

top row). For instance, the analysis coefficients w1 correspond to
N correlation coefficients of shifted versions of d(a)

1 with the orig-
inal image. Equivalently, c0 can be recovered as c0 = Sa, where
S = [S(1), . . . ,S(J+1)], the S(j) being sub-dictionaries of size
(N,N ), whose columns are shifted versions of the synthesis atoms
d
(s)
j (Fig.1, bottom row).

An example of analysis coefficients a is shown in Fig. 2. Each
astronomical object is associated to a set of few coefficients living at
different scales (e.g., the small galaxy circled in green at the bottom
right is visible mostly in small regions of scales w2,w3,w4, c4 -
red circles). As a consequence, different objects can be identified
and separated from the different ”fingerprints” they leave on several
scales. Below, objects will be denoted by Xi and the corresponding
”fingerprint” analysis coefficients by αααi. Clearly, each object leads
to a sparse signature in the overall decomposition. The process of
associating a small set of significant coefficients αααi to one object is
called object identification below. Once identified, each such set of
coefficients will be used to deconvolve the objects one by one.

3. ITERATIVE ANALYSIS-BY-SYNTHESIS APPROACH
An astronomical image x can often be modelled as a sum of an un-
known number P of objects Xi (either compact or diffuse sources):

x =

P�

i=1

Xi = X1P , (7)

where X = [X1, . . . ,XP ] can be seen as an unknown synthesis
dictionary of size (N,P ), P << N and 1P is a vector of P ones.
The Xi, columns of X, are the positive unknown objects composing
x. With (7), the convolutive model (1) becomes :

y = HX1P + n, with X ∈ R+N and P << N. (8)
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Fig. 2. IUWT analysis of Andromeda (bottom right) up to J =
4. The analysis coefficients circled in red correspond to the galaxy
circled in green.

Model (8) is sparse in synthesis, since the image x is reconstructed
from few atoms Xi. However, there are two differences with the
sparse-synthesis model presented in Sec. 1. First, the atoms Xi

are unknown and must be estimated from the data. This estimation
makes the task harder, but has the advantage that x will not be not
restricted to a small column subspace of a generic dictionary. Sec-
ond, the number of atoms P may be very small in comparison with
the number of atoms of a generic dictionary which would be neces-
sary to finely synthesize a real astronomical image. Thus, we save
substantial computation time with this synthesis model.

When estimating the objects Xi as well as their number P , care
must be taken for faint large objects that are buried in the PSF lobes
of the brighter objects. Deconvolution will thus be done in an iter-
ative manner, at first on the brightest object whose contribution will
be subtracted from the data, enabling the restitution of the faint ob-
ject at last. To do this we need at each step an object identification
strategy.

3.1. Object identification
To identify significant information related to the brightest object, we
have opted for an object identification strategy inspired from [6].
First, the object identification is not done directly on a, the noisy
analysis coefficients of the data, but rather on a significant analysis
support (SAS), that is, the support of those analysis coefficients that
are significant with respect not only to noise, but also to convolution.
• SAS with unknown noise level: It is found in two steps. The first
step is to determine which analysis coefficients are significant w.r.t.
noise statistics. For an image composed of an i.i.d. Gaussian noise
of standard deviation (s.d.) σ, the s.d. at each scale resolution σj is :

σj = σ. � d
(a)
j �, (9)

where � d
(a)
j � is the l2 norm of the analysis atom d

(a)
j of level j.

Since the analysis coefficients set w1 contains the highest frequen-
cies, σ can be estimated from σ1, the s.d. of w1, by σ̂=�d(a)

1 �−1σ̂1,
with σ̂1 = median(| w1 − median(w1) |)/0.6745 [4]. The s.d. at
other scales {σ̂j} can be obtained by relation (9) with σ = σ̂. The
significant coefficients can then be obtained as in classical denois-
ing by τj-thresholding, where τj is typically in the range [3σ̂j 5σ̂j ].
The resulting set of non zero coefficients can be stored in a vector
m̃. The second step accounts for convolution. In radiointerferome-
try, the PSF has a large number of sidelobes (e.g. Fig.4, top right).
The information related to one object is consequently spread very
far over the data image, while being in the same time contaminated
by other objects’ contribution and by noise. Since we wish to detect
compact bright structures first, we want to focus at each step on the
main lobe of the brightest object. Consequently, we further threshold

the coefficients of m̃ at each scale j using a threshold proportional to
the maximum |wm,j | of the coefficients of m̃ at scale j (a threshold
value of |wm,j/2| was used in the simulations below). The brightest
object is then likely to have a good fraction of its coefficients among
the resulting set of non zero coefficients. This set can be stored in
a vector m, whose support is the SAS. The next question is to de-
termine which coefficients in m actually correspond to the brightest
object.

