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ABSTRACT 
 

We live in the era of high data rate wireless applications (smart-phones, net-books, 

digital television, mobile broadband devices…) in which advanced technologies are included 

such as OFDM, MIMO and advanced error correction techniques to reliably transfer data at 

high rates on wireless networks. Turbo and LDPC codes are two families of codes that are 

extensively used in current communication standards due to their excellent error correction 

capabilities. For high throughput performance, decoders are implemented on parallel 

architectures in which more than one processing elements decode the received data. However, 

parallel architectures suffer from memory conflict problem.  It increases latency of memory 

accesses due to the presence of conflict management mechanisms in communication network 

and unfortunately decreases system throughput while augmenting system cost. 

To tackle memory conflict problem, three different types of approaches are used in 

literature. In first type of approaches, “architecture friendly” codes are constructed with good 

error correction capabilities in order to reduce hardware cost. However, these codes originate 

problem at the channel interleaver. In the second type of approaches, flexible and scalable 

interconnection network are introduced to handle memory conflicts at run time.  However, 

flexible networks suffer from large silicon area and increased latency. The third type of 

approaches are design time memory mapping approaches in which the resultant architectures 

consist of ROM blocks used to store configuration bits. The use of ROM blocks may be 

sufficient to design parallel architecture that supports single codeword or single application. 

However, to design hardware architecture that supports complete standard or different 

applications, ROM based approaches result in huge hardware cost. To reduce hardware cost, 

optimizations are required to use as less ROMs as possible to support different applications. 

In this thesis, we aim to design optimized parallel architectures. For this purpose, we 

have proposed two different categories of approaches. In the first category, we have proposed 

two optimized design time off-chip approaches that aim to limit the cost of final decoder 

architecture targeting the customization of the network and the use of in-place memory 

architecture.  

In the second category, we have introduced a new method in which both runtime and 

design time approaches are merged to design flexible decoder architecture. For this purpose, 

we have embedded memory mapping algorithms on-chip in order to execute them at runtime 

to solve conflict problem. The on-chip implementation replaces the multiple ROM blocks 
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with a single RAM block to support multiple block lengths and/or to support multiple 

applications. Different experiments are performed by executing memory mapping approaches 

on several embedded processors. 
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In this chapter, error correction codes are discussed. Error correction codes can be classified into two 

broad categories: convolutional codes and block codes. Parallel hardware architecture is needed to 

support high throughput. Memory conflict problems which occur in parallel architectures 

implementation are introduced to highlight the importance of the work presented in this thesis. 
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1. Introduction 

Wireless communication is undoubtedly one of the major research areas in 

telecommunication today. Broad progress can be observed in this field in the past decade, 

although it has been a topic of study since 1960s. The ongoing goal of providing enhanced 

services seamlessly and effectively continues to drive wireless communications. We have 

seen the outcomes in the form of cellular systems that have experienced exponential growth 

over the last decade with billions of customers worldwide. Incorporation of multimedia and 

value added services in telecommunication have dramatically increased data rate 

requirements.  

Transmitter

Channel 

Encoder

Digital 

Modulator

Source 

Encoder

Digital to 

analog

Transmitter

Source 
decoder

Analog to 
digital

Channel 
decoder

Digital de-
modulator

Communication 
channel

[Wired/Wireless]

Noise

Source 
information

Sink

information

 

Figure 1. 1 A generic digital communication system 

A generic digital communication system is shown in Figure 1. 1. The block diagram 

consists of building blocks each performing a certain well-defined operation on data. The 

transmitter transforms the signals from information source to the channel. The transmitter 

consists of blocks namely Digital to analog converter, Source Encoder, Channel Encoder and 

Digital modulator. Digital to analog converter converts the input information source into 

binary digits (bits), groups them together to form digital messages. Source Encoder tries to 

increase the information content of source symbols by removing the redundant information 

and encoding the source data using fewer bits than uncoded information. Channel encoding 

can reduce the errors rates at the expense of decoder complexity. Starting from K bits the 

channel encoder provides a codeword c of length N by adding N - K redundant bits. By means 

of introduced redundancy, the channel decoder is able to identify errors introduced by channel 

and correct some of them. Digital Modulator is a block that facilitates the transfer of 

information over a passband channel. In digital modulation, an analog carrier is modulated by 

a digital bit stream. Based on a particular application and channel condition, different 
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modulation techniques can be adopted, e.g. Phase Shift Keying (PSK), Frequency Shift 

Keying (FSK), Amplitude Shift Keying (ASK) and Quadrature Amplitude Modulation 

(QAM)  

The received channel information is transformed by the receiver to the sink information. 

The receiver consists of several blocks namely Digital Demodulator, Channel Decoder, 

Source Decoder and Analog to digital converter. Digital Demodulator takes the signal 

received from the Channel and converts it into digital data. Channel Decoder receives the 

decoded data from digital demodulator to detect errors introduced by Channel, corrects them 

and then it removes the redundant bits and extracts information words of K bits. Source 

Decoder performs the reverse operation of Source Encoder retrieving the same information as 

generated by information source along with Analog to digital conveter.  

The channel encoder and decoder are responsible for the reliable transfer of data for 

which forward error correction (FEC) codes are widely used. FEC codes are among the 

significant parts of the whole system. FEC codes are described in the next section. 

2. Forward Error Correction (FEC) Coding 

We are now moving through the 4
th

 generation of wireless communication systems 

which are expected to achieve high data rates and reliable data transfer. Since error correction 

is one of the complex and power consuming part of whole transceiver design, therefore 

extensive research was carried out in the field of channel coding especially Forward Error 

Correction (FEC). Research in the field of FEC codes is aimed to find the best possible error 

correcting codes allowing high throughput decoding and their efficient VLSI implementation 

in term of area, speed and power consumption.  

FEC codes can be classified into two categories: Block codes and Convolutional 

codes. Convolutional codes are increasingly used in different telecommunication standards 

due to their simple and efficiently implementable structures. Currently, convolutional codes 

are part of standards for mobile communication (HSPA [HSP04], LTE [LTE08]) and digital 

broadcasting (DVB-SH [DVBS08]). Convolutional codes work as a finite state machine 

which converts continuous stream of bits into continuous stream of coded bits. 

In block codes, original information sequence is first divided into different blocks and 

then each block is independently encoded to generate code-word bits. The encoder must wait 

for the whole message block before starting the encoding step. However, in convolutional 
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encoder the code-word is transmitted as soon as encoding is started without any wait to obtain 

the entire message. 

Two main error correcting codes families are used in current telecommunication 

standards. One from convolutional codes called Turbo codes and another from block codes 

called Low Density Parity Check (LDPC) codes. These two error correcting codes are widely 

used due to their excellent error correcting capabilities. However, implementation of decoders 

for these two codes for high data rate applications is a challenging task. In this thesis, we 

focus on the implementation of both of these codes on parallel architectures.  

2.1   Introduction to Turbo codes 

Due to their excellent error correction capabilities, Turbo codes [BER93] are part of 

most of the current telecommunication standards such as [LTE08] [HSP04] [DVBS08].  They 

are constructed through the parallel concatenation of two “simple” convolutional codes that 

share their information during the decoding step. The first convolution encoder encodes the 

message x in natural (original) order to produce p
(1)

 parity bits, whereas the second one 

encodes the message in interleaved order (after passing the original message through 

interleaver) to generate p
(2) 

parity bits. The output turbo codeword c is composed of the 

original message and parallel concatenation of parity bits. 

Interleaver Code 2 encoder

Code 1 encoder

P(2)

P(1)

x C = x p(1) p(2)

                  

Figure 1. 2. Turbo Encoder  

The high performances of turbo codes are due to the presence of this pseudo-random 

interleaver. Interleaving (Π) is a permutation law that scrambles data to break up 

neighbourhood-relations. It is a key factor for turbo-codes performances, which vary from one 

standard to another. The low-complexity iterative decoding algorithm for turbo-decoding 

makes its hardware implementation possible with the current standards. However, in order to 

achieve high throughput architectures, we will see that this interleaver generates memory 

access conflicts when parallel architectures are used.  
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Interleaver

Code 2 encoder

Code 1 Decoder

u

y(1)

y(u)

Interleaver

Extrinsic

y(2)

Extrinsic

De-Interleaver

 

Figure 1. 3. Turbo Decoder 

The turbo decoder receives input values Y
(u)

,  Y
(1)

, Y
(2)

 from the channel (resp. for x, p
(1)

, 

p
(2)

). One complete iteration of turbo decoder is carried out through two half iterations. 

Firstly Code 1 Decoder receives channel values for message bit Y
(u)

, first parity bit Y
(1)

 and 

deinterleaved extrinsic value from Code 2 Decoder to generate extrinsic value. Then, during 

the second half iteration, Code 2 Decoder creates extrinsic value from interleaved message 

bits, second parity bit Y
(2) 

and interleaved extrinsic value from Code 1 Decoder. The final 

decision about the message bits is made based on the extrinsic values from the two decoders 

and channel values for message bits, after a fixed number of decoding iterations. 

2.2   Introduction to LDPC codes 

Low density parity check Codes (LDPC) are another class of very high performances 

error correction codes. They are members of the class of Block codes that are used to transmit 

information reliably through noisy communication channels. Many types of block codes are 

used in different applications such as Reed-Solomon [AHA], Golay codes [GOL61] or 

Hamming codes [HAM50]. LDPC codes have already been included in several wireless 

communication standards such as DVB-S2 and DVB-T2 [DVB08], WiFi (IEEE 802.11n) 

[WIF08] or WiMAX (IEEE 802.16e) [WIM06].  

The code is represented with parity check equations. As a pedagogical example, 

consider a codeword: C = [c1 c2 c3 c4] which satisfies the following three parity check 

equations. 

c2 ⨁ c3 ⨁ c4  = 0, 

c1 ⨁ c2 ⨁ c4  = 0,                        

c1 ⨁ c3 ⨁ c4  = 0 
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In a LDPC code, codeword constraints (or parity check equations) are often expressed 

in matrix form as follows: 

 

1

2

3

4

0 1 1 1 0

1 1 0 1 0

1 0 1 1 0

c

c

c

c
H

 
    
    

=           
 

 

The above H matrix is an M * N binary matrix where each row Mi of H corresponds to 

a parity check equation whereas each column Nj associated with codeword bit. A nonzero 

entry at (i, j)
th

 location means that the j
th

 codeword bit is included in the i
th

 parity check 

equation. For a codeword x ∈ C to be valid, it must satisfy all parity check equations. 

LDPC codes can also be graphically represented as bipartite graph called Tanner 

Graphs. Such graphs depict the association between code (represented by variable nodes VN) 

bit and parity check equation (represented by check nodes CN). An edge eij connects the i
th

 

check node with j
th

 variable node, if this variable node is checked by or included in i
th

 check 

node. This means that the edges of a Tanner graph are constructed with respect to the H 

matrix. 

VN1 VN3VN2 VN4

CN1 CN2 CN3

Mesc→vMesv→c

 

 Figure 1. 4. Tanner Graph representation of H 

Tanner graph is helpful in understanding the decoding process that exchanges 

messages between CN and VN (Mesc→v or Mesv→c) along the edges of these graphs. These 

decoding algorithms are collectively called message-passing algorithms. They are a type of 

iterative decoding algorithm in which check nodes and variable nodes iteratively exchange 

messages until decoding is completed, such as belief-propagation or sum-product decoding 

[PEA88], min-sum decoding [FOS99] or normalized Min-Sum decoding [CHE02].  

 

3. Memory conflict problem 

In order to achieve high throughput performance, parallel hardware architectures are 

needed. The implementation of a typical parallel architecture is shown in Figure 1. 5. In this 

architecture, P processing elements (PEs) are used to process data elements which are 

connected to B memory banks through interconnection network, where P = B.  
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Unfortunately this kind of parallel architectures generates memory access conflicts as 

soon as several PEs simultaneously try to access to the same memory bank. This problem is 

also called “collision problem” [GIU02]. Memory conflict problem is a major source of 

concern in designing parallel architectures. The memory conflict problem is explained for 

turbo and LDPC codes in the two following sub-sections. 
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Figure 1. 5. Typical Parallel Architecture 

3.1. Memory conflict problem for Turbo Codes 

In parallel implementation of turbo codes, different number of processing elements 

access the data elements from the banks first in the natural order and then in interleaved order. 

The memory conflict problem for turbo codes is explained here with a pedagogical example. 

Let us consider L = 20, P = B = 4, M =5 and T = 10, where L is the number of data elements, 

B is the number of memory banks, M= L/B is the size of each memory bank and T is the total 

number of time accesses. The data elements are accessed first in natural order and then in 

interleaved order shown in Figure 1. 6.  
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Figure 1. 6. Data access matrices for turbo codes 
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Let us consider that the data elements are stored in the banks in such a manner that all 

the processing elements always access different memory banks at each time instant in natural 

order as shown in Figure 1. 7.a e.g. data elements 0,5,10,15 are accessed by the processors in 

t1 which are placed in different memory banks i-e b0,b1,b2,b3 respectively. Unfortunately, due 

to this memory mapping two or more processing elements need to access one particular 

memory bank at the same time instance in the interleaved order e.g. data elements 0,1,2,3 are 

accessed by the PEs in t6 which are placed in the same memory bank b0 as shown in Figure 1. 

7.b. This issue is called memory conflict problem for turbo decoders. 
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(a) Conflict free natural order Access                         (b) Conflict full Interleaved order Access 

Figure 1. 7. Memory Conflict Problem in Parallel Turbo Decoder 

3.2. Memory conflict problem for LDPC Codes 

The memory conflict problem for the LDPC codes is different from turbo codes due to 

the difference in codes construction of these codes. The data access pattern of turbo codes are 

represented by natural and interleaved order matrices whereas LDPC codes are specified by 

their H matrices and represented by tanner graphs which shows that how data (variable 

nodes) must be processed by the processing elements (check nodes) in order to achieve good 

error correction performances. In order to explain a memory conflict problem in LDPC codes, 

let us consider L = 6, P = B = 3, M = 2 and T = 6 as shown in data access matrix in Figure 1. 

8.a. The data elements stored in bank b0, bank b1 and bank b2 are (1,4), (2,5) and (3,6) 

respectively. There is no conflict at time instances t1 but at t2 more than two processors want 

to access the same memory bank. Figure 1. 8.b shows the memory conflict for the time 

instance t2. 
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Figure 1. 8. Memory Conflict Problem in Partially Parallel LDPC Decoder 

 

Several approaches exist in literature in order to tackle the memory conflict problem. 

However optimization is needed to design high throughput decoder architectures. The main 

purpose of this thesis is to optimize the design of parallel architectures focusing on the 

memory conflict problems (interleavers) in order to reduce the cost for high throughput Turbo 

and LDPC decoders.  The rest of the thesis is organized as follow: 

 

Chapter 2 

In this chapter, an overview of the state of the art approaches to design parallel 

hardware architectures for Turbo and LDPC decoders is provided. The state of the art is 

presented in three different categories. The merits and limitations of each of the approaches 

are explored.  

 

Chapter 3 

In this chapter, we present our first approach that aims to limit the cost of final 

decoder architecture by targeting the customization of the network at the design time (off-

chip). In the beginning, shuffled and non-shuffled turbo scheduling schemes are explored. 

Then, the proposed approach based on network relaxation method is described in details. 

Different experiments are performed for different test cases by using the proposed approach. 

 

Chapter 4 

In this chapter, our second contribution is presented. This approach is based on in-

place memory mapping architectures in order to generate optimized hardware decoders at 

design time. We propose different algorithms based on Vizing theorem and transportation 

problem in order to solve memory conflict problem in polynomial time while providing 

optimized decoders. 
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Chapter 5 

Finally, we present an on-chip approach to support multiple standards/applications in 

order to generate optimized hardware architecture. In order to avoid multiple ROM blocks 

needed to store controller information, we propose to embed memory mapping approaches 

on-chip such that complete multiple standards can be supported.  
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Chapter 2 

STATE OF THE ART 
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In this chapter, different state of the art techniques to tackle the memory conflict problem on parallel 

architectures for Turbo and LDPC codes are presented. The state of the art approaches are divided 

into three different categories: conflict free interleaving laws, run time conflict resolution and design 

time conflict resolution. Advantages and disadvantages of each technique are presented in order to 

motivate our work in this thesis. At the end, we explain the in-place and multiple read multiple write 

(MRMW) memory mapping architectures.  
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1. Introduction 

Forward error correction codes are used for reliable data transfers between transmitters 

and receivers. In the associated decoders, parallel architectures are used to achieve high 

throughput performances. However, these kinds of architectures suffer from memory conflict 

problem. Many approaches are proposed in literature in order to overcome this issue. In this 

chapter, different approaches are discussed to implement parallel architectures taking into 

account the conflict problem for Turbo and LDPC decoders. These approaches can be 

classified in three categories.  

In the first family of approaches, conflict free interleaving laws are defined. The goal 

is to construct codes with good error correction capabilities, reduced hardware cost and that 

allow avoiding memory conflicts. In the second family of approaches, conflicts are solved at 

run time by using flexible and scalable interconnection networks with sufficient path diversity 

(routing mechanism) and/or buffering techniques to handle memory conflicts. The third 

family of approaches deals with algorithms that assign data in memory in such a manner that 

all the processing elements can access memory banks concurrently without any conflict.  

These approaches which resolve the memory conflict problem at design time are referred as 

memory mapping approaches.  

These families are described in detail in the three following sections.      

2. Avoiding conflicts during the code construction 

In the first category, memory conflict problem is taken into account during code 

construction. The main source of memory conflicts in Turbo codes comes from the 

interleaver. Hence, the aim is to develop conflict free interleaving laws with good error 

correction performance. Conflict free interleaving law provides parallel concurrent accesses to 

each memory bank without any conflict. An example of such solutions is proposed in 

[EMM03] in which spatial and temporal permutations are introduced to construct a conflict 

free interleaver. In order to explain this approach let us consider a block length of 16 data 

elements arranged row by row into a matrix (initial matrix) as shown in Figure2. 1.a. 

Interleaver leverages on two scrambling techniques: temporal and spatial permutations. The 

temporal permutation is obtained by changing the positions of the column in the initial matrix 

as shown in Figure2. 1.b. For spatial permutation, different circular permutations are 

performed to different columns to obtain the interleaved matrix as shown in Figure2. 1.c. The 

resultant matrix is a combination of temporal and spatial permutations. Each row is related to 
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a given processing element and the memory size is represented by the number of columns. 

The benefit of this approach is also the use of barrel shifter network which controller cost is 

very low. The Quadratic Permutation Polynomial (QPP) interleaver which is a part of current 

3GPP LTE standard [LTE08] is mainly based on this idea. 
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   (c) Spatial permutation 

Figure2. 1. Interleaver construction 

QPP interleaver was introduced in [YAN05] which is a prunable and deterministic 

interleaver. A prunable interleaver can be modified to obtain the interleaver of shorter length 

that keeps the error correction capabilities of the original larger interleaver. Prunable 

interleavers offer scalability in code-word to meet the channel conditions and changing user 

requirements. In deterministic interleaver, algorithms are used to produce on the fly addresses 

of interleaved data. The implementation of deterministic interleavers is easy as compared to 

random interleavers in which the addresses are generated randomly and for which dedicated 

memory (e.g. ROM) is required to store these addressing information. The performance QPP 

interleaver is near to random interleaver for long frame size whereas for short frame size, QPP 

interleaver outperforms random interleaver. QPP interleaver is represented by the following 

equation for a block size L: 

Π(x) = (f1x
2
 + f2x) mod L 

where x and Π(x) represents the natural and interleaved address respectively and 

variables f1, f2 are different for different block lengths as specified in the standard. 
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In [TAK06], QPP interleaver is proved to be contention-free for every window size 

that is a factor of interleaver length. However, it is not contention-free for other data rates in 

which high level parallelisms are used in the decoder.In [BOH07], a new interleaver for turbo 

codes is proposed. The interleaver is described by using four successive distinct laws and can 

also be defined using simple matrix S of size L x L where L is the size of the frame. This 

matrix is composed of k circularly right shifted z x z matrices (like in LDPC codes). The 

amount of shift is denoted by δ(r) and it is located at position P(r) of the matrix.  In this 

approach, first the frame with L = k.z elements is interleaved by z-row m-column 

permutations. Secondly, each group r (where r = [0, k-1]) of z elements is right shifted by δ(r) 

positions. Finally, in the last step the group of z elements is interleaved.  
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Figure 2. 2. Interleaver matrix 

 

An example of such S matrix is shown in Figure 2.6 in which L = 12, k = 3, z = 4, P = 

[1,0,2] and δ = [1,3,0]. This interleaver has good performance and low-complex hardware 

implementation for high parallelized turbo decoders as compared to 3GPP-LTE interleaver. 

However, this interleaver is not a part of the current telecommunication standards.  

