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RÉSUMÉ

Titre: Commande tolérante aux défauts : une approche basée sur la plati-

tude.

L’objectif de ce manuscrit est de fournir une technique de commande tolérante

aux défauts basée sur la platitude différentielle. Pour ce type de systèmes, il est

possible de trouver un ensemble de variables, nommées sorties plates, tel que,

les états et les entrées de commande du système puissent s’exprimer en fonction

de ces sorties et d’un nombre fini de ses dérivées temporelles. Le bloc de détec-

tion et d’isolation doit assurer la détection du défaut le plus rapidement possible.

Cette action est effectuée en exploitant la propriété de non-unicité des sorties

plates. En effet, si un deuxième jeu de sorties plates peux être trouvé et si ce

deuxième jeu n’est couplé avec le premier que par une équation différentielle,

le nombre des résidus permettant la détection de défauts pourra être augmenté.

La condition pour cela est que les deux jeux soient différentiellement couplés ce

qui signifie qu’il existe une équation qui contienne des dérivées temporelles et

qui couple un élément du premier jeu avec un élément du deuxième jeu de sor-

ties plates. En conséquence le nombre de résidus disponibles pour la détection

est supérieur au nombre que l’on aurait si on avait seulement un jeu des sorties

plates.
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RÉSUMÉ III

En ce qui concerne la reconfiguration, si le système plat satisfait les pro-

priétés énumérées ci-dessus, nous obtiendrons autant de valeurs des états et

des entrées que le nombre de jeux de sorties plates trouvés. En effet chaque

entrée de commande et chaque état du système peuvent être recalculés en fonc-

tion des sorties plates. L’approche proposée fournit de cette manière un résidu

prenant en compte une mesure calculée avec le vecteur plat contenant le défaut

et une autre avec le vecteur plat libre de défaut. Les signaux redondants libres de

défauts seront ainsi utilisés comme références du contrôleur de manière à ce que

les effets du défaut soient masqués et ne rentrent pas la boucle de commande.

Ceci sera utile pour fournir une stratégie de commande entièrement basée sur les

systèmes plats.

Les travaux présentés dans ce mémoire sont donnés sous l’hypothèse suiv-

ante:

Les sorties plates sont fonctions de l’état du système, néanmoins dans ce

manuscrit elles seront limitées à être directement une partie de l’état du

système ou une combinaison linéaire d’entre eux.

La boucle de commande est fermée avec un correcteur par retour d’état.

Enfin pour les travaux réalisés en fin de manuscrit les sorties plates doivent

pouvoir être mesurées ou reconstruites.

Les défauts affectant les actionneurs sont considérés rejetés par le con-

trôleur, par conséquent la reconfiguration est seulement effectuée après la

détection d’un défaut capteur.

La faisabilité de l’approche proposée est analysée sur deux systèmes non

linéaires, un drone quadrirotor et un système de trois cuves.

Mots clés: Commande tolérante aux défauts, platitude différentielle, sys-

tèmes non linéaires.



ABSTRACT

Title: Fault Tolerant Control by flatness approach

The objective of this Ph.D. work is to provide a flatness based active fault-tolerant

control technique. For such systems, it is possible to find a set of variables, named

flat outputs, such that states and control inputs can be expressed as functions

of flat outputs and their time derivatives. The fault detection and isolation block

has to provide a fast and accurate fault isolation. This action is carried out by

exploiting the non-uniqueness property of the flat outputs. In fact, if a second set

of flat outputs which are coupled by a differential equation of the first is calculated,

the number of residues augments. Differentially coupled means that it exists an

equation with time derivatives inside, that couple one element of the first set with

one of the second. As a consequence of augmenting the number of residual signal

more faults than in the one set case may be isolated.

Regarding reconfiguration, if the flat system complies with the properties

listed above, we will obtain versions of states and control inputs as much of flat

output vectors, are found, because each control input and state is a function of the

flat output. The proposed approach provides in this manner one measure related

to a faulty flat output vector and one or more computed by using an unfaulty one.

The redundant state signals could be used as reference of the controller in

order to hide the fault effects. This will be helpful to provide an entirely flatness-

based fault-tolerant control strategy.

The works presented in this manuscript are under the following hypothesis:
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ABSTRACT V

The flat outputs are functions of the state of the system, however in this

work the flat outputs are constrained to be states of the system or a linear

combination of them.

The control loop is closed with a state feedback controller.

For purposes of this work flat outputs need to be measured.

Faults affecting the actuators are considered rejected by the controller; by

consequence reconfiguration is only carried out after a sensor fault occurs.

Feasibility of the proposed approach is analyzed in two nonlinear plants, an un-

manned quadrotor and a three tank system.

Keywords: Fault tolerant control, differential flatness, nonlinear systems.

Unite de recherche

Laboratoire d’Intégration du Matériau au Système (IMS) UMR CNRS 5218.

351 Cours de la Libération, Talence.



ACKNOWLEDGEMENTS

I would like to express mi gratitude to mi supervisors Franck Cazaurang and

Efraín Alcorta García, as well as to mi co-supervisors Loïc Lavigne and David A.

Díaz Romero for the time that they consecrated to my PhD project. I appreciate

also their continuously support and guidance throughout this three years, not only

in the academical field but in the personal too.

Besides my advisors, I would like to thank the rest of my thesis committee:

Hebertt Sira Ramírez and Didier Theilliol for their insightful comments that help

to improve the quality of the manuscript. In an special manner i would like to thank

the members of the committee that make the effort to come to Monterrey despite

their busy schedules.

I thank my fellow labmates of DIE in the UANL and the IMS in Bordeaux for

the enriching discussions, and for all the fun we have had during this three years.

Por último pero no menos importante agradezco a mis padres Luisa Torres

y Jaime Martínez por que han sido una guía durante todos estos años, sin ellos

no habría podido llegar hasta este punto. De igual manera agradezco a mis her-

manos Jaime y Luis Javier por su apoyo incondicional.

Agradezco también a mi esposa Nadia por su comprensión y apoyo en los

momentos difíciles de esta tesis. Confío en poder acompañarte en tus proyectos

como tu lo hiciste conmigo.

VI



ACKNOWLEDGEMENTS VII

Son muchas las personas que de manera directa o indirecta estuvieron pre-

sentes durante todo este proceso a las que me encantaría agradecerles su amis-

tad, consejos, apoyo, ánimo y compañía.

¡Gracias!



In memoriam of my Granny

Paula Casillas López.



The greater our knowledge increases

the more our ignorance unfolds.

John F. Kennedy



CONTENTS

Résumé II

Abstract IV

Acknowledgements VI

Introduction générale XIII

General introduction XVIII

1. Fundamentals 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Differentially flat systems . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Flatness concept . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2. Flat systems examples . . . . . . . . . . . . . . . . . . . . 4

1.3. Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2. Flatness-based motion planning . . . . . . . . . . . . . . . 8

1.4. Fault tolerant control . . . . . . . . . . . . . . . . . . . . . . . . . . 11

X



CONTENTS XI

1.4.1. Active Fault tolerant control systems (AFTCS) . . . . . . . . 12

1.5. Fault Detection and Isolation (FDI) . . . . . . . . . . . . . . . . . . 14

1.5.1. Quantitative model-based FDI approach . . . . . . . . . . . 15

1.6. Fault recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1. Fault Accommodation . . . . . . . . . . . . . . . . . . . . . 27

1.6.2. Fault reconfiguration . . . . . . . . . . . . . . . . . . . . . . 27

1.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2. Fault Tolerant Control: A flatness-based approach 36

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2. Fault detection and isolation by flatness . . . . . . . . . . . . . . . 38

2.3. Fault tolerant control by flatness . . . . . . . . . . . . . . . . . . . . 41

2.4. Necessary conditions for the FTC proposed approach . . . . . . . 42

2.5. Analytical redundancy by flatness-based approach . . . . . . . . . 49

2.5.1. Flatness-based Fault Detection and Isolation . . . . . . . . 49

2.5.2. Case A: n Residuals . . . . . . . . . . . . . . . . . . . . . . 50

2.5.3. Case B: n + n Residuals . . . . . . . . . . . . . . . . . . . . 52

2.5.4. Detection robustness . . . . . . . . . . . . . . . . . . . . . 53

2.5.5. Derivatives estimation . . . . . . . . . . . . . . . . . . . . . 54

2.6. Control reconfiguration for differentially flat systems . . . . . . . . 55

2.6.1. Case A: Partial reconfiguration . . . . . . . . . . . . . . . . 56

2.6.2. Case B: Full reconfiguration . . . . . . . . . . . . . . . . . . 57



CONTENTS XII

2.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3. Fault tolerant control: applications 58

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2. Unmanned quadrotor . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1. Nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2. Flatness of the model . . . . . . . . . . . . . . . . . . . . . 66

3.2.3. Flatness-based fault tolerant control of a Quadrotor UAV . . 68

3.3. Three tank system . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1. Nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2. Flatness of the model . . . . . . . . . . . . . . . . . . . . . 79

3.3.3. Flatness-based fault tolerant control of a three tank system 80

3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Final conclusion 99

Abbreviations 102

Bibliography 103

List of figures 113

List of tables 116

A. Trajectory generation by polynomial approach 117



INTRODUCTION GÉNÉRALE

Dans les années précédentes, l’explosion démographique et la globalisa-

tion, ont initié la nécessité de dessiner et d’exploiter des processus de production

rentables et donc des systèmes fiables. La présence d’un défaut dans un proces-

sus de production peut générer de grandes pertes, non seulement dans le produit

manufacturé, mais aussi dans l’équipement de fabrication lui-même. Pour certains

systèmes, l’apparition d’un défaut est plus critique, par exemple si un avion en vol

de croisière (35000 ft.) est affecté par un défaut, les conséquences peuvent le

conduire à la destruction et donc à la perte de vies humaines. Actuellement les

avions possèdent un système de surveillance qui assure la sécurité globale du

véhicule. Afin d’accomplir cette tâche, les constructeurs utilisent la redondance

matérielle, ce qui signifie que deux ou plusieurs sous-systèmes (Ordinateur de

commande du vol, capteurs, actionneurs. . . ) travaillent ensemble et peuvent pren-

dre le relai en cas de défaillance de l’un d’entre eux. Cette action assure une

protection robuste contre les défauts et garanti un taux de panne inférieur à 10−9

fautes par heure de vol. Cette solution est simple à implémenter mais représente

un cout élevé en raison de la nécessité de tripler ou quadrupler chaque élément.

XIII



INTRODUCTION GÉNÉRALE XIV

Pour les systèmes complexes (par exemple; avions, processus pétrochim-

iques ou nucléaires), chaque composant a été désignée pour accomplir un tâche

particulière de maniéré à permettre le fonctionnement global du système. Ainsi,

un défaut affectant les actionneurs, capteurs ou le système lui-même peut affecter

la performance nominale du système. Les techniques de commande classiques

assurent la stabilité du système en boucle fermée ainsi que des performances

spécifiques quand le système est soumis à un défaut. Cependant si un défaut

affecte le système un correcteur classique ne peut pas maintenir la performance

nominale et même la stabilité du système peut ne pas être assurée, par con-

séquence le système peut être endommagé.

Afin d’éviter la perte du système, les chercheurs ont développé des sys-

tèmes de commande capables de s’auto-réparer, cela signifie que le correcteur

assure au moins la stabilité du système et au mieux le comportement nominal

malgré l’occurrence d’un défaut. Les systèmes qui pressentent cette caractéris-

tique sont connus comme des systèmes tolérantes aux défauts (FTC pour son

sigle en anglais). Actuellement la reconfiguration de la commande après la dé-

tection d’un défaut est une part essentielle pour quasiment tous les systèmes

automatiques. Si le système est affecté par un défaut, le système FTC doit être

capable de le détecter, de l’isoler et de le rejeter le plus vite possible en ayant

toujours comme objectif de maintenir le comportement nominal ou au moins la

stabilité du système.



INTRODUCTION GÉNÉRALE XV

Tout au long ce manuscrit un défaut sera défini comme dans “Fault diag-

nosis Systems” publié par Rolf Isermann, [37]. Cette publication définit un défaut

comme “ une déviation non permise d’au moins une propriété du système à partir

de son état acceptable ou en condition standard” Deux types différents de défauts

sont considérés, additif et multiplicatif. Le premier est représentée par l’addition

d’un terme sur la mesure ou sur l’entrée de commande, selon le cas (voir equa-

tion (1a)). Les défauts multiplicatifs sont représentés par un terme qui multiplie

la mesure ou l’entrée de commande en fonction de la variable concernée (voir

équation (1b)).

Y (t) = U(t) + f(t) (1a)

Y (t) = (A+ f(t))(U(t)) (1b)

Où Y (t) représente la sortie du capteur ou de l’actionneur, U(t) est le signal

d’entrée du capteur ou de l’actionneur. f(t) représente le défaut. A indique un

facteur multiplicatif lequel est habituellement égal à 1. La figure Fig. 1 montre le

schéma bloc correspondant à chaque type de défaut.

f(t) = ∆Y (t)

U(t) Y (t) = U(t) + f(t)

(a)

U(t) Y (t) = (A + f(t))(U(t))

(b)

f(t) = ∆A(t)

A

Figure 1: (a) Défaut additive; (b) Défaut multiplicative



INTRODUCTION GÉNÉRALE XVI

Afin de contrer l’effet du défaut, deux types de stratégies peuvent être util-

isées, les stratégies passives et les stratégies actives. Le premier type fait partie

des méthodes connues en commande robuste. [4]. Les stratégies actives sont

caractérisées par la présence d’un module de détection et d’isolement des dé-

fauts, (FDI pour son sigle en anglais), lequel après la présence d’un défaut envoie

l’information au bloc de reconfiguration pour pouvoir adapter le system afin de

contrer les effets du défaut. Voir section 1.4.1 pour plus de détails.

Les travaux présentés dans ce manuscrit font partie de la famille des méth-

odes actives. L’approche proposée utilise les propriétés des systèmes plats pour

générer une redondance analytique, qui sera utilisée pour générer des indica-

teurs de défauts (résidus). La caractéristique principale de l’approche proposée

est basée sur le fait que le module FDI est couplé avec le bloc de reconfiguration.

Cette action permet de réduire la charge du calculateur en minimisant le temps de

réaction pour contrer les effets du défaut. Comme cette approche est basée sur

les propriétés des systèmes plats, elle peut être appliquée aux systèmes linéaires

et non linéaires indistinctement. Ce travail est consacré à l’étude de faisabilité de

la méthode pour les systèmes non linéaires.

Le manuscrit est divisé en trois chapitres:

Le chapitre 1 est dédié à la présentation des propriétés et des définitions des

systèmes plats. La planification de trajectoires basée sur la platitude est présen-

tée également. Un état de l’art sur la détection et l’isolation de défaut ainsi que la

reconfiguration est aussi développée.
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Le chapitre 2 présente l’approche proposée. Tout d’abord, une brève de-

scription sur les approches FTC basées sur la platitude est présentée. L’algorithme

pour trouver les sorties plates d’un système est aussi présenté. De manière à fa-

ciliter la compréhension et à souligner les avantages de la technique, l’approche

de commande tolérante aux défauts est présentée en deux parties, la première

dédiée à la détection et l’isolation des défauts et dans un deuxième temps la

reconfiguration est prise en charge. Ces deux parties sont également dévelop-

pées sur deux cas d’étude, de manière à montrer que si le système plat rempli

certaines hypothèses la méthode FTC proposée sera améliorée.

Enfin, le chapitre 3 est dédié à démontrer l’applicabilité de la méthode FTC

sur des cas concrets. Deux systèmes sont considérés. Le premier est un hélicop-

tère à quatre rotors sans pilote (Drone). Ce système a seulement un jeu de sor-

ties plates, cependant une reconfiguration partielle peut être appliquée. Dans le

deuxième cas, l’approche proposée est appliquée sur un système de trois cuves

classique. Contrairement au drone, il est possible de déterminer deux jeux de

sorties plates sur cette application. Cette caractéristique est donc exploitée pour

reconfigurer entièrement le système après l’apparition d’un défaut.



GENERAL INTRODUCTION

In the last decades, demographic explosion and globalization, unchained the

necessity to design and operate profitable production process and reliable trans-

port systems. The presence of a fault in a production process can lead to substan-

tial loss, not only in the manufactured product, but in the production equipment

itself. In some systems, the fault occurrence is even more critical, for example if

an airplane flying at cruising attitude (35000 ft.) is affected by a fault, the con-

sequences of it can lead to destruction of the airplane and by consequence the

lost of human lives. Nowadays airplanes count with a surveillance stage, which is

in charge of monitoring the entire system to assure the safety of the vehicle. In

order to accomplish such task, manufacturers use physical redundancy, meaning

that two or more subsystems (e.g. flight-control computers, sensors) work togeth-

er. This provides robust protection against a simple fault and guarantees a failure

rate lower than 10−9 failures per flight hour. This solution is easy to implement but

represents a high cost due to the necessity to triple or quadruple the elements.

