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Zwiemy je ziarnkiem piasku. We call it a grain of sand,

A ono siebie ani ziarnkiem, ani piasku. but it calls itself neither grain nor sand.

Obywa si¦ bez nazwy It does just �ne without a name,

ogólnej, szczególnej, whether general, particular,

przelotnej, trwaªej, permanent, passing,

mylnej czy wªa±ciwej. incorrect, or apt.

Na nic mu nasze spojrzenie, dotkni¦cie. Our glance, our touch mean nothing to it.

Nie czuje si¦ ujrzane i dotkni¦te. It doesn't feel itself seen and touched.

A to, »e spadªo na parapet okna, And that it fell on the windowsill

to tylko nasza, nie jego przygoda. is only our experience, not its.

Dla niego to to samo, co spa±¢ na cokolwiek, For it, it is no di�erent from falling on anything else

bez pewno±ci, czy spadªo ju», with no assurance that it has �nished falling

czy spada jeszcze. or that it is falling still.

(...) (...)

Wisªawa Szymborska, From: Wisªawa Szymborska,

�Widok z ziarnkiem piasku� (fragment) �View with a Grain of Sand�

translated by Stanisªaw Bara«czak
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Abstract

Abstract

This study was devoted to the in�uence of grain shape on the mechanical behaviour
of granular materials and its e�ect on load transfer over underground pipes. Shape
of convex polygons and concave clumps of discs was generalised with a geometrical
parameter α. In the study a Discrete Element Modeling (DEM) approach was used.
Biaxial compression of granular assemblies revealed that mechanical and geometrical
properties like porosity, macroscopic friction or shear localisation depends both on α
and on grain (non-)convexity.
The intergranular load transfer over a �exible pipe was studied both experimentally
(2D rods in a plain strain apparatus) and numerically (DEM). The experiments
showed that the pipe has no signi�cant impact on the macroscopic behaviour of the
assembly. The numerical model complied with the experiments and revealed that the
arching e�ect in a sheared granular medium exists above the pipe and is magni�ed
with the increase of α of the grains.

Résumé

Cette étude porte sur l'in�uence de la forme des particules sur le comportement
mécanique des matériaux granulaires, et les mécanismes de transfert de charge qui
s'y développent, notamment dans les cas des conduits enterrés. La géométrie des
particules (polygones de forme convexe ou assemblage de particules de forme concave
constitués de plusieurs disques superposés et indissociables) a été caractérisée par un
coe�cient de forme α. Cette étude est basée sur une approche numérique par éléments
discrets. Des simulations numériques de l'essai de compression biaxiale montrent que
les caractéristiques macroscopiques ou géométriques de l'échantillon granulaire, tel
que l'angle de frottement macroscopique, la compacité, ou la nature des bandes de
cisaillement, dépendent fortement du coe�cient de forme α et de la convexité ou non
convexité des grains.
Les mécanismes de transfert de charge au dessus d'un conduit souple ont été étudiés
expérimentalement (rouleaux bidimensionnels en condition de déformation plane) et
numériquement (MED). Les expérimentations réalisées montrent que la présence du
conduit à peu d'in�uence sur le comportement macroscopique de l'assemblée granu-
laire lors d'une sollicitation biaxiale. Les résultats du modèle numèrique convergent
avec les rèsultats expérimentaux et mettent en évidence la présence des mécanismes de
transfert de charge au dessus du conduit dont les intensités dépendent du coe�cient
de forme α.
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Introduction

Granular materials are ubiquitous in the universe. Many branches of engineering deal with ma-
terials consisting of separate particles on a daily basis: civil engineering, mining engineering,
environmental engineering, agricultural engineering or pharmacy to name but a few. Granular
materials consist of a large number of solids. Some examples of such materials are: sand, gravel,
ore, coal, solid waste, rice, PVC pellets, capsules.

Granular materials come in many shapes and sizes, their chemical composition can be very
diverse. Due to the energy dissipation occurring whenever discrete particles constituting the ma-
terial interact with each other, the mechanical behaviour of granular materials di�ers from the
behaviour of solids or liquids. The scienti�c investigations of this behaviour can be dated back
at least to the works of Coulomb nearly 200 years ago (Coulomb, 1821). Currently the granular
materials are studied by many communities, especially physicists of condensed matter and solid
mechanics researchers.

The behaviour of a dense granular assembly under stress is determined by a number of
factors: grain size distribution (Voivret, 2008), grain arrangement (Sazzad and Suzuki, 2010),
the loading history (Calvetti et al., 1997), the mechanical properties of each of the grains (Cheng
et al., 2005). Other important factor in�uencing the assembly behaviour is the geometry of the
particles composing it (Santamarina and Cho, 2004). In case of soils the shape of the grains is
determined by their geological history: conditions during the formation of the minerals, chemical
and biological e�ects, abrasion etc. In case of anthropogenic particles the shape is determined
by the production process.

The shape of the grains seems to be a trivial thing, very often it can be quickly determined by
an amateur with no tools or training and correctly described with common words like �rounded� or
��at�. Then again, its contribution to the behaviour of granular assembly is di�cult to determine.
The fact that angular sands have higher values of macroscopic friction angle than rounded sands
is clear to any geotechnical engineer. At the same time, the real reason behind that di�erence
and the signi�cance of each particular aspect of shape are yet to be determined.

The basic problem rising before a researcher trying to understand the e�ect of grain shape
in granular materials is how to control the experimental parameters, the particle shape itself. In
a physical experiment one can change the grading curve of the assembly, change the type of the
material or to use some particles of uniformed shape, for example manufactured spheres. Subtle
changes of shape are virtually impossible.
The second problem in experimental shape e�ect study is how to track the behaviour of the
particular grains in order to be able to understand the phenomenon. Although testing various
assemblies as a whole provides us with some general concepts of grain shape in�uence on the
mechanical behaviour of granular materials, the microscopic insight seems to be necessary to
fully understand that behaviour origins.

Nowadays, the computerisation of science o�ers ways to seek solutions to these questions.
We are able to perform numerical simulations of granular assembly where all the features of

1



INTRODUCTION

the medium can be modi�ed and the response can be studied in both macro- and microscale.
This range of possibilities creates other problems: how to narrow down the scope of a research
in order to obtain information about a certain aspect of the problem and how to relate it to reality.

In this work it was decided to study the e�ects of particle shape on the mechanical behaviour
of dense granular assembly in the framework of Discrete Element Method. In order to model
an engineering problem: load transfer over an elastic pipe, in this case the load transfer over a
buried elastic pipe, it was necessary to apply a granular model more complicated than commonly
used assemblies of discs or spheres. These simple shapes cannot imitate the real behaviour of
granular soils by themselves because the round particles rotate with little e�ort under load and
it limits the maximal and residual strength of the assembly. Among di�erent techniques used for
real soil modeling in discrete element methods one should mention rolling resistance (Gilabert
et al., 2007; Plassiard, 2007) and use of complex particle shapes, mainly polygons (polyhedra)
(Matuttis et al., 2000; Azéma et al., 2009) or clusters of discs (spheres) (Jensen et al., 1999; Sa-
lot et al., 2009). These two complex-shape modeling techniques are not equivalent; The clusters
are easy to model while polygonal grains are more complex; Clusters made of reasonably small
number of discs per particle are concave, while polygons can easily be both relatively complex
and convex. The arising question is what is the in�uence of the cluster concavity in comparison
with polygon convexity on the behaviour of granular media.

This work is divided into two main parts: investigations of the in�uence of particle shape on
the mechanical behaviour of granular materials and application of the model to an engineering
problem. The description of particle shape in granular materials is given in the �rst chapter.
Presented there are other researchers' �ndings in the �eld of grain shape in�uence, methods of
describing the shape commonly used in geology, as well as the numerical DEM model which was
used to perform the study. The speci�c polygon particle contact strategy used in this model is
presented in details in Appendix A.
The second chapter is devoted to numerical simulations of assemblies of granular materials made
of grains of di�erent shapes. Two popular tactics to model granular particles in 2D were com-
pared: disc clustering and the use of polygons. The goal was to observe the e�ects of grain
sphericity and convexity on the behaviour of the assembly. Two families of grains, clumps and
polygons, were tested in multiple shape variants. The assemblies of grains of one type were stud-
ied in the isotropic state and after loading in a vertical compression test with constant lateral
pressure.
In the last chapter of this work the experiments and numerical simulations of an unpressurised
elastic pipe buried in granular material are presented. This situation is typical for some engineer-
ing constructions, such as drain pipes, culverts or tunnels. Such constructions can be designed
to interact with the surrounding material to take advantage of the arching e�ect which transfers
the load from the elastic body to the soil envelope. The experiments were performed in a plane
strain apparatus using analogue soil, which made it possible to take images during the tests. The
Digital Image Correlation technique was applied in order to obtain information about kinematic
behaviour of the samples. The same numerical model as presented in the second chapter of this
work was used to perform simulations of an elastic pipe in granular material under load. The goal
of this part of the study was to observe the stress repartition. Higher resolution, step-by-step
results of the experiments and numerical simulations are presented in Appendices D and E.

2



Chapter 1

Particle Shape in Granular Materials

1.1 Particle Shape Description

Granular materials consist of grains of di�erent size and usually no two grains are identical. The
question of size distribution is well known (Wiªun, 2009; Muir Wood and Maeda, 2008) and can be
answered using coe�cients like mean size D50 and coe�cient of uniformity Cu. The classi�cation
of grain shapes is more complex; There are di�erent ways of grain shape classi�cation. One of
the methods is to describe the shape of a grain using three parameters: sphericity, roundness and
smoothness, (Wadell, 1932; Krumbein and Sloss, 1951; Barrett, 1980). Sphericity describes how
close a shape of the grain resembles a sphere. Roundness describes the curvature of the angles of
the grain. Smoothness describes how rough the grain surface is.

The measurements of these parameters are based on quantifying the inscribed and circum-
scribed spheres of a grain, Figure 1.1. In order to assess the grain sphericity one compares the
radius of the largest inscribed sphere R2 with the smallest circumscribed R1:

Sphericity =
R2

R1
. (1.1)

Higher values characterise more spherical grains.

(a) Sphericity (b) Roundness

Figure 1.1: Measurements of sphericity and roundness parameters for an exemplary grain. In this

case the sphericity is equal to 0.62 while the roundness is equal to 0.51

Grain roundness can be de�ned as a ratio between the mean curvature of the surface features
and the largest inscribed sphere:

Roundness =

∑
ri

N

R2
, (1.2)

3



1.2. EXAMPLES OF PARTICLE SHAPE INFLUENCE FOR SANDS

where N is the number of angles of the particle and ri is their curvature radius. Lower values
of roundness describe grains with sharp angles. In Figure 1.2 some examples of the real grains
shapes are classi�ed with regard to these two parameters.

The measurement itself can be carried out in many ways: by direct measurements of the grains
using a microscope or a magnifying glass, by automated digital image analysis or by comparison
of the grains against shape templates, for example as in (Krumbein and Sloss, 1951).

Figure 1.2: Chart presenting some natural grain shapes with di�erent values of sphericity and

roundness, originally from (Krumbein and Sloss, 1951), modi�ed by (Cho et al., 2006)

Other ways to describe the particle shape are Fourier analysis and fractal analysis (Orford
and Whalley, 1983). These methods were not used in this study and will not be discussed further.

1.2 Examples of Particle Shape In�uence for Sands

The form of the geomaterials depends on their geological history. The geological processes by
de�nition occurs on a large area, but the particular combination that lead to creation of some
type of soil is unique and characteristic for a much smaller region. Since soil mechanics is studied
worldwide, there exist a number of reference materials that has been tested intensively. One
of these reference sands is RF Hostun that has been the focus of numerous studies in the 3S-
R laboratory in Grenoble for many years: (Desrues, 1984; Doanh et al., 1997; Desrues and
Viggiani, 2004). Other well known examples are Ottawa sand or Ticino sand. Compilations of
the experimental results on these sands are an invaluable source of information on the topic.

Youd gathered the experimental results on sands (Youd, 1973) to conclude that the maximum
and minimum void ratio is a�ected by the angularity of the particles and the grading curve
uniformity, Figure 1.3. In both the dense and loose samples more angular grains formed assemblies
with larger number of voids.

In Cho's paper (Cho et al., 2006) there is a compilation of experiments on many types of
sands in the context of their shape. They obtained linear dependence of the sample void ratio on
the roundness and sphericity of the particles, Fig. 1.4a, and a linear dependence of the critical
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CHAPTER 1. PARTICLE SHAPE IN GRANULAR MATERIALS

Figure 1.3: Relationship between particle roundness, sample coe�cient of uniformity and extreme

values of density for various sands, after (Youd, 1973)

friction angle in function of roundness, Fig. 1.4b. Soils with higher roundness or higher sphericity
were forming denser assemblies. The residual strength of specimens consisting of grains with more
angular shape was higher than those consisting of rounded particles.
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1.2. EXAMPLES OF PARTICLE SHAPE INFLUENCE FOR SANDS

(a) Void ratio

(b) Critical friction angle

Figure 1.4: Relationship between particle roundness and sphericity, and the void ratio and friction

angle for various sands, after (Cho et al., 2006)

In Bareither's paper, (Bareither et al., 2008), the authors tested a large number of natural
sands from the area of North America and obtained similar results on the relation between
particle roundness and void ratio, Figure 1.5a, and a slightly di�erent relation for the friction
angle, Fig. 1.5b.
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(a) Void ratio

(b) Critical friction angle

Figure 1.5: Relationship between particle roundness and the void ratio and friction angle for

various sands, after (Bareither et al., 2008)

These comparisons show in�uence of the grain shape on the granular materials but the scatter
of the data points suggest that there are other parameters in�uencing the porosity and friction
angle of the granular soils.
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1.3 Particle Shape Modeling in DEM

Generally speaking, there are two approaches to particle modeling in DEM. The �rst one is to use
simple shapes like discs or spheres. This approach usually incorporates some numerical procedures
that are supposed to make the simple granular model more similar to the real behaviour of the
material. Sometimes these procedures, although e�ective, have little physical meaning.
The second approach is to use complicated shapes that would resemble real particles more. This
approach can be very expensive in terms of computation time.

Contact detection is the most CPU encumbering task in DEM. Contact detection between
simple entities like discs or spheres is also simple, so the computational cost of modeling with
simple shapes is low. This allows using large numbers of particles or extending the duration
of simulation, while keeping the time of computation reasonably short. Some examples of this
approach are: (Cundall and Strack, 1979; Radjaï et al., 1996; Åström et al., 2000; Iwashita and
Oda, 2000; Kruyt and Rothenburg, 2004) (use of discs in 2D) and (Suiker and Fleck, 2004; Abe
et al., 2006) (use of spheres in 3D). Even so, these approaches are usually too much simpli�ed to
model granular materials like sands properly without any additions. Example of such an addition
is rolling resistance. It is a contact law that mimics the imbrications of the particles in contact
which discs and spheres are lacking (Zhou et al., 2001; Estrada et al., 2011). The idea of reducing
circular particle rotation was brought further up to a point of blocking the rotations completely
(Calvetti et al., 2003), which is physically discussible but proved to be e�ective.

(a) Continuously connected
arches

(b) Polygons (c) Polyhedra (d) Non-overlapping cluster

(e) Overlapping cluster (f) Cluster ellipse (g) 3D clusters (h) 3D cluster

Figure 1.6: Examples of some particles used in discrete element modeling, images after: (Potapov

and Campbell, 1998; Nouguier-Lehon et al., 2003; Azéma et al., 2009; Jensen et al., 1999; Das,

2007; Emeriault and Claquin, 2004; Salot et al., 2009; McDowell et al., 2011)
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(i) Minkowski sum

Figure 1.6: Examples of some particles used in discrete element modeling, image after: (Alonso-

Marroquin, 2008)

The second concept has been realised in many di�erent ways, see Figure 1.6. One idea is to
de�ne complex grains as geometric shapes other than circles or spheres, for example as ellipses
(Ting, 1992; Rothenburg and Bathurst, 1992), super-quadrics (Cleary and Sawley, 2002), con-
tinuously connected arches (Potapov and Campbell, 1998), superellipsoids (Delaney and Cleary,
2010) or 2D polygons and 3D polyhedra (Matuttis et al., 2000; Nouguier-Lehon et al., 2003;
Azéma et al., 2009). Contacts between particles like these are generally speaking more complex
than contacts between spheres or discs, use more resources and are more di�cult to code.
Other idea is to connect multiple simple particles together in order to obtain one complex solid
called a cluster or a clump. There exist a number of papers using di�erent clusters of discs trying
to approach the actual shape of the real grains as close as possible: Jensen (Jensen et al., 1999)
proposed approximating the shape of grains with assemblies of three discs that although touch
each other, do not overlap. This idea was extended by Matsushima (Matsushima and Saomoto,
2002; Matsushima et al., 2009) and Ashmawy (Ashmawy et al., 2003; Das, 2007); The extended
methods used bigger number of overlapping discs of various sizes to cover all the area (or volume)
of a grain. Depending of the complexity of the grain shape the +95% grain coverage was obtained
with 10 to 15 discs in 2D or 100 to 300 spheres in 3D. The method of �lling an arbitrary shape
with multiple simple particles has been used to model ellipses and ellipsoids as well: (Emeriault
and Claquin, 2004) (up to 32 discs in one ellipse), (Markauskas and Ka£ianauskas, 2011) (11
spheres). As one can see, the drawback of these models is the large number of discrete bodies per
particle. One must note that the contacts between grains consisting of multiple simple shapes
are still simple.
One can also decide to keep the number of simple shapes per particle low and to accept the
particle shapes might be far from ones found naturally in soils: (Salot et al., 2009) (clumps of
two to four spheres), (McDowell et al., 2011) (clumps of four overlapping spheres on a single
plane).

There are also some modeling tactics that link elements from the above-mentioned groups, for
example spheropolygons (Alonso-Marroquin, 2008) which are basically polyhedra with spherical
corners.

Extreme cases of the two approaches: oversimpli�cation and surplus of details ought to be
avoided with the exception of certain well justi�ed circumstances. The optimum solution seems
to be placed somewhere in between: a model that is simple on one hand, but which do not neglect
some fundamental features of the granular medium and avoids excessive numerical tricks.

In order to build such a �middle ground� model, one must understand what elements of the
medium can be simpli�ed and which are critical and need to be present.
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1.4 Particle Contact Management: Clumps and Polygons

At each step a granular sample consists of thousands of intergranular contacts. That is the reason
why the way a DEM code deals with contacts might be the most important aspect in terms of
software performance. In general the problem consists of the following questions:

a) how to decide whether the contact actually occurred,

b) where the contact point is located.

1.4.1 Clumps: Grains Made of Discs

The question of circle-circle (sphere-sphere as well) collision/intersection detection and the ge-
ometric position of such a contact is simple. If the distance AB between the centres of the two
discs is bigger than the sum of the radii, there is no contact. Otherwise, the contact occurs, and
the point of contact is placed on the vector connecting the centres, as in the equation below and
in Fig. 1.7.

‖ AB ‖≤ rA + rB (1.3)

Figure 1.7: Contact between two discs or two spheres can be identi�ed by comparing the distance

between the centres of the particles with the sum of the radii

In this study some complex shapes were created by combining three overlapping discs into
a single rigid body called clump. In this case, contacts between two grains are simply multiple
contacts between discs and the contact criterion is the same as (1.3). The di�erence is that in
case of disc particles in contact only tangential force is causing the moment of force on the
grain, while in case of clumps it is both normal and tangential forces. The case of disc contact is
presented in Figure 1.8a. The moment of force with respect to the grain centre is expressed as:

Mdisc
centre = MT = lT × fT . (1.4)

The case of clump contact is presented in Figure 1.8b. The moment of force with respect to the
grain centre is expressed as:

M
clump
centre = MN +MT = lN × fN + lT × fT . (1.5)
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(a) Disc (b) Clump

Figure 1.8: Forces acting on the grain are causing moment of force with respect to the mass

centre of the particle. In case of disc the axis of normal forces is going through the grain centre,

which is usually not the case in clump

(a) Single contact (b) Double contact

Figure 1.9: Examples of contact between two clumps. The contacts are treated the same way as

in case of separate discs

In Figure 1.9 some examples of possible clump contacts are presented. The location of the
contact points in case of clump contact is determined the same way as in case of discs.

1.4.2 Polygons: 2D Shadow Overlap Method

Other type of grains used in our simulations were irregular symmetric convex polygons. A contact
between two polygons is more complicated then a contact between two discs. Since the problem
of polygon contact detection (also called collision detection) is very common in computer science
(computer graphics and animation, motion planning, game development), there are many algo-
rithms dealing with it, for example Gilbert-Johnson-Keerthi distance algorithm (Gilbert et al.,
1988), various space partitioning algorithms (Ganter and Isarankura, 1993), separating axis the-
orem (SAT) (Gottschalk et al., 1996).
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(a) Single contact point (b) Two contact points

(c) Force proportional to overlap area (d) Force proportional to overlap distance

Figure 1.10: Di�erence between a standard polygon contact treatment (left) and the one in-

troduced in Moreau's Shadow Overlap Method (right). More on contact force computation in

Section 1.7

In this study a Shadow Overlap Method was used. The method was developed by Jean-Jacques
Moreau for the Contact Dynamic code (Saussine et al., 2006) and adapted to Molecular Dynam-
ics code (Charalampidou et al., 2009; Szarf et al., 2011). The contact detection in this method is
based on the well-known separating axis theorem1, but the treatment of the contact point and
contact force is innovative.
In DEM a typical way to model a contact between two convex polygons is to introduce a single
force (Fig. 1.10a) proportional to overlap area of polygons in contact (Fig. 1.10c) (Matuttis et al.,
2000; Alonso-Marroquin et al., 2005).
In Shadow Overlap Method in case of a contact between faces of two polygons two contact points
are introduced, see Figure 1.10b. This assures fast stabilisation of the contact point in compari-
son with the methods using a single force where the contact is wobbly (compare Fig. 1.10a and
1.10b). In case of contact between a corner and a face a single force is used as it is typically done
in other approaches.
The second di�erence is that the value of the contact force is proportional to the overlap distance,
not area, see Figure 1.10d.

The algorithm of the Shadow Overlap Method used in this study is presented in details in
Appendix A. It can be regarded as three separate tasks performed one after another for each
pair of neighbouring particles in order to determine whether the given particles are in contact or
not, what is the type of contact (single or double point of contact) and where these points are
located.
The contacts between two polygons are presented in Figure 1.11.

1Any two non-overlapping polytopes (generalization of a polygon in n-dimensions) can always be separated
by a plane that is either parallel to a face of one of the polytopes or parallel to an edge of each. (Schneider and
Eberly, 2002)
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(a) Edge-to-edge double contact (b) Corner-to-edge single contact

Figure 1.11: Examples of the contacts between two polygons

The third type of contact, corner-to-corner, is in fact always represented as either corner-to-
edge or edge-to-edge.

1.5 Molecular Dynamics Overview

Discrete Element Method (DEM) is a common name for a group of numerical methods able to
simulate the behaviour of a group of interacting particles. It is used in various �elds of science
and engineering. Molecular Dynamics approach to DEM was introduced by Cundall (Cundall,
1971) as a proposition for rock mechanics problem solving, and subsequently developed to cover
granular media modelling (Cundall and Strack, 1979).

The principle of DEM is to describe the behaviour of a granular medium under external
loading by means of individual particle movements and their interactions. Disturbances such as
external loading propagate through a particle assembly causing changes of particle positions,
velocities, values of forces interacting at the contact points, and rearrange the contact network.
The mathematical description of the medium behaviour is based on motion laws (described in
Section 1.6), drawn from Newton's second law of motion and on contact laws (described in
Section 1.7). The motion laws are applied to each particle while the contact laws act at the point
of contact. Calculations are made in time steps as presented in Figure 1.12. In each step motion
laws are solved to obtain new positions and new contacts, which are used as an input to the
force-displacement contact laws that result in new contact forces.
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Figure 1.12: Typical time step in DEM (modi�ed after (PFC2D Manual, 2004))

1.6 Law of Motion

The equations (1.6) and (1.7) are drawn from Newton's second law of motion. The method
consists of numerically solving these ordinary di�erential equations over time.

M ~̈xi =
∑

j

~Fj→i + ~r, (1.6)

I
~̈
θi =

∑

j

~Γj→i + ~mr, (1.7)

where:
M is the mass of the particle i [kg],
I is the inertia matrix of the particle i

[

kg ·m2
]

,
~̈xi is the acceleration of the particle i

[

m
s2

]

,
~̈
θi is the angular acceleration of the particle i

[

rad
s2

]

,
~Fj→i is the force acting from j to i [N ],
~Γj→i is the moment of force ~Fj→i with respect to the mass centre

of the particle i [N ·m],
~r is the external force (e.g. gravity) [N ],
~mr is the moment of the external force ~r with respect to the

mass centre of the particle i [N ·m].
There are many explicit integration schemes applicable to the equations (1.6) and (1.7). In this

study two di�erent codes were used, each one using a di�erent integration method. While PFC2D
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makes use of Verlet leapfrog integration method (PFC2D Manual, 2004; Allen and Tildesley, 1994),
the code applied for polygons uses the third-order Gear predictor�corrector method (Haile, 1992;
Allen and Tildesley, 1994).

1.6.1 Leapfrog Algorithm

Leapfrog algorithm consists of calculating the positions at �full� time steps, t = k∆t while the
velocities are calculated at �half� time steps: t = (k + 1

2)∆t, k = 0, 1, 2, ... The equation (1.6) is
integrated using a centred �nite-di�erence over one time step ∆t:

~̈xi(t) =
1

∆t

(

~̇xi(t+
∆t

2
)− ~̇xi(t−

∆t

2
)

)

. (1.8)

The equation (1.6) is then inserted into equation (1.8) in order to obtain velocity at the next
half-time step:

~̇xi(t+
∆t

2
) = ~̇xi(t−

∆t

2
) +

(

∑

j
~Fj→i + ~r

M

)

∆t. (1.9)

Finally, the computed velocities are used to update the positions of the particles:

~xi(t+∆t) = ~xi(t) + ~̇xi(t+
∆t

2
)∆t. (1.10)

The rotation of the particles is integrated in analogical way using equation (1.7).

1.6.2 Third-Order Gear Predictor�Corrector Algorithm

On the contrary, this integration algorithm allows us to obtain positions and velocities at the
same instant. The prediction of the trajectory at time t + ∆t is obtained from the truncated
Taylor series expansion:

~xi
P (t+∆t) = ~xi(t) + ~̇xi(t)∆t+

1

2
~̈xi(t)∆t2, (1.11)

~̇xPi (t+∆t) = ~̇xi(t) + ~̈xi(t)∆t, (1.12)

~̈xPi (t+∆t) = ~̈xi(t). (1.13)

The predicted positions are used as an input to the contact laws in order to obtain the values
of force. The new forces are inserted to Newton's equation, which has to be solved in order to
obtain the corrected values of acceleration, velocity and position. It is a second-order equation
of the form ẍ = f (x, ẋ). In case of the third-order Gear method the correction coe�cients are
C0 = 0, C1 = 1, C2 = 1. The �nal form of the equations is the following:

~̈xCi (t+∆t) =

∑

j
~Fj→i + ~r

M
, (1.14)

~̇xCi (t+∆t) = ~̇xPi (t+∆t) +
1

2
∆t
(

~̈xCi (t+∆t)− ~̈xPi (t+∆t)
)

, (1.15)

~xi
C(t+∆t) = ~xi

P (t+∆t). (1.16)

As one can see, the equations (1.16) equal to (1.11) and (1.15) are equivalent to the so-called
velocity form of the Verlet's algorithm, (Allen and Tildesley, 1994).
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1.7 Contact Laws

In this study, the intergranular forces were computed using classical contact laws for DEM. At
each contact point normal and tangential contact laws were applied to determine the contact
forces basing on the relative position of the contacting particles. Apart from the two standard
laws a third one, so called parallel bond contact law, was introduced in the second part of the
study to model an elastic body (see Section 3.2.1).

1.7.1 Normal Contact Law

The value of the normal contact force is proportional to the overlap between the two particles in
contact. The overlap distance is de�ned as:

h = dij − ri − rj (1.17)

where:
dij is the distance between the centres of the particles i and j in contact [m],
rk is the radius of a given particle [m].

The force equation can be expressed as

fn = −hkn (1.18)

where:
fn is the resulting normal force [N ],
kn is the normal spring sti�ness

[

N
m

]

,
so that if h < 0 then fn > 0, otherwise fn = 0.

The normal contact force fn can be damped with a viscous dashpot in order to dissipate
energy. The normal forces are computed with a law described by a Kelvin-Voigt rheological
model (see Fig. 1.13).

