

présentée par Saeed ur REHMAN

Préparée au Laboratoire Lab-STICC (UMR n°6285)

Université de Bretagne Sud Lorient, France

THESE / UNIVERSITE DE BRETAGNE-SUD
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’UNIVERSITE DE BRETAGNE-SUD

Mention :

Ecole doctorale SICMA

 DESIGNING OPTIMIZED PARALLEL INTERLEAVER

ARCHITECTURES FOR TURBO AND LDPC DECODERS

Thèse soutenue le 24 Septembre, 2014

devant le jury composé de :

Emmanuel Casseau (Rennes 1 / ENSSAT)

Fabienne Uzel-Nouvel (INSA Rennes)

Michel Jezequel (Telecom Bretagne)

Christophe Jego (ENSEIRB / IMS)

Philippe Coussy (Université de Bretagne Sud / Lab-STICC)

Cyrille Chavet (Université de Bretagne Sud / Lab-STICC)

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Acknowledgment

 All praises and thanks are for Allah, the Almighty who is the source of all knowledge

and wisdom endowed to mankind and to the Holy Prophet Mohammad (Peace Be Upon Him)

who showed light of knowledge to the humanity as a whole.

The achievement in this work involves high motivation and supervision of my Ph.D

supervisors Philippe COUSSY and Cyrille CHAVET. I am thankful to them for guiding me to

complete this thesis as it has been a great privilege working with the researcher of such a

caliber. I have learnt a lot from their involvement in my professional as well as personal life.

Their originality has triggered and nourished my intellectual maturity which will be beneficial

for me forever. Now I can actually sense the beauty behind the research of new approaches. I

express my gratefulness to prof. Emmanuel CASSEAU and prof. Fabienne NOUVEL for

honoring us by accepting the difficult task of reviewing this thesis.

 I would also like to thanks my parents, brothers and wife who motivated and

supported me throughout. I would also like to acknowledge all my colleagues at Lab-STICC

in France for making my PhD an enjoyable experience. In particular, I'd like to thank my

colleague Dr. Awais Hussain SANI for his coordination during my research.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

To my friends and family

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Table of Contents

Chapter 1 INTRODUCTION TO PARALLEL

 ARCHITECTURES FOR TURBO AND LDPC CODES 3

1. Introduction 5

2. Forward Error Correction (FEC) Coding 6

 2.1 Introduction to Turbo Codes ---7

 2.2 Introduction to LDPC codes ---8

3. Memory conflict problem 9

3.1. Memory conflict problem for Turbo Codes --------------------------10

3.2. Memory conflict problem for LDPC Codes -------------------------11

Chapter 2 STATE OF THE ART 11

1. Introduction 17

2. Avoiding conflicts during the code construction 17

3. Solving conflicts by means of dedicated runtime approaches 21

4. Solving conflicts with dedicated memory mapping approaches 24

4.1. Memory mapping approaches --25

4.2. Architecture for design time memory mapping approaches -------28
 4.2.1. In-place memory mapping architecture ------------------------------------28

 4.2.2. MRMW architecture --29

5. Conclusion 31

Chapter 3 OPTIMIZED MEMORY MAPPING APPROACH

 BASED ON NETWORK CUSTOMIZATION 33

1.Introduction 35

2.Dedicated approach to explore design space of turbo decoder architecture

 35

2.1.Turbo decoder architecture --35

2.2.Proposed design flow ---36
 2.2.1.Shuffled decoding memory issues ---37

 2.2.2.Solving memory conflicts --38

2.3.Case study: Turbo decoder for LTE -------------------------------------39

3.Memory mapping approach based on network customization 42

3.1.Proposed Approach ---43
 3.1.1.Memory Mapping with Network Relaxation ------------------------------43

 3.1.2.Pedagogical Example --46

3.2.Experiments and Results ---48
 3.2.1.Case study for HSPA ---49

 3.2.2.Case study for LTE ---54

4.Conclusion 55

Chapter 4 IN-PLACE MEMORY MAPPING FOR

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

 OPTIMIZED ARCHITECTURE 57

1.Introduction 59

2.Two access memory mapping problem 59

2.1.Problem formulation --60

3.Design Flow 62

3.1.Graph construction --63

3.2.Bipartite test --64

3.3.Simple graph test --66

3.4.Vizing theorem for edge coloring ---67
 3.4.1.Pedagogical Example --73

3.5.In-place memory mapping for multigraphs ------------------------------78
 3.5.1.Modeling ---79

 3.5.2.Transformation of bipartite graph into Transportation Matrix --------------

 ---81

 3.5.3.Algorithm to find semi 2-factors in Turbo Bipartite Graph ----------------

 ---82

 3.5.4.Pedagogical Example ---84

4.Experiments and results 87

4.1.Case study-1: Shuffled turbo decoders for LTE ------------------------87

4.2.Case study-2: Non-Binary LDPC codes ---------------------------------88
 4.2.1.Vizing theorem for non-binary LDPC codes -----------------------------90

 4.2.2.Results ---90

4.3.Case study-3: Shuffled turbo decoding for HSPA ---------------------92

5.Conclusion 93

Chapter 5 ON-CHIP IMPLEMENTATION OF MEMORY MAPPING

ALGORITHM TO SUPPORT FLEXIBLE DECODER ARCHITECTURE

 95

1.Introduction 97

2.On-chip implementation of memory mapping algorithms 97

2.1.Proposed Design flow --98

2.2.Generation of data access order ---99

2.3.Execution of memory mapping approach ------------------------------104

2.4.Routing Algorithm --106
 2.4.1.Example for Routing Algorithm --108

3.Experiments 109

4.Conclusion 112

Conclusion and Future Perspectives 113

Bibliography 115

Abbreviations 123

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

List of Figures

Figure 1. 1 A generic digital communication system .. 5

Figure 1. 2. Turbo encoder .. 7

Figure 1. 3. Turbo decoder .. 8

Figure 1. 4. Taner graph representation of H matrix ... 9

Figure 1. 5. Typical Parallel Architecture ... 10

Figure 1. 6. Data access matrices for turbo codes ... 10

Figure 1. 7. Memory Conflict Problem in Parallel Turbo Decoder ... 11

Figure 1. 8. Memory Conflict Problem in Partially Parallel LDPC Decoder .. 12

Figure 2. 1. Interleaver construction.. 18

Figure 2. 2. Interleaver matrix ... 19

Figure 2. 3. Tanner graph formalization of an LDPC H-matrix .. 20

Figure 2. 4. Structured LDPC codes .. 20

Figure 2. 5. Architecture based on LLR Distributor.. 21

Figure 2. 6. Architecture based on Double buffer ... 22

Figure 2. 7. Architecture based on NoC .. 23

Figure 2. 8. Parallel architecture with multistage network .. 24

Figure 2. 9. Matrices used in SAGE .. 25

Figure 2. 10. Multiple Read Multiple write (MRMW) approach .. 26

Figure 2.11. Me Resulting architecture with additional registers and steering logic for Memory

relaxation based approach ... 27

Figure 2.12. In-place mapping .. 29

Figure 2.13. Resultant In-place mapping architecture ... 29

Figure 2.14. MRMW mapping .. 30

Figure 2.15. MRMW architecture ... 30

Figure 3. 1 Decoding Architecture for Turbo Decoders .. 36

Figure 3. 2 Integrated design flow for Turbo decoder architectures exploration 37

Figure 3. 3 Scheduling for Turbo Decoding .. 39

Figure 3. 4 Area estimations of the considered configurations ... 41

Figure 3. 5. Proposed Memory Mapping Exploration Flow for Network Relaxation Approach 43

Figure 3. 6. Memory Mapping model ... 44

Figure 3. 7. Mapping algorithm with network relaxation .. 45

Figure 3. 8. Network customization .. 46

Figure 3. 9 Barrel shifter ... 47

Figure 3. 10 Mapping with BS .. 47

Figure 3. 11 Network relaxation with BS .. 48

Figure 3. 12 Network relaxation without any NW constraint ... 48

Figure 3. 13 Comparison of HSPA Network Controllers Areas obtained with state of art approaches

and Network Relaxation approach .. 49

Figure 3. 14 Comparison of HSPA Network Controllers latencies obtained with state of art approaches

and Network Relaxation approach .. 49

Figure 3. 15. Detailed comparison of HSPA Network Controllers Areas obtained with state of art

approaches and Network Relaxation approach (L=2240, P=4, Targeted network: Barrel Shifter) 50

Figure 3. 16 Detailed comparison of HSPA Network Controllers Areas obtained with state of art

approaches and Network Relaxation approach (L=800, P=8, Targeted network: Barrel Shifter) 51

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Figure 3. 17. Detailed comparison of HSPA Network Controllers Areas obtained with state of art

approaches and Network Relaxation approach (L=2240, P=4, No targeted network) 52

Figure 3. 18 Detailed comparison of HSPA Network Controllers Areas obtained with state of art

approaches and Network Relaxation approach (L=800, P=8, No targeted network) 52

Figure 3. 19. Comparison of HSPA decoder architecture estimated areas obtained with state of art

approaches and Network Relaxation approach for different block lengths (P=4) 53

Figure 3. 20. Comparison of HSPA decoder architecture estimated areas obtained with state of art

approaches and Network Relaxation approach for different block lengths (P=8) 53

Figure 3. 21. Parallel architecture with multistage network .. 54

Figure 3. 22. Comparison of LTE decoder architecture estimated areas obtained with state of art

Approache and Network Relaxation approach for different block lengths (P=4) 55

Figure 4.1 Solution for memory conflict problems ... 60

Figure 4.2 Categories in two access problem .. 61

Figure 4.3 Simple graph .. 61

Figure 4.4 Multi-graph .. 62

Figure 4.5 Design flow .. 63

Figure 4.6 Example of data access matrix with two accesses to each data ... 64

Figure 4.7 General Graph for edge coloring ... 64

Figure 4.8 Bipartite test ... 65

Figure 4.9 Birpartite test example ... 66

Figure 4.10 Simple Graph test ... 66

Figure 4.11 Simple graph test example ... 67

Figure 4.12 Edge coloring flow based Vizing theorem (up to P+1 colors) .. 67

Figure 4.13 Vizing fan ... 68

Figure 4.14 Vizing theorem Case-1 ... 70

Figure 4.15 Vizing theorem Case-2 ... 70

Figure 4.16 Vizing theorem Case-2a ... 71

Figure 4.17 Vizing theorem Condition for Case-2b .. 72

Figure 4.18 Vizing theorem Case-2b ... 72

Figure 4.19 Vizing theorem Case-2b final .. 73

Figure 4.20 Example for Vizing theorem .. 73

Figure 4.21 Graph for Figure 4.6 .. 74

Figure 4.22 Vizing theorem Case-1 ... 75

Figure 4.23 Vizing theorem Case-2a ... 76

Figure 4.24 Vizing theorem Case-2b ... 77

Figure 4.25 Resultant in-place architecture ... 78

Figure 4.26 Example resulting a multigraph ... 78

Figure 4.27 Bipartite Graph for example of Figure 4.26 ... 79

Figure 4.28 Partitioning algorithm .. 83

Figure 4.29 Cycle construction problem for [SAN11a] coloring algorithm ... 83

Figure 4.30 Resulting cycle obtained with proposed cycle construction approach 84

Figure 4.31 Approach based on transportation problem (part-1) .. 85

Figure 4.32 Approach based on transportation problem (part-2) .. 86

Figure 4.33 Mapping based on transportation problem ... 86

Figure 4.34 Area comparison for shuffled turbo decoders with P=16 .. 88

Figure 4.35 Architecture for NB-LDPC .. 89

Figure 4.36 Data Access Matrix for L = 192 and dc = 6 ... 89

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Figure 4.37 Comparison of NB_LDPC decoder areas obtained with state of art approaches and Vizing

coloring for different block length (P = 6) .. 91

Figure 4.38 Comparison of NB_LDPC decoder areas obtained with state of art approaches and Vizing

coloring for different block length (P = 12) .. 91

Figure 4.39 Area comparison for different block length for HSPA P = 16 (best results) 93

Figure 5.1 Parallel decoder architecture .. 97

Figure 5.2 Parallel decoder architecture to embed memory mapping algorithms on chip 98

Figure 5.3 Embedded conflict free memory mapping flow ... 99

Figure 5.4 Arrangement of L = 44 data into 5*10 matrix ... 101

Figure 5.5 Matrix after Intra-row Permutation .. 102

Figure 5.6 Matrix after Inter-row Permutation .. 102

Figure 5.7 Data access matrix ... 104

Figure 5.8 Bipartite Edge Coloring Algorithm .. 105

Figure 5.9 SN1 and SN2 for the routing algorithm ... 106

Figure 5.10 A Complete Residue Partition Tree (CRPT) .. 107

Figure 5.11 Routing example .. 108

Figure 5.12 Example with complete routing tags .. 109

Figure 5.13 Normalized Run time Values for different embedded processors with PE = 32 110

Figure 5.14 Normalized Run time Values of for different types of parallelism with L=5120 111

Figure 5.15 Area Comparison of on-chip and off-chip implementation for different P...................... 112

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

List of Tables

Table 3. 1. Interconnection network area .. 40

Table 3. 2. Different configuration to explore the design space for turbo decoding 4

Table 3. 3. Cost calculation ... 41

Table 3. 4. Permutations after adding network component with BS ... 47

Table 3. 5. Block lengths supported by BS ... 54

Table 4. 1: Different configuration to explore the design space for turbo decoding 87

Table 5. 1. List of prime number p and associated primitive root v .. 100

Table 5. 2. Turbo code interleaver parameters .. 103

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

 - xiv -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Abstract

 - 1 -

ABSTRACT

We live in the era of high data rate wireless applications (smart-phones, net-books,

digital television, mobile broadband devices…) in which advanced technologies are included

such as OFDM, MIMO and advanced error correction techniques to reliably transfer data at

high rates on wireless networks. Turbo and LDPC codes are two families of codes that are

extensively used in current communication standards due to their excellent error correction

capabilities. For high throughput performance, decoders are implemented on parallel

architectures in which more than one processing elements decode the received data. However,

parallel architectures suffer from memory conflict problem. It increases latency of memory

accesses due to the presence of conflict management mechanisms in communication network

and unfortunately decreases system throughput while augmenting system cost.

To tackle memory conflict problem, three different types of approaches are used in

literature. In first type of approaches, “architecture friendly” codes are constructed with good

error correction capabilities in order to reduce hardware cost. However, these codes originate

problem at the channel interleaver. In the second type of approaches, flexible and scalable

interconnection network are introduced to handle memory conflicts at run time. However,

flexible networks suffer from large silicon area and increased latency. The third type of

approaches are design time memory mapping approaches in which the resultant architectures

consist of ROM blocks used to store configuration bits. The use of ROM blocks may be

sufficient to design parallel architecture that supports single codeword or single application.

However, to design hardware architecture that supports complete standard or different

applications, ROM based approaches result in huge hardware cost. To reduce hardware cost,

optimizations are required to use as less ROMs as possible to support different applications.

In this thesis, we aim to design optimized parallel architectures. For this purpose, we

have proposed two different categories of approaches. In the first category, we have proposed

two optimized design time off-chip approaches that aim to limit the cost of final decoder

architecture targeting the customization of the network and the use of in-place memory

architecture.

In the second category, we have introduced a new method in which both runtime and

design time approaches are merged to design flexible decoder architecture. For this purpose,

we have embedded memory mapping algorithms on-chip in order to execute them at runtime

to solve conflict problem. The on-chip implementation replaces the multiple ROM blocks

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Abstract

 - 2 -

with a single RAM block to support multiple block lengths and/or to support multiple

applications. Different experiments are performed by executing memory mapping approaches

on several embedded processors.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 3 -

Chapter 1

INTRODUCTION TO PARALLEL

ARCHITECTURES FOR TURBO

AND LDPC CODES

Table of Contents

1. Introduction 5

2. Forward Error Correction (FEC) Coding 6

 2.1 Introduction to Turbo Codes--7

 2.2 Introduction to LDPC codes--8

3. Memory conflict problem 9

3.1. Memory conflict problem for Turbo Codes -- 10

3.2. Memory conflict problem for LDPC Codes --------------------------------------- 11

In this chapter, error correction codes are discussed. Error correction codes can be classified into two

broad categories: convolutional codes and block codes. Parallel hardware architecture is needed to

support high throughput. Memory conflict problems which occur in parallel architectures

implementation are introduced to highlight the importance of the work presented in this thesis.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 4 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 5 -

1. Introduction

Wireless communication is undoubtedly one of the major research areas in

telecommunication today. Broad progress can be observed in this field in the past decade,

although it has been a topic of study since 1960s. The ongoing goal of providing enhanced

services seamlessly and effectively continues to drive wireless communications. We have

seen the outcomes in the form of cellular systems that have experienced exponential growth

over the last decade with billions of customers worldwide. Incorporation of multimedia and

value added services in telecommunication have dramatically increased data rate

requirements.

Transmitter

Channel

Encoder

Digital

Modulator

Source

Encoder

Digital to

analog

Transmitter

Source
decoder

Analog to
digital

Channel
decoder

Digital de-
modulator

Communication
channel

[Wired/Wireless]

Noise

Source
information

Sink

information

Figure 1. 1 A generic digital communication system

A generic digital communication system is shown in Figure 1. 1. The block diagram

consists of building blocks each performing a certain well-defined operation on data. The

transmitter transforms the signals from information source to the channel. The transmitter

consists of blocks namely Digital to analog converter, Source Encoder, Channel Encoder and

Digital modulator. Digital to analog converter converts the input information source into

binary digits (bits), groups them together to form digital messages. Source Encoder tries to

increase the information content of source symbols by removing the redundant information

and encoding the source data using fewer bits than uncoded information. Channel encoding

can reduce the errors rates at the expense of decoder complexity. Starting from K bits the

channel encoder provides a codeword c of length N by adding N - K redundant bits. By means

of introduced redundancy, the channel decoder is able to identify errors introduced by channel

and correct some of them. Digital Modulator is a block that facilitates the transfer of

information over a passband channel. In digital modulation, an analog carrier is modulated by

a digital bit stream. Based on a particular application and channel condition, different

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 6 -

modulation techniques can be adopted, e.g. Phase Shift Keying (PSK), Frequency Shift

Keying (FSK), Amplitude Shift Keying (ASK) and Quadrature Amplitude Modulation

(QAM)

The received channel information is transformed by the receiver to the sink information.

The receiver consists of several blocks namely Digital Demodulator, Channel Decoder,

Source Decoder and Analog to digital converter. Digital Demodulator takes the signal

received from the Channel and converts it into digital data. Channel Decoder receives the

decoded data from digital demodulator to detect errors introduced by Channel, corrects them

and then it removes the redundant bits and extracts information words of K bits. Source

Decoder performs the reverse operation of Source Encoder retrieving the same information as

generated by information source along with Analog to digital conveter.

The channel encoder and decoder are responsible for the reliable transfer of data for

which forward error correction (FEC) codes are widely used. FEC codes are among the

significant parts of the whole system. FEC codes are described in the next section.

2. Forward Error Correction (FEC) Coding

We are now moving through the 4
th

 generation of wireless communication systems

which are expected to achieve high data rates and reliable data transfer. Since error correction

is one of the complex and power consuming part of whole transceiver design, therefore

extensive research was carried out in the field of channel coding especially Forward Error

Correction (FEC). Research in the field of FEC codes is aimed to find the best possible error

correcting codes allowing high throughput decoding and their efficient VLSI implementation

in term of area, speed and power consumption.

FEC codes can be classified into two categories: Block codes and Convolutional

codes. Convolutional codes are increasingly used in different telecommunication standards

due to their simple and efficiently implementable structures. Currently, convolutional codes

are part of standards for mobile communication (HSPA [HSP04], LTE [LTE08]) and digital

broadcasting (DVB-SH [DVBS08]). Convolutional codes work as a finite state machine

which converts continuous stream of bits into continuous stream of coded bits.

In block codes, original information sequence is first divided into different blocks and

then each block is independently encoded to generate code-word bits. The encoder must wait

for the whole message block before starting the encoding step. However, in convolutional

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 7 -

encoder the code-word is transmitted as soon as encoding is started without any wait to obtain

the entire message.

Two main error correcting codes families are used in current telecommunication

standards. One from convolutional codes called Turbo codes and another from block codes

called Low Density Parity Check (LDPC) codes. These two error correcting codes are widely

used due to their excellent error correcting capabilities. However, implementation of decoders

for these two codes for high data rate applications is a challenging task. In this thesis, we

focus on the implementation of both of these codes on parallel architectures.

2.1 Introduction to Turbo codes

Due to their excellent error correction capabilities, Turbo codes [BER93] are part of

most of the current telecommunication standards such as [LTE08] [HSP04] [DVBS08]. They

are constructed through the parallel concatenation of two “simple” convolutional codes that

share their information during the decoding step. The first convolution encoder encodes the

message x in natural (original) order to produce p
(1)

 parity bits, whereas the second one

encodes the message in interleaved order (after passing the original message through

interleaver) to generate p
(2)

parity bits. The output turbo codeword c is composed of the

original message and parallel concatenation of parity bits.

Interleaver Code 2 encoder

Code 1 encoder

P(2)

P(1)

x C = x p(1) p(2)

Figure 1. 2. Turbo Encoder

The high performances of turbo codes are due to the presence of this pseudo-random

interleaver. Interleaving (Π) is a permutation law that scrambles data to break up

neighbourhood-relations. It is a key factor for turbo-codes performances, which vary from one

standard to another. The low-complexity iterative decoding algorithm for turbo-decoding

makes its hardware implementation possible with the current standards. However, in order to

achieve high throughput architectures, we will see that this interleaver generates memory

access conflicts when parallel architectures are used.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 8 -

Interleaver

Code 2 encoder

Code 1 Decoder

u

y(1)

y(u)

Interleaver

Extrinsic

y(2)

Extrinsic

De-Interleaver

Figure 1. 3. Turbo Decoder

The turbo decoder receives input values Y
(u)

, Y
(1)

, Y
(2)

 from the channel (resp. for x, p
(1)

,

p
(2)

). One complete iteration of turbo decoder is carried out through two half iterations.

Firstly Code 1 Decoder receives channel values for message bit Y
(u)

, first parity bit Y
(1)

 and

deinterleaved extrinsic value from Code 2 Decoder to generate extrinsic value. Then, during

the second half iteration, Code 2 Decoder creates extrinsic value from interleaved message

bits, second parity bit Y
(2)

and interleaved extrinsic value from Code 1 Decoder. The final

decision about the message bits is made based on the extrinsic values from the two decoders

and channel values for message bits, after a fixed number of decoding iterations.

2.2 Introduction to LDPC codes

Low density parity check Codes (LDPC) are another class of very high performances

error correction codes. They are members of the class of Block codes that are used to transmit

information reliably through noisy communication channels. Many types of block codes are

used in different applications such as Reed-Solomon [AHA], Golay codes [GOL61] or

Hamming codes [HAM50]. LDPC codes have already been included in several wireless

communication standards such as DVB-S2 and DVB-T2 [DVB08], WiFi (IEEE 802.11n)

[WIF08] or WiMAX (IEEE 802.16e) [WIM06].

The code is represented with parity check equations. As a pedagogical example,

consider a codeword: C = [c1 c2 c3 c4] which satisfies the following three parity check

equations.

c2 ⨁ c3 ⨁ c4 = 0,

c1 ⨁ c2 ⨁ c4 = 0,

c1 ⨁ c3 ⨁ c4 = 0

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 9 -

In a LDPC code, codeword constraints (or parity check equations) are often expressed

in matrix form as follows:

1

2

3

4

0 1 1 1 0

1 1 0 1 0

1 0 1 1 0

c

c

c

c
H

 
    
    

=           
 

The above H matrix is an M * N binary matrix where each row Mi of H corresponds to

a parity check equation whereas each column Nj associated with codeword bit. A nonzero

entry at (i, j)
th

 location means that the j
th

 codeword bit is included in the i
th

 parity check

equation. For a codeword x ∈ C to be valid, it must satisfy all parity check equations.

LDPC codes can also be graphically represented as bipartite graph called Tanner

Graphs. Such graphs depict the association between code (represented by variable nodes VN)

bit and parity check equation (represented by check nodes CN). An edge eij connects the i
th

check node with j
th

 variable node, if this variable node is checked by or included in i
th

 check

node. This means that the edges of a Tanner graph are constructed with respect to the H

matrix.

VN1 VN3VN2 VN4

CN1 CN2 CN3

Mesc→vMesv→c

 Figure 1. 4. Tanner Graph representation of H

Tanner graph is helpful in understanding the decoding process that exchanges

messages between CN and VN (Mesc→v or Mesv→c) along the edges of these graphs. These

decoding algorithms are collectively called message-passing algorithms. They are a type of

iterative decoding algorithm in which check nodes and variable nodes iteratively exchange

messages until decoding is completed, such as belief-propagation or sum-product decoding

[PEA88], min-sum decoding [FOS99] or normalized Min-Sum decoding [CHE02].

3. Memory conflict problem

In order to achieve high throughput performance, parallel hardware architectures are

needed. The implementation of a typical parallel architecture is shown in Figure 1. 5. In this

architecture, P processing elements (PEs) are used to process data elements which are

connected to B memory banks through interconnection network, where P = B.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 10 -

Unfortunately this kind of parallel architectures generates memory access conflicts as

soon as several PEs simultaneously try to access to the same memory bank. This problem is

also called “collision problem” [GIU02]. Memory conflict problem is a major source of

concern in designing parallel architectures. The memory conflict problem is explained for

turbo and LDPC codes in the two following sub-sections.

Bank0

Bank1

Bank2

In
te

rc
o

n
n

e
c
tio

n
 N

e
tw

o
rk

PEP
BankB-1

PE3

PE2

PE1

Controller

Figure 1. 5. Typical Parallel Architecture

3.1. Memory conflict problem for Turbo Codes

In parallel implementation of turbo codes, different number of processing elements

access the data elements from the banks first in the natural order and then in interleaved order.

The memory conflict problem for turbo codes is explained here with a pedagogical example.

Let us consider L = 20, P = B = 4, M =5 and T = 10, where L is the number of data elements,

B is the number of memory banks, M= L/B is the size of each memory bank and T is the total

number of time accesses. The data elements are accessed first in natural order and then in

interleaved order shown in Figure 1. 6.

