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ABSTRACT 
 

1
H and 

31
P

 
nuclear magnetic resonance spectroscopy allows to detect and to measure in vivo and non-

invasively the concentrations of biologically relevant compounds associated to metabolic processes such 

as neurotransmission (glutamate, GABA), neuronal and glial density (N-acetyl-aspartate, myo-inositol) 

and energetic metabolism (phosphocreatine, ATP) among others. Knowledge of the biochemical profile 

provides a mean to evaluate the metabolic state of the brain in pathological cases or in evolving 

physiological conditions, such as aging. Yet, the neural basis of age-related cognitive dysfunction in 

normal brain aging remains to be elucidated and it has been shown to develop at different rates depending 

on the structural region. 

At ultra-high magnetic fields, magnetic resonance spectroscopy (MRS) benefits from an increased signal-

to-noise ratio and a higher chemical shift dispersion, resulting in an increased sensitivity and spectral 

resolution. To exploit these advantages, 
1
H and 

31
P longitudinal studies were carried out in vivo at 17.2 

Tesla in the aging rat brain to evaluate the progressive metabolic changes within the same individuals 

from the ages of 1 to up to 22 months of age using two rat cohorts with 1 and 8 months of age at the 

beginning of the study. For the 
1
H MRS studies, T1 and T2 metabolite relaxation times were measured at 

each exam in order to control age-related variations and to calculate absolute metabolite concentrations. 
1
H neurochemical profiles from four volumes of interest (VOI) in the brain were studied, revealing a 

progressive increase in myo-inositol and macromolecule content throughout the brain. In our main VOI 

composed mostly of cortex but also of corpus callosum and hippocampus, increased levels of choline-

containing compounds (tCho) and glutamine were also observed, suggesting a mild neuroinflammation. 

No changes in NAA were observed in our main VOI, the thalamus or the caudate putamen (striatum). T2 

decreases were observed with age for total NAA, tCho and macromolecules. Notably, unexpected effects 

correlated with the number of NMR exams were observed, the most prominent effect being an increase of 

the T1 relaxation times of the majority of metabolites. 

The second axis of the work done during this thesis was to set up an experimental framework for MR 

spectroscopic imaging (MRSI) studies at 7 Tesla in the human brain. 2D MRSI pulse sequences were 

developed for the acquisition of 
31

P and 
1
H metabolite maps using either slab selection or STEAM 

localization, respectively. A WET water suppression scheme was numerically optimized for its application 

at 7 T. Static B1-shimming configurations were implemented to reduce the inhomogeneity of the 

excitation field in the volume of interest and to generate outer-volume suppression (OVS) “ring” modes to 

saturate the signal in the periphery of the head. This approach allows to reduce the energy deposition in 

comparison to conventional OVS bands. Experiments were done in vitro showing their feasibility. The 

performance of standard OVS bands was also compared to a B1-insensitive train to obliterate signal 

(BISTRO) scheme in vivo using a double-tuned 
1
H/

31
P phased-array coil in a single-channel configuration 

for transmission. The demonstrated suppression efficacy of BISTRO opens the way for its use as a 

frequency-selective pre-saturation module for future 
31

P magnetization transfer experiments for the study 

of brain energy metabolism at very high magnetic field. 
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RESUME 
 

La Spectroscopie RMN (SRMN) du 
1
H et du 

31
P permet de détecter et de mesurer in vivo de façon non-

invasive la concentration de composés biologiques qui sont pertinents à l’étude des aspects variés du 

métabolisme cérébral comme la neurotransmission (glutamate, GABA), la densité neuronale (N-acetyl-

aspartate) et gliale (myo-inositol) ou le métabolisme énergétique (phosphocreatine, ATP), entre autres. 

Ainsi, l’analyse des profils biochimiques permet d’étudier longitudinalement l’évolution de la physiologie 

cérébrale en conditions pathologiques ou normales. Par ailleurs, à ultra-haut champ magnétique la SRMN 

bénéficie d’une sensibilité et d’une résolution spectrale accrues, maximisant l’information métabolique 

exploitable.  

Au cours de cette thèse, nous nous sommes surtout intéressés à l’étude du vieillissement cérébral normal. 

Une étude longitudinale en 
1
H et 

31
P a été menée in vivo à 17.2 Tesla afin de suivre les altérations 

métaboliques pendant 14 mois  chez deux cohortes de rats Dark Agouti âgés d’un mois et 8 mois au départ 

de l’étude. Les concentrations ainsi que les temps de relaxation T1 et T2 de plus de 20 métabolites ont été 

mesurés jusqu’à l’âge de 22 mois. Nous avons notamment observé une augmentation des concentrations 

de myo-inositol et des macromolécules dans les 4 volumes d’intérêt (VOI) étudiés. Dans le VOI Main, 

comprenant principalement du cortex mais aussi du corps calleux et de l’hippocampe, ces changements 

métaboliques ont été accompagnés par une augmentation des niveaux de glutamine et de composés 

contenant de la choline (tCho). Ces observations sont cohérentes avec une possible neuro-inflammation 

modéré au cours du vieillissement. Aucun changement du NAA a été observé sur le Main VOI, thalamus 

et putamen caudé (striatum). Additionnement, une réduction des temps T2 pour le NAA total, la tCho et 

les macromolécules a été observée, en accord avec une altération du milieu cellulaire et une accumulation 

de fer dans les tissus avec l’âge. Etonnamment, nous avons observé un effet corrélé avec le nombre 

d’examens RMN, qui a été fortement manifesté par une augmentation significative des temps T1 de 

nombreux métabolites. 

Un deuxième axe de travail pendant cette thèse a été la mise en place des outils méthodologiques 

nécessaires à la réalisation des études par SRMN du 
1
H et du 

31
P à 7 Tesla chez l’homme. Des séquences 

d’imagerie spectroscopique 2D ont été développées pour obtenir des cartes de concentration des 

métabolites 
31

P et 
1
H respectivement par la sélection d’une coupe ou bien d’un voxel par écho-stimulé. Un 

schéma de suppression d’eau WET a été optimisé pour son application à 7 T. Des modes d’excitation et de 

saturation du signal extérieur (OVS) en « anneau » ont été implémentés avec la méthode de transmission 

parallèle pour son application en imagerie spectroscopique 
1
H par l’optimisation des configurations 

statiques d’excitation ou « shimming-B1 ». Cette approche a permis d’appliquer des champs d’excitation 

plus homogènes et de réduire le dépôt d’énergie chez le sujet par rapport à l’utilisation des bandes OVS 

classiques. Des expériences in vitro ont été menées pour démontrer leur faisabilité. Enfin, un module de 

saturation BISTRO a été implémenté pour l’acquisition in vivo de cartes métaboliques en 
31

P. L’efficacité 

du module BISTRO a été démontrée et ce module peut être adapté pour des expériences 
31

P
 
de transfert 

d’aimantation, ouvrant la voie de l’étude du métabolisme énergétique cérébral chez l’homme à très haut 

champ magnétique.  
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GENERAL INTRODUCTION 
 

The study of brain metabolism and its associated biochemistry is of great relevance for the 

understanding of evolving physiological states such as brain maturation and aging but also for the 

characterization and monitoring of brain pathologies, namely the neurodegenerative diseases. 

With the improvement in our healthcare systems over the last decades, the average life 

expectancy is increasing and the proportion of the aged population (above 60 years old) is 

expected to double worldwide over the next 50 years.  

Aging is the primary non-genetic risk factor associated to the development of neurodegenerative 

diseases and among them, Alzheimer’s disease (AD) alone is the 6
th

 leading cause of death in the 

USA. In 2000, dementia affected almost 30% of the aged population in France between 85 and 

89 years old. A first step for the comprehension and establishment of early biomarkers in the 

development of neurodegenerative diseases is therefore the understanding of normal aging. It is 

therefore crucial to characterize the progressive changes taking place during normal brain aging 

from a molecular point of view. 

Nuclear magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows 

measuring the concentrations of biologically-relevant molecules involved in major metabolic 

pathways, with a millimolar sensitivity. These molecules are usually referred to as “metabolites” 

and are involved in different metabolic functions, such as neurotransmission (glutamate, γ-

aminobutyric acid or GABA), neuronal and glial densities (N-acetyl-aspartate, myo-inositol), 

membrane turn-over (choline-containing compounds, NMR-visible proteins) and energy 

metabolism (Creatine, ATP) among others. Other imaging techniques exist, such as Positron 

Emission Tomography (PET), which are sensitive enough to detect picomolar concentrations. 

However, they require radioactive exogenous tracers whereas typical MRS detects endogenous 

molecules as signal sources. 

The signal intensity detected in MR experiments is directly influenced by the strength of the 

static magnetic field. With the advent of increased magnetic field strengths, the MRS technique 

can reach new horizons as higher spectral and spatial resolutions can be explored, improving the 

reliability and specificity of MRS measurements. 

But with greater fields come greater challenges, and technical difficulties arise due to the 

increased inhomogeneity of the radiofrequency (B1) and static magnetic fields (B0). The 

application of radiofrequency (RF) pulses, necessary for the generation of the measured NMR 

signal, also contribute to the challenges faced at ultra-high fields (UHF) as their required RF 

energy scales up with the magnetic field intensity. Thus MR scientists must be very attentive to 

the maximum power output provided and sustained by the hardware but even more to the energy 

absorbed by the head through the dissipation of the transmitted RF power, potentially leading to 

temperature elevation above safety limits. 



GENERAL INTRODUCTION 

11 
 

To counteract such limitations at UHF, the introduction of state-of-the-art methods is necessary 

for the acquisition of robust and high-quality spectra. The technical and safety constrains being 

less restrictive for animal studies allow the use of a wider panel of techniques to mitigate the 

consequences of B1 inhomogeneity, namely by using energy-demanding adiabatic RF pulses.  

The application of such pulses being quite limited for human studies at UHF, an approach based 

on the efficient use of the available power is preferred. Parallel transmission (pTx) is one of the 

most promising solutions to tackle B1 field inhomogeneities in the human brain. It makes an 

efficient use of the available allowed power by adapting the phase and amplitude of each 

resonating element according to each volunteer and the targeted B1-field. Furthermore, phase 

interference patterns can be advantageously exploited to remove unwanted signals generated 

from tissue outside of the skull.  

MRS measurements of nuclei other than proton (
1
H), such as phosphorous (

31
P), are difficult due 

to their intrinsically low sensitivity. This reduced sensitivity is somewhat compensated at UHF 

by the raw increase in signal. ATP and phosphocreatine which can be detected using 
31

P MRS, 

are particularly important metabolites due to their key roles in energy metabolism. Therefore, 

acquiring 
31

P metabolic profiles could complement the already rich metabolic information 

derived from 
1
H neurochemical profiles. 
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THESIS OVERVIEW 
 

The thesis project was done at the Magnetic Resonance Imaging and Spectroscopy Unit (UNIRS, 

for its acronym in French), attached to NeuroSpin at the Commissariat à l’Energie Atomique et 

aux Energies Alternatives (CEA) located at Gif-sur-Yvette, Essonne, France. Several horizontal 

scanners are currently present at NeuroSpin, including three Bruker MRI scanners at 7, 11.7 and 

17.2 T dedicated to rodent studies and also two Siemens MRI scanners at 3 and 7 T dedicated to 

human studies. The 7 T clinical scanner is also equipped with parallel transmission capabilities, 

allowing to control 8 individual transmission channels for RF coils built for such modality.  

In this context, the presented work focused on the implementation of 
1
H and 

31
P MRS sequences 

at 17.2 T and their application to study longitudinally normal brain aging in the Dark Agouti rat. 

In parallel, 
1
H and 

31
P MRSI pulse sequences were developed for their application in the human 

brain at 7 T using multi-channel or single-channel volume coil transceivers. 

The presented manuscript is divided in three parts: 

The first part explains the methodological context of this thesis. Chapter 1 starts by introducing 

the fundamental concepts of NMR spectroscopy. Afterwards, it provides a brief presentation of 

the RF pulses and pulse sequences used as well as related aspects such as energy deposition and 

chemical shift artifacts. The chapter ends by providing a prospective view of the gains and 

challenges of MRS at UHF. Chapter 2 presents all the practical considerations and technical 

implementations. It includes a brief description of the 7 T clinical and 17.2 T preclinical 

scanners, the implementation and in vitro validation of the BISTRO scheme on both systems as 

well as the numerical optimization of WET water suppression schemes. The methodology related 

to the 
1
H and 

31
P spectral decompositions using LCModel is presented, detailing the 

macromolecule baseline parameterization used for the analysis of rat brain 
1
H spectra. The 

absolute metabolite quantification strategy for 
1
H and 

31
P data is explained. Finally, practical 

considerations for the acquisition of water T1 maps at 17.2 T are presented. 

In the second part, the work done at 17.2 T using in vivo quantitative 
1
H and 

31
P MR 

spectroscopy is presented. Chapter 3 presents a longitudinal 
1
H MRS study of brain aging in the 

Dark Agouti rat over a span of 18 months. The T1 and T2 relaxation times measured from one 

VOI as well as metabolite concentrations from four VOIs in the young rat at 1 month of age are 

presented. These relaxation times are compared to those measured at lower magnetic fields so as 

to assess their field-dependency. The evolution of T1 and T2 relaxation times as well as the 

neurochemical profiles from the 4 VOIs are then presented and examined using a linear 

regression analysis. Chapter 4 presents a preliminary 
31

P quantitative MRS study looking at a 

subset of our previously studied Dark Agouti rats at ages of 5, 17 and 21 months old. Results 

from the acquired metabolite profiles and measured T1 times from 8 animals are presented. The 

limitations and encountered problems, notably due to chemical shift artifacts, are discussed. 
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The third part presents our MRSI developments and the results obtained on the 7 T scanner. In 

Chapter 5, the parallel transmission approach is explained along with our methodological 

framework and the static B1-shim configurations known as the coil eigenmodes or “rings”. The 

use of such rings as OVS bands are evaluated and compared to numerically optimized B1-shim 

configurations in vitro. Chapter 6 presents the evaluation of 
1
H and 

31
P MRI and MRSI 

sequences for the constitution of a research protocol in the human brain including 
1
H and 

31
P 

metabolite maps acquisitions. The numerically optimized WET scheme is validated in vivo in 

combination with a 2D CSI-STEAM sequence. Adiabatic and conventional OVS bands 

configurations are tested and compared in terms of efficiency and energy requirements. The 

chapter ends showing preliminary in vivo 
1
H/

31
P MRSI data.  

This thesis ends with a general conclusion summarizing the main results and few perspectives for 

future work in MR spectroscopy are given. 
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PART I: METHODOLOGICAL CONTEXT 
 

1. THEORETICAL ASPECTS 

 

1.1. BASIC PRINCIPLES OF NMR 
 

1.1.1. The Zeeman effect 

 

In quantum mechanics, particles such as electrons, protons or neutrons possess an intrinsic 

angular momentum or spin which may only have discrete values. This angular momentum L 

depends on the spin quantum number I as: 
 

 𝐋 = ℏ √𝐼(𝐼 + 1)    ;    ℏ = (𝐡 𝟐𝝅⁄ )                                              (1.1) 
 

where h is Planck’s constant and I is integer or half-integer. The spin number I is unique to each 

nucleus in its stable ground state. For instance, nuclei possessing an odd mass number have a 

half-integer spin, such as the hydrogen (
1
H) and phosphorus (

31
P) which both possess a spin of 

+1/2. The “direction” or state of the angular momentum is determined by the quantum number m 

which may have only 2I + 1 values ranging as m = -I, -I+1,…,+I and correspond to the basis 

states of the particle. The component of the angular momentum in the z direction is given by: 
 

       𝐋𝒛 = ℏ 𝑚.                                                               (1.2) 
 

The corresponding magnetic moment along the z axis is given by: 
 

    µ𝒛 =γ ℏ 𝑚.                                                        (1.3) 
 

In an external magnetic field B0 oriented along the z axis, the nucleus acquires a magnetic energy 

E given by: 

    E = −µ𝒛 B0 = −γ ℏ 𝑚 B0.                                               (1.4) 
 

This Zeeman effect states that, for a particle with a spin I = 1/2, the energy difference between its 

two possible quantum states is: 
 

    𝚫E =γ ℏ B0.                                             (1.5) 
 

The energy required to transition from one energy state to the other corresponds to a photon or  

electromagnetic wave with an energy ΔE and a frequency ν0 proportional to the magnetic field B0 

(figure 1.1A).  
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This resonance frequency is called the Larmor frequency and is given by: 
 

    𝜈0 = (
𝛾

2𝜋
) B0                                                      (1.6) 

 

The basic principle of NMR is to apply a transverse radiofrequency (RF) wave at the Larmor 

frequency (usually in the 10 to 10
3
 MHz range) to excite nuclear spins and then detect the 

electromagnetic wave emitted when the spins return to their lower energy state (figure 1.1B). 

Notably, equation (1.5) shows that increasing B0 intensity leads to more energy being involved in 

the quantum state transitions. 

 

 
Figure 1.1. The Zeeman Effect and the NMR phenomenon. 

A. Upon the application of an external magnetic field B0, quantum energy states for a spin I (= ½) split 

depending on its quantum number m (½ or -½). The energy difference between the two spin states is 

proportional to the magnetic field strength as well as the Larmor frequency of the radiofrequency wave 

used to excite the spins. B. The number of spins with a preference for the low energy state increases 

with the magnetic field, leading to higher polarization in the macroscopic sample. 

 

 

1.1.2. Boltzmann distribution 

 

When considering a macroscopic sample with a large number of spins in an external magnetic 

field, the methods of Statistical Physics can be used to calculate its macroscopic magnetization. 

For the case of a population of spins of I = 1/2, only two spin states are allowed: m = +1/2 (µ 

parallel to B0) or m = -1/2 (µ antiparallel to B0), respectively referred to as the α and β spin states. 

Under thermal equilibrium conditions, the two corresponding energy levels are populated 

according to the Boltzmann probability distribution: 
 

𝑁𝛼
̅̅ ̅̅ , 𝑁β̅̅ ̅̅ =

exp (±γℏB0 2𝑘𝐵𝑇⁄ )

exp (−γℏB0 2𝑘𝐵𝑇)⁄ +exp (γℏB0 2𝑘𝐵𝑇⁄ )
                                 (1.7) 

 

where 𝑘𝐵 is the Boltzmann equilibrium constant, T is the absolute temperature and 𝑁𝛼
̅̅ ̅̅  and 𝑁β̅̅ ̅̅  

the mean spin populations in the α and β spin states. The population difference ratio is given by: 
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   𝑁𝛼
̅̅ ̅̅  / 𝑁𝛽

̅̅̅̅ =  exp(γℏB0 𝑘𝐵𝑇⁄ )                                     (1.8) 
 

Since at room temperature the thermal energy kBT is five orders of magnitude larger than γℏB0, 

the population ratio can be approximated to: 
 

   𝑁𝛼
̅̅ ̅̅  / 𝑁𝛽

̅̅̅̅  ~ 1 +(γℏB0 𝑘𝐵𝑇⁄ )                                     (1.9) 
 

which dictates that for 
1
H nuclei at 7 Tesla, the population difference between both energy levels 

or polarization, corresponds to 0.00464 % of the total spin population while at 17 T it increases to 

0.0113 %. Due to their lower gyromagnetic ratio and their lesser natural abundance, nuclei other 

than 
1
H are more difficult to detect and have lower Larmor frequencies than 

1
H. Table 1.1 

summarizes the NMR characteristics of the nuclei studied in vivo (Bernstein, et al., 2004 p. 960; 

de Graaf, 2007 p. 9).  

 

Isotope Spin 
Natural 

abundance (%) 

Gyromagnetic 

ratio γ/2π (MHz/T) 

NMR frequency in MHz 

3.0 T 7.0 T 17.16 T 
1
H 1/2 99.985 42.58 127.728 298.03 730.20 

2
H 1 0.015  6.54 19.608   45.75 112.09 

3
He 1/2 1.4x10

-4 
32.43 97.302 227.04 556.24 

7
Li 3/2 92.580 16.55 49.638 115.82 283.76 

13
C 1/2 1.108 10.70 32.112   74.93 183.57 

14
N 1 99.630  3.08   9.231   21.54   52.77 

15
N 1/2 0.370 -4.32 -12.948   -30.21 -74.02 

17
O 5/2 0.037  5.77 17.316   40.40   98.99 

19
F 1/2 100 40.05 120.156 280.36 686.89 

23
Na 3/2 100 11.26   33.786   78.83 193.14 

31
P 1/2 100 17.24   51.705 120.65 295.58 

39
K 3/2 93.10   1.99     5.964   13.92   34.10 

129
Xe 1/2 26.44 11.78   35.331   82.44 201.98 

Table 1.1. NMR properties of most nuclei used for in in vivo NMR studies. 

 

 

1.1.3. Macroscopic Magnetization 

 

All individual magnetic moments in a sample add up to a net macroscopic magnetic moment M. 

Although the spins are not parallel to the main magnetic field B0 and have rotational components 

on the xy-plane perpendicular to the axis of the static magnetic field (referred as the transverse 

plane), there is no net transverse component of M as the phase of the spins is randomly 

distributed. Nevertheless, there will be a net longitudinal magnetization component M0 along the 
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direction of B0 proportional to the population difference Nα̅̅ ̅̅̅ − Nβ̅̅ ̅̅̅ (figure 1.2). From eq. (1.3), 

the expression for M0 at thermal equilibrium can be found: 
 

M0 = ∑ µ𝒊
𝑵
𝒊=𝟏 = Nα̅̅ ̅̅̅µ𝒛 + Nβ̅̅ ̅̅̅µ𝒛 =γ (

ℏ

2
) (Nα̅̅ ̅̅̅ − Nβ̅̅ ̅̅̅)    (1.10) 

 

where N is the total spin population. At room temperature, one can derive M0 using eq. (1.9):  
 

  M0 =
Nγ2ℏ2

4𝑘𝐵𝑇
B0      (1.11) 

 

This expression reveals the importance of the static magnetic field as well as the gyromagnetic 

ratio on the magnitude of the macroscopic magnetization. Nevertheless, the interest of the NMR 

scientist is not the maximum available signal itself but rather the available signal-to-noise ratio 

(SNR) that is achievable in a given time interval. Other intrinsic factors such as noise levels, 

sample volume and signal loses due to relaxation time effects also play a role on the 

determination of the sensitivity.  

 

 
Figure 1.2. The net magnetization M vector in an external magnetic field. 

A. A single spin precesses around the external static magnetic field B0. The spin magnetic moment µ 

has quantized transverse and longitudinal components. B. The sum of all spin magnetic moments in 

either the α or β states amount to the macroscopic magnetization vector M. The lack of phase 

coherence in the transverse plane leaves only a net longitudinal component M0. 

 

 

1.1.4. Excitation and the Bloch Equations  

 

At the thermal equilibrium state, the net magnetization vector M0 is aligned along the direction of 

the main magnetic field B0 and there is no precession motion measurable in the transversal plane. 

This precession is needed in order to generate a detectable electromotive force (emf) in an 

electric circuit through induction (Faraday’s law). Thus, a second transversal magnetic field (B1) 

is applied to “excite” the spins and rotate the magnetization towards the transverse plane. In 

modern impulsional NMR, B1 is applied as a short RF pulse at the Larmor frequency (1.6). 
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Following this RF pulse, the transverse magnetization Mxy will precess around B0 at the Larmor 

frequency, generating an emf in the receiver coil adjacent to the sample. 

In practice, an induction coil is used to generate the RF excitation field. For amplitude-modulated 

RF pulses (discussed in the following section), their duration and intensity will determine the 

nutation or “flip angle” experienced by the net longitudinal magnetization. Accordingly, the 

transverse magnetization Mxy reaches its maximum value (Mxy = M0) for a 90° flip angle (figure 

1.3).  

The evolution of the macroscopic magnetization M under the effects of an external magnetic field 

Bext composed of both B0 and B1 fields is derived from the following equation: 
 

             
∂𝐌

∂t
= 𝐌 ×γ𝐁𝒆𝒙𝒕 = 𝐌 ×γ(𝐁𝟎 + 𝐁𝟏)                                     (1.12) 

 

 

 

 
Figure 1.3. Effect of an RF pulse B1 on the macroscopic magnetization M. 

At thermal equilibrium, the net magnetization M (= M0) is parallel to the main magnetic field B0. In 

order to generate a detectable NMR signal, a time-varying transversal RF pulse B1(t) is applied  tilting 

M about its axis. By calibrating B1 properly, M is rotated by 90° resulting in a maximum amplitude 

for Mxy. The diagram is shown in the rotating frame of reference at the Larmor frequency. 

 

 

Taking into account the return to thermal equilibrium, equation (1.12) can be expanded to yield 

the Bloch equations: 
 

    
∂M𝑥(t)

∂t
=γ[M𝑦(t)B0 − M𝑧(t)B1y] −

M𝑥(t)

T2
     (1.13) 

    
∂M𝑦(t)

∂t
=γ[M𝑧(t)B1x − M𝑥(t)B0] −

M𝑦(t)

T2
    (1.14) 

   
∂M𝑧(t)

∂t
=γ[M𝑥(t)B1y − M𝑦(t)B1x] −

M𝑧(t)−M0

T1
                         (1.15) 

 

The relaxation times T1 and T2 describe the mono-exponential recovery of Mz and decay of Mxy 

as shown in figure 1.4. 
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Figure 1.4. Effects of T1 and T2 relaxation on the longitudinal Mz and transverse Mxy components. 

A. After RF excitation, the transverse magnetization Mxy decreases exponentially with time 

corresponding to the dephasing of the spins in the sample. At t = T2, Mxy has been reduced to 37% of 

its initial value. B. After RF excitation, the longitudinal magnetization Mz increases exponentially 

reaching 63% of its maximal value of M0 at t = T1 and M0 at t>5T1. The T1 relaxation process 

corresponds to the spin population’s energy surplus being transferred to its surrounding. In biological 

tissue, T1 is usually an order of magnitude longer than T2. 

 

 

1.1.5. Longitudinal relaxation time T1 

 

The spin-lattice or T1 relaxation process takes place following a perturbation of the net 

magnetization M and determines the speed at which the longitudinal magnetization Mz returns to 

its thermal equilibrium value M0. T1 relaxation originates from a constant growth rate of Mz due 

to interactions between the excited spins and the lattice, which acts as a reservoir that stocks the 

energy of the excited spin allowing it to return to its minimal energy state. The relaxation process 

is done through dissipation of energy into the nearby atoms as thermal energy. The process of 

energy transfer from the excited spins to the lattice does not induce any increase of temperature 

in the sample as the proton spin energy is minor compared to the thermal energy scale 𝑘𝐵𝑇 in 

vivo. 

From equation (1.15), the time-dependency of Mz can be derived following an excitation pulse: 
 

    
∂M𝑧(t)

∂t
=

M0−M𝑧(t)

T1
                                                       (1.16) 

 

Solving this partial differential equation provides the expression of the Mz(t) at time t: 
 

    M𝑧(t) = M𝑧(0)𝑒−𝑡/𝑇1 + M0(1 − 𝑒−𝑡/𝑇1)    (1.17) 
 

where M𝑧(0) is the longitudinal magnetization just prior to the 90° excitation pulse.  

When the experiment is sequentially repeated with a repetition time TR and no residual 

transverse magnetization remains at the beginning of each repetition, then a steady-state 

magnetization is achieved after a few repetitions: 
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     M𝑧(α, TR) =
M0(1−𝑒−TR/𝑇1)

(1−|cos (α)|𝑒−TR/𝑇1)
                                       (1.18) 

 

where α is the excitation flip angle (FA). Experimentally, the residual transverse magnetization 

can be eliminated by applying dephasing gradients or by using a TR longer than 5*T2
*
. One can 

notice that the steady-state magnetization is highest at long repetition times (TR > 5*T1). 

However, to optimize the SNR per unit time, one should rather use a short TR (such as TR = T1) 

so as to increase the number of signal averages. For a given TR and T1, the optimal excitation 

angle or Ernst angle is given by the expression: 
 

    αErnst = arccos (𝑒−TR/𝑇1)                                         (1.19) 
 

The use of short TRs and corresponding Ernst angle can be an efficient way to accumulate signal 

in a given time, such as in NMR studies of low sensitivity nuclei like 
31

P. However, it can be 

problematic for the quantification of the observed NMR signals especially if they possess distinct 

T1 relaxation times. Alternatively, long TRs can be used if differential T1-weighting wants to be 

avoided, in particular when the T1 relaxation times are unknown. 

 

1.1.6. T1 estimation 

 

Several methods are available for the determination of T1 relaxation times: 
 

a) The progressive saturation techniques use the dependency of the steady-state 

magnetization to the repetition time and flip angle. These methods are suited for low-

sensitivity nuclei where long scans are needed to achieve an acceptable SNR or whenever 

the available scanning time is reduced (Freeman, et al., 1971; Hofmann, et al., 2001; 

Deoni, et al., 2003; Haacke, et al., 1999 pp. 637-653). 

b) The Look-Locker method where several data points with varying T1-weighting are 

acquired within a single TR using a single inversion pulse and a train of small FA. This 

method is time-efficient and allows estimating an apparent T1 relaxation time. Yet it is not 

suited for NMR spectroscopy experiments as it requires high SNR (Deichmann, et al., 

1992; Schmitt, et al., 2004; Rooney, et al., 2007). 

c) The single inversion-recovery (SIR) method consists in acquiring T1-weighted data sets 

for which the delay (inversion time = TI) between the inversion pulse and the excitation is 

varied while keeping a fixed recovery time (= TR - TI) to prevent partial saturation effects 

(de Graaf, et al., 2006; Vold, et al., 1968; Lu, et al., 2014). 
 

The SIR method (figure 1.5A) is considered the “gold-standard’ for measuring T1 relaxation 

times (Cudalbu, et al., 2009; Wright, et al., 2008). After the inversion pulse, the longitudinal 

magnetization evolves accordingly to eq. (1.17) as: 

 

 M𝑧(t) = −M0𝑒−𝑡/𝑇1 + M0(1 − 𝑒−𝑡/𝑇1) =  M0(1 − 2𝑒−𝑡/𝑇1),   0 < 𝑡 < TI  (1.20) 
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As depicted in figure 1.5B, the return to the thermal equilibrium M0 will depend on the T1 values 

of the spin populations in the sample.  

In practice, the MRS measurement will consist of numerous repetitions and the steady-state 

magnetization must be considered instead. For a 90° excitation, the expression is the following: 
 

 M𝑧 = M0(1 + 𝑒−TR/𝑇1 − 2𝑒−TI/𝑇1)                                       (1.21) 

 

 
Figure 1.5. Magnetization inversion-recovery method for T1 measurements. 

A. Chronogram of the SIR pulse sequence. An inversion pulse is applied at the beginning of the 

experiment and an excitation pulse is applied after a delay called the inversion time. The recovery 

time, corresponding to the delay between the excitation pulse and the next inversion pulse, allows Mz 

to reach a steady-state magnetization. B. After inversion of M0, the longitudinal magnetization Mz 

recovers at a rate determined by the T1 value. By varying the inversion time, better contrasts can be 

observed between spin populations with different T1 times. Measuring Mz at different TIs allows 

estimating the T1 value through equation (1.17). 

 

 

1.1.7. Transverse relaxation times T2 and T2
*
 

 

The spin-spin or T2 relaxation process takes place in an excited spin population where the net 

transverse magnetization decreases in magnitude through dephasing of the individual nuclear 

magnetic moments. A qualitative explanation of the relaxation process is that spins experience 

local magnetic fields which are a combination of the main magnetic field B0 and small local 

magnetic field changes created by the neighboring molecules. The variation of the local fields 

leads to fluctuations of the individual precessional frequencies of the spins, which in turn tend to 

present a different individual phase. This induces a loss in the phase coherence of the excited spin 

population. The consequence on the macroscopic Mxy component is a reduction in magnitude, the 

so-called T2 decay. 

From equations (1.13) and (1.14), the time-dependency of Mxy can be derived (for B1 = 0): 
 

    
∂M𝑥𝑦(t)

∂t
= −

M𝑥𝑦(t)

T2
                                                    (1.22) 
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which leads to: 

                        M𝑥𝑦(t) = M𝑥𝑦(0)𝑒(−𝑡/T2)                                              (1.23) 
 

where M𝑥𝑦(0) is the transverse magnetization just after the excitation pulse. 

In practice, there are additional factors to the dephasing of the transverse magnetization, in 

particular non-random, local magnetic field inhomogeneities ΔB0(r). These local inhomogeneities 

are most prominent at the interfaces between media with strong magnetic susceptibility 

differences, such as brain tissue and air. This apparent relaxation time T2
∗  is shorter than the 

intrinsic T2  relaxation time. Nevertheless, this additional non-random dephasing can be 

compensated by “refocusing” the individual spins using a spin-echo (SE) or Hahn refocusing 

pulse sequence (figure 1.6A). If ΔB0(r) is time-independent, the acquired phase of the spins 

before refocusing at the position r is:  
 

                                  ϕ(𝑟) =γΔB0(𝑟) ∗ TE/2                                                  (1.24) 
 

where TE/2 is the delay between the excitation and refocusing pulses. As illustrated in figure 

1.6B, the application of the 180° refocusing pulse about the xy-plane will cause the individual 

spins to rotate in the inverse sense prior to the refocusing pulse. Therefore, the phase acquired 

during the first TE/2 time lapse due the non-random field inhomogeneities will be compensated 

after the second TE/2 delay. A complete refocalization of the transverse magnetization will occur, 

forming an echo (figure 1.6B). The TE delay is called the echo-time. The SE sequence is 

commonly used to estimate T2 relaxation times (figure 1.7).  

The measurement of intrinsic T2 relaxation times can be further improved by using a Carr-

Purcell-Meiboom-Gill (CPMG) refocusing pulse train, which is more effective at refocusing 

diffusion-related dephasing than the Hahn spin-echo sequence. The CPMG pulse train consists of 

an excitation pulse at time t = 0 and a train of refocusing pulses at time t = (2n+1)τ, where the 

phase of the 90° RF pulse is shifted by 90° with respect to the n inversion pulses and τ is the 

middle time-point between the excitation pulse and the first 180° pulse. This phase-cycling 

approach compensates for imperfections in the refocusing pulse’s flip angles, which otherwise 

would induce a cumulative error with the number of 180° pulses (Bernstein, et al., 2004 pp. 420-

422; Meiboom, et al., 1958). 
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Figure 1.6. The Spin-echo experiment. 

A. The spin-echo pulse sequence consists in a 90° excitation pulse followed by a 180° refocusing 

pulse applied at TE/2. The NMR signal is refocused at TE and its intensity is T2-weighted. B. After 

excitation, the NMR signal decreases rapidly due to T2
*
 relaxation. However, the application of a 180° 

refocusing pulse leads to the inversion of the spin dephasing in the xy-plane. The phase acquired due 

to non-random field inhomogeneities before refocusing is cancelled out and a “spin-echo” is formed. 

 

 

 

 

 

 
Figure 1.7. Measurement of T2 relaxation times. 

After excitation, the transverse magnetization Mxy decays exponentially according to equation (1.23). 

By employing a Hahn SE sequence (or better yet, a CPMG refocusing pulse train), T2
*
 effects (and 

diffusion-related signal loss) are compensated and values closer to the intrinsic T2 can be estimated. 
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1.1.8. NMR Spectrum and the Discrete Fourier Transform 

 

As it was described in section 1.1.4, when the transverse magnetization Mxy is non-null, a 

detectable emf oscillating at the Larmor frequency is induced on the received coil positioned in 

the transverse plane. Following the T2* decay of the transverse magnetization, a time-varying 

complex signal designated as the free induction decay (FID) will be acquired by the NMR 

spectrometer. This FID can be examined in the frequency domain by applying a complex Fourier 

transform, resulting in a NMR “spectrum”. In practice, the number of sampled complex values of 

the FID is finite and the calculation of the spectrum is done instead by applying a discrete Fourier 

transform (DFT), replacing the theoretical integral by a finite summation. When the number of 

registered time-points is a power of 2 (such as 2048 = 2
11

) then a fast Fourier transform (FFT) 

can be applied (figure 1.8) which is computationally more efficient than the DFT (Cooley, et al., 

1965; Brigham, 1988).  

Once phased, the real and imaginary components of the spectrum correspond to Lorentzian 

absorption and dispersion lineshapes. For the analysis of the NMR spectrum, the better resolved 

absorption spectrum is analyzed allowing for the measure of the resonance frequency ν, the peak 

intensity, area and linewidth at half maximum (FWHM or ν1/2 = ( T2
*
)
-1

). If needed, the 

spectrum can be analyzed in magnitude but the lineshape is broader due to the dispersive 

component. 

 

 

Figure 1.8. Free induction decay and NMR spectrum 

The duality between the measured FID in the time domain and its corresponding spectrum in the 

frequency domain is established by the application of a discrete Fourier transform. The real and 

imaginary components of the FID and spectrum are shown in blue and red, respectively.  
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1.1.9. Chemical Shift 

 

Nuclei are surrounded by local magnetic fields, in particular the magnetic field created by the 

movement of electrons in the external magnetic field B0. This induced magnetic field opposes B0 

(accordingly to Lenz’s law) and its intensity depends on the density of the electronic cloud 

around the considered nucleus. Thus, the nuclear spins experience a magnetic “shielding” whose 

characteristics depend on the molecule the nucleus belongs to or on the molecules in its 

immediate vicinity. As a consequence, the Larmor frequency will be shifted by a factor σ known 

as the chemical shift expressed in parts per million (ppm): 

 

 ω0 = 2πν0 =γ ∗ (B0 −σ)                                              (1.25) 
 

A positive σ will correspond to a shielding (higher electronic density) and a negative one will 

correspond to an anti-shielding (lower electronic density) and it may vary due to changes in the 

chemical environment such as pH or temperature. The definition of the chemical shift of a group 

of equivalent nuclei is: 

    σ =
𝜈0−𝜈𝑟𝑒𝑓

𝜈𝑟𝑒𝑓
                                                      (1.26) 

 

where 𝜈𝑟𝑒𝑓  is the resonance frequency of a reference compound. The standard reference 

compounds used for system and coil calibrations is tetra-methyl-silane (TMS) for 
1
H MRS and 

phenyl-phosphonic acid (PPA) or hexa-methyl-phosphorous-triamide (HMPT) for 
31

P MRS. 

 

1.1.10.  J-Coupling 

 

When two nuclei are involved in a covalent bound, the nuclear spins interact indirectly through 

their shared electrons. This scalar, spin-spin or J- coupling results in a splitting of their respective 

resonances into hyperfine structures. Scalar coupling originates from intramolecular coupling 

mechanisms, in contrast with dipole-dipole interactions which take place between different 

molecules. 

In it most simple case, two bounded atoms A and X with a large gap in resonance frequencies are 

considered (figure 1.9A). By the Pauli Exclusion Principle, the interaction between the electrons 

inside the covalent bond is forced to be antiparallel. In the case where the AX spin system is in 

the high-energy (ββ) or low energy states (αα), one of the nuclei (say A) will be in a parallel spin 

state to that of its electron, which is less favorable than an antiparallel state. The energy level will 

therefore increase by an amount of JAX/4 where JAX corresponds to the single-bond scalar 

coupling constant between A and X. For the intermediate states (αβ and βα), the electrons can be 

in antiparallel state with the nuclei spins which is energetically favorable, decreasing the energy 

levels of these states by JAX/4. In the case of heteronuclear coupling such as A = 
1
H and X = 

13
C, 

the energy required to excite the 
1
H spin corresponds to the transitions αβ → ββ or αα → βα, 
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which are γH(h/2π)*B0-hJHC/2 and γH(h/2π)*B0+hJHC/2, respectively. The associated NMR 

spectrum consists in a pair of resonances centered on the Larmor frequency with a JHC frequency 

gap (figure 1.9B). In the case of a strongly coupled system AB in which the difference in 

resonance frequencies is small (|𝑣𝐴 − 𝑣𝐵| ≈ JAB), there are still 4 energy level transitions but the 

intensities of the corresponding NMR resonances are distorted by second order effects. Notably, 

J-coupling constants are independent of the magnetic field intensity. 

 

 

Figure 1.9. Energy levels splitting due to J-coupling and NMR spectrum of a weakly-coupled AX spin 

system. A. Two atoms interacting through a covalent bond are linked through an electron bond. The 

energy levels of the spins A and X are influenced by the anti-parallel pairing of the electrons due to the 

Pauli Exclusion Principle. This scalar coupling JAX leads to 4 different possible energy states. B. This 

leads to 4 possible single spin transitions (E2-E1 and E4-E3 for A and E3-E1 and E4-E2 for X). If it is a 

weakly-coupled spin system (|𝑣A − 𝑣X| ≫ JAX), the NMR spectrum consists in 2 doublets of resonances 

centered on the Larmor frequencies of A and X each with a JHC frequency gap. 
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1.2. MRS  SEQUENCES  

 
1.2.1. Radiofrequency Pulses 

 

1.2.1.1. Amplitude Modulated Pulses 

 

As explained in section 1.1.5, the longitudinal magnetization is projected towards the transverse 

plane by applying a secondary transverse magnetic field B1 oscillating at or close to the Larmor 

frequency of the spin population of interest. The B1 “excitation” field is created by a surface or 

volume transmit coil. The resolution of the Bloch equations (eq 1.13-1.15) during the application 

of the RF “pulse” B1(t) allows for the calculation of the magnetization M(t). To do so, it is 

convenient to describe the NMR experiment in a frame rotating about B0 at the angular carrier 

frequency  as well as an effective magnetic field Beff:  
 

 Beff = √B1
2 + (

Δω

γ
)

2

   ;          Δω =ω0 −ω                                  (1.27) 

 

with 0 being the angular Larmor frequency.   

On-resonance (B1 ≫
Δω

γ
), the magnetization rotates about B1 as shown in figure 1.3 and the FA α 

is given by: 

    α =γB1𝑇                                                               (1.28) 
 

with T being the RF pulse duration. However, off-resonance effects are present when the 

frequency offset Δ is comparable to γB1. In MRS, this is usually the case since the spectral 

bandwidth is several kHz wide. 

By incorporating Beff into the Bloch equations, frequency-dependent profiles of the three 

magnetization components Mx, My and Mz can be calculated. A simpler method to estimate the 

frequency profile of the RF pulse is to apply a Fourier transformation (FT) in the time domain. 

Yet, the FT being a linear operation, it must be taken into consideration that the said frequency 

profile is an approximation only valid for small nutation angles (α<30°) where the sinus function 

is almost linear (sin(α) ≈ α). 

Another important factor for the characterization of RF pulses is the Time-Bandwidth or R factor. 

The R factor corresponds to the product of the pulse length T and the pulse bandwidth Δ. The 

latest is measured as the full width at half maximum (FWHM) of the frequency profile of the 

resulting magnetization after a 90° or 180° FA for excitation and inversion/refocusing pulses, 

respectively. For a given RF pulse modulation, the R factor is constant and is useful for 

determining the pulse duration needed to achieve a target bandwidth: 
 

 𝑇 =
R

Δ𝜔
                                                                  (1.29) 
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In the case of amplitude modulated (AM) pulses, the amplitude integral κ is also a pulse-specific 

constant that represents the ratio between the area of the normalized pulse (B1max = 1) and a 

normalized square pulse of the same duration: 
 

  κ = √(∑ 𝑉𝑖,𝑅𝑒𝑎𝑙
𝑵
𝒊 )

𝟐
+ (∑ 𝑉𝑖,𝐼𝑚𝑎𝑔

𝑵
𝒊 )

𝟐
𝑵⁄                                        (1.30) 

 

where V is the (discrete) vector representation of the pulse envelope defined by N complex 

points. The amplitude integral κ is useful for calculating the required B1 for a particular pulse and 

a desired flip angle, provided that a reference value is available from a reference pulse (usually a 

1 ms long square pulse). The mathematical expression is directly derived from eq. (1.28): 
 

    α =γ ∗ B1 ∗ 𝑇 ∗κ                                                     (1.31) 
 

The choice of a RF pulse will largely depend on the experimental demands and constrains, such 

as spectral bandwidth and desired sharpness (transition bandwidth), available RF power, gradient 

capabilities and Specific Absorption Rate (SAR) limitations. The R and κ factors for the most 

common AM pulses used during this thesis are listed in table 1.2. 

The transition bandwidth Tbw is the frequency gap for which the condition 0.05 ≤ Mxy/M0 ≤ 0.95 

holds for a 90° excitation pulse and it should be considered when sharp excitation profiles are 

required. Sinc pulses with a high number of lobes have good Tbw while Gaussian pulses have 

rather degraded ones but demand a smaller B1max. Hermitian shaped pulses show a good 

compromise between Tbw, R value and peak B1. 

 

Pulse Shape Time-Bandwidth R Amplitude Integral κ 

Gaussian 2.17 0.5530 

Sinc 3-lobes (FLASH,Siemens) 3.35 0.3504 

Sinc 3-lobes (CSI,Siemens) 3.84 0.2800 

Sinc 7-lobes 8.92 0.1137 

SLR (VERSE)
a 

15.00 0.1049 

Square 1.37 1.0000 

Hermitian 5.43 0.1794 

Table 1.2. Time-Bandwidth product and amplitude integrals of common AM pulses. 
a
 (Amadon, et al., 2010) 

 

 

1.2.1.2. Adiabatic Pulses 

 

In most MRS studies, surface coils are used due to their high sensitivity and elevated peak power. 

Nevertheless, they generate a quite inhomogeneous B1 excitation field, leading to artifacts when a 

deep structure is studied or when the volume-of-interest (VOI) extends in depth with respect to 
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the plane of the transmitter’s inductive loop(s). Although it is possible to solve the B1 

inhomogeneity problem by using a transmit-only volume coil in conjunction with a receive-only 

surface coil,  the maximum B1 power needed to apply high-bandwidth RF pulses can be 

compromised (aside from the increasingly complicated set-up and possible coupling effects). An 

elegant and reliable solution consists in using RF pulses for which the FA will be less sensitive to 

the amplitude of the applied B1. Adiabatic pulses are frequency- and amplitude-modulated pulses 

that generate a uniform nutation angle even in an inhomogeneous B1 field provided that the RF 

amplitude is above a certain threshold so that it stays in the adiabatic regime. 

A qualitative illustration of the application of an adiabatic pulse is as follows. The frequency 

modulation on the applied B1 field has an effect equivalent to modulating the off-resonance 

component of Beff as shown in equation (1.27), where  is substituted by the term Δω(t) = ω(t)-

ω0: 

  Beff(t) = √B1
2(t) + (

Δω(t)

γ
)

2

                                            (1.32) 

 

Through the simultaneous modulation of the RF field intensity and carrier frequency, the 

effective Beff(t) field changes in orientation over time. If the orientation (with respect to the 

reference frame rotating at the Larmor frequency) given by: 
 

    α(t) = arctan (
Δω(t)

γB1(t)
)                                                 (1.33) 

 

changes slowly enough such that it complies with the adiabatic condition: 
 

    |
dα(t)

γdt
| ≪ |Beff(t)|                                                             (1.34) 

 

then the magnetization that was parallel (Mz) and perpendicular (Mxy) to Beff at the beginning of 

the RF pulse will keep their orientation to Beff(t) for the duration of the pulse. If this condition is 

not fulfilled, there will be a loss of coherence among the longitudinal magnetization vectors at 

different frequencies according to Δω(t) and B1. 

Adiabatic pulses can be easily calibrated by keeping a constant pulse length and gradually 

increasing the transmitter power up to a threshold at which the recorded signal intensity remains 

constant. The most commonly used adiabatic pulses are the hyperbolic secant (HS) adiabatic 

half-passage (AHP) 90° excitation pulse and the adiabatic full-passage (AFP) 180° inversion 

pulse (Silver, et al., 1984; Baum, et al., 1985), whose amplitude and frequency modulation 

functions F1(t) and F2(t) are: 
 

   B1(t) = B1 max ∗ F1(t) = B1 max ∗ sech [βτ(t)]                     (1.35) 

Δω(t) =ωc +Δωmax ∗ F2(t) =ωc +Δωmax ∗
tanh [βτ(t)]

tanh [β]
                 (1.36) 

 

where τ = (1-2t/Tp), Tp is the pulse length, β is a truncation factor close to 5.3 so that sech(β) = 

.01, ωc is the central frequency and t varies from 0 to Tp/2 for an AHF pulse and from 0 to Tp for 
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an AFP pulse. For AFP pulses, the R product is determined by the maximum frequency 

modulation Δωmax , as the inversion bandwidth equals 2 ∗Δωmax . For AHP pulses, the 

effective excitation bandwidth is B1 dependent as the angle α(t) for off-resonance excitation 

varies with Δω and B1 as shown by eq. (1.40). It is worth noticing that AHP and AFP pulses are 

not plane rotations as the existing transverse magnetization Mxy at the start of the pulse rotates 

around the effective field Beff acquiring a linear phase as a function of the RF intensity and the 

frequency offset, effectively dephasing during the pulse. However, if an AFP pulse has been 

applied, running a second AFP just afterwards inverts the effective field Beff canceling the 

acquired linear phase by adding the same opposite phase to the magnetization vector. This 

method of adiabatic refocusing is employed by the LASER localization sequence as it will be 

discussed later on this chapter. 

When the power requirements are too elevated for the spectrometer or the SAR levels are too 

high, other modulation functions can be used to reduce the maximum required RF amplitude 

B1max while degrading moderately the transition bandwidth of the pulse profile. Modulating 

function pairs F1 and F2 may be used as long as they fulfill the Offset-Independent Adiabaticity 

(OIA) condition: 

      
(γB1 maxF1(tΩ))

2

ΔωmaxF2(tΩ)
≫                                                         (1.37) 

 

at time tΩ  for an on-resonance frequency isochromat Ω. As it was shown by Tannus and 

Garwood (Tannùs, et al., 1997), the peak power of OIA pulses is determined by the AM function 

while the average power is determined by the inversion bandwidth (for a fixed pulse duration TP). 

Among the modulating functions that fulfill the OIA conditions, the HSn pulse family was used 

in this thesis to limit the required B1max. Their AM and FM functions are given by the formulas: 

    F1(t) = sech (βτ𝑛(t))                                                 (1.38) 

    F2(t) = ∫ sech 2(βτ𝑛(t))                                                   (1.39) 
 

The use of HS8 (n = 8) pulses with respect to the standard HS AFP shows a dramatic 

improvement in the required peak power, as there is a 51% reduction in B1 max while the average 

applied power changes by less than 1% (TP = 2ms, Bandwidth (Ω) = 50 kHz). Nevertheless, Tbw 

is degraded by 5%. 

 

1.2.1.3. Energy deposition 

 

Along with the magnetic field B1, an associated electrical field E is created which induces 

electrical currents in the sample. These induced electrical currents are dissipated into heat which 

may become harmful if the ensuing increase in temperature reaches a hazardous level, 

particularly in tissues with low perfusion. The local temperature elevation at a position r depends 

on the conductivity σ(r) and density ρ(r) of the tissue as well as the duration T of the local 
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electric field E(r,t). The level of energy deposition is determined through the specific absorption 

rate (SAR) and is given in watts per kilogram. 

The IEC has determined safety guidelines (International Electrotechnical Commission, March 

2010) based on global and local SAR limits over periods of integration of 6 minutes and of 10 

seconds. Global SAR corresponds to the energy deposition on the entire head and local SAR on 

the energy deposition over the mass of any closed 10-grams volume. The local SAR is limited to 

a maximum of 20 W/kg over a period of 10 seconds and 10 W/kg over a 6-min window. The 

global SAR is limited to a maximum of 9.6 W/kg over a period of 10 seconds and 3.2 W/kg over 

a 6-min window. The local SAR can be calculated using the following expression: 
 

    𝑆𝐴𝑅𝑙𝑜𝑐𝑎𝑙(𝑟) =
𝜎(𝑟)

2𝜌(𝑟)

1

𝑇
∫ ‖E(𝑟, t)‖2𝑑𝑡

𝑇

0
                                      (1.40) 

 

The E-field depends on the transmitter coil and quality factor as well as the characteristics and 

positioning of the sample within the coil. Global energy deposition can be calculated based on the 

quality factor of the loaded and unloaded coil, but this information does not provide information 

about the eventuality of local “hot-spots” (Haacke, et al., 1999 pp. 858-860). From the SAR 

mathematical expression, it can be observed that: 

 

1) the power deposition scales quadratically with the intensity of the electric field,  

2) for a given flip angle, SAR values can be reduced by increasing the duration of the pulse (at 

the cost of decreasing its spectral bandwidth) and  

3) longer TRs may help overcome SAR limitations at the cost of longer acquisition times. 

 

1.2.2. SVS localization 

 

Spatial localization of the NMR signal is an essential aspect of in vivo MRS. In order to acquire 

physiologically relevant and good quality spectra, a proper localization sequence must be used to 

select the NMR signal from within the VOI and avoid spurious signal from outside. Indeed, 

localization errors introduces unwanted signal that biases the validity of a spectrum for 

physiological or clinical research purposes. Furthermore, experimental adjustments such as the B0 

and B1 field homogenization or “shimming” and RF pulses calibration are spatially-dependent. 

Therefore, a good spatial localization will guarantee that the NMR signal is originating from a 

region where experimental conditions have been optimized hence improving the quality of the 

spectra. It will also confine the NMR experiment to the VOI and minimize partial volume effects.  