In complex systems (e.g. nuclear plants, petrochemical process, airplanes),

every single component has been designed to accomplish a particular task in

order to permit the global operation of the system. Thus, a failure in actuators,

sensors or the system itself may affect the nominal performance. The classical

control techniques assure system stability in closed loop and the nominal perfor-

mance desired when no-fault is present. However in a faulty case a classic closed

loop may result in a low performance or system instability and the possibility of

system destruction.

XVIII
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In order to avoid the loss of the system, researchers have developed control

systems capable of self-repair, meaning that the controller assures at least system

stability and at best nominal behavior despite the occurrence of a fault. Systems

presenting this capability are known as Fault Tolerant Control Systems (FTC).

Nowadays fault reconfiguration is an essential part of almost every controlled sys-

tem. FTC systems are designed to behave as a classical control system until a

fault affects the controlled plant. If the plant is affected by a fault, the FTC system

has to be capable of detecting, identifying and rejecting it as soon as possible.

Such actions have as final objective preservation of nominal behavior or at least

stability.

Throughout this manuscript a fault is defined as in the book “Fault-diagnosis

Systems” published by Rolf Isermann, [37]. That publication defines the fault as

“an unpermitted deviation of at least one characteristic property of the system

from the acceptable, usual, standard condition”. Two different types of faults are

considered, additive and multiplicative. The first one is represented by the addition

of a term in the measure or in the control input according to the current case, see

equation (2a). Multiplicative faults are represented by a term which multiplies the

measure or the input according to the affected variable. See equation (2b).

Y (t) = U(t) + f(t) (2a)

Y (t) = (A+ f(t))(U(t)) (2b)

Where Y (t) represents the output of the sensor or the actuator, U(t) stands for

the sensor or actuator input signal. f(t) represents the fault. A denotes a mul-

tiplicative factor which is usually equal to one. Fig. 2 shows the block diagrams

corresponding to each kind of fault.
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f(t) = ∆Y (t)

U(t) Y (t) = U(t) + f(t)

(a)

U(t) Y (t) = (A + f(t))(U(t))

(b)

f(t) = ∆A(t)

A

Figure 2: (a) Additive fault; (b) Multiplicative fault

In order to counteract the fault, two different strategies could be used, pas-

sive and active. The first strategy comes from the group of robust control. [4]. The

active approaches are characterized by the presence of a Fault Detection and

Isolation (FDI) module, which on occasion of the fault sends information to the

reconfiguration block in order to adapt the system to counteract the fault effect.

See section 1.4.1 for more details.

The work presented in this manuscript fits into the framework of active meth-

ods. The proposed approach uses the properties of the differentially flat systems

to generate analytical redundancy, such redundancy can be used to generate

residual signals. The main characteristic of the proposed approach is the fact that

the FDI module is coupled with the reconfiguration block. This action could reduce

the computational load by minimizing the reaction time to counteract the fault. Be-

cause the approach is based on the properties of the differentially flat systems it

could be applied to linear and nonlinear systems indistinctly. This work is devoted

to investigate feasibility on nonlinear systems.

The manuscript is divided into three chapters:

Chapter 1 is devoted to presenting the properties and the definition of flat

systems. Flatness-based motion planning is presented as well. A state of the art

of the technique of Fault detection isolation and reconfiguration is developed too.
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Chapter 2 presents the proposed approach. First, a brief discussion on the

literature of FTC’s based on flatness approach is presented. The algorithm to com-

pute flat outputs is presented. In order to facilitate comprehension and highlight

the advantages of the technique, the fault tolerant control approach is divided into

the fault detection and isolation task and the reconfiguration block. Both activities

are divided into two cases, in order to show that if a flat system has at least two

different set of flat outputs the FTC method is improved.

Chapter 3 is dedicated to demonstrating the applicability of the FTC method.

Two systems are taken into account. The first one is a Unmanned Aerial Vehicle

quadrotor. This system exhibits only one set of flat outputs, however partial recon-

figuration could be applied. In the second case, the technique proposed in chapter

2 is applied to a classical three tank system. Such plant in contrast to the UAV,

presents two sets of flat outputs, this feature is exploited to fully-reconfigure the

system after fault.



CHAPTER 1

FUNDAMENTALS

Abstract:

The goal of this chapter is to present the basic concepts of the

main parts of this research work. The properties of the so-called

differential flatness systems are presented. Flatness-based mo-

tion planning is also presented. The definition of the Fault Tolerant

Control systems is developed in section 1.4. Sections 1.5 and 1.6

are devoted to presenting the model-based Fault detection and

Isolation techniques and the existent fault reconfiguration tech-

niques.

1
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1.1 INTRODUCTION

The appearance of a fault in a system directly affects its performance. As a

consequence, this will impact the final objective of the system e.g., final position

of a control surface in a plane, the water level in a tank, etc. Classical control laws

are designed to ensure stability and nominal performance of the system. However

a classic controller does not take into account the appearance of faults affecting

sensors, actuators or the system itself. Such appearance will affect the nominal

performance in the best of the cases, and in the worst one the system will lose not

only performance but even stability. Such behavior should be avoided, especially

in critical systems, for instance, nuclear plants or airplanes.

Control systems that take into account such scenarios are known as Fault

Tolerant Control Systems (FTC). The purpose of these systems can globally be

divided in two main tasks: Fault Detection and Isolation (FDI) and Control Recon-

figuration.

This chapter is devoted to presenting such control systems and some tech-

niques of fault detection and fault recovery. Regarding FDI, special attention is

dedicated to model-based approaches [23] whose fault detection principle is based

on the comparison between sensor measures and the measure estimation coming

from a mathematical model describing the physical process. For fault recovery, the

research is focused in control reconfiguration [52].

The main contribution of this thesis is based on the properties of the so-

called differentially flat systems [27]. The next section presents the definition of

those particular systems, as well as the flatness-based motion planning approach,

which, is facilitated thanks to the inherent properties of the flat systems. Section

1.4 presents the different approaches found in the literature for FTC systems.

Main attention is focused on active fault detection systems, which reacts after a

fault occurrence, in order to prevent system loss.
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Section 1.5 is devoted to FDI systems and particularly to quantitative model-

based methods. A general outlook of these methods is also presented. A non-

exhaustive list of fault recovery methods is presented in section 1.6.

1.2 DIFFERENTIALLY FLAT SYSTEMS

The flatness theory search to determine if a system of differential equations

could be parametrized by arbitrary functions. The first works where carried out in

[12], aiming at aeronautical applications. The development of the theory continued

in the Ph.D. dissertation of P. Martin [55]. This work has led to the formal concept

of flatness presented by M. Fliess et al. in [27].

The differential flatness of non-linear and linear systems could be described

by using mathematical formalisms, and specifically differential algebra or differen-

tial geometry.

1.2.1 FLATNESS CONCEPT

A non-linear system is flat if there exists a set of variables, differentially in-

dependent, called flat outputs, whose cardinality is equal to the number of control

inputs. For instance, the vector state and the control inputs can be expressed as

functions of the flat outputs and a finite number of their time derivatives. As a con-

sequence, state and control input trajectories can be obtained by planning only

the flat output trajectories. This property can be particularly exploited in trajectory

planning, see [49,50,62,82] and trajectory tracking [2,80]. Flatness could be used

to design robust controllers; see for instance [9,43].

Definition 1.1 Flat system: Let us consider the nonlinear system ẋ = f(x, u),

x ∈ <n the state vector, u ∈ <m the control vector and f a C∞ function of x and

u. The system is differentially flat if, and only if, there exists a flat output vector

z ∈ <m such as:
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The flat output vector is expressed as a function of the state x and the control

input u and a finite number of their time derivatives.

z = φz

(

x, u1, u2, ..., um, u̇1, u̇2, ..., u̇m, u
(γ1)
1 , u

(γ2)
2 , ...u(γm)

m

)

(1.1)

The state x and the control input u are expressed as functions of the vector

z and a finite number of their time derivatives.

x = φx
(
z, ż, ..., z(a)

)
(1.2)

u = φu
(
z, ż, ..., z(b)

)

Where a and b are a vector of integers containing in each entry the order of deriva-

tion of the corresponding component of the flat output vector z.

Every flat system is equivalent to a linear controllable one by means of a diffeo-

morphism and endogenous dynamic feedback [45], by consequence every con-

trollable linear system is flat, and conversely. Moreover regarding observability, a

flat system is always observable from the flat outputs.

1.2.2 FLAT SYSTEMS EXAMPLES

This section presents various examples of flat systems. Additional examples

can be found in [45].

Example 1.2 Planar ducted fan [82]:

The system is mounted on a rotating arm that moves in as the fan moves up. [39],

see Fig. 1.1 neglecting some dynamics the nonlinear model obtained is:







mxẍ

my ÿ

Jθ̈







=








cosθ −sinθ

sinθ cosθ

r 0











u1

u2 +mgg



+








0

−mgg

0








(1.3)
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Figure 1.1: Planar ducted fan [82]

Where (x and y) are the coordinates of the center of mass, θ is the angle

with the vertical axis, u1 is the force perpendicular to the fan shroud, r is the

distance between the center of mass and the point where the force is applied, g is

the gravitational constant, mx and my are the inertial mass of the fan in the (x, y)

direction respectively, mgg is the weight of the fan, and J is the moment of inertia.

The tracking outputs are the (x, y) coordinates of the center of mass.

The flat outputs are:

z1 = x− J

mxr
sinθ (1.4)

z2 = y − J

myr
cosθ

The angle θ can be expressed in function of the flat outputs:

θ =
−mxz̈1

myz̈2 +mgg
(1.5)

In an straight manner the states x and y can be obtained directly from the equa-

tions 1.4 and equation 1.5.

x = z1 +
J

mxr
sin

( −mxz̈1
myz̈2 +mgg

)

(1.6)

y = z2 +
J

myr
cos

( −mxz̈1
myz̈2 +mgg

)

(1.7)
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The interested reader can find the calculation details in [22] and [56]. In order to

obtain the expressions of the control inputs it is necessary to compute the time

derivative of θ, which will be in function of the flat outputs, because, θ itself, is a

function of z. After obtaining the necessary time derivatives, each control input

can be expressed as function of the flat outputs.

u1 =
Jθ̈

r
(1.8)

u2 =
cosθu1 −mxẍ− sinθmgg

sinθ
(1.9)

Figure 1.2: Non holonomic car [45]

Example 1.3 Non holonomic car [45]:

Consider a vehicle of four wheels rolling without slipping on the horizontal plane.

We denote by (x, y) the coordinates of the point P , the middle of the rear axle, Q

the middle point of the front axis, θ the angle between the longitudinal axis of the

vehicle and the Ox axis. The system has two control inputs namely u and ϕ the

angle of the front wheels with respect to the longitudinal axis. See Fig. 1.2.
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The kinematic model of the vehicle can be expressed as follows:

ẋ = ucosθ

ẏ = usinθ

θ̇ =
u

l
tanϕ

(1.10)

This system has two control inputs. By definition, the flat output vector is

constituted by two elements. Let us prove that z = [x, y]T = [z1, z2]
T .

Combining the two first equations of (1.10) we can obtain:

θ = tan−1

(
ż2
ż1

)

u =
√

ż1
2 + ż2

2

(1.11)

The expression of θ̇ can be found by computing the time derivative of the

first equation in (1.11). Such computation leads to:

θ̇ =
z̈2ż1 − ż2z̈1
ż1

2 + ż2
2 (1.12)

From the third equation of (1.10) we can compute

ϕ = tan−1

(

lθ̇

u

)

= tan−1

(

(l(z̈2ż1 − ż2z̈1)

(ż1
2 + ż2

2)
3

2

)

(1.13)

Equations (1.10,1.12,1.13), demonstrate that the kinematic model of the non

holonomic car, described by the equations (1.10), is flat.

1.3 MOTION PLANNING

The goal of motion planning is to provide the system with desired, feasible

trajectories for which there exist corresponding control input that moves the con-

cerned system from a start state to a goal condition, while respecting constraints

and avoiding collision.
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Motion planning for manipulator robots attracted research interest in the ear-

ly 90’s, see [51] for instance. More recently special attention has been devoted to

vehicle motion planning. See for instance [33] and references therein for an ex-

tensive trajectory planning algorithms survey for UAV’s.

This section is focused in the flatness-based motion planning approach.

1.3.1 TERMINOLOGY

The terminology [42] used in this work is the next:

Path planning: A geometric representation to move from an initial to a final

condition. The main goal is to find a collision-free path among a collection of

static and dynamic obstacles.

Trajectory planning: also known as trajectory generation. It includes ve-

locities, accelerations, and jerks along the path. Normally the main task is

to find trajectories for a priori specified paths. Those trajectories could be

obliged to fulfill a certain criterion (eg., minimum execution time, minimum

energy consumption).

Motion planning: Is the union of path and trajectory planning.

1.3.2 FLATNESS-BASED MOTION PLANNING

As defined in the subsection 1.3.1 the motion planning goal is to compute a

trajectory that satisfies certain path constraints.

Let us define a non linear system ẋ = f(x, u). The motion planning consists

in fulfilling the initial and final conditions presented below, [45]:

x(ti) = xi, u(ti) = ui

x(tf ) = xf , u(tf) = uf

(1.14)
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Once the path is defined, the trajectory generation problem consists in find-

ing a trajectory t 7→ (x(t), u(t)) for t ∈ [ti, tf ] that satisfies the system constraints

and the initial and final conditions (1.14). Trajectory constraints of type (x(t), u(t)) ∈
A(t), where A(t) is a submanifold of X×U could be added to the motion planning

initial problem. This results in a growing complexity that requires an iterative so-

lution by numerical methods to find the control input u that satisfies the initial and

final conditions (1.14). This iterative process can be solved by using optimal con-

trol techniques, however for nonlinear systems some problems are still unsolved.

Besides this solution needs to integrate the system equations in order to evaluate

the solution proposed.

Motion planning by flatness, does not need to integrate the system equations

and for a flat output trajectory, command inputs can be computed directly. The

resulting u vector always respects the system dynamics. See equation (1.1). As

a consequence the solutions of the set of differential equations are found. See

[49,64].

Definition 1.1 implies that every system variable can be expressed in terms

of the flat outputs and a finite number of its time derivatives. As a consequence if

we want to compute a trajectory whose initial and final conditions are specified, it

suffices to construct a flat output trajectory to obtain the open loop control inputs

satisfying the desired state and input trajectories.

In order to compute all the system’s variables, the flat output trajectory cre-

ated needs to be at least, r times differentiable, where r, is the maximal time

derivative of the flat output appearing in the equation 1.1. Additionally this trajec-

tory is not required to satisfy any differential equation. In this work the flat outputs

trajectories are created by using a simple polynomial approach. See Appendix A

for further details.
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If the trajectories need to be optimal, in some sense a more advanced tra-

jectory generation technique has to be used. Some application examples can be

found in [10,49,50,82].

Let us revisit the example 1.3. Flat output nominal trajectories (z = [x, y]T =

[z1, z2]
T ) are obtained by using fifth order polynomials. Such order is used be-

cause if we see in detail the equations (1.11), (1.12) and (1.13) the maximum time

derivative inside the equations is two, as a consequence the polynomial used to

generate the flat output trajectories needs to be at least equal to three, in order

to create sufficiently derivable trajectories. The desired value for the x and y po-

sition is the same and it is equal to five, see Fig. 1.3. After computing the time

derivatives of the flat output trajectories, it is straightforward to obtain the nomi-

nal trajectories for the remaining control inputs and states by using the equations

(1.11), (1.12) and (1.13). See Figs. 1.3 and 1.4. If the system is naturally stable,

the nominal control inputs obtained can ideally control the system in open loop.
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−2
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Figure 1.3: Flat outputs and states
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Figure 1.4: Control inputs

1.4 FAULT TOLERANT CONTROL

Industrial and transport systems have become a complex network com-

posed of processors, interfaces, actuators and sensors which may suffer malfunc-

tions. This phenomena could compromise the performance of the entire system

if a fault occurs. A fault tolerant control (FTC) is designed keeping in mind such

potential system component failures, and avoids system loss which can affect

productivity or safety as a result.

FTC is divided in two different approaches:

Passive: Known as robust control. Here, the control law is designed to be in-

sensitive to some faults. This approach has limited fault-tolerant capabilities

and is beyond the scope of this work. Interested readers are referred to [93]

and references therein.
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Active: In this approach, the control system is reconfigured using the infor-

mation coming from the detection block, having the goal of maintain, at least,

system stability and, at the best, the nominal behavior. See [63,70].

This research work is focused on Active Fault Tolerant Control approach.

1.4.1 ACTIVE FAULT TOLERANT CONTROL SYSTEMS (AFTCS)

Active approaches consist of adjusting the controller on-line, according to the

detected fault, having as the goal preservation of the faulty system performance

close to the nominal one.

For critical failures such as an actuator lost, for instance, the nominal behav-

ior cannot be maintained, thus, system performance is reduced as shown in Fig.