The memory conflict problem for LDPC codes is handled by constructing structured 

LDPC codes [ZHA04] [MAN03]. LDPC codes are specified by their H matrices (see Figure 

2. 3(a)) in which rows are associated to check nodes and columns to variable nodes. These 

codes can also be represented by Tanner graphs which show how data (variable nodes) must 

be processed by the processing elements (check nodes) in order to achieve good error 

correction performances (see Figure 2. 3(b)).  
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(a) H-matrix                                   (b) Tanner graph 

Figure 2. 3. Tanner graph formalization of an LDPC H-matrix 

 However, to achieve these excellent error correction capabilities proper construction of 

the H matrices is required. So H matrix must be constructed such that data transfer between 

check nodes and variable nodes can be made without any conflict for parallel architecture. In 

structured codes, the H matrix is divided into different blocks of sub-matrices (ZxZ matrices) 

where each sub-matrix is obtained by permuting rows of the identity matrix as shown in 

Figure 2.3.  The check node processors access the vectors nodes data elements in parallel by 

using simple interconnection network like barrel shifter thanks to the structure of identity 

matrix in each sub-block.  

Structured codes are part of current telecommunication standards such as IEEE 

802.11n (WiFi) [WIF08] and IEEE 802.16e (WiMAX) [WIM06].  However, they only support 

one class of LDPC codes. A general approach to handle memory mapping problem is required 

to handle various existing and future classes of LDPC codes such as non-binary LDPC codes.  

 

Figure 2. 4. Structured LDPC codes 
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Moreover, it must be observed that the conflict free data access order in the decoder 

part of the architecture can be different from the data access order coming from the channel as 

it is the case in QPP interleaver for example. This issue reports hence the conflict problem on 

the channel interleaver side. 

 

3. Solving conflicts by means of dedicated runtime approaches 

The second family of solutions solves memory access conflict problem by storing the 

data elements in different memory banks in an arbitrary order and then use additional 

mechanism (buffering/routing) in the interconnection network to manage conflicts at runtime. 

These approaches are referred as run time conflict resolution. However, we have  referred 

these approaches as time relaxation methods in this document. 

Such approach is presented in [WEH02] in which the data is simply stored in different 

memory banks without considering conflicting accesses and then additional buffers are used 

in the interconnection network to manage conflicts at runtime. This approach is based on a 

LLR distributor which is connected with all the P processing elements on one side and all the 

memory banks on the other side, as shown in Figure 2.4. The LLR distributor consists of 

interconnection network, buffers, FIFOs and multiplexers. The total cost and the latency of 

the architecture increases due to the use of buffers, FIFOs and multiplexers to manage 

conflict.  
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Figure 2. 5. Architecture based on LLR Distributor 

 

In [WAN11], the authors proposed an approach based on Double-Buffer Contention-

Free (DBCF) architecture. The DBCF architecture is built around the interleaver between the 
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processors and memory banks. This architecture consists of FIFOs associated with processors, 

circular buffers, multiplexers and bypass units as shown in Figure 2. 6. The conflicting 

accesses are routed into a dedicated circular buffer as soon as a conflict is detected. The 

interest of this approach has been demonstrated by designing an interleaver used in a 

HSPA+/LTE decoder. However, this architecture is configured on the basis of simulation 

results analysis in order to handle conflicts.  
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Figure 2. 6. Architecture based on Double buffer 

Approaches based on Network-on-Chip (NoC) architecture are also proposed to 

resolve the conflicts on run time. In [NEE05], approaches based on mesh, torus and cube 

networks are proposed in which routers are used to contain packets for the destination 

information. However, these approaches suffer from reduced scalability to construct high 

throughput flexible on-chip communication network. Also, due to complex buffer 

management architecture to store conflicting data, the router complexity increases 

significantly with the increase of parallelism. 

Another solution based on NoC oriented architecture is presented in [MOU07]. In this 

work (see Figure 2.7), the interconnection network can be configured on-the-fly to compete 

with any classical interconnection network such as Butterfly and Benes. Butterfly network has 

two main advantages: firstly, the network has huge scalability as a network of size N can be 

constructed from two networks of size N/2. Secondly, the packet routing algorithm is very 
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simple due to the use of destination address bits for selecting output port of router at each 

stage of the network. The routers stores conflicting packets using FIFOs. However, Butterfly 

network lacks in path diversity as it provides distinctive path between source and destination.  
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Figure 2. 7. Architecture based on NoC 

Therefore, complex buffering architecture to manage conflicting packets is required 

which increases cost of the architecture. Benes network is the second multistage network 

studied in [MOU07]. It is constructed by concatenating two Butterfly networks back-to-back. 

The Benes network has good path diversity as it provides all possible permutations between 

inputs and outputs. However, this network avoids conflicts between packets, if all the packets 

have different destinations, which is not the case in turbo decoding. A modified topology and 

routing algorithm is proposed in this approach to optimize Benes network for turbo decoding. 

Routing algorithm transmits packets which are intended for different router at the same time 

and registers are used (instead of FIFOs) to store conflicting data. However, pre-processing is 

required to generate routing information and memory is needed to store router configuration. 

 

A multistage network based on barrel shifter has been recently proposed for 3GPP LTE 

System for parallel decoder architecture in [WON10]. The connection between each memory 

bank and its corresponding processing element is established by shifting each sub block by a 

given offset due to the permutation characteristics of QPP interleaver used in LTE. The 

authors have presented a multistage interconnection network based on barrel shifter as shown 

in Figure 2.8. This figure shows the parallel architecture with multistage interconnection 

network for P = 8 with three stages. In the proposed network, 2
i  

bits are needed for shifting 
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data in the stage (3 − i) where i = 0 ∼ 2 and the amount of shift in the stage (3 − i) is 2
i
 

locations. So, we can compute that one bit is needed for stage 0, two bits are needed for stage 

2 and four bits are needed for stage 3. Therefore, the three stages of the modified barrel shifter 

require driving seven bits for configuration at each access. Similarly, for P = 4, two stages of 

modified barrel shifter needs three bits. 
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Figure 2. 8. Parallel architecture with multistage network 

The data between the processor and memory is transferred immediately as the 

interconnection network has short path delay and simplified network control mechanism. 

However, the proposed approach can only be applied to QPP interleaver. This approach is not 

compliant with any other interleaving law.  

The presence of interconnection network and buffer management mechanisms to 

manage conflicts increases hardware cost and latency of decoders which often restricts the 

implementation of such architectures for practical systems.  

 

4. Solving conflicts with dedicated memory mapping approaches 

The third family of solutions deal with memory access conflict problem by storing the 

data elements in different memory banks in such a way that all the processing elements can 

access to the data without any conflict at each time instance. Different mapping algorithms are 

proposed in state-of-the-art to perform pre-processing steps in order to determine each data 

element in the memories. These approach leverage on specific architectures that are presented 

in the last sub-section. 
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4.1. Memory mapping approaches 

In [BEN04], one of the first algorithms based on simulated annealing meta-heuristic to 

resolve conflict problem for Turbo and LDPC codes is proposed. This algorithm is always 

able to find conflict free memory mapping, but the time to calculate the solution cannot be 

computed statically. Therefore, the computational complexity of the problem inhibits the 

addition of other constraints into the algorithm such as targeting a dedicated interconnection 

network. 

In [JIN10], an approach based on optimized memory address remapping is presented. 

In this method certain collision-free exchange rules are defined to complete the simulated 

annealing procedure much faster than achieved in the traditional method presented in 

[BEN04] thanks to a reduced number of iterations to complete the annealing procedure . 

However, this method is also based on a meta-heuristic and the time of completion of the 

algorithm cannot be predicted.  

In [CHA10a], a new simplified approach called Static Address Generation Easing 

(SAGE) is presented. This approach includes additional constraints to determine architecture 

oriented conflict free memory mapping. In SAGE, two Mapping Matrices (MAPNat, MAPInt) 

are used during algorithm execution to store bank information. These matrices have the same 

order as the natural and interleaved order matrices as shown in Figure 2.9.  
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Figure 2. 9. Matrices used in SAGE 

There are two constraints to be respected during the execution of the SAGE algorithm 

in order to find architecture oriented memory mapping. The first constraint is to allocate 

different memory banks to the cells of each column of the mapping matrices. The second 
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constraint is to respect the targeted interconnection network if supported by the interleaving 

law. The algorithm is initialized by assigning memory banks to the first column of MNat  (see 

Figure 2.8.(c)). Then the entries corresponding to the data in Mint are updated (reported) with 

this mapping information (see Figure 2.8.(d)).  In the next iteration, the most constrained 

column (i.e. the column with the greater number of assigned cells) is filled and reported in the 

same manner. This process continues until all the columns of the mapping matrices are filled 

with mapping information. 

The above mentioned approach is limited to turbo-codes and a more generic approach 

has been proposed in [CHA10b]. This approach is able to solve memory conflict problem also 

for LDPC codes. It is based on Multiple Read Multiple Write (MRMW) mechanism in which 

each data element ei consists of two memory locations: one for read data and the other for 

write data, as shown in Figure 2.9. For functional correctness, if data is accessed several 

times, then j
th

 read access of ei must be equal to the (j-1)
th

 write access of ei. The algorithm 

assigns read and write memory banks to the most constrained column (i.e. the column with 

high number of data elements already mapped) of the MAP matrix. Then the corresponding 

entries in the other matrix are filled respecting the targeted interconnection network 

constraints. This process continues until MAP matrices are fully filled with targeted network 

constraints. However, recursion is needed when a conflict is detected. This approach 

innovates a new way to solve computationally complex problem through multiple read and 

multiple write mechanism. However, it can use backtracking making time to complete the 

algorithm unknown. 
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      (a) Mapping matrix                             (b) An element of the matrix 

Figure 2. 10. Multiple Read Multiple write (MRMW) approach 

In [SAN11a], an approach based on Transportation problem modeling is presented. 

This method finds conflict free memory mapping for Turbo codes with architecture 

optimization. The mapping problem for turbo codes is transformed as transportation problem. 

The proposed approach is interesting as it is based on a polynomial time algorithm. However, 
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it works for a subset of cases and can be widely improved as demonstrated in the dedicated 

section of chapter-4. 

In [SAN13], another polynomial time algorithm is presented to reduce the 

computational complexity to find conflict free mappings. The algorithm is based on two steps. 

In the first step, a bipartite graph is constructed based on two data access matrices. Then in the 

second step, a polynomial time bipartite edge coloring algorithm is used to find conflict free 

memory mapping. This approach can be used to solve memory conflict problem for both 

Turbo and LDPC codes.  

Finally, in [BRI12] [BRI13a] [BRI13b], the authors have presented a memory mapping 

approach to find conflict-free memory mappings for both Turbo-codes and LDPC codes for 

any standard respecting targeted interconnection network. This approach is referred as 

memory relaxation method in this thesis. It is based on the idea of adding registers in the 

memory architecture (and not in the interconnection network) to deal with conflicting data 

and to respect the targeted interconnection network. However, the cost of the final 

architecture is increased due the inclusion of registers and their dedicated additional steering 

logic as shown in Figure 2.11. In this figure, the four processors are connected to four 

memory banks through a targeted interconnection network. Additional registers and steering 

logic are required to support the conflict free memory mapping with the targeted network as 

shown in Figure 2.11. However, if the targeted interleaving law is strongly incompatible with 

the targeted interconnection network the additional costs will be high. 

 

Figure 2.11. Resulting architecture with additional registers and steering logic for Memory 

relaxation based approach 
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4.2. Architecture for design time memory mapping approaches 

All of the previously mentioned memory mapping approaches are either based on in-

place memory mapping or multiple read multiple write (MRMW) memory mapping 

architecture as shown later in this section. We will describe the two kind of architectures in 

the two next subsections. 

4.2.1. In-place memory mapping architecture  

The architecture for turbo-like memory conflict problem is known as in-place memory 

mapping architecture. In order to explain in-place architecture, consider a set of L data 

elements {d1, d2,…, dL} and a set of P processing elements {PE1, PE2,…, PEP}. These 

processors process each of the L data elements two times in T time instances {t1, t2,…, tT} first 

in natural order and then in interleaved order, where T = 2L/P. In order to store these L data 

elements and to achieve parallel processing of data for high throughput, a set of B memory 

banks {b1, b2,…, bB} are needed.  

Mapping problem 

We need to store the L data elements in B memory banks in such a way that P 

processing elements can access B memory banks in parallel for all time instances without any 

conflict. 

For in-place conflict free memory accesses, the two following mapping constraints must 

be fulfilled:  

 - All memory banks have to be used only one time at each time instance (conflict free). 

 - Each data must be mapped in one and only one memory location (in-place). 

As an example, a matrix in which each data is accessed twice (in natural and interleaved 

order), is shown in Figure 2.12.a. The resultant mapping of the considered example is shown 

in Figure 2.12.b by using memory mapping approach [CHA10a] which is based on in-place 

architecture. In this figure, each data in a column has a mapping cell which shows the 

memory bank from where a given data is read and written at a given time. It can be seen that 

every data element is read and written in the same memory bank, e.g. data 0 is read and 

written back in the same bank b1.  
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(a)Example                                                     (b) Mapping matrix 

   Figure 2.12. In-place mapping 

 The architecture for resultant mapping can be seen in Figure 2.13 in which the data 

elements in each bank are shown. The processors read the data from the memory banks 

without any conflict by using memory controller through an interconnection network which is 

configured by network controller. The same configuration of a read cycle is also used for the 

write cycle.  

b1(0,4,5)

b2 (3,7,8)

b3(9,10,11)

In
terco

n
n
ectio

n
 N

etw
o
rk

Network Controller
for read/write cycles

Controller

R/W

PE3

PE2

PE1 M
e

m
o

ry co
n

tro
lle

r

b4(1,2,6)PE4

 

Figure 2.13. Resultant In-place mapping architecture  

4.2.2. MRMW architecture  

MRMW memory mapping architecture is used to solve LDPC-like memory conflict 

problems.  The concept of MRMW memory mapping architecture is introduced in [CHA10b]. 

Then this concept is extended in [SANI13] using polynomial time algorithms to find conflict 

free memory mapping. In MRMW architecture, memory mapping of each data element is done 

in two memory locations: First location called read mapping represents read access to that 

data element whereas second location called write mapping expresses write access of that data 

element. The aim of MRMW architecture is to find memory mapping with optimal number of 

memory banks. 
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Mapping problem  

Store L data in B memory banks in such a manner that P processing elements can 

access B memory banks at each time instance in parallel for first reading P data and then 

writing back these P data without any conflict. 

The MRMW mapping is shown in Figure 2.14.b for the example in Figure 2.14.a by 

using [CHA10b]. In this figure data-2 at time instance t2 is read from bank b2 and written in a 

different bank b1.  

PE1
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PE3

t1 t2 t3 t4 t5 t6

0 2 5 4 3 1

1 4 0 5 2 0

2 5 3 1 4 3
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2 5 3 1 4 3

b2 b2 b1 b3 b2 b3 b3 b3 b2 b3 b1 b2

t1 t2 t3           t4 t5 t6  

(a) Data access matrix                        (b) Resultant mapping 

   Figure 2.14. MRMW mapping 

        The resultant MRMW memory mapping architecture is shown in Figure 2.15. In this 

architecture the mapping of data elements in the banks is not mentioned because the mapping 

changes at each cycle according to the mapping shown in Figure 2.14.b. The network 

configurations for read operations are different from write operation. Therefore, configuration 

for read as well as write operations are needed which double the network controller cost. 

Hence, it can be noticed that the in-place mapping architecture could lead to reduce the 

network controller cost as compared to MRMW architecture.  
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Figure 2.15. MRMW architecture 

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014



State of the art 

 - 31 - 

The MRMW architecture is more costly in term of area as compared to in-place memory 

architectures. Memory conflict problems like shuffled turbo (see chapter-3, section 2.2.2) and 

LDPC codes are solved using [CHA10b], [SAN11], [SAN13] based on MRMW architecture. 

So, in order to optimize generated architectures, it could be really interesting if in-place 

memory mapping architecture could be used to solve these problems.  

5. Conclusion 

In this chapter, different approaches to handle memory conflict problem for Turbo and 

LDPC codes are explained. One solution is to develop an interleaving law taking into account 

architectural constraints at the time of code construction. However, with this approach the 

memory mapping problem is only partially solved, and the designers still have to handle 

conflicts in the final architectures (for some parallelism degrees, block lengths, channel 

interleaver in telecommunication systems…).  

A second technique exists in literature to tackle memory mapping problem at run time. 

However, the implementation of such architectures requires large hardware cost and latency 

due to the addition of conflict management mechanisms which limits its use in practical 

systems.  

The third technique is to develop algorithms at design time that assign data in memory 

banks in such a manner that all processing elements can access their required data 

concurrently from memory without any conflict. Some of these techniques solve memory 

mapping problem for any type of interleaving law but results in costly hardware architecture. 

Others are limited to a subset of applications. 

In this thesis, we aim to design optimized parallel hardware architectures to solve 

memory conflict problems. For this purpose, we propose two categories of complementary 

approaches. In first category, we propose memory mapping approaches that aim to limit the 

cost of final decoder architectures by customizing interconnection networks (see chapter 3) 

and by using in-place memory architectures (see chapter 4). In the second category, we 

propose to merge both runtime and design time approaches to design flexible decoder 

architectures. For this purpose, we have embedded polynomial time memory mapping 

algorithm on-chip along with the interconnection network in order to execute it at runtime to 

solve conflict problem (see chapter 5). 
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This chapter consists of two parts. First, a dedicated approach to explore the design space for parallel 

turbo decoder architectures is presented in which different configurations based on shuffled and non-

shuffled schemes are considered. Then, thanks to the analysis of these experiments, we propose a new 

approach for conflict free memory mapping based on network customization to generate optimized 

architectures. This customization can be done by modifying a targeted network with additional 

network components if needed or by adding components starting from the scratch (directly connected 

wires). The proposed approach is compared with the state of the art approaches through different test-

cases.  
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1. Introduction 

In this chapter, we first present a dedicated approach to explore design space for 

hardware architectures of turbo decoders in order to analyze their hardware complexity. The 

turbo decoder memory issues are explored and state of the art approaches are used to solve the 

memory access conflicts in case of shuffled and non-shuffled turbo decoders. We have 

performed different experiments for a case study of turbo decoders for 3GPP-LTE.  

The second part of this chapter is about our proposed memory mapping approach based 

on network customization. The complexity for a given memory mapping problem depends on 

the memory and network controller. Unfortunately, none of the existing approaches focused 

on network controller optimization to design conflict free memory mapping. Our proposal is 

to introduce a new approach based on finding conflict free memory mapping approaches 

which gives the degree of freedom in the interconnection network in order to reduce the 

complexity. In this approach, the interconnection network is customized to find a conflict free 

memory mapping which generates optimized architectures.   

2. Dedicated approach to explore design space of turbo decoder architecture 

Parallel turbo architecture can be based on different decoding techniques (shuffled, non-

shuffled) and different scheduling like backward-forward, butterfly/butterfly-replica, … (see 

section 2.3). The impact of these techniques on the hardware complexity and throughput is 

usually determined at the end of design process after the synthesis process. Thus, the time to 

market is penalized and the probability of designing an optimized system decreases. In order 

to tackle this problem, we have introduced a dedicated approach to efficiently explore the 

design space of parallel turbo decoder architectures. Thanks to this approach, a tradeoff 

between the hardware complexity can be estimated for the architecture design process. The 

memory access conflict problem is solved using existing approaches in order to design high 

throughput architecture for any parallelism and interleaver. However, a penalty in terms of the 

hardware complexity is expected. This work has been carried out in collaboration with 

TELECOM Bretagne, Brest-France [SAC12]. 

2.1. Turbo decoder architecture  

Figure 3. 1 shows the turbo decoder architecture. Through an interconnection network 

the processing elements (PEs) have access to a set of B memory blocks (single port RAM), 

allocated to keep the extrinsic information. The controller part consists of Read Only 

Memories which are used to address each memory block and control signals of the 
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interconnection network. The controller is also to be designed to address the ROM memories 

and to generate control signals of the memory blocks. Figure 3. 1(a) shows the architecture for 

non-shuffled decoding [BER90] in which all the P PEs are first assigned to decode the natural 

order, and then all of them are assigned to the interleaved order. However, as mentioned in 

[ZHA05], shuffled decoding can also be applied as shown in Figure 3. 1(b). In this case, P/2 

PEs are used to decode the natural order, while the remaining P/2 PEs work on the interleaved 

order. Let L denotes the number of symbols in the received frame. This frame can be divided 

into Q sub-blocks that can be decoded in parallel. Each sub-block is formed by M = L/Q 

symbols with Q = P for non-shuffled turbo decoders and Q = P/2 for shuffled turbo decoders.  

 

                 
          (a) Non-shuffled decoding Architecture                   (b) Shuffled decoding Architecture 

Figure 3. 1 Decoding Architecture for Turbo Decoders 

Let T denotes the number of clock cycles where each PE performs writing or reading 

memory access in order to execute one iteration (for a non-shuffled turbo decoder), or a half 

iteration (for a shuffled turbo decoder). Let M represents the size of each memory block. The 

size of each addressing ROM is T*⌈log2(M)⌉. Note that iteration in a shuffled and non-

shuffled turbo decoder takes the same time if both turbo decoders have the same sub-block 

size M. 