Time

PE1

PE2

PE3

PE4

t1 t2 t3 t4

Natural order Matrix

P
arallelism

t5

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Time

PE1

PE2

PE3

PE4

t6 t7 t8 t9

Interleaved order Matrix

P
a
rallelism

t10

0 4 8 12 16

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

Figure 1. 6. Data access matrices for turbo codes

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 11 -

Let us consider that the data elements are stored in the banks in such a manner that all

the processing elements always access different memory banks at each time instant in natural

order as shown in Figure 1. 7.a e.g. data elements 0,5,10,15 are accessed by the processors in

t1 which are placed in different memory banks i-e b0,b1,b2,b3 respectively. Unfortunately, due

to this memory mapping two or more processing elements need to access one particular

memory bank at the same time instance in the interleaved order e.g. data elements 0,1,2,3 are

accessed by the PEs in t6 which are placed in the same memory bank b0 as shown in Figure 1.

7.b. This issue is called memory conflict problem for turbo decoders.

Bank b1

Bank b0

Bank b3

Bank b2

PE2

PE1

5,6,7,8,9

0,1,2,3,4

14,15,16,17PE4

PE3 10,11,12,13

In
te

rc
o
n
n
e
c
tio

n
 N

e
tw

o
rk

Bank b1

Bank b0

Bank b3

Bank b2

PE2

PE1

5,6,7,8,9

0,1,2,3,4

14,15,16,17PE4

PE3 10,11,12,13

Conflict
Problem

In
te

rc
o
n
n
e
c
tio

n
 N

e
tw

o
rk

(a) Conflict free natural order Access (b) Conflict full Interleaved order Access

Figure 1. 7. Memory Conflict Problem in Parallel Turbo Decoder

3.2. Memory conflict problem for LDPC Codes

The memory conflict problem for the LDPC codes is different from turbo codes due to

the difference in codes construction of these codes. The data access pattern of turbo codes are

represented by natural and interleaved order matrices whereas LDPC codes are specified by

their H matrices and represented by tanner graphs which shows that how data (variable

nodes) must be processed by the processing elements (check nodes) in order to achieve good

error correction performances. In order to explain a memory conflict problem in LDPC codes,

let us consider L = 6, P = B = 3, M = 2 and T = 6 as shown in data access matrix in Figure 1.

8.a. The data elements stored in bank b0, bank b1 and bank b2 are (1,4), (2,5) and (3,6)

respectively. There is no conflict at time instances t1 but at t2 more than two processors want

to access the same memory bank. Figure 1. 8.b shows the memory conflict for the time

instance t2.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 12 -

Time

PE1

PE2

PE3

t1 t2 t3 t4 t5 t6

1 3 6 5 4 2

2 5 1 6 3 1

3 6 4 2 5 4

2,5

1,4

3,6
Conflict
Problem

Bank b1

Bank b0

Bank b2

In
te

rc
o

n
n
e
c
tio

n

N
e

tw
o

rk

PE 2

PE 1

PE 3

(a) Data access matrix (b) Conflict at t2

Figure 1. 8. Memory Conflict Problem in Partially Parallel LDPC Decoder

Several approaches exist in literature in order to tackle the memory conflict problem.

However optimization is needed to design high throughput decoder architectures. The main

purpose of this thesis is to optimize the design of parallel architectures focusing on the

memory conflict problems (interleavers) in order to reduce the cost for high throughput Turbo

and LDPC decoders. The rest of the thesis is organized as follow:

Chapter 2

In this chapter, an overview of the state of the art approaches to design parallel

hardware architectures for Turbo and LDPC decoders is provided. The state of the art is

presented in three different categories. The merits and limitations of each of the approaches

are explored.

Chapter 3

In this chapter, we present our first approach that aims to limit the cost of final

decoder architecture by targeting the customization of the network at the design time (off-

chip). In the beginning, shuffled and non-shuffled turbo scheduling schemes are explored.

Then, the proposed approach based on network relaxation method is described in details.

Different experiments are performed for different test cases by using the proposed approach.

Chapter 4

In this chapter, our second contribution is presented. This approach is based on in-

place memory mapping architectures in order to generate optimized hardware decoders at

design time. We propose different algorithms based on Vizing theorem and transportation

problem in order to solve memory conflict problem in polynomial time while providing

optimized decoders.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 13 -

Chapter 5

Finally, we present an on-chip approach to support multiple standards/applications in

order to generate optimized hardware architecture. In order to avoid multiple ROM blocks

needed to store controller information, we propose to embed memory mapping approaches

on-chip such that complete multiple standards can be supported.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Introduction to Parallel architetcure for Turbo and LDPC codes

 - 14 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 15 -

Chapter 2

STATE OF THE ART

Table of Contents

1. Introduction --- 17

2. Avoiding conflicts during the code construction ------------------------------------ 17

3. Solving conflicts by means of dedicated runtime approaches -------------------- 21

4. Solving conflicts with dedicated memory mapping approaches ----------------- 24

4.1. Memory mapping approaches --- 25

4.2. Architecture for design time memory mapping approaches ------------------------ 28

4.2.1. In-place memory mapping architecture --- 28

4.2.2. MRMW architecture -- 29

5. Conclusion --- 31

In this chapter, different state of the art techniques to tackle the memory conflict problem on parallel

architectures for Turbo and LDPC codes are presented. The state of the art approaches are divided

into three different categories: conflict free interleaving laws, run time conflict resolution and design

time conflict resolution. Advantages and disadvantages of each technique are presented in order to

motivate our work in this thesis. At the end, we explain the in-place and multiple read multiple write

(MRMW) memory mapping architectures.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 16 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 17 -

1. Introduction

Forward error correction codes are used for reliable data transfers between transmitters

and receivers. In the associated decoders, parallel architectures are used to achieve high

throughput performances. However, these kinds of architectures suffer from memory conflict

problem. Many approaches are proposed in literature in order to overcome this issue. In this

chapter, different approaches are discussed to implement parallel architectures taking into

account the conflict problem for Turbo and LDPC decoders. These approaches can be

classified in three categories.

In the first family of approaches, conflict free interleaving laws are defined. The goal

is to construct codes with good error correction capabilities, reduced hardware cost and that

allow avoiding memory conflicts. In the second family of approaches, conflicts are solved at

run time by using flexible and scalable interconnection networks with sufficient path diversity

(routing mechanism) and/or buffering techniques to handle memory conflicts. The third

family of approaches deals with algorithms that assign data in memory in such a manner that

all the processing elements can access memory banks concurrently without any conflict.

These approaches which resolve the memory conflict problem at design time are referred as

memory mapping approaches.

These families are described in detail in the three following sections.

2. Avoiding conflicts during the code construction

In the first category, memory conflict problem is taken into account during code

construction. The main source of memory conflicts in Turbo codes comes from the

interleaver. Hence, the aim is to develop conflict free interleaving laws with good error

correction performance. Conflict free interleaving law provides parallel concurrent accesses to

each memory bank without any conflict. An example of such solutions is proposed in

[EMM03] in which spatial and temporal permutations are introduced to construct a conflict

free interleaver. In order to explain this approach let us consider a block length of 16 data

elements arranged row by row into a matrix (initial matrix) as shown in Figure2. 1.a.

Interleaver leverages on two scrambling techniques: temporal and spatial permutations. The

temporal permutation is obtained by changing the positions of the column in the initial matrix

as shown in Figure2. 1.b. For spatial permutation, different circular permutations are

performed to different columns to obtain the interleaved matrix as shown in Figure2. 1.c. The

resultant matrix is a combination of temporal and spatial permutations. Each row is related to

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 18 -

a given processing element and the memory size is represented by the number of columns.

The benefit of this approach is also the use of barrel shifter network which controller cost is

very low. The Quadratic Permutation Polynomial (QPP) interleaver which is a part of current

3GPP LTE standard [LTE08] is mainly based on this idea.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

C1 C2 C3 C4

0 2 3 1

4 6 7 5

8 10 11 9

12 14 15 13

C1 C3 C4 C2

(a) Initial matrix
(b) Temporal permutation

4 10 3 13

8 14 7 1

12 2 11 5

0 6 15 9

C1 C3 C4 C2

+ 4 + 3 +0 + 1

P1

P2

P3

P4

 (c) Spatial permutation

Figure2. 1. Interleaver construction

QPP interleaver was introduced in [YAN05] which is a prunable and deterministic

interleaver. A prunable interleaver can be modified to obtain the interleaver of shorter length

that keeps the error correction capabilities of the original larger interleaver. Prunable

interleavers offer scalability in code-word to meet the channel conditions and changing user

requirements. In deterministic interleaver, algorithms are used to produce on the fly addresses

of interleaved data. The implementation of deterministic interleavers is easy as compared to

random interleavers in which the addresses are generated randomly and for which dedicated

memory (e.g. ROM) is required to store these addressing information. The performance QPP

interleaver is near to random interleaver for long frame size whereas for short frame size, QPP

interleaver outperforms random interleaver. QPP interleaver is represented by the following

equation for a block size L:

Π(x) = (f1x
2
 + f2x) mod L

where x and Π(x) represents the natural and interleaved address respectively and

variables f1, f2 are different for different block lengths as specified in the standard.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 19 -

In [TAK06], QPP interleaver is proved to be contention-free for every window size

that is a factor of interleaver length. However, it is not contention-free for other data rates in

which high level parallelisms are used in the decoder.In [BOH07], a new interleaver for turbo

codes is proposed. The interleaver is described by using four successive distinct laws and can

also be defined using simple matrix S of size L x L where L is the size of the frame. This

matrix is composed of k circularly right shifted z x z matrices (like in LDPC codes). The

amount of shift is denoted by δ(r) and it is located at position P(r) of the matrix. In this

approach, first the frame with L = k.z elements is interleaved by z-row m-column

permutations. Secondly, each group r (where r = [0, k-1]) of z elements is right shifted by δ(r)

positions. Finally, in the last step the group of z elements is interleaved.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 2. 2. Interleaver matrix

An example of such S matrix is shown in Figure 2.6 in which L = 12, k = 3, z = 4, P =

[1,0,2] and δ = [1,3,0]. This interleaver has good performance and low-complex hardware

implementation for high parallelized turbo decoders as compared to 3GPP-LTE interleaver.

However, this interleaver is not a part of the current telecommunication standards.

The memory conflict problem for LDPC codes is handled by constructing structured

LDPC codes [ZHA04] [MAN03]. LDPC codes are specified by their H matrices (see Figure

2. 3(a)) in which rows are associated to check nodes and columns to variable nodes. These

codes can also be represented by Tanner graphs which show how data (variable nodes) must

be processed by the processing elements (check nodes) in order to achieve good error

correction performances (see Figure 2. 3(b)).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 20 -

Y1

Y2

Y3

Y4

CNs

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 0

1 0 0 1 1 0 1 0

X1 X2 X3 X4 X5 X6 X7 X8

VNs

Y1

Y2

Y3

Y4

X1

X2

X3

X4

X5

X6

X7

X8

CNs

VNs

(a) H-matrix (b) Tanner graph

Figure 2. 3. Tanner graph formalization of an LDPC H-matrix

 However, to achieve these excellent error correction capabilities proper construction of

the H matrices is required. So H matrix must be constructed such that data transfer between

check nodes and variable nodes can be made without any conflict for parallel architecture. In

structured codes, the H matrix is divided into different blocks of sub-matrices (ZxZ matrices)

where each sub-matrix is obtained by permuting rows of the identity matrix as shown in

Figure 2.3. The check node processors access the vectors nodes data elements in parallel by

using simple interconnection network like barrel shifter thanks to the structure of identity

matrix in each sub-block.

Structured codes are part of current telecommunication standards such as IEEE

802.11n (WiFi) [WIF08] and IEEE 802.16e (WiMAX) [WIM06]. However, they only support

one class of LDPC codes. A general approach to handle memory mapping problem is required

to handle various existing and future classes of LDPC codes such as non-binary LDPC codes.

Figure 2. 4. Structured LDPC codes

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 21 -

Moreover, it must be observed that the conflict free data access order in the decoder

part of the architecture can be different from the data access order coming from the channel as

it is the case in QPP interleaver for example. This issue reports hence the conflict problem on

the channel interleaver side.

3. Solving conflicts by means of dedicated runtime approaches

The second family of solutions solves memory access conflict problem by storing the

data elements in different memory banks in an arbitrary order and then use additional

mechanism (buffering/routing) in the interconnection network to manage conflicts at runtime.

These approaches are referred as run time conflict resolution. However, we have referred

these approaches as time relaxation methods in this document.

Such approach is presented in [WEH02] in which the data is simply stored in different

memory banks without considering conflicting accesses and then additional buffers are used

in the interconnection network to manage conflicts at runtime. This approach is based on a

LLR distributor which is connected with all the P processing elements on one side and all the

memory banks on the other side, as shown in Figure 2.4. The LLR distributor consists of

interconnection network, buffers, FIFOs and multiplexers. The total cost and the latency of

the architecture increases due to the use of buffers, FIFOs and multiplexers to manage

conflict.

Bank1

Bank2

LLR distributer

PEP BankB

Controller

R/W

PE2

PE1

Network Control Logic

A
d

d
re

s
s
 C

o
n

tro
lle

r

Register

FIFO

M
U

X
M

U
X

In
terco

n
n
ectio

n
 n

etw
o

rk

Figure 2. 5. Architecture based on LLR Distributor

In [WAN11], the authors proposed an approach based on Double-Buffer Contention-

Free (DBCF) architecture. The DBCF architecture is built around the interleaver between the

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 22 -

processors and memory banks. This architecture consists of FIFOs associated with processors,

circular buffers, multiplexers and bypass units as shown in Figure 2. 6. The conflicting

accesses are routed into a dedicated circular buffer as soon as a conflict is detected. The

interest of this approach has been demonstrated by designing an interleaver used in a

HSPA+/LTE decoder. However, this architecture is configured on the basis of simulation

results analysis in order to handle conflicts.

Bank1

Bank2

PEP

BankB

PE2

PE1

Circular

buffer

M
U

X

Circular

buffer

M
U

X

Circular

buffer

M
U

X

FIFO

FIFO

FiFO

Controller

Network Controller

A
d

d
re

s
s
 C

o
n

tro
lle

r

R/W

Figure 2. 6. Architecture based on Double buffer

Approaches based on Network-on-Chip (NoC) architecture are also proposed to

resolve the conflicts on run time. In [NEE05], approaches based on mesh, torus and cube

networks are proposed in which routers are used to contain packets for the destination

information. However, these approaches suffer from reduced scalability to construct high

throughput flexible on-chip communication network. Also, due to complex buffer

management architecture to store conflicting data, the router complexity increases

significantly with the increase of parallelism.

Another solution based on NoC oriented architecture is presented in [MOU07]. In this

work (see Figure 2.7), the interconnection network can be configured on-the-fly to compete

with any classical interconnection network such as Butterfly and Benes. Butterfly network has

two main advantages: firstly, the network has huge scalability as a network of size N can be

constructed from two networks of size N/2. Secondly, the packet routing algorithm is very

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 23 -

simple due to the use of destination address bits for selecting output port of router at each

stage of the network. The routers stores conflicting packets using FIFOs. However, Butterfly

network lacks in path diversity as it provides distinctive path between source and destination.

Bank1

Bank2

PEP
BankB

PE2

PE1

Controller

Network Controller

A
d

d
re

s
s
 C

o
n

tro
lle

r

R/W

router

router

router

router

router

router

router

router

router

Figure 2. 7. Architecture based on NoC

Therefore, complex buffering architecture to manage conflicting packets is required

which increases cost of the architecture. Benes network is the second multistage network

studied in [MOU07]. It is constructed by concatenating two Butterfly networks back-to-back.

The Benes network has good path diversity as it provides all possible permutations between

inputs and outputs. However, this network avoids conflicts between packets, if all the packets

have different destinations, which is not the case in turbo decoding. A modified topology and

routing algorithm is proposed in this approach to optimize Benes network for turbo decoding.

Routing algorithm transmits packets which are intended for different router at the same time

and registers are used (instead of FIFOs) to store conflicting data. However, pre-processing is

required to generate routing information and memory is needed to store router configuration.

A multistage network based on barrel shifter has been recently proposed for 3GPP LTE

System for parallel decoder architecture in [WON10]. The connection between each memory

bank and its corresponding processing element is established by shifting each sub block by a

given offset due to the permutation characteristics of QPP interleaver used in LTE. The

authors have presented a multistage interconnection network based on barrel shifter as shown

in Figure 2.8. This figure shows the parallel architecture with multistage interconnection

network for P = 8 with three stages. In the proposed network, 2
i

bits are needed for shifting

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 24 -

data in the stage (3 − i) where i = 0 ∼ 2 and the amount of shift in the stage (3 − i) is 2
i

locations. So, we can compute that one bit is needed for stage 0, two bits are needed for stage

2 and four bits are needed for stage 3. Therefore, the three stages of the modified barrel shifter

require driving seven bits for configuration at each access. Similarly, for P = 4, two stages of

modified barrel shifter needs three bits.

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

SISO1

SISO2

SISO3

SISO4

SISO5

SISO6

SISO7

SISO8

P1

P2

P3

P4

P5

P6

P7

P8

B1

B2

B3

B4

B5

B6

B7

B8

Stage 1 Stage 2 Stage 3

Figure 2. 8. Parallel architecture with multistage network

The data between the processor and memory is transferred immediately as the

interconnection network has short path delay and simplified network control mechanism.

However, the proposed approach can only be applied to QPP interleaver. This approach is not

compliant with any other interleaving law.

The presence of interconnection network and buffer management mechanisms to

manage conflicts increases hardware cost and latency of decoders which often restricts the

implementation of such architectures for practical systems.

4. Solving conflicts with dedicated memory mapping approaches

The third family of solutions deal with memory access conflict problem by storing the

data elements in different memory banks in such a way that all the processing elements can

access to the data without any conflict at each time instance. Different mapping algorithms are

proposed in state-of-the-art to perform pre-processing steps in order to determine each data

element in the memories. These approach leverage on specific architectures that are presented

in the last sub-section.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 25 -

4.1. Memory mapping approaches

In [BEN04], one of the first algorithms based on simulated annealing meta-heuristic to

resolve conflict problem for Turbo and LDPC codes is proposed. This algorithm is always

able to find conflict free memory mapping, but the time to calculate the solution cannot be

computed statically. Therefore, the computational complexity of the problem inhibits the

addition of other constraints into the algorithm such as targeting a dedicated interconnection

network.

In [JIN10], an approach based on optimized memory address remapping is presented.

In this method certain collision-free exchange rules are defined to complete the simulated

annealing procedure much faster than achieved in the traditional method presented in

[BEN04] thanks to a reduced number of iterations to complete the annealing procedure .

However, this method is also based on a meta-heuristic and the time of completion of the

algorithm cannot be predicted.

In [CHA10a], a new simplified approach called Static Address Generation Easing

(SAGE) is presented. This approach includes additional constraints to determine architecture

oriented conflict free memory mapping. In SAGE, two Mapping Matrices (MAPNat, MAPInt)

are used during algorithm execution to store bank information. These matrices have the same

order as the natural and interleaved order matrices as shown in Figure 2.9.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

t1 t2 t3 t4

0 2 4 6

3 1 8 10

7 5 11 9

12 14 15 13

t5 t5 t6 t7

P1

P2

P3

P4

P1

P2

P3

P4

b1

b2

b3

b4

t1 t2 t3 t4

b1 b2

b3

b4

t5 t5 t6 t7

P1

P2

P3

P4

P1

P2

P3

P4

(a) Natural order access matrix (b) Interleaved order access matrix

(c) MAPnat
(d) MAPint

Figure 2. 9. Matrices used in SAGE

There are two constraints to be respected during the execution of the SAGE algorithm

in order to find architecture oriented memory mapping. The first constraint is to allocate

different memory banks to the cells of each column of the mapping matrices. The second

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 26 -

constraint is to respect the targeted interconnection network if supported by the interleaving

law. The algorithm is initialized by assigning memory banks to the first column of MNat (see

Figure 2.8.(c)). Then the entries corresponding to the data in Mint are updated (reported) with

this mapping information (see Figure 2.8.(d)). In the next iteration, the most constrained

column (i.e. the column with the greater number of assigned cells) is filled and reported in the

same manner. This process continues until all the columns of the mapping matrices are filled

with mapping information.

The above mentioned approach is limited to turbo-codes and a more generic approach

has been proposed in [CHA10b]. This approach is able to solve memory conflict problem also

for LDPC codes. It is based on Multiple Read Multiple Write (MRMW) mechanism in which

each data element ei consists of two memory locations: one for read data and the other for

write data, as shown in Figure 2.9. For functional correctness, if data is accessed several

times, then j
th

 read access of ei must be equal to the (j-1)
th

 write access of ei. The algorithm

assigns read and write memory banks to the most constrained column (i.e. the column with

high number of data elements already mapped) of the MAP matrix. Then the corresponding

entries in the other matrix are filled respecting the targeted interconnection network

constraints. This process continues until MAP matrices are fully filled with targeted network

constraints. However, recursion is needed when a conflict is detected. This approach

innovates a new way to solve computationally complex problem through multiple read and

multiple write mechanism. However, it can use backtracking making time to complete the

algorithm unknown.

0 1 2 0 6 4

- - - - - - - - - - - -

3 4 5 8 5 7

- - - - - - - - - - - -

6 7 8 2 10 1

- - - - - - - - - - - -

9 10 11 11 3 9

- - - - - - - - - - - -

Time

PE1

PE2

PE3

PE4

t1 t2 t3 t4 t5 t6

 (a) Mapping matrix (b) An element of the matrix

Figure 2. 10. Multiple Read Multiple write (MRMW) approach

In [SAN11a], an approach based on Transportation problem modeling is presented.

This method finds conflict free memory mapping for Turbo codes with architecture

optimization. The mapping problem for turbo codes is transformed as transportation problem.

The proposed approach is interesting as it is based on a polynomial time algorithm. However,

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 27 -

it works for a subset of cases and can be widely improved as demonstrated in the dedicated

section of chapter-4.

In [SAN13], another polynomial time algorithm is presented to reduce the

computational complexity to find conflict free mappings. The algorithm is based on two steps.

In the first step, a bipartite graph is constructed based on two data access matrices. Then in the

second step, a polynomial time bipartite edge coloring algorithm is used to find conflict free

memory mapping. This approach can be used to solve memory conflict problem for both

Turbo and LDPC codes.

Finally, in [BRI12] [BRI13a] [BRI13b], the authors have presented a memory mapping

approach to find conflict-free memory mappings for both Turbo-codes and LDPC codes for

any standard respecting targeted interconnection network. This approach is referred as

memory relaxation method in this thesis. It is based on the idea of adding registers in the

memory architecture (and not in the interconnection network) to deal with conflicting data

and to respect the targeted interconnection network. However, the cost of the final

architecture is increased due the inclusion of registers and their dedicated additional steering

logic as shown in Figure 2.11. In this figure, the four processors are connected to four

memory banks through a targeted interconnection network. Additional registers and steering

logic are required to support the conflict free memory mapping with the targeted network as

shown in Figure 2.11. However, if the targeted interleaving law is strongly incompatible with

the targeted interconnection network the additional costs will be high.

Figure 2.11. Resulting architecture with additional registers and steering logic for Memory

relaxation based approach

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 28 -

4.2. Architecture for design time memory mapping approaches

All of the previously mentioned memory mapping approaches are either based on in-

place memory mapping or multiple read multiple write (MRMW) memory mapping

architecture as shown later in this section. We will describe the two kind of architectures in

the two next subsections.

4.2.1. In-place memory mapping architecture

The architecture for turbo-like memory conflict problem is known as in-place memory

mapping architecture. In order to explain in-place architecture, consider a set of L data

elements {d1, d2,…, dL} and a set of P processing elements {PE1, PE2,…, PEP}. These

processors process each of the L data elements two times in T time instances {t1, t2,…, tT} first

in natural order and then in interleaved order, where T = 2L/P. In order to store these L data

elements and to achieve parallel processing of data for high throughput, a set of B memory

banks {b1, b2,…, bB} are needed.

Mapping problem

We need to store the L data elements in B memory banks in such a way that P

processing elements can access B memory banks in parallel for all time instances without any

conflict.

For in-place conflict free memory accesses, the two following mapping constraints must

be fulfilled:

 - All memory banks have to be used only one time at each time instance (conflict free).

 - Each data must be mapped in one and only one memory location (in-place).

As an example, a matrix in which each data is accessed twice (in natural and interleaved

order), is shown in Figure 2.12.a. The resultant mapping of the considered example is shown

in Figure 2.12.b by using memory mapping approach [CHA10a] which is based on in-place

architecture. In this figure, each data in a column has a mapping cell which shows the

memory bank from where a given data is read and written at a given time. It can be seen that

every data element is read and written in the same memory bank, e.g. data 0 is read and

written back in the same bank b1.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 29 -

Time

PE1

PE2

PE3

PE4

t1 t2 t3 t4 t5 t6

0 1 2 0 6 4

3 4 5 8 5 7

6 7 8 2 10 1

9 10 11 11 3 9

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b1 b4 b4 b1 b4 b1

3 4 5 8 5 7

b2 b1 b1 b2 b1 b2

6 7 8 2 10 1

b4 b2 b2 b4 b3 b4

9 10 11 11 3 9

b3 b3 b3 b3 b2 b3

t1 t2 t3 t4 t5 t6
(a)Example (b) Mapping matrix

 Figure 2.12. In-place mapping

 The architecture for resultant mapping can be seen in Figure 2.13 in which the data

elements in each bank are shown. The processors read the data from the memory banks

without any conflict by using memory controller through an interconnection network which is

configured by network controller. The same configuration of a read cycle is also used for the

write cycle.

b1(0,4,5)

b2 (3,7,8)

b3(9,10,11)

In
terco

n
n
ectio

n
 N

etw
o
rk

Network Controller
for read/write cycles

Controller

R/W

PE3

PE2

PE1 M
e

m
o

ry co
n

tro
lle

r

b4(1,2,6)PE4

Figure 2.13. Resultant In-place mapping architecture

4.2.2. MRMW architecture

MRMW memory mapping architecture is used to solve LDPC-like memory conflict

problems. The concept of MRMW memory mapping architecture is introduced in [CHA10b].

Then this concept is extended in [SANI13] using polynomial time algorithms to find conflict

free memory mapping. In MRMW architecture, memory mapping of each data element is done

in two memory locations: First location called read mapping represents read access to that

data element whereas second location called write mapping expresses write access of that data

element. The aim of MRMW architecture is to find memory mapping with optimal number of

memory banks.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 30 -

Mapping problem

Store L data in B memory banks in such a manner that P processing elements can

access B memory banks at each time instance in parallel for first reading P data and then

writing back these P data without any conflict.