1.5. The FTC objective is to reconfigure the controller as fast as possible in order

to maintain nominal performance. Moreover, controller reconfiguration is not effi-

cient for some kinds of faults, thus is it impossible to keep the system operating

even in a degraded mode. In this case FTC function is to shut down the systems

safely.

In this way three activities must be covered by the FTC system, [70]:

Deal with various kinds of faults (sensor, actuators and the system itself).

Provide information about the fault and the achievable performance.

Decide if the system can still operate or not.

The active fault tolerant control algorithm regards four stages, [92]. see Fig.

1.6.

A reconfigurable feedforward/feedback controller, which can react to the fail-

ure by changing some controller parameters or the entire closed loop.
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Figure 1.5: FTC Strategies [70]

A Fault detection and identification (FDI) block. This block has to perform

fast and accurate failure recognition.

A controller reconfiguration mechanism, which is in charge of linking the fault

identification mechanism and the reconfigurable controller.

A trajectory planner/re-planner designed to avoid actuator saturation and

adjust the reference trajectory after failure.

Thanks to its versatility, differential flatness can be used to create a com-

pletely FTC structure. In fact since its formulation in 1992, flatness has been wide-

ly used to design controllers. See [35,56,65,74,90] for some examples. Regarding

fault detection and identification some work has been presented, [48,59,66]. The

reference [59] is a topic of this dissertation. Motion planning/replanning can be

achieved using flatness. See [10, 11, 50] for some examples. Control reconfigu-

ration has been studied as well. See [54, 58, 60, 81]. More details of the FDI and

FTC approaches will be presented in the next chapter.
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Figure 1.6: General structure of AFTCS [92]

1.5 FAULT DETECTION AND ISOLATION (FDI)

This stage can be divided in two essential tasks [23]:

Fault detection: in charge of detecting the non-expected behavior of the sys-

tem.

Fault isolation: localizing the faulty element.

A third activity can be added such consists in determining the amplitude of the

fault. FDI block plays an important role inside AFTCS, because if fault detection is

accurate the control reconfiguration will be more effective. According to [86], FDI

methods can be divided into two different groups, see Fig. 1.7:

Model-based Methods:

• Quantitative methods: Based on mathematical functional expression of

relationships between inputs and outputs of the system, [86].

• Qualitative methods: Based on qualitative functional expression of re-

lationships between inputs and outputs, [84].
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Process history based: Based on the availability of large amount of process

history, [85].

FDI METHODS
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EKF

Structural
Graphs

Figure 1.7: FDI Methods [92]

In order to isolate the fault, the three approaches presented below require

some a priori knowledge; that is, the set of faults and their relationship with the

residues. This information is normally sorted in, the form of a table. Qualitative

model-based and process histories are outside of the boundaries of this thesis.

Interested readers can find a review of them in [84] and [85] respectively.

1.5.1 QUANTITATIVE MODEL-BASED FDI APPROACH

Quantitative methods require a mathematical model of the system in order

to compute residual signals, which reflect the faults affecting the system. Then,

this information is introduced into a decision rule. The union of these tasks helps

to obtain information about the fault affecting the plant.

In order to compute the residual signals, redundancy is needed, This could

be obtained through two different approaches:

Hardware Redundancy

Analytical Redundancy

Figure 1.8 shows the differences between these two approaches.
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Figure 1.8: Hardware redundancy and analytical redundancy diagram

Hardware redundancy Also known as physical redundancy, it is widely

used in chemical industries, aeronautics and industrial processes where persons

lives are in danger. The main idea consists in multiplying the number of sensors

dedicated to perform the same activity. Those sensors usually are based on dif-

ferent technologies.

For instance, if the system is equipped with three sensors, three residues

will be computed as follows:

r1 = m1 −m2

r2 = m1 −m3

r3 = m2 −m3

(1.15)

A voting mechanism points to the faulty sensor by using the table 1.1 in

which the symbol X means that the sensor is fault-free and × means that the

sensor is faulty.

This approach has as advantage an easy design and efficiency. On the oth-

er hand, since sensors are multiplied, the construction and operation costs are

elevated.
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Sensor 1 Sensor 2 Sensor 3 r1 r2 r3

X X X 0 0 0

× X X 6= 0 6= 0 0

X × X 6= 0 0 6= 0

X X × 0 6= 0 6= 0

X × × 6= 0 6= 0 6= 0

× X × 6= 0 6= 0 6= 0

× × X 6= 0 6= 0 6= 0

× × × 6= 0 6= 0 6= 0

Table 1.1: Hardware redundancy FDI logic

Analytical redundancy In contrast to physical redundancy, here, the re-

dundant signals are computed via mathematical equations describing the plant.

Theorems and lemmas presented in this section will be given without proof, the

interested reader can find them in [15,17,78].

Residual signals are constructed by making a comparison between the real

process and the mathematical model, it is straightforward to think that if the sys-

tem is unfaulty, the residual signal will be equals to zero, however if a fault affects

the plant, the resultant residue will be different to zero. This approach is correct if

the mathematical model describes perfectly the process and disturbances are not

present. In practice this behavior is not possible, since model uncertainties are

always present. Moreover residue post-processing is necessary to distinguish the

effects of different faults. After fault generation the principal concern is to obtain

the maximum quantity of fault information from them. Such problem is known as

FPRG (Fundamental Problem in Residual Generation), the main concern is that

the FDI process is require to discern between the fault and external disturbances.

The FPRG problem consists of generate analytical redundancy relations

(ARR) fulfilling the next conditions:
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The residuals are not affected by the external disturbances.

the residuals are affected by the faults.

Let us define an ARR in a formal manner.

Consider a system of the form:

ẋ = f(x, u, υ, f)

y = h(x, u, υ, f)
(1.16)

Where x ∈ <n is the state vector, y ∈ <p is the output vector, u ∈ <mu is the vector

containing the control inputs, υ ∈ <mυ is the vector containing the unknown inputs

and f ∈ <mf stands for the fault vector. In order to simplify the notation the known

(u) and unknown inputs (υ, f ) will be compacted in one variable denoted by ω.

Signals y and ω are smooth signals. ω̄(s) denotes the time derivatives of ω until

the order s. An order of derivation (si) is attributed to each output yi, i ∈ [1, 2...p].

Lemma 1.4 [17] The time derivative of order si of the output yi is a smooth func-

tion and is written as follows:

y
(si)
i = gi,si

(
x, ω̄(si)

)
(1.17)

All the outputs with their subsequent time derivatives are grouped to obtain:





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
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y1
...

y1
(si)

...
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...

y
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p


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
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
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=
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







(1.18)

ȳ(s) = Gs

(
x, ω̄(s)

)
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Definition 1.5 [17] An analytical redundancy relation (ARR) is a relation of the

form:

ωi
(
ȳ(s), ω̄(s)

)
= 0 (1.19)

This definition implies that the set of ARR is not unique, in fact an infinitely number

of them can be computed by multiplying them by a not null function in ȳ,| ω̄. In

the same manner a third ARR can be obtained from two other ARR, however

those relations cannot be used for fault detection tasks, because if one relation is

related to another in an algebraic manner the same fault will affect them and this

could prevent the fault isolation. For this reason the ARR has to be algebraically

independent, this, is defined in [40]as follows:

Definition 1.6 [17] Consider η elements ω1, ω2, ..., ωη belonging to a family of

functions Ω, such elements are algebraically independent over a ring k if there ex-

ists a not null polynomial function P (ω1, ω2, ...ωη) = 0. If such Polynomial function

does not exist the elements ω1, ω2, ...ωη are algebraically independents.

The analytical redundancy relations defined in the paragraphs above can be

used as residual generators if such relations are decomposed into two parts, one

that depends on the known variables (y and u) and a second which depends of at

least one of the unknown variables (υ and f ), [78].

ωi

(

ȳ(s), ω̄(s)
)

= ωi

(

ȳ(s), ū(s), ῡ(s), f̄ (s)
)

= ωi,c

(

ȳ(s), ū(s)
)

− ωi,e

(

ȳ(s), ū(s), ῡ(s), f̄ (s)
)

= 0

(1.20)

Where ωi,c
(
ȳ(s), ū(s)

)
is the residual computation form. It includes only known variables,

as a consequence it can be computed online. In the absence of faults f it is identically

zero and verifies that:

ωi,c

(

ȳ(s)ū(s)
)

= ωi

(

ȳ(s), ū(s), 0, 0
)

∀ȳ(s), ū(s) (1.21)

and ωi,e
(
ȳ(s), ū(s), ῡ(s), f̄ (s)

)
is the residual evaluation form and verifies that:

ωi,e

(

ȳ(s), ū(s), 0, 0
)

= 0∀ȳ(s), ū(s) (1.22)
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If the system is not affected by an unknown input (υ = 0), the residual evaluation form is

equal to zero only if no fault is present. Under such conditions the obtained ARR can be

used as residual generators. However as explained above in real applications unknown

inputs are always present. In order to solve the FPRG problem it becomes necessary to

compute ARR which will be robust to the unknown inputs. Such framework is overcome

by splitting the residual evaluation form into two parts, one that will not depend of the

faults and other that will depend of them.

ωi

(

ȳ(s), ū(s), ῡ(s), f̄ (s)
)

= ωi,e, ¯rob

(

ȳ(s), ū(s), ῡ(s)
)

+ ωi,e,rob

(

ȳ(s), ū(s), ῡ(s), f̄ (s)
)

(1.23)

Where ωi,e, ¯rob
(
ȳ(s), ū(s), ῡ(s)

)
= ωi,e

(
ȳ(s), ū(s), ῡ(s), 0

)
, in order to exploit the computation

form the ARR has to be designed in such a way that the expression ωi,e, ¯rob
(
ȳ(s), ū(s), ῡ(s), 0

)

will be always equal to zero.

The last stage to use the ARR for the FDI purposes is the rearrangement of them

in order to be able to isolate the faults. To this, the analytical redundacy relations has

to be insensitive to the unknown inputs and the residual evaluation form needs to be

constructed in such a manner that the resultant fault signature matrix have a structure

that allows the isolation of each fault. The next is an example of a fault matrix structure.

A fault is considered detectable if and only if it has a non-zero signature in at least

one residual, it means that at least one of the residual signals is impacted by the fault

effect. The fault is considered isolable if and only if it has a unique fault signature, table

1.2 clarifies both concepts.

Fault r1 r2 r3

1 0 0 0

2 1 0 0

3 0 1 0

4 0 1 0

Table 1.2: Isolability and detectability

Fault 1 is not detectable because any residue is affected, faults 2 to 4 are detectable,

however only fault number 2 can be isolated because is the only of them that has a unique

fault signature.
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As discussed above it is impossible to detect and isolate all the faults it some ARR

is not algebraically independent of the other. For this it becomes necessary to present

the maximal number of algebraically independent ARR that can be obtained for a certain

system model. This, is resumed in the next theorem.

Theorem 1.7 [17] For some fixed multi-index (s1, s2, ...sp ∈ N
p) it is associate an integer

rs defined as the rank of the Jacobian matrix in x of G, where G is defined as the right

side of equation (1.18).
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(1.24)

Thus, it exists exactly

η =

p
∑

i=1

si + p− rs (1.25)

analitycal redundancy relations algebraically independents. The interested reader can find

the proof in [17]. By definition the rank of the matrix ∂Gs

∂x
will be at maximum n, where n is

the maximal number of the number of lines (lin) and the number of columns (col) of the

matrix, for instance if lin > col, n = lin, if lin = col = n. Let us suppose that the number

of time derivatives are chosen as η =
∑p

i=1 si+p 5 n, as consequence η is always equals

to zero. Thus, in order to ensure that the ARR exists it suffice to chose the orders of the

time derivatives wisely.

Different quantitative model-based FDI techniques for linear and nonlinear systems

are presented below.
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State estimation

The main idea of those techniques is to provide an estimate of the system state x̂,

from measurements of the control inputs and system measurements. In this way residual

signals for sensor faults can be computed by simply comparing the actual output and the

estimated one. r = y − Cx̂ for linear systems and r = y −H(x̂, u) for nonlinear models.

In order to compute the estimated state, different approaches can be used. The

following is a non-exhaustive list of techniques which can be utilized:

Observer based Observer-based approaches are the mostly often applied model-

based residual generation techniques. This technique is based in the reconstruction of

the outputs of the system by means of the mathematical model of the plant operating in

nominal mode. It should be noted that there is a difference between observers used for

control purposes and fault detection. Observers needed for control are state observers,

meaning that they estimate states which are not directly measured, with the goal to use

such estimations to control the concerned plant. On the other hand, observers needed

for fault detection generate estimation of the measurements. Both of them are then com-

pared in order to compute a residual signal. Any deviation of residual signal from zero will

trigger a fault alarm. However, the presence of modeling uncertainties and disturbances

is inevitable. Therefore, the aim is to design observers such that the effect of the distur-

bances and uncertainties on the residual signal is reduced while the affect of faults is

considerably increased.

Consider the nonlinear system described by the equations

ẋ(t) = f(x(t), u(t), θf , θd) x(0) = x0

y(t) = h(x(t), u(t), θfs)
(1.26)

Where x(t) ∈ <n is the state vector, u(t) ∈ <m is the control input, y(t) ∈ <p is

the output of the system. θf ∈ <l represents the system parameters, θf = θf0 when no

fault is present in the system. θfs ∈ <ls represents the parameter in the output equations,

θfs = θfs0 represents the nominal output parameters. θd ∈ <ld represents modelling

mismatches. If the model of the system is perfectly known θd = 0.
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The observer-based fault diagnosis problem consists in finding a residual generator

r(t) of the form:

ξ̇(t) = g(ξ(t), y(t), u(t)θf0), ξ(0) = ξ0

r(t) = R(ξ(t), y(t), u(t), θfs0)
(1.27)

In the past, several observer-based approaches have been proposed, see for ex-

ample [13,23,28] for a survey.

Nonlinear identity observer approach (NIO) Proposed for the first time in

[34], this observer is developed under the assumption that the model is perfectly known

and the system is unfaulty. The observer structure is the following:

ξ̇(t) = f(ξ, u, θf0, 0) +Kobs(ξ, u)[y − ŷ]

r(t) = y − h(ξ, u, θfs0)
(1.28)

The observer is designed under the assumptions that no faults and no modelling

mismatches are present in the system. The error estimation can be defined by: e(t) =

x(t)− ξ(t),thus, its dynamics can be expressed as follows:

ė = F (ξ, u, θf0, 0)e −Kobs(ξ, u)H(ξ, u, θfs0,0)e+HOT

r(t) = H(ξ, u, θfs0,0)e+HOT
(1.29)

Where F (ξ, u, θf0, 0) =
δh((x,u,θf0,0))

δx
|x=ξ and the matrix H(ξ, u, θfs0) =

δf((x,u))
δx

|x=ξ.
HOT stands for the High Order Terms, such expressions are neglected.

The observer gain Kobs is determined in such a way that the error dynamics are

asymptotically stable. A solution to this problem was first proposed in [1] by assuming that

the measurements are linear.

Extended Luenberger Observer The first application of a Luenberger ob-

server was devoted to linear systems [16]. This approach can be directly applied to non-

linear systems. However, if the system is operating far away from the linearizing point, the

linearized system could deviate largely from the nonlinear model.
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The main idea of the extended version of the Luenberger observer is to linearize

the model around current states estimation (x̂), instead of a fix point. Once a sufficiently

accurate linearization is computed the observer can be applied.

Detailed information of and FDI application can be found in [1, 89]. The practical

application of this approach is not optimal, since the observer gain has to be computed

repetitively, which means an important computational charge.

Parameter estimation

Parameter estimation approaches are based on the assumption that the faults are

reflected in the system parameters. The detection task is accomplished by comparing

the nominal parameters versus on-line estimations. The main advantage of this approach

is that it yields the size of the parameter deviation which is important to fault analysis.

Parameter estimation is useful for component fault detection since it verifies directly the

discrepancy between internal parameters. A disadvantage is that an input signal could

be needed in order to excite the system and create signals to estimate the parameters.

This action may result in problems if the system is operating in the stationary mode. Such

problem could be avoided using algebraic parameter estimation.

Most of the parameter estimation techniques are based on least squares (LS), re-

cursive least squares (RLS), extended least squares (ELS), etc.

Simultaneous State/Parameter estimation

Extended Kalman filter The extended Kalman filter (EKF) has been largely applied

to estimate states and system parameters of discrete systems. Let us consider the dis-

crete nonlinear system described by:

xk = f(xk−1, uk, vk, θk)

yk = h(xk, wk, θk)
(1.30)

where x ∈ <n the state vector, u ∈ <m the control input vector, y ∈ <p the output mea-

sures, v ∈ <n and w ∈ <p are the state and measure noise respectively and θ ∈ <q is the

vector of parameters.



CHAPTER 1. FUNDAMENTALS 25

The main idea of the EKF is to linearize the nonlinear functions f and h around the

current state estimation x̂k, and then the Kalman filter is applied.