2.2. Proposed design flow 

The proposed design flow is detailed in Figure 3.2. Inputs include description of the 

interleaver law (π), the SISO decoder architecture (shuffled/non-shuffled), parallelism P and 

interconnection network delay (critical path of the interconnection network). The first step in 

the design flow is the generation of the data access description files based on the input 

information. These files contain the sequence of extrinsic information values that are read or 

written by each PE decoder at each clock cycle. This step also tackles memory issues in case 

of shuffled decoding (discussed later in details). The first step generates data access 

description file in which information about block length, parallelism and data access patterns 

are mentioned. In the second step, memory access description files are used to find conflict 
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free memory mapping using appropriate approaches. Thus, extrinsic values are assigned to B 

memory banks positions without any conflict. From this memory mapping, the controller can 

be designed and the content of ROM memories can be established. Finally, estimations of the 

turbo decoder throughput and hardware complexity are done. 

 
Figure 3. 2 Integrated design flow for Turbo decoder architectures exploration 

2.2.1. Shuffled decoding memory issues 

Shuffled turbo decoder architectures implementation presents additional memory 

constraints named as concurrent access problem and consistency problem. Here, we will give 

a brief description of these two memory issues and the way we have managed to tackle them. 

 Concurrent access problem occurs in shuffled turbo decoders when the extrinsic 

information for the same data is accessed in the natural as well as interleaved orders during 

the same clock cycle i.e. two processors access one data concurrently. In order to find the 

conflict free memory mapping, additional extrinsic memory locations are used to copy the 

extrinsic information with concurrent access ensuring that a correct exchange between natural 

and interleaved order is achieved. However, this kind of memory collision does not appear in 

non-shuffled architectures, since any information symbol is accessed first in natural order and 

then in the interleaved order. 

The second memory issue for the shuffled decoding is consistency problem. Consistency 

problem occurs during the decoding process when a reading operation done by a PE in one 

domain (natural order) is followed by a reading operation performed by the PE in the other 

domain (interleaved order) in the next operation. This occurs for a writing operation as well. 
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As a result the data element can be overwritten as the two PE will write at the same memory 

location: if only one memory position is used for the extrinsic information, the same extrinsic 

value is read in both orders and the extrinsic value that has to be produced by one PE decoder 

is missed due to overwrite. In this case, performance degradation in the correction capabilities 

of the turbo decoders may occur. So, before finding conflict free memory mapping we need to 

add extrinsic memory locations as well due to consistency.  

Let l denotes the number of additional memory positions used to solve concurrent access 

to the same extrinsic value and the consistency problems. Memory access description files 

then enable to carry out conflict free memory mapping which is presented later. Thus, L+l 

extrinsic values are assigned to B memory banks. From this memory mapping, the controller 

can be designed and the content of ROM memories can be established. 

2.2.2. Solving memory conflicts  

In-place memory mapping and multiple read multiple write (also called double) memory 

mapping are the two types of architectures that exist in literature. Non-Shuffled turbo 

decoding is similar to in-place memory mapping as data elements are first accessed in natural 

order and then in interleaved order. On the other hand shuffled turbo decoding presents 

double memory problem as the data elements are accessed in natural and interlaeaved order 

simultaneously.  In order to find a conflict free memory mapping for these two problems, two 

approaches are introduced in this section: one is in-place memory mapping approach for non-

shuffled decoding and another one is multiple read multiple write memory mapping approach 

for shuffled decoding in turbo decoders. Both approaches can be applied to find conflict free 

memory mapping. 

Different in-place memory mapping approaches can be used to find conflict free memory 

mapping. In [SAN13], a polynomial time algorithm is presented in order to find conflict free 

mappings for conflict problem in turbo and LDPC codes. In-place architecture is used to solve 

problem for turbo like problems and MRMW architecture is used to solve memory conflict 

problem for LDPC like problems. Memory conflicts for non-shuffled turbo decoders is solved 

using [SAN13] using in-place architecture. Data access order can be illustrated through data 

access matrices as shown in Figure 3. 3 (a). In this figure, one matrix is related to the natural 

order access and the other one is related to the interleaved order access. In turbo decoders, 

Trellis level parallelism is used [WOO00] which are represented by radix-2
s
 (s = 1, 2, …) in 

which d = 2
s
 rows are processed by each processors in parallel. Hence, each PE accesses d 

data elements i-e d rows in the matrix. Each matrix has d.P rows for the extrinsic values 
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accessed by the PEs, and T columns for the time instances. Data elements in each row are 

processed by the same PE. Similarly, the d.P data elements in each column have to be 

accessed in parallel by P PEs.  
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             (a) Scheduling for non-shuffled decoding         (b) Scheduling for shuffled decoding 

Figure 3. 3 Scheduling for Turbo Decoding 

As shown in Figure 3. 3 (b), the data access matrices for both natural and interleaved 

orders are processed concurrently for shuffled turbo decoders. Memory mapping with in-place 

architecture is not possible using [SAN13]. Therefore, the approach [SAN13] with MRMW 

architecture is used to solve memory mapping problem in this case.  

The detailed description of the approach [SAN13] is given in section-4.1 of chapter-2 for 

in-place architecture and in section-4.2 of chapter-2 for MRMW architecture. 

2.3. Case study: Turbo decoder for LTE 

We have applied the approach described in the previous section to the 3GPP-LTE 

standard turbo decoder, with a frame size L = 1024 and a code rate R = 1/2. Parallelism is 

explored for PE = 16 and 32 that can use radix-2, radix-4 or radix-16. Shuffled and non-

shuffled architectures are considered with schedule Butterfly-Replica and Butterfly [SAC12], 

respectively. In non-shuffled case there are Q = 16, 32 sub-blocks. In shuffled case, since the 

processors are distributed in both natural and interleaved orders, Q = 8, 16. Thus, we have 

considered sub-blocks sizes B = 32, 64 and 128. We have chosen six bits to represent the 

extrinsic information. The interconnection network is implemented by using B* B Benes 

network [BNS65].  
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Table 3.1 Interconnection network area 

Network size   Pipeline stages  Area (Logic gates)   

32x32   1 7.4k   

64x64   1 18.9k   

128x128   2 45.7k   

In the final architecture, the critical path is in the processor of the decoder. However, the 

critical path of the interconnection network is greater than the critical path of the decoder for 

some B. Therefore to prevent the critical path to be in the interconnection network, pipelining 

stages have been introduced. From logic synthesis results we determined that one pipeline 

stage is enough for B = 32, 64, while two stages are necessary for B = 128. Table 3.1 lists the 

number of logic gates required to implement the Beneš network for six bit width data after 

logic synthesis. 

Table 3.2 Different configuration to explore the design space for turbo decoding 

Mode Scheduling Radix
Internal 

Memory

Config. 1 Non-Shuffled Butterfly 2 YES

Config. 2 Non-Shuffled Butterfly 4 YES

Config. 3 Non-Shuffled Butterfly 16 YES

Config. 4 Non-Shuffled Butterfly 2 No

Config. 5 Non-Shuffled Butterfly 4 No

Config. 6 Shuffled Replica 2 No

Config. 7 Shuffled Replica 2 YES

Config. 8 Shuffled Replica 4 No

Config. 9 Shuffled Replica 4 YES

 
 

Nine turbo decoder configurations are selected and then studied for 16 and 32 PEs as 

shown in Table 3.2. The first 5 configurations were targeted for non-shuffled turbo decoders 

using different radix values. The last 4 configurations were defined to analyze the 

convenience of shuffled turbo decoders with radix-2 and radix-4. PE with and without 

internal memory were considered. Internal memory is a buffer that temporally stores extrinsic 

values which avoids a second access to the memory banks for a data element. Moreover, this 

buffer can alleviate collision problems since less memory accesses are necessary. The 

approach described in section 2.2.2 was applied to the 9 configurations shown in Table 3.2, 

for P = 16 and 32. The hardware cost of the resultant architecture was estimated using 90nm 

technology from STMicroelectronics in terms of NAND logic gate. 

Figure 3.4 represents the equivalent number of logic gates for all the configurations with 

respect to the number of clock cycles necessary to decode a frame (directly related to the 

turbo decoder throughput). Configuration 1, 2 and 3, for 16 and 32 PEs, are Pareto-optimal 
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architectures. In non-shuffled turbo decoder configurations, the use of internal PE memories 

is convenient since it has a positive impact on the turbo decoder throughput (it reduce the 

number of reading accesses) and it helps to reduce the hardware complexity of the whole 

system. However, for the shuffled configurations, the turbo decoder hardware complexity is 

slightly reduced but the throughput is significantly affected.  

 

Figure 3. 4 Area estimations of the considered configurations  

Table 3.3. We have not taken in to account the cost of processors as it is considered to be 

same in all the cases. ). For configuration-5 the cost of network controller is 40% of the total 

cost and cost of memory controller is 50% of the total cost, whereas for configuration-8 the 

cost of network controller is 50% of the total cost and cost of memory controller is 37% of the 

total area. The cost of the interconnection network itself is just 1% of the total area. The 

analysis of the distribution of the estimated areas for in an in-place architecture is almost same 

for all configurations with in-place memory mapping  (conf. 1 to 5), and the distribution of 

the cost of the different components in the MRMW architecture is almost same for all other 

configurations with MRMW memory mapping problem (conf. 6 to 9).  Hence, it can be 

concluded that the network cost is negligible whereas network and memory controller is 

larger in the total cost. 

Table 3.3 Cost calculation 

  
NW 

Cost 

NW 

Controller 

Memory 

Controller 

Extrinsic 

Memory 
Total 

Config 5 18.9 k 2.1 M 2.5 M 0.4 M 5.1 M 

Config 8 102.2 k 4.7 M 3.4 M 0.9 M 9.1 M 

 

The approach used in [BRI13a] [BRI13b] is focused on memory mapping approach to 

design optimized parallel hardware architectures and to support a targeted interconnection 
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network. However, the cost of these approaches is very high in some cases when the 

interconnection network is not compatible with the interleaving law due to the additional 

components (buffers, register, multiplexers) needed to find conflict free access of data. We 

have proposed a memory mapping approach to design optimized parallel hardware 

architectures based on network customization which can reduce the network controller cost as 

network controller in the designed architecture is also among the most costly elements in the 

architecture. Moreover, the proposed approach is also able to generate a conflict free memory 

mapping with reduced cost for a targeted interconnection connection as compared to state of 

the art approaches. 

3. Memory mapping approach based on network customization 

The network and memory controller has a larger effect on the total cost as compared to 

other parts for the approaches used for finding conflict free memory mapping as shown in 

previous section. The memory relaxation approaches [BR12] [BRI13b] [BRI13a] emphasis on 

the optimization of memory and network controller. However, State of the art approaches 

exist which are based on customizing architectures to support the constraint of a particular 

targeted interconnection network. However, Time relaxation [WHE04] and memory 

relaxation [BRI13b] approaches are based on customizing architectures to support the 

constraint of a particular targeted interconnection network. In memory relaxation method, if 

the targeted interleaving law is strongly incompatible with the targeted interconnection 

network the additional costs are high. However in time relaxation, the final architecture is 

based on Benes network architecture and requires additional buffers which results in the 

increase of the total latency of the system. The targeted interconnection network has a large 

impact on the final cost of the architecture besides solving the parallel interleaving conflict as 

the set of possible permutations offered by the network can strongly restricts architectural 

design space exploration. Since this interconnection network has a great impact on the final 

architecture and it is considerably the cause of the problem which is not taken into account in 

the state of the art approaches. Since, the cost of the network controller depends on the size of 

the network (number of control bits is equal to the number of switches in the network) and it 

is not taken into account in the state of the art approaches.  A smart memory mapping 

approach should focus on this network directly in order to adapt the network constraint to the 

interleaving law as much as possible. In this way, the optimization of the generated 

architecture will be more impressive than the existing approaches as it will be seen with 

proposed approach: we call it network relaxation. This work has been published in [REH14b].  

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014



Optimized memory mapping approach based on network customization 

 - 43 - 

3.1. Proposed Approach 

3.1.1. Memory Mapping with Network Relaxation 

 Our proposed approach aims to take advantage of network relaxation principle. Figure 

3. 5 presents an approach by considering the customization of the interconnection network 

and reducing the cost of the controller architecture. The constraint relaxation is provided by 

modifying the original network by adding additional multiplexers/switches. The idea is to 

keep the advantage of memory mapping approaches like [CHA10a] or [TAR04] in terms of 

architectural cost and latency, while proposing an approach that is able to target any 

application as [WHE04] or [BRI12]. 

First, starting from the description of an interleaving law (number of data, interleaving 

algorithm, parallelism) and a targeted interconnection network (i.e. NULL, Barrel-

Shifter(BS), Butterfly(BF), Benes(BEN), Cross-Bar(CB)), the set of input memory mapping 

constraints is generated and provided to our memory mapping algorithm. Then, the next step 

consists in applying a memory mapping algorithm under network constraint. In the network 

library, all the permutations offered are stored separately for each network. This mapping step 

aims to fully explore the memory mapping solution space by checking all the permutations of 

the selected network. If no memory mapping solution exists for this network, then the set of 

permutations will be extended by addition of a network component, resulting into customized 

network architecture with enriched set of permutations (see Figure 3. 8). At the end the 

resulting architecture is generated. By applying this process for all available networks in the 

library, the designer is able to widely explore the design space and to select the best solution. 

Input 

Constraints

Network  

Library

Results

Mapping
with Network

Relaxation

Description of 

Interleaving Law
Network Constraint

Input constraints
generation

 

Figure 3. 5. Proposed Memory Mapping Exploration Flow for Network Relaxation Approach 
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The proposed algorithm is based on the memory mapping model proposed in [CHA10b]. 

A formal description of the mapping matrix model is presented here. Let us consider a parallel 

decoder architecture composed of P processing elements PE={PE1,…PEp} and P= B memory 

banks B={b0,…bB-1} to store L data. We need P= B, because it is always possible to find 

conflict free memory mapping using P= B for any conflict problem [CHA10a][CHA10b] and 

the increase in the number of banks will result in increase of the size of network which will 

increase the cost of the network controller. Figure 3.6(a) represents a data access matrix for a 

parallelism P=4 which is scheduled as a table. Lines match processing elements, i.e. each line 

represents all the data processed by its associated PE. Columns represent computation instants 

needed to process L=12 data elements.           

Time

PE1

PE2

PE3

PE4

0 1 2 0 6 4

3 4 5 8 5 7

6 7 8 2 10 1

9 10 11 11 3 9

t1 t2 t3 t4 t5 t6

0 1 2 0 6 4

- - - - - - - - - - - -

3 4 5 8 5 7

- - - - - - - - - - - -

6 7 8 2 10 1

- - - - - - - - - - - -

9 10 11 11 3 9

- - - - - - - - - - - -

Time

PE1

PE2

PE3

PE4

t
1

t
2

t
3 t

4
t
5

t
6

            

(a) Data access matrix  (b) Mapping matrix                             (c) Element of matrix 

Figure 3. 6. Memory Mapping model  

The data access matrix in then modeled to a mapping matrix as shown in Figure 3. 6(b) 

in which each data is associated to two mapping cells which will be filled with the label of a 

memory bank. An  element  of  the  memory  mapping matrix is shown in Figure 3. 6(c) in 

which data ei is read in the memory bank bj, and written in the memory bank bk after having 

been processed by a PE. In order to guarantee a valid memory mapping, constraints have to 

be respected for a given parallelism and interleaving law.  

Memory constraints: 

1- Data processed at the same cycle (i.e. data that are read or written concurrently at time  

instance) have to be stored in different memory banks. 

     2- The i
th

 read access to a given data must be performed in the same memory bank such 

that its (i-1)
th

 write access i.e. a data must be read in the same memory location it has been 

written.  

 

Network objective:  

The memory mapping has to respect the set of supported permutations (i.e. this set is 

initialized with permutations of user-defined network constraint topology). 
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Start ;    // Boolean value initialized with TRUE 

SPerm ;    // Set of possible permutations in the selected network 

MMap;   // Memory Mapping matrix 

Ci;       // Selected column i in MMAP 

LVPC
i
;   // List of valid permutations for column Ci 

VPC
i
 ;  // An element of  LVPC

i
 

Algorithm Map&NetRelax (SPerm, MMap, Start) 

Ci = SelectColumn(MMap); 

LVPC
i 
= SelectValidPerm(SPerm, Ci, MMap); 

If ((LVPC
i
 is not empty) and not (FullyMapped(MMAP))) Then 

      Do 

        VPC
i
  = Select&RemoveFirstPerm(LVPC

i
); 

        MapColumn(Ci, VPC
i
); 

        Start = FALSE; 

        Map&NetRelax (SPerm, MMap, Start); 

        If ((Start = FALSE) and not(FullyMapped(MMAP))) Then  

            RemoveMapColumn(Ci, VPC
i
); 

End if; 

    While ((Start = FALSE) and (LVPC
i
 is not empty) and  

             not(FullyMapped(MMAP))); 

 

   If ((Start = FALSE) and not(FullyMapped(MMAP)))  Then 

   AddNewNetComp(SPerm); 

   EraseMap(MMap); 

   Start = TRUE; 

   Map&NetRelax (SPerm, MMap, Start); 

   End if; 

End if; 

Figure 3. 7. Mapping algorithm with network relaxation 

The proposed memory mapping algorithm (cf. Figure 3. 7), first selects the most 

constrained column (i.e. the column with high number of data elements already mapped) in 

the memory mapping matrix (all the matrices are initially empty, so the mapping algorithm 

starts from the first column). Then the algorithm generates the subset of valid permutations 

for this column from the set of supported permutations in the targeted interconnection 

network. If this subset is not empty (i.e. conflict free memory mapping solution could be 

obtained for the selected column, with respect to the set of possible permutations) then each 

possible permutation from this subset is explored one by one, until a final conflict-free 

memory mapping is generated by our recursive algorithm. If no such valid memory mapping 

can be found with the targeted network then the set of possible permutations must be extended 
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by adding a new network component (i.e. multiplexer or switch) to the existing network. In 

that case the memory mapping algorithm restarts from the beginning with this new extended 

set of permutations. The algorithm keeps on customizing the network by adding switch to the 

network in each iteration until a fully connected Benes network is constructed (worst case). 

As shown in Figure 3. 8(a), the algorithm starts by finding conflict free memory 

mapping with one switch and if the mapping is not possible another switch is added to the 

network (see Figure 3. 8(b)). Afterwards, the algorithm adds another switch to the network if 

the mapping is not possible with previous network and tries to find conflict free memory 

mapping using permutation resulted by this network (see Figure 3. 8). This process 

continuous (see Figure 3. 8(d) to (f)) until a fully connected network is established which can 

always give a conflict free memory mapping according to [TAR04]. However, during this 

process from Figure 3. 8(a) to (e), if the algorithm succeeded to find conflict free memory 

mapping then the network at that stage will be the optimized resultant network. 
 

The architecture generated with network relaxation is composed of a classical 

interconnection network (i.e. Barrel-Shifter, Butterfly…) or NULL network along with 

additional network component(s) named customized network. Then, since the source of the 

memory conflicts is relaxed, it is possible to find an optimized conflict free architecture 

compared to [WHE04] or [BRI12]. 

(a) (b)

(e)

(c)

(f)

(d)

 

Figure 3. 8. Network customization 

3.1.2. Pedagogical Example  

In order to fully elaborate the proposed approach, the data access pattern example shown 

in Figure 3. 6(a) is considered. Firstly, a Barrel-Shifter BS is considered as input network 

constraint for this example. Hence, the set of permutations offered by a BS (see Figure 3. 
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9(b)) is selected from the library. The general architecture targeting BS is shown in Figure 3. 

9(a).  

                                         
(a) Architecture         (b) Permutation      

Figure 3. 9 Barrel shifter 

The mapping is started from the 1st column and the column is filled according to the 

permutation supported by the BS (σ1 of Figure 3. 9(b)). This column is then reported in the 

mapping matrix accordingly as shown in Figure 3.10(a). 