The MRMW mapping is shown in Figure 2.14.b for the example in Figure 2.14.a by

using [CHA10b]. In this figure data-2 at time instance t2 is read from bank b2 and written in a

different bank b1.

PE1

PE2

PE3

t1 t2 t3 t4 t5 t6

0 2 5 4 3 1

1 4 0 5 2 0

2 5 3 1 4 3

PE1

PE2

PE3

0 2 5 4 3 1

b1 b1 b2 b1 b3 b1 b2 b2 b3 b1 b3 b3

1 4 0 5 2 0

b3 b3 b3 b2 b1 b2 b1 b1 b1 b2 b2 b1

2 5 3 1 4 3

b2 b2 b1 b3 b2 b3 b3 b3 b2 b3 b1 b2

t1 t2 t3 t4 t5 t6

(a) Data access matrix (b) Resultant mapping

 Figure 2.14. MRMW mapping

 The resultant MRMW memory mapping architecture is shown in Figure 2.15. In this

architecture the mapping of data elements in the banks is not mentioned because the mapping

changes at each cycle according to the mapping shown in Figure 2.14.b. The network

configurations for read operations are different from write operation. Therefore, configuration

for read as well as write operations are needed which double the network controller cost.

Hence, it can be noticed that the in-place mapping architecture could lead to reduce the

network controller cost as compared to MRMW architecture.

b1

b2

b3

In
te

rc
o
n

n
e
c
tio

n
 N

e
tw

o
rk

Network Controller
for read cycles

Controller

R/W

PE3

PE2

PE1 M
e

m
o

ry
 co

n
tro

lle
r

Network Controller
for write cycles

Figure 2.15. MRMW architecture

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 31 -

The MRMW architecture is more costly in term of area as compared to in-place memory

architectures. Memory conflict problems like shuffled turbo (see chapter-3, section 2.2.2) and

LDPC codes are solved using [CHA10b], [SAN11], [SAN13] based on MRMW architecture.

So, in order to optimize generated architectures, it could be really interesting if in-place

memory mapping architecture could be used to solve these problems.

5. Conclusion

In this chapter, different approaches to handle memory conflict problem for Turbo and

LDPC codes are explained. One solution is to develop an interleaving law taking into account

architectural constraints at the time of code construction. However, with this approach the

memory mapping problem is only partially solved, and the designers still have to handle

conflicts in the final architectures (for some parallelism degrees, block lengths, channel

interleaver in telecommunication systems…).

A second technique exists in literature to tackle memory mapping problem at run time.

However, the implementation of such architectures requires large hardware cost and latency

due to the addition of conflict management mechanisms which limits its use in practical

systems.

The third technique is to develop algorithms at design time that assign data in memory

banks in such a manner that all processing elements can access their required data

concurrently from memory without any conflict. Some of these techniques solve memory

mapping problem for any type of interleaving law but results in costly hardware architecture.

Others are limited to a subset of applications.

In this thesis, we aim to design optimized parallel hardware architectures to solve

memory conflict problems. For this purpose, we propose two categories of complementary

approaches. In first category, we propose memory mapping approaches that aim to limit the

cost of final decoder architectures by customizing interconnection networks (see chapter 3)

and by using in-place memory architectures (see chapter 4). In the second category, we

propose to merge both runtime and design time approaches to design flexible decoder

architectures. For this purpose, we have embedded polynomial time memory mapping

algorithm on-chip along with the interconnection network in order to execute it at runtime to

solve conflict problem (see chapter 5).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

State of the art

 - 32 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 33 -

Chapter 3

OPTIMIZED MEMORY MAPPING

APPROACH BASED ON NETWORK

CUSTOMIZATION

Table of Contents

1.Introduction 35

2.Dedicated approach to explore design space of turbo decoder architecture 35

2.1.Turbo decoder architecture --- 35

2.2.Proposed design flow --- 36

2.2.1.Shuffled decoding memory issues -- 37

2.2.2.Solving memory conflicts -- 38

2.3.Case study: Turbo decoder for LTE --- 39

3.Memory mapping approach based on network customization 42

3.1.Proposed Approach -- 43

3.1.1.Memory Mapping with Network Relaxation -- 43

3.1.2.Pedagogical Example --- 46

3.2.Experiments and Results -- 48

3.2.1.Case study for HSPA --- 49

3.2.2.Case study for LTE -- 54

4.Conclusion 55

This chapter consists of two parts. First, a dedicated approach to explore the design space for parallel

turbo decoder architectures is presented in which different configurations based on shuffled and non-

shuffled schemes are considered. Then, thanks to the analysis of these experiments, we propose a new

approach for conflict free memory mapping based on network customization to generate optimized

architectures. This customization can be done by modifying a targeted network with additional

network components if needed or by adding components starting from the scratch (directly connected

wires). The proposed approach is compared with the state of the art approaches through different test-

cases.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 34 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 35 -

1. Introduction

In this chapter, we first present a dedicated approach to explore design space for

hardware architectures of turbo decoders in order to analyze their hardware complexity. The

turbo decoder memory issues are explored and state of the art approaches are used to solve the

memory access conflicts in case of shuffled and non-shuffled turbo decoders. We have

performed different experiments for a case study of turbo decoders for 3GPP-LTE.

The second part of this chapter is about our proposed memory mapping approach based

on network customization. The complexity for a given memory mapping problem depends on

the memory and network controller. Unfortunately, none of the existing approaches focused

on network controller optimization to design conflict free memory mapping. Our proposal is

to introduce a new approach based on finding conflict free memory mapping approaches

which gives the degree of freedom in the interconnection network in order to reduce the

complexity. In this approach, the interconnection network is customized to find a conflict free

memory mapping which generates optimized architectures.

2. Dedicated approach to explore design space of turbo decoder architecture

Parallel turbo architecture can be based on different decoding techniques (shuffled, non-

shuffled) and different scheduling like backward-forward, butterfly/butterfly-replica, … (see

section 2.3). The impact of these techniques on the hardware complexity and throughput is

usually determined at the end of design process after the synthesis process. Thus, the time to

market is penalized and the probability of designing an optimized system decreases. In order

to tackle this problem, we have introduced a dedicated approach to efficiently explore the

design space of parallel turbo decoder architectures. Thanks to this approach, a tradeoff

between the hardware complexity can be estimated for the architecture design process. The

memory access conflict problem is solved using existing approaches in order to design high

throughput architecture for any parallelism and interleaver. However, a penalty in terms of the

hardware complexity is expected. This work has been carried out in collaboration with

TELECOM Bretagne, Brest-France [SAC12].

2.1. Turbo decoder architecture

Figure 3. 1 shows the turbo decoder architecture. Through an interconnection network

the processing elements (PEs) have access to a set of B memory blocks (single port RAM),

allocated to keep the extrinsic information. The controller part consists of Read Only

Memories which are used to address each memory block and control signals of the

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 36 -

interconnection network. The controller is also to be designed to address the ROM memories

and to generate control signals of the memory blocks. Figure 3. 1(a) shows the architecture for

non-shuffled decoding [BER90] in which all the P PEs are first assigned to decode the natural

order, and then all of them are assigned to the interleaved order. However, as mentioned in

[ZHA05], shuffled decoding can also be applied as shown in Figure 3. 1(b). In this case, P/2

PEs are used to decode the natural order, while the remaining P/2 PEs work on the interleaved

order. Let L denotes the number of symbols in the received frame. This frame can be divided

into Q sub-blocks that can be decoded in parallel. Each sub-block is formed by M = L/Q

symbols with Q = P for non-shuffled turbo decoders and Q = P/2 for shuffled turbo decoders.

 (a) Non-shuffled decoding Architecture (b) Shuffled decoding Architecture

Figure 3. 1 Decoding Architecture for Turbo Decoders

Let T denotes the number of clock cycles where each PE performs writing or reading

memory access in order to execute one iteration (for a non-shuffled turbo decoder), or a half

iteration (for a shuffled turbo decoder). Let M represents the size of each memory block. The

size of each addressing ROM is T*⌈log2(M)⌉. Note that iteration in a shuffled and non-

shuffled turbo decoder takes the same time if both turbo decoders have the same sub-block

size M.

2.2. Proposed design flow

The proposed design flow is detailed in Figure 3.2. Inputs include description of the

interleaver law (π), the SISO decoder architecture (shuffled/non-shuffled), parallelism P and

interconnection network delay (critical path of the interconnection network). The first step in

the design flow is the generation of the data access description files based on the input

information. These files contain the sequence of extrinsic information values that are read or

written by each PE decoder at each clock cycle. This step also tackles memory issues in case

of shuffled decoding (discussed later in details). The first step generates data access

description file in which information about block length, parallelism and data access patterns

are mentioned. In the second step, memory access description files are used to find conflict

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 37 -

free memory mapping using appropriate approaches. Thus, extrinsic values are assigned to B

memory banks positions without any conflict. From this memory mapping, the controller can

be designed and the content of ROM memories can be established. Finally, estimations of the

turbo decoder throughput and hardware complexity are done.

Figure 3. 2 Integrated design flow for Turbo decoder architectures exploration

2.2.1. Shuffled decoding memory issues

Shuffled turbo decoder architectures implementation presents additional memory

constraints named as concurrent access problem and consistency problem. Here, we will give

a brief description of these two memory issues and the way we have managed to tackle them.

 Concurrent access problem occurs in shuffled turbo decoders when the extrinsic

information for the same data is accessed in the natural as well as interleaved orders during

the same clock cycle i.e. two processors access one data concurrently. In order to find the

conflict free memory mapping, additional extrinsic memory locations are used to copy the

extrinsic information with concurrent access ensuring that a correct exchange between natural

and interleaved order is achieved. However, this kind of memory collision does not appear in

non-shuffled architectures, since any information symbol is accessed first in natural order and

then in the interleaved order.

The second memory issue for the shuffled decoding is consistency problem. Consistency

problem occurs during the decoding process when a reading operation done by a PE in one

domain (natural order) is followed by a reading operation performed by the PE in the other

domain (interleaved order) in the next operation. This occurs for a writing operation as well.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 38 -

As a result the data element can be overwritten as the two PE will write at the same memory

location: if only one memory position is used for the extrinsic information, the same extrinsic

value is read in both orders and the extrinsic value that has to be produced by one PE decoder

is missed due to overwrite. In this case, performance degradation in the correction capabilities

of the turbo decoders may occur. So, before finding conflict free memory mapping we need to

add extrinsic memory locations as well due to consistency.

Let l denotes the number of additional memory positions used to solve concurrent access

to the same extrinsic value and the consistency problems. Memory access description files

then enable to carry out conflict free memory mapping which is presented later. Thus, L+l

extrinsic values are assigned to B memory banks. From this memory mapping, the controller

can be designed and the content of ROM memories can be established.

2.2.2. Solving memory conflicts

In-place memory mapping and multiple read multiple write (also called double) memory

mapping are the two types of architectures that exist in literature. Non-Shuffled turbo

decoding is similar to in-place memory mapping as data elements are first accessed in natural

order and then in interleaved order. On the other hand shuffled turbo decoding presents

double memory problem as the data elements are accessed in natural and interlaeaved order

simultaneously. In order to find a conflict free memory mapping for these two problems, two

approaches are introduced in this section: one is in-place memory mapping approach for non-

shuffled decoding and another one is multiple read multiple write memory mapping approach

for shuffled decoding in turbo decoders. Both approaches can be applied to find conflict free

memory mapping.

Different in-place memory mapping approaches can be used to find conflict free memory

mapping. In [SAN13], a polynomial time algorithm is presented in order to find conflict free

mappings for conflict problem in turbo and LDPC codes. In-place architecture is used to solve

problem for turbo like problems and MRMW architecture is used to solve memory conflict

problem for LDPC like problems. Memory conflicts for non-shuffled turbo decoders is solved

using [SAN13] using in-place architecture. Data access order can be illustrated through data

access matrices as shown in Figure 3. 3 (a). In this figure, one matrix is related to the natural

order access and the other one is related to the interleaved order access. In turbo decoders,

Trellis level parallelism is used [WOO00] which are represented by radix-2
s
 (s = 1, 2, …) in

which d = 2
s
 rows are processed by each processors in parallel. Hence, each PE accesses d

data elements i-e d rows in the matrix. Each matrix has d.P rows for the extrinsic values

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 39 -

accessed by the PEs, and T columns for the time instances. Data elements in each row are

processed by the same PE. Similarly, the d.P data elements in each column have to be

accessed in parallel by P PEs.

Natural order Access Interleaved order Access

Time

PE1

0 1 2 3 4

9 8 7 6 5

PE2

10 11 12 13 14

19 18 17 16 15

PE3

20 21 22 23 24

29 28 27 26 25

PE4

30 31 32 33 34

39 38 37 36 35

t1 t2 t3 t4 t5

PE1

0 37 14 11 28

13 16 39 2 25

PE2

30 27 4 1 18

3 6 29 32 15

PE3

20 17 34 31 8

33 36 19 22 5

PE4

10 7 24 21 38

23 26 9 12 35

t6 t7 t8 t9 t10

Time

Natural and interleaved order Access

Time

PEN
1

0 1 2 3 4

9 8 7 6 5

PEN
2

10 11 12 13 14

19 18 17 16 15

PEN
3

20 21 22 23 24

29 28 27 26 25

PEN
4

30 31 32 33 34

39 38 37 36 35

PEI
1

0 37 14 11 28

13 16 39 2 25

PEI
2

30 27 4 1 18

3 6 29 32 15

PEI
3

20 17 34 31 8

33 36 19 22 5

PEI
4

10 7 24 21 38

23 26 9 12 35

t1 t2 t3 t4 t5

 (a) Scheduling for non-shuffled decoding (b) Scheduling for shuffled decoding

Figure 3. 3 Scheduling for Turbo Decoding

As shown in Figure 3. 3 (b), the data access matrices for both natural and interleaved

orders are processed concurrently for shuffled turbo decoders. Memory mapping with in-place

architecture is not possible using [SAN13]. Therefore, the approach [SAN13] with MRMW

architecture is used to solve memory mapping problem in this case.

The detailed description of the approach [SAN13] is given in section-4.1 of chapter-2 for

in-place architecture and in section-4.2 of chapter-2 for MRMW architecture.

2.3. Case study: Turbo decoder for LTE

We have applied the approach described in the previous section to the 3GPP-LTE

standard turbo decoder, with a frame size L = 1024 and a code rate R = 1/2. Parallelism is

explored for PE = 16 and 32 that can use radix-2, radix-4 or radix-16. Shuffled and non-

shuffled architectures are considered with schedule Butterfly-Replica and Butterfly [SAC12],

respectively. In non-shuffled case there are Q = 16, 32 sub-blocks. In shuffled case, since the

processors are distributed in both natural and interleaved orders, Q = 8, 16. Thus, we have

considered sub-blocks sizes B = 32, 64 and 128. We have chosen six bits to represent the

extrinsic information. The interconnection network is implemented by using B* B Benes

network [BNS65].

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 40 -

Table 3.1 Interconnection network area

Network size Pipeline stages Area (Logic gates)

32x32 1 7.4k

64x64 1 18.9k

128x128 2 45.7k

In the final architecture, the critical path is in the processor of the decoder. However, the

critical path of the interconnection network is greater than the critical path of the decoder for

some B. Therefore to prevent the critical path to be in the interconnection network, pipelining

stages have been introduced. From logic synthesis results we determined that one pipeline

stage is enough for B = 32, 64, while two stages are necessary for B = 128. Table 3.1 lists the

number of logic gates required to implement the Beneš network for six bit width data after

logic synthesis.

Table 3.2 Different configuration to explore the design space for turbo decoding

Mode Scheduling Radix
Internal

Memory

Config. 1 Non-Shuffled Butterfly 2 YES

Config. 2 Non-Shuffled Butterfly 4 YES

Config. 3 Non-Shuffled Butterfly 16 YES

Config. 4 Non-Shuffled Butterfly 2 No

Config. 5 Non-Shuffled Butterfly 4 No

Config. 6 Shuffled Replica 2 No

Config. 7 Shuffled Replica 2 YES

Config. 8 Shuffled Replica 4 No

Config. 9 Shuffled Replica 4 YES

Nine turbo decoder configurations are selected and then studied for 16 and 32 PEs as

shown in Table 3.2. The first 5 configurations were targeted for non-shuffled turbo decoders

using different radix values. The last 4 configurations were defined to analyze the

convenience of shuffled turbo decoders with radix-2 and radix-4. PE with and without

internal memory were considered. Internal memory is a buffer that temporally stores extrinsic

values which avoids a second access to the memory banks for a data element. Moreover, this

buffer can alleviate collision problems since less memory accesses are necessary. The

approach described in section 2.2.2 was applied to the 9 configurations shown in Table 3.2,

for P = 16 and 32. The hardware cost of the resultant architecture was estimated using 90nm

technology from STMicroelectronics in terms of NAND logic gate.

Figure 3.4 represents the equivalent number of logic gates for all the configurations with

respect to the number of clock cycles necessary to decode a frame (directly related to the

turbo decoder throughput). Configuration 1, 2 and 3, for 16 and 32 PEs, are Pareto-optimal

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 41 -

architectures. In non-shuffled turbo decoder configurations, the use of internal PE memories

is convenient since it has a positive impact on the turbo decoder throughput (it reduce the

number of reading accesses) and it helps to reduce the hardware complexity of the whole

system. However, for the shuffled configurations, the turbo decoder hardware complexity is

slightly reduced but the throughput is significantly affected.

Figure 3. 4 Area estimations of the considered configurations

Table 3.3. We have not taken in to account the cost of processors as it is considered to be

same in all the cases.). For configuration-5 the cost of network controller is 40% of the total

cost and cost of memory controller is 50% of the total cost, whereas for configuration-8 the

cost of network controller is 50% of the total cost and cost of memory controller is 37% of the

total area. The cost of the interconnection network itself is just 1% of the total area. The

analysis of the distribution of the estimated areas for in an in-place architecture is almost same

for all configurations with in-place memory mapping (conf. 1 to 5), and the distribution of

the cost of the different components in the MRMW architecture is almost same for all other

configurations with MRMW memory mapping problem (conf. 6 to 9). Hence, it can be

concluded that the network cost is negligible whereas network and memory controller is

larger in the total cost.

Table 3.3 Cost calculation

NW

Cost

NW

Controller

Memory

Controller

Extrinsic

Memory
Total

Config 5 18.9 k 2.1 M 2.5 M 0.4 M 5.1 M

Config 8 102.2 k 4.7 M 3.4 M 0.9 M 9.1 M

The approach used in [BRI13a] [BRI13b] is focused on memory mapping approach to

design optimized parallel hardware architectures and to support a targeted interconnection

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 42 -

network. However, the cost of these approaches is very high in some cases when the

interconnection network is not compatible with the interleaving law due to the additional

components (buffers, register, multiplexers) needed to find conflict free access of data. We

have proposed a memory mapping approach to design optimized parallel hardware

architectures based on network customization which can reduce the network controller cost as

network controller in the designed architecture is also among the most costly elements in the

architecture. Moreover, the proposed approach is also able to generate a conflict free memory

mapping with reduced cost for a targeted interconnection connection as compared to state of

the art approaches.

3. Memory mapping approach based on network customization

The network and memory controller has a larger effect on the total cost as compared to

other parts for the approaches used for finding conflict free memory mapping as shown in

previous section. The memory relaxation approaches [BR12] [BRI13b] [BRI13a] emphasis on

the optimization of memory and network controller. However, State of the art approaches

exist which are based on customizing architectures to support the constraint of a particular

targeted interconnection network. However, Time relaxation [WHE04] and memory

relaxation [BRI13b] approaches are based on customizing architectures to support the

constraint of a particular targeted interconnection network. In memory relaxation method, if

the targeted interleaving law is strongly incompatible with the targeted interconnection

network the additional costs are high. However in time relaxation, the final architecture is

based on Benes network architecture and requires additional buffers which results in the

increase of the total latency of the system. The targeted interconnection network has a large

impact on the final cost of the architecture besides solving the parallel interleaving conflict as

the set of possible permutations offered by the network can strongly restricts architectural

design space exploration. Since this interconnection network has a great impact on the final

architecture and it is considerably the cause of the problem which is not taken into account in

the state of the art approaches. Since, the cost of the network controller depends on the size of

the network (number of control bits is equal to the number of switches in the network) and it

is not taken into account in the state of the art approaches. A smart memory mapping

approach should focus on this network directly in order to adapt the network constraint to the

interleaving law as much as possible. In this way, the optimization of the generated

architecture will be more impressive than the existing approaches as it will be seen with

proposed approach: we call it network relaxation. This work has been published in [REH14b].

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 43 -

3.1. Proposed Approach

3.1.1. Memory Mapping with Network Relaxation

 Our proposed approach aims to take advantage of network relaxation principle. Figure

3. 5 presents an approach by considering the customization of the interconnection network

and reducing the cost of the controller architecture. The constraint relaxation is provided by

modifying the original network by adding additional multiplexers/switches. The idea is to

keep the advantage of memory mapping approaches like [CHA10a] or [TAR04] in terms of

architectural cost and latency, while proposing an approach that is able to target any

application as [WHE04] or [BRI12].

First, starting from the description of an interleaving law (number of data, interleaving

algorithm, parallelism) and a targeted interconnection network (i.e. NULL, Barrel-

Shifter(BS), Butterfly(BF), Benes(BEN), Cross-Bar(CB)), the set of input memory mapping

constraints is generated and provided to our memory mapping algorithm. Then, the next step

consists in applying a memory mapping algorithm under network constraint. In the network

library, all the permutations offered are stored separately for each network. This mapping step

aims to fully explore the memory mapping solution space by checking all the permutations of

the selected network. If no memory mapping solution exists for this network, then the set of

permutations will be extended by addition of a network component, resulting into customized

network architecture with enriched set of permutations (see Figure 3. 8). At the end the

resulting architecture is generated. By applying this process for all available networks in the

library, the designer is able to widely explore the design space and to select the best solution.

Input

Constraints

Network

Library

Results

Mapping
with Network

Relaxation

Description of

Interleaving Law
Network Constraint

Input constraints
generation

Figure 3. 5. Proposed Memory Mapping Exploration Flow for Network Relaxation Approach

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 44 -

The proposed algorithm is based on the memory mapping model proposed in [CHA10b].

A formal description of the mapping matrix model is presented here. Let us consider a parallel

decoder architecture composed of P processing elements PE={PE1,…PEp} and P= B memory

banks B={b0,…bB-1} to store L data. We need P= B, because it is always possible to find

conflict free memory mapping using P= B for any conflict problem [CHA10a][CHA10b] and

the increase in the number of banks will result in increase of the size of network which will

increase the cost of the network controller. Figure 3.6(a) represents a data access matrix for a

parallelism P=4 which is scheduled as a table. Lines match processing elements, i.e. each line

represents all the data processed by its associated PE. Columns represent computation instants

needed to process L=12 data elements.

Time

PE1

PE2

PE3

PE4

0 1 2 0 6 4

3 4 5 8 5 7

6 7 8 2 10 1

9 10 11 11 3 9

t1 t2 t3 t4 t5 t6

0 1 2 0 6 4

- - - - - - - - - - - -

3 4 5 8 5 7

- - - - - - - - - - - -

6 7 8 2 10 1

- - - - - - - - - - - -

9 10 11 11 3 9

- - - - - - - - - - - -

Time

PE1

PE2

PE3

PE4

t
1

t
2

t
3 t

4
t
5

t
6

(a) Data access matrix (b) Mapping matrix (c) Element of matrix

Figure 3. 6. Memory Mapping model

The data access matrix in then modeled to a mapping matrix as shown in Figure 3. 6(b)

in which each data is associated to two mapping cells which will be filled with the label of a

memory bank. An element of the memory mapping matrix is shown in Figure 3. 6(c) in

which data ei is read in the memory bank bj, and written in the memory bank bk after having

been processed by a PE. In order to guarantee a valid memory mapping, constraints have to

be respected for a given parallelism and interleaving law.

Memory constraints:

1- Data processed at the same cycle (i.e. data that are read or written concurrently at time

instance) have to be stored in different memory banks.

 2- The i
th

 read access to a given data must be performed in the same memory bank such

that its (i-1)
th

 write access i.e. a data must be read in the same memory location it has been

written.

Network objective:

The memory mapping has to respect the set of supported permutations (i.e. this set is

initialized with permutations of user-defined network constraint topology).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 45 -

Start ; // Boolean value initialized with TRUE

SPerm ; // Set of possible permutations in the selected network

MMap; // Memory Mapping matrix

Ci; // Selected column i in MMAP

LVPC
i
; // List of valid permutations for column Ci

VPC
i
 ; // An element of LVPC

i

Algorithm Map&NetRelax (SPerm, MMap, Start)

Ci = SelectColumn(MMap);

LVPC
i
= SelectValidPerm(SPerm, Ci, MMap);

If ((LVPC
i
 is not empty) and not (FullyMapped(MMAP))) Then

 Do

 VPC
i
 = Select&RemoveFirstPerm(LVPC

i
);

 MapColumn(Ci, VPC
i
);

 Start = FALSE;

 Map&NetRelax (SPerm, MMap, Start);

 If ((Start = FALSE) and not(FullyMapped(MMAP))) Then

 RemoveMapColumn(Ci, VPC
i
);

End if;

 While ((Start = FALSE) and (LVPC
i
 is not empty) and

 not(FullyMapped(MMAP)));

 If ((Start = FALSE) and not(FullyMapped(MMAP))) Then

 AddNewNetComp(SPerm);

 EraseMap(MMap);

 Start = TRUE;

 Map&NetRelax (SPerm, MMap, Start);

 End if;

End if;

Figure 3. 7. Mapping algorithm with network relaxation

The proposed memory mapping algorithm (cf. Figure 3. 7), first selects the most

constrained column (i.e. the column with high number of data elements already mapped) in

the memory mapping matrix (all the matrices are initially empty, so the mapping algorithm

starts from the first column). Then the algorithm generates the subset of valid permutations

for this column from the set of supported permutations in the targeted interconnection

network. If this subset is not empty (i.e. conflict free memory mapping solution could be

obtained for the selected column, with respect to the set of possible permutations) then each

possible permutation from this subset is explored one by one, until a final conflict-free

memory mapping is generated by our recursive algorithm. If no such valid memory mapping

can be found with the targeted network then the set of possible permutations must be extended

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 46 -

by adding a new network component (i.e. multiplexer or switch) to the existing network. In

that case the memory mapping algorithm restarts from the beginning with this new extended

set of permutations. The algorithm keeps on customizing the network by adding switch to the

network in each iteration until a fully connected Benes network is constructed (worst case).