The Kalman filter is compound by a group of recurrent equations, which are relative-

ly easy to solve from a numerical point of view. The filter provides the optimal estimation

of the states and the variance of the estimation error.

xk = Akxk−1 +Bkuk +Gkvk

yk = Ckxk + Ekwk

(1.31)

where v and w are non-correlated white noises with zero mean. Ak, Bk,Ck, Gk and Ek

are the system matrix, linearized and evaluated in the instant k.

E[vkv
T
j ] = Qkδkj

E[wkw
T
j ] = Rkδkj

E[wkv
T
j ] = 0 ∀k, j

(1.32)

where Q and R are the variance matrices of the noise, E[.] is the expectation value of the

alleatory variable [.] and δkj = 1, k = j and 0, k 6= j.

The state x and the measure y are deducted from the white noises v and w and

the initial condition x0, with E[x0] = 0. From the initial conditions the covariance matrix

P0 = E[x0x
T
0 ]. The goal is provide an estimation of the state vector x̂k, by minimizing the

variance of the error estimation.

x̂k = argmin
{
[(xk − x̂k)(xk − x̂k)

T | y1:k]
}

(1.33)

For further details see, for example [19,69].
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Parity space

The parity space approach, first presented in [14], makes use of the parity check on

the consistency of parity equation by using system measures. In this way the inconsisten-

cy in the parity relations indicates the presence of a fault. Chow and Willsky, [14], derived

the parity relations based on state-space model of the system. An approach based in

transfer functions was developed in [32]. The main idea of this approach is to eliminate

the unknown state and then to obtain relations where all components are known. Such

proposition is intended to linear systems, however the same idea can be extended to

nonlinear systems.

For nonlinear systems an approach based on the inverse model of input-output is

presented in [41,67] generalized the parity space approach for linear systems to nonlinear

systems described by Takagi-Sugeno fuzzy models. Leuschen et al. present in [44] an ex-

tension of the linear parity space approach to nonlinear systems by preserving the original

structure of the polynomial parity vector approach. Staroswiecki and Comtet-Varga pre-

sented an approach based on elimination theory and Gröbner bases, [17]. Such approach

is intended to state affine systems [77] and systems modeled by differential polynomial

equations [78]. More recents works are based on Bond Graphs, see for instance [88]

and [87].

1.6 FAULT RECOVERY

After the fault isolation stage, the next step in a FTC system consist in re-adjusting

the control chain of the system, aiming to achieve nominal behavior or at least stability.

This task can be accomplished in two different ways [52,73].

Fault accommodation.

Fault reconfiguration.

Figure 1.9 and the next subsections present a general overview of both groups of meth-

ods.
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ACTIV E FAULT RECOV ERY METHODS
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Figure 1.9: Fault recovery methods [52]

1.6.1 FAULT ACCOMMODATION

Here, the measurements and the signals going into the controller remain unchanged,

and fault recovery is carried out by changing the controller structure (dynamic order, pa-

rameters, gain values etc.), [63]. One example of this is the adaptive controller technique,

where the controller is tuned to minimize the distance between nominal closed loop and

the actual behavior, [5].

The adaptive controller technique can be divided into two approaches: direct and

indirect. In the first one the controller parameters are directly tuned. The second is per-

formed in two steps. First, the mathematical model of the plant is estimated and then a

controller for this plant is computed. This approach presents some limitations. For exam-

ple, if an abrupt fault affects the system, the needed time to compute all the controllers

parameters could be important. By consequence the system could become unstable be-

fore finishing the computation. The same case is worse with the second approach, since

more time is needed to carry out both steps. Besides, the fault can lead the system outside

the linearization zone and by consequence linearizing the system becomes impossible.

1.6.2 FAULT RECONFIGURATION

In fault reconfiguration techniques controller parameters and input-output signals

are manipulated. In this way those techniques carry out fault recovery not only by recon-

figuring the controller but also by including dynamic signal re-routing of measures.
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Reconfiguration methods are divided in four different groups, [52]:

Projection.

Controller redesign.

Fault hiding.

Learning control.

Projection

Methods included in this classification are always based on the off-line design of

certain components. Those elements are arranged in banks. Depending on the fault that

needs to be reconfigured, two banks can be used, see Fig. 1.10:

Bank of observers Observer banks can only handle sensor faults. Each observer

uses the information of all sensors but one. This measure is considered hypothetically

faulty. Using all inputs and all outputs except the one considered faulty, each observer

can compute an estimation of every system state, and thus estimate the plant output

ŷ. Residues are obtained by computing the difference between the measure y and the

estimation ŷ. The residue with the smallest error represents the current fault case, [29].

Reconfiguration is achieved by feeding the nominal controller with the current fault case.

The main advantage of this technique is that it handles the reconfiguration in an integrated

manner, which as a consequence can reduce the computing time.

Bank of controllers Sensors, actuators and system faults can be covered with this

technique. The FDI is carried out by a diagnostic algorithm. The fault information co-

ming from this block is then used to select the most appropriate of the a priori designed

controllers. Since, the number of controllers designed must be equal to the number of

managed failures, the off-line effort can be important.
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Figure 1.10: Banks of observers and controllers [52]

Controller redesign

This approach can perform, in real time, a complete redesign of the controller in or-

der to recover the faulty system. This action is carried out in explicit or implicit ways. In the

first way, the difference between the outputs of the reconfigured plant and the reference

model is minimized. In the implicit way, quadratic functions of the actual and modeled

states are minimized. Computational cost varies from one method to another. The goal of

the control reconfiguration is to minimize the distance between a nominal unfaulty model

and the faulty system. This problem is known as model matching. Mathematically, this

idea can be expressed as follows:

Define a linear system:

ẋ(t) = Ax(t) +Bu(t) +Bddx(t)

y(t) = Cx(t) + dy

(1.34)

Where x(t) ∈ <n is the system state, y(t) ∈ <p is the output, u(t) ∈ <m the control

input, Bd the disturbance distribution matrix, dx and dy are the state and measurements

disturbance respectively.



CHAPTER 1. FUNDAMENTALS 30

In the presence of faults the system (1.34) becomes:

ẋf (t) = Afxf (t) +Bfuf (t) +Bddx(t)

y(t) = Cfxf (t) + dy

(1.35)

The idea of model matching is to define a reference model constituted by the system

(1.35) and the state feedback controller:

u(t) = Kx(t) +Gw(t) (1.36)

Where K is the static controller feedback matrix, G is the reference pre-filter, w(t)

the reference input. The reference model is expressed as follows:

ẋ(t) =Mx(t) +Nw(t)

y = P ∗x
(1.37)

In transfer function form, the reference model is:

T (s) = P ∗ (sI −M)−1N (1.38)

Where M = A−BK and N = BG. M,N and P ∗ are selected by the designer. Thus the

model-matching problem consists of determining a new feedback controller:

u(t) = Kfx(t) +Gfw(t) (1.39)

such that:

Af −BfKf −M = 0

BfGf −N = 0
(1.40)

Various approaches have been developed to solve this problem. [52]

Pseudo-inverse methods This method was the first one to treat the model-matching

problem [6]. It is addressed to actuators and fault systems. Here the model matching

problem presented above is solved by minimizing the distance between the closed loop

matrices according to the 2-norm ‖ . ‖21. Two criteria are minimized:

J1 =‖M − (Af −BfKf ) ‖2

J2 =‖ N −BfGf ‖2
(1.41)

12-norm is defined as ‖ A ‖2=
√

λmax{ATA} and ‖ A ‖2=
√

λmax{A∗A} if A is complex
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The optimal solution can be computed by using:

K∗
f = argminJ1 = B+

f (Af −M)

G∗
f = argminJ2 = B+

f N
(1.42)

Where B+
f denotes the pseudo-inverse of Bf . The optimal solution obtained

(

K∗
f , G

∗
f

)

is plugged into the loop instead of the nominal controller, see Fig1.11. This

method does not guarantee the stability of the reconfigured system because the optimi-

sation problem is unconstrained. In order to ensure system stability Gao and Antsaklis

presented a modified pseudo-inverse method (MPIM) [30]. Here the unconstrained stabil-

ity problem become a constrained one. It is formulated in terms of the stability robustness

of linear systems with structured uncertainty. The stability problem is solved, however the

high computational charge prevents its application in real time. In [76] Staroswiecki pre-

sented a computationally simpler approach based on a set of admissible models. The

admissible model is chosen in such a way that robust stability of the system is assured.

This technique is known as Admissible pseudo-inverse method (APIM).

Ref
Vf Actuators

System
Dynamics Sensors

Actuator
Faults

Sensor
Faults

System
Faults

u y

Kf

x

Figure 1.11: Pseudo-inverse Method [52]

Model following

Perfect model following This idea was presented in [31]. Here the model

matching problem is solved by combining the use of a stabilizing feedback and a dynamic

compensator in order to match exactly the dynamic behavior.
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A closed loop linear system satisfies perfect model following with respect to the

reference model (1.37) if and only if:

A+BK =M

G = N
(1.43)

Figure 1.12 shows the typical structure. The reference model is running in parallel

with the plant and it is implemented in the controller. In this way the control input is:

u(t) = Kee(t) + (Kmxm(t) +Kww(t)) (1.44)

With Ke the stabilizing gain and Km, Kw the model matching gains. e(t) is defined

as the difference between the state variables of the plant and the reference model, to

achieve perfect model matching this error has to be equal to zero for all t > 0.

The model matching gains are determined to minimize:

‖ (M −Af )x(t) +Nw(t)−Bfu(t) ‖2=‖ ė(t)− (Af −BfKe)e(t) ‖2 (1.45)

Where the error dynamics is expressed by:

ė(t)Afe(t) + (M −Af )xm(t) +Nw(t)−Bfu(t) (1.46)

The solution of the equation (1.45) is given by:

Km = B+
f (M −Af )

Kw = B+
f N

(1.47)

This technique guarantees closed loop stability if the terms (Af ,Bf ) are stabilizable.

Optimization

LQ Redesign This technique was presented in [47]. The main idea of this tech-

nique is to design a LQ-optimal nominal controller. After FDI a new LQ controller is de-

signed online, using the faulty plant model. If the faulty plant is still controllable the LQ

algorithm will find a new LQ-optimal controller.
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Model predictive control (MPC) The main idea of the MPC technique is

divided into three main steps. First a prediction of the future behavior of the process

state/output is accomplished. Second, the future input signals are computed online at

each step by minimizing a cost function under inequality constraints on the manipulated

(control) and/or controlled variables. Finally, only the first of the vector control variables

is applied on the controlled plant, and the previous step is repeated with new measured

input/state/output variables.

To achieve control reconfiguration, it is necessary to update the internal plant model

of the MPC controller. The MPC controller will find the optimal sequence using the update

plant model. Since the computational charge is important, this technique is applied prin-

cipally in slow dynamics systems.

T (s) P ∗

Km
Kw

G(s)

Ke

Faults

+

−

e

yp

ymxmw

u

Figure 1.12: Model Following schema [52]
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Fault-hiding

The main idea of these approaches is to keep the nominal controller during a fault

occurrence. Fault recovery is then carried out by adding a reconfiguration block between

the controller and the faulty plant. This block is designed in a manner that the faulty plant

mimics the behavior of the unfaulty system. This behavior is obtained by means of two

blocks, a virtual sensor, and a virtual actuator Fig. 1.13. A virtual sensor consists of a

model of the faulty plant and a gain L. This block is in charge of providing estimates of

the system states x̂. The virtual actuator is a compound of a reference model, as well as

feedback of the difference between the state of the reference model and two matrix M

and N . These have to be chosen in such a way that the virtual actuator state is stable and

the difference between the nominal output and the real one equals to 0.

In this way sensor and actuator faults can be handled, this approach can be applied

to linear [52] and nonlinear [72] systems.

System
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Figure 1.13: Fault-hiding approach [52]



CHAPTER 1. FUNDAMENTALS 35

Learning control

This approach is based in the idea of a mix of classical control techniquesand a

learning control methods (Neural networks, expert systems, etc.). In this way a database

of performance measures is constructed and a decision-making unit decides how to face

the fault, [79].

1.7 CONCLUSION

This chapter presented an overview of some model-based FDI techniques and fault

reconfiguration approaches for linear and nonlinear systems. The concept of differentially

flat systems is presented as well. Flat systems possess an inherent capability to generate

analytical redundancy. This property can be exploited to create FDI schemes. The two

final sections were devoted to present the FDI and FTC techniques presented currently in

the literature.

In the next chapter, the FTC flatness-based proposed approach is detailed. This

approach differs from those presented here in that both FDI and fault recovery are carried

out by exploiting the inherent properties of the flat systems.



CHAPTER 2

FAULT TOLERANT CONTROL: A

FLATNESS-BASED APPROACH

Abstract:

In this chapter the proposed FTC approach is presented. It is based

on the fact that the set of flat outputs is not unique. In fact if a second

set of flat outputs which are not simply coupled by an algebraic equa-

tion but by a differential equation of the first is found, this will provide

redundancy, which will increase the number of residuals, facilitating in

this manner the fault detection. Additionally the redundant signals will

be used to reconfigure the system after fault.

36
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2.1 INTRODUCTION

This chapter presents the proposed approach of this research work.

Chapter 2 is divided in two main parts. In the first, a state of the art of FDI/FTC

flatness-based techniques is presented, together with the mathematical theory that helps

to found the flat outputs. The necessary conditions to use the are defined as well. In the

second, the FTC flatness-based approach is presented. Firstly the attention is only to

focus on the FDI technique, and then using the inherent characteristics of the flat sys-

tems, the FDI technique is extended to reconfigure the faulty system. In this way the fault

detection and fault reconfiguration tasks are done in an integrated manner.

In order to verify the behavior of the system and decide if a fault is present or

not, it becomes necessary to generate residual signals. Thanks to its inherent properties

differential flatness can be used to generate redundancy in a natural way. This property

will be exploited to generate parity equations. Those equations are comparisons between

the behavior of the system and the behavior of a flat model of the fault-free case. The

resultant will be the residual signal, which will be different from zero in presence of a fault

and close to zero in the fault-free case.

The differential flatness property is already proven for many systems [45, 57, 75],

the development of algorithms to automatize the computation of flat outputs is an active

research area, Quadrat and Robertz present in [71], a method based on module theory.

Jean Lévine in [46], presents a method based on the Smith decomposition of polynomial

functions. The last reference inspires the FTC based approach presented in this work.

This method will be presented in section 2.4. The next two sections are consecrated to

present the sate of the art of FDI/FTC flatnes-based approaches.
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2.2 FAULT DETECTION AND ISOLATION BY FLATNESS

Since the first publication of flat systems theory in the early 90’s, they have attracted

much attention in different automatic control areas, such as controller design [35, 56, 65,

74, 90] and motion planning [10, 11]. However, regarding FDI/FTC, not many works are

published. See for instance [38, 48, 54, 66, 81, 91]. Differential flatness could be used to

create Unknown Input Observers, see for instance [3, 20]. Such observers are specially

helpful for FDI process.

The main property of flat systems provides analytical redundancy, since, every con-

trol input and system state can be expressed as a function of the flat outputs, see defini-

tion 1.1. In this way parity equations could be computed by simply comparing measures

versus estimations. The results of such parity equations are known as residual signals.

If their amplitude is close to zero the system is working normally; if not, the system is

considered faulty. Almost all the approaches presented in the literature take advantage of

this property.

In [66] differential flatness is coupled with a nonlinear observer in order to construct

the residual signals. See Fig. 2.1. The nonlinear observer is in charge of generating an

estimation of the control inputs. Such estimation can now be directly compared to the

estimation of the same variables, but this time obtained using the differentially flat equa-

tions. The main problem of this technique lies in the fact that the residuals are obtained

by comparing two different approaches. Since both of them could differ in some aspects,

for instance dynamic speed, this could create some false alarms because of the phase

difference of both signals.

The flatness-based FDI approach presented in [53,54], use an algebraic approach

[25,26,61] to estimate actuator faults. Such estimations help to identify the fault. This work

takes into account only additive faults. The fact that the fault is estimated will be specially

useful to reject the fault.
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Inputs Actuators
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System
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F lat equations
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Algorithm

Decision

Figure 2.1: FDI flatness-based schema with observer, [66]

The analytical redundancy obtained thanks to the main property of the differentially

flat systems is exploited to generate residual signals in [81]. The time derivatives of the

flat output are computed by using B-splines. For this work the fault amplitude is estimated

and this information is used to compensate for the fault. This approach is applied to linear

systems.

In [48] and [91] the residuals are computed by comparing the state estimation to

the state measurement. In order to overcome noise and modeling errors and improve the

effectiveness of the threshold-based fault detection scheme, a probabilistic distribution is

generated. This approach is applied to discrete nonlinear flat systems. The main problem

of this approach is the fact that creating an online probabilistic distribution is difficult. To

solve this issue authors coupled a simplified pre-computed distribution with neuro-fuzzy

logic, which reduces the computational charge but increase the designing work. Those

approaches are applied to discrete nonlinear flat systems.

