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[P a] Isotropic stress Granular materials come in many shapes and sizes, their chemical composition can be very diverse. Due to the energy dissipation occurring whenever discrete particles constituting the material interact with each other, the mechanical behaviour of granular materials diers from the behaviour of solids or liquids. The scientic investigations of this behaviour can be dated back at least to the works of Coulomb nearly 200 years ago [START_REF] Coulomb | Théorie des machines simples: en ayant égard au frottement de leurs parties et à la roideur des cordages[END_REF]. Currently the granular materials are studied by many communities, especially physicists of condensed matter and solid mechanics researchers.

The behaviour of a dense granular assembly under stress is determined by a number of factors: grain size distribution [START_REF] Voivret | Texture et comportement des matériaux granulaires à grande polydispersité[END_REF], grain arrangement [START_REF] Sazzad | Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D dem[END_REF], the loading history [START_REF] Calvetti | Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path[END_REF], the mechanical properties of each of the grains [START_REF] Cheng | Grain crushing and critical states observed in dem simulations[END_REF]. Other important factor inuencing the assembly behaviour is the geometry of the particles composing it [START_REF] Santamarina | Soil behaviour: The role of particle shape[END_REF]. In case of soils the shape of the grains is determined by their geological history: conditions during the formation of the minerals, chemical and biological eects, abrasion etc. In case of anthropogenic particles the shape is determined by the production process.

The shape of the grains seems to be a trivial thing, very often it can be quickly determined by an amateur with no tools or training and correctly described with common words like rounded or at. Then again, its contribution to the behaviour of granular assembly is dicult to determine.

The fact that angular sands have higher values of macroscopic friction angle than rounded sands is clear to any geotechnical engineer. At the same time, the real reason behind that dierence and the signicance of each particular aspect of shape are yet to be determined.

The basic problem rising before a researcher trying to understand the eect of grain shape in granular materials is how to control the experimental parameters, the particle shape itself. In a physical experiment one can change the grading curve of the assembly, change the type of the material or to use some particles of uniformed shape, for example manufactured spheres. Subtle changes of shape are virtually impossible.

The second problem in experimental shape eect study is how to track the behaviour of the particular grains in order to be able to understand the phenomenon. Although testing various assemblies as a whole provides us with some general concepts of grain shape inuence on the mechanical behaviour of granular materials, the microscopic insight seems to be necessary to fully understand that behaviour origins.

Nowadays, the computerisation of science oers ways to seek solutions to these questions.

We are able to perform numerical simulations of granular assembly where all the features of INTRODUCTION the medium can be modied and the response can be studied in both macro-and microscale. This range of possibilities creates other problems: how to narrow down the scope of a research in order to obtain information about a certain aspect of the problem and how to relate it to reality.

In this work it was decided to study the eects of particle shape on the mechanical behaviour of dense granular assembly in the framework of Discrete Element Method. In order to model an engineering problem: load transfer over an elastic pipe, in this case the load transfer over a buried elastic pipe, it was necessary to apply a granular model more complicated than commonly used assemblies of discs or spheres. These simple shapes cannot imitate the real behaviour of granular soils by themselves because the round particles rotate with little eort under load and it limits the maximal and residual strength of the assembly. Among dierent techniques used for real soil modeling in discrete element methods one should mention rolling resistance [START_REF] Gilabert | Computer simulation of model cohesive powders: Inuence of assembling procedure and contact laws on low consolidation states[END_REF][START_REF] Plassiard | Modélisation par la méthode des éléments discrets d'impacts de blocs rocheux sur structures de protection type merlons[END_REF] and use of complex particle shapes, mainly polygons (polyhedra) [START_REF] Matuttis | Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles[END_REF]Azéma et al., 2009) or clusters of discs (spheres) [START_REF] Jensen | Dem simulation of granular media structure interface: eects of surface roughness and particle shape[END_REF][START_REF] Salot | Inuence of relative density on granular materials behavior: Dem simulations of triaxial tests[END_REF]. These two complex-shape modeling techniques are not equivalent; The clusters are easy to model while polygonal grains are more complex; Clusters made of reasonably small number of discs per particle are concave, while polygons can easily be both relatively complex and convex. The arising question is what is the inuence of the cluster concavity in comparison with polygon convexity on the behaviour of granular media. This work is divided into two main parts: investigations of the inuence of particle shape on the mechanical behaviour of granular materials and application of the model to an engineering problem. The description of particle shape in granular materials is given in the rst chapter. Presented there are other researchers' ndings in the eld of grain shape inuence, methods of describing the shape commonly used in geology, as well as the numerical DEM model which was used to perform the study. The specic polygon particle contact strategy used in this model is presented in details in Appendix A. The second chapter is devoted to numerical simulations of assemblies of granular materials made of grains of dierent shapes. Two popular tactics to model granular particles in 2D were compared: disc clustering and the use of polygons. The goal was to observe the eects of grain sphericity and convexity on the behaviour of the assembly. Two families of grains, clumps and polygons, were tested in multiple shape variants. The assemblies of grains of one type were studied in the isotropic state and after loading in a vertical compression test with constant lateral pressure.

In the last chapter of this work the experiments and numerical simulations of an unpressurised elastic pipe buried in granular material are presented. This situation is typical for some engineering constructions, such as drain pipes, culverts or tunnels. Such constructions can be designed to interact with the surrounding material to take advantage of the arching eect which transfers the load from the elastic body to the soil envelope. The experiments were performed in a plane strain apparatus using analogue soil, which made it possible to take images during the tests. The Digital Image Correlation technique was applied in order to obtain information about kinematic behaviour of the samples. The same numerical model as presented in the second chapter of this work was used to perform simulations of an elastic pipe in granular material under load. The goal of this part of the study was to observe the stress repartition. Higher resolution, step-by-step results of the experiments and numerical simulations are presented in Appendices D and E.
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Particle Shape in Granular Materials Granular materials consist of grains of dierent size and usually no two grains are identical. The question of size distribution is well known [START_REF] Wiªun | Zarys geotechniki: podr¦cznik akademicki[END_REF][START_REF] Muir Wood | Changing grading of soil: eect on critical states[END_REF] and can be answered using coecients like mean size D 50 and coecient of uniformity C u . The classication of grain shapes is more complex; There are dierent ways of grain shape classication. One of the methods is to describe the shape of a grain using three parameters: sphericity, roundness and smoothness, [START_REF] Wadell | Volume, Shape, and Roundness of Rock Particles[END_REF][START_REF] Krumbein | Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the eect of interparticle friction[END_REF][START_REF] Barrett | The shape of rock particles, a critical review[END_REF]. Sphericity describes how close a shape of the grain resembles a sphere. Roundness describes the curvature of the angles of the grain. Smoothness describes how rough the grain surface is. The measurements of these parameters are based on quantifying the inscribed and circumscribed spheres of a grain, Figure 1.1. In order to assess the grain sphericity one compares the radius of the largest inscribed sphere R 2 with the smallest circumscribed R 1 :

Sphericity = R 2 R 1 .
(1.1)

Higher values characterise more spherical grains.

= Sphericity > Roundness Figure 1.1: Measurements of sphericity and roundness parameters for an exemplary grain. In this case the sphericity is equal to 0.62 while the roundness is equal to 0.51

Grain roundness can be dened as a ratio between the mean curvature of the surface features and the largest inscribed sphere:

Roundness = r i N R 2 ,
(1.2)

EXAMPLES OF PARTICLE SHAPE INFLUENCE FOR SANDS

where N is the number of angles of the particle and r i is their curvature radius. Lower values of roundness describe grains with sharp angles. In Figure 1.2 some examples of the real grains shapes are classied with regard to these two parameters.

The measurement itself can be carried out in many ways: by direct measurements of the grains using a microscope or a magnifying glass, by automated digital image analysis or by comparison of the grains against shape templates, for example as in [START_REF] Krumbein | Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the eect of interparticle friction[END_REF]. Figure 1.2: Chart presenting some natural grain shapes with dierent values of sphericity and roundness, originally from [START_REF] Krumbein | Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the eect of interparticle friction[END_REF], modied by [START_REF] Cho | Particle shape eects on packing density, stiness, and strength: natural and crushed sands[END_REF] Other ways to describe the particle shape are Fourier analysis and fractal analysis [START_REF] Orford | The use of the fractal dimension to quantify the morphology of irregular-shaped particles[END_REF]). These methods were not used in this study and will not be discussed further.

Examples of Particle Shape Inuence for Sands

The form of the geomaterials depends on their geological history. The geological processes by denition occurs on a large area, but the particular combination that lead to creation of some type of soil is unique and characteristic for a much smaller region. Since soil mechanics is studied worldwide, there exist a number of reference materials that has been tested intensively. One of these reference sands is RF Hostun that has been the focus of numerous studies in the 3S-R laboratory in Grenoble for many years: [START_REF] Desrues | La localisation de la déformation dans les matériaux granulaires[END_REF][START_REF] Doanh | Undrained instability of very loose hostun sand in triaxial compression and extension. part 1: experimental observations[END_REF][START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry[END_REF]. Other well known examples are Ottawa sand or Ticino sand. Compilations of the experimental results on these sands are an invaluable source of information on the topic.

Youd gathered the experimental results on sands [START_REF] Youd | Factors controlling maximum and minimum densities of sands. Evaluation of Relative Denisty and Its Role in Geotechnical Projects Involving Cohesionless Soils[END_REF] to conclude that the maximum and minimum void ratio is aected by the angularity of the particles and the grading curve uniformity, Figure 1.3. In both the dense and loose samples more angular grains formed assemblies with larger number of voids.

In Cho's paper [START_REF] Cho | Particle shape eects on packing density, stiness, and strength: natural and crushed sands[END_REF] there is a compilation of experiments on many types of sands in the context of their shape. They obtained linear dependence of the sample void ratio on the roundness and sphericity of the particles, Fig. 1.4a, and a linear dependence of the critical Figure 1.3: Relationship between particle roundness, sample coecient of uniformity and extreme values of density for various sands, after [START_REF] Youd | Factors controlling maximum and minimum densities of sands. Evaluation of Relative Denisty and Its Role in Geotechnical Projects Involving Cohesionless Soils[END_REF] friction angle in function of roundness, Fig. 1.4b. Soils with higher roundness or higher sphericity were forming denser assemblies. The residual strength of specimens consisting of grains with more angular shape was higher than those consisting of rounded particles.

EXAMPLES OF PARTICLE SHAPE INFLUENCE FOR SANDS

= Void ratio > Critical friction angle Figure 1.4: Relationship between particle roundness and sphericity, and the void ratio and friction angle for various sands, after [START_REF] Cho | Particle shape eects on packing density, stiness, and strength: natural and crushed sands[END_REF] In Bareither's paper, [START_REF] Bareither | Geological and physical factors aecting the friction angle of compacted sands[END_REF], the authors tested a large number of natural sands from the area of North America and obtained similar results on the relation between particle roundness and void ratio, Figure 1.5a, and a slightly dierent relation for the friction angle, Fig. 1.5b.

= Void ratio > Critical friction angle Figure 1.5: Relationship between particle roundness and the void ratio and friction angle for various sands, after [START_REF] Bareither | Geological and physical factors aecting the friction angle of compacted sands[END_REF] These comparisons show inuence of the grain shape on the granular materials but the scatter of the data points suggest that there are other parameters inuencing the porosity and friction angle of the granular soils. 1.3. PARTICLE SHAPE MODELING IN DEM 1.3 Particle Shape Modeling in DEM Generally speaking, there are two approaches to particle modeling in DEM. The rst one is to use simple shapes like discs or spheres. This approach usually incorporates some numerical procedures that are supposed to make the simple granular model more similar to the real behaviour of the material. Sometimes these procedures, although eective, have little physical meaning.

The second approach is to use complicated shapes that would resemble real particles more. This approach can be very expensive in terms of computation time.

Contact detection is the most CPU encumbering task in DEM. Contact detection between simple entities like discs or spheres is also simple, so the computational cost of modeling with simple shapes is low. This allows using large numbers of particles or extending the duration of simulation, while keeping the time of computation reasonably short. Some examples of this approach are: [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF][START_REF] Radjaï | Force distributions in dense twodimensional granular systems[END_REF][START_REF] Åström | Granular packings and fault zones[END_REF][START_REF] Iwashita | Micro-deformation mechanism of shear banding process based on modied distinct element method[END_REF]Kruyt and Rothenburg, 2004) (use of discs in 2D) and [START_REF] Suiker | Frictional collapse of granular assemblies[END_REF][START_REF] Conclusions Bibliography Abe | Dynamic rupture in a 3-d particle-based simulation of a rough planar fault[END_REF]) (use of spheres in 3D). Even so, these approaches are usually too much simplied to model granular materials like sands properly without any additions. Example of such an addition is rolling resistance. It is a contact law that mimics the imbrications of the particles in contact which discs and spheres are lacking [START_REF] Zhou | Numerical investigation of the angle of repose of monosized spheres[END_REF]Estrada et al., 2011). The idea of reducing circular particle rotation was brought further up to a point of blocking the rotations completely [START_REF] Calvetti | A numerical investigation of the incremental behavior of granular soils[END_REF], which is physically discussible but proved to be eective. Examples of some particles used in discrete element modeling, images after: [START_REF] Potapov | A fast model for the simulation of non-round particles[END_REF]Nouguier-Lehon et al., 2003;Azéma et al., 2009;[START_REF] Jensen | Dem simulation of granular media structure interface: eects of surface roughness and particle shape[END_REF][START_REF] Das | Modeling three-dimensional shape of sand grains using Discrete Element Method[END_REF][START_REF] Emeriault | Statistical homogenization for assemblies of elliptical grains: eect of the aspect ratio and particle orientation[END_REF][START_REF] Salot | Inuence of relative density on granular materials behavior: Dem simulations of triaxial tests[END_REF][START_REF] Mcdowell | The importance of particle shape in discreteelement modelling of particle ow in a chute[END_REF] 8 The second concept has been realised in many dierent ways, see Figure 1.6. One idea is to dene complex grains as geometric shapes other than circles or spheres, for example as ellipses [START_REF] Ting | A robust algorithm for ellipse-based discrete element modelling of granular materials[END_REF][START_REF] Rothenburg | Micromechanical features of granular assemblies with planar elliptical particles[END_REF], super-quadrics [START_REF] Cleary | Dem modelling of industrial granular ows: 3d case studies and the eect of particle shape on hopper discharge[END_REF], continuously connected arches [START_REF] Potapov | A fast model for the simulation of non-round particles[END_REF], superellipsoids [START_REF] Delaney | The packing properties of superellipsoids[END_REF] or 2D polygons and 3D polyhedra [START_REF] Matuttis | Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles[END_REF]Nouguier-Lehon et al., 2003;Azéma et al., 2009). Contacts between particles like these are generally speaking more complex than contacts between spheres or discs, use more resources and are more dicult to code.

Other idea is to connect multiple simple particles together in order to obtain one complex solid called a cluster or a clump. There exist a number of papers using dierent clusters of discs trying to approach the actual shape of the real grains as close as possible: Jensen [START_REF] Jensen | Dem simulation of granular media structure interface: eects of surface roughness and particle shape[END_REF] proposed approximating the shape of grains with assemblies of three discs that although touch each other, do not overlap. This idea was extended by Matsushima [START_REF] Matsushima | Discrete element modeling for irregularly-shaped sand grains[END_REF][START_REF] Matsushima | 3d shape characterization and image-based dem simulation of the lunar soil simulant fjs-1[END_REF] and Ashmawy [START_REF] Ashmawy | Evaluating the inuence of particle shape on liquefaction behavior using discrete element modeling[END_REF][START_REF] Das | Modeling three-dimensional shape of sand grains using Discrete Element Method[END_REF]; The extended methods used bigger number of overlapping discs of various sizes to cover all the area (or volume) of a grain. Depending of the complexity of the grain shape the +95% grain coverage was obtained with 10 to 15 discs in 2D or 100 to 300 spheres in 3D. The method of lling an arbitrary shape with multiple simple particles has been used to model ellipses and ellipsoids as well: [START_REF] Emeriault | Statistical homogenization for assemblies of elliptical grains: eect of the aspect ratio and particle orientation[END_REF]) (up to 32 discs in one ellipse), [START_REF] Markauskas | Investigation of rice grain ow by multi-sphere particle model with rolling resistance[END_REF] (11 spheres). As one can see, the drawback of these models is the large number of discrete bodies per particle. One must note that the contacts between grains consisting of multiple simple shapes are still simple.

One can also decide to keep the number of simple shapes per particle low and to accept the particle shapes might be far from ones found naturally in soils: [START_REF] Salot | Inuence of relative density on granular materials behavior: Dem simulations of triaxial tests[END_REF] (clumps of two to four spheres), [START_REF] Mcdowell | The importance of particle shape in discreteelement modelling of particle ow in a chute[END_REF] (clumps of four overlapping spheres on a single plane).

There are also some modeling tactics that link elements from the above-mentioned groups, for example spheropolygons [START_REF] Alonso-Marroquin | Spheropolygons: A new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies[END_REF] which are basically polyhedra with spherical corners.

Extreme cases of the two approaches: oversimplication and surplus of details ought to be avoided with the exception of certain well justied circumstances. The optimum solution seems to be placed somewhere in between: a model that is simple on one hand, but which do not neglect some fundamental features of the granular medium and avoids excessive numerical tricks.

In order to build such a middle ground model, one must understand what elements of the medium can be simplied and which are critical and need to be present. At each step a granular sample consists of thousands of intergranular contacts. That is the reason why the way a DEM code deals with contacts might be the most important aspect in terms of software performance. In general the problem consists of the following questions: a) how to decide whether the contact actually occurred, b) where the contact point is located.

Clumps: Grains Made of Discs

The question of circle-circle (sphere-sphere as well) collision/intersection detection and the geometric position of such a contact is simple. If the distance AB between the centres of the two discs is bigger than the sum of the radii, there is no contact. Otherwise, the contact occurs, and the point of contact is placed on the vector connecting the centres, as in the equation below and in Fig. 1.7.

AB ≤ r A + r B (1.3)
Figure 1.7: Contact between two discs or two spheres can be identied by comparing the distance between the centres of the particles with the sum of the radii

In this study some complex shapes were created by combining three overlapping discs into a single rigid body called clump. In this case, contacts between two grains are simply multiple contacts between discs and the contact criterion is the same as (1.3). The dierence is that in case of disc particles in contact only tangential force is causing the moment of force on the grain, while in case of clumps it is both normal and tangential forces. The case of disc contact is presented in Figure 1.8a. The moment of force with respect to the grain centre is expressed as:

M disc centre = M T = l T × f T .
(1.4)

The case of clump contact is presented in Figure 1.8b. The moment of force with respect to the grain centre is expressed as:

M clump centre = M N + M T = l N × f N + l T × f T .
(1.5) Other type of grains used in our simulations were irregular symmetric convex polygons. A contact between two polygons is more complicated then a contact between two discs. Since the problem of polygon contact detection (also called collision detection) is very common in computer science (computer graphics and animation, motion planning, game development), there are many algorithms dealing with it, for example Gilbert-Johnson-Keerthi distance algorithm [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF], various space partitioning algorithms [START_REF] Ganter | Dynamic collision detection using space partitioning[END_REF], separating axis theorem (SAT) [START_REF] Gottschalk | OBBTree: a hierarchical structure for rapid interference detection[END_REF]. In this study a Shadow Overlap Method was used. The method was developed by Jean-Jacques

Moreau for the Contact Dynamic code [START_REF] Saussine | Modelling ballast behaviour under dynamic loading. part 1: A 2D polygonal discrete element method approach[END_REF] and adapted to Molecular Dynamics code [START_REF] Charalampidou | Mechanical behavior of mixtures of circular and rectangular 2D particles[END_REF]Szarf et al., 2011). The contact detection in this method is based on the well-known separating axis theorem , but the treatment of the contact point and contact force is innovative.

In DEM a typical way to model a contact between two convex polygons is to introduce a single force (Fig. 1.10a) proportional to overlap area of polygons in contact (Fig. 1.10c) [START_REF] Matuttis | Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles[END_REF][START_REF] Alonso-Marroquin | The role of the anisotropy in the elastoplastic response of a polygonal packing[END_REF].

In Shadow Overlap Method in case of a contact between faces of two polygons two contact points are introduced, see Figure 1.10b. This assures fast stabilisation of the contact point in comparison with the methods using a single force where the contact is wobbly (compare Fig. 1.10a and 1.10b). In case of contact between a corner and a face a single force is used as it is typically done in other approaches.

The second dierence is that the value of the contact force is proportional to the overlap distance, not area, see Figure 1.10d.

The algorithm of the Shadow Overlap Method used in this study is presented in details in Appendix A. It can be regarded as three separate tasks performed one after another for each pair of neighbouring particles in order to determine whether the given particles are in contact or not, what is the type of contact (single or double point of contact) and where these points are located. The contacts between two polygons are presented in Figure 1.11. Any two non-overlapping polytopes (generalization of a polygon in n-dimensions) can always be separated by a plane that is either parallel to a face of one of the polytopes or parallel to an edge of each. [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] = Edge-to-edge double contact > Corner-to-edge single contact Figure 1.11: Examples of the contacts between two polygons

The third type of contact, corner-to-corner, is in fact always represented as either corner-toedge or edge-to-edge. 1971) as a proposition for rock mechanics problem solving, and subsequently developed to cover granular media modelling [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF].

The principle of DEM is to describe the behaviour of a granular medium under external loading by means of individual particle movements and their interactions. Disturbances such as external loading propagate through a particle assembly causing changes of particle positions, velocities, values of forces interacting at the contact points, and rearrange the contact network. The mathematical description of the medium behaviour is based on motion laws (described in Section 1.6), drawn from Newton's second law of motion and on contact laws (described in Section 1.7). The motion laws are applied to each particle while the contact laws act at the point of contact. Calculations are made in time steps as presented in Figure 1.12. In each step motion laws are solved to obtain new positions and new contacts, which are used as an input to the force-displacement contact laws that result in new contact forces.

1.6. LAW OF MOTION Figure 1.12: Typical time step in DEM (modied after (PFC 2D Manual, 2004)) 1.6 Law of Motion

The equations (1.6) and (1.7) are drawn from Newton's second law of motion. The method consists of numerically solving these ordinary dierential equations over time.

M ẍi = j F j→i + r, (1.6) 
I θi = j Γ j→i + m r , (1.7) 
where:

M is the mass of the particle i

[kg], I is the inertia matrix of the particle i kg • m 2 , ẍi is the acceleration of the particle i m s 2 , θi is the angular acceleration of the particle i rad s 2 , F j→i is the force acting from j to i

[N ],

Γ j→i is the moment of force F j→i with respect to the mass centre of the particle i

[N • m], r
is the external force (e.g. gravity)

[N ], m r is the moment of the external force r with respect to the mass centre of the particle i

[N • m].
There are many explicit integration schemes applicable to the equations (1.6) and (1.7). In this study two dierent codes were used, each one using a dierent integration method. While PFC 2D CHAPTER 1. PARTICLE SHAPE IN GRANULAR MATERIALS makes use of Verlet leapfrog integration method (PFC 2D Manual, 2004; Allen and Tildesley, 1994), the code applied for polygons uses the third-order Gear predictorcorrector method [START_REF] Haile | Molecular Dynamics Simulation, Elementary Methods[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF]. 1.6.1 Leapfrog Algorithm Leapfrog algorithm consists of calculating the positions at full time steps, t = k∆t while the velocities are calculated at half time steps: t = (k + 12 )∆t, k = 0, 1, 2, ... The equation (1.6) is integrated using a centred nite-dierence over one time step ∆t:

ẍi (t) = 1 ∆t ẋi (t + ∆t 2 ) -ẋi (t - ∆t 2
) .

(1.8)

The equation (1.6) is then inserted into equation (1.8) in order to obtain velocity at the next half-time step:

ẋi (t + ∆t 2 ) = ẋi (t - ∆t 2 ) + j F j→i + r M ∆t.
(1.9)

Finally, the computed velocities are used to update the positions of the particles:

x i (t + ∆t) = x i (t) + ẋi (t + ∆t 2 )∆t.
(1.10)

The rotation of the particles is integrated in analogical way using equation (1.7).

