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2 Erich Maria Remarque "Arc de Triomphe" Nous considérons certaines séries de Fourier liées à la théorie des formes modulaires. Nous étudions leurs propriétés analytiques en utilisant deux méthodes différentes. La première revient à trouver et itérer une équation fonctionnelle de la fonction étudiée (méthode d 'Itatsu) et la deuxième provient de l'analyse en ondelettes (méthode de Jaffard). Même si les deux méthodes sont différentes, l'étape essentielle de chacune dépend de la modularité sous-jacente. De plus, elles permettent d'obtenir des informations complémentaires.

Pour une matrice γ = a b c d ∈ SL 2 (Z) et z ∈ C on définit la transformation fractionnelle par

γ • z = az + b cz + d , si cz + d ∈ C \ {0} et γ • -d c = ∞.
Une fonction holomorphe M k définie dans le demi-plan supérieur H = {z ∈ C|Im(z) > 0} est une forme modulaire de poids k sous SL 2 (Z) si elle est holomorphe à l'infinité et si pour tout γ = a b c d ∈ SL 2 (Z) et z ∈ H, on a

M k (z) = M k (γ • z) (cz + d) k .
(1.0.1)

On écrit M k (z) = ∞ n=0 r n e 2πinz pour sa série de Fourier. Une forme modulaire est dite une forme parabolique si r 0 = 0. Pour plus de détails, voir par exemple [START_REF] Serre | A course in Arithmetic[END_REF]. La première famille de fonctions que nous considérons est définie de la façon suivante. Soit M k (z) = ∞ n=0 r n e 2πinz , une forme modulaire (ou quasi-modulaire, voir le chapitre 2) sous SL 2 (Z) de poids k pair. On définit ensuite

M k,s (z) = ∞ n=1 r n n s sin(2πnz) et N k,s (z) = ∞ n=1 r n n s cos(2πnz),
pour s convenable tel que M k,s , N k,s soient bien définies et convergent vers une fonction continue sur R. Si M k est une forme parabolique, on peut prendre s > k 2 , sinon s > k, voir le chapitre 4 lemme 4.8. On suppose que r n ∈ R.

La deuxième famille de fonctions étudiée est liée à la fonction thêta. Rappelons que la fonction thêta est définie dans le demi-plan supérieur par θ(z) = n∈Z e iπn 2 z et qu'elle est automorphe de poids 1 2 sous l'action du groupe Γ θ ⊂ SL 2 (Z) qui est engendré par

1 2 0 1 et et T d,s (x) = ∞ n 1 =1 ... ∞ n d =1 cos(π(n 2 1 + ... + n 2 d )x) (n 2 1 + ... + n 2 d ) s
.

Nous étudions certaines propriétés analytiques de ces séries : la dérivabilité, le module de continuité et l'exposant de Hölder. On dit qu'une fonction réelle f admet un module de continuité g, lorsque pour tout x et y dans le domaine de f on a |f (x) -f (y)| ≤ g(|x -y|). On dit qu'une fonction réelle f admet un module de continuité local g en x, lorsque pour tout y dans le domaine de f on a |f (x) -f (y)| ≤ g(|x -y|). On dit que f ∈ C α (x 0 ) pour un α > 0, α / ∈ N s'il existe un polynôme de degré inférieur ou égal à [α], et une constante C (qui peut dépendre de x 0 ) tels que |f (x) -P (x -x 0 )| ≤ C|x -x 0 | α , lorsque x → x 0 . On définit alors l'exposant de Hölder de f en x 0 par α(x 0 ) = sup{β : f ∈ C β (x 0 )}. Il est important de noter que si α(x 0 ) = α pour α ∈ N, cela n'implique pas que f est nécessairement α-fois dérivable en x 0 . Par exemple, l'exposant de Hölder de x → x log(x) en x = 0 est 1, mais la fonction n'est pas dérivable en 0.

Pour toutes les séries étudiées, nous observons que leurs propriétés analytiques aux points irrationnels sont liées aux propriétés diophantiennes de ces points. On définit les notions suivantes. Soit x ∈ R \ Q et (a n (x)) n ⊆ N la suite des quotients partiels de x, c'est-à-dire x = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + 1 ...

= [a 0 (x); a 1 (x), a 2 (x), ...].

Soit ( pn(x) qn(x) ) n la suite des réduites de x, c'est-à-dire pn(x) qn(x) = [a 0 (x); a 1 (x), a 2 (x), ..., a n (x)]. Les réduites peuvent être obtenues des quotients partiels par la formule de récurrence : p n (x) = a n (x)p n-1 (x) + p n-2 (x), q n (x) = a n (x)q n-1 (x) + q n-2 (x) pour n ≥ 0 et p -1 (x) = 1, p -2 (x) = 0, q -1 (x) = 0, q -2 (x) = 1. Définition 0.1. Soit x ∈ R \ Q. On dit que x est Brjuno-carré (square-Brjuno) si ∞ n=0 log(q n+1 (x))

q n (x) 2 < ∞.