(a) Rheological model (b) Force-displacement law

Figure 1.13: Normal contact force

In that case, the force value is computed according to the following equation:

fn = −hkn + vngn (1.19)

where:
vn is the relative normal velocity of the particles in contact

[

m
s

]

,

gn is the dashpot damping constant
[

kg
s

]

.

Value of gn is given by gn = βn2
√
mkn. Where βn is the value of the critical damping ratio. The

16



CHAPTER 1. PARTICLE SHAPE IN GRANULAR MATERIALS

normal force is pushing two overlapping particles away from each other. The damping introduced
in equation (1.19) is supposed to help reaching the equilibrium state faster in such way, that its
sign is oposing the change of overlap. Unfortunately it can cause problems by introducing arti�cial
pulling forces (Radjaï and Dubois, 2011). The solution implemented in PFC2D is local damping
similar to the one proposed by Cundall (Cundall and Strack, 1979). In this case, the damping
is applied to each particle, not to each contact. Additional term is introduced to the Newton's
equation and it assumes the form of:

Mẍi = Fi + r + Fd. (1.20)

The damping force Fd depends on the velocity of the particle:

Fd = −α |Fi| sgn(ẋi), (1.21)

where α is the damping constant and sgn function gives only the sign (+ or −) of a scalar.
This damping is working very e�ectively but is acceptable only for quasi-static situations. In

other cases some mass forces appear that lead to non-physical behaviour.

1.7.2 Tangential Contact Law

Tangential forces are computed according to an elastic-perfectly plastic law. Between two time
steps t1 and t2 there is a relative tangential displacement change δUt resulting in an increment
of tangential force δft:

δft = ktδUt = ktv
ij
t dt (1.22)

where:

vijt is the relative tangential velocity of the particles in contact,
δft is the increment of the resulting tangential force.

(a) Rheological model (b) Force-displacement law

Figure 1.14: Tangent contact force

The sum of the increments over increasing time steps equals:

ft =
∑

δft (1.23)
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but as the tangential forces obey Coulomb friction:

|ft| > µfn → ft = sgn (ft) · µfn (1.24)

where µ is the intergranular friction coe�cient.
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Chapter 2

In�uence of Grain Shape

The work presented in this chapter was focused on the study of grain shape in�uence on the
mechanical behaviour of particle assemblies by means of Discrete Element Method. This work
was reported during two conferences (STPMF 2009 (Szarf et al., 2009a) and Powders and Grains
2009 (Szarf et al., 2009b)) and two papers in international journals (Szarf et al., 2011; CEGEO
et al., 2012). Therefore an unusual format was adopted for this chapter: after a short introduction
and presentation of the studies, the two papers are are reproduced in extenso. To end the chapter,
new speci�c results on the e�ect of grain shape on the micromechanical behaviour are presented.

2.1 CEGEO Project

The work presented hereafter was part of an interlaboratory research program CEGEO1 organ-
ised in cooperation between French laboratories LMGC2, 3SR3 and LTDS4 from 2007 to 2010.
The name of the program stands for �Changement d'Echelle dans les GEO-matériaux� (Change
of Scale in Geomaterials). Among other topics in the research program (micromechanical aspects
of granular media failures, kinematical localisation in granular media, boundary condition e�ect
on the mechanical properties of granular materials, capillarity in non-saturated granular media),
the collaboration focused on studying the particle shape in�uence in granular media. The project
assumed using various DEM codes with some common framework concerning shape de�nition,
granulometry, testing protocol. It was decided to model one group of shapes, the clumps of three
discs, twice using independent Molecular Dynamics and Contact Dynamics codes.

As explained in the introduction of this thesis, Section 1.1, di�erent geometric parameters
can be used to describe a grain shape. In the collaborative research program CEGEO, it was
decided to use a simple shape parameter equivalent with sphericity, equation (1.1):

α = 1− R2

R1
, (2.1)

where the radii R1 and R2 are respectively de�ned as radii of a smallest circumscribed circle and
a largest inscribed circle (see Fig. 2.1).

1http://www.granuloscience.com/CEGEO/
2Laboratoire de Mécanique et Génie Civil (Laboratory of Mechanics and Civil Engineering), Montpellier,

France
3Laboratoire Sols, Solides, Structures � Risques (Soils, Solids, Structures � Risk Laboratory), Grenoble, France
4Laboratoire de Tribologie et Dynamique des Systémes (Tribology and System Dynamics Laboratory), Lyon,

France
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(a) Disc (b) Clump (c) Polygon

Figure 2.1: De�nition of the shape parameter α. Particles (b) and (c) based on the same circles

have the same α = 0.30 but di�erent shape

Figure 2.2: Other particle shapes used in CEGEO research program: clump made of two discs

connected with a rectangle (left) and elongated polygon (right). The shape parameter α of these

particles is equal to 0.40

The shape types presented in Figure 2.1: clumps of three discs and irregular polygons with
three axes of symmetry are presented in this thesis. The CEGEO program used two other grain
shapes as well: convex clumps consisting of two discs connected with a rectangle of the same size
and elongated convex irregular polygons, Fig. 2.2.

Two numerical approaches were used to simulate granular samples consisting of these shapes,
Fig. 2.3. The research teams of Montpellier and Lyon used the Contact Dynamics approach (Jean
and Moreau, 1992) to model clumps of three discs, elongated clumps and elongated polygons.
The research team of 3SR used a Molecular Dynamics-like approach to model clumps of three
discs and polygons with three axes of symmetry.
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D

B

C D

A

Figure 2.3: Fragments of the samples used in the CEGEO shape in�uence study (CEGEO et al.,

2012)

Some common ground rules were set: same grading of the samples, same boundary condi-
tions5, same interparticular friction coe�cient, same sample preparation method6, similar inertial
number7 for the mechanical tests etc. Thanks to that, in spite of using di�erent approaches and
multiple numerical codes, it was possible to show similarities between the samples made of very
di�erent grain shapes but characterised with the same sphericity parameter. The samples submit-
ted to biaxial loading8 showed the linear evolution of the residual macroscopic angle of friction
φthreshold with α.

α

MD
CD

φ

Figure 2.4: Macroscopic friction angle at the threshold of samples consisting of 5000 particles

subjected to biaxial compression (CEGEO et al., 2012)

5Rigid walls
6Isotropic compression with no intergranular friction
7Dimensionless relation between the forces of inertia and the forces applied (Roux and Chevoir, 2005)
8Vertical compression with constant vertical strain rate and constant horizontal stress. In such conditions the

sample is free to contract or to dilate, depending on the initial porosity and/or coordination number
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The Figure 2.4 presents the evolution of φthreshold depending on the grain shape and on α.
Each sample shows the same linear dependence of macroscopic friction angle at the critical state
with the sphericity coe�cient α, but with higher values for angular shapes (polygons denoted C
and D). These results highlights that even if α is a low-order shape parameter, it is enough to
grasp the hierarchy of shapes.

Another interesting point in the collaborative research work was the comparison of the in-
�uence of α on di�erent internal parameters like the mean coordination number or the packing
fraction. These two parameters analysed in frictionless particle assemblies submitted to isotropic
loading revealed some nontrivial evolution. A simple analytical model of the packing fraction
at the isotropic state ρiso = f (α) was successfully proposed. The model was based on the geo-
metrical description of grain self-porosity (which depends on α) and the voids between grains.
Moreover, the results of that collaborative work showed that for three-disc clump shapes the
results of Contact Dynamics and Molecular Dynamics approaches are the same, qualitatively for
φ∗ (Fig. 2.4) and quantitatively for ρiso (Fig. 2.5).
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The paper describing the study (CEGEO et al., 2012) is available hereafter, with an exception
that α was denoted there as η.
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Abstract – Particle shape is a key to the space-filling and strength properties of granular
matter. We consider a shape parameter η describing the degree of distortion from a perfectly
spherical shape. Encompassing most specific shape characteristics such as elongation, angularity
and non-convexity, η is a low-order but generic parameter that we used in a numerical benchmark
test for a systematic investigation of shape dependence in sheared granular packings composed
of particles of different shapes. We find that the shear strength is an increasing function of η
with nearly the same trend for all shapes, the differences appearing thus to be of second order
compared to η. We also observe a non-trivial behavior of packing fraction which, for all our
simulated shapes, increases with η from the random close packing fraction for disks, reaches a
peak considerably higher than that for disks, and subsequently declines as η is further increased.
These findings suggest that a low-order description of particle shape accounts for the principal
trends of packing fraction and shear strength. Hence, the effect of second-order shape parameters
may be investigated by considering different shapes at the same level of η.

Copyright c© EPLA, 2012

The hard-sphere packing is at the heart of various
models for the rheology and (thermo)dynamical properties
of amorphous states of matter including liquids, glasses
and granular materials [1,2]. Such models reflect both the
purely geometrical properties of sphere packings, e.g. the
order-disorder transition with finite volume change [3],
and emergent properties arising from collective particle
interactions, e.g. force chains and arching in static piles [4].
As to non-spherical particle packings, rather recent results
suggest that such packings exhibit higher shear strength
than sphere packings [5–15], and may approach unusually
high packing fractions [2,16–18]. However, a systematic

(a)Collaborative group “Changement d’Echelle dans les GEO-
matériaux” (scale change in geomaterials).

and quantitative investigation of shape dependence is still
largely elusive since particle shape characteristics such as
elongation, angularity, slenderness and non-convexity are
described by distinct groups of parameters, and the effect
of each parameter is not easy to isolate experimentally.
In order to evaluate the shape dependence of general

granular properties such as packing fraction, shear
strength and internal structure for particles of different
shapes, we designed a numerical benchmark test that was
simulated and analyzed by the members of a collaborative
group (CEGEO). The idea of this test is that various
non-spherical or non-circular shapes can be characterized
by their degree of distortion from a perfectly spherical
or circular shape. Let us consider an arbitrary 2D shape
as sketched in fig. 1. The border of the particle is fully
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∆R

R

Fig. 1: An arbitrary particle shape represented by a concentric
pair of circumscribing and inscribed circles.

Fig. 2: Four different shapes belonging to the same η-set
with η= 0.4: trimer (A), rounded-cap rectangle (B), truncated
triangle (C), and elongated hexagon (D).

enclosed between two concentric circles: a circumscribing
circle of radius R and an inscribed circle of radius R−∆R.
We define the η-set as the set of all shapes with borders
enclosed between a pair of concentric circles (spheres in
3D), touching both circles and having the same ratio

η=
∆R

R
. (1)

Four different particle shapes belonging to the same η-
set are shown in fig. 2. A non-zero value of η corresponds
to non-convexity for A-shape, elongation for B-shape,
angularity for C-shape, and a combination of angularity
and elongation for D-shape.
The parameter η is obviously a rough low-order shape

parameter; see also [19]. But, encompassing most specific
shape parameters, it provides a general framework in
which shape dependence may be analyzed among parti-
cles of very different shapes. Within an η-set, each specific
shape may further be characterized by higher-order para-
meters. The issue that we address in this letter is to
what extent the packing fraction and shear strength are
controlled by η and in which respects the behavior depends
on higher-order shape parameters.
The benchmark test is based on the four shapes of fig. 2.

The A-shape (trimer) is composed of three overlapping
disks touching the circumscribing circle and with their
intersection points lying on the inscribed circle; the B-
shape (rounded-cap rectangle) is a rectangle touching
the inscribed circle and juxtaposed with two half-disks
touching the circumscribing circle; the C-shape (truncated
triangle) is a hexagon with three sides constrained to touch
the inscribed circle and all corners on the circumscribing
circle; and the D-shape (elongated hexagon) is an irregular
hexagon with two sides constrained to touch the inscribed
circle and two corners lie on the circumscribing circle.
The range of geometrically defined values of η for a given

shape (defined by a construction method) has in general a
lower bound η0. For A and B, the particle shape changes
continuously from a disk, so that η0 = 0 whereas we have
η0 = 1−

√
3/2≃ 0.13 for C and D.

Two different discrete element methods (DEM) were
used for the simulations: contact dynamics (CD) and mole-
cular dynamics (MD). In the CD method, the particles
are treated as perfectly rigid [20] whereas a linear spring-
dashpot model was used in MD simulations with stiff
particles (kn/p0 > 10

3, where kn is the normal stiffness
and p0 refers to the confining pressure) [21]. The trimers
were simulated by both methods for all values of η. We
refer below as A (for CD) and A′ (for MD) to these simu-
lations. The packing C was simulated by MD whereas the
packings B and D were simulated by CD. In CD simu-
lations, the coefficient of restitution was set to zero. In
MD simulations, the damping parameter was taken very
close to the critical damping coefficient so that the resti-
tution coefficient was also negligibly small [22]. Note that
in quasi-static flow, the relaxation time of the particles is
short enough (compared to the inverse shear rate) to allow
for efficient dissipation of kinetic energy in each time step.
For this reason, in contrast to granular gases, the exact
values of the damping parameters or restitution coeffi-
cients have practically no influence on the numerical data
analyzed below [23].
For each shape, several packings of 5000 particles were

prepared with η varying from 0 to 0.5. To avoid long-
range ordering, a size polydispersity was introduced by
taking R in the range [Rmin, Rmax] with Rmax = 3Rmin
and a uniform distribution of particle volumes. A dense
packing composed of disks (η= 0) was first constructed by
means of random deposition in a box [24]. For other values
of η, the same packing was used with each disk serving
as the circumscribing circle. The particle was inscribed
with the desired value of η and random orientation inside
the disk. This geometrical step was followed by isotropic
compaction of the packings inside a rectangular frame.
The gravity g and friction coefficients between particles
and with the walls were set to 0 during compaction in order
to avoid force gradients. Figure 3 displays snapshots of the
packings for η= 0.4 at the end of isotropic compaction1.
The isotropic samples were sheared by applying a

slow downward velocity on the top wall with a constant
confining stress acting on the lateral walls. During shear,
the friction coefficient µ between particles was set to 0.5
and to 0 with the walls. The shear strength is characterized
by the internal angle of friction ϕ defined by

sinϕ=
σ1−σ2
σ1+σ2

, (2)

where the subscripts 1 and 2 refer to the principal stresses.
sinϕ increases rapidly from zero to a peak value before
relaxing to a constant material-dependent value sinϕ∗,

1Animation videos of the simulations can be found at

www.cgp-gateway.org/ref012.
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Fig. 3: Snapshots of the simulated packings in the densest
isotropic state for η= 0.4.
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Fig. 4: (Colour on-line) Shear strength sinϕ∗ of packings
composed of various particle shapes (see fig. 2) as a function
of η.

which defines the shear strength at large strain at a steady
stress state.
Figure 4 shows the dependence of sinϕ∗ with respect

to η for our different shapes. Remarkably, sinϕ∗ increases
with η at the same rate for all shapes. The data nearly
coincide between the A and B shapes, on the one hand, and
between C and D shapes, on the other hand. This suggests
that non-convex trimers and rounded-cap rectangles, in
spite of their very different shapes, belong to the same
family (rounded shapes). In the same way, the truncated
triangles and elongated hexagons seem to belong to the
family of angular particles and exhibit a shear strength
slightly above that of rounded shapes. Note also that the
results are robust with respect to the numerical approach
as the packings A and A′ were simulated by two different
methods.
The increase of shear strength with η may be attributed

to the increasing frustration of particle rotations as the
shape deviates from a disk [11,25]. Since the particles
may interact at two or three contact points (A-shape) or
through side-to-side contacts (shapes B, C and D), the
kinematic constraints increase with η and frustrate the
particle displacements by rolling. The restriction of rolling
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Fig. 5: (Colour on-line) Friction mobilization in the steady state
as a function of η for different particle shapes.

leads to enhanced role of friction in the mechanical equilib-
rium and relative sliding of particles during deformation.
A related static quantity is the mean friction mobilization
defined by M = 〈ft/(µfn)〉, where ft is the magnitude of
the friction force, fn is the normal force, and the average
is taken over all force-bearing contacts in the system.
To evaluate the effect of particle shape, we consider the

parameter

Mη =
M(η)

M(η= 0)
− 1 (3)

as a function of η for different shapes, where M(η= 0)
is the friction mobilization for circular particles. Figure 5
shows thatMη is a globally increasing function of η for all
shapes. The parameter η appears also in this respect to
account for the global trend of friction mobilization, and
the differences observed in fig. 5 among different shapes
are rather of second order.
We also observe that the proportions of double and

triple contacts for A-shape packings and the proportion
of side-to-side contacts for other shapes increase with
η. For non-circular particles, one should distinguish the
coordination number Z, defined as the mean number
of contacting neighbors per particle, from the “contact
coordination number” Zc defined as the mean number
of contacts per particle. Obviously, for the calculation
of both Z and Zc only the force-bearing contacts and
non-floating particles are taken into account [26]. We
have Z =Zc ≃ 4 for the disks in the initial state prepared
with µ= 0. This value corresponds to an isostatic state in
which one expects Z = 2Nf , where Nf is the number of
degrees of freedom of a particle [27]. For frictionless disks,
we have Nf = 2 (two translational degrees of freedom),
leading to Z = 4. For non-circular shapes, we have Nf = 3
since the rotational degrees of freedom take part in the
mechanical equilibrium of the particles. Hence, if isosta-
ticity holds also for non-circular frictionless particles, we
expect Z = 6. We observe instead Z < 5 for all our pack-
ings. However, we find Zc ≃ 6 for η �= 0 if each side-to-side
contact is counted twice, representing two independent
constraints. This result is consistent with the isostatic
nature of a packing of frictionless non-circular particles
and shows that the packings of non-circular shape are
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Fig. 6: (Colour on-line) Packing fraction in the isotropic state
as a function of η for different particle shapes.

not under-constrained as previously suggested [28]. For
µ= 0.5, the packings are no more isostatic and Z and Zc
vary only slightly with η with values in the range 3 to 4 for
Z and in the range 4 to 5 for Zc in the course of shearing.
We now focus on the packing fraction which crucially

depends on particle shape. Figure 6 shows the packing
fraction ρiso in the initial isotropic state as a function
of η. We observe a non-trivial behavior for all particle
shapes: the packing fraction increases with η, passes by
a peak depending on each specific shape and subsequently
declines. For the B-shape a sharp decrease of ρiso occurs
beyond η= 0.5 as was shown in [10].
This unmonotonic behavior of packing fraction was

observed by experiments and numerical simulations
for spheroids as a function of their aspect ratio
[2,16,17,28–30]. The decrease of the packing fraction
is attributed to the excluded-volume effect that prevails
at large aspect ratios and leads to increasingly larger
pores which cannot be filled by the particles [29]. The
observation of this unmonotonic behavior as a function
of η for different shapes indicates that it is a generic
property depending only on deviation from circular shape.
This behavior may thus be explained from general consid-
erations involving the parameter η but with variations
depending on second-order shape characteristics.
A plausible second-order parameter is

ν =
Vp
πR2
, (4)

where Vp is the particle volume in 2D. Its complement
1− ν is the “self-porosity” of a particle, i.e. the unfilled
volume fraction inside the circumscribing circle. Keeping
the radius R of the circumscribing circle constant, ρiso =
Vp/V varies with η as a result of the relative changes of
Vp and the mean volume V per particle. The free (pore)
volume per particle is Vf = V −Vp.
At η= 0, the free volume Vf is only composed of steric

voids, i.e. voids between three or more particles, and the
packing fraction is given by ρ(0) = πR2/V (0). For η > 0,
the void patterns are more complex but can be described
by considering the generic shape of particles belonging to
a given η-set. The borders of a particle involve “hills”,
which are the parts touching the circumscribing circle, and

(a) (b)

Fig. 7: Pore volume reduction by (a) overlap between self-
porosities; (b) steric pores.
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Fig. 8: (Colour on-line) Normalized packing fractions fitted by
eq. (6).

“valleys” touching the inscribed circle. The volume V per
particle varies with η by two mechanisms. First, the hills
of a particle may partially fill the valleys of a neighboring
particle, fig. 7(a). Secondly, the steric voids between the
hills shrink as η increases due to the increasing local
curvature of the touching particles, fig. 7(b). To represent
this excess or loss of pore volume due to the specific
jamming configurations induced by particle shapes, we
introduce the function h(η) by setting

V (η) = V (η0)−πR
2 h(η), (5)

with h(η0) = 0. With these assumptions, the packing
fraction is expressed as

ρ(η) =
ν(η)ρ(η0)

1−h(η)ρ(η0)
. (6)

The function ν(η) is known for each shape but h(η)
needs to be estimated. A second-order polynomial approx-
imation

h(η) = α(η− η0)+β(η− η0)
2 (7)

together with eq. (6) allows us to recover the correct trend
and to fit the data as shown in fig. 8. The error bars
represent the variability at η0 assumed to be the same for
all other values of η. The parameter α ensures the increase
of packing fraction with η at low values of the latter and
it basically reflects the shrinkage of steric pores (fig. 7(b))
whereas β accounts for the overlap between circumscribing
circles (fig. 7(a))) and is responsible for the subsequent
decrease of the packing fraction.
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The fitting parameters in fig. 8 are α≃ 1.30, 1.29, 1.14,
1.17 and β ≃ 1.23, 1.20, 0.23, 0.20 for C, A, D and B
shapes, respectively with increasing peak value. Note that
the values of β are considerably smaller for B and D that
have an elongated aspect and for which the overlapping of
self-porosities prevails as compared to A and C for which
the shrinkage of the initial pores is more important.
In summary, our benchmark simulations show that a

low-order shape parameter η, describing deviation with
respect to circular shape, controls to a large extent
both the shear strength and packing fraction of granular
media composed of non-circular particles in 2D. The shear
strength is roughly linear in η whereas the packing fraction
is unmonotonic. Our simple model for this unmonotonic
behavior is consistent with the numerical data for all
shapes. It is governed by a first-order term in η for the
shrinkage of the initial steric pores and a second-order
term in η for the creation of large pores by shape-induced
steric pores. The effect of higher-order shape parameters
may be analyzed also in this framework in terms of
differences in packing fraction and shear strength among
various shapes belonging to the same η-set. An interesting
issue to be addressed in future is whether a generic
second-order parameter accounting for such differences
exists. Another aspect that merits further investigation
is the joint effects of size polydispersity and particle
shape. The shear strength is independent of particle size
polydispersity as a result of the capture of force chains by
the class of larger particles [31]. But the packing fraction
and force and contact anisotropy depend on both shape
and polydispersity.
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2.2 Convex and Concave Grains

In the present study the emphasis was put on the mechanical behaviour of dense and loose
granular assemblies made of clumps of three discs, Fig. 2.1b, and convex polygons with three
axes of symmetry, Fig. 2.1c. It is worth noting that these polygons can be seen as an envelope
of clumps. More information about these two shapes can be found in Appendix B.

In CEGEOS's paper (CEGEO et al., 2012) these shape groups were denoted as A' and C.
From this point the clump samples previously denoted A′ will be referred to as either C.xx or
clumps, with .xx denoting the value of the sphericity factor α. The polygons previously denoted
as C will be referred to as P.xx or polygons.

In Figure 2.6 the shapes used in the study are presented. The values of α used in the study
ranged from 0.0 to 0.5. For clumps α = 0.0 denotes a disc while α =

√
3 − 1 ≈ 0.73 is the

maximum possible value and denotes three discs in contact without any overlap. For polygons
the minimum value is α = 1−

√
3/2 ≈ 0.13 (hexagon) while the maximum α = 0.5 (equilateral

triangle).

Figure 2.6: Particle shapes used in the study. The outer radius of particles R1 is constant. The

left column presents polygonal grains, the right one clumps. Values of shape parameter α are

given for each shape. Note the absence of polygons α = 0.00 and α = 0.10, as well as clumps

α = 0.13

28



CHAPTER 2. INFLUENCE OF GRAIN SHAPE

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5

φ
[d

e
g
]

α

φpeak dense
φthreshold dense

φ loose

(a) Clumps

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5

φ
[d

e
g
]

α

φpeak dense
φthreshold dense

φ loose

(b) Polygons

Figure 2.7: Evolution of macroscopic friction angles φ of samples submitted to vertical biaxial

compression in function of α. φpeak was measured at the peak of stress while φthreshold was

measured at the stress critical state

The mechanical behaviour of the samples consisting of the particles listed above observed
in the numerical biaxial compression tests showed that initially (ε1 < 3%) the concavity of the
particles predominates for dense samples9. The Figure 2.7 clearly shows that the macroscopic
friction angle φpeak measured at the peak of stresses increases with α for clumps, but not for
polygons; Dense samples containing polygonal particles responded to the loading with a shear
strength decreasing with α. This di�erence is even more remarkable because dense samples of

9Samples prepared without intergranular friction: µ = 0.0
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polygons and clumps displayed the same coordination number value10 in the isotropic state (on
average number z∗ ≃ 6). This di�erence in the mechanical behaviour can be explained by the
mobilization of tangential contact forces that increase with the degree of sphericity for assemblies
made of concave clumps, but not for convex polygons.

For large macroscopic strains (critical stress state), the behaviour with α is di�erent than at
the peak. The trend of evolution of φthreshold (and φ for loose assemblies11) is the same whatever
the particle shape or the initial density of the sample. It seems that the sphericity parameter α
is the deciding factor, not the particle concavity.

Some additional observations were made on the in�uence of the grain shape on the strain
localisation. Localisation in the form of shear bands is a ubiquitous failure mechanism in granular
materials (Desrues and Chambon, 2002). In Figure 2.8 two examples of strain localization maps
are presented.

(a) Clumps

(b) Polygons

Figure 2.8: Shearmaps on samples made of grains with α = 0.3. ε1 = 0 − 13.5%

To quantify the in�uence of particle shape on the shear localisation a localization indicator
St proposed by (Sornette et al., 1993) was used. The indicator can be seen as a proportion of
the sheared area to the total area of the sample. Apart from presenting it locally as in Figure
2.8, one can also compute it globally. In Figure 2.9 the evolution of the global St value during
the biaxial tests on assemblies of di�erent particles is presented. The overall shape of the curves
resembles that of the macroscopic stress-strain curves: the value of St increases at the beginning
of the compression and reaches its maximum along with the peak stress, an then declines to a
plateau.

Comparison of the localisation maps and the localisation curves reveals that the plateau in
Figure 2.9 is correlated with a concentration of the deformation in a band. The amount of sheared
area of the assembly is increasing when α increase in the samples of clumps, Fig. 2.9a, with an
exception of discs that seemed not to localise much. In clumps α is directly related to the size of
concavities; More concave grains interlock more and the thickness of the shear bands is larger.

10Average number of contacts per particle, �oating particles excluded
11Samples prepared with intergranular friction: µ = 0.5
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(b) Polygon samples

Figure 2.9: Evolution of the shear localisation indicator throughout a vertical compression test.

The curves represent a mean of four samples consisting of grains of the same type

A clear trend for samples made of polygons is more di�cult to determine but one might say
that except for samples of haxagons α ≈ 0.13, the amount of sheared area increased with α as
well, Fig. 2.9b. Moreover it seems that while in the case of clump samples the St value drops
down to a plateau rapidly, in samples consisting of polygons the process is slower and the plateau
stabilises for larger values of ε1. The second remark is that the residual value of St is generally
higher in polygons, meaning wider localisation bands.

As a synthesis of these remarks, the samples made of clumps behaves more like a �brittle�
material whereas samples made of polygons are more �ductile� in a way that they resemble dry
sand behaviour.

Apart from the localisation of strains, it was also interesting to investigate the spatial distri-
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2.2. CONVEX AND CONCAVE GRAINS

bution of interpatrticle contacts that were maintained during the loading. The persisting contacts
can be divided into two groups based on the relative movement of the particles in contact. Two
rounded particles remaining in contact can either roll, slip, or roll and slip at the same time.

Figure 2.10: Sketch of a single, persisting contact between two clumps (1) and (2). On the left:

con�guration at time t = t0, on the right: con�guration after a displacement occurred, time

t = t1. Bc1 (t1) and Bc2 (t1) denotes the actual position of the centres of discs in contact. Here

the sign of the distance d [C1 (t1) , C (t1)] is positive while d [C2 (t1) , C (t1)] is negative

Let us consider two grains that remain in contact during deformation of the assembly (see Fig.
2.10). Before the relative displacement occurred, the initial point of contact C (t0) was identical
with the two points on the perimeter of the grains, C1 and C2. After the change of positions and
orientations of the grains in relation to each other, these points moved to positions C1 (t1) and
C1 (t1) while the point of contact was placed at C (t1). By comparing these distances between
the new contact position and the points on the perimeter that were in contact previously, one
can separate contacts where rolling without sliding occurred according to the following relation:

|d [C1 (t1) , C (t1)] + d [C2 (t1) , C (t1)]| = 0, (2.2)

where:

C (t1) is the current position of the current contact point,
Ci (t1) is the current position of the initial contact point,
d [A,B] is the arch length between two given points A and B,

This criterion was made softer by accepting the sliding contacts where the amount of sliding
|d [C1 (t1) , C (t1)] + d [C2 (t1) , C (t1)]| is less than 10% of the maximum sliding as rolling. This
threshold value was chosen arbitrarily (Lanier and Combe, 1995).