Using high-bandwidth RF pulses for spatial selection is an efficient way to limit the mismatch   

between the volumes localized for spins resonating at different frequencies. This artifact is 

detailed in section 1.2.4 and is known as the chemical shift displacement artifact (CSDA). 

Single volume spectroscopy (SVS) sequences that were most relevant to this work are briefly 

described below. 
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1.2.2.1. FID with Outer Volume Suppression localization 

 

The Pulse-Acquire or FID sequence is the simplest signal acquisition method as it consists of a 

non-selective excitation RF pulse prior to the acquisition of the FID. A VOI can be selected using 

a set of Outer-Volume Suppression (OVS) bands applied prior to the excitation pulse (figure 

1.10). The OVS scheme saturates the NMR signal from a slab next to the VOI by projecting Mz 

into the transverse plane and subsequently dephasing Mxy using strong B0 gradients (Shungu, et 

al., 1993). The dephasing of the signal may not be completely satisfactory (notably in clinical 

systems) as it requires important spoiling (Hurley, et al., 2012). For this reason RF-spoiling is 

also used. RF-spoiling consists in using adiabatic or frequency-modulated (FM) RF pulses such 

as truncated HS inversion pulses to achieve an incoherent 90° excitation which greatly reduces 

the net magnetization vector. 

 

The advantages of a FID-OVS sequence with respect to other SVS sequences, especially for X-

nuclei MRS, are threefold: 

 

1) As the signal is acquired shortly after the non-selective excitation, the differential T2
∗-

weighting between metabolites is reduced. This is particularly interesting for studying 

NMR species with short T2
∗ relaxation times, such as phosphorous metabolites. 

2) It presents a low sensitivity to B1 field inhomogeneity as it does not require any inversion 

or refocusing pulses for localization. In addition, the choice of the flip angle is not critical, 

which is useful during experiments where the calibration of the RF power is uncertain 

such as in X-nuclei MRS experiments using a surface coil. 

3) It provides a high degree of freedom in the determination of the VOI geometry, giving the 

possibility to acquire spectra from the entire brain while limiting the artifacts due to 

chemical shift. 

 

Furthermore, when large VOI are studied and the B1 field is moderately inhomogeneous over the 

sample, recurring to adiabatic pulses such as B1-independent rotation phase cycled (BIRP) and 

variable angle adiabatic plane rotation (BIR-4) pulses help achieving an arbitrary homogeneous 

flip angle over the entire VOI (Bottomley, et al., 1994; Staewen, et al., 1990). 



PART I : THEORETICAL CONTEXT 

33 
 

 
Figure 1.10. FID acquisition pulse sequence with OVS localization. 

The FID sequence achieves spatial localization by eliminating the undesired volume contributions 

through an outer-volume suppression module consisting of the application of n separated suppression 

bands prior to the non-localized excitation of the VOI. 

 

 

1.2.2.2. Stimulated Echo Acquisition Mode (STEAM) 

 

STEAM is a robust MRS localization technique consisting of three slice-selective 90° RF pulses 

(figure 1.11) (Frahm, et al., 1987). Due to the nature of the pulses, it generates a total of 5 spin 

echos and 3 FIDs, where the time interval between the first two pulses is TE/2 and the delay 

between the last two is the mixing time or TM (Hahn, 1950). Usually, only the stimulated echo at 

t = TE+TM is of interest as it corresponds to the signal generated exclusively from the VOI. 

Other NMR signals are destroyed by applying crusher gradients. Due to the application of a 

dephasing gradient during TM, only half of the total available magnetization can be refocused. In 

spite of this, STEAM is a very popular MRS sequence due to its versatility and robustness since 

it remains effective even when the calibration of the 90° RF pulses is not optimal. Also the TE 

can be considerably reduced (down to few ms) by employing asymmetric or inherently refocused 

90° RF pulses (Geen, et al., 1991; Tkàc, et al., 1999). 
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Figure 1.10. STEAM localization pulse sequence. 

The STEAM pulse sequence consists of 3 90° excitation pulses applied on the rotational axis. After the 

second 90° pulse, the magnetization of the xy-plane is rotated into the xz-axis. Application of strong 

dephasing gradients (G2) during the mixing time removes any transverse component, leaving only a net 

coherent magnetization on the longitudinal axis. The second G1 spoiler allows dephasing the unwanted 

FID signal from the third excitation pulse, and compensates for the first G1 spoiler allowing the formation 

of the stimulated echo. The second G1 spoilers also contain the refocusing gradients. To prevent the 

apparition of unwanted FIDs or spin echoes, G1 must be different from ± G2 or ± G2/2 (de Graaf, 2007). 
 

 

1.2.2.3. Point resolved spectroscopy (PRESS) 

 

The PRESS pulse sequence is a commonly used localization method consisting of a slice-

selective excitation and two slice-selective refocusing pulses (Bottomley, 1987). The slice-

selective pulses are applied in orthogonal planes and as such the magnetization outside of the 

VOI is either not excited or not refocused. To completely eliminate residual signal from outside 

the VOI, spoiler gradients pairs surrounding the 180° refocusing pulses are applied. The 

refocusing pulses correspond to two Hahn spin-echoes which generate a first spin-echo at time 

2t1, where t1 is the time between the excitation pulse and the first refocusing pulse, and a second 

spin-echo at time TE = 2t1 + 2t2, where t2 is the time between the first spin-echo and the second 

refocusing pulse. PRESS is a robust pulse sequence which, unlike STEAM, measures the full 

available magnetization in the VOI. However, the use of PRESS at high fields is challenging due 

to the increased B1 inhomogeneity, which degrades the efficacy of the two refocusing pulses. 

Furthermore, the elevated pulse bandwidths needed to reduce chemical shift displacement 

artefacts (which will be discussed in section 1.2.4) are difficult to achieve using amplitude-

modulated RF pulses due to their elevated peak power requirements. 
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1.2.2.4. Localization by adiabatic selective refocusing (LASER) 

 

The LASER sequence is a localization sequence that allows for a sharp localization profile and is 

highly insensitive to B1-inhomogeneities. It consists of a non-selective 90° RF pulse, typically an 

AHF, followed by three pairs of slice-selective refocusing AFP pulses (figure 1.12), each of 

which delineates an orthogonal slice. Each AFP pulse is surrounded by identical crusher 

gradients to destroy the signal outside of the slice being selected (Garwood, et al., 2011). By 

employing adiabatic pulses with an elevated R factor, sharp selection profiles can be achieved 

while reducing chemical shift artifacts. 

A major advantage of LASER compared to other SVS pulse sequences is that its train of 180° 

refocusing pulses acts as a CPMG pulse train, reducing anti-phase coherence from J-coupling and 

apparent T2-shortening effects from diffusion and chemical exchange (Carr, et al., 1954; 

Allerhand, et al., 1966). Under the CPMG regime, the dephasing effects of spin-spin interactions 

are therefore reduced, increasing the apparent T2 relaxation time. The benefits of the CPMG 

regime are not the same for all spin systems, as it has been experimentally observed at 9.4 T 

(Deelchand, et al., 2015). Spin pairs AB satisfying the condition:  
 

    √ΔωAB
2 + JAB

2 . TECPMG ≪ 1                                             (1.41) 
 

have a greater enhancement of their signal detection capabilities, as is the case for strongly 

coupled systems (AB) such as glutamate and glutamine up to moderate echo times (~45 ms at 4T, 

~10 ms at 17.2 T) (Allerhand, et al., 1966; Hennig, et al., 1997).  

Nevertheless, LASER presents two main drawbacks. Firstly, the elevated energy deposition due 

to the use of three pairs of adiabatic refocusing pulses and secondly, the difficulty to reach 

relatively short TEs, although it is less sensitive to apparent T2 relaxation effects due to the 

CPMG pulse train as explained before. 
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Figure 1.11. LASER localization pulse sequence 

The LASER pulse sequence consists in a non-localized 90° pulse followed by three pairs of slice-

selective adiabatic 180° pulses. The crusher gradients surrounding each refocusing pulse dephase the 

signal outside of the selected slice. The total TE is the sum of the 3 independent echo-times. To improve 

its insensitivity to B1 field inhomogeneities, an adiabatic 90° pulse can be used such as an AHP or a BIR-

4 pulse. 

 

 

1.2.3. Chemical Shift Imaging 

 

One drawback of SVS is that the metabolic information originates from a parallelepiped VOI 

usually encompassing different tissue types. The technique of MRS Imaging (MRSI) or Chemical 

Shift Imaging (CSI) allows for the simultaneous acquisition of different volumes (voxels), 

enabling the study of distinct tissue types under the same physiological and experimental 

conditions. Additionally, tissue-specific profiles can be extracted if a high resolution acquisition 

matrix is employed or when large pathological features are present (such as tumors). 

Any CSI pulse sequence consists in combining a SVS localization sequence with a 2D or 3D 

spatial encoding scheme. In order to preserve the spectroscopic information, only phase encoding 

(PE) steps are used (figure 1.13).  

The phase acquired by the NMR signal for any PE step along an arbitrary axis x is given by the 

expression: 

    ϕ(x) =γ ∗ x ∗ Gx ∗ t                                                     (1.42) 
 

where Gx is the amplitude of the gradient and t its duration. If there is no phase encoding (i.e Gx = 

0), a regular NMR spectrum is acquired. Else, the acquired NMR signal is the sum of phase 

shifted resonances accordingly to their spatial position x. The spectrum of the entire volume FVOI 

corresponds to the FT of the individual spectra FEle. The spatial distribution across the PE 

gradient is given by: 
 

𝐹𝑉𝑂𝐼(G𝑥,ω) = ∫ 𝐹𝐸𝑙𝑒(x,ω)𝑒𝑖γG𝑥t𝑥d𝑥
+∞

−∞
= ∫ 𝐹𝐸𝑙𝑒(x,ω)𝑒𝑖k𝑥𝑥d𝑥

+∞

−∞
= 𝐹𝑉𝑂𝐼(k𝑥,ω)    (1.43) 
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Applying the inverse FT gives the single voxel spectrum at position x: 
 

   𝐹𝐸𝑙𝑒(x,ω) = ∫ 𝐹𝑉𝑂𝐼(k𝑥,ω)𝑒−𝑖k𝑥𝑥d𝑥
+∞

−∞
                               (1.44) 

 

In the case of a 3D acquisition, a single voxel spectrum will be obtained by applying the spectral 

FT to the sum of the acquired data (which corresponds to 𝐹𝑉𝑂𝐼) and then applying a spatial 3D FT 

to the matrix of PE spectra. 

 

 
Figure 1.12. 2D CSI-SE pulse sequence 

This typical 2D MRSI sequence consists in a slice-selective spin-echo sequence for which the phase of 

each echo is encoded using phase-encoding gradients in the frequency and phase directions. 

 

 

1.2.3.1. The Point-Spread Function and Apodization Methods 

 

The spatial resolution of a voxel in a CSI is primarily determined by the number of PE steps NP 

over the field of view (FOV), modulated by a convolution function called the point-spread 

function (PSF). The PSF expresses the fact that a limited phase-encoded sampling generates a 

signal “bleeding” effect after data reconstruction with the Fourier transform. For each voxel, 

some signal is distributed over adjacent voxels leading to a degraded spatial resolution and partial 

volume effects (Posse, et al., 2012). For a regular sampling scheme, the PSF corresponds to a 

cardinal sinus and it is determined by NP and the FOV ( = 1/ Δk𝑥):  
 

    PSF =Δk𝑥
sin(πN𝑝Δk𝑥𝑥)

πN𝑝Δk𝑥𝑥
                                               (1.45) 

 

Due to the limited number of PE steps in MRSI, the effects are significant and the PSF may be 

improved by using apodization methods either as a weighted sampling scheme or as a post-

processing step.  
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Apodization of the PSF as a post-processing method limits the “bleeding” effects into distant 

voxels but degrades the voxel resolution by widening the PSF and removes high-frequency k-

space voxels contributions (figure 1.14A). An apodization function showing a good compromise 

between ripple reduction and widening of the effective voxel size is the Hann (or “Hanning”) 

filter (figure 1.14.B): 

   W(k) =α+β cos (
πk

k𝑚𝑎𝑥
) , −k𝑚𝑎𝑥 ≤ 𝑘 ≤ k𝑚𝑎𝑥                      (1.46) 

 

where k𝑚𝑎𝑥 is the largest sampled position in the k-space and α = β = 0.5. For α = 0.53836 and β 

= 0.46164 (also known as Hamming filter), the largest pair of sidelobes are minimized, further 

reducing ripples (Ernst, et al., 1987; Harris, 1978). 

Another filtering method is the apodization of the PSF by acquiring a weighted k-space, where a 

higher number of acquisitions are repeated for PE steps closer to the center of the k-space (figure 

1.15). The effect of such weighted acquisition is an increase in SNR at the expense of the spatial 

resolution. The density of repetitions per PE step can be estimated by distributing the allotted 

number of repetitions to fit the shape of the apodizing function.  

 

 
Figure 1.13. Point-Spread Function and apodization of the CSI k-space. 

A. (Left). 2D unfiltered PSF for a 25x25 matrix. Ripples appear several voxels away from the center, 

causing bleeding effects. (Right). 1D unfiltered PSF (black). A regular sampling scheme of the k-space 

where no voxel weighting is present (red). B. (Left) Filtering the k-space using a Hanning function 

reduces the bleeding effects at the cost of a degraded spatial resolution. (Right) The Hanning-weighted 

sampling scheme (red) has smoothed and enlarged the resulting PSF (black). 
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Figure 1.14. k-space apodization using a circular k-space sampling scheme. 

To increase the SNR, a greater number of acquisitions are done for PE steps closer to the center of the 

k-space, which constitute the bulk of the acquired signal. Conversely, PE steps on the edges of the 

matrix are not acquired, degrading spatial resolution. In this example, the total number of acquisitions 

is 1296. Depending on the number of acquisitions, a smoothing factor is applied to each PE step in 

order to approximate the shape of the apodization function. 
 

 

1.2.4. Chemical Shift Artifact and outer-volume contamination 

 

In a localized acquisition sequence, slice-selection is achieved by applying a gradient Gx during 

the RF pulse: 

    Gx =
Δ

γ∗x𝑠𝑙
                                                             (1.47) 

 

where  is the RF pulse bandwidth and xsl the slice thickness. As given by equation (1.40), the 

difference in chemical shift between different spin populations will cause them to resonate at 

different frequencies. For a spin population resonating at m and a RF carrier frequency ω, there 

is a spatial displacement of the excited volume known as the chemical shift displacement artifact 

(CSDA). The chemical shift displacement Δx is given by the expression: 
 

    Δx =
ω−ωm

γGx
=
ω−ωm

Δ
x𝑠𝑙                                              (1.48) 

 

To appreciate the practical consequences of the CSDA, one can consider the following 
1
H MRS 

experiment at 17.2 T: a carrier frequency at 2.7 ppm, an RF pulse with a spectral bandwidth of 20 

kHz and a 10 mm slice thickness. In this situation, the water signal (~4.7 ppm) originates from a 

slab displaced by -0.73 mm, while the signal from the macromolecule and lipid resonances at 0.9 

ppm comes from a slab at +0.66 mm from the intended slab (figure 1.16A). If extended to a 3D 

volume selection, then only 64% of the signal of the recorded spectra (from 4.7 to 0.9 ppm) will 

originate from the same location.  
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Figure 1.15. Chemical Shift Artifact and Outer-Volume Contamination. 

A. The chemical shift displacement artifact (CSDA) is proportional to the frequency difference between 

the carrier and spin resonance frequencies and inversely proportional to the spectral bandwidth of the 

pulse used for slice-selection. By choosing a carrier frequency at the center of the spectrum (close to the 

Cr(CH3) resonance at 3.02 ppm) one can minimize the spatial mismatch between resonances. B. Spectra 

acquired with a carrier frequency centered at 3 ppm using a 
1
H 2D CSI-SE sequence (slice thickness = 6 

mm, matrix size 25 x 25, circular k-space sampling) with hermit excitation pulses with spectral widths of 

9 kHz (black spectrum) and 5.4 kHz (blue spectrum) at 17.2 T. The spectrum shown in blue displays a 

more pronounced CSDA as the chemical shift displacement artefact increases. 

 

 

Large CSDA may also degrade the quality of the spectra through outer-volume contamination, 

notably by unintended excitation of the extra-cranial lipids (figure 1.16B). CSDA is reduced 

through the use of large bandwidths relative to the spectral bandwidth. If it is not possible, a 

smaller VOI can be defined avoiding outer-volume contamination from undesired structures at 

the cost of reduced SNR. 

 

1.3. IN VIVO NMR  SPECTROSCOPY AT HIGH MAGNETIC FIELDS  

 
1.3.1. Benefits 

 

As shown in eq. (1.11), the magnetization M0 is proportional to γ²B0. Due to the principle of 

reciprocity, the induced emf in the reception coil vary proportionally to ω0*M0. Therefore, the 

NMR signal S is proportional to: 
 

   S(γ, B0) =γ𝟑B0
2 =γ(ω0)2                                                 (1.49) 

 

when the sources of noise are ignored. Noise is nevertheless present due to the resistances of the 

coil, hardware and sample. It has been shown that the effective resistance Reff is frequency-

dependent. At low frequencies, the coil and electronics resistances dominate over the sample 

resistance whereas at high frequencies (above 0.5 T for 
1
H) the sample resistance dominates 
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(Hoult, et al., 1976). The thermal noise in the system 𝜎𝑇ℎ𝑒𝑟𝑚𝑎𝑙 depends on the sample resistance 

𝑅𝑒𝑓𝑓  as given by: 

    𝜎𝑇ℎ𝑒𝑟𝑚𝑎𝑙 ∝ √4kT. 𝑅𝑒𝑓𝑓.ω𝑅𝑒𝑐                                     (1.50) 
 

where ω𝑅𝑒𝑐 is the detecting system receiver bandwidth (Haacke, et al., 1999). When only white 

noise is present, the SNR is: 
 

 SNR(γ, B0) =
S(γ,B0)

𝜎𝑇ℎ𝑒𝑟𝑚𝑎𝑙
∝

γ(γB0)2

γB0√4kT.ω𝑅𝑒𝑐
 =

γ2B0

√4kT.ω𝑅𝑒𝑐
.                           (1.51) 

 

A linear gain in SNR can be obtained by increasing the magnetic field strength (Radpath, 1998), 

when the changes in relaxation times, receiver bandwidth or coil sensitivity are ignored. 

Furthermore, one can notice that there is a greater sensitivity with larger gyromagnetic ratios. 

Another important aspect for MRS at higher magnetic fields is the greater spectral resolution. 

While the chemical shifts are B0-independent, the frequency difference between spins increases 

linearly with B0. Provided that B0 field inhomogenities are properly accounted for, the overlap 

between peaks is a priori reduced as they are spread over a larger frequency range, as it can be 

appreciated in 
1
H MRS brain spectra (figure 1.17). This is particularly notorious for glutamate 

and glutamine, which are hardly distinguishable below 7 T (Gruetter, et al., 1998). Also, J-

coupling constants being B0-independent, some hyperfine structures in vivo becomes less 

manifest, simplifying the spectrum and facilitating its spectral decomposition.  
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Figure 1.16. Improvement of MRS spectra with B0. 

Increasing the magnetic field strength improves SNR, spectral resolution and simplifies J-coupling 

patterns. Spectra acquired in the rat brain in vivo at increasing magnetic fields are shown. A LASER 

sequence was used for the acquisition of the spectra at 11.7 T (TE = 25 ms, TR = 3s) and at 17.2 T (TE = 

16.5 ms, TR = 5s). The spectrum at 7 T was measured with STEAM (TE = 3, TR = 1.5s). No filtering was 

applied. 
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1.3.2. Challenges 

 

Despite the benefits of ultra-high magnetic fields (UHF), moving towards higher magnetic fields 

is not straightforward as several difficulties arise in vivo. Notably, the gain in SNR described by 

equation (1.51) does not consider signal loses due to faster T2 decay. Also, the eventually longer 

T1 relaxation times lead to reduced steady-state magnetization unless the total scan time is 

prolonged. Fortunately, for some nuclei such as 
31

P, the T1 relaxation times of metabolites 

decreases with B0, improving the normalized SNR at UHF (de Graaf, et al., 2006; Lu, et al., 

2014). 

Another important aspect is the increase of magnetic susceptibility effects with the external 

magnetic field, accentuated near tissue interfaces. The increased B0 inhomogeneities have an 

important impact in MRS because the spatially-varying magnetic field creates local changes of 

the Larmor frequency for chemically-identical spin populations, no longer adding coherently at a 

single frequency but spreading instead over different frequencies, losing phase coherence and 

forming a broader non-Lorentzian resonance shape. Water suppression becomes less effective 

due to a broadened water resonance. This can be countered by increasing the spectral bandwidth 

of the frequency-selective water saturation pulses but the detection of the resonances close to 4.7 

ppm can be compromised by the saturation pulses and baseline distortions. The use of more 

intense shimming coils or of additional higher order shimming coils alleviates static field 

inhomogeneities in small to moderate brain regions at UHF and the use of dynamic shimming 

methods further improves the quality of multi-slice CSI acquisitions at 7 T (Boer, et al., 2012). 

As the magnetic field increases, so does the energy required to excite the spins from the β to the α 

energy state [eq. (1.5)]. The required B1 scales linearly with B0 and the power required for its 

production increases approximately linearly as well (Vaughan, et al., 2001). In order to keep the 

CSDA within acceptable levels, higher spectral bandwidths are also required, further 

exacerbating the need for stronger excitation field intensities.  

This creates two main challenges: First, the peak power demands at UHF can quickly reach the 

hardware limits when elevated spectral bandwidths are demanded. Secondly, global power 

deposition P increases dramatically as it shows a quadratic increase with both the B1 intensity and 

the RF frequency ω0: 

    𝑃 =
4

15
𝜋𝜎𝜔0

2𝐵1
2𝑅5                                                   (1.52) 

 

as calculated for the ideal case of a homogeneous spherical phantom of radius R and conductivity 

σ (Hoult, et al., 2000). Yet, human research protocols at 7 T are typically constrained by SAR 

restrictions rather than hardware limitations, such as the RF power amplifier.  

Finally, the 
1
H resonance frequency at 7 T is such that the wavelength shortens to ~12 cm, 

reaching a similar length to the human head dimensions (Yang, et al., 2002; Vaughan, et al., 

2001). The generated interference patterns further complicate the B1 and E fields, reducing B1 

field inhomogeneity and exacerbating the apparition of local SAR “hot spots” [equation (1.40)]. 
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To tackle the aforementioned B1-related complications, numerous methods exist to reduce B1 

power demands, such as using variable-rate selective excitation (VERSE) amplitude or adiabatic 

pulses (Conolly, et al., 1988; Conolly, et al., 1991) or numerically optimized pulses such as 

phase-modulated SLR pulses (Shinnar, 1994), GOIA HS(n) or wideband, uniform rate and 

smooth truncation (WURST) frequency-modulated pulses (Tannùs, et al., 1997; Andronesi, et al., 

2010).  

B1 field inhomogeneity can be compensated in a subject-dependent manner with parallel 

transmission (pTx) methods employing static or dynamic B1 shimming (Emir, et al., 2012; Boer, 

et al., 2012) while reducing power deposition (Emir, et al., 2012; Boer, et al., 2012; Avdievich, et 

al., 2009). The increased degree of freedom of pTx transmitters allow to employ circularly 

polarized (CP) eigenmode “rings” to eliminate the signal of extracranial lipids with reduced 

energy deposition compared to standard OVS bands (Hetherington, et al., 2010). Other methods 

such as double-row transmit array coils (Shajan, et al., 2014) or passive RF shimming using 

dielectric pads (O'Brien, et al., 2014) can also contribute to B1 homogeneity and global SAR 

reduction. 
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2. PRACTICAL ASPECTS 

 
2.1. NMR  SPECTROMETERS AND ADJUSTMENT PROCEDURES 

 
The work presented in this thesis was done on a 17.2 T preclinical Biospec Bruker scanner and 

on a 7 T clinical Magnetom Siemens scanner at NeuroSpin, a research center focused on the 

development of high-field MR imaging and spectroscopy and its application in neurosciences and 

translational research. Some practical and methodological aspects of this work are presented here. 

 

2.1.1. Biospec Bruker 17.2 T Preclinical Scanner 

 

The preclinical experiments were performed on a horizontal 17.16 T horizontal magnet (Biospec, 

Bruker BioSpin, Ettlingen, Germany) with an internal bore (without the gradient coil) of 25 cm 

and a magnetic drift of 5.4 Hz per hour. It is equipped with an actively shielded gradient system 

capable of delivering gradients up to 1 T/m on each axis with slew rates of up to 9000 T/m/s, 

allowing to switch from 5% to 95% of the maximum gradient strength within 100 µs and gradient 

linearity of 3% over 3.5 cm. The gradient bore diameter is 8.5 cm. The shim coils enable to 

correct for B0 inhomogeneities up to the second order spherical harmonics. The spectrometer is 

controlled using Paravision 5.1. Details about the RF coils used for the experiments are provided 

in chapter 3 and 4. 

 

2.1.2. Siemens Magnetom 7 T Scanner 

 

Experiments in humans were performed on a Siemens Magnetom 7 T scanner (Siemens Medical 

System, Erlangen, Germany), equipped with an 8-channel Tx-array and a AC84 head gradient set 

(max. strength 80 mT/m, slew rate 400 T/m/s). A whole-body gradient (max. strength 45 mT/m, 

slew rate 200 T/m/s) is also present but its use has been currently set to a static B0 shimming 

mode to dephase signal originating from the shoulder regions in imaging experiments. It is 

equipped with a set of shim coils adjusting up to the second order spherical harmonics. However, 

the actual shimming was done using the more efficient shim coils attached to the AC84 head 

gradient set. The system was built around an unshielded 90-cm-diameter-bore superconducting 

magnet (Magnex Scientific, Oxford, England). It is enclosed in a 300 ton steel room which acts 

as a Faraday cage and passive shielding, minimizing the leaking of external RF noise. The control 

of the scanner is carried out using the SyngoMR VB17 interface. The development platform is 

done in IDEA. The RF coils used for the work presented in this thesis will be presented in 

chapters 5 and 6. 
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2.1.3. B1 calibration procedures   

 

2.1.3.1. Experiments at 17.2 T 

 

Due to the strong B1 inhomogeneity when using surface coil, RF power calibration for 
1
H 

experiments was checked manually by optimizing the transmitter power while keeping constant 

all other acquisition parameters using a STEAM sequence centered on the VOI. The power 

difference (in decibels) between the system’s reference value and the calibrated power (for which 

the STEAM signal was maximized) was added manually to set the correct power of all other RF 

pulses. For 
31

P measurements, this calibration was a lengthier process since the PCr signal used is 

several orders of magnitude less intense than water. Therefore, signal averaging was required. In 

this case, the calibration was done with a FID-OVS sequence, the OVS being positioned between 

the RF coil and the VOI. The RF power for the adiabatic OVS bands had been determined 

beforehand and was kept constant for all experiments. 

 

2.1.3.2. Experiments at 7 T 

 

B1 calibration for 
1
H experiments consisted in determining the reference voltage by measuring 

the B1 field. The B1 mapping methods used on this work were a modified version of the Actual 

Flip angle Imaging (AFI) sequence (Yarnykh, 2007; Amadon, et al., 2008; Boulant, et al., 2010) 

for single-channel transmit coils and the XFL sequence (Amadon, et al., 2010; Brunner, et al., 

2008; Amadon, et al., 2012; Fautz, et al., 2008) for multi-channel transmit coils. The AFI 

sequence, which is considered the gold standard for B1 mapping, determines the FA based on the 

ratio of two amplitude images I1 and I2 acquired with identical RF pulses, both applied within the 

same TR. The XFL sequence consists qualitatively, in the application of a sharp slice-selective 

saturation followed by a sharp excitation within the slice. The “saturated” images are then 

compared to a reference slice with no saturation to estimate the B1 maps for each excitation 

channel. Further details about the AFI and XFL sequences are provided in chapter 5 and 6.  

For 
31

P experiments, the reference voltage was derived from the reference voltage estimated for 

the 
1
H channel. In vitro reference values were acquired using STEAM with long repetition times 

(TR = 40 s) to reduce T1-weighting. The relative differences in vitro between the 
1
H and 

31
P 

reference values corresponded to a factor of 1.57 at the center of the 
1
H/

31
P coil. This ratio was 

assumed to be constant for any coil loadings. 

 

2.1.4. B0 shimming procedures   

 

A major challenge for MRS at UHF is the greater inhomogeneity of the static magnetic field B0. 

The frequency shifts and line-broadening that occur due to B0 inhomogeneity can be one order of 

magnitude larger than the intrinsic linewidths leading to a degradation of the spectral resolution. 
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Therefore, B0 inside the spectroscopic voxel must be as homogeneous as possible. To do so, B0 

shimming is performed using the gradient coils for first order spherical harmonic shimming and a 

dedicated set of shim coils for higher order shimming.  

Among the B0 shimming methods, the most common for MRI studies consists in mapping the B0 

field (Jezzard, et al., 1995) by acquiring two images using a fast-gradient recalled echo sequence 

where a phase evolution is allowed on the second image by increasing the TE. The B0 field map 

is then obtained by solving: 
 

    ∆ϕ = arctan (
R1I2−R2I1

R1R2+I1I2
)                                              (2.1) 

 

where Ri and Ii are the real and imaginary parts of the first (i = 1) and second (i = 2) acquisitions. 

This first method was used for the initial B0 shimming prior to the acquisition of anatomical 

images. Since the determination of the phase difference between the two images is independent 

of the B1 field homogeneity, B0 mapping was also used for shimming on large volumes in the rat 

brain where strong B1 inhomogeneity were expected. 

The second method is the FASTMAP or the FAST(EST)MAP automatic shimming procedures 

(Gruetter, 1993; Gruetter, et al., 2000). The principle of the FASTMAP family method consists in 

measuring six orthogonal linear projections across the volume of interest, which can then be used 

to determine the required first- and second- order shim terms. The process is done iteratively and 

three to four iterations are usually sufficient to converge towards a stable shim configuration. For 

preclinical experiments, a Bruker’s implementation of FASTMAP was available and the 

FAST(EST)MAP sequence used on the Siemens 7 T scanner was provided by Dr. Malgorzata 

Marjanska (CMRR, University of Minnesota, USA). In general, using FASTMAP on small 

volumes provided better shimming results than the field map method. 

Since both previous methods rely on calibrations of the different shim coils to calculate the best 

theoretical shim configuration, a third B0 shimming procedure was applied to experiments done 

at 17.2 T. Using a STEAM sequence for localization, first-order shims intensities were iteratively 

optimized around the initial shim configuration so as to simply maximize the signal. This 

automatic shimming step was about 1 minute long for a TR = 3 s and was particularly useful to 

correct first-order shims for non-cubic volumes. 

 

2.2. METHODOLOGICAL DEVELOPMENTS 

 
2.2.1. Localization optimization 

 

For preclinical studies, single voxel spectroscopy pulse sequences were primarily used and 

existing Bruker’s methods were either modified or new methods were programmed for 

Paravision 5.1. For experiments on the 7 T magnet, pulse sequences were edited using IDEA. 
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The FID-OVS localization was modified by replacing classical suppression bands with a B1-

insensitve train to obliterate signal (BISTRO) OVS scheme in order to improve the OVS 

effectiveness in regions presenting strong B1 inhomogeneity.  

The LASER method was implemented based on the existing source code of the PRESS method. 

In order to minimize both the chemical shift displacement artifact (CSDA) and the echo-time, 

frequency-modulated refocusing pulses with a high time-bandwidth product of 20 were chosen, 

resulting in a spatial displacement of 14.6% between 4.7 to 0.7 ppm at 17.2 T [eq. (1.48)] when 

1-ms long RF pulses were applied. A minimal TE of 16.5 ms was achieved by applying short but 

intense spoiler gradients. The power requirements for different pulse waveforms were evaluated 

experimentally. For most SVS experiments, hermit and AFP HS8 pulses were used. 

The main challenges of in vivo 
1
H

 
MRSI at UHF are the B0 and B1 inhomogeneities together with 

the SAR limits which can be easily reached in the human head. For this reason, low energy-

demanding and robust CSI sequences are needed. The two pulse sequences that were used in this 

work were the CSI-STEAM sequence, where a voxel is selected using STEAM, and the 2D CSI-

FID where a single slab is selected. For the CSI-FID, OVS bands are required to suppress 

unwanted signal from the exterior of the brain. Similarly to the FIDLOVS sequence (Henning, et 

al., 2009), two variants of the CSI-FID sequence were developed with different OVS modules. 

One consisted in replacing the standard OVS sequence by a BISTRO scheme (presented below) 

and its application is shown in 
31

P MRSI in chapter 6. The second one was developed using static 

B1-shimming methods to generate a “ring-like” excitation covering the external part of the brain 

at a low SAR cost. The theoretical background and its applications are presented in chapter 5. 

 

2.2.1.1. B1-insensitive train to obliterate signal (BISTRO) bands 

 

The localization with the FID-OVS sequence was achieved by applying outer-volume-

suppression bands enclosing the volume of interest, as explained in section 1.2.2.1. Using 

frequency-modulated pulses provides a good way to spoil unwanted signal through the 

combination of RF spoiling and strong crusher gradients. Nevertheless, B1-sensitivity may still be 

an issue in very inhomogeneous B1-fields: the adiabatic regime may not be reached due to 

insufficient RF power, resulting in a correct slice and bandwidth selection but with an excitation 

flip angles below 90°, leaving a portion of the Mz magnetization unaffected. To confront this 

problem, a more effective suppression scheme was implemented, known as BISTRO for B1-

insensitive train to obliterate signal (Luo, et al., 2001). The BISTRO OVS scheme consists of a 

train of n AFP pulses whose amplitudes B1i(t) are modulated as it would be for an adiabatic 

amplitude-modulating function: 
 

  B1𝑖(t) = B1 max ∗ F1(t) ∗ sech [β(1 −
i−1

𝑛−1
)]    (2.2) 

 

where F1 is the amplitude-modulating function of individual n pulses and B1 max the maximal RF 

intensity of the last pulse. 
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Frequency-modulated RF pulses such as OIA are well suited to be used in the BISTRO pulse 

train as their Mxy shape and width profiles obtained in sub-adiabatic conditions are very similar to 

those obtained under the adiabatic regime. The RF pulse train allows to achieve a homogeneous 

and effective RF spoiling in regions with strong B1 inhomogeneity by gradually increasing the 

amplitudes of the individual pulses (B1i). When multiple BISTRO bands are used, the spoiling 

efficiency can be further improved by interleaving the RF pulse trains, allowing Mxy for each 

band to be spoiled longer by all the slice selection and crusher gradients. 

A BISTRO module was implemented in Paravision 5.1 with n=8 and combined to the pre-

existent FID-OVS localization sequence. Similarly, for the acquisition of 
31

P MRSI data in the 

human brain, BISTRO bands were added in a CSI-FID sequence with a maximum of 6 

interleaved bands (n = 6, figure 2.1).  

 

 
Figure 2.1. BISTRO pulse sequence chronogram. 

Graphical representation of a (LEFT) single BISTRO suppression band and of (RIGHT) interleaved 

application of 6 BISTRO bands in the 3 orthogonal planes. The implementation shown here was done 

using the IDEA pulse programming environment showing the RF pulse and gradient amplitudes in the 

three orthogonal directions. 

 

 

The efficacy of the BISTRO bands was evaluated in vitro on both systems using either a FLASH 

sequence (at 17.16 T) or a 2D CSI-FID sequence (at 7 T). The BISTRO bands were compared to 

single-pulse OVS bands (figure 2.2). Measurement on the FLASH images revealed that the 

BISTRO scheme was more effective when low RF powers were applied (13.3 % increased 

suppression efficacy). Both the standard and the BISTRO OVS schemes were equally effective 

(less than 1% difference) when both were applied with elevated RF power (figure 2.2A). CSI 

measurements on the clinical 7 T scanner showed similar results, as illustrated by figure 2.2B 

(14.8 % increased suppression efficacy). 
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Figure 2.2. In vitro validation of the BISTRO bands at 17.2 and 7 Tesla 

A. FLASH images acquired at 17.16 T using either 4 standard, single-pulse OVS bands or 4 BISTRO 

bands. Low- and high-power settings (12 dB difference) were used to evaluate the efficacy of the OVS 

bands. Contrast was enhanced for visualization. When using elevated power, no difference was noted 

between both OVS schemes. A 3-ms sech pulse was used for saturation (6.6 kHz bandwidth). B. 2D CSI 

water map (matrix size: 16 x 16: FOV = 220 x 220 mm²) showing the relative water intensity across the 

phantom with and without BISTRO bands. Two water spectra identically scaled from the same ROI 

(white circle) are shown. An 8-ms HS8 pulse was used for saturation (2.5 kHz bandwidth). 

 

 

2.2.2. Water suppression optimization 

 

In this thesis, the water suppression (WS) was performed with a numerically optimized “water 

suppression enhanced through T1 effects” (WET) method consisting of 3 or 4 frequency-selective 

Gaussian excitation pulses (Ogg, et al., 1994). This choice was done over other WS methods such 

as variable pulse powers and optimized relaxation delays or VAPOR (Tkàc, et al., 1999), because 

of the reduced module duration and smaller energy deposition while still providing more 

flexibility than other common WS schemes such as chemical shift selective (CHESS) suppression 

(Haase, et al., 1985). 

Since a greater number of pulses leads to a more efficient and B1-insensitive WET scheme, 4 

pulses were considered for the MRSI studies at 7 T instead of the 3 equally distant RF pulses 

found in the default Siemens implementation of WET. 

Inter-pulse delays and nutation angles were optimized using equation (1.17). The spoiling was 

assumed to be ideal. The influence of each set of parameters on the suppression efficacy was 

evaluated for realistic ranges of T1 values and B1 distributions (Wyss, et al., 2013; Wright, et al., 

2008). The suppression efficiency was defined as the sum of the residual signals for each T1 and 

B1 value combination under the WET parameterization being tested. The optimization algorithm 

constrains were the minimum and maximum inter-pulse delay. The minimum inter-pulse delay 

was set to the duration of the frequency-selective Gaussian pulses. The parameter corresponding 
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to the maximum allowed delay between successive pulses had a major impact on the suppression 

efficiency (figure 2.3).  

For our experimental set-up at 7 T, the optimal solution for an allowed maximum delay of 380 

ms was chosen. The parameters of the default WET scheme provided by the constructor in the 

CSI sequence as well as the numerically-optimized parameters are summarized in table 2.1. The 

theoretical performance of the solution is shown in figure 2.4. Assuming B1 field variations of 

10% from the nominal value and T1 relaxation times ranging from 1000 to 5000 ms, the solution 

showed an improvement of a factor of 28 over the default parameterization provided by the 

constructor (figure 2.5). The increased suppression efficacy is experimentally demonstrated in 

vivo in chapter 6. 

For preclinical experiments at 17.2 T, 
1
H MRS studies on the rat brain were focused on small 

VOIs using a surface transceiver coil. Therefore a moderate B1 field inhomogeneity was 

considered (20 % variation) for the WET optimization (figure 2.6). Additionally, single-inversion 

recovery experiments were carried out and for the purpose of reducing the minimum available TI, 

a short water-suppression scheme was needed. Therefore, only 3 pulses were considered for the 

WET module and 2 distinct set of parameters were calculated (table 2.1). As illustrated in figure 

2.7, both WET modules were expected to be equally effective. Figure 3.5 shows spectra acquired 

with the two WET parameter sets. Figure 3.9 shows spectra acquired from different brain regions 

with the longer 269-ms-long WET module. 

 

 
Figure 2.3. WET efficiency as a function of the maximum allowed pulse delay using 4 pulses. 

The efficiency of water suppression was evaluated by summing the residual Mz signal for T1 values 

ranging from 1000 to 5000 ms and B1 field variations of up to 10% from the nominal value. The ranges of 

T1 times were considered from previously reported values (Wyss, et al., 2013; Wright, et al., 2008)  and 

on the observed B1 inhomogeneity of 10% of our coil on typical VOI sizes used for in vivo MRSI 

acquisitions at 7 T. Since the solution was dependent on the initial conditions, 250 different initial 

conditions were evaluated for each point. 
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Figure 2.4. WET performance using 4 optimized flip angles and delays for experiments at 7 T. 

The ratio Mz/M0 was used to express the efficiency of the water suppression for T1 values ranging from 

1000 to 5000 ms and B1 field with up to 40% variations from the nominal value. The mean suppression 

factor over a 20% B1 variation at the displayed T1 ranges was 73163. 

 

 

 

 

 

 
Figure 2.5. Water suppression efficiency as a function of the B1 inhomogeneity considered at 7 T. 

The WS efficiency for a T1 = 1850 ms with the optimized 4-pulse parameter set (blue) and the standard 3-

pulse WET module proposed by the constructor in the CSI-FID sequence (red). The optimized WET 

module showed an improved efficiency by a factor of 28 for B1 variations of 20% and T1 ranges from 

1000 to 5000 ms. 
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Figure 2.6. WET performance using optimized flip angles and delays for experiments at 17.2 T 

At 17.2 T, small VOIs were studied and for this reason, B1 inhomogeneity was considered to be mild. 

This assumption permitted to calculate WET parameters which were more efficient in relatively 

homogeneous B1 fields (up to 20% variation). The results showed small water suppression efficiency 

changes with respect to T1. 

 

 

 

 

 

 

 

 

 
Figure 2.7. Water suppression efficiency as a function of the B1 inhomogeneity considered at 17.2 T 

The WET WS efficiency for a T1 = 2000 ms with a module duration of 259 ms (blue) and 105 ms 

(red). Over the range of T1 values from 1400 to 5000 ms and assuming 20 % of B1 variation, the 

shorter WET module was 28 % more efficient according to numerical simulations. 
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Experimental 

Setup 

Total duration 

(ms) 

Delay 1 

(ms) 

Delay 2 

(ms) 

Delay 3 

(ms) 

Delay 4 

(ms) 

Angle 1 

(deg) 

Angle 2 

(deg) 

Angle 3 

(deg) 

Angle 4 

(deg) 

7 T 
a 

487 378 56 30 15 100.4 82.2   87.1 116.6 

17.2 T 
b 

269 150 60 40 -   90.1 75.1 117.3 - 

17.2 T 
c 

105 35 35 25 -   84.5 79.5 112.0 - 

7 T 
d
  188 60 60 60 - 89.2 83.4 160.8 - 

Table 2.1. Parameters for the WET schemes used at 7 T and 17.2 T. 

The total duration includes RF pulses and spoiler gradient durations. The optimization algorithm was run 

with specific constrains for each of the three optimized schemes. 
a 
Assumed B1 inhomogeneity of 10 %, T1 ranges from 1 to 5 s, maximum inter-pulse delay of 380 ms. 

b 
Assumed B1 inhomogeneity of 20 %, T1 ranges from 1.4 to 5 s, maximum inter-pulse delay of 150 ms. 

c 
Assumed B1 inhomogeneity of 20 %, T1 ranges from 1.4 to 5 s, maximum inter-pulse delay of 35 ms. 

d 
Default parameters of the WET scheme provided by the constructor for the CSI-FID pulse sequence. 

 

 

2.3. MACROMOLECULE BASELINE PARAMETERIZATION 

 
At short echo-times, in vivo spectra acquired in the brain not only show contributions from 

mobile low-molecular-weight molecules such as metabolites but also present broad signal 

contributions from high-molecular-weight lipids and proteins (Behar, et al., 1994). Previous 

studies in humans and rodents have assigned some of these resonances to methyl and methylene 

resonances of amino acids such as leucine, isoleucine, valine, threonine, alanine, lysine, arginine, 

glutamate, glutamine and α-methine protons (Behar, et al., 1993). The macromolecule (MM) 

signal originates mostly from their mobile chains, whereas the bulk of the macromolecular 

protons, having a restricted mobility and very short T2 values are difficult to observe directly. 

MMs have different physical properties than metabolites: they possess shorter T1 and T2 

relaxation times and 10 to 20 times shorter apparent diffusion coefficients (de Graaf, et al., 2006; 

Kreis, et al., 2005; Pfeuffer, et al., 2000). These properties are used for the acquisition of 

“metabolite-nulled” spectra or to reduce MM contributions in 
1
H spectra. 

 

2.3.1. Macromolecule baseline fit 

 

Macromolecule NMR signals are an important aspect to consider in short-TE 
1
H MRS studies as 

they largely overlap with low concentrated metabolites, introducing systematic quantification 

errors if they are not properly accounted for. Furthermore, their own, proper quantification may 

provide useful clinical information as it has been shown in different pathologies such as in stroke, 

in the presence of tumors or in multiple sclerosis (Kaminogo, et al., 2001; Saunders, et al., 1997; 

Narayana, et al., 1992; Davie, et al., 1994). 

Several methods have been proposed to fit the MM baseline (Cudalbu, et al., 2012). One common 

approach is to acquire a “metabolite-nulled” spectrum using either the inversion-recovery (IR) or 

the progressive saturation recovery methods. The MM spectrum is then included as a basis 
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element for the spectral decomposition or simply subtracted from the short-TE spectrum to obtain 

a macromolecule-free neurochemical profile. The approach adopted in this thesis was to 

parameterize the MM baseline using LCModel based on experimental metabolite-nulled spectra 

(Seeger, et al., 2003). This technique can be easily adapted for the analysis of spectra with strong 

T1- or T2-weigthing and permits the reliable quantification of separate MM resonance groups or 

components. 

 

2.3.2. Metabolite-nulled spectrum using DIR 

 

For our preclinical experiments at 17.2 T, a Double Inversion Recovery (DIR) module (TI1/TI2 = 

2600/600 ms) was combined with a LASER localization to acquire metabolite-nulled spectra as 

shown in figure 2.8. Two adiabatic AFP HS8 inversion pulses (2 ms, 10 kHz bandwidth) were 

placed prior to the localization sequence. The DIR module was chosen over a SIR module due to 

the increased T1-weighting introduced by the second inversion pulse. The inversion delays TI1 

and TI2 were adjusted to achieve minimal metabolite residual contributions.  

 

 
Figure 2.8. Metabolite-nulled spectra at varying echo times at 17.2 T. 

Metabollite-nulled spectra acquired from the rat brain using LASER (128 avg, 1800 ms TR̂) with T1-

weighting introduced with a DIR module (TI1/TI2 = 2600/600 ms) at echo times varying from 16.5 to 80 

ms. Due to their short T2, MM resonance intensities rapidly decay with increasing TEs. Metabolites with 

short T1 relaxation times showed residual signal, notably from Cr(CH2) and tCho. Their contributions can 

be clearly observed at the longer TEs. 
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2.4. SPECTRAL DECOMPOSITION 

 
The analysis of 

1
H and 

31
P spectra was done using LCModel 6.2 (Provencher, 1993). This 

software uses a basis set of predefined spectra to calculate a linear combination of its components 

so as to fit an experimental MR spectrum in the spectral domain (de Graaf, et al., 1990). The 

concentrations of the fitted metabolites (expressed in mM) are calculated with respect to a 

reference signal which can be either an external water reference spectrum or a metabolite found 

in the spectrum (usually tCr or NAA). This is done by comparing the integral of each individual 

metabolite with that of the reference compound. However, the integral for each metabolite or 

functional group is weighted by T1 and T2 relaxation effects that may not correspond to those in 

the compound of reference, resulting in an over- or underestimation of their concentration. These 

“apparent” concentrations can be corrected to yield “absolute” concentrations, which will be 

further discussed in section 2.5. 

Other methods and software packages exist for the analysis of spectra, the majority in the time 

domain: AMARES (Vanhamme, et al., 1997), MRUI (Naressi, et al., 2001), VARPRO (van der 

Veen, et al., 1988) and others (Slotboom, et al., 1998). The LCModel software has, nevertheless, 

the advantage of including into the spectral analysis experiment-dependent factors which are 

difficult to model, such as Eddy current and spatial profiles, which can be corrected using a water 

reference signal. It is also well suited for handling J-coupled resonances as the spectral patterns at 

different echo-times can be directly provided with measured or simulated spectra. 

 

2.4.1. Basis set generation using the spin density formalism 

 

The first step is the constitution of the basis set of metabolite spectra with which the in vivo data 

will be fitted. Although it is possible to use in vitro spectra acquired experimentally using the 

same MRS sequence as for the in vivo experiment, this approach is sensitive to experimental 

biases such as the temperature and pH conditions (Kaiser, et al., 2010). For this work, the basis 

sets were constituted of simulated spectra generated using the spin density formalism. This 

approach calculates the evolution of the initial density matrix by the application of energy 

operators corresponding to the RF pulses, applied magnetic field gradients and delays that 

constitute the experimental pulse sequence (Mulkern, et al., 1994). The spin density matrixes 

were defined using published chemical shifts and J-coupling values for 
1
H (Govindaraju, et al., 

2000; Near, et al., 2012) and 
31

P (Jung, et al., 1997; Jensen, et al., 2002) metabolite resonances. 

The practical generation of the basis sets was done in Matlab (The MathWorks, MA, USA) using 

spin density simulation software developed by R.A de Graaf (SpinWizard, Magnetic Resonance 

Research Center, Yale School of Medicine). The metabolites that were included in the basis sets 

for the 
1
H and 

31
P studies in the aging rat brain are given in section 3.2.5 and 4.1.4.1. 
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Simulated 
1
H spectra of N-acetyl aspartate, phosphocreatine, glutamate, glutamine, myo-inositol 

and taurine were compared with in vitro acquisitions done at room temperature at varying TE 

(16.5, 24, 35, 50, 60, 80, 100, 120, 140, 160, 180 and 200 ms). Concomitantly, the simulated 

basis-sets were calibrated so as to obtain the correct concentrations when using an unsuppressed 

water spectrum as an internal reference of concentration. 

 

2.4.2. LCModel Parameterization 

 

LCModel is based on a constrained non-linear optimization algorithm that minimizes the 

difference between a linear combination of model spectra and the spectrum being fitted. In order 

to achieve results with minimal residual noise, several parameters can be adjusted (frequency 

shifts, linewidths, zero- and first-order phases, etc). The control parameters also allow setting soft 

constraints to improve the consistency and the quality of the fits. Among the most relevant ones 

are the predefined concentration ratios, initial phase parameters and the expected variability 

ranges. This set of parameters is particularly important for the quantification of low-concentrated 

metabolites such as GSH and GABA and for inversion-recovery experiments where metabolites 

are close to zero-crossing (figure 2.9). Up to 18 metabolite ratios were used for the proper fitting 

of 
1
H spectra and 2 for the 

31
P spectra.  

It should be noted that the metabolite ratios were determined based on typical metabolite 

concentrations for healthy rats (de Graaf, 2007 p. 51). Only soft ratio constraints were used in 

LCModel due to the wide range of concentration values reported in the reference. Additionally, 

the neurochemical profile varies with the rat strain, age, pathological state or brain region (Hong, 

et al., 2011; Tkac, et al., 2003; Ross, et al., 2010; de Graaf, et al., 2011). The analysis of brain 

extracts through biochemical measurements such as high-resolution liquid-phase NMR or high-

resolution magic angle spinning (HR-MAS) NMR permits to determine with high precision the 

concentration of metabolites and therefore to improve the ratios used in LCModel. Nevertheless, 

caution should be taken as immobile or NMR-invisible metabolite pools revealed in liquid-state 

NMR, such as glutamate (Kauppinen, et al., 1994), could bias the expected concentration values 

observed in in vivo MRS. Similarly, handling and storage conditions of the sample as well as the 

mechanical stress from spinning in MAS NMR have shown to cause significant increases in 

metabolites (Esteve, et al., 2014) such as the release of NMR-invisible bound creatine (Opstad, et 

al., 2008), alanine, glucose and lactate (Opstad, et al., 2008), increased levels of acetate and 

aspartate due to NAA degradation (Cheng, et al., 1997) and loss of  metabolites of up to 30 to 50 

% due to washing of the thawed sample (Bourne, et al., 2003). 
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Figure 2.9. LCModel fit of an spectrum with low SNR. 

LCModel fit of a T1-weighted 
1
H MRS spectrum acquired in the rat brain in vivo at 17.2 T using SIR-

LASER (TR/TE/TI = 5000/16.5/1000 ms, 128 avg). A priori knowledge of the sign of metabolite and 

macromolecule contributions and fitting soft constrains were essential for achieving meaningful and 

consistent fitting results in low SNR spectra. The shown spectrum is phased so as to exhibit a positive 

tCr(CH3) contribution. 

 

 

2.4.3. Macromolecule Baseline Parameterization 

 

For short-TE 
1
H MRS, it is critical to correctly fit the macromolecule baseline. Although 

LCModel offers to fit the slow modulation of the MM baseline using a cubic spline function, the 

results may not be satisfactory and it is not suited for fitting heavily T1-weighted spectra (figure 

2.9). The approach adopted for this thesis was to use the LCModel built-in Gaussian functions to 

account for the MM signal. To this end, a high-SNR MM spectrum was obtained from averaging 

the metabolite-nulled spectra acquired from the brains of 6 healthy rats using a DIR-LASER 

sequence (TR/TE/TI1/TI2 = 5000/16.5/2400/600 ms, 128 averages, 2048 complex points, further 

details in section 3.2.4). To fit this MM spectrum, more than 40 Gaussian-shaped functions were 

considered as well as the residual resonances of tCr(CH2). Other metabolites with short or very 

long T1 were later added into the fit: tCho, tNAA(CH2) and Tau (figure 2.10). Strict metabolite 

concentration ratios were considered between them based on their estimated T1 relaxation times 

(figure 2.10). The MM parametrization was confronted to series of T1- and T2-weighted spectra 

acquired in the rat brain (n = 6) for validation, as shown in figures 3.5 and 3.6. The retained MM 

baseline parameterization consisted of 32 individual elements grouped into 4 MM components 
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(figure 2.11 and table 2.2). The definition of 4 groups of MM components based on their 

resonance frequencies was necessary to limit the degrees of freedom for their fit. 