As shown in Figure 3. 8(a), the algorithm starts by finding conflict free memory

mapping with one switch and if the mapping is not possible another switch is added to the

network (see Figure 3. 8(b)). Afterwards, the algorithm adds another switch to the network if

the mapping is not possible with previous network and tries to find conflict free memory

mapping using permutation resulted by this network (see Figure 3. 8). This process

continuous (see Figure 3. 8(d) to (f)) until a fully connected network is established which can

always give a conflict free memory mapping according to [TAR04]. However, during this

process from Figure 3. 8(a) to (e), if the algorithm succeeded to find conflict free memory

mapping then the network at that stage will be the optimized resultant network.

The architecture generated with network relaxation is composed of a classical

interconnection network (i.e. Barrel-Shifter, Butterfly…) or NULL network along with

additional network component(s) named customized network. Then, since the source of the

memory conflicts is relaxed, it is possible to find an optimized conflict free architecture

compared to [WHE04] or [BRI12].

(a) (b)

(e)

(c)

(f)

(d)

Figure 3. 8. Network customization

3.1.2. Pedagogical Example

In order to fully elaborate the proposed approach, the data access pattern example shown

in Figure 3. 6(a) is considered. Firstly, a Barrel-Shifter BS is considered as input network

constraint for this example. Hence, the set of permutations offered by a BS (see Figure 3.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 47 -

9(b)) is selected from the library. The general architecture targeting BS is shown in Figure 3.

9(a).

(a) Architecture (b) Permutation

Figure 3. 9 Barrel shifter

The mapping is started from the 1st column and the column is filled according to the

permutation supported by the BS (σ1 of Figure 3. 9(b)). This column is then reported in the

mapping matrix accordingly as shown in Figure 3.10(a).

t1 t2 t3 t4 t5 t6

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b0 b0 b0 b0 b2 b2

3 4 5 8 5 7

b1 b1

6 7 8 2 10 1

b2 b2

9 10 11 11 3 9

b3 b3 b1 b1 b3 b3

t1 t2 t3 t4 t5 t6

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b0 b0 b0 b0 b0 b0 b2 b2 b1 b1

3 4 5 8 5 7

b1 b1 b1 b1 b2 b2

6 7 8 2 10 1

b2 b2 b2 b2 b3 b3 b1 b1

9 10 11 11 3 9

b3 b3 b3 b3 b1 b1 b3 b3

(a) Initial (b) Problem while mapping with BS

Figure 3. 10 Mapping with BS

Table 3.4 Permutations after adding network component with BS

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

b0 b3 b2 b1 b0 b3 b2 b1

b1 b0 b3 b2 b1 b0 b3 b2

b2 b1 b0 b3 b3 b2 b1 b0

b3 b2 b1 b0 b2 b1 b0 b3

It can be seen that after one iterations of our algorithm, the partial memory mapping

described in Figure 3.10(b) is achieved. At this step, when the second column is filled

according to the permutations of BS and when this column is reported, the permutation at the

last column is not supported by BS permutations as shown in Figure 3.10(b) as the last

column has two data elements (4 and 1) that are assigned to one banks b1 (i.e. this results in an

invalid mapping).So an additional network component (i.e. a switch which allows swapping

input data) is needed with the Barrel-Shifter network and an extended set of permutations is

generated as shown in Table 3.4. The position of the switch in the network will depend on the

structure of the Benes network (because it is always possible to find conflict free memory

mapping with a fully connected Benes network [TAR04][CHA10b]).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 48 -

B
a

rre
l S

h
ifte

r

PE1

PE2

PE3

PE4

b0

b1

b2

b3

N
W

 co
m

p
.

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b0 b0 b3 b3 b3 b3 b0 b0 b3 b3 b0 b0

3 4 5 8 5 7

b1 b1 b0 b0 b0 b0 b1 b1 b0 b0 b1 b1

6 7 8 2 10 1

b3 b3 b1 b1 b1 b1 b3 b3 b2 b2 b3 b3

9 10 11 11 3 9

b2 b2 b2 b2 b2 b2 b2 b2 b1 b1 b2 b2

(a)Architecture (b) Mapping

Figure 3. 11 Network relaxation with BS

Then, the memory mapping process is done with this new set of permutations. The entire

matrix can be filled according to this new set of permutations as shown in Figure 3. 11(b).

The resultant architecture based on customized network is shown in Figure 3. 11(a) which

consists of BS network and one additional network component (a swicth).

PE1

PE2

PE3

PE4

b0

b1

b2

b3
N

W

co
m

p
.

N
W

co

m
p

.
N

W

co
m

p
.

 t1 t2 t3 t4 t5 t6

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b0 b0 b2 b2 b2 b2 b0 b0 b3 b3 b0 b0

3 4 5 8 5 7

b2 b2 b0 b0 b0 b0 b3 b3 b0 b0 b3 b3

6 7 8 2 10 1

b3 b3 b3 b3 b3 b3 b2 b2 b1 b1 b2 b2

9 10 11 11 3 9

b1 b1 b1 b1 b1 b1 b1 b1 b2 b2 b1 b1

(a)Architecture (b) Mapping

Figure 3. 12 Network relaxation without any NW constraint

If no network constraint is defined by the designer, the algorithm starts from scratch

considering no network constraints, i.e. start mapping with NULL network (each PE is

directly connected to a single memory bank through a wire). The algorithm will add new

network components to the network when needed, until a valid memory mapping is achieved.

As a result a fully customized network is developed. The complete mapping for the

considered example using network relaxation can be seen in Figure 3. 12. The algorithm will

find the conflict free memory mapping for all the possible combination of the available

permutations (i-e 1
st
 column is filled with σ1 and if the mapping is not valid, then σ2 is tried

and so on).

3.2. Experiments and Results

Currently turbo codes are used in different standards. However, interleavers used in

these standards are not conflict free for every type of parallelism. The proposed approach is

able to find conflict free memory mapping for any type of interleaver and for any type of

parallelism. This section presents the different experiments we performed to show the interest

of the proposed approach. All the results in this thesis are given in NAND-gate equivalent

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 49 -

area using 90nm technology from STMicroelectronics. These estimations are based on

synthesized and pre-characterized components (Registers, multiplexers, …). The number of

the different components is provided by the mapping tool and as a result the estimations for

the architecture are generated. We performed experiments for two test cases: HSPA and LTE.

In all these results we have considered the network controller cost which is 50% of the total

architecture (recall section 2.3).

3.2.1. Case study for HSPA

For experimental purpose, we implemented interleavers from the most widely used

standard of telecommunication systems: HSPA Evolution [HSP04]. We implemented

interleaver used for HSPA and performed experiments for different block lengths and

parallelisms.

1

10

100

1000

40 120 800 1560 2240

N
an

d
G

at
e

eq
.

ar
ea

 (
L

o
g
.)

x
 1

0
0
0
0

Block lengths

[13] [14] Proposed[TAR04][WHE04]

Figure 3. 13 Comparison of HSPA Network Controllers Areas obtained with state of art

approaches and Network Relaxation approach

1

10

100

1000

10000

40 120 800 1560 2240

L
at

en
cy

(c
yc

le
s)

Block lengths

[13] [14] Proposed[TAR04][WHE04]

Figure 3. 14 Comparison of HSPA Network Controllers latencies obtained with state of art

approaches and Network Relaxation approach

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 50 -

Figure 3. 13 and Figure 3. 14 shows comparison of the proposed network relaxation

approach with different state of the art approaches. Different HSPA block lengths L with P=4

are considered. The area of the network controller for proposed customized network is

compared with the area of the network controller for approaches which uses fully connected

(Benes network). Figure 3. 13 shows comparison of area in logarithmical (base10) scale. Our

proposed approach has 50% (average) lesser area as compared to [TAR04] and 18% (average)

lesser area as compared to [WHE04]. Figure 3. 14 shows latency comparison in term of

cycles. The latency show the number of cycles needed to access all the data elements. Our

proposed approach has equivalent latency as compared to [TAR04] and 56% (average) lesser

latency as compared to [WHE04] (as [WHE04] approach uses FIFOs for conflicting data

which is routed in next iteration and as a result the number of cycles increases which

increases the latency). Therefore, the proposed approach significantly reduces the cost as

compared to [TAR04] with the same latency. On the other hand as compared to [WHE04],

our proposed approach reaches small reduction in terms of area, but without any additional

latency (i.e. our architecture will achieve higher throughput) leading to a better

performance/area tradeoff.

1

10

100

1000

[14] [11] [20] Proposed

x
10

00
00

Additional Controller Total cost

N
an

d
G

at
e

eq
. a

re
a

(L
og

.)

[TAR04] [CHA10a] [BRI12]

Figure 3. 15. Detailed comparison of HSPA Network Controllers Areas obtained with state of

art approaches and Network Relaxation approach

(L=2240, P=4, Targeted network: Barrel Shifter)

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 51 -

1

10

100

1000

[14] [11] [20] Proposed

x
1
0
0

0
0

Additional Network Controller Total cost

N
an

d
G

at
e

eq
.

ar
ea

 (
L

o
g
.)

[CHA10a] [BRI12][TAR04]

Figure 3. 16 Detailed comparison of HSPA Network Controllers Areas obtained with state of

art approaches and Network Relaxation approach

(L=800, P=8, Targeted network: Barrel Shifter)

Moreover, we compared our proposed approach with existing approaches [CHA10a],

[TAR04] and [BRI12]. These experiments was performed for all block length from HSPA and

for parallelism P=4 and P=8. Since the area for the memory banks is the same for each test

case, it is not taken into account in these results. Figure 3. 15 and Figure 3. 16 show typical

results obtained in this case for 2240 and 800 data and a unique Barrel Shifter BS network

constraint. Here, [CHA10a] and [TAR04] are not able to find conflict free memory mapping:

architectural constraints are not supported in [TAR04] and it is not possible to find a conflict

free memory mapping with a BS as network objective for [CHA10a] . However, [BRI12] is

able to find the solution with the use of additional registers along with BS. As shown in these

figures our proposed approach can find an optimized solution with an area divided by about

66 as compared to [BRI12] for the example considered in Figure 3. 15 and by about 20 as

compared to [BRI12] for example considered Figure 3. 16. The latency for all the approaches

based on memory mapping solutions [TAR04], [CHA10a], [BRI12] and the proposed

approach is same as no additional buffer elements are needed in the interconnection network.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 52 -

1

10

100

1000

10000

100000

[TAR04] [CHA10a] [BRI12] Proposed

N
an

d
ga

te
 e

q.
 A

RE
A

 (L
og

.)

x
10

00

Block Length

Additional Network Controller Total

Figure 3. 17. Detailed comparison of HSPA Network Controllers Areas obtained with state of

art approaches and Network Relaxation approach

(L=2240, P=4, No targeted network)

1

10

100

1000

10000

[TAR04] [CHA10a] [BRI12] Proposed

N
an

d
ga

te
 e

q.
 A

RE
A

 (L
og

.)

Block Length

Additional Network Controller Total

Figure 3. 18 Detailed comparison of HSPA Network Controllers Areas obtained with state of

art approaches and Network Relaxation approach

(L=800, P=8, No targeted network)

In Figure 3. 17 and Figure 3. 18, the best results for each approach are presented. In this

case, the interconnection could be different for each approach, for example [CHA10a] and

[TAR04] are not able to find a solution with a Barrel Shifter interconnection network so

[TAR04] gives solution only with a fully connected network like Benes and [CHA10a] is able

to find a solution with a Butterfly BF network, for L=2240 and P=4. Whereas for the second

example with L=800 and P=8 in Figure 3. 18, the minimum cost is achieved with Benes

network for [CHA10a][TAR04] . The cost of the [BRI12] is very high due to the addition of

buffers and multiplexers to solve the conflicts. Our approach (based on customized network)

is able to find the conflict free memory mapping for all the considered examples with an area

reduction of 34% in average for Figure 3. 17 and 50% in average in Figure 3. 18.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 53 -

1

10

100

1000

10000

100000

40 80 120 320 720 800 1560 2240

Block Length
[14] [20] proposed

N
an

d
G

at
e

eq
. a

re
a

(L
og

.)

1[TAR04] 1[BRI12]

N
an

d
G

at
e

eq
.

ar
ea

 (
L

o
g
.)

Block lengths

Figure 3. 19. Comparison of HSPA decoder architecture estimated areas obtained with state of

art approaches and Network Relaxation approach for different block lengths (P=4)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

40 80 120 320 720 800 3920
Block Lengths

[14] [20] proposed

N
an

d
G

at
e

eq
. a

re
a

(L
og

.)

[TAR04] [BRI12]

Figure 3. 20. Comparison of HSPA decoder architecture estimated areas obtained with state of

art approaches and Network Relaxation approach for different block lengths (P=8)

In order to further explore our approach we have considered different block lengths from

HSPA with P=4 and P=8. The results for P=4 is shown in Figure 3. 19 and for P=8 in Figure

3. 20. Like in the previous experiments, these figures show the best result for each approach.

The results clearly show that our proposed network relaxation method always gives lower cost

solution as compared to existing approaches. For P=4, our solution reduces the total area 21

times in average for all the experiments. Compared to [TAR04] the area is divided by 1.8 in

average and compared to [BRI12] the area is divided by 41 in average. For P=8, network

relaxation reduces the total area 40 times in average for all the experiments. Compared to

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 54 -

[TAR04] the area is divided by 2.6 in average and compared to [BRI12] the area is divided by

76 in average. As it has been said, the latency is same for all the considered approaches

[TAR04][BRI12][CHA10a] and are compared to our proposed approach. On the contrary, in

[WHE04] the latency of the architecture is impacted as compared, then this solution is not

considered in the final results.

3.2.2. Case study for LTE

We also performed experiments for interleaver used in LTE. In [WON10b], LTE with

parallel architecture is presented. They have presented a multistage interconnection network

based on barrel shifter. Figure 3. 21 shows the parallel architecture with multistage

interconnection network with P = 8 (2
i
) with three stage. Configuration bits (bits needed to

control the network) for P = 8 can be calculated by considering a stage (3 − i), in which i = 0

to 2, we need one bit for 2
i
 inputs in that stage (like in first stage we will need 2

0
 i-e 1 bit). So,

one bit is needed for stage 0, two bits are needed for stage 2 and four bits are needed for stage

3.Therefore, three stages of modified BS need seven bits for configuration at each access.

Similarly, for P=4, two stages of modified barrel shifter needs three bits.

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

SISO1

SISO2

SISO3

SISO4

SISO5

SISO6

SISO7

SISO8

Figure 3. 21. Parallel architecture with multistage network

We have applied our proposed approach for the above mentioned case study. The

proposed approach is able to optimize the network as some block lengths can support standard

BS. Table 3.5 shows LTE block lengths that support BS network.

Table 3.5 Block lengths supported by BS

P=4
160,200,240,320,360,480,528,800,880,960,1440,

1600,2240,2880,3520,4160,4480,5760

P=8 416,480,800,1600,2240,3520,3584,4608,4480

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 55 -

As a result, the cost of the architecture can be reduced as shown in Figure 3. 22. In this

figure, the area comparison between [WON11b] and our approach is given for different block

lengths. The proposed approach can save up to 35% of the network area as shown in Figure 3.

22.

Figure 3. 22. Comparison of LTE decoder architecture estimated areas obtained with state of

art approache and Network Relaxation approach for different block lengths (P=4)

4. Conclusion

In this chapter, a dedicated approach to explore the design space for parallel turbo

decoder architectures is presented in which different configurations based on shuffled and

non-shuffled schemes are considered in order to analyze the hardware complexity of the

decoder architecture. A novel architecture to decode turbo codes using shuffled scheduling is

also proposed in which we have studied and solved different memory issues for shuffled

decoding technique. The analysis of the cost estimation gave us the distribution of cost for

different parts of the architecture like network controller, memory controller, extrinsic

memory. We have seen that network controller is up to 60% of the total cost for some test

cases; unfortunately state of art approaches are not able to directly optimize this part.

Therefore, we proposed a new approach for conflict free memory mapping based on network

customization to generate optimized architectures. This approach also respects targeted

network architecture by modifying it with additional network components if needed. Proposed

approach is compared through industrial test-cases with the state of the art approaches.

Results show that optimized architectures can be obtained by applying proposed network

relaxation approach even when particular network is targeted with significant area reduction

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Optimized memory mapping approach based on network customization

 - 56 -

and without any reduction in terms of throughput (as the latency of the proposed approach

remains the same as state of art memory mapping approaches).

The proposed network relaxation approach provides in-place mapping for conflict

problem which can be solved with P banks, and provides MRMW mapping for conflict

problems which cannot be solved with in-place mapping. However, due to the customized

network solution the proposed approach is able to generate optimize solution in both the

cases. As mentioned in chapter-2, MRMW architecture is more costly in term of area as

compared to in-place memory architectures. Therefore, a second option must also be explored

in order to optimize the final architecture in term of area: to use in-place memory mapping

architecture for other memory conflict problems. This solution is presented in the next

chapter.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 57 -

Chapter 4

IN-PLACE MEMORY MAPPING FOR

OPTIMIZED ARCHITECTURE

Table of Contents

1.Introduction 59

2.Two access memory mapping problem 59

2.1.Problem formulation -- 60

3.Design Flow 62

3.1.Graph construction -- 63

3.2.Bipartite test -- 64

3.3.Simple graph test--- 66

3.4.Vizing theorem for edge coloring --- 67

3.4.1.Pedagogical Example --- 73

3.5.In-place memory mapping for multigraphs 78

3.5.1.Modeling -- 79

3.5.2.Transformation of bipartite graph into Transportation Matrix -------------------- 81

3.5.3.Algorithm to find semi 2-factors in Turbo Bipartite Graph ----------------------- 82

3.5.4.Pedagogical Example --- 84

4.Experiments and results 87

4.1.Case study-1: Shuffled turbo decoders for LTE --------------------------------------- 87

4.2.Case study-2: Non-Binary LDPC codes -- 88

4.2.1.Vizing theorem for non-binary LDPC codes -- 90

4.2.2.Results--- 90

4.3.Case study-3: Shuffled turbo decoding for HSPA ------------------------------------ 92

5.Conclusion 93

In this chapter, we present an optimized parallel hardware architecture using in-place memory

mapping. In-place memory mapping architecture and multiple read multiple write (MRMW)

architectures are currently used in the state of the art approaches to solve a memory mapping

problem. However, the controller MRMW architectures are more costly as compared to in-place

architecture. In this chapter, we show that some of the memory mapping problems which are currently

solved using MRMW architectures can be solved by using in-place memory mapping architectures. We

also present polynomial time algorithms to solve these problems with in-place architecture. As a result

the complexity in term of area of the decoder can be reduced.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 58 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 59 -

1. Introduction

In first part of the previous chapter, we have explored different configurations based on

shuffled and non-shuffled turbo decoder architecture using state of the art approaches in order

to find conflict free memory mapping. Non-shuffled configurations are turbo like problems

for which memory mapping approaches based on in-place architecture are used. On the other

hand, shuffled configurations represent LDPC like problems for which approaches based on

multiple read multiple write (MRMW) memory mapping architecture are needed. So, state of

the art approaches uses MRMW architecture and in-place memory architecture to find conflict

free memory mapping. For example, memory conflict problems in non-shuffled decoding of

LTE [SAC12] and non-shuffled decoding in HSPA [SAN13] are solved using in-place

memory architecture. While conflict problems solved with MRMW architecture includes

shuffled decoding in LTE [OSC12], shuffled decoding in HSPA and non-binary LDPC

problem [BRI12] [CHA10b]. The MRMW memory mapping architecture requires network

configurations for read as well as write operations which double the network controller cost

(as explained in chapter 2). However, for in-place architecture the network configuration of a

read cycle is also reused for the write cycle. As a result, the network controller is reduced for

in-place architecture as compared to MRMW architecture.

 In this chapter, we introduce that every conflict problem with two accesses (each data

element is accessed two times e-g natural order access and interleaved order access) which are

currently solved with MRMW memory mapping architecture can be solved using in-place

architecture. It allows us to reduce the network controller which results in an optimized

decoder architecture. Our proposed work addresses the memory mapping problems in which

each data is accessed exactly two times.

2. Two access memory mapping problem

In this section we describe memory conflict problems in which each data is accessed

exactly two times. These problems include memory mapping problems of turbo decoders in

LTE and HSPA interleaver with shuffled as well as non-shuffled decoding schemes [BER93].

The memory conflict problem in non-binary LDPC is also with two accesses [DAV].In order

to find conflict free memory mapping using classical design time approaches, these problems

can be categorized as shown in Figure 4.1. The in-place memory mapping solution is possible

for conflict problem in UWB, non-shuffled decoding in HSPA and non-shuffled decoding in

LTE interleavers whereas the MRMW mapping solution is possible for conflict problem in

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 60 -

non-binary LDPC, shuffled decoding in HSPA and shuffled decoding in LTE interleavers.

[SAN13] [OSC12] [BRI12] [CHA10b].

Memory conflict problem

(two accesses)

In-place mapping MRMW mapping

Non-shuffled

decoding HSPA

Non-shuffled

decoding LTE
UWB Shuffled

decoding HSPA

Shuffled

decoding LTE

Non-binary

LDPC

Figure 4.1 Solution for memory conflict problems

In this work, we propose that all of these two access memory conflict problems can be

solved by using in-place memory mapping architecture and associated memory mapping

algorithms are proposed.

2.1. Problem formulation

Approaches based on in-place memory mapping includes [SAN13] which can solve the

given problem in polynomial time using bipartite edge coloring algorithm. Using in-place

mapping solution, this approach can only target turbo like problems (e-g non-shuffled

HSPA/LTE) in which data is first accessed in natural order and then in interleaved order

because of their bipartite nature. However, we can show that it is also possible to use the

approach [SAN13] for problems which are not of bipartite nature i-e data elements accessed

randomly and not accessed in natural order and interleaved order pattern (like in shuffled

LTE). This can be done by performing a test which can determine the bipartiteness. This test

will be referred as bipartite test. After applying the bipartite test if the conflict problem

results in bipartite graph then we can apply the bipartite edge coloring algorithm to find in-

place conflict free memory mapping [SAN13]. Bipartite graph can be defined as below.

Definition Bipartite Graph

 Bipartite Graph is a graph whose nodes can be divided into two independent sets, Tx and

Ty such that every edge (tx, ty) connects a node tx from Tx to a node ty from Ty. Moreover,

there is no edge that connects nodes of same set.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 61 -

So the bipartiteness of a graph can be determined by the bipartite test which can show

whether the graph is bipartite graph or not. Hence, the graph for two access problem can be

categorized in bipartite graph and non-bipartite graphs as shown in Figure 4.2. We can find

conflict free memory mapping using in-place architecture by applying bipartite edge coloring

algorithm in case of bipartite graphs. On the other hand, memory mapping problems in non-

binary LDPC codes and shuffled decoding of HSPA interleaver result in a non-bipartite

graphs. For these graphs, approaches based on MRMW mapping architecture are needed as

currently state of the art approaches are not able to find conflict free memory mapping using

in-place architecture.

Memory conflict problem

with two accesses

Bipartite Graph Non-bipartite graphs

Figure 4.2 Categories in two access problem

In this work, we propose to solve mapping problem using in-place memory mapping

architecture even for non-bipartite graphs. We can find memory mapping using Vizing

theorem [VIZ64] which can find conflict free memory mapping for any given problem using

P+1 banks. So, thanks to this approach, in-place mapping architecture can be achieved by

adding only one additional bank. However, Vizing theorem is true only for simple graphs. We

will define simple and multi-graph before introducing Vizing theorem.

Definition Simple Graph

 A simple graph is a graph which has no loops (edges connected at both ends to the same

node) and no parallel edges (two nodes are connected with only and only one edge).

A simple graph is shown in Figure 4.3 in which no loops and no parallel edges exist.

Figure 4.3 Simple graph

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 62 -

Definition Multi-Graph

 A multi-graph is a graph which has loops (edges connected at both ends to the same

node) and/or parallel edges (two nodes are connected with only and only one edge).

A multi-graph is shown in Figure 4.4 in which a loop exists at node t4 and parallel edges

exist between t1 and t3, and between t6 and t3.

t1 t3

t4 t6

Figure 4.4 Multi-graph

Definition Vizing Theorem

A simple graph of degree P (largest number of edges connected to a node in the graph)

can be edge-colored with at most P+1 colors where P is the maximum degree in a graph

[VIZ64].

Hence, non-bipartite graph for memory mapping problem can be edge colored with P+1

colors which results in conflict free memory mapping with P+1 banks using Vizing theorem.

We will perform a test (simple graph test) before applying Vizing theorem. For multi-graphs a

dedicated approach is used to find conflict free memory mapping.

Finally, if a non-bipartite graph is also a multigraph, then a dedicated approach

proposed in this thesis can be used. This proposed approach is based on approach used for

transportation problem which can find conflict free memory mapping for any given problem.

The above mentioned proposed work can be formalized by the design flow described in

the next section.

3. Design Flow

This entire process is presented in a proposed design flow presented in Figure 4.5. For a

given mapping problem first a graph is constructed. Then bipartite test is performed to

determine whether the given problem can be solved using P banks. If the graph is not bipartite

then more than P memory banks are needed. Hence, simple graph test is performed to check

whether Vizing theorem can be applied which can provide conflict free memory mapping

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 63 -

using upto P+1 banks. Finally, for multi-graphs, a dedicated approach is applied which can

find conflict free memory mapping using upto (3/2)*P banks.

Mapping
problem

Mapping using

P Banks
Bipartite

N

Y

Simple

graph

N

Graph construction

Mapping using

upto P+1 Banks

Mapping using

Upto (3/2)*P Banks

Y

Figure 4.5 Design flow

3.1. Graph construction

The first step of the design flow is to construct a graph based on the memory access

matrix. First an initial graph G’ = (T ∪ L, E) is constructed according to the data access

matrix in which set of nodes T represents all the time instances whereas set of nodes L

represents all the data elements of the access matrix. An edge (ti ,lj) is incident to the data

node lj and to the time node ti if lj is processed at ti (i.e. data lj will be read and next written at

time ti) where ti ∈ T. Then the graph G’ is converted into a graph G = (T, E).

The two access memory mapping problems have the following two distinct properties:

Property 1

 The number of parallel accesses to data the elements P (i.e. number of data required to

access concurrently) at any time instance is always same. This property implies that in

G’, each time node has same degree, dt = P.

Property 2

 Each data element is accessed exactly two times. This property implies that all the data

nodes have the same degree, dl = 2.