In Figure 2.11 the contacts that remained between 13 and 13.5%ε1 are presented. It appears
that the sliding contacts are placed in the zones of localisation, and their direction is, generally
speaking, perpendicular to the length of the zone forming characterising bridges (Tordesillas,
2007). The large zones of unbroken rolling contacts are the rigid blocks that do not deform much
during the loading. In this image it is also visible that in the localisation bands smaller number
of contacts is maintained.
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CHAPTER 2. INFLUENCE OF GRAIN SHAPE

Figure 2.11: Rolling and sliding contacts in the sample of α = 0.3 dense clumps between 13
and 13.5%ε1. Each persisting contact is denoted with a line connecting the discs in contact. The

rolling with sliding contacts are denoted with a bold line

2.3 Conclusions

The investigations of samples consisting of particles with di�erent grain shapes revealed that the
form governs a number of important features of granular media like porosity or shear resistance.
Moreover the e�ects can be quanti�ed using a simple sphericity parameter as was proposed by
CEGEO for the initial solid fraction.

Cooperation between multiple research groups proved that the observed shape e�ect was
independent of numerical approach, and that it is common for di�erent shapes. It is also remark-
able that simulations incorporating very simple grain shapes and very simple contact laws were
capable of reproducing behaviour of real materials.

33



Polygons vs. clumps of discs: A numerical study of the influence of grain shape on the

mechanical behaviour of granular materials☆
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We performed a series of numerical vertical compression tests on assemblies of 2D granular material using a

Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5000 grains

made from either 3 overlapping discs (clumps— grainswith concavities) or six-edged polygons (convex grains).

These two grain type have similar external envelope, which is a function of a geometrical parameter α.

In this paper, the numerical procedure applied is briefly presented followed by the description of the granular

model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic

loading aremade. Themechanical response of our numerical granular samples is studied in the framework of the

classical vertical compression test with constant lateral stress (biaxial test). The comparison of macroscopic

responses of dense and loose samples with various grain shapes shows that when α is considered a concavity

parameter, it is therefore a relevant variable for increasingmechanical performances of dense samples.Whenα is

considered an envelope deviation from perfect sphericity, it can control mechanical performances for large

strains. Finally, we present some remarks concerning the kinematics of the deformed samples: while some

polygon samples subjected to a vertical compression present large damage zones (any polygon shape), dense

samples made of clumps always exhibit thin reflecting shear bands.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A typical numerical approach to discrete element modeling of

granular materials is to use simple shapes of particles (discs in 2D [1]

or spheres in 3D [2]). Although the computation time is short using

this method, these models cannot reflect some of the more complex

aspects of real granular media behaviour, such as high shear

resistance or high volumetric changes [3]. In order to model these

mechanisms properly, physical phenomena (resistance to inter-

granular rolling [4–6]) or other grain shapes (sphere aggregates [7]

or polyhedral grains [8]) must be used. The influence of grain shape is

not yet fully understood. In this article, we will present our findings

concerning the influence of grain shape (grain concavity in particular)

on the mechanical behaviour of granular assemblies. We compared

two groups of grains — convex irregular polygons and non-convex

aggregates of three overlapping discs.

2. Granular model

The granular model used consists of 5000 polydisperse 2D frictional

particles. Two kinds of grain shape are used: convex irregular polygons

with six edges and non-convex particles made of aggregates of three

overlapping discs called clumps. These two shapes were chosen because

of the similarity of their global contour (polygonal grains can be seen as

a polygonal envelope of clumpsmade of three discs). As shown in Fig. 1,

particle shape is defined by a parameter α =
ΔR

R1
, where R1 denotes the

ex-circle radius of the particle and ΔR is the difference between the ex-

circle and the in-circle radii, [9,10]. The in-circlemust be fully contained

in the particle. For non-convex clumps, α ranges from 0 (circle) to 0.5.

For convex polygonal grains, α ranges from 1−
ffiffiffi

3
p

2
≃ 0:13 (regular

hexagons) to 0.5 (equilateral triangles). Some of the shapes used are

presented at the bottom of Fig. 1. For each chosen α, granular samples

are made of polydisperse particles: the polydispersity of grains is

determinedby the radii of thegrain ex-circle. In each sample, the chosen

radii R1 are such that the areas of the ex-circles are equally distributed

between Sm=π(Rm)
2 and SM=π(RM)

2=π(3Rm)
2.

3. Discrete Element Method

Two-dimensional numerical simulations were carried out using the

Discrete Element Method according to the principles of Molecular

Dynamics (MD) [11]. Two codes were used: PFC2D by ITASCA [12] for

clump simulation and a code capable of dealingwith polygonal particles

that was developed at the laboratory. Both codes use the same contact

laws for contact forces computations [13]: grains interact in their

contact pointswith a linear elastic lawandCoulomb friction. Thenormal
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contact force fn is related to thenormal interpenetration (or overlap)hof

the contact

fn = kn·h ; ð1Þ

as fn vanishes if contact disappears, i.e. h=0. The tangential

component ft of the contact force is proportional to the tangential

elastic relative displacement, according to a stiffness coefficient kt. The

Coulomb condition | ft| ≤ μ fn requires an incremental evaluation of ft
in every time step, which leads to some amount of slip each time one

of the equalities ft=±μ fn is imposed (μ corresponds to the contact

friction coefficient). A normal viscous component as opposed to the

relative normal motion of any pair of grains in contact is also added to

the elastic force fn. Such a term is often introduced to facilitate the

mechanical equilibrium approach [14]. In case of frictional assemblies

under quasi-static loading, the influence of this viscous force (which is

proportional to the normal relative velocity, using a damping coefficient

Gn) is not significant [15] (elastic energy is mainly dissipated by

Coulomb friction). Finally, the motion of grains is calculated by solving

Newton's equations using either a leap-frog (in PFC2D) or third-order

predictor–corrector discretisation scheme [16] (in the in-house soft-

ware). This constitutes the only known difference between the two

codes.

The principles of disc contact detection are well known [13,17],

and contact detection for clumpswas solved in the sameway: contact

occurs at a point, the normal force value fn is calculated with Eq. (1)

and its direction connects the centers of discs in contact, Fig. 2(a).

Contact detection and contact force calculations between polygons

do not use classical methods based on the area overlap between

polygons [18–21]. The shadow overlap technique proposed by J.J.

Moreau [22], which was originally applied within the Contact

Dynamic approach [23] for convex polygonal particles, was used. In

our study this technique was adapted to the MD approach. Three

types of geometrical contact can exist between polygons: Corner-to-

Corner, Corner-to-Edge (CE) and Edge-to-Edge (EE). Corner-to-

Corner contacts are geometrically (or mathematically) realistic but

never occur in our simulations because of the numerical rounding

errors. When dealing with (EE) contact, contact detection involves

two contact points and their associated overlaps h, Fig. 2(b). This is

the main difference compared to the classical method (area overlap

Fig. 1. Particle shape definition: α = ΔR
R1

and examples of clump and polygon particle

shapes used.

Fig. 2. Contacts between the particles; contact definition and classification. (a) Definition of a contact between clumps. Normal contact vector connects the centers of the discs in

contact. (b) Various types of possible contacts between clumps. Analogy between clump and polygon contacts: corner-to-edge (CE) and edge-to-edge (EE) groups. Note that for a

contact between two polygon edges two contact points are considered while only one if there is a contact between a corner and an edge.

Fig. 3. Fragments of two confined dense samples with α=0.3. Sample PD .30 on the left and CD .30 on the right.
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calculations) where only one contact is considered between the

edges.

Finally, we may be interested in the main contact law para-

meters: the normal and tangential stiffness, kn and kt, and the

friction coefficient μ. Assuming that samples would first be loaded

with a 2D isotropic stress σ0=10 kN/m, the normal stiffness of

contact kn was calculated according to the dimensionless 2D stiffness

parameter κ=kn /σ0 [15,24–26]. κ expresses the mean level of

contact deformation, 1/κ=h / 〈2R〉, where 〈R〉 is the mean particle

radius. In our simulations, κ was arbitrarily set to 1000. As a

comparison, a sample made of glass beams under isotropic loading

of 100 kPa reaches κ=3000. The tangential stiffness kt can be

expressed as a fraction of the normal stiffness, k̃ = kt = kn, k̃ N 0. k̃ N 1

may exhibit specific behaviour where Poisson coefficient of grain

assemblies become negative [27–30]. Running several numerical

simulations with various k̃, 0 b k̃ ≤ 1, [25] have shown that if 0:5 ≤

k̃ ≤ 1, the macroscopic behaviour remains similar. Thus we arbi-

trarily set k̃ to 1.

4. Sample preparation — isotropic compression

Granular samples of 5000 grains are prepared in three steps:

preparations startwith a random spatial distribution of particle position

inside a square made of four rigid walls. Secondly, the particles expand

slowly until σ0=0.5 kN/m is reached. Finally, samples are isotropically

loaded by wall displacement up to σ0=10 kN/m. To obtain samples

with different solid fractions, we may use various values of the inter-

granular friction coefficient μ during the preparation [31]. When μ is set
to zero, samples isotropically loaded up to σ0=10 kN/m are dense and

the Solid fraction ismaximal. When a strictly positive value of μ is used

instead, samples become looser and Solid fraction decreases. In our

studydense sampleswerepreparedwithμ=0and the looseoneswith μ
equal 0.5. 16 different samples (4 dense, 4 loose made of clumps and

4 dense,4 loose made of polygons) for each α value were prepared.1

Dense samples will be written as CD or PD respectively for Clumps and

Polygons. Loose samples will be denoted as CL or PL . A subscript can be

added. It then corresponds to thedecimal part of the shapenumberα. As
an example, fragments of two dense samples with α=0.30, CD.30 and

PD.30 , are displayed in Fig. 3.

For both clumps and polygons, contact between particles can occur

at more than one contact point. There are four contact possibilities for

clumps: single contact Fig. 2(b)(i) double contact involving three discs

Fig. 2(b)(ii), double contact involving four discs Fig. 2(b)(iii) and triple

contact Fig. 2(b) (iv). By analogy with polygon contacts (Edge-to-Edge

or Corner-to-Edge, Fig. 2(b)), all these contacts between clumps can be

merged into two groups, (CE) and (EE). In the (CE) group, grains

involved in a single contact (i) may rotate without sliding. Double

contact (ii) allows rotationwith sliding and eventually friction. Rotation

and sliding of polygons meeting at a single contact point are not

correlated. Group (EE) contacts block the rotation of the grains. In the

case of rotation of grains, contacts of this type would be lost. Therefore,

the shape of the grains can be regarded as macro roughness.

For samples subjected to isotropic loading, we focus on two

internal parameters thatmainly determine themechanical behaviour:

the Solid fraction ξ and the coordination number z⁎. Fig. 4 shows the

evolution of ξwith α for dense and for loose samples. For CD samples,

ξ evolution is bell-shaped and maximum Solid fraction is reached for

0.2≤α≤0.3. Similar observations were made by [9,10]. This also

seems to be the case for CL samples although the amplitude of the

bell-shaped curve appears to be lower. The geometrical origin of these

results deals with the grain shape (concavity and grains envelope)

and imbrication and the interlocking between grains, but appears to

be complex to establish. While we might think that when two grains

are in contact with a single point of contact (contact (CE)-type (i),

Fig. 2(b)), this would tend to increase the local porosity and thus

reduce the overall Solid fraction; this does not seem to be the case:

1 All the analyses presented in this article were carried out on mean results

calculated over 4 samples of each density and each α. Associated Standard Deviations

will always be given, even if they are too small to be significant.

Fig. 4. Solid fraction ξ of the samples under isotropic loading versus α. Error bars

correspond to standard deviation calculated using of four samples. The round and square

symbols represent samples made of clumps and polygons, respectively. The black and

white symbols represent dense and loose samples, respectively. This convention will be

maintained hereafter.

Fig. 5. Corner-to-edge contacts ((CE) see Fig. 2(b)) percentage in the isotropic state, εi.

Comparison between clumps and polygons.

Fig. 6. Coordination number z⁎ values vs. α under isotropic loading. The round and

square symbols represent samples made of clumps and polygons, respectively. The

black and white symbols represent dense and loose samples, respectively.
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Fig. 5 shows clearly that for CD samples, the proportion of contact

(CE)-type (i) is at its maximum for 0.2≤α≤0.3 in the case of dense

samples and decreases linearly with α in the case of CL samples. This

completely goes against the ξ trend, even if it is clearly established

that when ξ is high (CD samples), the proportion of (CE)-type (i)

contacts is lower than in the case where the Solid fraction is low

(CL samples).

For samples made of polygons, the dependence of ξ on α is not

clear either. For PD samples, ξ is almost constant for 0.2≤α≤0.3. If we

exclude the PD.40 sample, which behaves in a peculiar way, we can

notice that for samples made of grains with regular shapes,

corresponding to α=0.13 and α=0.5, the Solid fraction ξ is smaller

than for samples made of grains which have shape irregularities

(0.13bαb0.5). The relationship between ξ and the percentage of

(CE)-type (i) contact is again impossible to establish. Furthermore, it is

worth observing that when 0.2≤α≤0.3, CD and PD samples show

very similar Solid fraction. Here, grain envelope seem to be a cleverer

interpretation of α parameter than grain imbrication, which is only

relevant for clumps. Finally, we should note that the angle of friction

used during the preparation does not seem to have a major influence

on the Solid fraction of samples made of polygons when 0.2bαb0.3.

For samples subjected to isotropic loading, we studied the

coordination number z* corresponding to themean number of contacts

per grain. Here only grains that have two or more compression forces,

and therefore take part in the load transfer, were considered. For

samples made of frictionless perfectly rigid discs, z⁎=4 [32]. Because

κ is not infinite in our study, in the samples made of frictionless

circular particles (CD.00 ), z⁎=4.093±0.005 is greater but still very

close to the reference value. z⁎ is evaluated for clumps and polygons

and both dense and loose samples. The dependence of z⁎ according to

α is shown in Fig. 6. For CL samples, z⁎ increases linearly with α, like
PL samples, but for CL , it can be directly correlated to the percentage

of (CE)-type (i) contacts which decrease with α, and then increase z⁎.

For dense samples, the percentage of (CE)-type (i) contacts did not

vary too much. z⁎ is constant for CD and PD samples.

5. Macromechanical response of granular assembly loaded in

vertical compression test

The samples were tested in a 2D strain controlled vertical com-

pression test, also called biaxial test. Vertical stress σ1 was applied by

increasing the compressive vertical strain ε1while lateral σ3 remained

constant. The loading velocities were chosen according to the

dimensionless inertial number I = ε̇1

ffiffiffiffiffiffiffi

〈m〉

σ3

r

[26] where ε̇1 denotes the

strain rate and 〈m〉 the typical mass of a grain. It describes the level of

dynamic effects in the sample. For quasi-static evolutions, the value of I

should be low. I value was set to 5⋅10−5 for clumps and for polygons

samples, regardless of the code used. During the vertical compression in

both dense and loose samples, the same value of contact friction

coefficient μ=0.5 was used. The mechanical responses of the samples

are plotted on η vs. ε1 charts and shown in Fig. 7. η=t /s, t=(σ1−σ3)/2

is half of the deviator stress and s=(σ1+σ3)/2 is the mean stress.

Extracted from η−ε1 curves shown in Fig. 7, friction angles at the peak

ϕp and at the threshold ϕt are given Fig. 8(a). Average dilatancy angles

extracted from Fig. 9 are presented in Fig. 8(b).

For dense samples made of clumps, CD , we can observe in Fig. 7(a)

that the macroscopic shear resistance increases with α. Although

Fig. 7. Macroscopic η−ε1 curves for some of the samples.
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CD.10 implies grains with a small α, the mechanical response of the

sample exhibits remarkable increase of the maximum deviator in

comparison to disc samples CD.00 where rotations of particles are not

potentially disturbed by the grain shape. For CL samples, there is no

peak value of the friction angle, ϕp=ϕt, Fig. 7(c). Thus, for all clump

samples, both peak ϕp and threshold ϕt friction angle values increase

along with α. ϕt increases proportionally with α while the increase of

ϕp is nonlinear and seems to be asymptotic for α≥0.4.

For PD samples, ϕp values slightly decrease linearly along α, while

ϕt values increases, Fig. 8(a).

For PL samples, we can notice in Fig. 7(d) that the macroscopic

curves show typical behaviour similar to that of loose samples when

αb0.3 and a typical behaviour characteristic of dense samples for

αN0.3. This kind of behaviour deals with the values of the initial Solid

fraction of the samples shown in Fig. 4 where we can observe that ξ
values for PD and PL samples are very close when α≤0.3. If we focus

only on ϕt for PL samples, we can observe (Fig. 8(a)) an increase of the

friction angle with α, except for samples made of triangles, α=0.5,

which always behave in a specific way.2 In conclusion, it can be noted

that adding some shape irregularity by increasing α always leads to an

increase of themacroscopic angle of friction in the critical state. This is

the case for clumps and polygons with a constant microscopic friction

angle μ.

This influence of grain geometry is in line with a previous study by

Salot et al. [7]. Lastly, as we can see in Fig. 7, α does not explicitly

influence Young's modulus. E is linked to the rigidity matrix and

therefore to z⁎ [33], which is constant for dense samples (Fig. 6).

Similarly, particle concavity does not particularly influence the

average dilatancy angle ψ values sinψ =
dε1 + dε3
dε1−dε3

� �

of dense and

loose clump samples (Fig. 8(b)). On the other hand, ψ is lower for

polygons with higher values of α (closer to triangular shape) than for

those more similar to hexagons.

In Fig. 9, volumetric changes in some samples are illustrated. For

both dense clump and polygon samples, Fig. 9(a) and (b), the volume3

increases mainly during vertical compression, after a small contrac-

tion due to the stiffness of the contacts [15]. The volumetric increase

for CD samples is quite similar from one α to another (Fig. 9(a)). On

the other hand, α clearly influences the volumetric change of PD
samples but this influence seems erratic. Nevertheless, PD samples

show greater total dilatancy than CD samples. CL samples (Fig. 9(c))

behave like loose sands and contract all throughout the compression

test. It is more complex for PL samples (Fig. 9(d)) for which the

setting-up process remains problematic for some values of α.

6. Micromechanical analysis

From the macroscopic results exposed in the previous section, two

main observations can be established: for dense samples made of

clumps, the evolution of the angle of friction at the stress peakϕp varies

significantly with α. The geometrical imbrication between grains in

contact, which depend onα, may be one of themicromechanical origins

of these results. Secondly, for all samples, dense or loose, made of

clumps or polygons, it was established that the angle of frictionϕt at the

end of biaxial tests increases with α and is independent of the initial

state. This result is a proof of the role of the grain envelope in the

mechanical behaviour rather than some inter-granular imbrication

considerations. In this section we will try to gather evidence for these

proposals.

6.1. Contact proportion evolution for dense samples made of clumps

Single contacts are mainly involved in all the grains samples

tested, Fig. 5 ((CE) contacts for polygons or (CE)-type (i) contacts for

clumps — Fig. 2(b)). During loading, it can be noted that the

percentage of single contacts increases. Because dense samples were

prepared with no friction, Solid fraction of each assemblies of grains

subjected to isotropic loading is constant and always maximal. As a

consequence, even if samples can exhibit slight contractancy (related

to dimensionless contact stiffness κ, [34]), the total number of

contacts in each sample during a vertical compression systematically

decreases. Therefore, in order to compare different contact type

proportions in different phases of the test, we suggest balancing the

decrease in the total number of contacts using the coefficient

ω⁎=Nεb
⁎ /Nεa

⁎ . Nεa
⁎ and Nεb

⁎ represent the total number of neighbouring

contacts4 at the given vertical strains ε1 (εa or εb) in the samples. Here,

we suggest focusing on the evolution of two new contact groups for

clumps:

• (SC) single contact between grains, known as simple contact,

• (CC) multiple contacts between grains, hereafter called complex

contacts.

These two new groups can be examined in Fig. 10.

We observed the evolution of clump contact numbers of each

group between two successive stages by normalising this evolution

2 Note that triangle is the only shape with 3 edges.

3 For convenience we resort to the vocabulary pertaining to 3D triaxial tests.
4 When two grains are in contact via 1, 2 or 3 contact points, only one contact is

counted.

Fig. 8. (a) Friction angles vs. α for clumps and polygons samples. The two upper curves

correspond to friction angles at the peak ϕp of dense samples. The four other curves

show friction angles at the threshold ϕt, either for dense or loose samples. (b) Dilatancy

angles for all the samples; Values of the angles for dense samples were calculated at the

peak, between [1.5–2.5%] ε1; For loose ones, the range was [6–7%] ε1.
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with ω⁎. We thus defined a new variable λ=ω⁎ ⋅Nεa
/Nεb

, where Nεa

and Nεb
denote the number of (SC) or (CC) on two different levels εa

and εb of the vertical strain ε1. In Fig. 11(a), λ evolution is calculated

between εa=εi (isotropic state) and εb=εp (maximum stress

deviator). We can observe that for α=0.10, λ is smaller than 1 for

(CC) and greater than 1 for (SC). This can be regarded as a transfor-

mation of (CC) into (SC) between these two stages. If all the complex

contacts transformed into simple, graphic points were at an equal

distance from 1, 1−λ(CC)=λ(SC)−1. If 1−λ(CC)Nλ(SC)−1, it means

that some complex contacts transform into simple contacts but some

of them also disappear.

When α goes to 0.5, these transformations are still active but with

less intensity. Geometrical imbrications between clumps increase

with α and are “more difficult to lose” during the biaxial tests. It is

also interesting to observe that λ seems to reach a threshold when

α≥0.4, Fig. 11(a). This last observation can be correlated to the

evolution of ϕp, which also reaches a threshold for the same value of

α, Fig. 8(a).

Focusing on λ between the peak and the critical state, εa=εp
and εb=εc, Fig. 11(b), we can observe that the increase of simple

contacts is small for every α (λ(SC)−1≤0.1) and complex contacts

are mainly lost 1−λ(CC)N0.1, especially when α is small. The greater

α is, the smaller the proportion of complex contacts lost (grain

imbrications are destroyed less). This may be a clue that ϕt of clumps

increases with α, as seen in Fig. 8(a). Nevertheless, some new inves-

tigations on the evolution of contact orientations are proposed in

the next section.

6.2. Evolution of contact fabric for CD samples

Contact direction and its evolution during the vertical compression

tests are often analysed [35]. Focusing on the first part of the

mechanical behaviour, from the isotropic state to the stress peak for

example, it is well known that in dense samples, contacts are mainly

lost in the extension direction and gained in the direction of

compression, [36]. In Fig. 12(a) to (d), for two values of α, we present

statistical analysis of the evolution of contact direction by the

evaluation of PðθÞ = Nεb
ðθÞ=Nεa ðθÞ , where εa and εb correspond to

two successive vertical strains levels and where Nεx
(θ) is the number

of contacts in the direction θ. PðθÞ = 1 expresses that the number of

contacts in the direction θ remains constant between the two

configurations studied. If PðθÞ = b1 , contacts are lost and if PðθÞN1,

Fig. 9. Volumetric changes (computed in 2D corresponding to the area) during vertical compression for loose and dense samples made of clumps and of polygons. Positive −εv

implies an increase of the sample volume.

Fig. 10. Contact types for clumps and polygons: simple contacts (SC) and complex

contacts (CC).
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contacts are gained in the direction θ. Integrated over θ, 〈P〉 is a global

evaluation of the proportion of gained or lost contacts.

We focus on the evolution of contact anisotropy between the

isotropic state and the peak, Fig. 12(a) for α=0.2 and Fig. 12(c) for

α=0.5, we can observe that there is no contact gain in any direction:

in the compression direction, the number of contacts remains

constant PðθÞ≃1 and the number of contacts decreases in the

extension direction PðθÞb1. The mean value of P over θ is smaller

than 1 for both α discussed here and also for the other α studied.

During the vertical compression of CD , sample contacts are mainly

lost. Finally, we noticed that the greaterα is, the smaller the amount of

contacts lost in the extension direction. By analysing the contacts

change in direction between the peak and the critical state, εp to εc,

Fig. 12(b) and (d), opposite tendencies emerge: contacts are mainly

lost in the compression direction and gained in the extension

direction, with a less intensive effect for α=0.5, Fig. 12(d). At this

stage of analysis, we are not yet able to distinguish the nature of the

contacts involved in these observations. An analysis of clustered

contacts, as outlined below, is thus necessary.

We now suggest the same contact direction analysis but for (SC) and

(CC) groups (simple and complex contacts). Statistical analysis of the

evolution of contact orientation from the isotropic state εi to the peak εp
for (SC) and (CC) groups is shown in Figs. 12(e) to (h). On one hand,

Fig. 12(e) and (f) show that in the compression direction (SC) contacts

are gained (α=0.2) or are kept (α=0.5). (SC) contacts are mainly lost

in the extensiondirection,withamorepronounced amplitudewhenα is

small. On the other hand, we can observe that (CC), Figs. 12(g) and (h),

are lost in every direction with some variations depending on θ. Never-

theless, complex contacts are more persistent when α is greater (〈P〉. is

greater for α=0.5 because of grain imbrications).

The statistical analysis of the evolution of contact direction between

the peak εp and the critical state εc shown in the Figs. 12(i) to (l) confirms

the tendency shown in Figs. 12(b) and (d): simple and complex contacts

are lost in the compression direction. For (SC) with α=0.2, 〈P〉= 1,

Fig. 12(i): although the number of (SC) decreases in the compression

direction and increases in the extension direction, the number of simple

contacts remains constant during the mechanical test from the peak to

the critical state.When α=0.5, the number of simple contacts decreases

〈P〉 = 0:9, especially in the compression direction. Complex contacts are

the ones that are lost the most (〈P〉 is always lower than 1, regardless of

the value ofα). Nevertheless, it is desirable tomake adistinctionbasedon

α: the amount of (CC) lost is smaller for α=0.5 (〈P〉 = 0:8, Fig. 12(k))

than for α=0.2 (〈P〉 = 0:7, Fig. 12(l)). The proportion of (CC) lost in the

compression direction is bigger for α=0.2, like if vertical contact chains

were more unstable or less persistent when α tends to 0.

Further studies, taking into account the intensity of contact forces

and their propensity to be stronger in the case of complex contacts

[37] would provide more certainty about possible links between the

observations made above and improvement of the mechanical

property ϕt measured at εc, Fig. 8(a).

6.3. Evolution of comparative contact proportions in compression tests

for clumps and polygons

Focusing on the critical phase only, contact observations are now

based on the division into two contacts groups corner-to-edge (CE)

and edge-to-edge (EE) (Fig. 2(b)). The evolution of (CE) contacts

according to α is shown in Fig. 13. (EE) contacts can be easily deduced

by subtracting (CE) contacts percentage from 100%. On one hand, the

percentage of (CE) contacts does not depend on the initial Solid

fraction of the sample; dense and loose samples exhibit a similar

trend. On the other hand, (CE) contact percentages for CD and CL
samples decrease linearly with α. A different tendency is observed for

PD and PL samples where the contact percentage remains more or

less the same except for α=0.5. We can even observe that when

α=0.5, (CE) contacts and (EE) contact percentages are close: for this

special value of α, clump and polygon envelopes converge.

6.4. Influence of shape on local strain analysis

We focused on the strain localisation in the samples in order to study

themacroscopic rupture and its origin. Two approacheswere used: local

strainmaps and shear localisation indicator S2 [38]. By comparing particle

kinematics in the isotropic state ε1=εi=0and in thedeformed stage ε1,

we calculated local strains using Delaunay triangulation as in [36]

(Delaunay triangle corners correspond to themass centers of particles).

Using the second strain invariant, Iεd=εI−εII, where εI and εII are

respectively themajor and theminor principal strains, we illustrate the

shear localisation in Fig. 14. We should notice that such shear

localisation patterns, also called shear bands, are often observed on

granular materials confined by more or less rigid boundaries, or even

numerical or experimental considerations [36,39–41]. Even if the

number of shear bands depends on the macroscopic strain levels

applied to samples, different patterns (multiple shear zones) seem to

exist when periodic boundary conditions are used [42].

The shear localisation indicator S2 is defined as

S2 =
1

Nt

∑
Nt

i=1
Iεd

 !

2

∑
Nt

i=1
I2εd

; ð2Þ

where Iεd is the second invariant of the strain tensor and Nt is the total

number of Delaunay triangles. In a sense, value of S2 can be regarded

as a percentage of a distorted sample area.