 

t1 t2 t3  t4 t5 t6

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b0 b0 b0 b0 b2 b2

3 4 5 8 5 7

b1 b1

6 7 8 2 10 1

b2 b2

9 10 11 11 3 9

b3 b3 b1 b1 b3 b3

               
t1 t2 t3  t4 t5 t6

PE1

PE2

PE3

PE4

0 1 2 0 6 4

b0 b0 b0 b0 b0 b0 b2 b2 b1 b1

3 4 5 8 5 7

b1 b1 b1 b1 b2 b2

6 7 8 2 10 1

b2 b2 b2 b2 b3 b3 b1 b1

9 10 11 11 3 9

b3 b3 b3 b3 b1 b1 b3 b3

          
(a) Initial                                       (b) Problem while mapping with BS 

Figure 3. 10 Mapping with BS  

Table 3.4 Permutations after adding network component with BS 

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

b0 b3 b2 b1 b0 b3 b2 b1

b1 b0 b3 b2 b1 b0 b3 b2

b2 b1 b0 b3 b3 b2 b1 b0

b3 b2 b1 b0 b2 b1 b0 b3
 

It can be seen that after one iterations of our algorithm, the partial memory mapping 

described in Figure 3.10(b) is achieved. At this step, when the second column is filled 

according to the permutations of BS and when this column is reported, the permutation at the 

last column is not supported by BS permutations as shown in Figure 3.10(b) as the last 

column has two data elements (4 and 1) that are assigned to one banks b1 (i.e. this results in an 

invalid mapping).So an additional network component (i.e. a switch which allows swapping 

input data) is needed with the Barrel-Shifter network and an extended set of permutations is 

generated as shown in Table 3.4. The position of the switch in the network will depend on the 

structure of the Benes network (because it is always possible to find conflict free memory 

mapping with a fully connected Benes network [TAR04][CHA10b]).  
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PE1
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(a)Architecture     (b) Mapping 

Figure 3. 11 Network relaxation with BS 

Then, the memory mapping process is done with this new set of permutations. The entire 

matrix can be filled according to this new set of permutations as shown in Figure 3. 11(b). 

The resultant architecture based on customized network is shown in Figure 3. 11(a) which 

consists of BS network and one additional network component (a swicth).  
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9 10 11 11 3 9
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(a)Architecture     (b) Mapping 

Figure 3. 12 Network relaxation without any NW constraint 

If no network constraint is defined by the designer, the algorithm starts from scratch 

considering no network constraints, i.e. start mapping with NULL network (each PE is 

directly connected to a single memory bank through a wire). The algorithm will add new 

network components to the network when needed, until a valid memory mapping is achieved. 

As a result a fully customized network is developed. The complete mapping for the 

considered example using network relaxation can be seen in Figure 3. 12. The algorithm will 

find the conflict free memory mapping for all the possible combination of the available 

permutations (i-e 1
st
 column is filled with σ1 and if the mapping is not valid, then σ2 is tried 

and so on). 

3.2. Experiments and Results 

Currently turbo codes are used in different standards. However, interleavers used in 

these standards are not conflict free for every type of parallelism. The proposed approach is 

able to find conflict free memory mapping for any type of interleaver and for any type of 

parallelism. This section presents the different experiments we performed to show the interest 

of the proposed approach. All the results in this thesis are given in NAND-gate equivalent 
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area using 90nm technology from STMicroelectronics.  These estimations are based on 

synthesized  and pre-characterized components (Registers, multiplexers, …). The number of 

the different components is provided by the mapping tool and as a result the estimations for 

the architecture are generated. We performed experiments for two test cases: HSPA and LTE. 

In all these results we have considered the network controller cost which is 50% of the total 

architecture (recall section 2.3). 

 

3.2.1. Case study for HSPA 

For experimental purpose, we implemented interleavers from the most widely used 

standard of telecommunication systems: HSPA Evolution [HSP04]. We implemented 

interleaver used for HSPA and performed experiments for different block lengths and 

parallelisms.  
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Figure 3. 13 Comparison of HSPA Network Controllers Areas obtained with state of art 

approaches and Network Relaxation approach 
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Figure 3. 14 Comparison of HSPA Network Controllers latencies obtained with state of art 

approaches and Network Relaxation approach  
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Figure 3. 13 and Figure 3. 14 shows comparison of the proposed network relaxation 

approach with different state of the art approaches. Different HSPA block lengths L with P=4 

are considered. The area of the network controller for proposed customized network is 

compared with the area of the network controller for approaches which uses fully connected 

(Benes network). Figure 3. 13 shows comparison of area in logarithmical (base10) scale. Our 

proposed approach has 50% (average) lesser area as compared to [TAR04] and 18% (average) 

lesser area as compared to [WHE04]. Figure 3. 14 shows latency comparison in term of 

cycles. The latency show the number of cycles needed to access all the data elements. Our 

proposed approach has equivalent latency as compared to [TAR04] and 56% (average) lesser 

latency as compared to [WHE04] (as [WHE04] approach uses FIFOs for conflicting data 

which is routed in next iteration and as a result the number of cycles increases which 

increases the latency). Therefore, the proposed approach significantly reduces the cost as 

compared to [TAR04] with the same latency. On the other hand as compared to [WHE04], 

our proposed approach reaches small reduction in terms of area, but without any additional 

latency (i.e. our architecture will achieve higher throughput) leading to a better 

performance/area tradeoff. 
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Figure 3. 15. Detailed comparison of HSPA Network Controllers Areas obtained with state of 

art approaches and Network Relaxation approach  

(L=2240, P=4, Targeted network: Barrel Shifter)  
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Figure 3. 16 Detailed comparison of HSPA Network Controllers Areas obtained with state of 

art approaches and Network Relaxation approach  

(L=800, P=8, Targeted network: Barrel Shifter)  

Moreover, we compared our proposed approach with existing approaches [CHA10a], 

[TAR04] and [BRI12]. These experiments was performed for all block length from HSPA and 

for parallelism P=4 and P=8. Since the area for the memory banks is the same for each test 

case, it is not taken into account in these results. Figure 3. 15 and Figure 3. 16 show typical 

results obtained in this case for 2240 and 800 data and a unique Barrel Shifter BS network 

constraint. Here, [CHA10a] and [TAR04] are not able to find conflict free memory mapping: 

architectural constraints are not supported in [TAR04] and it is not possible to find a conflict 

free memory mapping with a BS as network objective for [CHA10a] . However, [BRI12] is 

able to find the solution with the use of additional registers along with BS. As shown in these 

figures our proposed approach can find an optimized solution with an area divided by about 

66 as compared to [BRI12] for the example considered in Figure 3. 15 and by about 20 as 

compared to [BRI12] for example considered Figure 3. 16. The latency for all the approaches 

based on memory mapping solutions [TAR04], [CHA10a], [BRI12] and the proposed 

approach is same as no additional buffer elements are needed in the interconnection network.  
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Figure 3. 17. Detailed comparison of HSPA Network Controllers Areas obtained with state of 

art approaches and Network Relaxation approach  

(L=2240, P=4, No targeted network)  
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Figure 3. 18  Detailed comparison of HSPA Network Controllers Areas obtained with state of 

art approaches and Network Relaxation approach  

(L=800, P=8, No targeted network)  

In Figure 3. 17 and Figure 3. 18, the best results for each approach are presented. In this 

case, the interconnection could be different for each approach, for example [CHA10a] and 

[TAR04] are not able to find a solution with a Barrel Shifter interconnection network so 

[TAR04] gives solution only with a fully connected network like Benes and [CHA10a] is able 

to find a solution with a Butterfly BF network, for L=2240 and P=4. Whereas for the second 

example with L=800 and P=8 in Figure 3. 18, the minimum cost is achieved with Benes 

network for [CHA10a][TAR04]  . The cost of the [BRI12] is very high due to the addition of 

buffers and multiplexers to solve the conflicts. Our approach (based on customized network) 

is able to find the conflict free memory mapping for all the considered examples with an area 

reduction of 34% in average for Figure 3. 17 and 50% in average in Figure 3. 18. 
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Figure 3. 19. Comparison of HSPA decoder architecture estimated areas obtained with state of 

art approaches and Network Relaxation approach for different block lengths (P=4)                                                                   
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Figure 3. 20. Comparison of HSPA decoder architecture estimated areas obtained with state of 

art approaches and Network Relaxation approach for different block lengths (P=8)                                                                   

In order to further explore our approach we have considered different block lengths from 

HSPA with P=4 and P=8. The results for P=4 is shown in Figure 3. 19 and for P=8 in Figure 

3. 20. Like in the previous experiments, these figures show the best result for each approach. 

The results clearly show that our proposed network relaxation method always gives lower cost 

solution as compared to existing approaches. For P=4, our solution reduces the total area 21 

times in average for all the experiments. Compared to [TAR04] the area is divided by 1.8 in 

average and compared to [BRI12] the area is divided by 41 in average. For P=8, network 

relaxation reduces the total area 40 times in average for all the experiments. Compared to 
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[TAR04] the area is divided by 2.6 in average and compared to [BRI12] the area is divided by 

76 in average. As it has been said, the latency is same for all the considered approaches 

[TAR04][BRI12][CHA10a] and are compared to our proposed approach.  On the contrary, in 

[WHE04] the latency of the architecture is impacted as compared, then this solution is not 

considered in the final results.  

3.2.2. Case study for LTE 

We also performed experiments for interleaver used in LTE. In [WON10b], LTE with 

parallel architecture is presented. They have presented a multistage interconnection network 

based on barrel shifter. Figure 3. 21 shows the parallel architecture with multistage 

interconnection network with P = 8 (2
i
) with three stage. Configuration bits (bits needed to 

control the network) for P = 8 can be calculated by considering a stage (3 − i), in which i = 0 

to 2, we need one bit for 2
i
 inputs in that stage (like in first stage we will need 2

0
 i-e 1 bit). So, 

one bit is needed for stage 0, two bits are needed for stage 2 and four bits are needed for stage 

3.Therefore, three stages of modified BS need seven bits for configuration at each access. 

Similarly, for P=4, two stages of modified barrel shifter needs three bits. 
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Figure 3. 21. Parallel architecture with multistage network 

We have applied our proposed approach for the above mentioned case study. The 

proposed approach is able to optimize the network as some block lengths can support standard 

BS. Table 3.5 shows LTE block lengths that support BS network. 

Table 3.5 Block lengths supported by BS 

          

P=4
160,200,240,320,360,480,528,800,880,960,1440,

1600,2240,2880,3520,4160,4480,5760

P=8 416,480,800,1600,2240,3520,3584,4608,4480
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As a result, the cost of the architecture can be reduced as shown in Figure 3. 22. In this 

figure, the area comparison between [WON11b] and our approach is given for different block 

lengths. The proposed approach can save up to 35% of the network area as shown in Figure 3. 

22. 
 

 

Figure 3. 22. Comparison of LTE decoder architecture estimated areas obtained with state of 

art approache and Network Relaxation approach for different block lengths (P=4) 

 

4. Conclusion 

In this chapter, a dedicated approach to explore the design space for parallel turbo 

decoder architectures is presented in which different configurations based on shuffled and 

non-shuffled schemes are considered in order to analyze the hardware complexity of the 

decoder architecture. A novel architecture to decode turbo codes using shuffled scheduling is 

also proposed in which we have studied and solved different memory issues for shuffled 

decoding technique. The analysis of the cost estimation gave us the distribution of cost for 

different parts of the architecture like network controller, memory controller, extrinsic 

memory. We have seen that network controller is up to 60% of the total cost for some test 

cases; unfortunately state of art approaches are not able to directly optimize this part. 

Therefore, we proposed a new approach for conflict free memory mapping based on network 

customization to generate optimized architectures. This approach also respects targeted 

network architecture by modifying it with additional network components if needed. Proposed 

approach is compared through industrial test-cases with the state of the art approaches. 

Results show that optimized architectures can be obtained by applying proposed network 

relaxation approach even when particular network is targeted with significant area reduction 
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and without any reduction in terms of throughput (as the latency of the proposed approach 

remains the same as state of art memory mapping approaches). 

The proposed network relaxation approach provides in-place mapping for conflict 

problem which can be solved with P banks, and provides MRMW mapping for conflict 

problems which cannot be solved with in-place mapping. However, due to the customized 

network solution the proposed approach is able to generate optimize solution in both the 

cases. As mentioned in chapter-2, MRMW architecture is more costly in term of area as 

compared to in-place memory architectures. Therefore, a second option must also be explored 

in order to optimize the final architecture in term of area: to use in-place memory mapping 

architecture for other memory conflict problems. This solution is presented in the next 

chapter. 
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In this chapter, we present an optimized parallel hardware architecture using in-place memory 

mapping. In-place memory mapping architecture and multiple read multiple write (MRMW) 

architectures are currently used in the state of the art approaches to solve a memory mapping 

problem. However, the controller MRMW architectures are more costly as compared to in-place 

architecture. In this chapter, we show that some of the memory mapping problems which are currently 

solved using MRMW architectures can be solved by using in-place memory mapping architectures. We 

also present polynomial time algorithms to solve these problems with in-place architecture. As a result 

the complexity in term of area of the decoder can be reduced.  
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1. Introduction 

In first part of the previous chapter, we have explored different configurations based on 

shuffled and non-shuffled turbo decoder architecture using state of the art approaches in order 

to find conflict free memory mapping. Non-shuffled configurations are turbo like problems 

for which memory mapping approaches based on in-place architecture are used. On the other 

hand, shuffled configurations represent LDPC like problems for which approaches based on 

multiple read multiple write (MRMW) memory mapping architecture are needed. So, state of 

the art approaches uses MRMW architecture and in-place memory architecture to find conflict 

free memory mapping. For example, memory conflict problems in non-shuffled decoding of 

LTE [SAC12] and non-shuffled decoding in HSPA [SAN13] are solved using in-place 

memory architecture. While conflict problems solved with MRMW architecture includes 

shuffled decoding in LTE [OSC12], shuffled decoding in HSPA and non-binary LDPC 

problem [BRI12] [CHA10b]. The MRMW memory mapping architecture requires network 

configurations for read as well as write operations which double the network controller cost 

(as explained in chapter 2). However, for in-place architecture the network configuration of a 

read cycle is also reused for the write cycle. As a result, the network controller is reduced for 

in-place architecture as compared to MRMW architecture.  

        In this chapter, we introduce that every conflict problem with two accesses (each data 

element is accessed two times e-g natural order access and interleaved order access) which are 

currently solved with MRMW memory mapping architecture can be solved using in-place 

architecture. It allows us to reduce the network controller which results in an optimized 

decoder architecture. Our proposed work addresses the memory mapping problems in which 

each data is accessed exactly two times. 

2. Two access memory mapping problem 

In this section we describe memory conflict problems in which each data is accessed 

exactly two times. These problems include memory mapping problems of turbo decoders in 

LTE and HSPA interleaver with shuffled as well as non-shuffled decoding schemes [BER93]. 

The memory conflict problem in non-binary LDPC is also with two accesses [DAV].In order 

to find conflict free memory mapping using classical design time approaches, these problems 

can be categorized as shown in Figure 4.1. The in-place memory mapping solution is possible 

for conflict problem in UWB, non-shuffled decoding in HSPA and non-shuffled decoding in 

LTE interleavers whereas the MRMW mapping solution is possible for conflict problem in 
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non-binary LDPC, shuffled decoding in HSPA and shuffled decoding in LTE interleavers. 

[SAN13] [OSC12] [BRI12] [CHA10b]. 

Memory conflict problem 

(two accesses)

In-place mapping MRMW mapping

Non-shuffled

decoding HSPA

Non-shuffled

decoding LTE
UWB Shuffled

decoding HSPA

Shuffled

decoding LTE

Non-binary 

LDPC
 

Figure 4.1 Solution for memory conflict problems 

In this work, we propose that all of these two access memory conflict problems can be 

solved by using in-place memory mapping architecture and associated memory mapping 

algorithms are proposed. 

2.1. Problem formulation  

Approaches based on in-place memory mapping includes [SAN13] which can solve the 

given problem in polynomial time using bipartite edge coloring algorithm. Using in-place 

mapping solution, this approach can only target turbo like problems (e-g non-shuffled 

HSPA/LTE) in which data is first accessed in natural order and then in interleaved order 

because of their bipartite nature. However, we can show that it is also possible to use the 

approach [SAN13] for problems which are not of bipartite nature i-e data elements accessed 

randomly and not accessed in natural order and interleaved order pattern (like in shuffled 

LTE). This can be done by performing a test which can determine the bipartiteness. This test 

will be referred as bipartite test. After applying the bipartite test if the conflict problem 

results in bipartite graph then we can apply the bipartite edge coloring algorithm to find in-

place conflict free memory mapping [SAN13]. Bipartite graph can be defined as below.  

 

 

Definition  Bipartite Graph 

 Bipartite Graph is a graph whose nodes can be divided into two independent sets, Tx and 

Ty such that every edge (tx, ty) connects a node tx from Tx to a node ty from Ty. Moreover, 

there is no edge that connects nodes of same set. 
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So the bipartiteness of a graph can be determined by the bipartite test which can show 

whether the graph is bipartite graph or not. Hence, the graph for two access problem can be 

categorized in bipartite graph and non-bipartite graphs as shown in Figure 4.2. We can find 

conflict free memory mapping using in-place architecture by applying bipartite edge coloring 

algorithm in case of bipartite graphs. On the other hand, memory mapping problems in non-

binary LDPC codes and shuffled decoding of HSPA interleaver result in a non-bipartite 

graphs. For these graphs, approaches based on MRMW mapping architecture are needed as 

currently state of the art approaches are not able to find conflict free memory mapping using 

in-place architecture.  

Memory conflict problem 

with two accesses

Bipartite Graph Non-bipartite graphs
 

Figure 4.2 Categories in two access problem 
 

In this work, we propose to solve mapping problem using in-place memory mapping 

architecture even for non-bipartite graphs. We can find memory mapping using Vizing 

theorem [VIZ64] which can find conflict free memory mapping for any given problem using 

P+1 banks. So, thanks to this approach, in-place mapping architecture can be achieved by 

adding only one additional bank. However, Vizing theorem is true only for simple graphs. We 

will define simple and multi-graph before introducing Vizing theorem.  

 

Definition  Simple Graph 

 A simple graph is a graph which has no loops (edges connected at both ends to the same 

node) and no parallel edges (two nodes are connected with only and only one edge). 

A simple graph is shown in Figure 4.3 in which no loops and no parallel edges exist. 

 

Figure 4.3 Simple graph 
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Definition  Multi-Graph 

 A multi-graph is a graph which has loops (edges connected at both ends to the same 

node) and/or parallel edges (two nodes are connected with only and only one edge). 

A multi-graph is shown in Figure 4.4 in which a loop exists at node t4 and parallel edges 

exist between t1 and t3, and between t6 and t3.  

t1 t3

t4 t6
 

Figure 4.4 Multi-graph 

Definition  Vizing Theorem 

 
A simple graph of degree P (largest number of edges connected to a node in the graph) 

can be edge-colored with at most P+1 colors where P is the maximum degree in a graph 

[VIZ64]. 

 

Hence, non-bipartite graph for memory mapping problem can be edge colored with P+1 

colors which results in conflict free memory mapping with P+1 banks using Vizing theorem. 

We will perform a test (simple graph test) before applying Vizing theorem. For multi-graphs a 

dedicated approach is used to find conflict free memory mapping. 

Finally, if a non-bipartite graph is also a multigraph, then a dedicated approach 

proposed in this thesis can be used. This proposed approach is based on approach used for 

transportation problem which can find conflict free memory mapping for any given problem. 

The above mentioned proposed work can be formalized by the design flow described in 

the next section. 

3. Design Flow 

This entire process is presented in a proposed design flow presented in Figure 4.5. For a 

given mapping problem first a graph is constructed. Then bipartite test is performed to 

determine whether the given problem can be solved using P banks. If the graph is not bipartite 

then more than P memory banks are needed. Hence, simple graph test is performed to check 

whether Vizing theorem can be applied which can provide conflict free memory mapping 
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using upto P+1 banks. Finally, for multi-graphs, a dedicated approach is applied which can 

find conflict free memory mapping using upto (3/2)*P banks.  

        

Mapping
problem

Mapping using

P Banks
Bipartite

N

Y

Simple 

graph

N

Graph construction

Mapping using

upto P+1 Banks

Mapping using

Upto (3/2)*P Banks

Y

 
Figure 4.5 Design flow 

3.1. Graph construction 

The first step of the design flow is to construct a graph based on the memory access 

matrix. First an initial graph G’ = (T ∪ L, E) is constructed according to the data access 

matrix in which set of nodes T represents all the time instances whereas set of nodes L 

represents all the data elements of the access matrix. An edge (ti ,lj) is incident to the data 

node lj and to the time node ti if lj is processed at ti (i.e. data lj will be read and next written at 

time ti) where ti ∈ T. Then the graph G’ is converted into a graph G = (T, E).  

The two access memory mapping problems have the following two distinct properties: 

Property 1   

 The number of parallel accesses to data the elements P (i.e. number of data required to 

access concurrently) at any time instance is always same. This property implies that in 

G’, each time node has same degree, dt = P. 

Property 2  
 

 Each data element is accessed exactly two times. This property implies that all the data 

nodes have the same degree, dl = 2. 

 

According to the property 2, the graph G’ can be converted into graph G by first joining 

two edges at each data node and then removing all the data nodes from Gi. Thanks to property 

1, G is regular i-e all nodes have same degree with the degree of each time node, dt = P. Now 
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we can conclude that in set of T, each edge ti corresponds to a data node in Gi, so the coloring 

of edges in G actually means coloring of data nodes in Gi.  

PE1 0 0 2 4 1 5

PE2 1 2 3 5 3 6

PE3 8 4 6 7 7 8

t1 t2 t3 t4 t5 t6

 
Figure 4.6 Example of data access matrix with two accesses to each data 

Consider a simple example of data access matrix (see Figure 4.6) in which size of data 

elements L = 9, parallelism P=3 and number of time instances T = 6. For this data access 

matrix, the graph Gi is shown in Figure 4.7(a) in which set of data nodes is L = 9 and set of 

time nodes is T = 6. This graph is then converted into the graph G shown in Figure 4.7(b). 