According to the property 2, the graph G’ can be converted into graph G by first joining

two edges at each data node and then removing all the data nodes from Gi. Thanks to property

1, G is regular i-e all nodes have same degree with the degree of each time node, dt = P. Now

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 64 -

we can conclude that in set of T, each edge ti corresponds to a data node in Gi, so the coloring

of edges in G actually means coloring of data nodes in Gi.

PE1 0 0 2 4 1 5

PE2 1 2 3 5 3 6

PE3 8 4 6 7 7 8

t1 t2 t3 t4 t5 t6

Figure 4.6 Example of data access matrix with two accesses to each data

Consider a simple example of data access matrix (see Figure 4.6) in which size of data

elements L = 9, parallelism P=3 and number of time instances T = 6. For this data access

matrix, the graph Gi is shown in Figure 4.7(a) in which set of data nodes is L = 9 and set of

time nodes is T = 6. This graph is then converted into the graph G shown in Figure 4.7(b).

Now we can get a conflict free memory mapping by applying edge coloring algorithms where

each edge connected to a time instance will have different colors which means that each data

accessed at a time instance is placed in different memory banks resulting in a conflict free

access to the data.

t1 t2 t3

t4

t5

t6

0

1

84

7

3

6

2

5

t1 t2 t3

t4

t5

t6

(a) Graph Gi (b) Graph G

Figure 4.7 General Graph for edge coloring

 The graph G is needed to be edge colored in order to find conflict free memory

mapping. However, for approach proposed in [SAN13] a bipartite graph is required for edge

coloring. Therefore, the bipartiteness of the graph is checked by bipartite test as described in

next section.

3.2. Bipartite test

Bipartiteness of a graph can be tested by using breadth first search algorithm (BFS).

The BFS begins at a source (starting) node and inspects all its neighboring nodes. Then for

each of those neighboring nodes (one after another), their own neighbor nodes which have not

been visited before are traversed, and so on. We start the search at any node and assign it to

alternating sets i-e assign the starting node to set-1 and assign its entire connected neighbor

nodes to set-2, further assign to set-1the nodes connected to the all neighbors of the neighbors

and so on. The graph is not bipartite if at any step a node has connected neighbors assigned

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 65 -

with the same set. In the end, the graph is bipartite, if the search ends without having two

connected neighbors assigned to the same set.

As shown in Figure 4.8, the algorithm uses a queue data structure to store intermediate

results as it traverses the graph. A queue is a collection in which the entities are kept in order

as same as First-In-First-Out (FIFO). The addition of entities is made to the rear terminal

position, known as en-queue, and removal of entities is made from the front terminal position,

known as de-queue.

Start

Enqueue Source Vertex

Dequeue vertex and
assign alternate color

check
for same

color

Y

N

Graph is

not Bipartite

Enqueue Uncolored

neighbor

empty

Queue

Y Graph is

Bipartite

Figure 4.8 Bipartite test

The whole process is shown in the following steps.

1) The first step is to enqueue the source node as shown in Figure 4.9(b) in which t1 is

considered as the source node in the graph shown in Figure 4.9(a).

2) Dequeue a node and assign to a set.

3a). If two adjacent node are assigned to same set then the graph is not a Bipartite graph

 then the algorithm is completed

 3b). Otherwise enqueue the neighbor nodes (the direct child node) which are not yet

 assigned.

As it is shown in Figure 4.9(b), t1 is dequeued and assign it to set-1. Then all the

neighbours nodes t2 and t5 are enqueued.

4) If the queue is empty, every node on the graph has been assigned then the algorithm is

completed, else repeat previous step by assigning alternate sets to the neighbors.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 66 -

t1

Set-1=

t2 t5

Step-1)

Step-2)

Step-3b)

Set-1=

(a) (b)

Figure 4.9 Birpartite test example

 As a result, the bipartiteness of a graph can be decided for a conflict problem, so bipartite

edge coloring approach can be used to find conflict free memory mapping [SAN13].

However, for non-bipartite graph we can apply the Vizing theorem in case of simple graphs

(see Figure 4.5). The simple graph test is described below.

3.3. Simple graph test

Simple graph has two properties: no loops and no parallel edges. The access of one data

element twice at a time instance always results in a graph for memory mapping problem with

loops which is never the case for memory access problems. Therefore, we can easily perform

a test to determine whether a graph is a simple graph or not by checking the existence of

parallel edges in the graph by modifying the breadth first algorithm.

Start

Enqueue Source Vertex

Dequeue vertex and
Check its all neighbors

Parallel

edges

Y

N

Multi-Graph

Enqueue neighbor

empty

Queue

Y

Simple Graph

Figure 4.10 Simple Graph test

As shown in Figure 4.10, the algorithm traverses the graph as follows:

1) Enqueue the source node (see Figure 4.11).

2) Dequeue a node and check all its neighbours (see Figure 4.11).

3a) If there exist a parallel edge between the neighbor and the dequeued node.

3b) Otherwise enqueue the neighbor nodes (the direct child node) which are not yet

traversed as shown in Figure 4.11.

 4) If the queue is empty, every node on the graph has been visited then the algorithm is

 completed, else repeat previous step.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 67 -

t1

t2 t5

No parallel edges detected

Step-1)

Step-2)

Step-3b)

Figure 4.11 Simple graph test example

We start traversing the graph by checking whether there exists a parallel edge. As soon as

a parallel edge is detected, we stop traversing the graph and conclude that the graph is a

multigraph and we cannot apply Vizing theorem. On the other hand if no parallel edges are

detected in the entire graph, then it is a simple graph and we can apply Vizing theorem which

can resolve the memory conflict problem by using P+1 banks.

3.4. Vizing theorem for edge coloring

The process of edge coloring using Vizing theorem is shown in Figure 4.12 in which first

a node is selected to color. Then vizing fan (defined later in this section) is constructed and if

same colors are not available at both nodes of the edge. The fan is ended in two possible

cases: 1) without any repetition of missing colors (the un-used colors) at the nodes of the fan,

2) with repetition of missing colors at the nodes of the fan. In the second case, first path is

traced and then existence of the loop in the path is detected. So a path is selected based on the

loop detection. Finally, the colors are exchanged and the final coloring is assigned to the

graph. As a result, the desired edge is colored. This whole process is described below in

details and an example is provided in the next sub-section.

Select next edge to color

Color the edge
color

available Y

N

Construct fan

Repetition
Y

N

Trace path

Case-1

Start

Case-2

Exchange colors

in fan

Detect loop

and select path

Exchange and

assign colors

Figure 4.12 Edge coloring flow based Vizing theorem (up to P+1 colors)

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 68 -

We have to color the edges of graph G by using at most P+1 colors. Let us consider a

graph G having j+1 time nodes with a maximum degree P. Edges of G are e1, e2…ej. We will

start from an empty graph G0 with j+1 time nodes without any edge. This graph is then

extended to the graph G1 in which one edge (e1) is considered. We keep on adding edges to

color them until the whole the graph is completed. Mathematically, in each iteration we

extend the graph coloring of Gi-1 to colour Gi = Gi-1 U {ei}, For i = 1 to j.

We explain how to color Gi using at most P+1 colors. Inductively, we suppose that we

have already colored the edges of Gi-1 using at most P+1colors.

Now Gi = Gi-1 U {ei} where ei = (t0, t1) be the next edge to color (conflict edge) as shown in

Figure 4.13. Mathematically, in each iteration we extend the graph coloring of Gi-1 to colour

Gi = Gi-1 U {ei}, For i = 1 to j. As shown in Figure 4.13 at most P − 1 edges containing t0 or t1

are colored. If the missing color at t0 is same as missing color at t1 then color the edge (t0, t1)

with that missing color. Otherwise if the missing color at t0 is not the same as missing color at

t1 i-e color c0 is missing at t0 and one color c1 is missing at t1, then we have no simple solution

to color the conflict edge.

In order to find solution to color the conflict edge we will first construct a sequence

known as Vizing fan. We have represented each node notation ti(ci) in which ti is the time

node and ci is the missing color available for coloring at that code.

Vizing fan

 A fan is an ordered sequence of edges at a node t0 such that the other connected node tx

has a missing color cx which is the color of the next edge in the sequence of connected

nodes with t0.

t0(C0)

t1(C1)

t3(C3)

t2(C2)

tj-1(Cj-1)
tj(Cj)

Cj-1

Figure 4.13 Vizing fan

Vizing fan can be expressed by constructing a sequence of distinct colors c1, c2, … , cj-

1, cj and a sequence of edges (t0, t1), (t0, t2) , . . . , (t0, tj). This sequence can be expressed

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 69 -

mathematically as color ci is missing at ti for 0 ≤ i ≤ j and color ci is the color of the edge (t0,

ti+1) for 1 ≤ i ≤ j as shown in Figure 4.13. We can see that color cj is a missing color at tj

which is available for coloring. If there exists an edge (t0, tj+1) colored with cj, where tj+1does

not belongs to set {t1, . . . , tj}, then continue constructing the sequence with the defined cj and

tj+1. Since t0 has only P neighbors, the construction process completes with one of the

following cases:

Case-1: No repetition of missing color at the nodes of the fan. While constructing the

sequence of the fan, there exist no edge (t0, ti) colored with cj for 1 ≤ i < j.

Case-2: Repetition of missing color at the nodes of the fan. While constructing the

sequence of the fan, there exist a color cj = ck-1, for some 2 ≤ k < j: such that the edge (t0, tk) is

colored with cj.

Case-1

In this case, the construction of the sequence is completed in such a way that the

colors of all the edges of the sequence are not similar to the missing color of the last node.

Mathematically, we can say that there exist no edge (t0, ti) colored with cj for 1 ≤ i < j.

In this case, it will always happen that the color missing at the starting node of the

conflict edge will be also missing at the last node of the sequence i-e the color cj will be

missing at t0 and tj (see Figure 4.14(a)). In order to color the conflict edge (t0, t1), first of all

we will shift the conflict edge to the last edge of the sequence. The shifting is done by

exchanging colors in a sequence that we keep on exchanging the conflict edge with its

neighboring edge until it is transferred to the last desired edge i-e shift colors (t0, ti) with ci

for 1 ≤ i ≤ j−1 as shown in Figure 4.14(b-c). In these figures the conflict edge (t0, t1) is first

exchanged with its neighboring edge (t0, t2). As a result, the color of (t0, t1) becomes c1 and

the conflict edge is transferred to (t0, t2). Now we exchange the conflict edge (t0, t2) with its

neighboring edge (t0, t3). As a result, the color of (t0, t2) becomes c2 and the conflict edge is

transferred to (t0, t3). We keep on exchanging the conflict edge with its neighboring edge and

at last (t0, tj) will become conflict edge (see Figure 4.14(c)). It can be seen that cj is missing at

both t0 and tj so we can color (t0, tj) with cj (see Figure 4.14(c)) and hence the conflict edge is

colored.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 70 -

t0(C0, Cj)

Cj-1

t1(C1)

t3(C3)

t2(C2)

tj-1(Cj-1)
tj(Cj)

(a) (b) (c) (d)

Figure 4.14 Vizing theorem Case-1

Case-2

In case-2, the construction of the sequence is completed in such a way that there exists

one color in all the edges of the sequence which is similar to the missing color of the last

node. Mathematically, we can say that there exist a color cj = ck-1, for some 2 ≤ k < j, such

that the edge (t0, tk) is colored with cj as shown in Figure 4.15(a).

In this case, first of all we have to shift the conflict edge from (t0, t1) to (t0, tk) i-e to

shift color (t0, ti) with ci for 1 ≤ i ≤ k−1. The edge (t0, tk) becomes the conflict edge and cj is

missing at both tk and tj as shown in Figure 4.15(b).

(a) (b)

Figure 4.15 Vizing theorem Case-2

In order to color the conflict edge, we have two further sub-cases which have different

conditions based on the nodes t0, tk, tj as they can be connected to each other or disconnected.

So we check these cases in order to color the conflict edge.The two sub-cases are:

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 71 -

Case-2.a: No loop in the traced path. t0 and tk are in different connected components

in the graph.

Case-2.b: Loop in the traced path. t0 and tj are in different connected components in

the graph.

Case-2a

In this case, t0 and tk are in different connected components (see Figure 4.16(a)) as the

path from t0 is not ending at tk. So the conflict edge can be colored as follows.

The first step traces path and then exchanges colors. We trace the c0, cj path from tk i-e

to find the other node connected with c0 and search for cj at that node and then c0 at the next

node and so on as shown in Figure 4.16(a). Then we exchange the color c0 with cj in the path

as shown in Figure 4.16(b) in which c0 is replaced with cj and cj is replaced with c0. As a

result, c0 will become missing at both nodes t0 and tk. Now, we can color (t0, tk) with c0 (see

Figure 4.16(c)). Hence, the conflict edge is colored.

(a) (b) (c)

Figure 4.16 Vizing theorem Case-2a

However, if t0 and tk are in connected components i-e the path from t0 is ending at tk as

shown in Figure 4.17(a) then by applying the above procedure, the exchange of color c0 with

cj will make c0 available at tk but it will not be available at t0 as shown in Figure 4.17(b). So

we have no solution in this case. So case-2b will be followed to color the conflict edge.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 72 -

(a) (b)

Figure 4.17 Vizing theorem Condition for Case-2b

Case-2b

In this case, t0, tj are different connected components as t0 is not ending at tj, so first the

path c0 and cj is traced at tj as shown in Figure 4.18(a). Then we shift conflict edge from tk to tj

such that (t0, tj) will become conflict edge (see Figure 4.18(b)).

 (a) (b) (c)

Figure 4.18 Vizing theorem Case-2b

Then, we exchange colors between c0 and cj in the tj -path as shown in see Figure

4.18(c). This will make c0 missing at t0 and tj. So we can color (t0, tj) with c0 as shown in

Figure 4.19. Hence, the conflict edge is colored.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 73 -

 Figure 4.19 Vizing theorem Case-2b final

Complexity of the algorithm

The complexity of the algorithm using Vizing theorem can be calculated by considering

a graph with m edges to color with n time nodes. At each time node we have P edges. The

complexity to draw a fan is O(P
2
) as we have to examine each edge at the missing color at

that edge. O(n) is the complexity to exchange colors for coloring an edge. So overall

complexity for the complete graph is O(n m + P
2

m).

3.4.1. Pedagogical Example

We present an example to explain the Vizing theorem. The data access matrix for the

considered example is shown in Figure 4.20. The graph is shown in Figure 4.21(a). As P = 4

so we have five colors (4+1) to color this graph.

PE1 0 2 1 18 16 13 4 5 6 21 31 31 12 10 9 23 3

PE2 1 4 14 19 17 14 11 7 7 22 33 25 26 32 20 24 29

PE3 2 5 17 20 19 15 12 10 8 8 22 15 27 28 30 25 28

PE4 3 6 18 21 33 16 13 11 9 23 24 26 32 30 29 0 27

t1 t2 t3 t4 t5 t6 T7 t8 t9 t10 t11 t12 t13 T14 t15 t16 t17

Figure 4.20 Example for Vizing theorem

Figure 4.21(b) shows that we have already partially colored the edges of Gi-1 using

P+1colors. The five colors shown in the figures are c0, c1, c2, c3, and c4 for this example. The

dotted line represents conflict edge ei to be colored. Colors c0 and c4 are missing at t1 and c1

and c3 are missing at t16 (see Figure 4.21(b)).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 74 -

t4

t5

t6

t8

t9

t16

t17

t10

t11

t15

t14

t7

t3

t1

t13

t2

t12

t4

t5

t6

t8

t9

t16

t17

t10

t11

t15

t14

t7

t3

t1

t13

t2

t12

t16(C1,C3)

C0

C0

C0

C0

C1

C1

C1

C1

C1

C1

C1

C1

C2

C2

C2

C2

C3

C3

C3 C3

C
3

C4

C4

C4

C4

C4

C4

C2

C2

(a) Graph without coloring (b) Graph with partial coloring

Figure 4.21 Graph for Figure 4.6

The fan is shown in Figure 4.22(a) in which the color missing at t16 is c1 (consider only

one) so we choose the next edge of the fan which is colored with c1. The other time instance

connected to edge with color c1 is t3 in which c2 is missing so the next edge of the fan should

be of color c2 and so on. The fan will end with the following two cases:

Case-1: when there is no repetition of missing colors at the nodes of the fan.

Case-2: when there is a repetition of missing colors at the node of the fan.

Case-1

 The fan will end without any repetition in the missing colors having P edges as shown in

Figure 4.22(a) where all the missing colors (c1 and c3 at t16, c2 at t3, c3 at t2, c4 at t17) are not

repeated at next nodes as missing colors. In this case, there must be a color missing at last

node of the fan t17 is also missing at starting node t1. The conflict edge can be colored as:

• As the missing color at t1 is missing at t17 so shift the dotted line edge to the t17 as

shown in Figure 4.22(b)-(c). The conflict edge is transferred to t3, t2, and then to t17.

• Now we can color the conflict edge with c4 as it is missing at both t1 and t17 as shown

Figure 4.22(d).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 75 -

t16(C1,C3)

t2(C3)

t3(C2)

t17(C4)

C2

t1(C0,C4)

t16(C1,C3)

t2(C3)

t3(C2)

t17(C4)

C2

t1(C0,C4)

(a) (b)

t16(C3)

t2(C2)

t3(C1)

t17(C4,C3)

C3

t1(C0,C4)

t16(C3)

t2(C2)

t3(C1)

C3

t1(C0)

t17(C3)
 (c) (d)

Figure 4.22 Vizing theorem Case-1

Case-2

In case-2 we start constructing the fan and the construction of the fan is ended as soon

as a repetition of the missing colors is detected in the fan as shown in Figure 4.23(a). If there

is any remaining edge(s) connected to t1 we will not consider it in the fan. Afterwards,

transfer the conflict edge to the edge colored c1 (color which has repetition).

Now at t3, trace the path of c0 (missing color at t1) and c1 (color of repetition) as shown

in Figure 4.23(b). At this stage, there could be further two sub-cases:

Case-2a: t3 is not making a loop with t1.

Case-2b: t3 is making a loop with t1.

Case-2a

First of all we will check if the node t3 not making a loop with the node t1. If it is the

case then first we trace the c1, c0 path and then exhange the color c1 and c0 with each other in

the traced path. As a result c0 will become missing at t3 as shown in Figure 4.23(c). Now color

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 76 -

the conflict edge with c0 as it is aviable at both of the nodes t1 and t3 as shown in Figure

4.23(d).

t16(C1,C3)

t2(C3)

t3(C2)

t17(C1)

C2

t1(C0,C4)

t16(C3)

t2(C3)

t3(C1,C2)

t17(C1)

C2

t1(C0,C4)

 (a) (b)

t16(C3)

t2(C3)

t3(C0,C2)

t17(C1)

C2

t1(C0,C4)

C1

t16(C3)

t2(C3)

t3(C2)

t17(C1)

C2

t1(C4)

C1

 (c) (d)

Figure 4.23 Vizing theorem Case-2a

Case-2b

If the node t3 is making a loop with t1 then by exchanging colors c0 will become missing at

t3 but c0 will not be a missing color at node t1 so the conflict edge cannot be colored with c0 as

shown in the Figure 4.24(a) and (b). Therefore, in this case we will not exchange colors at

node t3.

If the node t3 is making a loop with t1 then the node t17 will never make a loop with t1.

Therefore, first of all we will transfer the conflict edge to the t17 (time instance with repetition

of c1) and trace the path of c0 and c1 as shown in Figure 4.24(c) in which there is only one c0

edge in this path.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 77 -

Then we will exhange c1 and c0 with each other which will make c0 avialable at t1 and t17

so we can color the conflict edge with c0 as shown in Figure 4.24(d).

t16(C3)

t2(C3)

t3(C1,C2)

t17(C1)

C2

t1(C0,C4)

C0

t16(C3)

t2(C3)

t3(C0,C2)

t17(C1)

C2

t1(C1,C4)

C1

(a) (b)

t16(C3)

t2(C3)

t3(C1)

t17(C1, C3)

C3

t1(C0,C4)

C0

C0

t16(C3)

t2(C3)

t3(C1)

C3

t1(C4)

C0

C1t17(C3)

 (c) (d)

Figure 4.24 Vizing theorem Case-2b

The resultant architecture is shown in Figure 4.25 which represents the final mapping

using five banks (b0, b1, b2, b3, b4) for the considered example (as each color represents a

bank). It can be seen that we need one additional bank for the conflict free mapping but the

resultant architecture is based on in-place which can reduce the network controller up to 50%

as compared to MRMW architecture.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 78 -

b0(5,9,18,22,25,27)

b1(0,6,10,12,16,21,29,31)

b2(1,8,11,15,19,24,28)

In
terco

n
n
ectio

n
 N

etw
o

rk

PE4

b3 (2,13,17,26,30)

Network Controller
for read and write cycles

PE3

PE2

PE1

M
e

m
o

ry
 co

n
tro

lle
r

b4 (3,4,7,14,20,23,32,33)

Figure 4.25 Resultant in-place architecture

3.5. In-place memory mapping for multigraphs

In the previous section, we have shown that Vizing theorem can be applied only for

simple graphs as shown in Figure 4.5. The proposed approach for multi-graphs is described

here in details

A dedicated approach based on transportation problem for non-bipartite graphs which

are also multigraphs, can be used to solve conflict problems with in-place architectures. For

example, the data access matrix (Figure 4.26(a)) for shuffled decoding in the HSPA

interleaver results in a multi-graph after applying simple graph test: as shown in Figure

4.26(b), as t1 and t3, t2 and t5, t4 and t5 have two parallel edges between them.

Theorem Bound for edge coloring multigraphs

 Every multigraph with maximum degree P requires atmost (3/2)*P colors in any proper

edge coloring [SHA49].

Time

PE1

PE2

PE3

PE4

t1 t2 t3 t4 t5

0 1 2 3 4

5 6 7 8 9

3 5 0 4 8

7 9 6 2 1

t1t2

t3

t4

t5

 (a)Data access matrix (b) Graph

Figure 4.26 Example resulting a multigraph

According to theorem presented above, a multigraph for a given memory mapping

problem can be edge colored with atmost (3/2)*P colors which results in finding conflict free

memory mapping using upto (3/2)*P banks. In order to edge color a multi-graph, we have

proposed a simple polynomial time algorithm based on approach used for transportation

problem using (3/2)*P banks which respects the bound introduced in [SHA49].

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 79 -

3.5.1. Modeling

In this section, we model our mapping problem as transportation problem (the modeling

is same as shown in section 3.1). This transformation is carried out in two steps. In the first

step, mapping problem is modeled as bipartite graph and different proves are provided in

order to explain that it is always possible to divide this bipartite graph into different subgraphs

of equal sizes (see [SAN11a]). Afterwards, this bipartite graph is transformed into

transportation matrix. A transportation problem algorithm is applied using this matrix to find

memory mapping.

The first step is to construct a bipartite graph Gt = (T∪ L, E) in which vertex set T

represents all the time instances and vertex set L represents all the data elements used in the

computation. An edge e = (t, l)εE is incident to the data element vertex l and to the time

instance vertex t if d needs to be processed at t (i.e. data l will be read and next written at time

t). This bipartite graph has the same two properties described in section 3.1.

The bipartite graph for the data access matrix of Figure 4.26(a) is shown in Figure

4.27(a).

t1

t2

t3

t4

t5

0

1

2

3

4

5

6

7

8

9

t1

t2

t3

t4

t5

0

1

2

3

4

5

6

7

8

9

(a) (b)

Figure 4.27 Bipartite Graph for example of Figure 4.26

 In order to clearly explain how transportation problem is able to find conflict free

memory mapping we introduce some definitions, theorems and corollaries.

Definition 2-matching and 2-Factor of Graph

 2-matching H of a graph G = (T ∪ L, E) is a subset of E such that every node of G is

incident with at most two edges of H. The 2-matching H of G is called 2-factor if every

node of G is incident with exactly two edges of H [HAR06].

The proposed approach is based on finding semi 2-factor (defined below) to find

conflict free memory mapping so we have introduced the following two theorems [GRO03]

which define the necessary and sufficient condition for the graph to contain 2-factor.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 80 -

Theorem4.1

 Every 2k-regular graph contains a 2-factor, where k is integer.

Theorem4.2

 Every 2-edge-connected (2k + 1)-regular graph contains a 2-factor.

These theorems result into the following two corollaries [GRO03]:

Corollary4.1

 Every 2k-regular graph contains k 2-factors.

Corollary4.2

 Every (2k + 1)-regular graph contains k 2-factors and one 1-factor.

Definition Semi 2-factor in Bipartite Graph

 A semi 2-factor in bipartite graph G is defined as a 2-regular sub-graph in G with 2Y

vertices where every node is incident with exactly two edges and where Y = Min (|T|,

|L|).

Corollary4.3

 Every Bipartite Graph with ft = 2k or ft = 2k + 1, where k is an integer, contains k

disjoint semi 2-factors.

Proof: we first join the two edges connected with each data node and then remove all

the data nodes to form regular graph G1 = (T, E1) as shown in Figure 4.27(b). In this graph,

|E1| = |L| i.e., each edge in G1 corresponds to two edges or a data node in Gt. Since G1 is

regular, 2-factor always exists in G1 which implies that semi 2-factor of 2Y nodes where |T| =

Y always exists in Gt. Every 2-factor is a collection of cycles that spans all nodes of the graph

going from 1 cycle with 2Y nodes up to Y/2 cycles of 4 vertices.

Additionally, each cycle ci in G1 can be even or odd which means ci contains even or

odd number of edges or time nodes.

Edges of every even cycle can be assigned with two colors which implies that edges in

ci and every 2-factor in G1 can be colored with two colors [SOI08]. This results in the

following lemma.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 81 -

Lemma 4.1

 All the data nodes in semi 2-factors of bipartite graph with even cycles can be assigned

with two memory banks.

Moreover, edges of every odd cycle can be assigned with three colors which implies

that edges in ci and every 2-factor in G1 can be colored with three colors [SOI08]. This results

in the following lemma.

Lemma 4.2

 All the data nodes in semi 2-factors of bipartite graph with odd cycle can be assigned

with three memory banks.

 As it is unknown that the cycle is odd or even therefore we consider the worst case

that each cycle will be odd for every semi 2-factor which means that we will need three

memory banks for each semi 2-factor. So k semi 2-factor will result in 3k banks i-e (3/2)*P

banks (k =P/2).