Fig. 11. Transformation of complex clump contacts into simple contacts, quantified by λ

and evaluated between the εi and εp for figure (a), and between εp and εc for figure (b).
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Fig. 15 gives the evolution of S2 according to ε1 for several dense

and loose samples made of clumps and polygons. Regardless of the

sample studied, the sheared area always reaches a maximumwhich is

at least greater than 50%. From evolution of S2, we may encounter two

types of behaviour: samples for which S2 reaches a maximum and

then decreases and stabilises, and a second type where S2 increases

asymptotically towards a maximum.

We have observed that when S2 reaches a maximum and later

decreases to reach a threshold value, it always corresponds to samples

which were identified as dense samples because ϕpNϕt (for example

CD.50 , PD.24 , PL.28 samples of the Fig. 14). On the contrary, when

ϕp∼ϕt, samples can be classified as loose samples. In this case, S2
continuously increases from ε1=0 to 10% to eventually reach a

threshold close to S2≃60%.

In the case of dense samples, the asymptotic value of S2 is

interesting because it clearly shows higher values for PD samples than

for CD samples. Coupling this quantitative result with the qualitative

Fig. 12. CD samples. Histogram analysis of the evolution of contact directions for all the contacts (panels (a) to (d)) or for (SC) and (CC) (panels (e) to (l)). Histograms calculated over 25

classes of 7.2∘ each, between two successive strains levels: εi to εp for the panels (e) to (h) and εp to εc for thefigures (i) to (l).When all the contacts are taken into account (panels (a) to (d)),

the statistics are calculatedover approximately 40,000 contacts for the isotropic state, 30,000 contacts at thepeakand29,000 at the critical state. The circle radiusdrawn indashed line is 1.

Fig. 13. Corner-to-edge contacts ((CE) see Fig. 2(b)) percentage at critical state, εc.

Comparison between clumps and polygons.
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observation of shear maps like in the Fig. 14, it is obvious that localised

zones in PD samples are wider than in CD samples. This result is con-

sistentwith the overall dilatancyof samples: PD samples globally expand

more than CD ones. For loose samples, the sheared area always cor-

responds to approximately 60% of the samples, regardless of the grain

shape.

7. Conclusions and discussion

The aim of this article was to present some new investigations on

the mechanical influences of particle shape in granular assemblies in

the framework of numerical simulations performed with Discrete

Element Method. First, a grain geometry parameter α was defined by

the CEGEO research team. For particles called clumps, made of 3

overlapping discs, α is a measure of the grain concavity. 6-edged

convex polygonal grains were also ruled by α. The overall envelope

depending on α for each type of particles used in the studied granular

model was the common feature. Our numerical simulations were

performed with the Discrete Element Method adapted to each grain

shape. For particles made of discs (clumps), the commercial code

PFC2D by ITASCA was used. For polygonal particles, we developed our

own computer code which implements special contact detection

between objects in the framework of Molecular Dynamic approach. In

this article, we highlighted that changing the grain geometry, influences

granular assembly mechanical behaviour under the classical vertical

compression test in 2D. More complex grain shapes allow higher levels

of internal friction angle and large volumetric strains to be reached

compared to simple discs. Some clear differences in the behaviour of

polygon (convex) and clump(non-convex) assemblieswere shown.We

should also note that the particle shapes chosen also demonstrate

similarities, caused by the global envelope, that justify the comparison.

The generation and compaction of granular assemblies were presented.

By using two extremevalues of the inter-granular friction angle μ, dense

and loose sampleswere prepared, both for samplesmade of clumps and

polygons.

Firstly, by focusing on themacroscopic mechanical behaviour of our

granularmodelwe show that loose samples composed of polygonswith

low values of α present behaviour typical tomoderately dense granular

samples. For these granular materials, the initial contracting stage was

not only due to contact stiffness, but was also influenced by large inter-

granular reorganisation. Apart from this, loose and dense samples of all

shapes behaved as expected (loose samples only show contracting

behaviour while dense ones mostly exhibit major dilatancy), showing

similar behaviour when discussing friction residual angles ϕt or contact

percentages. All samples show higher values of internal friction angles

ϕp and ϕt than samplesmade of only circular grainswhere each particle

is a disc. The correlationsbetween shapeparameterα and friction angles

are different for clumps and polygons. On one hand, for dense clump

samples ϕp increases with α and seems to reach an asymptotic value

ϕp=40∘. On the other hand, ϕp linearly decreases when α shifts from

0.13 to 0.5. In this case, the particular case of the triangular shape

(α=0.5) is also discussed briefly. The overall dilatancy of clump

samples is greater than that of disc assemblies, but spectacularly smaller

than dilatancy of polygons.

Secondly, on the granular scale, we suggested correlating macro-

scopic observations bymeans of contact evolution analysis,which led us

to introduce several groups of contacts between particles. Thus, we

observed that multiple contacts between clumps transform into simple

contacts and that this process depends on the size of concavities, i.e. α.

We tend to associate thiswith an increase of shear resistance in the case

of dense granular samples made of clumps. However, for a better

understanding of the role of α in the magnitude of contact forces and

their influence on the macroscopic repercussions, complementary

studies need to be carried out.

Focusing on granular assembly failure, we studied the localisation of

shear bands and tried to characterise it by a scalar. It was observed that

reflecting shear bands were thinner in dense samples made of clumps

than in those made of polygons, regardless of the α type, thus

highlighting the evident effects of the geometrical imbrications of

clumps. Polygon samples gradually create wide shear bands, while for

samples made of clumps, the appearance of shear bands are more

immediate.

Although the meaning and implications of the parameters α have

been presented in this article, it needs to be clarified further.

Nevertheless, from the comparisons between polygons and clumps,

two trends seem to emerge: for very dense samples made of clumps, a

large α naturally implies imbrications between particles. α is thus a

Fig. 14. Shear maps on dense samples made of grains with α=0.3 calculated from the

isotropic state to ε1=13.5%. Black square symbols are proportional to the amplitude of

the second invariant of the strains Iεd.

Fig. 15. Shear indicator evolution during a vertical compression.

287K. Szarf et al. / Powder Technology 208 (2011) 279–288

42



measure of clump concavity. With the simulations exposed in this
article, we can deduce that the larger the concavities are, the higher
the angle of friction at the peak ϕp is.

For the samples made of polygons, this does not apply. Indeed,
there are no imbrications between the grains and α is thus a measure
of grain sphericity. We have shown that in dense samples made of
polygons, the percentage of a single contact in the isotropic state
increases with α. In corollary, we can observe that the angles of
friction peak decrease slightly with α.

For loose samples PL or CL, or for PD and CD samples close to the
critical state, ϕt is the parameter which characterises the failure. We
have shown that for large strains, contacts between grains are mostly
single. Therefore, clump imbrications are less involved in the evolution
of ϕt. Furthermore, ϕt, which increases linearly with α, increases with
the same rate regardless of the grain shape. α should thus be only
regarded as a parameter of spherical grains.
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Chapter 3

Application: Arching E�ect Above

Buried Pipes

Having observed how the change of grain shape a�ects the mechanical behaviour of granular
material and how behaviour of assemblies of complex shapes is closer to real granular soils than
behaviour of assemblies of discs, it was interesting to apply this experience to a real engineering
problem.

Underground pipes are widely used in various �elds of engineering. Among the typical pipe
application is transport of �uids under pressure (oil, gas, water) or with a free surface (sewage,
drains). Moreover, the large pipes can be used as tunnels or culverts in order to allow water
�ow or animal crossing under railroad or highway embankments. The interaction between the
pipe and surrounding soil is complex and depends on a number of parameters like geometry
and mechanical properties of the pipe, geological conditions, loading. Historically due to the
poor understanding of this complex interactions the buried pipes were typically thick and sti�
and did not incorporate the soil response in their mechanical behaviour. With the introduction
of new materials like sheet steel or plastic new design methods were developed which allowed
constructing �exible conduits which interacted with the surrounding soil in transferring the load.
This study is focused on the load transfer above a �exible buried unpressurised pipe.

The materials used nowadays in underground pipes can di�er, but generally can be divided
into three major groups: concrete/ceramics, metal and plastics. Various types of plastics are used,
the most common ones being: PE (Polyethylene) and HDPE (High Density Polyethylene), PVC
(Polyvinyl Chloride), PP (Polypropylene) and GRP (Glass-Reinforced Plastic). The type of the
material used depends on the particular task the conduit is supposed to perform. For example in
leechate collection systems under ore heaps the wastewater is chemically reactive and the pipe
material must be resistant.

When comparing the pipe sti�ness to the sti�ness of the surrounding material (envelope), the
pipes can be sti� or �exible. The sti� pipe failure mode is rapid wall crushing that occurs when
the stress in the pipe exceeds the strength of the pipe material. In case of �exible pipes the walls
can locally buckle or the ring de�ection of the pipe can be too high. The second fail mode can lead
to pipe inversion. In some applications like water collection systems under land�lls the hydraulic
properties of the buried pipes are more important than the mechanical performance and since a
replacement of a pipe can be di�cult, inversion of the pipe can sometimes be accepted.
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3.1. THEORY AND PRACTICE

3.1 Theory and Practice

There exist a number of design methods applicable for buried pipes. The design methods are
based on the engineering experience and observations of real construction and comply with the
limit state design approach. In general the pipes can be considered as �exible or sti� and the
pipes can be buried in a narrow ditch or placed on a plane. These factors in�uence the repartition
of load over the pipe a�ecting the so called arching e�ect. The typical approach is to consider
the pipe in plane strain conditions.

3.1.1 Pipe Sti�ness

The aforementioned sti� and �exible pipe distinction can be quanti�ed experimentally using the
S parameter (Kunecki, 2006). The sti�ness of the pipe can be expressed as a relation between a
force acting on a pipe sample and the resulting deformation.

S =
F · f
L · dv (3.1)

where:
S is the pipe sti�ness [Pa],
F is the force acting on a unit of length of the pipe [N ],
L is the length of the pipe sample [m],
dv is the de�ection of the pipe [m],
f is a de�ection coe�cient [−].

The de�ection coe�cient includes a correction factor for ovality of the deformed specimen and
is given with the following formula:

f = 10−5 ·
(

1860 + 2500
dv

dm

)

(3.2)

where:
dm is the diameter of the pipe [m].

The European Committee for Standardization in EN codes and the International Organization
for Standardization in ISO standards use the following pipe sti�ness de�nition:

S =
E · I
d3m

(3.3)

where:
E is the Young's modulus of the pipe [Pa],
I is the moment of inertia of the pipe wall section, I = h3/12

[

m3
]

,
dm is the diameter of the pipe [m].
Di�erent codes propose di�erent experimental protocols to measure the pipe sti�ness. For

example international code ISO 9969 suggests a compression of three equal specimens between
two parallel, horizontal walls to obtain 3% of de�ection:

Si =
0.0186 + 0.025 · Yi · Fi

Dw · Li · Yi
(3.4)

where:
Fi is the force corresponding to 3% of deformation of i-th sample [kN ],
Li is the length of the i-th pipe sample [m],
Dw is the internal diameter [m],
Yi is the de�ection corresponding to 3% of pipe deformation [m].
American code ASTM F894 suggests sti�ness measurement at the 5% de�ection level; The

sti�ness in this code is expressed in [psi]. German DIN 16961 code uses (3.3) modi�ed by changing
the pipe diameter with radius, S[Pa].
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3.1.2 Marston-Spangler

The classical method for pipe design is the Marston-Spangler method based on the works of
(Marston, 1930) and (Spangler, 1933). Marston postulated that the load acting on the pipe comes
from the external loading (like tra�c or land�ll) and the weight of the soil above the pipe. The soil
weight contribution depends on the parameters of the soil but also on the installation conditions.
Spangler introduced the so-called bedding factor that takes into account the dimensions of the
ditch and the contact between the pipe and the ditch. The theory is based on considerations of
forces acting on a virtual slice of soil placed within a prism above the pipe.

3.1.2.1 Sti� Pipe in a Ditch

Marston considered a narrow and deep trench excavated in the residual soil. He considered a
band of soil over the pipe as in Figure 3.1 (Moser, 2001; Kunecki, 2006).

Figure 3.1: The basis of Marston approach, a pipe in a ditch and the loads acting on a strip of

soil above it

The settlements of the back�ll and the pipe are resulting in shearing forces on the sides of
the trench. Cohesion is neglected as it needs time to recreate and cohesionless scenario is less
favourable for the pipe. The force on the top of the band V

[

N
m

]

is countered by the force on the
bottom, V + dV . The di�erential volume of soil is Bd by dh by one unit of length. Its weight is
computed by multiplying the volume by the soil speci�c weight γ. The horizontal pressure acting
on the band is equal to K V

Bd
, K being the earth pressure coe�cient, and the shearing pressure

is:

Fs = Kµ
V

Bd
[Pa] , (3.5)

where µ is the friction coe�cient between the walls of the trench and the back�ll. To equilibrate
the vertical forces acting on the strip of soil:

V + γBddh = V + dV + 2 ·Kµ
V

Bd
· dh. (3.6)
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Solution of the equation above for the vertical load at the depth H (the top of the pipe) is the
following:

Wd =
γB2

d

2Kµ

(

1− e−2KµH
)

. (3.7)

Typically the load is expressed in the form:

Wd = γB2
dCd

[

N

m

]

, (3.8)

with the coe�cient:

Cd =
1− e

−2Kµ H
Bd

2Kµ
. (3.9)

In the above considerations the earth pressure coe�cient K is usually identi�ed with the
Rankine's coe�cient of active earth pressure Ka = 1−sinφ

1+sinφ and the friction coe�cient is identi�ed
with the internal friction angle µ = tanφ which is not necessarily true (Christensen, 1967). The
parameter Cd is a function of H

Bd
and Kµ and usually is plotted for di�erent soils in the form of

a nomogram (Moser, 2001).

3.1.2.2 Pipe in an Embankment

Apart from a narrow trench situation of Marston (Marston, 1930), Spangler (Spangler, 1933)
considered a trench of in�nite width as well. This situation is typical for pipes laid on the ground
and buried with a back�ll or under an embankment. The approach was the same as in the case
of a narrow ditch except that a strip of soil selected from a prism was as wide as the external
diameter of the pipe, not as wide as a ditch.
Spangler distinguished two scenarios: the ground around the pipe settles more than the top of
the pipe (Fig. 3.2b and 3.2d) or the top of the pipe settles more (Fig. 3.2c). The �rst case
may occur for sti� pipes while the second for �exible pipes or in case when a trench is shallow
and buried under an embankment. The �rst situation was called �projection condition�; In this
case the shearing stress are acting downwards and are adding additional load on the pipe. The
second case was called �ditch conditions�; In the second case the direction of shearing is opposite
(upwards), as in the case of a narrow trench, and the load on the pipe is reduced.
Moreover, Spangler also concluded that there exists a certain level above the pipe where there
are no shearing forces. Above this level the settlements of the prism above the pipe and the
prisms at the sides are the same. This so-called plane of equal settlements de�nes an �incomplete
conditions� when the plane level actually exists in the embankment and �complete conditions�
when the equal settlement plane is above the top of the embankment (in other words is virtual)
and the shearing between the prisms occurs along the whole height of the soil mass. All the
situations described by Marston are schematically presented in Figure 3.2.

The load equation in case of a pipe buried under an embankment is the following:

Wc = γB2
cCc, (3.10)

where:
Wc is the load at the top of the pipe

[

N
m

]

,
γ is the speci�c weight of the back�ll soil

[

N
m3

]

,
Bc is the diameter of the pipe (the width of the soil prism above) [m],
Cc is the loading coe�cient [−].
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Pipe

Shear

Direction

Native

SoilBackfill

Plane of Equal Settlements

Settlements

(a) Complete Ditch

Plane of Equal Settlements

(b) Complete Projection

Plane of Equal Settlements

(c) Incomplete Ditch

Plane of Equal Settlements

(d) Incomplete Projection

Figure 3.2: Four situations described by Marston and Spangler. Ditch and projection conditions

depends whether the shearing stresses are overloading or unloading the pipe; Complete and

incomplete conditions depends on the existence of a plane of equal settlements (dashed line).

The native soil is denoted with a bold line, back�ll level with a thin line, the soil prism in grey

The Cc coe�cient can be de�ned in di�erent ways depending on the direction of shearing
and whether the conditions are complete or not. For complete conditions (no real plane of equal
settlements) the coe�cient is:

Cc =
e±2Kµ H

Bc − 1

±2Kµ
. (3.11)

The plus sign appears for the complete projection while the minus sign for the complete ditch.
For incomplete conditions the coe�cient is expressed with the equation:

Cc =
e±2Kµ H

Bc − 1

±2Kµ
+

(

H

Bc
− He

Bc

)

· e±2Kµ H
Bc , (3.12)

where He is the distance between the top of the pipe and the level of plane of equal settlements
[m].
The sign convention is the same as above: plus sign for incomplete projection.
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As in the case of ditch case loading coe�cient, equation (3.9), the values of the Cc are usually
presented in the form of nomograms. The determination of the plane of equal settlements is
di�cult as it is depending on the sti�ness of the pipe, sti�ness of the back�ll and residual soil,
loading and so on. The typical approach is to use tabulated values of a settlement ratio rsd which
are based on years on engineering practice.

3.1.3 Flexible Pipe

The use of �exible pipes increased with introduction of modern materials like plastic. The classical
methods developed for sti� pipes were not predicting the loads acting on the �exible pipes well.
Flexible pipe under vertical compression de�ects and starts pushing the soil on either side causing
passive earth pressure. The large vertical displacements allows the arching e�ect to develop in
the back�ll soil. Marston-Spangler method neglected the horizontal stress. In the framework of
this method it is possible to consider special case of a pipe in a ditch with a sti�ness equal to the
sti�ness of the soil. In this case, the distribution of load will be dependant only on the geometry
of the system:

Wc = Wd ·
Bc

Bd
. (3.13)

Using the equation (3.8) it is possible to obtain a so-called Marston load equation for �exible
pipes:

Wc = γBcBdCd, (3.14)

but it does not predict the �exible pipe loading much better than a simple prism load equation:
Wc = γBcH.

The design of �exible unpressurized pipes complying with the limit state approach takes into
account three criteria: de�ection, wall-crushing force in the pipe, buckling. These criteria can be
veri�ed in di�erent ways.

3.1.3.1 Iowa Formula

Iowa formula (Spangler and Shafer, 1941) is a classical method used to asses the de�ections of the
pipe. It takes into account the soil-structure cooperation. The assumptions made by Spangler
are that the load is uniformly distributed over the entire top part of the pipe; The pressure
at the bottom is uniformed as well, but only in the zone of contact between the pipe and the
base described with a bedding angle α; The horizontal pressure at the sides of the pipe acts
parabolically over β = 100◦ angle and is dependant on the horizontal deformation of the pipe
(see Fig. 3.3).
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α

v

v'

hβ

Figure 3.3: Distribution of loads acting on the pipe in Iowa method (Spangler and Shafer, 1941).

The pipe is located on top of residual soil where α describes the bedding angle and buried under

back�ll soil

The vertical pressure at the top is given with the following formula:

v =
Wc

2R
, (3.15)

where:
v is the vertical pressure on top of the pipe [Pa],
Wc is the load as in Marston (3.10)

[

N
m

]

,
R is the radius of the pipe [m].

The soil reaction at the bottom of the pipe is:

v′ =
v

sinα
, (3.16)

where:
α is the bedding angle of the pipe [◦].
The Spangler's equation (Iowa formula) is therefore:

δx =
DlKWcR

3

EI + 0.061eR4
, (3.17)

where:
δx is the total horizontal deformation of the pipe [m],
Dl is the de�ection lag factor [−],
K is the bedding constant [−],
Wc is the Marston load

[

N
m

]

,
R is the radius of the pipe [m],
E is the pipe material Young's modulus [Pa],

I is the pipe wall moment of inertia per one meter of the pipe
[

m4

m

]

,

e is the modulus of the passive resistance of soil
[

N
m3

]

.
The coe�cients K, Dl and e are empirical. The constant e was later modi�ed to represent a
real property of the soil (Watkins and Spangler, 1958). Watkins introduced a modulus of soil
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reaction:

E′ = eR, (3.18)

therefore creating a Modi�ed Iowa Formula:

δx =
DlKWcR

3

EI + 0.061E′R3
. (3.19)

Originally the bedding constant K depended on the angle of bedding assuming an equal
contact in all the contact zone. This is actually very rarely true. The contact between the pipe
and the residual soil depends on the technology used to prepare the bedding. It is technically
di�cult to cut a circular groove of a precise radius for kilometres of pipes, and a groove of larger
diameter is not supporting the pipe properly. In the engineering practice the pipe is typically laid
on the ground and the back�ll is dumped on top of it with little compaction to avoid reducing the
permeability. In such a situation there are large voids below the pipe under the haunches which
causes a reduction of the pipe strength and can be a cause of pipe collapse. Some engineering
tactics were developed to avoid this problem, for example �ushing the back�ll under the pipe,
but also changing the bedding shape. In (Willardson and Watkins, 2002) it was shown that a
triangular groove supporting the pipe in two points is almost as e�ective as a well prepared
circular bedding, while being much easier to construct in the �eld. Nevertheless, in the classical
situation considered by Spangler the values of bedding angle α ranging from 0◦ to 180◦ were
related to the K values ranging from 0.110 to 0.083, commonly 0.1.

The de�ection lag factor Dl takes into account the consolidation of the soil at the sides of
the pipe changing with time. Under constant load the de�ection of a �exible pipe can increase
by 30% in 40 years, (Warman et al., 2009). Typically the values of Dl range between 1.0 and 1.5.

Possibly the most important parameter in Iowa formula is the soil reaction modulus (Moser,
2001). It was often tried to identify it with oedometric modulus with factors likeM = (0.7− 1.5)·
E′ (Krizek, 1971) or M = (1.0) · E′ (Hartley and Duncan, 1987). Typically the values of E′ are
taken from tables and depend on the type of soil and the level of compaction.

3.1.3.2 Internal Forces and Pipe Failure

There is a number of methods to compute the internal forces in the walls of the pipe. If the stress
in any place of the wall exceeds the yield stress or maximum stress of the pipe wall material the
wall can be crushed which leads to failure. Typical pipe failure modes are presented in Figure
3.4. The mode depends on the sti�ness of the pipe and the surrounding soil.

3.1.3.2.1 Beam Theory In case of point loading of a pipe the internal forces can be de-
termined in the framework of beam theory. In Appendix C a method based on the beam theory
is presented. The normal and tangential stresses are negligible while the bending moment is
signi�cant. The internal moment can be expressed with a following equation:

M = PvR(sinθ − 2

π
), (3.20)

where:
Pv is the vertical force acting on the pipe [N ],
θ is the angle [deg]

The extreme internal moments are located at θ = 0◦ and θ = 90◦:

M(θ = 0◦) = − 2

π
PvR, (3.21)
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M(θ = 90◦) =

(

1− 2

π

)

PvR. (3.22)

Figure 3.4: Failure modes in underground pipes (modi�ed after (Watkins et al., 1980))

3.1.3.2.2 Marston-Spangler The Marston-Spangler method gives the following values of
normal compressive force in the wall:

Tc = 0.7PvR, (3.23)

Th = 0.7PvR, (3.24)

where:
Tc is the normal force in the top and bottom parts of the pipe [N ],
Th is the normal force in the side parts of the pipe [N ],
Pv is the vertical force acting on the pipe [N ].

The bending moments in the pipe are given with the following formulas:

Mc = 0.02PvR
2, (3.25)

Mh = −0.02PvR
2, (3.26)

where:
Mc is the moment of force in the top, bottom and both sides of the pipe [Nm]

(12, 3, 6 and 9 o'clock positions, see Fig. 3.5),
Mh is the moment of force at 1:30, 4:30, 7:30 and 10:30 positions [Nm].
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Figure 3.5: Bending moment diagram given by Spangler (after (Kunecki, 2006))

3.1.3.2.3 Ring Compression Other classical approach to compute the forces in the pipe
walls is to use the ring compression theory stating that the compression force in the wall is equal
to radial pressure acting on the wall multiplied by the radius

T = P ·R. (3.27)

Ring compression method neglects the in�uence of bending moments in the wall of the pipe.

Other methods based on the ring compression theory and engineering experience were devel-
oped by American Association of State Highway and Transportation O�cials (AASHTOmethod)
and Canadian Highway Bridge Design Code (CHBDC method) and are described in (Iron and
Institute, 1994). These three methods can be used to design large constructions (diameters up
to 7.7 [m], arch spans greater than 3 [m]) and shapes other than circular, and thus are applicable
to culverts, arches and tunnels. These methods neglect the in�uence of bending moments in the
wall of the construction and focus on the axial forces in the wall.

3.1.4 Pipe Experiments and Modeling

The study of buried pipe behaviour was always based on the engineering practice. Full scale
experiments and instrumentation of real constructions are an important part of new design
method development and improvement of parameters in the existing methods.
In (Arockiasamy et al., 2006) the authors performed �eld testing of shallow buried large HDPE
and PVC pipes under highway truck loading. The experimental results were compared with
theoretical values obtained using modi�ed Iowa method and FEM simulations.
In (McA�ee and Valsangkar, 2008) an induced trench conditions were tested, that is a situation
where a highly compressive material (geofoam, sawdust) is placed above a pipe in projection
conditions to induce soil arching and improve the performance of the construction. In this paper
Marston-Spangler theory was compared with centrifuge experiments, numerical modeling and
�eld tests.
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In (Calvetti et al., 2004) the authors presented 3D pipe modeling in DEM method in the context
of landslide damaging pipes, which was continued in (di Prisco and Galli, 2006). This work proved
that discrete element method is able to simulate buried pipe behaviour.

3.1.5 Arching E�ect

Figure 3.6: Experimental results in Terzaghi trap door experiment (after (Tien, 1996)). The force

acting on the trap is quickly reducing along with the lowering of the trap and then rise again to

some residual level

The shearing between two soil prisms described by Marston comes from the fact that one soil
prism is settling more than the other. As was said before, the direction of shear can result in
the pipe load reduction or increase, depending on the situation. Similar situation occurs in many
other situations except buried pipes, for example in grain silos or between the heads of foundation
piles. This phenomenon is called arching e�ect and was studied intensively since the times of
Marston. Terzaghi generalised the problem (Terzaghi, 1943) by studying a trap door problem. In
his experiments a rectangular door was moved down from under a granular assembly, a situation
similar to opening a valve at the bottom of a grain silo. The load on the door was observed to
be smaller than the theoretical load coming from the weight of the grain prism above it. It was
concluded that the load was transferred from the yielding soil mass to the stationary soil around
the trap door. As in the case of Marston, Terzaghi assumed vertical surfaces of shearing between
the soil prisms. Considering equilibrium of a yielding soil strip above a trap Terzaghi obtained a
solution for cohesive soil:

σv =
B
(

γ − c
B

)

Ktanφ

(

1− e−Ktanφ z
B

)

+ q · e−Ktanφ z
B , (3.28)
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where:
σv is the vertical stress [Pa],
z is the depth [m],
c is the cohesion [Pa],
φ is the friction angle of the soil [deg],
q is the loading at the top of the soil assembly [Pa],
B is the width of the trap door [m].

Terzaghi observed that along with the lowering of the trap door the load transfer was greatest
in the beginning of the test and was smaller after some large displacement, Figure 3.6.

3.2 Elastic Pipe Modeling in DEM

The idea of the study was to perform physical experiments and to reproduce them numerically
in order to study soil arching in the context of particle shape. The analogue soil was modeled
using the method described in the previous chapter, but in order to create a model of an elastic
pipe, additional contact law had to be introduced.

3.2.1 Parallel Bond Contact Law

Generally speaking in 2D this model consists of a pair of links transmitting forces (N , T ) and
moment of force (M) between the two connected cylinders of length t. One should think of elastic
springs distributed regularly between two bonded particles. The parallel bonds transfer forces
up to a limit when it brakes. The bonds are described by �ve numerical parameters:

1. Parallel bond normal sti�ness kpbn
[

N
m3

]

, similar to contact normal sti�ness

2. Parallel bond tangential sti�ness kpbt
[

N
m3

]

, similar to contact tangential sti�ness

3. Normal strength of the bond Npb
[

N
m2

]

, describing the breaking point of the bond

4. Tangential strength of the bond T pb
[

N
m2

]

, describing the breaking point of the bond

5. The distance between a parallel bonds and particle centre Rpb [m], the physical size of the
bond. It can be represented as a dimensionless ratio between the size of the bond and size
of the particles in contact: R

pb
[−] = Rpb

min(RA;RB)

In order to create the bond, two particles must overlap or at least be in contact. Initially
the forces in the bond are equal zero. After the bond is created, the two particles can change
their relative position. The bond forces are computed relating to the increment of displacement
from the initial state when the bond was created. The bonds work in parallel with the standard
normal and tangential contact laws described in Sec. 1.7 The bond can be broken but this feature
of the model was not used in the current study. A single parallel bond connecting two particles A
and B can be regarded as a beam of length RA +RB − d (where d denotes the particle overlap),
height 2Rpb and width equal to the length of the particles t. A sketch of the parallel bond is
presented in Figure 3.7.
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Figure 3.7: Parallel bond between two particles. The bond is a �nite rectangular parallelepiped

of lengths RA +RB − d, 2Rpb and t

The normal force increment in a given timestep is computed the following way:

∆F pb
n = kpbn ·A ·∆Un, (3.29)

where:

A
[

m2
]

is the cross-section area of the bond; A = 2Rpb · t,
∆Un [m] is the normal relative displacement between the particles in contact.