 

 
Figure 2.10. Residual metabolite magnetization calculated for metabolite-nulled spectra at 17.2 T. 

Residual signal after the application of a double-inversion recovery module (TI1/TI2 = 2600/600 ms) 

as a function of the T1 relaxation time with a recovery time of 1800 ms. The metabolites considered to 

have an important residual contribution for the parameterization of the MM baseline were tCr(CH2), 

tCho, NAA(CH2) and Tau.T2-weighting was ignored. The considered T1 values were: Cr(CH3): 1753 

ms, tCr(CH2): 1203 ms, tCho: 1408 ms, NAA(CH2): 1527 ms and Tau: 2211 ms. 

 

 

 
Figure 2.11. MM baseline parameterization at 17.2 T in the rat brain. 

Average macromolecule spectrum (black) and its LCModel fit (red). The macromolecule baseline was 

fitted by 4 non-overlapping groups of MM resonances. The CRLB values were 1% for MM1, MM2 and 

MM3 and 2% for MM4. No filtering was applied and all spectral elements were scaled identically. MM 

definitions and relative amplitudes are shown in Table 2.2. Due to their short or long T1 relaxation times, 

residual signals from tCr(CH2), tCho, tNAA(CH2) and Tau were also considered for the fit and their 

contributions were subtracted. 
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MM 

component 
Chemical 

shift (ppm) 

Linewidth 

(ppm) 
Amplitude Integral MM 

component 

Chemical 

shift (ppm) 

Linewidth 

(ppm) 
Amplitude Integral 

MM1 0.87 

0.94 

1.20 

1.39 

1.67 

1.81 

0.03 

0.05 

0.02 

0.03 

0.03 

0.05 

1.00 

0.45 

0.50 

1.05 

0.62 

0.12 

1.00 MM3 

 

2.97 

3.02 

3.09 

3.22 

3.28 

3.54 

3.62 

0.02 

  0.025 

0.03 

0.02 

0.03 

0.01 

  0.015 

0.70 

1.00 

0.10 

1.10 

0.30 

0.40 

0.25 

0.36 

 

MM2 

 

1.91 

1.93 

2.04 

2.13 

2.26 

2.36 

2.46 

2.51 

2.56 

2.68 

2.74 

0.02 

0.07 

0.02 

0.015 

0.02 

0.01 

0.02 

0.02 

0.02 

0.01 

0.03 

0.06 

0.35 

0.90 

0.80 

0.70 

0.60 

0.20 

0.20 

0.20 

0.40 

0.10 

0.96 

 

MM4 3.75 

3.86 

3.95 

4.05 

4.17 

4.26 

4.33 

4.42 

0.02 

0.02 

0.03 

0.01 

0.04 

0.02 

0.02 

0.02 

1.60 

1.35 

1.65 

0.85 

0.30 

0.70 

1.10 

0.30 

0.57 

Table 2.2. Definition of the MM components used for the rat brain at 17.2 T 

Definition of the 4 MM components used for fitting the macromolecule and lipid baseline in LCModel. 

The chemical shift, linewidth and amplitude parameters of the Gaussian basis functions were derived 

from the mean metabolite-nulled spectrum shown in figure 2.11. The apparent signal integrals are 

normalized with respect to MM1. 
 

 
Figure 2.12. LCModel fit of metabolite-nulled spectra at varying echo times. 

T2-weighted metabolite-nulled spectra acquired in vivo at 17.2 T from a single animal (black, left) using 

LASER (TR/TI1/TI2 = 1800/2600/600 ms, 128 avg). Their LCModel fit (red, left) was done using the 

macromolecule parameterization proposed in Table 2.2 and their corresponding residuals are also shown 

(right). Due to their short or long T1 relaxation times, residual signals from tCr(CH2), NAA(CH2), tCho 

and Tau were also considered in the fit. No filtering was applied and all spectral elements were scaled 

identically. At TE of 50 and 60 ms, J-coupled MM residuals were observed at 2.2, 3.05, 3.7 and possibly 

at 4.33 ppm. Residual signal was also found at 1.45 ppm, probably due to a difference in T2 relaxation 

times among the macromolecule resonances which constitute our MM1 component. 
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The definition of separate MM components and MM ratios permitted to properly fit T1- and T2-

weighted metabolite spectra (see chapter 3). No MM J-coupling effects were considered for 

fitting the MM baseline at TE>16.5 ms (Behar, et al., 1994; Henry, et al., 2001). Nevertheless, 

only minor residuals contributions were observed at TE of 50 and 60 ms when the MM 

parameterization was tested on two metabolite-nulled data sets at varying TEs (figure 2.12).  

 

2.4.4. Error estimation 

 

To measure the level of uncertainty of a spectral decomposition using LCModel, the so-called 

Cramer-Rao Lower Bounds (CRLB) are considered. The CRLBs provide a lower bound for the 

minimum possible error on the parameter estimation given by LCModel. It is defined as the 

inverse of the covariance matrix of the parametric model used to describe the experiment, taking 

into account the experimental noise. From this definition, it follows that the CRLBs are only an 

approximation of the “real” error estimation as the parametric model is not a perfect model of the 

real data and as such the omission of important fitting parameters may provide unrealistic 

CRLBs. The inclusion of parameterized MM components may thus highly reduce the CRLBs of 

overlapping metabolites. In practice, the CRLBs are used as an index of the reliability of the 

LCModel analysis since lower SNR data exhibit higher CRLBs. It is generally accepted that 

metabolites displaying CRLBs < 10% are determined with sufficient precision whereas CRLBs 

between 20 to 30% should be considered with caution. In this thesis, metabolite concentration 

results were discarded when their CRLBs were above 25%. 

 

2.5. ABSOLUTE QUANTIFICATION 

 
NMR spectra provide information that can be used to derive the absolute concentrations of 

several chemical compounds. Although calculating relative metabolite ratios provide pertinent 

biological information, it can be ambiguous for pathologies where multiple variations occur (or 

are expected to occur) simultaneously. For instance, total creatine, a commonly used internal 

reference of concentration, has been observed to change in the normal aging brain or in diseases 

such as in tumor and stroke (Howe, et al., 2003; Kinoshita, et al., 1997). Calculating absolute 

concentrations becomes a necessary approach when tissue metabolism is altered in an 

unpredictable manner or when apparent metabolite concentrations alterations are due to 

concomitant changes in metabolite relaxation times. 

 

2.5.1. Quantification strategy for 
1
H MRS 

 

In this work, the method of absolute quantification was to use the water resonance as an internal 

reference of signal. It has been extensively used in the past (Kaiser, et al., 2005; Kreis, et al., 
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1993) and it consists in comparing the metabolite signal to the water signal from the same VOI 

assuming a known water content. For the correct estimation of the tissue water concentration in 

the VOI, tissue segmentation is required since different tissue types are known to have different 

water concentrations (Lentner, 1981).  

Among the caveats to consider when water is used as a reference of concentration is that tissue 

water content varies with age. Diffusion tensor imaging (DTI) studies have shown that the 

newborn brain has higher water contents than the adult brain in both gray matter (GM) and white 

matter (WM) tissues (Neil, et al., 1998). In the aging brain, shrinkage of the brain volume has 

been observed (Raz, et al., 2005) and alterations of the WM microstructure were found with DTI 

(Pfefferbaum, et al., 2000; Coutu, et al., 2014), although neuronal density is preserved (Terry, et 

al., 1987; Mrak, et al., 1997). Variations in water content have a direct impact on metabolite 

quantification and their monitoring is an important aspect during longitudinal studies. For the 

particular case of the rat, the adult brain size is achieved until the 60th post-natal day (Dobbing, 

et al., 1971) and myelination is achieved at 90th post-natal day (Juraska, et al., 2004) although it 

has been observed to continue in the cortex after 3 month (Mengler, et al., 2014). This indicates 

that important WM and GM water content variations occur during the first 3 months of age. 

While the first developmental stages of the rat brain are rather well characterized (Watson, et al., 

2006), this is not the case for the elderly rat. The mean water content in the mouse brain has been 

observed to decrease during the second year of age from 79% to 75% (Duarte, et al., 2014), 

providing indicative values for the evolution of water content in the rat brain but a thoroughly 

study is required to determine the water content in the aging rat brain. 

In addition to the water content of each compartments, correction for relaxation effects have to be 

considered to achieve absolute quantification. For our preclinical studies, tissue segmentation was 

based on T1 maps which were also used to estimate the T1 relaxation times of water in GM, WM 

and cerebrospinal fluid (CSF). Segmentation was done based on a rat brain atlas (Paxino, et al., 

1998). T1 relaxation times of “pure” GM, WM and CSF were expected to correspond to those of 

the cingulate cortex (GM), corpus callosum and optical nerve (WM) and the lateral ventricles 

(CSF). GM and WM quantification was achieved by first determining the mean T1 value from a 

manually-drawn VOI and then calculating the proportions of “pure” GM and WM required to 

reproduce it, where the GM and WM reference values were taken from the same T1 map. Pixels 

showing an elevated T1 value (above 2400 ms) were considered to correspond to CSF and were 

excluded from the calculations.  

CSF contributions need to be considered to account for partial volume effects, which may 

otherwise have a “diluting” effect on the tissular concentrations in the brain. Proper 

discrimination of the CSF water signal can be achieved by acquiring water spectra of the VOI 

with varying TEs and applying a double-exponential fit on the decaying water signal (Kreis, et 

al., 1993; Gasparovic, et al., 2006). This method also allowed to determine the T2 relaxation time 

of brain tissue water. 
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With these elements, the apparent water concentration in the VOI can be calculated as: 
 

[W]𝑉𝑂𝐼 = [W]𝐺𝑀 ∗ 𝑅𝐺𝑀 ∗ 𝑓𝐺𝑀 + [W]𝑊𝑀 ∗ 𝑅𝑊𝑀 ∗ 𝑓𝑊𝑀 + [W]𝐶𝑆𝐹 ∗ 𝑅𝐶𝑆𝐹 ∗ 𝑓𝐶𝑆𝐹        (2.3) 
 

where [W]𝐺𝑀 , [W]𝑊𝑀  and [W]𝐶𝑆𝐹  are the GM, WM and CSF water concentrations; 𝑓𝐺𝑀 , 𝑓𝑊𝑀 

and 𝑓𝐶𝑆𝐹 their respective fractional volumes and 𝑅𝐺𝑀, 𝑅𝑊𝑀 and 𝑅𝐶𝑆𝐹 are their respective T1 and 

T2 weightings given by: 
 

   𝑅𝐶 = exp(− 𝑇𝐸 𝑇2,𝐶⁄ ) ∗ (1 − exp (− 𝑇𝑅 𝑇1,𝐶⁄ ))                           (2.4) 
 

where T2,C and T1,C are the compound or tissue T2 and T1 relaxation times. 

Similarly to other studies (Christiansen, et al., 1993 pp. p. 466-472; de Graaf, et al., 2006; Kaiser, 

et al., 2005), the absolute metabolite concentrations [met] were then calculated as follows: 
 

   [met] = 𝑆𝑚 𝑆𝑊⁄ ∗ [W]𝑉𝑂𝐼 [(1 − 𝑓𝐶𝑆𝐹) ∗ 𝑅𝑚]⁄                                       (2.5) 
 

where 𝑆𝑚 and 𝑆𝑊 correspond to the metabolite and water measured signal intensities and 𝑅𝑚 was 

determined for each metabolite using their estimated T1 and T2 relaxation times obtained from 

measured T1- and T2-weighted spectra. 

 

2.5.2. Quantification strategy for 
31

P MRS 

 

The absolute quantification strategy in 
31

P studies consisted in comparing 
31

P MRS signal to the 
1
H water signal. The water spectrum has to be acquired from the same VOI in order to preserve 

an identical spatial dependence. Similarly to eq. (2.5), the absolute metabolite concentration 

[met] can be determined using: 
 

    [met] =
𝑆𝑚

𝑆𝑊
∗

[W]𝑉𝑂𝐼

(1−𝑓𝐶𝑆𝐹)
∗ 𝐶𝑃𝐻 ∗ 𝑅𝑚                                        (2.6) 

 

where CPH is a scaling factor accounting for the difference in 
1
H and 

31
P sensitivities of the dual 

coil used (Buchli, et al., 1994; Bottomley, et al., 1996). CPH was estimated from in vitro 

measurements directly after each in vivo experiment using identical coil and VOI positioning as 

for the in vivo MRS acquisitions and assuming the same sensitivity and B1 profiles for both 
31

P 

and 
1
H RF coils. Since the acquisition delay of the FID-OVS localization sequence was short, the 

signal loss due to T2 relaxation was considered to be minor and therefore T2-weighting was not 

accounted for. For each 
31

P spectrum analyzed in LCModel, the parameter FCALIB was set to the 

specific value [W]𝑉𝑂𝐼 ∗ 𝐶𝑃𝐻/𝑆𝑊  since the 
1
H raw water spectrum was not considered by the 

software as a proper reference scan. 
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2.6. WATER T1 MAPPING 

 
Water T1 mapping was important for the purpose of tissue segmentation and for the 

determination of the apparent water concentration in tissues and in our VOIs. The methods used 

for T1 estimation are presented in section 1.1.6. 

 

2.6.1. MRI sequence and the Look-Locker method 

 

Among the different T1 mapping methods, the Look-Locker method (Deichmann, et al., 1999; 

Look, et al., 1968) was used based on the acquisition of 3D inversion-recovery fast gradient echo 

(IR-FGE) images. Unlike the standard inversion-recovery method were a 90° excitation is 

applied after the inversion delay TI, the Look-Locker method applies successive small FA 

excitation pulses allowing to sample the longitudinal recovery at numerous inversion times 

within a single TR1 (figure 2.13). The final T1 maps are generated by fitting the IR-FGE data as a 

function of TI using a 3-parameter model (Marty, et al., 2013) implemented in C and Matlab (The 

MathWorks, MA, USA). The theoretical framework derives from Deichmann et al. (Deichmann, 

et al., 1992). First, an apparent T1
*
 relaxation time is determined from the acquired data by 

adjusting the 3-parameter model: 
 

    M(t) = A − B ∗ 𝑒𝑥𝑝 (−
t

T1
∗ )                                              (2.7) 

 

where A = M0
∗  = M0T1

∗/T1; B = M0+ M0
∗  = M0(1 + T1

∗/T1) and M(t) is the measured signal at t = 

TI. The T1 relaxation time can then be estimated as: 
 

     T1 = T1
∗ (

B

A
− 1)                                                       (2.8) 

 

It should be noted that the choice of the flip angle α is critical for the correct estimation of T1. 

Although the precedent equations do not require the knowledge of α for the calculation of T1, it 

has a direct impact on the rate at which the steady-state magnetization is achieved. Using an 

elevated flip angle therefore reduces the quality of the estimation as only the first points for each 

TR1 provide information allowing to estimate and differentiate compounds with different T1 

times (figure 2.14). Choosing short flip angles provide more reliable results at the expense of a 

reduced SNR. For our experiments, nominal flip angles of 5° degrees were targeted. 
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Figure 2.17. Chronogram of the Look-Locker sequence. 

At t = 0, an inversion pulse is applied. After a first TI1 delay, a train of N small excitation pulse α is 

applied every TR2 leading to the measure of k-space line after an effective inversion time TIi = TI1 + (i-

1)*TR2. The pulse sequence is repeated every TR1 until all k-space lines are covered. 

 

 

 
Figure 2.14. T1

*
 dependence on the flip angle for two different relaxation times. 

The choice of the flip angle has a direct impact on the measured T1
*
 relaxation time. Choosing elevated 

flip angles reduce the contrast between different T1 times and cause shorter T1 values to be estimated. 

Illustration from: (Deichmann, et al., 1992). 

 

 

2.6.2. Sequence evaluation at 17.2 T 

 

One limitation of the IR-FGE pulse sequence is that it requires a homogeneous inversion pulse 

over the entire VOI. Achieving an inversion may become challenging when using a surface coil 

due to the strong B1 field inhomogeneity profile. To tackle this problem, an AFP inversion pulse 

(HS8, 4 ms, 5 kHz bandwidth) was used. To test the robustness of this method at 17.2 T, the 
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results acquired on 6 rats using a transceiver surface coil were compared to data acquired using a 

volume coil in an equivalent set of 6 rats (similar weight and age). The sequence parameters and 

T1 map reconstruction are detailed in sections 3.2.3 and 3.2.6. Two other sequences, the IR-FISP 

(Schmitt, et al., 2004) and the RARE (Hennig, et al., 1986), were also tested with the volume 

coil. 

The results obtained from the volume coil were highly reproducible while the IR-FGE maps 

acquired with the surface coil were discouraging as they showed unrealistically low values 

ranging from 1200 to 1500 ms for WM and GM in regions close to the surface coil and 

increasingly high values as the imaging slice was further away from the coil (up to 1850 ms for 

GM, ~1500 ms for WM). Based on figure 2.14: this behavior is assumed to be the consequence 

of a high excitation FA close to the coil which was gradually reduced for deeper structures 

leading to  an increasing T1
*
 contrast and higher T1

*
 values. Measuring T1 maps using a surface 

coil with the Look-Locker method was therefore abandoned.  

When comparing T1-mapping data obtained using the volume coil, consistent results were found 

between the IR-FGE and IR-FISP sequences, while the RARE sequence showed more elevated 

values. This overestimation of T1 relaxation times with RARE could be due to the application of 

an inhomogeneous refocusing pulse over the VOI, which was performed by an amplitude-

modulated pulse (hermit modulation), contrary to the adiabatic inversion pulse used for the other 

two pulse sequences (HS modulation). The results are summarized in Table 2.3 and two T1 maps 

from two rats are shown in figure 2.15. Interestingly, a constant factor of 1.4 was found between 

the measured T1 times determined with the RARE sequence and the IR-FISP or IR-FGE 

sequences.  

 

Sequence VOI (ms) GM (ms) WM (ms) 

IR-FGE 1839 ±  54 1877 ±   77 1670 ±   34 

IR-FISP 1850 ±  62 1925 ±   11 1669 ±   37 

RARE 2602 ±  60 2724 ± 121 2369 ±   47 

Table 2.3. T1 relaxation times measured using 3 different T1-mapping methods using a volume coil.  

The volume-of-interest (5x5x2 mm
3
,
 
figure 2.5) consisted mostly of cortex (~60%) and had contributions 

from the hippocampus and the corpus callosum. 
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Figure 2.15. T1 maps acquired at 17.2 T using the IR-FGE and IR-FISP sequences. 

T1 maps reconstructed from two healthy rats. The data sets were acquired using an IR-FGE (TE/TR1/TR2 

= 3.02/10/10000 ms, 60 TIs ranging from 90 to 9530 ms, 6 segments, 125x125x1000 µm resolution) and 

a IR-FISP (TE/TR1/TR2 = 4/8.4/10000 ms, 40 TIs ranging from 150 to 5064 ms, 6 segments, 

250x250x1000 µm resolution). The images were cropped to focus on the brain area covered by our 

spectroscopic VOIs. Average T1 value from the purple VOI is given in table 2.3. The T1 maps are scaled 

identically.  
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PART II: PRECLINICAL STUDIES 
 

3. QUANTITATIVE STUDY OF METABOLIC ALTERATIONS 

DURING AGING IN THE RAT BRAIN 

 
MRS is a technique that allows measuring non-invasively the concentration of brain metabolites 

in vivo and is very well suited for longitudinal studies. As previously discussed in chapter 1, 

MRS benefits from increased SNR and spectral dispersion at higher magnetic fields. Working at 

UHF is therefore propitious for metabolite quantification studies.  

The work presented in this chapter was done at 17.2 T using quantitative in vivo
 1

H MRS with the 

objective to follow the changes of the neurochemical profile during normal aging in the rat brain. 

In this longitudinal study, data was gathered over an age span of 18 months in healthy Dark-

Agouti rats with the purpose of assessing this strain as a practical rodent model of brain aging. 

 

3.1. INTRODUCTION TO NORMAL BRAIN AGING 

 
The process of aging is a complex process associated with a progressive decline of biological, 

cognitive and psychomotor functions whose rate is partially determined by the genetic 

background but it is also influenced by nutrition, lifestyle and environmental factors (Busse, 

1987). Changes observed affecting the central nervous system (CNS) include a decline in 

cognitive performance, as it was observed for 38% of people aged between 60 to 78 years old 

(Kolvisto, et al., 1995), affecting episodic memory processing, working and spatial memory as 

well as a declining processing speed (Hedden, et al., 2004; Woodruff-Pak, et al., 1988). Elderly 

people also show a slowing of motor movements and loss of fine motor control (Mattay, et al., 

2002). Whether these alterations are due to neuronal loss and cell damage (Pakkenberg, et al., 

1997) or to an age-related reduction in synaptic efficacy (reduced neurotransmitter supply, 

reuptake and receptor abundancy) (Morrison, et al., 2012) is in debate (Mattay, et al., 2002; 

Yeoman, et al., 2012).  

Aging is the primary risk factor for stroke (Duijn, et al., 1992; Moreno-Torres, et al., 2005) and 

neurodegenerative disorders such as AD (Heun, et al., 1997) Parkinson’s disease (Ellis, et al., 

1997) or other types of dementia (Kantarci, et al., 2004; Charles, et al., 1994; Kantarci, et al., 

2006). Common features of neurodegenerative diseases are elevated levels of reactive oxygen 

species (ROS) and an accumulation of misfolded proteins in the CNS (Hung, et al., 2010). It has 

been suggested that the elevated levels of ROS are not attributed to an increased oxidative stress 

but rather to a functional decline of the antioxidant defense and repair mechanisms (Andersen, 

2004). Neuroinflammation, which involves the activation of glial cells (mainly microglia) and an 

eventual infiltration of peripheral immune cells through the blood-brain barrier, has been 
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observed in a majority of neurodegenerative diseases as well as in the normal aging brain. 

However, it is not clear if there is a causal relation between chronic neuroinflammation, which 

creates neurotoxic and neurotrophic factors (Power, et al., 2001), and the onset of the disease 

(Garden, et al., 2006; Witte, et al., 2010). 

With the improvement of health care over the last century, the average life expectancy has 

increased from 68.3 years in 1950 to 77.5 in 2003 and the proportion of elder people is expected 

to double worldwide over the next 50 years, leading to a predictable larger rate of 

neurodegenerative diseases (Hoyert, et al., 2005). In particular, the prevalence of AD nearly 

doubles with every five years of age and for instance, in 2000 dementia affected almost 30% of 

those aged 85 to 89 in France and it is the 6
th

 leading cause of death in the USA. To date, only 

treatments for the symptoms are available but no cure has been found and the morbidity costs 

associated to aging are a primary challenge to health and social care systems. The associated 

expenses due to hospitalization or custodial care were evaluated as 1% of the world gross income 

in 2010 (Joseph, et al., 2009) and are expected to increase in the following decades (Comas-

Herrera, et al., 2007; Alzheimer's Association, 2013). 

With the advent of MRS and MRI, disease progression can be followed non-invasively over time 

(Parsons, et al., 2000; Herminghaus, et al., 2003). However, changes in brain metabolism due to 

healthy aging may become a confounding effect with respect to disease-related alterations. Yet, it 

is not well established which are the changes of the major metabolites during healthy aging in the 

human brain as results found in the literature vary among brain regions and in some cases 

contradictory trends have also been reported, notably for NAA in the frontal cortex (Haga, et al., 

2009; Reyngoudt, et al., 2012).  

 

3.1.1. Neurobiology of normal aging in the human brain 

 

Normal brain aging in humans has been associated with a wide range of landmark alterations 

detected with several imaging techniques. A loss of neurons and brain volume reduction has been 

associated with age although neuronal density remains intact (Terry, et al., 1987; Mrak, et al., 

1997; Raz, et al., 2005). Changes in white matter have also been observed in the elderly and it 

has been associated with altered functional connectivity (Almkvist, et al., 1992; O'Sullivan, et al., 

2001; Esposito, et al., 1999). Reduction of fractional anisotropy and diffusional kurtoses has 

revealed changes in white matter microstructure with age (Pfefferbaum, et al., 2000; Coutu, et al., 

2014). Decreases in cerebral blood flow have also been found in the frontal and parietal cortices  

(Loessner, et al., 1995) using positron emission tomography (PET). At the cellular level, the 

progressive decline in the CNS has been associated to the accumulation of damages due to 

oxidative stress in the form of ROS, impaired cellular energy metabolism and DNA damage 

repair, telomere erosion and accumulation of damaged proteins and organelles (Harman, 1956; 

Mattson, et al., 2006; Floyd, et al., 2002; Sahin, et al., 2010).  
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Among the probable causes are the oxidative stress generated by excessive levels of 

mitochondrial free radicals and the accumulation of protein aggregates due to dysfunctional 

mitochondria and reduced cellular autophagic capacity (Rubinsztein, et al., 2011; Moràn, et al., 

2012). Microglia act as the active immune cells in the CNS and upon activation due to insults in 

the brain they release inflammatory mediators (including ROS and nitric oxide) to further recruit 

microglia and to a lesser extent activate astrocytes, which in turn may allow the entry of 

leukocytes by disrupting the blood-brain barrier (Garden, et al., 2006). Although 

neuroinflammation has a protective role, chronical neuroinflammation can become neurotoxic 

since fully activated microglial cells release a variety of compounds (ROS, nitric oxide, tumor 

necrosis factor-α,…) in quantities which can in turn damage neurons, oligodendrocytes or 

extracellular matrix structures (Block, et al., 2007; Power, et al., 2001; Sawada, et al., 2008). 

Chronical neuroinflammation has thus been increasingly recognized as a process underlying 

neurodegeneration (Witte, et al., 2010; Sawada, et al., 2008). Yet, it is not clear whether 

neuroinflammation in the elderly is onset by aging effects alone (Suridjan, et al., 2014). 

Furthermore, several studies have shown that the initial microglial activation is induced by the 

expression of potent pro-inflammatory factors such as IFN-γ, whose expression is increased in 

the brain of aged animals. However, their source has not been identified (Lynch, 2009) although 

glia-neuron cross-talk seems to have a central role and high IFN-γ levels impede cell renewal 

(Walter, et al., 2009). Therefore, detecting the onset of neuroinflammation and its progression 

may be of particular interest to better understand the process of aging.  

 

3.1.2. NMR Spectroscopy of aging 

 

3.1.2.1. Clinical studies 

 

Numerous MRS studies have looked at the aging human brain (Reyngoudt, et al., 2012; Haga, et 

al., 2009) presenting, in general, an increase of tCho, Ins and tCr with age. Choline-containing 

compounds and myo-inositol are, respectively, biomarkers of membrane turn-over and of the 

glial compartment (Jenden, 1979 pp. 13-24; Brand, et al., 1993). Their increased levels points at 

an astroglial activation and reactive gliosis, as observed during neuroinflammation (Chang, et al., 

2013).  

On the contrary, NAA changes with age showed less concluding results as it was observed to 

increase, show no change or decrease even within the same studied brain region. NAA is 

localized and synthetized mostly in neurons (Moffett, et al., 2006; Baslow, 2007 p. 418; 

Nordengen, et al., 2015; Urenjak, et al., 1993) and plays several roles in in the developing and 

adult brain. Notably, it is involved in the myelination of postnatal brain and myelin turn-over in 

adults (Chakraborty, et al., 2001; Namboodiri, et al., 2006). NAA is also a precursor for NAAG 

and together they have act as neurotransmitters for the axon-glial signaling of neurons with 

oligodendrocytes and astrocytes, respectively (Baslow, 2010). A biochemical coupling between 

NAA synthesis and energy metabolism in neural mitochondria (Clark, 1998) further suggests 
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NAA as a biomarker for neuronal health and viability (Moffett, et al., 2007), although elevated 

levels has been found in Canavan’s disease (Wittsack, et al., 1996). The conflicting observations 

reported for NAA in the aging brain could be obscured by the numerous functions and varying 

concentrations of NAA across the brain (Moffett, et al., 2006; Moffett, et al., 1995). 

The process of aging has also been found to vary depending on the brain region, where glutamate 

changes have been observed in the striatum but not in the cerebellum or the pons (Zahr, et al., 

2013). Differences have also been shown even within similar brain structures such as in the 

corona radiata and the mesial motor cortex (Kaiser, et al., 2005) or the posterior cingulate cortex 

and the hippocampus (Reyngoudt, et al., 2012). Nevertheless, a large variability is present among 

the age-related variations reported in the MRS literature due to the use of different subject 

inclusion criteria, regions of interests and quantification methods.  

 

3.1.2.2. Preclinical studies and the Dark-Agouti rat model 

 

An important challenge for the study of human brain aging is the inter-subject variability and 

inhomogeneous biological background among the elderly population, making it difficult to 

determine a “control” group for which “healthy” aging could be acknowledged. Furthermore, 

longitudinal studies for a fixed human cohort aiming at following the metabolic changes from the 

beginning of adulthood (~20 years old) up to old age (~80 years old) are not feasible. To 

overcome these limitations, aged rodents and in particular rats, provide a popular model to 

examine the neurobiological basis of aging. 

Rats have a lifespan of 3 years (Smith, et al., 2010) and they have been studied extensively 

during the postnatal brain development period and also as aging models in behavioral and 

physiological studies (Yeoman, et al., 2012; Watson, et al., 2006). There are several neurological 

processes that are common for humans and rats which permit to establish a chronological 

correspondence between the brain maturation timelines of both species. Among the shared traits, 

humans and rats have a relatively immature CNS at birth and extensive postnatal neurological 

development takes place afterwards (Watson, et al., 2006). Based on the number of synapses with 

respect to the adult brain, the appearance of neurological electrical activity characteristic of the 

active and quiet sleep and the development of the glutamate decarboxylase and choline 

acetyltransferase enzymes, it has been proposed (Romijn, et al., 1991) that the approximate 

equivalent between a human newborn brain is that of a rat pup at 12 to 13 postnatal days (PND). 

Mature, aerobic metabolism is reached at 1 year of age in humans (Bentourkia, et al., 1998) and 

at PND 21 in rats (Booth, et al., 1980).  

Adult brain size and weight in the human is achieved at ages of 9 and 11 years old, respectively; 

whereas in the rat it happens after puberty at 60 PND (Dobbing, et al., 1971). The developmental 

scheme is similar across mammalian species although relative brain volumes and mass vary, 

notably for the neocortex and visual system which are larger in the human while the olfactory 

system is much larger in rodents (Rice, et al., 2000), which in addition, it also presents 
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neurogenesis throughout the life of the rat (Bayer, et al., 1982; Bayer, 1982; Altman, et al., 1990). 

In both species, the prefrontal cortex is the latest structure to reach maturity, achieving complete 

synaptogenesis and myelination at approximately 17 to 25 years of age in humans (Giedd, et al., 

1999; Sowell, et al., 2001a; Sowell, et al., 2001b) and at 90 PND in rats (Juraska, et al., 2004).  

In the context of the aging rat, a decline in learning as well as motor and cerebellar function has 

been found (Villarreal, et al., 2004; Weiss, et al., 1991; Rapp, et al., 1987; Barnes, 1979; van der 

Staay, et al., 1993; Luu, et al., 2008). Studies done in the cerebellum also showed a reduction in 

the total number of synapses and Purkinje cells in 26-months old Sprague-Dawley rats (Rogers, 

et al., 1984; Chen, et al., 1999). In the hippocampus, impairments in synaptic plasticity including 

deficits in the induction and maintenance of long-term potentiation and long-term depression 

observed during aging may have a detrimental effect on the encoding and preservation of 

memories (Rosenzweig, et al., 2003; Thibault, et al., 2007). Neuroinflammation during aging was 

also studied in the hippocampus based in immunohistochemical methods, showing an activation 

of astrocytes and microglia in 22-months old Wistar rats accompanied by higher levels of 

neuronal debris and a reduced number of neurons with respect to 3 months old rats in the CA1 

region (Cerbai, et al., 2012). 

Previous MR spectroscopy studies have been done looking at the early developmental stages in 

the rat brain (Tkac, et al., 2003) and comparisons have also been done between young (5 months 

old) and elderly (24 months old) Brown-Norway rats but these studies were focused on the 

mitochondrial oxidative cycle under dietary caloric restrictions (Lin, et al., 2014). Recently, a 

long longitudinal study done in mice, covering the ages of 3 to 24 was done (Duarte, et al., 2014). 

However, no corrections for relaxation times were applied. 

The Dark-Agouti (DA) rat strain was chosen for this longitudinal aging study because of its 

moderate and stable weight during adulthood (~350 g) without dietary restrictions which is a 

practical requirement for in vivo MRS experiments due to the size of our hardware (rat holder and 

gradient bore). To avoid confounding physiological changes due to estrogens (Li, et al., 2005), 

only male rats were included in this study. Among others, DA rats have been previously used for 

the study of MS-like neuroinflammation in the spinal cord using MRI and PET (Abourbeh, et al., 

2012; Birdsall Abrams, et al., 2007). To our knowledge no MRS study was done to date using 

this rat strain. 

 

3.1.3. Objectives 

 

The main goal of this study was to investigate the metabolic alterations occurring during aging in 

the DA rat brain and to validate this strain as an aging model. 
1
H MRS data were collected from 

rats up to 22 months old and from four different brain regions. In order to achieve an absolute 

quantification of a maximum number of metabolites, T1 and T2 relaxation times of metabolites 

and tissue water were measured. Although numerous studies of relaxation times have been 

completed in human and animal models using MRI (Bottomley, et al., 1984; Wright, et al., 2008) 
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or MRS (Ganji, et al., 2012; Li, et al., 2012; de Graaf, et al., 2006; Cudalbu, et al., 2009), no such 

studies had been previously done at 17.2 T in vivo. Therefore, T1 and T2 relaxation times of 

singlet and J-coupled metabolites and 4 groups of macromolecular resonances were measured, at 

different time points, as relaxation times have been observed to change during evolving 

pathological (Ongür, et al., 2010; Lei, et al., 2003) or physiological states such as aging (Kreis, et 

al., 1993; Marjanska, et al., 2013; Bottomley, et al., 1984). The relaxation times at 17.2 T were 

compared with experimental values reported at lower magnetic fields (Cudalbu, et al., 2009; de 

Graaf, et al., 2006; Xin, et al., 2008; Xin, et al., 2013) to evaluate their magnetic field 

dependency in vivo. 

 

3.2. MATERIALS AND METHODS 

 
3.2.1. Management of the DA rats and scheduling of the MRS acquisition 

 

In vivo experiments were performed on 18 DA male rats. Twelve rats were received at the age of 

4 weeks (220 ± 20 g) and 6 other rats were acquired at 8 months of age (326 ± 28 g) (Janvier 

Labs, Le Genest-Saint-Isle, France). A first cohort of young rats (C0, n = 6) was dedicated to the 

measurement of water T1 relaxation times using T1 mapping and a volume coil. No subsequent T1 

mapping experiments were done at older ages due to the small diameter of the volume coil which 

could cause suffocation of older rats. MRS data were acquired from the second cohort of young 

rats (C1, n = 6) and the cohort of 8-month old rats (C2, n = 6). 
1
H MRS data was acquired as 

shown in table 3.1. Due to time limitations, T1 and T2 relaxation measurements were not 

measured for the last time-points of each cohort C1 and C2 (12 and 18 months, respectively).  

As illustrated by figure 3.1, the weight of the C1 and C2 rats were regularly monitored. Weight 

perturbations were observed after each MRS session, probably due to stress and anesthesia after-

effects. Metabolic profiles (and metabolite-nulled spectra) were acquired from 4 different VOIs. 

Relaxation times were acquired from a single region. Further details are given in the data 

acquisition section. 
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Cohort Measurement Age (Month) 

C0 T1 Maps 1 - - - - - - - 

C1 Metabolic Profiles 1 4 7 - - 12 - - 

 
Relaxation Times 1 4 7 - - - - - 

C2 Metabolic Profiles - - - 8 11 - 14 18 

 
Relaxation Times - - - 8 11 - 14 - 

Table 3.1. Experimental design for 
1
H MRS acquisition 

Columns indicate the age at which MR measurements took place for each rat cohort. 

 

 
Figure 3.18. Weight monitoring during the longitudinal MRS aging study.  

The weight of both C1 and C2 cohorts steadily increased over time, never exceeding 380 g. Small weight 

losses were occasionally observed after an exam. The weight loss observed for C2 between weeks 50 to 

52 was caused by two rats which suffered severe dehydration (40% weight loss) due their water bottle 

being plugged. MRS data from these rats was acquired at week 50 and both animals regained their normal 

weight within four weeks. 

 

 

3.2.2. Experimental set-up 

 

Animals were anesthetized during the experiments with 1.0-1.5% isoflurane in pure O2. 

Respiration rate was monitored (40–60 breaths/min) and body temperature was held constant 

(37.5 ± 0.5° C) using a warm-water circuit for the whole duration of the experiment. The head 

was stereotaxically restrained by a bite bar and ear pins. The study protocol was approved by the 

Committee on the Ethics of Animal Experiments of the Commissariat à l’Energie Atomique 

(CETEA, Permit Number: ID 12-058). 

The study was performed on a horizontal 17.2 T MRI scanner (Biospec, Bruker BioSpin, 

Ettlingen, Germany) equipped with an actively shielded gradient system capable of delivering 

gradients up to 1 T/m. MRS data acquisitions were performed using a 20-mm-diameter single-
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loop surface coil as transceiver while water T1 maps were acquired with a Bruker 38-mm-

diameter birdcage volume coil (figure 3.2). 

 

 
Figure 3.2. 17.2 T Bruker Biospec scanner and surface and volume coils used during the 

1
H MRS study. 

 

 

3.2.3. MRI data acquisition 

 

Water T1 maps were obtained using a 3D IR-FGE sequence (TE/TR1 /TR2  = 3.02/10/10000 ms, 6 

segments, flip angle = 5°, resolution: 125x125x1000 µm
3
, matrix size: 256x96x14) with 60 

inversion times (90 to 9530 ms) using a non-adiabatic hermit excitation pulse (1 ms, 5.4 kHz 

bandwidth) and an HS8 AFP inversion pulse (4 ms, 5 kHz bandwidth). For comparison, the T1 

relaxation time of physiological water (Proamp, Aguettant) was also measured at 37 °C. 

For positioning the spectroscopic voxel, reference images were acquired using an axial rapid 

acquisition with relaxation enhancement (RARE) sequence covering the entire brain (TE/TR = 

20/3000 ms, slice thickness: 0.5 mm, 24 slices, in-plane resolution: 180 x 180 µm
2
). 

 

3.2.4. MRS data acquisition  

 
1
H spectra were acquired using a LASER sequence (TE/TR = 16.5/5000 ms, 128 averages, 2048 

complex points) consisting of a non-selective excitation pulse (Hermit, 0.4 ms duration, 13.5 kHz 

bandwidth) followed by 3 pairs of slice-selective HS8 AFP inversion pulses (hyperbolic secant 

modulation, n = 8, 1 ms duration, 20 kHz bandwidth) (Garwood, et al., 2011). The resulting 

chemical shift displacement artifact was a spatial shift of 13% between water and lipids at 1.3 

ppm.  
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Four different volumes of interest (VOI) were explored, covering the thalamus (Thal), cingulate 

cortex (CC), caudate putamen (CP) and a region referred to as the “main” region (Main) 

composed mostly of cerebral cortex with minor contributions from the corpus callosum and 

hippocampus. VOIs sizes and positioning are given in figure 3.3.  

First- and second-order shims were adjusted to optimize local B0 field homogeneity. For our 

Main region, FASTMAP was used on a cubic volume (27 µL) centered on the VOI followed by 

the application of the Bruker MAPSHIM routine on the VOI leading to typical water linewidths 

of 23 ± 3 Hz. For the remaining 3 regions only FASTMAP was used with typical water 

linewidths of 23 ± 2 (Thal), 20 ± 2 (CP) and 21 ± 3 (CC). Further B0-shimming details are given 

in section 2.1.3. Non-suppressed water spectra were acquired for water referencing (Kreis, et al., 

1993) and eddy current correction.  

T1-weighting was introduced by incorporating a single IR module consisting of a non-selective 

HS8 AFP inversion pulse (2 ms, 10 kHz bandwidth) followed by an inversion delay (TI) prior to 

the LASER localization scheme. In total, 9 T1-weighted IR spectra were acquired (TI = 109, 264, 

500, 750, 1000, 1250, 1500, 2000, 3000 ms). To conserve the same steady-state magnetization, 

all 9 IR spectra were acquired with a recovery time of 5000 ms.  

T2-weighted spectra were acquired by increasing the echo-time from 16.5 to 200 ms leading to 12 

different TEs (16.5, 24, 35, 50, 60, 80, 100, 120, 140, 160, 180 and 200 ms). The delays were 

equally and symmetrically split on the 3 pairs of AFP pulses with the exception of the TE of 16.5 

ms.  T1- and T2-weighted spectra were only acquired in the Main VOI. 

To parameterize the MM baseline, metabolite-nulled spectra were acquired for each VOI using a 

double inversion recovery (DIR) module (HS8, TI1/TI2 = 2600/600 ms) incorporated prior to the 

LASER sequence (TE/TR = 16.5/5000 ms, 128 averages, 2048 complex points).  

Water suppression was achieved using numerically optimized WET schemes as presented in 

section 2.2.2.  

To check for signal stability, localized water spectra were acquired prior to each MRS 

acquisition. A small decrease of the water signal was observed during the first hour of the 

experiment affecting the sensitivity up to 1.5%. The average water frequency drift was 5.4 Hz per 

hour.  
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Figure 3.3. VOIs investigated during our longitudinal 

1
H MRS study of normal brain aging. 

Neurochemical profiles were acquired at each time point from the thalamus, caudate putamen and 

cingulate cortex. The neurochemical profile and T1/T2 relaxation times were measured from a larger VOI 

(Main) consisting predominantly of cortex but also of hippocampus and corpus callosum. 

 

 

3.2.5. MRS data analysis  

 

Spectral preprocessing consisted in zero-filling to 4096 data points, Fourier transformation and 

zero-order phase correction. After removal of the residual water signal using the HLSVD 

algorithm (Pijnappel, et al., 1992) implemented in the jMRUI software (available online at 

http://www.mrui.uab.es/mrui), spectra were analyzed using LCModel 6.2.  

For each echo-time, a basis-set of metabolite spectra was simulated as described in section 2.4.1. 

For the LCModel analysis, the IR spectra were phased such that the tCr resonance at 3.03 ppm 

was positive. Consequently, the basis-set used for analyzing T1-weighted data included inverted 

spectra to account for the metabolites presenting an inverted signal with respect to the methyl 

resonance of tCr. 

The following 21 metabolites were considered at all echo-times: alanine (Ala), aspartate (Asp), 

ascorbate (Asc), creatine (Cr), Ethanolamine (EA),  γ-amino-butyric acid (GABA), glucose (Glc), 

glutamate (Glu), glutamine (Gln), glycine (Gly), glutathione (GSH), glycero-phosphoryl-choline 

(GPC), phosphoryl-choline (PCh), myo-inositol (Ins), lactate (Lac), N-acetyl-aspartate (NAA), 

N-acetyl-aspartyl-glutamate (NAAG), phosphocreatine (PCr), phosphoryl-ethanolamine (PE), 

serine (Ser) and taurine (Tau). Due to their differences in T1 values, the methyl (CH3 at 3.03 
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ppm) and methylene (CH2 at 3.93 and 3.91 ppm) moieties of Cr and PCr were separately 

accounted for at all echo times. Likewise, the three NAA moieties (CH3 at 2.01 ppm, CH2 at 2.49 

and 2.67 ppm and CH at 4.38 ppm) were also fitted independently. The sums Cr+PCr, PCh+GPC 

and NAA(CH3)+NAAG were addressed as tCr, tCho and tNAA respectively. Acetate and scyllo-

inositol were not considered due to their low concentration in the brain (below 0.2 and 0.1 mM 

concentrations, respectively), as measured with high-resolution liquid-phase 
1
H NMR from brain 

extracts (de Graaf, et al., 2011). 

To estimate T1 and T2 relaxation times, 2-parameter fits consisting of mono-exponential functions 

were used to fit the equilibrium magnetization and T1 or T2 relaxation times respectively using a 

non-weighted Levenberg-Marquardt algorithm. Both fits were applied individually on each 

animal data set. Cramer-Rao Lower Bounds (CRLB) were used as error estimator (section 2.4.4) 

and all data points presenting values higher than 25% were discarded. The coefficient of 

determination (R
2
) was used to evaluate the quality of the fits. Metabolite resonance intensities 

obtained from LCModel were converted to absolute concentrations using water signal as an 

internal reference of concentration (section 2.5.1).  

 

3.2.6. MRI data analysis and segmentation 

 

T1 maps were generated based on the IR-FGE data acquired from one-month old rats (section 2.6, 

figure 2.15) and tissue segmentation was done manually (section 2.5.1). For the determination of 

the T1 values of each VOI, outlier pixels showing elevated values (above > 2300 ms) were 

considered to correspond to CSF and were thus removed from the VOI. The thalamus regions 

contained the largest number of CSF pixels, which accounted for 5% of the total thalamus VOI. 

Table 3.2 summarizes the T1 measurement results. WM contributions were estimated as follows: 

14 ± 10 % (Main), 60 ± 14 % (Thal), 34 ± 12 % (CP) and none for the CC. The assumed water 

content of GM and WM were 82% and 73% respectively (Lentner, 1981). The water content of 

GM, WM and CSF as well as the GM and WM fractional contributions for each region were 

assumed to be constant at all ages. 

 

Region T1 (ms) 

Main VOI 1839 ±   54 

Gray Matter 1877 ±   77 

White Matter 1670 ±   34 

Thalamus 1610 ±   55 

Caudate Putamen 1732 ±   52 

Cingulate Cortex 1835 ±   45 

Cerebrospinal Fluid 2842 ± 318 

Physiological Water (37°) 2966 ±   60 

Table 3.2. T1 relaxation times measured in the rat brain at 17.2 T using an IR-FGE sequence 
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3.2.7. Macromolecule baseline parameterization 

 

The MM baseline parameterization was estimated based on a mean metabolite-nulled spectrum 

obtained from spectra acquired from the first scan of the C1 cohort. The method and the results 

are detailed in section 2.4.3. 

 

3.2.8. Statistical analysis 

 

A one-way ANOVA was used to evaluate the metabolic differences between the four VOIs for 

the C1 cohort at 1 month of age. The effect of age and the number of experienced examinations 

was evaluated for the metabolite profiles of the 4 VOIs and the relaxation times using a linear 

regression model. Linear-regression with mixed effects analysis considering age and the number 

of experienced examinations as simultaneous predictors were used to determine the contribution 

of each variable to the metabolite concentrations and relaxation times changes. To be able to join 

the two C1 and C2 cohorts within a single statistical analysis, the “rat” variable was considered as 

a random effect. The model corresponded to: 
  

   Y =β0 +β1 ∗ 𝐀𝐠𝐞 +β2 ∗ 𝐄𝐱𝐚𝐦𝐬 + e                                    (3.1) 
 

where e is the residual error, Y is the observed data corrected for rat effects. The age and number 

of exams were considered to be independent factors. The analysis was done using R, version 

3.1.2 (R Core Team, 2014) with linear mixed-effects model package lme4, version 1.1-7 (Bates, 

et al., 2014). No corrections were applied to reduce type I errors (such as the Bonferroni 

correction). Statistically significant threshold was set as P < 0.05. 

 

3.3. RESULTS: QMRS IN YOUNG RATS  

 
Figure 3.4 shows a representative spectrum and its LCModel fit, the individual metabolites 

contributions as well as the MM fit, baseline and residual signal. Overall, the measured data 

showed high SNR and good quality as no artifacts were observed. The parameterized MM fit 

correctly accounted for the broad resonances resulting in a rectilinear baseline on the fitted 

spectra, despite the T1 or T2 weighting introduced by the TE or TI parameters. The water 

suppression scheme was quite effective resulting in a water residual of similar magnitude as the 

NAA(CH3) resonance and no baseline distortions due to eddy currents were observed. 

Nevertheless, the baseline between 4.5 and 4.3 ppm presented minor distortions, which seldom 

affected the quantification of the MM4 group and the NAA(CH) moiety resonating at 4.38 ppm.  
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Figure 3.4. Spectral decomposition of a 

1
H spectrum at 17.2 T. 

LCModel spectral decomposition of a representative spectrum acquired from the Main VOI at TE = 16.5 

ms. 21 different metabolites were considered in the basis-set in addition to the 4 MM components, 

however EA was seldom detected. The simulated MM baseline, the residual signal and regularized spline 

baseline are shown. No filtering was applied and all spectral elements shown are scaled identically. 
a 
The 

CH3 and the CH2 moieties of tCr were considered separately in the basis-sets. 
b 

The CH3, CH2 and CH 

moieties of NAA were considered separately in the basis sets. 
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3.3.1. T1 and T2 relaxation in young rats 

 

Figure 3.5 shows a set of T1-weighted spectra (left) and their LCModel fit (right). The fits were in 

good agreement at all inversion times. CRLBs lower than 5% were consistently found for the 

most prominent resonances (Gln, Glu, Ins, NAA(CH3), NAA(CH2),  tCr(CH3), tCr(CH2), MMs) 

while GPC, PCh, GABA, Asp, Glc and Tau showed values from 6% to 10%. Overall, the CRLBs 

were fairly stable at all TI with the exception of the inversion times between 0.75 and 1.25 s 

where the metabolites were zero-crossing, resulting in CRLB above 20%.  

 

 
Figure 3.5. T1-weighted spectra acquired in the rat brain at 17.2 T 

Set of T1-weighted spectra (TE/TR = 16.5/5000 ms) from a 1-month old rat obtained with the IR method 

(left) and their LCModel fit (right) with inversion times ranging from 109 (bottom) to 3000 ms and a non-

inverted spectrum (top). Water removal was performed using HLSVD. No filtering was applied. The most 

notable features were the macromolecules being the first to invert at TI = 500 ms, followed by tCr(CH2) 

at 750 ms. Most metabolites were inverted between 1000 and 1250 ms. Tau and the NAA(CH) moiety 

were the last to invert at 1500 ms.  

 

 

Figure 3.6 shows a set of T2-weighted spectra and their corresponding LCModel fits. Figure 3.7 

shows the normalized apparent concentration as a function of TE for the singlet tCr(CH3), the 

major J-coupled metabolites (GABA, Glu, Gln, Ins, NAA(CH2), Tau) and the MM1 group from a 

single rat. As demonstrated by both the quality of the LCModel fits at all TE (fig. 3.6) and the R
2
 

values obtained for the determination of the T2 times (fig. 3.7), the J-modulation of most 

metabolites was adequately accounted for by our simulated model spectra. In particular, one can 

appreciate the accurate adjustment of the NAA aspartate moiety at echo-times 35 to 80 ms, the 
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strongly coupled spin system reaching a minimal signal intensity at 35 ms and its phase being 

clearly inverted (for the resonance at 2.67 ppm) at TE = 50 and 60 ms.  

 

 
Figure 3.6. T2-weighted spectra acquired in the rat brain at 17.2 T 

Set of T2-weighted spectra (left) and their corresponding LCModel fit (right) from a 1-month old rat. TE 

varied from 16.5 to 200 ms. Water removal was performed using HLSVD. No filtering was applied. 

 

 

 
Figure 3.7. Normalized apparent concentrations with respect to echo time. 

The normalized apparent concentrations (red) is shown as a function of TE for 6 J-coupled metabolites, 

tCr(CH3) and MM1 from a single animal. Only data points with CRLB below 25% are shown. For each 

linear regression (black), the slope is equal to the estimated T2 relaxation time. The corresponding T2 

values and coefficients of determination (R²) were: GABA: 80 ms, 0.964; Glu: 96 ms, 0.931; Gln: 46 ms, 

0.961; MM1: 18 ms, 0.999; Ins: 170 ms, 0.898; NAA(CH2): 173 ms, 0.939; Tau: 124 ms, 0.966; 

tCr(CH3): 138 ms, 0.979. 
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Likewise, the J-modulation of Ins was properly accounted for, notably the phase-inverted 3.52 

ppm resonance at TE = 80 and 100 ms. At TE values 50 to 80 ms, strong J-modulation led to a 

major signal attenuation of Glu and Tau resonances which are visibly refocused for TE = 100-140 

ms due to the J-induced rephasing of the signal intensity (TE ~ 1/J). 

The CRLBs reported by LCModel were below 5% for tCr(CH3), tCho and the three moieties of 

NAA even at long echo times. Ins, Glu, Tau and Gln showed values below 5% at short echo 

times (< 60 ms) but were considerably increased due to the signal loss induced by J-coupling 

effects, notably at TE of 60, 80 and 140 ms. The MM resonance groups also had low CRLB 

values (<5%) up to TE = 60 ms and reached 10% at TE = 100 ms. Above this TE, the 

macromolecule signals were no longer observed and so they were removed from the LCModel 

analysis. Overall, the high spectral resolution and signal-to-noise ratio accessible at 17.2 T 

allowed us to properly analyze 18 distinct metabolites with the current methods up to TE = 50 

with a maximum CRLB of 22.2%. 