Now we can get a conflict free memory mapping by applying edge coloring algorithms where 

each edge connected to a time instance will have different colors which means that each data 

accessed at a time instance is placed in different memory banks resulting in a conflict free 

access to the data.  

t1 t2 t3

t4

t5

t6

0

1

84

7

3

6

2

5

             

t1 t2 t3

t4

t5

t6  

(a) Graph Gi                                                       (b) Graph G 

Figure 4.7 General Graph for edge coloring 

             The graph G is needed to be edge colored in order to find conflict free memory 

mapping. However, for approach proposed in [SAN13] a bipartite graph is required for edge 

coloring. Therefore, the bipartiteness of the graph is checked by bipartite test as described in 

next section. 

3.2. Bipartite test 

Bipartiteness of a graph can be tested by using breadth first search algorithm (BFS). 

The BFS begins at a source (starting) node and inspects all its neighboring nodes. Then for 

each of those neighboring nodes (one after another), their own neighbor nodes which have not 

been visited before are traversed, and so on. We start the search at any node and assign it to 

alternating sets i-e assign the starting node to set-1 and assign its entire connected neighbor 

nodes to set-2, further assign to set-1the nodes connected to the all neighbors of the neighbors 

and so on. The graph is not bipartite if at any step a node has connected neighbors assigned 
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with the same set. In the end, the graph is bipartite, if the search ends without having two 

connected neighbors assigned to the same set. 

As shown in Figure 4.8, the algorithm uses a queue data structure to store intermediate 

results as it traverses the graph. A queue is a collection in which the entities are kept in order 

as same as First-In-First-Out (FIFO). The addition of entities is made to the rear terminal 

position, known as en-queue, and removal of entities is made from the front terminal position, 

known as de-queue.  

Start

Enqueue Source Vertex

Dequeue vertex and
assign alternate color

check 
for same 

color

Y

N

Graph is 

not Bipartite

Enqueue Uncolored 

neighbor

empty

Queue

Y Graph is 

Bipartite

 
Figure 4.8 Bipartite test 

The whole process is shown in the following steps. 

1) The first step is to enqueue the source node as shown in Figure 4.9(b) in which t1 is 

considered as the source node in the graph shown in Figure 4.9(a). 

2) Dequeue a node and assign to a set. 

3a). If two adjacent node are assigned to same set then the graph is not a Bipartite graph  

       then the algorithm is completed 

     3b). Otherwise enqueue the neighbor nodes (the direct child node) which are not yet 

              assigned. 

As it is shown in Figure 4.9(b), t1 is dequeued and assign it to set-1. Then all the              

neighbours nodes t2 and t5 are enqueued. 

4) If the queue is empty, every node on the graph has been assigned then the algorithm is 

completed, else repeat previous step by assigning alternate sets to the neighbors.    
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t1

Set-1= 

t2 t5

Step-1)

Step-2)

Step-3b)

Set-1= 

 
(a)                                                                        (b) 

Figure 4.9 Birpartite test example 

      As a result, the bipartiteness of a graph can be decided for a conflict problem, so bipartite 

edge coloring approach can be used to find conflict free memory mapping [SAN13]. 

However, for non-bipartite graph we can apply the Vizing theorem in case of simple graphs 

(see Figure 4.5). The simple graph test is described below.  

3.3. Simple graph test 

Simple graph has two properties: no loops and no parallel edges. The access of one data 

element twice at a time instance always results in a graph for memory mapping problem with 

loops which is never the case for memory access problems. Therefore, we can easily perform 

a test to determine whether a graph is a simple graph or not by checking the existence of 

parallel edges in the graph by modifying the breadth first algorithm.  

 

Start

Enqueue Source Vertex

Dequeue vertex and
Check its all neighbors

Parallel 

edges

Y

N

Multi-Graph

Enqueue neighbor

empty

Queue

Y

Simple Graph

 
Figure 4.10 Simple Graph test 

As shown in Figure 4.10, the algorithm traverses the graph as follows: 

1) Enqueue the source node (see Figure 4.11). 

2) Dequeue a node and check all its neighbours (see Figure 4.11). 

3a) If there exist a parallel edge between the neighbor and the dequeued node. 

3b) Otherwise enqueue the neighbor nodes (the direct child node) which are not yet  

traversed as shown in Figure 4.11. 

       4) If the queue is empty, every node on the graph has been visited then the algorithm is  

          completed, else repeat previous step. 
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t1

t2 t5

No parallel edges detected

Step-1)

Step-2)

Step-3b)
 

Figure 4.11 Simple graph test example 

We start traversing the graph by checking whether there exists a parallel edge. As soon as 

a parallel edge is detected, we stop traversing the graph and conclude that the graph is a 

multigraph and we cannot apply Vizing theorem. On the other hand if no parallel edges are 

detected in the entire graph, then it is a simple graph and we can apply Vizing theorem which 

can resolve the memory conflict problem by using P+1 banks.  

3.4. Vizing theorem for edge coloring  

The process of edge coloring using Vizing theorem is shown in Figure 4.12 in which first 

a node is selected to color. Then vizing fan (defined later in this section) is constructed and if 

same colors are not available at both nodes of the edge. The fan is ended in two possible 

cases: 1) without any repetition of missing colors (the un-used colors) at the nodes of the fan, 

2) with repetition of missing colors at the nodes of the fan. In the second case, first path is 

traced and then existence of the loop in the path is detected. So a path is selected based on the 

loop detection. Finally, the colors are exchanged and the final coloring is assigned to the 

graph. As a result, the desired edge is colored. This whole process is described below in 

details and an example is provided in the next sub-section. 

Select next edge to color

Color the edge
color 

available Y

N

Construct fan

Repetition
Y

N

Trace path

Case-1

Start

Case-2

Exchange colors 

in fan

Detect loop 

and select path

Exchange and

assign colors 
 

Figure 4.12 Edge coloring flow based Vizing theorem (up to P+1 colors) 
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We have to color the edges of graph G by using at most P+1 colors. Let us consider a 

graph G having j+1 time nodes with a maximum degree P. Edges of G are e1, e2…ej. We will 

start from an empty graph G0 with j+1 time nodes without any edge. This graph is then 

extended to the graph G1 in which one edge (e1) is considered. We keep on adding edges to 

color them until the whole the graph is completed. Mathematically, in each iteration we 

extend the graph coloring of Gi-1 to colour Gi = Gi-1 U {ei}, For i = 1 to j.  

We explain how to color Gi using at most P+1 colors. Inductively, we suppose that we 

have already colored the edges of Gi-1 using at most P+1colors.  

Now Gi = Gi-1 U {ei} where ei = (t0, t1) be the next edge to color (conflict edge) as shown in 

Figure 4.13. Mathematically, in each iteration we extend the graph coloring of Gi-1 to colour 

Gi = Gi-1 U {ei}, For i = 1 to j. As shown in Figure 4.13 at most P − 1 edges containing t0 or t1 

are colored. If the missing color at t0 is same as missing color at t1 then color the edge (t0, t1) 

with that missing color. Otherwise if the missing color at t0 is not the same as missing color at 

t1 i-e color c0 is missing at t0 and one color c1 is missing at t1, then we have no simple solution 

to color the conflict edge.  

In order to find solution to color the conflict edge we will first construct a sequence 

known as Vizing fan. We have represented each node notation ti(ci) in which ti is the time 

node and ci is the missing color available for coloring at that code. 
 

Vizing fan  

 A fan is an ordered sequence of edges at a node t0 such that the other connected node tx 

has a missing color cx which is the color of the next edge in the sequence of connected 

nodes with t0. 

       

t0(C0)

t1(C1)

t3(C3)

t2(C2)

tj-1(Cj-1)
tj(Cj)

Cj-1

 

Figure 4.13 Vizing fan 

 

Vizing fan can be expressed by constructing a sequence of distinct colors c1, c2, … , cj-

1, cj and a sequence of edges (t0, t1), (t0, t2) , . . . , (t0, tj). This sequence can be expressed 
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mathematically as color ci is missing at ti for 0 ≤ i ≤ j and color ci is the color of the edge (t0, 

ti+1) for 1 ≤ i ≤ j as shown in Figure 4.13. We can see that color cj is a missing color at tj 

which is available for coloring. If there exists an edge (t0, tj+1) colored with cj, where tj+1does 

not belongs to set {t1, . . . , tj}, then continue constructing the sequence with the defined cj and 

tj+1. Since t0 has only P neighbors, the construction process completes with one of the 

following cases: 

 

Case-1: No repetition of missing color at the nodes of the fan. While constructing the 

sequence of the fan, there exist no edge (t0, ti) colored with cj for 1 ≤ i < j.  

Case-2: Repetition of missing color at the nodes of the fan. While constructing the 

sequence of the fan, there exist a color cj = ck-1, for some 2 ≤ k < j: such that the edge (t0, tk) is 

colored with cj. 

 

Case-1 

In this case, the construction of the sequence is completed in such a way that the 

colors of all the edges of the sequence are not similar to the missing color of the last node. 

Mathematically, we can say that there exist no edge (t0, ti) colored with cj for 1 ≤ i < j.  

In this case, it will always happen that the color missing at the starting node of the 

conflict edge will be also missing at the last node of the sequence i-e the color cj will be 

missing at t0 and tj (see Figure 4.14(a)). In order to color the conflict edge (t0, t1), first of all 

we will shift the conflict edge to the last edge of the sequence. The shifting is done by 

exchanging colors in a sequence that we keep on exchanging the conflict edge with its 

neighboring edge until it is transferred to the last desired edge  i-e shift colors (t0, ti) with ci 

for 1 ≤ i ≤ j−1 as shown in Figure 4.14(b-c). In these figures the conflict edge (t0, t1) is first 

exchanged with its neighboring edge (t0, t2). As a result, the color of (t0, t1) becomes c1 and 

the conflict edge is transferred to (t0, t2). Now we exchange the conflict edge (t0, t2) with its 

neighboring edge (t0, t3). As a result, the color of (t0, t2) becomes c2 and the conflict edge is 

transferred to (t0, t3). We keep on exchanging the conflict edge with its neighboring edge and 

at last (t0, tj) will become conflict edge (see Figure 4.14(c)). It can be seen that cj is missing at 

both t0 and tj so we can color (t0, tj) with cj (see Figure 4.14(c)) and hence the conflict edge is 

colored. 
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t0(C0, Cj)

Cj-1

t1(C1)

t3(C3)

t2(C2)

tj-1(Cj-1)
tj(Cj)      

(a)                                           (b)                            (c)                                           (d) 

Figure 4.14 Vizing theorem Case-1 

 

Case-2 

In case-2, the construction of the sequence is completed in such a way that there exists 

one color in all the edges of the sequence which is similar to the missing color of the last 

node. Mathematically, we can say that there exist a color cj = ck-1, for some 2 ≤ k < j, such 

that the edge (t0, tk) is colored with cj as shown in Figure 4.15(a).  

In this case, first of all we have to shift the conflict edge from (t0, t1) to (t0, tk) i-e to 

shift color (t0, ti) with ci for 1 ≤ i ≤ k−1. The edge (t0, tk) becomes the conflict edge and cj is 

missing at both tk and tj as shown in Figure 4.15(b). 

 

                               

(a)                                                                         (b) 

Figure 4.15 Vizing theorem Case-2 

 

In order to color the conflict edge, we have two further sub-cases which have different 

conditions based on the nodes t0, tk, tj as they can be connected to each other or disconnected. 

So we check these cases in order to color the conflict edge.The two sub-cases are: 
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Case-2.a: No loop in the traced path.  t0 and tk are in different connected components 

in the graph. 

Case-2.b: Loop in the traced path.  t0 and tj are in different connected components in 

the graph. 

Case-2a 

In this case, t0 and tk are in different connected components (see Figure 4.16(a)) as the 

path from t0 is not ending at tk. So the conflict edge can be colored as follows. 

The first step traces path and then exchanges colors. We trace the c0, cj path from tk i-e 

to find the other node connected with c0 and search for cj at that node and then c0 at the next 

node and so on as shown in Figure 4.16(a).  Then we exchange the color c0 with cj in the path 

as shown in Figure 4.16(b) in which c0 is replaced with cj and cj is replaced with c0. As a 

result, c0 will become missing at both nodes t0 and tk. Now, we can color (t0, tk) with c0 (see 

Figure 4.16(c)). Hence, the conflict edge is colored. 

           

(a)                                                     (b)                                                  (c) 

Figure 4.16 Vizing theorem Case-2a 

 

However, if t0 and tk are in connected components i-e the path from t0 is ending at tk as 

shown in Figure 4.17(a) then by applying the above procedure, the exchange of color c0 with 

cj will make c0 available at tk but it will not be available at t0 as shown in Figure 4.17(b). So 

we have no solution in this case. So case-2b will be followed to color the conflict edge. 
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(a)                                            (b) 

Figure 4.17 Vizing theorem Condition for Case-2b 

 

Case-2b 

In this case, t0, tj are different connected components as t0 is not ending at tj, so first the 

path c0 and cj is traced at tj as shown in Figure 4.18(a). Then we shift conflict edge from tk to tj 

such that (t0, tj) will become conflict edge (see Figure 4.18(b)). 
 

    

                (a)                                            (b)                                                 (c)  

Figure 4.18 Vizing theorem Case-2b 

 

Then, we exchange colors between c0 and cj in the tj -path as shown in see Figure 

4.18(c). This will make c0 missing at t0 and tj. So we can color (t0, tj) with c0 as shown in                                  

Figure 4.19. Hence, the conflict edge is colored. 
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                                 Figure 4.19 Vizing theorem Case-2b final 

 

Complexity of the algorithm  

The complexity of the algorithm using Vizing theorem can be calculated by considering 

a graph with m edges to color with n time nodes. At each time node we have P edges. The 

complexity to draw a fan is O(P
2
) as we have to examine each edge at the missing color at 

that edge. O(n) is the complexity to exchange colors for coloring an edge. So overall 

complexity for the complete graph is O(n m + P
2 

m).  

3.4.1. Pedagogical Example 

We present an example to explain the Vizing theorem. The data access matrix for the 

considered example is shown in Figure 4.20. The graph is shown in Figure 4.21(a). As P = 4 

so we have five colors (4+1) to color this graph. 

PE1 0 2 1 18 16 13 4 5 6 21 31 31 12 10 9 23 3

PE2 1 4 14 19 17 14 11 7 7 22 33 25 26 32 20 24 29

PE3 2 5 17 20 19 15 12 10 8 8 22 15 27 28 30 25 28

PE4 3 6 18 21 33 16 13 11 9 23 24 26 32 30 29 0 27

t1 t2 t3 t4 t5 t6 T7 t8 t9 t10 t11 t12 t13 T14 t15 t16 t17
 

Figure 4.20 Example for Vizing theorem 

Figure 4.21(b) shows that we have already partially colored the edges of Gi-1 using 

P+1colors. The five colors shown in the figures are c0, c1, c2, c3, and c4 for this example. The 

dotted line represents conflict edge ei to be colored. Colors c0 and c4 are missing at t1 and c1 

and c3 are missing at t16 (see Figure 4.21(b)).  
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(a) Graph without coloring  (b) Graph with partial coloring 

Figure 4.21 Graph for Figure 4.6 

The fan is shown in Figure 4.22(a) in which the color missing at t16 is c1 (consider only 

one) so we choose the next edge of the fan which is colored with c1. The other time instance 

connected to edge with color c1 is t3 in which c2 is missing so the next edge of the fan should 

be of color c2 and so on. The fan will end with the following two cases: 

Case-1: when there is no repetition of missing colors at the nodes of the fan.   

Case-2: when there is a repetition of missing colors at the node of the fan. 

Case-1 

         The fan will end without any repetition in the missing colors having P edges as shown in 

Figure 4.22(a) where all the missing colors (c1 and c3 at t16, c2 at t3, c3 at t2, c4 at t17) are not 

repeated at next nodes as missing colors. In this case, there must be a color missing at last 

node of the fan t17 is also missing at starting node t1.  The conflict edge can be colored as: 

 

• As the missing color at t1 is missing at t17 so shift the dotted line edge to the t17 as 

shown in Figure 4.22(b)-(c). The conflict edge is transferred to t3, t2, and then to t17. 

        

• Now we can color the conflict edge with c4 as it is missing at both t1 and t17 as shown 

Figure 4.22(d). 
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t16(C1,C3)

t2(C3)

t3(C2)

t17(C4)

C2

t1(C0,C4)

                       

t16(C1,C3)

t2(C3)

t3(C2)

t17(C4)

C2

t1(C0,C4)

 
(a)                                                                       (b)                             

 

                 

t16(C3)

t2(C2)

t3(C1)

t17(C4,C3)

C3

t1(C0,C4)

                

t16(C3)

t2(C2)

t3(C1)

C3

t1(C0)

t17(C3)  
                                          (c)                                                 (d) 

Figure 4.22 Vizing theorem Case-1 

Case-2 

In case-2 we start constructing the fan and the construction of the fan is ended as soon 

as a repetition of the missing colors is detected in the fan as shown in Figure 4.23(a). If there 

is any remaining edge(s) connected to t1 we will not consider it in the fan. Afterwards, 

transfer the conflict edge to the edge colored c1 (color which has repetition).  

Now at t3, trace the path of c0 (missing color at t1) and c1 (color of repetition) as shown 

in Figure 4.23(b). At this stage, there could be further two sub-cases:  

Case-2a:  t3 is not making a loop with t1. 

Case-2b:  t3 is making a loop with t1. 

Case-2a 

First of all we will check if the node t3 not making a loop with the node t1. If it is the 

case then first we trace the c1, c0 path and then exhange the color c1 and c0 with each other in 

the traced path. As a result c0 will become missing at t3 as shown in Figure 4.23(c). Now color 
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the conflict edge with c0 as it is aviable at both of the nodes t1 and t3 as shown in Figure 

4.23(d). 

 

        

t16(C1,C3)

t2(C3)

t3(C2)

t17(C1)

C2

t1(C0,C4)

                

t16(C3)

t2(C3)

t3(C1,C2)

t17(C1)

C2

t1(C0,C4)

    

   (a)                                                                          (b) 

 

       

t16(C3)

t2(C3)

t3(C0,C2)

t17(C1)

C2

t1(C0,C4)

C1

              

t16(C3)

t2(C3)

t3(C2)

t17(C1)

C2

t1(C4)

C1

 

  (c)                                                                            (d) 

Figure 4.23 Vizing theorem Case-2a 

Case-2b 

If the node t3 is making a loop with t1 then by exchanging colors c0 will become missing at 

t3 but c0 will not be a missing color at node t1 so the conflict edge cannot be colored with c0 as 

shown in the Figure 4.24(a) and (b). Therefore, in this case we will not exchange colors at 

node t3.  

If the node t3 is making a loop with t1 then the node t17 will never make a loop with t1. 

Therefore, first of all we will transfer the conflict edge to the t17 (time instance with repetition 

of c1) and trace the path of c0 and c1 as shown in Figure 4.24(c) in which there is only one c0 

edge in this path.  
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Then we will exhange c1 and c0 with each other which will make c0 avialable at t1 and t17 

so we can color the conflict edge with c0 as shown in Figure 4.24(d). 

 

          

t16(C3)

t2(C3)

t3(C1,C2)

t17(C1)

C2

t1(C0,C4)

C0

                          

t16(C3)

t2(C3)

t3(C0,C2)

t17(C1)

C2

t1(C1,C4)

C1

  
(a)                                                                         (b) 

 

         

t16(C3)

t2(C3)

t3(C1)

t17(C1, C3)

C3

t1(C0,C4)

C0

C0

            

t16(C3)

t2(C3)

t3(C1)

C3

t1(C4)

C0

C1t17(C3)
 

                          (c)                                                     (d) 

Figure 4.24 Vizing theorem Case-2b 

 

The resultant architecture is shown in Figure 4.25 which represents the final mapping 

using five banks (b0, b1, b2, b3, b4) for the considered example (as each color represents a 

bank). It can be seen that we need one additional bank for the conflict free mapping but the 

resultant architecture is based on in-place which can reduce the network controller up to 50% 

as compared to MRMW architecture. 
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Figure 4.25 Resultant in-place architecture 

3.5. In-place memory mapping for multigraphs  

In the previous section, we have shown that Vizing theorem can be applied only for 

simple graphs as shown in Figure 4.5.  The proposed approach for multi-graphs is described 

here in details 

A dedicated approach based on transportation problem for non-bipartite graphs which 

are also multigraphs, can be used to solve conflict problems with in-place architectures. For 

example, the data access matrix (Figure 4.26(a)) for shuffled decoding in the HSPA 

interleaver results in a multi-graph after applying simple graph test: as shown in Figure 

4.26(b), as t1 and t3, t2 and t5, t4 and t5 have two parallel edges between them.  