In [38] the residual signals are computed by using the estimation of derivatives

obtained with the algebraic approach presented in [25,26,61]. Fault indicators are robust

with respect to uncertain parameters in the controlled plant.

Table 2.1 shows a summary of the FDI techniques found on the literature.
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Reference Applied in Handling faults Fault type Advantages/Disadvantages

[66] Nonlinear Sensors Multiplicative

Relatively easy design.

Difference between dynamics

could create false alarms.

[53,54]

Linear

Actuators Additive

Estimate the fault amplitude.

Nonlinear Only additive faults are taken

into account.

[81] Linear Sensors Additive

Estimate the fault amplitude.

Only additive faults are taken

into account.

[48,91] Discrete nonlinear System Additive
Could facilitate the real time application.

Hard design work.

[38] Nonlinear Actuators Additive
Estimate the fault amplitude.

Could be computationally expensive.

Table 2.1: FDI by flatness
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2.3 FAULT TOLERANT CONTROL BY FLATNESS

This section is devoted to presenting some FTC flatness-based approaches. Suryawan

et al. present in [81] an FTC approach, such approach is carried out by using the estima-

tion of the faults. Such estimations are obtained using the differentially flat equations to

compute a fault-free version of the states and then compare them versus the faulty sen-

sor. Such operation will provide an estimate of the fault.See Fig. 2.2. Then the signal is

conditioned using B-splines. The obtained trajectory is subtracted from the measure of the

faulty sensor. Only faults affecting the sensors are taken into account. These approach is

applied to linear systems with a focus on sensor faults.

As in the reference above in [54], the fault is estimated and then such information

helps to recover the system from a faulty position. The main difference lies in the fact that

this time the fault is estimated by using the algebraic approach. The approach is intended

for actuator faults. According to the authors additive and multiplicative faults could be

treated indistinctly.

The main disadvantage of both techniques is the fact that estimation plus signal

conditioning could take some time to be accomplished. Such time delay could lead the

system to instability.
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Figure 2.2: FDI flatness-based FTC schema, [81]

2.4 NECESSARY CONDITIONS FOR THE FTC PROPOSED

APPROACH

This section is dedicated to presenting the mathematical theory that inspired the

proposed FTC approach. The determination of the flat outputs could be carried out intu-

itively for some classical examples, however in order to check all the possibilities it could

be more efficient to use formal calculations algorithms. In fact, the computation of flat

outputs is based on a decomposition which is not unique. As consequence the set of flat

outputs are neither. This property could be exploited for FDI, since this will provide re-

dundancy and will increase the number of residual signals. Additionally this redundancy

could be used to reconfigure the system after fault. More details of the theory presented

in this section can be found in [46].

Let us consider a nonlinear system in its implicit form (where the input variables are

eliminated).

F (x, ẋ) = 0 (2.1)
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An implicit system is defined as (X, τX, F ), with X = X × R
n
∞, dimX = n, τX the trivial

Cartan field on X, and rank δF
δẋ

= n−m, this system will be Lie-Bäcklund equivalent to the

implicit system (N, τN, G), with N = Y × R
p
∞, dimY = p, τN the trivial Cartan field on N,

and rank δG
δẏ

= p − q if and only if it exists a locally C∞ mapping Φ : N 7→ X, with locally

C∞ inverse Ψ. This implies that:

Φ∗τN = τX and Ψ∗τX = τN.

For every ȳ such that LkτNG(ȳ) = 0, ∀k ≥ 0, then x̄ = Φ(ȳ) satisfies LkτXF (x̄) =

0, ∀k ≥ 0 and conversely.

Where Lτn is the lie derivative along the Cartan field τn.

Definition 2.1 The implicit system (X, τX, F ) is flat if and only if it is Lie-Bäcklund equiv-

alent to the trivial system (R, τm, 0).

Theorem 2.2 The system (X, τX, F ) is flat, if, and only if there exists a locally C∞ and

invertible mapping Φ : Rm
∞ 7→ X such that:

Φ∗dF = 0 (2.2)

Defining the polynomial matrices as follows:

dF =
∂F

∂x
dx+

∂F

∂ẋ
dẋ =

(
∂F

∂x
+
∂F

∂ẋ

d

dt

)

, P (F )dx (2.3)

P (Φ0) ,
∑

j≥0

∂Φ0

∂y(j)
dj

dtj
(2.4)

We thus can write

Φ∗dF = P (F )P (Φ0)dy (2.5)

By consequence, we have to find a polynomial matrix P (Φ0) solution to

P (F )P (Φ0) = 0 (2.6)

If F is restricted to be a meromorphic function 1, P (Φ0) may be obtained via the Smith

decomposition of P (F ).

1A meromorphic function on an open subset D of the complex plane is a function that is infinitely

differentiable and equal to its own Taylor series on all D except a set of isolated points, which are

poles for the function.
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The variational system P (F ) could be decomposed using the Smith decomposition

in:

V P (F )U = (In−m, 0n−m,m) (2.7)

Let us define K as a field of meromorphic functions from X to R, K
[
d
dt

]
as the principal ring

of K-polynomials of d
dt

= LτX , Mp,q

[
d
dt

]
the module of the p× q matrices over K

[
d
dt

]
, with

p and q arbitrary integers, and, U
[
d
dt

]
is the group of unimodular matrices of Mp,p

[
d
dt

]
.

By using this notation the set of hyper-regular matrices P (Φ) ∈ Mn,m

(
d
dt

)
satisfying

(2.2) is given by:

P (Φ) = U




0n−m,m

Im



W (2.8)

Where U ∈ R− Smith(P (F )) and W ∈ Um
(
d
dt

)
is an arbitrary unimodular matrix.

Let us define:

Û = U




0n−m,m

Im



 (2.9)

Lemma 2.3 For every matrix Q ∈ L−Smith(Û), it exists a matrix Z ∈ Um
(
d
dt

)
such that:

QP (Φ) =




Im

0n−m,m



Z (2.10)

Moreover, for every Q, the sub-matrix Q̂ = (0n−m,m, In−m)Q is equivalent to P (F ).

A flat output of the variational system is given by:

w(x̄) =








w1(x̄)
...

wm(x̄)








= (Im, )0m−n−m)Qx̄dx|X0 (2.11)

if dw = 0, a flat output of the nonlinear implicit system (2.1) can be obtained by integrating

the equation dy = w. Otherwise, it is necessary to find an integral base, if such base

exists. This means that we have to find an integral factor M ∈ Um
(
d
dt

)
verifying d(Mw) =

0.
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Definition 2.4 Strongly closed:

The K
(
d
dt

)
-ideal Ω, finitely generated by the 1-forms (w1, ...wm) defined by (2.11), is

strongly closed in X0, (or equivalently, the system (X, τmathfrakX , F ) is flat) if and on-

ly if it exists an operator µ ∈ L1((Λ(X))
m), and a matrix M ∈ Um

(
d
dt

)
such that:

dw = µw, d(µ) = µ2, d(M) = −Mµ (2.12)

Where L1((Λ(X))
m) is the space of linear operators which maps the p-forms of dimension

m in X in (P+1)-forms of dimension m in X, d represents the extension of the exterior

derivative d, where the coefficients have their value in K
(
d
dt

)
.

Additionally if the relation (2.12) is satisfied, a flat output z can be obtained by

integrating the system of equations dy =Mw.

This can be resumed in the next algorithm:

Compute the variational system P (F ) = δF
δx

+ δF
δẋ

d
dt

of (2.1), if P (F ) is not hyper-

regular the system is not flat.

Compute the smith decomposition of P (F ).

Compute Û = U




0n−m,m

Im



.

Obtain the Smith decomposition of Û .

Compute the vector of 1-form ω defined in (2.11)

Obtain the operator µ, such that dω = µω by identification term by term, if possible.

If not, among the possible operators µ, keep only the operators who verifies that

d(µ) = µ2.

Determine by identification term by term, a matrix M , which validates d(M) =

−Mµ.

Between all the options of matrix M , keep only the unimodular matrices, if such

matrix does not exist, the system is not flat. On the contrary, a flat output can be

obtained by integrating the system of equations dy =Mω.
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Example 2.5 Non holonomic car, see example 1.3

The system equations of the non holonomic car in its implicit representation are:

F (x, y, θ, ẋ, ẏ, θ̇) = ẋsinθ − ẏcosθ = 0 (2.13)

The first step is to compute the variational system:

P (F ) =

(
∂F

∂x
+
∂F

∂ẋ

d

dt
,
∂F

∂y
+
∂F

∂ẏ

d

dt
,
∂F

∂θ
+
∂F

∂θ̇

d

dt

)

=

(

sinθ
d

dt
, −cosθ d

dt
ẋcosθ + ẏsinθ

) (2.14)

Defining E = ẋcosθ + ẏsinθ, and permuting columns we can write the variational system

as follows:

P (F ) =

(

E, −cosθ d
dt
, sinθ

d

dt

)

(2.15)

After applying the Smith decomposition algorithm, we obtain the unimodular matrix U :

U =








0 0 1

0 1 0

1
E

cosθ
E

d
dt

− sinθ
E

d
dt








(2.16)

Defining Û as:

Û = U (01,2, I2)
T =








0 1

1 0

cosθ
E

d
dt

− sinθ
E

d
dt








(2.17)

After computing the Smith decomposition of Û we obtain:

Q =








0 1 0

1 0 0

sinθ
E

d
dt

− cosθ
E

d
dt

1








(2.18)

Multiply the matrix Q by (dx, dy, dθ)T . The last line is equal to 1
E
(sinθdẋ − cosθdẏ +

(ẋcosθ+ ẏsinθ)dθ) = 1
E
d(ẋsinθ− ẏcosθ), which is equal to zero, see (2.14). The remaining

part of the system:



0 1 0

1 0 0












dx

dy

dθ







=




w1

w2



 (2.19)
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is trivially strongly closed with M = I2, which finally gives the same set of flat outputs

z = [y, x]T presented in example 1.3.

By this way we can define the first set of flat outputs zα as follows:



zα1

zα2



 =




y

x



 (2.20)

The set of flat outputs is not unique, since it depends on the decomposition of

P (F ) and, as explained in [46], it is not unique neither. Let us illustrate this with the next

example.

Example 2.6 Non holonomic car (2)

By right multiplying the variational system depicted in (2.15) by:

Q =








cosθ 0 0

sinθ 1 0

0 0 1








(2.21)

and using sinθ d
dt
(cosθ) − cosθ d

dt
(sinθ) = −θ̇. The Smith decomposition of P (F ) is given

by:

U =








cosθ −1
θ
cos2θ d

dt
1
θ
(ẋcosθ + ẏsinθ)cosθ

sinθ 1− 1
θ
sinθcosθ d

dt
1
θ
(ẋcosθ + ẏsinθ)sinθ

0 0 1








(2.22)

The matrix Û is equal to:

Û =








−1
θ
cos2θ d

dt
1
θ
(ẋcosθ + ẏsinθ)cosθ

1− 1
θ
sinθcosθ d

dt
1
θ
(ẋcosθ + ẏsinθ)sinθ

0 1








(2.23)

The Smith decomposition of Û gives:

Q =








−tanθ 1 0

0 0 1

1
θ
sinθcosθ d

dt
−1
θ
cos2θ d

dt
−1
θ
(ẋcosθ + ẏsinθ)cosθ








(2.24)

The vector of 1-forms w is given by:

w = [w1 w2]
T = Q[dx, dy, dθ]T = [−tanθdx+ dy, dθ]T (2.25)
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We have:

dw = [dw1, dw2]
T =

[

− 1

cos2θ
dθ ∧ dx, 0

]T

(2.26)

Which proves that w is not closed.

We introduce the µ operator:

µ =




0 d

(
x

cos2θ

)
∧

0 0



 (2.27)

Such operator µ verifies µ2 = 0. Additionally, we have:

d =




0 d

(
1

cos2
dx+ 2xsinθ

cos3θ
dθ
)
∧

0 0



 (2.28)

By componentwise identification:

M =




1 − x

cos2θ

0 1



 (2.29)

Now, we compute the 1-form as follows:

Mw =




tan θdx+ dy − x

cos2θ
dθ

dθ



 (2.30)

This 1-form is closed. Let us define now the new set of flat outputs as zβ , such vector is

compound as follows:




zβ1

zβ2



 =




y − xtanθ

θ



 (2.31)

Equations (2.20) and (2.31) presents two possible set of flat outputs in which at least one

element inside the zβ vector is coupled by a differential equation. Analytical redundancy

can now be computed as a straight consequence. We can verify that it exists at least

one element inside the zα vector which is coupled by a differential equation of one of the

elements of zβ by analyzing the equations (1.10) and the expressions of the control inputs

(1.11). From the kinematic equations of the car we can rewrite θ which is an element of

the zβ vector could be written as follows:

θ = cos−1

(

ẋ
√

ẋ2 + ẏ2

)

(2.32)

Equation 2.32 proof that it exists a differential equation fulfilling the necessary conditions

for the FTC proposed approach.
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2.5 ANALYTICAL REDUNDANCY BY FLATNESS-BASED

APPROACH

Analytical redundancy can be achieved thanks to the main property of the flat sys-

tems, which dictates that any input or state can be written as functions of the flat outputs.

This provides in a direct manner the redundancy needed to compute the residuals, which

will indicate the presence of a fault. It will be close to zero if no fault is present and different

from it, if a fault affects the system.

Residuals are computed by simply comparing the measured variable versus the

estimated using the differentially flat equations. This approach is depicted in the figure

2.3, the main advantage of this method is the fact that the estimations of the states and

the inputs are only functions of the flat outputs. This phenomenon helps to determine the

size of a fault. See for example [54] and [81].

2.5.1 FLATNESS-BASED FAULT DETECTION AND ISOLATION

The main idea of the proposed approach is based in the principle that the set of flat

outputs is not unique. In fact, one can find an infinite number of them. (Linked with the

matrix M in the algorithm). The idea is to find two or more sets of flat outputs in which at

least one element inside one of the vectors is not simply coupled by an algebraic equa-

tion but by a differential equation of the first. This will increase the number of residuals,

in addition the residuals will be decoupled between them. As a result, this could increase

the possibilities of isolating every single fault. Furthermore we consider that the flat out-

puts are states of the system or a linear combination of them, and they are considered

measured or at least estimated.

Let us consider a nonlinear flat model of dimension n, and m control inputs, with

zα as first set of flat outputs, which corresponds to m components of the state vector;

also suppose that the full state is measured, (y = x). It is always possible to compute n

residuals:
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n - m state residuals, because the full state is supposed to be measured.

m control inputs residuals.

The residual signals are computed by using

rijx = xmk − x̂k (2.33)

riju = uml − ûl (2.34)

where xmk and uml are the kth and lth measured states and control inputs respectively and

x̂k and ûl are the kth and lth states and control inputs calculated using the differentially

flat equations, i still being the identifier of the set of flat outputs. In order to clarify the

proposed approach, suppose that we have a nonlinear system composed by four states,

[x1 x2 x3 x4]
T ∈ <n and two control inputs [u1 u2]

T ∈ <m, as depicted in definition 1.1,

the number of control inputs is equal to the number of flat outputs. As a result [z] ∈ <m,

suppose also that the nonlinear system is flat and that, additionnally, we can find not

one but two set of flat outputs, for instance zα = [zα1 zα2]
T = [x1 x2]

T ∈ <m and zβ =

[zβ1 zβ2]
T = [x3 x4]

T ∈ <m.

In order to show the advantage of computing two sets of flat outputs covering the

characteristics presented before, the proposed approach is divided into two cases.

2.5.2 CASE A: n RESIDUALS

Assume now, that only zα vector exists, this hypothesis implies that:

The maximal number of residuals is four.

Sensor faults not affecting flat outputs can be isolated depending on the system.

Flat output sensor faults can be detected but cannot be isolated.

The n residuals are obtained as follows:










rα1x

rα2x

rα1u

rα2u











=











xm3

xm4

um1

um2











−












φαx

(

zα, żα, ..., z
(a)
α

)

(e3)
T

φαx

(

zα, żα, ..., z
(a)
α

)

(e4)
T

φαu

(

zα, żα, ..., z
(b)
α

)

(c1)
T

φαu

(

zα, żα, ..., z
(b)
α

)

(c2)
T












(2.35)
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Figure 2.3: Detection diagram
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Fault rα1x rα2x rα1u rα2u

Fx1 1 1 1 1

Fx2 1 1 1 1

Fx3 1 0 0 0

Fx4 0 1 0 0

Fu1 0 0 1 0

Fu2 0 0 0 1

Table 2.2: Faults signature for n residuals

Where ea ∈ <n, ∀a 6= k ea = 0, ea = 1 ⇔ a = k, where a = [1, 2, ..n] and cb ∈ <m,

∀b 6= l cb = 0, cb = 1 ⇔ b = l, where b = [1, 2, ..m]. Observing in detail equation 2.35, it

is straightforward to see that if a fault affects the state measure of (xm3), the residual rα1x

will be affected. The rest of residuals are independent of this measure, so they will not

be affected by the fault. A fault affecting the other state measure or the actuators can be

treated in the same manner.