Third-Order Gear PredictorCorrector Algorithm

On the contrary, this integration algorithm allows us to obtain positions and velocities at the same instant. The prediction of the trajectory at time t + ∆t is obtained from the truncated Taylor series expansion:

x i P (t + ∆t) = x i (t) + ẋi (t)∆t + 1 2 ẍi (t)∆t 2 , (1.11) ẋP i (t + ∆t) = ẋi (t) + ẍi (t)∆t, (1.12) 
ẍP i (t + ∆t) = ẍi (t).

(1.13)

The predicted positions are used as an input to the contact laws in order to obtain the values of force. The new forces are inserted to Newton's equation, which has to be solved in order to obtain the corrected values of acceleration, velocity and position. It is a second-order equation of the form ẍ = f (x, ẋ). In case of the third-order Gear method the correction coecients are C0 = 0, C1 = 1, C2 = 1. The nal form of the equations is the following:

ẍC i (t + ∆t) = j F j→i + r M , (1.14) ẋC i (t + ∆t) = ẋP i (t + ∆t) + 1 2 ∆t ẍC i (t + ∆t) -ẍP i (t + ∆t) , (1.15) 
x i C (t + ∆t) = x i P (t + ∆t).

( .16) As one can see, the equations (1.16) equal to (1.11) and (1.15) are equivalent to the so-called velocity form of the Verlet's algorithm, [START_REF] Allen | Computer simulation of liquids[END_REF]. In this study, the intergranular forces were computed using classical contact laws for DEM. At each contact point normal and tangential contact laws were applied to determine the contact forces basing on the relative position of the contacting particles. Apart from the two standard laws a third one, so called parallel bond contact law, was introduced in the second part of the study to model an elastic body (see Section 3.2.1). The value of the normal contact force is proportional to the overlap between the two particles in contact. The overlap distance is dened as:

h = d ij -r i -r j
(1.17) where:

d ij is the distance between the centres of the particles i and j in contact [m], r k is the radius of a given particle

[m].
The force equation can be expressed as

f n = -hk n (1.18) where: f n is the resulting normal force [N ], k n is the normal spring stiness N m , so that if h < 0 then f n > 0, otherwise f n = 0.
The normal contact force f n can be damped with a viscous dashpot in order to dissipate energy. The normal forces are computed with a law described by a Kelvin-Voigt rheological model (see Fig. In that case, the force value is computed according to the following equation: (Radjaï and Dubois, 2011). The solution implemented in PFC 2D is local damping similar to the one proposed by Cundall [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF]. In this case, the damping is applied to each particle, not to each contact. Additional term is introduced to the Newton's equation and it assumes the form of:

f n = -hk n + v n g n (1.
M ẍi = F i + r + F d .
(1.20)

The damping force F d depends on the velocity of the particle: (1.21) where α is the damping constant and sgn function gives only the sign (+ or -) of a scalar.

F d = -α |F i | sgn( ẋi ),
This damping is working very eectively but is acceptable only for quasi-static situations. In other cases some mass forces appear that lead to non-physical behaviour. Tangential forces are computed according to an elastic-perfectly plastic law. Between two time steps t 1 and t 2 there is a relative tangential displacement change δU t resulting in an increment of tangential force δf t : 1.22) where:

δf t = k t δU t = k t v ij t dt ( 
v ij t
is the relative tangential velocity of the particles in contact, δf t is the increment of the resulting tangential force. The sum of the increments over increasing time steps equals:

f t = δf t (1.23)
1.7. CONTACT LAWS but as the tangential forces obey Coulomb friction:

|f t | > µf n → f t = sgn (f t ) • µf n (1.
24) where µ is the intergranular friction coecient.
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Inuence of Grain Shape

The work presented in this chapter was focused on the study of grain shape inuence on the mechanical behaviour of particle assemblies by means of Discrete Element Method. This work was reported during two conferences (STPMF 2009(Szarf et al., 2009a) and Powders and Grains 2009 [START_REF] Szarf | Inuence of the grains shape on the mechanical behavior of granular materials[END_REF]) and two papers in international journals (Szarf et al., 2011;[START_REF] Cegeo | Particle shape dependence in granular media[END_REF]. Therefore an unusual format was adopted for this chapter: after a short introduction and presentation of the studies, the two papers are are reproduced in extenso. To end the chapter, new specic results on the eect of grain shape on the micromechanical behaviour are presented.

CEGEO Project

The work presented hereafter was part of an interlaboratory research program CEGEO organ- ised in cooperation between French laboratories LMGC , 3SR ! and LTDS " from 2007 to 2010.

The name of the program stands for Changement d'Echelle dans les GEO-matériaux (Change of Scale in Geomaterials). Among other topics in the research program (micromechanical aspects of granular media failures, kinematical localisation in granular media, boundary condition eect on the mechanical properties of granular materials, capillarity in non-saturated granular media), the collaboration focused on studying the particle shape inuence in granular media. The project assumed using various DEM codes with some common framework concerning shape denition, granulometry, testing protocol. It was decided to model one group of shapes, the clumps of three discs, twice using independent Molecular Dynamics and Contact Dynamics codes.

As explained in the introduction of this thesis, Section 1.1, dierent geometric parameters can be used to describe a grain shape. In the collaborative research program CEGEO, it was decided to use a simple shape parameter equivalent with sphericity, equation (1.1):

α = 1 - R 2 R 1 , (2.1) 
where the radii R Some common ground rules were set: same grading of the samples, same boundary conditions # , same interparticular friction coecient, same sample preparation method $ , similar inertial number % for the mechanical tests etc. Thanks to that, in spite of using dierent approaches and multiple numerical codes, it was possible to show similarities between the samples made of very dierent grain shapes but characterised with the same sphericity parameter. The samples submitted to biaxial loading & showed the linear evolution of the residual macroscopic angle of friction φ threshold with α. [START_REF] Roux | Discrete numerical simulation and the mechanical behavior of granular materials[END_REF] & Vertical compression with constant vertical strain rate and constant horizontal stress. In such conditions the sample is free to contract or to dilate, depending on the initial porosity and/or coordination number The Figure 2.4 presents the evolution of φ threshold depending on the grain shape and on α.

Each sample shows the same linear dependence of macroscopic friction angle at the critical state with the sphericity coecient α, but with higher values for angular shapes (polygons denoted C and D). These results highlights that even if α is a low-order shape parameter, it is enough to grasp the hierarchy of shapes.

Another interesting point in the collaborative research work was the comparison of the inuence of α on dierent internal parameters like the mean coordination number or the packing fraction. These two parameters analysed in frictionless particle assemblies submitted to isotropic loading revealed some nontrivial evolution. A simple analytical model of the packing fraction at the isotropic state ρ iso = f (α) was successfully proposed. The model was based on the geometrical description of grain self-porosity (which depends on α) and the voids between grains. Moreover, the results of that collaborative work showed that for three-disc clump shapes the results of Contact Dynamics and Molecular Dynamics approaches are the same, qualitatively for φ * (Fig. 2.4) and quantitatively for ρ iso (Fig. 2.5). The paper describing the study [START_REF] Cegeo | Particle shape dependence in granular media[END_REF] is available hereafter, with an exception that α was denoted there as η.

The hard-sphere packing is at the heart of various models for the rheology and (thermo)dynamical properties of amorphous states of matter including liquids, glasses and granular materials [1,2]. Such models reflect both the purely geometrical properties of sphere packings, e.g. the order-disorder transition with finite volume change [3], and emergent properties arising from collective particle interactions, e.g. force chains and arching in static piles [4]. As to non-spherical particle packings, rather recent results suggest that such packings exhibit higher shear strength than sphere packings [5][6][7][8][9][10][11][12][13][14][15], and may approach unusually high packing fractions [2,[16][17][18]. However, a systematic (a) Collaborative group "Changement d'Echelle dans les GEOmatériaux" (scale change in geomaterials).

and quantitative investigation of shape dependence is still largely elusive since particle shape characteristics such as elongation, angularity, slenderness and non-convexity are described by distinct groups of parameters, and the effect of each parameter is not easy to isolate experimentally.

In order to evaluate the shape dependence of general granular properties such as packing fraction, shear strength and internal structure for particles of different shapes, we designed a numerical benchmark test that was simulated and analyzed by the members of a collaborative group (CEGEO). The idea of this test is that various non-spherical or non-circular shapes can be characterized by their degree of distortion from a perfectly spherical or circular shape. Let us consider an arbitrary 2D shape as sketched in fig. 1 enclosed between two concentric circles: a circumscribing circle of radius R and an inscribed circle of radius R -∆R. We define the η-set as the set of all shapes with borders enclosed between a pair of concentric circles (spheres in 3D), touching both circles and having the same ratio

η = ∆R R . (1) 
Four different particle shapes belonging to the same ηset are shown in fig. 2. A non-zero value of η corresponds to non-convexity for A-shape, elongation for B-shape, angularity for C-shape, and a combination of angularity and elongation for D-shape.

The parameter η is obviously a rough low-order shape parameter; see also [19]. But, encompassing most specific shape parameters, it provides a general framework in which shape dependence may be analyzed among particles of very different shapes. Within an η-set, each specific shape may further be characterized by higher-order parameters. The issue that we address in this letter is to what extent the packing fraction and shear strength are controlled by η and in which respects the behavior depends on higher-order shape parameters.

The benchmark test is based on the four shapes of fig. 2. The A-shape (trimer) is composed of three overlapping disks touching the circumscribing circle and with their intersection points lying on the inscribed circle; the Bshape (rounded-cap rectangle) is a rectangle touching the inscribed circle and juxtaposed with two half-disks touching the circumscribing circle; the C-shape (truncated triangle) is a hexagon with three sides constrained to touch the inscribed circle and all corners on the circumscribing circle; and the D-shape (elongated hexagon) is an irregular hexagon with two sides constrained to touch the inscribed circle and two corners lie on the circumscribing circle. The range of geometrically defined values of η for a given shape (defined by a construction method) has in general a lower bound η 0 . For A and B, the particle shape changes continuously from a disk, so that η 0 = 0 whereas we have η 0 =1-√ 3/2 ≃ 0.13 for C and D. Two different discrete element methods (DEM) were used for the simulations: contact dynamics (CD) and molecular dynamics (MD). In the CD method, the particles are treated as perfectly rigid [20] whereas a linear springdashpot model was used in MD simulations with stiff particles (k n /p 0 > 10 3 , where k n is the normal stiffness and p 0 refers to the confining pressure) [21]. The trimers were simulated by both methods for all values of η.W e refer below as A (for CD) and A ′ (for MD) to these simulations. The packing C was simulated by MD whereas the packings B and D were simulated by CD. In CD simulations, the coefficient of restitution was set to zero. In MD simulations, the damping parameter was taken very close to the critical damping coefficient so that the restitution coefficient was also negligibly small [22]. Note that in quasi-static flow, the relaxation time of the particles is short enough (compared to the inverse shear rate) to allow for efficient dissipation of kinetic energy in each time step. For this reason, in contrast to granular gases, the exact values of the damping parameters or restitution coefficients have practically no influence on the numerical data analyzed below [23].

For each shape, several packings of 5000 particles were prepared with η varying from 0 to 0.5. To avoid longrange ordering, a size polydispersity was introduced by taking R in the range [R min ,R max ] with R max =3R min and a uniform distribution of particle volumes. A dense packing composed of disks (η = 0) was first constructed by means of random deposition in a box [24]. For other values of η, the same packing was used with each disk serving as the circumscribing circle. The particle was inscribed with the desired value of η and random orientation inside the disk. This geometrical step was followed by isotropic compaction of the packings inside a rectangular frame. The gravity g and friction coefficients between particles and with the walls were set to 0 during compaction in order to avoid force gradients. Figure 3 displays snapshots of the packings for η =0.4 at the end of isotropic compaction 1 .

The isotropic samples were sheared by applying a slow downward velocity on the top wall with a constant confining stress acting on the lateral walls. During shear, the friction coefficient µ between particles was set to 0.5 and to 0 with the walls. The shear strength is characterized by the internal angle of friction ϕ defined by

sin ϕ = σ 1 -σ 2 σ 1 + σ 2 , (2) 
where the subscripts 1 and 2 refer to the principal stresses. sin ϕ increases rapidly from zero to a peak value before relaxing to a constant material-dependent value sin ϕ * , which defines the shear strength at large strain at a steady stress state. Figure 4 shows the dependence of sin ϕ * with respect to η for our different shapes. Remarkably, sin ϕ * increases with η at the same rate for all shapes. The data nearly coincide between the A and B shapes, on the one hand, and between C and D shapes, on the other hand. This suggests that non-convex trimers and rounded-cap rectangles, in spite of their very different shapes, belong to the same family (rounded shapes). In the same way, the truncated triangles and elongated hexagons seem to belong to the family of angular particles and exhibit a shear strength slightly above that of rounded shapes. Note also that the results are robust with respect to the numerical approach as the packings A and A ′ were simulated by two different methods.

Particle shape

The increase of shear strength with η may be attributed to the increasing frustration of particle rotations as the shape deviates from a disk [11,25]. Since the particles may interact at two or three contact points (A-shape) or through side-to-side contacts (shapes B, C and D), the kinematic constraints increase with η and frustrate the particle displacements by rolling. The restriction of rolling leads to enhanced role of friction in the mechanical equilibrium and relative sliding of particles during deformation.

A related static quantity is the mean friction mobilization defined by M = f t /(µf n ) , where f t is the magnitude of the friction force, f n is the normal force, and the average is taken over all force-bearing contacts in the system.

To evaluate the effect of particle shape, we consider the parameter

M η = M (η) M (η =0) -1 (3) 
as a function of η for different shapes, where M (η =0) is the friction mobilization for circular particles. Figure 5 shows that M η is a globally increasing function of η for all shapes. The parameter η appears also in this respect to account for the global trend of friction mobilization, and the differences observed in fig. 5 among different shapes are rather of second order. We also observe that the proportions of double and triple contacts for A-shape packings and the proportion of side-to-side contacts for other shapes increase with η. For non-circular particles, one should distinguish the coordination number Z, defined as the mean number of contacting neighbors per particle, from the "contact coordination number" Z c defined as the mean number of contacts per particle. Obviously, for the calculation of both Z and Z c only the force-bearing contacts and non-floating particles are taken into account [26]. We have Z = Z c ≃ 4 for the disks in the initial state prepared with µ = 0. This value corresponds to an isostatic state in which one expects Z =2N f , where N f is the number of degrees of freedom of a particle [27]. For frictionless disks, we have N f = 2 (two translational degrees of freedom), leading to Z = 4. For non-circular shapes, we have N f =3 since the rotational degrees of freedom take part in the mechanical equilibrium of the particles. Hence, if isostaticity holds also for non-circular frictionless particles, we expect Z = 6. We observe instead Z<5 for all our packings. However, we find Z c ≃ 6f o rη = 0 if each side-to-side contact is counted twice, representing two independent constraints. This result is consistent with the isostatic nature of a packing of frictionless non-circular particles and shows that the packings of non-circular shape are 44008-p3 not under-constrained as previously suggested [28]. For µ =0.5, the packings are no more isostatic and Z and Z c vary only slightly with η with values in the range 3 to 4 for Z andintherange4to5forZ c in the course of shearing.

We now focus on the packing fraction which crucially depends on particle shape. Figure 6 shows the packing fraction ρ iso in the initial isotropic state as a function of η. We observe a non-trivial behavior for all particle shapes: the packing fraction increases with η, passes by a peak depending on each specific shape and subsequently declines. For the B-shape a sharp decrease of ρ iso occurs beyond η =0.5 as was shown in [10].

This unmonotonic behavior of packing fraction was observed by experiments and numerical simulations for spheroids as a function of their aspect ratio [2,16,17,[28][29][30]. The decrease of the packing fraction is attributed to the excluded-volume effect that prevails at large aspect ratios and leads to increasingly larger pores which cannot be filled by the particles [29]. The observation of this unmonotonic behavior as a function of η for different shapes indicates that it is a generic property depending only on deviation from circular shape. This behavior may thus be explained from general considerations involving the parameter η but with variations depending on second-order shape characteristics.

A plausible second-order parameter is

ν = V p πR 2 , (4) 
where V p is the particle volume in 2D. Its complement 1 -ν is the "self-porosity" of a particle, i.e. the unfilled volume fraction inside the circumscribing circle. Keeping the radius R of the circumscribing circle constant, ρ iso = V p /V varies with η as a result of the relative changes of V p and the mean volume V per particle. The free (pore) volume per particle is

V f = V -V p .
At η = 0, the free volume V f is only composed of steric voids, i.e. voids between three or more particles, and the packing fraction is given by ρ(0) = πR 2 /V (0). For η>0, the void patterns are more complex but can be described by considering the generic shape of particles belonging to a given η-set. The borders of a particle involve "hills", which are the parts touching the circumscribing circle, and 6).

"valleys" touching the inscribed circle. The volume V per particle varies with η by two mechanisms. First, the hills of a particle may partially fill the valleys of a neighboring particle, fig. 7(a). Secondly, the steric voids between the hills shrink as η increases due to the increasing local curvature of the touching particles, fig. 7(b). To represent this excess or loss of pore volume due to the specific jamming configurations induced by particle shapes, we introduce the function h(η) by setting

V (η)=V (η 0 ) -πR 2 h(η), (5) 
with h(η 0 ) = 0. With these assumptions, the packing fraction is expressed as

ρ(η)= ν(η)ρ(η 0 ) 1 -h(η)ρ(η 0 ) . ( 6 
)
The function ν(η) is known for each shape but h(η) needs to be estimated. A second-order polynomial approximation

h(η)=α(η -η 0 )+β(η -η 0 ) 2 (7) 
together with eq. ( 6) allows us to recover the correct trend and to fit the data as shown in fig. 8. The error bars represent the variability at η 0 assumed to be the same for all other values of η. The parameter α ensures the increase of packing fraction with η at low values of the latter and it basically reflects the shrinkage of steric pores (fig. 7(b)) whereas β accounts for the overlap between circumscribing circles (fig. 7(a))) and is responsible for the subsequent decrease of the packing fraction.
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Particle shape

The fitting parameters in fig. 8 are α ≃ 1. 30, 1.29, 1.14, 1.17 and β ≃ 1.23, 1.20, 0.23, 0.20 for C, A, D and B shapes, respectively with increasing peak value. Note that the values of β are considerably smaller for B and D that have an elongated aspect and for which the overlapping of self-porosities prevails as compared to A and C for which the shrinkage of the initial pores is more important.

In summary, our benchmark simulations show that a low-order shape parameter η, describing deviation with respect to circular shape, controls to a large extent both the shear strength and packing fraction of granular media composed of non-circular particles in 2D. The shear strength is roughly linear in η whereas the packing fraction is unmonotonic. Our simple model for this unmonotonic behavior is consistent with the numerical data for all shapes. It is governed by a first-order term in η for the shrinkage of the initial steric pores and a second-order term in η for the creation of large pores by shape-induced steric pores. The effect of higher-order shape parameters may be analyzed also in this framework in terms of differences in packing fraction and shear strength among various shapes belonging to the same η-set. An interesting issue to be addressed in future is whether a generic second-order parameter accounting for such differences exists. Another aspect that merits further investigation is the joint effects of size polydispersity and particle shape. The shear strength is independent of particle size polydispersity as a result of the capture of force chains by the class of larger particles [31]. But the packing fraction and force and contact anisotropy depend on both shape and polydispersity. 44008-p5 % 2.2. CONVEX AND CONCAVE GRAINS

Convex and Concave Grains

In the present study the emphasis was put on the mechanical behaviour of dense and loose granular assemblies made of clumps of three discs, Fig. 2.1b, and convex polygons with three axes of symmetry, Fig. 2.1c. It is worth noting that these polygons can be seen as an envelope of clumps. More information about these two shapes can be found in Appendix B.

In CEGEOS's paper [START_REF] Cegeo | Particle shape dependence in granular media[END_REF] these shape groups were denoted as A' and C.

From this point the clump samples previously denoted A ′ will be referred to as either C.xx or clumps, with .xx denoting the value of the sphericity factor α. The polygons previously denoted as C will be referred to as P.xx or polygons.

In Figure 2.6 the shapes used in the study are presented. The values of α used in the study ranged from 0.0 to 0.5. For clumps α = 0.0 denotes a disc while α = √ 3 -1 ≈ 0.73 is the maximum possible value and denotes three discs in contact without any overlap. For polygons the minimum value is α = 1 -√ 3/2 ≈ 0.13 (hexagon) while the maximum α = 0.5 (equilateral triangle). The mechanical behaviour of the samples consisting of the particles listed above observed in the numerical biaxial compression tests showed that initially (ε 1 < 3%) the concavity of the particles predominates for dense samples ' . The Figure 2.7 clearly shows that the macroscopic friction angle φ peak measured at the peak of stresses increases with α for clumps, but not for polygons; Dense samples containing polygonal particles responded to the loading with a shear strength decreasing with α. This dierence is even more remarkable because dense samples of polygons and clumps displayed the same coordination number value in the isotropic state (on average number z * ≃ 6). This dierence in the mechanical behaviour can be explained by the mobilization of tangential contact forces that increase with the degree of sphericity for assemblies made of concave clumps, but not for convex polygons.

For large macroscopic strains (critical stress state), the behaviour with α is dierent than at the peak. The trend of evolution of φ threshold (and φ for loose assemblies ) is the same whatever the particle shape or the initial density of the sample. It seems that the sphericity parameter α is the deciding factor, not the particle concavity. Some additional observations were made on the inuence of the grain shape on the strain localisation. Localisation in the form of shear bands is a ubiquitous failure mechanism in granular materials [START_REF] Desrues | Shear band analysis and shear moduli calibration[END_REF]. In To quantify the inuence of particle shape on the shear localisation a localization indicator S t proposed by [START_REF] Sornette | Fault growth in brittle-ductile experiments and the mechanics of continental collisions[END_REF] was used. The indicator can be seen as a proportion of the sheared area to the total area of the sample. Apart from presenting it locally as in Figure 2.8, one can also compute it globally. In Figure 2.9 the evolution of the global S t value during the biaxial tests on assemblies of dierent particles is presented. The overall shape of the curves resembles that of the macroscopic stress-strain curves: the value of S t increases at the beginning of the compression and reaches its maximum along with the peak stress, an then declines to a plateau.

Comparison of the localisation maps and the localisation curves reveals that the plateau in Figure 2.9 is correlated with a concentration of the deformation in a band. The amount of sheared area of the assembly is increasing when α increase in the samples of clumps, Fig. 2.9a, with an exception of discs that seemed not to localise much. In clumps α is directly related to the size of concavities; More concave grains interlock more and the thickness of the shear bands is larger. The curves represent a mean of four samples consisting of grains of the same type A clear trend for samples made of polygons is more dicult to determine but one might say that except for samples of haxagons α ≈ 0.13, the amount of sheared area increased with α as well, Fig. 2.9b. Moreover it seems that while in the case of clump samples the S t value drops down to a plateau rapidly, in samples consisting of polygons the process is slower and the plateau stabilises for larger values of ε 1 . The second remark is that the residual value of S t is generally higher in polygons, meaning wider localisation bands.

As a synthesis of these remarks, the samples made of clumps behaves more like a brittle material whereas samples made of polygons are more ductile in a way that they resemble dry sand behaviour.

Apart from the localisation of strains, it was also interesting to investigate the spatial distri-

CONVEX AND CONCAVE GRAINS

bution of interpatrticle contacts that were maintained during the loading. The persisting contacts can be divided into two groups based on the relative movement of the particles in contact. Two rounded particles remaining in contact can either roll, slip, or roll and slip at the same time.

Figure 2.10: Sketch of a single, persisting contact between two clumps ( 1) and ( 2). On the left: conguration at time t = t0, on the right: conguration after a displacement occurred, time t = t1. Bc 1 (t1) and Bc 2 (t1) denotes the actual position of the centres of discs in contact. Here the sign of the distance

d [C 1 (t1) , C (t1)] is positive while d [C 2 (t1) , C (t1)] is negative
Let us consider two grains that remain in contact during deformation of the assembly (see Fig.