3.5.2. Transformation of bipartite graph into Transportation Matrix

Our graph is modeled as transportation matrix based on the properties discussed in the

previous section. For this purpose, the bipartite graph is divided into k semi 2-factors and to

give colors to the edges of each semi 2-factor. To find semi 2-factor, we transform our

mapping problem as transportation problem by considering all the data nodes as producers

and all the time nodes as consumers. The route lij exists between data node di and time node tj

if data di is accessed at tj. One additional constraint must be considered while modeling our

problem as transportation problem: the capacity of each route is fixed in our mapping

problem. The reason is that each route represents a connection between processors and

memory banks whose size is always fixed. In our case, the capacity xij of lij is kept one since

only one data can be accessed at a given time instant tj for this route.

In order to find semi 2-factor, we consider : (1) the demand of each consumer is kept to

two and (2) each producer either provides two items (i.e. each data is accessed two times) or

is not included in the current semi 2-factor (i.e. each producer must work at its full capacity).

The cost oij of lij is kept one since the cost is not taken into account in the current work. It will

only be used when we will consider the constraint of the network architecture. The matrix

model for the bipartite graph of Figure 4.27(a) is shown in Figure 4.31(a). In this matrix, if the

route lij does not exist between producer i and consumer j, then the corresponding cell Mij is

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 82 -

kept empty. After construction of transportation matrix, any algorithm to solve transportation

problem can be used to find semi-2 factor.

3.5.3. Algorithm to find semi 2-factors in Turbo Bipartite Graph

In this section, algorithm to solve memory mapping problem is presented. This

algorithm is same as [SAN11b] with some modification. [SAN11b] is only able to tackle

conflict problem for turbo codes (only non-shuffled) whereas our modified version of

[SAN11b] is able to tackle all memory conflict problems. It traverses the transportation

matrix to construct semi 2-factors. Flow diagram of the partitioning algorithm is shown in

Figure 4.28.

The algorithm starts by first calculating the number of semi 2-factors i-e k by using the

degree of each time node ft of bipartite graph as explained in corollary 4.3. After that, it starts

constructing the cycle (path) c1 of current semi 2-factor sfcur by choosing a first route li1

connected with consumer t1 (see Figure 4.31(a)). The selection of the route li1 decreases the

demand of t1 and the supply of di to one. Simultaneously, the selected route is assigned with

bank ba where index a represent the next un-assigned bank (a = 0 for c1). Algorithm then

selects the route connected with t1 choosing any route lk1 and assigns it with bank next bank

ba+1.

The selection of lk1 completes the demand of t1, so all the producers connected with t1

are completely removed from sfcur because now they are unable to provide two items in sfcur

or they cannot work at their full capacity. The other route lkm connected with dk is assigned the

same bank ba+1 to reach to the consumer tm. This completes the supply of dk. Algorithm

repeats the same process by selecting the route, decreasing the supply of producer and

demand of consumer and alternately assigns banks to the route until c1 is completed i.e., no

producer with supply of one and no consumer with demand of one remains in the

transportation matrix.

The final step is to check for the odd cycle for which a third bank ba+2 can be assigned.

The odd cycle can be detected if the starting and ending route or routes are assigned with

alternate banks which results in a conflict as two different banks cannot be assigned to same

data. In this case the third bank ba+2 is assign to the starting and ending route of the cycle.

Furthermore, the algorithm tests whether all the consumers fulfill their demands. If not,

the algorithm starts constructing another cycle c2. For this, our algorithm selects consumer

whose demand is still unfulfilled and which has at least one deleted route. Using this deleted

route, the algorithm selects the route and assigns a bank ba to this route. After the assignment

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 83 -

of ba, the algorithm repeats the same process used for the construction of c1 to complete c2.

When the algorithm finds that demands of all the consumers are fulfilled then it declares that

sfcur is constructed. In that case, the algorithm tests whether k semi 2-factors are constructed.

If not, the algorithm removes sfcur from transportation matrix, initializes all consumers with

demand of 2 and starts constructing sfnext from remaining matrix using the process described

above until k semi 2-factors are constructed. Partitioning algorithm is explained through a

pedagogical example in the next section.

Figure 4.28 Partitioning algorithm

In [SAN11a], the author proposed an approach for finding semi 2-factor but their

algorithm is not able to find cycles as explained with the help of an example shown in Figure

4.29. In this example, the transportation matrix is constructed first as shown in Figure 4.29(b).

Then, the algorithm is applied on this matrix as explained for constructing cycle c1. The

algorithm is based on depth first algorithm without any recursion in which the cycle is started

at a node and the next node is selected randomly. But it can be seen that there is a problem at

t6 in the cycle. Two edges are deleted at t6 instead of deleting one edge which is wrong

solution for finding cycles. So, we have no solution in this case using approach [SAN11a].

t1 t2 t3 t4 t5 t6 t7 t8

0 l01(1) l06(1) 2
1 l12(1) l15(1) 2
2 l23(1) l26(1) 2
3 l34(1) l35(1) 2
4 l41(1) l47(1) 2
5 l52(1) l57(1) 2
6 l63(1) l66(1) 2
7 l74(1) l78(1) 2
8 l81(1) l88(1) 2
9 l82(1) l98(1) 2
10 l103(1) l107(1) 2

11 l114(1) l115(1) 2

2 2 2 2 2 2 2 2

t1 t2 t3 t4 t5 t6 t7 t8

0 l01(b0) l06 2
1 l12 l15 2
2 l23 l26 2
3 l34 l35 2
4 l41(b1) l47(b1) 2
5 l52(b0) l57(b0) 2
6 l63 l66 2
7 l74(b0) l78(b0) 2
8 l81 l88 2
9 l82(b1) l98(b1) 2
10 l103 l107 2

11 l114(b1) l115(b1) 2

2 2 2 2 2 2 2 2

(a) (b) (c)

Figure 4.29 Cycle construction problem for [SAN11a] coloring algorithm

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 84 -

In this thesis, we have proposed another memory mapping approach based on

transportation problem using breadth first algorithm with recursion. In the proposed

approach, the cycle is started from a node and all the nodes are recorded at that node. Then,

one node is selected and the cycle is completed using the selected node. However, if the cycle

is not completed or the cycle results in the deletion of additional rows then other recorded

nodes can be explored one by one in the tree (breadth first algorithm) to construct a cycle

until the cycle is completed. As in Figure 4.29 the cycle is not completed due to a problem at

t5 so we have selected another node at t1 and assigned b1 to data 8 instead of data 4. In this

case, the cycle is completed without any problem as shown in Figure 4.30.

t1 t2 t3 t4 t5 t6 t7 t8

1 b0 b0 2
1 1(1) 1(1) 2
2 1(1) 1(1) 2
3 1(1) 1(1) 2
4 1(1) 1(1) 2
5 b1 b1 2
6 b1 b1 2
7 1(1) 1(1) 2
8 b1 b1 2
9 b0 b0 2

11 b0 b0 2

11 1(1) 1(1) 2

2 2 2 2 2 2 2 2

Figure 4.30 Resulting cycle obtained with proposed cycle construction approach

Complexity of the algorithm

Algorithm needs to traverse ft edges at each time instance to select two accesses that can

be included in sfcur. However we need to use breadth first algorithm to explore all the option,

so its complexity is O (ft + |T|) where |T| is the number of time nodes. To construct a partition

sfcur, algorithm needs to select a couple of accesses for each time nodes So, the number edges

to be traversed for one partition is in the worst case (ft + |T|) * |T|. Since there are k = ft/2 semi-

2 factors (see definition), in order to construct all the partitions, the overall complexity of the

partitioning algorithm is O (ft/2 * |T| * (ft + |T|).

3.5.4. Pedagogical Example

We present an example based on data access matrix depicted in Figure 4.26. The first

step is to constructs the bipartite graph which is shown in Figure 4.27(a). This semi regular

bipartite graph has time nodes with degree ft = 4. There are two semi 2-factors using corollary

4.3. The second step first transforms the bipartite graph into matrix model of the

transportation problem which is depicted in Figure 4.31(a).

 The algorithm starts constructing the cycle c1 from the first route l01 (data d0 connected

with time node t1) and assigns the memory bank b0. Since one route is occupied, the algorithm

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 85 -

reduces the supply and demand to 1 in the matrix as shown in Figure 4.31(b). The algorithm

then fulfills the demand of t1 by choosing a data elements in t1. The algorithm selects a route

l31 (data d3 connected with time node t1) and assigns another memory bank b1. Now the

demand of t1 is completely fulfilled and the remaining producers connected with t1 (d5 and d7

in this case) are completely removed because these producers are unable to work at their full

capacity (see Figure 4.31(c)).. The second route connected with producer d3 (l34), is also

assigned the same bank b1. The algorithm fulfils the supply and demand of producers and

consumers respectively in the same manner until the cycle c1 is completed (cycle is completed

when we will reach at l03) i.e the algorithm do not contain any producer with supply of 1 and

any consumer with demand of 1 in the transportation matrix. This process is presented in

Figure 4.31(c). However, as shown in this figure that producer d0 is assigned with different

memory banks b0 and b1 which is in-valid for mapping as one data could not be mapped in

two banks. Therefore, an additional bank is needed for d0 so we will assign b2 for d0 both at t1

and t3 as shown in Figure 4.31(d).

t1 t2 t3 t4 t5

0 l01 l03 2

1 l12 l15 2

2 l23 l24 2

3 l31 l34 2

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

2 2 2 2 2

t1 t2 t3 t4 t5

0 l01(b0) l03 1

1 l12 l15 2

2 l23 l24 2

3 l31 l34 2

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

1 2 2 2 2

(a) (b)

t1 t2 t3 t4 t5

0 l01(b0) l03(b1) X

1 l12 l15 2

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

X 2 X x 2

t1 t2 t3 t4 t5

0 l01(b2) l03(b2) X

1 l12 l15 2

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

X 2 X x 2

(c) (d)

Figure 4.31 Approach based on transportation problem (part-1)

The algorithm continues to find cycle c2 by using the same approach used in

construction of c1 until the cycle c2 is completed as shown with gray highlighted cells in

Figure 4.32(a). We need only one additional bank for all cycles in a semi 2-factor as

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 86 -

additional bank used in c1 can be reused in case of an odd cycle of c2 (not in case of this

example).

t1 t2 t3 t4 t5

0 l01(b2) l03(b2) X

1 l12(b0) l15(b0) X

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92(b1) l95(b1) X

X X X x X

t1 t2 t3 t4 t5

0

1

2

3

4 l44(b3) l45(b3) X

5 l51(b5) l52(b5) X

6 l62(b3) l63(b3) X

7 l71(b4) l73(b4) X

8 l84(b4) l85(b4) X

9

X X X X X

(a) (b)

Figure 4.32 Approach based on transportation problem (part-2)

The demands of all the consumers are fulfilled so the first semi 2-factor is constructed.

The algorithm removes the first semi 2-factor from the transportation matrix. It initializes all

consumers with demand of 2 and starts constructing the second semi 2-factor from remaining

matrix using the process described for the first semi 2-factor as shown in Figure 4.32(b) in

which there are shown two cycles c1 and c2 (in Figure 4.32(b) c1 is shown in plane and c2 is

shown in gray cells). c2 is also odd cycle so we also need an extra bank to map it.

The final mapping is shown in Figure 4.33(a) in which six ((3/2)*P) banks are used to

find conflict free memory mapping. The Figure 4.33(b) gives the final architecture along with

the memory mapping for the considered example.

t1 t2 t3 t4 t5

0 l01(b2) l03(b2) X

1 l12(b0) l15(b0) X

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44(b3) l45(b3) X

5 l51(b5) l52(b5) X

6 l62(b3) l63(b3) X

7 l71(b4) l73(b4) X

8 l84(b4) l85(b4) X

9 l92(b1) l95(b1) X

X X X X X

b0(1,2)

b1(3,9)

b2 (0)

In
te

rc
o

n
n

e
c
tio

n
 N

e
tw

o
rk

PE4

b3(4,6)

Network Controller
for read and write cycles

PE3

PE2

PE1

M
e

m
o

ry
 c

o
n

tro
lle

r

b4(7,8)

b5 (9)

(a) Final mapping matrix (b) Final mapping architecture

Figure 4.33 Mapping based on transportation problem

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 87 -

4. Experiments and results

Different experiments have been performed to validate the theoretical work presented in

this chapter. Again, all the results in this are given in NAND-gate equivalent area using 90nm

technology from STMicroelectronics. These estimations are based on synthesized and pre-

characterized components (Registers, multiplexers, …). The number of the different

components is provided by the mapping tool and as a result the estimations for the

architecture are generated.

We have performed experiments for each cases of the proposed approach considering

three test cases: shuffled turbo decoders for LTE, non-binary LDPC and shuffled turbo

decoders for HSPA.

4.1. Case study-1: Shuffled turbo decoders for LTE

In the first part of chapter-3, we have presented a case study for 3GPP-LTE standard turbo

decoder for nine different configurations as shown in Table.4.1. In-place memory mapping

architecture was used to solve configuration 1 to 5 (non-shuffled architecture) and MRMW

memory mapping architecture was used to solve configuration 6 to 7 (shuffled architecture)

[SAC12] with L = 1024 and P = 16 and 32. We have applied our proposed approach to solve

configuration 6 to 7 (shuffled architecture) to use in-place memory mapping architecture.

 Table 4.1 Different configuration to explore the design space for turbo decoding

Mode Scheduling Radix
Internal

Memory

Config. 1 Non-Shuffled Butterfly 2 YES

Config. 2 Non-Shuffled Butterfly 4 YES

Config. 3 Non-Shuffled Butterfly 16 YES

Config. 4 Non-Shuffled Butterfly 2 No

Config. 5 Non-Shuffled Butterfly 4 No

Config. 6 Shuffled Replica 2 No

Config. 7 Shuffled Replica 2 YES

Config. 8 Shuffled Replica 4 No

Config. 9 Shuffled Replica 4 YES

Bipartite test is applied to test the bipartiteness of these configurations as shown in Figure

4.5. Results showed that these configurations are of bipartite nature and now we can apply

bipartite edge coloring algorithm using in-place memory mapping architecture [SAN13]. In

[SAC12], MRMW mapping architecture was used to solve configuration 6-9 but thanks to our

proposed design flow we can solve the conflict problems for these configurations using in-

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 88 -

place architecture by applying the proposed bipartite test. The area comparison is presented in

Figure 4.34 for configuration 6 to 9. The cost of the architecture (excluding processors) can

be reduced up to 25% of the total area by using our proposed approach. The reduction in case

of P = 32 is almost the same.

0

1

2

3

4

5

6

7

8

9

Conf.6 Conf.7 Conf.8 Conf.9

N
an

d
 g

at
e

eq
.
A

re
a

M
il

li
o

n
s

[SAN13] Proposed

Figure 4.34 Area comparison for shuffled turbo decoders with P=16

4.2. Case study-2: Non-Binary LDPC codes

An extension of binary LDPC codes has been developed to further reduce the gap of

performance with Shannon limit. This new class of codes is known as non-binary LDPC (NB-

LDPC) codes [DAV]. These codes improve the performance of small and moderate codeword

lengths. However, increase in decoder complexity for NB-LDPC motivates to develop

decoding algorithms that are easily implementable. Also, unlike structured codes, routing of

the edges of tanner graph is not regular and even implementing NB-LDPC on serial

architecture suffers from memory conflict problem.

The DAVINCI project [DAV], funded by the European Commission under the seventh

framework (FP7) of collaborative research, designed the novel NB-LDPC codes and related

link level technologies. The purpose of this project was to construct codes that are suitable for

implementation and outperform the state of the art techniques to design NB-LDPC codes.

Typical serial decoder architecture [DAV] for NB-LDPC codes developed in DAVINCI

project is shown in Figure 4.35.a. This decoder is used to decode NB-LDPC codes with check

node degree = dc = 6 and variable node degree = dv = 2. The decoder consists on one CN

processor and six VN processors. The decoder is designed based on serial implementation to

process one check node at each cycle. To achieve high memory bandwidth, main memory is

divided into dc number of memory banks to simultaneously receive dc messages from

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 89 -

memory. The interleaver and the deinterleaver are designed to transfer data between CN

processors, VN processors and memory banks.

For partially parallel architecture, two check nodes are processed in parallel at the same

time as shown in Figure 4.35.b. The main memory is divided into 2*dc number of memory

banks to concurrently fetch 2*dc messages from memory.

Mem

0

De-interleaver

Check Node

Mem

1

Mem

2

Mem

3

Mem

4

Mem

5

Interleaver

VN

0

VN

1

VN

0

VN

1

VN

0

VN

1

To Memory

De-interleaver

Check Node

Interleaver

VN

0

To Memory

Check Node

VN

1
VN

0

VN

1
VN

0

VN

1
VN

0

VN

1
VN

0

VN

1
VN

0

VN

1

Mem

0

Mem

1
Mem

2

Mem

3
Mem

4

Mem

5
Mem

6

Mem

7
Mem

8

Mem

9
Mem

10

Mem

11

 (a) Serial Architecture (b) Partially Parallel Architecture

Figure 4.35 Architecture for NB-LDPC

The problem is to allocate messages into memory banks in such a manner that at each

cycle CN processor can fetch dc number of messages from dc number of memory banks

concurrently without any conflict.

The first step is to prepare data access matrix for the architectures. Data access matrix

for partially parallel architecture is shown in Figure 4.36 where 6 data elements are needed to

be accessed in parallel for one check node (12 data are needed for two check nodes). To find

conflict free memory mapping, all data should be stored in memory bank in such a manner

that there is no conflict in accessing them in each cycle.

2 10 62 23 59 29 33 26 25 16 17 63 36 21 15 11 18 9 38 34 40 31 3 12 41 32 39 13 30 22 43 60

3 11 63 24 60 30 34 27 26 17 18 64 37 22 16 12 19 10 39 35 41 32 4 13 42 33 40 14 31 23 44 61

149 139 159 67 156 97 142 130 115 83 155 65 78 132 181 116 96 174 109 98 106 125 183 91 117 169 123 74 190 189 162 110

122 123 84 114 133 110 70 119 181 127 109 10 6 184 98 68 96 156 83 85 190 169 78 91 115 81 67 134 108 117 136 167 189

90 86 126 178 73 191 172 80 153 128 152 176 157 171 107 140 175 99 170 82 161 188 138 173 168 144 95 145 66 75 105 147

157 179 182 158 124 141 88 148 66 143 75 131 103 126 144 178 105 129 145 138 77 135 128 161 163 118 180 188 152 113 82 99

48 19 53 42 51 47 46 7 58 28 5 6 1 50 44 35 61 20 56 37 54 14 45 55 8 57 27 49 52 64 4 24

49 20 54 43 52 48 47 8 59 29 6 7 2 51 45 36 62 21 57 38 55 15 46 56 9 58 28 50 53 1 5 25

146 104 112 79 113 85 81 84 184 70 167 101 136 108 87 102 119 68 164 154 121 133 71 100 114 120 127 122 72 135 185 94

100 94 90 154 183 72 164 146 142 159 130 155 139 71 112 174 149 97 116 121 132 102 101 162 74 171 87 79 125 104 65 185

88 160 137 129 148 177 166 103 89 111 118 93 92 141 131 77 180 134 69 165 179 186 192 143 187 151 163 158 182 76 124 150

153 177 172 151 89 147 107 168 95 170 86 173 111 175 186 15 69 187 191 80 73 92 165 76 137 93 160 176 140 192 166 120

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32

 Figure 4.36 Data Access Matrix for L = 192 and dc = 6

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 90 -

4.2.1. Vizing theorem for non-binary LDPC codes

To solve memory conflict problem for NB-LDPC codes, MRMW architecture has been

used in [SAN12]. However, the approach we propose in this chapter can solve memory

mapping problem for non-binary LDPC using in-place mapping architecture.

Discussion:

At-most P+1 banks are needed for memory conflict problem in non-binary LDPC codes

by using Vizing theorem.

As already shown, Vizing theorem needs P+1 banks for memory conflict problems only

with simple graphs. So a memory mapping problem from non-binary LDPC codes can be

solved with P+1 banks using Vizing theorem if non-binary LDPC mapping problem results

into a simple graph. As simple graph have no parallel edges and there will be no parallel

edges in a graph if any two time nodes have only one data common between them. As it can

be seen in Figure 4.21a(and simpler example in Figure 4.7) that the graph is a simple graph as

the data access matrix Figure 4.20 has only one data element common between two time

nodes. Now we have to prove that only one data element is common between two time nodes

in non-binary LDPC codes.

Girth is an important parameter for LDPC codes, which is strongly related to code

performance. Girth can be defined as the size of the smallest cycle of the bipartite graph.

Girth g <= 4 are normally considered as short cycles in LDPC codes. Short cycles are

avoided in LDPC codes as it degrades the performance of the decoder [XIO05]. If g <= 4

then more than one data elements is common between two time nodes (check nodes) which

will result in parallel edges. So, for better performance LDPC codes are designed with g > 4.

Therefore, the data access matrix will always have only one data element common between

two time nodes as it can be seen in the example shown in Figure 4.20 with g > 4. In this

example, the data access matrix have only one data element common between two time

nodes. This property will make the resultant graph into a simple graph because only one edge

will be possible between two nodes (due to one same data). Therefore, Vizing theorem can be

applied to solve the memory conflict problem for non-binary LDPC codes.

4.2.2. Results

We have performed experiments for NB-LDPC with different block lengths and

parallelisms. In-place memory mapping solutions in the state of art approaches like [CHA10a]

are not able to find conflict free memory mapping for NB-LDPC conflict problem. Therefore

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 91 -

we compared our proposed work with [CHA10b] and [BRI13b]. The result for [SAN13] are

not shown as they are same as [CHA13b] because mapping solution with [SAN13] for these

experiments are also based on MRMW architecture so the cost of the architecture will be same

for [SAN13] and [CHA10b]. The approach proposed in [BRI13b] is also to generate optimize

hardware architecture so we have compared our results with [BRI13b].

1

51

101

151

201

251

301

351

401

48 96 192 288 384

N
a
n
d
 g

a
te

 e
q

.
A

re
a

x
 1

0
0

0

Block Length

[CHA10b] [BRI13a] Proposed

Figure 4.37 Comparison of NB_LDPC decoder areas obtained with state of art

approaches and Vizing coloring for different block length (P = 6)

The results are shown in Figure 4.37 and Figure 4.38. The results for different block

lengths with P= 6 are shown in Figure 4.37 and with P= 12 in Figure 4.38. The approach

[BRI13a] optimizes the architecture up to 15% whereas our proposed approach can optimize

the architecture up to 40% as compared to approaches without optimization [CHA10b].

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 92 -

1

51

101

151

201

251

301

351

401

451

48 96 192 288 384

N
a
n

d
 g

a
te

 e
q

.
A

re
a

x
 1

0
0

0

Block Length
[CHA10b] [BRI13a] Proposed

Figure 4.38 Comparison of NB_LDPC decoder areas obtained with state of art

approaches and Vizing coloring for different block length (P = 12)

4.3. Case study-3: Shuffled turbo decoding for HSPA

We have discussed the shuffled decoding for turbo decoding in chapter-2 in details. We

have also explored the memory conflict problem for LTE in section 4.1 of this chapter. The

turbo decoder architecture given in chapter-2 is same for LTE and HSPA interleaver.

However, the memory conflict problem is different in both the cases.

We have applied our proposed approach for shuffled turbo decoding in HSPA interleaver

to solve the memory conflict problem. According to the design flow shown in section-3, first

we have applied the bipartite test. The resultant graph in this case was not a bipartite graph.

Then, we have applied the simple graph test and we have observed that Vizing theorem

cannot be applied as the resultant graph is a multigraph. Therefore, the approach based on

transportation problem is used to solve the memory conflict problem for this test case as the

resultant graph.

In Figure 4.39, we show first results based on our approach. We have considered the worst

case scenario for these results as our transportation problem based memory mapping approach

uses 3/2*P memory banks each time. In fact, these are the worst case results as less than

3/2*P could also be used for a given test case, but the current software version of the

proposed design flow is not fully optimized.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 93 -

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

300 600 1032 2064

N
a
n

d
 g

a
te

 e
q

.
A

re
a

M
il
li
o

n
s

Block Length

[BRI13a] Proposed

Figure 4.39 Area comparison for different block length for HSPA P = 16 (best results)

However, even in worst cases, in place memory mapping can reduce the cost up to 37% as

compared with [BRI13a] as shown in Figure 4.39. The proposed approach needs up to six

banks instead of four memory banks (in case of [BRI13a]) to find conflict free memory

mapping. However, due to the in-place architecture the final cost is still reduced. As [BRI13a]

is an optimization of the approach [CHA10b] so we have compared our results with [BRI13a]

only for the block lengths in which the current software of [BRI13a] provides optimized

results than [CHA10b].

5. Conclusion

In this chapter, we have shown that all conflict problems with two accesses can be solved

using in-place architecture. We have proposed algorithms to find conflict free memory

mapping for two accesses conflict problem by using in-place architecture as state of art

approaches needs MRMW architecture for some of these memory mapping problems. Hence,

the total area of the decoder can be reduced by using in-place architecture for memory

mapping problems. We have proposed Vizing theorem for solving memory conflict problem

using in-place architecture. Moreover, we have introduced a dedicated approach based on

transportation problem to solve memory conflict problems using in-place architecture. These

proposed algorithms are able to find conflict free memory mapping in polynomial time.

In future, we can further optimize the decoder architecture by merging our two proposed

optimization concepts: the network customization and in-place memory architecture. We

could further optimize the solutions by using the customized network approach using in-place

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

In-place memory mapping for optimized architecture

 - 94 -

memory mapping architectures. The second perspective is to extend the proposed in-place

approach for other test cases with more than two data accesses.