Nous introduisons également deux conditions techniques : lim n→∞ log(q n+4 (x)) q n (x) 2 = 0 ; (0.0.1) lim n→∞ log(q n+3 (x)) q n (x) 2 = 0, et a n (x) = 1 seulement pour un nombre fini de n. (0.0.2)

Nous observons que la condition (0.0.1) est satisfaite pour presque tout x, mais la condition (0.0.2) n'est satisfaite pour presque aucun x. Nous montrons au chapitre 2 que la propriété Brjuno-carré et les conditions (0.0.1) et (0.0.2) sont indépendantes. En 1988, Yoccoz a étudié la fonction définie par

B 1 (x) = ∞ n=0
xT (x)T 2 (x)...T n-1 (x) log 1 T n (x) , où T (x) = 1

x si x = 0, T (0) = 0 et T j (x) = T (T j-1 (x)) pour tout j ≥ 2, maintenant appelée la fonction de Brjuno,voir [Yoc88,[START_REF] Marmi | The Brjuno Functions and Their Regularity Properties[END_REF]. Cette série converge si et seulement si ∞ n=0 log(q n+1 (x))

q n (x) < ∞.

Cette condition est appelée la condition de Brjuno et a été introduite par Brjuno dans l'étude des certains problèmes de systèmes dynamiques, voir [START_REF] Brjuno | Analytic form of differential equations. I (Russian)[END_REF][START_REF] Brjuno | Analytic form of differential equations. II (Russian)[END_REF]. Les points de convergence sont les nombres de Brjuno. Nous observons que si x n'est pas Brjuno-carré, alors il est de Liouville, c'est-à-dire pour tout n ∈ N il existe p, q ∈ Z, q > 1 tels que x -p q < 1 q n . On en déduit que la mesure de Lebesgue et la dimension de Hausdorff de l'ensemble des nombres irrationnels qui ne sont pas Brjuno-carré sont égales à 0.

Pour tout n ∈ N, nous définissons κ n (x) par l'égalité x -pn(x) qn(x) = 1 qn(x) κn(x) . Puis, on définit µ(x) = lim sup n→∞ κ n (x), ν(x) = lim inf n→∞ κ n (x).

Pour tout x ∈ R \ Q, on a µ(x) ≥ ν(x) ≥ 2 et pour presque tout x, ν(x) = µ(x) = 2. Si µ(x) < ∞, alors x est Brjuno-carré et il satisfait (0.0.1), ce qui sera démontré au chapitre 2. La fonction µ(x) est l'exposant d'irrationalité et il est souvent défini comme la borne inférieure des µ tel que x -p q < 1 q µ pour un nombre fini de p, q ∈ Z. Il résulte d'un théorème classique de Jarník et Besicovitch que la dimension de Hausdorff de l'ensemble {x ∈ R|µ(x) = µ} est 2 µ , voir par exemple [START_REF] Falconer | Fractal Geometry[END_REF]p. 157]. Par ailleurs Sun et Wu ont récemment démontré que la dimension de Hausdorff de l'ensemble {x ∈ R|ν(x) = µ(x) = ν} est égale à 1 ν pour tout ν > 2, voir [START_REF] Sun | A dimensional result in continued fractions[END_REF]. Nous définissons aussi la version "paire" de ces exposants. Soient µ e (x) = lim sup n→∞ {κ n (x)|p n (x), q n (x) ne sont pas tous deux impairs}, ν e (x) = lim inf n→∞ {κ n (x)|p n (x), q n (x) ne sont pas tous deux impairs}.

Au chapitre 2, nous montrons que µ e et ν e sont bien définis. En outre, nous présentons plus de détails sur la théorie des fractions continues dans ce chapitre.

Motivation

Ce travail est motivé par l'étude de la fonction de Riemann définie par

S(x) = ∞ n=1
1 n 2 sin(πn 2 x).

(0.1.1) À la fin du 19ème siècle, les mathématiciens soupçonnaient que S était une fonction continue nulle part dérivable. Vers 1910, Hardy et Littlewood ont démontré que S n'est dérivable en aucun irrationnel et en aucun rationnel qui n'est pas de la forme impair impair et que S est C 3/4 nulle part sauf peut-être aux nombres rationnels impair impair , [START_REF] Hardy | Weierstrass's non-differentiable function[END_REF][START_REF] Hardy | Some problems of Diophantine approximation[END_REF]. En 1970 dans [START_REF] Gerver | The differentiability of the Riemann function at certain rational multiples of π[END_REF], Gerver a montré que S est dérivable aux nombres rationnels de la forme impair impair . Sa démonstration est élémentaire mais longue. En 1981, dans l'article "Differentiability of Riemann's Function" de 4 pages [START_REF] Itatsu | Differentiability of Riemann's function[END_REF], Itatsu a présenté une démonstration alternative des résultats sur la dérivabilité de S aux nombres rationnels. Il a utilisé la liaison entre S(x) et la fonction thêta. Il a étudié la fonction complexe S(x) = ∞ n=1 1 n 2 πi e in 2 πx , dont la partie réelle est S(x). Puis, en exploitant le lien avec la fonction θ et l'identité modulaire de Jacobi satisfaite par θ, il a obtenu une équation fonctionnelle pour S dont on déduit que pour tout p q ∈ Q, non nul, on a S p q + h -S p q = R(p, q)p -1/2 e πih/(4|h|) |h| 1/2 h |h| -h 2 + O(|h| 3/2 ), où R(p, q) est une constante qui dépend de p et q et est qui vaut zero si et seulement si p et q sont tous les deux impairs. Itatsu a lu le comportement de S autour des points rationnels de cette équation. En 1991, en utilisant la méthode d'Itatsu, Duistermaat a montré que S est C 1/2 aux points rationnels qui n'ont pas la forme impair impair et il a aussi trouvé une borne supérieure de l'exposant de Hölder aux points irrationnels, voir [START_REF] Duistermaat | Self-similarity of "Riemann's nondifferentiable function[END_REF].