2.10

). Before the relative displacement occurred, the initial point of contact C (t0) was identical with the two points on the perimeter of the grains, C 1 and C 2 . After the change of positions and orientations of the grains in relation to each other, these points moved to positions C 1 (t1) and C 1 (t1) while the point of contact was placed at C (t1). By comparing these distances between the new contact position and the points on the perimeter that were in contact previously, one can separate contacts where rolling without sliding occurred according to the following relation:

|d [C 1 (t1) , C (t1)] + d [C 2 (t1) , C (t1)]| = 0, (2.2) 
where:

C (t1)
is the current position of the current contact point,

C i (t1)
is the current position of the initial contact point, ] is the arch length between two given points A and B,

d [A, B
This criterion was made softer by accepting the sliding contacts where the amount of sliding

|d [C 1 (t1) , C (t1)] + d [C 2 (t1) , C (t1) 
]| is less than 10% of the maximum sliding as rolling. This threshold value was chosen arbitrarily [START_REF] Lanier | An experimental study of deformation in 2D-granular media[END_REF].

In Figure 2.11 the contacts that remained between 13 and 13.5%ε 1 are presented. It appears that the sliding contacts are placed in the zones of localisation, and their direction is, generally speaking, perpendicular to the length of the zone forming characterising bridges [START_REF] Tordesillas | Force chain buckling, unjamming transitions and shear banding in dense granular assemblies[END_REF]. The large zones of unbroken rolling contacts are the rigid blocks that do not deform much during the loading. In this image it is also visible that in the localisation bands smaller number of contacts is maintained. and 13.5%ε 1 . Each persisting contact is denoted with a line connecting the discs in contact. The rolling with sliding contacts are denoted with a bold line

Conclusions

The investigations of samples consisting of particles with dierent grain shapes revealed that the form governs a number of important features of granular media like porosity or shear resistance. Moreover the eects can be quantied using a simple sphericity parameter as was proposed by CEGEO for the initial solid fraction.

Cooperation between multiple research groups proved that the observed shape eect was independent of numerical approach, and that it is common for dierent shapes. It is also remarkable that simulations incorporating very simple grain shapes and very simple contact laws were capable of reproducing behaviour of real materials. Granular materials DEM Grain shape Clumps of discs Polygons Shear localisation

We performed a series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5000 grains made from either 3 overlapping discs (clumpsgrains with concavities) or six-edged polygons (convex grains). These two grain type have similar external envelope, which is a function of a geometrical parameter α. In this paper, the numerical procedure applied is briefly presented followed by the description of the granular model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic loading are made. The mechanical response of our numerical granular samples is studied in the framework of the classical vertical compression test with constant lateral stress (biaxial test). The comparison of macroscopic responses of dense and loose samples with various grain shapes shows that when α is considered a concavity parameter, it is therefore a relevant variable for increasing mechanical performances of dense samples. When α is considered an envelope deviation from perfect sphericity, it can control mechanical performances for large strains. Finally, we present some remarks concerning the kinematics of the deformed samples: while some polygon samples subjected to a vertical compression present large damage zones (any polygon shape), dense samples made of clumps always exhibit thin reflecting shear bands.

© 2010 Elsevier B.V. All rights reserved.

Introduction

A typical numerical approach to discrete element modeling of granular materials is to use simple shapes of particles (discs in 2D [1] or spheres in 3D [2]). Although the computation time is short using this method, these models cannot reflect some of the more complex aspects of real granular media behaviour, such as high shear resistance or high volumetric changes [3]. In order to model these mechanisms properly, physical phenomena (resistance to intergranular rolling [4][5][6]) or other grain shapes (sphere aggregates [7] or polyhedral grains [8]) must be used. The influence of grain shape is not yet fully understood. In this article, we will present our findings concerning the influence of grain shape (grain concavity in particular) on the mechanical behaviour of granular assemblies. We compared two groups of grainsconvex irregular polygons and non-convex aggregates of three overlapping discs.

Granular model

The granular model used consists of 5000 polydisperse 2D frictional particles. Two kinds of grain shape are used: convex irregular polygons with six edges and non-convex particles made of aggregates of three overlapping discs called clumps. These two shapes were chosen because of the similarity of their global contour (polygonal grains can be seen as a polygonal envelope of clumps made of three discs). As shown in Fig. 1, particle shape is defined by a parameter α = ΔR R 1

, where R 1 denotes the ex-circle radius of the particle and ΔR is the difference between the excircle and the in-circle radii, [9,10]. The in-circle must be fully contained in the particle. For non-convex clumps, α ranges from 0 (circle) to 0.5.

For convex polygonal grains, α ranges from 1-ffiffiffi 3 p 2 ≃ 0:13 (regular hexagons) to 0.5 (equilateral triangles). Some of the shapes used are presented at the bottom of Fig. 1. For each chosen α, granular samples are made of polydisperse particles: the polydispersity of grains is determined by the radii of the grain ex-circle. In each sample, the chosen radii R 1 are such that the areas of the ex-circles are equally distributed between

S m = π(R m ) 2 and S M = π(R M ) 2 = π(3R m ) 2 .

Discrete Element Method

Two-dimensional numerical simulations were carried out using the Discrete Element Method according to the principles of Molecular Dynamics (MD) [11]. Two codes were used: PFC 2D by ITASCA [12] for clump simulation and a code capable of dealing with polygonal particles that was developed at the laboratory. Both codes use the same contact laws for contact forces computations [13]: grains interact in their contact points with a linear elastic law and Coulomb friction. The normal 

f n = k n •h ; ð1Þ 
as f n vanishes if contact disappears, i.e. h = 0. The tangential component f t of the contact force is proportional to the tangential elastic relative displacement, according to a stiffness coefficient k t . The Coulomb condition | f t | ≤ μ f n requires an incremental evaluation of f t in every time step, which leads to some amount of slip each time one of the equalities f t =±μ f n is imposed (μ corresponds to the contact friction coefficient). A normal viscous component as opposed to the relative normal motion of any pair of grains in contact is also added to the elastic force f n . Such a term is often introduced to facilitate the mechanical equilibrium approach [14]. In case of frictional assemblies under quasi-static loading, the influence of this viscous force (which is proportional to the normal relative velocity, using a damping coefficient G n )i sn o ts i g n i ficant [15] (elastic energy is mainly dissipated by Coulomb friction). Finally, the motion of grains is calculated by solving Newton's equations using either a leap-frog (in PFC 2D ) or third-order predictor-corrector discretisation scheme [16] (in the in-house software). This constitutes the only known difference between the two codes.

The principles of disc contact detection are well known [13,17], and contact detection for clumps was solved in the same way: contact occurs at a point, the normal force value f n is calculated with Eq. ( 1) and its direction connects the centers of discs in contact, Fig. 2(a). Contact detection and contact force calculations between polygons do not use classical methods based on the area overlap between polygons [18][19][20][21].T h eshadow overlap technique proposed by J.J. Moreau [22], which was originally applied within the Contact Dynamic approach [23] for convex polygonal particles, was used. In our study this technique was adapted to the MD approach. Three types of geometrical contact can exist between polygons: Corner-to-Corner, Corner-to-Edge (CE) and Edge-to-Edge (EE). Corner-to-Corner contacts are geometrically (or mathematically) realistic but never occur in our simulations because of the numerical rounding errors. When dealing with (EE) contact, contact detection involves two contact points and their associated overlaps h, Fig. 2(b). This is the main difference compared to the classical method (area overlap calculations) where only one contact is considered between the edges.

Finally, we may be interested in the main contact law parameters: the normal and tangential stiffness, k n and k t ,a n dt h e friction coefficient μ. Assuming that samples would first be loaded with a 2D isotropic stress σ 0 = 10 kN/m, the normal stiffness of contact k n was calculated according to the dimensionless 2D stiffness parameter κ = k n / σ 0 [15,[24][25][26]. κ expresses the mean level of contact deformation, 1/ κ = h / 〈2R〉,w h e r e〈R〉 is the mean particle radius. In our simulations, κ was arbitrarily set to 1000. As a comparison, a sample made of glass beams under isotropic loading of 100 kPa reaches κ = 3000. The tangential stiffness k t can be expressed as a fraction of the normal stiffness, k = k t = k n , k N 0. k N 1 may exhibit specific behaviour where Poisson coefficient of grain assemblies become negative [27][28][29][30]. Running several numerical simulations with various k,0b k ≤ 1, [25] have shown that if 0:5 ≤ k ≤ 1, the macroscopic behaviour remains similar. Thus we arbitrarily set k to 1.

Sample preparationisotropic compression

Granular samples of 5000 grains are prepared in three steps: preparations start with a random spatial distribution of particle position inside a square made of four rigid walls. Secondly, the particles expand slowly until σ 0 = 0.5 kN/m is reached. Finally, samples are isotropically loaded by wall displacement up to σ 0 = 10 kN/m. To obtain samples with different solid fractions, we may use various values of the intergranular friction coefficient μ during the preparation [31].Whenμ is set to zero, samples isotropically loaded up to σ 0 = 10 kN/m are dense and the Solid fraction is maximal. When a strictly positive value of μ is used instead, samples become looser and Solid fraction decreases. In our study dense samples were prepared with μ = 0 and the loose ones with μ equal 0.5. 16 different samples (4 dense, 4 loose made of clumps and 4 dense, 4 loose made of polygons) for each α value were prepared. 1 Dense samples will be written as C D or P D respectively for Clumps and Polygons. Loose samples will be denoted as C L or P L . A subscript can be added. It then corresponds to the decimal part of the shape number α.As an example, fragments of two dense samples with α = 0.30, C D .30 and P D .30 , are displayed in Fig. 3.

For both clumps and polygons, contact between particles can occur at more than one contact point. There are four contact possibilities for clumps: single contact Fig. b)), all these contacts between clumps can be merged into two groups, (CE)a n d( EE). In the (CE) group, grains involved in a single contact (i) may rotate without sliding. Double contact (ii) allows rotation with sliding and eventually friction. Rotation and sliding of polygons meeting at a single contact point are not correlated. Group (EE) contacts block the rotation of the grains. In the case of rotation of grains, contacts of this type would be lost. Therefore, the shape of the grains can be regarded as macro roughness.

For samples subjected to isotropic loading, we focus on two internal parameters that mainly determine the mechanical behaviour: the Solid fraction ξ and the coordination number z⁎. Fig. 4 shows the evolution of ξ with α for dense and for loose samples. For C D samples, ξ evolution is bell-shaped and maximum Solid fraction is reached for 0.2 ≤ α ≤ 0.3. Similar observations were made by [9,10]. This also seems to be the case for C L samples although the amplitude of the bell-shaped curve appears to be lower. The geometrical origin of these results deals with the grain shape (concavity and grains envelope) and imbrication and the interlocking between grains, but appears to be complex to establish. While we might think that when two grains are in contact with a single point of contact (contact (CE)-type (i), Fig. 2(b)), this would tend to increase the local porosity and thus reduce the overall Solid fraction; this does not seem to be the case: 1 All the analyses presented in this article were carried out on mean results calculated over 4 samples of each density and each α. Associated Standard Deviations will always be given, even if they are too small to be significant. 
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Fig. 5 shows clearly that for C D samples, the proportion of contact (CE)-type (i) is at its maximum for 0.2 ≤ α ≤ 0.3 in the case of dense samples and decreases linearly with α in the case of C L samples. This completely goes against the ξ trend, even if it is clearly established that when ξ is high (C D samples), the proportion of (CE)-type (i) contacts is lower than in the case where the Solid fraction is low (C L samples).

For samples made of polygons, the dependence of ξ on α is not clear either. For P D samples, ξ is almost constant for 0.2 ≤ α ≤ 0.3. If we exclude the P D .40 sample, which behaves in a peculiar way, we can notice that for samples made of grains with regular shapes, corresponding to α = 0.13 and α = 0.5, the Solid fraction ξ is smaller than for samples made of grains which have shape irregularities (0.13 b α b 0.5). The relationship between ξ and the percentage of (CE)-type (i) contact is again impossible to establish. Furthermore, it is worth observing that when 0.2 ≤ α ≤ 0.3, C D and P D samples show very similar Solid fraction. Here, grain envelope seem to be a cleverer interpretation of α parameter than grain imbrication, which is only relevant for clumps. Finally, we should note that the angle of friction used during the preparation does not seem to have a major influence on the Solid fraction of samples made of polygons when 0.2 b α b 0.3.

For samples subjected to isotropic loading, we studied the coordination number z* corresponding to the mean number of contacts per grain. Here only grains that have two or more compression forces, and therefore take part in the load transfer, were considered. For samples made of frictionless perfectly rigid discs, z⁎ =4 [START_REF] Agnolin | Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks[END_REF]. Because κ is not infinite in our study, in the samples made of frictionless circular particles (C D .00 ), z⁎ = 4.093 ± 0.005 is greater but still very close to the reference value. z⁎ is evaluated for clumps and polygons and both dense and loose samples. The dependence of z⁎ according to α is shown in Fig. 6. For C L samples, z⁎ increases linearly with α, like P L samples, but for C L , it can be directly correlated to the percentage of (CE)-type (i) contacts which decrease with α, and then increase z⁎. For dense samples, the percentage of (CE)-type (i) contacts did not vary too much. z⁎ is constant for C D and P D samples.

Macromechanical response of granular assembly loaded in vertical compression test

The samples were tested in a 2D strain controlled vertical compression test, also called biaxial test. Vertical stress σ 1 was applied by increasing the compressive vertical strain ε 1 while lateral σ !% C D .10 implies grains with a small α, the mechanical response of the sample exhibits remarkable increase of the maximum deviator in comparison to disc samples C D .00 where rotations of particles are not potentially disturbed by the grain shape. For C L samples, there is no peak value of the friction angle, ϕ p = ϕ t , Fig. 7(c). Thus, for all clump samples, both peak ϕ p and threshold ϕ t friction angle values increase along with α. ϕ t increases proportionally with α while the increase of ϕ p is nonlinear and seems to be asymptotic for α ≥ 0.4. For P D samples, ϕ p values slightly decrease linearly along α, while ϕ t values increases, Fig. 8(a).

For P L samples, we can notice in Fig. 7(d) that the macroscopic curves show typical behaviour similar to that of loose samples when α b 0.3 and a typical behaviour characteristic of dense samples for α N 0.3. This kind of behaviour deals with the values of the initial Solid fraction of the samples shown in Fig. 4 where we can observe that ξ values for P D and P L samples are very close when α ≤ 0.3. If we focus only on ϕ t for P L samples, we can observe (Fig. 8(a)) an increase of the friction angle with α, except for samples made of triangles, α = 0.5, which always behave in a specific way. 2 In conclusion, it can be noted that adding some shape irregularity by increasing α always leads to an increase of the macroscopic angle of friction in the critical state. This is the case for clumps and polygons with a constant microscopic friction angle μ. This influence of grain geometry is in line with a previous study by Salot et al. [7]. Lastly, as we can see in Fig. 7, α does not explicitly influence Young's modulus. E is linked to the rigidity matrix and therefore to z⁎ [START_REF] Agnolin | Internal states of model isotropic granular packings[END_REF], which is constant for dense samples (Fig. 6).

Similarly, particle concavity does not particularly influence the average dilatancy angle ψ values sin ψ = dε 1 + dε 3 dε 1 -dε 3 of dense and loose clump samples (Fig. 8(b)). On the other hand, ψ is lower for polygons with higher values of α (closer to triangular shape) than for those more similar to hexagons. In Fig. 9, volumetric changes in some samples are illustrated. For both dense clump and polygon samples, Fig. 9(a) and (b), the volume 3 increases mainly during vertical compression, after a small contraction due to the stiffness of the contacts [15]. The volumetric increase for C D samples is quite similar from one α to another (Fig. 9(a)). On the other hand, α clearly influences the volumetric change of P D samples but this influence seems erratic. Nevertheless, P D samples show greater total dilatancy than C D samples. C L samples (Fig. 9(c)) behave like loose sands and contract all throughout the compression test. It is more complex for P L samples (Fig. 9(d)) for which the setting-up process remains problematic for some values of α.

Micromechanical analysis

From the macroscopic results exposed in the previous section, two main observations can be established: for dense samples made of clumps, the evolution of the angle of friction at the stress peak ϕ p varies significantly with α. The geometrical imbrication between grains in contact, which depend on α, may be one of the micromechanical origins of these results. Secondly, for all samples, dense or loose, made of clumps or polygons, it was established that the angle of friction ϕ t at the end of biaxial tests increases with α and is independent of the initial state. This result is a proof of the role of the grain envelope in the mechanical behaviour rather than some inter-granular imbrication considerations. In this section we will try to gather evidence for these proposals.

Contact proportion evolution for dense samples made of clumps

Single contacts are mainly involved in all the grains samples tested, Fig. 5 ((CE) contacts for polygons or (CE)-type (i) contacts for clumps -Fig. 2(b)). During loading, it can be noted that the percentage of single contacts increases. Because dense samples were prepared with no friction, Solid fraction of each assemblies of grains subjected to isotropic loading is constant and always maximal. As a consequence, even if samples can exhibit slight contractancy (related to dimensionless contact stiffness κ, [START_REF] Roux | Quasistatic rheology and the origins of strain[END_REF]), the total number of contacts in each sample during a vertical compression systematically decreases. Therefore, in order to compare different contact type proportions in different phases of the test, we suggest balancing the decrease in the total number of contacts using the coefficient

ω⁎ = N ε b ⁎ / N ε a ⁎ . N ε a ⁎ and N ε b
⁎ represent the total number of neighbouring contacts 4 at the given vertical strains ε 1 (ε a or ε b ) in the samples. Here, we suggest focusing on the evolution of two new contact groups for clumps:

• (SC) single contact between grains, known as simple contact,

• (CC) multiple contacts between grains, hereafter called complex contacts.

These two new groups can be examined in Fig. 10. We observed the evolution of clump contact numbers of each group between two successive stages by normalising this evolution 2 Note that triangle is the only shape with 3 edges. 3 For convenience we resort to the vocabulary pertaining to 3D triaxial tests. 4 When two grains are in contact via 1, 2 or 3 contact points, only one contact is counted. !& with ω⁎. We thus defined a new variable λ = ω⁎ ⋅ N ε a / N ε b , where N ε a and N ε b denote the number of (SC)o r( CC) on two different levels ε a and ε b of the vertical strain ε 1 .I nFig. 11(a), λ evolution is calculated between ε a = ε i (isotropic state) and ε b = ε p (maximum stress deviator). We can observe that for α = 0.10, λ is smaller than 1 for (CC) and greater than 1 for (SC). This can be regarded as a transformation of (CC) into (SC) between these two stages. If all the complex contacts transformed into simple, graphic points were at an equal distance from 1, 1 -

λ (CC) = λ (SC) -1. If 1 -λ (CC) N λ (SC) -1,
it means that some complex contacts transform into simple contacts but some of them also disappear.

When α goes to 0.5, these transformations are still active but with less intensity. Geometrical imbrications between clumps increase with α and are "more difficult to lose" during the biaxial tests. It is also interesting to observe that λ seems to reach a threshold when α ≥ 0.4, Fig. 11(a). This last observation can be correlated to the evolution of ϕ p , which also reaches a threshold for the same value of α, Fig. 8(a).

Focusing on λ between the peak and the critical state, ε a = ε p and ε b = ε c , Fig. 11(b), we can observe that the increase of simple contacts is small for every α (λ (SC) -1 ≤ 0.1) and complex contacts are mainly lost 1 -λ (CC) N 0.1, especially when α is small. The greater α is, the smaller the proportion of complex contacts lost (grain imbrications are destroyed less). This may be a clue that ϕ t of clumps increases with α,asseeninFig. 8(a). Nevertheless, some new investigations on the evolution of contact orientations are proposed in the next section.

Evolution of contact fabric for C D samples

Contact direction and its evolution during the vertical compression tests are often analysed [START_REF]Powders and Grains 97 -International Conference on Powders & Grains -(3rd -1997[END_REF]. Focusing on the first part of the mechanical behaviour, from the isotropic state to the stress peak for example, it is well known that in dense samples, contacts are mainly lost in the extension direction and gained in the direction of compression, [START_REF] Calvetti | Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path[END_REF].InFig. 12(a) to (d), for two values of α, we present statistical analysis of the evolution of contact direction by the evaluation of PðθÞ = N ε b ðθÞ = N εa ðθÞ , where ε a and ε b correspond to two successive vertical strains levels and where N ε x (θ) is the number of contacts in the direction θ. PðθÞ = 1 expresses that the number of contacts in the direction θ remains constant between the two configurations studied. If PðθÞ = b1 , contacts are lost and if PðθÞN1, We focus on the evolution of contact anisotropy between the isotropic state and the peak, Fig. 12(a) for α = 0.2 and Fig. 12(c) for α = 0.5, we can observe that there is no contact gain in any direction: in the compression direction, the number of contacts remains constant PðθÞ≃1 and the number of contacts decreases in the extension direction PðθÞb1. The mean value of P over θ is smaller than 1 for both α discussed here and also for the other α studied. During the vertical compression of C D , sample contacts are mainly lost. Finally, we noticed that the greater α is, the smaller the amount of contacts lost in the extension direction. By analysing the contacts change in direction between the peak and the critical state, ε p to ε c , Fig. 12(b) and (d), opposite tendencies emerge: contacts are mainly lost in the compression direction and gained in the extension direction, with a less intensive effect for α = 0.5, Fig. 12(d). At this stage of analysis, we are not yet able to distinguish the nature of the contacts involved in these observations. An analysis of clustered contacts, as outlined below, is thus necessary.

We now suggest the same contact direction analysis but for (SC)and (CC) groups (simple and complex contacts). Statistical analysis of the evolution of contact orientation from the isotropic state ε i to the peak ε p for (SC)a n d( CC)g r o u p si ss h o w ni nFigs. 12(e) to (h). On one hand, Fig. 12(e) and (f) show that in the compression direction (SC)contacts are gained (α = 0.2) or are kept (α =0.5). (SC) contacts are mainly lost in the extension direction, with a more pronounced amplitude when α is small. On the other hand, we can observe that (CC), Figs. 12(g) and (h), are lost in every direction with some variations depending on θ. Nevertheless, complex contacts are more persistent when α is greater (〈P〉.is greater for α = 0.5 because of grain imbrications).

The statistical analysis of the evolution of contact direction between the peak ε p and the critical state ε c shownintheFigs. 12(i) to (l) confirms the tendency shown in Figs. 12(b) and (d): simple and complex contacts are lost in the compression direction. For (SC)w i t hα =0.2, 〈P〉=1 , Fig. 12(i): although the number of (SC) decreases in the compression direction and increases in the extension direction, the number of simple contacts remains constant during the mechanical test from the peak to the critical state. When α= 0.5, the number of simple contacts decreases 〈P〉 =0 :9, especially in the compression direction. Complex contacts are the ones that are lost the most (〈P〉 is always lower than 1, regardless of the value of α). Nevertheless, it is desirable to make a distinction based on α: the amount of (CC)lostissmallerforα=0.5 (〈P〉 =0:8, Fig. 12(k)) than for α=0.2 (〈P〉 =0:7, Fig. 12(l)). The proportion of (CC)lostinthe compression direction is bigger for α = 0.2, like if vertical contact chains were more unstable or less persistent when α tends to 0.

Further studies, taking into account the intensity of contact forces and their propensity to be stronger in the case of complex contacts [START_REF] Azéma | Force transmission in a packing of pentagonal particles[END_REF] would provide more certainty about possible links between the observations made above and improvement of the mechanical property ϕ t measured at ε c , Fig. 8(a).

Evolution of comparative contact proportions in compression tests for clumps and polygons

Focusing on the critical phase only, contact observations are now based on the division into two contacts groups corner-to-edge (CE) and edge-to-edge (EE)( Fig. 2(b)). The evolution of (CE) contacts according to α is shown in Fig. 13.(EE) contacts can be easily deduced by subtracting (CE) contacts percentage from 100%. On one hand, the percentage of (CE) contacts does not depend on the initial Solid fraction of the sample; dense and loose samples exhibit a similar trend. On the other hand, (CE) contact percentages for C D and C L samples decrease linearly with α. A different tendency is observed for P D and P L samples where the contact percentage remains more or less the same except for α = 0.5. We can even observe that when α = 0.5, (CE) contacts and (EE) contact percentages are close: for this special value of α, clump and polygon envelopes converge.