The estimated T1 and T2 relaxation times for young adult rats are shown in Table 3.3 with their 

corresponding coefficients of determination (R²). Only relaxation times with a mean R² value 

higher than 0.80 are shown. Figure 3.8 shows the distribution of T1 and T2 times and their 

standard deviations in decreasing order. The mean T1 and T2 metabolite relaxation times were 

1721 ± 237 ms and 148 ± 53 ms respectively, which were very close to the relaxation times of 

tCr(CH3). 

 

3.3.2. Neurochemical profile in young rats 

 

Following the quantification method described in section 2.5.1, the concentrations of 21 brain 

metabolites as well as the apparent 
1
H concentration of the 4 macromolecule resonances groups 

were determined from the 16 ms neurochemical profiles.  

The absolute concentrations from the Main VOI are summarized in Table 3.3. Based on the bi-

exponential fit of the T2-weigthed unsuppressed water spectra, the fractional CSF content for 

each rat was determined and was corrected individually for each animal, giving a mean 𝑓𝐶𝑆𝐹 = 4 

± 2 %. The mean T2 time of brain tissue was 24 ± 2 ms whereas the T2 value of CSF was 410 ± 

490 ms. Although the precision of the CSF T2 time was poor, the TE of our neurochemical profile 

was short (16.5 ms) and therefore only negligible errors were expected to be introduced in the 

quantification. In average, the apparent water concentration in the MAIN VOI was 22.5 ± 0.5 

mol/L.  

Since T2-weighted water spectra were not acquired for the Thal, CC and CP regions, their CSF 

contributions were estimated from the volume fraction in the T1 maps that presented T1 values 

above 2300 ms (section 3.3.6). The found values showed fractional CSF content of 5 % for Thal, 

0.5 % for CC and no CSF content for CP. The calculated relaxation times were applied for the 

relaxation corrections of the 4 VOIs. The apparent water concentration for Thal, CP and CC 

VOIs were 21.9 ± 0.3, 21.4 ± 0.2 and 22.2 ± 0.1 mol/L respectively. When a T1 or T2 time was 
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not determined with sufficient precision (R²<0.80) for a given metabolite, the average T1 or T2 

metabolite relaxation time was used instead. Macromolecule MM proton concentrations were 

determined by referencing to the area under the curve of tCr(CH3) for each individual spectrum. 

 

 
Figure 3.8. T1 and T2 relaxation times distribution in the young rat brain at 17.2 T 

Metabolite and macromolecule (A) T1 and (B) T2 relaxation times obtained in vivo in the rat brain at 17.2 

T with coefficients of determination higher than 0.80. Mean values from six 1 month-old rats are shown 

in decreasing order along with their standard deviation. The mean T1 and T2 relaxation times of 

metabolites were 1721 ± 237 ms and 148 ± 53 ms respectively, closely matching those of tCr(CH3). 
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Metabolites
 

T1 (ms) R
2
 T2 (ms) R

2
 

Concentration 

(mmol/L) 
CRLB Measures 

Ala
a - - - - 1.0 ± 0.2 14 12 

Asc
b
 2142 ± 170 0.897 ±  0.040 - - 2.2 ± 0.4 8 12 

Asp 1653 ±   48 0.978 ±  0.012 77 ± 14 0.906 ± 0.038 2.9 ± 0.3 6 12 

Cr
c
 - - - - 4.1 ± 0.4 4 12 

EA - - - - 0.6 ± 0.1 17 2 

GABA 1643 ±   36 0.971 ±  0.017 78 ± 20 0.960 ± 0.012 2.0 ± 0.3 6 12 

Glc 1780 ± 104 0.956 ±  0.035 170 ± 26 0.872 ± 0.044 2.2 ± 0.6 6 12 

Gln 1799 ±   61 0.987 ±  0.008 58 ± 10 0.945 ± 0.022 4.6 ± 0.4 3 12 

Glu 1699 ±   48 0.993 ±  0.004 79 ± 23 0.929 ± 0.030 9.6 ± 0.9 2 12 

Gly
b
 1943 ± 165 0.883 ±  0.075 - - 0.2 ± 0.04 16 6 

GPC 1412 ±   75 0.953 ±  0.033 220 ± 32 0.930 ± 0.029 0.6 ± 0.1 5 12 

GSH 1658 ± 341 0.905 ±  0.059 105 ± 39 0.839 ± 0.066 1.0 ± 0.1 10 12 

Ins 1608 ±   34 0.995 ±  0.002 170 ± 15 0.948 ± 0.025 5.9 ± 0.6 2 12 

Lac 1766 ± 184 0.966 ±  0.026 121 ± 26 0.827 ± 0.092 1.6 ± 0.3 6 12 

NAA(CH3) 1810 ±   64 0.993 ±  0.004 226 ± 26 0.938 ± 0.042 9.2 ± 0.7 1 12 

NAA(CH2) 1527 ±   48 0.981 ±  0.009 172 ± 14 0.939 ± 0.022 - - - 

NAA(CH) 1967 ± 188 0.885 ±  0.053 182 ± 22 0.876 ± 0.043 - - - 

NAAG 1510 ±   55 0.939 ±  0.034 - - 0.8 ± 0.1 7 12 

PCh 1413 ±   71 0.950 ±  0.033 204 ± 31 0.930 ± 0.027 0.3 ± 0.1 7 12 

PCr
c
 - - - - 4.9 ± 0.3 3 12 

PE
b
 1868 ± 109 0.975 ±  0.007 - - 1.7 ± 0.2 9 12 

Ser
a
 - - - - 1.0 ± 0.2 20 5 

Tau 2211 ±   94 0.990 ±  0.003 118 ±   5 0.950 ± 0.017 5.5 ± 0.5 3 12 

tCho 1408 ±   67 0.954 ±  0.033 212 ± 21 0.919 ± 0.049 0.9 ± 0.2 4 12 

tCr(CH3) 1753 ±   60 0.995 ±  0.002 141 ±   7 0.981 ± 0.009 8.9 ± 0.6 1 12 

tCr(CH2) 1203 ±   45 0.946 ±  0.010 132 ± 10 0.927 ± 0.023 - - - 

tNAA
c
 1786 ±   55 0.997 ±  0.002 218 ± 17 0.935 ± 0.025 9.9 ± 0.7 1 12 

MM groups T1 (ms) R
2
 T2 (ms) R

2
 

1
H 

Concentration 

(mmol/L) 

CRLB Measures 

MM1 748 ±   14 0.962 ±  0.013 20 ±   2 0.994 ± 0.003 170.1 ± 14.1 2 12 

MM2 652 ±   41 0.977 ±  0.020 28 ±   3 0.980 ± 0.008 114.4 ±   8.6 3 12 

MM3 574 ±   22 0.971 ±  0.012 55 ±   5 0.931 ± 0.055 26.6 ±   2.8 5 12 

MM4 792 ±   39 0.948 ±  0.021 43 ±   6 0.959 ± 0.013 82.5 ±   5.8 4 12 

Table 3.3. Summary of absolute concentrations and relaxation times in young rats at 17.2 T 

Metabolites and macromolecules relaxation times and absolute concentrations estimated at 17.2 T from 1-

month old rats in vivo (mean ± SD) acquired from the Main VOI. To evaluate the quality of the T1 and T2 

fits, the coefficient of determination (R²) are presented. Concentrations (mean ± SD) from the 16 ms 

neurochemical profiles were calculated using equation (2.6). The mean CRLBs are shown. 

Macromolecule proton concentrations were referenced to the area under the curve of Cr. The number of 

times each metabolite was detected out of 12 scans is shown.
  

a 
Mean metabolite T1 and T2 were considered for quantification.

  

b 
Mean T2 was considered for quantification.

  

c 
T1 and T2 of the methyl moiety were considered for quantification.  
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3.3.3. Regional variability 

 

Measured spectra and their LCModel fits from the 4 studied regions are shown in Figure 3.9. The 

metabolite concentrations of the C1 cohort at the first time-point of acquisition are shown in 

Table 3.4. Statistical differences were determined using a one-way ANOVA test. The results for 

the main metabolites are shown in figure 3.10. 

Numerous metabolite concentration differences were found between the Main VOI and the Thal, 

CP and CC regions. Among these variations, one can notice that tCho and Ins were more 

concentrated in the thalamus, which is consistent with the elevated WM percentage measured 

from the T1 maps. On the contrary, Ins, tNAA and the Glu/Gln ratio were lowest in the striatum 

(CP) while it presented the highest Tau levels. The CC region exhibited the highest Glu level and 

PCr/Cr ratio. The Main VOI showed the highest tNAA and tCr levels although their ratio was 

slightly above average. Macromolecule concentrations were found to be similar in the four 

regions although higher concentrations were found in the CC, mainly for the MM3 component (p 

= 0.003). Lactate levels were highest in the thalamus and lowest in the CC. 

 

 
Figure 3.9. Neurochemical profiles from the 4 VOIs acquired from a single rat. 

Spectra (red) and the corresponding LCModel fits (black) are shown for the Main, thalamus, caudate 

putamen and cingulate cortex VOIs (figure 3.3). Minor baseline distortions were seldom observed beyond 

4.2 ppm for the CP and CC spectra.  
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Main Thalamus Caudate P. Cingulate C p-value 

Ala 1.0 ± 0.2 0.7 ± 0.2 1.2 ± 0.3 0.9 ± 0.2 0.001 

Asc 2.2 ± 0.4 1.4 ± 0.3 2.5 ± 1.5 1.9 ± 0.4 0.003 

Asp 2.9 ± 0.3 3.1 ± 0.4 2.3 ± 0.2 2.9 ± 0.5 < 0.001 

Cr/PCr 0.8 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 < 0.001 

GABA 2.0 ± 0.3 2.9 ± 0.9 2.2 ± 0.3 2.0 ± 0.3 0.043 

Glc 2.2 ± 0.6 2.0 ± 0.3 1.9 ± 0.4 2.1 ± 0.4 0.212 

Glu 4.6 ± 0.4     10.4 ± 1.1   9.7 ± 0.7     11.2 ± 1.1 0.009 

Gln 9.6 ± 0.9 5.0 ± 0.6 6.1 ± 0.6 6.2 ± 1.1 0.001 

Gly   0.2 ± 0.04 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 < 0.001 

Glu/Gln 2.1 ± 0.3 2.1 ± 0.3 1.6 ± 0.2 1.8 ± 0.3 0.001 

GSH 1.0 ± 0.1 1.3 ± 0.2 1.4 ± 0.4 1.6 ± 0.3 0.001 

Ins 5.9 ± 0.6 6.5 ± 0.9 4.6 ± 0.3 5.7 ± 0.2 < 0.001 

Lac 1.6 ± 0.3 1.9 ± 0.3 1.3 ± 0.3 0.9 ± 0.2 < 0.001 

PE 1.7 ± 0.2 1.6 ± 0.3 1.6 ± 0.2 1.6 ± 0.1 0.141 

Tau 5.5 ± 0.5 3.1 ± 0.9 9.5 ± 0.7 6.6 ± 0.5 < 0.001 

tCho 0.9 ± 0.2 1.6 ± 0.3 1.1 ± 0.1 1.0 ± 0.2 < 0.001 

tCr
a 

8.9 ± 0.6 8.3 ± 0.9 7.9 ± 0.3 7.7 ± 0.5 < 0.001 

tNAA
a 

9.9 ± 0.7     10.1 ± 1.5 7.8 ± 0.4 9.0 ± 0.4 < 0.001 

tCr/tNAA
a 

0.90 ± 0.04 0.83 ± 0.07 1.01 ± 0.07 0.86 ± 0.06 < 0.001 

MM1 
b 

      170 ± 14      176 ± 17       171 ± 6      182 ± 19 0.141 

MM2
 b
       114 ±   9      119 ± 12       124 ± 9      131 ± 12 0.013 

MM3
 b
 27 ±   3        30 ± 3         31 ± 3        33 ± 4 0.003 

MM4 
b
 82 ±   6        81 ± 12 84 ± 26        98 ± 14 0.027 

Table 3.4. Metabolite concentrations in the 4 studied regions from the C1 rats at 1 month of age. 

Metabolite and macromolecule concentrations (mM, mean ± SD) of the 4 VOIs were calculated using the 

T1 and T2 relaxation times estimated from the Main region. The same procedure was applied as for the 

values shown in Table 3.3 for the Main VOI concentrations.  
a 
T1 and T2 of the methyl moiety were considered for quantification. 

b 
Concentrations are expressed as 

1
H mM. 
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Figure 3.10. Regional variability between the 4 VOIs in 1 

month-old rats. (Top) Metabolites concentrations were 

compared using a one-way ANOVA (Table 3.4). (Left) MM 

concentrations were rather stable between regions. The same 

T1 and T2 relaxation time corrections were applied for all 

VOIs. Statistical significance: (*) p<0.05, (**) p<0.005, 

(***) p<0.0005. 

 

 

 

 

 

3.4. RESULTS: QMRS IN AGING RATS   

 
The results obtained from the C1 and C2 cohorts at increasing ages (Table 3.1) are presented. In 

general, the quality of the data and the CRLBs did not change over time. 

 

3.4.1. T1 and T2 relaxation in aging rats 

 

Over the span of 14 months, relatively few T1 and T2 statistically significant changes with age 

were observed in the Main region. Figures 3.11 and 3.12 illustrate the evolution of relaxation 

times of a few major metabolites and brain water, showing age-related changes.  

Table 3.5 summarizes the results from the linear regression analysis presenting the relative 

changes attributed either to aging (in % per month) or to the number of scans experienced by the 

rats (in % per exam). 
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3.4.1.1. Changes with age 

 

Except for a slight T1 increase for GABA, there were no T1 changes correlated with age. 

Similarly, only minor changes in the T2 decay times were correlated with age (tCho, NAA(CH3) 

and MM1).  

 

3.4.1.2. Changes with the number of scans 

 

On the contrary, the T1 relaxation times of many metabolite functional groups (Asp, GABA, Gln, 

Glu, NAA(CH3), NAAG, tCr(CH3) and MM2) were shown to increase with the number of scans 

at an approximate rate of 2-3% per exam. Asc, Glc and Tau also seemed to increase but they 

were just above significance levels (p< 0.06). The methylene moieties of NAA and tCr did not 

seem to change. The observed T1 changes due to the number of exams displayed a very 

reproducible pattern, as it can be observed in figure 3.11 for GABA, NAA(CH3) or tCr(CH3).  

Diminutions of the T2 relaxation time were also found for MM3, Tau and tCr(CH2) at a rate of 

approximately 5-7% per exam. Brain tissue water relaxation times did not change significantly 

for any of the two predictors. 
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Figure 3.11. T1 relaxation times variations from 1 to 14 months of age. 

Boxplots of T1 relaxation times at different ages are shown for the C1 (blue) and C2 (red) cohorts for 8 

metabolites and brain tissue water. Measurements were done on the Main VOI. Significant changes are 

indicated for each metabolite and are listed in Table 3.5. 6 individual measurements were acquired at each 

time point. (*) p < 0.05, (**) p < 0.005 and (***) p < 0.0005. 
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Figure 3.12. T2 relaxation times variations from 1 to 14 months of age. 

Boxplots of T2 relaxation times at different ages are shown for the C1 (blue) and C2 (red) cohorts for 5 

metabolites moieties and brain tissue water. Measurements were done on the Main VOI. Significant 

changes are indicated for each metabolite and are listed in Table 3.5. 6 individual measurements were 

acquired at each time point. (*) p < 0.05 and (**) p < 0.005. 
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T1 Relaxation Time T2 Relaxation Time 

 
Age No. Exams Age No. Exams 

 
Change (%) p-value Change (%) p-value Change (%) p-value Change (%) p-value 

Asc 0.16 0.754 -4.21 0.057 - - - - 

Asp -0.28 0.108 3.08 < 0.001 1.13 0.147 -0.86 0.800 

GABA 0.69 0.017 3.68 0.006 0.41 0.722 2.88 0.587 

Glc -0.29 0.571 4.18 0.051 8.42 0.304 26.31 0.374 

Gln -0.57 0.024 3.34 0.001 -0.52 0.404 1.85 0.567 

Glu 0.06 0.603 2.59 < 0.001 1.02 0.130 -1.30 0.707 

Gly 1.45 0.387 4.51 0.645 - - - - 

GPC -0.32 0.190 1.42 0.142 -1.55 0.008 2.52 0.385 

GSH 0.53 0.329 -0.97 0.701 -0.13 0.822 2.52 0.387 

Ins -0.12 0.357 1.37 0.019 -0.30 0.455 -2.48 0.235 

Lac 0.87 0.329 -1.09 0.810 1.34 0.399 -11.29 0.177 

NAA(CH3) -0.08 0.647 2.88 < 0.001 -0.81 0.045 2.82 0.118 

NAA(CH2) 0.35 0.087 1.76 0.059 0.36 0.382 2.24 0.199 

NAA(CH) -0.10 0.856 9.99 0.001 0.07 0.910 2.94 0.321 

NAAG -0.53 0.105 4.19 0.015 -3.48 0.217 -8.64 0.424 

PCh -0.18 0.466 1.40 0.154 -1.05 0.091 0.79 0.805 

PE -0.02 0.929 1.97 0.103 - - - - 

Tau 0.09 0.604 1.80 0.056 0.63 0.137 -4.67 0.038 

tCho -0.23 0.233 1.35 0.131 -1.55 0.049 2.95 0.379 

tCr(CH3) 0.17 0.316 2.45 0.001 -0.33 0.234 0.66 0.563 

tCr(CH2) 0.27 0.118 0.71 0.420 -0.30 0.395 -6.57 0.001 

tNAA(CH3) -0.17 0.281 2.72 < 0.001 -0.95 0.018 2.29 0.177 

Tissue Water 0.03 0.842 0.63 0.443 0.50 0.383 -1.00 0.709 

MM1 0.13 0.293 1.02 0.055 -0.68 0.029 1.90 0.230 

MM2 0.33 0.120 2.22 0.044 -0.18 0.721 -3.79 0.080 

MM3 -0.83 0.481 0.20 0.972 -0.06 0.886 -6.91 0.002 

MM4 0.29 0.167 1.05 0.332 -0.45 0.368 1.83 0.488 

Table 3.5. Relaxation times variations with age and number of exams. 

Results from the linear regression model analysis for T1 and T2 relaxation times using age and the number 

of exams as predictors. The observed change is shown along with its associated p-value. Age-related 

changes per month were calculated as β1 ∗ 100/β0 and changes per exam as  β2 ∗ 100/β0 according 

to equation (3.1). Measurements were done on the Main VOI.  
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3.4.2. Neurochemical profile in aging rats 

 

The same quantification method was used for the determination of the neurochemical profile in 

the Main VOI at each time point for both cohorts as described in section 3.2.6 and 3.3.2. For each 

cohort, the first three time-points were corrected using their measured relaxation times and their 

fractional CSF contributions (Table 3.2). Since the relaxation times could not be measured for the 

fourth time-point, the values measured on the third time-point were considered.  

 

 
Figure 3.13. Concentration variations in the Main region observed during the study. 

Boxplots of absolute concentration variations at different ages are shown for the C1 (blue) and C2 (red) 

cohorts for 6 metabolites measured from the Main VOI. Significant changes are indicated for each 

metabolite and are listed in Table 3.6. The number of measurements at each age were 12, 13, 18 and 8 for 

C1 and 13, 13, 16 and 6 for C2. (*) p < 0.05 and (**) p < 0.005. 

 

 

3.4.2.1. Changes with age 

 

Significant metabolic alterations in metabolite concentrations were associated with aging in the 

Main VOI. As shown in figure 3.13, increases of the concentrations of Gln, Ins, MM1, tCho and 
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tNAA were found (from 0.5 to 2 % per month). The [Glu]/[Gln] ratio was also found to decrease 

with age (-1.8 %, p = 0.025). 

 

3.4.2.2. Changes with the number of exams 

 

As for the relaxation times, numerous changes were also associated with the number of exams 

(Table 3.6): increased concentrations of tCho, Asc, MM2 and MM3 were found along with 

decreases for GABA, Gln, tNAA and MM1 concentrations. The analysis results did not show any 

significant change of tCr. 

 

3.4.3. Regional variability 

 

Quantification of the neurochemical profiles from the thalamus, CP and CC regions was done as 

shown in section 3.3.3. The linear regression results, with age and the number of exams as 

estimators, are shown in Table 3.6. The evolution of the metabolites concentrations showing 

major changes as well as the [Cr]/[PCr] and [Glu]/[Gln] ratios, for the 4 studied regions, are 

shown in figure 3.14. 

 

3.4.3.1. Changes with age 

 

Some consistent alterations were found across all regions to be correlated with age: a decreased 

Glu/Gln ratio (from -1.2 to -1.8%), increased Ins concentrations in the thalamus (2%) and the 

striatum (0.7% but p = 0.06), and increased macromolecular contributions in the thalamus (from 

1.1 to 1.7%) and the cingulate cortex (from 1.2 to 1.6%). In addition, an increase of the Cr/PCr 

ratio with age was observed for the cingulate cortex (3%, p = 0.02). 

 

3.4.3.2. Changes with the number of exams 

 

Across the 3 VOIs, several concentrations changes were found to be correlated with the number 

of exams for Asc, Glu, PCr, PE, NAA, NAAG and MM4. However, only increases in Asc and 

Glu were observed in at least two different VOIs (Main+Thal for Asc and Main+CC for Glu). 

A smaller number of significant changes were observed for the CP (2) and Thal (4) VOIs 

compared to the CC (16) and Main (11) regions (which notably, have higher GM contributions 

than the CP and Thal regions). 
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Figure 3.14. Metabolic changes in the aging rat brain in the four VOIs. 

Mean concentrations are presented along with their standard deviations as error bars for the different 

time-points for the C1 (green colors, ages 1, 4, 7, 12) and C2 (blue colors, ages 8, 11, 14, 18) cohorts. 

Identical corrections for T1- and T2-weighting were applied to the concentrations of the four VOIs at each 

time-point. *MM1 is expressed in units of 
1
H mmol/L. 
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Main Thalamus Caudate Putamen Cingulate Cortex 

 
Age No. Exams Age No. Exams Age No. Exams Age No. Exams 

 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Ala 0.87 0.196 0.04 0.989 -0.22 0.790 1.62 0.663 0.39 0.806 -4.05 0.507 -0.52 0.592 4.70 0.288 

Asc -0.88 0.271 10.77 0.005 -0.58 0.684 15.03 0.033 0.36 0.846 -8.43 0.319 -2.38 0.104 11.83 0.090 

Asp -0.20 0.781 1.96 0.483 -0.34 0.640 1.60 0.585 -0.62 0.447 2.78 0.458 -1.43 0.095 7.47 0.060 

Cr 0.60 0.170 1.32 0.433 0.02 0.972 -0.11 0.957 0.53 0.452 1.86 0.501 1.59 0.130 -2.45 0.572 

Cr/PCr 0.59 0.359 0.92 0.719 -0.04 0.947 -1.37 0.612 0.40 0.723 2.07 0.641 3.35 0.021 -15.16 0.024 

GABA 0.63 0.265 -5.64 0.015 -0.71 0.245 -4.63 0.108 0.33 0.663 -3.14 0.363 -1.16 0.211 2.50 0.513 

Glc -0.88 0.398 -7.76 0.060 -0.44 0.696 -4.62 0.327 0.41 0.808 -3.31 0.638 -2.24 0.085 1.51 0.793 

Gln 1.70 0.008 -4.54 0.043 1.05 0.066 2.21 0.347 0.72 0.229 2.18 0.422 0.28 0.716 3.11 0.321 

Glu -0.37 0.262 0.86 0.510 -0.39 0.320 2.99 0.105 -1.27 0.056 5.11 0.059 -1.41 0.018 8.43 0.001 

Glu/Gln -1.75 0.025 4.31 0.111 -1.21 0.052 0.78 0.749 -1.76 0.018 2.59 0.431 -1.61 0.033 5.06 0.087 

GPC 1.18 0.012 5.05 0.020 0.18 0.756 -1.35 0.586 0.38 0.639 3.74 0.310 0.71 0.523 2.41 0.623 

GSH 0.94 0.105 -0.63 0.781 0.84 0.221 0.16 0.954 0.14 0.852 -0.18 0.959 0.12 0.914 -3.46 0.489 

Ins 1.40 0.002 2.30 0.114 0.72 0.065 -1.36 0.454 1.95 <0.001 -0.03 0.990 0.72 0.350 2.36 0.461 

Lac 1.65 0.363 6.57 0.371 0.89 0.478 -4.06 0.461 0.60 0.809 7.97 0.421 5.65 0.134 15.36 0.375 

NAA 0.39 0.107 -1.81 0.074 -0.16 0.652 -0.09 0.956 -0.36 0.478 2.33 0.263 -0.81 0.051 5.55 0.002 

NAAG 2.04 0.003 -8.06 0.001 -0.40 0.605 4.33 0.226 0.73 0.470 -4.98 0.279 -0.14 0.867 1.00 0.799 

PCh 0.95 0.078 6.69 0.008 -0.11 0.845 -0.51 0.828 0.69 0.401 2.23 0.551 0.59 0.620 3.56 0.502 

PCr 0.19 0.709 -0.05 0.980 0.14 0.806 0.92 0.695 0.07 0.914 -0.12 0.962 -1.68 0.025 9.76 0.006 

PE -0.32 0.428 1.96 0.303 -0.17 0.777 0.18 0.946 -0.16 0.728 1.07 0.601 -1.48 0.066 10.95 0.001 

Tau -0.04 0.938 1.26 0.487 -0.87 0.477 4.23 0.420 -0.50 0.373 -0.43 0.866 -0.08 0.896 0.31 0.917 

tCho 1.16 0.015 5.39 0.016 0.12 0.832 -1.21 0.615 0.53 0.499 3.06 0.396 0.72 0.529 2.63 0.599 

tCr 0.37 0.291 0.62 0.634 0.11 0.783 0.50 0.759 0.25 0.452 0.73 0.586 -0.24 0.559 4.37 0.023 

tNAA 0.51 0.027 -2.29 0.016 -0.19 0.608 0.34 0.836 -0.29 0.546 1.71 0.402 -0.77 0.018 5.21 0.001 

MM1 1.70 <0.001 -3.18 0.002 1.68 <0.001 -2.71 0.137 0.64 0.172 0.56 0.791 1.19 0.014 -1.64 0.387 

MM2 0.68 0.113 4.44 0.014 1.39 0.008 0.61 0.796 0.46 0.355 3.77 0.103 1.29 0.040 -0.19 0.940 

MM3 0.36 0.463 6.13 0.005 1.08 0.050 2.03 0.424 0.04 0.939 5.23 0.052 0.64 0.362 2.85 0.341 

MM4 0.75 0.106 -2.27 0.217 0.85 0.202 -1.90 0.484 0.63 0.403 -3.75 0.279 1.63 0.040 -8.28 0.025 

Table 3.6. Metabolite concentration variations with age and number of exams as predictors. 

Results from the linear regression model analysis for the absolute metabolite concentrations using age and 

the number of exams as predictors. Each region was analyzed independently. The observed change is 

shown along with its associated P. value. Age-related changes per month were calculated as β1 ∗
100/β0 and changes per exam as  β2 ∗ 100/β0 according to equation (3.1).  
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3.5. DISCUSSION 

 
3.5.1. qMRS of the young rat brain  

 

In this first study, we present the first 
1
H NMR spectra at 17.2 Tesla in the rat brain in vivo. The 

T1 and T2 relaxation times were determined for 22 and 18 functional groups respectively at 

different ages, as well as the macromolecule baseline divided into 4 resonance groups. Good 

quality data and spectral decomposition were achieved due to the increased spectral dispersion 

and sensitivity at UHF. In addition, the adopted parameterization of the macromolecule baseline 

(table 2.2) suitably accounted for the macromolecule and lipid contributions and allowed to 

account for differences in T1 and T2 relaxation times between the four MM components. 

 

3.5.1.1. Challenges of 
1
H MRS at 17.2 T 

 

The difficulties of UHF MRS are increased chemical shift displacement and a higher sensitivity 

to magnetic field susceptibility effects. Motivated by the need to limit the required B1-field 

intensity while using large-bandwidth slice-selective adiabatic pulses, HS8 refocusing pulses with 

a 20kHz bandwidth were used at the cost of a larger transition bandwidth (duration = 1 ms, B1 = 

3.2 kHz, 6.3 kHz transition bandwidth) compared to other hyperbolic-secant pulses such as a HS1 

with the same bandwidth-length product (duration = 1 ms, B1= 6.2 kHz, 3.3 kHz transition 

bandwidth). The use of FASTMAP combined to the manufacturer’s MAPSHIM procedure 

allowed us to obtain a mean water spectral linewidth of 0.031 ± 0.004 ppm in the Main region, 

which is comparable to values reported at 11.7 T (0.032 ppm) with similar VOI positioning and 

dimensions (de Graaf, et al., 2006). 

 

3.5.1.2. MM parametrization method 

 

The MM parameterization method used provided excellent results for fitting the macromolecule 

and lipid signals as illustrated by figures 3.4, 3.5, 3.6 and table 3.3. A similar approach has been 

previously proposed (Hong, et al., 2011) and was successfully applied for the analysis of ultra-

short-echo-time neurochemical profiles of the rat brain in vivo at 16.4 T. Contrary to their 

methods, our MM parameterization allowed us to use a regularized spline baseline with a knot 

spacing of 1.0 leading to a flat baseline, even for the T1-weighted spectra. Additionally, 

separately accounting for the MM resonances was particularly appealing for this study as it 

allowed us to estimate for the first time the T2 relaxation times of macromolecule and lipids 

groups outside of the 0.5 to 2.0 ppm region of the 
1
H spectrum (MM2 to MM4) and their T1 

relaxation times with an IR technique. Indeed, MM baseline measurements using a saturation 
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recovery technique have been shown at 1.5 T (Hofmann, et al., 2001) although their precise 

values were not provided.  

 

3.5.1.3. T1 and T2 relaxation times 

 

The distribution of T1 relaxation times found in the young DA rat at 17.2 T is shown in figure 

3.8. Overall, the T1 values are similar for the majority of metabolites. The mean metabolite T1 

relaxation time (1720 ms) was close to that of tCr(CH3) (1750 ms) and Glu (1700 ms). The 

resonances of Tau, Asc, Gly and NAA(CH) present the longest T1 values while NAA(CH2), PCh, 

GPC, NAAG and tCr(CH2) have the shortest ones. The T1 values of the MM groups were found 

within a short range from 570 ± 20 (MM3) to 800 ± 40 ms (MM4). The relatively narrow spread 

of longitudinal relaxation times shows that a similar T1-weighting will be experienced at shorter 

repetition times. For instance, if TR were 2000 ms, the equilibrium magnetization of tCr would 

be 72% of the fully relaxed magnetization and only marginally less for Tau with 65%. 

T2 relaxation times of singlets and J-coupled resonances were reliably estimated for 18 

metabolites moieties and 4 groups of MM resonances (R
2 

> 0.80). They are shown in descending 

order in figure 3.8. Similarly to the T1 measurements, the mean metabolite T2 relaxation time 

(148 ms) was close to that of tCr(CH3) (141 ms). The resonances of NAA(CH3), GPC and PCh 

exhibited the longer T2 values, whereas the shortest metabolite T2s were found for the J-

modulated resonances of Gln, Asp and GABA. As expected, macromolecules T2 times were the 

shortest, ranging from 20 (MM1) to 55 ms (MM3).  

 

3.5.1.4. Magnetic field strength dependency of T1 and T2 relaxation times 

 

Previous T1 measurements using the IR technique have been reported at lower magnetic fields 

using either the LASER sequence at 4.0, 9.4 and 11.7 T (de Graaf, et al., 2006)or the SPECIAL 

sequence at 9.4 and 14.1 T (Cudalbu, et al., 2009). De Graaf et al considered the 7 most 

prominent metabolites moieties (tCr(CH3), tCr(CH2), tCho, NAA(CH3), Glu, Ins and Tau) and 

the macromolecules resonances at 1.7, 1.4, 1.1 and 0.9 ppm. Using AMARES, Cudalbu et al also 

estimated the T1 values of these metabolites with an IR technique. De Graaf et al concluded on 

the increase of the T1 relaxation times with the magnetic field strength accordingly to the 

Bloembergen-Purcell-Pound (BPP) theory of dipolar relaxation (Bloembergen, et al., 1948). 

However, by comparing our results at 17.2 T with those reported at 11.7 T, a mild increase of T1 

was observed only for NAA(CH3), Glu and MM1 while no clear increase was observed for the 

other metabolites due to the larger standard deviations for these measurements. Likewise, 

Cudalbu et al found a statistically significant T1 difference for NAA(CH3) when increasing from 

9.4 T to 14.1 T but the remaining measured metabolites were found to be the same within 

experimental error. To further examine the dependence of the spin-lattice relaxation times with 

the magnetic field strength, the following power law was considered: 
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     𝑇1(B0) = 𝛼(B0)𝜷                                                          (3.2) 
 

to describe the evolution of T1 with the magnetic field B0 (Bottomley, et al., 1984). To assess the 

agreement between our values at 17.2 T and those reported by de Graaf et al, the empirical 

parameters α and β were estimated for NAA(CH3), tCr(CH3), tCr(CH2), tCho and MM1 using 

only their reported values at 4.0, 9.4 and 11.7 T (Table 3.7). Glu and Ins were not considered due 

to the elevated experimental error at 9.4 T and 11.7 T. The resulting extrapolation curves (Figure 

3.15A, dashed lines) for NAA(CH3) and the tCr moieties were all within error margins of our 

measured T1 values at 17.2 T. For tCho, the larger discrepancies observed should be linked to its 

less precise quantification due to its spectral overlap with Tau. Including our results in the 

estimation of α and β had only a visible impact on the extrapolation results for tCho and MM1 

(Figure 3.15A, continuous line). From these simulated curves, the expected increases for T1 from 

11.7 T to 17.2 T are the largest for NAA (79 ms) and MM1 (132 ms) while they are relatively 

minor for tCr(CH2), tCr(CH3) and tCho (with 57, 41 and 45 ms respectively). Such differences 

are difficult to detect as the experimentally-induced errors are of a similar magnitude or larger 

(Table 3.7). This could explain both our results and the lack of remarkable T1 increases above 9.4 

T observed by Cudalbu et al, with the exception of NAA(CH3) that shows an statistically 

significant increase. Nevertheless, methodological differences between the three studies could 

also thwart the comparison. Notably, it has been shown (de Graaf, et al., 1999; de Graaf, et al., 

2014; Shemesh, et al., 2013) that the water suppression scheme and the spectrally-selective 

inversion pulses may have a non-negligible effect on metabolite intensity modulation and 

apparent longitudinal relaxation rates through (i) magnetic transfer effects between mobile and 

immobile proton pools or (ii) chemical exchange and cross-relaxation mechanisms between water 

and non-exchangeable protons. 

Previous studies have measured the T2 relaxation times of metabolites in the human (Michaeli, et 

al., 2002) and rat (de Graaf, et al., 2006; Deelchand, et al., 2015) brains using the LASER 

sequence. The reported T2 values of NAA(CH3), tCr(CH3), tCr(CH2), tCho and MM1 are 

summarized in table 3.7. The data demonstrate a consistent metabolite T2 decrease and a 

narrowing of T2 times with the increasing magnetic field. To further analyze these results ranging 

from 4.0 T to 17.2 T, the empirical expression: 
 

    𝑇2(B0) = 𝛾 𝑒𝑥𝑝(−B0/𝛿)                                                  (3.3) 
 

was used to describe the B0 dependency of T2 values. The γ and δ coefficients were fitted for the 

4 metabolites and MM1 using all the values shown in table 3.7. The resulting extrapolation 

curves and coefficients are shown in figure 3.15B and table 3.7. These simulations predict a 

narrowing of the T2 distribution and a further decrease of the T2s at higher magnetic fields. The 

resonances of NAA(CH3), tCr(CH3) and tCho exhibit the strongest dependency to the magnetic 

field intensity. Interestingly, the T2 weighting parameter δ is very similar for NAA(CH3), 

tCr(CH3) and MM1.  
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T1 (ms)   

4.0 T 9.4 T 9.4 T
 

11.7 T 14.1 T
 

17.2 T α β 

 LASER LASER SPECIAL
b LASER SPECIAL

b LASER   

tCr(CH3) 1614 ± 35 1679 ± 68 1270 ± 25 1767 ±   80 1360 ± 150 1753 ± 60 1481.5 0.062 

tCr(CH2) 1003 ± 81 1040 ± 73 1050 ± 70 1156 ±   84 940 ±   80 1203 ± 45   821.2 0.130 

tCho 1451 ± 69 1348 ± 21 1420 ± 75 1630 ± 109 1340 ± 140 1408 ± 67 1433.3 0.008 

NAA(CH3) 1521 ± 51 1674 ± 31 1370 ± 50 1713 ±   44 1480 ±   40 1810 ± 64 1287.7 0.118 

MM1  357
a
 ± 38  581

a
 ± 32  510

c 
± 50  674

a
 ±   33  660

c
 ±   50   747 ± 14   190.7 0.492 

 

 

T2 (ms)   

4.0 T 7.0 T 9.4 T 9.4 T 11.7 T 17.2 T γ δ 

 LASER LASER LASER LASER LASER LASER   

tCr(CH3) 233 ±   6 221 ± 19 171 ±   4 170 ± 12 159 ±   7 141 ±   7 277.65   22.4 

tCr(CH2) 141 ± 11 - 128 ±   6 146 ± 16 125 ±   7 132 ± 10 142.87 168.9 

tCho 570 ± 29 - 441 ±  36 445 ± 67 366 ± 73 212 ± 21 768.46   15.4 

NAA(CH3) 392 ± 15 341 ± 25 294 ±   5 321 ± 30 285 ± 26 226 ± 26 459.65   23.9 

MM1  27
a
 ±   2 -  28

a
 ±   2 -  25

a
 ±   2   20 ±   2   42.50   22.6 

Table 3.7. Metabolite relaxation times at increasing magnetic fields 

Metabolites and macromolecules T1 and T2 relaxation times measured at different magnetic fields in the 

brain in vivo (mean ± SD). Rat brain values at 4.0, 9.4, 11.7 and 14.1 T and human brain values at 7.0 T 

are taken from references (de Graaf, et al., 2006; Michaeli, et al., 2002; Cudalbu, et al., 2009; Deelchand, 

et al., 2015). The localization sequence for each study is indicated. For the T1 studies at 9.4 and 14.1 T 

only the results obtained with the IR technique were considered. Reported MM1 values were calculated 

from references as the mean relaxation times of the MM resonances from 0.9 to 1.8 ppm when available.  
a
 SD is the mean value of the individual SD reported for the different MM components in (de Graaf, et al., 

2006).  
b
 Values were estimated from 3.2 and 3.4 from (Cudalbu, et al., 2009).  

c
 Values were obtained using the progressive saturation recovery technique (Cudalbu, et al., 2009). 

 

 

The simulation therefore implies that a similar relative decrease is experienced by the three 

resonances and the main difference comes from the term γ which could be correlated to the 

intrinsic rotational correlation time and the effectiveness of the pulse sequence to refocus 

diffusion-related dephasing. The largest δ value was found for tCr(CH2) which showed no 

apparent dependence to the magnetic field strength. With the exception of tCr(CH2), these results 

are in contradiction with the BPP theory (Bloembergen, et al., 1948) which predicts field-

independent T2 relaxation times for a large range of rotation correlation times. But our data is 

rather in agreement with the field-dependency of T2 proposed by Michaeli et al originated from 

increased microscopic susceptibility gradients at higher fields, inducing a more important 

dynamic dephasing through diffusion. 

T2 values obtained at 9.4 T and 14.1 T (Xin, et al., 2008; Xin, et al., 2013) using a Hahn spin-

echo also showed a decrease of metabolite T2s with B0, notably for J-coupled metabolites Glu, Ins 
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and Tau. Yet, these values were not compared to those obtained using Carr-Purcell refocusing 

pulses, which are closer to the intrinsic T2 value due to a reduction of the diffusion and proton-

exchange contributions of the apparent T2 (Michaeli, et al., 2002) and also for the refocusing of 

cross-relaxation or interference effects due to dipole-dipole interactions in scalar-coupled 

metabolites (Deelchand, et al., 2015). 

 

 
Figure 3.15. T1 and T2 times estimations at higher magnetic fields. 
Calculated (A) T1 and (B) T2 relaxation times up to 25 T using the functions (3.2) and (3.3) based on in 

vivo data measured with LASER at different fields. LASER T1 values at 4.0, 9.4 and 11.7 T were fitted 

and the corresponding curves were plotted as dashed lines. The continuous lines were obtained from 

fitting all the LASER T1 values in table 3.7. Standard deviations are shown as reported in their respective 

study. The coefficients for the continuous curves are summarized in table 3.7. 

 

 

3.5.1.5. In vivo 
1
H neurochemical profiles 

 

This study presents the first in vivo 
1
H neurochemical profiles acquired at 17.2 T (figure 3.4), 

demonstrating the possibility to detect and quantify up to 23 metabolite moieties. The absolute 

concentrations found here for young DA rats were in good agreement with other studies, most of 
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them using ultra-short-echo-time acquisitions (Hong, et al., 2011; Choi, et al., 2009; Pfeuffer, et 

al., 1999; Mans, et al., 1994; Mlynàrik, et al., 2008). Correcting for T1- and T2-weighting resulted 

in substantial increases of concentrations, ranging from 11 % (GPC) to 42 % (Gln) for 

metabolites and up to a 130 % (MM1) increase for the MM components. Our Gln concentration 

was higher than those reported in other MRS studies but are in good agreement with values from 

in vitro rat brain extracts (Mans, et al., 1994). This difference could be originated from the 

different handling of the macromolecule baseline among studies. Contrary to the study of Hong et 

al, we were not able to detect acetate when its model spectrum was added to the LCModel basis-

set. However, we were able to detect other low-concentration metabolites such as alanine (CRLB 

= 14 %), glycine (CRLB = 16 %) and serine (CRLB = 20 %). While Ser is seldom detected and 

quantified in vivo (Choi, et al., 2009), its addition to the basis-set was necessary to properly 

account for the NMR signal at 3.84 ppm. A more specific approach such as difference editing 

would be necessary to validate its detection at 17.2 T.  

 

3.5.1.6. Regional variability 

 

Neurochemical profiles from 4 different VOIs (Thal, CP, CC and Main) were acquired in this 

study, showing comparable quality despite the differences in voxel size and distance to the coil. 

Metabolic differences between the VOIs (figure 3.10) were expected (Tkac, et al., 2003; Duarte, 

et al., 2014) and they may be linked to the presence of tissue-specific neural cell types (Urenjak, 

et al., 1993) and organization based on their GM and WM compositions (Banerjee, et al., 2012; 

Wang, et al., 1998; Bhattacharyya, et al., 2011). 

Even if numerous 
1
H MRS studies have measured the neurochemical profile in the rat brain from 

various brain region, the large variability in methods doesn’t allow us to definitely confirm our 

observations. 

If we consider the metabolic data obtained from voxels located in the hippocampus, the striatum 

and the cortex by Tkac et al. (Tkac, et al., 2003) from 1 month-old Sprague-Dawley rats, most 

relative differences in concentrations between our Main (encompassing both cortex and a some 

hippocampus) and CP VOIs are in agreement. Only our lower Ins concentration in the Main 

region seems to be in contradiction with their study. However, this may be explained by the 

contributions of the hippocampus and WM to our Main VOI. Metabolic variations between the 

main and thalamus region were mostly in agreement with spectroscopic data presented by Just et 

al. (Just, et al., 2014), with the exception of Glu, Asp and Ala which were less concentrated in 

their thalamic VOI compared to their cortical VOI. Again, this could be due to larger WM 

contributions in our Main VOI. The possibility that small discrepancies in metabolite 

concentrations are due to the different rat strains used in these studies cannot be overruled. 
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3.5.2. qMRS of the aging rat brain 

 

Two remarkable features of the normal aging brain are progressive mitochondrial dysfunction 

(Federico, et al., 2012) and chronic neuroinflammation (Czeh, et al., 2011). Both processes 

promote the production of ROS, which are detrimental to neurons. There is growing evidence 

that these factors play major roles in age-related neurodegenerative diseases (Witte, et al., 2010; 

Karbowski, et al., 2012; Moràn, et al., 2012). The accumulation of molecular insults from 

oxidative stress leads to a persistent perturbation of the various mitochondrial functions. 

Progressively, neuronal oxidative energy synthesis is impaired and glial cells, in particular 

microglial cells, are activated. In time, the aging brain’s capabilities for efficient energy 

production and DNA repair diminish; the prolonged glial activation becomes neurotoxic and the 

elevated IFN-γ levels reduce or impede cellular regeneration (section 3.1.1). This chain of events 

eventually leads to an impaired cellular homeostasis and neurotransmission and ultimately to loss 

of cognitive function. 

The main goal of this study was to follow the metabolic changes happening in the early stages of 

normal aging in the aging DA rat. By following in parallel 2 cohorts of healthy rats, an age span 

of 18 months could be covered leading to the observation of multiple metabolic alterations using 

quantitative in vivo 
1
H MRS. 

 

3.5.2.1. Metabolic alterations with age 

 

Based on the results from the linear regression analysis (table 3.6 and figure 3.15), the most 

robust metabolic changes observed over the 4 regions were increases of Ins and MM 

concentrations and a decrease in the [Glu]/[Gln] ratio. The concentrations appeared to vary from 

1 to 2 % per month and are consistent with a progressive glial activation (Jenden, 1979 pp. 13-24; 

Brand, et al., 1993). These observations are in agreement with previous aging studies 

(Reyngoudt, et al., 2012; Haga, et al., 2009). The increase in MM content is also in agreement 

with an increased membrane turn-over and a possible accumulation of protein aggregates or 

cellular debris. No changes were observed for NAA on any of the 4 VOIs. This is in agreement 

with previous human studies (Reyngoudt, et al., 2012; Haga, et al., 2009) although increases or 

decreases of NAA with age have also been reported in humans (Brooks, et al., 2001; Fukuzako, 

et al., 1997; Urrila, et al., 2004). Our results are in agreement with work done in the aging mouse  

(Duarte, et al., 2014) as they did not find NAA changes in the cortex and found a decrease in the 

striatum (CP) only at 24 months of age.  

The observed decreases of the Glu/Gln ratio can be attributed to an increase in Gln concentrations 

accompanied with a decrease in Glu concentrations. Even if both metabolic changes were not 

always statistically significant for all the VOIs, these changes may indicate the beginning of 

previously observed shifts with age between Glu synthesis in neurons and its recycling into Gln 

in glial cells as it has been shown in 
13

C MRS studies (Rothman, et al., 2011). Indeed, 
13

C MRS 
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allows to probe metabolic pathways such as glycolysis, the tricarboxylic (TCA) cycle or the 

glutamate-glutamine cycle using 
13

C-labeled energy substrates and previous 
13

C MRS studies in 

aging mice (Patel, et al., 2012; Patel, et al., 2014) and humans (Boumezbeur, et al., 2010) have 

shown an accelerated glial TCA cycle while the neuronal TCA and glutamate-glutamine cycles 

slow down. Yet, the decrease of neuronal TCA in the study done by Boumezbeur et al was highly 

correlated with concomitant decreases in Glu and tNAA. 

The CC region presented a decrease in PCr/Cr indicating a reduction in energy metabolism. This 

was accompanied by decreasing levels of tNAA and Glu, although neither NAA (P = 0.051) nor 

NAAG showed significant changes with age. There was no evidence of glial activation as Gln 

and Ins levels were unchanged. These changes could suggest a mild decrease in neuronal 

metabolic activity with age, which has been reported in AD studies (Salehi, et al., 1999) where 

the decrease in neuronal metabolic activity was correlated with the genetic background 

(polymorphism of apolipoprotein E) and cell characteristics (cell profile area and size of the 

Golgi apparatus). Furthermore, frailness in the posterior cingulate region has also been observed 

in AD patients (Zimny, et al., 2011; Nestor, et al., 2003). Clearly, the application of 

supplementary techniques is needed for the validation of this hypothesis, notably with dynamic 
13

C MRS using 
13

C-labeled glucose and histology. Furthermore, the presence of confounding 

factors in the analysis of the data, notably the effect of the number of exams, invites for caution 

on the interpretation of the data based solely on the applied statistical model. 

Our results are rather consistent with the aging mouse study done by Duarte et al. as they did not 

find NAA and PCr/Cr decreases in the cortex (closely matching our Main VOI) but they did 

observe significant changes in the striatum (CC). Their Ins and tCho also were observed to 

increase with age. The Glu/Gln ratio decreased in their three explored regions in the mouse as 

well as the four regions in the DA rat, making it a potentially interesting biomarker for future 

longitudinal aging studies.  

 

3.5.2.2. Relaxation times alterations with age 

 

In addition to metabolic changes, modest shortenings of the T2 relaxation times were observed for 

tNAA (-1%, P = 0.02) tCho (-1.5%, P = 0.05) and MM1 (-0.7%, P = 0.03). Overall, a tendency 

towards a reduction of the T2 times was observed, which could indicate a mild change in the 

cellular environment with age, such as increases in iron content or protein aggregates, which is in 

agreement to the observed increase of macromolecule content and previous work done in humans 

(Marjanska, et al., 2013).  

Concerning the evolution of the T1 relaxation times, our analysis revealed only two statistically 

significant and very small changes associated with age for GABA (+0.7%, P = 0.02) and Gln (-

0.6%, P = 0.02). 
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3.5.2.3. Alterations with the number of exams 

 

The number of exams experienced by the rats was found to be an important and unexpected 

contributing factor to the evolution of the neurochemical profile during this study. Both the Main 

and the CC regions presented numerous changes linked to the number of scans. Since these two 

regions had the highest GM/WM ratios, a possible sensitivity of GM tissue could be speculated 

by the physiological stresses suffered during the experiments. However, the causes underlying 

the physiological alterations during the MR experimental sessions have yet to be investigated. 

Nonetheless, the interaction with the aging process was accounted for by using a linear-

regression with mixed effects analysis with the number of exams as one of the regressors. 

The most prominent observation was an increase of the T1 relaxation times in the Main region for 

Asp, GABA, Gln, Glu, NAA(CH3), NAA(CH), NAAG, tCr and MM2 at a rate of 2 to 3% per 

exam. These increased T1 times could indicate a possible cell swelling or another alteration of the 

intracellular matrix leading to an enhanced mobility of the metabolites. Transient changes such as 

an increase in water content or brain temperature have also been associated to T1 increases 

(Barbier, et al., 2005; Fatouros, et al., 1991; Lin, et al., 1997) but such reasons do not seem 

pertinent h since the T1 measured for brain tissue water did not change throughout the study. In 

addition to these T1 increases, the T2 times of Tau, tCr(CH2) and MM3 decreased at rates of 4 to 

7 % per exam. 

The observed alterations associated to the number of scans are difficult to interpret since, to our 

knowledge, this is the first time that such effects have been observed.  

One possible explanation could be the direct effect of the static magnetic field (SMF), as it has 

been shown in rats to have a reduced neuronal density in the hippocampus after being exposed to 

small magnetic fields (up to 1 µT) during gestation (Whissell, et al., 2009). Oxidative stress has 

been shown to decrease at 1.5 T in healthy volunteers (Sirmatel, et al., 2007), however mice 

exposed at 3 and 4.7 T showed increased metallothionein (a ROS by-product) and lipid 

peroxidation in the liver (Satoh, et al., 1996; Watanabe, et al., 1997). Additionally, even small 

SMF from 3 to 110 mT have shown increased effects of tumor-treating drugs in mice exposed to 

SMF for 35 mins to 4 hours a day (Tofani, et al., 2003; Gray, et al., 2000). In vitro tests at 7 T 

have revealed tumor growth inhibition through the effect of SMF alone and increased tumor cell 

apoptosis at 1 T (Ghibelli, et al., 2006; Raylmann, et al., 1996). These changes are nevertheless 

cell-line dependent and it has been concluded that the overall effects of SMF do have an effect on 

free radical metabolism, but the impairments on normal cell-growth and toxicity are minor or 

non-existent (Ghodbane, et al., 2013). The issue of B0 effects on health is still in debate (Richard, 

2005) and it is not clear whether there would be a persistent effect on the adult brain and it is yet 

to determine the effects of sporadic but prolonged exposure (~6-8 h per experiment) at 17.2 T.  

Another plausible cause could be the intense time-varying B1 fields required to achieve 

refocusing using short AFP pulses at 17.2 T. Since cooling in the brain is achieved mainly 

through perfusion (which is reduced by the anesthesia) and the experimental sessions for each rat 
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consisted of at least 5 continuous scanning hours using LASER, there could be temperature 

increases especially close to the coil. Thus, these temperature elevations would be more intense 

in the cortical areas (Main and CC) compared to sub-cortical area (CP and Thal). To validate this 

hypothesis, thermometry measurements could provide relevant information about the temperature 

evolution in the rat brain non-invasively. This technique relies on measuring the local shifts of 

the Larmor frequency caused by local changes in temperature (Hindman, 1966). To evaluate 

tissue and cellular damage, temperature models have been used to simulate the induced damage 

on the brain using microwave probes (Sherar, et al., 2000; Skinner, et al., 1998). These models 

provide a framework to evaluate the potential damaged caused by the applied B1 field and they 

have been used to predict the extent of tissue damage based on parameters of cell death, 

microvascular blood flow stasis and protein coagulation (Sherar, et al., 2000). Yet, perfusion 

effects are not integrated in the Arrhenius equation despite that it plays a critical role in the 

cooling of the brain during long exams.  