En 1996, Jaffard et Meyer ont montré que S est C 3/2 aux nombres rationnels impair impair . Finalement, Jaffard dans [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF], en utilisant la théorie des ondelettes, a déterminé que l'exposant de Hölder de S au point irrationnel x est égal à

α(x) = 1 2 + 1 2µ e (x)
.

Dans la première partie de la thèse, nous exploitons l'approche proposée par Itatsu. Dans la seconde partie, nous utilisons l'approche de Jaffard.

Présentation des résultats

Soit k ≥ 4 pair. La série d'Eisenstein de poids k est définie pour z ∈ H par

E k (z) = 1 2ζ(k) m,n∈Z (m,n) =(0,0) 1 (m + nz) k .

Présentation des résultats xi

On demande k ≥ 4 pair pour avoir une série absolument convergente. Pour k = 2 on considère

E 2 (z) = 3 π 2 lim εց0     m,n∈Z (m,n) =(0,0) 1 (m + nz) 2 |m + nz| ε     + 3 πIm(z)
.

Pour k ≥ 2 la série de Fourier de E k est

E k (z) = 1 - 2k B k ∞ n=1 σ k-1 (n)e 2πinz ,
où B k est le k-ième nombre de Bernoulli et σ k-1 (n) = d|n d k-1 . Pour k ≥ 4 la fonction E k est modulaire de poids k sous l'action de SL 2 (Z). De plus, E 2 est quasi-modulaire de poids 2 sous l'action de SL 2 (Z), voir [START_REF] Zagier | Introduction to modular forms[END_REF]. La fonction E 2 peut être regardée comme une intégrale modulaire (ou d'Eichler) sur SL 2 (Z) de poids 2 avec la fonction période rationnelle -2πi z , voir par exemple [START_REF] Knopp | Modular integrals and their Mellin transforms[END_REF]. Pour k ≥ 2 pair et s > k, on considère

F k,s (x) = ∞ n=1 σ k-1 (n) n s sin(2πnx) et G k,s (x) = ∞ n=1 σ k-1 (n) n s cos(2πnx).
Comme σ k-1 (n) ≤ n k-1 σ 0 (n) et σ 0 (n) = o(n ε ) pour tout ε > 0 (voir par exemple [Ten95, p. 83]), ces séries convergent uniformément vers des fonctions continues sur R. Les séries de sinus se comportent différemment des séries de cosinus en ce qui concerne la dérivabilité. On a en effet le Théorème 0.2. Les fonctions F 2,3 et G 2,3 ne sont dérivables en aucun point de Q. Cependant, G 2,3 est dérivable à droite et à gauche en chaque rationnel, ce qui n'est pas le cas de F 2,3 .

En chaque point rationnel p q la dérivée de G 2,3 "chute" de π 4 3q 2 , où on prend q = 1 si p q = 0, i.e. si on écrit G ′ 2,3 p q -, G ′ 2,3 p q + pour la dérivée à gauche et à droite de G 2,3 en

p q respectivement, alors G ′ 2,3 p q --G ′ 2,3 p q + = π 4 3q 2 .
Pour les nombres irrationnels, on a le Théorème 0.3. (i) Si x ∈ R \ Q est Brjuno-carré et satisfait (0.0.1) ou (0.0.2), alors F 2,3 est dérivable en x. En revanche, si x ∈ R \ Q n'est pas Brjuno-carré, alors F 2,3 n'est pas dérivable en x.

(ii) Si x ∈ R \ Q satisfait (0.0.1) ou (0.0.2), alors G 2,3 est dérivable en x.

xii Chapter 0. Résumé en français En particulier, F 2,3 et G 2,3 sont presque partout dérivables. Nous croyons que (0.0.1) et (0.0.2) sont des conditions techniques et pourraient être supprimées du théorème si bien que G 2,3 devrait être partout dérivable. La difficulté est expliquée au chapitre 3.