Influence of shape on local strain analysis

We focused on the strain localisation in the samples in order to study the macroscopic rupture and its origin. Two approaches were used: local strain maps and shear localisation indicator S 2 [START_REF] Sornette | Fault growth in brittle-ductile experiments and the mechanics of continental collisions[END_REF]. By comparing particle kinematics in the isotropic state ε 1 = ε i = 0 and in the deformed stage ε 1 , we calculated local strains using Delaunay triangulation as in [START_REF] Calvetti | Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path[END_REF] (Delaunay triangle corners correspond to the mass centers of particles). Using the second strain invariant, I ε d = ε I -ε II , where ε I and ε II are respectively the major and the minor principal strains, we illustrate the shear localisation in Fig. 14. We should notice that such shear localisation patterns, also called shear bands, are often observed on granular materials confined by more or less rigid boundaries, or even numerical or experimental considerations [START_REF] Calvetti | Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path[END_REF][START_REF] Lanier | Étude expérimentale des lois de comportements en grandes déformations à l'aide d'une presse réellement tridimensionnelle[END_REF][START_REF] Lanier | Experiments and numerical simulations with 2D-disks assembly[END_REF][START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF].E v e ni ft h e number of shear bands depends on the macroscopic strain levels applied to samples, different patterns (multiple shear zones) seem to exist when periodic boundary conditions are used [START_REF] Kuhn | Specimen size effect in discrete element simulations of granular assemblies[END_REF].

The shear localisation indicator S 2 is defined as

S 2 = 1 N t ∑ N t i =1 I ε d ! 2 ∑ N t i =1 I 2 ε d ; ð2Þ 
where I ε d is the second invariant of the strain tensor and N t is the total number of Delaunay triangles. In a sense, value of S 2 can be regarded as a percentage of a distorted sample area. " Fig. 15 gives the evolution of S 2 according to ε 1 for several dense and loose samples made of clumps and polygons. Regardless of the sample studied, the sheared area always reaches a maximum which is at least greater than 50%. From evolution of S 2 , we may encounter two types of behaviour: samples for which S 2 reaches a maximum and then decreases and stabilises, and a second type where S 2 increases asymptotically towards a maximum.

We have observed that when S 2 reaches a maximum and later decreases to reach a threshold value, it always corresponds to samples which were identified as dense samples because ϕ p N ϕ t (for example C D .50 , P D .24 , P L .28 samples of the Fig. 14). On the contrary, when ϕ p ∼ ϕ t , samples can be classified as loose samples. In this case, S 2 continuously increases from ε 1 = 0 to 10% to eventually reach a threshold close to S 2 ≃ 60%.

In the case of dense samples, the asymptotic value of S 2 is interesting because it clearly shows higher values for P D samples than for C D samples. Coupling this quantitative result with the qualitative Fig. 12. C D samples. Histogram analysis of the evolution of contact directions for all the contacts (panels (a) to (d)) or for (SC)and(CC) (panels (e) to (l)). Histograms calculated over 25 classes of 7.2 ∘ each, between two successive strains levels: ε i to ε p for the panels (e) to (h) and ε p to ε c for the figures (i) to (l). When all the contacts are taken into account (panels (a) to (d)), the statistics are calculated over approximately 40, 000 contacts for the isotropic state, 30, 000 contacts at the peak and 29, 000 at the critical state. The circle radius drawn in dashed line is 1. observation of shear maps like in the Fig. 14, it is obvious that localised zones in P D samples are wider than in C D samples. This result is consistent with the overall dilatancy of samples: P D samples globally expand more than C D ones. For loose samples, the sheared area always corresponds to approximately 60% of the samples, regardless of the grain shape.

Conclusions and discussion

The aim of this article was to present some new investigations on the mechanical influences of particle shape in granular assemblies in the framework of numerical simulations performed with Discrete Element Method. First, a grain geometry parameter α was defined by the CEGEO research team. For particles called clumps, made of 3 overlapping discs, α is a measure of the grain concavity. 6-edged convex polygonal grains were also ruled by α. The overall envelope depending on α for each type of particles used in the studied granular model was the common feature. Our numerical simulations were performed with the Discrete Element Method adapted to each grain shape. For particles made of discs (clumps), the commercial code PFC 2D by ITASCA was used. For polygonal particles, we developed our own computer code which implements special contact detection between objects in the framework of Molecular Dynamic approach. In this article, we highlighted that changing the grain geometry, influences granular assembly mechanical behaviour under the classical vertical compression test in 2D. More complex grain shapes allow higher levels of internal friction angle and large volumetric strains to be reached compared to simple discs. Some clear differences in the behaviour of polygon (convex) and clump (non-convex) assemblies were shown. We should also note that the particle shapes chosen also demonstrate similarities, caused by the global envelope, that justify the comparison. The generation and compaction of granular assemblies were presented. By using two extreme values of the inter-granular friction angle μ,dense and loose samples were prepared, both for samples made of clumps and polygons.

Firstly, by focusing on the macroscopic mechanical behaviour of our granular model we show that loose samples composed of polygons with low values of α present behaviour typical to moderately dense granular samples. For these granular materials, the initial contracting stage was not only due to contact stiffness, but was also influenced by large intergranular reorganisation. Apart from this, loose and dense samples of all shapes behaved as expected (loose samples only show contracting behaviour while dense ones mostly exhibit major dilatancy), showing similar behaviour when discussing friction residual angles ϕ t or contact percentages. All samples show higher values of internal friction angles ϕ p and ϕ t than samples made of only circular grains where each particle is a disc. The correlations between shape parameter α and friction angles are different for clumps and polygons. On one hand, for dense clump samples ϕ p increases with α and seems to reach an asymptotic value ϕ p =40 ∘ . On the other hand, ϕ p linearly decreases when α shifts from 0.13 to 0.5. In this case, the particular case of the triangular shape (α =0.5) is also discussed briefly. The overall dilatancy of clump samples is greater than that of disc assemblies, but spectacularly smaller than dilatancy of polygons.

Secondly, on the granular scale, we suggested correlating macroscopic observations by means of contact evolution analysis, which led us to introduce several groups of contacts between particles. Thus, we observed that multiple contacts between clumps transform into simple contacts and that this process depends on the size of concavities, i.e. α. We tend to associate this with an increase of shear resistance in the case of dense granular samples made of clumps. However, for a better understanding of the role of α in the magnitude of contact forces and their influence on the macroscopic repercussions, complementary studies need to be carried out.

Focusing on granular assembly failure, we studied the localisation of shear bands and tried to characterise it by a scalar. It was observed that reflecting shear bands were thinner in dense samples made of clumps than in those made of polygons, regardless of the α type, thus highlighting the evident effects of the geometrical imbrications of clumps. Polygon samples gradually create wide shear bands, while for samples made of clumps, the appearance of shear bands are more immediate.

Although the meaning and implications of the parameters α have been presented in this article, it needs to be clarified further. Nevertheless, from the comparisons between polygons and clumps, two trends seem to emerge: for very dense samples made of clumps, a large α naturally implies imbrications between particles. α is thus a " measure of clump concavity. With the simulations exposed in this article, we can deduce that the larger the concavities are, the higher the angle of friction at the peak ϕ p is.

For the samples made of polygons, this does not apply. Indeed, there are no imbrications between the grains and α is thus a measure of grain sphericity. We have shown that in dense samples made of polygons, the percentage of a single contact in the isotropic state increases with α. In corollary, we can observe that the angles of friction peak decrease slightly with α.

For loose samples P L or C L , or for P D and C D samples close to the critical state, ϕ t is the parameter which characterises the failure. We have shown that for large strains, contacts between grains are mostly single. Therefore, clump imbrications are less involved in the evolution of ϕ t . Furthermore, ϕ t , which increases linearly with α, increases with the same rate regardless of the grain shape. α should thus be only regarded as a parameter of spherical grains.

+D=FJAH ! Application: Arching Eect Above Buried Pipes

Having observed how the change of grain shape aects the mechanical behaviour of granular material and how behaviour of assemblies of complex shapes is closer to real granular soils than behaviour of assemblies of discs, it was interesting to apply this experience to a real engineering problem.

Underground pipes are widely used in various elds of engineering. Among the typical pipe application is transport of uids under pressure (oil, gas, water) or with a free surface (sewage, drains). Moreover, the large pipes can be used as tunnels or culverts in order to allow water ow or animal crossing under railroad or highway embankments. The interaction between the pipe and surrounding soil is complex and depends on a number of parameters like geometry and mechanical properties of the pipe, geological conditions, loading. Historically due to the poor understanding of this complex interactions the buried pipes were typically thick and sti and did not incorporate the soil response in their mechanical behaviour. With the introduction of new materials like sheet steel or plastic new design methods were developed which allowed constructing exible conduits which interacted with the surrounding soil in transferring the load. This study is focused on the load transfer above a exible buried unpressurised pipe.

The materials used nowadays in underground pipes can dier, but generally can be divided into three major groups: concrete/ceramics, metal and plastics. Various types of plastics are used, the most common ones being: PE (Polyethylene) and HDPE (High Density Polyethylene), PVC (Polyvinyl Chloride), PP (Polypropylene) and GRP (Glass-Reinforced Plastic). The type of the material used depends on the particular task the conduit is supposed to perform. For example in leechate collection systems under ore heaps the wastewater is chemically reactive and the pipe material must be resistant.

When comparing the pipe stiness to the stiness of the surrounding material (envelope), the pipes can be sti or exible. The sti pipe failure mode is rapid wall crushing that occurs when the stress in the pipe exceeds the strength of the pipe material. In case of exible pipes the walls can locally buckle or the ring deection of the pipe can be too high. The second fail mode can lead to pipe inversion. In some applications like water collection systems under landlls the hydraulic properties of the buried pipes are more important than the mechanical performance and since a replacement of a pipe can be dicult, inversion of the pipe can sometimes be accepted.

THEORY AND PRACTICE

Theory and Practice

There exist a number of design methods applicable for buried pipes. The design methods are based on the engineering experience and observations of real construction and comply with the limit state design approach. In general the pipes can be considered as exible or sti and the pipes can be buried in a narrow ditch or placed on a plane. These factors inuence the repartition of load over the pipe aecting the so called arching eect. The typical approach is to consider the pipe in plane strain conditions.

Pipe Stiness

The aforementioned sti and exible pipe distinction can be quantied experimentally using the S parameter [START_REF] Kunecki | Zachowanie si¦ ortotropowych powªok walcowych w o±rodku gruntowym pod statycznym i dynamicznym obci¡»eniem zewn¦trznym[END_REF]. The stiness of the pipe can be expressed as a relation between a force acting on a pipe sample and the resulting deformation.

S = F • f L • dv (3.1)
where:

S is the pipe stiness

[P a],
F is the force acting on a unit of length of the pipe [N ],

L is the length of the pipe sample

[m],
dv is the deection of the pipe

[m],
f is a deection coecient

[-].
The deection coecient includes a correction factor for ovality of the deformed specimen and is given with the following formula:

f = 10 -5 • 1860 + 2500 dv d m (3.2) 
where:

d m is the diameter of the pipe [m].
The European Committee for Standardization in EN codes and the International Organization for Standardization in ISO standards use the following pipe stiness denition:

S = E • I d 3 m (3.3)
where: E is the Young's modulus of the pipe

[P a], I
is the moment of inertia of the pipe wall section,

I = h 3 /12 m 3 , d m is the diameter of the pipe [m].
Dierent codes propose dierent experimental protocols to measure the pipe stiness. For example international code ISO 9969 suggests a compression of three equal specimens between two parallel, horizontal walls to obtain 3% of deection:

S i = 0.0186 + 0.025 • Y i • F i D w • L i • Y i (3.4)
where:

F i is the force corresponding to 3% of deformation of i-th sample [kN ], L i is the length of the i-th pipe sample

[m],
D w is the internal diameter

[m],
Y i is the deection corresponding to 3% of pipe deformation

[m].
American code ASTM F894 suggests stiness measurement at the 5% deection level; The stiness in this code is expressed in [psi]. German DIN 16961 code uses (3.3) modied by changing the pipe diameter with radius, S[P a].

F s = Kµ V B d [P a] , (3.5) 
where µ is the friction coecient between the walls of the trench and the backll. To equilibrate the vertical forces acting on the strip of soil:

V + γB d dh = V + dV + 2 • Kµ V B d • dh.
(3.6) 

W d = γB 2 d 2Kµ 1 -e -2KµH . (3.7)
Typically the load is expressed in the form:

W d = γB 2 d C d N m , (3.8) 
with the coecient:

C d = 1 -e -2Kµ H B d
2Kµ .

(3.9)

In the above considerations the earth pressure coecient K is usually identied with the Rankine's coecient of active earth pressure K a = 1-sinφ 1+sinφ and the friction coecient is identied with the internal friction angle µ = tanφ which is not necessarily true [START_REF] Christensen | Rigid pipes in symmetrical and unsymmetrical trenches[END_REF]

. The parameter C d is a function of H B d
and Kµ and usually is plotted for dierent soils in the form of a nomogram [START_REF] Moser | Buried Pipe Design, 2nd Edition[END_REF].

Pipe in an Embankment

Apart from a narrow trench situation of Marston [START_REF] Marston | The theory of external loads on closed conduits in the light of the latest experiments[END_REF], Spangler [START_REF] Spangler | The supporting strength of rigid pipe culverts[END_REF] considered a trench of innite width as well. This situation is typical for pipes laid on the ground and buried with a backll or under an embankment. The approach was the same as in the case of a narrow ditch except that a strip of soil selected from a prism was as wide as the external diameter of the pipe, not as wide as a ditch.

Spangler distinguished two scenarios: the ground around the pipe settles more than the top of the pipe (Fig. 3.2b and 3.2d) or the top of the pipe settles more (Fig. 3.2c). The rst case may occur for sti pipes while the second for exible pipes or in case when a trench is shallow and buried under an embankment. The rst situation was called projection condition; In this case the shearing stress are acting downwards and are adding additional load on the pipe. The second case was called ditch conditions; In the second case the direction of shearing is opposite (upwards), as in the case of a narrow trench, and the load on the pipe is reduced.

Moreover, Spangler also concluded that there exists a certain level above the pipe where there are no shearing forces. Above this level the settlements of the prism above the pipe and the prisms at the sides are the same. This so-called plane of equal settlements denes an incomplete conditions when the plane level actually exists in the embankment and complete conditions when the equal settlement plane is above the top of the embankment (in other words is virtual)

and the shearing between the prisms occurs along the whole height of the soil mass. All the situations described by Marston are schematically presented in Figure 3.2.

The load equation in case of a pipe buried under an embankment is the following: The native soil is denoted with a bold line, backll level with a thin line, the soil prism in grey

W c = γB 2 c C c , ( 3 
The C c coecient can be dened in dierent ways depending on the direction of shearing and whether the conditions are complete or not. For complete conditions (no real plane of equal settlements) the coecient is:

C c = e ±2Kµ H Bc -1 ±2Kµ 
.

(3.11)

The plus sign appears for the complete projection while the minus sign for the complete ditch.

For incomplete conditions the coecient is expressed with the equation:

C c = e ±2Kµ H Bc -1 ±2Kµ + H B c - H e B c • e ±2Kµ H Bc , (3.12) 
where H e is the distance between the top of the pipe and the level of plane of equal settlements

[m].
The sign convention is the same as above: plus sign for incomplete projection.

As in the case of ditch case loading coecient, equation (3.9), the values of the C c are usually presented in the form of nomograms. The determination of the plane of equal settlements is dicult as it is depending on the stiness of the pipe, stiness of the backll and residual soil, loading and so on. The typical approach is to use tabulated values of a settlement ratio r sd which are based on years on engineering practice.

3.1.3

Flexible Pipe

The use of exible pipes increased with introduction of modern materials like plastic. The classical methods developed for sti pipes were not predicting the loads acting on the exible pipes well.

Flexible pipe under vertical compression deects and starts pushing the soil on either side causing passive earth pressure. The large vertical displacements allows the arching eect to develop in the backll soil. Marston-Spangler method neglected the horizontal stress. In the framework of this method it is possible to consider special case of a pipe in a ditch with a stiness equal to the stiness of the soil. In this case, the distribution of load will be dependant only on the geometry of the system:

W c = W d • B c B d .
(3.13)

Using the equation (3.8) it is possible to obtain a so-called Marston load equation for exible pipes:

W c = γB c B d C d , (3.14) 
but it does not predict the exible pipe loading much better than a simple prism load equation:

W c = γB c H.
The design of exible unpressurized pipes complying with the limit state approach takes into account three criteria: deection, wall-crushing force in the pipe, buckling. These criteria can be veried in dierent ways. 3.1.3.1 Iowa Formula Iowa formula [START_REF] Spangler | The structural design of exible pipe culverts[END_REF] is a classical method used to asses the deections of the pipe. It takes into account the soil-structure cooperation. The assumptions made by Spangler are that the load is uniformly distributed over the entire top part of the pipe; The pressure at the bottom is uniformed as well, but only in the zone of contact between the pipe and the base described with a bedding angle α; The horizontal pressure at the sides of the pipe acts parabolically over β = 100 • angle and is dependant on the horizontal deformation of the pipe (see Fig. [START_REF] Spangler | The structural design of exible pipe culverts[END_REF]. The pipe is located on top of residual soil where α describes the bedding angle and buried under backll soil

The vertical pressure at the top is given with the following formula:

v = W c 2R , (3.15) 
where:

v is the vertical pressure on top of the pipe [P a], W c is the load as in Marston (3.10) N m , R is the radius of the pipe

[m].
The soil reaction at the bottom of the pipe is:

v ′ = v sinα , (3.16) 
where: α is the bedding angle of the pipe (3.17) where:

δx = D l KW c R 3 EI + 0.061eR 4 ,
δx is the total horizontal deformation of the pipe

[m],
D l is the deection lag factor

[-],

K is the bedding constant

[-], W c is the Marston load N m , R is the radius of the pipe [m],
E is the pipe material Young's modulus The coecients K, D l and e are empirical. The constant e was later modied to represent a real property of the soil [START_REF] Watkins | Some characteristics of the modulus of passive resistance of soil: A study in similitude[END_REF]. Watkins introduced a modulus of soil 51 3.1. THEORY AND PRACTICE reaction: (3.18) therefore creating a Modied Iowa Formula:

E ′ = eR,
δx = D l KW c R 3 EI + 0.061E ′ R 3 . (3.19)
Originally the bedding constant K depended on the angle of bedding assuming an equal contact in all the contact zone. This is actually very rarely true. The contact between the pipe and the residual soil depends on the technology used to prepare the bedding. It is technically dicult to cut a circular groove of a precise radius for kilometres of pipes, and a groove of larger diameter is not supporting the pipe properly. In the engineering practice the pipe is typically laid on the ground and the backll is dumped on top of it with little compaction to avoid reducing the permeability. In such a situation there are large voids below the pipe under the haunches which causes a reduction of the pipe strength and can be a cause of pipe collapse. Some engineering tactics were developed to avoid this problem, for example ushing the backll under the pipe, but also changing the bedding shape. In [START_REF] Willardson | Minimum-risk bedding for exible drain pipes[END_REF] it was shown that a triangular groove supporting the pipe in two points is almost as eective as a well prepared circular bedding, while being much easier to construct in the eld. Nevertheless, in the classical situation considered by Spangler the values of bedding angle α ranging from 0 • to 180 • were related to the K values ranging from 0.110 to 0.083, commonly 0.1.

The deection lag factor D l takes into account the consolidation of the soil at the sides of the pipe changing with time. Under constant load the deection of a exible pipe can increase by 30% in 40 years, [START_REF] Warman | Development of a pipeline surface loading screening process & assessment of surface load dispersing methods[END_REF]. Typically the values of D l range between 1.0 and 1.5.

Possibly the most important parameter in Iowa formula is the soil reaction modulus [START_REF] Moser | Buried Pipe Design, 2nd Edition[END_REF]. It was often tried to identify it with oedometric modulus with factors like M = (0.7 -1.5)• E ′ [START_REF] Krizek | Structural Analysis and Design of Pipe Culverts[END_REF] or M = (1.0) • E ′ [START_REF] Hartley | E ′ and its variation with depth[END_REF]. Typically the values of E ′ are taken from tables and depend on the type of soil and the level of compaction.

Internal Forces and Pipe Failure

There is a number of methods to compute the internal forces in the walls of the pipe. If the stress in any place of the wall exceeds the yield stress or maximum stress of the pipe wall material the wall can be crushed which leads to failure. Typical pipe failure modes are presented in Figure 3.4. The mode depends on the stiness of the pipe and the surrounding soil.

Beam Theory

In case of point loading of a pipe the internal forces can be determined in the framework of beam theory. In Appendix C a method based on the beam theory is presented. The normal and tangential stresses are negligible while the bending moment is signicant. The internal moment can be expressed with a following equation:

M = P v R(sinθ - 2 π
), (3.20) where: P v is the vertical force acting on the pipe [N ], θ is the angle

[deg]
The extreme internal moments are located at θ = 0 • and θ = 90 • : 

M (θ = 0 • ) = - 2 π P v R, (3.21) 
M (θ = 90 • ) = 1 - 2 π P v R.
T c = 0.7P v R, (3.23) 
T h = 0.7P v R, (3.24) where:

T c is the normal force in the top and bottom parts of the pipe [N ], T h is the normal force in the side parts of the pipe [N ], P v is the vertical force acting on the pipe [N ].

The bending moments in the pipe are given with the following formulas:

M c = 0.02P v R 2 , (3.25) 
M h = -0.02P v R 2 , (3.26) 
where:

M c is the moment of force in the top, bottom and both sides of the pipe [N m] Other classical approach to compute the forces in the pipe walls is to use the ring compression theory stating that the compression force in the wall is equal to radial pressure acting on the wall multiplied by the radius T = P • R. (3.27) Ring compression method neglects the inuence of bending moments in the wall of the pipe.

Other methods based on the ring compression theory and engineering experience were developed by American Association of State Highway and Transportation Ocials (AASHTO method) and Canadian Highway Bridge Design Code (CHBDC method) and are described in [START_REF] Iron | Handbook of steel drainage & highway construction products[END_REF]. These three methods can be used to design large constructions (diameters up to 7.7 [m], arch spans greater than 3 [m]) and shapes other than circular, and thus are applicable to culverts, arches and tunnels. These methods neglect the inuence of bending moments in the wall of the construction and focus on the axial forces in the wall.

Pipe Experiments and Modeling

The study of buried pipe behaviour was always based on the engineering practice. Full scale experiments and instrumentation of real constructions are an important part of new design method development and improvement of parameters in the existing methods.

In [START_REF] Arockiasamy | Full-scale eld tests on exible pipes under live load application[END_REF] the authors performed eld testing of shallow buried large HDPE and PVC pipes under highway truck loading. The experimental results were compared with theoretical values obtained using modied Iowa method and FEM simulations.

In [START_REF] Mcaee | Field performance, centrifuge testing, and numerical modelling of an induced trench installation[END_REF] an induced trench conditions were tested, that is a situation where a highly compressive material (geofoam, sawdust) is placed above a pipe in projection conditions to induce soil arching and improve the performance of the construction. In this paper Marston-Spangler theory was compared with centrifuge experiments, numerical modeling and eld tests.

In [START_REF] Calvetti | Experimental and numerical analysis of soil-pipe interaction[END_REF] the authors presented 3D pipe modeling in DEM method in the context of landslide damaging pipes, which was continued in (di [START_REF] Di Prisco | Soil-pipe interaction under monotonic and cyclic loads: experimental and numerical modelling[END_REF]. This work proved that discrete element method is able to simulate buried pipe behaviour. The shearing between two soil prisms described by Marston comes from the fact that one soil prism is settling more than the other. As was said before, the direction of shear can result in the pipe load reduction or increase, depending on the situation. Similar situation occurs in many other situations except buried pipes, for example in grain silos or between the heads of foundation piles. This phenomenon is called arching eect and was studied intensively since the times of Marston. Terzaghi generalised the problem [START_REF] Terzaghi | Theoretical soil mechanics[END_REF] by studying a trap door problem. In his experiments a rectangular door was moved down from under a granular assembly, a situation similar to opening a valve at the bottom of a grain silo. The load on the door was observed to be smaller than the theoretical load coming from the weight of the grain prism above it. It was concluded that the load was transferred from the yielding soil mass to the stationary soil around the trap door. As in the case of Marston, Terzaghi assumed vertical surfaces of shearing between the soil prisms. Considering equilibrium of a yielding soil strip above a trap Terzaghi obtained a solution for cohesive soil:

Arching Eect

σ v = B γ -c B Ktanφ 1 -e -Ktanφ z B + q • e -Ktanφ z B ,
(3.28) 55
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where: σ v is the vertical stress

[P a],
z is the depth

[m],
c is the cohesion

[P a],
φ is the friction angle of the soil

[deg],
q is the loading at the top of the soil assembly [P a], B is the width of the trap door

[m].
Terzaghi observed that along with the lowering of the trap door the load transfer was greatest in the beginning of the test and was smaller after some large displacement, Figure 3.6.