• Objects extraction: We need a few definitions here, adapted
from [6]. A structure is defined as a set of connected (contiguous)
nonzero analysis coefficients of the same scale j. An object will
be characterized by a set of structures of different levels that are
connected in a sense specified below.

We first identify the brightest structure and its level jm as the
structure in the SAS containing the maximum analysis coefficient
|wm|. This structure, sjm , is associated to the brightest object.
Then, the other structures of this object are searched only at scales
(j = 1, . . . , jm − 1), as information of bright compact objects will
still be present at higher frequencies. For instance, the small galaxy
at the bottom right of Fig.2 has its maximum in w4, but still presents
relatively large coefficient in w2 and w3. Then, the structure sjm
of scale jm will be connected to the brightest structure sjm−1 of
scale jm − 1 if the spatial position of the maximum wavelet co-
efficient |wm| in scale jm also belongs to the brightest structure
sjm−1 in scale jm − 1 . If this is the case the process is repeated
between sjm−1 and sjm−2, and so on. Otherwise, the process stops.
The resulting set of connected structures constitute the significant
coefficients identifying the signature of the brightest object in the
data. These coefficients are stored in a sparse vector ααα of dimension
(N(J + 1), 1).
3.2. Algorithm
These ideas lead to the following analysis-by-synthesis algorithm:
• Initialization: Major iteration index i = 0. Initial residual r0 = y
and solution x̂0 = 0. Determine ααα0 corresponding to the brightest
object in r0 as in Sec. (3.1).
• While αααi �= 0 :

− Analysis based deconvolution: Estimate X̂i+1 by solving:

X̂i+1 = argmin
z

� αααi − Pαααi(A
THz) �2, (10)

where Pαααi(A
THz)[k] = 0 if αααi[k] = 0, and Pαααi(A

THz)[k] =
(AT z)[k] otherwise. An efficient way to solve this problem
is to use the iterative (minor iteration index (k)) projected
Van Cittert scheme [6]:

X̂
(k+1)
i+1 = P+(X̂

(k)
i+1 + S(αααi − Pαααi(A

THX̂
(k)

i+1)), (11)

where P+ is the projector on the positive orthant. The ini-
tial X̂(0)

i+1 is obtained by applying the reconstruction scheme
(6) on Pαααi(A

T ri) instead of a in (6). Iterations (11) stop if
||X̂(k+1)

i+1 −X̂
(k)
i+1||

2
2

||X̂(k)
i+1||2

does not change significantly (less than 1%

in the results below), in which case we set X̂i+1=X̂
(k+1)
i+1 .

− Synthesis step:
◦ x̂i+1 = x̂i + X̂i+1 = X̂1i+1, X̂ = [X̂1, . . . , X̂i+1].

◦ ri+1 = ri −HX̂i+1.
◦ Determine αααi+1 corresponding to the brightest object in
ri+1 as in Sec. (3.1), and set i = i+ 1.

• End.
The number of deconvolved objects P is the iteration number when
the algorithm stops, and the restored image is x̂ = X̂1P .
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4. RESULTS AND DISCUSSION

Results are given in this section for a simulated image x (N = 5122,
Fig. 4, top left) which contains two compact, bright objects X1 and
X2 (of maximum intensity 255, see the zooms in Fig. 3, top row)
and a diffuse, fainter source X3. As a comparison method, we have
opted for ISRA (Image Space Reconstruction Algorithm, [4]), which
in Astronomy is an efficient and widely used Maximum Likelihood
method under Gaussian noise with positivity constraint. ISRA has
however two drawbacks: first, the number of iterations that yield best
reconstruction can not be known; second, ISRA can not deal with
negative PSFs, as the ones encountered for ASKAP radiointerferom-
eter for instance. Thus, to compare with the proposed method, we
first used a positive convolution kernel (B-spline of order 3). ISRA
at best reconstruction is used for reference. We also show the results
of a state-of-the-art method, an IUWT-regularized version of ISRA,
which has a natural stopping criterion and whose iterative scheme

is [6, 7]: x(k+1) = diag(x
(k)
i )[

HT (Hx(k)+S(Tτj
(AT r(k)))

HTHx(k) ], where
r(k) = y −Hx(k), Tτj denotes the hard-thresholding operator used
on the IUWT-analysis coefficients of r(k) (τj = 5σj).