Nous considérons maintenant le module de continuité de F 2,3 et G 2,3 . Théorème 0.4. Pour tout x ∈ (0, 1) \ Q et tout y ∈ (0, 1), on a

|F 2,3 (x) -F 2,3 (y)| ≤ C 1 |x -y| log 1 |x -y| + C 2 |x -y|, (0.2.1) et |G 2,3 (x) -G 2,3 (y)| ≤ C 3 |x -y| log 1 |x -y| + C 4 |x -y|, (0.2.2) où les constantes C 1 , C 2 , C 3 , C 4 dépendent seulement de x.
Si x est Brjuno-carré et satisfait (0.0.1) ou (0.0.2), alors C 1 = 0. Si x satisfait (0.0.1) ou (0.0.2), alors

C 3 = 0. Cependant, il existe C 1 , C 3 > 0 et C 2 , C 4 absolues telles que (0.2.1) et (0.2.2) sont satisfaits pour tout x ∈ (0, 1) \ Q et tout y ∈ (0, 1).
Nous croyons que nous pourrions prolonger nos résultats sur la dérivabilité de F k,k+1 et G k,k+1 à tout k pair. Plus précisément, nous formulons la conjecture suivante. (ii) La fonction G k,k+1 est dérivable en chaque irrationnel.

(iii) La fonction F k,k+1 est dérivable en x ∈ R \ Q si et seulement si ∞ n=0 log(q n+1 (x)) q n (x) k < ∞. (0.2.3)
Pour démontrer les théorèmes 0.2-0.4, nous utilisons l'approche proposée par Itatsu. Les démonstrations détaillées sont présentées au chapitre 3, où nous donnons aussi des arguments justifiant la conjecture 0.5. La fonction de Brjuno satisfait une équation fonctionnelle B 1 (x) = -log(x) + xB 1 1 x sur (0, 1). Marmi, Moussa and Yoccoz ont étudié une version généralisée de la fonction de Brjuno. Ils ont défini un opérateur linéaire

T α f (x) = x α f 1 x et puis considéré l'équation (1 -T α )B f = f telle que B f (x + 1) = B f (x), voir [MMY97, MMY06]. La condition "k-Brjuno" dans (0.2.3) revient à étudier cette équation avec α = k et f (x) = -log(x).
Nous considérons maintenant l'exposant de Hölder. On a 0.2. Présentation des résultats xiii Théorème 0.6. Soit k ≥ 4 pair et M k une forme modulaire de poids k sous SL 2 (Z) qui n'est pas parabolique. Pour x ∈ R \ Q, soit α M k,s (x) l'exposant de Hölder de M k,s en x. On suppose que

s > k + k ν(x) - k µ(x) . (0.2.4) Alors α M k,s (x) = s -k + k µ(x)
.

Le résultat est vrai si l'on remplace M k,s par N k,s .

On remarque que la condition (0.2.4) est satisfaite pour presque tout x et s > k. Nous ne savons pas si nous pouvons juste supposer que s > k pour tout x ∈ R \ Q.

Remarque 0.7. Dans cette thèse nous considérons des fonctions réelles. Si les coefficients r n d'une forme modulaire M k sont complexes, alors la théorème 0.6 est vraie pour les fonctions de type ∞ n=0 Re(rn)

n s sin(2πnz), ∞ n=0 Im(rn) n s sin(2πnz), ∞ n=0 Re(rn) n s cos(2πnz), ∞ n=0 Im(rn) n s cos(2πnz). De plus, s -k + k µ(x) est un minorant de l'exposant de Hölder de la fonction complexe M k,s en x ∈ R \ Q dans ce cas. Si s > 3k
2 , alors la condition (0.2.4) est satisfaite pour tout x ∈ R \ Q. De plus, l'ensemble de nombres rationnels a dimension de Hausdorff égale à 0. Nous pouvons donc décrire le spectre des singularités de M k,s dans le théorème suivant, où nous utilisons la convention standard que l'ensemble vide a dimension de Hausdorff -∞. Théorème 0.8. Soit k ≥ 4 pair, M k une forme modulaire de poids k sous SL 2 (Z) qui n'est pas parabolique et s > 3k 2 . Soit α M k,s (x) l'exposant de Hölder de M k,s en x. Alors

dim H {x ∈ R|α M k,s (x) = α} =    2 k α -2 k s + 2, si α ∈ s -k, s -k 2 , 0 ou -∞, sinon.
Comme E k n'est parabolique pour aucun k ≥ 4 pair, on peut appliquer le théorème 0.6 quand

M k = E k . Comme F k,s (x) = -B k
2k M k,s , les théorèmes 1.6 et 1.8 sont vrais pour F k,s pour tout k ≥ 4. Nous pouvons également évaluer l'exposant de Hölder de F 2,s .

On a le Théorème 0.9. Pour x ∈ R \ Q, soit α M 2,s (x) l'exposant de Hölder de F 2,s en x. On suppose que

s > 2 + 2 ν(x) - 2 µ(x) . (0.2.5) On a alors α M 2,s (x) ≥ s -2 + 2 µ(x) .
De plus, si pour une infinité de n, a n (x) ≥ 7, (0.2.6)

alors α M 2,s (x) = s -2 + 2 µ(x)
.

Le résultat est vrai si l'on remplace F 2,s par G 2,s .