When a fault affects one of the flat outputs, all the residuals will be affected. As a re-

sult the fault can be detected but it cannot be isolated. The fault signatures are presented

in Table 2.2.

2.5.3 CASE B: n+ n RESIDUALS

Suppose now, that two sets of flat outputs are found, (zα and zβ), this hypothesis

denotes that:

The maximal number of residuals is eight.

Sensor faults not affecting flat outputs can be detected and isolated.

Unfaulty versions of the flat outputs coupled by a differential equation can be com-

puted. This property is specially useful to reconfigure the system after fault. This

method will be developed in section 2.6.
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Fault rα1x rα2x rα1u rα2u rβ1x rβ2x rβ1u rβ2u

Fx1 1 1 1 1 1 0 0 0

Fx2 1 1 1 1 0 1 0 0

Fx3 1 0 0 0 1 1 1 1

Fx4 0 1 0 0 1 1 1 1

Fu1 0 0 1 0 0 0 1 0

Fu2 0 0 0 1 0 0 0 1

Table 2.3: Faults signatures for n+ n residuals

Using the two sets of flat outputs, eight residuals are computed, those are the next:
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(
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)
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(2.36)

Where ea ∈ <n, ∀a 6= k ea = 0, ea = 1 ⇔ a = k, where a = [1, 2, ..n] and cb ∈ <m,

∀b 6= l cb = 0, cb = 1 ⇔ b = l, where b = [1, 2, ..m].

This time if a fault affects x1, all the zα residuals and rβ1x will be triggered; the fault

is detected and isolated. The same principle can be now applied to every single fault

affecting the system, either sensor or actuator faults. Table 2.3 presents the fault signature

belonging to each fault.

2.5.4 DETECTION ROBUSTNESS

For this work, the fault detection is achieved by simply comparing the residual am-

plitude versus a fixed detection threshold.
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The amplitude of the detection threshold is determined by running series of fault-

free simulations of the system. Three different simulations are run, the first one by chang-

ing each parameter individually in the same percentage upwards and downwards. The

two final simulations are run by varying all the parameters plus and minus the same per-

centage used in the previous simulation.

Finally the amplitude of the detection threshold is calculated by selecting the worst

case among all the results of the simulations, plus a security margin. Such margin is

added in order to avoid false alarms caused by the measure noise or modeling errors.

2.5.5 DERIVATIVES ESTIMATION

In order to compute the system states and the control inputs of the system, and

consequently the residual signals, the time derivatives of the flat outputs of the system

have to be estimated.

In this work a high-gain observer [83] is used to evaluate the time derivative of noisy

signals.

In order to improve the performance of the high-gain observer, a low-pass filter is

synthesized. The filter order is fixed regarding the maximal derivative inside the differen-

tially flat equations, hence better noise filtering is obtained. Let us define the equation of

the high-gain observer:

ˆ̇x = Âx̂+ B̂u (2.37)

Where:

Â =














−ζ1/ε 1 ... ... 0

−ζ2/ε2 0 1 ... 0
...

...
. . . . . .

...

−ζn−1/ε
n−1 ... ... 0 1

−ζn/εn ... ... ... 0














(2.38)
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And:

B̂ =
[

−ζ1/ε − ζ2/ε
2 . . . − ζn−1/ε

n−1 − ζn/ε
n

]T

(2.39)

The polynomial Sn+ ζ1Sn−1+ ...+ ζn−1S+ ζn is Hurwitz and ε << 0. The transfer function

from u to x̂ when ε ⇒ 0 is T (s) = [1 S ... Sn−2 Sn−1]T , the system acts as a differentiator

under the consideration that the input u is continuous and derivable. In this case the n− 1

derivatives are obtained directly from the state vector.

A possible selection of the coefficients ζi(i = 1, · · · n) is in such a way that the

frequency bandwidth of the signal to be derivated is in the frequency bandwidth of the

filter 1/(Sn + ζ1S
n−1 + · · ·+ ζn−1S + ζn) and the ε small enough.

2.6 CONTROL RECONFIGURATION FOR DIFFERENTIALLY

FLAT SYSTEMS

In order to complement the FTC strategy, control accommodation or control recon-

figuration is needed. This work is focused on control reconfiguration. These techniques

have as a principal characteristic that they keep the nominal controller synthesized during

the design phase. This property allows for reduction of the response time to a fault. This

methodology has as a principal characteristic the fact that both stages FDI and reconfig-

uration are merged in the same block. This characteristic will reduce the time response

after fault and could reduce the computational load of the processor. The goal here is to

hide the fault to the controller by changing the faulty reference to an unfaulty one. Fig. 2.4

shows the reconfiguration diagram.

Let us review the example of a nonlinear flat model of dimension n with m control

inputs, in order to show how basing two or more sets of flat outputs coupled by a differen-

tial equation will help to improve the reconfiguration technique. The method will be divided

into two different cases.
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Figure 2.4: Reconfiguration diagram

2.6.1 CASE A: PARTIAL RECONFIGURATION

Partial reconfiguration is achieved if only one set of flat outputs is found. For ex-

ample zα, as explained in section 2.5.2, faults affecting flat outputs cannot be isolated,

see table 2.2, however faults affecting measuring sensors can be detected and isolated.

Thanks to the properties of the flat system and the fact that the flat outputs are considered

fault-free at any time, we can compute the rest of system states. Those signals can then

be used to reconfigure the system.

Empirically the number of reconfigurable faults can be obtained by using the next

formula:

NFLAR = (FOS)(n −m) (2.40)

Where FOS is the number of sets of flat outputs found, n is the state dimension and m

is the number of control inputs. For instance for our example the number of redundant

signals is (1)(4 − 2) = 2, which are in fact the two states that are not flat outputs, x3 and

x4.
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2.6.2 CASE B: FULL RECONFIGURATION

Suppose now that two sets of flat outputs are found, zα and zβ . Using the n + n

residuals every single fault can be detected and isolated, and additionally, the unfaulty

set of flat outputs can be used to estimate the faulty state. Then, this new version can be

used to feed the controller and reconfigure the system. See Fig. 2.4.

Let us analyze a fault affecting x1. As is seen in the detail of equation (2.36), it is

straightforward to see that all the equations containing zα1 in the right hand will modify

their shape. Since the fault affects the measure of the first state, the first residue rα1x will

be affected as well. However a faulty-free version of x1 is computed using the measures

of the zβ set. This signal could be used to hide the fault to the controller. Each fault could

be treated in the same manner, which proves that the system is fully reconfigurable.

2.7 CONCLUSION

This chapter presents the proposed approach for FTC. Additive and multiplicative

faults affecting sensors and actuators can be treated in the same manner for detection

and isolation. Active reconfiguration is only carried out for sensor faults; actuators faults

are rejected by the controller, it means that it is robust against actuators faults.

The main advantage of the proposed approach is that it merge the FDI process

together with the reconfiguration. This adds simplicity during design and could reduce the

time response to a fault and the computational load as well.

The next chapter is devoted to investigation of the feasibility of the proposed ap-

proach. For this, two nonlinear systems will be considered: An unmanned quadrotor and

the three tank system. Both of them belong to the group of flat systems. The technique

proposed can be partially applied in the unmanned quadrotor, and will be fully applied in

the three tank system.
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Abstract:

In this chapter, the feasibility of the proposed approach is investigated

in two nonlinear systems. First, it is applied in a partial way to an un-

manned quadrotor and, second, the full technique is applied to a three

tank system.
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3.1 INTRODUCTION

This chapter is devoted to investigate the feasibility of the proposed FTC approach.

It is divided into two main parts. The first part is devoted to presenting the nonlinear

model of an unmanned quadrotor. For this nonlinear system the FTC technique is not

fully applied, since this system does not meet all the necessary conditions. However, as

explained in sections 2.5.2 and 2.6.1, the technique can be applied in a partial manner.

The second part is devoted to apply the technique to a three tank system. This sys-

tem in contrast to the UAV meets all the necessary conditions to fully exploit the proposed

approach.

3.2 UNMANNED QUADROTOR

The American Institute of Aeronautics and Astronautics (AIAA) defines an unmanned

aerial vehicle (UAV) as “an aircraft which is designed or modified, not to carry a human

pilot and is operated through electronic input initiated by the flight controller or by an on-

board autonomous flight management control system that does not require flight controller

intervention” [68]. (See Fig. 3.1) The most important characteristic of this kind of vehicle

is that they can be recovered at the end of the mission. This property excludes rockets,

missiles, shells, etc. UAV’s have been serving the army since the 90’s, however, thanks to

their versatility, and the progress in electronics manufacturing, they are nowadays being

used in civil applications, [24] for example:

Remote sensing and earth science research, [36].

Search and rescue in human hostile zones (e.g., radiation zones, unstable zones

after an earthquake).

Weather monitoring.

Crop spraying and dusting.

Fire fighting, [7].
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Figure 3.1: UAV communication system

Communications networks, [21].

The European Association of Unmanned Vehicles Systems (EUROUVS) has drawn

up a clasiffication of UAV systems based on such parameters as flight altitude, endurance,

speed, maximum take off weight, size, etc. This classification is shown in table 3.1.
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Category Maximum take- Maximum flight Endurance Data link Example

(Acronym) off Weight (kg) altitude (m) (hours) range (Km) Missions Systems

Micro/ mini UAV’s

Micro (MAV) 0.10 250 1 <10
Scouting, surveillance Black widow, Microstar,

inside buildings. Fancopter, Mosquito.

Mini <30 150-300 <2 <10

Film and broadcast ind., Mikado, Aladin, Tracker,

agriculture, pollution Dragon eye, Raven, Skorpio,

measurements, Robocopter, Pointer II,

communications relay. YH-300SL.

Tactical UAV’s

Close Range
150 3,000 2-4 10-30

Mine detection, search Observer I, Phantom, Copter 4

(CR) and rescue. Robocopter 300, Camcopter.

Short Range
200 3,000 3-6 30-70 mine detection.

Luna, SilverFox,

(SR) EyeView, Hornet.

Long Range
- 5,000 6-13 200-500 Communications relay.

Hunter,

(LR) Vigilante 502.

Endurance
500-1500 5,000-8,000 12-24 >500

Battle damage Aerosonde,

(EN) assessment. Shadow 600.

Medium Altitude,

1,000-1,500 5,000-8,000 24-48 >500

Weapons delivery, Skyforce, Heron TP,

Long Endurance Communications MQ-1 Predator, Darkstar.

(MALE) relay. Eagle 1 and 2,

Strategic UAV’s

High Altitude,

2,500-12,500 15,000-20,000 24-48 >2000

boost phase intercept Global Hawk, Raptor, Condor,

Long Endurance launch vehicle, Theseus, Helios, Libellule,

(HALE) airport security. EuroHawk.

Special Task UAV’s

Lethal (LET) 250 3,000-4,000 3-4 300 Anti-radar,anti-aircraft. MALI, Harpy, Lark, Marula.

Decoys (DEC) 250 50-5,000 <4 0-500
Aerial and naval Flyrt, MALD, Nulka,

deception. ITALD, Chukar.

Stratospheric
- 20,000-30,000 >48 >2,000 - Pegasus.

(Strato)

Exo-stratospheric
- >30,000 - - - MarsFlyer, MAC-1.

(EXO)

Table 3.1: UAV’s Classification
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3.2.1 NONLINEAR MODEL

The operation of the quadrotor is fairly simple. The position (ξ = x, y, z) and the

orientation (η = ψ, θ, φ) desired are achieved by independently varying the speed and

torque of the four rotors. See figure 3.2.

Figure 3.2: Quadrotor schema

Vertical movement is accomplished by adding the lift forces generated for each rotor,

in order to avoid the helicopter turning over the z axis, two rotors turn in the clockwise

direction (rotors 2 and 4) and the two others turn in the counterclockwise direction, this

configuration cancel the horizontal moment of the helicopter, which is specially helpful

during the hover position. The pitch moment (θ) is achieved by varying the rotation speeds

of the rotors 1 and 3. The roll (φ) is obtained by varying the rotation speeds of the rotors 2

and 4. Finally, the yaw moment (ψ) is obtained from the torque resulting from substracting

the clockwise (rotors 2 and 4) and from that of counterclockwise (rotors 1 and 3).

The nonlinear model can be obtained by using the motion equations of Euler-

Lagrange. The Lagrangian (L) is defined as the addition of the kinetics (T ) and the poten-

tial (U ) energies.
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L = TT + TR + U (3.1)

Where TT stands for the translational kinetic energy and TR describes the rotational

kinetic energy.

The Lagrangian is defined as follows, see [8] for further details:

L =
m

2
ξ̇T ξ̇ +

1

2
η̇TJη̇ −mgz (3.2)

Which satisfies the Euler-Lagrange equation.

d

dt

(
∂L

∂q̇

)

−
(
∂L

∂q

)

= FL (3.3)

Where FL stands for the forces (f = RFL) and moments (τ ) applied to the body

frame of the aircraft. Because the Lagrangian does not contain cross terms combining the

position and the orientation, the Euler-Lagrange equation can be divided in the dynamics

of the ξ (Translational) and η (Rotational) coordinates individually.

Where R stands for the rotational matrix which represents the orientation of the

aircraft relative to a fixed inertial frame. FL is defined as follows:

FL =








0

0

u








(3.4)

u = f1 + f2 + f3 + f4 (3.5)

Where fi, i = 1, 2, 3, 4 is the force produced for each one of the rotors, fi = kiw
2
i .

The pitch, yaw and roll moments are written as follows:

τ =








τψ

τθ

τφ







=








Σ4
i=1τMi

(f2 − f4)l

(f3 − f1)l








(3.6)
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Where l is the distance between rotors and the center of gravity, and τMi is the

moment produced by the motor i.

Finally, the nonlinear model can be obtained by solving the Euler-Lagrange equa-

tions for position and orientation. For position:

d

dt

(
∂LT

∂ξ̇

)

− ∂LT
∂ξ

= f (3.7)

Substituting the value of LT and adding the potential energy because it cause a movement

in the z axis, we obtain:

d

dt

(
∂m2 (ẋ

2 + ẏ2 + ż2) +mgz

∂ξ̇

)

− ∂m2 (ẋ
2 + ẏ2 + ż2) +mgz

∂ξ
= f (3.8)

By computing the derivative we obtain:

d

dt

(m

2
(2ẋ+ 2ẏ + 2ż)

)

+ 0− 0− 0−mg = f (3.9)

Finally computing the time derivative and rearranging in vector form, we obtain the

equations related to the position coordinates.

f =








mẍ

mÿ

mz̈ −mg








(3.10)

For the orientation coordinates:

d

dt

(
∂LR
∂η̇

)

− ∂LR
∂η

(3.11)

Substituting we obtain:
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d

dt

(

∂(12 η̇
T
Jη̇)

∂η̇

)

− ∂(12 η̇
T
Jη̇)

∂η
(3.12)

Computing the derivatives:

d

dt

(
1

2

(
∂η̇T

∂η̇
+ 0 + η̇TJ

∂η̇

∂η̇

))

− 1

2

(

0 +
∂

∂η
(η̇TJη̇ + 0

)

= τ (3.13)

Computing the time derivative:

Jη̈ + J̇η̇ − 1

2

(
∂

∂η

(
η̇TJη̇

)
)

= τ (3.14)

In order to write the equation above in the general form M(η)η̈ + C(η, η̇)η̇ = τ we

factorize η̇ to the right as follows:

Jη̇ +

(

J̇− 1

2

∂

∂η
(η̇TJ)

)

η̇ = τ (3.15)

In this way we can define the coriolis matrix (C(η, η̇)) and the inertial matrix as

follows:

C(η, η̇) = J̇η̇ − 1

2

(
∂

∂η

(
η̇TJη̇

)
)

(3.16)

M(η) = J(η) =W T
η IWη (3.17)

Finally the nonlinear dynamical model of the quadrotor is:

f =








mẍ

mÿ

mz̈ −mg








(3.18)
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τ =M(η)η̈ + C(η, η̇)η̇ (3.19)

In order to simplify the model let us introduce a change of input variables proposed

in [8].

τ̃ =








τ̃ψ

τ̃θ

τ̃φ







=M(η)−1 (τ − C(η, η̇)η̇) (3.20)

Where τ̃ = η̈, are the new inputs, after this transformation the nonlinear model

becomes:

mẍ = −u1sinθ

mÿ = u1cosθsinφ

mz̈ = u1cosθcosφ−mg

ψ̈ = u2

θ̈ = u3 (3.21)

φ̈ = u4

In this way the nonlinear model is compound by twelve states,

X = [x y z ẋ ẏ ż ψ θ φ ψ̇ θ̇ φ̇]T = [x1 x2x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]
T and the control

inputs are U = [u1 ψ̈ θ̈ φ̈]
T = [u1 u2 u3 u4]

T .