 

Theorem Bound for edge coloring multigraphs 

 Every multigraph with maximum degree P requires atmost (3/2)*P colors in any proper 

edge coloring [SHA49]. 

 

Time

PE1

PE2

PE3

PE4

t1 t2 t3 t4 t5

0 1 2 3 4

5 6 7 8 9

3 5 0 4 8

7 9 6 2 1

 

t1t2

t3

t4

t5

 

               (a)Data access matrix                         (b) Graph 

Figure 4.26 Example resulting a multigraph 

According to theorem presented above, a multigraph for a given memory mapping 

problem can be edge colored with atmost (3/2)*P colors which results in finding conflict free 

memory mapping using upto (3/2)*P banks. In order to edge color a multi-graph, we have 

proposed a simple polynomial time algorithm based on approach used for transportation 

problem using (3/2)*P banks which respects the bound introduced in [SHA49]. 

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014



In-place memory mapping for optimized architecture 

 - 79 - 

3.5.1. Modeling 

In this section, we model our mapping problem as transportation problem (the modeling 

is same as shown in section 3.1). This transformation is carried out in two steps. In the first 

step, mapping problem is modeled as bipartite graph and different proves are provided in 

order to explain that it is always possible to divide this bipartite graph into different subgraphs 

of equal sizes (see [SAN11a]). Afterwards, this bipartite graph is transformed into 

transportation matrix. A transportation problem algorithm is applied using this matrix to find 

memory mapping. 

The first step is to construct a bipartite graph Gt = (T∪ L, E) in which vertex set T 

represents all the time instances and vertex set L represents all the data elements used in the 

computation. An edge e = (t, l)εE is incident to the data element vertex l and to the time 

instance vertex t if d needs to be processed at t (i.e. data l will be read and next written at time 

t). This bipartite graph has the same two properties described in section 3.1. 

The bipartite graph for the data access matrix of Figure 4.26(a) is shown in Figure 

4.27(a). 
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(a)                                                      (b)              

Figure 4.27 Bipartite Graph for example of Figure 4.26 

 In order to clearly explain how transportation problem is able to find conflict free 

memory mapping we introduce some definitions, theorems and corollaries. 

 

Definition  2-matching and 2-Factor of Graph 

 2-matching H of a graph G = (T ∪ L, E) is a subset of E such that every node of G is 

incident with at most two edges of H. The 2-matching H of G is called 2-factor if every 

node of G is incident with exactly two edges of H [HAR06].  

 

The proposed approach is based on finding semi 2-factor (defined below) to find 

conflict free memory mapping so we have introduced the following two theorems [GRO03] 

which define the necessary and sufficient condition for the graph to contain 2-factor. 
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Theorem4.1  

 Every 2k-regular graph contains a 2-factor, where k is integer. 

 
 

Theorem4.2 

 

 Every 2-edge-connected (2k + 1)-regular graph contains a 2-factor. 

 

These theorems result into the following two corollaries [GRO03]: 

Corollary4.1  

 Every 2k-regular graph contains k 2-factors. 

 

Corollary4.2  

 Every (2k + 1)-regular graph contains k 2-factors and one 1-factor. 

 

 

Definition  Semi 2-factor in Bipartite Graph 

 A semi 2-factor in bipartite graph G is defined as a 2-regular sub-graph in G with 2Y 

vertices where every node is incident with exactly two edges and where Y = Min (|T|, 

|L|). 

 
Corollary4.3  

 Every Bipartite Graph with ft = 2k or ft = 2k + 1, where k is an integer, contains k 

disjoint semi 2-factors. 

 

Proof: we first join the two edges connected with each data node and then remove all 

the data nodes to form regular graph G1 = (T, E1) as shown in Figure 4.27(b). In this graph, 

|E1| = |L| i.e., each edge in G1 corresponds to two edges or a data node in Gt. Since G1 is 

regular, 2-factor always exists in G1 which implies that semi 2-factor of 2Y nodes where |T| = 

Y always exists in Gt. Every 2-factor is a collection of cycles that spans all nodes of the graph 

going from 1 cycle with 2Y nodes up to Y/2 cycles of 4 vertices. 

Additionally, each cycle ci in G1 can be even or odd which means ci contains even or 

odd number of edges or time nodes.  

Edges of every even cycle can be assigned with two colors which implies that edges in 

ci and every 2-factor in G1 can be colored with two colors [SOI08]. This results in the 

following lemma. 
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Lemma 4.1  

 All the data nodes in semi 2-factors of bipartite graph with even cycles can be assigned 

with two memory banks. 

Moreover, edges of every odd cycle can be assigned with three colors which implies 

that edges in ci and every 2-factor in G1 can be colored with three colors [SOI08]. This results 

in the following lemma. 

 

Lemma 4.2  

 All the data nodes in semi 2-factors of bipartite graph with odd cycle can be assigned 

with three memory banks. 

 As it is unknown that the cycle is odd or even therefore we consider the worst case 

that each cycle will be odd for every semi 2-factor which means that we will need three 

memory banks for each semi 2-factor. So k semi 2-factor will result in 3k banks i-e (3/2)*P 

banks (k =P/2). 

3.5.2. Transformation of bipartite graph into Transportation Matrix 

Our graph is modeled as transportation matrix based on the properties discussed in the 

previous section. For this purpose, the bipartite graph is divided into k semi 2-factors and to 

give colors to the edges of each semi 2-factor. To find semi 2-factor, we transform our 

mapping problem as transportation problem by considering all the data nodes as producers 

and all the time nodes as consumers. The route lij exists between data node di and time node tj 

if data di is accessed at tj. One additional constraint must be considered while modeling our 

problem as transportation problem: the capacity of each route is fixed in our mapping 

problem. The reason is that each route represents a connection between processors and 

memory banks whose size is always fixed. In our case, the capacity xij of lij is kept one since 

only one data can be accessed at a given time instant tj for this route. 

In order to find semi 2-factor, we consider : (1) the demand of each consumer is kept to 

two and (2) each producer either provides two items (i.e. each data is accessed two times) or 

is not included in the current semi 2-factor (i.e. each producer must work at its full capacity). 

The cost oij of lij is kept one since the cost is not taken into account in the current work. It will 

only be used when we will consider the constraint of the network architecture. The matrix 

model for the bipartite graph of Figure 4.27(a) is shown in Figure 4.31(a). In this matrix, if the 

route lij does not exist between producer i and consumer j, then the corresponding cell Mij is 
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kept empty. After construction of transportation matrix, any algorithm to solve transportation 

problem can be used to find semi-2 factor.  

3.5.3. Algorithm to find semi 2-factors in Turbo Bipartite Graph 

In this section, algorithm to solve memory mapping problem is presented. This 

algorithm is same as [SAN11b] with some modification. [SAN11b] is only able to tackle 

conflict problem for turbo codes (only non-shuffled) whereas our modified version of 

[SAN11b] is able to tackle all memory conflict problems. It traverses the transportation 

matrix to construct semi 2-factors. Flow diagram of the partitioning algorithm is shown in 

Figure 4.28.  

The algorithm starts by first calculating the number of semi 2-factors i-e k by using the 

degree of each time node ft of bipartite graph as explained in corollary 4.3. After that, it starts 

constructing the cycle (path) c1 of current semi 2-factor sfcur by choosing a first route li1 

connected with consumer t1 (see Figure 4.31(a)). The selection of the route li1 decreases the 

demand of t1 and the supply of di to one. Simultaneously, the selected route is assigned with 

bank ba where index a represent the next un-assigned bank (a = 0 for c1). Algorithm then 

selects the route connected with t1 choosing any route lk1 and assigns it with bank next bank 

ba+1.  

The selection of lk1 completes the demand of t1, so all the producers connected with t1 

are completely removed from sfcur because now they are unable to provide two items in sfcur 

or they cannot work at their full capacity. The other route lkm connected with dk is assigned the 

same bank ba+1 to reach to the consumer tm. This completes the supply of dk. Algorithm 

repeats the same process by selecting the route, decreasing the supply of producer and 

demand of consumer and alternately assigns banks to the route until c1 is completed i.e., no 

producer with supply of one and no consumer with demand of one remains in the 

transportation matrix.  

The final step is to check for the odd cycle for which a third bank ba+2 can be assigned. 

The odd cycle can be detected if the starting and ending route or routes are assigned with 

alternate banks which results in a conflict as two different banks cannot be assigned to same 

data. In this case the third bank ba+2 is assign to the starting and ending route of the cycle.  

Furthermore, the algorithm tests whether all the consumers fulfill their demands. If not, 

the algorithm starts constructing another cycle c2. For this, our algorithm selects consumer 

whose demand is still unfulfilled and which has at least one deleted route. Using this deleted 

route, the algorithm selects the route and assigns a bank ba to this route. After the assignment 
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of ba, the algorithm repeats the same process used for the construction of c1 to complete c2. 

When the algorithm finds that demands of all the consumers are fulfilled then it declares that 

sfcur is constructed. In that case, the algorithm tests whether k semi 2-factors are constructed. 

If not, the algorithm removes sfcur from transportation matrix, initializes all consumers with 

demand of 2 and starts constructing sfnext from remaining matrix using the process described 

above until k semi 2-factors are constructed. Partitioning algorithm is explained through a 

pedagogical example in the next section. 
 

 

Figure 4.28 Partitioning algorithm 

In [SAN11a], the author proposed an approach for finding semi 2-factor but their 

algorithm is not able to find cycles as explained with the help of an example shown in Figure 

4.29. In this example, the transportation matrix is constructed first as shown in Figure 4.29(b). 

Then, the algorithm is applied on this matrix as explained for constructing cycle c1. The 

algorithm is based on depth first algorithm without any recursion in which the cycle is started 

at a node and the next node is selected randomly. But it can be seen that there is a problem at 

t6 in the cycle. Two edges are deleted at t6 instead of deleting one edge which is wrong 

solution for finding cycles. So, we have no solution in this case using approach [SAN11a].  

  

t1 t2 t3 t4 t5 t6 t7 t8

0 l01(1) l06(1) 2
1 l12(1) l15(1) 2
2 l23(1) l26(1) 2
3 l34(1) l35(1) 2
4 l41(1) l47(1) 2
5 l52(1) l57(1) 2
6 l63(1) l66(1) 2
7 l74(1) l78(1) 2
8 l81(1) l88(1) 2
9 l82(1) l98(1) 2
10 l103(1) l107(1) 2

11 l114(1) l115(1) 2

2 2 2 2 2 2 2 2
  

t1 t2 t3 t4 t5 t6 t7 t8

0 l01(b0) l06 2
1 l12 l15 2
2 l23 l26 2
3 l34 l35 2
4 l41(b1) l47(b1) 2
5 l52(b0) l57(b0) 2
6 l63 l66 2
7 l74(b0) l78(b0) 2
8 l81 l88 2
9 l82(b1) l98(b1) 2
10 l103 l107 2

11 l114(b1) l115(b1) 2

2 2 2 2 2 2 2 2
 

(a)                                 (b)                                         (c) 

Figure 4.29 Cycle construction problem for [SAN11a] coloring algorithm 
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In this thesis, we have proposed another memory mapping approach based on 

transportation problem using breadth first algorithm with recursion. In the proposed 

approach, the cycle is started from a node and all the nodes are recorded at that node. Then, 

one node is selected and the cycle is completed using the selected node. However, if the cycle 

is not completed or the cycle results in the deletion of additional rows then other recorded 

nodes can be explored one by one in the tree (breadth first algorithm) to construct a cycle 

until the cycle is completed. As in Figure 4.29 the cycle is not completed due to a problem at 

t5 so we have selected another node at t1 and assigned b1 to data 8 instead of data 4. In this 

case, the cycle is completed without any problem as shown in Figure 4.30. 

t1 t2 t3 t4 t5 t6 t7 t8

1 b0 b0 2
1 1(1) 1(1) 2
2 1(1) 1(1) 2
3 1(1) 1(1) 2
4 1(1) 1(1) 2
5 b1 b1 2
6 b1 b1 2
7 1(1) 1(1) 2
8 b1 b1 2
9 b0 b0 2

11 b0 b0 2

11 1(1) 1(1) 2

2 2 2 2 2 2 2 2
 

Figure 4.30 Resulting cycle obtained with proposed cycle construction approach 
 

Complexity of the algorithm  

Algorithm needs to traverse ft edges at each time instance to select two accesses that can 

be included in sfcur. However we need to use breadth first algorithm to explore all the option, 

so its complexity is O (ft + |T|) where |T| is the number of time nodes. To construct a partition 

sfcur, algorithm needs to select a couple of accesses for each time nodes So, the number edges 

to be traversed for one partition is in the worst case (ft + |T|) * |T|. Since there are k = ft/2 semi-

2 factors (see definition), in order to construct all the partitions, the overall complexity of the 

partitioning algorithm is O (ft/2 * |T| * (ft + |T|). 

3.5.4. Pedagogical Example 

We present an example based on data access matrix depicted in Figure 4.26. The first 

step is to constructs the bipartite graph which is shown in Figure 4.27(a). This semi regular 

bipartite graph has time nodes with degree ft = 4. There are two semi 2-factors using corollary 

4.3. The second step first transforms the bipartite graph into matrix model of the 

transportation problem which is depicted in Figure 4.31(a). 

         The algorithm starts constructing the cycle c1 from the first route l01 (data d0 connected 

with time node t1) and assigns the memory bank b0. Since one route is occupied, the algorithm 
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reduces the supply and demand to 1 in the matrix as shown in Figure 4.31(b). The algorithm 

then fulfills the demand of t1 by choosing a data elements in t1. The algorithm selects a route 

l31 (data d3 connected with time node t1) and assigns another memory bank b1. Now the 

demand of t1 is completely fulfilled and the remaining producers connected with t1 (d5 and d7 

in this case) are completely removed because these producers are unable to work at their full 

capacity (see Figure 4.31(c)).. The second route connected with producer d3 (l34), is also 

assigned the same bank b1. The algorithm fulfils the supply and demand of producers and 

consumers respectively in the same manner until the cycle c1 is completed (cycle is completed 

when we will reach at l03) i.e the algorithm do not contain any producer with supply of 1 and 

any consumer with demand of 1 in the transportation matrix. This process is presented in 

Figure 4.31(c). However, as shown in this figure that producer d0 is assigned with different 

memory banks b0 and b1 which is in-valid for mapping as one data could not be mapped in 

two banks. Therefore, an additional bank is needed for d0 so we will assign b2 for d0 both at t1 

and t3 as shown in Figure 4.31(d).        
 

t1 t2 t3 t4 t5

0 l01 l03 2

1 l12 l15 2

2 l23 l24 2

3 l31 l34 2

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

2 2 2 2 2
                   

t1 t2 t3 t4 t5

0 l01(b0) l03 1

1 l12 l15 2

2 l23 l24 2

3 l31 l34 2

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

1 2 2 2 2
 

(a)                                                                         (b) 

t1 t2 t3 t4 t5

0 l01(b0) l03(b1) X

1 l12 l15 2

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

X 2 X x 2
                  

t1 t2 t3 t4 t5

0 l01(b2) l03(b2) X

1 l12 l15 2

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92 l95 2

X 2 X x 2
 

(c)                                                                    (d) 

Figure 4.31 Approach based on transportation problem (part-1) 

The algorithm continues to find cycle c2 by using the same approach used in 

construction of c1 until the cycle c2 is completed as shown with gray highlighted cells in 

Figure 4.32(a). We need only one additional bank for all cycles in a semi 2-factor as 
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additional bank used in c1 can be reused in case of an odd cycle of c2 (not in case of this 

example).  

 

t1 t2 t3 t4 t5

0 l01(b2) l03(b2) X

1 l12(b0) l15(b0) X

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44 l45 2

5 l51 l52 2

6 l62 l63 2

7 l71 l73 2

8 l84 l85 2

9 l92(b1) l95(b1) X

X X X x X
         

t1 t2 t3 t4 t5

0

1

2

3

4 l44(b3) l45(b3) X

5 l51(b5) l52(b5) X

6 l62(b3) l63(b3) X

7 l71(b4) l73(b4) X

8 l84(b4) l85(b4) X

9

X X X X X
 

(a)                                                                         (b) 

Figure 4.32 Approach based on transportation problem (part-2) 

The demands of all the consumers are fulfilled so the first semi 2-factor is constructed. 

The algorithm removes the first semi 2-factor from the transportation matrix. It initializes all 

consumers with demand of 2 and starts constructing the second semi 2-factor from remaining 

matrix using the process described for the first semi 2-factor as shown in Figure 4.32(b) in 

which there are shown two cycles c1 and c2 (in Figure 4.32(b) c1 is shown in plane and c2 is 

shown in gray cells). c2 is also odd cycle so we also need an extra bank to map it.   

The final mapping is shown in Figure 4.33(a) in which six ((3/2)*P) banks are used to 

find conflict free memory mapping. The Figure 4.33(b) gives the final architecture along with 

the memory mapping for the considered example. 

 

                

t1 t2 t3 t4 t5

0 l01(b2) l03(b2) X

1 l12(b0) l15(b0) X

2 l23(b0) l24(b0) X

3 l31(b1) l34(b1) X

4 l44(b3) l45(b3) X

5 l51(b5) l52(b5) X

6 l62(b3) l63(b3) X

7 l71(b4) l73(b4) X

8 l84(b4) l85(b4) X

9 l92(b1) l95(b1) X

X X X X X
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(a)  Final mapping matrix                  (b) Final mapping architecture 

Figure 4.33 Mapping based on transportation problem 
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4. Experiments and results 

Different experiments have been performed to validate the theoretical work presented in 

this chapter. Again, all the results in this are given in NAND-gate equivalent area using 90nm 

technology from STMicroelectronics.  These estimations are based on synthesized and pre-

characterized components (Registers, multiplexers, …). The number of the different 

components is provided by the mapping tool and as a result the estimations for the 

architecture are generated.  

We have performed experiments for each cases of the proposed approach considering 

three test cases: shuffled turbo decoders for LTE, non-binary LDPC and shuffled turbo 

decoders for HSPA. 

4.1. Case study-1: Shuffled turbo decoders for LTE 

In the first part of chapter-3, we have presented a case study for 3GPP-LTE standard turbo 

decoder for nine different configurations as shown in Table.4.1. In-place memory mapping 

architecture was used to solve configuration 1 to 5 (non-shuffled architecture) and MRMW 

memory mapping architecture was used to solve configuration 6 to 7 (shuffled architecture) 

[SAC12] with L = 1024 and P = 16 and 32. We have applied our proposed approach to solve 

configuration 6 to 7 (shuffled architecture) to use in-place memory mapping architecture.  

 

 Table 4.1 Different configuration to explore the design space for turbo decoding 

Mode Scheduling Radix
Internal 

Memory

Config. 1 Non-Shuffled Butterfly 2 YES

Config. 2 Non-Shuffled Butterfly 4 YES

Config. 3 Non-Shuffled Butterfly 16 YES

Config. 4 Non-Shuffled Butterfly 2 No

Config. 5 Non-Shuffled Butterfly 4 No

Config. 6 Shuffled Replica 2 No

Config. 7 Shuffled Replica 2 YES

Config. 8 Shuffled Replica 4 No

Config. 9 Shuffled Replica 4 YES

 

 

Bipartite test is applied to test the bipartiteness of these configurations as shown in Figure 

4.5. Results showed that these configurations are of bipartite nature and now we can apply 

bipartite edge coloring algorithm using in-place memory mapping architecture [SAN13]. In 

[SAC12], MRMW mapping architecture was used to solve configuration 6-9 but thanks to our 

proposed design flow we can solve the conflict problems for these configurations using in-
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place architecture by applying the proposed bipartite test. The area comparison is presented in 

Figure 4.34 for configuration 6 to 9.  The cost of the architecture (excluding processors) can 

be reduced up to 25% of the total area by using our proposed approach. The reduction in case 

of P =  32 is almost the same. 
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Figure 4.34 Area comparison for shuffled turbo decoders with  P=16 

4.2. Case study-2: Non-Binary LDPC codes 

An extension of binary LDPC codes has been developed to further reduce the gap of 

performance with Shannon limit. This new class of codes is known as non-binary LDPC (NB-

LDPC) codes [DAV]. These codes improve the performance of small and moderate codeword 

lengths. However, increase in decoder complexity for NB-LDPC motivates to develop 

decoding algorithms that are easily implementable. Also, unlike structured codes, routing of 

the edges of tanner graph is not regular and even implementing NB-LDPC on serial 

architecture suffers from memory conflict problem.  

The DAVINCI project [DAV], funded by the European Commission under the seventh 

framework (FP7) of collaborative research, designed the novel NB-LDPC codes and related 

link level technologies. The purpose of this project was to construct codes that are suitable for 

implementation and outperform the state of the art techniques to design NB-LDPC codes. 

Typical serial decoder architecture [DAV] for NB-LDPC codes developed in DAVINCI 

project is shown in Figure 4.35.a. This decoder is used to decode NB-LDPC codes with check 

node degree = dc = 6 and variable node degree = dv = 2. The decoder consists on one CN 

processor and six VN processors. The decoder is designed based on serial implementation to 

process one check node at each cycle. To achieve high memory bandwidth, main memory is 

divided into dc number of memory banks to simultaneously receive dc messages from 
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memory. The interleaver and the deinterleaver are designed to transfer data between CN 

processors, VN processors and memory banks.  