La condition (0.2.6) est satisfaite pour presque tout x, car la suite des quotients partiels n'est pas bornée pour presque tout x, voir par exemple [START_REF] Ya | Continued Fractions[END_REF]p. 60 

]. Ainsi, pour tout k ≥ 2 et tout s > k, on a α M k,s (x) = s -k 2 pour presque tout x ∈ R. D'un autre côté, si µ(x) = ∞,
(Z). Pour x ∈ R \ Q, soit α M k,s (x) l'exposant de Hölder de M k,s en x. On suppose que s > k 2 + 1 + 2 ν(x) - 2 µ(x) . (0.2.7) (i) On a alors α M k,s (x) ≥ s - k 2 -1 + 2 µ(x)
.

(ii) De plus, s'il existe N ∈ N tel que pour une infinité de n,

a n (x) = N (0.2.8) et si µ(x) = 2, alors α M k,s (x) = s - k 2 .
Le résultat est vrai si l'on remplace M k,s par N k,s . [START_REF] Iosifescu | Metrical theory of continued fractions[END_REF]p. 225]. La condition (0.2.8) est donc satisfaite pour presque tout x. De plus, ν(x) = µ(x) = 2 pour presque tout x, alors pour tout M k parabolique, pour tout s > k 2 + 1 on a α M k,s (x) = s -k 2 pour presque tout x. On considère le discriminant modulaire ∆ de poids 12 :

Soit π i (x, n) = 1 n |{1 ≤ j ≤ n|a j = i}|. Pour presque tout x on a lim n→∞ π i (x, n) = 1 log(2) log(1+ 1 i(i+2) ), voir
∆(z) = (2π) 12 ∞ n=1 τ (n)e 2iπnz = (2π) 12 1728 (E 4 (z) 3 -E 6 (z) 2 ),
où τ est la fonction de Ramanujan. La fonction ∆ est parabolique, donc pour tout s > 6 la série

∆ s (x) = ∞ n=1 τ (n) n s cos(2πnx)
converge pour tout x ∈ R. On peut lui appliquer le théorème 0.10.

Présentation des résultats xv

Corollaire 0.11. Pour x ∈ R \ Q, soit α ∆s (x) l'exposant de Hölder de ∆ s en x. On suppose que s > 8. Alors pour presque tout x on a

α ∆s (x) = s -6. Zagier dans [Zag10] a considéré ∆ s , il a étudié ∞ n=1 τ (n)
n 11 cos(2πnx) (comme une extension d'une quantum modular form) et a noté qu'elle est 4 fois mais pas 6 fois continûment dérivable sur R. Par le corollaire 0.11, pour presque tout x, on a α ∆ 11 (x) = 5.

Pour démontrer les théorèmes 0.6-0.10, nous utilisons l'approche proposée par Jaffard dans [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF]. Les démonstrations détaillées sont présentées au chapitre 4. L'étude de l'exposant de Hölder de F k,s et G k,s permet de démontrer certains cas de la conjecture 0.5. Par le théorème 0.6, on a que pour k

≥ 4 et x ∈ R \ Q, si 1 ν(x) -1 µ(x) < 1 k , alors l'exposant de Hölder de F k,k+1 et G k,k+1 en x sont tous deux égaux à 1 + k µ(x)
. Si µ(x) < ∞, nous en déduisons que F k,k+1 et G k,k+1 sont dérivables en x. La condition µ(x) < ∞ implique (0.2.3) et une direction de la conjecture 0.5 (iii) est vraie dans ce cas. Il est également intéressant de noter que pour presque tout x on a µ(x) = ν(x) = 2, de sorte que la conjecture est démontrée pour presque tout x pour tout k ≥ 4.

Nous présentons maintenant nos résultats concernant S d,s et T d,s . Théorème 0.12. Les fonctions S 3,2 et T 3,2 ne sont pas dérivables en 0. Théorème 0.13. Les fonctions S 3,2 et T 3,2 ne sont dérivables en aucun nombre rationnel p q tel que p et q ne sont pas tous deux impairs. Cependant, si p ∈ 4Z + 3, alors S 3,2 est dérivable à droite en p q et si p ∈ 4Z + 1, alors S 3,2 est dérivable à gauche en p q . Théorème 0.14. Soit x ∈ R\Q tel que µ e (x) > 4. Alors S 3,2 et T 3,2 ne sont pas dérivables en x.

Nous démontrons les théorèmes 0.12-0.14 par la méthode d'Itatsu au chapitre 3.

Nous étudions ensuite l'exposant de Hölder de ces séries. Notons {y} la partie fractionnaire de y. On a le Théorème 0.15.

Soit d ∈ N * . Pour x ∈ R \ Q, soit α S d,s (x) l'exposant de Hölder de S d,s en x. On suppose que s > d 2 + d 2ν e (x) - d 2µ e (x)
, (0.2.9)

et {s} < dµ e (x) -d 2µ e (x) , (0.2.10) alors α S d,s (x) = s - d 2 + d 2µ e (x)
.

Le résultat est vrai si l'on remplace S d,s par T d,s .