The tangential force increment is computed using:

∆F pb
t = kpbt ·A ·∆Ut. (3.30)

and the moment of force between two particles by:

∆M = kpbn · I ·∆θ, (3.31)

where:

I
[

m4
]

is the moment of inertia of the bond cross-section; I = 2
3 · t ·

(

2Rpb
)3,

∆θ [−] is the change of relative orientation of the particles.

3.2.2 Numerical Model of Elastic Pipe

Elastic pipe was created with circular particles of the same diameter D connected together with
parallel bonds into a single body, see Figure 3.8. In order to obtain similar mechanical behaviour,
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the geometry of the bonds was related to the geometry of the pipe, while the numerical parameters
describing the bonds were related to the mechanical properties of the material. This way, the
height is expressed with the following equation:

R
pb

=
h

D
. (3.32)

This relation ensures that a given beam geometry can be modelled correctly regardless of the
size of the particles used.

Figure 3.8: A numerical model of an elastic pipe. The model consists of a number of particles

bound with parallel bonds. The distance between the bonds correspond to the thickness of the

pipe while the number and diameter of the particles can be di�erent

The bond sti�ness is related to the sti�ness of the material:

kpbn =
E

D
, (3.33)

kpbt =
G

D
. (3.34)

By default the parallel bond works together with the normal and tangential contact laws (see
Section 1.7) which can a�ect the behaviour of the pipe. This is due to the fact that the sti�ness
of the elastic body becomes di�erent in tension where only parallel bonds carry all the load and
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di�erent in compression or bending where the load is shared in parallel with the contact bonds.
One can conclude that the solution to this problem would be to use kn and kt equal to zero, but
in PFC2D the contact sti�ness is calculated as a mean of the sti�nesses of two bodies in contact:

k =
kA · kB
kA + kB

. (3.35)

In the particular case of pipe buried in granular material, using di�erent values of contact sti�ness
for soil and for pipe would result in di�erent sti�ness of the pipe-soil interface with little physical
meaning, especially if one would be equal to zero.

Because of this problem, it was therefore decided to keep realistic values of contact sti�ness
but to cancel the contact bonds inside the pipe. The contact bonds were countered by introducing
additional forces everywhere where a force resulting from a contact bond between the pipe
particles occurred. That way the elastic behaviour of the pipe was modelled with parallel bonds
only, without any in�uence of the pipe's kn and ks. Therefore the values of these parameters
could have been chosen to present proper soil-pipe and soil-soil interface behaviour.

3.2.3 Analytical Validation of the Numerical Model: Cantilever Beam Load-

ing

Figure 3.9: Parallel bond notation in simple case of a cantilever beam

The parallel bond behaviour was validated by studying a simple case of elastic cantilever beam.
It was decided to study three cases: bending, tension and compression. The beam was modelled
with a number of discs forming a single horizontal line. Initially the discs were in contact (which
is a necessary condition to create a parallel bond) with no overlap. The discs were connected
together with the parallel bonds and the position and orientation of the �rst disc was blocked in
order to obtain a �xed support. The bonds were not supposed to be broken and so their strength
was set to be very high. The beam was loaded with the external forces gradually to reduce
vibrations of the beam. When the load reached the maximum value, a number of additional
calculation steps were made in order to obtain an equilibrium state.

b [m] h [m] L [m] E [Pa]
0.1 0.2 2.0 20 · 108

Table 3.1: Cantilever beam characteristic

For all the cases the same geometry and sti�ness of the beam was used, see Table 3.1 and
Figure 3.9. The self-weight of the beam was neglected.

3.2.3.1 Vertical Loading: Bending

The beam was loaded with an uniformly distributed vertical load q. The value of the load was
the same in all the tests. The beam was modelled with di�erent number of particles. This caused
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change of the particle diameter. Since the beam was subjected to bending, no overlap between
the particles occurred and there was no in�uence of the kn and ks parameters. The numerical
parameters used are summarised in Table 3.2.

n D [m] R
pb
[−] kpbn [N/m3] q [N/m]

20 0.1 2.0 2e10 100.0
50 0.04 5.0 5e10 100.0

Table 3.2: Numerical parameters of the elastic beams subjected to transverse loading

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.5  1  1.5  2

D
e
fl
e
c
ti
o
n
 [
m

m
]

Length [m]

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  0.5  1  1.5  2

O
ri
e
n
ta

ti
o
n
 [
d
e
g
]

Length [m]

Analytical
50 Discs
20 Discs

 0

 50

 100

 150

 200

 250

 0  0.5  1  1.5  2

M
o
m

e
n
t 
o
f 
F

o
rc

e
 [
N

m
]

Length [m]

 0

 50

 100

 150

 200

 250

 0  0.5  1  1.5  2

S
h
e
a
r 

F
o
rc

e
 [
N

]

Length [m]

Figure 3.10: Results of cantilever beam loaded with uniform load compared with the analytical

solutions

The �nal positions and orientations of the particles can be compared with the analytical
equations describing the de�ections and slope of a beam. The forces in the parallel bonds cor-
respond to internal forces that can also be obtained analytically. The analytical solutions of a
cantilever beam are given by the following equations:

δ(x) =
q · x2
24EI

(6L2 − 4Lx+ x2) (3.36)

θ(x) =
q · x
6EI

(3L2 − 3Lx+ x2) (3.37)

M(x) = −q

2
(L2 − 2Lx+ x2) (3.38)

T (x) = q · (x− L) (3.39)
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where δ(x) is the beam de�ection, I is the moment of inertia of the beam cross-section
(in this case I = b·h3

12 ), θ(x) is the beam slope, M(x) represent the internal moment of force
while T (x) is the shear force in the beam.

As one can see in Figure 3.10, the result of the model is in agreement with the analytical
solution of the internal forces. The di�erence between the exact solution of the particle displace-
ment and the model is less then 8% for a model consisting of 20 particles and less then 5% for a
model consisting of 50 discs, see the extreme values in Table 3.3.

n δmin[mm] θmin[deg] Mmax[Nm] Tmax[N ]

20 -1.614 -0.0617 200.000 200.000
50 -1.570 -0.0597 201.868 201.323

analytical -1.500 -0.0573 200.000 200.000

Table 3.3: Result of the beam bending

3.2.3.2 Axial Loading: Compression and Traction

A beam of the same geometry as described before was loaded axially with a point force at the
tip of the beam that was either compressing or extending the beam. In this case of loading the
contact bonds were taking part in load transfer by default. As it was mentioned previously in
Section 3.2.2, the contact bonds were countered by introducing additional forces with the same
value and opposite direction.

n D [m] R
pb
[−] kpbn [N/m3] kn[N/m] F [N ]

20 0.1 2.0 2e10 10e7 ±500.0
50 0.04 5.0 5e10 10e7 ±500.0
50 0.04 5.0 5e10 10e4 ±500.0

Table 3.4: Numerical parameters of the elastic beams subjected to axial loading

n kn[N/m] F [N ] ∆U [m] Analytical N [N ] Analytical
20 10e7 +500.0 2.4817e-5 2.5e-5 -500.0026 -500.0
20 10e7 -500.0 -2.5187e-5 -2.5e-5 499.9972 500.0
50 10e7 +500.0 2.3939e-5 2.5e-5 -500.0061 -500.0
50 10e7 -500.0 -2.6082e-5 -2.5e-5 499.9931 500.0
50 10e4 +500.0 2.3939e-5 2.5e-5 -500.0061 -500.0
50 10e4 -500.0 -2.6083e-5 -2.5e-5 499.9931 500.0

Table 3.5: Resulting displacement and forces of the elastic beams subjected to axial loading

compared with the theoretical values

Table 3.4 gathers the numerical parameters of the beams used. Table 3.5 present the result of
the numerical simulations. These tests proved that the number of balls and the value of contact
sti�ness has very little in�uence on the �nal result of axial loading which are in agreement with
the expected values.
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3.2. ELASTIC PIPE MODELING IN DEM

3.2.4 Validation of the Numerical Model with Experimental Results and An-

alytical Solution of Simple Compression Test on Pipe

A next approach to validation of the model was to conduct laboratory experiments and compare
the results with the numerical model and analytical solution.

The analytical solution may be obtained basing on the beam theory and using the Castigliano
theorem described in Appendix C. The idea behind the solution is to treat a circular pipe as a
curved beam. The analytical solution is valid only for small strains and was compared with the
results in the initial, elastic phase of compression test. In order to obtain the deformations of the
beam one must give the value of the elastic modulus of the material.

3.2.4.1 Young's Modulus Estimation

(a) Hydraulic press
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(b) Axial compression result

Figure 3.11: Young's modulus estimation with axial compression of a 22.5cm pipe fragment. The

deformation of the specimen were measured with an external gauge, not visible in the image

PVC is a synthetic material with very high range of application, from vinyl records to plastic
windows and electric cable coating. The mechanical properties of plastic materials depend on
the chemical composition that can vary greatly. The specimens used in the experiments were cut
from a commercially available plumbing pipe of unknown mechanical properties. Because of that
it was decided to obtain the necessary values experimentally by performing simple laboratory
tests. All the specimens were prepared from the same piece of PVC pipe in order to assure the
consistency of the results. The wall thickness of the pipe was equal to 3.3mm with the outer
diameter equal to 100mm.

To derive the value of Young's modulus, two types of experiments were made. The �rst exper-
iment consisted of axial compression of a PVC pipe while the second was a simple compression
performed on multiple specimens.

The axial compression specimen was manually cut to be 22.5cm long with parallel top and
bottom. It was placed in a hydraulic press without any lubrication of the contact surfaces and
compressed. The specimen axial deformation was measured with analogue gauges (see Fig. 3.11a).
The resulting stress-strain curve is presented in Figure 3.11b. Because of the imperfections of
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CHAPTER 3. APPLICATION: ARCHING EFFECT ABOVE BURIED PIPES

the pipe surfaces and friction between the specimen and the plates, the beginning of the curve is
disturbed. The value of a Young's modulus �tted in that experiment results is equal to 16.7e8Pa.

The second experiment consisted of a vertical compression of an elastic ring. In these tests
four samples were used. All the samples were mechanically cut in order to obtain smooth and
parallel surfaces at the ends. The specimens had di�erent lengths: 6.3, 6.0, 6.0 and 2.2cm. The
results of all the samples were normalised to correspond to specimen of 6.0cm length. The wall
thickness and outer diameter were the same as in the previous experiment. During the experiment
the sample was loaded between two vertical plates with an electric press (see Fig. 3.12a). The
displacements of the top plate were measured using an analogue gauge. The force applied on
the pipe was measured with a ring force gauge. Specimens were also photographed during the
loading and unloading and the digital images acquired that way were used to verify the precision
of the pipe deformation measurements. The results can be observed in Figure 3.12b.
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(a) Experimental setup
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(b) Simple compression result

Figure 3.12: Young's modulus estimation with simple compression. The test was performed on

four samples that were loaded up to di�erent extent in the apparatus presented in Figure 3.12a.

The sample was photographed in order to perform digital image correlation

Since in this kind of experiment the Young's modulus cannot be calculated directly, an
analytical equation (C.12) described in more details in Appendix C was used.

E = (
π

4
− 2

π
) · F ·R3

δY · I (3.40)

The Young's modulus characterising the initial, linear part of the curves extracted from these
tests was equal to 20.2e8Pa. It was decided to use the value of the second group of experiments
rounded down to 20.0e8Pa because of the repeatability of the results, some imperfections of the
sample used in the axial compression and because those results were closer to the ones found in
literature (24.50e8Pa in (Alves and Martins, 2009), 33.78e8Pa in (Titov, 1984)) then the value
obtained from the axial loading.
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3.2. ELASTIC PIPE MODELING IN DEM

3.2.4.2 Point Loading of the Pipe: Simple Compression

Knowing the value of the Young's modulus it was possible to perform numerical simulations of
the experimental situation described in Section 3.2.4.1, simple compression of an elastic ring.
The comparison was made by comparing the force-displacement curves obtained during the
experiments and from numerical simulations, and the deformations of the compressed pipe.

The experiments were recorded with series of digital photographs in order to be able to follow
the change of shape of the specimen by means of Digital Image Correlation (DIC). A number
of points distributed regularly on the front face of the specimen was chosen and then followed.
That way it was possible to obtain a force-displacement curve and the deformations of all the
body, and later to reproduce the behaviour with the numerical model.

The geometrical parameters of the pipe were reproduced in a DEM model. The pipe was
6.0cm long, had an external diameter of 10cm and its wall thickness was equal to 0.33cm. In
DEM it was modelled with 48 discs touching each other but without any overlap (48 parallel
bonds), as shown in Figure 3.13a. The mechanical properties of PVC were function of Young's
modulus as described before. The Young's modulus was equal 20.0 · 108Pa. A circular pipe was
loaded with a vertical point force acting directly on the pipe. All these data are presented in
Table 3.6.

(a) Pipe geometry used in the validation of the nu-
merical model. The model is divided into 48 sections

(b) PVC pipe during simple compression. The spec-
imen in the experiment had 48 marks on the front
face, as well as a speckle pattern, to facilitate the
correlation performance

Figure 3.13: Experimental setup of simple compression was reproduced in the numerical model.

The neutral axis of the pipe is de�ned by the radius R equal to D−h
2 . The distance between the

parallel bonds 2Rpb is equal to the pipe wall thickness. The displacements of the two particles

at the sides of the pipe are �xed in the direction of Y
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n D h b E Fmax

Simple compression
Sample 2 - 100mm 3.3mm 60mm 20.2 · 108Pa 223.256N
DEM 48 100mm 3.3mm 60mm 20.0 · 108Pa 250.000N

Table 3.6: Parameters of the elastic pipe simple compression
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Figure 3.14: Forces in the parallel bonds representing internal forces in the elastic pipe under a

single force F=250N acting on the top
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Figure 3.15: Force-displacement curve of a circular pipe simple compression. Comparison between

experimental and a numerical results

The contact forces between the particles forming the pipe were disabled by introduction of
additional forces with equal value but an opposite direction. That way only the parallel bonds
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3.2. ELASTIC PIPE MODELING IN DEM

were taking part in the transfer of load. Therefore forces in parallel bonds were corresponding to
the internal forces inside the elastic body.

The resulting internal forces are presented in Figure 3.14 while the comparison of the force-
displacement curve is presented in Figure 3.15.

As one can see, the model is reproducing the pipe behaviour well in the elastic domain. In this
domain it was possible to make a comparison between the three types of result: experimental,
numerical and analytical. The following parameters were put into equations (C.12), (C.13), (C.14)
and (C.15):

E [Pa] R [m] b [m] h [m] F [N]
20.0 · 108 0.04835 0.060 0.0033 51.92

Table 3.7: Geometrical parameters

In the experiment the elastic pipe was placed on a �xed metal base and loaded from the
above. In this case the values of displacement computed from the equations (C.12) and (C.13)
must be doubled because the derivation in the appendix assume di�erent boundary conditions.

For the given geometry the moment of inertia is computed as for a rectangle: I = bh3

12 where
b is the pipe length and h is the wall thickness.

The analytical values were as following:

δY = 2 · 0.5 · (π
4
− 2

π
) · 51.92 · 0.048353

20.0 · 108 · 0.06·0.00333

12

= 2.430mm (3.41)

δX = 2 · 0.5 · ( 2
π
− 1

2
) · 51.92 · 0.048353

20.0 · 108 · 0.06·0.00333

12

= 2.231mm (3.42)

M (θ = 0◦) = − 2

π
· 51.92

2
· 0.04835 = −0.7991Nm (3.43)

M (θ = 90◦) =

(

1− 2

π

)

· 51.92
2

· 0.04835 = 0.4561Nm (3.44)

It is worth noting that the same value of vertical displacement as in the analytical solution can
be obtained using Blake's analytical formula (Blake, 1959):

δY =
Fλ

E

(

1.788λ2 + 3.091
0.637

1 + 12λ2

)

, (3.45)

λ =
R

h
.

δY =
51.92 · 0.04835

0.0033

0.06 · 20.0 · 108

(

1.788 · 0.04835
2

0.00332
+ 3.091 · 0.637

1 + 12 · 0.048352

0.00332

)

= 2.433mm (3.46)

The comparison of the results in case of simple loading (see Tab. 3.8) show that the vertical
and horizontal deformation of the model are in agreement with the experimental results with less
then 5% of di�erence. The extreme bending moment in the pipe is similar in both the analytical
and numerical solutions, with an error smaller than 10%.
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E[Pa] δY [mm] δX[mm] M (θ = 0◦)[Nm] M (θ = 90◦)[Nm]
Experiment 20.2e8 -2.41mm +2.14mm � �
Analytical 20.0e8 -2.43mm +2.23mm -0.7991 0.4561

Analytical Blake 20.0e8 -2.43mm � � �
Model 20.0e8 -2.52mm +2.24mm -0.7288 0.4688

Table 3.8: Comparison of the result of a simple compression of elastic pipe under 51.92N of

vertical load

Finally, the overall shape of the pipe captured in the pictures can be compared with the
particle position in DEM, Fig. 3.16. This comparison was made for the external force equal to
51.92N.

Simulation F=  0.00N
Simulation F=51.92N

Experiment F=  0.00N
Experiment F=51.92N

Figure 3.16: Pipe shape in the experiment and in DEM simulation in initial and �nal shape.

Each point correspond to mass centre of a disc or to a point on the front face of the pipe

3.2.4.3 Point Loading of the Pipe: Oedometric Compression

In order to test the ability of the numerical model to represent the behaviour of the pipe in
other boundary conditions, another type of experiment was made: vertical compression in 2D
oedometric conditions. This experiment was performed with the same apparatus as the simple
compression described before but this time the PVC pipe specimen was mounted in a rigid steel
box prior to loading that blocked the lateral displacements of the pipe walls. The front face of
the sample was clear and marked with 48 regularly spaced points and crosses to allow DIC point
tracking. The contact surface between the specimen and steel was not lubricated in any way. This
experimental setup was reproduced in the computer model as described before. The di�erence
was that the horizontal displacements of the discs on the side of the pipe were blocked, see Figure
3.17a. The parameters of the experiment and its counterpart in the simulation are presented in
Table 3.9
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3.2. ELASTIC PIPE MODELING IN DEM

(a) Pipe geometry used in the validation of the nu-
merical model. The model is divided into 48 sections

(b) PVC pipe during oedometric compression. The
specimen in the experiment had 48 marks on the
front face, as well as a speckle pattern, to facilitate
the correlation performance

Figure 3.17: Experimental setup of oedometric compression was reproduced in the numerical

model. The neutral axis of the pipe is de�ned by the radius R equal to D−h
2 . The distance

between the parallel bonds 2Rpb is equal to the pipe wall thickness. The displacements of the

two particles at the sides of the pipe are �xed in the direction of X and Y

n D h b E Fmax

Oedometric compression
Specimen 1 - 100mm 3.3mm 60mm 20.2 · 108Pa 480.26N
DEM 48 100mm 3.3mm 60mm 20.0 · 108Pa 500.00N

Table 3.9: Parameters of the elastic pipe oedometric compression

The result of the simulations is presented in Figures 3.18 and 3.19. As one can see, the model
is able to reproduce the behaviour of the pipe well in both boundary conditions. The force-
displacement curve obtained from discrete element simulation is similar to the one obtained
during the experiment. The small di�erence between the curves can be attributed to a contact
between the pipe and rigid walls on the sides which were not ideally parallel to each other.
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Figure 3.18: Internal forces in an elastic pipe under a single force F=500N acting on the top with

horizontal displacements blocked
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3.3 1γ2ε Experiments

A number of physical experiments was performed and later reproduced in numerical simulations
in order to observe the arching e�ect above the buried pipes.

3.3.1 Description of the 1γ2ε Apparatus

The tests were performed using an apparatus located in the 3S-R laboratory in Grenoble called
1γ2ε (see Fig. 3.21). The name of the device describes the conditions that can be controlled in
that apparatus: two directions of strain εx and εy, and one shearing angle γ. The device consists of
four walls connected together with hinges, forming a vertical rigid parallelogram AOBC around
a sample. The right bottom corner of the apparatus, denoted O in the sketch, is �xed. Each
wall is made of �ve sliding sections and therefore it is able to extend and contract evenly. The
apparatus is equipped with 6 force sensors (3 perpendicular and 3 parallel to the wall surfaces)
placed in the three hinges of the frame (A,B,C) and 5 LVDTs measuring the length change of
every wall and the tilt angle of the two vertical walls. The information coming from the sensors
are processed by a PC and are used to impose stress or strain conditions onto the sample using
5 electric motors running linear actuators that change the length (top vertical, top horizontal,
bottom vertical and bottom horizontal motors: TV, TH, BV, BH in Figure 3.21) and orientation
of the walls (shearing motor: Sh in the �gure). The horizontal wall lengths range from 56 to
67cm while the vertical ones from 42 to 54cm. The maximum stress the apparatus can impose
on a sample is equal to 250kPa.
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Figure 3.21: 1γ2ε apparatus

The device uses mainly the well known Schneebeli material (Schneebeli, 1956), a bi-dimensional
analogue of soil consisting of 6-cm-long circular rods of various diameters. The apparatus is quite
versatile and was used in numerous studies: (Joer et al., 1992; Calvetti et al., 1997; Sibille and
Froiio, 2007; Hall et al., 2010; Tengattini, 2010) to mention just a few. In course of these studies
other specimens were tested in the 1γ2ε apparatus: hexagonal rods made of aluminium (Lirer
et al., 2005), wooden rectangles (Charalampidou et al., 2009), large circular and bean-shaped
blocks of rubber (Le Ngoc, 2011). In the current study, besides a 6cm piece of PVC pipe (Fig.
3.22a), two types of the analogue material were used: an assembly of PVC rods and a mixture
of ash wood rods (Fig. 3.22b).

(a) Elastic PVC pipe

(b) Granular material: PVC grains (left), wooden grains (right)

Figure 3.22: The materials used in the 1γ2ε experiments. The length of all the elements is 6cm
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It is possible to perform various types of plane-strain tests in the 1γ2ε apparatus:

• oedometric compression (horizontal or vertical), when two parallel walls remain stationary
and the remaining move towards the sample,

• biaxial test (horizontal or vertical), when the stress on two parallel walls is kept constant
and the sample is loaded by the third wall movement,

• shear test, when the tilt angle is changed and the stress on top wall remain constant.

For the last type of the test, the walls, otherwise smooth, are equipped with equally spaced
�xed metal bars with dimensions corresponding to the size of Schneebeli material that distribute
shearing stresses equally.

The design of the device leaves the front face of the sample unobstructed and �at. That allows
performing image acquisition throughout the experiments without any disturbances which is very
useful to study the kinematic �eld of the sample.

3.3.2 Assessment of Grain Displacement

Recording the experiments with digital images enabled the use of Digital Image Correlation

method to analyse the results. It is �essentially a mathematical tool for assessing the spatial
transformation (including translations and distortions) between two digital images� (Viggiani
and Hall, 2008).
This technique consists of comparing two digital images before and after a deformation in order
to evaluate the change in surface characteristics and to deduce the behaviour of the specimen.

The DIC technique is very universal and can be applied in many various �elds, both in
2D and 3D cases, to recognize patterns (medical imaging, face recognition, dactyloscopy) or
measure deformations, strains and displacements (experimental mechanics, engineering) (Sutton
et al., 2009). In this work 2D-DIC was used.

Figure 3.23: Digital Image Correlation method consists of �nding a matching motif on two images.

A node is de�ned on the reference image n containing some characteristic features of the image,

like for example specimen surface texture. Around the node a correlation window is de�ned. The

motif inside the correlation window is searched for in the second image n+1 within some area

called a search range. The motif is compared with various fragments of the image and for each

comparison a correlation coe�cient is computed. The best match have the highest correlation

coe�cient. Finally a displacement vector can be drawn between the initial and �nal position of

the node
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3.3.2.1 Methodology

To apply DIC method an experimental device that allows direct observation is needed. 1γ2ε
meets that requirement as its front face is open. The specimen surface must have distinguishable
features, like for example contrasting areas of colour, and should be �at. Usually a �ne black-
and-white speckle pattern is applied on the surface of a specimen to enhance the natural contrast
of the material. In this study the wooden particles were painted with a pattern like this. The face
of the elastic pipe specimen was painted white, then speckled with �ne black points and marked
with additional 48 equally distributed crosses, see Figure 3.24. The PVC grains were not painted
in any way as each rod had a di�erent shade of grey.

Figure 3.24: Elastic pipe surrounded by wooden grains at the beginning of a vertical compression

with constant lateral pressure. The contrast of the front face of the pipe was increased by spraying

�ne black speckles over a white background and marking 48 points and crosses

The principle of correlation is very simple and was summarised in Figure 3.23. In the be-
ginning the user de�nes a position of a point in the �rst image that is supposed to be found in
the second image, for example a centre of a speci�c grain. The DIC code contains that point of
interest inside a correlation window that describe the size of a motif which will be looked for.
The correlation window in general should be big enough to have some characteristic patterns of
colour inside that would be easy to �nd on a second image but not too big to avoid covering
space outside an exemplary grain.
After de�ning a box around a speci�c point, the code search for a best match between the mo-
tif taken from the initial image and the deformed one. Theoretically the small motif might be
compared with the entire image surface, but it would be impractical. In most of the cases one
can expect that a given grain moved in some speci�c direction and can give and approximate
magnitude of the displacement. There is no need to compare the motif with far corners of the
image. The user can specify a search range around the initial position of the motif and to limit
the search.
The comparison is made by computing some metrics for each piece of the image inside the spec-
i�ed range and the best one is chosen at the end. After �nishing this procedure one gets the
information about the displacements of the original motif.

There are di�erent metrics that allow quantifying whether two images match or not. One
example, used in this study, is the Normalised Correlation Coe�cient (NCC). Its function is
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given by the following equation:

NCC (x, y) =

∑n
x=1

∑m
y=1

(

I1 (x, y)− Ī1
) (

I2 (x+ u, y + v)− Ī2
)

√

∑n
x=1

∑m
y=1

(

I1 (x, y)− Ī1
)2∑n

x=1

∑m
y=1

(

I2 (x+ u, y + v)− Ī2
)2

(3.47)

Where:

I1 and I2 are the grey level functions before and after deformation,
Ī1 and Ī2 are the mean of I1 and I2,
x, y are the local spatial coordinates,
u, v are the local displacement coordinates.

Theoretically the correlation is perfect when the correlation coe�cient is equal to 1.
In the simple DIC approach described above, transformations are expressed as integer values.

The actual movements are much more complicated: they consist of translations, rotations and
deformations at the same time, and none of these is integer. To overcome this problem, DIC
codes usually o�er so-called sub-pixel re�nement, (Sutton et al., 2009). It is a numerical method
whereby the initial integer transformation is improved and its non-integer value is found. That
might be done by approximating a discrete function of the correlation coe�cient and �nding its
maximum. The approximation can be realised in di�erent ways. A simple example is shown in
Figure 3.25. In this example, three neighbouring values of NCC are interpolated with a quadratic
function, which is very simple and fast.
Another, more accurate but also more complicated method, is to approximate the grey level
functions of the images instead of NCC. Doing that produces much more precise results if only
because the original images have much higher resolution then the correlation coe�cient �elds.
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Figure 3.25: Sub-pixel re�nement example. Nine discrete values of correlation coe�cient are

approximated with a parabolic surface in order to �nd a maximum value. The position of this

maximum is expressed with a real number

A number of commercial and academic codes exist to carry out DIC. The program used in
this work was developed by Steven Hall and is called Photowarp and was used previously in
di�erent works, for example (Hall et al., 2010) (Tengattini, 2010).
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Figure 3.26: Initial position of the points used in the digital image correlation. In this case the

points were placed in the centre of each particle, in the corners of the experimental apparatus

and around the perimeter of the pipe

The DIC codes are capable of tracking big numbers of speci�c motifs relatively quickly.In
this study speci�c points were de�ned in the corner of the 1γ2ε in order to follow the strains
of the experimental apparatus and on the front face of the pipe on its perimeter to follow the
deformation of the pipe. Apart from these points, the granular material was tracked as well. In
case of wooden grains, the points were placed in the mass centre of each particle, see Figure 3.26.
In case of PVC the resolution of the images was too small to do the same, therefore a number of
points of the highest contrast was chosen. These points covered all the area of the sample evenly.