Elastic Pipe Modeling in DEM

The idea of the study was to perform physical experiments and to reproduce them numerically in order to study soil arching in the context of particle shape. The analogue soil was modeled using the method described in the previous chapter, but in order to create a model of an elastic pipe, additional contact law had to be introduced.

Parallel Bond Contact Law

Generally speaking in 2D this model consists of a pair of links transmitting forces (N, T ) and moment of force (M) between the two connected cylinders of length t. One should think of elastic springs distributed regularly between two bonded particles. The parallel bonds transfer forces up to a limit when it brakes. The bonds are described by ve numerical parameters: 

[-] = R pb min(R A ;R B )
In order to create the bond, two particles must overlap or at least be in contact. Initially the forces in the bond are equal zero. After the bond is created, the two particles can change their relative position. The bond forces are computed relating to the increment of displacement from the initial state when the bond was created. The bonds work in parallel with the standard normal and tangential contact laws described in Sec. 1.7 The bond can be broken but this feature of the model was not used in the current study. A single parallel bond connecting two particles A and B can be regarded as a beam of length R A + R B -d (where d denotes the particle overlap), height 2R pb and width equal to the length of the particles t. A sketch of the parallel bond is presented in Figure 3.7. The normal force increment in a given timestep is computed the following way:

∆F pb n = k pb n • A • ∆U n , (3.29) 
where:

A m 2 is the cross-section area of the bond;

A = 2R pb • t, ∆U n [m]
is the normal relative displacement between the particles in contact.

The tangential force increment is computed using: .30) and the moment of force between two particles by:

∆F pb t = k pb t • A • ∆U t . ( 3 
∆M = k pb n • I • ∆θ, (3.31) 
where:

I m 4
is the moment of inertia of the bond cross-section;

I = 2 3 • t • 2R pb 3 , ∆θ [-]
is the change of relative orientation of the particles.

Numerical Model of Elastic Pipe

Elastic pipe was created with circular particles of the same diameter D connected together with parallel bonds into a single body, see Figure 3.8. In order to obtain similar mechanical behaviour,
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the geometry of the bonds was related to the geometry of the pipe, while the numerical parameters describing the bonds were related to the mechanical properties of the material. This way, the height is expressed with the following equation:

R pb = h D .
( 3.32) This relation ensures that a given beam geometry can be modelled correctly regardless of the size of the particles used. The bond stiness is related to the stiness of the material:

k pb n = E D , (3.33) 
k pb t = G D .
(3.34)

By default the parallel bond works together with the normal and tangential contact laws (see Section 1.7) which can aect the behaviour of the pipe. This is due to the fact that the stiness of the elastic body becomes dierent in tension where only parallel bonds carry all the load and dierent in compression or bending where the load is shared in parallel with the contact bonds. One can conclude that the solution to this problem would be to use k n and k t equal to zero, but in PFC 2D the contact stiness is calculated as a mean of the stinesses of two bodies in contact:

k = k A • k B k A + k B .
(3.35)

In the particular case of pipe buried in granular material, using dierent values of contact stiness for soil and for pipe would result in dierent stiness of the pipe-soil interface with little physical meaning, especially if one would be equal to zero. Because of this problem, it was therefore decided to keep realistic values of contact stiness but to cancel the contact bonds inside the pipe. The contact bonds were countered by introducing additional forces everywhere where a force resulting from a contact bond between the pipe particles occurred. That way the elastic behaviour of the pipe was modelled with parallel bonds only, without any inuence of the pipe's k n and k s . Therefore the values of these parameters could have been chosen to present proper soil-pipe and soil-soil interface behaviour. The parallel bond behaviour was validated by studying a simple case of elastic cantilever beam. It was decided to study three cases: bending, tension and compression. The beam was modelled with a number of discs forming a single horizontal line. Initially the discs were in contact (which is a necessary condition to create a parallel bond) with no overlap. The discs were connected together with the parallel bonds and the position and orientation of the rst disc was blocked in order to obtain a xed support. The bonds were not supposed to be broken and so their strength was set to be very high. The beam was loaded with the external forces gradually to reduce vibrations of the beam. When the load reached the maximum value, a number of additional calculation steps were made in order to obtain an equilibrium state.

b [m] h [m] L [m] E [Pa] 0.1 0.2 2.0 20 • 10 8
Table 3.1: Cantilever beam characteristic For all the cases the same geometry and stiness of the beam was used, see Table 3.1 and Figure 3.9. The self-weight of the beam was neglected.

3.2.3.1

Vertical Loading: Bending

The beam was loaded with an uniformly distributed vertical load q. The value of the load was the same in all the tests. The beam was modelled with dierent number of particles. This caused 3.2. ELASTIC PIPE MODELING IN DEM change of the particle diameter. Since the beam was subjected to bending, no overlap between the particles occurred and there was no inuence of the k n and k s parameters. The numerical parameters used are summarised in Table 3 The nal positions and orientations of the particles can be compared with the analytical equations describing the deections and slope of a beam. The forces in the parallel bonds correspond to internal forces that can also be obtained analytically. The analytical solutions of a cantilever beam are given by the following equations:

.2. n D [m] R pb [-] k pb n [N/m 3 ] q [N/m] 20 
δ(x) = q • x 2 24EI (6L 2 -4Lx + x 2 ) (3.36) θ(x) = q • x 6EI (3L 2 -3Lx + x 2 ) (3.37) M (x) = - q 2 (L 2 -2Lx + x 2 ) (3.38) T (x) = q • (x -L) (3.39)
where δ(x) is the beam deection, I is the moment of inertia of the beam cross-section (in this case I = b•h 3 12 ), θ(x) is the beam slope, M (x) represent the internal moment of force while T (x) is the shear force in the beam.

As one can see in Figure 3.10, the result of the model is in agreement with the analytical solution of the internal forces. The dierence between the exact solution of the particle displacement and the model is less then 8% for a model consisting of 20 particles and less then 5% for a model consisting of 50 discs, see the extreme values in Table 3 A beam of the same geometry as described before was loaded axially with a point force at the tip of the beam that was either compressing or extending the beam. In this case of loading the contact bonds were taking part in load transfer by default. As it was mentioned previously in Section 3.2.2, the contact bonds were countered by introducing additional forces with the same value and opposite direction. 3.5 present the result of the numerical simulations. These tests proved that the number of balls and the value of contact stiness has very little inuence on the nal result of axial loading which are in agreement with the expected values.

.3. n δ min [mm] θ min [deg] M max [N m] T max [N ]
n D [m] R pb [-] k pb n [N/m 3 ] k n [N/m] F [N ] 20 0.
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Validation of the Numerical Model with Experimental Results and Analytical Solution of Simple Compression Test on Pipe

A next approach to validation of the model was to conduct laboratory experiments and compare the results with the numerical model and analytical solution.

The analytical solution may be obtained basing on the beam theory and using the Castigliano theorem described in Appendix C. The idea behind the solution is to treat a circular pipe as a curved beam. The analytical solution is valid only for small strains and was compared with the results in the initial, elastic phase of compression test. In order to obtain the deformations of the beam one must give the value of the elastic modulus of the material. PVC is a synthetic material with very high range of application, from vinyl records to plastic windows and electric cable coating. The mechanical properties of plastic materials depend on the chemical composition that can vary greatly. The specimens used in the experiments were cut from a commercially available plumbing pipe of unknown mechanical properties. Because of that it was decided to obtain the necessary values experimentally by performing simple laboratory tests. All the specimens were prepared from the same piece of PVC pipe in order to assure the consistency of the results. The wall thickness of the pipe was equal to 3.3mm with the outer diameter equal to 100mm.

To derive the value of Young's modulus, two types of experiments were made. The rst experiment consisted of axial compression of a PVC pipe while the second was a simple compression performed on multiple specimens.

The axial compression specimen was manually cut to be 22.5cm long with parallel top and bottom. It was placed in a hydraulic press without any lubrication of the contact surfaces and compressed. The specimen axial deformation was measured with analogue gauges (see Fig. 3.11a). The resulting stress-strain curve is presented in Figure 3.11b. Because of the imperfections of the pipe surfaces and friction between the specimen and the plates, the beginning of the curve is disturbed. The value of a Young's modulus tted in that experiment results is equal to 16.7e8P a.

The second experiment consisted of a vertical compression of an elastic ring. In these tests four samples were used. All the samples were mechanically cut in order to obtain smooth and parallel surfaces at the ends. The specimens had dierent lengths: 6.3, 6.0, 6.0 and 2.2cm. The results of all the samples were normalised to correspond to specimen of 6.0cm length. The wall thickness and outer diameter were the same as in the previous experiment. During the experiment the sample was loaded between two vertical plates with an electric press (see Fig. 3.12a). The displacements of the top plate were measured using an analogue gauge. The force applied on the pipe was measured with a ring force gauge. Specimens were also photographed during the loading and unloading and the digital images acquired that way were used to verify the precision of the pipe deformation measurements. The results can be observed in Figure 3.12b. > Simple compression result Figure 3.12: Young's modulus estimation with simple compression. The test was performed on four samples that were loaded up to dierent extent in the apparatus presented in Figure 3.12a. The sample was photographed in order to perform digital image correlation Since in this kind of experiment the Young's modulus cannot be calculated directly, an analytical equation (C.12) described in more details in Appendix C was used.

E = ( π 4 - 2 π ) • F • R 3 δY • I (3.40)
The Young's modulus characterising the initial, linear part of the curves extracted from these tests was equal to 20.2e8P a. It was decided to use the value of the second group of experiments rounded down to 20.0e8P a because of the repeatability of the results, some imperfections of the sample used in the axial compression and because those results were closer to the ones found in literature (24.50e8P a in [START_REF] Alves | Nosing of thin-walled pvc tubes into hollow spheres using a die[END_REF], 33.78e8P a in [START_REF] Titov | PVC technology[END_REF]) then the value obtained from the axial loading. The experiments were recorded with series of digital photographs in order to be able to follow the change of shape of the specimen by means of Digital Image Correlation (DIC). A number of points distributed regularly on the front face of the specimen was chosen and then followed.

That way it was possible to obtain a force-displacement curve and the deformations of all the body, and later to reproduce the behaviour with the numerical model.

The geometrical parameters of the pipe were reproduced in a DEM model. The pipe was 6.0cm long, had an external diameter of 10cm and its wall thickness was equal to 0.33cm. In DEM it was modelled with 48 discs touching each other but without any overlap (48 parallel bonds), as shown in Figure 3.13a. The mechanical properties of PVC were function of Young's modulus as described before. The Young's modulus was equal 20.0 • 10 8 P a. A circular pipe was loaded with a vertical point force acting directly on the pipe. All these data are presented in The contact forces between the particles forming the pipe were disabled by introduction of additional forces with equal value but an opposite direction. That way only the parallel bonds
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were taking part in the transfer of load. Therefore forces in parallel bonds were corresponding to the internal forces inside the elastic body. The resulting internal forces are presented in Figure 3.14 while the comparison of the forcedisplacement curve is presented in Figure 3.15.

As one can see, the model is reproducing the pipe behaviour well in the elastic domain. In this domain it was possible to make a comparison between the three types of result: experimental, numerical and analytical. The following parameters were put into equations (C.12), (C.13), (C. 14) and (C.15):

E [Pa] R [m] b [m] h [m] F [N]
20.0 • 10 8 0.04835 0.060 0.0033 51.92

Table 3.7: Geometrical parameters

In the experiment the elastic pipe was placed on a xed metal base and loaded from the above. In this case the values of displacement computed from the equations (C.12) and (C.13) must be doubled because the derivation in the appendix assume dierent boundary conditions.

For the given geometry the moment of inertia is computed as for a rectangle:

I = bh 3
12 where b is the pipe length and h is the wall thickness.

The analytical values were as following: (3.42)

δY = 2 • 0.5 • ( π 4 - 2 π ) • 51.92 • 0.04835 3 20.0 • 10 8 • 0.06•0.0033 3 12 = 2.430mm (3.41) δX = 2 • 0.5 • ( 2 π - 1 
M (θ = 0 • ) = - 2 π • 51.92 2 • 0.04835 = -0.7991N m (3.43) M (θ = 90 • ) = 1 - 2 π • 51.92 2 • 0.04835 = 0.4561N m (3.44)
It is worth noting that the same value of vertical displacement as in the analytical solution can be obtained using Blake's analytical formula [START_REF] Blake | Deection of a thick ring in diametric compression[END_REF]: (3.46)

δY = F λ E 1.788λ 2 + 3.091 0.637 1 + 12λ
The comparison of the results in case of simple loading (see Tab. 3.8) show that the vertical and horizontal deformation of the model are in agreement with the experimental results with less then 5% of dierence. The extreme bending moment in the pipe is similar in both the analytical and numerical solutions, with an error smaller than 10%. Finally, the overall shape of the pipe captured in the pictures can be compared with the particle position in DEM, Fig. 3.16. This comparison was made for the external force equal to 51.92N. Each point correspond to mass centre of a disc or to a point on the front face of the pipe 3.2.4.3 Point Loading of the Pipe: Oedometric Compression

Simulation F= 0.00N Simulation F=51.92N Experiment F= 0.00N Experiment F=51.92N
In order to test the ability of the numerical model to represent the behaviour of the pipe in other boundary conditions, another type of experiment was made: vertical compression in 2D oedometric conditions. This experiment was performed with the same apparatus as the simple compression described before but this time the PVC pipe specimen was mounted in a rigid steel box prior to loading that blocked the lateral displacements of the pipe walls. The front face of the sample was clear and marked with 48 regularly spaced points and crosses to allow DIC point tracking. The contact surface between the specimen and steel was not lubricated in any way. This experimental setup was reproduced in the computer model as described before. The dierence was that the horizontal displacements of the discs on the side of the pipe were blocked, see Figure 3.17a. The parameters of the experiment and its counterpart in the simulation are presented in Table 3.9 Table 3.9: Parameters of the elastic pipe oedometric compression

The result of the simulations is presented in Figures 3.18 and 3.19. As one can see, the model is able to reproduce the behaviour of the pipe well in both boundary conditions. The forcedisplacement curve obtained from discrete element simulation is similar to the one obtained during the experiment. The small dierence between the curves can be attributed to a contact between the pipe and rigid walls on the sides which were not ideally parallel to each other. 1γ2ε Experiments A number of physical experiments was performed and later reproduced in numerical simulations in order to observe the arching eect above the buried pipes.

3.3.1

Description of the 1γ2ε Apparatus

The tests were performed using an apparatus located in the 3S-R laboratory in Grenoble called 1γ2ε (see Fig. 3.21). The name of the device describes the conditions that can be controlled in that apparatus: two directions of strain ε x and ε y , and one shearing angle γ. The device consists of four walls connected together with hinges, forming a vertical rigid parallelogram AOBC around a sample. The right bottom corner of the apparatus, denoted O in the sketch, is xed. Each wall is made of ve sliding sections and therefore it is able to extend and contract evenly. The apparatus is equipped with 6 force sensors (3 perpendicular and 3 parallel to the wall surfaces) placed in the three hinges of the frame (A,B,C) and 5 LVDTs measuring the length change of every wall and the tilt angle of the two vertical walls. The information coming from the sensors are processed by a PC and are used to impose stress or strain conditions onto the sample using 5 electric motors running linear actuators that change the length (top vertical, top horizontal, bottom vertical and bottom horizontal motors: TV, TH, BV, BH in Figure 3.21) and orientation of the walls (shearing motor: Sh in the gure). The horizontal wall lengths range from 56 to 67cm while the vertical ones from 42 to 54cm. The maximum stress the apparatus can impose on a sample is equal to 250kP a. The device uses mainly the well known Schneebeli material [START_REF] Schneebeli | Une analogie mécanique pour les terres sans cohésion[END_REF], a bi-dimensional analogue of soil consisting of 6-cm-long circular rods of various diameters. The apparatus is quite versatile and was used in numerous studies: [START_REF] Joer | 1γ2ε: A new shear apparatus to study the behavior of granular materials[END_REF][START_REF] Calvetti | Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path[END_REF][START_REF] Sibille | A numerical photogrammetry technique for measuring microscale kinematics and fabric in schneebeli materials[END_REF][START_REF] Hall | Localised deformation patterning in 2D granular materials revealed by digital image correlation[END_REF][START_REF] Tengattini | Experimental study of turbulent-like transitions in quasi-static ow of granular media : velocity eld analysis from particle tracking with the 1γ2ε apparatus[END_REF] to mention just a few. In course of these studies other specimens were tested in the 1γ2ε apparatus: hexagonal rods made of aluminium [START_REF] Lirer | Analisi sperimentale dell'inuenza della forma delle particelle sul comportamento di un materiale granulare 2D[END_REF], wooden rectangles [START_REF] Charalampidou | Mechanical behavior of mixtures of circular and rectangular 2D particles[END_REF], large circular and bean-shaped blocks of rubber [START_REF] Ngoc | Experimental determination of inter-granular forces using 2D digital image correlation[END_REF]. In the current study, besides a 6cm piece of PVC pipe (Fig. • oedometric compression (horizontal or vertical), when two parallel walls remain stationary and the remaining move towards the sample,

• biaxial test (horizontal or vertical), when the stress on two parallel walls is kept constant and the sample is loaded by the third wall movement,

• shear test, when the tilt angle is changed and the stress on top wall remain constant.

For the last type of the test, the walls, otherwise smooth, are equipped with equally spaced xed metal bars with dimensions corresponding to the size of Schneebeli material that distribute shearing stresses equally.

The design of the device leaves the front face of the sample unobstructed and at. That allows performing image acquisition throughout the experiments without any disturbances which is very useful to study the kinematic eld of the sample.

Assessment of Grain Displacement

Recording the experiments with digital images enabled the use of Digital Image Correlation method to analyse the results. It is essentially a mathematical tool for assessing the spatial transformation (including translations and distortions) between two digital images [START_REF] Viggiani | Full-eld measurements, a new tool for laboratory experimental geomechanics[END_REF].

This technique consists of comparing two digital images before and after a deformation in order to evaluate the change in surface characteristics and to deduce the behaviour of the specimen.

The DIC technique is very universal and can be applied in many various elds, both in 2D and 3D cases, to recognize patterns (medical imaging, face recognition, dactyloscopy) or measure deformations, strains and displacements (experimental mechanics, engineering) [START_REF] Sutton | Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications[END_REF]. In this work 2D-DIC was used. To apply DIC method an experimental device that allows direct observation is needed. 1γ2ε meets that requirement as its front face is open. The specimen surface must have distinguishable features, like for example contrasting areas of colour, and should be at. Usually a ne blackand-white speckle pattern is applied on the surface of a specimen to enhance the natural contrast of the material. In this study the wooden particles were painted with a pattern like this. The face of the elastic pipe specimen was painted white, then speckled with ne black points and marked with additional 48 equally distributed crosses, see Figure 3.24. The PVC grains were not painted in any way as each rod had a dierent shade of grey. The principle of correlation is very simple and was summarised in Figure 3.23. In the beginning the user denes a position of a point in the rst image that is supposed to be found in the second image, for example a centre of a specic grain. The DIC code contains that point of interest inside a correlation window that describe the size of a motif which will be looked for.

The correlation window in general should be big enough to have some characteristic patterns of colour inside that would be easy to nd on a second image but not too big to avoid covering space outside an exemplary grain. After dening a box around a specic point, the code search for a best match between the motif taken from the initial image and the deformed one. Theoretically the small motif might be compared with the entire image surface, but it would be impractical. In most of the cases one can expect that a given grain moved in some specic direction and can give and approximate magnitude of the displacement. There is no need to compare the motif with far corners of the image. The user can specify a search range around the initial position of the motif and to limit the search. The comparison is made by computing some metrics for each piece of the image inside the specied range and the best one is chosen at the end. After nishing this procedure one gets the information about the displacements of the original motif.

There are dierent metrics that allow quantifying whether two images match or not. One example, used in this study, is the Normalised Correlation Coecient (NCC). Its function is
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given by the following equation:

N CC (x, y) = n x=1 m y=1 I 1 (x, y) -Ī1 I 2 (x + u, y + v) -Ī2 n x=1 m y=1 I 1 (x, y) -Ī1 2 n x=1 m y=1 I 2 (x + u, y + v) -Ī2 2 (3.47)
Where:

I 1 and I 2 are the grey level functions before and after deformation, Ī1 and Ī2 are the mean of I 1 and I 2 ,

x, y are the local spatial coordinates,

u, v
are the local displacement coordinates.

Theoretically the correlation is perfect when the correlation coecient is equal to 1.

In the simple DIC approach described above, transformations are expressed as integer values. The actual movements are much more complicated: they consist of translations, rotations and deformations at the same time, and none of these is integer. To overcome this problem, DIC codes usually oer so-called sub-pixel renement, [START_REF] Sutton | Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications[END_REF]. It is a numerical method whereby the initial integer transformation is improved and its non-integer value is found. That might be done by approximating a discrete function of the correlation coecient and nding its maximum. The approximation can be realised in dierent ways. A simple example is shown in Figure 3.25. In this example, three neighbouring values of NCC are interpolated with a quadratic function, which is very simple and fast. Another, more accurate but also more complicated method, is to approximate the grey level functions of the images instead of NCC. Doing that produces much more precise results if only because the original images have much higher resolution then the correlation coecient elds. A number of commercial and academic codes exist to carry out DIC. The program used in this work was developed by Steven Hall and is called Photowarp and was used previously in dierent works, for example [START_REF] Hall | Localised deformation patterning in 2D granular materials revealed by digital image correlation[END_REF] [START_REF] Tengattini | Experimental study of turbulent-like transitions in quasi-static ow of granular media : velocity eld analysis from particle tracking with the 1γ2ε apparatus[END_REF]. The DIC codes are capable of tracking big numbers of specic motifs relatively quickly.In this study specic points were dened in the corner of the 1γ2ε in order to follow the strains of the experimental apparatus and on the front face of the pipe on its perimeter to follow the deformation of the pipe. Apart from these points, the granular material was tracked as well. In case of wooden grains, the points were placed in the mass centre of each particle, see Figure 3.26. In case of PVC the resolution of the images was too small to do the same, therefore a number of points of the highest contrast was chosen. These points covered all the area of the sample evenly.

Experimental Program

The 1γ2ε apparatus was used to perform six tests with two dierent types of material: three tests with each type of particles. Two vertical compression tests without a pipe were done as a reference. These tests were followed by four tests with a circular PVC pipe placed inside the sample. Each type of granular sample was loaded vertically either in oedometric conditions or in biaxial conditions with constant lateral pressure. The experiments performed in 1γ2ε were recorded as series of digital images. The images were taken in specied time intervals, each 30s. The specimens that included a pipe were loaded with dierent velocities. The PVC particles used in the experiments had diameters of 1.5, 3.0 and 3.5mm, while the mixture of ash wood rods had diameters of 8.0, 10.0, 12.0 and 20.0mm. The microscopic intergranular friction angle between the wooden rods is equal to [START_REF] Joer | 1γ2ε: une nouvelle machine de cisaillement pour l'étude du comportement des milieux granulaires[END_REF]. The information concerning all the experiments in the 1γ2ε were summarised in Table 3 The experimental protocol of a vertical compression with constant lateral pressure can be summarised in steps:

φ wood µ = 25.5 • ± 2 • while it is φ P V C µ = 22.0 • between the PVC ones
• Sample preparation The material is gradually placed inside the apparatus, one handful after another, without any additional densication. The rods are distributed evenly in all the width of the frame in order to avoid building steep, unstable slopes. In case of an experiment with a pipe it is placed inside the sample in the same time as the grains. The few last centimetres on the top of the sample are built by placing the rods one by one.