Histological validation could be achieved by looking at morphological changes in cells such as 

increases in cytoplasm and shrinking of the cellular nucleus; signs of necrosis and blood 

coagulation and microglial activation. To avoid a possible confounding effect due to other factors 

such as handling stress, SMF and anesthesia, a control group should be needed where an identical 

experimental protocol would be applied on rats of the same age with RF pulses turned off and 

sacrifices made either immediately after experiment or one week after, as it has been shown in 

the rabbit brain that damages may become visible several days after the experiment took place, 

notably coagulative necrosis (Matsumi, et al., 1994) . 

Another cause could be the cumulative effect of the isoflurane anesthesia, which has been 

associated to lasting alterations on cerebrovascular regulation when exams were done under 

hypoxia conditions (Wegener, et al., 2008). Contrary to other halogens, it has also been shown 

that isoflurane is hepatotoxic exclusively under hypoxia and reduced blood-flow conditions in the 

rat (Van Dyke, 1982; Schieble, et al., 1988; Harper, et al., 1982). Although the rats in our study 

breathed pure oxygen during the experiments and lactate levels were stable over their whole 

duration, the long duration of the experiment had most likely weakened the animal. It has been 

shown that fasting rats in hypoxia have suffered of liver necrosis (Van Dyke, 1982) and that 

hepatotoxicity levels of isoflurane may dependent on the genetic background, as it has been 

shown for halothane (Gourlay, et al., 1981). Therefore, the possibility of liver injury should not 

be discarded and verification tests would be needed to verify the condition of the liver, notably by 

measuring transaminase concentration levels in the blood (De Ritis, et al., 1955).  

A last possibility could be that these observations are related to the stress experienced by the rats 

during or in-between MRS sessions. Indeed, it has been shown that depressed patients exhibit 

increased glutamate (Sanacora, et al., 2012) and decreased GABA (Sanacora, et al., 1999; Hasler, 

et al., 2007). Both neurotransmitters alterations are rather consistent with our observations. 

However, the MRS literature in that matter is rather inconsistent depending on the method and 

the conditions studied. For example, in a recent ex vivo MRS study of the effect of acute restraint 
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stress (Drouet, et al., 2015), it was shown that both GABA and Glu levels were increased in rats 

being restrained for 1 hour. 

 

3.5.2.4. Impact of the metabolite relaxation times on absolute quantification 

 

For this study, T1 and T2 metabolite relaxation times were measured at most time-points on the 

Main region and were assumed to be identical for the 3 other VOIs. Measuring the relaxation 

times with the presented methods was a rather time-consuming process as the majority of the 

experimental session was dedicated to the acquisition of T1- and T2-weighted spectra. For this 

reason, measurements of metabolite relaxation times are rarely done in MRS studies, neglecting 

the effects of differential T1- and T2-weighting amidst metabolites. Therefore, it is interesting to 

evaluate the impact of metabolite relaxation time corrections in our study by looking on how 

different our observations would have been without such correction.  

As a matter of fact, most statically significant metabolic alterations were very similar (not 

detailed). The differences were the following: Glu/Gln changes were no longer observed for Thal 

and CC and the MM changes in the CC were no longer significant; instead NAA was now 

increasing with age in CC. Also, in the Main region, Gln and MM1 decreases with the number of 

exams were no longer statically significant. 

These relatively few differences demonstrate that considering relaxation times for the purpose of 

investigating metabolic alterations is relevant when data are acquired using short TR or long TE. 

For this study, long TR (5s) and rather short TE (16.5 ms and CPMG refocusing) were used. As a 

consequence, the quantification of species with strong T2-weighting such as Glu, Gln and the 

macromolecules (Table 3.3) were the only ones impacted. 

 

3.5.2.5. Alternative statistical analysis 

 

Our MRS data were examined using a linear-regression with mixed effects analysis assuming that 

the age and the number of exams were independent variables and considered the data of both 

cohorts. Yet, a more conservative approach could have been considered by omitting the 

β2*Exams term in equation (3.1), leaving age as the only regressor and analyzing each cohort 

separately. The results of such analysis are presented in tables 3.8 and 3.9, respectively 

summarizing the relaxation times and concentration results.  

Several interesting observations can be done. First, the main changes observed simultaneously on 

the VOIs with the mixed effect analysis, namely the decrease in Glu/Gln ratio and the increase of 

Ins and MMs, are preserved although they are present in different “stages”. The first stage, 

corresponding to the young C1 cohort, only presents an increase in Ins, Gln and tCr but stable 

Glu levels, suggesting an onset of glial activation. For the second stage, corresponding to the 

older C2 cohort, Ins continues to increase along with MM content and it is accompanied by a 
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reduction of the PCr/Cr ratio, suggesting a possible decline of mitochondrial function and the 

accumulation of protein residues.  

A second observation is that numerous metabolites show a T1 increase for C1 and C2. In 

addition, metabolites presenting T1 increases in C1 are also presenting a T1 increase in C2, as it 

can be clearly observed in figure 3.8. Yet, the relaxation times of brain water tissue still do not 

change.  

 

3.5.2.6. Stability of the MM parametrization 

 

The initial MM parameterization was done based on data from 1 month-old rats. In order to check 

that the macromolecule baseline was correctly fitted at any ages, mean metabolite-nulled spectra 

were acquired at each age and were fitted. As illustrated by figure 3.16, the MM parameterization 

allowed for the proper fit of the metabolite-nulled spectra at all ages. 

 

 
Figure 3.16. Mean metabolite-nulled spectra and fits in the rat brain from 1 to 18 months of age. 

Mean MM spectra (black) and LCModel fit (red) after removal of residual metabolite contributions (as 

shown in figure 2.12). Besides the MM spectrum at 1 month of age, each spectrum was obtained by 

adding automatically-phased individual spectra weighted by their measured noise levels. Mean spectra are 

scaled with respect to the resonance at 0.9 ppm. 

 

 

3.5.2.7. Methodological limitations 
 

In this study, several limitations have to be considered. First, the water content for GM and WM 

were considered to be constant at all ages (Lentner, 1981). Yet, the GM water content has been 

found to vary significantly in humans (Chang, et al., 1996), in particular for subjects above 50 
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years old. In mice, total brain water content is stable for the first year of life but it shows a global 

decrease from 79 % to 75 % water content during the second year (Duarte, et al., 2014). 

Assuming similar changes for the GM in the rat brain, a 2% decrease of water content between 

12 to 18 months could be expected leading to an over-estimation of 2% of the reported metabolite 

concentrations for the latest time-point. 

Secondly, the T1 maps acquired from the initial time point at the age of 1 month were used to 

determine the T1 relaxation times of water in GM and WM and also to determine the GM, WM 

and CSF compositions of the VOIs. As discussed in section 2.5.1, increases in brain volume and 

myelination in the rat brain take place until maturation is achieved at 3 months of age (Juraska, et 

al., 2004; Dobbing, et al., 1971) and myelination has even been shown to continue at least up to 6 

months of age (Mengler, et al., 2014). It is therefore likely that water content estimation errors 

are introduced due to biases in the determination of GM and WM contributions as well as 

relaxation time changes over the duration of the study. On the other hand, the T1 and T2 

relaxation times measured from the brain tissue water in our Main VOI employing MRS did not 

show significant variations, suggesting that age-related changes of GM and WM relaxation times 

could be negligible. Also, a relatively long repetition time (5 s) was used for the acquisition of 

water reference spectra, reducing the sensitivity to small variations in T1 relaxation times. A clear 

limitation of this study remains as the GM and WM fractions used for the water content 

calculation were fixed for all ages to those found in the juvenile, immature brain. 

The calculated CSF fractional volume values for the thalamus, CP and CC regions were 

estimated based on the number of pixels presenting elevated T1 values in the T1 maps, which 

could lead to estimation errors due to the relative coarse resolution of the maps for such kind of 

application. Nevertheless, these errors are not expected to alter our results as minor CSF 

fractional volumes were found for the CC and CP regions. 

Due to time-constraints, metabolites relaxation times could not be measured in all rats for the last 

time-points. Therefore, the relaxation times measured in the precedent exam were considered for 

the correction of the metabolites’ T1 and T2 relaxation weightings. Based on the result of the 

linear regression, the associated quantification errors are expected to be at most 2.5 ± 1.9 % for 

metabolites and 5.6 ± 2.1 % for macromolecules. 
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T1 Relaxation Time T2 Relaxation Time 

 
C1 C2 C1 C2 

 
Change (%) P. Value Change (%) P. Value Change (%) P. Value Change (%) P. Value 

Asc -0.91 0.205 -2.19 0.023 -1.90 0.403 -4.09 0.106 

Asp 0.82 0.020 0.71 0.031 1.92 0.157 -0.12 0.920 

GABA 2.26 < 0.001 1.61 0.009 3.55 0.097 -0.51 0.779 

Glc 1.30 0.123 1.07 0.214 13.55 0.012 38.26 0.237 

Gln 0.09 0.795 1.06 0.009 -1.33 0.254 2.03 0.184 

Glu 0.71 0.006 1.18 < 0.001 1.46 0.390 -0.21 0.825 

Gly -0.53 0.691 10.45 0.191 - - - - 

GPC 0.52 0.148 -0.11 0.762 -1.56 0.112 0.28 0.848 

GSH 0.53 0.619 -0.05 0.959 0.81 0.565 0.62 0.444 

Ins 0.16 0.328 0.53 0.055 -0.58 0.500 -1.53 0.044 

Lac 1.93 0.033 -0.61 0.763 2.49 0.283 -4.05 0.106 

MM1 0.42 0.042 0.51 0.024 0.55 0.427 -0.61 0.233 

MM2 0.53 0.148 1.71 0.002 0.00 0.998 -2.36 < 0.001 

MM3 -2.80 0.333 1.80 0.003 -0.93 0.337 -3.03 < 0.001 

MM4 0.42 0.315 0.88 0.066 1.64 0.180 -1.12 0.124 

NAA(CH3) 0.74 0.014 1.09 0.002 0.22 0.677 0.05 0.955 

NAA(CH2) 0.18 0.487 1.80 < 0.001 0.55 0.315 1.83 0.039 

NAA(CH) 3.45 0.008 3.27 0.016 3.04 0.017 -0.67 0.456 

NAAG 0.89 0.192 0.88 0.216 -8.18 0.152 -4.72 0.013 

PCh 0.48 0.164 0.20 0.636 -1.86 0.039 0.44 0.799 

PE 0.23 0.600 1.09 0.041 1.42 0.735 -0.88 0.761 

Tau 0.70 0.132 0.70 0.010 0.11 0.869 -1.64 0.062 

tCho 0.54 0.119 -0.06 0.862 -0.33 0.807 -0.82 0.532 

tCr(CH3) 0.74 0.016 1.29 < 0.001 -0.18 0.584 -0.04 0.943 

tCr(CH2) 0.20 0.563 0.83 0.030 -3.14 < 0.001 -1.82 0.017 

tNAA(CH3) 0.66 0.022 0.87 0.004 -0.15 0.799 -0.24 0.748 

Tissue Water -0.21 0.444 0.71 0.056 -0.47 0.661 0.86 0.416 

Table 3.8. Metabolite relaxation time variations with age as the only predictor. 

Results from the linear regression model analysis for relaxation times using age as the only predictor 

and considering “rat” as random effect. The observed changes for each cohort are shown along with 

their associated P. value. Age-related changes per month were calculated as β1 ∗ 100/β0, following 

the nomenclature of equation (3.1).  
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Main Thalamus Caudate Putamen Cingulate Cortex 

 
C1 C2 C1 C2 C1 C2 C1 C2 

 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Change 

(%) 

P. 

Value 

Ala -0.02 0.981 2.09 0.069 -0.43 0.619 1.25 0.398 -1.77 0.144 1.94 0.312 -0.69 0.364 4.87 0.018 

Asc 1.25 0.143 4.19 0.026 3.23 0.076 4.11 0.137 -4.10 0.063 0.27 0.915 2.27 0.194 -1.23 0.443 

Asp 0.08 0.882 0.72 0.357 -0.42 0.415 1.24 0.186 -1.36 0.060 2.80 0.061 1.04 0.322 0.27 0.804 

Cr 0.35 0.324 1.71 0.002 -0.23 0.605 0.48 0.406 0.82 0.252 1.89 0.004 2.33 0.058 -0.62 0.504 

Cr/PCr -0.29 0.567 2.55 0.006 -0.72 0.198 0.04 0.960 0.23 0.826 2.61 0.030 2.17 0.245 -2.69 0.046 

GABA -1.01 0.040 -1.15 0.040 -2.38 0.027 -1.43 0.001 -1.01 0.253 -0.16 0.871 -0.83 0.295 -0.06 0.961 

Glc -2.83 0.004 -3.37 <0.001 -1.81 0.128 -1.87 0.100 -1.61 0.319 1.29 0.542 -1.13 0.455 -2.60 0.059 

Gln 1.21 0.010 -0.66 0.189 2.57 <0.001 0.69 0.226 2.57 0.003 0.19 0.752 0.95 0.201 1.06 0.191 

Glu -0.04 0.892 -0.19 0.627 -0.01 0.984 1.18 0.032 -0.66 0.264 1.37 0.083 0.53 0.219 1.94 0.011 

Glu/Gln -1.02 0.045 0.72 0.295 -1.96 0.001 0.47 0.546 -2.50 <0.001 1.09 0.370 -0.53 0.389 0.74 0.441 

GPC 3.20 <0.001 1.78 0.015 -0.43 0.465 0.23 0.752 1.52 0.010 1.65 0.225 1.81 0.196 1.37 0.271 

GSH 0.59 0.316 1.05 0.118 0.96 0.182 0.89 0.206 0.86 0.335 -0.55 0.553 -0.82 0.430 -0.86 0.598 

Ins 1.72 <0.001 2.16 <0.001 0.16 0.717 0.44 0.436 1.68 0.008 2.17 0.003 1.55 0.002 0.94 0.388 

Lac -0.64 0.577 24.35 <0.001 -2.43 0.033 3.74 0.100 1.64 0.498 4.20 0.072 2.46 0.299 -140.8 0.004 

NAA 0.26 0.263 -0.53 0.111 -0.54 0.263 0.41 0.288 0.07 0.889 0.60 0.216 0.58 0.047 1.28 0.050 

NAAG 0.44 0.436 -0.98 0.066 -0.12 0.904 3.43 0.001 -0.97 0.052 -0.52 0.746 -0.97 0.311 1.94 0.146 

PCh 3.20 <0.001 2.29 0.011 -0.35 0.543 0.17 0.783 1.62 0.018 1.24 0.336 1.72 0.244 1.92 0.182 

PCr 0.82 0.014 -0.65 0.212 0.47 0.303 0.30 0.674 0.49 0.356 -0.52 0.392 -0.02 0.974 3.56 0.026 

PE 0.30 0.518 0.44 0.561 -0.59 0.354 0.87 0.281 0.07 0.900 0.19 0.723 0.19 0.753 3.77 <0.001 

Tau -0.02 0.949 0.57 0.260 1.26 0.405 -0.96 0.332 -0.66 0.193 -0.37 0.663 -0.06 0.873 0.03 0.977 

tCho 3.10 <0.001 2.06 0.008 -0.47 0.424 0.28 0.681 1.48 0.016 1.60 0.223 1.70 0.228 1.65 0.211 

tCr 0.62 0.003 0.28 0.431 0.18 0.588 0.38 0.422 0.64 0.009 0.35 0.351 0.88 0.028 1.18 0.095 

tNAA 0.28 0.184 -0.58 0.060 -0.49 0.322 0.63 0.111 -0.02 0.964 0.46 0.394 0.42 0.106 1.36 0.026 

MM1 0.26 0.172 1.39 0.001 -0.18 0.657 2.53 <0.001 0.34 0.550 1.50 0.017 -0.12 0.784 1.93 0.002 

MM2 0.78 0.034 4.04 <0.001 0.16 0.763 3.90 <0.001 0.74 0.217 2.75 <0.001 0.41 0.472 2.17 0.008 

MM3 1.55 0.001 3.12 <0.001 0.40 0.461 3.85 <0.001 0.93 0.179 2.55 0.001 0.73 0.280 2.44 0.014 

MM4 -0.05 0.920 0.18 0.730 -0.14 0.820 0.73 0.334 -0.80 0.477 -0.24 0.737 -1.87 0.015 0.24 0.840 

Table 3.9. Metabolite concentration variations of individual cohorts with respect to age as sole predictor 

Results from a linear regression model analysis for the absolute metabolite concentrations using age as 

the only predictor and “rat” as a random effect. Each region was analyzed independently. The observed 

changes for each cohort are shown along with their associated P. values. Age-related changes per month 

were calculated as β1 ∗ 100/β0, following the nomenclature of equation (3.1). 
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3.6. CONCLUSION 

 
The main goal of this study was to develop quantitative 

1
H MR spectroscopy at 17.2 Tesla and 

apply it to evaluate the Dark Agouti rat as a murine model of normal brain aging.  

T1 and T2 relaxation times were measured in the rat brain in vivo for the first time at 17.2 T for 

the purpose of absolute quantification using 
1
H MRS. In summary, the T1 relaxation times of 22 

metabolite functional groups and the T2 relaxation times of 18 singlets and J-coupled metabolites 

were measured, as well as the relaxation times of 4 macromolecule resonance groups covering 

the macromolecule and lipids baseline from 0.5 to 4.5 ppm. Our data are in good agreement with 

the field-dependency of T1 and T2 relaxation times of brain metabolites as observed at lower 

magnetic fields. Absolute concentration measurements corrected for relaxation effects were also 

in good agreement with previously published values. 

To our knowledge, this is the first longitudinal study of the aging brain using MRS covering a 

life-span of 18 months in the rat. Our results are consistent with a mild age-related glial activation 

which has been reported previously for the aging human, mouse and rat brains using either 
1
H, 

13
C MRS or histological methods (Cerbai, et al., 2012; Chang, et al., 1996; Boumezbeur, et al., 

2010; Duarte, et al., 2014). Contrary to our expectations, no clear signs of neurodegeneration or 

mitochondrial dysfunction were observed. These findings suggest that at 18 months of age the 

aging process in the Dark Agouti rats has only begun. The observed regional differences hint at 

differential rates of aging process between cortical and sub-cortical brain area. 

Unexpectedly, various alterations were correlated with the number of NMR examinations. Even 

if no clear explanation can be presented, these observations should be considered cautiously for 

future longitudinal MRS studies at UHF. These external effects to the process of aging 

complicate the validation of the DA rat as a model of aging. Nevertheless, the hallmarks of brain 

aging reported in humans were indeed observed, validating a priori its use for future aging 

studies. 

 

 

 

 

 

 

 

 

 

 



PART II : PRECLINICAL 
31

P qMRS AT 17.2 T  

113 
 

4. PRELIMINARY 
31P MRS DATA IN THE AGING RAT 

BRAIN 
 

Phosphorus MRS allows to study of in vivo brain energy metabolism by directly measuring key 

high-energy phosphate compounds such as adenosine-triphosphate (ATP) and phosphocreatine 

(PCr). Moreover, there is a growing interest in the study of changes in phosphomonoesters 

(PMEs) and phosphodiesters (PDEs) levels in neurodegenerative or psychiatric afflictions 

(Mecheri, et al., 1997; Wijnen, et al., 2010). Similarly to the work presented in chapter 3, the 

main goal of this work was to develop quantitative in vivo 
31

P MRS data at 17.2 T. 
31

P Spectra 

were acquired using a FID-OVS sequence using BISTRO bands for localization (Luo, et al., 

2001) from aging Dark Agouti rats. Spectra decomposition was done in the frequency domain 

using LCModel (Provencher, 1993; Deelchand, et al., 2012) and quantification was performed 

using brain tissue water as a reference of concentration as proposed by Bottomley et al. 

(Bottomley, et al., 1996). As an internal reference of concentration,
 1

H water signal was acquired 

from the same volume using a similar localization scheme. Furthermore, the T1 relaxation times 

of phosphorylated metabolites were measured using the single inversion recovery method. The 

estimated T1 times were compared to the extrapolated T1 values as predicted by (Lu, et al., 2014). 

 

4.1. MATERIALS AND METHODS 
 

4.1.1. Experimental set-up  

 

In vivo experiments were performed on the previously studied cohorts of Dark Agouti rats 

(Janvier Labs, Le Genest-Saint-Isle, France): C0: 6 young rats (278 ± 13 g, 5 months old); C1: 6 

middle-aged rats (333 ± 37 g, 17 months old); and C2': 3 elderly rats (360 ± 37 g, 21 months old). 

Rats were anesthetized during the experiments with 1.0-1.5% isoflurane in pure O2. Respiration 

rate was monitored (40–60 breaths/min) and body temperature was held constant (37.5 ± 0.5° C) 

using a warm-water circuit for the whole duration of the experiment. The head was 

stereotaxically restrained by a bite bar and ear pins. The study protocol was approved by the 

Committee on the Ethics of Animal Experiments of the Commissariat à l’Energie Atomique 

(CETEA, Permit Number: ID 12-058). 

The study was performed on a horizontal 17.2 T MRI scanner (Biospec, Bruker BioSpin, 

Ettlingen, Germany) equipped with an actively shielded gradient system capable of delivering 

gradients up to 1 T/m. MRS data acquisitions were performed using a 
1
H/

31
P dual-resonance coil 

consisting of a 20-mm single-loop 
31

P surface coil and a butterfly 
1
H geometrically decoupled 

surface coil (RAPID Biomedical GmbH, Rimpar, Germany) operating respectively at 295.587 

MHz and 730.195 MHz. A dedicated home-made holder was designed and built to fit properly 
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the 
1
H/

31
P RF coil with respect to the animal head pins (figure 4.1). Since the tuning and 

matching of both transceivers was fixed, the reflected power for each channel was checked and 

noted using the “wobble” function in Paravision 5.1 (figure 4.2) at the beginning of each 

experiment in order to account for loading and transmission differences between experiments. 

 

 

Figure 4.1. Dual 
1
H/

31
P coil and a dedicated home-made holder used for 

31
P MRS experiments. 

 

 

Figure 4.2. Tuning and matching of the 
31

P transceiver using the wobble function in Paravision 5.1. 

In this example, the reflected power at the Larmor frequency is 13.4 %. Such values were used for 

quantification. 
 

 

4.1.2. MRI data acquisition 

 

For positioning, reference images were acquired using an axial rapid acquisition with relaxation 

enhancement (RARE) sequence covering the entire brain (TE/TR = 20/3000 ms, slice thickness: 

0.5 mm, 24 slices, in-plane resolution: 180x180 µm
2
).  
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4.1.3. MRS data acquisition 

 

First- and second-order shims were adjusted by acquiring a B0 field map and using Bruker’s 

MAPSHIM routine on a large VOI (4.5 x 7 x 7 mm
3
) centered on the brain. A subsequent first-

order shim correction using Paravision automated procedure was applied on the same VOI, as 

explained in section 2.1.3. The average water linewidth measured on the VOI was 28 ± 2 Hz. 

 
 

 

Figure 4.3. 
31

P MRS VOI definition using BISTRO bands 

8 manually-placed OVS BISTRO bands were used to saturate signal contributions from outside of the rat 

brain. Positioning was done based on T2-weigthed anatomical images (axial) and scout T2
*
-weighted 

images (coronal, sagittal). 
 

 

31
P MR Spectra were acquired with a pulse-acquisition sequence (100 µs square pulse, 12.8 kHz 

excitation spectral width, 1024 points, 15 kHz receiver bandwidth, TR = 2 s, 906 averages). The 

VOI was defined manually by a set of 8 BISTRO bands (HS8 adiabatic pulses: 3 ms duration, 6.6 

kHz, from 2 to 6 mm thick) using a hyperbolic secant envelope of 8 pulses (Luo, et al., 2001; 

Silver, et al., 1984). As a result, the selected VOI encompassed most of the brain (figure 4.3). The 

RF pulses carrier frequency was set to the PCr resonance frequency. The resulting chemical shift 
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artifact for the OVS bands caused a large spatial displacement of 30% between PCr and PE (6.78 

ppm) and of -34% between PCr and ATPα (-7.35 ppm). 

From a subset of animals consisting of 3 old, 3 middle-aged and 2 young rats, 
31

P T1-weighted 

spectra were acquired using the same localization method (TR = 2s, 320 averages). T1-weighting 

was introduced by incorporating a non-selective HS8 AFP inversion pulse (3 ms, 6.6 kHz) prior 

to the FID-OVS localization scheme. In total, 10 T1-weighted IR spectra were acquired (TI = 4, 

176, 250, 500, 750, 1000, 1250, 1500, 1750 and 2000 ms). To conserve the same steady-state 

magnetization, all 10 IR spectra were acquired with a recovery time of 2 s. 

A non-suppressed water spectrum was acquired from the same VOI and FID-OVS sequence (200 

µs square pulse, 1024 points, TR = 10 s, 8 averages) for the purpose of water referencing 

(Bottomley, et al., 1996). Additional water spectra were acquired with increasing acquisition 

delays (0.11, 10, 20, 30, 40, 50, 80 and 100 ms) in order to determine CSF contributions based on 

T2
*
 relaxation times differences, similarly to the method considering T2 decay as described in 

section 2.5.1. 

To estimate the scaling factor CPH between 
1
H and 

31
P channels (section 2.5.2), in vitro 

measurements using a phosphoric acid sample (50 mM concentration, diluted monopotassium 

phosphate, pH = 7.4, room temperature) were performed immediately after each experimental 

session using the same coil and VOI positioning.  

In order to evaluate the impact of the CSDA on our 
31

P data, 
31

P MR spectra (604 averages) were 

acquired from two rats with a carrier frequency shifted by -7.5, -5, -2.5, 0, +2.5, +5 and +7.5 ppm 

with respect to PCr. Moreover, two 
31

P MR spectra (604 averages) were also acquired with and 

without OVS bands. 

 

4.1.4. MRS data analysis 

 

4.1.4.1. LCModel parameterization 

 

Pre-processing steps consisted in zero-filling to 2048 data points, Fourier transformation and 

zero- and first-order phase correction. Spectra were analyzed using LCModel 6.2. 

The basis set was simulated as described in section 2.4. Published chemical shift values and the 

homonuclear J-coupling constants were considered (Jung, et al., 1997; Jensen, et al., 2002; Lu, et 

al., 2013). 

For the LCModel analysis, the IR spectra were phased such that the PCr resonance was positive. 

Consequently, the basis-set used for analyzing T1-weighted data included inverted spectra for the 

ATP resonances due to their shorter T1 relaxation times compared to PCr.  

The LCModel basis consisted of a total of 12 metabolites as shown in Table 4.1 along with their 

chemical shifts and allowed frequency shifts (SDSH). Due to their differences in T1 and T2 values 

(Lei, et al., 2003; Remy, et al., 1987), the three separate resonances of ATP were separately 

accounted for. Due to the magnitude of the chemical shift artifact, the ATPβ resonance was rarely 
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observed and was not considered for the LCModel analysis. For the same reason, the analysis 

window was limited to the [10, -10] ppm range. Adenosine-monophosphate (AMP) was not 

included because its concentration was expected to be close to noise levels (513 µmol/L) 

(Pollesello, et al., 1995).  

LCModel was originally implemented solely for the analysis of 
1
H spectra and therefore hidden 

control parameters needed to be adjusted so that X-nuclei spectra could be handled (Henry, et al., 

2003; Deelchand, et al., 2012). In addition to the declaration of standard parameters such as the 

operating frequency, the number of points and dwell time (HZPPPM, NUNFIL, DELTAT), the 

following parameters were modified: 

 

 XSTEP: Increment between the numbers of the displayed x-axis. It was set to 1 to allow 

LCModel to display the results. 

 DKNTMN: The knot spacing for the spline baseline was set to 2, allowing to obtain a 

baseline which could account for large first-order phase variations without affecting the 

quantification of metabolites and greatly increasing the calculation speed. 

 DESDSH: Default allowed frequency shifts between the in vivo data and the basis set 

elements. It was set to 0.01 (ppm) instead of the standard 0.004 value. Specific frequency 

shifts were set for certain metabolites (Table 4.1) using the (N-, CH-, AL-) SDSH 

commands. 

 DESDT2: The variation of the expected spectral linewidths due to the increased 1/T2 at 

higher magnetic fields. Its value was set to 12. The associated EXT2 parameter was not 

modified. The improvement of the LCModel fit, notably for PCr and ATPγ, can be observed 

in figure 4.4. 

 FCALIB: The calibration factor was used to scale the measured 
31

P signal to absolute 

concentration units, by adjusting it with respect to the CPH *[W]/SW term as shown in eq. 

(2.6). 
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Metabolite 
  

PPM SDSH 

Adenosine Triphosphate ATP α -7.52 0.03 

  
β -16.26 0.01 

  
γ -2.48 0.03 

Fructose-6-phosphate F6P 
 

6.64 0.01 

Glucose-1-phosphate Glc1P 
 

5.15 0.01 

Glucose-6-phosphate Glc6P 
 

7.20 0.03 

Glycerol-1-phosphate Gly1P 
 

7.02 0.01 

Glycerol-3-phosphorylcholine GPC 
 

3.06 0.20 

Glycerol-3-phosphorylethanolamine GPE 
 

3.60 0.20 

Inorganic phosphate Pi 
 

4.92 0.10 

Phosphocreatine PCr 
 

0.00 0.01 

Phosphorylcholine PCh 
 

6.35 0.01 

Phosphorylethanolamine PE 
 

6.78 0.01 

NAD+NADP NADH 
 

-8.30 0.30 

Table 4.1 Metabolites included in the LCModel basis for the analysis of our 
31

P spectra. 

Chemical shifts values are relative to the PCr resonance. The SDSH parameters used in LCModel 

determines the allowed frequency shift for a given metabolite. Although GPC, GPE and Pi were attributed 

with elevated SDSH values, resonance frequency shifts were only observed for Pi. 

 

 

Figure 4.4. LCModel 
31

P fits using two parameter sets. 

The residual noise (red) was used to evaluate the quality of the fit. Using a constrained parameterization 

consisting of the default value of DESDT2 and SDDEGP = 0.05, strong residual signal was observed at 

the base of the PCr and ATPγ resonances and the Pi and PE were often incorrectly fitted. Setting DESDT2 

= 12 and SDDEGP = 4 largely reduced the residual noise. 
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4.1.4.2.  Water referencing 

 

The FCALIB variable for each experiment was determined by the CPH conversion factor. The 

precise formula for the calculation of CPH based on in vitro measurements was the following: 
 

𝐶𝑃𝐻 =
𝑆W𝑣
̅̅ ̅̅ ̅̅

𝑆P𝑣
̅̅ ̅̅ ̅

∗
[P𝑣]

[W𝑣]
=

𝑆𝑊𝑣/𝐿𝑜𝑎𝑑𝑊𝑣

𝑆𝑃𝑣/𝐿𝑜𝑎𝑑𝑃𝑣

∗
[P𝑣]

[W𝑣]
      (4.1) 

 

where [Pv] and [Wv] were the phantom apparent water and phosphorous concentrations;  𝑆W𝑣
̅̅ ̅̅ ̅, 𝑆P𝑣

̅̅ ̅̅   

were the measured phantom water and Pi signals compensated for differences in matching 

conditions using the parameters 𝐿𝑜𝑎𝑑𝑊𝑣
 and  𝐿𝑜𝑎𝑑𝑃𝑣

, obtained prior to the MRS sequence using 

the “wobble” function of Paravison 5.1 as shown in figure 4.2. 

The FCALIB was then derived for each in vivo experiment from the following formula: 
 

FCALIB = 𝐶𝑃𝐻 ∗
[W]

𝑆𝑊
∗

𝐿𝑜𝑎𝑑𝑊

𝐿𝑜𝑎𝑑𝑃
           (4.2) 

 

where [W] were the assumed, apparent brain water content, SW the water signal, 𝐿𝑜𝑎𝑑𝑊  and 

𝐿𝑜𝑎𝑑𝑃  the reflected power values recorded just before launching the MRS sequence. An 

additional constant factor (= 464673) was used for all LCModel analysis to account for the 

calibration of the simulated basis-set, the number of averages and receiver gain differences. 

 

4.1.4.3. T1 relaxation times estimation 

 

To estimate the T1 relaxation times, a 3-parameter fit consisting of a mono-exponential function 

was used to fit the equilibrium magnetization and the T1 relaxation times of each metabolite using 

a non-weighted Levenberg-Marquardt algorithm and leaving the actual excitation angle as a free 

parameter. T1 estimation was done separately for each animal. Cramer-Rao Lower Bounds 

(CRLB) were used as error estimator (section 2.4.4) and all data points presenting values higher 

than 25% were discarded. The coefficient of determination (R
2
) was used to evaluate the quality 

of the fits.  

 

4.1.4.4.  Statistical analysis 

 

A linear-regression analysis considering “Rat” as a random effect and “Age” as a predictor was 

used to assess the statistically significant changes of metabolite concentrations and T1 times with 

age. The analysis was done using R, version 3.1.2 (R Core Team, 2014). No corrections were 

applied to reduce type I errors. Statistically significant level was set as P < 0.05. 
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4.2. RESULTS 
 
4.2.1. Variability of CPH 

 

The CPH conversion factor was calculated based on the apparent water and inorganic phosphate 

concentrations in vitro (equation 4.1). T1 relaxation times of water and phosphorous in the 50 

mM sample were measured with the same method that was used in vivo. The measured water T1 

was 2.766 s, in agreement with the value found for injectable water (2.966 s) using LASER as 

shown in chapter 3. The measured phosphorous T1 time was 5.224 s. After each scanning session, 

in vitro measures were done using the 50 mM phantom to determine CPH considering the exact 

same VOI geometry and position while trying to keep the same positioning of the coil relative to 

the sample. Since the RF power calibration for the 
31

P channel was done by maximizing the 

measured signal (section 2.1.1.1) using a TR of 2s, equations (1.18) and (1.19) were used to 

estimate the Ernst angle and steady-state magnetization and determine an apparent [Pv] 

concentration. The mean CPH was 0.00238 ± 0.00036, similar to the variation of 0.0018 ± 0.0003 

found in humans (Bottomley, Atalar et Weiss 1996). 

 

4.2.2. Assessment of the CSDA-related attenuation of 
31

P metabolites 

 

Even if the 
31

P spins were excited using a non-selective RF pulse, each BISTRO band was 

saturating a different slab in space for each metabolite of interest leading to an effective different 

volume of acquisition for each metabolite. The impact of this chemical shift artifact was 

experimentally assessed in vivo by acquiring identically parameterized spectra with a shifted 

carrier frequency. By modeling the variation of the PCr resonance according to the frequency 

shift, one could estimate the attenuation of the different metabolites in the 
31

P MRS data. This 

approach is only phenomenological and assumes a homogenous distribution of the 
31

P metabolite 

in the brain. 

Figure 4.5 (left) shows a set of PCr resonances for one rat, positioned according to the frequency 

shift used for their acquisition. Figure 4.5 (right) shows the PCr maximal intensity and areas 

plotted with respect to the frequency shift after normalization to the “true”, on-resonance values. 

The PCr area variation with respect to the frequency offset (figure 4.5, right, black line) could be 

approximated by a linear function of the frequency shift in ppm (figure 4.5, right, blue line):  
 

 A(Δf) = 1 + 0.044*Δf                                                       (4.3) 
 

Since LCModel metabolite concentrations are calculated from the measured area for each 

metabolite, the linear approximation A(Δf) of the CSDA-related attenuation profile was used to 

correct for the differences in localization and sensitivity for each metabolite. 
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Figure 4.5. CSDA-related attenuation observed in vivo for the PCr signal. 

PCr resonances (left) and normalized intensities and area (right) are plotted as a function of the carrier 

frequency shift. The shown spectra and values correspond to the LCModel fitted values for PCr. Values 

shown in the right figure are from two rats. The observed PCr area can be approximated as a linear 

function of the frequency shift (blue line, R² = 0.988). 

 

 

4.2.3. 31
P neurochemical profile 

 

Figure 4.6 shows a representative spectrum and its LCModel fit, residual noise, baseline and the 

individual metabolite contributions. The ATP α and γ resonances showed distinct linewidths and 

intensities, notably due to differences in relaxation times but also to the magnitude of the CSDA 

at -2.48 and -7.5 ppm. The spline baseline generated by LCModel (DKNTMN = 2) permitted to 

obtain a flat spectrum without effecting the quantification of any metabolite. 

The metabolites that were systematically detected with CRLBs below 10% were GPC, PE, PCh, 

PCr, Pi and the ATP resonances. GPE was also systematically detected but the average CRLB 

was 17%. The increase of the SDT2 parameter greatly reduced the residual noise levels (figure 

4.4) for PCr and ATP but there was an overall increase in the CRLB values of metabolites by 1 to 

2 %. 
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Figure 4.6. Spectral decomposition of a 

31
P spectrum acquired in the rat brain at 17.2 T. 

LCModel spectral decomposition of a typical spectrum acquired from the rat brain using BISTRO bands 

for localization (figure 4.3). 12 different metabolites were considered in the basis-set although F6P was 

seldom detected. No filtering was applied and all spectral elements shown are scaled identically. 
a 
The α 

and γ ATP resonances were considered separately in the basis sets.  

 

 

4.2.4. T1 relaxation times 

 

Figure 4.7 shows a set of T1-weighted spectra (left) and their LCModel fit (right). Due to their 

shorter T1 times, the ATP resonances were inverted with respect to the remaining metabolites 

already at TI = 176 ms. At TI = 750 ms, the remaining metabolites were zero-crossing. The 

CRLBs of PCr ranged from 1 to 11 % over the set of T1-weighted spectra. Other metabolites that 

systematically showed CRLB below 25% were GPC, Glc6P, PCh and the ATP moieties. The 

elevated noise levels for the T1-weighted spectra made it difficult to accurately fit metabolites 

with low concentrations. 

The mean T1 relaxation times estimated from the 8 rats are shown in table 4.2 with their 

corresponding mean coefficients of determination (R²). Only T1 fits presenting a R² > 0.6 were 

accepted. The T1 times of PCr found at different ages were: 1110 ± 250 (21 months old, n = 3), 

850 ± 135 (17 months old, n = 3) and 1110 ± 170 ms (5 months old, n = 2). 
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Figure 4.7. 

31
P T1-weighted spectra acquired in the rat brain at 17.2 T 

Set of T1-weighted spectra (left) and their LCModel fit (right) acquired from the rat brain with the IR 

method with inversion times ranging from 3 to 2000 ms. A recovery time of 2 s was kept for all spectra. 

For displaying purposes, a Gaussian smoothing of 8 Hz was applied on the data in the frequency domain. 

The most notable features was the inversion of the ATP resonances already at TI = 176 ms followed by 

the inversion of the remaining metabolites between 500 and 750 ms. 

 

 

 
GPC GPE Glc6P PE PCr NADH Pi PCh ATPα ATPγ 

T1 (ms) 1080 ± 210 1170 1030 ± 185 1000 ± 275 1010 ± 210 1800 1110 1160 ± 140 280 ± 70 390 ± 100 

R²  0.78 ± 0.13 0.64  0.79 ± 0.12 0.84 ± 0.1  0.95 ± 0.02 0.69 0.86  0.87 ± 0.09  0.72 ± 0.10  0.77 ± 0.04 

Measures
a 

5 1 7 3 8 1 1 3 3 5 

Table 4.2. T1 relaxation times of 
31

P metabolites measured in the rat brain in vivo at 17.2 T. 
Data from rats of all ages were pooled. LCModel results presenting CRLB > 25 % were discarded.  
a 
Only results showing a coefficient of determination higher than 0.6 were considered. 

 

 

4.2.5. Metabolite concentrations 

 

Applying the quantification method described in section 2.5.2, the concentrations of 12 

metabolites were calculated. Based on the bi-exponential fit of the T2
*
-weighted unsuppressed 

water spectra, the fractional CSF content was estimated as merely 1.7 ± 0.6 % of the total 

measured water signal (R² = 0.999) and it was not observed to change with age. A mean brain 

tissue water content of 79.55 % was assumed, based on published values (Lin, et al., 2000). The 

T1 value of the gray matter shown in table 3.1 was used to correct for T1-weighting on the 

reference water spectrum, although it had only a minor impact (below 2%) due to the long TR (= 

10 s) employed for its acquisition. The water apparent concentration was 43.9 M. Corrections for 

T2-weighting were omitted due to the short acquisition delays used. Metabolites were corrected 
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for T1-weighting using the values shown in table 4.2. For Gly1P, F6P and Glc1P the T1 value of 

PCr was used. T1-weighting was corrected by assuming a FA of 82°, corresponding to the Ernst’s 

angle of the mean PCr T1 value (1010 ms) with TR = 2 s. 

Table 4.3 summarizes the metabolite concentrations for each of the three rat cohorts and their 

pooled results provided by LCModel and their values after correction for T1 relaxation effects and 

CSDA-attenuation. The number of measurements, CRLBs and values found in the literature are 

also shown. 

 

 
5 Months 17 Months 21 Months All 

Corrected for 

T1 and 

CSDA 

Measures
a
 CRLB

b 
Literature 

Gly1P 0.33 ± 0.14 0.30 ± 0.04 - 0.32 ± 0.11 0.29 ± 0.10 6 20 - 

GPC 0.74 ± 0.31 0.73 ± 0.23 0.51 ± 0.14 0.70 ± 0.26 0.73 ± 0.27 18 7 0.6, 1.05-1.14H 

GPE 0.26 ± 0.10 0.28 ± 0.11 0.19 ± 0.02 0.25 ± 0.10 0.27 ± 0.10 17 17 0.74-0.83H 

F6P 0.29 ± 0.16 - - 0.29 ± 0.16 0.26 ± 0.15 3 22 0.012, 0.050 

Glc1P 0.19 ± 0.05 0.25 ± 0.15 0.22 0.23 ± 0.12 0.23 ± 0.12 9 20 0.02 

Glc6P 0.06 ± 0.12 0.06 ± 0.10 - 0.05 ± 0.10 0.20 ± 0.06 4 21 0.09, 0.19, 0.8H 

PE 0.97 ± 0.39 1.09 ± 0.30 0.69 ± 0.06 0.97 ± 0.34 0.87 ± 0.30 18 8 1.7, 1.0-20., 0.5-1H 

PCr 4.87 ± 1.90 4.29 ± 1.17 3.06 ± 1.18 4.34 ± 1.60 5.08 ± 1.87 18 2 4.9, 4-5.5, 2.4-5H 

NADH 0.13 ± 0.05 0.12 ± 0.06 0.08 ± 0.02 0.11 ± 0.06 0.26 ± 0.13 11 18 0.36H 

Pi 0.73 ± 0.33 0.71 ± 0.23 0.53 ± 0.10 0.69 ± 0.27 0.68 ± 0.26 18 9 0.94H, 1.63-2.8 

PCh 0.44 ± 0.19 0.42 ± 0.14 0.26 ± 0.07 0.40 ± 0.16 0.38 ± 0.16 18 9 0.3, 0.46H 

ATPα 0.54 ± 0.24 0.72 ± 0.21 0.38 ± 0.24 0.59 ± 0.25 0.90 ± 0.38 18 11 - 

ATPγ 1.21 ± 0.57 1.19 ± 0.39 0.73 ± 0.27 1.12 ± 0.48 1.30 ± 0.56 18 7 2.3-3.3, 2.19-3.8H 

Pi/PCr 0.15 0.16 0.18 0.16 0.14 - - 0.27-0.53, 0.32 

ATPγ/PCr 0.24 0.27 0.25 0.25 0.26 - - 0.45-0.71,0.51-1.27H 

Table 4.3. 
31

P MRS metabolite concentrations and ratios at 17.2 T in the rat brain in vivo. 

Metabolite concentrations (mM) are shown for the separate rat cohorts at ages 5, 17 and 21 months old 

and their pooled data. Also listed are the concentrations after T1- and CSDA corrections [eq. (4.3)]. T1 

relaxation times shown in table 4.2 were used for T1-weighting correction and PCr values were used for 

Gly1P, F6P and Glc1P. CSDA correction was applied using the ppm values shown in table 4.1. 

Metabolite ratios were calculated for each individual spectrum before averaging.  
a 
Occurrence of a metabolite with CRLB below 25 among 18 spectra.  

b 
Mean CRLB for the considered occurrences.  

H 
Values reported for human brain studies (Zhu, et al., 2012; Hetherington, et al., 2001; Zhu, et al., 2015; 

Jensen, et al., 2002; Blüml, et al., 1999). Other values were reported from rodent studies (Plaschke, et al., 

1993; Mans, et al., 1994; Erecinska, et al., 1989; Mlynàrik, et al., 2012; Smart, et al., 1994). The 

underlined values are those measured here using 
1
H MRS (Table 3.3). 
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4.3. DISCUSSION 
 

In this preliminary study, we present the first 
31

P NMR data acquired in the rat brain in vivo at 

17.2 T. 12 metabolites were quantified using water as an internal reference of concentration and 

the T1 relaxation times of 10 metabolite moieties were measured (R² >0.6). Localization was 

achieved employing BISTRO bands. 

 

4.3.1. Signal localization and CSDA-attenuation 

 

In order to appreciate the effectiveness of our localization using BISTRO bands, two spectra were 

acquired from the same rat with and without OVS bands. Figure 4.8 compares the FID spectrum 

and the LCModel fit of the FID-OVS spectrum corrected for the CSDA-attenuation. The ratio 

between the PCr signal areas was 12.4. Also, a 5.2 difference was found between the PCr 

maximum values. As can be appreciated from the slender linewidth of PCr in figure 4.8, the 

application of OVS drastically reduced the contributions outside of the VOI, where B0 shimming 

had taken place. Due to the strong difference in PCr areas, 
1
H FLASH images were acquired in 

vitro using the identical BISTRO module as used for the FID-OVS scan. The scan parameters 

and images are shown in figure 4.9. A difference between the nominal cubic volume and the 

actual imaged volume using HS8 pulses was found, with a factor of 3.2. This factor was reduced 

to 1.4 when Bruker’s HS (3 ms, 6.6 kHz) pulse was applied, demonstrating the impact of the 

transition bandwidth of the HS8 pulses used for the VOI selection. These results partially explain 

difference between the PCr maximum values of the localized and non-localized spectra (figure 

4.8, top).  

This effect had a major impact on the SNR of all 
31

P MRS acquisitions and should be taken into 

account for future work, by modifying the declared bandwidth of the HS8 pulses to account for 

the transition bandwidth. However, using more selective adiabatic RF pulse envelopes than the 

HS8 pulses with the same bandwidth might be limited by our broad-band amplifier power output 

since we already had to work at up to 2 dB of attenuation from the maximal power. 
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Figure 4.8. Effect of OVS localization on 
31

P spectra in the rat brain. 

OVS-localized (black) and non-localized (red) 
31

P spectra acquired from the same rat (604 averages). 

(Top) The raw spectra showed a 5.21 and a 12.4 fold difference between the PCr maximum height and 

area, respectively. (Bottom) The fit results from LCModel are shown after normalization by the PCr 

height and corrected for the frequency-dependent CSDA-attenuation [eq. (4.3)]. A ratio [ATPγ]/[PCr] of 

0.29 and 0.39 was found for the localized and the non-localized acquisitions, respectively. Baseline 

correction was applied on both spectra. The ATPβ resonance was not fitted in this example and to 

correctly fit the non-localized spectrum, the DEEXT2 parameter was set to 12. 

 

 

 
Figure 4.9. Transition bandwidth effects of HS8 and Paravision’s HS pulses 

Relative sizes of the nominal volume selected by the BISTRO bands and the actual imaged volume using 

a (A) HS8 pulse and a (B) paravision’s HS pulse designed for saturation on a FLASH imaging sequence 

(TR/TE = 1200/6 ms, FOV = 40x40 mm², OVS band thickness = 8 mm). The purple bands represent the 

nominal sizes and positioning of the suppression bands (8-mm thick) used for this experiment. The ratios 

of the selected ROI and the nominal area are 0.46 and 0.81 for the HS8 and HS pulses, respectively.  
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To understand the attenuation profile shown in figure 4.5, we must consider the RF coil 

sensitivity profile, the homogeneity of the B0 field and the volume of distribution of PCr. If we 

assume that the PCr signal originates from the brain only and that our “on-resonance” VOI 

includes most of it (figure 4.3), the spatial mismatch should lead to an attenuation being a 

function of the cube of the frequency shift. For “off-resonance” volumes, the VOI is spatially-

shifted and present stronger B0 field irregularities and consequently stronger T2
*
 attenuation and 

larger linewidths. The spatial displacement at off-resonance values of ±7.5 ppm for a 4-mm thick 

OVS band is 1.36 mm. This shift is nevertheless comparable to the spatial mismatch due to the 

transition bandwidth of our 3-ms long HS8 pulses (2.08 kHz transition bandwidth, 1.26 mm). As 

a consequence, the volume suppressed by the BISTRO bands at off-resonance values were still 

reducing extracranial and muscle contributions. Therefore, the CSDA-attenuation profile should 

be dominated by the inhomogeneous sensitivity of the 
31

P coil. From figure 4.5, the VOI seems to 

move towards the RF coil for positive frequency shifts whereas for negative shifts, the signal is 

originating from a deeper VOI. In this regards, our experimental set-up and the estimated 

attenuation profile was probably very sensitive to the distance between the coil, the center of our 

VOI and the positioning of the top and inclined OVS bands (figure 4.3). It is therefore possible 

that part of the variability observed for our metabolites concentrations and our low [ATP] 

concentrations is related to the simplistic model of our CSDA-attenuation profile. 

The CSDA also had a major impact on the detection of the ATPγ and ATPα resonances, reducing 

their intensity by 11% and 33 %, as estimated from equation (4.3). The A(Δf) function was used 

to correct for the bulk effect of CSDA but residual errors are expected since the OVS positioning 

varied slightly between rats. For future work, it will be critical to reduce the CSDA, notably by 

reducing the thickness of the OVS, reducing the number of OVS bands to cover only critical 

regions or by using shorter HS8 pulses to increase the gradient strength. This solution may indeed 

provide better results because the B1 field intensity is stronger close to the coil, allowing for 

shorter pulses and the coil sensitivity is also higher, making it the dominant noise contributor and 

therefore the most important region where signal suppression is required.  

To further investigate if our low ATP concentrations are due to an inexact attenuation profile, the 

[ATPγ]/[PCr] ratio for the non-localized spectrum was calculated. At 0.39 without and 0.35 with 

correction for T1-weighting, both values are indeed higher that the [ATPγ]/[PCr] ratio measured 

from the OVS-localized spectrum (0.26). Although these values remain lower than those found in 

the literature (Table 4.3), strong signal contributions were originated from outside the localized 

volume, presumably from muscle and extracranial lipids. Since the muscle [ATP]/[PCr] ratio is 

0.22 (Bottomley, et al., 1996) and the FOV of the 
31

P was possibly quite large (20-mm-diameter 

loop), it is possible that our non-localized spectra PCr and ATP values were strongly altered by 

signal contributions from the scalp and jaw muscles.  
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4.3.2. Spectral decomposition using LCModel 

 

Using LCModel software for the analysis of 
31

P spectra proved to be a simple and reliable 

approach and besides the recently published work of (Deelchand, et al., 2015), no other LCModel 

applications in 
31

P have been reported. LCModel managed to readily account for strong baseline 

distortions (notably for 
31

P spectra acquired with no OVS) and provides a method for automated 

and operator-independent analysis. The starting point for the initial first-order phase was found to 

be a critical parameter for correctly fitting lowly concentrated metabolites. The initial phasing 

parameters were found to be constant for a given pulse sequence and ADC filter. The main 

drawback of using LCModel for the analysis of 
31

P spectra is its relatively cumbersome handling 

for frequency shifts, which are relatively common in 
31

P spectra due to variations in the chemical 

environment, such as pH. Setting metabolite-specific SDSH values may solve this problem but 

only when individual, non-overlapping resonances are affected. For ATP, this may not be a 

solution as the three resonances may not necessarily show the same chemical shift change 

(notably in phantom studies) and so the individual resonances must be accounted for by dividing 

the three ATP resonances into separate elements in the basis-set or using the LCModel built-in 

Gaussian functions.  

To our knowledge, heteronuclear J-coupling constants were not available for the metabolites 

included table 4.1. Recently, Deelchand et al has included these values (Deelchand, et al., 2015) 

and for future work they should be included in the simulation of the spectra in the basis set. 

 

4.3.3. T1 relaxation times 

 

T1 relaxation times of PCr, ATPα and ATPγ resonances were estimated to be 1010 ± 210, 280 ± 

70 and 390 ± 100 ms respectively. From the excellent study by Lu et al. (Lu, et al., 2014) looking 

at the relaxation times of 
31

P metabolites from 4 to 16.4 T, one can calculate the T1 values for 

these resonances at 17.16 T based on an extrapolation formula similar to eq. (3.2). The 

corresponding T1 times are respectively 1430, 530 and 800 ms, much longer than our results. 

These differences could be attributed to our lower SNR, to the shorter range of TI explored 

(0.003 to 2 s vs 0.01 to 20 s) or the shorter recovery-time used for our experiment (2 s vs 16 s).  