3.3.3 Experimental Program

The 1γ2ε apparatus was used to perform six tests with two di�erent types of material: three
tests with each type of particles. Two vertical compression tests without a pipe were done as
a reference. These tests were followed by four tests with a circular PVC pipe placed inside the
sample. Each type of granular sample was loaded vertically either in oedometric conditions or in
biaxial conditions with constant lateral pressure.
The experiments performed in 1γ2ε were recorded as series of digital images. The images were
taken in speci�ed time intervals, each 30s. The specimens that included a pipe were loaded with
di�erent velocities. The PVC particles used in the experiments had diameters of 1.5, 3.0 and
3.5mm, while the mixture of ash wood rods had diameters of 8.0, 10.0, 12.0 and 20.0mm. The
microscopic intergranular friction angle between the wooden rods is equal to φwood

µ = 25.5◦ ± 2◦

while it is φPV C
µ = 22.0◦ between the PVC ones (Joer, 1991).

The information concerning all the experiments in the 1γ2ε were summarised in Table 3.10.
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Test Material Pipe Loading velocity Image interval Test name
Biaxial 1 PVC NO 2.0 cm

h none Biax-1-PVC-NoPipe
2 Wood NO 2.5 cm

h none Biax-2-Wood-NoPipe
Biaxial 3 Wood YES 2.5 cm

h 30s Biax-3-Wood-Pipe
4 PVC YES 5.1 cm

h 30s Biax-4-PVC-Pipe
Oedometric 5 Wood YES 5.1 cm

h 30s Oedo-5-Wood-Pipe
6 PVC YES 5.1 cm

h 30s Oedo-6-PVC-Pipe

Table 3.10: Description of the 1γ2ε experiments

The experimental protocol of a vertical compression with constant lateral pressure can be
summarised in steps:

• Sample preparation The material is gradually placed inside the apparatus, one handful
after another, without any additional densi�cation. The rods are distributed evenly in all
the width of the frame in order to avoid building steep, unstable slopes. In case of an
experiment with a pipe it is placed inside the sample in the same time as the grains. The
few last centimetres on the top of the sample are built by placing the rods one by one.
The top surface of the sample must be �at to ensure full contact of the sample with the
top wall. To be sure that the strains occur in one plane the front face of the sample is
�attened as well. The �at front face is also critical for the subsequent particle recognition:
rods protruding from the sample cast shadows on the surrounding rods. The �attening
procedure causes a slight densi�cation of the assembly;

• Isotropic compression The three moving walls (L,R,T) compress the sample isotropically
in order to reach a certain level of stress on every wall, in this case σ0 = 50kPa;

• Vertical compression with constant lateral pressure In the vertical compression test the
top plate moves down with a low, constant velocity (in this case ≤ 1mm

min which corresponds

to I ≃ 0.1cm/min
50cm

√

14g·2cm
50kPa·6cm·50cm ≃ 1 · 10−8 which ensures the quasi-static conditions),

lateral pressure is kept constant and equal to the isotropic pressure from the previous step.
This step is �nished when the maximum width of the apparatus frame is reached or when
the pipe deformation is big enough to create a risk of sudden breaking which could be
dangerous to the apparatus;

The sample in the vertical compression test was prepared as previously. The loading itself was
performed di�erently and there was no initial isotropic phase:

• Oedometric compression During the test the vertical walls remain in the same position
while the top wall moves down with a constant velocity. Next the sample is unloaded in
the same manner;
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(a) Sample of wooden rods (b) Sample of PVC rods

Figure 3.27: Images of 1γ2ǫ samples at the beginning of biaxial tests

3.3.4 Oedometric Tests Results

3.3.4.1 Macroscopic Results

The experiments were performed starting from no vertical stress (some horizontal stress was
recorded by the sensors due to the weight of the sample). Initially the top plate of the apparatus
was not in contact with the sample and was lowered with a constant velocity. The moment when
the stresses (both vertical and horizontal) begun to increase was arbitrarily chosen as a start
of the oedometric compression. That is the reason why the experimental stress curves in Figure
3.28 are not ideally starting from 0Pa.
During the oedometric test made on both wooden and PVC particles, the stress on the walls
of the apparatus rose quickly while the pipe specimen or the granular material did not deform
or displace much. Nevertheless, the sample consisting of PVC grains deformed more then the
sample made of wood.
The measurements of stress allowed us to obtain the coe�cient of earth pressure at rest K0 =

σ3

σ1
.

It is equal to 0.6 for the sample made of wooden particles and 0.5 for the sample consisting of
PVC grains.
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Figure 3.28: 1γ2ǫ oedometric compression results of tests Oedo-5-Wood-Pipe and Oedo-6-PVC-

Pipe consisting of two types of materials with a circular, elastic pipe inside. Elastic modulus of

the wooden sample is equal 28 · 106Pa while for the PVC sample it is equal to 10 · 106Pa

3.3.4.2 Kinematic Analysis

The front face of the sample was photographed in regular time intervals using a static digital
camera during the experiments. The images obtained that way were used to acquire information
about the kinematic behaviour of the assembly with DIC tools, see Section 3.3.2.

During the observation of the experiments it seemed there was very little deformation of the
pipe. The measurements of the sample� and pipe area revealed that during the Oedo-5-Wood-
Pipe experiment the volumetric strain of the apparatus reached −0.55% (negative value denoting
contraction) while in the elastic pipe it was equal −0.2%. In the experiment Oedo-6-PVC-Pipe
the maximum values of εV were equal to −1.56% and −0.23% respectively.

These results show that the majority of the overall deformation occurred in the granular
material, not in the elastic pipe, which deformed approximately the same amount in both the
tests. The sample made of wooden particles was more dense than the sample made of PVC.

3.3.5 Biaxial Test Results

3.3.5.1 Macromechanical Response

The macroscopic results of the vertical compression tests show that the presence of a PVC pipe
in the central part of the assembly does not in�uence the overall behaviour of the specimen, see
Fig. 3.29. Even though the samples were prepared in the same way, it is virtually impossible to
assure that their density is the same, hence the di�erences in the volumetric strain curves.

The elastic modulus of the sample of wood was equal to 22 · 106Pa while in case of PVC its
value was lower: 15 · 106Pa. The macroscopic friction angle at the peak was equal to 30◦ for the
samples made of PVC rods and 30◦ and 26.4◦ for the samples made of wood, without and with
the pipe specimen respectively. As for the friction angle at the threshold, the values of all the
tests were similar and were about 26.4◦ as well. The macroscopic behaviour of these samples is
characteristic for dense assemblies of cohesionless material like sand.
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Figure 3.29: 1γ2ǫ experiment results of two types of materials with or without a circular, elastic

pipe inside

Please note that in both the boundary conditions, oedometric and biaxial, the maximum
level of stress reached was similar.

3.3.5.2 Kinematic Analysis

3.3.5.2.1 Strains

During the experiments it was decided to photograph all the area of the sample with a single
camera. Because the maximum size of the 1γ2ε apparatus walls is about 60 x 60cm, a scale of
an image taken with a 24MPx camera was approximately 1mm = 6px. That means that the
smallest PVC rod diameter was ≈ 9px and a rectangle inscribed inside that rod was a square
smaller than 7 x 7px. Therefore it was not large enough to carry out reliable correlation on
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each rod separately. A better choice was to study the full deformation �eld of such a sample by
treating it as a continuum. What it actually means is that a number of points was de�ned over
all the area of the image and a DIC was carried out for each grid node between two given images.

The samples made of wooden rods have grains big enough to carry out a correlation by
treating the assembly as a discrete medium. With the same scale of the image as previously, the
wooden rods have between 48 and 160px of diameter, which is enough to �t a correlation window
inside a single grain.

Apart from observing the kinematics of the granular medium, a separate correlation was done
using only the points on the front face of the pipe specimens. This allowed us to monitor the
change of shape of the pipe.

To each correlation four points representing the corners of the apparatus were added. They
allowed verifying the size of the frame independently from the LVDTs in the apparatus and (since
one of the corners is �xed) the quality of correlation as well.

Each biaxial test sample was loaded up to 10% of vertical strain ε1 of the apparatus.
Having photographed the size of the sample and the size of the PVC pipe inside it was

interesting to present the comparison of the volumetric strains of these two, see Figure 3.30.
As one can see, the elastic pipe model was behaving di�erently then the whole assembly: it
was contracting during all the test, Fig. 3.30a. In order to investigate the relation between the

strains of the apparatus and the strains of the pipe specimen, it was decided to plot the ε1γ2ε
V

εpipe
V

:

Figure 3.30b. The sample made of wooden grains was causing the pipe to deform in a less
symmetric shape because a smaller number of grains was in contact with the pipe. This caused
the disturbances in the �rst part of the curve. On the other hand, the sample made of PVC rods
was acting in a more equally distributed way and thus the shape of the pipe and the resulting
change of volume were much more smooth. The behaviour presented in that �gure shows that
the elastic pipe was compressing more then the surrounding granular material.
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Figure 3.30: During vertical compression test in 1γ2ε the volumetric strains of the apparatus and

the pipe specimen were di�erent. The whole sample was dilating (εV > 0) while the PVC pipe

was contracting (εV < 0). The �gures present the values of the strains and the relation between

them throughout the test
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(a) PVC rods (b) Wooden rods

(c) Simple compression

Figure 3.31: Images of the loaded samples. An ellipse with the same value of eccentricity was

superposed over each pipe

The shape of the pipe specimens during loading resembled an ellipse, see Figure 3.31. There-
fore it was decided to compare the change of volume of the pipes during the experiments with
the change of volume of a circle transforming into ellipse with the same perimeter. There is no
simple way to express the perimeter of an ellipse. A Maclaurin expansion up to its �fth term was
used here (Maclaurin, 1774):

Pellipse = 2πa

(

1−
[

1

2

]2

· e2

1
−
[

1 · 3
2 · 4

]2

· e4

3
−
[

1 · 3 · 5
2 · 4 · 6

]2

· e6

5
−
[

1 · 3 · 5 · 7
2 · 4 · 6 · 8

]2

· e8

7

)

, (3.48)

e =

√

1− b2

a2
, (3.49)

where a is the major, horizontal axis while b is the minor, vertical axis and e is ellipse eccentricity.
Supposing that during the compression the perimeter remains constant, Pellipse = Pcircle, it was
possible to obtain a relation between εV and ε1, Fig. 3.32.
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Figure 3.32: Comparison of the volumetric strains between experiments on an elastic pipe with

theoretical behaviour of an ellipse. The vertical strains ε1 are not the strains of the experimental

apparatus but the strains of the pipe

As one can see, the behaviour of the elastic pipe in all the three experiments, simple com-
pression discussed previously (Section 3.2.4.2) and vertical compression with constant lateral
loading, is almost the same as the behaviour of the mathematical model, especially in the initial
phase of the loading.
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Figure 3.33: During vertical compression test in 1γ2ε the strains of the apparatus and the pipe

specimen were di�erent. The �gures present the values of the strains and the relation between

them throughout the test. The �gure is continued on the next page
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Figure 3.33: During vertical compression test in 1γ2ε the strains of the apparatus and the pipe

specimen were di�erent. The �gures present the values of the strains and the relation between

them throughout the test

The same approach was used to study the vertical and horizontal strains of the pipe in
reference to the strains of the experimental apparatus. Figure 3.33 shows that the pipe was
cumulating the strains more than the surrounding material. This e�ect is more pronounced in
the sample made of PVC rods.

3.3.5.2.2 Displacement Fields

Knowing the positions and displacements of each grain (or randomly chosen points covering
the entire sample) it was possible to obtain �elds of displacement, presented in Figures 3.34 and
3.35 (see Appendix D.1 for larger, scalable images). The centre of coordinates was placed at the
bottom of the pipe.

The aforementioned �gures are di�cult to analyse. A more clean view of the behaviour of
the assembly can be obtained by presenting the same �elds after subtracting the mean �eld of
displacement ūi, as it is presented in Figures 3.36 and 3.37 (see Appendix D.2 for larger, scalable
images and zoom the region above the elastic pipe).

ui = u′i + ūi (3.50)

u′i = ui − ūi (3.51)

ūi = Xiε (3.52)

where:

ui is the displacement of a grain i,
ūi is the mean �eld of displacement,
u′i is the �uctuation around the mean �eld,
Xi is the initial position of the grain i,
ε is the strain tensor.
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(c) 0− 1%ε1 (d) 0− 2%ε1

(e) 0− 3%ε1 (f) 0− 4%ε1

(g) 0− 5%ε1 (h) 0− 6%ε1

(i) 0− 7%ε1 (j) 0− 8%ε1

(k) 0− 9%ε1 (l) 0− 10%ε1

Figure 3.34: Wooden grains with a PVC pipe, displacement �elds. The longest arrow of particle

displacement is equal to 58mm; The biggest displacement of a point on a pipe is equal to 26mm
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(a) 0− 1%ε1 (b) 0− 2%ε1

(c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1 (f) 0− 6%ε1

(g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure 3.35: PVC grains with a PVC pipe, displacement �elds. The longest arrow of particle

displacement is equal to 51mm and it was reduced three times in the images for a clearer

presentation; The biggest displacement of a point on a pipe is equal to 34mm
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(a) 0%ε1 (b) 0− 1%ε1

(c) 0− 2%ε1 (d) 0− 3%ε1

(e) 0− 4%ε1 (f) 0− 5%ε1

(g) 0− 6%ε1 (h) 0− 7%ε1

(i) 0− 8%ε1 (j) 0− 9%ε1

(k) 0− 10%ε1

Figure 3.36: Wooden grains with a PVC pipe, a mean �eld of displacement was subtracted from

the displacement �eld. The longest arrow of displacement in the �gures correspond to 4cm
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(a) 0%ε1 (b) 0− 1%ε1

(c) 0− 2%ε1 (d) 0− 3%ε1

(e) 0− 4%ε1 (f) 0− 5%ε1

(g) 0− 6%ε1 (h) 0− 7%ε1

(i) 0− 8%ε1 (j) 0− 9%ε1

(k) 0− 10%ε1

Figure 3.37: PVC grains with a PVC pipe, a mean �eld of displacement was subtracted from the

displacement �eld. The longest arrow of displacement in the �gures correspond to 1cm
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This subtraction allows us to see that indeed, as shown with the macroscopic plots of the
strains, the pipe is de�ecting more than the surrounding grains.

3.3.5.2.3 Localisation of Shear

The images of displacement vectors reveal some discontinuities that are due to the localisa-
tion zones. A better look into these localisations can be obtained by plotting the second strain
invariant in the same way as was previously done on the pages 30 and 40. The results are pre-
sented in Figures 3.38 and 3.39 (see Appendix D.3 for larger, scalable images). Please note that
the symbols inside the pipe are artifacts of triangulation, not actual indicators of shear.

It is visible that the shear localisation zones are re�ected by the walls, they intersect each
other and also seem to go through the PVC pipe specimen. It is discussable whether the presence
of a PVC pipe changes the shear localisation patterns or not. The localisation bands seem to go
through the pipe instead of going around, at least in the �rst phases of the test.

In course of this study the images were not taken during Biax-1-PVC-NoPipe and Biax-2-
Wood-NoPipe experiments. A similar experiment in the same apparatus with the same PVC rods
was done previously (Viggiani and Hall, 2008) and a resulting maximum shear strain is presented
in Figure 3.40. It is clear that the shearing pattern, although unique to every experiment, is
similar in both the cases, with and without an elastic pipe.

(a) 0− 1%ε1 (b) 0− 2%ε1
(c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1 (f) 0− 6%ε1 (g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure 3.38: Wooden grains with a PVC pipe, shear localisation. For the maximum strain the

biggest symbol correspond to 300% while the mean is equal to 35%

89



3.3. 1γ2ε EXPERIMENTS

(a) 0− 1%ε1
(b) 0− 2%ε1 (c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1
(f) 0− 6%ε1

(g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure 3.39: PVC grains with a PVC pipe, shear localisation. For the maximum strain the biggest

symbol correspond to 2500% while the mean is equal to 32%
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Figure 3.40: Shear strain during a vertical compression of PVC Schneebeli material in 1γ2ǫ. The
DIC code Photowarp revealed shear localisation zones similar to the ones obtained by us with

the PVC pipe inside. Image reproduced from (Viggiani and Hall, 2008), courtesy of Viggiani and

Hall
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3.3.6 Conclusions

The experimental program in 1γ2ε consisted of tests in two di�erent boundary conditions and
with two di�erent types of granular material. The main purpose of these experiments was to study
the in�uence of an elastic pipe placed inside the specimen and to create a point of reference for
the numerical modeling. The tests were recorded with he use of the sensors built in the apparatus
and on multiple digital images as well.

The stress-strain macroscopic curves show little in�uence of the elastic pipe specimen on the
behaviour of the sample. The similar behaviour was obtained both in terms of volume change
and the shear resistance. The similarity was bigger for a sample made of small PVC grains which
is due to the much larger number of particles in these tests.

The digital images were analysed using DIC software. It allowed us to see that during ver-
tical compression with constant lateral pressure the strains in the pipe were bigger then in the
apparatus. The opposite was observed in oedometric conditions, where the volumetric strains of
the pipe constituted a fraction of the global strains.

The digital image correlation revealed shear localisation in the samples. It was consistent
with previous results obtained in this apparatus and shown little in�uence of the elastic pipe on
the localisation patterns.

3.4 Modeling of an Elastic Pipe in Granular Material

The �nal step of this study was to incorporate the pipe model described in Section 3.2.2 into
the granular model described in Chapter 1 in order to perform numerical experiments similar to
those in 1γ2ε (see Section 3.3) and to obtain proofs of arching e�ect over the elastic pipe.

3.4.1 Simulation Protocol and Parameters

The numerical simulations were done in PFC2D. The simulation protocol was similar to the one
described in the previous chapter:

1. Initially a single large disc was placed and �xed inside a rectangular box as a placeholder
for the elastic pipe. The box was 0.5 by 0.5m while the centre of the disc was at (0.25, 0.20).
The radius of the large disc was equal to the radius of the elastic pipe increased by the
radius of the discs forming the pipe;

2. The particle growing phase was the same as previously, except that it did not a�ect the
temporary particle in the middle;

3. Next, the large disc in the middle of the sample was replaced with an elastic pipe consisting
of 48 particles, as described in Section 3.2.2. Translation and rotation of the discs forming
the pipe were blocked;

4. The sample was isotropically compressed by rigid walls with no friction between the walls
and the grains. The sample was compressed until the stress on the walls reached σ0 =
50.0kPa;

5. The grains forming the pipe were set free.

Samples prepared in that way were subsequently loaded in a vertical compression test with
constant lateral pressure. As in the case of physical test, a sample was tested in oedometrical
conditions as well.
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The numerical parameters of the particles of soil once again were computed according to the
dimensionless sti�ness parameter κ (page 36). For sake of comparability it was decided to keep
the same value of κ = 1000 as in the previous part. In the new simulations the pressure level
was �ve times higher then before, therefore the normal contact sti�ness of the soil was chosen to
be equal to kn = 50000[kNm ]. The tangential sti�ness of contact was decided to be equal to the
normal one, as in (Szarf et al., 2011).
The sti�ness of the elastic pipe model was computed basing on the Young's modulus of the
PVC pipe as described previously (Section 3.2.2). The e�ects of contact sti�ness between the
particles of the pipe were countered with additional forces. This way it was possible to model the
interactions between the soil and the pipe in the simplest way: there was no di�erence between
soil � soil and soil � pipe contacts. It was decided to use two di�erent values of the microscopic
friction parameter between the particles of the soil and the particles of the pipe. The values of
µint used were equal to 0.5 and 0.0.
Apart from the standard pipe sti�ness additional tests with other Young's modulus values were
performed. While the reference simulations were modeling a pipe made of PVC, the other sti�-
nesses used were resembling soft plastic and concrete.

3.4.2 Numerical Simulations Performed

Biaxial compression and oedometric tests were carried out:
Twelve vertical compression tests with constant lateral loading were performed for di�erent

values of shape parameter in order to evaluate the in�uence of the shape of grains on the arching
e�ect. The simulations are summarised in Table 3.11. Apart from these twelve tests one grain
shape (α = 0.5) was chosen to be used in vertical compression tests with the value of Young's
modulus of the pipe ten times lower (test C05d-p0-e7) and ten times higher (test C05d-p0-e9)
than the 20.0e8Pa used in the other tests. In the tests with di�erent pipe sti�ness values the
friction coe�cient between the pipe and the soil µint was zero.

α = 0.0 0.1 0.2 0.3 0.4 0.5
µint = 0.0 C00d-p0 C01d-p0 C02d-p0 C03d-p0 C04d-p0 C05d-p0
µint = 0.5 C00d-p5 C01d-p5 C02d-p5 C03d-p5 C04d-p5 C05d-p5

Table 3.11: Description of the twelve vertical compression simulations with pipe performed in

PFC2D. Each sample consisted of 5000 clumps of a given type and a pipe model made of 48 discs.

The microscopic friction between the pipe and the surrounding material was di�erent. Young's

modulus of the pipe was equal to 20.0e8Pa

The vertical compression simulation in oedometric conditions was performed with α = 0.5
clumps, with no friction on the pipe boundary and with standard pipe sti�ness E = 20e8Pa;
The name of the oedometric test was C05d-p0-oed.

3.4.2.1 Macromechanical Response

3.4.2.1.1 Biaxial Compression

In�uence of Grain Shape The comparison of the macroscopic results of the numerical
compression tests with the results obtained from biaxial tests without pipe described in Chapter
1 show that the presence of the pipe have little in�uence on the behaviour of the sample, compare
Figures 3.41a, 3.41b and 3.41c. A similar result was obtained in the 1γ2ε experiments, Figure
3.42. The shape of the curves and the peak and threshold values of the stress obtained are
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similar in the simulations and the experiments for the numerical sample made of discs (C0d),
which shows much lower values of the friction angle both at the peak and at the threshold than
the rest of numerical samples made of clumps.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.05  0.1  0.15  0.2  0.25  0.3

η

ε1

C00d-p0
C01d-p0
C02d-p0
C03d-p0
C04d-p0
C05d-p0

(a) Simulation with pipe, µint = 0.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.05  0.1  0.15  0.2  0.25  0.3

η

ε1

C00d-p5
C01d-p5
C02d-p5
C03d-p5
C04d-p5
C05d-p5

(b) Simulation with pipe, µint = 0.5

Figure 3.41: Comparison of the numerical macroscopic results of vertical compression tests on

clumps with and without circular elastic pipe inside the sample. The graphics show tests per-

formed with pipe inside. The two simulations di�er by the value of the friction coe�cient between

the granular material and the pipe
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Figure 3.41: Comparison of the macroscopic results of vertical compression tests on clumps with

and without circular elastic pipe inside the sample. The graphic recalls the macroscopic response

of granular material without the intrusion
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Figure 3.42: 1γ2ǫ experiment results of two types of materials with or without a circular, elastic

pipe inside

In�uence of Pipe Sti�ness For the chosen values of pipe and soil rigidity there seems
to be little in�uence on the global strength of the sample, see Figure 3.43. Both the peak and
residual friction angle are una�ected by the change of the sti�ness of the pipe.
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Figure 3.43: Comparison of the macroscopic results of numerical biaxial compression with clump

α = 0.5 samples including pipes of di�erent sti�ness: 20e7Pa, 20e8Pa and 20e9Pa

3.4.2.1.2 Oedometric Compression The numerical results of vertical compression in oe-
dometric conditions are presented in Figure 3.44. The curves are not starting from 0Pa due to
the sample preparation method which was based on the grain growing procedure. Even though
the isotropic compression performed in all the other numerical tests prior to loading was omitted,
the grain growing phase induced some stress on the walls.
There was little grain displacement in the numerical sample, the original contact network in the
sample did not change and the sample behaved almost elastically. The stress curves even though
seem to be linear in fact are slightly curved.
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Figure 3.44: Oedometric compression stresses in a numerical simulation C05d-p0-oed

Globally it can be noted that the earth pressure coe�cient at rest computed for the α = 0.5
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clump simulation was equal to K0 = 0.35 while in the experiments it was 0.6 and 0.5 for wooden
and PVC grains respectively. Apart from that it is clear that the shape of the experimental
curves is much more curved.

3.4.2.2 Kinematic Analysis

3.4.2.2.1 Strains

As in the previous experimental Section 3.3.5.2, it was decided to compare the strains of the
whole assembly with the strains of the pipe.

Biaxial Compression

Grain Shape In�uence The study of volumetric strains, Figures 3.45 and 3.46, reveal the
same behaviour as in the physical experiment in 1γ2ε, Figure 3.30. The pipes were contracting
while the whole assembly was dilating. In all the numerical samples (α ranging from 0.0 to 0.5),
the change of volume of the pipe was similar to the one observed in the experiment until 10% of
ε1. After that, the value of εV stagnated at di�erent levels for di�erent α values. Di�erent values
of �nal volumetric strain are probably linked with di�erent patterns of localisation more than
with the shape of the soil particles.

In Figure 3.46 the ratio between the strains of the assembly and the strains of the pipe ε1γ2ε
V

εpipe
V

is

presented. The shape of the curves is similar to the shape of the curve obtained from a 1γ2ε test
with wooden grains, Fig. 3.30b. In both the test with wooden grains and numerical simulation
with clumps, the number of particles in contact with the pipe was small while in the experiment
with PVC grains the contact number was much higher. The irregularity of contact probably led
to sudden change of volume.
Apart from that, the comparison of the curves in Figures 3.45 and 3.46 do not reveal any
particular in�uence of the grain shape and the interface friction on the volume change of the
sample.
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Figure 3.45: Values of the strains throughout the simulations of vertical compression test with

constant lateral loading for di�erent samples of clumps. The whole sample was dilating (εV > 0)
while the pipe was contracting (εV < 0)
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Figure 3.46: Relation between the volumetric strain values throughout the simulations for di�er-

ent samples of clumps

The investigation of the strains of the numerical samples was completed with the �gures
showing the evolution of horizontal and vertical strains εxx and εyy: Fig. 3.47. As observed previ-
ously in the physical test, Figure 3.33, the pipe sample was strained more than the surrounding
material. In case of physical test, the sample was compressed up to 10% of ε1 while in the nu-
merical tests, the vertical strain rose more. In the later phases of the simulations the horizontal
strains of the pipe became lower than the horizontal strains of the whole sample for all the shapes
of the particles and both the friction coe�cients on the boundary between the pipe and the soil.
In the later phases of the compression the majority of strain was localised in shearbands and did
not a�ect pipe.

In order to determine the in�uence of the friction at the pipe interface the curves presented
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the curves in Fig. 3.47 were split into four separate Figures: 3.48a and 3.48b for the samples
with µint = 0.5 and 3.49a and 3.49b for the samples with µint = 0.0. Apart from the samples of
α = 0.3 that behaved di�erently in the previous strain plots as well, it seems that all the clump
shapes act in the similar way regardless of the friction coe�cient at the pipe boundary.
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Figure 3.47: Values of the horizontal and vertical strains throughout the simulations for di�erent

samples of clumps. The strains of the granular sample are linear comparing to the strains of the

pipe
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Figure 3.48: Relation of the strains throughout the simulations for di�erent samples of clumps

with friction at the pipe boundary
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Figure 3.49: Relation of the strains throughout the simulations for di�erent samples of clumps

without friction at the pipe boundary

Pipe Sti�ness In�uence Di�erent behaviour of the pipe with di�erent sti�ness was ob-
served and presented in Figures 3.50 and 3.51. While the behaviour of the granular samples
remained the same, the sti�ness of the pipe in�uenced the behaviour of the pipe obviously. The
strains of the softer pipe C05d-p0-e7 were higher than the reference pipe C05-p0. The pipe with
20GPa of Young's modulus C05d-p0-e9 did not change the shape practically at all, Fig. 3.50a.
Because of that, it was pointless to present the comparison of the strains of the sti� pipe and

the sample for the pipe C05d-p0-e9; The small strains in the divisor of the ratio εsample
V

εpipe
V

resulted

in large values and therefore were ommited in Figure 3.50b.
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Figure 3.50: Volumetric strains of the sample of α = 0.5 clumps containing elastic pipes of

di�erent sti�ness

The vertical and horizontal strains of the pipe were a�ected by the pipe sti�ness change as
well, Figure 3.51. As in the case of volumetric strains, the strains of the sti� pipe were close to
zero and therefore the ratio of the granular sample and pipe strains was not presented, Figures
3.51b and 3.51c.
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(b) Horizontal strains

Figure 3.51: Horizontal and vertical strains of the pipe and the whole sample. The value of the

pipe sti�ness was di�erent in each sample
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(c) Vertical strains

Figure 3.51: Horizontal and vertical strains of the pipe and the whole sample. The value of the

pipe sti�ness was di�erent in each sample

3.4.2.2.2 Displacement Fields

Biaxial Compression By plotting the displacement vector of each particle between two
phases of the experiment it was possible to obtain the displacement �elds of the samples. In
Figures 3.52 the sample of clumps with the shape parameter α equal to 0.5 and the microscopic
friction coe�cient at the pipe-soil interface equal to µint = 0.5 is presented. The plots were made
every 2.5ε1 throughout the test, and each vector is starting at the point occupied by the particle
in the isotropic state. Equivalent image for a sample C05d-p0 is presented in Figure 3.53. In each
image, the centre of coordinates was placed at the bottom of the pipe.