3.2.2 FLATNESS OF THE MODEL

The goal in the flatness approach is to explicitly express all the states and all the

control inputs as functions of the flat outputs and a finite number of its time derivatives.

From the equations 3.21, and defining the flat outputs as zα = [x y z ψ]T [18], because we

have four control inputs. We can write all the system states as function of the flat outputs

zα and its time derivatives as follows:
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x = z1

y = z2

z = z3

ψ = z4

θ = asin

(
mz̈1
−u1

)

φ = atan

(
z̈2

z̈3 + g

)

ẋ = ż1

ẏ = ż2

ż = ż3 (3.22)

ψ̇ = ż4

θ̇ = −m
(

z
(3)
1 u1 − u21z̈1
u21

√
α

)

φ̇ =
z
(3)
2 (z̈3 + g) − z

(3)
3 z̈2

(z̈3 + g)2 + z̈2
2

In a similar way the control inputs are expressed as function of the flat outputs and

its time derivatives.

u1 = m
√

((z̈1)2 + (z̈2)2 + (z̈3 + g)2)

u2 = z̈4 (3.23)

u3 = −m





(

(z
(4)
1 u1 − ü1z̈1)u

2
1

√
A
)

− (z
(3)
1 u1 − ü1z̈1) (C) + 2u1u̇1

√
A

u41A





u4 =
(z

(4)
2 (z̈3 + g) + z

(3)
2 z

(3)
3 − z

(4)
3 z̈2 − z

(3)
3 z

(3)
2 )(z

(3)
2 (z̈3 + g)− z(3)z̈2)−B

(z̈3 + g)4 + (z̈2)4

where

A = 1−
(
mz̈1
u1

)2

(3.24)

B = (2(z̈3 + g)z
(3)
3 + 2z̈2z

(3)
2 )(z

(3)
2 (z̈3 + g) − z

(3)
3 z̈2) (3.25)

C = (
−2mz̈1(mz

(3)
1 u1 − u̇1mz̈1)

u1
√
α

(3.26)



CHAPTER 3. FAULT TOLERANT CONTROL: APPLICATIONS 68

3.2.3 FLATNESS-BASED FAULT TOLERANT CONTROL OF A

QUADROTOR UAV

Additive faults affecting sensors and control inputs (combination of actuators, see

(3.6)) are considered. For sensors measuring xm5 (θ) and xm6 (φ) different fault ampli-

tudes are considered. See Table 3.2. Such amplitude defines the FTC strategy used to

counteract the fault. For sensors measuring flat outputs z1, z2 and z3 an additive fault of

one meter is considered. For the flat output z4, 1◦ extra is applied. Only single faults are

considered. Reconfiguration after fault is taken into account only for measuring sensors.

Once the fault appears (50 s) it is recurrent until the end of the simulation, since the FTC

strategy needs to know the amplitude of the fault in order to decide which strategy will be

used. For simplicity sake in this work the fault amplitude is supposed perfectly known. By

consequence the strategy choice is straightforward.

Fault Amplitude Strategy Amplitude Strategy Amplitude Strategy

Fx5 < 1.8◦ P 1 > 1.8◦ < 4.6◦ Rf 1 >4.6◦ Re1,2

Fx6 < 1.8◦ P > 1.8◦ < 3.9◦ Rf >3.9◦ Re

Table 3.2: Additives faults for the UAV

1P =Passive, Rf =Reconfiguration, Re =Restructuring. 2This approach is out of

the bounds of this work.



CHAPTER 3. FAULT TOLERANT CONTROL: APPLICATIONS 69

Section 2.5.4 describes how the detection threshold is fixed. The parameter that

changes is the mass (m) of the helicopter. The nominal value is 0.52Kg. The controller in

charge of closing the loop is an LQR. The matricesQ andR are chosen in order to respect

the power bounds of the actuators. The nominal trajectories are created using 5th order

polynomials. White noise is added to the signal in order to simulate real operation. High

gain observers are used to compute the time derivatives. Low-pass filters are coupled

with the observers. A trade-off between the time delay caused by the filter and the cut-

off frequency needs to be studied in detail. A very high cut-off frequency will not properly

reduce the amplitude of the noise. On the other hand, the higher the frequency of the filter,

the more important the induced time delay will be, this delay could prevent the use of the

reconfiguration method, because, if the estimated signal is not in phase with the measured

signal the fact of a change between references could drive the system to instability.

Fault detection and isolation

For this particular system only one set of flat outputs is found, by consequence

n = 12 residuals are found, which is in fact the number of states, however, for simplicity

sake the time derivatives of the three position states and the three orientation states, x7 to

x12 are consider unfaulty at any time, such supposition produces only six residuals, which

are presented in equation (3.27).


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T
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z, ż, ..., z(a)
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T
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
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(3.27)

For faults affecting measuring sensors, two different frameworks are considered.

See Table 3.2. However for FDI the fault amplitude is not a key parameter, since the

fault signature is the same regardless of the amplitude fault. All residuals are normalized

between -1 and +1, those boundaries represent the minimal and maximal amplitude of

the fault-free threshold.
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Let us analyze each individual fault. A fault affecting measure of x displacement

should affect each one of the six residuals because it is a flat output. However, the sys-

tem is naturally decoupled. As a consequence only the residuals depending on the xm1

measure are affected. Those are r1x, r1u and r3u. See equations (3.22) and (3.23). See

Fig. 3.3. This behavior is due to the operation of the UAV. Since the axis of the four ro-

tors are fixed to the main frame (cannot tilt) horizontal displacement can only be obtained

by tilting the entire frame in order to move the airplane. As a consequence the residuals

which depends directly of θ are impacted. The residual r1u is affected because it depends

on the time derivative of x.
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Figure 3.3: Additive fault measure x1 residuals normalized

Figure 3.4 shows the residuals obtained after a fault of sensor y. This time the fault

affects the residuals related to φ (r2x and r4u). This is due to the same phenomenon

presented in the x axis. Once again the residue r1u is affected because it depends on the

faulty measure.
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Figure 3.4: Additive fault measure x2 residuals normalized

A fault affecting the high measure (z) will impact five of six residuals, because it is

present directly or indirectly in the equations used to estimate the states and the control

inputs. See equations (3.22) and (3.23). The residue not affected depends only on the

yaw (ψ) movement of the airplane. As a result the residue r4u is not affected by the fault

effect.

Finally, Fig. 3.6 presents the residuals for a fault affecting the sensor measuring the

yaw angle. Residual r4u is directly related to this measure, and so it is triggered.

Fault affecting the pitch angle, xm5 will trigger all the residuals depending on θ, such

residuals are r1x and r2u. However, even if the residue r1u is affected indirectly (via the x

displacement) the amplitude change is not enough to exceeds the threshold, see Fig. 3.7.

Roll angle xm6 is quite similar. It differs in the fact that in this case the residue r1u is

affected by the y displacement. Fig. 3.8.
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Figure 3.5: Additive fault measure x3 residuals normalized
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Figure 3.6: Additive fault measure x4 residuals normalized
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Figure 3.7: Additive fault measure x5 residuals normalized
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For control inputs faults, the fault amplitude is equal to 20 % of the maximal value of

the nominal trajectory. See Table 3.2. Faults affecting control input u1 could be detected

and isolated, Fig. 3.9. However faults in the next three control inputs are hidden by the

noise. Such faults becomes detectable and isolable if the amplitude is augmented. How-

ever even if the movement of the aircraft is completely excessive (displacements of more

than 100 meters) the control inputs have, as maximum, an amplitude of 0.02. As a result

an enormous fault, for instance equal to one, is completely unrealistic. Such faults are not

considered.
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Figure 3.9: Additive fault control input u1 residuals normalized

Control reconfiguration

For this section only faults of sensors xm5 and xm6 are considered. The number

of redundant available signals is (1)*(12-4)=8. See 2.40. This number is reduced to two,

because as in the FDI part, the states x7 to x12 are considered fault-free at any time, so,

reconfiguration is not needed.
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Fault r1x r2x r1u r2u r3u r4u

Fx1 1 0 1 0 1 0

Fx2 0 1 1 0 0 1

Fx3 1 1 1 0 1 1

Fx4 0 0 0 1 0 0

Fx5 1 0 03 0 1 0

Fx6 0 1 03 0 0 1

Fu1 0 0 1 0 0 0

Table 3.3: Residuals matrix Quadrotor UAV

3This residue is affected but the amplitude is not enough to exceed the threshold.

The goal of the reconfiguration method is to hide the fault from the controller. This

is achieved by computing a fault-free reference using the differentially flat equations 3.22.

The strategy of changing the controller reference is simply to switch between the signal

coming from the sensor and the signal computed with equation (3.22). Possible instabili-

ties due to the switch effect are not considered in this work.

Figures 3.10 and 3.11 shows the comparison between FTC passive approach (—),

the FTC active proposed approach (−·−) and nominal behavior (−−−) for faults affecting

θ and φ measurement sensors. In the passive case the switch is not activated. The signal

coming from sensor remains the same, and the fault is rejected by the controller. On the

other hand if the amplitude fault exceeds the limits of the passive approach, the switch

is triggered in order to change the signal coming from the measuring sensor according

to the estimate computed with the differentially flat system equations. This action has as

consequence the reconfiguration of the control loop. See Figs. 3.10 and 3.11.

The effectiveness of the proposed approach presented in the figures 3.10 and 3.11

can be compared versus figures 3.12 and 3.13. It is straightforward to see that if the

control is not reconfigured the system becomes quickly unstable. In both figures yaw (ψ)

is not touched. This phenomenon is explained by the physical decoupling between this

angle and the pitch and roll angles.
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Figure 3.10: Reconfiguration after fault x5. Passive (—). Proposed approach

(−·−). Nominal (−−−).
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Figure 3.12: Fault affecting x5. No-reconfiguration (· · · ). Nominal (−−−).
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Figure 3.13: Fault x6. No-reconfiguration (· · · ). Nominal (−−−).
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3.3 THREE TANK SYSTEM

The system is composed of three tanks connected one next to the other. The three

of them have the same surface section S, a central reservoir and two inflow pumps. Each

tank is linked to the central reservoir by means of a pipe, in which the flow is adjustable

manually. The tanks are related with pipes of section Sn. See Fig. 3.14.

S

u1 u2

T1

T3

T2

x1

x3 x2

Sn Sn

P1 P2

Central Reservoir

Figure 3.14: Three tank system

3.3.1 NONLINEAR MODEL

The water level inside each tank is proportional to the integral of the flows inside the

pipes, by consequence we can write the next equations:

Sẋ1 = −Q10(x1)−Q13(x1, x3) + u1

Sẋ2 = −Q20(x2) +Q32(x2, x3) + u2

Sẋ3 = Q13(x1, x3)−Q32(x2, x3)−Q30(x3)

(3.28)



CHAPTER 3. FAULT TOLERANT CONTROL: APPLICATIONS 79

Where S is the transverse section of the tanks, xi, i = 1, 2, 3 water level of each

tank, Qi0, i = 1, 2, 3 the outflow between each tank and the central reservoir, Q13 and

Q32 are the outflow between tank 1 and tank 3 and the outflow between tanks 3 and 2

respectively, u1 and u2 are the incoming flows of each pump.

The valves connecting tanks one and three with the central reservoir are considered

closed, so Q10 and Q30 are always equal to zero. The flows Q13, Q32 and Q20 can be

expressed as follows:

Q13(x1, x3) = az1Sn
√

2g(x1 − x3)

Q20(x2) = az2Sn
√

2g(x2) (3.29)

Q32(x2, x3) = az3Sn
√

2g(x3 − x2)

Where Sn represents the transverse section of the pipes connecting the tanks and

azr, r = 1, 2, 3 represents the flow coefficients.

3.3.2 FLATNESS OF THE MODEL

The flat model is computed by defining x1 and x3 as flat outputs, zα = [x1 x3]
T , so

the differentially flat equations can be writen as follows:

xα1 = zα1

xα2 = zα2 −
1

2g

(

az1Sn
√

2g(zα1 − zα2)− Sżα2
az3Sn

)2

xα3 = zα2 (3.30)

uα1 = Sżα1 + az1Sn
√

2g(zα1 − zα2)

uα2 = Sẋα2 − az3Sn

√

2g(zα2 − xα2 ) + az2Sn
√

2gxα2

φαx(zα1, zα2) =
[

xα1 x
α
2 x

α
3

]T

(3.31)

φαu(zα1, zα2) =
[

uα1 u
α
2

]T

(3.32)



CHAPTER 3. FAULT TOLERANT CONTROL: APPLICATIONS 80

As mentioned above the flat vector for this system, is not unique, so, it is possible

to use zβ = [x2 x3]
T in order to compute another set of differentially flat equations.

xβ1 = zβ2 +
1

2g

(

az3Sn
√

2g(zβ2 − zβ1) + S ˙zβ2
az1Sn

)2

xβ2 = zβ1

xβ3 = zβ2 (3.33)

uβ1 = Sẋβ1 + az1Sn

√

2g(xβ1 − zβ2)

uβ2 = Sżβ1 − az3Sn

√

2g(zβ2 − zβ1) + az2Sn
√

2gzβ1

φβx(zβ1, zβ2) =
[

xβ1 x
β
2 x

β
3

]T

(3.34)

φβu(zβ1, zβ2) =
[

uβ1 u
β
2

]T

(3.35)

3.3.3 FLATNESS-BASED FAULT TOLERANT CONTROL OF A THREE

TANK SYSTEM

In this scenario additive and multiplicative faults are considered. Such faults can

affect sensors and actuators. Faults affecting the actuators are considered rejected by

the controller. So, in this case reconfiguration is not needed.

For additive faults, a +8cm fault is considered for sensors and for flow actuators

an extra flow of 0.8 ∗ 10−5m3/s is added. Concerning multiplicative faults a 20% failure

is considered for sensors and actuators. Only one single fault is considered at any time.

Once the fault appears (at 250 s) it is recurrent until the end of the simulation.

The detection threshold is fixed as explained in section 2.5.4. If it is exceeded the

fault is considered detected. The varying parameters for this system are the flow coeffi-

cients, az1 and az3. Nominal values are equal to 0.75 and 0.76 respectively. The transverse

section of the tanks S and the transverse section of the connecting pipes Sn are 15.4∗10−3

and 5 ∗ 10−5 respectively. Both sections remain without changes during the process to fix

the threshold and the simulations.
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The control loop is closed with a state feedback LQR controller. The matrices Q and

R are chosen in order to respect the mechanical limits of the pumps and avoid outflow

peaks. Additionally, saturation functions are connected to both pumps. An integral action

on level measures in tanks 1 and 2 is added in order to eliminate the steady-state error.

The nominal trajectories are computed as in Appendix A, the polynomial degree is

again fifth, in order to create sufficiently differentiable curves. White noise is added to the

measured outputs with a level relevant to the real process measure level. Derivatives are

estimated by using a high-gain observer. See 2.5.5 coupled to a low-pass filter to reduce

the amplitude of the noise and improve the derivative estimation. Once again a trade-off

between time delay and noise filtering is taken into account.

Let us develop the FTC approach dividing it into two different cases.

Case A

Fault detection and isolation Now we consider the analysis of the case when

one set of flat outputs is found, in this system zα = [x1, x3]
T . For FDI this supposition

implies the three hypothesis presented in section 2.5.2. By this, three residuals can be

computed as in 3.36.
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(3.36)

Let us analyze each individual fault. Examining equation (3.36) it is straightforward to see

that all the right hand, is in function of the α set of flat outputs. Thus, if a fault is present

in the measure xm1 or xm3, all the residuals will be impacted. This effect will indicate the

presence of a fault but prevent the isolation because both faults will have the same fault

signature. The phenomenon is the same with additive and multiplicative faults. See Figs.

3.15, 3.16, 3.17 and 3.18.
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Figure 3.15: Additive fault measure x1 normalized (zα set)
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Figure 3.16: Additive fault measure x3 normalized (zα set)
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Figure 3.17: Multiplicative fault measure x1 normalized (zα set)

50 100 150 200 250 300 350 400
0

20

40

Time [s]

r
1x

α

50 100 150 200 250 300 350 400
−3
−2
−1

0
1

Time [s]

r
1u

α

50 100 150 200 250 300 350 400
−200

0

200

Time [s]

r
2u

α

Figure 3.18: Multiplicative fault measure x3 normalized (zα set)
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Faults affecting actuators will impact rα1u. If the fault is present in pump u1 and if the

fault affects pump u2 the residual signal that will change it’s amplitude will be rα2u. Fault

affecting actuator u1 is detected and isolated by simply comparing the amplitude of the

residual signal versus the threshold amplitude, Figs.3.19 and 3.21. However this strategy

is not effective for a fault affecting the actuator u2. Even if the residual signal changes

the amplitude, it is not sufficient to exceed the threshold. Figs. 3.20 and 3.22. Such small

changes could be detected with another type of decision algorithm. On the other hand a

sensor fault in the high measure of tank number 2 can be detected and isolated, since

only rα1x is in function of xm2 and thus only this residue is affected, providing in this way a

particular fault signature. Table 3.4 summarizes the results. The fault signatures are the

same for additive and multiplicative faults.