The top surface of the sample must be at to ensure full contact of the sample with the top wall. To be sure that the strains occur in one plane the front face of the sample is attened as well. The at front face is also critical for the subsequent particle recognition: rods protruding from the sample cast shadows on the surrounding rods. The attening procedure causes a slight densication of the assembly;

• Isotropic compression The three moving walls (L,R,T) compress the sample isotropically in order to reach a certain level of stress on every wall, in this case σ 0 = 50kP a;

• Vertical compression with constant lateral pressure In the vertical compression test the top plate moves down with a low, constant velocity (in this case ≤ 1 mm min which corresponds to I ≃ 0.1cm/min 50cm 14g•2cm 50kP a•6cm•50cm ≃ 1 • 10 -8 which ensures the quasi-static conditions), lateral pressure is kept constant and equal to the isotropic pressure from the previous step. This step is nished when the maximum width of the apparatus frame is reached or when the pipe deformation is big enough to create a risk of sudden breaking which could be dangerous to the apparatus;

The sample in the vertical compression test was prepared as previously. The loading itself was performed dierently and there was no initial isotropic phase: = Sample of wooden rods > Sample of PVC rods The experiments were performed starting from no vertical stress (some horizontal stress was recorded by the sensors due to the weight of the sample). Initially the top plate of the apparatus was not in contact with the sample and was lowered with a constant velocity. The moment when the stresses (both vertical and horizontal) begun to increase was arbitrarily chosen as a start of the oedometric compression. That is the reason why the experimental stress curves in Figure 3.28 are not ideally starting from 0P a.

During the oedometric test made on both wooden and PVC particles, the stress on the walls of the apparatus rose quickly while the pipe specimen or the granular material did not deform or displace much. Nevertheless, the sample consisting of PVC grains deformed more then the sample made of wood. The measurements of stress allowed us to obtain the coecient of earth pressure at rest K 0 = σ 3 σ 1 . It is equal to 0.6 for the sample made of wooden particles and 0.5 for the sample consisting of PVC grains. The front face of the sample was photographed in regular time intervals using a static digital camera during the experiments. The images obtained that way were used to acquire information about the kinematic behaviour of the assembly with DIC tools, see Section 3.3.2.

During the observation of the experiments it seemed there was very little deformation of the pipe. The measurements of the sample and pipe area revealed that during the Oedo-5-Wood-Pipe experiment the volumetric strain of the apparatus reached -0.55% (negative value denoting contraction) while in the elastic pipe it was equal -0.2%. In the experiment Oedo-6-PVC-Pipe the maximum values of ε V were equal to -1.56% and -0.23% respectively.

These results show that the majority of the overall deformation occurred in the granular material, not in the elastic pipe, which deformed approximately the same amount in both the tests. The sample made of wooden particles was more dense than the sample made of PVC.

3.3.5

Biaxial Test Results

Macromechanical Response

The macroscopic results of the vertical compression tests show that the presence of a PVC pipe in the central part of the assembly does not inuence the overall behaviour of the specimen, see Fig. 3.29. Even though the samples were prepared in the same way, it is virtually impossible to assure that their density is the same, hence the dierences in the volumetric strain curves.

The elastic modulus of the sample of wood was equal to 22 • 10 6 P a while in case of PVC its value was lower: 15 • 10 6 P a. The macroscopic friction angle at the peak was equal to 30 • for the samples made of PVC rods and 30 • and 26.4 • for the samples made of wood, without and with the pipe specimen respectively. As for the friction angle at the threshold, the values of all the tests were similar and were about 26.4 • as well. The macroscopic behaviour of these samples is characteristic for dense assemblies of cohesionless material like sand. 

Strains

During the experiments it was decided to photograph all the area of the sample with a single camera. Because the maximum size of the 1γ2ε apparatus walls is about 60 x 60cm, a scale of an image taken with a 24M P x camera was approximately 1mm = 6px. That means that the smallest PVC rod diameter was ≈ 9px and a rectangle inscribed inside that rod was a square smaller than 7 x 7px. Therefore it was not large enough to carry out reliable correlation on 3.3. 1γ2ε EXPERIMENTS each rod separately. A better choice was to study the full deformation eld of such a sample by treating it as a continuum. What it actually means is that a number of points was dened over all the area of the image and a DIC was carried out for each grid node between two given images. The samples made of wooden rods have grains big enough to carry out a correlation by treating the assembly as a discrete medium. With the same scale of the image as previously, the wooden rods have between 48 and 160px of diameter, which is enough to t a correlation window inside a single grain.

Apart from observing the kinematics of the granular medium, a separate correlation was done using only the points on the front face of the pipe specimens. This allowed us to monitor the change of shape of the pipe.

To each correlation four points representing the corners of the apparatus were added. They allowed verifying the size of the frame independently from the LVDTs in the apparatus and (since one of the corners is xed) the quality of correlation as well.

Each biaxial test sample was loaded up to 10% of vertical strain ε 1 of the apparatus.

Having photographed the size of the sample and the size of the PVC pipe inside it was interesting to present the comparison of the volumetric strains of these two, see Figure 3.30. As one can see, the elastic pipe model was behaving dierently then the whole assembly: it was contracting during all the test, Fig. 3.30a. In order to investigate the relation between the strains of the apparatus and the strains of the pipe specimen, it was decided to plot the ε 1γ2ε V ε pipe V : Figure 3.30b. The sample made of wooden grains was causing the pipe to deform in a less symmetric shape because a smaller number of grains was in contact with the pipe. This caused the disturbances in the rst part of the curve. On the other hand, the sample made of PVC rods was acting in a more equally distributed way and thus the shape of the pipe and the resulting change of volume were much more smooth. The behaviour presented in that gure shows that the elastic pipe was compressing more then the surrounding granular material. The shape of the pipe specimens during loading resembled an ellipse, see Figure 3.31. Therefore it was decided to compare the change of volume of the pipes during the experiments with the change of volume of a circle transforming into ellipse with the same perimeter. There is no simple way to express the perimeter of an ellipse. A Maclaurin expansion up to its fth term was used here [START_REF] Maclaurin | A Treatise of Fluxions[END_REF]:

P ellipse = 2πa 1 - 1 2 2 • e 2 1 - 1 • 3 2 • 4 2 • e 4 3 - 1 • 3 • 5 2 • 4 • 6 2 • e 6 5 - 1 • 3 • 5 • 7 2 • 4 • 6 • 8 2 • e 8 7 , (3.48) 
e = 1 - b 2 a 2 , (3.49) 
where a is the major, horizontal axis while b is the minor, vertical axis and e is ellipse eccentricity. Supposing that during the compression the perimeter remains constant, P ellipse = P circle , it was possible to obtain a relation between ε V and ε 1 , Fig. 

ε 1γ2ε /ε pipe ε 1 ε xx Biax-3-Wood-Pipe ε yy Biax-3-Wood-Pipe ε xx Biax-4-PVC-Pipe ε yy Biax-4-PVC-Pipe
> Comparison between strains Figure 3.33: During vertical compression test in 1γ2ε the strains of the apparatus and the pipe specimen were dierent. The gures present the values of the strains and the relation between them throughout the test

The same approach was used to study the vertical and horizontal strains of the pipe in reference to the strains of the experimental apparatus. Figure 3.33 shows that the pipe was cumulating the strains more than the surrounding material. This eect is more pronounced in the sample made of PVC rods.

Displacement Fields

Knowing the positions and displacements of each grain (or randomly chosen points covering the entire sample) it was possible to obtain elds of displacement, presented in Figures 3.34 and 3.35 (see Appendix D.1 for larger, scalable images). The centre of coordinates was placed at the bottom of the pipe.

The aforementioned gures are dicult to analyse. A more clean view of the behaviour of the assembly can be obtained by presenting the same elds after subtracting the mean eld of displacement ūi , as it is presented in Figures 3.36 and 3.37 (see Appendix D.2 for larger, scalable images and zoom the region above the elastic pipe).

u i = u ′ i + ūi (3.50) u ′ i = u i -ūi (3.51) ūi = X i ε (3.52)
where:

u i is the displacement of a grain i, ūi
is the mean eld of displacement,

u ′ i
is the uctuation around the mean eld, X i is the initial position of the grain i, ε is the strain tensor. The biggest displacement of a point on a pipe is equal to 26mm This subtraction allows us to see that indeed, as shown with the macroscopic plots of the strains, the pipe is deecting more than the surrounding grains. 3.3.5.2.3 Localisation of Shear
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The images of displacement vectors reveal some discontinuities that are due to the localisation zones. A better look into these localisations can be obtained by plotting the second strain invariant in the same way as was previously done on the pages 30 and 40. The results are presented in Figures 3.38 It is visible that the shear localisation zones are reected by the walls, they intersect each other and also seem to go through the PVC pipe specimen. It is discussable whether the presence of a PVC pipe changes the shear localisation patterns or not. The localisation bands seem to go through the pipe instead of going around, at least in the rst phases of the test.

In course of this study the images were not taken during Biax-1-PVC-NoPipe and Biax-2-Wood-NoPipe experiments. A similar experiment in the same apparatus with the same PVC rods was done previously [START_REF] Viggiani | Full-eld measurements, a new tool for laboratory experimental geomechanics[END_REF] and a resulting maximum shear strain is presented in Figure 3.40. It is clear that the shearing pattern, although unique to every experiment, is similar in both the cases, with and without an elastic pipe. 3.38: Wooden grains with a PVC pipe, shear localisation. For the maximum strain the biggest symbol correspond to 300% while the mean is equal to 35%
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.39: PVC grains with a PVC pipe, shear localisation. For the maximum strain the biggest symbol correspond to 2500% while the mean is equal to 32% The experimental program in 1γ2ε consisted of tests in two dierent boundary conditions and with two dierent types of granular material. The main purpose of these experiments was to study the inuence of an elastic pipe placed inside the specimen and to create a point of reference for the numerical modeling. The tests were recorded with he use of the sensors built in the apparatus and on multiple digital images as well.

The stress-strain macroscopic curves show little inuence of the elastic pipe specimen on the behaviour of the sample. The similar behaviour was obtained both in terms of volume change and the shear resistance. The similarity was bigger for a sample made of small PVC grains which is due to the much larger number of particles in these tests.

The digital images were analysed using DIC software. It allowed us to see that during vertical compression with constant lateral pressure the strains in the pipe were bigger then in the apparatus. The opposite was observed in oedometric conditions, where the volumetric strains of the pipe constituted a fraction of the global strains.

The digital image correlation revealed shear localisation in the samples. It was consistent with previous results obtained in this apparatus and shown little inuence of the elastic pipe on the localisation patterns.

3.4

Modeling of an Elastic Pipe in Granular Material

The nal step of this study was to incorporate the pipe model described in Section 3.2.2 into the granular model described in Chapter 1 in order to perform numerical experiments similar to those in 1γ2ε (see Section 3.3) and to obtain proofs of arching eect over the elastic pipe.

Simulation Protocol and Parameters

The numerical simulations were done in PFC 2D . The simulation protocol was similar to the one described in the previous chapter:

1. Initially a single large disc was placed and xed inside a rectangular box as a placeholder for the elastic pipe. The box was 0.5 by 0.5m while the centre of the disc was at (0.25, 0.20).

The radius of the large disc was equal to the radius of the elastic pipe increased by the radius of the discs forming the pipe;

2. The particle growing phase was the same as previously, except that it did not aect the temporary particle in the middle;

3. Next, the large disc in the middle of the sample was replaced with an elastic pipe consisting of 48 particles, as described in Section 3.2.2. Translation and rotation of the discs forming the pipe were blocked;

4. The sample was isotropically compressed by rigid walls with no friction between the walls and the grains. The sample was compressed until the stress on the walls reached σ 0 = 50.0kP a;

5. The grains forming the pipe were set free.

Samples prepared in that way were subsequently loaded in a vertical compression test with constant lateral pressure. As in the case of physical test, a sample was tested in oedometrical conditions as well.

The numerical parameters of the particles of soil once again were computed according to the dimensionless stiness parameter κ (page 36). For sake of comparability it was decided to keep the same value of κ = 1000 as in the previous part. In the new simulations the pressure level was ve times higher then before, therefore the normal contact stiness of the soil was chosen to be equal to k n = 50000[ kN m ]. The tangential stiness of contact was decided to be equal to the normal one, as in (Szarf et al., 2011). The stiness of the elastic pipe model was computed basing on the Young's modulus of the PVC pipe as described previously (Section 3.2.2). The eects of contact stiness between the particles of the pipe were countered with additional forces. This way it was possible to model the interactions between the soil and the pipe in the simplest way: there was no dierence between soil soil and soil pipe contacts. It was decided to use two dierent values of the microscopic friction parameter between the particles of the soil and the particles of the pipe. The values of µ int used were equal to 0.5 and 0.0. Apart from the standard pipe stiness additional tests with other Young's modulus values were performed. While the reference simulations were modeling a pipe made of PVC, the other stinesses used were resembling soft plastic and concrete.

Numerical Simulations Performed

Biaxial compression and oedometric tests were carried out: Twelve vertical compression tests with constant lateral loading were performed for dierent values of shape parameter in order to evaluate the inuence of the shape of grains on the arching eect. The simulations are summarised in Table 3.11. Apart from these twelve tests one grain shape (α = 0.5) was chosen to be used in vertical compression tests with the value of Young's modulus of the pipe ten times lower (test C05d-p0-e7) and ten times higher (test C05d-p0-e9) than the 20.0e8P a used in the other tests. In the tests with dierent pipe stiness values the friction coecient between the pipe and the soil µ int was zero. α = 0.0 0.1 0.2 0.3 0.4 0.5 µ int = 0.0 C00d-p0 C01d-p0 C02d-p0 C03d-p0 C04d-p0 C05d-p0 µ int = 0.5 C00d-p5 C01d-p5 C02d-p5 C03d-p5 C04d-p5 C05d-p5 Table 3.11: Description of the twelve vertical compression simulations with pipe performed in PFC 2D . Each sample consisted of 5000 clumps of a given type and a pipe model made of 48 discs. The microscopic friction between the pipe and the surrounding material was dierent. Young's modulus of the pipe was equal to 20.0e8P a

The vertical compression simulation in oedometric conditions was performed with α = 0.5 clumps, with no friction on the pipe boundary and with standard pipe stiness E = 20e8P a; The name of the oedometric test was C05d-p0-oed. 3.4.2.1 Macromechanical Response 3.4.2.1.1 Biaxial Compression Inuence of Grain Shape The comparison of the macroscopic results of the numerical compression tests with the results obtained from biaxial tests without pipe described in Chapter 1 show that the presence of the pipe have little inuence on the behaviour of the sample, compare Figures 3.41a,3.41b and 3.41c. A similar result was obtained in the 1γ2ε experiments, Figure 3.42. The shape of the curves and the peak and threshold values of the stress obtained are The numerical results of vertical compression in oedometric conditions are presented in Figure 3.44. The curves are not starting from 0P a due to the sample preparation method which was based on the grain growing procedure. Even though the isotropic compression performed in all the other numerical tests prior to loading was omitted, the grain growing phase induced some stress on the walls. There was little grain displacement in the numerical sample, the original contact network in the sample did not change and the sample behaved almost elastically. The stress curves even though seem to be linear in fact are slightly curved. Globally it can be noted that the earth pressure coecient at rest computed for the α = 0.5 96 CHAPTER 3. APPLICATION: ARCHING EFFECT ABOVE BURIED PIPES clump simulation was equal to K 0 = 0.35 while in the experiments it was 0.6 and 0.5 for wooden and PVC grains respectively. Apart from that it is clear that the shape of the experimental curves is much more curved. 3.4.2.2 Kinematic Analysis 3.4.2.2.1 Strains As in the previous experimental Section 3.3.5.2, it was decided to compare the strains of the whole assembly with the strains of the pipe.

Biaxial Compression

Grain Shape Inuence The study of volumetric strains, Figures 3.45 and 3.46, reveal the same behaviour as in the physical experiment in 1γ2ε, Figure 3.30. The pipes were contracting while the whole assembly was dilating. In all the numerical samples (α ranging from 0.0 to 0.5), the change of volume of the pipe was similar to the one observed in the experiment until 10% of ε 1 . After that, the value of ε V stagnated at dierent levels for dierent α values. Dierent values of nal volumetric strain are probably linked with dierent patterns of localisation more than with the shape of the soil particles.

In Figure 3.46 the ratio between the strains of the assembly and the strains of the pipe ε 1γ2ε V ε pipe V is presented. The shape of the curves is similar to the shape of the curve obtained from a 1γ2ε test with wooden grains, Fig. 3.30b. In both the test with wooden grains and numerical simulation with clumps, the number of particles in contact with the pipe was small while in the experiment with PVC grains the contact number was much higher. The irregularity of contact probably led to sudden change of volume. Apart from that, the comparison of the curves in Figures 3.45 and 3.46 do not reveal any particular inuence of the grain shape and the interface friction on the volume change of the sample. 

ε V sample /ε V pipe ε 1 C00d-p0 C01d-p0 C03d-p0 C04d-p0 C05d-p0
> Frictionless pipe-soil interface Figure 3.46: Relation between the volumetric strain values throughout the simulations for dierent samples of clumps The investigation of the strains of the numerical samples was completed with the gures showing the evolution of horizontal and vertical strains ε xx and ε yy : Fig. 3.47. As observed previously in the physical test, Figure 3.33, the pipe sample was strained more than the surrounding material. In case of physical test, the sample was compressed up to 10% of ε 1 while in the numerical tests, the vertical strain rose more. In the later phases of the simulations the horizontal strains of the pipe became lower than the horizontal strains of the whole sample for all the shapes of the particles and both the friction coecients on the boundary between the pipe and the soil. In the later phases of the compression the majority of strain was localised in shearbands and did not aect pipe.

In order to determine the inuence of the friction at the pipe interface the curves presented 3.4. MODELING OF AN ELASTIC PIPE IN GRANULAR MATERIAL the curves in Fig. 3.47 were split into four separate Figures: 3.48a and 3.48b for the samples with µ int = 0.5 and 3.49a and 3.49b for the samples with µ int = 0.0. Apart from the samples of α = 0.3 that behaved dierently in the previous strain plots as well, it seems that all the clump shapes act in the similar way regardless of the friction coecient at the pipe boundary. Pipe Stiness Inuence Dierent behaviour of the pipe with dierent stiness was observed and presented in Figures 3.50 and 3.51. While the behaviour of the granular samples remained the same, the stiness of the pipe inuenced the behaviour of the pipe obviously. The strains of the softer pipe C05d-p0-e7 were higher than the reference pipe C05-p0. The pipe with 20GP a of Young's modulus C05d-p0-e9 did not change the shape practically at all, Fig. 3.50a. Because of that, it was pointless to present the comparison of the strains of the sti pipe and the sample for the pipe C05d-p0-e9; The small strains in the divisor of the ratio ε sample V ε pipe V resulted in large values and therefore were ommited in Figure 3.50b. The vertical and horizontal strains of the pipe were aected by the pipe stiness change as well, Figure 3.51. As in the case of volumetric strains, the strains of the sti pipe were close to zero and therefore the ratio of the granular sample and pipe strains was not presented, Figures 3.51b Biaxial Compression By plotting the displacement vector of each particle between two phases of the experiment it was possible to obtain the displacement elds of the samples. In Figures 3.52 the sample of clumps with the shape parameter α equal to 0.5 and the microscopic friction coecient at the pipe-soil interface equal to µ int = 0.5 is presented. The plots were made every 2.5ε 1 throughout the test, and each vector is starting at the point occupied by the particle in the isotropic state. Equivalent image for a sample C05d-p0 is presented in Figure 3.53. In each image, the centre of coordinates was placed at the bottom of the pipe.

ε Y sample /ε Y pipe ε 1 C00-d0 C01-d0 C02-d0 C03-d0 C04-d0 C05-d0 > Vertical strains
The displacement elds reveal some discontinuities but are not very informative. Therefore it was decided to subtract the mean eld of displacement ūi from each displacement eld, as it was explained with the equation (3.50) on the page 84. The meaning of these gures can be explained with an example: in the later phases of the compression presented in Figure 3.52 (see Appendix E.1 for larger, scalable images), the grain directly above the top of the pipe moved down more than the grain at the top of the sample which moved the same as mean strain (displacement eld minus the mean eld close to zero). This dierence is not visible in the displacement elds but become clear when the mean eld is subtracted.

These plots are presented in Figures 3.54 

.2.3 Localisation of Shear

Study of the displacement eld revealed some discontinuities that were supposed to be linked with shear localisation. The results for only one shape of clumps, α = 0.5 and two values of the friction coecient at the boundary of the pipe are presented here, Figures 3.56 and 3.57 for frictional and frictionless pipe boundary respectively (see Appendix E.3 for larger, scalable images). The images presents the second strain invariant (see page 40) with symbols, where the size of the symbol for each particle represents the value of the indicator and thus the intensity of shear.

The maps show that the patterns observed in the displacement elds and the ones decreased by the mean eld are connected with the shear localisation. As in the case of physical experiments, reecting bands that include the pipe were observed. Please note, that the localisation patterns in the simulations with pipe were not very dierent from the patterns observed during the simulations without the pipe, Fig. 2.8.

The localisation patterns for samples with a pipe with dierent stiness are presented in Figures 3.58 and 3.59 (see Appendix E.3). The change of pipe stiness seems to inuence the shearband trajectory around the pipe, although it is based on the observation of single samples. The localisation zone in the sti pipe sample is going around the pipe, which is probably due to the fact the pipe is forming one rigid block with the grains above. In the soft pipe sample the pipe is deforming a lot and it appears the localisation patterns are encouraged to pass through the pipe. 3.4.2.3 Arching Eect Assessment 3.4.2.3.1 Stress Comparison Thanks to the nature of the DEM simulations it was possible to investigate the interparticle forces in the assembly, which was not possible in the experiments performed in 1γ2ε. In order to study the arching eect above the pipe, the forces acting on the specimen were compared with the forces acting on the pipe. It was possible to compute the vertical component of the stress by dividing the sum of vertical forces by the length of the wall or the width of the pipe. The vertical stress acting on the pipe was compared with the stress acting on the horizontal walls compressing the sample. The friction coecient µ between the pipe and the soil is dierent for each of the two images above As presented in Figure 3.60, the loading acting on the elastic pipe was changing during the compression. Initially the pipe was loaded less than the walls above and below. This repartition of stress is characteristic for the arching mechanism; The eect of load transfer was lost after the peak macroscopic stress. The repartition of stress acting on the horizontal wall was bigger in simulations without friction between the pipe and the surrounding soil. It is due to the fact that in frictionless case the forces are acting along the pipe wall and do not add loading to the pipe. Also, it seems that the increase of stress repartition disappeared later in the test without the friction at the boundary. Disc sample induce very small arching eect but it appears the stress It was interesting to observe the dierence in the stress repartition between samples with more soft and more sti pipe, Figure 3.61. The softer pipe C05-p0-e7 with E = 20e7P a induced greater load transfer mechanism than the reference, stier pipe C05-p0 with E = 20e8P a. The curve is dropping below 1 after ε 1 = 12% which is due to the fact, the pipe buckled and collapsed and did not support the load anymore. On the contrary, the load transfer for the stier pipe C05-p0-e9 with E = 20e9P a that remained virtually undeformed was much smaller than the reference pipe, although it was still more than the surrounding soil ( σ Sample Y σ P ipe Y > 1).
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Stress Direction

Apart from the total forces acting at the pipe, it was also interesting to observe the stress in the microscale. The stress acting on every particle was computed using the Weber's homogenisation formula [START_REF] Weber | Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents[END_REF]:

σ αβ = 1 S N ij F ij α l ij β , (3.53) 
where: σ αβ are the components of the Cauchy stress tensor, α, β are the directions in space, {α, β} = {x, y} S is the surface area of the zone, N ij is the contact between particles called i and j in a given zone, F ij α is a component of the force vector interacting between particles i and j, l ij β is a component of the branch vector connecting centres of particles i and j. The formula was applied in such way that instead of using a branch vector, the forces were projected on a vector connecting the particle centre and the contact point. The sum of forces for each particle was divided by the area of a given particle. In case of the circular pipe, the forces acting on each grain forming the pipe were added and the result for the entire pipe was divided by the area of the ring containing all the pipe particles. This way, it was possible to obtain a stress tensor for each of the particles. In order to present it graphically, each particle was represented with a cross oriented along the principal stress direction with the arm lengths proportional to the principal values of stress. An example of the stress direction plot for a clump sample C05d with µ int = 0.0 is presented in Figure 3.62 (see Appendix E.4 for larger, scalable images).