The displacement �elds reveal some discontinuities but are not very informative. Therefore it
was decided to subtract the mean �eld of displacement ūi from each displacement �eld, as it was
explained with the equation (3.50) on the page 84. The meaning of these �gures can be explained
with an example: in the later phases of the compression presented in Figure 3.52 (see Appendix
E.1 for larger, scalable images), the grain directly above the top of the pipe moved down more
than the grain at the top of the sample which moved the same as mean strain (displacement �eld
minus the mean �eld close to zero). This di�erence is not visible in the displacement �elds but
become clear when the mean �eld is subtracted.
These plots are presented in Figures 3.54 and 3.55 for the the C05 clump samples with frictional
and frictionless pipe boundary respectively (see Appendix E.2 for larger, scalable images). These
graphics reveal some interesting patterns of circular displacement. It was possible to observe
similar behaviour in the physical samples, Figures 3.36 and 3.37, but in case of 1γ2ε wooden
sample the �vortexes� were more local and in case of PVC sample the pattern was dominated by
multiple re�ecting shearbands (compare with Fig. 3.39). Here in both the cases of pipe interface
friction, one can observe two large vortex-like patterns, located around the discontinuities of the
displacement �eld at each side of the pipe, that seem to indicate grains above the pipe pushing
into it. This would comply with the larger strains of the pipe in comparison with the granular
material observed before.
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(k) 0− 18%ε1 (l) 0− 20.5%ε1

(m) 0− 23%ε1

Figure 3.52: Displacement �elds of a clump sample with α = 0.5 and friction at the boundary of

the pipe
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Figure 3.53: Displacement �elds of a clump sample with α = 0.5 and no friction at the boundary

of the pipe
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(a) 0− 0.5%ε1 (b) 0− 3%ε1 (c) 0− 5.5%ε1

(d) 0− 8%ε1 (e) 0− 10.5%ε1 (f) 0− 13%ε1

(g) 0− 15.5%ε1 (h) 0− 18%ε1 (i) 0− 20.5%ε1

(j) 0− 23%ε1

Figure 3.54: Displacement �elds reduced by mean �eld of displacement. Clump sample with

α = 0.5 and friction at the boundary of the pipe
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(a) 0− 0.5%ε1 (b) 0− 3%ε1 (c) 0− 5.5%ε1

(d) 0− 8%ε1 (e) 0− 10.5%ε1 (f) 0− 13%ε1

(g) 0− 15.5%ε1 (h) 0− 18%ε1 (i) 0− 20.5%ε1

(j) 0− 23%ε1

Figure 3.55: Displacement �elds reduced by mean �eld of displacement. Clump sample with

α = 0.5 and no friction at the boundary of the pipe
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3.4.2.2.3 Localisation of Shear

Study of the displacement �eld revealed some discontinuities that were supposed to be linked
with shear localisation. The results for only one shape of clumps, α = 0.5 and two values of
the friction coe�cient at the boundary of the pipe are presented here, Figures 3.56 and 3.57
for frictional and frictionless pipe boundary respectively (see Appendix E.3 for larger, scalable
images). The images presents the second strain invariant (see page 40) with symbols, where the
size of the symbol for each particle represents the value of the indicator and thus the intensity
of shear.

The maps show that the patterns observed in the displacement �elds and the ones decreased
by the mean �eld are connected with the shear localisation. As in the case of physical experiments,
re�ecting bands that include the pipe were observed. Please note, that the localisation patterns
in the simulations with pipe were not very di�erent from the patterns observed during the
simulations without the pipe, Fig. 2.8.

The localisation patterns for samples with a pipe with di�erent sti�ness are presented in
Figures 3.58 and 3.59 (see Appendix E.3). The change of pipe sti�ness seems to in�uence the
shearband trajectory around the pipe, although it is based on the observation of single samples.
The localisation zone in the sti� pipe sample is going around the pipe, which is probably due to
the fact the pipe is forming one rigid block with the grains above. In the soft pipe sample the
pipe is deforming a lot and it appears the localisation patterns are encouraged to pass through
the pipe.

3.4.2.3 Arching E�ect Assessment

3.4.2.3.1 Stress Comparison

Thanks to the nature of the DEM simulations it was possible to investigate the interparticle
forces in the assembly, which was not possible in the experiments performed in 1γ2ε. In order to
study the arching e�ect above the pipe, the forces acting on the specimen were compared with
the forces acting on the pipe. It was possible to compute the vertical component of the stress by
dividing the sum of vertical forces by the length of the wall or the width of the pipe.
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Figure 3.56: Shear localisation maps of a clump sample α = 0.5 with friction at the pipe boundary
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Figure 3.57: Shear localisation maps of a clump sample α = 0.5 with no friction at the pipe

boundary
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(a) 0− 0.5%ε1
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(e) 0− 10.5%ε1
(f) 0− 13%ε1

(g) 0− 15.5%ε1

Figure 3.58: Shear localisation maps of a clump sample α = 0.5 with soft pipe and no friction at

the pipe boundary
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(a) 0− 0.5%ε1

(b) 0− 3%ε1

(c) 0− 5.5%ε1
(d) 0− 8%ε1

(e) 0− 10.5%ε1
(f) 0− 13%ε1

(g) 0− 15.5%ε1

Figure 3.59: Shear localisation maps of a clump sample α = 0.5 with hard pipe and no friction

at the pipe boundary
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(a) µ = 0.0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.05  0.1  0.15  0.2  0.25

σ
Y

S
a

m
p

le
/σ

Y
P

ip
e

ε1

C00d-p5
C01d-p5
C02d-p5
C03d-p5
C04d-p5
C05d-p5

(b) µ = 0.5

Figure 3.60: Stress repartition on elastic pipe in DEM simulation with clumps of di�erent α. The
vertical stress acting on the pipe was compared with the stress acting on the horizontal walls

compressing the sample. The friction coe�cient µ between the pipe and the soil is di�erent for

each of the two images above

As presented in Figure 3.60, the loading acting on the elastic pipe was changing during the
compression. Initially the pipe was loaded less than the walls above and below. This repartition
of stress is characteristic for the arching mechanism; The e�ect of load transfer was lost after
the peak macroscopic stress. The repartition of stress acting on the horizontal wall was bigger in
simulations without friction between the pipe and the surrounding soil. It is due to the fact that
in frictionless case the forces are acting along the pipe wall and do not add loading to the pipe.
Also, it seems that the increase of stress repartition disappeared later in the test without the
friction at the boundary. Disc sample induce very small arching e�ect but it appears the stress
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repartition is increasing with the value of shape parameter α.
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Figure 3.61: Stress repartition on elastic pipe in DEM simulation with pipe of di�erent sti�ness

It was interesting to observe the di�erence in the stress repartition between samples with
more soft and more sti� pipe, Figure 3.61. The softer pipe C05-p0-e7 with E = 20e7Pa induced
greater load transfer mechanism than the reference, sti�er pipe C05-p0 with E = 20e8Pa. The
curve is dropping below 1 after ε1 = 12% which is due to the fact, the pipe buckled and collapsed
and did not support the load anymore. On the contrary, the load transfer for the sti�er pipe C05-
p0-e9 with E = 20e9Pa that remained virtually undeformed was much smaller than the reference

pipe, although it was still more than the surrounding soil (σ
Sample
Y

σPipe
Y

> 1).

3.4.2.3.2 Stress Direction

Apart from the total forces acting at the pipe, it was also interesting to observe the stress in
the microscale. The stress acting on every particle was computed using the Weber's homogeni-
sation formula (Weber, 1966):

σαβ =
1

S

∑

N ij

F ij
α lijβ , (3.53)

where:
σαβ are the components of the Cauchy stress tensor,
α, β are the directions in space, {α, β} = {x, y}
S is the surface area of the zone,
N ij is the contact between particles called i and j in a given zone,
F ij
α is a component of the force vector interacting between particles i and j,
lijβ is a component of the branch vector connecting centres of particles i and j.

The formula was applied in such way that instead of using a branch vector, the forces were
projected on a vector connecting the particle centre and the contact point. The sum of forces
for each particle was divided by the area of a given particle. In case of the circular pipe, the
forces acting on each grain forming the pipe were added and the result for the entire pipe was
divided by the area of the ring containing all the pipe particles. This way, it was possible to
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obtain a stress tensor for each of the particles. In order to present it graphically, each particle
was represented with a cross oriented along the principal stress direction with the arm lengths
proportional to the principal values of stress. An example of the stress direction plot for a clump
sample C05d with µint = 0.0 is presented in Figure 3.62 (see Appendix E.4 for larger, scalable
images).

The tensorial nature of stress allows us to compute the di�erence in stress between two states
for each grain, the two states being an increment of vertical strain apart. In Figure 3.63 these
stress increments for the same samples of clumps are presented (see Appendix E.4 for larger,
scalable images). In the initial phase of the loading, increment 2.5 − 3%ε1, when the shear is
not yet fully localised, the stress network is denser at the sides of the pipe then above or below
it. This could indicate that more stress is carried by the soil than by the pipe, which is typical
for the arching e�ect phenomenon. The same strain increment in Figure 3.62 shows an arch-like
stress-chain pattern.

One could also say that in the later phases of the test when the shear zones are developed,
the stress increments are larger in the zones of shear localisation than in the rigid blocks around.
Chains perpendicular to the direction of the shear localisation zone can be observed.

The change of pipe sti�ness is in�uencing the pattern of stress directions a lot. It seems
that above and below the soft pipe, Figure 3.64, the stress increment network is less dense and
this phenomenon remains until the pipe collapse. In a sample with more rigid pipe, Fig. 3.65,
the stress change occurs in the localisation zone mostly (see Appendix E.4 for larger, scalable
images).

3.5 Conclusions

In the second part of the study the focus was put on the practical aspect of granular media
modeling. The point was to observe the stress repartition above an elastic shell surrounded by
grains. Six physical experiments were performed in a 2D apparatus. The results were analysed
with the help of Digital Image Correlation method. The results were used to create a numerical
model of the experimental setup with the help of the tools developed in the �rst part of this
work.

The experiments were performed in a 1γ2ε apparatus which is able to impose various bound-
ary conditions on a two-dimensional granular material. Thanks to the construction of this appa-
ratus digital photography can be used to gather information about the kinematic behaviour of
the samples without the need to engage complicated sensors. The tests were performed on two
di�erent types of granular materials, large wooden particles and small PVC particles. In every
case a piece of PVC pipe was placed in the centre of the sample as a model of an elastic drain
pipe. The mechanical behaviour of the pipe itself was studied in separate vertical compression
tests in order to establish the values of the numerical parameters to be used in the numerical
model.

The analysis of the stress-strain and volumetric strain macroscopic curves of 1γ2ε showed
that the presence of the elastic pipe had no major in�uence on the behaviour of the assembly.
The same could be said about the strain localisation patterns that were basically the same with
or without the presence of pipe. The localisation bands were seen going through the pipe.
The analysis of the kinematics of the 1γ2ε tests showed di�erent behaviour of the pipe and the
surrounding material � the strains of the elastic pipe were bigger than the strains of the grains
around. Observations of the displacement �elds revealed that the granular material was pushing
into the pipe.

In order to perform numerical analysis of the experiments with a DEM code a speci�c contact
interaction was used to model the elastic pipe. The pipe comprised of discs connected with
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(a) 0.5%ε1 (b) 3%ε1 (c) 5.5%ε1

(d) 8%ε1 (e) 10.5%ε1 (f) 13%ε1

(g) 15.5%ε1 (h) 18%ε1 (i) 20.5%ε1

(j) 23%ε1

Figure 3.62:Direction of particle stress during biaxial compression of a clump sample with α = 0.5
and frictionless pipe
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(a) 0− 0.5%ε1 (b) 2.5− 3%ε1 (c) 5− 5.5%ε1

(d) 7.5− 8%ε1 (e) 10− 10.5%ε1 (f) 12.5− 13%ε1

(g) 15− 15.5%ε1 (h) 17.5− 18%ε1 (i) 20− 20.5%ε1

(j) 22.5− 23%ε1

Figure 3.63: Direction of particle stress increment during biaxial compression of a clump sample

with α = 0.5 and frictionless pipe
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(a) 0− 0.5%ε1 (b) 2.5− 3%ε1

(c) 5− 5.5%ε1 (d) 7.5− 8%ε1

(e) 10− 10.5%ε1 (f) 12.5− 13%ε1

(g) 15− 15.5%ε1

Figure 3.64: Direction of particle stress increment during biaxial compression of a clump sample

with α = 0.5 and frictionless pipe with Young's modulus E = 20e7Pa
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(a) 0− 0.5%ε1 (b) 2.5− 3%ε1

(c) 5− 5.5%ε1 (d) 7.5− 8%ε1

(e) 10− 10.5%ε1 (f) 12.5− 13%ε1

(g) 15− 15.5%ε1

Figure 3.65: Direction of particle stress increment during biaxial compression of a clump sample

with α = 0.5 and frictionless pipe with Young's modulus E = 20e9Pa
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unbreakable bonds that were transferring forces and moments of force. This pipe model was
implemented into the assemblies of clumps described in the �rst part of this work. Due to that,
it was possible to model all the elements of the setup with a single numerical code.
The pipe and surrounding grains were subjected to vertical loading with constant lateral pressure,
as it was done during the experiments in 1γ2ε. Two values of the microscopic friction coe�cient
between the outer boundary of the pipe and the granular material were used but no signi�cant
in�uence was observed. Once again, the macroscopic behaviour was no di�erent with and without
the presence of the pipe and the kinematic analysis revealed di�erence in the values of strains
between the pipe and the surrounding material. The numerical results showed some circular
vortex-like structures that were pushing the particles into the pipe. Similar but less developed
structures were observed in the results obtained with digital images. The localisation of strains
was also similar in the simulations with or without the pipe.

Numerical modeling of the elastic pipe in the granular sample allowed us to observe the repar-
tition of stress in the assembly, which generally speaking is not possible in physical experiments.
It was possible to observe the stresses acting on the boundaries of the sample and the pipe, and
see that in the initial phases of the test the pipe was loaded less than the surrounding material,
which is characteristic for the so-called arching e�ect. The peak of the repartition occured along
with the peak of macroscopic stress. The results of the current study suggests that the peak
value is more appropriate, but one must remember that φthreshold is more reliable and safer.
. It was shown that the arching e�ect is in�uenced by the shape of the grains and also by the
sti�ness of the pipe.
Moreover, the direction of stresses was pointing around the pipe in the initial phases of the com-
pression tests and the stress increment was larger in the zones at the sides of the pipe than in
the middle zone containing the pipe. In the later phases of the loading the stress directions were
in�uenced by the localisation of strains.
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In many geotechnical problems the deformation of granular materials submitted to loading can
be large (localised strains), and related to the irreversible mechanical behaviour of soil. Such
problems are di�cult to model in the framework of Finite Element Method without using phe-
nomenological constitutive laws with excessive number of parameters that sometimes have little
physical meaning. In these cases Discrete Element Method (DEM) might be a better choice be-
cause it is intrinsically dealing with discrete particles and therefore allow particle reorganization.
However, DEM have some limitations as well; Simulations in this method can be computationally
expensive so the number of particles used in simulations is always much smaller than in reality
and the shape of modelised grains is idealised and rarely take into account the real variety and
complexity. As it is commonly recognised, the shape of grains is an important factor in�uencing
the mechanical response of granular media under loading. In order to simulate realistic behaviour
of soil, the granular model must be more complex than simple discs or spheres.
The work presented in this thesis is divided into two parts: the investigation of grain shape in�u-
ence on the mechanical behaviour of granular media, and its application to the issue of arching
e�ect above underground conduits.

After a short introduction, the �rst Chapter contains some general considerations about the
grain shape and two commonly used parameters for geometrical description of it: sphericity and
roundness. Some studies extracted from the literature about the e�ect of the particle shape on
the mechanical behaviour of dry sand were presented. The di�erent possible strategies for mod-
eling complex grain shapes with DEM were presented, including two kinds of shapes (clumps of
discs and polygons) speci�cally studied in the course of this work. Additionally, a description of
DEM contact detection method used in this work was given.

Chapter 2 of this work was focused on the investigations of the grain shape in�uence on the
mechanical behaviour of granular assemblies. In Section 2.1 the results of collaboration of three
teams in the CEGEO research program are described. The scope of the program was to highlight
the e�ects of grain shapes of dense granular assemblies submitted to biaxial loading. The three
teams involved (LTDS � Lyon, LMGC � Montpellier, 3SR � Grenoble) used di�erent rounded
and angular particle shapes de�ned with common rules, namely a parameter α describing par-
ticle sphericity, to build samples 5000 particles each. Parameter α was ranging from 0.0 to 0.5,
and the teams used di�erent DEM approaches: Contact Dynamics in case of LTDS and LMGC,
and Molecular Dynamics in case of 3SR. Even though α is a simple, low order parameter, it was
shown that it is related to a number of features of granular assembly.
In the isotropic state it was observed that coordination number was similar for all the grains
regardless of α. On the contrary, the solid fraction of assemblies of the samples was clearly de-
pendant on sphericity parameter; The dependence was seen to be non-monotonous and similar
for each grain shape. An analytical solid fraction model depending on α and suitable for every
grain shape used in the study was proposed. Moreover, analysis of the mechanical behaviour
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of samples submitted to vertical loading with constant velocity and constant lateral pressure
revealed that the value of residual (i.e. for large vertical strains) macroscopic friction angle was
increasing linearly with α. Even though the level of friction angle was di�erent for rounded and
angular particles, the inclination of the increase was the same for all the particle shapes. Finally
it was observed that Contact Dynamics and Molecular Dynamics methods give very similar re-
sults when simulating the same particles.

The work presented in Section 2.2 focused on two particular groups of grains used in CEGEO:
concave clumps of three overlapping discs and its polygonal envelope � convex polygons of six
edges. Each shape group consisted of several shape variants described with di�erent values of the
same parameter α. For α ranging from 0.0 to 0.5 the clump particles changed from three fully
overlapping discs (equivalent to a single disc) to three discs distributed every 120◦ with partial
overlap; The depth of �valleys� between the discs was increasing with α. In case of polygons α
was ranging from ≈ 0.13 to 0.5 which corresponded to a gradual change from regular hexagon
to equilateral triangle.
The numerical samples were studied in both the isotropic state and after biaxial loading. The
mechanical response of sheared granular samples proved to be dependant on α. The maximum
value of shear strength in dense assemblies of clumps was increasing with α but in dense as-
semblies of polygons it was decreasing. These observations combined with the results obtained
during CEGEO program suggested that the size of the concavities in the particles was the main
parameter in�uencing φpeak of granular samples.
For the residual values of macroscopic friction angle, the trend in all the cases was the same:
linear increase of φthreshold with α, which suggest that under large macroscopic strains it was not
the depth of concavities but the convex envelope of the grains that in�uenced the macroscopic
behaviour.
Moreover, the study of deformations of the samples showed strain localisation in the form of
bands. The width of the bands was increasing with α (with an exception of discs and hexagons)
which can be related to grain interlocking. This trend was more clear for samples made of clumps
while for samples made of polygons additional computations should be performed. The localisa-
tion in clump assemblies occurred earlier (in terms of vertical strain) in the tests comparing to
polygons. The �nal width of the bands was more narrow for clumps than for polygons. These
observations combined led to a conclusion, that while assemblies of clumps behave more like a
brittle material, assemblies of polygons behave much more like real sands. In any case, the in-
troduction of even slight complexity in the form of particles changed the behaviour of the entire
assembly drastically comparing to assemblies of discs.

The information gathered during the �rst part of the study was used to model granular
soil surrounding a �exible pipe, an engineering problem which is still not fully understood. The
existing design methods for underground pipes rely heavily on engineering experience, contain
parameters that are di�cult to measure and include signi�cant simpli�cations. The performance
of �exible pipes depends on the soil-pipe interactions rather than the strength of the pipe itself,
therefore the question of load transfer over a buried pipe is both scienti�cally interesting and
practically important.
The work presented in Chapter 3 was focused on the kinematic behaviour of the pipe-soil system
and reorganisation of the back�ll grains which in�uence the load transfer mechanism above a
�exible pipe. Knowing that in DEM framework it is possible to model granular medium and to
obtain the interparticle forces, it was decided to create a model of a �exible pipe and to simulate
the whole system in order to assess the arching e�ect. The pipe was created using a chain of
discs connected with a contact law called parallel bonds. The pipe model was validated in series
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of simple tests to ensure the contact law is able to model �exible structures well. Basing on
laboratory tests on PVC pipe specimens the numerical model input parameters were determined
and used in the subsequent simulations.
Numerical DEM simulations of the pipe in granular soil were performed using the pipe model
surrounded by disc or clump particles. In parallel to experiments, it was decided to perform
laboratory experiments of the same setup using PVC pipe buried in circular grains. In both the
cases of numerical and experimental tests, the pipe and surrounding grains were subjected to
biaxial and oedometric compressions. The experimental campaign was carried out using a plane
strain apparatus 1γ2ε and two kinds of 6 [cm] long Schneebeli material: wooden rods with di-
ameters from 8 [mm] to 20 [mm] (≈ 2000 rods) and PVC rods with diameters from 1 [mm] to
3 [mm] (≈ 40000 rods in a sample). The experimental assemblies were including a D = 10 [cm]
PVC pipe as a �exible pipe model. During the experiments in 1γ2ε, the stress and strains on the
boundaries were measured. Additionally series of digital images of the sample were recorded to
assess the kinematics of the grains and the pipe using Digital Image Correlation tools.
Surprisingly, it was observed that the presence of elastic pipe had little in�uence on the macro-
scopic mechanical behaviour of the assemblies, the stress-strain curves were similar. The strain
localisation patterns revealed with the means of DIC seemed to be una�ected by the �exible
inclusion as well. The mean strain computed for the pipe specimen was bigger than the macro-
scopic strain of the whole assembly. Numerical simulations of the experiments were qualitatively
in agreement with experiments in terms of the macroscopic response and kinematic behaviour
proving it is possible to model an underground pipe in DEM. The advantage of the chosen nu-
merical method was that it was possible to observe the arching e�ect and quantify it by directly
comparing the contact forces between the grains and the pipe. The arching e�ect was seen to
be dependant on the sti�ness of the pipe but also on the particle sphericity α of the granu-
lar material surrounding the pipe, with more concave grains transferring more load. The load
transfer was observed in the initial phases of loading, for small vertical strains (ε1 < 2%). A
typical question concerning the Terzaghi formula (3.28) is whether the peak or residual value
of macroscopic friction angle should be used. The results of the current study suggests that the
peak value is more appropriate, but one must remember that φthreshold is more reliable and safer.

The study of grain shape in�uence on the behaviour of granular materials is still far from
end. A natural continuation of such a study would be investigations of other grain shapes, like
for example non-convex polygons, clumps made of 4 or 6 discs with the concavities partially
�lled, or polygons with rounded corners. More importantly, a similar numerical approach could
be used to investigate other grain shape features like particle angularity, roundness or �atness.
An important next step for this study would be to create samples characterised by di�erent
grain size distributions. In case of regular polygons, hexagons and triangles, the results might
have been hindered by spontaneous crystalline patterns in the assemblies. A typical goal of every
2D study is its extension to a third dimension. In this particular case of grain shape investigation
the potential advantages of 3D simulations could be obstructed by di�culties to change the grain
shape while in�uencing only its certain aspects. Nevertheless it is necessary to bring the grain
shape investigations closer to reality.
There are still a lot of paths that were not travelled in the course of this study concerning the
micro-mechanical behaviour of the samples. The reasons for the clear decrease of φpeak along
with α in assemblies of polygons were not discovered. Some peculiar di�erences between grains
of di�erent shapes were noticed concerning the probability density functions of the contact forces,
but were not understood enough to be included in this work. Attempts were made to correlate
the grain shape with the intensity of moment of force transfer, but with little result. Discovery
of such dependence could lead to development of rolling resistance contact laws. The residual
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macroscopic friction angle curves suggested that there are other shapes characterised by even
higher values of φthreshold. A question arises what could limit that increase? In the course of this
study a promising attempt to characterise the assembly using elements of the graph theory was
made (approach similar to (Walker et al., 2011)), but due to di�culties to interpret the results,
this study was not continued.

The study of the �exible pipe buried in granular material can be recognised as work in
progress. The simpli�cations in the course of the study should be corrected in order to model an
actual engineering problem. Two examples of major simpli�cation of the model used in the current
study were the assumption of the elastic behaviour of the pipe and simple sample preparation
procedure.
In reality, pipe behaviour is plastic and even in the 1γ2ε experiments the pipe samples were
permanently deformed after the tests and revealed some decolouration of the material at the
sides. A model of plastic pipe behaviour could be introduced by simply altering the Young's
modulus of the pipe during loading. Nevertheless, it seems it was negligible in the particular
tests that were performed.
The pipe laying process in the �eld is performed di�erently than it was done in this study. An
attempt was taken to model a grain pluviation process, but it led to problems connected with
the introduction of gravity that was blurring the results, and with di�erent boundary conditions
that had to be used and therefore made the comparison with the experiments di�cult.
Probably the most important shortcoming of the DEM modeling of underground �exible pipe
was the size of the simulated assembly. Most probably the sample should be bigger (considering
the pipe size would remain constant) in order to observe the manifestation of soil arching in
contact forces or stress direction more clearly. As seen in the physical experiments, the question
of the number of contacts between the pipe and the grains is in�uencing the pipe behaviour a
lot. Simulation with much larger number of particles ought to be done.
The initial idea behind the physical experiments and subsequent numerical modeling of the pipe
was to record deformations of the pipe with digital images, then to enforce the same deformation
of a numerical pipe and to obtain the internal forces between the particles constituting the pipe
which would be representative to internal forces in the physical pipe. That way it would be
possible to �measure� stress during an experiment without employing instrumentation of the
specimen. This was the reason to mark the pipe with 48 points and to model the pipe with
48 particles, and to use a pipe specimen thick enough to be able to record it. Unfortunately,
the results were far from expected. The �rst approach was to impose displacement of the pipe
grains equal to displacements obtained from numerical loading with point forces. The model was
statically indeterminate and the resulting forces were di�erent from the ones imposed. The use
of DIC brought also another problem, the precision of the results. Due to the large sti�ness of
the pipe, errors in the positioning of the particles led to very large values of internal forces.
The rotational sti�ness of the pipe was smaller, but the accuracy of the DIC code to measure
rotations was also worse and the pattern used to paint the pipe was not su�cient. Nevertheless,
the results of the experimental program and its modeling were successful as it was possible to
observe the anticipated phenomenon and this approach of underground structure modeling should
be continued. At the same time, even though the DIC method proved itself to be a very useful
experimental tool, the value of classical large scale experiments with standard instrumentation
and real materials should not be forgotten.
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Shadow Overlap Method

A.1 Method Description

Contact detection is an important aspect of DEM computations. In this study a method based
on the separating axis theorem was used to determine the contact between polygons and to
place the contact forces. For each pair of grains from the neighbour list the following tasks are
performed, only if the computations in the previous point succeeded (Fig. A.1):

1) predetection (Fig. A.7),

2) precise contact detection (Fig. A.8),

3) establishing the number and position of the contact (Fig. A.9).

Figure A.1: Flowchart of the Shadow Overlap contact detection method for a single pair of

polygonal grains A and B. This algorithm is applied to each record in the neighbour list and can

be �nished before the end whenever a gap is found
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A.1.1 Predetection

Figure A.2: Geometrical interpretation of the Shadow Overlap predetection phase together with

the description of the variables used. Clearly, the di�erence of the projection of extreme points

V A − V B is less than null and the particles are not in contact

The predetection part is very simple and makes it possible to eliminate most of the non-existing
contacts quickly. It is the practical realisation of the SAT for convex polygones. It is also possible
to apply SAT to other objects (Burns and Sheppard, 2011).
The neighbouring particles A and B are described by the position of the mass centre PN

c =
(

xNc , yNc
)

, positions of the corners PN
i =

(

xNi , yNi
)

in the global frame and the normal unit
vectors of the edges n̂N

i directing outside. N = {A,B} and i = {j, k}, j, k = {1, ..., nN
corners}.