En fait, une analyse détaillée montre que si (0.2.9) est satisfaite et il existe ε ≥ 0 tel que {s} < 2dµe(x)+dε-2d 4µe(x)+2ε

(ce qui est moins fort que (0.2.10)), alors α S d,s (x) ≥ s -d 2 + d 2µe(x)+ε . Nous considérons maintenant S 3,2 et T 3,2 . Nous observons que les conditions (0.2.9) et (0.2.10) sont satisfaites pour tout x ∈ R \ Q tel que µ e (x) > 6. On déduit du théorème 0.15 que l'exposant de Hölder de S 3,2 (et T 3,2 ) en tel x vaut α S 3,2 (x) = 1 2 + 3 2µe(x) . En particulier, nous en concluons que S 3,2 et T 3,2 sont dérivables en x ∈ R \ Q si µ e (x) < 3 et ne sont pas dérivables en x si 3 < µ e (x) < 6. Le théorème 0.14 traite le cas µ e (x) > 4, alors nous obtenons le résultat suivant.

Corollaire 0.16. Soit x ∈ R \ Q.

(i) Si µ e (x) > 3, alors les fonctions S 3,2 et T 3,2 ne sont pas dérivables en x.

(ii) Si µ e (x) < 3, alors les fonctions S 3,2 et T 3,2 sont dérivables en x.

Si s > 3d

4 alors (0.2.9) est satisfaite pour tout x ∈ R \ Q et si d ≥ 4, la condition (0.2.10) est satisfaite pour tout x ∈ R \ Q. Nous décrivons le spectre des singularités de S d,s dans ce cas. Théorème 0.17.

Soit d ∈ N, d ≥ 4. Soit s > 3d 4 , alors dim H {x ∈ R|α S d,s (x) = α} =    4 d α -4 d s + 2, si α ∈ s -d 2 , s -d 4 , 0 ou -∞, sinon.
Les théorèmes 0.15 et 0.17 sont démontrés au chapitre 4.

La fonction de Riemann S correspond à S 1,1 et des résultats plus précis que les théorèmes 0.15 et 0.17 ont été obtenus par Jaffard dans [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF]. Les détails de cette étude sont présentés au chapitre 4. Dans sa thèse Oppenheim [START_REF] Oppenheim | Ondelettes et multifractals : application à une fonction de Riemann en dimension 2[END_REF] a utilisé la théorie des ondelettes dans son travail sur la régularité d'un analogue bidimensionnel de la série de Riemann (0.1.1). Plus précisément, il a considéré S α (x, y) = m,n≥0 (m,n) =(0,0) 1 (m 2 +n 2 ) α e iπ(m 2 x+n 2 y) dans le cadre des espaces deux-microlocaux et déterminé la régularité et le spectre des singularités de cette fonction. Chamizo et Ubis dans [START_REF] Chamizo | Some Fourier series with gaps[END_REF] ont étudié une autre généralisation de

S : ils ont considéré la fonction f k,s (x) = ∞ n=1 e 2iπn k x n s , où S(x) = f 2,2 (x)
. Ils ont étudié la dérivabilité, l'exposant de Hölder et le spectre des singularités de f k,s en utilisant des méthodes de théorie des nombres et d'analyse harmonique. Ils ont lié ces concepts à µ(x) et ν(x). Puis dans [START_REF] Chamizo | Multifractal behavior of polynomial Fourier series[END_REF], Chamizo et Ubis ont étudié le spectre des singularités de fonctions plus générales encore :

f s (x) = ∞ n=1 e 2iπP (n)x n s , où P ∈ Z[x]
. Ils ont introduit de nouvelles méthodes basées sur certaines approximations diophantiennes et des estimations analytiques et arithmétiques fines des sommes exponentielles.

La fonction θ apparaît dans les études des fractions continues. Par exemple, Kraaikamp et Lopes dans [START_REF] Kraaikamp | The Theta group and the continued fraction expansion with even partial quotients[END_REF] ont établi la relation entre le groupe Γ θ et les fractions continues 0.2. Présentation des résultats xvii avec les quotients partiels pair. Voir Rivoal et Seuret [RS] pour l'élaboration sur cette connexion pour les fonctions similaires à S(x).

La derivabilité et l'exposant de Hölder des séries de ces deux types ont également été étudiés par Chamizo dans [START_REF] Chamizo | Automorphic forms and differentiability properties[END_REF]. Dans cet article, il a considéré des séries provenant de formes automorphes f (x) = ∞ n=0 r n e 2πinx de poids k positifs sous l'action d'un groupe fuchsien : 

f s (x) = ∞ n=1 rn n s e 2πinx
(x) = ∞ n=1 r k (n)
n s e πinx , définie pour k 2 < s < k 2 + 1, est dérivable en x = p q si et seulement si p, q sont tous deux impairs, où r k (n) est le nombre de représentations de n comme une somme de k carrés, où 0 est autorisé, où le signe et l'ordre comptent. Nous observons que iS 3,2 (x)

+ T 3,2 (x) = ∞ n=1 R 3 (n)
n 2 e πinx , où R 3 (n) le nombre de représentations de n comme une somme de 3 carrés des nombres strictement positifs et où l'ordre compte. Même si ce n'est pas précisément f 3,2 , le théorème 0.13 est cohérent avec le résultat de Chamizo.