The tensorial nature of stress allows us to compute the dierence in stress between two states for each grain, the two states being an increment of vertical strain apart. In Figure 3.63 these stress increments for the same samples of clumps are presented (see Appendix E.4 for larger, scalable images). In the initial phase of the loading, increment 2.5 -3%ε 1 , when the shear is not yet fully localised, the stress network is denser at the sides of the pipe then above or below it. This could indicate that more stress is carried by the soil than by the pipe, which is typical for the arching eect phenomenon. The same strain increment in Figure 3.62 shows an arch-like stress-chain pattern.

One could also say that in the later phases of the test when the shear zones are developed, the stress increments are larger in the zones of shear localisation than in the rigid blocks around. Chains perpendicular to the direction of the shear localisation zone can be observed.

The change of pipe stiness is inuencing the pattern of stress directions a lot. It seems that above and below the soft pipe, Figure 3.64, the stress increment network is less dense and this phenomenon remains until the pipe collapse. In a sample with more rigid pipe, Fig. 3.65, the stress change occurs in the localisation zone mostly (see Appendix E.4 for larger, scalable images).

Conclusions

In the second part of the study the focus was put on the practical aspect of granular media modeling. The point was to observe the stress repartition above an elastic shell surrounded by grains. Six physical experiments were performed in a 2D apparatus. The results were analysed with the help of Digital Image Correlation method. The results were used to create a numerical model of the experimental setup with the help of the tools developed in the rst part of this work.

The experiments were performed in a 1γ2ε apparatus which is able to impose various boundary conditions on a two-dimensional granular material. Thanks to the construction of this apparatus digital photography can be used to gather information about the kinematic behaviour of the samples without the need to engage complicated sensors. The tests were performed on two dierent types of granular materials, large wooden particles and small PVC particles. In every case a piece of PVC pipe was placed in the centre of the sample as a model of an elastic drain pipe. The mechanical behaviour of the pipe itself was studied in separate vertical compression tests in order to establish the values of the numerical parameters to be used in the numerical model.

The analysis of the stress-strain and volumetric strain macroscopic curves of 1γ2ε showed that the presence of the elastic pipe had no major inuence on the behaviour of the assembly. The same could be said about the strain localisation patterns that were basically the same with or without the presence of pipe. The localisation bands were seen going through the pipe. The analysis of the kinematics of the 1γ2ε tests showed dierent behaviour of the pipe and the surrounding material the strains of the elastic pipe were bigger than the strains of the grains around. Observations of the displacement elds revealed that the granular material was pushing into the pipe.

In order to perform numerical analysis of the experiments with a DEM code a specic contact interaction was used to model the elastic pipe. The pipe comprised of discs connected with unbreakable bonds that were transferring forces and moments of force. This pipe model was implemented into the assemblies of clumps described in the rst part of this work. Due to that, it was possible to model all the elements of the setup with a single numerical code. The pipe and surrounding grains were subjected to vertical loading with constant lateral pressure, as it was done during the experiments in 1γ2ε. Two values of the microscopic friction coecient between the outer boundary of the pipe and the granular material were used but no signicant inuence was observed. Once again, the macroscopic behaviour was no dierent with and without the presence of the pipe and the kinematic analysis revealed dierence in the values of strains between the pipe and the surrounding material. The numerical results showed some circular vortex-like structures that were pushing the particles into the pipe. Similar but less developed structures were observed in the results obtained with digital images. The localisation of strains was also similar in the simulations with or without the pipe. Numerical modeling of the elastic pipe in the granular sample allowed us to observe the repartition of stress in the assembly, which generally speaking is not possible in physical experiments. It was possible to observe the stresses acting on the boundaries of the sample and the pipe, and see that in the initial phases of the test the pipe was loaded less than the surrounding material, which is characteristic for the so-called arching eect. The peak of the repartition occured along with the peak of macroscopic stress. The results of the current study suggests that the peak value is more appropriate, but one must remember that φ threshold is more reliable and safer. . It was shown that the arching eect is inuenced by the shape of the grains and also by the stiness of the pipe. Moreover, the direction of stresses was pointing around the pipe in the initial phases of the compression tests and the stress increment was larger in the zones at the sides of the pipe than in the middle zone containing the pipe. In the later phases of the loading the stress directions were inuenced by the localisation of strains.

Conclusions and Perspectives

In many geotechnical problems the deformation of granular materials submitted to loading can be large (localised strains), and related to the irreversible mechanical behaviour of soil. Such problems are dicult to model in the framework of Finite Element Method without using phenomenological constitutive laws with excessive number of parameters that sometimes have little physical meaning. In these cases Discrete Element Method (DEM) might be a better choice because it is intrinsically dealing with discrete particles and therefore allow particle reorganization. However, DEM have some limitations as well; Simulations in this method can be computationally expensive so the number of particles used in simulations is always much smaller than in reality and the shape of modelised grains is idealised and rarely take into account the real variety and complexity. As it is commonly recognised, the shape of grains is an important factor inuencing the mechanical response of granular media under loading. In order to simulate realistic behaviour of soil, the granular model must be more complex than simple discs or spheres. The work presented in this thesis is divided into two parts: the investigation of grain shape inuence on the mechanical behaviour of granular media, and its application to the issue of arching eect above underground conduits.

After a short introduction, the rst Chapter contains some general considerations about the grain shape and two commonly used parameters for geometrical description of it: sphericity and roundness. Some studies extracted from the literature about the eect of the particle shape on the mechanical behaviour of dry sand were presented. The dierent possible strategies for modeling complex grain shapes with DEM were presented, including two kinds of shapes (clumps of discs and polygons) specically studied in the course of this work. Additionally, a description of DEM contact detection method used in this work was given.

Chapter 2 of this work was focused on the investigations of the grain shape inuence on the mechanical behaviour of granular assemblies. In Section 2.1 the results of collaboration of three teams in the CEGEO research program are described. The scope of the program was to highlight the eects of grain shapes of dense granular assemblies submitted to biaxial loading. The three teams involved (LTDS Lyon, LMGC Montpellier, 3SR Grenoble) used dierent rounded and angular particle shapes dened with common rules, namely a parameter α describing particle sphericity, to build samples 5000 particles each. Parameter α was ranging from 0.0 to 0.5, and the teams used dierent DEM approaches: Contact Dynamics in case of LTDS and LMGC, and Molecular Dynamics in case of 3SR. Even though α is a simple, low order parameter, it was shown that it is related to a number of features of granular assembly. In the isotropic state it was observed that coordination number was similar for all the grains regardless of α. On the contrary, the solid fraction of assemblies of the samples was clearly dependant on sphericity parameter; The dependence was seen to be non-monotonous and similar for each grain shape. An analytical solid fraction model depending on α and suitable for every grain shape used in the study was proposed. Moreover, analysis of the mechanical behaviour 123 Conclusions and Perspectives of samples submitted to vertical loading with constant velocity and constant lateral pressure revealed that the value of residual (i.e. for large vertical strains) macroscopic friction angle was increasing linearly with α. Even though the level of friction angle was dierent for rounded and angular particles, the inclination of the increase was the same for all the particle shapes. Finally it was observed that Contact Dynamics and Molecular Dynamics methods give very similar results when simulating the same particles.

The work presented in Section 2.2 focused on two particular groups of grains used in CEGEO: concave clumps of three overlapping discs and its polygonal envelope convex polygons of six edges. Each shape group consisted of several shape variants described with dierent values of the same parameter α. For α ranging from 0.0 to 0.5 the clump particles changed from three fully overlapping discs (equivalent to a single disc) to three discs distributed every 120 • with partial overlap; The depth of valleys between the discs was increasing with α. In case of polygons α was ranging from ≈ 0.13 to 0.5 which corresponded to a gradual change from regular hexagon to equilateral triangle.

The numerical samples were studied in both the isotropic state and after biaxial loading. The mechanical response of sheared granular samples proved to be dependant on α. The maximum value of shear strength in dense assemblies of clumps was increasing with α but in dense assemblies of polygons it was decreasing. These observations combined with the results obtained during CEGEO program suggested that the size of the concavities in the particles was the main parameter inuencing φ peak of granular samples.

For the residual values of macroscopic friction angle, the trend in all the cases was the same: linear increase of φ threshold with α, which suggest that under large macroscopic strains it was not the depth of concavities but the convex envelope of the grains that inuenced the macroscopic behaviour.

Moreover, the study of deformations of the samples showed strain localisation in the form of bands. The width of the bands was increasing with α (with an exception of discs and hexagons) which can be related to grain interlocking. This trend was more clear for samples made of clumps while for samples made of polygons additional computations should be performed. The localisation in clump assemblies occurred earlier (in terms of vertical strain) in the tests comparing to polygons. The nal width of the bands was more narrow for clumps than for polygons. These observations combined led to a conclusion, that while assemblies of clumps behave more like a brittle material, assemblies of polygons behave much more like real sands. In any case, the introduction of even slight complexity in the form of particles changed the behaviour of the entire assembly drastically comparing to assemblies of discs.

The information gathered during the rst part of the study was used to model granular soil surrounding a exible pipe, an engineering problem which is still not fully understood. The existing design methods for underground pipes rely heavily on engineering experience, contain parameters that are dicult to measure and include signicant simplications. The performance of exible pipes depends on the soil-pipe interactions rather than the strength of the pipe itself, therefore the question of load transfer over a buried pipe is both scientically interesting and practically important.

The work presented in Chapter 3 was focused on the kinematic behaviour of the pipe-soil system and reorganisation of the backll grains which inuence the load transfer mechanism above a exible pipe. Knowing that in DEM framework it is possible to model granular medium and to obtain the interparticle forces, it was decided to create a model of a exible pipe and to simulate the whole system in order to assess the arching eect. The pipe was created using a chain of discs connected with a contact law called parallel bonds. The pipe model was validated in series Conclusions and Perspectives of simple tests to ensure the contact law is able to model exible structures well. Basing on laboratory tests on PVC pipe specimens the numerical model input parameters were determined and used in the subsequent simulations. Numerical DEM simulations of the pipe in granular soil were performed using the pipe model surrounded by disc or clump particles. In parallel to experiments, it was decided to perform laboratory experiments of the same setup using PVC pipe buried in circular grains. In both the cases of numerical and experimental tests, the pipe and surrounding grains were subjected to biaxial and oedometric compressions. The experimental campaign was carried out using a plane strain apparatus 1γ2ε and two kinds of 6 [cm] long Schneebeli material: wooden rods with diameters from 8 [mm] to 20 [mm] (≈ 2000 rods) and PVC rods with diameters from 1 [mm] to 3 [mm] (≈ 40000 rods in a sample). The experimental assemblies were including a D = 10 [cm] PVC pipe as a exible pipe model. During the experiments in 1γ2ε, the stress and strains on the boundaries were measured. Additionally series of digital images of the sample were recorded to assess the kinematics of the grains and the pipe using Digital Image Correlation tools. Surprisingly, it was observed that the presence of elastic pipe had little inuence on the macroscopic mechanical behaviour of the assemblies, the stress-strain curves were similar. The strain localisation patterns revealed with the means of DIC seemed to be unaected by the exible inclusion as well. The mean strain computed for the pipe specimen was bigger than the macroscopic strain of the whole assembly. Numerical simulations of the experiments were qualitatively in agreement with experiments in terms of the macroscopic response and kinematic behaviour proving it is possible to model an underground pipe in DEM. The advantage of the chosen numerical method was that it was possible to observe the arching eect and quantify it by directly comparing the contact forces between the grains and the pipe. The arching eect was seen to be dependant on the stiness of the pipe but also on the particle sphericity α of the granular material surrounding the pipe, with more concave grains transferring more load. The load transfer was observed in the initial phases of loading, for small vertical strains (ε 1 < 2%). A typical question concerning the Terzaghi formula (3.28) is whether the peak or residual value of macroscopic friction angle should be used. The results of the current study suggests that the peak value is more appropriate, but one must remember that φ threshold is more reliable and safer.

The study of grain shape inuence on the behaviour of granular materials is still far from end. A natural continuation of such a study would be investigations of other grain shapes, like for example non-convex polygons, clumps made of 4 or 6 discs with the concavities partially lled, or polygons with rounded corners. More importantly, a similar numerical approach could be used to investigate other grain shape features like particle angularity, roundness or atness. An important next step for this study would be to create samples characterised by dierent grain size distributions. In case of regular polygons, hexagons and triangles, the results might have been hindered by spontaneous crystalline patterns in the assemblies. A typical goal of every 2D study is its extension to a third dimension. In this particular case of grain shape investigation the potential advantages of 3D simulations could be obstructed by diculties to change the grain shape while inuencing only its certain aspects. Nevertheless it is necessary to bring the grain shape investigations closer to reality. There are still a lot of paths that were not travelled in the course of this study concerning the micro-mechanical behaviour of the samples. The reasons for the clear decrease of φ peak along with α in assemblies of polygons were not discovered. Some peculiar dierences between grains of dierent shapes were noticed concerning the probability density functions of the contact forces, but were not understood enough to be included in this work. Attempts were made to correlate the grain shape with the intensity of moment of force transfer, but with little result. Discovery of such dependence could lead to development of rolling resistance contact laws. The residual Conclusions and Perspectives macroscopic friction angle curves suggested that there are other shapes characterised by even higher values of φ threshold . A question arises what could limit that increase? In the course of this study a promising attempt to characterise the assembly using elements of the graph theory was made (approach similar to [START_REF] Walker | Complex networks in conned comminution[END_REF]), but due to diculties to interpret the results, this study was not continued.

The study of the exible pipe buried in granular material can be recognised as work in progress. The simplications in the course of the study should be corrected in order to model an actual engineering problem. Two examples of major simplication of the model used in the current study were the assumption of the elastic behaviour of the pipe and simple sample preparation procedure.

In reality, pipe behaviour is plastic and even in the 1γ2ε experiments the pipe samples were permanently deformed after the tests and revealed some decolouration of the material at the sides. A model of plastic pipe behaviour could be introduced by simply altering the Young's modulus of the pipe during loading. Nevertheless, it seems it was negligible in the particular tests that were performed.

The pipe laying process in the eld is performed dierently than it was done in this study. An attempt was taken to model a grain pluviation process, but it led to problems connected with the introduction of gravity that was blurring the results, and with dierent boundary conditions that had to be used and therefore made the comparison with the experiments dicult.

Probably the most important shortcoming of the DEM modeling of underground exible pipe was the size of the simulated assembly. Most probably the sample should be bigger (considering the pipe size would remain constant) in order to observe the manifestation of soil arching in contact forces or stress direction more clearly. As seen in the physical experiments, the question of the number of contacts between the pipe and the grains is inuencing the pipe behaviour a lot. Simulation with much larger number of particles ought to be done.

The initial idea behind the physical experiments and subsequent numerical modeling of the pipe was to record deformations of the pipe with digital images, then to enforce the same deformation of a numerical pipe and to obtain the internal forces between the particles constituting the pipe which would be representative to internal forces in the physical pipe. That way it would be possible to measure stress during an experiment without employing instrumentation of the specimen. This was the reason to mark the pipe with 48 points and to model the pipe with 48 particles, and to use a pipe specimen thick enough to be able to record it. Unfortunately, the results were far from expected. The rst approach was to impose displacement of the pipe grains equal to displacements obtained from numerical loading with point forces. The model was statically indeterminate and the resulting forces were dierent from the ones imposed. The use of DIC brought also another problem, the precision of the results. Due to the large stiness of the pipe, errors in the positioning of the particles led to very large values of internal forces.

The rotational stiness of the pipe was smaller, but the accuracy of the DIC code to measure rotations was also worse and the pattern used to paint the pipe was not sucient. Nevertheless, the results of the experimental program and its modeling were successful as it was possible to observe the anticipated phenomenon and this approach of underground structure modeling should be continued. At the same time, even though the DIC method proved itself to be a very useful experimental tool, the value of classical large scale experiments with standard instrumentation and real materials should not be forgotten. 

A.2. BLOCK SCHEMES

b = ± 2R 2 1 • α -R 2 1 • α 2 - √ 3R 1 α + √ 3R 1 (B.14)
The negative square root denotes the b length that was looked for. Finally, the area of a small triangle can be computed using the following formula:

S triangle b = √ 3 4 b 2 . (B.15)
As in case of clumps, the area of a particle can be presented as a function of α and R 1 : (C.2)

S polygon (α, R 1 ) = 3 4 R 1 • √ 3 • R 1 • (2 • (α -2) • α + 1) -6 • (α -1) • R 2 1 • (α -2) • α . (B.
The horizontal force X0 is null, therefore:

M = Y 0Rsinθ -M 0.
(C.3)

The dierential equations are given: 

  ubiquitous in the universe. Many branches of engineering deal with materials consisting of separate particles on a daily basis: civil engineering, mining engineering, environmental engineering, agricultural engineering or pharmacy to name but a few. Granular materials consist of a large number of solids. Some examples of such materials are: sand, gravel, ore, coal, solid waste, rice, PVC pellets, capsules.
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 1819 Figure 1.8: Forces acting on the grain are causing moment of force with respect to the mass centre of the particle. In case of disc the axis of normal forces is going through the grain centre, which is usually not the case in clump
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 4110 Figure 1.10: Dierence between a standard polygon contact treatment (left) and the one introduced in Moreau's Shadow Overlap Method (right). More on contact force computation in Section 1.7
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 21222323 Figure 2.1: Denition of the shape parameter α. Particles (b) and (c) based on the same circles have the same α = 0.30 but dierent shape
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 24 Figure 2.4: Macroscopic friction angle at the threshold of samples consisting of 5000 particles subjected to biaxial compression[START_REF] Cegeo | Particle shape dependence in granular media[END_REF] 
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 25 Figure 2.5: Evolution of solid fraction in the isotropic state with changing sphericity of clump grains. Comparison of numerical assemblies created in Contact Dynamics and Molecular Dynamics methods
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 1 Fig. 1: An arbitrary particle shape represented by a concentric pair of circumscribing and inscribed circles.
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 2 Fig. 2: Four different shapes belonging to the same η-set with η =0.4: trimer (A), rounded-cap rectangle (B), truncated triangle (C), and elongated hexagon (D).
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 34 Fig. 3: Snapshots of the simulated packings in the densest isotropic state for η =0.4.
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 5 Fig. 5: (Colour on-line) Friction mobilization in the steady state as a function of η for different particle shapes.
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 6 Fig. 6: (Colour on-line) Packing fraction in the isotropic state as a function of η for different particle shapes.
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 78 Fig. 7: Pore volume reduction by (a) overlap between selfporosities; (b) steric pores.
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 26137 Figure 2.6: Particle shapes used in the study. The outer radius of particles R 1 is constant. The left column presents polygonal grains, the right one clumps. Values of shape parameter α are given for each shape. Note the absence of polygons α = 0.00 and α = 0.10, as well as clumps α = 0.13
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 2 8 two examples of strain localization maps are presented.
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 28 Figure 2.8: Shearmaps on samples made of grains with α = 0.3. ε 1 = 0 -13.5%
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 29 Figure 2.9: Evolution of the shear localisation indicator throughout a vertical compression test.
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 2 Figure 2.11: Rolling and sliding contacts in the sample of α = 0.3 dense clumps between 13
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 1 Fig. 1. Particle shape definition: α = ΔR R1 and examples of clump and polygon particle shapes used.
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 2 Fig. 2. Contacts between the particles; contact definition and classification. (a) Definition of a contact between clumps. Normal contact vector connects the centers of the discs in contact. (b) Various types of possible contacts between clumps.Analogy between clump and polygon contacts: corner-to-edge (CE) and edge-to-edge (EE) groups. Note that for a contact between two polygon edges two contact points are considered while only one if there is a contact between a corner and an edge.

Fig. 3 .

 3 Fig. 3. Fragments of two confined dense samples with α = 0.3. Sample P D . 30 on the left and C D . 30 on the right.

  2(b)(i) double contact involving three discs Fig. 2(b)(ii), double contact involving four discs Fig. 2(b)(iii) and triple contact Fig. 2(b) (iv). By analogy with polygon contacts (Edge-to-Edge or Corner-to-Edge, Fig. 2(

Fig. 4 .

 4 Fig.4. Solid fraction ξ of the samples under isotropic loading versus α. Error bars correspond to standard deviation calculated using of four samples. The round and square symbols represent samples made of clumps and polygons, respectively. The black and white symbols represent dense and loose samples, respectively. This convention will be maintained hereafter.

Fig. 5 .

 5 Fig. 5. Corner-to-edge contacts ((CE) see Fig. 2(b)) percentage in the isotropic state, ε i . Comparison between clumps and polygons.

Fig. 6 .

 6 Fig. 6. Coordination number z⁎ values vs. α under isotropic loading. The round and square symbols represent samples made of clumps and polygons, respectively. The black and white symbols represent dense and loose samples, respectively.

3 r

 3 3 remained constant. The loading velocities were chosen according to the dimensionless inertial number I = ε1 ffiffiffiffiffiffi ffi 〈m〉 σ[26] where ε1 denotes the strain rate and 〈 m 〉 the typical mass of a grain. It describes the level of dynamic effects in the sample. For quasi-static evolutions, the value of I should be low. I value was set to 5 ⋅ 10 -5 for clumps and for polygons samples, regardless of the code used. During the vertical compression in both dense and loose samples, the same value of contact friction coefficient μ = 0.5 was used. The mechanical responses of the samples are plotted on η vs. ε 1 charts and shown in Fig.7. η = t / s, t =(σ 1 -σ 3 )/2 is half of the deviator stress and s =(σ 1 + σ 3 ) /2 is the mean stress. Extracted from ηε 1 curves shown in Fig.7, friction angles at the peak ϕ p and at the threshold ϕ t are given Fig.8(a). Average dilatancy angles extracted from Fig.9are presented in Fig.8(b).For dense samples made of clumps, C D , we can observe in Fig.7(a) that the macroscopic shear resistance increases with α. Although

Fig. 7 .

 7 Fig. 7. Macroscopic ηε 1 curves for some of the samples.

Fig. 8 .

 8 Fig. 8. (a) Friction angles vs. α for clumps and polygons samples. The two upper curves correspond to friction angles at the peak ϕ p of dense samples. The four other curves show friction angles at the threshold ϕ t , either for dense or loose samples. (b) Dilatancy angles for all the samples; Values of the angles for dense samples were calculated at the peak, between [1.5-2.5%] ε 1 ; For loose ones, the range was [6-7%] ε 1 .

Fig. 9 .

 9 Fig. 9. Volumetric changes (computed in 2D corresponding to the area) during vertical compression for loose and dense samples made of clumps and of polygons. Positiveε v implies an increase of the sample volume.

Fig. 10 .

 10 Fig. 10. Contact types for clumps and polygons: simple contacts (SC) and complex contacts (CC).

  284K.Szarf et al. / Powder Technology 208 (2011) 279-288!'contacts are gained in the direction θ. Integrated over θ, 〈P〉 is a global evaluation of the proportion of gained or lost contacts.

Fig. 11 .

 11 Fig. 11. Transformation of complex clump contacts into simple contacts, quantified by λ and evaluated between the ε i and ε p for figure (a), and between ε p and ε c for figure (b).

Fig. 13 .

 13 Fig. 13. Corner-to-edge contacts ((CE) see Fig. 2(b)) percentage at critical state, ε c . Comparison between clumps and polygons.

Fig. 14 .Fig. 15 .

 1415 Fig. 14. Shear maps on dense samples made of grains with α = 0.3 calculated from the isotropic state to ε 1 = 13.5%. Black square symbols are proportional to the amplitude of the second invariant of the strains I ε d .