In order to increase the SNR of our T1-weighted spectra, it could be envisaged to limit the 

number of OVS bands, retaining only the bands used to suppress the jaw muscles, which have 

strong PCr and ATP contributions (Bottomley, et al., 1996). The complete removal of the OVS 

bands could also be considered at the cost of reduced specificity assuming similar T1 relaxation 

times for 
31

P metabolites in the brain and muscles. The strong baseline distortions could be easily 

managed by LCModel. The main drawback would be the increased linewidths, although at 17.2 T 

they only have a moderate impact in differentiating the individual metabolites, as it is shown in 

the raw, non-localized spectrum in figure 4.8. 
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4.3.4. Metabolite quantification 

 

In this study, water was used as an internal reference of concentration. For this, a calibration 

factor CPH was calculated for each experiment. The variability that was observed (15%) was 

congruent with values found in similar studies (16%, (Bottomley, et al., 1996)). Two other 

common methods used for 
31

P referencing use either an external homonuclear reference close to 

the head or a phantom with similar brain conductive properties, geometry and coil loading with 

those of the volunteer. It has been shown that the internal water reference is two times less 

accurate (11% mean error) and reproducible (15% SD of error) than the other two methods 

(Buchli, et al., 1994). Indeed, a high variability was observed for all metabolites concentrations 

(mean variation of 34%), although SNR limitations had an important impact on the detection of 

metabolites with low concentrations. The theoretical framework of this method assumes an 

identical sensitivity profile for both channels, an assumption which may contribute to the 

variability of the quantification. 

Despite this limitation, the concentration values that were found in this work were in agreement 

with published results (Table 4.3). However, the concentrations for GPC, GPE, Glc1P and ATP 

were found to be underestimated. In particular, our [ATPγ]/[PCr] ratio of 0.26 was lower than 

values reported for the dog (0.45), mouse (0.71) and human (0.51 to 1.27) brain (Hetherington, et 

al., 2001; Jensen, et al., 2002; Mlynàrik, et al., 2012; Erecinska, et al., 1989). T1-weighting 

correction was applied to all metabolites based on the calculated T1 times (table 4.2). The PCr 

and ATPγ corrections corresponded to an increase in signal of 15 and 2 % from the uncorrected 

values, respectively. If instead, the predicted T1 times at 17.16 T from Lu et al were used, the PCr 

and ATPγ concentrations would increase by a further 13 and 9 %, decreasing the ATPγ/PCr ratio 

by 5%. Our low ATP/PCr ratio could be associated to an  increased T2- (and T2
*
)- differential 

weighting of ATP with respect to PCr, as their T2 differences have been shown to be quite large 

(by ~ 20 fold) already at low magnetic fields (Brooks, et al., 1986) and for which no correction 

was applied. 

The CSF fractional volume was found to be 1.72 ± 0.59 %. Due to the large transition bandwidth 

of the HS8 OVS bands, it is most likely that this CSF contribution correspond to the ventricular 

CSF volume as the OVS were placed tangentially to the encephalon. In comparison, the CSF 

fractional volume in the human brain has been reported at 11%, most of it being extra-ventricular 

(Matsumae, et al., 1996). In the 2 and 7 months-old rat brain, the ventricular CSF fractional 

volume was respectively estimated as 1.06 and 1.22 % of the total brain volume (Tajima, et al., 

1993; Sahin, et al., 2001; Chiu, et al., 2012), in agreement with our results (1.72 %). Furthermore, 

our measured CSF fraction was not observed to increase with age. This is in agreement with 

measurements done in rats from 3 to 20 months old, where the ventricular volume remained 

negligible compared to the brain volume (~2000 µL at 6 months of age (Tajima, et al., 1993))   

increasing from 7 to 34 µL but the total CSF increased from 275 to 375 µL (Chiu, et al., 2012). 
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4.3.5. Comparison to 
1
H MRS data 

 

The metabolites concentrations measured with 
31

P MRS, corrected for T1-weighting and 

compensated for CSDA-attenuation, were in good agreement with the metabolite concentrations 

found in the Main region using 
1
H MRS. The GPC, PCr and PCh concentrations showed relative 

differences of 22, 4 and 27 % respectively, which are within experimental error. The PE 

concentration measured in 
31

P (0.87 mM) was half of that found in the 
1
H studies (1.7 mM), 

presenting similar CRLBs in both nuclei (8 % and 9 % for the 
31

P and 
1
H analysis, respectively). 

Interestingly, both metabolite concentrations are consistent with their various reported 

concentrations either in 
1
H or 

31
P MRS studies (Blüml, et al., 1999; Smart, et al., 1994). The 

relative difference may originate from the difference between both VOIs but also from the 

inaccuracy of some of our correction factors (T1-weigthing, CSDA attenuation).  

 

4.3.6. Changes with age 

 

Considering the small size of each cohort, it was difficult to determine statistically significant 

changes. Age-related metabolite concentration or T1 relaxation changes could not be observed 

using 
31

P MRS and only statistically significant increases of [PE]/[PCr] with age were found. 

[GPC]/[PCr] showed an increase but it was above the significance threshold (P = 0.055). The PCr 

concentrations were observed to decrease with age but it was not significant either (P = 0.15). 

The absence of age-related changes should be considered with caution, as measurement errors 

introduced by the CSDA, the quantification method intrinsic variations and the reduced number 

of elderly rats (n = 3) compromises our evaluations. Furthermore, no age-specific T1 corrections 

were applied due to the reduced number of T1 measurements and this may also play an important 

role as the results found in the 
1
H studies revealed strong T1 variations due to age and the number 

of examinations. 

 

4.4. CONCLUSION  

 

The present work points out the main challenges for achieving 
31

P MRS quantification in the rat 

brain, exposing the shortcomings of our localization scheme using HS8 pulses for OVS. Despite 

these drawbacks, future 
31

P MRS measurements at 17.2 T look promising and several solutions 

can be adopted to tackle the observed problems, notably by shortening the thickness of our OVS 

and considering the transition bandwidth for positioning of the OVS bands. 

Up to 12 metabolites were quantified using LCModel and the T1 relaxation times of 10 

metabolite moieties were estimated. The metabolite concentrations of GPC, PCr and PCh were in 

agreement with those found with 
1
H MRS using LASER. The ATP concentration and the 
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[ATP]/[PCr] ratio was lower than expected. Based on our low ATP concentrations, it might be 

interesting to account for T2-weighting in the future. Preliminary results in the aging DA rat brain 

were also presented. 

In the future, the presented approach could be readily used for other experimental setups. 

Notably, the implementation of the BISTRO scheme opens the path for saturation transfer 

experiments, in particular for the measurement of the rate of ATP synthesis, as it has been done 

in the mouse model of AD at 14.1 T (Mlynàrik, et al., 2012). 
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PART III: MRSI STUDIES AT 7 TESLA 
 

5. APPLICATION OF PARALLEL TRANSMISSION TO 
1H 

MRSI AT 7 TESLA 
 

At high magnetic field, 
1
H MR Spectroscopy benefits from an increase in sensitivity and spectral 

resolution by an intrinsic increase of the Signal-to-Noise Ratio (SNR) and a higher chemical shift 

dispersion. Yet, at 7 Tesla and higher, the wavelength of radiofrequency (RF) pulses is shortened 

to the size of the human head, creating interference patterns exalting B1 field inhomogeneity 

(Yang, et al., 2002; Van de Moortele, et al., 2005). In consequence, sub-optimal results are 

obtained in MRSI and MRS studies due to the application of inhomogeneous flip angles over the 

volume of interest. Furthermore, at elevated magnetic fields, the increased energy deposition 

(Section 1.2.1.3) generated by the RF pulses limits the available power and number of RF pulses 

per unit of time (Avdievich, et al., 2009).  

Parallel transmission (pTx) is one of the most promising and elegant solutions to tackle the 

problem of B1 inhomogeneity through the use of independently-driven coil elements, providing a 

great flexibility to achieve adjustable excitation patterns (Katscher, et al., 2003; Zhu, 2004). 

However, careful monitoring of the apparition of highly localized energy deposition regions in 

the brain or “hot spots” is needed due to the complexity of the applied E-fields. 

During this thesis, pTx methods were tested to tailor localized excitation fields and less energy-

demanding OVS using different static B1-shimming configurations within a single pulse sequence 

under conservative SAR constraints. Energy deposition levels followed the IEC guidelines for 

humans (International Electrotechnical Commission, March 2010) and were monitored using an 

in-house simulation software (Cloos, 2012). 

 

5.1. OBJECTIVES 

 
The primary goals of the presented work were to take advantage of the increased degrees of 

freedom offered by the pTx mode (i) to improve the excitation field homogeneity for a 2D, pulse-

acquire chemical shift imaging (CSI) sequence (detailed in section 2.2.1) and (ii) to reduce 

extracranial lipid contributions with effective, low power demanding outer-volume suppression 

(OVS) pulses. To this end, static B1-shim configurations corresponding to the circularly polarized 

(CP) eigenmodes or “rings” were used as OVS. Employing OVS rings make it possible to 

suppress signal originated from the periphery of the brain within a single RF pulse while 

preventing chemical shift artifacts since no selection gradients are used for such class of OVS 

(Hetherington, et al., 2010). The ring modes efficacy and robustness were compared to a 

numerically optimized OVS mode, whose calculation was based on evaluating a cost function in 



PART III : 
1
H MRSI AT 7 T USING PTX IN VITRO 

133 
 

two volumes of interest (VOI). The efficacy of these methods was evaluated in vitro. All the 

sequences, parameterizations and SAR limits were set under in vivo constrains. 

 

5.2. STATIC B1 SHIMMING 

 
Static B1 shimming in the context of parallel transmission consists in providing fixed amplitude 

and phase values for each individual element of a multi-transmit coil during RF transmission, 

resulting in a specific excitation pattern that can improve both RF homogeneity and efficiency 

(Mao, et al., 2006; Ibrahim, et al., 2007). The B1 field generated at any point r in space when 

using n independent resonators is given by: 
 

    B1(𝐫) = ∑ A𝑖B𝑖(𝐫)𝒏
𝒊=𝟏 𝒆−𝒊(ϕ𝑖(𝐫)+ϕ0𝑖)                                          (5.1) 

 

where the amplitude Bi(r) and phase ϕi(r) are spatial functions determined by the coil geometry 

and loading conditions and Ai and ϕ0i are amplitude and phase parameters defined by the user. 

The set of the n parameters Ai and ϕ0i constitute a B1 shimming configuration. Since the loading 

conditions and efficiency of each resonator changes from subject to subject and the phase 

relationships between the coils are spatially dependent, the calculation of the B1 configuration 

varies with the coil, subject and brain region and must therefore be calculated for every 

experiment. In practice, Bi(r) and ϕi(r) are determined for each resonator through B1 mapping and 

Ai and ϕ0i are typically calculated as to reduce B1 field inhomogeneity inside a specific VOI. The 

default B1-shim configuration of the coil corresponds to the pseudo-CP mode, which has full 

power amplitude (Ai = 1) for all channels and there is a relative phase difference of the coil 

elements of 45°, the first coil starting with a 0° phase. 

 

5.2.1. OVS ring modes 

 

At 7 T, SAR constrains limit the available B1 field required for high-bandwidth RF pulses, which 

are required for good spatial localization such as for the application of OVS bands. Furthermore, 

the numerous OVS bands required to correctly suppress signal originated from extracranial lipids 

rapidly becomes prohibitive in terms of SAR limitations. 

To tackle this problem, a different and less-SAR demanding approach can be adopted, consisting 

of the use of static B1-shim configurations aiming at exciting only the rim of the head in a single 

pulse without the use of selection gradients (figure 5.1). One of these methods consists in using 

the CP eigenmode “rings” obtained by altering the relative phase of the N resonating elements in 

a multi-transmit coil, each eigenmode being orthogonal to the other N-1 modes (Alagappan, et 

al., 2007; Hetherington, et al., 2010). 

The determination of the individual phase of each coil element j for an eigenmode m is given by 

the expression: 
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ϕ0,𝑚,𝑗 = −ϕ0,0,𝑗(VOIInner) + (𝑗 − 1) ∗
2𝜋

𝑛
∗ 𝑚, 𝑚 = 1,2, … , n − 1              (5.2) 

 

where ϕ0,0,𝑗(VOIInner) corresponds to the phase maximizing the constructive interference of the 

n channels inside the volume VOIInner, typically chosen in the center of the coil’s field of view 

(FOV) as seen in figure 5.2C. The amplitudes of each channel are adjusted for the CP mode (n = 

0) using a least-squares algorithm to match a target B1 profile and the resulting Ai values are then 

used for the 7 other eigenmodes. The 8 eigenmodes or “ring modes” (hereafter referred to as ring 

mode Mi, n = i) for an 8 channel transmit/receive coil are shown in figure 5.2A. The ring mode 

M2 presents the excitation pattern that is most suitable for the spoiling of extracranial lipids. In 

comparison, the M1 excitation pattern is not selective enough while the M3 and M4 eigenmodes 

cause unwanted excitation inside the VOI. 

 

 
Figure 5.1. Extracranial lipid signal suppression through spatially selective saturation. 

Left. Several OVS bands are required to cover the majority of the head skin. Right. A single OVS “ring” 

obtained with a specific B1 shim configuration results in a reduction of the required number of pulses 

while covering the entire brain. 

 

 

5.2.2. Numerically optimized L0 and LR modes 

 

In parallel to the development of the ring modes, numerically-optimized B1 shim configurations 

were also used (figure 5.2B). For their numerical optimization, the 8 amplitudes and phase offsets 

were simultaneously allowed to vary freely. The calculations were done using the cost functions 

shown below: 
 

C(a1, … , a8,φ1, … ,φ8, 𝐫) = ∑ a𝑖𝐁𝑖(𝐫)𝟖
𝒊=𝟏 𝒆−𝒊(φ𝑖)                                 (5.3) 

L0 = minV

∑ |C(V,r)|𝑟∈VOIOuter
 

(∑ |C(V,r)|𝑟∈VOIInner
)2

                                                 (5.4) 

L𝑅 = minV

∑ |C(V,r)|𝑟∈VOIInner
 

∑ |C(V,r)|𝑟∈VOIOuter

                                                   (5.5) 
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where Bi is the complex value of the B1 field measured for channel i.  

The L0 shim configuration was meant for homogenous excitation within the VOI. The purpose of 

the LR shim configuration was to be used as an OVS ring by minimizing the excitation in the 

inner volume and maximizing the peripheral excitation. The inner and outer volumes were 

defined manually (as ellipses) using reference images and a fixed ratio between their major axis 

of 0.6 was used (figure 5.2C). The B1 maps had an identical FOV as the images used for 

reference. 

 

 
Figure 5.2. B1 shim configurations of an 8-channel multi-transmit coil in a water phantom 

A. The circularly polarized (CP) mode where the mean phase at the center of the coil is zero. The 

eigenmodes or rings were generated by adding a phase shift between adjacent coil elements of n*2π/8, 

n=1,…,7. B. Numerically optimized B1 shim for the excitation in the center of the coil (L0) and for 

peripheral excitation (LR). C. Outer and Inner volumes used for the calculation of both the ring modes 

(inner volume) or the numerically optimized L0 and LR shim configurations (inner and outer volumes). 

During this work, the ratio of the inner volume was fixed to 0.6 of that of the outer VOI.  

 

 

5.3. B1 MAPPING 

 
Equation (5.1) shows that the B1 profile depends on the individual 8 resonators of the multi-

transmit coil. In order to calculate the spatially-dependent Bi(r) and ϕi(r) profiles of each channel, 

a fast and reliable B1 mapping sequence is necessary. To this end, numerous techniques have 

been proposed, the Actual Flip angle Imaging (AFI) sequence being among the most popular 

(Yarnykh, 2007; Amadon, et al., 2008; Boulant, et al., 2010). However, the AFI sequence is time-

consuming for pTx applications, limiting its use on clinical exams. 

The XFL sequence (Amadon, et al., 2010; Amadon, et al., 2012; Fautz, et al., 2008) is a 2D 

multi-slice, magnetization-prepared turbo-FLASH pulse sequence. It employs a sharp slice-

selective saturation SLR VERSE’d pulse (table 1.2) to pre-saturate the magnetization in a slice 

and its saturation efficacy depends on the spatially-dependent FA of the transmitting channel. 

The RF saturation is immediately followed by a gradient spoiler and a slice-selective excitation 

pulse using a FLASH readout. To increase SNR, the excitation pulse is applied by all the 8 
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channels with a linear combination specific to the channel whose B1 profile is being measured. 

The application of the 8 channels for excitation is known as the interferometric method (Brunner, 

et al., 2008) and requires a post-processing step to retrieve the individual B1 amplitude maps and 

requires an additional reference image with no saturation. Non-saturated FLASH images are also 

acquired to determine the individual phase maps.  

With the XFL sequence, the B1 maps of the 8 channels were acquired in less than 5 minutes with 

excellent correlation and identical resolution as the AFI sequence. Figure 5.3 shows typical B1 

profiles of the 8 resonators measured in a water phantom. 

 

 
Figure 5.3. B1 profiles of the 8 individual coils acquired in a water phantom using XFL. The presented B1 

maps were calculated at every experiment. The images show an axial slice rotated 90° clockwise. 

 

 

5.4. MATERIALS AND METHODS 

 
5.4.1. Experimental set-up  

 

Experiments were performed on a Siemens Magnetom 7 Tesla MRI scanner (Siemens Medical 

System, Erlangen, Germany), equipped with an 8-channel Tx-array set and an AC84 head 

gradient coil (max. strength 80 mT/m, slew rate 400 T/m/s). A home-made 8-channel transmit-

receive array head coil was used consisting of 8 strip-line dipoles distributed every 42.5° on a 

cylindrical surface of a 27.6 cm diameter (figure 5.4). All dipoles were tuned ideally at 297.18 

MHz corresponding to the proton Larmor frequency at 7 T and matched identically to a 50 Ohm 

line impedance. The coil was built according to the norm ISO 13485 and certified by Bureau 

Veritas (France). A water spherical phantom (diameter 16 cm, salted with 4 g/L) matching the 

conductivity of the human brain was used for this study. Both the local and global average RF 

power deposition limits for the human subject were monitored in real time to ensure compliance 

to the SAR guidelines (International Electrotechnical Commission, March 2010).  
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Figure 5.4. Home-built 8-channel multi-transmit coil used in pTx experiments.  

 

 

5.4.2. MRI data acquisition  

 

For all experimental sessions, the 8 individual channel B1 profiles were obtained using a XFL 

sequence for fast B1-mapping (resolution: 5 mm isotropic, 64 x 40 matrix, 32 slices,  2.5 mm 

slice thickness with a 2.5 mm gap between slices) using the interferometric method (Amadon, et 

al., 2010; Amadon, et al., 2012).  

B0 mapping was performed using a fast 2D 3-echoes spoiled gradient echo sequence based on the 

AFI sequence (TR1/TR2 = 40/200, TE1/TE2/TE3 = 1/2/3 ms, 5 mm isotropic resolution, 5 mm 

slice thickness) and it was used to correct for off-resonance errors for the B1 profiles (Amadon, et 

al., 2008). A better resolved AFI sequence (2.5 mm isotropic) was also acquired for the 

generation of masks for B1-shimming calculations. 

FASTESTMAP was used for iterative B0 shimming on a 60 x 60 x 30 mm
3
 volume positioned at 

the center of the CSI slice. 

Validation of the RF power calibration was done using the modified AFI sequence. To this end, 

the power required to achieve several flip angles (15°, 30°, 45°, 60°, 75° and 90°) in a determined 

VOI was calculated based on the acquired XFL B1 maps and equation (1.31). The AFI sequence 

was run with the calculated RF power and the experimental FA was compared to the targeted FA. 

All the FA validation tests were done using the pseudo-CP B1-shim configuration described in 

section 5.2. 
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For validation of the B1-shim configurations used for the CSI experiments, FLASH images were 

acquired (1 average, TR = 450 ms, TE = 4.2 ms, 1.2 mm isotropic resolution, 20 mm slice-

thickness, 15° FA, 1.28 ms long sinc pulse). The WS and OVS preparation modules (figure 5.5) 

were added to this FLASH sequence with the same timing and RF characteristics as in the CSI 

sequence. Independent static B1-shim configurations could be set for the excitation, OVS and WS 

pulses. 5 FLASH images were acquired with the following B1-shim configurations:  
 

 pseudo-CP, CP or L0 mode for the excitation, no OVS;  

 pseudo-CP mode for the excitation and either M2 or LR mode for the OVS; 

 L0 mode for the excitation and LR mode for the OVS.  

 

The required B1 intensities were calculated for each configuration based on the values shown in 

table 1.2. Since the goal of the experiments was to test the efficacy of the OVS module using a 

water phantom, the OVS carrier frequency was centered on the water resonance frequency and 

the WS module was deactivated for the experiments shown in this chapter.  

 
Figure 5.5. Chronogram showing the WS and OVS modules incorporated prior to the FLASH and 2D CSI 

sequences. The WS (blue), OVS (dark red) and excitation (gray) RF pulses were managed independently 

and each could use a different static B1-shim configuration. The spacing between consecutive pulses were 

401, 355, 172, 57, 49, 26, 18 and 10 ms. For clarity, the WS and OVS modules are displayed on two 

separate lines. Spoiler gradients are schematically presented in yellow and slice-selection gradient in 

orange. 

 

 

5.4.3. MRI data analysis 

 

The reconstruction of the AFI sequences was done using in-house reconstruction routines and the 

masks were generated using the brain extraction tools available in the FSL software package 

(Smith, 2002). Matlab (The MathWorks, MA, USA) was used for the analysis of the imaging 

data, for retrieving the B1 maps out of the interferometry data and for the calculation of the ring 

modes. The numerical optimization of the L0 and LR shim configurations [equ.(5.4) and (5.5)] 
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was done using a non-linear unconstrained minimization algorithm (fminunc matlab function). 

The B0 map was used for phase correction of the non-saturated XFL reference image.  

 

5.4.4. MRSI data acquisition 

 

A 2D pulse-acquire CSI sequence was used (5 averages, 16 x 16 matrix, FOV 240 x 240 x 20 

mm
3
, TR = 1500 ms, TE = 1.26 ms, FA = 90°, 4 preparation scans, elliptical encoding, 1.28 ms 

sinc pulse duration). The WS and OVS preparation modules shown in figure 5.5 were 

incorporated. CSI data were acquired using the following B1-shim configurations:  
 

 CP or L0 mode for the excitation, no OVS; 

 CP mode for the excitation and M2 mode for the OVS; 

 L0 mode for the excitation and LR mode for the OVS.  

 

As for the FLASH measurements, the OVS carrier frequency was centered on the water 

resonance frequency and the WS module was deactivated. 

 

5.4.5. MRSI data analysis  

 

A 50 Hz Hamming filter was applied on the reconstructed CSI data (32 x 32 matrix). 

Visualization of the water CSI maps was done using Syngo’s spectroscopy card. 

 

5.4.6. SAR evaluation 

 

SAR evaluation was done using the “CEASAR” software (figure 5.6) developed in-house (Cloos, 

et al., 2010), based on a conservative approach for the calculation of the allowed power limits. To 

this end, the model assumed constructive RF interference at all points in the brain. The 10 s and 6 

min time averaged power limits were restricted to the more conservative guidelines of the 6-min 

SAR limits. An average light head of 5 kg was assumed, in order to provide subject-independent 

power limits. Complete absorption of the incident power by the head was also assumed.  

At the beginning of the experiment, an initial set of time-averaged power limits was fixed for 

each individual channel (1.2 W time-averaged power limit over 10 s). For every pulse sequence, 

power settings and TR, the global and local 10-gram SAR limits were calculated using four pre-

simulated datasets with different anatomies and positions inside the coil (Aarkid, East Lothian, 

Scotland and Virtual Family (Christ, et al., 2010)). The coil structure was simulated with HFSS 

(ANSYS, Canonsburg, PA, USA). The results from the worst-case scenario were considered and 

if necessary more appropriate time-average power limits were set for each channel. The setting of 

individual power limits reduced the power constrains when using 8 separate transmit channels 
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while enforcing SAR safety. When SAR limits were exceeded, the software proposed either an 

increase in TR or a reduction of the applied voltage for SAR re-evaluation. Without CEASAR’s 

validation, the sequence could not be launched. On average, a safety margin of a factor of 5 was 

found between the true absorbed energy and the simulated result provided by CEASAR (Boulant, 

et al., 2011).  

It should be noted that, the power emitted by the RF amplifiers is measured by the constructor 

through the use of directional couplers and time-averaged power meters (TALES system). If at 

any time the power limits are exceeded, the acquisition is terminated. All CEASAR-validated 

protocols comply to such limits and only non-validated protocols may trigger a sudden 

termination of the sequence (Cloos, 2012).   
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Figure 5.6. SAR evaluation tool CEASAR.  

Screenshots of the CEASAR software used for evaluation of SAR limits and individual coil time-

averaged power limits for peak, 10s and 6 mins. Features are indicated with arrows and labels. A. Main 

screen shows a protocol in compliance with the SAR guidelines. The three columns correspond to the 

peak, 10 s and 6 mins time-averaged power limits for each of the 8 independent channels. As explained in 

the text, these limits are evaluated with respect to the most conservative guideline of 6-min limits. B. 

Display of the individual pulses to be applied on each channel, showing the RF-waveform intensities and 

lengths.   
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5.5. RESULTS  

 
5.5.1. B1-mapping and RF Calibration 

 

Figure 5.3 shows typical B1 profiles obtained during the experiments. To validate the RF power 

calibration method, the required power needed to achieve a precise excitation FA for the VOI 

shown in figure 5.7 was estimated. The FA distributions in the VOI are shown in table 5.1. On 

average, the deviation between the measured and target angles was 5.9 % ± 1.6 %. Thus, the 

linearity of the RF coil was confirmed for the range of used voltages (19 to 111 V, for a 

maximum power of 190 V). 

 

 
Figure 5.7. VOI used for RF power calibration tests. 

VOI was used for the calculation of the required RF power needed to achieve the target flip angles listed 

in table 5.1. The shown FLASH images were acquired with the Pseudo-CP mode. 

 

 

Target (deg) Measured (deg) Deviation 

15 16.2 ± 1.5 8.2 % 

30 31.6 ± 2.6 5.5 % 

45 47.3 ± 3.9 5.2 % 

60 63.4 ± 4.8 5.7 % 

75 78.7 ± 6.0 5.1 % 

90 92.9 ± 5.6 3.2 % 

Table 5.1. Validation of the RF calibration pipeline. 

Flip Angle measurements from a 150 cm
3
 VOI using the modified AFI sequence. The RF power was 

manually determined based on the measured XFL B1 maps, aiming for a target FA (shown in the first 

column). The measured FA distributions as well as the deviation from their target angle are shown. 
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5.5.2. Pseudo-CP, CP vs L0 excitation modes 

 

Figure 5.8 shows two sets of experiments done with slightly different set-ups (using two 

phantoms with the same composition but slightly different volumes). The B1 profiles for each B1-

shim configuration are shown along with the resulting FLASH images. The excitation 

homogeneity was evaluated by measuring the mean FA in the inner VOI from the FA maps (table 

5.2) and the signal intensity from the FLASH images (table 5.3). Figure 5.9 displays the B1 field 

profiles along the line and column crossing the center of the phantom for each B1 configuration 

used.  

For a similar nominal power setting, the L0 mode is 40% more efficient and half as 

inhomogeneous within the inner VOI than the CP mode (Table 5.2). Consistently, figures 5.9A 

and 5.9B show less distorted profiles for the L0 mode (black) than for the CP mode (red).  

In term of signal intensity (Table 5.3), the L0 mode led to a 29% more homogeneous signal at the 

center of the phantom (Purple ROI, figure 5.10). Also, the L0 mode didn’t excite as much the 

periphery of the phantom as the CP mode.  

Compared to the CP and the L0 modes, the pseudo-CP mode led to more signal overall but not as 

homogenous as the other two “focalized” B1 excitation modes in both VOIs. 

 

5.5.3. M2 ring vs LR modes 

 

The efficacy of the M2 and LR OVS ring modes were compared using the same pseudo-CP mode 

for excitation and pulse sequence (figure 5.5) with the WS turned off.  

Compared to M2, the LR mode led to a 78 % less intense excitation and a 65% more 

homogeneous FA distribution in the inner VOI while retaining 90% of the B1 intensity in the 

outer VOI (table 5.2). Nevertheless, the LR mode had one disadvantage, which was the FA 

variability over the outer VOI, leaving a star-like pattern of residual signal (clearly visible in 

figure 5.8 and 5.9). 

Among the CP-eigenmodes, M2 is the most suitable for a use as an OVS ring mode thanks to its 

strong and homogenous excitation at the periphery of the phantom (figure 5.2, table 5.2). 

However, it also presents a moderate degree of excitation within the inner VOI.  

The impact of the M2 mode in the center of the phantom was confirmed by a 12% increased 

reduction in signal intensity compared to the LR mode. A small ROI (yellow, figure 5.10) placed 

in the periphery of the phantom was used to estimate the maximum efficacy of the OVS modes 

which was found similar for both OVS modes (88% vs 91%).  
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Figure 5.8. Separate phantom validations of the explored B1 shim modes. 

B1 profiles and their corresponding FLASH images determined in two in vitro experiments. To facilitate 

the comparison, an identical grayscale range was used for FLASH CP and L0 images and OVS ring M2 

and LR images. The same pseudo-CP B1-shim configuration was used for excitation when the two OVS 

ring modes were evaluated. 
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Figure 5.9. B1 profiles along the central column and line crossing at the center of the phantom. 

Profiles along the central line (A, C) and column (B, D) of the B1 maps shown for phantom 1 in figure 

5.8. A and B show the CP and L0 distributions. C and D show the distributions for LR and the M2, M3 and 

M4 ring modes (respective phase shifts of π/2, 3π/4 and π). 

 

 

B1 shimming VOIInner (A.U.) ΔB1(%) VOIOuter (A.U.) ΔB1(%) 

CP 71 ± 18 25 89 ± 21 24 

L0 100 ±  9 9 81 ± 24 30 

M1 80 ± 24 30 58 ± 24 41 

M2 68 ± 31 46 92 ± 14 15 

M3 45 ± 25 55 79 ± 26 33 

M4 46 ± 20 43 69 ± 30 43 

LR 15 ± 11 73 83 ± 27 32 

Table 5.2. Regional B1 distributions of the B1-shim configurations. 

Mean B1 values (A.U.) in the inner and outer volumes defined in figure 5.2C. The B1 profiles were 

calculated assuming an identical power input. FLASH images acquired with the CP, L0, M2 and LR modes 

are shown in figure 5.8. 
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Figure 5.10. Definitions of the inner (purple) and outer (yellow) ROIs used for the measurements 

presented below in table 5.3. 

 

 

Excitation OVS Inner ROI Outer ROI Voltage
a 
(Exc / OVS) 

Pseudo-CP - 295 ± 82 218 ± 16 17 / - 

CP - 231 ± 65 160 ±   9 14 / - 

L0 - 226 ± 46 74 ± 10 20 / - 

Pseudo-CP M2 262 ± 82 25 ±   8 17 / 10 

Pseudo-CP LR 303 ± 64 19 ± 13 17 / 19 

Table 5.3. Impact of the tested B1-shim configurations on the signal intensity.  

OVS ring modes were tested using the same pseudo-CP mode for excitation. The ROIs are shown in 

figure 5.10. 
a 
Applied voltage when Ai = 1 [eq. (5.1)]. 

 

 

5.5.4. Application to CSI  

 

As shown in figure 5.11, a good match was found between the FLASH and CSI images acquired 

simultaneously when using different B1-shimming configurations. Based on this observation, one 

can expect the explored B1-shim modes to display the same properties when applied to CSI 

acquisitions. Notably, the numerically-optimized LR still provided good results even for VOIs 

close to the rim of the phantom.  



PART III : 
1
H MRSI AT 7 T USING PTX IN VITRO 

147 
 

 
Figure 5.11. Simultaneous CSI and FLASH profiles with different B1-shim configurations. 

The display of the CSI maps was obtained by fitting the water resonance in each voxel using the 

spectroscopy routines available in Syngo. For comparison, all FLASH images were scaled identically. 

The B1-shim configurations were: A) CP mode, B) L0 mode, C) CP excitation with OVS ring M2 and D) 

L0 excitation with OVS ring LR. E and F are the VOIs used for calculating the B1-shim configurations 

shown in (A, C) and (B, D), respectively. The dark bands traversing each CSI images are found on the 

reference image (localizer) to which the CSI image is co-registered in Syngo. 

 

 

5.5.5. SAR evaluation 

 

Local and global SAR values were estimated for the different CSI acquisitions using “CEASAR” 

as a percentage of the maximum time-averaged power limits of 10 W/Kg and 3.2 W/Kg, 

respectively. Results were summarized in Table 5.4. The numerically optimized L0 and LR modes 

showed higher SAR levels than the CP and M2 modes. Since phase information was ignored by 

“CEASAR”, only constructive interference was assumed. Therefore, SAR differences are only 

due to the different amplitude coefficients Ai and nominal voltages used.  

OVS and WS individual pulses introduced only a mild increase in SAR. This was expected as 

they were relatively long RF pulses (5.12 and 6.6 ms respectively) and they were applied using a 

Gaussian waveform, which is the second most RF-efficient pulse considered within the 

framework of this thesis (amplitude integral of 0.55, table 1.2). Using sharper amplitude-

modulated pulses such as the hermit pulse for excitation and OVS rings lead to an increase in the 

local and global SAR levels by a factor of 2, as shown in table 5.4. 
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Excitation OVS
a 

WS
a Local  

SAR(%) 

Global  

SAR(%) 

CP - -   2.89 1.45 

L0 - -   3.46 1.80 

M2
b 

- -   0.34 0.17 

LR
b 

- -   0.73 0.29 

CP M2 CP   5.41 2.69 

CP
Herm

 M2
Herm

 CP 11.22 5.61 

L0 LR L0   7.70 3.64 

Table 5.4. SAR measurements with several B1 shimming combinations 

Excitation pulses had a 3-lobes Sinc RF envelope. OVS and WS pulses had a Gaussian waveform. Pulse 

durations for the 4 OVS and WS pulses were 5.12 and 6.6 ms, respectively. Maximum SAR values 

correspond to 10 W/kg and 3.2 W/kg.  
a
 OVS and WS pulses were applied with a 90° FA.  

b
 These pulses were applied using a Gaussian RF envelope with a 5.12 ms pulse duration(i.e., as an OVS 

pulse).  
Herm

 Pulses were applied using a Hermit RF waveform. 

 

 

5.6. DISCUSSION 

 
5.6.1. B1-inhomogeneity 

 

B1 field inhomogeneity is a major problem for NMR at 7 T which can be tackled by using 

parallel transmission methods. Several methods have been proposed, notably for MR imaging 

applications, where spatial inhomogeneity is highly reduced with tailored RF pulses such as kT-

points or spokes (Cloos, et al., 2012; Katscher, et al., 2003; Zhu, 2004; Zelinski, et al., 2008). 

These methods define the excitation field by modulating the RF contributions at different 

positions of the k-space, using the coil gradients between RF pulses for positioning in the k-

space. Although RF-tailoring methods achieve good spatial localization, their use is limited in 

MR spectroscopy due to the strong off-resonance effects and narrow-band nature (Setsompop, et 

al., 2007). Setsompop et al. have managed to apply wideband spokes for CSI applications, but 

B1
+
 mitigation was achieved only for a 600 Hz bandwidth (Setsompop, et al., 2009).  

On the other hand, pTx has been widely introduced into MRS and MRSI studies through static or 

dynamic B1-shimming (Boer, et al., 2012; Zhu, et al., 2013; Emir, et al., 2012; Pan, et al., 2010; 

Marjanska, et al., 2012). Static B1-shimming and the use of multi-transmit array coils improves 

the FA distribution homogeneity and can help reducing the energy deposition by increasing the 

efficiency at which the individual coil elements are used (Avdievich, et al., 2009; Cloos, et al., 

2012). This is particularly important at high fields, where strong B1 field inhomogeneities are 

present and SAR limits are quickly reached due to the increased power demands at higher 

magnetic fields [equation (1.52)]. 
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The method explored here took advantage of the coil eigenmodes to generate low power-

demanding OVS rings. This approach is an interesting answer for high-resolution CSI-FID 

studies where short TRs are needed and the chemical shift artifacts have to be minimized 

(Henning, et al., 2009). Furthermore, the individual power amplitudes of each resonator are 

determined for each subject and experimental session during the static B1-shimming calculation. 

This allows a more efficiently use of the available power with respect to the SAR limitations. 

 

5.6.2. Chemical shift artifact and SAR limits 

 

The presented M2 and LR ring modes showed a good efficacy while showing reasonable SAR 

demands. The absence of a slice-selection gradient abolished the need of large-bandwidth RF 

pulses, whose use is problematic due to SAR limitations. Covering the extra-cranial space is 

usually done using 6 to 8 individual OVS bands and OVS schemes require the application of 2 to 

3 separate pulses for a good efficiency. Assuming 3 blocks of 6 OVS bands, a hermit waveform 

with a moderate bandwidth of 1.33 kHz and FA = 90°, the SAR introduced by the OVS module 

alone would be 36.7% (local) and 18.4% (global) using our current experimental setup (TR = 1.5 

s) and SAR evaluation method. In contrast, local and global SAR values for the M2 and LR ring 

modes were below 3 % and 1.2 %, respectively. These SAR values were calculated considering a 

common reference power of 110 V. However, the reference voltage for human head is closer to 

150 V (based on values from other studies in the research group). Using this more realistic 

voltage would lead to a 35% increase of the local and global SAR values of 63.9% and 31.86%, 

respectively. Although such set of OVS would still be accepted for a moderate TR of 1.5 s, the 

chemical shift artifact from lipids (~0.9 ppm) to the tCr(CH3) moiety (3.03 ppm) would 

correspond to a vast 48% spatial shift. 

  

5.6.3. In vitro validation of static B1-shimming excitation and OVS ring modes 

 

The work presented in this chapter was meant as the first step towards the application of static 

B1-shimming excitation and OVS ring modes for 
1
H CSI-FID acquisitions in the human brain. 

The acquisition and processing steps were identical to those needed for in vivo studies and the 

presented SAR values were evaluated for simulated human heads. 

The CP mode and L0 configurations showed similar results in the acquired images. Yet the B1 

profile of the L0 configuration showed an improved excitation homogeneity (30%) within a small 

VOI while reducing the excitation at the periphery. Being the result of a numerical optimization, 

it is also likely that its performance will be higher than the M0 mode for a larger ROIs used in the 

brain. Therefore, the L0 configuration would be the first candidate for future in vivo applications. 

The disadvantages of the OVS ring modes over conventional OVS bands is that excitation inside 

the VOI cannot be completely nulled, leading to a partial saturation of the metabolites resonances 
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(as shown by the in vitro measurements in table 5.3) and that the excitation profiles may vary 

between subjects. The numerical optimization used for the LR mode limited both inconveniences 

compared to the M2 mode. The experimental results were in agreement with the simulations as 

shown in figure 5.8. Nevertheless, the B1 profiles for the M2 mode showed mild differences 

between experiments, probably due to experimental variations particularly in coil loading and 

manual definition of the ROIs used for power calibration. The numerically optimized L0 and LR 

modes showed less inconsistency as illustrated by the B1 profiles among the different 

experiments.  

The LR configuration had the disadvantage of presenting small gaps between each pair of 

resonators, giving a star-like profile. This irregular pattern could lead to a probable contamination 

by extra-cranial lipids in vivo and as such its validation is required. However, similar patterns 

have been used in vivo previously providing good results (Hetherington, et al., 2010; Boer, et al., 

2012). 

The ratio between the outer and inner VOI radii used for calculation of the B1 shims (figure 5.2C) 

was fixed at 0.6. Other studies have used a ratio of 0.8 (Hetherington, et al., 2010). The similarity 

of our rings compared to those obtained by Hetherington et al. in vitro suggests that the ratio used 

here could be used for human studies. 

In this study, the timing of our OVS module was not thoughtfully optimized as it was not the 

primary goal of the work. Nevertheless, the timings used here allowed appreciating the relative 

efficacy differences of each OVS ring modes in vitro. Similarly to the work done in section 2.2.2 

for water suppression, such optimization could be done later using the range of T1 values for lipid 

contributions at 7 T and the experimental FA distribution. 

 

5.6.4. Possible improvements 

 

The disadvantages that the OVS ring modes present over conventional OVS bands is that signal 

inside the VOI is partially suppressed (as shown by the in vitro measurements in table 5.3) and 

the spatial suppression profile may vary between subjects. The LR mode is expected to reduce 

this inner excitation at the cost of some gaps at the periphery. Such gaps might be removed by 

altering the cost function shown in equation (5.5) by adding an additional weighting function 

penalizing the variance within the external VOI of adjustment. Combining the LR and M2 ring in 

the 4 OVS pulses by alternating the B1-shim configurations may also be an alternative to remove 

the signal gaps observed in the LR mode while reducing the unwanted signal suppression in the 

brain. 

A more elegant solution would be the use of kT-points or spokes for spatial selection of the extra-

cranial tissue while selectively exciting only the lipids resonance frequencies. This approach 

requires a completely different implementation and could not be developed within the duration of 

this PhD thesis. 
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5.7. CONCLUSION 

 
In this chapter, a parallel transmission approach was adopted to evaluate efficient, low-energy 

demanding OVS pulses at 7 T. An acquisition, data processing and SAR evaluation pipeline was 

validated in vitro. The use of static B1 shimming methods improved the FA homogeneity within a 

medium-size VOI at the center of the sample. The two methods for B1 shimming calculation, 

based on the coil eigenmode rings and the numerically optimized L0 and LR configurations, 

showed encouraging results. The L0 mode resulted in a slightly better performance than the CP 

mode in terms of FA homogeneity.  The ring mode M2 showed good suppression efficiency but 

also affected the VOI of interest. The LR mode showed a consistent pattern between experiments, 

leaving untouched the inner VOI but leaving small unsuppressed gaps in the external VOI. The 

presented method has very low SAR demands and is a starting point for latter developments at 7 

T and 11.7 T were SAR limitations will have an even greater impact on the parameterization of 

MRS pulse sequences. Due to numerous technical issues related to the prototype multi-transmit 

coil, the upgrade of our pTx interface (Tim Tx Step 2) and other regulatory pitfalls, this work 

could not go further during this PhD thesis. 
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6. 1H AND 
31P MRSI IN THE HUMAN BRAIN AT 7 T  

 
MRS studies in the human brain at 7 T benefits from higher SNR and increased spectral 

resolution, permitting in particular, the reliable and individual detection of Glu and Gln based on 

their respective H4 resonances at 2.35 and 2.45 ppm. Yet, the technical difficulties that arise at 

higher fields, namely the increased B1 inhomogeneity and increased power requirements, limit 

the design of clinical protocols and complicate the use of MRS sequences due to SAR constrains. 

Indeed, it has been shown that when using single transmit volume coils at 7 T, there is a 50 % 

variation in B1 homogeneity across axial brain slices and the required power to achieve similar B1 

intensities is also increased by ~4-fold compared to that at 4 T (Vaughan, et al., 2001; Avdievich, 

et al., 2009). Also, increasing the longitudinal dimensions of head volume coils do not provide a 

substantial increase in longitudinal brain coverage (Nabetani, et al., 2006). To compensate for 

these technical difficulties, a double-tuned 
1
H/

31
P 16-element transceiver phased array (8 for each 

channel) with multi-transmit capabilities and elevated B1
+
 performance (B1 generated per unit of 

power) was acquired from Resonance Research Inc. (Billerica, MA, USA). Taking advantage of 

its dual-tune capabilities, our objective was to acquire preliminary 
1
H and 

31
P CSI data in healthy 

volunteers with the goal of defining a human research protocol at 7 T. 

In this chapter, an optimized WET water suppression module (section 2.2.2) and a BISTRO OVS 

module (section 2.2.1.1) were evaluated at 7 T. To this end, a 2D CSI sequence using STEAM 

for localization (CSI-ST) was used for the acquisition of 
1
H MRS data and comparison of the 

WET modules. 
31

P metabolic maps were also acquired using a 2D CSI-FID sequence (section 

2.2.1), employing either standard or BISTRO bands.  

 

6.1. MATERIALS AND METHODS 

 
6.1.1. Experimental set-up 

 

Experiments were performed on a Siemens Magnetom 7 Tesla MRI scanner (Siemens Medical 

System, Erlangen, Germany) with a AC84 head gradient set (max. strength 80 mT/m, slew rate 

400 T/m/s). For this study, a double-tuned 
1
H/

31
P 16-element transceiver phased array (8 for each 

channel) with multi-transmit capabilities was used (figure 6.1), operating at 297.182 MHz and 

120.301 MHz at the 
1
H and 

31
P frequencies, respectively. The center of the B1

+
 FOV differed by 

less than 1 cm between the two nuclei. The coil was built using tight-fitted, inductively decoupled 

resonators which were manually tuned and matched for the load of a human head, increasing 

transmit and reception efficiency when similar “head” sizes are scanned. Further technical details 

can be found in the paper of its inventor N. Avdievich (Avdievich, 2011 p. Sect. 3.4). 
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Experiments were performed on a total of 6 young healthy volunteers. This preliminary study 

was approved by our institutional review board and informed consent was obtained from all 

volunteers. 

 

 

Figure 6.1. Double-tuned 
31

P/
1
H transceiver 8-channel phased array. 

The array contains two concentric layers of evenly-spaced rectangular surface coils, the 
31

P surface coils 

corresponding to the inner layer. The array consisted of two detachable parts, the bottom section having 

10 surface coils (5 per nucleus) and the top part with 6 (3 per nucleus). Although different tops were 

available to adjust for the volunteer head size, only one was used for this study leading to a 23 cm major 

axis. 

 

 

6.1.2. MRI data acquisition 

 

T2-weighted GRE scout images were acquired (2 average, TR = 8.6 ms, TE = 4 ms, 0.96 mm 

isotropic resolution, 240x240 mm² FOV, 20 mm slice-thickness, 3° FA, 1.28 ms long sinc pulse) 

for positioning of the 2D CSI slice and anatomical reference.  

B1 maps were acquired using a 3D modified AFI sequence covering the entire brain (Yarnykh, 

2007) with spoiling improvements (Nehrke, 2009) and B0 field inhomogeneity corrections 

(Amadon, et al., 2008; Boulant, et al., 2010). The sequence parameters were: TR1/TR2 = 20/100 

ms; TE1/TE2/TE3/TE4 = 3/3/4.5/7 ms; 4-mm isotropic resolution with a 64x64x36 matrix and 

acceleration factor of 3. The sequence duration was 2m 53s.  

Two 3D GRE images with flip angles of 5° and 20° were acquired (TR/TE = 14/3 ms, 1-mm 

isotropic resolution, sequence duration 4m 38s) from the same volume to estimate water T1 maps. 
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6.1.3. MRI data analysis  

 

A dedicated ICE reconstruction pipeline calculated the B1 maps and “reference voltage” map 

(voltage required to achieve a 180° FA for a 1-ms long square pulse, according to the Syngo MR 

B17A IDEA User’s Guide). The reference voltage at the center of the CSI slice was then used as 

the default value for the rest of the experiment. 

T1 maps were calculated using the B1 map generated from the AFI sequence and the two GRE 

acquisitions based on a 2-point version of the DESPOT1 method (Li, et al., 2006; Deoni, et al., 

2003), where the FA is no longer estimated but is provided by our B1 map. 

 

6.1.4. MRSI data acquisition 

 

For 
1
H MRSI data acquisition, a 2D modified CSI-ST sequence was used (section 2.2.1) : 

TR/TE/TM = 2000/9/10, 2048 complex points, 6kHz bandwidth, 2 averages, 19x19 encoding 

steps with elliptical acquisition weighting, 180x180 mm² FOV, 90x90 mm² VOI, 20 mm slice 

thickness,. The carrier frequency was shifted by -2 ppm relatively to the water resonance to 

minimize CSDA for most metabolites. The duration of the acquisition was 10m 52s. The WET 

water suppression module consisted of 4 frequency selective RF pulses (Gaussian pulse, 135 Hz 

bandwidth) with optimized flip angles and timings as shown in table 2.1. For comparison, 
1
H 

CSI-ST data were also acquired using the default water suppression scheme. 
31

P MRSI data were acquired with a 2D CSI-FID sequence (section 2.1.3.1). OVS bands were 

used for the removal of signal coming from the skin and muscle (notably the temporalis muscle, 

used for mastication). The tested OVS modules were: a single BISTRO band (n = 6, HS8, 5.12 

ms pulse length, 4.2 kHz bandwidth, total duration 48.75 ms), 1 or 2 OVS bands with a single 

adiabatic RF pulse (HS8, 5.12 ms pulse length, 4.2 kHz bandwidth) and 6 bands with a single 

conventional RF pulse (Hermit, 4.096 ms, 1.33 kHz bandwidth). All OVS bands had a thickness 

of 37 mm. A 
31

P CSI-FID sequence was acquired without OVS. The acquisition parameters were 

the following: TR = 2000, acquisition delay of 1.06 ms, 2048 complex points, 6kHz bandwidth, 5 

averages, 19x19 encoding steps with elliptical acquisition weighting, 220x220 mm² FOV, 30 mm 

slice thickness, 18m 18s total scan duration. A flip angle of 56° was used, maximizing the 

available signal per unit time for PCr  assuming a T1 relaxation time of 3.54 s in humans at 7 T 

(Lu, et al., 2014). The 
31

P carrier frequency was shifted by +600 Hz so that the PCr resonance 

would be at 0 ppm. 
1
H and 

31
P MRSI data were acquired from axial slices positioned above the lateral ventricles 

where the B1
+
 efficacy of the 

1
H coil was maximal (figure 6.2).  

For 
31

P RF power calibration, reference voltages for both 
1
H and 

31
P channels were estimated at 

the center of the coil in vitro (spherical water phantom with phosphoric acid at 40 mM 

concentration, 16 cm diameter, 4 g of salt per L) by acquiring localized spectra using a STEAM 
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sequence and varying voltages (TR = 40 s, 8 averages) (section 2.1.3.2). For in vivo experiments, 

the ratio between reference voltages was assumed to be preserved and provided us with an a 

priori value for the reference voltage for 
31

P experiments. This reference voltage was revised by 

acquiring additional 
31

P STEAM spectra using varying voltages for one volunteer (TR = 2 s, 32 

averages).  

To determine the B1
+
 profile of the 

31
P phased array, a methodology similar to the AFI sequence 

was explored, where the signal ratio between two images with different TRs is used to derive the 

flip angle. To minimize the error, r (= TR1/TR2) should be between 1/8 and 1/2 (Chmelik, et al., 

2014). Thus, two 
31

P CSI maps were acquired using a TR1 = 2s and TR2 = 0.4 s, corresponding to 

a ratio r of 1/5. No OVS bands were applied and the resulting acquisition times were 18m18s and 

3m40s, respectively. 

FAST(EST)MAP (Gruetter, et al., 2000) was used for B0-shimming. The in-plane shim volume 

corresponded to a large area (~80 x 80 mm²) covering the majority of the CSI VOI, excluding the 

skull and extracranial tissue. The thickness of the shimming volume was 40 mm, to prevent steep 

B0 transitions adjacent to the MRSI slices. 

 

6.1.5. MRSI data analysis  

 

Visualization of the residual water signal in 
1
H CSI data and PCr in 

31
P CSI acquisitions was 

done using Syngo’s spectroscopy card. CSI data was processed using CSIAPO software (Le Fur, 

et al., 2010) developed on the IDL platform (Interactive Data Language, Research 

System,Inc.,Boulder, CO, USA). Post-processing steps for the CSI data consisted in applying a 

Hanning spatial filtering and applying zero and first-order phase correction. An exponential 

filtering of 3 Hz was applied to all 
31

P CSI data in the time domain. Individual voxel spectra from 

CSI maps were retrieved using CSIAPO.  

 

6.2. RESULTS  

 
6.2.1. B1-mapping and RF calibration 

 

6.2.1.1. 1
H channel 

 

On average, the 
1
H reference voltage measured using the AFI sequence in vivo was 288 ± 21 V at 

the center of the brain. Typical B1 maps within the CSI slice are shown in figure 6.2. 
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Figure 6.2 Typical CSI slice positioning and FA map 

The CSI VOI was placed above the lateral ventricles, coinciding with the region of maximal B1+ 

intensity. The shown example corresponds to a 30-mm thick 
31

P CSI slice. The 
1
H FA map distributions 

were acquired with the modified AFI sequence. 

 

 

6.2.1.2. 31
P channel 

 

In vitro RF calibration experiments using a STEAM sequence led to estimating a ratio between 
1
H and 

31
P reference voltages of 1.57. Since the 

1
H reference voltage was approximately 288 V, 

the reference voltage for the 
31

P channel was on average 452 V. For one volunteer, a higher 
31

P 

reference voltage was found at 500 V. Therefore, the presented power referencing method 

underestimated the reference voltage at the center of the brain. 

Estimation of the B1
+
 profile based on evaluating the signal ratio of two identically acquired 

scans could not be carried out as the SNR of the short TR acquisition was too low, effectively 

confounding the PCr signal to noise over the majority of the brain (figure 6.4). 
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Figure 6.3. 