In design time approaches, ROM blocks are used to control interconnection network and

generating addresses for different memory banks which may be sufficient to design parallel

architecture that supports single code-word or applications. However, to design hardware

architecture that supports complete standard and/or different applications, ROM based

approach results in huge hardware cost and area. To reduce hardware cost, optimizations are

required to use as less ROMs as possible to support different applications. For this purpose, an

approach based on on-chip memory mapping mechanism is proposed in the next chapter.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 95 -

Chapter 5

ON-CHIP IMPLEMENTATION OF MEMORY

MAPPING ALGORITHM TO SUPPORT

FLEXIBLE DECODER ARCHITECTURE

Table of Contents

1.Introduction 97

2.On-chip implementation of memory mapping algorithms 97

2.1.Proposed Design flow --- 98

2.2.Generation of data access order-- 99

2.3.Execution of memory mapping approach -- 104

2.4.Routing Algorithm --- 106

2.4.1.Example for Routing Algorithm -- 108

3.Experiments 109

4.Conclusion 112

In this chapter, we propose on-chip memory mapping approach in order to reduce the requirement of

the multiple ROM blocks. Design time approaches need ROM blocks to store the control

configurations for memory and network. However, multiple memory elements are required to support

different block lengths/different standards which results in high complexity(area). In order to

overcome this problem, we have proposed to embed memory mapping approaches on-chip to solve

memory conflict problem in parallel hardware decoders. Dedicated architecture composed of an

embedded processor and RAM to store command words are proposed. We propose to embed on-chip

the polynomial time memory mapping approach and a routing algorithm based on Benes network to

solve memory conflict problem in parallel hardware decoders. Different experiments are performed by

using memory mapping approaches executed on several embedded processors and results are

presented.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 96 -

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 97 -

1. Introduction

Design time approaches find memory mappings that provide conflict free concurrent

access to all the memory banks. In these approaches, ROM blocks are needed to store the

network, memory and other control configurations. However, multiple ROM blocks are

needed to support different block lengths within a standard or multiple standards which results

in high hardware cost. As shown in Figure 5.1, multiple ROM blocks are needed to store

address generation logic and network control logic to support multiple block lengths and/or

multiple applications. This results in huge hardware cost that is utilized in storing addressing,

network and other control logic to design flexible decoder architecture. In order to reduce

hardware cost, optimization is required to store addressing and control logic for multiple

block lengths or multiple applications. Unfortunately, state of the art memory mapping

approaches are unable to optimize memory necessary to store control information for multiple

blocks lengths or applications.

In order to overcome the hardware overhead problem, we propose a solution to run

mapping approaches on chip in order to calculate new mapping information on the fly as soon

as new block length needs to be decoded and to update these new generated control

information in memory. This work has been published in [REH12] [REH14b].

RAM0

RAM1

RAM2

Interconnection N
etw

ork

PEn-1
RAMb-1

Controller

R/W

PE2

PE1

PE0 A
ddress G

eneration Logic

Network Control Logic

Figure 5.1 Parallel decoder architecture

2. On-chip implementation of memory mapping algorithms

The proposed dedicated hardware architecture is shown in Figure 5.2 for embedding

memory mapping algorithms on chip. Control unit includes a dedicated processing element

(General Purpose Processor GPP, Application Specific Instruction set Processor ASIP or

Application Specific Integrated Circuit ASIC) to execute the mapping algorithm. The

architecture is shown in Figure 5.2 in which multiple network and addressing ROMs are

replaced by a two RAMs i.e. Network RAM and addressing RAM. Control Unit executes the

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 98 -

mapping algorithm and updates these RAMs when each time block length changes or the

application changes.

RAM0

RAM1

RAM2

In
terco

n
n
ectio

n
 N

etw
o

rk

PEn-1
RAMb-1

Network RAM R/W

PE2

PE1

PE0
A

d
d

re
ssin

g
 R

A
M

Architecture to execute
memory mapping Approach

Control Unit

 Figure 5.2 Parallel decoder architecture to embed memory mapping algorithms on chip

Sizes of Network and addressing RAMs depend on maximum block length and on the

parallelism supported by decoding architecture. To determine size of different components of

the architecture to support complete telecommunication standard, the following parameters

are considered:

P = Total Number of processing elements

B = Total number of memory banks

T = Total number of access to the memory

M = Maximum number of data in each bank

Size of addressing RAM = B * T * ⌈log2(M)⌉, where size of each word is B*⌈log2(M)⌉.

bits. Similarly, for Benes network, the size of network RAM = T * (B/2*((2*log2B)-1)). Also

the size of bus from network RAM to network is B/2*((2*log2B)-1) bits and the size of each

bus from addressing RAM to bank is B*⌈log2(B)⌉ bits.

The proposed approach is based on the design flow introduced below.

2.1. Proposed Design flow

The proposed design flow is shown Figure 5.3. In the first step, the data access order is

generated based on the input parameters like interleaving law, block length sizes, level of

parallelism and scheduling. The second step is the execution of the memory mapping

approach using the data access order from the previous step. As a result a conflict free

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 99 -

memory mapping is generated which contains the memory address information. The final step

is to generate the routing information for the interconnection network. We will define each of

these steps in details.

Generation of Interleaved order

Interleaving

law

Execution of memory mapping approach

Generation of Routing information

Conflict-free

Memory mapping

Natural and

Interleaved Order

Command words for
network Configuration

Figure 5.3 Embedded conflict free memory mapping flow

2.2. Generation of data access order

The first step of the design flow is to generate data access order based on the input

parameter like interleaving law, block length size and parallelism. To illustrate, we have

considered two interleavers: LTE and HSPA. Here we will describe in detail how to generate

the interleaved order for both of these interleavers.

a. HSPA Interleaver

Series of specification have been released from time to time for high speed packet

access (HSPA) after the release of initial draft by 3GPP-WCDMA. To obtain high

throughput, it is necessary to perform turbo decoding on parallel architecture. However, the

interleaver used in HSPA+ is not conflict free to support parallel implementation of turbo

decoder. Also it is necessary to design interleaver architecture that support wide range of

block sizes used in HSPA+ i.e. from 40 to 5114.

The interleaving algorithm for HSPA+ defined in [HSP04] is mentioned below:

L Number of bits input to Turbo code internal interleaver

R Number of rows of rectangular matrix described in standard

C Number of columns of rectangular matrix described in standard

p Prime number described in standard

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 100 -

v Primitive root describe in standard

• Determine R of the rectangular matrix, such that

5, (40 159)

10, ((160 200) (481 530))

20, (any other value)

if K

R if K or K

if K

≤ ≤ 
 

= ≤ ≤ ≤ ≤ 
 

= 

• Determine value of p and C, such that

if (481 ≤ L ≤ 530) then

 p = 53 and C = p

else

 Find p from Table 5. 1 such that

 L ≤ R*(p + 1),

and determine C of matrix such that,

C = p – 1; if (L ≤ R * (p-1))

C = p; if (R*(p-1) < N ≤ R * p))

C = p + 1; if (R*p < N)

Table 5. 1. List of prime number p and associated primitive root v

p v p v p v p v p v
7 9 47 5 101 2 157 5 223 3

11 2 53 2 103 5 163 2 227 2

13 2 59 2 107 2 167 5 229 6

17 3 61 2 109 6 173 2 233 3

19 2 67 2 113 3 179 2 239 7

23 5 71 7 127 3 181 2 241 7

29 2 73 5 131 2 191 19 251 6

31 3 79 3 137 3 193 5 257 3

37 2 83 2 139 2 197 2

41 6 89 3 149 2 199 3

43 3 97 5 151 6 211 2

• Write the input bit sequence into the rectangular matrix row by row and if R*C > L, the

dummy bits are padded to fill the matrix.

• Construct the base sequence S(j) for intra-row permutation as:

S(j) = [v * S(j-1)] % p; where j = 1,2, ……., p-2

• Determine the least prime integer sequence q(i) for i = 1, 2, ……., R-1 , by assigning

q(0) = 1, such that gcd(q(i), p-1) = 1 and q(i) > 6 and q(i) > q(i-1).

• Permute the sequence q(i) to construct the sequence r(i) such that

rT(i) = q(i) where i = 0, 1, …., R-1 and T(i) is the inter-row permutation defined in the

standard.

• Perform the intra row permutation Ui(j), such that

for i = 0, 1,….., R-1 and j = 0,1, ……, p-2;

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 101 -

If (C = p) then

 Ui(j) = S[(j*r(i)) mod (p-1)] and Ui(p-1) = 0;

If (C = p+1) then

 Ui(j) = S[(j*r(i)) mod (p-1)] and Ui(p-1) = 0 and Ui(p) = p

 and if (L = R*C) then exchange UR-1(p) with UR-1(0)

if (C = p-1) then

 Ui(j) = S[(j*r(i)) mod (p-1)] – 1

• Perform the inter row permutation of the matrix based on the pattern T(i) where T(i) is the

original row position of the i-th permuted row and defined in the standard.

• Read the bits column by column from the rectangular matrix by deleting the dummy bits

padded to the input bits sequence.

Example for HSPA Interleaver

The algorithm can be explained best through a small example of L = 44. Different

parameters obtained from the specifications explained previously are:

R = 5, C = 10, p = 11, v = 2

Next step is to put 44 data into matrix of order 5*10 (R*W) starting from row 0. Since

there are 50 cells in the matrix, so the last 6 cells are filled with dummy bits represented by -1

in the last row as shown in Figure 5.4.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 -1 -1 -1 -1 -1 -1

 Figure 5.4 Arrangement of L = 44 data into 5*10 matrix

Afterward, values for sequences s, q, r, u are calculated based on the rules defined in

the standard. These values are:

 S = 1 2 4 8 5 10 9 7 3 6 where number of values in S is (p-1) = 10

 q = 1 7 11 13 17 where number of values in q is R = 5

r = 17 13 11 7 1 where number of values in q is R = 5

Value of U

 0 6 4 1 2 9 3 5 8 7

 0 7 8 5 3 9 2 1 4 6

 0 1 3 7 4 9 8 6 2 5

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 102 -

 0 6 4 1 2 9 3 5 8 7

 0 1 3 7 4 9 8 6 2 5

where number of values in U is R*C = 5*10 = 50

The values in U are used to perform intra-row permutation. First row of U values are

used to permute values in first row of matrix. For the values calculated for this example, first

value remains at the first place, second value is permuted to sixth value, third value is

permuted to fourth value and so on. The matrix after intra-row permutation is shown in

Figure 5.5.

0 3 4 6 2 7 1 9 8 5

10 17 16 14 18 13 19 11 12 15

20 21 28 22 24 29 27 23 26 25

30 33 34 36 32 37 31 39 38 35

40 41 -1 42 -1 -1 -1 43 -1 -1

 Figure 5.5 Matrix after Intra-row Permutation

In the last step, inter-row permutation is performed on rectangular matrix using the

permutation pattern defined in the standard. Inter-row permutation pattern for this example is:

T = 4, 3, 2, 1, 0 where number of values in T is R = 5

The matrix after inter-row permutation is shown in Figure 5.6.

40 41 -1 42 -1 -1 -1 43 -1 -1

30 33 34 36 32 37 31 39 38 35

20 21 28 22 24 29 27 23 26 25

10 17 16 14 18 13 19 11 12 15

0 3 4 6 2 7 1 9 8 5

 Figure 5.6 Matrix after Inter-row Permutation

Afterwards, the values in the matrix are read out column by column after pruning

dummy bits to construct interleaved order of data values. An interleaved order for L = 44 is:

Interleaved order = Π = {40 30 20 10 0 41 33 21 17 3 34 28 16 4 42 36 22 14

6 32 24 18 2 37 29 13 7 31 27 19 1 43 39 23 11 9 38 26 12 8 35 25 15 5}

b. LTE Interleaver

Quadratic Permutation Polynomial (QPP) interleaver used in LTE [LTE08] is mostly

conflict free. However, for higher data rate applications when trellis and recursive units

parallelism are also included in each SISO, QPP interleaver is not contention-free and

requires a router and buffer mechanism to solve memory conflicts. For block size L, QPP

interleaver is represented by following equation.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 103 -

Π(x) = (f1x+ f2x
2
) mod L … (1)

Where f1 is odd and relatively prime to L, f2 is a multiple of an arbitrary selected prime

factor of L, x and Π(x) represents the original and interleaved address respectively and

integers f1, f2 are different for different block lengths defined in the standard as shown in

Table 5.2.

Table 5. 2. Turbo code interleaver parameters

i L 1f 2f i L 1f 2f i L 1f 2f i L 1f 2f

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120

27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 104 -

However, the equation (1) includes multiplication and square function to be implemented

which is hard to embed online. So, the on-line calculation approach [SUN11] rewrites (1) into

the following recursive form:

Π(x+1) = f1(x+1) + f2(x+1)
2
 mod L … (2)

 = Π(x) + g(x) mod L … (3)

where g(x) = f1 + f2 + 2f2x which can also be computed recursively through:

g(x+1) = g(x) + 2 f2 mod L … (4)

Example for LTE Interleaver

Let us consider an example for L = 4. It can be seen from f1 = 7, f2 = 12 So,

 f(x) = 0, g(0) = 7+12 = 19,

f(1) = 0 + 19 mod 48 = 19 and g(1) = 19 + 24 mod 48 = 43

 f(2) = 19 + 43 mod 48 = 14 and g(2) = 43 + 24 mod 48 = 19

So the complete set of interleaved order can be generated recursively in the above

mention procedure. The complete interleaved order is given below:

 Π = {0 19 14 33 28 47 42 13 8 27 22 41 36 7 2 21 16 35 30 1 44 15 10 29

24 43 38 9 4 23 18 37 32 3 46 17 12 31 26 45 40 11 6 25 20 39 34 5}

The second step generates the conflict free memory mapping by executing memory

mapping approach which is explained below.

2.3. Execution of memory mapping approach

The second step of the design flow is the execution of the memory mapping approach.

The proposed work in chapter-4 is not considered here as that is our recent work (completed

in last year of my thesis work) which is not published yet. So, the proposed approaches of

chapter-4 are included in the future perspectives of this work. We have embedded on-chip the

polynomial time algorithm presented in [SAN13]. This approach is described briefly.

PE1

PE2

PE3

t1 t2 t3 t4

0 1 2 3

4 5 6 7

8 9 10 11

PE1

PE2

PE3

t5 t6 t7 t8

3 7 4 2

1 0 10 9

11 6 5 8

Natural Order Interleaved Order
Figure 5.7 Data access matrix

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 105 -

The algorithm is based on two steps. In the first step a bipartite graph is constructed

based on two data access matrices. Whereas in the second step a polynomial time bipartite

edge coloring algorithm is used to find conflict free memory mapping. In the first step in

order to construct a bipartite graph, a tripartite graph G’ = (TNAT ∪ TINT ∪ L, E) is constructed

based on natural and interleaved data access matrices (as example shown in Figure 5.7) in

which vertex sets TNAT and TINT represent all the time instances used in natural order access

and interleaved order access respectively whereas vertex set L represents all the data elements

used in the computation. An edge (tNAT, l) is incident to the data vertex l and to the natural

order time vertex tNAT if l needs to be processed at tNAT (i.e. data l will be read and next written

at time tNAT). Similarly, an edge (tINT, l) is incident to the data vertex l and to the interleaved

order time vertex tINT if l needs to be processed at tINT. This tripartite graph Figure 5.8(a) is

converted into bipartite graph G by first joining two edges at each data vertex and then

removing all the data vertices from the tripartite graph. G is regular with the degree of each

time node, k=P.

0

1

2

3

4

5

6

7

8

9

10

11
Natural Order Time Vertices Interleaved Order Time Vertices

Data Vertices

t5

t6

t7

t8

t1

t2

t3

t4

t5

t6

t7

t8

t1

t2

t3

t4

Natural Order Time Vertices Interleaved Order Time Vertices

0

1

2

3

4

5

6

7

8

9

10

11

Data Vertices

(a) Tripartite graph (b) Complete Edge Coloring

Figure 5.8 Bipartite Edge Coloring Algorithm

After constructing bipartite graph, the next step is to apply bipartite edge coloring

algorithm to color the edges of that graph in polynomial time. For this purpose, we find an

Euler partitioning by taking every other edge to obtain two (k/2)-regular subgraphs. In this

way the problem is reduced to two (k/2)-regular graphs. However, to find euler partitioning, it

is necessary that k is even to divide a regular graph into two regular subgaphs of equal degree.

So, if K is odd then the algorithm first finds perfect matching Mp in G, assign one color to the

edges of Mp and remove Mp from G. The problem is reduced to even (K−1)-regular graph.

The perfect matching algorithm runs in O(kD) time. The complete edge coloring of G’ after

attaching data vertices in G is shown in Figure 5.8(b). In this figure, three colors of the edges,

corresponds to three memory banks, are represented with gray bold, gray narrow and gray

dotted lines. Further details on this algorithm can be found in [SAN13]. The resultant memory

mapping is:

Bank b0={0,2,3,5}, Bank b1 ={1,7,8,10}, Bank b2 = {4,6,9,11}

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 106 -

Afterwards, addressing and network control logic are generated based on this mapping

and stored in the memory. So, if we change the interleaving law then we get a new mapping

that is different from the previous one using memory mapping approach. For example, new

interleaved order and memory mapping are:

Interleaved order = 2, 7, 10, 8, 9, 6, 1, 5, 11, 3, 4, 0.

Bank b0={0, 1, 2, 3} Bank b1={4, 5, 6, 11}, Bank b2={7,8 9,10}

2.4. Routing Algorithm

The third step of the design flow of our proposed approach is the execution of the

routing algorithm to generate the routing information for the targeted interconnection

network. We have considered two fully connected networks: Crossbar and Benes network.

Crossbar is a non-blocking network in which connection of a processing element to a

memory bank does not interfere the connection of any other processor to any other memory

bank. It is feasible for online approaches to use crossbar network due to its high speed as they

can be configured automatically. But, their use is normally limited to low level of parallelism,

due to high complexity and cost. Hardware constraints such as the number of available pins

and the available wiring area limits the number of physical connections of a switch. These

issues prevent the use of crossbar networks for large network sizes [DUA03]. For a Crossbar

network, the size of network_RAM= T* (B *log2 B).

Benes network needs a routing algorithm to generate routing information. For this

purpose, we define a simplified routing algorithm for Benes network that can be executed on-

chip along with the mapping algorithm.

Figure 5.9 SN1 and SN2 for the routing algorithm

In a Benes network, many useful permutations, often required in parallel processing

environments are found to be self-routable. Lenfant proposed efficient set-up algorithms for

some frequently used permuatation as bijections [LEN78], namely the FUB family. Nassimi

and Sahni [NAS81] proposed a simpler algorithm for routing the F class of permutations that

includes the bit-permute complement (BPC) and inverse omega classes of permutations.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 107 -

Boppana and Raghavendra [BOP88] developed another self-routing technique for linear-

complement (LC) class and inverse omega class of permutations. A control algorithm is

described in [NAS82] for the Benes network. This control algorithm, called the "looping

algorithm," is based upon the recursive configuration of the Benes network. We have adopted

to implement the control algorithm presented in [LEE87] which is not recursive. In this

algorithm (B x B) Benes network is viewed as a concatenation of two sub-networks SN1 and

SN2 as shown in Figure 5.9. The first (log B - 1) stages of a Benes network correspond to SN1,

and the remaining log B stages correspond to SN2. The control algorithm sets switches one

stage at a time, stage by stage. SN1 is controlled by a full binary tree of set partitioning

functions, called a Complete Residue Partition Tree (CRPT) and SN2 is bit controlled. In

CRPT of SN1, a Complete Residue System modulo m CRS-(mod m) is a set of m integers

which contains exactly one representative of each residue class mod m. Whereas, a Complete

Residue Partition (CRP) is a partition is a partition in which each CRS (mod 2
k
) is further

divided into two CRS's(mod 2
(k- 1)

), k>0.. CRP is done at each stage in which each CRS -(mod

m) is divided into further sets of CRS-(mod m-1) as shown in Figure 5.10.

CRP on
CRS(mod 2n)

CRP on
CRS(mod 2n-1)

CRP on
CRS(mod 2n-1)

CRP on
CRS(mod 2n-2)

CRP on
CRS(mod 2n-2)

CRP on

CRS(mod 2n-2)

CRP on
CRS(mod 2n-2)

CRP on
CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

CRP on

CRS(mod 2n-(n-2))

CRP on

CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

CRP on

CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

.... ..

Figure 5.10 A Complete Residue Partition Tree (CRPT)

The Control Algorithm for the (B x B) Benes Network, B = 2
n
 is described as follow:

1. The B numbers of the destination permutation in the binary representation are the

input to the network.

2. For SN1, perform 2
i
 CRP's on the 2

i
 CRS's(mod 2

(n-i)
), formed by bits bi…b(n-1) for E

i

stage of SNI to get 2
(i+ l)

 CRS's(mod 2
(n-i-1)

) using bits b(i+l)…b(n -1) for 0 <=i<= (n - 2).

3. For SN2, the remaining n switching stages are controlled by b(n-l),b(n-2),…, b0 used as

control bits Co, Cl, … , C(n 1), respectively.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 108 -

2.4.1. Example for Routing Algorithm

Let us consider an 8x8 Benes network with a permutation [0 4 2 6 1 5 3 7] to be

routed using the above defined algorithm.

The network is divided in SN1 and SN2 as shown in Figure 5.11(a). SN1 consist of first

two stages and SN2 consist of last three stages. For SN1, the division of stages in the CRPT is

shown in Figure 5.11(b) in which the permutation is shown in binary form controlled by three

digits b2, b1 and b0. In the first stage E
O
 of SN1, CRP is applied on CRS (mod 8) which is

divided in two CRS(mod 4) using two bits bits b1b2 i-e (000, 010, 101, 111) and (100, 110,

001, 011) see Figure 5.10. In the second stage E
1
 of SN1, CRP is applied on each CRS (mod

4) which divide each of it independently in two further two sets of CRS(mod 2) using one bit

b2 i-e (000, 101), (010, 111), (100, 001), and (110, 011).

000

100

010

110

001

101

011

111

SN1 SN2

CRPT Control Bit Control

CRP on

CRS(mod 23)

CRP on
CRS(mod 22)

CRP on
CRS(mod 221)

CRP on
CRS(mod 21)

CRP on
CRS(mod 21)

CRP on
CRS(mod 21)

CRP on
CRS(mod 21)

(a) (b)

Figure 5.11 Routing example

The complete control mechanism is shown in Figure 5.12. The control mechanism for the

last three stages of SN2 are based on bit control as shown in the figure. In SN2, the first stage

is controlled by C0, the second stage is controlled by C1 and the third stage is SN2 is

controlled by C2. In SN, the switch is set straight if the inputs to the switch are (0,0) or (0,1)

and the switch is set cross if the inputs to the switch are (1,0) or (1,1).

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 109 -

Figure 5.12 Example with complete routing tags

3. Experiments

In this section, different experiments are presented. These experiments are performed by

using different embedded processors to measure the computational complexity of memory

mapping approaches based on block size and parallelism. Moreover, the memory required to

store command words both in case of on chip and off chip execution of memory mapping

approaches is also compared. For experimental purpose, one hard processor PowerPC

embedded in Xilinx FPGA and one soft processor NIOS-II used in Altera FPGAs are

considered to execute the approach proposed in [SAN13] and the results are compared with

other state of the art approaches [TAR04] [CHA10a]. The execution times for these

approaches are measured for different processors. Moreover, HSPA interleaver used in 3GPP-

WCDMA [HSP04] is implemented on parallel architecture. In this thesis we have mostly

chosen HSPA interleaver for our experiments because the number of conflicting data

elements in this interleaver is high as compared to other interleavers. To design parallel

conflict free architecture for this interleaver, memory mapping approaches are required to

generate commands word for network and memory to support all the block sizes with

different parallelisms.

The first processor we considered for the experiments is PowerPC which is a hard

processor embedded in Xilinx Virtex-5 ML507 board. Processor clock frequency of 400MHz

and System clock frequency of 100MHz was used to perform experiments. The second

processor we considered in our experiments is NIOS II. NIOS II is a soft processor used in

Altera FPGAs. NIOS II has been implemented on Cyclone-III NIOS II Embedded Evolution

Kit with Processor clock frequency of 195MHz and System clock frequency of 50MHz.

Normalized time values (as each embedded processor has different frequency so we have

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 110 -

normalized all the values to PowerPc) are used to measure the impact of architecture of

embedded processors on execution time. PowerPC execution time is used as a reference for

normalized time and execution times of NIOS II is normalized with respect to the PowerPC

clock frequencies.

The normalized times to execute (only the time needed to execute the memory mapping

approach) [TAR04] [CHA10a] and [SAN13] on embedded processors for different L with P

=4,8,16 and 32 are studied. The normalized times to execute [TAR04] [CHA10a] and

[SAN13] for different L with P =32 are shown in Figure 5.13 for NIOS II and PowerPC. From

processor perspective, PowerPC executes the mapping algorithm in the least time as

compared to NIOS II. From this figure, it is evident that significant reduction in execution

time for [SAN13] is achieved as compared to [TAR04] [CHA10a] for all block lengths. For L

= 5120 with P = 32, using PowerPC the execution time in case of [TAR04] is same as

[CHA10a] which is about 2 hours whereas by using the approach [SAN13] the execution time

is reduced significantly to only 127ms. Furthermore, the results for [SAN13] also include the

delay introduced by routing information generation process whereas the routing information is

automatically generated as crossbar is considered for [TAR04] and [CHA10a]. For

experimental purpose, we have considered crossbar for [TAR04] and [CHA10a] for which the

time to generate routing information is very simple and automatic so we considered it

negligible. An additional delay of 0.2ms (not included in the results shown in Figure 5.13 and

5.14) is required in order to generate routing information in case of [SAN13] for complete

block length of size L=256 with P=32, which increases to 4ms for L=5120 with same P.

However, for the same block length the delay in command word generation remains almost

the same for different level of parallelism as explained in previous section.

Figure 5.13 Normalized Run time Values for different embedded processors with PE = 32

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 111 -

Furthermore, we performed experiments with P=4, 8, 16 and 32 for L=5120 as shown in

Figure 5.14. From these experiments, significant reduction in execution time for [SAN13] can

be seen as compared to [TAR04] and [CHA10a]. Furthermore, the execution time for

[SAN13] has no significant change with increase in parallelism whereas execution time for

[TAR04] and [CHA10a] increases almost 25 times with the increase in parallelism from P =4

to P =32.

Figure 5.14 Normalized Run time Values of for different types of parallelism with L=5120

From architecture perspectives, cost of our architecture always remains constant for

different parallelisms supporting several block lengths for each processor. However, for

offline memory mapping approaches, high memory cost is required to support several block

lengths. Figure 5.15 shows the comparison between the memory required to store command

words with P=4, 8, 16 and 32. Same memory is reused to store command words as soon as

the parallelism is changed in order to support this parallelism in case of proposed approach

whereas off-chip approaches require additional memory to store new set of command words

with each type of parallelism. For P=32, size of memory required in case of off-chip

approach to store command words is 64-Mbits to implement all the block sizes used in

3GPP-WCDMA. Thanks to the extensive reuse of RAM only 128Kbits of memory is required

in case of on-chip execution of mapping algorithms. However, we need an embedded

processor for the proposed approach.