W 2 :

 2 c is the load at the top of the pipe N m , γ is the specic weight of the backll soil N m 3 , B c is the diameter of the pipe (the width of the soil prism above) [m], C c is the loading coecient [-]. Four situations described by Marston and Spangler. Ditch and projection conditions depends whether the shearing stresses are overloading or unloading the pipe; Complete and incomplete conditions depends on the existence of a plane of equal settlements (dashed line).

Figure 3 . 3 :

 33 Figure 3.3: Distribution of loads acting on the pipe in Iowa method[START_REF] Spangler | The structural design of exible pipe culverts[END_REF]. The pipe is located on top of residual soil where α describes the bedding angle and buried under backll soil

  pipe wall moment of inertia per one meter of the pipe m 4 m , e is the modulus of the passive resistance of soil N m 3 .

Figure 3 . 4 :

 34 Figure 3.4: Failure modes in underground pipes (modied after[START_REF] Watkins | Structural Performance of Buried Corrugated Polyethylene Tubing[END_REF] 

Figure 3 . 5 :

 35 Figure 3.5: Bending moment diagram given by Spangler (after (Kunecki, 2006))

Figure 3 . 6 :

 36 Figure 3.6: Experimental results in Terzaghi trap door experiment (after[START_REF] Tien | A literature study of the arching eect[END_REF]). The force acting on the trap is quickly reducing along with the lowering of the trap and then rise again to some residual level

3 ,

 3 similar to contact tangential stiness 3. Normal strength of the bond N pb N m 2 , describing the breaking point of the bond 4. Tangential strength of the bond T pb N m 2 , describing the breaking point of the bond 5. The distance between a parallel bonds and particle centre R pb [m], the physical size of the bond. It can be represented as a dimensionless ratio between the size of the bond and size of the particles in contact: R pb

Figure 3 . 7 :

 37 Figure 3.7: Parallel bond between two particles. The bond is a nite rectangular parallelepiped of lengths R A + R B -d, 2R pb and t

Figure 3 . 8 :

 38 Figure 3.8: A numerical model of an elastic pipe. The model consists of a number of particles bound with parallel bonds. The distance between the bonds correspond to the thickness of the pipe while the number and diameter of the particles can be dierent

3. 2 . 3 Figure 3 . 9 :

 2339 Figure 3.9: Parallel bond notation in simple case of a cantilever beam

Figure 3 . 10 :

 310 Figure 3.10: Results of cantilever beam loaded with uniform load compared with the analytical solutions

Figure 3 . 11 :

 311 Figure 3.11: Young's modulus estimation with axial compression of a 22.5cm pipe fragment. The deformation of the specimen were measured with an external gauge, not visible in the image

  the Pipe: Simple Compression Knowing the value of the Young's modulus it was possible to perform numerical simulations of the experimental situation described in Section 3.2.4.1, simple compression of an elastic ring.The comparison was made by comparing the force-displacement curves obtained during the experiments and from numerical simulations, and the deformations of the compressed pipe.

=Figure 3 . 13 :

 313 Figure 3.13: Experimental setup of simple compression was reproduced in the numerical model. The neutral axis of the pipe is dened by the radius R equal to D-h 2 . The distance between the parallel bonds 2R pb is equal to the pipe wall thickness. The displacements of the two particles at the sides of the pipe are xed in the direction of Y

Figure 3 . 14 :

 314 Figure 3.14: Forces in the parallel bonds representing internal forces in the elastic pipe under a single force F=250N acting on the top

Figure 3 . 15 :

 315 Figure 3.15: Force-displacement curve of a circular pipe simple compression. Comparison between experimental and a numerical results
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 3 APPLICATION: ARCHING EFFECT ABOVE BURIED PIPES E[Pa] δY [mm] δX[mm] M (θ = 0 • )[Nm] M (θ = 90

Figure 3 . 16 :

 316 Figure 3.16: Pipe shape in the experiment and in DEM simulation in initial and nal shape.

67 3 . 2 .Figure 3 . 17 :

 32317 Figure 3.17: Experimental setup of oedometric compression was reproduced in the numerical model. The neutral axis of the pipe is dened by the radius R equal to D-h 2 . The distance between the parallel bonds 2R pb is equal to the pipe wall thickness. The displacements of the two particles at the sides of the pipe are xed in the direction of X and Y

Figure 3 . 18 :

 318 Figure 3.18: Internal forces in an elastic pipe under a single force F=500N acting on the top with horizontal displacements blocked

Figure 3 . 19 :Figure 3 . 20 :

 319320 Figure 3.19: Force-displacement curve of a circular pipe oedometric compression. Comparison between experimental and numerical results

Figure 3 .

 3 Figure 3.21: 1γ2ε apparatus

3 .Figure 3 . 22 :

 3322 Figure 3.22: The materials used in the 1γ2ε experiments. The length of all the elements is 6cm

Figure 3 . 23 :

 323 Figure 3.23: Digital Image Correlation method consists of nding a matching motif on two images.A node is dened on the reference image n containing some characteristic features of the image, like for example specimen surface texture. Around the node a correlation window is dened. The motif inside the correlation window is searched for in the second image n+1 within some area called a search range. The motif is compared with various fragments of the image and for each comparison a correlation coecient is computed. The best match have the highest correlation coecient. Finally a displacement vector can be drawn between the initial and nal position of the node

Figure 3 . 24 :

 324 Figure 3.24: Elastic pipe surrounded by wooden grains at the beginning of a vertical compression with constant lateral pressure. The contrast of the front face of the pipe was increased by spraying ne black speckles over a white background and marking 48 points and crosses

Figure 3 . 25 :

 325 Figure 3.25: Sub-pixel renement example. Nine discrete values of correlation coecient are approximated with a parabolic surface in order to nd a maximum value. The position of this maximum is expressed with a real number

Figure 3 . 26 :

 326 Figure 3.26: Initial position of the points used in the digital image correlation. In this case the points were placed in the centre of each particle, in the corners of the experimental apparatus and around the perimeter of the pipe

Figure 3 . 27 :

 327 Figure 3.27: Images of 1γ2ǫ samples at the beginning of biaxial tests

3 Figure 3 . 28 :

 3328 Figure 3.28: 1γ2ǫ oedometric compression results of tests Oedo-5-Wood-Pipe and Oedo-6-PVC-Pipe consisting of two types of materials with a circular, elastic pipe inside. Elastic modulus of the wooden sample is equal 28 • 10 6 P a while for the PVC sample it is equal to 10 • 10 6 P a

Figure 3 . 29 :

 329 Figure 3.29: 1γ2ǫ experiment results of two types of materials with or without a circular, elastic pipe inside

Figure 3 . 30 :Figure 3 . 31 :

 330331 Figure 3.30: During vertical compression test in 1γ2ε the volumetric strains of the apparatus and the pipe specimen were dierent. The whole sample was dilating (ε V > 0) while the PVC pipe was contracting (ε V < 0). The gures present the values of the strains and the relation between them throughout the test

Figure 3 . 32 :

 332 Figure 3.32: Comparison of the volumetric strains between experiments on an elastic pipe with theoretical behaviour of an ellipse. The vertical strains ε 1 are not the strains of the experimental apparatus but the strains of the pipe

Figure 3 . 33 :

 333 Figure 3.33: During vertical compression test in 1γ2ε the strains of the apparatus and the pipe specimen were dierent. The gures present the values of the strains and the relation between them throughout the test. The gure is continued on the next page

Figure 3 . 34 :

 334 Figure 3.34: Wooden grains with a PVC pipe, displacement elds. The longest arrow of particle displacement is equal to 58mm; The biggest displacement of a point on a pipe is equal to 26mm

Figure 3 . 35 :

 335 Figure 3.35: PVC grains with a PVC pipe, displacement elds. The longest arrow of particle displacement is equal to 51mm and it was reduced three times in the images for a clearer presentation; The biggest displacement of a point on a pipe is equal to 34mm

Figure 3 . 36 :

 336 Figure 3.36: Wooden grains with a PVC pipe, a mean eld of displacement was subtracted from the displacement eld. The longest arrow of displacement in the gures correspond to 4cm

(

  

Figure 3 .

 3 Figure 3.37: PVC grains with a PVC pipe, a mean eld of displacement was subtracted from the displacement eld. The longest arrow of displacement in the gures correspond to 1cm

  and 3.39 (see Appendix D.3 for larger, scalable images). Please note that the symbols inside the pipe are artifacts of triangulation, not actual indicators of shear.

Figure 3 . 40 :

 340 Figure 3.40: Shear strain during a vertical compression of PVC Schneebeli material in 1γ2ǫ. The DIC code Photowarp revealed shear localisation zones similar to the ones obtained by us with the PVC pipe inside. Image reproduced from (Viggiani and Hall, 2008), courtesy of Viggiani and Hall

3. 4 .> 5 Figure 3 . 41 :Figure 3 . 41 :Figure 3 . 42 :

 45341341342 Figure 3.41: Comparison of the numerical macroscopic results of vertical compression tests on clumps with and without circular elastic pipe inside the sample. The graphics show tests performed with pipe inside. The two simulations dier by the value of the friction coecient between the granular material and the pipe

Figure 3 .

 3 Figure 3.43: Comparison of the macroscopic results of numerical biaxial compression with clump α = 0.5 samples including pipes of dierent stiness: 20e7P a, 20e8P a and 20e9P a

3 Figure 3 .

 33 Figure 3.44: Oedometric compression stresses in a numerical simulation C05d-p0-oed

Figure 3 .

 3 Figure 3.45: Values of the strains throughout the simulations of vertical compression test with constant lateral loading for dierent samples of clumps. The whole sample was dilating (ε V > 0) while the pipe was contracting (ε V < 0)

Figure 3 .

 3 Figure 3.47: Values of the horizontal and vertical strains throughout the simulations for dierent samples of clumps. The strains of the granular sample are linear comparing to the strains of the pipe

Figure 3 .

 3 Figure 3.48: Relation of the strains throughout the simulations for dierent samples of clumps with friction at the pipe boundary

Figure 3 .

 3 Figure 3.49: Relation of the strains throughout the simulations for dierent samples of clumps without friction at the pipe boundary

Figure 3 .

 3 Figure 3.50: Volumetric strains of the sample of α = 0.5 clumps containing elastic pipes of dierent stiness

  and 3.51c.

Figure 3 .

 3 Figure 3.51: Horizontal and vertical strains of the pipe and the whole sample. The value of the pipe stiness was dierent in each sample

Figure 3 .

 3 Figure 3.51: Horizontal and vertical strains of the pipe and the whole sample. The value of the pipe stiness was dierent in each sample

  and 3.55 for the the C05 clump samples with frictional and frictionless pipe boundary respectively (see Appendix E.2 for larger, scalable images). These graphics reveal some interesting patterns of circular displacement. It was possible to observe similar behaviour in the physical samples,Figures 3.36 and 3.37, but in case of 1γ2ε wooden sample the vortexes were more local and in case of PVC sample the pattern was dominated by multiple reecting shearbands (compare with Fig.3.39). Here in both the cases of pipe interface friction, one can observe two large vortex-like patterns, located around the discontinuities of the displacement eld at each side of the pipe, that seem to indicate grains above the pipe pushing into it. This would comply with the larger strains of the pipe in comparison with the granular material observed before.
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 4 MODELING OF AN ELASTIC PIPE IN GRANULAR MATERIAL 3.4.2

Figure 3 .

 3 Figure 3.58: Shear localisation maps of a clump sample α = 0.5 with soft pipe and no friction at the pipe boundary

Figure 3 .Figure 3 .

 33 Figure 3.59: Shear localisation maps of a clump sample α = 0.5 with hard pipe and no friction at the pipe boundary

3. 4 .Figure 3 .

 43 Figure 3.61: Stress repartition on elastic pipe in DEM simulation with pipe of dierent stiness

Figure 3 . 1 A 10 - 1 C 15 - 15 .5%ε 1 Figure 3 . 1 C 15 - 15 .5%ε 1 Figure 3 .

 311011515131151513 Figure 3.62: Direction of particle stress during biaxial compression of a clump sample with α = 0.5 and frictionless pipe

Figure A. 6 :Figure A. 7 :B

 67 Figure A.6: Conguration of two polygonal particles with large overlap: one particle is penetrated with three corners of the second particle

16 )Figure B. 3 :

 163 Figure B.3: Particle area functions: surface maps and a cross-section for one particular radius.The colour scale is denoting the dimensionless area in function of the shape parameter α and the normalised outer radius of the particle R 1[-]. The plots are limited by the extreme values of the α parameter

Figure D. 2 :(

 2 Figure D.2: PVC grains with a PVC pipe, displacement elds. The longest arrow of particle displacement is equal to 21mm and it was reduced three times in the images for a clearer presentation; The biggest displacement of a point on a pipe is equal to 34mm

(j) 0 -10%ε 1 Figure D. 4 :Figure D. 7 :

 147 Figure D.4: PVC grains with a PVC pipe, mean eld of displacement subtracted from the displacement eld

Figure E. 11 :

 11 Figure E.11: Simulation of soft pipe E = 20e7P a with clumps α = 0.5 and no friction at the pipe boundary. Direction of particle stress increment

Figure E. 12 :

 12 Figure E.12: Simulation of sti pipe E = 20e9P a with clumps α = 0.5 and no friction at the pipe boundary. Direction of particle stress increment

  

  

  

  

  

  . Where β n is the value of the critical damping ratio. The CHAPTER 1. PARTICLE SHAPE IN GRANULAR MATERIALS normal force is pushing two overlapping particles away from each other. The damping introduced in equation (1.19) is supposed to help reaching the equilibrium state faster in such way, that its sign is oposing the change of overlap. Unfortunately it can cause problems by introducing articial pulling forces

19) 

where:

v n is the relative normal velocity of the particles in contact m s , g n is the dashpot damping constant kg s . Value of g n is given by g n = β n 2 √ mk n

  1 and R 2 are respectively dened as radii of a smallest circumscribed circle and
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  3.1. THEORY AND PRACTICESolution of the equation above for the vertical load at the depth H (the top of the pipe) is the following:

Table 3 .

 3 

		4: Numerical parameters of the elastic beams subjected to axial loading
	n k n [N/m] F [N ]	∆U [m]	Analytical	N [N ]	Analytical
	20	10e7	+500.0 2.4817e-5 2.5e-5	-500.0026 -500.0
	20	10e7	-500.0 -2.5187e-5 -2.5e-5	499.9972 500.0
	50	10e7	+500.0 2.3939e-5 2.5e-5	-500.0061 -500.0
	50	10e7	-500.0 -2.6082e-5 -2.5e-5	499.9931 500.0
	50	10e4	+500.0 2.3939e-5 2.5e-5	-500.0061 -500.0
	50	10e4	-500.0 -2.6083e-5 -2.5e-5	499.9931 500.0
	Table 3.5: Resulting displacement and forces of the elastic beams subjected to axial loading compared with the theoretical values

Table 3 .

 3 4 gathers the numerical parameters of the beams used. Table

Table 3 .

 3 6. 

Table 3 .

 3 .10. 10: Description of the 1γ2ε experiments

		T est Material Pipe Loading velocity Image interval Test name
	Biaxial Biaxial Oedometric	1 2 3 4 5 6	PVC Wood Wood YES NO NO PVC YES Wood YES PVC YES	2.0 cm h 2.5 cm h 2.5 cm h 5.1 cm h 5.1 cm h 5.1 cm h	none none 30s 30s 30s 30s	Biax-1-PVC-NoPipe Biax-2-Wood-NoPipe Biax-3-Wood-Pipe Biax-4-PVC-Pipe Oedo-5-Wood-Pipe Oedo-6-PVC-Pipe

  Figure D.3: Wooden grains with a PVC pipe, mean eld of displacement subtracted from the displacement eld. The longest arrow of displacement in the gures correspond to 4cm D.2. MEAN DISPLACEMENT FIELD SUBTRACTED FROM DISPLACEMENT FIELD Figure D.3: Wooden grains with a PVC pipe, mean eld of displacement subtracted from the displacement eld D.2. MEAN DISPLACEMENT FIELD SUBTRACTED FROM DISPLACEMENT FIELD Figure D.4: PVC grains with a PVC pipe, mean eld of displacement subtracted from the displacement eld. The longest arrow of displacement in the gures correspond to 1cm Figure D.4: PVC grains with a PVC pipe, mean eld of displacement subtracted from the displacement eld D.2. MEAN DISPLACEMENT FIELD SUBTRACTED FROM DISPLACEMENT FIELD
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Average number of contacts per particle, oating particles excluded Samples prepared with intergranular friction: µ = 0.5

• Oedometric compression During the test the vertical walls remain in the same position while the top wall moves down with a constant velocity. Next the sample is unloaded in the same manner;
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CHAPTER 3. APPLICATION: ARCHING EFFECT ABOVE BURIED PIPES The classical method for pipe design is the Marston-Spangler method based on the works of [START_REF] Marston | The theory of external loads on closed conduits in the light of the latest experiments[END_REF] and [START_REF] Spangler | The supporting strength of rigid pipe culverts[END_REF]. Marston postulated that the load acting on the pipe comes from the external loading (like trac or landll) and the weight of the soil above the pipe. The soil weight contribution depends on the parameters of the soil but also on the installation conditions. Spangler introduced the so-called bedding factor that takes into account the dimensions of the ditch and the contact between the pipe and the ditch. The theory is based on considerations of forces acting on a virtual slice of soil placed within a prism above the pipe.

Sti Pipe in a Ditch

Marston considered a narrow and deep trench excavated in the residual soil. He considered a band of soil over the pipe as in Figure 3.1 [START_REF] Moser | Buried Pipe Design, 2nd Edition[END_REF][START_REF] Kunecki | Zachowanie si¦ ortotropowych powªok walcowych w o±rodku gruntowym pod statycznym i dynamicznym obci¡»eniem zewn¦trznym[END_REF]. Figure 3.1: The basis of Marston approach, a pipe in a ditch and the loads acting on a strip of soil above it

The settlements of the backll and the pipe are resulting in shearing forces on the sides of the trench. Cohesion is neglected as it needs time to recreate and cohesionless scenario is less favourable for the pipe. The force on the top of the band V N m is countered by the force on the bottom, V + dV . The dierential volume of soil is B d by dh by one unit of length. Its weight is computed by multiplying the volume by the soil specic weight γ. The horizontal pressure acting on the band is equal to K V B d , K being the earth pressure coecient, and the shearing pressure is:

(d) 0 -0.5%ε1

(e) 0 -3%ε1 (f) 0 -5.5%ε1

(g) 0 -8%ε1 (h) 0 -10.5%ε1 (i) 0 -13%ε1 (j) 0 -15.5%ε1 (k) 0 -18%ε1 (l) 0 -20.5%ε1

(m) 0 -23%ε1 The numbering of the corners and faces of the polygons is supposed to be anticlockwise. An example of two arbitrary polygons is presented in Figure A.2.

In the rst approach a unit vector ŝ is computed. This vector connects the centres of mass of the two particles and is directing from the particle A into particle B. Next, each corner of the two particles is orthogonally projected on the vector ŝ direction and the extreme projections are chosen:

than there is no overlap and therefore no contact. Otherwise, there is a possibility that the two particles are in contact and a more precise test is needed, see Fig. with associated critical faces. The critical corner vector r was projected on the t to obtain the value of S. The critical face unit vectors are pro jected on the direction of ŝ to obtain the values of Z A and Z B . As Z A > Z B , it is supposed that particle B is intruding particle A. The next step would be to change the critical corner of particle A from 1 to 3 and repeat the process

In the previous step the two particles were not proven to be apart. The next step would be to investigate A=?D edge in search for a gap between the particles but this process can be optimised.

The anticlockwise numbering of the corners and vertices helps to avoid the unnecessary checks.

Initially the extreme (critical) corners chosen during the predetection phase are connected A.1. METHOD DESCRIPTION with a critical corner vector r directing from P B crit to P A crit , see Figure A.4. The critical corner vector is projected onto a vector orthogonal to ŝ: t. This gives the direction of rotation for the vector ŝ.

Then the normal vectors of the polygon faces are taken into account: If S < 0 then the critical face is considered; Otherwise, the face preceding the critical one. The dot products of ŝ (-ŝ for particle B) and nN i vectors are computed for both the particles. The bigger value of these two dot products indicate which particle's normal unit vector of the considered edge will replace the ŝ. Finally the critical corner number of this particle is updated (increased by one in case when S < 0 or decreased when S > 0). That procedure gives the new critical corner vector which can be projected on the t. If the projection would change the sign in comparison to the initial value of S and if the dot product of ŝ and r is not lower than 0 (which would be a proof of a gap between the polygons), than the particles are in contact and this contact involves the critical vertex. In the other case, the procedure is repeated. For an example see Having established that a certain critical corner of the rst particle is penetrating the other particle, the next step is to place the contact point in space. It is also important to check whether there is a second contact point or not. This is done by investigating the following and preceding critical edges of the penetrating particle. Initially the rst contact point is assumed to be placed in reference from the critical vertex of the intruding particle (see Fig. A.5):

wheresign is for the case when N = A.

Next, the positions of the preceding (n crit -1) and the following (n crit + 1) corners of the penetrating particle are compared with the point C AB placed in the middle of the distance between the critical vertices of particles A and B (see Figure A.5):

The second point of contact exist if

If L 1 > 0 (L 1 < 0), then the second point of contact is assumed to be placed at

, the second point position is computed using the equations (A.8) but using P N crit+1 and L 2 instead. If both the contact points were identied, the nal position of the second contact point is established in relation to the vector t. Equation (A.6) is used to compute M 1 by replacing Remembering the direction of rotation computed in the second phase of the procedure (the value of S), the distance between the point C AB and the corners of the particle that is being penetrated are projected on the direction of the vector t. In case when S < 0 and it is particle A intruding particle B, the critical and the one preceding it are used in equation (A.6) to compute the K 1 and K 2 respectively. In case of S > 0 the corners involved are P crit+1 and P crit .

The opposite situation, particle B penetrating particle A, the corners used in case of S < 0 are P crit-1 and P crit , while it is P crit and P crit+1 when S > 0.

The value of M 2 obtained is compared with the values of K 1 and

Finally, the position of the second point of contact is equal to:

(A.9)

In fact the two resulting contact points are placed as wide as possible, at the ends of the overlapping area. 

Therefore, the triangle side lenght is given by:

and its height by:

Considering that, the area of the triangle is given by the equation:

The circular segment is cut from a circle of radius r with a chord denoted by a. The clump circle radius is expressed with the following relation:

The area of the segment is given with a relation:

where θ is expressed in [rad].

The angle θ is:

where γ is the angle of a triangular part with height x: 

Appendix C

Castigliano Theorem

A pipe loaded with a single vertical force can be divided into quadrants. Single quadrant can be regarded as an circularly curved cantilever beam (see Fig. The radius of the beam curvature correspond to the radius of the pipe ((R external +R internal )/2). The beam is loaded with three forces: vertical, horizontal and a bending moment. The vertical force Y 0 is equal to half of the external load (the other half is loading the upper-right quadrant of the pipe). The bending moment M 0 is in fact equal to the internal bending moment in the pipe and is yet to be determined. Without the external moment the free end of the pipe would rotate and would not be horizontal anymore. The horizontal force X0 is equal to zero, but it is needed to derive the horizontal displacements.

The beam is circular therefore the forces are correlated with the angle θ. For a given crosssection at θ the strains due to normal and tangential stresses are negligible and only the bending moment is signicant. Therefore the equilibrium equation for a cross-section at θ is given:

Wooden grains with a PVC pipe, displacement elds. The longest arrow of particle displacement is equal to 58mm; The biggest displacement of a point on a pipe is equal to 26mm

Wooden grains with a PVC pipe, displacement elds 

.6: PVC grains with a PVC pipe, shear localisation. For the maximum strain the biggest symbol correspond to 2500 units while the mean is equal to 32 

D.4 Volumetric Strains

(u) -0.06 < εV < 0.03 ? 0 -5.5%ε1 @ 0 -8.0%ε1 ? 0 -5.5%ε1 @ 0 -8.0%ε1

A 0 -10.5%ε1 B 0 -13.0%ε1 ? 0 -5.5%ε1 @ 0 -8.0%ε1