31
P PCr concentration maps acquired at different TRs. 

PCr distribution in the brain acquired at (A) TR = 2 s and (B) TR = 0.4 s. A very low SNR was found for 

the acquisition done with the shorter TR, preventing its use for B1+ mapping calculation. The PCr 

distribution map was obtained by fitting the PCr resonance using Syngo. The overlaid circles correspond 

to the point spread function (PSF) contour at 64% of the maximal PSF intensity. 

 

 

6.2.2. B0-shimming 

 

The water linewidths obtained from the large VOI used for FASTESTMAP was 18 ± 2 Hz. 

However, PCr linewidths of the central voxel from 
1
H CSI STEAM acquisitions showed an 

average width of 12 ± 2 Hz. 

 

6.2.3. Water suppression efficacy  

 

Figure 6.4 displays the residual water signal for two 
1
H CSI datasets acquired from two different 

volunteers using either the default water suppression scheme (6.4A) or the numerically optimized 

water suppression module (6.4B). Spectra corresponding to the same positioning relative to the 

VOI are shown. The suppression efficiency was estimated for the 5 shown regions by calculating 

the ratio between the residual water resonance and NAA(CH3) heights. Ratios of 218 ± 150 and 
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25 ± 27 were found respectively for the default and numerically optimized WET schemes. This 

corresponds to an average improvement in suppression efficacy by a factor of 8.8. 

 

 
Figure 6.4. WET water suppression efficacy evaluated in vivo at 7 T 

A. Residual water distribution and (C) 
1
H spectra using the constructor’s WET module. B. Residual water 

distribution and (D) metabolite spectra using the optimized WET module shown in table 2.1. The spectra 

shown in each column were scaled identically and corrected for zero-order phase. Spectra in column (C) 

were corrected for first-order phase. Water distributions displays (A, B) were obtained by fitting the water 

resonance using Syngo’s spectroscopy card. The shown circles correspond to the point spread function 

(PSF) contour at 64% of the maximal PSF intensity. One can notice the 20% CSDA due to the 2 ppm 

shift between the water resonance and the carrier frequency. 

 

6.2.4. Water T1 mapping 

 

For each volunteer, brain water T1 maps were calculated based on the 2-points DESPOT1 method 

(figure 6.5A). Based on the histogram of T1 values across the brain (figure 6.5B), distribution of 
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T1 values in GM and WM were estimated: T1 = 1954 ± 400 for GM and 1314 ± 294 ms for WM. 

These values are in agreement with the literature (Wright, et al., 2008). Although there was a 

substantial inter-subject variation of the median T1 relaxation times, the difference between GM 

and WM T1 values was rather constant (640 ± 120 ms), allowing the use of these maps for brain 

segmentation. 

 
Figure 6.5. 3D T1 maps established using the 2-point DESPOT1 method at 7 T in a normal brain.  

A. The axial slice corresponds to the plane of the CSI VOI. B. Histogram of the T1 values over the entire 

brain. The T1 median values for WM and GM in this volunteer were 1050 and 1650 ms respectively. 

  

 

6.2.5. OVS performance evaluation 

 

Figure 6.6 displays a 
31

P map of the PCr signal acquired with a single BISTRO band using AFP 

HS8 pulses, positioned where the B1
+
 profile was observed to be most variable (possibly due to 

changes in coil loading between subjects). Based on our preclinical 
31

P experiments, the 

transition bandwidth was properly accounted for in the definition of the used HS8 pulses. As 

observed from the PCr map and the 
31

P spectra, the BISTRO band was effective in reducing the 

metabolite signals to noise levels. Yet, the elevated power requirements (SAR limits = 100%) did 

not allow the application of more than a BISTRO band for a TR of 2.3 s. 
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Figure 6.6. Single BISTRO band efficacy for 

31
P signal suppression in the human head at 7 T 

A. PCr distribution in the brain under the application of a BISTRO band using HS8 RF pulses. B. Spectra 

corresponding to the regions marked in A. The spectrum #1 shows no residual signal above noise levels. 

Spectra are scaled identically and zero- and first-order phase corrections were applied. A 3 Hz 

exponential filtering was applied. The overlaid circles correspond to the point spread function (PSF) 

contour at 64% of the maximal PSF intensity. 

 

 

 
Figure 6.7. Efficacy of a single adiabatic OVS band.  

A. PCr signal distribution in the brain with an OVS band applied on one side of skull. The OVS band 

consisted of a single HS8 saturation pulse. B. Spectra from the regions marked in the PCr map. A clear 

reduction can be observed between the spectrum #1 and the other two spectra, showing a good 

suppression efficacy. All spectra are scaled identically. Zero- and first-order phase corrections were 

applied. A 3 Hz exponential filtering was applied. The overlaid circles correspond to the point spread 

function (PSF) contour at 64% of the maximal PSF intensity. 
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Figure 6.7 shows a map of the PCr signal and the efficiency of a single OVS band using a single 

adiabatic HS8 pulse. The OVS band was applied on only one side of the head to evaluate the 

suppression efficacy. A reduction of the PCr signal (+0.5 to -0.5 ppm) by a factor of ~8 was 

found between spectrum #1 and the non-suppressed spectrum #3. In another subject, 2 adiabatic 

OVS bands were applied (figure 6.8A) and compared to the application of 6 conventional OVS 

bands (figure 6.8B). Even if the second configuration led to a better definition of the VOI, the 

conventional OVS bands demonstrated a less consistent suppression efficacy than the adiabatic 

ones as it can be clearly observed from the comparison of spectra #3 and #5 in both columns. 

Both configurations were at 100% SAR limits for a TR = 2.3s. 

 

 
Figure 6.8. Efficacy of conventional and adiabatic OVS bands for in vivo 

31
P MRSI at 7 T.  

PCr concentration maps in the same volunteer for two OVS configurations consisting in (A) 2 adiabatic 

OVS bands (5.1 ms HS8 pulse) and (B) 6 conventional OVS bands (4.1 ms hermit pulse). (C, D) Spectra 

from the 5 shown regions are displayed. For each column, the spectra are scaled identically and are 

corrected for zero- and first-order phase. A 3 Hz exponential filtering was applied. The overlaid circles 

correspond to the point spread function (PSF) contour at 64% of the maximal PSF intensity. 
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6.2.6. 31
P Metabolite signal maps 

 
31

P metabolite signal maps obtained using CSIAPO are shown in figure 6.9C along with spectra 

corresponding to voxels containing mostly either WM (#1) or GM (#2). Three additional spectra 

are shown corresponding to spectra averaged over the frontal (#3) and occipital cortex (#4) and 

the right superiori corona radiata (#5) (Wakana, et al., 2004). Consistently, decreased signal 

intensity was observed from the frontal area, probably due to lower coil sensitivity and effective 

FA compared to the back of the head where the coil elements were closer. 

 

 
Figure 6.9. 

31
P Metabolic signal maps acquired in vivo in the human brain at 7 T. 

A. Reference image showing the 2 adiabatic OVS bands and the different ROIs. B Spectra from GM (#1) 

and WM voxels (#2) and averaged spectra from the frontal (#3) and the occipital cortex (#4) and from the 

right superiori corona radiate (#5). All spectra were scaled identicaly. C. 
31

P metabolite signal maps co-

registered with the anatomical image. All spectra were corrected for zero- and first-order phase and a 3 

Hz exponential filter was applied. The overlaid circles correspond to the point spread function (PSF) 

contour at 64% of the maximal PSF intensity. 

 

 

6.3. DISCUSSION 

 
In this chapter, several technical aspects of MRSI at UHF were evaluated in vivo in order to 

orient future developments and constitute a 
1
H/

31
P MRSI clinical protocol at 7 T. 
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6.3.1. In vivo validation of our clinical set-up 

 

The good performance and dual-tune capabilities of our RF coil permitted the acquisition of 
1
H 

and 
31

P metabolite maps within a total scan time of 29 minutes with a moderate resolution (2.07 

and 2.52 cm diameter of the PSF at 64% maximal intensity before Hanning filtering) at 7 T. As 

illustrated by figure 6.2, the 
1
H coil had a relatively inhomogeneous and narrow profile in the Z 

direction. This made positioning of the volunteer a critical aspect of our set-up. When the subject 

was placed too deep into the coil, the center of the B1+ field was shifted towards the lateral 

ventricles, resulting in a higher reference voltage for our CSI slice and an eventual TR 

lengthening to comply with SAR limitations. Placing the VOI too close to the ventricles 

jeopardized the convergence of FAST(EST)MAP toward a stable B0-shim configuration and 

degraded the efficacy of the water suppression module, globally deteriorating the quality of the 

data. 

For 
31

P CSI acquisitions, the frontal brain region showed a high inter-subject variability with 

respect to the detected signal. This is probably due to differences in coil loading between the head 

used for the preliminary tuning and matching of the coil and the actual volunteer. A solution 

could be to use the smaller top (leading to a 22 cm major axis) in the future to improve the 

sensitivity in the frontal area when volunteers with smaller heads are scanned. Another possibility 

would be to tune and match the three 
31

P resonators of the top part of the coil on each individual 

so as to restore the efficacy in the frontal area, at the cost of 2 or 3 minutes of experiment time. 

 

6.3.2. 1
H MRSI and WS efficiency 

 

Based on the data acquired on our 6 volunteers, the efficiency of our WET scheme was 

evaluated. The optimized WET showed an indicative improvement of the water suppression 

efficacy in the brain by a factor of 8.8 with respect to the standard WET configuration. The 

efficacy of the optimized WET scheme is compatible with spectral decomposition software such 

as LCModel and application of an HLSVD water removal routine could further improve the 

results.  

In this work, 2D 
1
H CSI maps were acquired in order to provide fair conditions for validation of 

our methods and also because of the reduced FOV of the coil in the Z direction. However, for 3D 
1
H CSI, the presented water suppression scheme may not provide optimal results. Other schemes, 

such as VAPOR, should provide better results due to the increased number of frequency selective 

pulses that are applied. Nevertheless, an increased power deposition would be accompanied and 

most importantly, a longer minimum TR would be required. A different approach, based on the 

acquisition of 
1
H metabolite data using CSI without the application of water suppression has been 

proposed (Le Fur, et al., 2014). Based on the modulus method (Serrai, et al., 2002), good quality 
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metabolite data has been obtained and it could provide an alternative or complementary solution 

for 3D 
1
H CSI acquisitions at UHF (Le Fur, et al., 2015). 

 

6.3.3. 31
P MRSI and OVS efficiency 

 

Despite its efficiency, the energy requirement for the adiabatic BISTRO scheme was so elevated 

that only one was allowed for a TR of 2.4 s. The alternative single-pulse adiabatic OVS bands 

were efficient in spoiling the signal contribution from the temporalis muscles. However, two 

bands are not enough to properly delimit the brain VOI. Therefore, conventional OVS bands 

using AM pulse (or pTx OVS rings) need to be considered. Yet, the observed efficacy of the 

conventional OVS bands was not satisfactory in our experiments. This inefficiency was probably 

due to RF calibration errors and B1 field inhomogeneity along the OVS bands. Measuring the 

correct 
31

P B1 profile over the brain would allow to properly adjust for the applied power of the 

OVS bands. 

Another approach would be to increase the number of pulse per OVS bands. As in a BISTRO or 

WET module, a scheme could be devised to reduce the sensitivity to B1 inhomogeneity. 

However, the current configuration was already at maximum SAR limits, indicating that the pulse 

bandwidth would have to be reduced. Since the bandwidth of evaluated hermit pulses (1.33 kHz 

for a 4.1 ms duration) is already small (CSDA displacement of 26 % from PCr to ATPγ (-2.48 

ppm) at 7 T), further decreasing the bandwidth while keeping a similar absolute CSDA 

displacement would demand the use of very thin OVS bands, losing in coverage. Therefore, 

restricting to a lesser number of bands seems as the only alternative if amplitude modulated 

pulses are to be retained. Furthermore, the major source of spurious signal observed in this study 

was originated from the temporalis muscles, which could be covered by two effective adiabatic 

suppression OVS bands. 

Although the adiabatic BISTRO module cannot be considered as an option for OVS bands due to 

SAR limitations, it could instead be used for frequency-selective saturation of the ATP 

resonances so as to perform 
31

P magnetization-transfer MRSI experiments. Characterization of 

the BISTRO train efficacy as a function of train length and AFP modulating functions would 

nevertheless be required (Lei, et al., 2003). 

 

6.3.4. Towards 
1
H and 

31
P qMRSI at UHF 

 

In this chapter it is shown that it is possible to implement a complete analysis pipeline of the 
1
H 

and 
31

P MRSI data. As illustrated by figures 6.3 and 6.9, a good SNR and spectral resolution was 

obtained.  For 
1
H MRSI, the total acquisition of the B1 and water T1 maps was 12 minutes. 

Calculating the B1
+
 map of the 

31
P array was attempted based on the method of the signal ratio 

initially proposed by (Yarnykh, 2007). Contrary to the work done by (Chmelik, et al., 2014), we 
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did not managed to estimate the B1
+
 profile because the short TR acquisition had very poor SNR 

despite the fact that an almost identical TR was used (0.43 s). However, their flip angle was 

higher (90°) and the matrix size was smaller (16x16). This suggests that the power may have 

been underestimated and that noise sources such as elevated receiver spectral bandwidth should 

be avoided (for this particular scan), notably because the majority of the signal will originate 

from the PCr and ATPγ resonances. Tests on a phantom using a similar T1 relaxation time and 

concentrations as those found in vivo will be necessary for validation of the method. 

Post-processing of the data using LCModel can be easily adapted to analyze both the 
1
H and 

31
P 

spectra from the metabolite maps. To this end, CSIAPO will prove particularly useful once its 

export function in LCModel format (.RAW) will be validated. 

 

6.4. CONCLUSION 

 
In this pilot study, low energy demanding 

1
H and 

31
P CSI pulse sequences were used for the 

acquisition of preliminary 
1
H and 

31
P MRS data. Our optimized WET water suppression scheme 

exhibited a higher efficacy with respect to the WET module provided by the constructor. Among 

the different OVS bands evaluated, the single-pulse adiabatic OVS bands were found to be the 

most effective. However, the number of these OVS bands was drastically restricted by the SAR 

limitations. The alternative OVS scheme based on AM pulses needs further development, notably 

a correct, independent RF power calibration to properly determine their suppression efficacy. 
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GENERAL CONCLUSION 

Methodological Advances 

The main objective of this PhD thesis was to develop acquisition methods that could allow us to 

exploit the benefits that UHF provides for MR spectroscopy while compensating for the 

disadvantages linked to higher magnetic fields, notably the elevated B1 and B0-field 

inhomogeneities.  

To tackle the important B1-field inhomogeneities expected from using a surface coil at 17.2 T, a 

completely B1-insenstive acquisition method was required. The LASER sequence was chosen 

due to its relative B1-insensitivity thanks to the use of 6 AFP pulses but also because of the 

elevated excitation bandwidth that could be achieved with AFP pulses (20 kHz for a 1ms long 

HS8 RF pulses). Without such wide bandwidths, CSDA effects at 17.2 T could have jeopardized 

the quality of the spectra. To further improve our 
1
H spectroscopic data, a short, numerically 

optimized WET scheme was implemented. The resulting acquisition method was successfully 

applied in our longitudinal study of aging in the DA rat. 

Different guidelines were followed for the 
31

P study in the rat brain, since the main technical 

objective was to achieve an identical localization between the 
1
H and 

31
P VOIs, allowing to do 

water referencing. Taking into account that the 
1
H/

31
P dual tune coil was composed of two 

surface coils and that our targeted VOI was most of the rat brain, accounting for B1 

inhomogeneity was critical. The BISTRO module has been used in previous MRS studies as an 

effective method to localize 
31

P signal in presence of strong B1 inhomogeneities. It was therefore 

implemented leading to a FID-BISTRO localization sequence. 

The work done on the Siemens 7 T scanner was a first step towards the development of 
1
H and 

31
P MRSI protocols at NeuroSpin. The technical difficulties changed from the preclinical 

environment  since SAR limitations stand as a major obstacle for employing energy-demanding 

pulses (AFP, SLR pulses). Moreover, strong B1 inhomogeneities appear as a result of wavelength 

interference patterns, originated from the comparable size of the 
1
H wavelength in the brain 

dielectric compared to the human head. A 2D pulse-acquire CSI sequence with OVS localization 

was chosen to limit CSDA along one spatial direction while keeping a short acquisition time. 

This approach is interesting for quantitative 
1
H and 

31
P measurements as it minimizes T2

*
-

weighting. For these reasons, the main work at 7 T was focused on developing and testing 

different OVS schemes. 

The multi-transmit (pTx) approach offers a greater freedom than the conventional, single-channel 

transmission mode. It allows tailoring the B1+ field in a specific VOI by adjusting the individual 

coil amplitudes and phases but it can also be used to generate “ring-like” excitation patterns 

which are well-suited for removal of extracranial tissue signal within a single pulse, reducing 

SAR. Another advantage of such mode is that it does not require a slice-selection gradient, 
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preventing CSDA effects. This technique was implemented and tested in vitro with promising 

results for 
1
H CSI-OVS acquisitions with a reduced SAR cost. Unfortunately, technical issues 

and some regulatory difficulties prevented their application in vivo during this thesis. 

Therefore, BISTRO and classical OVS bands were implemented based on the experience 

acquired at 17.2 T, combined with a 
31

P 2D CSI-FID sequence and evaluated in vivo. The 

BISTRO band proved to be inadequate due to its large SAR levels. The single-pulse adiabatic 

OVS bands showed good efficiency for a relatively large bandwidth of 4.2 kHz, reducing CSDA 

artifacts. The conventional OVS bands were not as effective and exhibited larger CSDA artifacts. 

But their low efficacy could be linked to an incorrect RF calibration at the rim of the head. If 

accounted for properly using an independent RF calibration of each band, a total of 6 

conventional OVS bands could be placed simultaneously (for a TR of 2 s), leading to more 

appropriate delimitation of our VOI compared to the adiabatic OVS. In addition to OVS scheme, 

an improved WET scheme was evaluated for in vivo 
1
H MRSI in combination with a 2D CSI-ST 

sequence leading to satisfactory water suppression. 

Main Scientific Contributions 

The main scientific contributions of this PhD thesis emerges from the longitudinal study of 

normal brain aging in DA rats using quantitative 
1
H MRS. Brain aging is a central issue in 

today’s society as the aged population (above 60 years) is expected to double in proportion in the 

following decades and numerous neurodegenerative diseases display aging as the primary risk 

factor. Since it is unrealistic to plan for a longitudinal study in humans over decades, animal 

models provide an interesting alternative for the characterization of the normal physiological 

changes during aging. For this reason, we focused on studying the aging process in the rat brain 

at 17.2 T and chose the Dark Agouti rat strain as a practical model due to its rather stable weight 

(below 380g) without dietary restriction. To our knowledge, only one other longitudinal study 

was published recently by Duarte et al. (Duarte, et al., 2014) investigating normal brain aging in 

the 3 to 24 month-old mouse. 

T1 and T2 relaxation times, including J-coupled resonances and macromolecules (MM), were 

measured from a large VOI along the 
1
H neurochemical profiles. Regional variability was 

examined also by acquiring spectra from 4 brain regions (thalamus, cingulate cortex and 

striatum). Through the careful parameterization of the MM baseline, the robustness of our 

spectral decomposition was improved while allowing the assessment of 4 groups of MM 

resonances from 0.5 to 4.5 ppm. 

Due to time constrains, it was not possible to follow a single cohort over the full span of a rat 

lifetime. For this reason, two distinct cohorts of 1 and 8 month-old rats were followed in parallel 

and their spectroscopic data were analyzed together through a linear regression model accounting 

for individual rat variations as random effects. The results were consistent with a mild gliosis and 

neuroinflammatory response, confirming the observations found in the aging human, mouse and 
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rat brains using either 
1
H, 

13
C MRS or histological methods (Cerbai, et al., 2012; Chang, et al., 

1996; Boumezbeur, et al., 2010; Duarte, et al., 2014). A regional variability of the age-related 

changes was observed, confirming that the aging process takes place at different rates on the 

cortical and sub-cortical areas. 

One remarkable finding was that the number of scans had a confounding effect in our analysis. 

Such effect was unexpected but was discerned through the clear and reproducible patterns 

observed for our T1 measurements between the two cohorts. To the best of our knowledge, this is 

the first time such observation has been reported. Similar influence of the number of exams was 

not reported by Duarte et al as they had only one cohort possibly leading to the confusion 

between the effects of aging and of the number of scans, if there was any in their study. Several 

hypotheses were presented to explain our observations but without a specific study, this 

cumulative effect of the number of exams  remains open to discussion. 

Quantitative 
1
H MRS data acquired from 1 month-old rats was published in Magnetic Resonance 

in Medicine. Notably, our T1 and T2 relaxation times at 17.2 T were compared to relaxation times 

measured at lower magnetic fields so as to assess their field-dependency. In addition, some 

preliminary data from our aging study were presented as poster or oral presentations at the 

International Society for Magnetic Resonance in Medicine (ISMRM) congress in 2014. 

Preliminary 
31

P MRS data were acquired at 17.2 T from a subset of aging DA rats, covering the 

ages of 5, 17 and 21 months. These experiments allowed the evaluation of the quantification 

method proposed by Bottomley et al. (Bottomley, et al., 1996) based on the water signal as a 

heteronuclear reference of concentration. They also permitted to pinpoint some errors made in the 

parametrization of our adiabatic OVS bands. Applying the necessary corrections should help in 

improving the localization of 
31

P MRS data and the achievable SNR. Nevertheless, 12 

phosphorylated metabolites were quantified and for 10 of them their T1 relaxation times were 

also measured at least once. The GPC, PCr and PCh concentrations found using 
1
H or 

31
P MRS 

were in agreement. The PE concentrations differed but both the 
1
H and 

31
P values were consistent 

with the literature. LCModel was used for the analysis of the 
31

P spectra, allowing for an 

automated and operator-independent spectral decomposition. Recently, the use of LCModel for 

the analysis of 
31

P spectra was published and the results were compared with AMARES 

(Deelchand, et al., 2015). The work presented here was done independently and some 

improvements to our LCModel analysis could be made based on this recent paper, notably the 

simulation of model spectra with different linewidths, as observed in vivo. These 
31

P MRS results 

were accepted for a poster presentation at the 23
th

 ISMRM congress in Toronto. 

Perspectives 

The unexpected cumulative effect of the number of exams observed during our aging study is 

intriging and would deserve to be investigated further. However the large number of potential co-

factors (B0 and B1 intensities, anesthesia, scan duration, stress) would make such study quite 
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difficult to design, especially considering that our clearest observation was an increase of the T1 

relaxation times for most metabolites. At least, one should be cautious about such unexpected 

effects in future longitudinal MRS studies at UHF. For instance, some relevant biological 

parameters could be checked, notably blood pressure and cortisol levels in order to monitor stress 

levels.  

For the 
31

P quantitative MRS studies, the water referencing method was used due to its simplicity 

and adaptability to other research models. Unfortunately, this method provided with rather 

variable results as previously reported (Buchli, et al., 1994). Therefore, it may be convenient to 

adopt a less variable quantification method such as an external reference of signal close to the 

VOI. A very interesting approach would be the use of an electronic reference such as the 

ERETIC method (Ding, et al., 2012). However, its introduction requires hardware modifications 

and is therefore a solution that may require substantial effort to be implemented. 

The implemented BISTRO module shown in this work was used exclusively as OVS bands and 

notably at 7 T, SAR limitations allowed the application of a single BISTRO band. However, the 

implementation of the BISTRO scheme opens the path for saturation transfer experiments, 

notably for the measurements of the equilibrium constant of the creatine kinase enzyme, as it has 

been done in the Alzheimer mouse model at 14.1 T or in healthy humans at 7 T (Mlynàrik, et al., 

2012; Lei, et al., 2003). 

Furthermore, continuous work is necessary for the application of OVS bands for 
31

P MRSI 

human studies at 7 T. Although the present solution of using 2 OVS bands using an AFP pulse 

correctly eliminates the main extracranial signal from the temporalis muscles, this approach may 

no longer be enough for 3D MRSI acquisitions since at least a third OVS band will be required, 

notably for the suppression of the plane covering the eyes and mouth. Since B1 inhomogeneity is 

expected to be quite elevated for such band, a mixed approach for signal saturation could be 

proposed, employing an adiabatic OVS band for the eyes while using conventional OVS bands, 

correctly calibrated, for the temporalis muscles. 

The increases in B0 and B1 inhomogeneity at higher fields and the associated increase in power 

requirements are a major challenge for MRSI in the human brain particularly for signal 

localization. At the moment, our 
1
H/

31
P dual coil was only used as a single-channel transmit coil 

for both nuclei, restricting its potential since SAR reduction and increased FA homogeneity can 

be obtained by applying static B1-shimmings (Avdievich, 2011). Enabling it for pTx applications 

and validating the associated safety regulations could therefore improve substantially our 
1
H 

MRSI protocol.  

There is also work to be done on the aspect of data analysis notably for the establishment of an 

automatic pipeline for spectral analysis and visualization of MRSI data. This is planned to be 

done in collaboration with Dr. Yann LeFur (Centre de Résonance Magnétique Biologique et 

Médicale - UMR 7339) and his software CSIAPO (Le Fur, et al., 2010), which will soon allow 

the exportation of pre-processed MRSI data in LCModel format.  
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Overall, this Ph.D. project demonstrated the benefits and challenges of MRS at UHF. The first 

longitudinal study in the aging rat brain was done, indicating the onset of the physiological 

changes expected in the aging brain. Yet, a confounding effect was detected and 
31

P results 

concerning the changes with age were limited. Although few technical improvements remain 

necessary, several tools were developed during this PhD thesis allowing the acquisition of high 

quality, preclinical and clinical 
1
H and 

31
P MRS data at ultra-high magnetic fields for the 

exploration of brain metabolism. This should clear the path for future translational MRS studies 

from rodents to men. 
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Abbreviations and Symbols  
 

Ace  Acetate 

AD  Alzheimer’s disease 

ADP  Adenosine-diphosphate 

AFI  Actual flip angle imaging 

AFP  Adiabatic full passage 

AHP  Adiabatic half passage 

Ala  Alanine 

AMARES Advanced Method for Accurate, Robust and Efficient Spectral fitting. 

AMP  Adenosine-monophosphate 

Asc  Ascorbic acid 

Asp  Aspartate 

ATP  Adenosine-triphosphate 

Avg  Number of averages 

BIR  B1-insensitive rotation 

BISTRO B1-insensitive train to obliterate signal 

BPP  Bloembergen-Purcell-Pound 

CHESS Chemical shift selective 

Cho  Choline-containing compounds 

CNS  Central nervous system 

CPMG  Carr-Purcell-Meiboom-Gill 

Cr  Creatine 

CRLB  Cramer-Rao lower bound 

CSDA  Chemical shift displacement artifact 

CSF  Cerebrospinal fluid 

CSI  Chemical shift imaging 

CYCLOPS Cyclically ordered phase sequence 

1D  One-dimensional 

2D  Two-dimensional 

3D  Three-dimensional 

DA  Dark Agouti (rat strain) 

dB  Decibel 

DFT  Discrete Fourier transform 

DIR  Double Inversion m 

EA  Ethanolamine 

FA  Excitation flip angle 

F6P  Fructose-6-phosphate 

FFT  Fast Fourier transform 

FID  Free induction decay 

FLASH Fast low-angle shot 

FOV  Field of view 
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FT  Fourier Transformation 

FWHM Frequency width at half maximum 

GABA  γ-Aminobutyric acid 

GE  Gradient echo 

Glc  Glucose 

Glc1P  Glucose-1-phosphate 

Glc6P  Glucose-6-phosphate 

Gln  Glutamine 

Glu  Glutamate 

Glx  Glutamine and glutamate 

Gly  Glycine 

Gly1P  Glycerol-1-phosphate 

GM  Grey matter 

GPC  Glycerophosphorylcholine 

GPE  Glycerophosphorylethanolamine 

GSH  Glutathione 

HF  High (magnetic) field 

HLSVD Hankel Lanczos singular value decomposition 

HMPT  Hexamethylphosphoroustriamide 

HS  Hyperbolic secant modulated AFP RF pulse 

HS8  Hyperbolic secant modulated AFP RF pulse, n = 8 

IEC  International Electrotechnical Commission 

IR  Inversion recovery 

Lac  Lactate 

LASER Localization by adiabatic selective refocusing 

MAS  Magic angle spinning 

mI  Myo-inositol 

MRI  Magnetic resonance imaging 

MRS  Magnetic resonance spectroscopy 

MRSI  Magnetic resonance spectroscopy imaging 

MRUI  Magnetic resonance user interface method 

MT  Magnetization transfer 

NAA  N-Acetyl aspartate 

NAAG  N-Acetyl aspartyl glutamate 

NAD(H) Nicotinamide adenine dinucleotide oxidized (reduced) 

NADP(H) Nicotinamide adenine dinucleotide phosphate oxidized (reduced) 

NMR  Nuclear magnetic resonance 

OVS  Outer volume suppression 

PCh  Phosphocholine 

PCr  Phosphocreatine 

PDE  Phosphodiesters 

PE  Phosphorylethanolamine 

Pi  Inorganic phosphate 

PND  Postnatal day 
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PPA  Phenylphosphonic acid 

PPM  Parts per million 

PRESS  Point resolved spectroscopy 

PSF  Point spread function 

Reff  Effective resistance equal to the sum of the coil, electronics and sample resistances 

ROI  Region of interest 

ROS  Reactive oxygen species 

RF  Radiofrequency 

SAR  Specific absorption rate 

SE  Spin echo 

SI  Spectroscopic imaging 

sI  Scyllo-inositiol 

SIR  Single Inversion Recovery 

SMF  Static magnetic field 

SNR  Signal-to-noise ratio 

STEAM Stimulated echo acquisition mode 

SV  Single voxel (or volume) 

SVS  Single Volume Spectroscopy 

TALES Transmit Antenna LEvel Sensor 

Tau  Taurine 

tCho  Total choline 

tCr  Total creatine 

TMS  Tetramethylsilane 

tNAA  Total NAA 

UHF  Ultra high (magnetic) field 

VAPOR Variable pulse powers and optimized relaxation delays 

VARPRO Variable Projection method 

VERSE Variable rate selective excitation 

VOI  Volume of interest 

WM  White matter 

WURST Wideband, uniform rate and smooth truncation 

A.U.  Arbitrary Units 

B0  External static magnetic field 

B1  Magnetic radiofrequency field of the transmitter coil 

CPH  Proton-Phosphorous sensitivity scaling factor of a dual coil 

E  Energy 

E  Electrical field 

e  Particle charge 

emf  Electromotive force 

𝑓𝐶𝑆𝐹 , 𝑓𝐺𝑀, 𝑓𝑊𝑀 Fractional CSF, GM and WM volumes  

G  Gradient strength 

h  Planck’s constant (6.626208 x 10
-34

 J s) 

I  Spin quantum number 
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J  Spin-spin or scalar coupling constant (in Hz) 

kB  Boltzmann equilibrium constant (1.38066 x 10
-23

 J K
-1

) 

L  Angular momentum 

m  Mass 

m  Magnetic quantum number 

M  Macroscopic magnetization 

Mi  Eigenmode of phase shift i*2π/8 

met  Metabolite (concentration) 

Mx,My,Mz Orthogonal Cartesian components of the macroscopic magnetization 

M0  Macroscopic equilibrium magnetization 

P  Power deposition 

r  Distance 

R factor Product of the bandwidth at FWHM by the pulse duration 

Rm  Weighting factor due to T1 and T2 relaxation of species m 

R²  Coefficient of determination 

S  Measured NMR signal 

Sm  Measured metabolite signal 

SW  Measured water signal 

t  Time 

T  Temperature (in K°) 

T  Torque 

Tp  RF pulse length 

T1  Longitudinal relaxation time constant 

T1  Observed longitudinal relaxation time constant 

T2  Transverse relaxation time constant 

T2
*
  Apparent transverse relaxation time constant 

Tacq  Acquisition time 

Tbw  Transition bandwidth 

TE  Echo time 

TI  Inversion time 

TI1  First inversion recovery time 

TI2  Second inversion recovery time 

TR  Repetition time 

TR̂  Recovery time 
v  Velocity 

W(k)  Spatial frequency weighting function 

W  Apparent water concentration   

α  Nutation angle 

γ  Gyromagnetic ratio 

δ  Chemical shift (in ppm) 

ΔB0  Magnetic field shift 

Δω  Frequency offset 

ωmax  Spectral bandwidth of an RF pulse 
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ωrec  Receiver bandwidth of the detecting system 

θ  Nutation angle 

κ  Amplitude integral of an amplitude-modulated pulse 

µ  Magnetic moment 

µz  Magnetic moment component in the z direction 

σ  Magnetic shielding constant 

σthermal  Thermal noise 

ν0  Larmor frequency 

νref  Reference frequency 

ϕ  Phase 

ϕ0  Zero-order (constant) phase 

ϕ1  First-order (linear) phase 

Ω  Frequency Isochromat 

ω0  Larmor frequency 

[]  Molar concentration   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

BIBLIOGRAPHY 
 

Abourbeh, G., Thézé, B., Maroy, R., Dubois, A., Brulon, V., Fontyn, Y., et al. (2012). Imaging 

microglial/macrophage activation in spinal cords of experimental autoimmune 

encephalomyelitis rats by positron emission tomography using the mitochondria 18 kDa 

translocator protein radioligand [18F]DPA-714. J Neurosci 32: 5728-5736. 

Alagappan, V., Nistler, J., Adalsteinsson, E., Setsompop, K., Fontius, U., Zelinski, A., et al. 

(2007). Degenerate mode band-pass birdcage coil for accelerated parallel excitation. Magn 

Reson Med 57: 1148-1158. 

Allerhand, S., & Thiele, E. (1966). Analysis of Carr-Purcell spin-echo NMR experiments on 

multiple-spin systems. II. The effect of chemical exchange. J Chem Phys 43: 903-916. 

Almkvist, O., Wahlund, L., Andersson-Lundman, G., Basun, H., & Bäckman, J. (1992). 

Whitematter hyperintensity and neuropsychological functions in dementia and healthy aging. 

Arch Neurol 49: 626-632. 

Altman, J., & Bayer, S. (1990). Migration and distribution of two populations of hippocampal 

granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301: 365-

381. 

Alzheimer's Association. (2013). 2013 Alzheimer's disease facts and figures. Alzheimer's & 

Dementia 9: 208-245. 

Amadon, A., & Boulant, N. (2008). Simultaneous measurement of B0- and B1-maps with 

modified actual flip angle imaging sequence. Proceedings of the 16th Annual Meeting of the 

ISMRM. (p. 1248). Toronto, Canada. 

Amadon, A., Boulant, N., Cloos, M. A., Giacomini, E., Wiggins, C. J., Luong, M., et al. (2010). 

B1 mapping of an 8-channel TX-array over a human-head-like volume in less than 2 

minutes: the XEP sequence. Proceedings of the 18th Annual Meeting of the ISMRM. (p. 

2828). Stockholm, Sweden. 

Amadon, A., Cloos, M., Boulant, N., Hang, M., Wiggins, C., & Fautz, H. (2012). Validation of a 

very fast B1-mapping sequence for parallel transmission on a human brain at 7T. 

Proceedings of the 20th Annual Meeting of the ISMRM. (p. 3358). Melbourne, Autralia. 

Andersen, J. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 

(Suppl), S18-S25. 



 

178 
 

Andronesi, O. C., Ramadan, S., Ratai, E. M., Jennings, D., Mountford, C. E., & Sorensen, A. G. 

(2010). Spectroscopic Imaging with Improved Gradient Modulated Constant Adiabaticity 

Pulses on High-Field Clinical Scanners. J Magn Reson 203: 283-293. 

Avdievich, N. I. (2011). Transceiver-phased arrays for human brain studies at 7 T. Appl Magn 

Reson 41: 483-506. 

Avdievich, N., Hetherington, H., Kuznetsov, A., & JW, P. (2009). 7T head volume coils: 

improvements for rostral brain imaging. J Magn Reson Imaging 29: 461-465. 

Avdievich, N., Pan, J., Baehring, J., Spencer, D., & Hetherington, H. (2009). Short Echo 

Spectroscopic Imaging of the Human Brain at 7T Using Transceiver Arrays. Magn Reson 

Med 62: 17-25. 

Banerjee, A., Ganji, S., Hulsey, K., Dimitrov, K., Maher, E., Ghose, S., et al. (2012). 

Measurement of glycine in gray and white matter in the human brain in vivo by 1H MRS at 

7.0 T. Magn Reson Med 68: 325-331. 

Barbier, E. L., Liu, L., Grillon, E., Payen, J.-F., Lebas, J.-F., Segebarth, C., et al. (2005). Focal 

brain ischemia in rat: acute changes in brain tissue T1 reflect acute increase in brain tissue 

water content. NMR Biomed 18: 499-506. 

Barnes, C. (1979). Memory deficits associated with senescence: a neurophysiological and 

behavioral study in the rat. J Comp Physiol Pyschol 93: 74-104. 

Baslow, M. (2007). Handbook of neurochemistry and molecular neurobiology. (Vol. Vol 6. 3rd 

Ed.). New York: Springer Science. 

Baslow, M. H. (2010). Evidence that the tri-cellular metabolism of N-acetylaspartate functions as 

the brain's "operating system": how NAA metabolism supports meaningful intercellular 

frequency-encoded communications. Amino Acids 39: 1139-1145. 

Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models 

using Eigen and S4. Journal of Statistical Software (submitted), 

http://arxiv.org/abs/1406.5823. 

Baum, J., Tycko, R., & Pines, A. (1985). Broadband and adiabatic inversion of two-level system 

by phase-modulated pulses. Phys Rev A 32: 3435-3447. 

Baur, J., Pearson, K., Price, N., Jamieson, H., Lerin, C., & et al. (2006). Resveratrol improves 

health and survival of mice on a high-calorie diet. Nature 444: 337-342. 

Bayer, S. (1982). Changes in the total number of dentate granule cells in juvenile and adult rats: a 

correlated volumetric and 3H thymidine autoradiographic study.Exp Brain Res 46: 315-323. 

Bayer, S., Yackel, J., & Prui, P. (1982). Neurons in the rat dentate gyrus granular layer 

substantially increase during juvenile and adult life. Science 216: 890-892. 



BIBLIOGRAPHY 

179 
 

Behar, K. L., Rothman, D. L., Spencer, D. D., & Petroff, O. A. (1994). Analysis of 

macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 32: 294-

302. 

Behar, K., & Ogino, T. (1993). Characterization of macromolecule resonances in the 1H NMR 

spectrum of rat brain. Magn Reson Med 30: 38-44. 

Bentourkia, M., Michel, C., Ferriere, G., Bol, A., Coppens, A., Sibomana, M., et al. (1998). 

Evolution of brain glucose metabolism with age in epileptic infants, children and 

adolescents. Brain Dev 20: 524-529. 

Bernstein, M. A., King, K. F., & Zhou, X. J. (2004). Handbook of MRI Pulse Sequences. San 

Diego: Elsevier Academic Press. 

Bhattacharyya, P., Phillips, M., Stone, L., & Lowe, M. (2011). In-vivo MRS measurement of 

gray-matter and white-matter GABA concentration in sensorimotor cortex using a motion-

controlled MEGA-PRESS sequence. Magn Reson Imag 29: 374-379. 

Birdsall Abrams, M., Josephson, A., Dominguez, C., Oberg, J., Diez, M., Spenger, C., et al. 

(2007). Recovery from spinal cord injury differes between rat strains in a major 

histocompatibility complex-independent manner. Eur J Neurosci 26: 1118-1127. 

Birken, D., & Oldendorf, W. (1989). N-acetyl-L-aspartic acid: a literature review of a compound 

prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13: 23-31. 

Block, M., Zecca, L., & Hong, J. (2007). Microglia-mediated neurotixicity: uncovering the 

molecular mechanisms. Nat Rev Neurosci 8: 57-69. 

Bloembergen, N., Purcell, E., & Pound, R. (1948). Relaxation effects in nuclear magnetic 

resonance absorption. Phys Rev 73: 679-712. 

Blüml, S., Seymour, K., & Ross, B. (1999). Developmental changes in choline- and 

ethalonamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo 

human brain. Magn Reson Med 42: 643-654. 

Boer, V. O., Klomp, D. W., Juchem, C., Luijten, P. R., & de Graaf, R. A. (2012). Multislice 1H 

MRSI of the human brain at 7 T using dynamic B0 and B1 shimming. Magn Reson Med 68: 

662-670. 

Booth, R., Patel, T., Clark, & JB. (1980). The development of enzymes of energy metabolism in 

the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem 34: 17-25. 

Bottomley, P. (1987). Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508: 

333-348. 



 

180 
 

Bottomley, P. A., Atalar, E., & Weiss, R. G. (1996). Human cardiac high-energy phosphate 

metabolite concentrations by 1D-resolved NMR spectroscopy. Magn Reson Med 35: 664-

670. 

Bottomley, P., & Ouwerkerk, R. (1994). Optimum flip angles for exciting NMR with uncertain 

T1 values. Magn. Reson. Med. 32: 137-141. 

Bottomley, P., Foster, T., Argersinger, R., & Pfeifer, L. (1984). A review of normal tissue 

hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: Dependence 

on tissue type, NMR frequency, temperature, species, excision and age. Med Phys 11: 425-

448. 

Boulant, N., Cloos, M., & Amadon, A. (2010). A simple and analytical way to correct for DB0 

inhomogeneity in the evaluation of B1 maps relying on flip angle measurements and non-

selective square pulses. Proceedings of the 18th Annual Meeting of the ISMRM. (p. 4918). 

Stockholm, Sweden. 

Boulant, N., cloos, M., Luong, M., Ferrand, G., Wiggins, C., & Amadon, A. (2011). Method for 

monitoring safety in parallel transmission systems based on channel-dependent average 

powers. Proceedings of the 19th Annual Meeting of the ISMRM. (p. 3850). Montreal, 

Canada. 

Boumezbeur, F., Mason, G., de Graaf, R., Behar, K., Cline, G., Shulman, G., et al. (2010). 

Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic 

resonance spectroscopy. J Cereb Blood Flow Metab 30: 211-221. 

Bourne, R., Dzendrowskyi, T., & Mountford, C. (2003). Leakage of metabolites from tissue 

biopsies can result in large errors in quantitation by MRS. NMR Biomed 16(2), 96-101. 

Brand, A., Richter-Landsberg, C., & Leibfritz, D. (1993). Multinuclear NMR studies on the 

energy metabolism of glial and neuronal cells. Dev Neurosci 15: 289-298. 

Brigham, E. (1988). The fast Fourier transform and its applications. Englewood Cliffs, NJ: 

Prentice Hall. 

Brooks, J., Roberts, N., Kemp, G., Gosney, M., Lye, M., & Whitehouse, G. (2001). A proton 

magnetic resonance spetroscopy study of age-related changes in frontal lobe metabolite 

concentrations. Cereb Cortex 11: 598-605. 

Brooks, W., Field, J., Irving, M., & Doddrell, D. (1986). In vivo determination of 31P spin 

relaxation times (T1: T2: T1 rho) in rat leg muscle. Use of an off-axis solenoid coil. Magn 

Reson Imaging 4: 245-250. 

Brunner, D., & Pruessmann, K. (2008). A matrix approach for mapping array transmit fields in 

under a minute. Proceedings of the 16th Annual Meeting of the ISMRM. (p. 354). 

Toronto,Canada. 



BIBLIOGRAPHY 

181 
 

Buchli, R., Ernst, M., & Boesiger, P. (1994). Comparison of calibration strategies for the in vivo 

determination of absolute metabolite concentrations in the human brain by 31P MRS. NMR 

Biomed 7: 225-230. 

Busse, E. (1987). Hypochondriasis in the elderly. Compr. Ther. 13: 37-42. 

Carr, H., & Purcell, E. (1954). Effects of diffusion on free precession in nuclear magnetic 

resonance experiments. Phys Rev 94: 630-638. 

Cerbai, F., Lana, D., Nosi, D., Petkova-Kirova, P., Zecchi, S., Brothers, H. M., et al. (2012). The 

neuron-astrocyte-microglia triad in normal brain ageing and in a model of 

neuroinflammation in the rat hippocampus. PLoS ONE 7: e45250. 

Chakraborty, G., Mekala, P., Yahya, D., Wu, G., & Ledeen, R. (2001). Intraneuronal N-

acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-

associated aspartoacylase. J Neurochem 78: 736-745. 

Chang, L., Ernst, T., Poland, R., & Jeden, D. (1996). In vivo proton magnetic resonance 

spectroscopy of the normal aging human brain. Life Sci 58: 2049-2056. 

Chang, L., Munsaka, S. M., Kraft-Terry, S., & Ernst, T. (2013). Magnetic resonance 

spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol 

8: 576-593. 

Charles, H., Lazeyras, F., Krishnan, K., Boyko, O., Patterson, L., Doraiswamy, P., et al. (1994). 

Proton spectroscopy of human brain: effects of age and sex. Prog Neuropsychopharmocol 

Biol Psychiatry 18: 995-1004. 

Chen, S., & Hillman, D. (1999). Dying-back of Purkinje cell dendritres with synapse loss in 

aging rats. J Neurocytol 28: 187-196. 

Cheng, L., Ma, M., Becerra, L., Ptak, T., Tracey, I., & Lackner, A. (1997). Quantitative 

neuropathology by high resolution magic angle spinning proton magnetic resonance 

spectroscopy. Proc Natl Acad Sci USA 94(12), 6408-6413. 

Chiu, C., Miller, M. C., Caralopoulos, I. N., Worden, M. S., Brinker, T., Gordon, Z. N., et al. 

(2012). Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the 

aging rat brain from three to thirty months. Fluids Barriers CNS 9: 3. 

Chmelik, M., Povazan, M., Jiru, F., Kukurova, I. J., Dezortovà, M., Krssak, M., et al. (2014). 

Flip-angle mapping of 31P coils by steady-state MR spectroscopic imaging. J Magn Reson 

Imaging 40: 391-397. 

Choi, C., Dimitrov, I., Douglas, D., Zhao, C., Hawesa, H., Ghose, S., et al. (2009). In vivo 

detection of serine in the human brain by proton magnetic resonance spectroscopy (1H-

MRS) at 7 Tesla. Magn Reson Med 62: 1042-1046. 



 

182 
 

Christ, A., Kainz, W., Hahn, E. G., Honegger, K., Zefferer, M., Neufeld, E., et al. (2010). The 

Virtual Family-development of surface-based anatomical models of two adults and two 

children for dosimetric simulations. Phys Med Biol 55: 23-38. 

Christiansen, P., Henriksen, O., Stubgaard, M., Gideon, P., & Larsson, H. (1993). In vivo 

quantification of brain metabolites by 1H-MRS using water as an internal standard. Magn 

Reson Imag 11: 107-118. 

Clark, J. (1998). N-Acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. 

Dev Neurosci 20: 271-276. 

Cloos, M. A. (2012). Parallel transmission for magnetic resonance imaging of the human brain at 

ultra high field: specific absorption rate control & flip-angle homogenization. Ph.D. Thesis. 

Orsay, France: Université Paris-Sud 11. 

Cloos, M., Boulant, N., Luong, M., Ferrand, G., Giacomini, E., Le Bihan, D., et al. (2012). kT-

points: short three-dimensional tailored RF pulses for flip-angle homogenization over an 

extended volume. Magn Reson Med 67: 72-80. 

Cloos, M., Boulant, N., Luong, M., Ferrand, G., Le Bihan, D., & Amadon, A. (2010). Specific 

absorption rate monitor for in vivo parallel transmission at 7 Tesla. Proceedings of the 18th 

Annual Meeting of the ISMRM. (p. 3871). Stockholm, Sweden. 

Comas-Herrera, A., Wittenberg, R., Pickard, L., & Knapp, M. (2007). Cognitive impairment in 

older people: future demand for long-term care services and the associated costs. Int J Geriatr 

Psychiatry 22: 1037-1045. 

Conolly, S., Glover, G., Nishimura, D., & Macovski, A. (1991). A reduced power selective 

adiabatic spin-echo pulse sequence. Magn Reson Med 18: 28-38. 

Conolly, S., Nishimura, D., Macovski, A., & Glover, G. (1988). Variable-rate selective 

excitation. J Magn Reson 78: 440-458. 

Cooley, J., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier 

series. Math Comput 19: 297-301. 

Coutu, J.-P., Chen, J. J., Rosas, H. D., & Salat, D. H. (2014). Non-Gaussian water diffusion in 

aging white matter. Neurobiol Aging 35: 1412-1421. 

Cudalbu, C., Mlynarik, V., & Gruetter, R. (2012). Handling macromolecule signals in the 

quantification of the neurochemical profile. J Alzheimers Dis. 31 suppl 3: S101-S115. 

Cudalbu, C., Mlynarik, V., Xin, L., & Gruetter, R. (2009). Comparison of T1 relaxation times of 

the neurochemical profile in rat brain at 9.4 Tesla and 14.1 Tesla. Magn Reson Med 62: 862-

867. 



BIBLIOGRAPHY 

183 
 

Czeh, M., Gressens, P., & Kaindl, A. (2011). The yin and yang of microglia. Dev Neurosci 33: 

199-209. 

Davie, C., Hawkins, C., Barker, G., Brennan, A., Tofts, P., Miller, D., et al. (1994). Serial proton 

magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49-58. 

de Graaf, A., & Bovee, W. (1990). Improved quantification of in vivo 1H NMR spectra by 

optimization of signal acquisition and processing and by incorporation of prior knowledge 

into the spectral fitting. Magn Reson Med 15: 305-319. 

de Graaf, R. A. (2007). In Vivo NMR Spectroscopy - 2nd Edition: Principles and Techniques. 

The Atrium: John Wiley & Sons, Ltd. 

de Graaf, R. A., Brown, P. B., McIntyre, S., Nixon, T. W., Behar, K. L., & Rothman, D. L. 

(2006). High Magnetic Field Water and Metabolite Proton T1 and T2 Relaxation in Rat 

Brain In Vivo. Magn Reson Med 56: 386-394. 

de Graaf, R. A., Chowdhury, G. M., & Behar, K. L. (2011). Quantification of high-resolution 1H 

NMR spectra from rat brain extracts. Anal Chem 83: 216-224. 

de Graaf, R., & Behar, K. (2014). Detection of cerebral NAD+ by in vivo 1H NMR spectroscopy. 

NMR Biomed 27: 802-809. 

de Graaf, R., & Nicolay, K. (1998). Adiabatic water suppression using frequency selective 

excitation. Magn Reson Med 40: 690-696. 

de Graaf, R., van Kranenburg, A., & Nicolay, K. (1999). Off-resonance metabolite magnetization 

transfer measurements on rat brain in situ. Magn Reson Med 41: 1136-1144. 

De Ritis, F., Coltorti, M., & Giusti, G. (1955). Transaminase activity of the blood in viral 

hepatitis. Boll Soc Ital Biol Sper 31: 394-396. 

Deelchand, D. K., Henry, P.-G., & Marjanska, M. (2015). Effect of Carr-Purcell refocusing pulse 

trains on transverse relaxation times of metabolites in rat brain at 9.4 tesla. Magn Reson Med 

73: 13-20. 

Deelchand, D. K., Nguyen, T. M., Mochel, F., & Henry, P.-G. (2012). Quantification of 31P 

NMR spectra using LCModel. Proceedings of the 20th Annual Meeting of the ISMRM. (p. 

4395). Melbourne, Australia. 

Deelchand, D., Nguyen, T., Zhu, X., Mochel, F., & Henry, P. (2015). Quantification of in vivo 31 

P NMR brain spectra using LCModel. NMR Biomed, 9 pgs. 

Deichmann, R., & Haase, A. (1992). Quantification of T1 values by snapshot-flash NMR 

imaging. J Magn Reson 96: 608-612. 

Deichmann, R., Hahn, D., & Haase, A. (1999). Fast T1 mapping on a whole-body scanner. Magn 

Reson Med 42: 206-209. 



 

184 
 

Deoni, S., Rutt, B., & Peters, T. (2003). Rapid combined T1 and T2 mapping using gradient 

recalled acquisition in the steady state. Magn Reson Med 49: 515-526. 

Ding, P., Chen, L., Lu, Y., & Li, Y. (2012). Determination of protoberberine alkaloids in 

Rhizoma Coptidis by ERETIC 1H NMR method. J Pharm Biomed Anal 60: 44-50. 

Dobbing, J., & Sands, J. (1971). Vulnerability of developing brain. IX. The effect of nutritional 

growth retardation on the timing of the brain growth spurt. Biol Neonate 19: 363-378. 

Drouet, J., Fauvelle, F., Maunoir-Regimbal, S., Fidier, N., Maury, R., Peinneguin, A., et al. 

(2015). Differences in prefrontal cortex GABA/glutamate ratio after acute restraint stress in 

rats are associated with specific behavioral and neurobiological patterns. Neuroscience 285: 

155-165. 

Duarte, J. M., Do, K. Q., & Gruetter, R. (2014). Longitudinal neurochemical modifications in the 

aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol 

Aging 35: 1660-1668. 

Duijn, J., Matson, G., Maudsley, A., Hugg, J., & Weiner, M. (1992). Human brain infarction: 

proton MR spectroscopy. Radiol 183: 711-718. 

Ellis, C., Lemmens, G., Williams, S., Simmons, A., Dawson, J., Leigh, P., et al. (1997). Changes 

in putamen N-acetylaspartate and choline ratios in untreated and levodopa-treated 

Parkinson's disease: a proton magnetic resonance spectroscopy study. Neurol 49: 438-444. 