For partially parallel architecture, two check nodes are processed in parallel at the same 

time as shown in Figure 4.35.b. The main memory is divided into 2*dc number of memory 

banks to concurrently fetch 2*dc messages from memory.  
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                (a) Serial Architecture                                   (b) Partially Parallel Architecture 

Figure 4.35 Architecture for NB-LDPC 

The problem is to allocate messages into memory banks in such a manner that at each 

cycle CN processor can fetch dc number of messages from dc number of memory banks 

concurrently without any conflict. 

The first step is to prepare data access matrix for the architectures. Data access matrix 

for partially parallel architecture is shown in Figure 4.36 where 6 data elements are needed to 

be accessed in parallel for one check node (12 data are needed for two check nodes). To find 

conflict free memory mapping, all data should be stored in memory bank in such a manner 

that there is no conflict in accessing them in each cycle.  

 

2 10 62 23 59 29 33 26 25 16 17 63 36 21 15 11 18 9 38 34 40 31 3 12 41 32 39 13 30 22 43 60

3 11 63 24 60 30 34 27 26 17 18 64 37 22 16 12 19 10 39 35 41 32 4 13 42 33 40 14 31 23 44 61

149 139 159 67 156 97 142 130 115 83 155 65 78 132 181 116 96 174 109 98 106 125 183 91 117 169 123 74 190 189 162 110

122 123 84 114 133 110 70 119 181 127 109  10 6  184 98 68 96 156 83 85 190 169 78 91 115 81 67 134 108 117 136 167 189

90 86 126 178 73 191 172 80 153 128 152 176 157 171 107 140 175 99 170 82 161 188 138 173 168 144 95 145 66 75 105 147

157 179 182 158 124 141 88 148 66 143 75 131 103 126 144 178 105 129 145 138 77 135 128 161 163 118 180 188 152 113 82 99

48 19 53 42 51 47 46 7 58 28 5 6 1 50 44 35 61 20 56 37 54 14 45 55 8 57 27 49 52 64 4 24

49 20 54 43 52 48 47 8 59 29 6 7 2 51 45 36 62 21 57 38 55 15 46 56 9 58 28 50 53 1 5 25

146 104 112 79 113 85 81 84 184 70 167 101 136 108 87 102 119 68 164 154 121 133 71 100 114 120 127 122 72 135 185 94

100 94 90 154 183 72 164 146 142 159 130 155 139 71 112 174 149 97 116 121 132 102 101 162 74 171 87 79 125 104 65 185

88 160 137 129 148 177 166 103 89 111 118 93 92 141 131 77 180 134 69 165 179 186 192 143 187 151 163 158 182 76 124 150

153 177 172 151 89 147 107 168 95 170 86 173 111 175 186 15 69 187 191 80 73 92 165 76 137 93 160 176 140 192 166 120

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32  

 Figure 4.36 Data Access Matrix for L = 192 and dc = 6 
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4.2.1. Vizing theorem for non-binary LDPC codes 

To solve memory conflict problem for NB-LDPC codes, MRMW architecture has been 

used in [SAN12]. However, the approach we propose in this chapter can solve memory 

mapping problem for non-binary LDPC using in-place mapping architecture. 

 

Discussion: 

At-most P+1 banks are needed for memory conflict problem in non-binary LDPC codes 

by using Vizing theorem.   

As already shown, Vizing theorem needs P+1 banks for memory conflict problems only 

with simple graphs. So a memory mapping problem from non-binary LDPC codes can be 

solved with P+1 banks using Vizing theorem if non-binary LDPC mapping problem results 

into a simple graph. As simple graph have no parallel edges and there will be no parallel 

edges in a graph if any two time nodes have only one data common between them. As it can 

be seen in Figure 4.21a(and simpler example in Figure 4.7) that the graph is a simple graph as 

the data access matrix Figure 4.20 has only one data element common between two time 

nodes. Now we have to prove that only one data element is common between two time nodes 

in non-binary LDPC codes. 

Girth is an important parameter for LDPC codes, which is strongly related to code 

performance. Girth can be defined as the size of the smallest cycle of the bipartite graph. 

Girth g <= 4 are normally considered as short cycles in LDPC codes. Short cycles are 

avoided in LDPC codes as it degrades the performance of the decoder [XIO05]. If g <= 4 

then more than one data elements is common between two time nodes (check nodes) which 

will result in parallel edges. So, for better performance LDPC codes are designed with g > 4. 

Therefore, the data access matrix will always have only one data element common between 

two time nodes as it can be seen in the example shown in Figure 4.20 with g > 4. In this 

example, the data access matrix have only one data element common between two time 

nodes. This property will make the resultant graph into a simple graph because only one edge 

will be possible between two nodes (due to one same data). Therefore, Vizing theorem can be 

applied to solve the memory conflict problem for non-binary LDPC codes. 

4.2.2. Results 

We have performed experiments for NB-LDPC with different block lengths and 

parallelisms. In-place memory mapping solutions in the state of art approaches like [CHA10a] 

are not able to find conflict free memory mapping for NB-LDPC conflict problem. Therefore 
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we compared our proposed work with [CHA10b] and [BRI13b]. The result for [SAN13] are 

not shown as they are same as [CHA13b] because mapping solution with [SAN13] for these 

experiments are also based on MRMW architecture so the cost of the architecture will be same 

for [SAN13] and [CHA10b]. The approach proposed in [BRI13b] is also to generate optimize 

hardware architecture so we have compared our results with [BRI13b].  
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Figure 4.37 Comparison of NB_LDPC decoder areas obtained with state of art 

approaches and Vizing coloring for different block length (P = 6) 

 

The results are shown in Figure 4.37 and Figure 4.38. The results for different block 

lengths with P= 6 are shown in Figure 4.37 and with P= 12 in Figure 4.38. The approach 

[BRI13a] optimizes the architecture up to 15% whereas our proposed approach can optimize 

the architecture up to 40% as compared to approaches without optimization [CHA10b]. 
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Figure 4.38 Comparison of NB_LDPC decoder areas obtained with state of art 

approaches and Vizing coloring for different block length (P = 12) 

4.3. Case study-3: Shuffled turbo decoding for HSPA 

We have discussed the shuffled decoding for turbo decoding in chapter-2 in details. We 

have also explored the memory conflict problem for LTE in section 4.1 of this chapter. The 

turbo decoder architecture given in chapter-2 is same for LTE and HSPA interleaver. 

However, the memory conflict problem is different in both the cases. 

We have applied our proposed approach for shuffled turbo decoding in HSPA interleaver 

to solve the memory conflict problem. According to the design flow shown in section-3, first 

we have applied the bipartite test. The resultant graph in this case was not a bipartite graph. 

Then, we have applied the simple graph test and we have observed that Vizing theorem 

cannot be applied as the resultant graph is a multigraph. Therefore, the approach based on 

transportation problem is used to solve the memory conflict problem for this test case as the 

resultant graph. 

In Figure 4.39, we show first results based on our approach. We have considered the worst 

case scenario for these results as our transportation problem based memory mapping approach 

uses 3/2*P memory banks each time. In fact, these are the worst case results as less than 

3/2*P could also be used for a given test case, but the current software version of the 

proposed design flow is not fully optimized.  
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Figure 4.39 Area comparison for different block length for HSPA P = 16 (best results) 

However, even in worst cases, in place memory mapping can reduce the cost up to 37% as 

compared with [BRI13a] as shown in Figure 4.39. The proposed approach needs up to six 

banks instead of four memory banks (in case of [BRI13a]) to find conflict free memory 

mapping. However, due to the in-place architecture the final cost is still reduced. As [BRI13a] 

is an optimization of the approach [CHA10b] so we have compared our results with [BRI13a] 

only for the block lengths in which the current software of [BRI13a] provides optimized 

results than [CHA10b]. 

5. Conclusion 

In this chapter, we have shown that all conflict problems with two accesses can be solved 

using in-place architecture. We have proposed algorithms to find conflict free memory 

mapping for two accesses conflict problem by using in-place architecture as state of art 

approaches needs MRMW architecture for some of these memory mapping problems. Hence, 

the total area of the decoder can be reduced by using in-place architecture for memory 

mapping problems. We have proposed Vizing theorem for solving memory conflict problem 

using in-place architecture. Moreover, we have introduced a dedicated approach based on 

transportation problem to solve memory conflict problems using in-place architecture. These 

proposed algorithms are able to find conflict free memory mapping in polynomial time. 

In future, we can further optimize the decoder architecture by merging our two proposed 

optimization concepts: the network customization and in-place memory architecture. We 

could further optimize the solutions by using the customized network approach using in-place 
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memory mapping architectures. The second perspective is to extend the proposed in-place 

approach for other test cases with more than two data accesses. 

In design time approaches, ROM blocks are used to control interconnection network and 

generating addresses for different memory banks which may be sufficient to design parallel 

architecture that supports single code-word or applications. However, to design hardware 

architecture that supports complete standard and/or different applications, ROM based 

approach results in huge hardware cost and area. To reduce hardware cost, optimizations are 

required to use as less ROMs as possible to support different applications. For this purpose, an 

approach based on on-chip memory mapping mechanism is proposed in the next chapter. 
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In this chapter, we propose on-chip memory mapping approach in order to reduce the requirement of 

the multiple ROM blocks. Design time approaches need ROM blocks to store the control 

configurations for memory and network. However, multiple memory elements are required to support 

different block lengths/different standards which results in high complexity(area). In order to 

overcome this problem, we have proposed to embed memory mapping approaches on-chip to solve 

memory conflict problem in parallel hardware decoders. Dedicated architecture composed of an 

embedded processor and RAM to store command words are proposed.  We propose to embed on-chip 

the polynomial time memory mapping approach and a routing algorithm based on Benes network to 

solve memory conflict problem in parallel hardware decoders. Different experiments are performed by 

using memory mapping approaches executed on several embedded processors and results are 

presented. 
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1. Introduction 

Design time approaches find memory mappings that provide conflict free concurrent 

access to all the memory banks. In these approaches, ROM blocks are needed to store the 

network, memory and other control configurations. However, multiple ROM blocks are 

needed to support different block lengths within a standard or multiple standards which results 

in high hardware cost. As shown in Figure 5.1, multiple ROM blocks are needed to store 

address generation logic and network control logic to support multiple block lengths and/or 

multiple applications. This results in huge hardware cost that is utilized in storing addressing, 

network and other control logic to design flexible decoder architecture. In order to reduce 

hardware cost, optimization is required to store addressing and control logic for multiple 

block lengths or multiple applications. Unfortunately, state of the art memory mapping 

approaches are unable to optimize memory necessary to store control information for multiple 

blocks lengths or applications.  

In order to overcome the hardware overhead problem, we propose a solution to run 

mapping approaches on chip in order to calculate new mapping information on the fly as soon 

as new block length needs to be decoded and to update these new generated control 

information in memory. This work has been published in [REH12] [REH14b]. 
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Figure 5.1 Parallel decoder architecture 

2. On-chip implementation of memory mapping algorithms 

The proposed dedicated hardware architecture is shown in Figure 5.2 for embedding 

memory mapping algorithms on chip. Control unit includes a dedicated processing element 

(General Purpose Processor GPP, Application Specific Instruction set Processor ASIP or 

Application Specific Integrated Circuit ASIC) to execute the mapping algorithm. The 

architecture is shown in Figure 5.2 in which multiple network and addressing ROMs are 

replaced by a two RAMs i.e. Network RAM and addressing RAM. Control Unit executes the 
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mapping algorithm and updates these RAMs when each time block length changes or the 

application changes. 
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           Figure 5.2 Parallel decoder architecture to embed memory mapping algorithms on chip 

 

Sizes of Network and addressing RAMs depend on maximum block length and on the 

parallelism supported by decoding architecture. To determine size of different components of 

the architecture to support complete telecommunication standard, the following parameters 

are considered: 

P = Total Number of processing elements 

B = Total number of memory banks 

T = Total number of access to the memory  

M = Maximum number of data in each bank 

 

Size of addressing RAM = B * T * ⌈log2(M)⌉, where size of each word is B*⌈log2(M)⌉. 
 

bits. Similarly, for Benes network, the size of network RAM = T * (B/2*((2*log2B)-1)). Also 

the size of bus from network RAM to network is B/2*((2*log2B)-1) bits and the size of each 

bus from addressing RAM to bank is B*⌈log2(B)⌉ bits.  

The proposed approach is based on the design flow introduced below. 

2.1. Proposed Design flow 

The proposed design flow is shown Figure 5.3. In the first step, the data access order is 

generated based on the input parameters like interleaving law, block length sizes, level of 

parallelism and scheduling. The second step is the execution of the memory mapping 

approach using the data access order from the previous step. As a result a conflict free 
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memory mapping is generated which contains the memory address information. The final step 

is to generate the routing information for the interconnection network. We will define each of 

these steps in details. 

Generation of  Interleaved order

Interleaving

law

Execution of memory mapping approach

Generation of Routing information

Conflict-free 

Memory mapping

Natural and

Interleaved Order

Command words for 
network Configuration 

 

Figure 5.3 Embedded conflict free memory mapping flow 

2.2. Generation of data access order 

The first step of the design flow is to generate data access order based on the input 

parameter like interleaving law, block length size and parallelism. To illustrate, we have 

considered two interleavers: LTE and HSPA. Here we will describe in detail how to generate 

the interleaved order for both of these interleavers. 

a. HSPA Interleaver 

Series of specification have been released from time to time for high speed packet 

access (HSPA) after the release of initial draft by 3GPP-WCDMA. To obtain high 

throughput, it is necessary to perform turbo decoding on parallel architecture. However, the 

interleaver used in HSPA+ is not conflict free to support parallel implementation of turbo 

decoder. Also it is necessary to design interleaver architecture that support wide range of 

block sizes used in HSPA+ i.e. from 40 to 5114.  

The interleaving algorithm for HSPA+ defined in [HSP04] is mentioned below: 

L Number of bits input to Turbo code internal interleaver 

R Number of rows of rectangular matrix described in standard 

C Number of columns of rectangular matrix described in standard 

p Prime number described in standard 
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v Primitive root describe in standard 

• Determine R of the rectangular matrix, such that 

5, (40 159)

10, ((160 200) (481 530))

20, ( any other value)

if K

R if K or K

if K

≤ ≤ 
 

= ≤ ≤ ≤ ≤ 
 

= 

 

• Determine value of p and C, such that 

if (481 ≤ L ≤ 530 ) then 

 p = 53 and C = p  

else 

 Find p from Table 5. 1 such that 

  L ≤ R*(p + 1),  

and determine C of matrix such that, 

C = p – 1;    if ( L ≤ R * (p-1) ) 

C = p;         if ( R*(p-1) < N ≤ R * p) ) 

C = p + 1;  if ( R*p < N ) 

Table 5. 1. List of prime number p and associated primitive root v 

p v p v p v p v p v
7 9 47 5 101 2 157 5 223 3

11 2 53 2 103 5 163 2 227 2

13 2 59 2 107 2 167 5 229 6

17 3 61 2 109 6 173 2 233 3

19 2 67 2 113 3 179 2 239 7

23 5 71 7 127 3 181 2 241 7

29 2 73 5 131 2 191 19 251 6

31 3 79 3 137 3 193 5 257 3

37 2 83 2 139 2 197 2

41 6 89 3 149 2 199 3

43 3 97 5 151 6 211 2
 

• Write the input bit sequence into the rectangular matrix row by row and if R*C > L, the 

dummy bits are padded to fill the matrix. 

• Construct the base sequence S(j) for intra-row permutation as: 

S(j) = [ v * S(j-1) ] % p;  where  j = 1,2, ……., p-2  

• Determine the least prime integer sequence q(i)  for i = 1, 2, ……., R-1 , by assigning 

q(0) = 1, such that gcd(q(i), p-1) = 1 and q(i) > 6 and q(i) > q(i-1). 

• Permute the sequence q(i) to construct the sequence r(i) such that 

rT(i) = q(i)   where  i = 0, 1, …., R-1 and T(i) is the inter-row permutation defined in the 

standard. 

• Perform the intra row permutation Ui(j), such that 

for i = 0, 1,….., R-1 and j = 0,1, ……, p-2; 
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If ( C = p) then 

    Ui(j) = S[ (j*r(i) ) mod (p-1)] and Ui(p-1) = 0; 

If ( C = p+1) then 

    Ui(j) = S[ (j*r(i) ) mod (p-1)] and Ui(p-1) = 0 and Ui(p) = p 

   and if (L = R*C) then exchange UR-1(p) with UR-1(0) 

if ( C = p-1) then 

   Ui(j) = S[ (j*r(i) ) mod (p-1)] – 1 

• Perform the inter row permutation of the matrix based on the pattern T(i) where T(i) is the 

original row position of the i-th permuted row and defined in the standard. 

• Read the bits column by column from the rectangular matrix by deleting the dummy bits 

padded to the input bits sequence. 

Example for HSPA Interleaver 

The algorithm can be explained best through a small example of L = 44. Different 

parameters obtained from the specifications explained previously are: 

R = 5, C = 10, p = 11, v = 2 

Next step is to put 44 data into matrix of order 5*10 (R*W) starting from row 0. Since 

there are 50 cells in the matrix, so the last 6 cells are filled with dummy bits represented by -1 

in the last row as shown in Figure 5.4. 

 

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 -1 -1 -1 -1 -1 -1  

           Figure 5.4 Arrangement of L = 44 data into 5*10 matrix 

 

Afterward, values for sequences s, q, r, u are calculated based on the rules defined in 

the standard. These values are: 

 S = 1  2  4  8  5  10  9  7  3  6       where number of values in S is (p-1) = 10 

 q =  1  7  11  13  17                      where number of values in q is  R = 5 

r =  17  13  11  7  1                      where number of values in q is  R = 5 

 

Value of U                                                

  0  6  4  1  2  9  3  5  8  7 

  0  7  8  5  3  9  2  1  4  6 

  0  1  3  7  4  9  8  6  2  5 

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014



On-chip implementation of memory mapping algorithms to support flexible decoder architectur 

 - 102 - 

  0  6  4  1  2  9  3  5  8  7 

  0  1  3  7  4  9  8  6  2  5 

where number of values in U is R*C = 5*10 = 50 
 

The values in U are used to perform intra-row permutation. First row of U values are 

used to permute values in first row of matrix. For the values calculated for this example, first 

value remains at the first place, second value is permuted to sixth value, third value is 

permuted to fourth value and so on. The matrix after intra-row permutation is shown in                         

Figure 5.5.  

0 3 4 6 2 7 1 9 8 5

10 17 16 14 18 13 19 11 12 15

20 21 28 22 24 29 27 23 26 25

30 33 34 36 32 37 31 39 38 35

40 41 -1 42 -1 -1 -1 43 -1 -1  

                           Figure 5.5 Matrix after Intra-row Permutation 

In the last step, inter-row permutation is performed on rectangular matrix using the 

permutation pattern defined in the standard. Inter-row permutation pattern for this example is: 

T = 4, 3, 2, 1, 0       where number of values in T is R = 5 

 

The matrix after inter-row permutation is shown in Figure 5.6. 
 

 

40 41 -1 42 -1 -1 -1 43 -1 -1

30 33 34 36 32 37 31 39 38 35

20 21 28 22 24 29 27 23 26 25

10 17 16 14 18 13 19 11 12 15

0 3 4 6 2 7 1 9 8 5  

       Figure 5.6 Matrix after Inter-row Permutation 

Afterwards, the values in the matrix are read out column by column after pruning 

dummy bits to construct interleaved order of data values. An interleaved order for L = 44 is: 

Interleaved order  =  Π  =  {40  30  20  10   0  41  33  21  17   3  34  28  16   4  42  36  22  14   

6  32  24  18   2  37  29  13   7  31  27  19   1  43  39  23  11   9  38  26  12   8  35  25  15   5} 

b. LTE Interleaver 

Quadratic Permutation Polynomial (QPP) interleaver used in LTE [LTE08] is mostly 

conflict free. However, for higher data rate applications when trellis and recursive units 

parallelism are also  included in each SISO, QPP interleaver is not contention-free and 

requires a router and buffer mechanism to solve memory conflicts. For block size L, QPP 

interleaver is represented by following equation. 
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Π(x) = (f1x+ f2x
2
) mod L                                … (1) 

 

Where f1 is odd and relatively prime to L,  f2 is a multiple of an arbitrary selected prime 

factor of L, x and Π(x) represents the original and interleaved address respectively and 

integers f1, f2 are different for different block lengths defined in the standard as shown in 

Table 5.2. 