Fault rα1x rα1u rα2u

Fx1 1 1 1

Fx2 1 04 1

Fx3 1 1 1

Fu1 0 1 0

Fu2 0 0 04

Table 3.4: Residuals matrix Three tanks Case A

4This residue is affected but the amplitude is not enough to exceed the threshold.
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Figure 3.19: Additive fault in flow pump u1 normalized (zα set)
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Figure 3.20: Additive fault in flow pump u2 normalized (zα set)
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Figure 3.21: Multiplicative fault in flow pump u1 normalized (zα set)
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Figure 3.22: Multiplicative fault in flow pump u2 normalized (zα set)
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Figures 3.23 and 3.24 shows the three residual signals obtained when a fault affects

the high measure of tank number two. Such behavior is explained by the directly relation

of the rα1x and the measure coming from sensor of the tank number two. Since this tank is

directly related to pump number two, the controller tries to compensate the fault. Such re-

action impacts the residual which depends on pump two. Residual rα1u is affected because

pump number one tries to compensate the fault, however this is not directly related. As a

result the amplitude is not enough to exceed the threshold and the fault can be detected

but cannot be isolated. Such effect could be avoided by using a more sophisticated FDI

decision algorithm.
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Figure 3.23: Additive fault measure x2 normalized (zα set)
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Figure 3.24: Multiplicative fault measure x2 normalized (zα set)

Control reconfiguration The number of redundant signals and thus the num-

ber of reconfigurable faults can be obtained using the equation (2.40). So, the number of

redundant signals available is (1) ∗ (3− 2) = 1. The only signal that could be estimated is

the one representing the high measure of tank number 2. The estimated signal is obtained

using the expression xα2 in the equation (3.30). That expression only depends on the zα

vector the estimated signal x̂2 is fault-free, hence x̂2 substitutes the faulty signal xm2 in

the state feedback. Figures 3.25 and 3.26 presents the comparison of final positions with

and without reconfiguration. It is clearly to see that if the signal is not reconfigured the

system does not reach the desired final value.
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Figure 3.25: Reconfiguration after additive fault in x2
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Figure 3.26: Reconfiguration after multiplicative fault in x2



CHAPTER 3. FAULT TOLERANT CONTROL: APPLICATIONS 90

Case B

Fault detection and isolation Using the two available sets of flat outputs zα

and zβ, the number of residuals is duplicated. For this system the number of residuals is

increased to 6 (n+n). The residual signals are computed as in the previous case and are

presented in equation (3.37).
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(3.37)

Increasing the number of residual signals helps to improve the FDI stage. Let us present

the framework of each fault. Actuator fault u1 is as in case A detected and isolated by

simply comparing the residuals amplitude versus the threshold. See Figs. 3.27 and 3.29.

Once again u2 fault presents one residue which depends on um2, but this one does not

exceed the threshold. However thanks to the second vector zβ, an additional residue rβ2u

is present. Such vector exceeds the threshold. This behavior provides an individual fault

signature for the u2 fault. See Table 3.5 and Figs. 3.28 and 3.30.

Fault rα1x rα1u rα2u rβ1x rβ1u rβ2u

Fx1 1 1 1 1 1 05

Fx2 1 05 1 1 1 1

Fx3 1 1 1 1 1 1

Fu1 0 1 0 0 1 0

Fu2 0 0 05 0 0 1

Table 3.5: Residuals matrix Three tank Case B

5This residue is affected but the amplitude is not enough to exceed the threshold.



CHAPTER 3. FAULT TOLERANT CONTROL: APPLICATIONS 91

100 200 300 400
−1

0

1

Time [s]

r
1x

α

100 200 300 400
−1

0

1

Time [s]

r
1u

α

100 200 300 400
−1

0

1

Time [s]

r
2u

α

100 200 300 400
−1

0

1

Time [s]

r
1x

β

100 200 300 400

−1
0
1
2

Time [s]

r
1u

β

100 200 300 400
−1

0

1

Time [s]

r
2u

β

Figure 3.27: Additive fault in flow pump u1 normalized (zα and zβ set)
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Figure 3.28: Additive fault in flow pump u2 normalized (zα and zβ set)
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Figure 3.29: Multiplicative fault in flow pump u1 normalized (zα and zβ set)
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Figure 3.30: Multiplicative fault in flow pump u2 normalized (zα and zβ set)
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For sensor faults, for instance, a fault affecting the high measure of tank one will

affect the three residuals in the upper part of the right side in the equation (3.37) because

for this residual signal x1 is a flat output. Besides the residual signal rβ1x depends on the

measure xm1. Thus it will be affected as well. See Figs. 3.31 and 3.32. Residual signal

rβ2u is affected because pump number two reacts to the fault as a reflection of the actuator

to counteract the fault. However the amplitude is not enough to exceed the threshold.
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Figure 3.31: Additive fault measure x1 normalized (zα and zβ set)

If the fault affects the high measure of tank number two xm2 the affected residuals

depend on the zβ vector, by consequence the residuals rβ1x, rβ1u and rβ2u are affected, the

residual rα1x is affected too because the presence of xm2. This time the residual signal is

affected as consequence of the closed loop is rα1u. See Figs. 3.33 and 3.34.

Fault in xm3 is an special case, because the state x3 is part of both flat output

vectors. As a result the six residuals will be affected. However this is the only framework

in which every residue change its behavior, so, the fault can be detected and isolated.

See Figs. 3.35 and 3.36. Table 3.5 summarizes the different fault signatures.
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Figure 3.32: Multiplicative fault measure x1 normalized (zα and zβ set)

Control reconfiguration As a direct consequence of obtaining a second set

of flat outputs, not only the number of residual signals is increased, but the number of

redundant signals is augmented as well. This time the equation (2.40) becomes (2)*(3-

2)=2, since the system has 3 states, full reconfiguration is not possible. Observing in

detail the results of the FDI stage and the flat output vectors it can clearly be seen that

the state x3 triggers all the residual signals because it is part of both flat output vectors.

Consequently it is impossible to compute a redundant fault-free version of it. Such effect

prevents the reconfiguration after a fault on x3. This fault is not considered.

The two redundant signals available to accomplish the FTC approach are as in case

A: the state x2, an additional set of flat outputs zβ provide a fault-free version of x1. The

reconfiguration is obtained in the same manner as in case A. Figs. 3.37 and 3.38 depict

the trajectories of the outputs with and without reconfiguration. Once again, a remarkable

difference exists between the trajectories with and without reconfiguration. Such results

prove the efficiency of the proposed approach.
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Figure 3.33: Additive fault measure x2 normalized (zα and zβ set)
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Figure 3.34: Multiplicative fault measure x2 normalized (zα and zβ set)
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Figure 3.35: Additive fault measure x3 normalized (zα and zβ set)
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Figure 3.36: Multiplicative fault measure x3 normalized (zα and zβ set)
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Figure 3.37: Reconfiguration after additive fault in x1
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Figure 3.38: Reconfiguration after multiplicative fault in x1
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3.4 CONCLUSION

The proposed approach presented in chapter 2 is tested in this chapter. Two differ-

ent systems were selected, a UAV quadrotor and a three tank system. For the quadrotor

only one set of flat outputs is found, however control reconfiguration can be done par-

tially. For the three tank process two sets fulfilling the conditions to exploit at maximum

the technique are found, this has as consequence the fact that any fault may be detected

and isolated. Fault detection and isolation is carried out by simply comparing the residual

amplitude and a pre-defined fix threshold. For this specific system, even if in one fault

case one of the residuals is affected but does not exceed the threshold, every single fault

can be detected and isolated. This problem can be avoided by changing threshold-based

isolation mechanism for a more adequate one.

Control reconfiguration is carried out by simply switching between the faulty and the

unfaulty measure. The proposed approach uses the non-uniqueness property of the flat

output vector. Unfaulty signals to reconfigure all the fault measures can only be obtained,

if, at least, one element inside one of the flat output vector is differentially coupled and

algebraically independent of one of the elements inside any of the other flat output vectors.

Additionally, for additive faults the fault amplitude can be estimated by simply sub-

tracting the faulty version from the fault-free one. This information could be useful in the

future, in order to plan an optimal trajectory after failure.



FINAL CONCLUSION

In this thesis, a flatness-based FTC approach is presented. This approach can be

equally applied to nonlinear and linear systems. The FTC proposed approach take ad-

vantage of the non-uniqueness property of the flat output vector, in fact if there exists at

least two set of flat outputs and at least one of their internal elements are algebraically

independent, the FDI could be improved in a considerable manner. This operation is en-

hanced because if the assumption presented is verified, the number of residual signals

is augmented. As a consequence the probability to obtain an individual fault signature for

each fault augments too.

Real applicability is verified in two different nonlinear systems: a quadrotor UAV and

a three tank system, for the first only one set of flat outputs could be found, however

thanks that the internal decoupling present in this system each single sensor fault could

be detected and isolated. Additionally thanks that the properties of the flat systems, fault-

free references of the system states are available. Such signals are used to change the

controller reference. This action hides the fault to the controller, and as a consequence

the system is not affected by the fault.

The second system is a classical three tank process. Contrarily to the UAV, two set

of flat outputs are found. As a consequence the number of residues is augmented and

every single fault could be detected. Additionally the fault-free references could be used

for reconfiguration.
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The time derivatives of the flat outputs needed to obtain the residues and the un-

faulty references are computed with high-gain observers coupled with a low pass filter in

both systems. However the internal parameters of each block are tuned according to the

system. For instance the delay introduced for the low-pass filter is not a key parameter in

the three tank process, because the dynamic of this system is slow. As a consequence

the filter is designed to eliminate noise and it does not take into account the resulting time

delay. On the other hand the dynamics of the UAV is faster, so the design of the filter

needs special attention. In fact, if the cut-off frequency is large enough, the time delay

induced in the estimates will be considerable. However, if the cut-off frequency is low the

time delay will decrease but the noise will increase. As a consequence a trade-off needs

to be found.

Even if the technique shows to be effective to counteract the fault effect for both

systems, the proposed approach has some limitations. The fact that the flat outputs has

to be system states or linear combination of them could reduce the applicability. Another

important point is the fact that because the technique is based on flatness it becomes

necessary to compute the time derivatives of noisy signals, which could be rather difficulty

when the time derivatives mount in order.

Future work Chapter 3 summarized the results presented in this dissertation.

The proposed FTC technique and their applications to improve the fault detection and

reconfiguration of nonlinear systems were described. Besides the remarkable features of

the proposed methods, there is room for further improvements. Below, we outline some

directions for possible extension of the work.

Obtaining two sets of flat outputs could be a hard task. A future direction of this

work could consist in developing an automatic algorithm to do this computations or

at least present the necessary conditions, in which it exists two or more sets of flat

outputs.

The FDI decision is taken by a simply fixed algorithm, even if the technique is effec-

tive, in future work a more sophisticated decision algorithm could be tested.
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Reconfiguration is carried by changing the faulty signal for an estimated reference.

This change is carried out by means of a switch. Such an action could produce in-

stability. Future work will be developed to study this phenomenon and give solutions

to avoid instability.

Another pending issue is a real application to a nonlinear system. Additionally for

the UAV most of the dynamics are neglected. This could prevent the application in

a real UAV. In order to avoid this, the model presented in this manuscript could be

change for a more accurate one.

Reconfiguration shows its applicability to the UAV, however there is some limita-

tions regarding the fault size, another interesting work could be to investigate the

restructuring of the control loop.



ABBREVIATIONS AND NOTATIONS

Abbreviations

Abbreviation Meaning

AFTCS Active Fault Tolerant Control Systems.

ARR Analytical Redundancy Relations.

DOF Degrees Of Freedom.

EKF Extended Kalman Filter.

ELS Extended Least Squares.

FDI Fault Detection and Isolation.

FPRG Fundamental Problem in Residual Generation.

HOT High Order Terms.

LQ Linear Quadratic.

LS Least Squares.

MPC Model Predictive Control.

NIO Nonlinear Identity Observer.

PID Proportional Integral Derivative.

RLS Recursive Least Squares.

UAV Unmanned Aerial Vehicle.
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APPENDIX A

TRAJECTORY GENERATION BY

POLYNOMIAL APPROACH

This appendix recalls the construction of trajectories, by using the polynomial ap-

proach.

With the given initial and final conditions cini and cfin, the trajectory generation

problem consists in create a function f(t) which fulfills those constraints.

This is a boundary condition problem, that can be easily solved by considering

polynomial functions such as:

f(t) = a0 + a1t+ a2t
2 + a3t

3 + ...+ ant
n (A.1)

Where ai when i = 0, 1, 2...n are polynomial coefficients, and t is the time.

The degree (n) of the polynomial depends on the number of boundary conditions

(co) that must be verified and on the desired “smoothness” of the trajectory. This degree

has to be at least equals to the number of constraints, minus one.

Mathematically, these conditions may be expressed in matrix form as:

M ∗ a = b (A.2)

Where M is a known (n + 1) ∗ (n + 1) matrix, composed by the time part of the equation

A.1, b is the vector containing the known constraints. a contains the unknown coefficients.

The value of the coefficients can be easily computed by using the next expression

a =M−1b (A.3)
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Example A.1 Given the initial and final conditions, for the position pini, pfin, velocity

vini, vfin and acceleration aini, afin. Construct the polynomial function which fulfills the

constraints. Since it exists six boundary conditions, the minimum degree of the polynomi-

al function has to be five.

f(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (A.4)

where the six parameters a0, a1, a2, a3, a4 and a5 must be defined so that the boundary

conditions are satisfied. Let us define the boundary conditions as follows:

pini = 0

pfin = 5
(A.5)

vini = 0

vfin = 0
(A.6)

aini = 0

afin = 0
(A.7)

ti = 0s and tf = 400s.

In order to compute the values of the coefficients, the next steps has to be followed.

Compute the time derivatives of the selected polynomial function A.4, until the max-

imum time derivative becomes equal to co.

f(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

ḟ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4

f̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3

(A.8)

Substitute the value of the ti = 0 in the first equations. Equals each equations to

the initial conditions. This operation will give the values of the first three coefficients,

a0, a1 and a2.

a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 = 0

a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 = 0

2a2 + 6a3t+ 12a4t
2 + 20a5t

3 = 0

(A.9)
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Construct the matrix form A.2. Substitute t by tf in the equations A.9 and sort them

into the matrixM together with the three equations presented above. The rest of the

coefficients (a3, a4 and a5.) are find by inverting the matrix M as show in equation

A.3.
















0 0 0 0 0 1

(tf )
5 (tf )

4 (tf )
3 (tf )

2 tf 1

0 0 0 0 1 0

5(tf )
4 4(tf )

3 3(tf )
2 2tf 1 0

0 0 0 2 0 0

20(tf )
3 12(tf )

2 6tf 2 0 0

















∗

















a5

a4

a3

a2

a1

a0

















=

















0

5

0

0

0

0

















(A.10)

The value of the coefficients are.
















a5

a4

a3

a2

a1

a0

















=

















2.9297 ∗ 10−12

−2.9297 ∗ 10−9

7.8125 ∗ 10−7

0

0

0

















(A.11)

Once the coefficients found, it suffices of create a time vector from ti to tf to obtain the

desired trajectory. Figure A.1 shows the trajectories of position, velocity and acceleration.
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Figure A.1: Trajectories


	Résumé
	Abstract
	Acknowledgements
	Introduction générale
	General introduction
	Fundamentals
	Introduction
	Differentially flat systems
	Flatness concept
	Flat systems examples

	Motion planning
	Terminology
	Flatness-based motion planning

	Fault tolerant control
	Active Fault tolerant control systems (AFTCS)

	Fault Detection and Isolation (FDI)
	Quantitative model-based FDI approach

	Fault recovery
	Fault Accommodation
	Fault reconfiguration

	Conclusion

	Fault Tolerant Control: A flatness-based approach
	Introduction
	Fault detection and isolation by flatness
	Fault tolerant control by flatness
	Necessary conditions for the FTC proposed approach
	Analytical redundancy by flatness-based approach
	Flatness-based Fault Detection and Isolation
	Case A: n Residuals
	Case B: n+n Residuals
	Detection robustness
	Derivatives estimation

	Control reconfiguration for differentially flat systems
	Case A: Partial reconfiguration
	Case B: Full reconfiguration

	Conclusion

	Fault tolerant control: applications
	Introduction
	Unmanned quadrotor
	Nonlinear model
	Flatness of the model
	Flatness-based fault tolerant control of a Quadrotor UAV

	Three tank system
	Nonlinear model
	Flatness of the model
	Flatness-based fault tolerant control of a three tank system

	Conclusion

	Final conclusion
	Abbreviations
	Bibliography
	List of figures
	List of tables
	Trajectory generation by polynomial approach