Emir, U. E., Auerbach, E. J., Van de Moortele, P.-F., Marjanska, M., Ugurbil, K., Terpstra, M., et 

al. (2012). Regional neurochemical profiles in the human brain measured by 1H MRS at 7T 

using local B1 shimming. NMR Biomed 25: 152-160. 

Erecinska, M., & Silver, I. A. (1989). ATP and Brain Function. J Cereb Blood Flow Metab 9: 2-

19. 

Ernst, R., Bodenhausen, G., & Wokaun, A. (1987). Principles of nuclear magnetic resonance in 

one and two dimensions. Oxford: Clarendon Press. 

Esposito, G., Kirkby, B., van Horn, J., Ellmore, T., & Berman, K. (1999). Context-dependent, 

neural system-specific neurophysiological concomitants of ageing: mapping PET correlates 

during cognitive activation. Brain 122: 963-979. 

Esteve, V., Martinez-Granados, B., & Martinez-Bisbal, M. C. (2014). Pitfalls to be considered on 

the metabolomic analysis of biological samples by HR-MAS. Front Chem, 2-33. 

Fatouros, P., Marmarou, A., Kraft, K., Inao, S., & Schwarz, F. (1991). In vivo brain water 

determination by T1 measurements: effect of total water content, hydration fraction and field 

strength. Magn Reson Med 17: 402-413. 



BIBLIOGRAPHY 

185 
 

Fautz, H., Vogel, M., Gross, P., Kerr, A., & Zhu, Y. (2008). B1 mapping of coil arrays for 

parallel transmission. Proceedings of the 16th Annual Meeting of the ISMRM. (p. 1247). 

Toronto, Canada. 

Federico, A., Cardaioli, E., Da Pozzo, P., Formichi, P., Gallus, G., & Radi, E. (2012). 

Mitochondria, oxidative stress and neurodegeneration. J Neurol sci 322: 254-262. 

Florian, C., Williams, S., Bhakoo, K., & Noble, M. (1996). Regional and developmental 

variations in metabolite concentration in the rat brain and eye: a study using 1H NMR 

spectroscopy and high performance liquid chromatography. Neurochem Res 21: 1065-1074. 

Floyd, R., & Hensley, K. (2002). Oxidative stress in brain ageing. Implications for therapeutics of 

neurodegenerative diseases. Neurobiol Ageing 23: 795-807. 

Frahm, J., Merboldt, K.-D., & Hänicke, W. (1987). Localized proton spectroscopy using 

stimulated echoes. J Magn Reson 72: 502-508. 

Freeman, R., & Hill, H. (1971). Fourier transform study of NMR spin-lattice relaxation by 

progressive-saturation. J Chem Phys 54: 3367-3377. 

Fukuzako, H., Hashiguchi, T., Sakamoto, Y., Okamura, H., Doi, W., Takenouchi, K., et al. 

(1997). Metabolite changes with age measured by proton magnetic resonance spectroscopy 

in normal subjects. Psychiatry Clin Neurosci 51: 261-263. 

Ganji, S., Banerjee, A., Patel, A., Zhao, Y., Dimitrov, I., Browning, J., et al. (2012). T2 

measurement of J-coupled metabolites in the human brain at 3T. NMR Biomed 25: 523-529. 

Garden, G., & Moller, T. (2006). Microglia biology in health and disease. J Neuroimmune 

Pharmacol 1: 127-137. 

Garwood, M., & DelaBarre, L. (2011). The return of the frequency sweep: designing adiabatic 

pulses for contemporary NMR. J Magn Reson 153: 155-177. 

Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., et al. (2006). 

Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn 

Reson Med 55: 1219-1226. 

Geen, H., & Freeman, R. (1991). Band-selective radiofrequency pulses. J Magn Reson 93: 93-

141. 

Ghibelli, L., Cerella, C., Cordisco, S., & al, e. (2006). NMR exposure sensitizes tumor cells to 

apoptosis. Apoptosis 11: 359-365. 

Ghodbane, S., Lahbib, A., Sakly, M., & Abdelmelek, H. (2013). Bioeffects of static magnetic 

fields: oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int 2013: 1-12. 



 

186 
 

Giedd, J., Blumenthal, J., Jeffries, N., Castellanos, F., Liu, H., Zijdenbos, A., et al. (1999). Brain 

development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2: 

861-863. 

Godbout, J., Moreau, M., Lestage, J., Chen, J., Sparkman, N., O'Connor, J., et al. (2008). Aging 

exacerbates depressive-like behavior in mice in response to activation of the peripheral 

innate immune system. Neuropsychopharmacology 33: 2341-2351. 

Gourlay, GK, Adams, JF, Cousins, MJ, & Hall, P. (1981). Genetic differences in reductive 

metabolism and hepatotoxicity of halothane in three rat strains. Anesthesiology 55(2): 96-

103. 

Govindaraju, V., Young, K., & Maudsley, A. (2000). Proton NMR chemical shifts and coupling 

constants for brain metabolites. NMR Biomed 13: 129-153. 

Gray, J., Frith, C., & Parker, J. (2000). In vivo enhancement of chemotherapy with static electric 

or magnetic fields. Bioelectromagnetics 21: 575-583. 

Gruetter, R. (1993). Automatic, localized in vivo adjustment of all first- and second-order shim 

coil. Magn Reson Med 29: 804-811. 

Gruetter, R., & Tkac, I. (2000). Field Mapping Without Reference Scan Using Asymmetric Echo-

Planar Techniques. Magn Reson Med 43: 319-323. 

Gruetter, R., Weisdorf, S. A., Rajanayagan, V., Terpstra, M., Merkle, H., Truwit, C. L., et al. 

(1998). Resolution improvements in in vivo 1H NMR spectra with increased magnetic field 

strength. J Magn Reson 135: 260-264. 

Haacke, E., Brown, R., Thompson, M., & Venkatesan, R. (1999). Magnetic Resonance Imaging: 

Physical Principles and Sequence Design. New York: John Wiley & Sons. 

Haase, A., Frahm, J., Hanicke, W., & Matthaei, D. (1985). 1H NMR chemical shift selective 

(CHESS) imaging. Phys Med Biol 30: 341-344. 

Haga, K. K., Khor, Y. P., Farrall, A., & Wardlaw, J. M. (2009). A systematic review of brain 

metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. 

Neurobiol Aging 30: 353-363. 

Hahn, E. (1950). Spin echoes. Phys Rev 80: 580-594. 

Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 

298-300. 

Harper, MH., Collins, P., Johnson, B., Eger, EI 2nd & Biava, C. (1982). Hepatic injury following 

halothane, enflurane, and isoflurane anesthesia in rats. Anesthesiology 56(1): 14-17. 

Harris, F. (1978). On the use of windows for harmonic analysis with the discrete Fourier 

transform. Proceedings of the IEEE, 51-83. 



BIBLIOGRAPHY 

187 
 

Hasler, G., van der Veen, J., Tumonis, T., Meyers, N., Shen, J., & Drevets, W. (2007). Reduced 

prefontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression 

determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64: 193-

200. 

Hedden, T., & Gabrieli, J. (2004). Insights into the ageing mind: a view from cognitive 

neuroscience. Nature Rev Neurosci 5: 87-96. 

Hennig, J., Nauerth, A., & Friedburg, H. (1986). RARE imaging: a fast imaging method for 

clinical MR. Magn Reson Med 3: 823-833. 

Hennig, J., Thiel, T., & Speck, O. (1997). Improved sensitivity to overlapping multiplet signals in 

in vivo proton spectroscopy using a multiecho volume selective (CPRESS) experiment. 

Magn Reson Med 37: 816-820. 

Henning, A., Fuchs, A., Murdoch, J. B., & Boesiger, P. (2009). Slice-selective FID acquisition, 

localized by outer volume suppression (FIDLOVS) for 1H-MRSI of the human brain at 7T 

with minimal signal loss. NMR Biomed 22: 683-696. 

Henry, P.-G., Dautry, C., Hantraye, P., & Bloch, G. (2001). Brain GABA editing without 

macromolecule contamination. Magn Reson Med 45: 517-520. 

Henry, P.-G., Öz, G., Provencher, S., & Gruetter, R. (2003). Toward dynamic isotopomer 

analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. 

NMR Biomed 16: 400-412. 

Herminghaus, S., Frolich, L., Gorriz, C., Pilatus, U., Dierks, T., Wittsack, H., et al. (2003). Brain 

metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic 

resonance spectroscopy. Psychiat Res Neuroimag 123: 183-190. 

Hetherington, H. P., Avdievich, N. I., Kuznetsov, A. M., & Pan, J. W. (2010). RF shimming for 

spectroscopic localization in the human brain at 7 T. Magn Reson Med 63: 9-19. 

Hetherington, H., Spencer, D., Vaughan, J., & Pan, J. (2001). Quantitative 31P spectroscopic 

imaging of human brain at 4 Tesla: Assessment of gray and White Matter differences of 

phosphocreatine and ATP. Magn Reson Med 45: 46-52. 

Heun, R., Schlegel, S., & Graf-Morgenstern, M. (1997). Proton magnetic resonance spectroscopy 

in dementia of Alzheimer type. Int J Geriat Pychiatry 12: 349-358. 

Hindman, J. (1966). Proton resonance shift of water in gas and liquid states. J Phys Chem 44: 

4582-4592. 

Hofmann, L., Slotboom, J., Boesch, C., & Kreis, R. (2001). Characterization of the 

macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 46: 

855-863. 



 

188 
 

Hong, S., Balla, D., Shajan, G., Choi, C., Ugurbil, K., & Pohmann, R. (2011). Enhanced 

neurochemical profile of the rat brain using in vivo 1H NMR spectroscopy at 16.4 T. Magn 

Reson Med 65: 28-34. 

Hong, S.-T., Balla, D. Z., Choi, C., & Pohmann, R. (2011). Rat strain-dependent variations in 

brain metabolites detected by in vivo 1H NMR spectroscopy at 16.4 T. NMR Biomed 24: 

1401-1407. 

Hoult, D. I., & Phil, D. (2000). Sensitivity and Power Deposition in a High-Field Imaging 

Experiment. J Magn Reson Imag 12: 46-67. 

Hoult, D., & Richards, R. (1976). The signal-to-noise ratio of the nuclear magnetic resonance 

experiment. J Magn Reson 24: 71-85. 

Howard, E. (1973). DNA content of rodent brains during maturation and aging and 

autoradiography of postnatal DNA synthesis in monkey brain. Prog Brain Res 40: 91-114. 

Howe, F., Barton, S., Cudlip, S., Stubbs, M., Saunders, D., Murphy, M., et al. (2003). Metabolic 

profiles of human brain tumors using quantitative in vivo 1H magnetic resonance 

spectroscopy. Magn Reson Med 49: 223-232. 

Hoyert, D., Kung, H., & Smith, B. (2005). Deaths: Preliminary data for 2003. Natinal Vital 

Statistics Reports (pp. Vol 53: No. 15). Hyattsville, Maryland: National Center for Health 

Statistics. 

Hung, C.-W., Chen, Y.-C., Hsieh, W.-L., Chiou, S.-H., & Kao, C.-L. (2010). Ageing and 

neurodegenerative diseases. Ageig Res. Rev 9S, S36-S46. 

Hurley, S. A., Yarnykh, V. L., Johnson, K. L., Field, A. S., Alexander, A. L., & Samsonov, A. A. 

(2012). Simultaneous variable flip angle-actual flip angle imaging method for improved 

accuracy and precision of three-dimensional T1 and B1 measurements. Magn Reson Med 68: 

54-64. 

Ibrahim, T., & Tang, L. (2007). insight into RF power requirements and B1 field homogeneity for 

human MRI via rigorous FDTD approach. J Magn Reson Imag 25: 1235-1247. 

International Electrotechnical Commission. (March 2010). International standard, medical 

electrical equipment. Part 2. Particular requirements for the safety of magnetic resonance 

equipment for medical diagnosis, 3rd ed. Geneva: International Electrotechnical 

Commission. 

Jenden, D. (1979). Nutrition and the Brain. Vol. 5. New York: Raven Press. 

Jensen, E. J., Drost, D. J., Menon, R. S., & Williamson, P. C. (2002). In vivo brain 31P-MRS: 

measuring the phospholipid resonances at 4 Tesla from small voxels. NMR Biomed 15: 338-

347. 



BIBLIOGRAPHY 

189 
 

Jezzard, P., & Balaban, R. S. (1995). Correction for Geometric Distortion in Echo Planar Images 

from B0 Field Variations. Magn Reson Med 34: 65-73. 

Joseph, J., Cole, G., Head, E., & Ingram, D. (2009). Nutrition, brain aging, and 

neurodegeneration. J Neuroscience 29(41), 12795-12801. 

Jung, W.-I., Staubert, A., Widmaier, S., Hoess, T., Bunse, M., van Erckelens, F., et al. (1997). 

Phosphorus J-coupling constants of ATP in human brain. Magn Reson med 37: 802-804. 

Juraska, J., & Markham, J. (2004). The cellular basis for volume changes in the rat cortex during 

puberty: white and gray matter. Ann NY Acad Sci 1021: 431-435. 

Just, N., Romero, C. J., & Gruetter, R. (2014). 1H functional MRS of the rat barrel cortex and the 

thalamus during trigeminal nerve stimulation. Preliminary investigation of the metabolic 

regulation of the barrel cortex by glutamatergic and GABAergic thalamocortical inputs. 

Proceedings of the 22th Annual Meeting of the ISMRM. (p. 0809). Milan, Italy. 

Kaiser, L. G., Marjanska, M., Matson, G. B., Iltis, I., Bush, S. D., Soher, B. J., et al. (2010). 1H 

MRS detection of glycine residue of reduced glutathione in vivo. J Magn Reson 202: 259-

266. 

Kaiser, L., Schuff, N., Cashdollar, N., & Weiner, M. (2005). Age-related glutamate and 

glutamine concentration changes in normal human brain. Beurobiol. Aging 26: 665-672. 

Kaminogo, M., Ishimaru, H., Morikawa, M., Ochi, M., Ushijima, R., Tani, M., et al. (2001). 

Diagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and 

point-resolved spatially localized proton spectroscopy of the brain. Neuroradiology 43: 353-

363. 

Kantarci, K., Petersen, R., Boeve, B., Knopman, D., Tang-Wai, D., O'Brien, P., et al. (2004). 1H 

MR spectroscopy in common dementias. Neurology 63: 1393-1398. 

Kantarci, K., Weigand, S., Petersen, R., Boeve, B., Knopman, D., Gunter, J., et al. (2006). 

Longitudinal 1H MRS changes in mild cognitive impairement and Alzheimer's disease. 

Neurobiol Aging 28: 1330-1339. 

Kao, C., Chen, L., Chang, Y., Yung, M., Hsu, C., Chen, Y., et al. (2010). Resveratrol protects 

human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 

activation. J Atheroscler Thromb 17(9), 970-979. 

Karbowski, M., & Neutzner, A. (2012). Neurodegeneration as a consequence of failed 

mitochondrial maintenance. Acta Neuropathol 123: 157-171. 

Katscher, U., Boernert, P., & Leussler, C. (2003). Transmit sense. Magn Res Med 49: 144-150. 

Katscher, U., Bornert, P., Leussler, C., & van den Brink, J. (2003). Transmit SENSE. Magn 

Reson Med 49: 144-150. 



 

190 
 

Kauppinen, R., Pirttila, T.-R., & Auriola, S. O. (1994). Compartmentation of cerebral glutamate 

in situ as detected by 1H/31C n.m.r. Biochem J 298: 121-127. 

Kinoshita, Y., & Yokota, A. (1997). Absolute concentrations of metabolites in human brain 

tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10: 2-12. 

Kolvisto, K., & et al. (1995). Prevalence of age-associated memory impairment in a randomly 

selected population from eastern Finland. Neurology 45: 741-747. 

Kreis, R., Ernst, T., & Ross, B. (1993). Absolute quantification of water and metabolites in the 

human brain: I. Compartments and water. J Magn Reson B 102: 1-8. 

Kreis, R., Ernst, T., & Ross, B. (1993). Absolute quantification of water and metabolites in the 

human brain: II. Compartments and water. J Magn Reson 102: 9-19. 

Kreis, R., Ernst, T., & Ross, B. (1993). Development of the human brain: in vivo quantification 

of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson 

Med 30: 424-437. 

Kreis, R., Slotboom, J., Hofmann, L., & Boesch, C. (2005). Integrated data acquisition and 

processing to determine metabolite contents, relaxation times, and macromolecule baseline 

in single examinations of individual subjects. Magn Reson Med 54: 761-768. 

Kuhn, B., Dreher, W., Norris, D., & Leibfritz, D. (1996). Fast proton spectroscopic imaging 

employing k-space weighting achieved by variable repetitoon times. Magn Reson Med 35: 

457-464. 

Lagunas, R., & Gancedo, C. (1983). Role of phosphate in the regulation of the Pasteur effect in 

Saccharomyces cerevisiae. Eur J Biochem 137: 479-483. 

Lamming, D., Sabatini, D., & Baur, J. (2012). Pharmacologic means of extendig lifespan. J Clin 

Exp Pathol (Suppl 4), 7327. 

Le Fur, Y., & Cozzone, P. J. (2014). FID modulus: a simple and efficient technique to phase and 

align MR spectra. MAGMA 27: 131-148. 

Le Fur, Y., & Cozzone, P. J. (2015). Hemi-spectrum substitution after water signal fitting 

(HESWAF): an improvement of the modulus post-processing of MR spectra. MAGMA 28: 

67-85. 

Le Fur, Y., Nicoli, F., Guye, M., Confort-Gouny, S., Cozzone, P. J., & Kober, F. (2010). Grid-

free interactive and automated data processing for MR chemical shift imaging data. 

MAGMA 23: 23-30. 

Lei, H., Zhang, Y., Zhu, X., & Chen, W. (2003). Changes in the proton T2 relaxation times of 

cerebral water and metabolites during forebrain ischemia in rat at 9.4 T. Magn Reson Med 

49: 979-984. 



BIBLIOGRAPHY 

191 
 

Lei, H., Zhu, X.-H., Zhang, X.-L., Ugurbil, K., & Chen, W. (2003). In vivo 31P magnetic 

resonance spectroscopy of human brain at 7 T: an intial experience. Magn Reson Med 49: 

199-205. 

Lentner, C. (1981). Geigy Scientific Tables. Basel,Switzerland.: Ciba-Ceigy. 

Li, R., & Shen, Y. (2005). Estrogen and brain: synthesis, function and diseases. Front Biosci 10: 

257-267. 

Li, T., & Deoni, C. (2006). Fast T1 mapping of the brain at 7 T with RF calibration using three 

point DESPOT1 method. Proceedings of the 16th Annual Meeting of the ISMRM. (p. 2643). 

Seattle, USA. 

Li, Y., Xu, D., Ozturk-Isik, E., Lup, J., Chen, A., Vigneron, D., et al. (2012). T1 and T2 

metabolite relaxation times in normal brain at 3T and 7T. J Mol Imaging Dynam, S1:002. 

Lin, A.-L., Coman, D., Jiang, L., Rothman, D. L., & Hyder, F. (2014). Caloric restriction 

impedes age-related decline of mitochondrial function and neuronal activity. J Cereb Blood 

Flow Metab 34: 1440-1443. 

Lin, W., Paczynski, R., Venkatesan, R., He, Y., Powers, W., Hsu, C., et al. (1997). Quantitative 

regional brain water measurement with magnetic resonance imaging in a focal ischemia 

model. Magn Reson Med 38: 303-310. 

Lin, W., Venkatesan, R., Gurleyik, K., He, Y. Y., Powers, W. J., & Hsu, C. Y. (2000). An 

absolute measurement of brain water content using magnetic resonance imaging in two focal 

cerebral ischemic rat models. J Cereb Blood Flow Metab 20: 37-44. 

Loessner, A., Alavi, A., Lewandrowski, K., Mozley, D., Souder, E., & Gur, R. (1995). Regional 

cerebral function determined by FDG-PET in healthy volunteers: normal patterns and 

changes with age. Nucl Med 36: 1141-1149. 

Look, D., & Locker, D. (1968). Nuclear spin-lattice relaxation measurements by tone-burst 

modulation. Phys Rev Lett 20: 987-989. 

Lu, M., Chen, W., & Zhu, X.-H. (2014). Field dependence study of in vivo brain 31P MRS up to 

16.4 T. NMR Biomed 27: 1135-1141. 

Lu, M., Zhu, X.-H., Zhang, Y., & Chen, W. (2013). Intracellular redox state revealed by in vivo 

31P MRS measurement of NAD+ and NADH contents in brains. Magn Reson Med 2013: 

1969-1972. 

Luo, Y., de Graaf, R. A., DelaBarre, L., Tannus, A., & Garwood, M. (2001). BISTRO: An outer-

volume suppression method that tolerates RF field inhomogeneity. Magn Reson Med 45: 

1095-1102. 



 

192 
 

Luu, T., Pirogovsky, E., & Gilbert, P. (2008). Age-related changes in contextual associative 

learning. Neurobiol Learn Mem 89: 613-625. 

Lynch, M. A. (2009). Age-related neuroinflammatory changes negatively impact on neuronal 

function. Front Aging Neurosci 1: 1-8. 

Mans, A. M., DeJoseph, M. R., & Hawkins, R. A. (1994). Metabolic abnormalities and grade of 

encephalopathy in acute hepatic failure. J Neurochem 63: 1829-1838. 

Mans, A., DeJoseph, M., & Hawkings, R. (1994). Mtabolic abnormalities and grade of 

encephalopathy in acute hepatic failure. J Neurochem 63: 1829-1838. 

Mao, W., Smith, M., & Collins, C. (2006). Exploring the limits of RF shimming for high-field 

MRI of the human head. Magn Reson Med 56: 918-922. 

Marjanska, M., Auerbach, E. J., Valabrégue, R., Van de Moortele, P.-F., Adriany, G., & 

Garwood, M. (2012). Localized 1H NMR spectroscopy in different regions of human brain 

in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed 

25 (2), 332-339. 

Marjanska, M., Emir, E., Deelchand, D., & Terpstra, M. (2013). Faster metabolite 1H transverse 

relaxation in the elder human brain. PLoS One 8: e77572. 

Marty, B., Djemaï, B., Robic, C., Port, M., Robert, P., Valette, J., et al. (2013). Hindered 

diffusion of MRI contrast agents in rat brain extracellular micro-environment assessed by 

acquisition of dynamic T1 and T2 maps. Contrast Media Mol Imag 8: 12-19. 

Matsumae, M., Kikinis, R., Morocz, I. A., Lorenzo, A., Sàndor, T., Albert, M. S., et al. (1996). 

Age-related changes in intracranial compartment volumes in normal adults assessed by 

magnetic resonance imaging. J Neurosurg 84: 982-991. 

Matsumi, N., Matsumoto, K., Mishima, N., Moriyama, E., Furuta, T., Nishimoto, A., et al. 

(1994). Thermal damage threshold of brain tissue--histological study of heated normal 

monkey brains. Neurol Med Chir (Tokyo) 34(4), 209-215. 

Mattay, V., Fera, F., Tessitore, A., Hariri, A., Das, S., Callicott, J., et al. (2002). 

Neurophysiological correlates of age-related changes in human motor function. Neurology 

58(4), 630-635. 

Mattson, M., & Magnus, T. (2006). Ageing and neuronal vulnerability. Nature Rev Neurosci 7: 

278-294. 

Mecheri, G., Marie-Cardine, M., Sappey-Marinier, D., Bonmartin, H., Albrand, G., Ferry, G., et 

al. (1997). In vivo hippocampal (31)P NMR metabolites in Alzheimer's disease and ageing. 

Eur Psychiatry 12: 140-148. 



BIBLIOGRAPHY 

193 
 

Meiboom, S., & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation 

times. Rev Sci Instrum 29: 688-691. 

Mengler, L., Khmelinskii, A., Diedenhofen, M., Po, C., Staring, M., Lelieveldt, B. P., et al. 

(2014). Brain maturation of the adolescent rat cortex and striatum: changes in volume and 

myelination. NeuroImage 84: 35-44. 

Michaeli, S., Garwood, M., Zhu, X., DelaBarre, L., Andersen, P., Adriany, G., et al. (2002). 

Proton T2 relaxation study of water, N-acetylaspartate and creatine in human brain using 

Hahn and Carr-Purcell spin echoes at 4 T and 7 T. Magn Reson Med 47: 629-633. 

Mlynàrik, V., Cacquevel, M., Sun-Reimer, L., Janssens, S., Cudalbu, C., Lei, H., et al. (2012). 

Proton and phosphorus magnetic resonance spectroscopy of a mouse model of alzheimer's 

disease. J Alzheimers Dis 31: S87-S99. 

Mlynàrik, V., Cudalbu, C., Xin, L., & Gruetter, R. (2008). 1H NMR spectroscopy of rat brain in 

vivo at 14.1 Tesla: improvements in quantification of the neurochemical profile. J Magn 

Reson 194: 163-168. 

Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N., & Namboodiri, A. M. (2007). N-

acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81(2), 

89-131. 

Moffett, J., & Namboodiri, A. (2006). Expression of N-acetylaspartate and N-

acetylaspartylglutamate in the nervous system. Adv Exp Med Biol 576: 361-363. 

Moffett, J., & Namboodiri, M. (1995). Differential distribution of N-acetylaspartylglutamate and 

N-acetylaspartate immunoreactivities in rat forebrain. J Neurocytol 24: 409-433. 

Moràn, M., Moreno-Lastres, D., Marìn-Buera, L., Arenas, J., Martìn, M., & Ugalde, C. (2012). 

Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radic 

Biol Med. 53: 595-609. 

Moreno-Torres, A., Pujol, J., Soriano-Mas, C., Deus, J., Iranzo, A., & Santa-Maria, J. (2005). 

Age-related metabolic changes in the upper brainstem tegmentum by MR spectroscopy. 

Neurobiol Aging 26: 1051-1059. 

Morrison, J., & Baxter, M. (2012). The ageing cortical synapse: hallmarks and implications for 

cognitive decline. Nat Rev Neurosci 13(4), 240-250. 

Mrak, R., Griffin, S., & Graham, D. (1997). Aging-associated changes in human brain. J 

Neuropathol Exp Neurol 56: 1269-1275. 

Mulkern, R., & Bowers, J. (1994). Density matrix calculations of AB spectra from multipulse 

sequences: quantum mechanics meets in vivo spectroscopy. concepts Magn Reson 6: 1-23. 



 

194 
 

Nabetani, A., McKinnon, G., & Nakada, T. (2006). Performance comparison with 15 cm long 

and 23 cm long birdcage coil on 7 T. Proceedings of the 14th Annual Meeting of the 

ISMRM. (p. 2608). Seattle, USA. 

Namboodiri, M., Peethambaran, A., Mathew, R., Sambhu, P., Hershfield, J., Moffett, J., et al. 

(2006). Canavan disease an the role of N-acetylaspartate in myelin synthesis. Mol Cell 

Endocrinol 252: 216-223. 

Narayana, P., Wolinsky, J., Jackson, E., & McCarthy, M. (1992). Proton MR spectroscopy of 

gadolinium-enhanced multiple sclerosis plaques. J Magn Reson Imaging 2: 263-270. 

Naressi, A., Couturier, C., Devos, J., Janssen, M., Mangeat, C., de Beer, R., et al. (2001). Java-

based graphical user interface for the MRUI quantitation package. MAGMA 12: 141-152. 

Near, J., Leung, I., Claridge, T., Cowen, P., & Jezzard, P. (2012). Chemical shifts and coupling 

constants of the GABA spin system. Proceedings from the 20th Scientific Meeting and 

Exhibition of the ISMRM (p. 4386). Melbourne,Australia. 

Nehrke, K. (2009). On the steady-state properties of actual flip angle imaging (AFI). Magn Reson 

Med 61: 84-92. 

Neil, J., Shiran, S., McKinstry, R., Schefft, G., Snyder, A., Alml, C., et al. (1998). Normal brain 

in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by 

using diffusion tensor MR imaging. Radiol 209(1), 57-66. 

Nestor, P., Fryer, T., Smielewsky, P., & Hodges, J. (2003). Limbic hypometabolsim in 

Alzheimer's disease and mild cognitive impairement. Ann Neurol 54: 343-351. 

Nordengen, K., Heuser, C., Rinholm, J. E., Matalon, R., & Gundersen, V. (2015). Localisation of 

N-acetylaspartate in oligodendrocytes/myelin. Brain Struct Funct 220: 899-917. 

O'Brien, K. R., Magill, A. W., Delacoste, J., Marques, J. P., Kober, T., Fautz, H.-P., et al. (2014). 

Dielectric pads and low- B1+ adiabatic pulses: Complementary techniques to 

optimizestructural T1w whole-brain MP2RAGE scans at 7 tesla. J Magn Reson Imag 40: 

804-812. 

Ogg, R. J., Kingsley, P. B., & Taylor, J. S. (1994). WET, a T1- and B1-insensitive water-

suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B (104), 1-

10. 

Ongür, D., Prescot, A., Jensen, J., Rouse, E., Cohen, B., Renshaw, P., et al. (2010). T2 relaxation 

time abnormalities in bipolar disorder and schizophrenia. Magn Reson Med 63: 1-8. 

Opstad, K., Bell, B., Griffiths, J., & Howe, F. (2008). An assessment of the effects of sample 

ischaemia and spinning time on the metaboic profile of brain tumour biopsy specimens as 

determined by high-resolution magic angle spinning (1)H NMR. NMR Biomed 21(10), 

1138-1147. 



BIBLIOGRAPHY 

195 
 

O'Sullivan, M., Jones, D., Summers, P., Morris, R., Williams, S., & Markus, H. (2001). Evidence 

for cortical "disconnection" as a mechanism of age-related cognitive decline. Neurology 57: 

632-638. 

Pakkenberg, B., & Gundersen, H. (1997). Neocortical neuron number in humans: effect of sex 

and age. J Comp Neurol 384: 312-320. 

Pan, J., Avdievich, N., & Hetherington, H. (2010). J-refocused coherence transfer spectroscopic 

imaging at 7 T in Human Brain. Magn Reson Med 64: 1237-1246. 

Parsons, M., Li, T., Barber, A., Yang, Q., Darby, D., Desmond, P., et al. (2000). Combined 1H 

MR spectroscopy and diffusion-weighted MRI improves the prediction of stroke outcome. 

Neurology 55: 498-506. 

Patel, A. B., Veeraiah, P., Shameem, M., & Tiwari, V. (2012). Reduced glucose oxidation by 

glutamatergic neurons in cerebral cortex during normal aging in mice. Proceedings of the 

20th Annual Meeting of the ISMRM. (p. 1823). Melbourne, Australia. 

Patel, A. B., Veeraiah, P., Shamim, M., & Kumar, M. J. (2014). Regional metabolism during 

healthy aging in mice brain: A 1H-[13C]-NMR study. Proceedings of the 22th Annual 

Meeting of the ISMRM. (p. 0062). Milan, Italy. 

Paxino, G., & Watson, C. (1998). The rat brain in stereotaxis coordinates. Fourth edition. New 

York: Academic Press. 

Pfefferbaum, A., Sillivan, E. V., Hedehus, M., Lim, K. O., Adalsteinsson, E., & Moseley, M. 

(2000). Age-related decline in brain white matter anisotrophy measured with spatially 

corrected echo-planar diffusion tensor imaging. Mag Reson Med 44: 259-268. 

Pfeuffer, J., Tkac, I., & Gruetter, R. (2000). Extracellular-intracellular distribution of glucose and 

lactate in the rat brain assessed non-invasively by diffusion-weighted 1H nuclear magnetic 

resonance spectroscopy in vivo. J Cereb Blood Flow Metab 20: 736-746. 

Pfeuffer, J., Tkac, I., Provencher, S., & Gruetter, R. (1999). Toward an in vivo neurochemical 

profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat 

brain. J Magn Reson 141: 104-120. 

Pijnappel, W., van den Boogaart, A., de Beer, R., & van Ormondt, D. (1992). SVD-based 

quantification of magnetic resonance signals. J Magn Reson 97: 122-134. 

Plaschke, K., & Hoyer, S. (1993). Action of the diabetogenic drug streptozotocin on glycolytic 

and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Devl 

Neuroscience 11: 477-483. 

Pollesello, P., Eriksson, O., Vittur, F., Paoletti, S., Geimonen, E., & Toffanin, R. (1995). 

Detection and quantification of phosphorous metabolites in crude tissue extracts by 1H and 



 

196 
 

31P NMR: use of gradient assisted 1H-31P HMQC experiments, with selective pulses, for 

the assigment of less abundant metabolites. NMR Biomed 8: 190-196. 

Posse, S., Otazo, R., Dager, S. R., & Alger, J. (2012). MR Spectroscopic Imaging: Principles and 

Recent Advances. Journal of Magnetic Resonance Imaging, 1301-1325. 

Power, C., & Proudfoot, A. (2001). The chemokine system: novel broad-spectrum therapeutic 

targets. Curr Opon Pharmacol 1: 417-424. 

Provencher, S. (1993). Estimation of metabolite concentrations from localized in vivo proton 

NMR spectra. Magn Reson Med 30: 672-679. 

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing., http://www.R-project.org/. 

Radpath, T. (1998). Signal-to-noise ratio in MRI. Br J Radiol 71: 704-707. 

Rapp, P., Rosenberg, R., & Gallagher, M. (1987). An evaluation of spatial information 

processing in aged rats. Behav Neurosci 101: 3-12. 

Raylmann, R., Clavo, A., & Wahl, R. (1996). Exposure to strong magnetic fields slows the 

growth of human cancer cells in vitro. Bioelectromagnetics 17: 358-363. 

Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. 

(2005). Regional brain changes in aging healthy adults: general trends, individual differences 

and modifiers. Cereb Cortex 15(11), 1676-1689. 

Remy, C., Albrand, J., Benabid, A., Decorps, M., Jacrot, M., Riondel, J., et al. (1987). In vivo 

31P nuclear magnetic resonance studies of T1 and T2 relaxation times in rat brain and in rat 

brain tumors implanted to nude mice. Magn Reson Med 4: 144-152. 

Reyngoudt, H., Claeys, T., Vlerick, L., Verleden, S., Acou, M., Deblaere, K., et al. (2012). Age-

related differences in metabolites in the posterior cingulate cortex and hippocampus of 

normal ageing brain: A 1H-MRS study. Eur J Radiol 81: e223-e231. 

Rice, D., & Barone, S. (2000). Critical periods of vulnerability for the developing nervous 

system: evidence from humans and animal models. Env Health Perspect 108(S3), 511-533. 

Richard, S. (2005). Static magnetic fields: animal studies. Prog Biophys Mol Biol 87: 225-239. 

Rogers, J., Zornetzer, S., Bloom, F., & Mervis, R. (1984). Senescent microstructural changes in 

rat cerebellum. Brain Res 292: 23-32. 

Romijn, H., Hofman, M., & Gramsbergen, A. (1991). At what age is the developing cerebral 

cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 

26: 61-67. 



BIBLIOGRAPHY 

197 
 

Rooney, W., Johnson, G., Li, X., Cohen, E., Kim, S., Ugurbil, K., et al. (2007). Magnetic field 

and tissue dependencies of human brain longitudinal 1H20 relaxation in vivo. Magn Reson 

Med 57: 308-318. 

Rosenzweig, E., & Barnes, C. (2003). Impact of aging on hippocampal function: plasticity, 

network dynamics, and cognition. Prog Neurobiol 69: 143-179. 

Ross, J. M., Öberg, J., Brené, S., Coppotelli, G., Terzioglu, M., Pernold, K., et al. (2010). High 

brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B 

ratio. PNAS 46: 20087-20092. 

Rothman, D. L., De Feyter, H. M., de Graaf, R. A., Mason, G. F., & Behar, K. L. (2011). 13C 

MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24: 

943-957. 

Rubinsztein, D., Mariño, G., & Kroemer, G. (2011). Autophagy and aging. Cell 146: 682-695. 

Sachdev, P. S., McBride, R., Loo, C., Mitchell, P. M., Malhi, M. S., & Croker, V. (2002). Effects 

of different frequencies of transcranial magnetic stimulation (TMS) on the forced swim test 

model of depression in rats. Biol Psychiatry 51: 474-479. 

Sahin, B., Aslan, H., Unal, B., Canan, S., Bilgic, S., Kaplan, S., et al. (2001). Brain volumes of 

the lamb, rat and bird do not show hemispheric asymmetry: a stereological study. Image 

Anal Stereol 20: 9-13. 

Sahin, E., & Depinho, R. (2010). Linking functional decline of telomeres, mitochondria and stem 

cells during ageing. Nature 464: 520-528. 

Salehi, A., & Swaab, D. (1999). Diminished neuronal metabolic activity in Alzheimer's disease. J 

Neural Transm 106 (9-10), 955-986. 

Sanacora, G., Mason, G., Rothman, D., Behar, K., Hyder, F., Petroff, O., et al. (1999). Reduced 

cortical gamma-aminobutyric acid levels in depressed patients determined by proton 

magnetic resonance spectroscopy. Arch Gen Psychiatry 56: 1043-1047. 

Sanacora, G., Treccani, G., & Popoli, M. (2012). Towards a glutamate hypothesis of depression: 

an emerging frontier of neuropsychopharmacology of mood disorders. Neuropharmacology 

62: 63-77. 

Satoh, M., Tsuji, Y., Watanabe, Y., & al, e. (1996). Metallothionein content increased in the liver 

of mice exposed to magnetic fields. Arch Toxicol 70: 315-318. 

Saunders, D., Howe, F., van den Boogaart, A., Griffiths, J., & Brown, M. (1997). Discrimination 

of metabolite from lipid and macromolecule resonances in cerebral infarction in humans 

using short echo proton spectroscopy. J Magn Reson Imaging 7: 1116-1121. 



 

198 
 

Sawada, M., Sawada, H., & Nagatsu, T. (2008). Effects of aging on neuroprotective and 

neurotoxic properties of microglia in neurodegenerative diseases. Neurodegener Dis 5 (3-4), 

254-256. 

Schieble, T. M., Costa, A. K., Heffel, D. F., & Trudell, J. R. (1988). Comparative toxicity of 

halothane, isoflurane, hypoxia and phenobarbital induction in monolayer cultures of rat 

hepatocytes. Anesthesiology (68), 485-494. 

Schmitt, P., Griswold, M. A., Jakob, P. M., Kotas, M., Gulani, V., Flentje, M., et al. (2004). 

Inversion recovery TrueFISP: Quantification of T1: T2: and spin density. Magn Reson Med 

51: 661-667. 

Seeger, U., Klose, U., Mader, I., Grodd, W., & Nägele, T. (2003). Parameterized evaluation of 

macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 

49: 19-28. 

Serrai, H., Clayton, D. B., Senhadji, L., Zuo, C., & Lenkinski, R. E. (2002). Localized proton 

spectroscopy without water suppression: removal of gradient induced frequency modulations 

by modulus signal selection. J Magn Reson 154: 53-59. 

Setsompop, K., Alagappan, V., Gagoski, B. A., Potthast, A., Hebrank, F., Fontius, U., et al. 

(2009). Broadband slab selection with B1+ mitigation at 7T via parallel spectral-spatial 

excitation. Magn Reson Med 61: 493-500. 

Setsompop, K., Zelinski, A., Alagappan, V., Nistler, J., Hebrank, F., Fontius, U., et al. (2007). In 

vivo parallel RF excitation with B0 correction. Proceedings of the 15th Annual Meeting of 

the ISMRM. (p. 671). Berlin, Germany. 

Shajan, G., Kozlov, M., Hoffmann, J., Turner, R., Scheffler, K., & Pohmann, R. (2014). A 16-

Channel Dual-Row Transmit Array in Combination with a 31-Element Receive Array for 

Human Brain Imaging at 9.4 T. Magn Reson Med 71: 870-879. 

Shemesh, N., Dumez, J., & Frydman, L. (2013). Longitudinal relaxation enhancement in 1H 

NMR spectroscopy of tissue metabolites via spectrally selective excitation. Chem Eur J 19: 

13002-13008. 

Sherar, M., Moriarty, J., Kolios, M., Chen, J., Peters, R., Ang, L., et al. (2000). Comparison of 

thermal damage calculated using magnetic resonance thermometry, with magnetic resonance 

imaging post-treatment and histology, after interstitial microwave thermal therapy of rabbit 

brain. Phys Med Biol 45: 3563-3576. 

Shinnar, M. (1994). Reduced power selective excitation radio frequency pulses. Magn Reson 

Med 32: 658-660. 

Shungu, D., & Glickson, J. (1993). Sensitivity and localization enhancement in multinuclear in 

vivo NMR spectroscopy by outer volume presaturation. Magn Reson Med 30(6), 661-671. 



BIBLIOGRAPHY 

199 
 

Sibson, N. R., Dhankhar, A., Mason, G. F., Rothman, D., Behar, K. L., & Shulman, R. G. (1998). 

Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. 

Neurobiol 95: 316-321. 

Silver, M., Joseph, R., & Hoult, D. (1984). Highly selective π/2 and π pulse generation. J Magn 

Reson 59: 347-351. 

Sirmatel, Ö., Sert, C., Sirmatel, F., Selek, S., & Yokus, B. (2007). Total antioxidant capacity, 

total oxidant status and oxidative stress index in the men exposed to 1.5 T static magnetic 

field. General Physio Biophys 26: 86-90. 

Skinner, M. G., Iizuka, M. N., Kolios, M. C., & Sherar, M. D. (1998). A theoretical comparison 

of energy sources-microwave,ultrasound and laser- for interstitial thermal therapy. Phys Med 

Biol 43: 3535-3547. 

Slotboom, J., Boesch, C., & Kreis, R. (1998). Versatile frequency domain fitting using time 

domain models and prior knowledge. Magn Reson Med 39: 899-911. 

Smart, S., Fox, G., Allen, K., Swanson, A., Newman, M., Swayne, G., et al. (1994). Identication 

of ethanolamine in rat and gerbil brain tissue extracts by NMR spectroscopy. NMR Biomed 

7: 356-365. 

Smith, D. J., Elam, C. J., Mattison, J., Lane, M., Roth, G., Ingram, D., et al. (2010). metformin 

supplementation and life span in Fischer-344 rats. J Gerontol A Biol Sci Med Sci 65(5), 468-

474. 

Smith, S. (2002). Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. 

Sowell, E., Delis, D., Stiles, J., & Jernigan, T. (2001a). Improved memory functioning and frontal 

lobe maturation between childhood and adolescence: a structural MRI study. J Int 

Neuropsychol Soc 7: 312-322. 

Sowell, E., Thompson, P., Tessner, K., & Toga, A. (2001b). Mapping continued brain growth and 

gray matter density reduction in dorsal frontal cortex: inverse relationships during post 

adolescent brain maturation. J Neurosci 21: 8819-8829. 

Staewen, R., Johnson, A., Ross, B., Parrish, T., Merkle, H., & Garwood, M. (1990). 3-D FLASH 

imaging using a single surface coil and a new adiabatic pulse BIR-4. Invest Radiol 25: 559-

567. 

Steen, R., Gronemeyer, S., & Taylor, J. (1995). Age-related changes in proton T1 values of 

normal human brain. J Magn Reson Imaging 5: 43-48. 

Suridjan, I., Rusjan, P., Voineskos, A., Selvanathan, T., Setiawan, E., Strafella, A., et al. (2014). 

Neuroinflammation in healthy aging: a PET study using a novel translocator protein 18kDa 

(TSPO) radioligand,[(18)F]-FEPPA. Neuroimage 84: 868-875. 



 

200 
 

Tajima, A., Hans, F.-J., Livingstone, D., Wei, L., Finnegan, W., DeMaro, J., et al. (1993). 

Smaller local brain volumes and cerebral atrophy in spontaneously hypertensive rats. 

Hypertension 21: 105-111. 

Tannùs, A., & Garwood, M. (1997). Adiabatic Pulses. NMR in Biomed 10: 423-434. 

Terry, R., DeTeresa, R., & Hansen, L. (1987). Neocrotical cell counts in normal human adult 

aging. Ann Neurol 21: 530-539. 

Thibault, O., Gant, J., & Landfield, P. (2007). Expansion of the calcium hypothesis of brain aging 

and Alzheimer's disease: minding the store. Aging Cell 6: 307-317. 

Tkac, I., Keene, C. D., Pfeuffer, J., Low, W. C., & Gruetter, R. (2001). Metabolic changes in 

quinolinic acid-lesioned rat striatum detected non-invasively by in vivo 1H NMR 

spectroscopy. J Neurosci Res 66: 891-898. 

Tkac, I., Rao, R., Georgieff, M. K., & Gruetter, R. (2003). Developmental and regional changes 

in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. 

Magn Reson Med 50: 24-32. 

Tkàc, I., Starcuk, Z., Choi, I., & Gruetter, R. (1999). In vivo 1H NMR spectroscopy of rat brain 

at 1 ms echo time. Magn Reson Med 41: 649-656. 

Tofani, S., Barone, D., Berardelli, M., & al, e. (2003). Static and ELF magnetic fields enhance 

the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of 

cyclophosphamide against B16 melanotic melanoma. Pharmacol Research 48: 83-90. 

Urenjak, J., Williams, S., Gadian, D., & Noble, M. (1993). Proton nuclear magnetic resonance 

spectroscopy unambiguously identifies different neural cell types. J Neurosci 13: 981-989. 

Urrila, A., Hakkarainen, A., Heikkinen, S., Vuori, K., Stenberg, D., Hakkinen, A., et al. (2004). 

Stimulus-induced brain lactate: effects of aging and prolonged wakefulness. J Sleep Res 13: 

111-119. 

Valenzano, D., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., et al. Resveratrol prolongs 

lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16: 

296-300. 

Van de Moortele, P., Akgun, C., Adriany, G., Moeller, S., Ritter, J., Collins, C., et al. (2005). 

B(1) destructive interferences and spatial phase patters at 7 T with a head transceiver array 

coil. Magn Res Med 54: 1503-1518. 

van der Staay, F., & de Jonge, M. (1993). Effects of age on water escape behavior and on 

repeated acquisition in rats. Behav Neural Biol 60: 33-41. 



BIBLIOGRAPHY 

201 
 

van der Veen, J., de Beer, R., Luyten, P., & van Ormondt, D. (1988). Accurate quantification of 

in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn 

Reson Med 6: 92-98. 

Van Dyke, R. (1982). Hepatic centrilobular necrosis in rats after exposure to halothane, 

enflurane, or isoflurane. Anesth Analg 61(10), 812-819. 

Vanhamme, L., van den Boogaart, A., & Van Huffel, S. (1997). Improved method for accurate 

and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129: 

35-43. 

Vaughan, J., Garwood, M., Collins, C., Liu, W., DelaBarre, L., Adriany, G., et al. (2001). 7T vs. 

4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson 

Med 46: 24-30. 

Villarreal, J., Dykes, J., & Barea-Rodriguez, E. (2004). Fischer 344 rats display age-related 

memory deficits in trace fear conditioning. Behav Neurosci 118: 1166-1175. 

Vold, R., Waugh, J., Klein, M., & Phelps, D. (1968). Measurement of spin relaxation in complex 

systems. J Chem Phys 48: 3831-3832. 

Wakana, S., Jiang, H., Nagac-Poctscher, L., van Zijl, P., & Mori, S. (2004). Fiber tract-based 

atlas of human white matter anatomy. Radiology 230: 77-87. 

Walter, L., & Neumann, H. (2009). Role of microglia in neuronal degeneration and regeneration. 

Semin Immunopathol 31: 513-525. 

Wang, Y., & Li, S.-J. (1998). Differentiation of metabolic concentrations between gray matter 

and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn 

Reson Med 39: 28-33. 

Watanabe, Y., Nakagawa, M., & Miyakoshi, Y. (1997). Enhancement of lipid peroxidation in the 

liver of mice exposed to magnetic fields. Industrial Health 35: 285-290. 

Watson, R. E., DeSesso, J. M., Hurtt, M. E., & Cappon, G. D. (2006). Postnatal growth and 

morphological development of the brain: a species comparison. Birth Defects Res B Dev 

Reprod Toxicol 77(5), 471-484. 

Wegener, S., & Wong, E. C. (2008). Longitudinal MRI studies in the isoflurane-anesthethized 

rat: long-term effects of a short hypoxic episode on regulation of cerebral blood flow as 

assessed by pulsed arterial spin labelling. NMR Biomed 21: 696-703. 

Weiss, C., & Thompson, R. (1991). The effects of age on eyeblink conditioning in the freely 

moving Fischer-344 rat. Neurobiol Aging 12: 249-254. 



 

202 
 

Whissell, P., Tsang, E., Mulligan, B., & Persinger, M. (2009). Prenatal exposures to LTP-

patterned magnetic fields: quantitative effects on specific limbic structures and acquisitions 

of contextually conditioned fear. Int J Neurosci 119: 1-14. 

Wijnen, J., Scheenen, T., Klomp, D., & Heerschap, A. (2010). 31P magnetic resonance 

spectroscopic imaging with polarisation transfer of phosphomono- and diesters at 3 T in the 

human brain: relation with age and spatial differences. NMR Biomed 23: 968-976. 

Witte, M., Geurts, J., de Vries, H., van der Valk, P., & van Horseen, J. (2010). Mitochondrial 

dysfunction: a potential link between neuroinflammation and neurodegeneration? 

Mitochondrion 10: 411-418. 

Wittsack, H., Kugel, H., Roth, B., & Heindel, W. (1996). Quantitative measurements with 

localized 1H MR spectroscopy in children with Canavan's disease. J Magn Reson Imaging 6: 

889-893. 

Wood, J., Rogina, B., Lavu, S., Howitz, K., Helfand, S., & et al. (2004). Sirtuin activators mimic 

caloric restriction and delay aging in metazoans. Nature 430: 686-689. 

Woodruff-Pak, D., & Thompson, R. (1988). Classical conditioning of the eyeblink response in 

the delay paradigm in adults aged 18-83 years. Psychol Aging 3: 219-229. 

Wright, P., Mougin, O., Totman, J., Peters, A., Brookes, M., Coxon, R., et al. (2008). Water 

proton T1 measurements in brain tissue at 7: 3: and 1.5 T using IR-EPI, IR-TSE, and 

MPRAGE: results and optimization. Magn Reson Mater Phy 21: 121-130. 

Wyss, M., Kirchner, T., Ringenbach, A., Prüssmann, K., & Henning, A. (2013). Relaxation 

parameter mapping adapted for 7T and Validation against optimized single voxel MRS. 

Proceedings of the 21st Annual Meeting of the ISMRM. (p. 2464). Salt Lake City, Utah, 

USA. 

Xin, L., Gambarota, G., Cudalbu, C., Mlynarik, V., & Gruetter, R. (2013). Single spin-echo T2 

relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain. Magn Reson Mater 

Phy 26: 549-554. 

Xin, L., Gambarota, G., Mlynarik, V., & Gruetter, R. (2008). Proton T2 relaxation time of J-

coupled cerebral metabolites in rat brain at 9.4 T. NMR Biomed 21: 396-401. 

Yang, Q. X., Wang, J., Zhang, X., Collins, C. M., Smith, M. B., Liu, H., et al. (2002). Analysis of 

wave behavior in lossy dielectric samples at high field. Magn Reson Med 47: 982-989. 

Yarnykh, V. L. (2007). Actual flip-angle imaging in the pulsed steady state: A method for rapid 

three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57: 

192-200. 

Yeoman, M., Scutt, G., & Faragher, R. (2012). Insights into CNS ageing from animal models of 

senescence. Nat Rev Neurosci 13(6), 435-445. 



BIBLIOGRAPHY 

203 
 

Zahr, N. M., Mayer, D., Rohlfing, T., Chanraud, S., Gu, M., Sullivan, E. V., et al. (2013). In Vivo 

glutamate measurede with MR spectroscopy: Behavioral correaltes in aging. Neurobiol 

Aging 34: 1265-1276. 

Zelinski, A., Wald, L., Setsompop, K., Alagappan, V., Gagoski, B., Goyal, V., et al. (2008). Fast 

slice-selective radio-frequency excitation pulses for mitigating B+1 inhomogeneity in the 

human brain at 7 Tesla. Magn Reson Med 59: 1355-1364. 

Zhu, H., Soher, J, B., Ouwerkerk, R., Schär, M., & Barker, P. B. (2013). Spin-echo MRSI at 7T 

with frequency modulated refocusing pulses. Magn Reson Med 69: 1217-1225. 

Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K., & Chen, W. (2015). In vivo NAD assay reveals the 

intracellular NAD contents and redox state in healthy human brain and their age 

dependences. PNAS 112: 2876-2881. 

Zhu, X.-H., Qiao, H., Xiong, Q., Liu, X., Zhang, X., Ugurbil, K., et al. (2012). Quantitative 

imaging of energy expenditure in human brain. NeuroImage 60: 2107-2117. 

Zhu, Y. (2004). Parallel excitation with an array of transmit coils. Magn Res Med 51: 775-784. 

Zimny, A., Szewczyk, P., Trypka, E., wojtynska, R., Noga, L., Leszek, J., et al. (2011). 

Multimodal imaging in diagnosis of Alzheimer's disease and amnestic mild cognitive 

impairment: value of magnetic resonance spectroscopy, perfusion and diffusion tensor 

imaging of the posterior cingulate region. J Alzheimers Dis 27: 591-601. 

 

 