The results with the positive convolution kernel are shown in
Fig. 3. In this test the Gaussian noise added to the convolved data
has σ = 10, which is 5 times higher than the faint source X3

(||X3||∞ = 2). The criterion to compare how well x̂ approximates
x is the SNR (SNR(x, x̂) = 10 log10

�x�2
�x−x̂�2 ). The ISRA yields

at best reconstruction a SNR of 18.7 dB (after 10 iterations, image
not displayed). IUWT-regularized ISRA yields a SNR of 18.1 dB
(Fig. 3, bottom row), and the proposed method a SNR of 20.2 dB
(Fig. 3, middle row). Note that the faint component is not recov-
ered by IUWT-regularized ISRA (nor by ISRA), and varying τj in
the range [3σj . . . 5σj ] did not yield noticeable improvement. The
”source” visible in the zoomed region shown in Fig. 3, lower right
corner, is only caused by the saturation of the restituted bright com-
ponents on the [0 2] flux scale. These results show that the proposed
method is very efficient to recover and extract the faint source, and
also that there may be room for improvement in estimating the bright
sources. Our method allows to recover the sources componentwise,
and to evaluate a SNR per source (20.2 dB for X1, 14.7 dB for X2

and 11.7 dB for X3 here), which is not the case of regularized-ISRA.
The second results (Fig. 4) deal with a PSF similar to ASKAP

radiointerferometer (top, right). The dirty map y (top, middle) ob-
tained with this PSF has a SNR of 6.5 dB. Here σ = 1, but the
faint source (||X3||∞ = 8 here) is totally buried in the replica of the
bright sources because of the PSF sidelobes. The proposed method
yields a solution x̂ with SNR= 15.7dB. The faint source (middle
row, right) is very well restored (SNR= 17.7dB). From Fig.4, bot-
tom row, we can see the evolution of the residual ri after successive
subtractions of components HX̂i. The faint diffuse source, initially
invisible in y, appears clearly after subtraction of the bright sources.
The final residual is very similar to noise, confirming that the infor-
mation has efficiently been extracted. The whole process takes a few
minutes on a laptop.

5. CONCLUSIONS

The proposed deconvolution method uses sparse priors in an iterative
analysis-by-synthesis manner with IUWT dictionaries. The restored
image is the sum of deconvolved sources which can be studied inde-
pendently. The presented results show that the method is efficient to
recover faint sources initially buried in bright sources’ contributions,
and it is fast. A modeling effort is needed to better identify the anal-
ysis coefficients of bright sources. The adaptation of the method to
sources with irregular morphologies is also under investigation.

Fig. 3. From top to bottom: objects (Xi) composing the image x of
Fig. 4 top left ; estimated objects by the proposed approach; zoom on
the corresponding regions of the IUWT-regularized ISRA solution.

Fig. 4. From left to right : Top row : Image x=X1+X2+X3, data
y, ASKAP-like PSF (log scale). Middle row: reconstructed com-
ponents (same pixel regions as in Fig. 3 are shown). Bottom row:
residual data r1, r2 and r3 after successive subtractions of HX̂1,
HX̂2, HX̂3. The faint source appears in r2, r3 is close to noise.
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Résumé: Dans le cadre de la préparation du Square Kilometre Array (SKA), le plus
large radio interféromètre au monde, de nouveaux défis de traitement d’images sont à
relever. En effet, les données qui seront acquises par des centaines d’antennes auront un
débit énorme (de l’ordre de quelques dizaines de Tb/sec) et elles nécessiteront donc un
traitement en temps réel. En outre, grâce à sa résolution et sa sensibilité sans précédent,
les images fournies par SKA seront dotées d’une très forte dynamique (∼ 1 : 106) sur
des champs de vue très grands (pouvant atteindre 30 deg2). De nouvelles techniques de
traitement d’images robustes, efficaces et automatisées sont alors exigées.