Certains des résultats présentés dans cette thèse ont été rédigés sous forme d'article paru ou de prépublication [START_REF] Petrykiewicz | Hölder regularity of arithmetic Fourier series arising from modular forms[END_REF][START_REF] Petrykiewicz | Note on the differentiability of Fourier series arising from Eisenstein series[END_REF][START_REF] Petrykiewicz | Differentiability of Fourier series arising from Eisenstein series[END_REF].

La thèse est organisée comme suit. Au chapitre 2 nous rappelons quelques propriétés des fractions continues, des formes modulaires et de la fonction θ, dont nous aurons besoin pour démontrer les théorèmes annoncés. Puis, au chapitre 3 nous discutons de la méthode d'Itatsu, nous démontrons les théorèmes 0.2-0.4, 0.12-0.14 et nous donnons aussi des arguments justifiant la conjecture 0.5. Au chapitre 4 nous discutons de la méthode de Jaffard et nous démontrons les théorèmes 0.6-0.10, 0.15 et 0.17. Enfin, au chapitre 5 nous évoquons des problèmes ouverts qu'il pourrait être intéressant d'étudier dans le futur. 
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Introduction

In this thesis, we consider certain Fourier series which arise from modular or automorphic forms. We study their analytic properties using two different methods. One is based on finding and iterating a functional equation for the function studied (Itatsu's method), the second one comes from wavelet analysis (Jaffard's method). Even though the two methods differ, the crucial steps in both of them are based on the underlined modularity. These methods give complementary information, as we will see later.

For a matrix γ = a b c d ∈ SL 2 (Z), and z ∈ C we will denote the fractional transformation as

γ • z = az + b cz + d , if cz + d ∈ C \ {0}, and γ • -d c = ∞. A holomorphic function M k defined in the upper-half plane H := {z ∈ C|Im(z) > 0} is called a modular form of weight k for SL 2 (Z) if it is holomorphic at infinity and for any γ = a b c d ∈ SL 2 (Z) and z ∈ H, we have M k (z) = M k (γ • z) (cz + d) k .
(1.0.1)

We then write M k (z) = ∞ n=0 r n e 2πinz for its Fourier series. If r 0 = 0, then it is called a cusp form, for details see for example [START_REF] Serre | A course in Arithmetic[END_REF]. The first family of functions we consider is defined as follows. Let M k (z) = ∞ n=0 r n e 2πinz be a modular (or quasi-modular, see Chapter 2) form of weight k even under SL 2 (Z) group. We then define

M k,s (z) = ∞ n=1 r n n s sin(2πnz) and N k,s (z) = ∞ n=1 r n n s cos(2πnz),
for suitable s such that M k,s , N k,s are well-defined and converge to continuous functions on R. Throughout the thesis we assume that r n ∈ R for all n.

The second family of functions studied arises from the theta function. Recall that the theta function is defined in the upper-half plane by θ(z) = n∈Z e iπn 2 z and it is an automorphic form of weight 1 2 under the action of the group Γ θ ⊂ SL 2 (Z) which is the group (of index 3) generated by 1 2 0 1 and 0 -1 1 0 . Then for d ∈ N and s > d 2 , we define

S d,s (x) = ∞ n 1 =1 ... ∞ n d =1 sin(π(n 2 1 + ... + n 2 d )x) (n 2 1 + ... + n 2 d ) s and T d,s (x) = ∞ n 1 =1 ... ∞ n d =1 cos(π(n 2 1 + ... + n 2 d )x) (n 2 1 + ... + n 2 d ) s
.

We are interested in certain analytic properties of these series, namely differentiability, modulus of continuity and the Hölder regularity exponent. We say that a real-valued function f admits a modulus of continuity g, if for all x, y in the domain of f we have |f (x) -f (y)| ≤ g(|x -y|). We say that a real-valued function f admits a local modulus of continuity g at a point x, if for all y in the domain of f we have |f (x) -f (y)| ≤ g(|x -y|). We say that f ∈ C α (x 0 ) for some α > 0, α / ∈ N when there exists a polynomial P of degree less than or equal to [α], and a constant C such that

|f (x) -P (x -x 0 )| ≤ C|x -x 0 | α , as x → x 0 .
Then we define the Hölder regularity exponent of f at x 0 as α(x 0 ) = sup{β : f ∈ C β (x 0 )}. It is important to note that if α(x 0 ) = α for α ∈ N, it does not imply that f is α-times differentiable at x 0 . For instance, x → x log(x) has Hölder exponent 1 at x = 0, but it is not differentiable at 0.