The numbering of the corners and faces of the polygons is supposed to be anticlockwise. An
example of two arbitrary polygons is presented in Figure A.2.

In the �rst approach a unit vector ŝ is computed. This vector connects the centres of mass
of the two particles and is directing from the particle A into particle B. Next, each corner of the
two particles is orthogonally projected on the vector ŝ direction and the extreme projections are
chosen:

V A = max{ŝ · PA
j } = max{ŝx · xAj + ŝy · yAj } (A.1)

V B = min{ŝ · PB
k } = min{ŝx · xBk + ŝy · yBk } (A.2)

If V A−V B ≤ 0 than there is no overlap and therefore no contact. Otherwise, there is a possibility
that the two particles are in contact and a more precise test is needed, see Fig. A.3.
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Figure A.3: Example of two neighbouring polygons that would pass the predetection test even

though they are not in contact V A − V B > 0

A.1.2 Contact Detection

Figure A.4: Geometrical interpretation of the Shadow Overlap contact detection phase. These

two particles passed the predetection phase and both the critical corners were found, together

with associated critical faces. The critical corner vector r was projected on the t̂ to obtain the

value of S. The critical face unit vectors are projected on the direction of ŝ to obtain the values

of ZA and ZB. As ZA > ZB, it is supposed that particle B is intruding particle A. The next

step would be to change the critical corner of particle A from 1 to 3 and repeat the process

In the previous step the two particles were not proven to be apart. The next step would be to
investigate each edge in search for a gap between the particles but this process can be optimised.
The anticlockwise numbering of the corners and vertices helps to avoid the unnecessary checks.

Initially the extreme (critical) corners chosen during the predetection phase are connected

129



A.1. METHOD DESCRIPTION

with a critical corner vector r directing from PB
crit to PA

crit, see Figure A.4. The critical corner
vector is projected onto a vector orthogonal to ŝ: t̂. This gives the direction of rotation for the
vector ŝ.

S = t̂ · r̂, (A.3)

where
{

t̂x = −ŝy,

t̂y = ŝx
(A.4)

Then the normal vectors of the polygon faces are taken into account: If S < 0 then the critical
face is considered; Otherwise, the face preceding the critical one. The dot products of ŝ (-ŝ for
particle B) and n̂N

i vectors are computed for both the particles. The bigger value of these two dot
products indicate which particle's normal unit vector of the considered edge will replace the ŝ.
Finally the critical corner number of this particle is updated (increased by one in case when
S < 0 or decreased when S > 0). That procedure gives the new critical corner vector which can
be projected on the t̂. If the projection would change the sign in comparison to the initial value
of S and if the dot product of ŝ and r is not lower than 0 (which would be a proof of a gap
between the polygons), than the particles are in contact and this contact involves the critical
vertex. In the other case, the procedure is repeated. For an example see Figure A.4.

A.1.3 Contact Geometrical Position

Figure A.5: Geometrical interpretation of the Shadow Overlap contact positioning phase. After

�nishing the previous phase it is certain that the two particles are in contact and it is particle

B intruding A. The current critical corners and ŝ are presented. The middle of a critical corner

vector CAB is presented. The intermediate steps are not presented, but the �nal position of the

�rst and only contact point D1 is marked

Having established that a certain critical corner of the �rst particle is penetrating the other
particle, the next step is to place the contact point in space. It is also important to check
whether there is a second contact point or not. This is done by investigating the following and
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preceding critical edges of the penetrating particle. Initially the �rst contact point is assumed to
be placed in reference from the critical vertex of the intruding particle (see Fig. A.5):

{

D1
x = xNcrit ± 0.5 · (ŝ · r) · ŝx,

D1
y = yNcrit ± 0.5 · (ŝ · r) · ŝy,

(A.5)

where − sign is for the case when N = A.
Next, the positions of the preceding (ncrit − 1) and the following (ncrit + 1) corners of the

penetrating particle are compared with the point CAB placed in the middle of the distance
between the critical vertices of particles A and B (see Figure A.5):

L1 =
(

xNcrit−1 − CAB
x

)

· ŝx +
(

yNcrit−1 − CAB
y

)

· ŝy, (A.6)

L2 =
(

xNcrit+1 − CAB
x

)

· ŝx +
(

yNcrit+1 − CAB
y

)

· ŝy. (A.7)

The second point of contact exist if L1 > 0 or if L2 > 0 when A is penetrating B (L1 < 0 or if
L2 < 0 when B is penetrating A).

If L1 > 0 (L1 < 0), then the second point of contact is assumed to be placed at
{

D2
x = xNcrit−1 − L1 · ŝx,

D2
y = yNcrit−1 − L1 · ŝy.

(A.8)

If L2 > 0 (L2 < 0) while L2 > L1 (L2 < L1), the second point position is computed using
the equations (A.8) but using PN

crit+1 and L2 instead.
If both the contact points were identi�ed, the �nal position of the second contact point is

established in relation to the vector t̂. Equation (A.6) is used to compute M1 by replacing PN
crit−1

with PA
crit and ŝ with t̂. M2 is computed using (A.6) while inserting D2

x instead of PN
crit−1 and t̂

instead of ŝ.
Remembering the direction of rotation computed in the second phase of the procedure (the

value of S), the distance between the point CAB and the corners of the particle that is being
penetrated are projected on the direction of the vector t̂. In case when S < 0 and it is particle A
intruding particle B, the critical and the one preceding it are used in equation (A.6) to compute
the K1 and K2 respectively. In case of S > 0 the corners involved are Pcrit+1 and Pcrit.

The opposite situation, particle B penetrating particle A, the corners used in case of S < 0
are Pcrit−1 and Pcrit, while it is Pcrit and Pcrit+1 when S > 0.

The value of M2 obtained is compared with the values of K1 and K2. K2 substitute M2 when
M2 > K2 and K1 substitute M2 when M2 < K1. Finally, the position of the second point of
contact is equal to:

{

D2
x = CAB

x +M2 · t̂x,
D2

y = CAB
y +M2 · t̂y.

(A.9)

In fact the two resulting contact points are placed as wide as possible, at the ends of the over-
lapping area.
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Figure A.6: Con�guration of two polygonal particles with large overlap: one particle is penetrated

with three corners of the second particle

It is important to know the limitations of the Shadow Overlap method. In case when the grain
contacts are very soft comparing to the external forcesa situation similar to the one presented
in Figure A.6 becomes possible. Such a deep penetration will not be solved properly with the
Shadow Overlap method as it is impossible to de�ne a single penetrating corner or edge.

A.2 Block Schemes

Figure A.7: Flowchart of the contact predetection. The input information needed are the positions

of the corners, mass centres of the two particles and the unit vectors of the faces. As an output

one learns if a contact is possible and which corners of the particles should be investigated more
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APPENDIX A. SHADOW OVERLAP METHOD

Figure A.8: Flowchart of the contact detection phase. Apart from the basic information about

the particles carried from the predetection phase, the input consists of the vector ŝ direction and

the initial critical corner numbers
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Figure A.9: Flowchart of the contact placing in Shadow Overlap method. The �owchart continues

on the next page
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Figure A.9: Flowchart of the contact placing in Shadow Overlap method. The output is either

one or two contact point geometrical positions
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Appendix B

Particle Area

B.1 Clump Area

As one can see in Figure B.1, any clump in range of α between 0 and 0.5 is made of an equilateral
triangle and three circular segments of equal size:

Sclump = 3 · Scircular segment + Striangle a. (B.1)

Figure B.1: Clump area computation

Let us denote the size of a clump using the circumscribed circle radius R1. The vertices of the
triangle will be placed on the inscribed circle of the clump, the radius of which can be expressed
in function of α and R1 using the relation (2.1):

R2 = R1 (1− α) . (B.2)

Therefore, the triangle side lenght is given by:

a =
√
3 ·R1 · (1− α) , (B.3)
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and its height by:

h =
3

2
·R1 · (1− α) . (B.4)

Considering that, the area of the triangle is given by the equation:

Striangle a =
3

4

√
3 ·R2

1 · (1− α)2 . (B.5)

The circular segment is cut from a circle of radius r with a chord denoted by a. The clump
circle radius is expressed with the following relation:

r =

(

α2 − α+ 1
)

·R1

α+ 1
. (B.6)

The area of the segment is given with a relation:

Scircular segment =
r2

2
· (θ − sinθ) , (B.7)

where θ is expressed in [rad].
The angle θ is:

θ = π − 2 · γ, (B.8)

where γ is the angle of a triangular part with height x:

x =
h

3
− (R1 − r) , (B.9)

tanγ =
x
a
2

. (B.10)

It can be also interesting to present the area of a given clump as a function of the shape
parameter α and the outer radius of the particle R1. By putting equations (B.3), (B.8), (B.9),
(B.10) and (B.6) into equations (B.5) and (B.7) and then to (B.1), a following relation can be
obtained:

Sclump (α,R1) =
3
√
3

4
·R2

1 · (1− α)2 +
3 ·R2

1 ·
(

α2 − α+ 1
)2

2 · (α+ 1)2
· (B.11)

·
{

π + 2atan

(

α2 − 4α+ 1√
3 (α− 1) · (α+ 1)

)

− sin

[

π + 2atan

(

α2 − 4α+ 1√
3 (α− 1) · (α+ 1)

)]}

.
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Figure B.2: Polygon area computation

B.2 Polygon Area

The area of any polygon in agreement with the de�nition (2.1) can be computed as a sum of
equilateral triangles. The polygon area consists of four triangles with a side length denoted as a,
reduced by the area of three equilateral triangles with a side length denoted as b, see Figure B.2.
The de�nition of the �rst a triangle is the same as in case of clump (B.1). The remaining three
triangles are placed along the three sides of the base triangle. In Figure B.2 the b triangles are
hatched to represent a �negative� area.

Spolygon = 4 · Striangle a − 3 · Striangle b, (B.12)

The side b length of the small triangle might be computed using the Pythagorean equation
knowing that the two sides of the dashed triangle in Figure B.2 are equal to the radii of the
particle ex- and incircle:

R2
1 = R2

1 · (1− α)2 + (a− b)2 (B.13)

Using the relation (B.3), two solutions are obtained:

b = ±
√

2R2
1 · α−R2

1 · α2 −
√
3R1α+

√
3R1 (B.14)

The negative square root denotes the b length that was looked for. Finally, the area of a small
triangle can be computed using the following formula:

Striangle b =

√
3

4
b2. (B.15)

As in case of clumps, the area of a particle can be presented as a function of α and R1:

Spolygon (α,R1) =
3

4
R1·
(√

3 ·R1 · (2 · (α− 2) · α+ 1)− 6 · (α− 1) ·
√

R2
1 · (α− 2) · α

)

. (B.16)
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The functions (B.11) and (B.16) are nonlinear in α and R1. In Figure B.3 the surface maps
of the respective functions are presented. In Figure B.3c a cross-section of these two �gures for
a single value of R1 = Rmax is presented.
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Figure B.3: Particle area functions: surface maps and a cross-section for one particular radius.

The colour scale is denoting the dimensionless area in function of the shape parameter α and

the normalised outer radius of the particle R1[−]. The plots are limited by the extreme values of

the α parameter
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Appendix C

Castigliano Theorem

A pipe loaded with a single vertical force can be divided into quadrants. Single quadrant can be
regarded as an circularly curved cantilever beam (see Fig. C.1).

Figure C.1: Pipe quadrant modelled as a cantilever beam. The beam is �xed on one end and

the other end is loaded with half of the external load acting vertically, a bending moment which

correspond to internal forces and a horizontal force

The radius of the beam curvature correspond to the radius of the pipe ((Rexternal+Rinternal)/2).
The beam is loaded with three forces: vertical, horizontal and a bending moment. The vertical
force Y 0 is equal to half of the external load (the other half is loading the upper-right quadrant
of the pipe). The bending moment M0 is in fact equal to the internal bending moment in the
pipe and is yet to be determined. Without the external moment the free end of the pipe would
rotate and would not be horizontal anymore. The horizontal force X0 is equal to zero, but it is
needed to derive the horizontal displacements.

The beam is circular therefore the forces are correlated with the angle θ. For a given cross-
section at θ the strains due to normal and tangential stresses are negligible and only the bending
moment is signi�cant. Therefore the equilibrium equation for a cross-section at θ is given:

∑

Mθ = M +M0− Y 0Rsinθ −X0R(1− cosθ) = 0 (C.1)
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and so

M = Y 0Rsinθ +X0R(1− cosθ)−M0. (C.2)

The horizontal force X0 is null, therefore:

M = Y 0Rsinθ −M0. (C.3)

The di�erential equations are given:

∂M

∂Y 0
= Rsinθ (C.4)

∂M

∂X0
= R(1− cosθ) (C.5)

∂M

∂M0
= −1 (C.6)

The Castigliano's Theorem states that

δG =

∫

S

M

EI
· ∂M
∂G

ds (C.7)

where G is a given load, δG is the displacement resulting from the load, s is the length of the
beam, I is the moment of inertia of the cross-section and E is the Young's modulus of the
material.

By inserting equations (C.4), (C.5) and (C.6) to equation (C.7) is obtained:

δY 0 =
1

EI

∫ L

0
M

∂M

∂Y 0
ds =

1

EI

∫ π
2

0
(Y 0Rsinθ −M0) ·Rsinθ ·Rdθ =

= (
π

4
Y 0R−M0)

R2

EI

(C.8)

δX0 =
1

EI

∫ L

0
M

∂M

∂X0
ds =

1

EI

∫ π
2

0
(Y 0Rsinθ −M0) ·R(1− cosθ) ·Rdθ =

= (
Y 0R

2
− (

π

2
− 1)M0)

R2

EI

(C.9)

δM0 =
1

EI

∫ L

0
M

∂M

∂M0
ds =

1

EI

∫ π
2

0
(Y 0Rsinθ −M0) · (−1) ·Rdθ =

= (−Y 0R+M0
π

2
)
R

EI

(C.10)

The end of the beam is not rotating so δM0 = 0 and thus from equation (C.10) can be computed:

M0 =
2

π
Y 0R (C.11)

By inserting equation (C.11) to equations (C.8) and (C.9), while remembering that Y 0 = F
2 ,

�nally we obtain:

2δY = (
π

4
− 2

π
)
FR3

EI
(C.12)

2δX = (
2

π
− 1

2
)
FR3

EI
(C.13)
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where δX is the pipe de�ection perpendicular to the loading direction and δY is the de�ection
parallel to the loading direction. Inserting equation (C.11) into equation (C.3) results in the
M (θ) function. The extreme bending moment values are located at θ = 0◦ and θ = 90◦.

M(θ = 0◦) = − 2

π
Y 0R, (C.14)

M(θ = 90◦) =

(

1− 2

π

)

· Y 0R. (C.15)

142



Appendix D

1γ2ε Results

D.1 Displacement Fields

(a) 0− 1%ε1

(b) 0− 2%ε1

Figure D.1: Wooden grains with a PVC pipe, displacement �elds. The longest arrow of particle

displacement is equal to 58mm; The biggest displacement of a point on a pipe is equal to 26mm
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D.1. DISPLACEMENT FIELDS

(c) 0− 3%ε1

(d) 0− 4%ε1

(e) 0− 5%ε1

(f) 0− 6%ε1

Figure D.1: Wooden grains with a PVC pipe, displacement �elds
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(g) 0− 7%ε1

(h) 0− 8%ε1

(i) 0− 9%ε1

(j) 0− 10%ε1

Figure D.1: Wooden grains with a PVC pipe, displacement �elds
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D.1. DISPLACEMENT FIELDS

(a) 0− 1%ε1

(b) 0− 2%ε1

(c) 0− 3%ε1

Figure D.2: PVC grains with a PVC pipe, displacement �elds. The longest arrow of particle

displacement is equal to 21mm and it was reduced three times in the images for a clearer

presentation; The biggest displacement of a point on a pipe is equal to 34mm
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(d) 0− 4%ε1

(e) 0− 5%ε1

(f) 0− 6%ε1

(g) 0− 7%ε1

Figure D.2: PVC grains with a PVC pipe, displacement �elds
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D.1. DISPLACEMENT FIELDS

(h) 0− 8%ε1

(i) 0− 9%ε1

(j) 0− 10%ε1

Figure D.2: PVC grains with a PVC pipe, displacement �elds
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D.2 Mean Displacement Field Subtracted from Displacement Field
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(a) 0− 1%ε1
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(c) 0− 3%ε1

Figure D.3: Wooden grains with a PVC pipe, mean �eld of displacement subtracted from the

displacement �eld. The longest arrow of displacement in the �gures correspond to 4cm
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D.2. MEAN DISPLACEMENT FIELD SUBTRACTED FROM DISPLACEMENT FIELD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.1  0  0.1  0.2  0.3  0.4  0.5
 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.16  0.18  0.2  0.22  0.24  0.26  0.28

(d) 0− 4%ε1
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(e) 0− 5%ε1
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(f) 0− 6%ε1

Figure D.3: Wooden grains with a PVC pipe, mean �eld of displacement subtracted from the

displacement �eld
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(g) 0− 7%ε1
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(i) 0− 9%ε1
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Figure D.3: Wooden grains with a PVC pipe, mean �eld of displacement subtracted from the

displacement �eld 151
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(a) 0− 1%ε1
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(b) 0− 2%ε1
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(c) 0− 3%ε1

Figure D.4: PVC grains with a PVC pipe, mean �eld of displacement subtracted from the dis-

placement �eld. The longest arrow of displacement in the �gures correspond to 1cm
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(d) 0− 4%ε1
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(e) 0− 5%ε1
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(f) 0− 6%ε1
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(g) 0− 7%ε1

Figure D.4: PVC grains with a PVC pipe, mean �eld of displacement subtracted from the dis-

placement �eld 153
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(h) 0− 8%ε1
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(i) 0− 9%ε1
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(j) 0− 10%ε1

Figure D.4: PVC grains with a PVC pipe, mean �eld of displacement subtracted from the dis-

placement �eld
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D.3 Strain Localisation

(a) 0− 1%ε1 (b) 0− 2%ε1

(c) 0− 3%ε1 (d) 0− 4%ε1

Figure D.5: Wooden grains with a PVC pipe, shear localisation. For the maximum strain the

biggest symbol correspond to 300 units while the mean is equal to 35
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D.3. STRAIN LOCALISATION

(e) 0− 5%ε1
(f) 0− 6%ε1

(g) 0− 7%ε1
(h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure D.5: Wooden grains with a PVC pipe, shear localisation
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(a) 0− 1%ε1

(b) 0− 2%ε1

(c) 0− 3%ε1
(d) 0− 4%ε1

(e) 0− 5%ε1
(f) 0− 6%ε1

Figure D.6: PVC grains with a PVC pipe, shear localisation. For the maximum strain the biggest

symbol correspond to 2500 units while the mean is equal to 32
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D.3. STRAIN LOCALISATION

(g) 0− 7%ε1
(h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure D.6: PVC grains with a PVC pipe, shear localisation
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D.4 Volumetric Strains

(a) 0− 1%ε1 (b) 0− 2%ε1

(c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1 (f) 0− 6%ε1

Figure D.7: Wooden grains with a PVC pipe, volumetric strain
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D.4. VOLUMETRIC STRAINS

(g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure D.7: Wooden grains with a PVC pipe, volumetric strain
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(a) 0− 1%ε1 (b) 0− 2%ε1

(c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1 (f) 0− 6%ε1

Figure D.8: PVC grains with a PVC pipe, volumetric strain
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D.4. VOLUMETRIC STRAINS

(g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure D.8: PVC grains with a PVC pipe, volumetric strain
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D.5 Horizontal and Vertical Strains

(a) 0− 1%ε1 (b) 0− 2%ε1

(c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1 (f) 0− 6%ε1

(g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure D.9: Wooden grains with a PVC pipe, horizontal (left) and vertical (right) strains
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D.5. HORIZONTAL AND VERTICAL STRAINS

(a) 0− 1%ε1 (b) 0− 2%ε1

(c) 0− 3%ε1 (d) 0− 4%ε1

(e) 0− 5%ε1 (f) 0− 6%ε1

(g) 0− 7%ε1 (h) 0− 8%ε1

(i) 0− 9%ε1 (j) 0− 10%ε1

Figure D.10: PVC grains with a PVC pipe, horizontal (left) and vertical (right) strains
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D.6 PVC Pipe Unloading after Biax-4-PVC-Pipe Test

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) −0.06 < εV < 0.03

Figure D.11: �Oedometric� unloading of PVC pipe and PVC grain assembly from isotropic state

σ0 = 50kPa to σ1 = 0kPa. DIC analysis revealed interesting pattern of εV
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Appendix E

DEM Pipe in Soil Simulation Results

E.1 Displacement Fields

(a) 0− 0.5%ε1

(b) 0− 3.0%ε1

(c) 0− 5.5%ε1
(d) 0− 8.0%ε1

Figure E.1: Simulation of clumps α = 0.5 with friction at the pipe boundary. Displacement �elds
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E.1. DISPLACEMENT FIELDS

(e) 0− 10.5%ε1
(f) 0− 13.0%ε1

(g) 0− 15.5%ε1
(h) 0− 18.0%ε1

(i) 0− 20.5%ε1
(j) 0− 23.0%ε1

Figure E.1: Displacement �elds. Clumps α = 0.5 with friction at the pipe boundary
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(a) 0− 0.5%ε1

(b) 0− 3.0%ε1

(c) 0− 5.5%ε1
(d) 0− 8.0%ε1

(e) 0− 10.5%ε1
(f) 0− 13.0%ε1

Figure E.2: Simulation of clumps α = 0.5 without friction at the pipe boundary. Displacement

�elds
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E.1. DISPLACEMENT FIELDS

(g) 0− 15.5%ε1
(h) 0− 18.0%ε1

(i) 0− 20.5%ε1
(j) 0− 23.0%ε1

Figure E.2: Displacement �elds. Clumps α = 0.5 without friction at the pipe boundary
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E.2 Mean Displacement Field Subtracted from Displacement Field

(a) 0− 0.5%ε1 (b) 0− 3.0%ε1

(c) 0− 5.5%ε1 (d) 0− 8.0%ε1

Figure E.3: Simulation of clumps α = 0.5 with friction at the pipe boundary. Displacement �elds

reduced by mean �eld of displacement
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E.2. MEAN DISPLACEMENT FIELD SUBTRACTED FROM DISPLACEMENT FIELD

(e) 0− 10.5%ε1 (f) 0− 13.0%ε1

(g) 0− 15.5%ε1 (h) 0− 18.0%ε1

Figure E.3: Displacement �elds reduced by mean �eld of displacement. Clumps α = 0.5 with

friction at the pipe boundary
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(i) 0− 20.5%ε1 (j) 0− 23.0%ε1

Figure E.3: Displacement �elds reduced by mean �eld of displacement. Clumps α = 0.5 with

friction at the pipe boundary

(a) 0− 0.5%ε1 (b) 0− 3.0%ε1

Figure E.4: Simulation of clumps α = 0.5 without friction at the pipe boundary. Displacement

�elds reduced by mean �eld of displacement
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E.2. MEAN DISPLACEMENT FIELD SUBTRACTED FROM DISPLACEMENT FIELD

(c) 0− 5.5%ε1 (d) 0− 8.0%ε1

(e) 0− 10.5%ε1 (f) 0− 13.0%ε1

Figure E.4: Displacement �elds reduced by mean �eld of displacement. Clumps α = 0.5 without

friction at the pipe boundary
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(g) 0− 15.5%ε1 (h) 0− 18.0%ε1

(i) 0− 20.5%ε1 (j) 0− 23.0%ε1

Figure E.4: Displacement �elds reduced by mean �eld of displacement. Clumps α = 0.5 without

friction at the pipe boundary
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E.3. STRAIN LOCALISATION

E.3 Strain Localisation

(a) 0− 0.5%ε1

(b) 0− 3.0%ε1

(c) 0− 5.5%ε1

(d) 0− 8.0%ε1

Figure E.5: Simulation of clumps α = 0.5 with friction at the pipe boundary. Shear localisation

maps
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(e) 0− 10.5%ε1

(f) 0− 13.0%ε1

(g) 0− 15.5%ε1

(h) 0− 18.0%ε1

(i) 0− 20.5%ε1
(j) 0− 23.0%ε1

Figure E.5: Shear localisation maps. Clumps α = 0.5 with friction at the pipe boundary
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E.3. STRAIN LOCALISATION

(a) 0− 0.5%ε1

(b) 0− 3.0%ε1

(c) 0− 5.5%ε1

(d) 0− 8.0%ε1

(e) 0− 10.5%ε1
(f) 0− 13.0%ε1

Figure E.6: Simulation of clumps α = 0.5 without friction at the pipe boundary. Shear localisation

maps
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(g) 0− 15.5%ε1

(h) 0− 18.0%ε1

(i) 0− 20.5%ε1
(j) 0− 23.0%ε1

Figure E.6: Shear localisation maps. Clumps α = 0.5 without friction at the pipe boundary
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E.3. STRAIN LOCALISATION

(a) 0− 0.5%ε1

(b) 0− 3.0%ε1

(c) 0− 5.5%ε1

(d) 0− 8.0%ε1

Figure E.7: Simulation of soft pipe E = 20e7Pa with clumps α = 0.5 and no friction at the pipe

boundary. Shear localisation maps
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(e) 0− 10.5%ε1

(f) 0− 13.0%ε1

(g) 0− 15.5%ε1

Figure E.7: Simulation of soft pipe E = 20e7Pa with clumps α = 0.5 and no friction at the pipe

boundary. Shear localisation maps
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E.3. STRAIN LOCALISATION

(a) 0− 0.5%ε1

(b) 0− 3.0%ε1

(c) 0− 5.5%ε1

(d) 0− 8.0%ε1

Figure E.8: Simulation of sti� pipe E = 20e9Pa with clumps α = 0.5 and no friction at the pipe

boundary. Shear localisation maps
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(e) 0− 10.5%ε1

(f) 0− 13.0%ε1

(g) 0− 15.5%ε1

Figure E.8: Simulation of sti� pipe E = 20e9Pa with clumps α = 0.5 and no friction at the pipe

boundary. Shear localisation maps
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E.4. STRESS DIRECTION

E.4 Stress Direction

(a) 0.5%ε1 (b) 3.0%ε1

(c) 5.5%ε1 (d) 8.0%ε1

(e) 10.5%ε1 (f) 13.0%ε1

Figure E.9: Simulation of clumps α = 0.5 without friction at the pipe boundary. Direction of

particle stress
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(g) 15.5%ε1 (h) 18.0%ε1

(i) 20.5%ε1 (j) 23.0%ε1

Figure E.9: Direction of particle stress. Clumps α = 0.5 without friction at the pipe boundary
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E.4. STRESS DIRECTION

(a) 0− 0.5%ε1 (b) 2.5− 3.0%ε1

(c) 5.0− 5.5%ε1 (d) 7.5− 8.0%ε1

(e) 10.0− 10.5%ε1 (f) 12.5− 13.0%ε1

Figure E.10: Simulation of clumps α = 0.5 without friction at the pipe boundary. Direction of

particle stress increment
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(g) 15.0− 15.5%ε1 (h) 17.5− 18.0%ε1

(i) 20.0− 20.5%ε1 (j) 22.5− 23.0%ε1

Figure E.10: Direction of particle stress increment. Clumps α = 0.5 without friction at the pipe

boundary
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E.4. STRESS DIRECTION

-0.1
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 0.2
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-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(a) 0− 0.5%ε1
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 0.1

 0.2
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 0.4
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-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(b) 2.5− 3.0%ε1

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5
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-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(c) 5.0− 5.5%ε1

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(d) 7.5− 8.0%ε1

Figure E.11: Simulation of soft pipe E = 20e7Pa with clumps α = 0.5 and no friction at the

pipe boundary. Direction of particle stress increment
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-0.1
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 0.1

 0.2
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 0.4

 0.5
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-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(e) 10.0− 10.5%ε1

-0.1

 0

 0.1

 0.2

 0.3

 0.4
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-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(f) 12.5− 13.0%ε1
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 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(g) 15.0− 15.5%ε1

Figure E.11: Simulation of soft pipe E = 20e7Pa with clumps α = 0.5 and no friction at the

pipe boundary. Direction of particle stress increment
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E.4. STRESS DIRECTION
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(a) 0− 0.5%ε1
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(c) 5.0− 5.5%ε1
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 0.3
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 0.5
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-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

(d) 7.5− 8.0%ε1

Figure E.12: Simulation of sti� pipe E = 20e9Pa with clumps α = 0.5 and no friction at the

pipe boundary. Direction of particle stress increment
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(f) 12.5− 13.0%ε1
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(g) 5.0− 15.5%ε1

Figure E.12: Simulation of sti� pipe E = 20e9Pa with clumps α = 0.5 and no friction at the

pipe boundary. Direction of particle stress increment
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