L’objectif de la présente thèse consiste à développer une nouvelle méthode perme-
ttant la reconstruction du modèle de l’image du ciel à partir des observations radio.
La méthode est conçue pour l’estimation des images de très forte dynamique et con-
stituées par des sources astronomiques de morphologies variées, avec une attention
particulière à restaurer les émissions étendues et de très faible intensité, souvent con-
taminées par le bruit et surtout complètement noyées dans les lobes secondaires de
la fonction d’étalement du point (PSF). Nous proposons une nouvelle approche basée
sur les représentations parcimonieuses, qu’on appelle MORESANE. L’image du ciel est
modélisée comme étant la superposition de sources, qui constituent les briques élémen-
taires (ou atomes) d’un dictionnaire de synthèse inconnu, mais qui sera à son tour estimé
par des apriori d’analyses à partir de l’image observée du ciel radio.

Les résultats obtenus sur des simulations d’observations réalistes en utilisant MeerKAT
(un des principaux précurseurs de SKA) montrent que l’algorithme MORESANE est
beaucoup plus performant que les outils standards de reconstruction d’images radio et
très compétitif en comparaison avec les méthodes récemment proposées dans la littéra-
ture. MORESANE a été également appliqué sur des simulations d’observations d’amas
de galaxies avec SKA1, ayant pour objectif l’investigation de la détectabilité du milieu
non thermique intra-amas, que l’on observe comme étant une émission radio diffuse et
étendue. Nos résultats indiquent qu’une telle émission, très faible en intensité et jusqu’à
présent détectée à un décalage vers le rouge atteignant z � 0.5, sera étudiée jusqu’à
l’époque de la formation des amas de galaxies massifs (z � 1) avec SKA.

Dans ce travail, nous avons considéré le problème d’imagerie radio pour les radia-
tions monochromatiques observées sur des champs de vue petits (< 1deg2). L’extension
de MORESANE pour les observations multi-fréquences et sur des champs de vue larges
est à développer dans le futur.
Mots clés: déconvolution - radio interférométrie - représentations parci-
monieuses



Abstract: Within the framework of the preparation for the Square Kilometre Array
(SKA), that is the world largest radio telescope, new imaging challenges has to be
conquered. The data acquired by hundreds of antennas will have to be processed on
real time because of their huge rate (up to several dozens of Tb/sec). In addition,
thanks to its unprecedented resolution and sensitivity, SKA images will have very high
dynamic range (∼ 1 : 106) over wide fields of view (up to 30 squared degrees). Hence,
there is an urgent need for the design of new imaging techniques that are not only
robust and efficient but also fully automatized.

The main objective of this thesis is to develop a new technique aiming to reconstruct
a model image of the radio sky from the radio interferometric observations. The method
have been designed to estimate images with high dynamic range and diverse in terms
of sources morphology, with a particular attention to recover faint extended emission
usually contaminated by the noise and completely buried in the PSF sidelobes of the
brighter sources. To achieve this goal, we propose a new approach, based on sparse
representations, which we call MORESANE. The radio sky is assumed to be a super-
position of sources, which are considered as atoms of an unknown synthesis dictionary.
These atoms are learned using analysis priors from the observed image of the radio sky.

Results obtained on realistic simulations of observations using the MeerKAT tele-
scope (one of the main SKA precursors) show that the proposed approach is very
promising in the restoration of radio interferometric images; it is outperforming the
standard tools and very competitive with the newly proposed methods in the litera-
ture. Furthermore, MORESANE has been applied on simulations of galaxy clusters
observations, using the SKA phase 1 with the aim to investigate the detectability of the
intracluster non thermal component, that we observe as a diffuse radio emission over
galaxy cluster scales. Our results indicate that these diffuse sources, characterized by
very low surface brightness and detected only up to redshift z � 0.5 with the current
telescopes, will be investigated up to the epoch of massive cluster formation (z � 1)
with the SKA.

Our algorithm has addressed the imaging problem for monochromatic radiation over
a small area of the sky (< 1 squared degree). Further developments of MORESANE
are planned, including its extension to multi-frequency and wide field observations.
Keywords: deconvolution - radio interferometry - sparse representations