Table 5. 2. Turbo code interleaver parameters 

i L 1f  2f  i L 1f  2f  i L 1f  2f  i L 1f  2f  

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240 

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204 

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104 

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212 

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192 

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220 

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336 

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228 

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232 

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236 

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120 

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244 

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248 

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168 

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64 

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130 

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264 

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134 

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408 

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138 

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280 

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142 

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480 

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146 

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444 

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120 

27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152 

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462 

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234 

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158 

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80 

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96 

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902 

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166 

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336 

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170 

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86 

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174 

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176 

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178 

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120 

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182 

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184 

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186 

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94 

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190 

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480 
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However, the equation (1) includes multiplication and square function to be implemented 

which is hard to embed online. So, the on-line calculation approach [SUN11] rewrites (1) into  

the following recursive form:  

Π(x+1) = f1(x+1) +  f2(x+1)
2
 mod L            … (2)                      

            = Π(x) + g(x)        mod L                      … (3)           

where g(x) = f1 + f2 + 2f2x which can also be computed recursively through: 

g(x+1) = g(x) + 2 f2  mod L   … (4) 

Example for LTE Interleaver 

Let us consider an example for L = 4. It can be seen from  f1 = 7,  f2 = 12  So, 

 f(x) = 0, g(0) = 7+12 = 19,  

f(1) = 0 + 19 mod 48 = 19          and            g(1) =  19 + 24 mod 48 = 43 

   f(2) = 19 + 43 mod 48 = 14        and            g(2) =  43 + 24 mod 48 = 19 

 

So the complete set of interleaved order can be generated recursively in the above 

mention procedure. The complete interleaved order is given below: 

   Π  = {0  19  14  33  28  47  42  13  8  27  22  41  36  7   2  21  16  35  30  1  44  15  10  29  

24  43  38  9  4  23  18  37  32  3  46  17  12  31  26  45  40  11  6  25  20  39  34  5} 

The second step generates the conflict free memory mapping by executing memory 

mapping approach which is explained below.  

2.3. Execution of memory mapping approach 

The second step of the design flow is the execution of the memory mapping approach. 

The proposed work in chapter-4 is not considered here as that is our recent work (completed 

in last year of my thesis work) which is not published yet. So, the proposed approaches of 

chapter-4 are included in the future perspectives of this work. We have embedded on-chip the 

polynomial time algorithm presented in [SAN13].  This approach is described briefly.  

PE1

PE2

PE3

t1 t2 t3 t4

0 1 2 3

4 5 6 7

8 9 10 11

PE1

PE2

PE3

t5 t6 t7 t8

3 7 4 2

1 0 10 9

11 6 5 8

Natural Order Interleaved Order  
Figure 5.7 Data access matrix 
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The algorithm is based on two steps. In the first step a bipartite graph is constructed 

based on two data access matrices. Whereas in the second step a polynomial time bipartite 

edge coloring algorithm is used to find conflict free memory mapping. In the first step in 

order to construct a bipartite graph, a tripartite graph G’ = (TNAT ∪ TINT ∪ L, E) is constructed 

based on natural and interleaved data access matrices (as example shown in Figure 5.7) in 

which vertex sets TNAT and TINT represent all the time instances used in natural order access 

and interleaved order access respectively whereas vertex set L represents all the data elements 

used in the computation. An edge (tNAT, l) is incident to the data vertex l and to the natural 

order time vertex tNAT if l needs to be processed at tNAT (i.e. data l will be read and next written 

at time tNAT). Similarly, an edge (tINT, l) is incident to the data vertex l and to the interleaved 

order time vertex tINT if l needs to be processed at tINT. This tripartite graph Figure 5.8(a) is 

converted into bipartite graph G by first joining two edges at each data vertex and then 

removing all the data vertices from the tripartite graph. G is regular with the degree of each 

time node, k=P. 
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(a) Tripartite graph              (b) Complete Edge Coloring 

Figure 5.8 Bipartite Edge Coloring Algorithm 

After constructing bipartite graph, the next step is to apply bipartite edge coloring 

algorithm to color the edges of that graph in polynomial time. For this purpose, we find an 

Euler partitioning by taking every other edge to obtain two (k/2)-regular subgraphs. In this 

way the problem is reduced to two (k/2)-regular graphs. However, to find euler partitioning, it 

is necessary that k is even to divide a regular graph into two regular subgaphs of equal degree. 

So, if K is odd then the algorithm first finds perfect matching Mp in G, assign one color to the 

edges of Mp and remove Mp from G. The problem is reduced to even (K−1)-regular graph. 

The perfect matching algorithm runs in O(kD) time. The complete edge coloring of G’ after 

attaching data vertices in G is shown in Figure 5.8(b). In this figure, three colors of the edges, 

corresponds to three memory banks, are represented with gray bold, gray narrow and gray 

dotted lines. Further details on this algorithm can be found in [SAN13]. The resultant memory 

mapping is: 
 

Bank b0={0,2,3,5}, Bank b1 ={1,7,8,10}, Bank b2 = {4,6,9,11} 
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Afterwards, addressing and network control logic are generated based on this mapping 

and stored in the memory. So, if we change the interleaving law then we get a new mapping 

that is different from the previous one using memory mapping approach. For example, new 

interleaved order and memory mapping are: 

Interleaved order  =  2, 7, 10, 8, 9, 6, 1, 5, 11, 3, 4, 0. 

Bank b0={0, 1, 2, 3} Bank b1={4, 5, 6, 11}, Bank b2={7,8 9,10} 

2.4. Routing Algorithm  

The third step of the design flow of our proposed approach is the execution of the 

routing algorithm to generate the routing information for the targeted interconnection 

network. We have considered two fully connected networks: Crossbar and Benes network.  

Crossbar is a non-blocking network in which connection of a processing element to a 

memory bank does not interfere the connection of any other processor to any other memory 

bank. It is feasible for online approaches to use crossbar network due to its high speed as they 

can be configured automatically. But, their use is normally limited to low level of parallelism, 

due to high complexity and cost. Hardware constraints such as the number of available pins 

and the available wiring area limits the number of physical connections of a switch. These 

issues prevent the use of crossbar networks for large network sizes [DUA03]. For a Crossbar 

network, the size of network_RAM= T* (B *log2 B). 

Benes network needs a routing algorithm to generate routing information. For this 

purpose, we define a simplified routing algorithm for Benes network that can be executed on-

chip along with the mapping algorithm.  

 

 
 

Figure 5.9 SN1 and SN2 for the routing algorithm 

In a Benes network, many useful permutations, often required in parallel processing 

environments are found to be self-routable. Lenfant proposed efficient set-up algorithms for 

some frequently used permuatation as bijections [LEN78], namely the FUB family. Nassimi 

and Sahni [NAS81] proposed a simpler algorithm for routing the F class of permutations that 

includes the bit-permute complement (BPC) and inverse omega classes of permutations. 
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Boppana and Raghavendra [BOP88] developed another self-routing technique for linear- 

complement (LC) class and inverse omega class of permutations. A control algorithm is 

described in [NAS82] for the Benes network. This control algorithm, called the "looping 

algorithm," is based upon the recursive configuration of the Benes network. We have adopted 

to implement the control algorithm presented in [LEE87] which is not recursive. In this 

algorithm (B x B) Benes network is viewed as a concatenation of two sub-networks SN1 and 

SN2 as shown in Figure 5.9. The first (log B - 1) stages of a Benes network correspond to SN1, 

and the remaining log B stages correspond to SN2. The control algorithm sets switches one 

stage at a time, stage by stage. SN1 is controlled by a full binary tree of set partitioning 

functions, called a Complete Residue Partition Tree (CRPT) and SN2 is bit controlled. In 

CRPT of SN1, a Complete Residue System modulo m CRS-(mod m) is a set of m integers 

which contains exactly one representative of each residue class mod m. Whereas, a Complete 

Residue Partition (CRP) is a partition is a partition in which each CRS (mod 2
k
) is further 

divided into two CRS's(mod 2
(k- 1)

), k>0.. CRP is done at each stage in which each CRS -(mod 

m) is divided into further sets of CRS-(mod m-1) as shown in Figure 5.10.  

CRP on
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CRP on
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CRP on
CRS(mod 2n-1)

CRP on
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CRP on
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CRP on

CRS(mod 2n-2)

CRP on
CRS(mod 2n-2)

CRP on
CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

CRP on

CRS(mod 2n-(n-2))

CRP on

CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

CRP on

CRS(mod 2n-(n-2))

CRP on
CRS(mod 2n-(n-2))

.... ..

 

Figure 5.10 A Complete Residue Partition Tree (CRPT) 

The Control Algorithm for the (B x B) Benes Network, B = 2
n
 is described as follow: 

1. The B numbers of the destination permutation in the binary representation are the 

input to the network. 

2. For SN1, perform 2
i
 CRP's on the 2

i
 CRS's(mod 2

(n-i)
), formed by bits bi…b(n-1) for E

i
 

stage of SNI to get 2
(i+ l)

 CRS's(mod 2
(n-i-1)

) using bits b(i+l)…b(n -1) for 0 <=i<= (n - 2). 

3. For SN2, the remaining n switching stages are controlled by b(n-l),b(n-2),…, b0 used as 

control bits Co, Cl, … , C(n 1), respectively.         
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2.4.1. Example for Routing Algorithm 

Let us consider an 8x8 Benes network with a permutation [0  4  2  6  1  5  3  7] to be 

routed using the above defined algorithm. 

The network is divided in SN1 and SN2 as shown in Figure 5.11(a). SN1 consist of first 

two stages and SN2 consist of last three stages. For SN1, the division of stages in the CRPT is 

shown in Figure 5.11(b) in which the permutation is shown in binary form controlled by three 

digits b2, b1 and b0. In the first stage E
O
 of SN1, CRP is applied on CRS (mod 8) which is 

divided in two CRS(mod 4) using two bits bits b1b2  i-e (000, 010, 101, 111) and (100, 110, 

001, 011) see Figure 5.10. In the second stage E
1
 of SN1, CRP is applied on each CRS (mod 

4) which divide each of it independently in two further two sets of CRS(mod 2) using one bit 

b2 i-e  (000, 101), (010, 111), (100, 001), and (110, 011).  
 

000

100

010

110

001

101

011

111

SN1 SN2 

CRPT Control                    Bit Control
             

CRP on

CRS(mod 23)

CRP on
CRS(mod 22)

CRP on
CRS(mod 221)

CRP on
CRS(mod 21)

CRP on
CRS(mod 21)

CRP on
CRS(mod 21)

CRP on
CRS(mod 21)

 
(a)                                                                                        (b) 

Figure 5.11 Routing example 

The complete control mechanism is shown in Figure 5.12. The control mechanism for the 

last three stages of SN2 are based on bit control as shown in the figure. In SN2, the first stage 

is controlled by C0, the second stage is controlled by C1 and the third stage is SN2 is 

controlled by C2. In SN, the switch is set straight if the inputs to the switch are (0,0) or (0,1) 

and the switch is set cross if the inputs to the switch are (1,0) or (1,1).  
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Figure 5.12 Example with complete routing tags  

3. Experiments 

In this section, different experiments are presented. These experiments are performed by 

using different embedded processors to measure the computational complexity of memory 

mapping approaches based on block size and parallelism. Moreover, the memory required to 

store command words both in case of on chip and off chip execution of memory mapping 

approaches is also compared. For experimental purpose, one hard processor PowerPC 

embedded in Xilinx FPGA and one soft processor NIOS-II used in Altera FPGAs are 

considered to execute the approach proposed in [SAN13] and the results are compared with 

other state of the art approaches [TAR04] [CHA10a]. The execution times for these 

approaches are measured for different processors. Moreover, HSPA interleaver used in 3GPP-

WCDMA [HSP04] is implemented on parallel architecture. In this thesis we have mostly 

chosen HSPA interleaver for our experiments because the number of conflicting data 

elements in this interleaver is high as compared to other interleavers. To design parallel 

conflict free architecture for this interleaver, memory mapping approaches are required to 

generate commands word for network and memory to support all the block sizes with 

different parallelisms.  

The first processor we considered for the experiments is PowerPC which is a hard 

processor embedded in Xilinx Virtex-5 ML507 board. Processor clock frequency of 400MHz 

and System clock frequency of 100MHz was used to perform experiments. The second 

processor we considered in our experiments is NIOS II. NIOS II is a soft processor used in 

Altera FPGAs. NIOS II has been implemented on Cyclone-III NIOS II Embedded Evolution 

Kit with Processor clock frequency of 195MHz and System clock frequency of 50MHz. 

Normalized time values (as each embedded processor has different frequency so we have 

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014



On-chip implementation of memory mapping algorithms to support flexible decoder architectur 

 - 110 - 

normalized all the values to PowerPc) are used to measure the impact of architecture of 

embedded processors on execution time. PowerPC execution time is used as a reference for 

normalized time and execution times of NIOS II is normalized with respect to the PowerPC 

clock frequencies.  

The normalized times to execute (only the time needed to execute the memory mapping 

approach) [TAR04] [CHA10a] and [SAN13] on embedded processors for different L with P 

=4,8,16 and 32 are studied. The normalized times to execute [TAR04] [CHA10a] and 

[SAN13] for different L with P =32 are shown in Figure 5.13 for NIOS II and PowerPC. From 

processor perspective, PowerPC executes the mapping algorithm in the least time as 

compared to NIOS II. From this figure, it is evident that significant reduction in execution 

time for [SAN13] is achieved as compared to [TAR04] [CHA10a] for all block lengths.  For L 

= 5120 with P = 32, using PowerPC the execution time in case of [TAR04] is same as 

[CHA10a] which is about 2 hours whereas by using the approach [SAN13] the execution time 

is reduced significantly to only 127ms. Furthermore, the results for [SAN13] also include the 

delay introduced by routing information generation process whereas the routing information is 

automatically generated as crossbar is considered for [TAR04] and [CHA10a]. For 

experimental purpose, we have considered crossbar for [TAR04] and [CHA10a] for which the 

time to generate routing information is very simple and automatic so we considered it 

negligible. An additional delay of 0.2ms (not included in the results shown in Figure 5.13 and 

5.14) is required in order to generate routing information in case of [SAN13] for complete 

block length of size L=256 with P=32, which increases to 4ms for L=5120 with same P. 

However, for the same block length the delay in command word generation remains almost 

the same for different level of parallelism as explained in previous section. 

 

Figure 5.13 Normalized Run time Values for different embedded processors with PE = 32 
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Furthermore, we performed experiments with P=4, 8, 16 and 32 for L=5120 as shown in 

Figure 5.14. From these experiments, significant reduction in execution time for [SAN13] can 

be seen as compared to [TAR04] and [CHA10a]. Furthermore, the execution time for 

[SAN13] has no significant change with increase in parallelism whereas execution time for 

[TAR04] and [CHA10a] increases almost 25 times with the increase in parallelism from P =4 

to P =32.    

 

 

Figure 5.14 Normalized Run time Values of for different types of parallelism with L=5120 

 

From architecture perspectives, cost of our architecture always remains constant for 

different parallelisms supporting several block lengths for each processor. However, for 

offline memory mapping approaches, high memory cost is required to support several block 

lengths. Figure 5.15 shows the comparison between the memory required to store command 

words with P=4, 8, 16 and 32. Same memory is reused to store command words as soon as 

the parallelism is changed in order to support this parallelism in case of proposed approach 

whereas off-chip approaches require additional memory to store new set of command words 

with each type of parallelism. For P=32, size of memory required in case of off-chip 

approach to store command words is  64-Mbits to implement all the block sizes used in 

3GPP-WCDMA. Thanks to the extensive reuse of RAM only 128Kbits of memory is required 

in case of on-chip execution of mapping algorithms. However, we need an embedded 

processor for the proposed approach. 

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e
 

Designing Optimized parallel interleaver architecture for Turbo and LDPC decoders / Saeed Ur Rehman - 2014



On-chip implementation of memory mapping algorithms to support flexible decoder architectur 

 - 112 - 

15

25
35

45

110 100 90 80

128 128 128 128

8192
13312

18432
25436

53233 47732 42231 37970
61425 61044 60663 63406

1

10

100

1000

10000

100000

4 8 16 32
Parallelism

Network 
Conrtoller

Address 
Controller

Total

On-Chip        Off-Chip   On-Chip        Off-Chip   On-Chip        Off-Chip   On-Chip        Off-Chip   

 

Figure 5.15 Area Comparison of on-chip and off-chip implementation for different P 

The use of RAM blocks instead of multiple ROM blocks for storing configuration bits 

needed to support multiple block lengths and significant reduction in execution time in case of 

polynomial time approaches encourages embedding memory mapping and routing algorithm 

for future telecommunication devices.  

4. Conclusion 

In this chapter, we have proposed to embed memory mapping approaches on-chip to 

solve memory conflict problem in parallel hardware decoders. Dedicated architecture 

composed of an embedded processor and RAM blocks to store command words is proposed.  

We have embedded on-chip a polynomial time memory mapping approach and routing 

algorithm based on Benes network to solve memory conflict problem in parallel hardware 

decoders. Different experiments have been performed by using existing memory mapping 

approaches executed on several embedded processors. Results showed that the on-chip 

implementation of polynomial time memory mapping approaches allows to reduce 

significantly the execution time and reduction in hardware cost by the use of RAM blocks 

instead of multiple ROM blocks (though we need an embedded processor for proposed 

approach).  

Future perspective of this work is to further improve the execution time by using ASIPs 

or ASICs to target real time flexible decoder architectures and to include cache like 

mechanism to speed up the switch from one configuration to another one. Another future 

perspective is to embed the polynomial time approaches proposed in this thesis (in-place 

memory mapping architecture approaches) to support flexible hardware architecture to 

support multiple block lengths and/or multiple applications. 
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CONCLUSION AND FUTURE 

PERSPECTIVES 

Turbo and LDPC codes are two families of codes that are extensively used in current 

communication standards due to their excellent error correction capabilities. For high 

throughput performance, decoders are implemented on parallel architectures in which more 

than one processing elements decode the received data. However, parallel architecture suffers 

from memory conflict problem.  It increases latency of memory accesses due to the presence 

of conflict management mechanisms in communication network and unfortunately decreases 

system throughput while augmenting system cost. 

To tackle memory conflict problem, three different types of approaches exist in 

literature. In first type of approaches, codes are constructed with good error correction 

capabilities without any conflicts. Also, these interleavers often simplify the parallel decoder 

architectures. However, these are conflict free only for particular types or degrees of 

parallelism used in turbo decoding or for a subset of block lengths. A second class of solution 

to deal with memory access conflict problem is to simply assign data in different memory 

locations without considering concurrent access issue and then use additional buffers in the 

interconnection network to manage memory conflicts. These kinds of approaches can greatly 

increase the cost of the system due to presence of interconnection network and buffer 

management mechanism to manage conflicts.  The total latency of the system is also impacted 

since each conflicting data access must travel buffers before being stored in the memory 

banks which in turn decreases the throughput. Third type of approaches are design time 

memory mapping approaches. The resultant architectures consist of ROM blocks used to store 

configuration bits. The use of ROM blocks may be sufficient to design parallel architecture 

that supports single codeword or single application. However, to design hardware architecture 

that supports complete standard or different applications, ROM based approach results in 

huge hardware cost and area.  

In this thesis, we aimed to design optimized parallel interleaver architecture. For this 

purpose, we have proposed two different categories of approaches. In first category, we have 

proposed optimized design time off-chip approaches that aim to limit the cost of final decoder 

architecture targeting the customization of the network and the use of in-place memory 

architecture.  
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In the second category, we have introduced a new method in which both runtime and 

design time approaches can be merged to design flexible decoder. For this purpose, we have 

embedded memory mapping algorithms on-chip in order to execute them at runtime to solve 

conflict problem. The on-chip implementation replaces the ROM blocks with a single RAM 

block to support multiple block lengths and/or to support multiple applications. Different 

experiments are performed by executing memory mapping approaches on several embedded 

processors. 

 

Future Perspectives 

A lot of scope for future enhancement of proposed contributions is possible. In future, 

we can further optimize the decoder architecture by merging the two design time approaches 

proposed in this thesis: the network customization and in-place architecture. We can take 

advantage of using the customized network approach along with in-place memory mapping 

architecture in order to generate strongly optimized architectures. Another future perspective 

is to embed proposed polynomial time approaches (in-place memory mapping architecture 

approaches) to support flexible hardware architecture for different block lengths with in a 

standard or to support different standards.  

In the on-chip approach, memory mapping approaches are also executed on several 

embedded processors. The results showed that the proposed approach allows to greatly 

improve timing performances and to reduce memory footprint. Future perspective of this 

work is to further improve the execution time by using ASIP or ASICs to target real time 

flexible decoder architectures and to include cache like mechanism to speed up the switch 

from one configuration to another one.  

Furthermore, the memory mapping approaches can be used to solve memory mapping 

like problems from other signal processing and telecommunication domains. Implementation 

of different algorithms on parallel processing becomes an active domain of research after the 

development of high data rate applications. In all of these implementations, multiple accesses 

cause memory conflict problem. In future, current algorithms could be used to solve the 

mapping problem of other applications used in signal processing domain. 
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l Additional data elements 

M Size of a memory bank 

MRMW Multiple read multiple write 

NB-LDPC Non-binary Low Density Parity Check 

NoC Network on chip 

OPMM optimized memory address remapping 
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