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

On-chip implementation of memory mapping algorithms to support flexible decoder architectur

 - 112 -

15

25
35

45

110 100 90 80

128 128 128 128

8192
13312

18432
25436

53233 47732 42231 37970
61425 61044 60663 63406

1

10

100

1000

10000

100000

4 8 16 32
Parallelism

Network
Conrtoller

Address
Controller

Total

On-Chip Off-Chip On-Chip Off-Chip On-Chip Off-Chip On-Chip Off-Chip

Figure 5.15 Area Comparison of on-chip and off-chip implementation for different P

The use of RAM blocks instead of multiple ROM blocks for storing configuration bits

needed to support multiple block lengths and significant reduction in execution time in case of

polynomial time approaches encourages embedding memory mapping and routing algorithm

for future telecommunication devices.

4. Conclusion

In this chapter, we have proposed to embed memory mapping approaches on-chip to

solve memory conflict problem in parallel hardware decoders. Dedicated architecture

composed of an embedded processor and RAM blocks to store command words is proposed.

We have embedded on-chip a polynomial time memory mapping approach and routing

algorithm based on Benes network to solve memory conflict problem in parallel hardware

decoders. Different experiments have been performed by using existing memory mapping

approaches executed on several embedded processors. Results showed that the on-chip

implementation of polynomial time memory mapping approaches allows to reduce

significantly the execution time and reduction in hardware cost by the use of RAM blocks

instead of multiple ROM blocks (though we need an embedded processor for proposed

approach).

Future perspective of this work is to further improve the execution time by using ASIPs

or ASICs to target real time flexible decoder architectures and to include cache like

mechanism to speed up the switch from one configuration to another one. Another future

perspective is to embed the polynomial time approaches proposed in this thesis (in-place

memory mapping architecture approaches) to support flexible hardware architecture to

support multiple block lengths and/or multiple applications.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Conclusion and Future Perspectives

 - 113 -

CONCLUSION AND FUTURE

PERSPECTIVES

Turbo and LDPC codes are two families of codes that are extensively used in current

communication standards due to their excellent error correction capabilities. For high

throughput performance, decoders are implemented on parallel architectures in which more

than one processing elements decode the received data. However, parallel architecture suffers

from memory conflict problem. It increases latency of memory accesses due to the presence

of conflict management mechanisms in communication network and unfortunately decreases

system throughput while augmenting system cost.

To tackle memory conflict problem, three different types of approaches exist in

literature. In first type of approaches, codes are constructed with good error correction

capabilities without any conflicts. Also, these interleavers often simplify the parallel decoder

architectures. However, these are conflict free only for particular types or degrees of

parallelism used in turbo decoding or for a subset of block lengths. A second class of solution

to deal with memory access conflict problem is to simply assign data in different memory

locations without considering concurrent access issue and then use additional buffers in the

interconnection network to manage memory conflicts. These kinds of approaches can greatly

increase the cost of the system due to presence of interconnection network and buffer

management mechanism to manage conflicts. The total latency of the system is also impacted

since each conflicting data access must travel buffers before being stored in the memory

banks which in turn decreases the throughput. Third type of approaches are design time

memory mapping approaches. The resultant architectures consist of ROM blocks used to store

configuration bits. The use of ROM blocks may be sufficient to design parallel architecture

that supports single codeword or single application. However, to design hardware architecture

that supports complete standard or different applications, ROM based approach results in

huge hardware cost and area.

In this thesis, we aimed to design optimized parallel interleaver architecture. For this

purpose, we have proposed two different categories of approaches. In first category, we have

proposed optimized design time off-chip approaches that aim to limit the cost of final decoder

architecture targeting the customization of the network and the use of in-place memory

architecture.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Conclusion and Future Perspectives

 - 114 -

In the second category, we have introduced a new method in which both runtime and

design time approaches can be merged to design flexible decoder. For this purpose, we have

embedded memory mapping algorithms on-chip in order to execute them at runtime to solve

conflict problem. The on-chip implementation replaces the ROM blocks with a single RAM

block to support multiple block lengths and/or to support multiple applications. Different

experiments are performed by executing memory mapping approaches on several embedded

processors.

Future Perspectives

A lot of scope for future enhancement of proposed contributions is possible. In future,

we can further optimize the decoder architecture by merging the two design time approaches

proposed in this thesis: the network customization and in-place architecture. We can take

advantage of using the customized network approach along with in-place memory mapping

architecture in order to generate strongly optimized architectures. Another future perspective

is to embed proposed polynomial time approaches (in-place memory mapping architecture

approaches) to support flexible hardware architecture for different block lengths with in a

standard or to support different standards.

In the on-chip approach, memory mapping approaches are also executed on several

embedded processors. The results showed that the proposed approach allows to greatly

improve timing performances and to reduce memory footprint. Future perspective of this

work is to further improve the execution time by using ASIP or ASICs to target real time

flexible decoder architectures and to include cache like mechanism to speed up the switch

from one configuration to another one.

Furthermore, the memory mapping approaches can be used to solve memory mapping

like problems from other signal processing and telecommunication domains. Implementation

of different algorithms on parallel processing becomes an active domain of research after the

development of high data rate applications. In all of these implementations, multiple accesses

cause memory conflict problem. In future, current algorithms could be used to solve the

mapping problem of other applications used in signal processing domain.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 115 -

BIBLIOGRAPHY

[AHA] “Primer: Reed-Solomon Error Correction Codes”, AHA Application Note.

 [ALK11] R. Al-Khayat, P. Murugappa, A. Baghdadi, and M. Jezequel, “Area

and throughput optimized asip for multi-standard turbo decoding,” in Rapid

System Prototyping (RSP), 2011 22
nd

 IEEE International Symposium on, may

2011, pp. 79 –84.

[ASG10] Rizwan Asghar and Dake Liu “Towards Radix-4, Parallel Interleaver Design to

Support High-Throughput Turbo Decoding for Re-Configurability” 33rd IEEE

SARNOFF Symposium 2010, Princeton, NJ, USA.

[BAH74] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear

codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-

20, no. 2, pp. 284–287, March 1974.

[BEN96]

[BEN04]

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollarab, “A soft-input soft-

output maximum a posteriori (map) module to decode parallel and serial

concatenated codes,” TDA Progress Report, vol. 42-127, November 1996.

A.Tarable, S.Benedetto, and G.Montorsi, “Mapping interleaving laws to

parallel turbo and LDPC decoder architectures”, IEEE Trans. Inf. Theory,

vol.50, no.9, Sept. 2004.

[BER93] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in Communications, 1993.

ICC 93. Geneva. Technical Program, Conference Record, IEEE International

Conference on, may 1993, vol. 2, pp. 1064 –1070 vol.2.

[BNS65]

[BOH07]

V.E. Benes, “Mathematical Theory of connecting network and telephone

trafic”, New York, N.Y.: Academic, 1965.

L. Boher, J. B. Dore, M. Helard, and C. Gallard, “Interleaver for high paralle-

lizable turbo decoder” Proceedings of MC-SS'07, may 2007.

[BOP88] R. Boppana, C.S. Raghavendra, On self-routing in Benes and shuffle exchange

networks, in: Proceedings of the International Conference on Parallel

Processing, 1988, pp.196-200.

[BRI12] A. Briki, C. Chavet, P. Coussy and E. Martin, "A Design Approach Dedicated

to Network-Based and Conflict-Free Parallel Interleavers", In Proceedings of

the 22th ACM Great Lakes Symposium on VLSI (GLSVLSI) 2012, Salt lake

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 116 -

City, USA, may 2012

[BRI13a] A. Briki, C. Chavet and P. Coussy, "A Memory Mapping Approach for

Network and Controller Optimization in Parallel Interleaver Architectures", In

Proceedings of the 23th ACM Great Lakes Symposium on VLSI (GLSVLSI)

2013, page XX-YY, Paris, France, may 2013

[BRI13b] A. Briki, C. Chavet and P. Coussy, "A Conflict-Free Memory Mapping

Approach To Design Parallel Hardware Interleaver Architectures With

Optimized Network And Controller", In Proceedings of IEEE Workshop on

Signal Processing Systems (SiPS), page XX-YY, Taipei : Taiwan, Province De

Chine, oct. 2013

[BRU46] De Bruijn, N.G., “A Combinatorial Problem” Koninklijke Nederlandse

Akademie v. Wetenschappen 49,758–764, 1946.

[CHA10a] C. Chavet, P. Coussy, P. Urard, and E. Martin, “Static address generation

easing: a design methodology for parallel interleaver architectures,” in

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International

Conference on, march 2010, pp. 1594 –1597.

[CHA10b] C. Chavet and P. Coussy, "A memory Mapping Approach for Parallel

Interleaver design with multiples read and write accesses", Proc. of the IEEE

International Symposium on Circuits and Systems (ISCAS), June 2010.

[CHE02] J. Chen and M. Fossorier. “Density evolution of two improved bp-based

algorithms for LDPC decoding”. IEEE Communication letters, March 2002.

[DAV] http://www.ict-davinci-codes.eu/

[DIN05] L. Dinoi, S. Benedetto, “Variable-size interleaver design for parallel turbo

decoder architecture”, IEEE Trans. Communication,Vol.53, No11, 2005.

[DOB03]

[DUA03]

R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architectures and parallel

interleaving design for low-latency MAP turbo decoders”, Tech.Rep.2003

CCIT-TR436.

Jose Duato, Sudhakar Yalamanchili and Lionel Ni. “Interconnection Networks

an Engineering Approach”, Morgan Kaufman Publishers, 2003,p.20-30.

[DVB08]

[EMM03]

DVB DocumentA122. “Frame structure channel coding and modulation for the

second generation digital terrestrial television broadcasting system (DVB-T2),”

2008.

Emmanuel Boutillon, D. Gnaedig, V. Gaudet, P. G. Gulak, and M. Jezequel,

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 117 -

“On multiple slice turbo codes,” 3rd International Symposium On Turbo Codes

and Related Topics, pp. 343 – 346, 2003.

[FOS99] M.P.C Fossorier, M. Mihaljevic, and H. Imai. “Reduced complexity iterative

decoding of low-density parity check codes based on belief propagation”. IEEE

Transactions on communications, 47:673–680, May 1999.

[GIU02] A.Giulietti, L.Van Der Perre and M.Strum, “Parallel turbo coding interleavers:

avoiding collisions in accesses to storage elements”, Electronics Leters, vol.

38, no. 5, pp.232–234, Feb. 2002

[GOL61] M. J. E. Golay, “Complementary series”, IRE Trans. on Info. Theory, vol. IT-

7, pp. 82-87, April 1961.

[GUT10] I. Gutierrez, A. Mourad, J. Bas, S. Pfletschinger, G. Bacci, A. Bourdoux, H.

Gierszal, “DAVINCI Non-Binary LDPC codes: Performance and Complexity

Assessment”, proc of Future Network & Mobile Summit, Italy, June 2010.

[HAM50] R.R. W. Hamming, “The Bell System Technical Journal,” Bell Syst. Tech. J.,

vol. XXVI, no. 2, pp. 147–160, Apr. 1950.

[HSPA04]

[JIN]

3GPP, “Technical specification group radio access network; multiplexing and

channel coding (FDD)” (25.212 V5.9.0).June 2004.

Jing-ling, “Parallel Interleavers Through Optimized Memory Address

Remapping” IEEE Trans. VLSI Systems vol. 18, no.6, pp.978-987, June. 2010.

[JOH10] Sarah J. Johnson, “Iterative Error Correction Turbo, Low-Density Parity-Check

and Repeat–Accumulate Codes” Cambridge University Press 2010

[KIE03] Kienle, F., Thul, M. J., and When, N., 2003. “Implementation Issues of

Scalable LDPC-Decoders”. in Proceeding of 3rd International Symposium on

Turbo Codes and Related Topics, Brest, France, 291-294.

[KWA02] J. Kwak and K. Lee, “Design of dividable interleaver for parallel decoding in

turbo codes,” Electron. Lett., vol. 38, no. 22, pp. 1362–1364, 2002.

[LEE87] K. Y. Lee, “A new Benes network control algorithm,” IEEE Trans. Comput.,

vol. C-36, no. 6, pp. 768–772, June 1987.

[LEN78] J. Lenfant, Parallel permutations of data: A Benes network control algorithm

for frequently used permutations, IEEE Trans. Comput. (1978) 637-647.

[LIN04] Shu Lin and Daniel J. Costello, Jr., “Error control Coding” Pearson Education,

Inc 2004

[LTE08] “Technical Specification Group Radio Access Network; Evolved Universal

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 118 -

Terrestrial Radio Access; Multiplexing and Channel Coding (Release 8)”,

3GPP Std. TS 36.212, Dec. 2008.

[MAC96] J.C. MacKay David and R.M. Neal, “Near Shannon limit performance of low

density parity check codes”, Electronics letters, July 1996.

[MAN03] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE

Trans. VLSI Syst., vol. 11, no. 6, pp. 976–996, Dec 2003.

[MOU07] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and benes-

based on-chip communication networks for multiprocessor turbo decoding,” in

Design, Automation Test in Europe Conference Exhibition, 2007. DATE ’07,

april 2007, pp. 1–6.

[MOU08] H. Moussa, A. Baghdadi, M. Jezequel, “Binary de Bruijn on-chip network for a

flexible multiprocessor LDPC decoder”, 45th DAC Design Automation

Conference, 2008.

[MUL06a] O. Muller, A. Baghdadi, and M. Jezequel, “Spc05-3: On the parallelism of

convolutional turbo decoding and interleaving interference,” in Global

Telecommunications Conference, 2006. GLOBECOM ’06. IEEE, 27 2006-dec.

1 2006, pp. 1 –5.

[MUL06b] O. Muller, A. Baghdadi, M. Jezequel, “ASIP-based multiprocessor SoC design

for simple and double binary turbo decoding”, DATE, 2006.

[NAS81] D. Nassimi, S. Sahni, A self-routing Benes network and parallel permutation

algorithms, IEEE Trans.Comput. 1981, 332 - 340.

[NAS82] D. Nassimi, S. Sahni, Parallel algorithm to set up the Benes permutation

network, IEEE Trans. Comput. (1982) 148-154.

[NEE05] C. Neeb, M. Thul, and N. Wehn, “Network-on-chip-centric approach to

interleaving in high throughput channel decoders,” in Proc. IEEE International

Symposium on Circuits and Systems (ISCAS), May 2005, pp. 1766 – 1769

Vol. 2.

[PEA88] J.Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

reference”, Morgan Kaufmann, 1988.

[QUA06] F.Quaglio, F.Vacca, C.Castellano, A.Tarable, M.G.Asera. “Interconnection

Framework for High-Throughput, Flexible LDPC Decoders”. In proceeding

Design Automation and Test in Europe Conference and Exhibition, 2006.

[REH14a] S. Ur Rehman, C. Chavet and P. Coussy, "A Memory Mapping Approach

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 119 -

based on Network Customization to Design Conflict-Free Parallel Hardware

Architectures", In Proceedings of the 24th ACM Great Lakes Symposium on

VLSI (GLSVLSI) 2014, page XX-YY, Houston, Texas, USA, may 2014.

[REH14b] S. Ur Rehman, A. Sani, P. Coussy and C. Chavet, "Embedding Polynomial

Time Memory Mapping and Routing Algorithms on-chip to Design

Configurable Decoder Architecture", In Proceedings of the 39th IEEE

International Conference on Acoustics, Speech and Signal Processing,

Florence, Italy, May, 2014.

[REH13] Saeed. Rehman, A. Sani, P. Coussy, C. Chavet, "On-Chip Implementation Of

Memory Mapping Algorithm To Support Flexible Decoder Architecture", In

Proceedings of the 38th IEEE International Conference on Acoustics, Speech

and Signal Processing, Vancouver, May, 2013.

[REH12] SANCHEZ GONZALEZ Oscar David, REHMAN Saeed Ur, SANI Awais,

JEZEQUEL Michel, CHAVET Cyrille, COUSSY Philippe, JEGO Christophe

“A dedicated approach to explore design space for hardware architecture of

turbo decoders” SiPS 2012: IEEE Workshop on Signal Processing Systems,

17-19 october 2012, Quebec, Canada, 2012, pp. 288-293.

[ROS04] A.La Rosa, C.Passerone, F. Gregoretti, L. avagno, “Implementation of a

UMTS turbodecoder on dynamically reconfigurable platform”, DATE, 2004.

[SAN11a] A. Sani, P. Coussy, C. Chavet, and E. Martin, “A methodology based on

transportation problem modeling for designing parallel interleaver

architectures,” in Acoustics, Speech and Signal Processing (ICASSP), 2011

IEEE International Conference on, may 2011, pp. 1613 –1616.

[SAN11b] A. Sani, P. Coussy, C. Chavet, and E. Martin, “An approach based on edge

coloring of tripartite graph for designing parallel ldpc interleaver architecture,”

in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on,

may 2011, pp. 1720–1723.

[SAN12] A.H. Sani “Bipartite edge coloring approach for designing parallel hardware

interleaver architecture”, thesis dissertation 2012.

[SAN13] A.H. Sani, C. Chavet and P. Coussy, "A First Step Toward On-Chip Memory

Mapping for Parallel Turbo and LDPC Decoders: A Polynomial Time Mapping

Algorithm", IEEE Transactions on Signal Processing, vol. 61, issue: 16,

p.4127 - 4140, 2013.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 120 -

[SAC12] O. Sanchez, S. ur Rehman, A. Sani, C. Jego, C. Chavet, P. Coussy, and M.

Jezequel, "A dedicated approach to explore design space for hardware

architecture of turbo decoders", In Proceedings of the IEEE Workshop on

Signal Processing Systems, page XXX, Quebec, Canada, October 17-19, 2012

[SHA49] Shannon, Claude E. (1949), "A theorem on coloring the lines of a network", J.

Math. Physics 28: 148–151

[SOI08] Soifer, Alexander (2008), The Mathematical Coloring Book, Springer-Verlag

[STU11] Christoph Studer, Christian Benkeser, Sandro Belfanti, and Quiting Huang,

“Design and implementation of a parallel turbo-decoder asic for 3gpp-lte,”

Journal of Solid state circuits, vol. 46, pp. 8–17, 2011.

[TAK06] O. Y. Takeshita, “On maximum contention-free interleavers and permutation

polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.

1249–1253, Mar. 2006.

[VIZ64]

[WAN11]

V. G. Vizing;On an estimate of the chromatic class of a p-graph(In Russian),

Diskret.Analiz. 3: 25-30, 1964

G Wang, Y Sun, JR Cavallaro, Y Guo, “High-throughput contention-free

concurrent interleaver architecture for multi-standard turbo decoder”

Application-Specific Systems, Architectures and Processors (ASAP), 2011.

[WEH02] M. Thul, N. Wehn, and L. Rao, “Enabling high-speed turbo decoding through

concurrent interleaving,” in Proc. IEEE International Symposium on Circuits

and Systems (ISCAS), vol. 1, 2002, pp. 897–900.

[WEH02a] M. I. Thul, F. Gilbert. and N. Wehn. “Optimized Concurrent Interleaving for

High-speed Turbo-Decoding”. In Proc. 9rh IEEE International Conference on

Electronics, Circuits and Systems - ICECS 2002, Dubrovnik, Croatia, Sept.

2002.

[WEH03] M. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving architectures for

high-throughput channel coding,” in Proc. IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2003, pp. 613–616 vol.2.

[WIF08] IEEE P802.11n/D5.02, Part 11. “Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications: Enhancements for Higher

Throughput”, July 2008.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 121 -

[WIM06] IEEE P802.16e, Part 16. “Air Interface for Fixed and Mobile Broadband

Wireless Access Systems,” Amendment 2: Physical and Medium Access

Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,

and Corrigendum 1, Feb. 2006.

[WHE04] N. When, “SOC-Network for Interleaving in wireless Communications”,

MPSOC, 2004.

[WON10] Cheng-Chi Wong, Ming-Wei Lai, Chien-Ching Lin, Hsie-Chia Chang, and

Chen-Yi Lee, “Turbo decoder using contentionfree interleaver and parallel

architecture,” Journal of Solid state circuits, vol. 45, pp. 422–432, 2010.

[WON11] Cheng-Chi Wong and Hsie-Chia Chang, “High-efficiency processing schedule

for parallel turbo decoders using qpp interleaver,” IEEE Transations on

Circuits and Systems, vol. 58, pp. 1412–1420, 2011.

[WON10b] S Cheng-Chi Wong and Hsie-Chia Chang, “Reconfigurable Turbo Decoder

With Parallel Architecture for 3GPP LTE System” IEEE Trans. Circuits Syst.

II, Exp.Briefs, vol. 57, no. 7, pp. 566–570, Jul. 2010.

[WOO00] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding

techniques: An overview,” IEEE Trans. Veh. Tech., vol. 49, no. 6, pp. 2208–

2233, Nov. 2000.

[XIO05]

[YAN11]

Xiao-Yu Hu., Eleftheriou, E., Arnold, D.M.: ‘Regular and irregular progressive

edge-growth Tanner graphs’, IEEE Trans. Inf. Theory, 2005, 51 pp. 386–398

YANG Sun and J. R. Cavallaro, “Efficient hardware implementation of a

highly-parallel 3GPP LTE/LTE-advance turbo decoder,” INTEGRATION, the

VLSI Journal, vol. 44, pp. 305-315, Jan. 2011.

[YOO02] S. Yoon and Y. Bar-Ness, “A parallel map algorithm for low latency turbo

decoding,” IEEE Commun. Lett, vol. 6, no. 7, pp. 288–290, 2002.

[ZHA04] Y. Zhang and K. Parhi, “Parallel turbo decoding,” in Proceedings of the ISCAS

’04., vol. 2, 23-26 May 2004, pp. 509–512 Vol.2.

[ZHA05] Juntan Zhang and Fossorier M.P.C, “Shuffled iterative decoding,” IEEE Trans.

on Communications, vol. 53, pp. 209–213, 2005.

[ZHA07] Juntan Zhang, Yige Wang, and Marc P. C. Fossorier, “Iterative decoding with

replicas,” IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 53,

pp. 1644–1663, 2007.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

Bibliography

 - 122 -

PERSONAL BIBLIOGRAPHY

International conferences

[REH14a] S. Ur Rehman, C. Chavet and P. Coussy, "A Memory Mapping Approach

based on Network Customization to Design Conflict-Free Parallel Hardware

Architectures", In Proceedings of the 24th ACM Great Lakes Symposium on

VLSI (GLSVLSI) 2014, page XX-YY, Houston, Texas, USA, may 2014.

[REH14b] S. Ur Rehman, A. Sani, P. Coussy and C. Chavet, "Embedding Polynomial

Time Memory Mapping and Routing Algorithms on-chip to Design

Configurable Decoder Architecture", In Proceedings of the 39th IEEE

International Conference on Acoustics, Speech and Signal Processing,

Florence, Italy, May, 2014.

[REH13] Saeed. Rehman, A. Sani, P. Coussy, C. Chavet, "On-Chip Implementation Of

Memory Mapping Algorithm To Support Flexible Decoder Architecture", In

Proceedings of the 38th IEEE International Conference on Acoustics, Speech

and Signal Processing, Vancouver, May, 2013.

[REH12] SANCHEZ GONZALEZ Oscar David, REHMAN Saeed Ur, SANI Awais,

JEZEQUEL Michel, CHAVET Cyrille, COUSSY Philippe, JEGO Christophe

“A dedicated approach to explore design space for hardware architecture of

turbo decoders” SiPS 2012: IEEE Workshop on Signal Processing Systems,

17-19 october 2012, Quebec, Canada, 2012, pp. 288-293.

National conference

[REH14c] S. Ur Rehman, C. Chavet and P. Coussy, " Designing optimized parallel

interleaver architecture through network customization", In Colloque national

du GDR SoC-SiP, Paris, France, june 2014.

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

 Abbreviations

 - 119 -

ABBREVIATIONS

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction set Processor

B Number of banks

BEN Benes network

BS Barrel shifter network

BF Butterfly network

BFS Breadth first search

CB Crossbar network

ci A color in Vizing theorem

CN Check node

CRPT Complete Residue Partition Tree

CRS Complete Residue System

DVB-S Digital Video Broadcasting — Satellite

FEC Forward error correction

GIBB General Interleaver Bottleneck Breaker

g Size of girth in NB-LDPC

GPP General Purpose Processor

HSPA High Speed Packet Access

LDPC Low Density Parity Check

LLR Log likelihood Ratio

LTE Long-Term Evolution

L Block length

l Additional data elements

M Size of a memory bank

MRMW Multiple read multiple write

NB-LDPC Non-binary Low Density Parity Check

NoC Network on chip

OPMM optimized memory address remapping

PE Processor element

P Total number of processors/Parallelism

QPP Quadratic Permutation Polynomial

R Code rate

RIBB Ring Interleaver Bottleneck Breaker

sfcur Current semi 2-factor

SNR Signal to noise ratio

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

 Abbreviations

 - 120 -

SoC System on Chip

TIBB Tree Interleaver Bottleneck Breaker

T Total number of time instances

ti A time instance

UWB Ulta wide band

VN Vector node

WiMAX Worldwide Interoperability for Microwave Access

WiFi Wireless local area network products that are based on IEEE 802.11 standards

π Interleaver law

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014

	Table of Contents
	List of Figures
	List of Tables
	ABSTRACT
	Chapter 1 INTRODUCTION TO PARALLELARCHITECTURES FOR TURBOAND LDPC CODES
	1. Introduction
	2. Forward Error Correction (FEC) Coding
	3. Memory conflict problem

	Chapter 2 STATE OF THE ART
	1. Introduction
	2. Avoiding conflicts during the code construction
	3. Solving conflicts by means of dedicated runtime approaches
	4. Solving conflicts with dedicated memory mapping approaches
	5. Conclusion

	Chapter 3 OPTIMIZED MEMORY MAPPINGAPPROACH BASED ON NETWORKCUSTOMIZATION
	1. Introduction
	2. Dedicated approach to explore design space of turbo decoder architecture
	3. Memory mapping approach based on network customization
	4. Conclusion

	Chapter 4 IN-PLACE MEMORY MAPPING FOROPTIMIZED ARCHITECTURE
	1. Introduction
	2. Two access memory mapping problem
	3. Design Flow
	4. Experiments and results
	5. Conclusion

	Chapter 5 ON-CHIP IMPLEMENTATION OF MEMORYMAPPING ALGORITHM TO SUPPORTFLEXIBLE DECODER ARCHITECTURE
	1. Introduction
	2. On-chip implementation of memory mapping algorithms
	3. Experiments
	4. Conclusion

	CONCLUSION AND FUTUREPERSPECTIVES
	BIBLIOGRAPHY
	PERSONAL BIBLIOGRAPHY
	ABBREVIATIONS