In all studied series we find that these analytic properties at irrational points are related to their fine diophantine properties. We make the following definitions. Let x ∈ R \ Q and (a n (x)) n ⊆ N be the sequence of partial quotients of x, that is

x = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + 1 ... = [a 0 (x); a 1 (x), a 2 (x), ...].
Let ( pn(x) qn(x) ) n be the sequence of continued fraction approximations of x, that is pn(x) qn(x) = [a 0 (x); a 1 (x), a 2 (x), ..., a n (x)]. The convergents can be obtained from partial quotients by the recurrence relations: p n (x) = a n (x)p n-1 (x) + p n-2 (x), q n (x) = a n (x)q n-1 (x) + q n-2 (x), for n ≥ 0, and p -1 (x) = 1, p -2 (x) = 0, q -1 (x) = 0, q -2 (x) = 1.

Definition 1.1. Let x ∈ R \ Q. We will say that x is a square-Brjuno number if ∞ n=0 log(q n+1 (x)) q n (x) 2 < ∞.
In addition, we introduce two technical conditions:

lim n→∞ log(q n+4 (x)) q n (x) 2 = 0; ( * ) lim n→∞ log(q n+3 (x))
q n (x) 2 = 0, and a n (x) = 1 for only finitely many n. ( * * )

We observe that Condition ( * ) is satisfied for almost all x, but that Condition ( * * ) holds for almost no x. We show in Chapter 2 that the square-Brjuno property and Conditions ( * ) and ( * * ) are independent. In 1988, Yoccoz studied the function defined by

B 1 (x) = ∞ n=0 xT (x)T 2 (x)...T n-1 (x) log 1 T n (x)
,

where T denotes the Gauss map and T j (x) = T (T j-1 (x)) for all j ≥ 2, now called Brjuno function, see [START_REF] Yoccoz | Linéarisation des germes de difféomorphismes holomorphes de (C, 0)[END_REF][START_REF] Marmi | The Brjuno Functions and Their Regularity Properties[END_REF]. This series converges if and only if

∞ n=0 log(q n+1 (x)) q n (x) < ∞.
This condition is called Brjuno condition and was introduced by Brjuno in the study of certain problems in dynamical systems see [START_REF] Brjuno | Analytic form of differential equations. I (Russian)[END_REF][START_REF] Brjuno | Analytic form of differential equations. II (Russian)[END_REF]. The points of convergence are called Brjuno numbers. We note that if an irrational number x is not square-Brjuno, then it must be Liouville, that is for every n ∈ N there exist p, q ∈ Z, q > 1 such that x -p q < 1 q n . It follows that the set of irrational numbers which are not square-Brjuno has both Lebesgue measure and Hausdorff dimension equal to 0.

For each n, we define κ n (x) by the equality x -pn(x) qn(x) = 1 qn(x) κn(x) . We then define

µ(x) = lim sup n→∞ κ n (x), ν(x) = lim inf n→∞ κ n (x).
For all x ∈ R \ Q, we have µ(x) ≥ ν(x) ≥ 2, and for almost all x, ν(x) = µ(x) = 2. If µ(x) < ∞, then x is square-Brjuno and it satisfies ( * ), which we will see in Chapter 2. The function µ(x) is called the irrationality exponent of x, and it is usually defined as the infimum over µ such that x -p q < 1 q µ for only finitely many p, q ∈ Z. It follows from a classical theorem of Jarník and Besicovitch that the Hausdorff dimension of the set {x ∈ R|µ(x) = µ} is 2 µ , see for example [Fal03, p. 157], whereas Sun and Wu recently proved that the Hausdorff dimension of the set {x ∈ R|ν(x) = µ(x) = ν} is equal to 1 ν for all ν > 2, see [START_REF] Sun | A dimensional result in continued fractions[END_REF].

We also define an "even" version of these exponents. Let µ e (x) = lim sup n→∞ {κ n (x)|p n (x), q n (x) are not both odd}, ν e (x) = lim inf n→∞ {κ n (x)|p n (x), q n (x) are not both odd}, which are well-defined, as we will see in Chapter 2. We will provide more details on continued fractions in the next chapter.

Motivation

This work is motivated by the example of the Riemann "non-differentiable" function which is defined as

S(x) = ∞ n=1 1 n 2 sin(πn 2 x). (1.1.1)
At the end of the 19th century, S was thought to be continuous but nowhere differentiable.

Then in 1910s Hardy and Littlewood proved that S(x) was indeed neither differentiable at any irrational point x, nor at rational points x = p q such that p, q were not both odd and that was in fact nowhere C 3/4 except maybe the rational points of the form odd odd , [START_REF] Hardy | Weierstrass's non-differentiable function[END_REF][START_REF] Hardy | Some problems of Diophantine approximation[END_REF]. Later, in 1970 in [START_REF] Gerver | The differentiability of the Riemann function at certain rational multiples of π[END_REF], Gerver showed that S(x) was in fact differentiable at rational points p q such that p and q are both odd, his proof was elementary but long. In 1981, in a 4-page paper "Differentiability of Riemann's Function" [START_REF] Itatsu | Differentiability of Riemann's function[END_REF], Itatsu gave an alternative proof of differentiability of S at these rational points. His method was based on the relationship between S(x) and the theta function θ. He considered a complex-valued function S(x) = ∞ n=1 1 n 2 πi e in 2 πx , whose real part is S(x). Then he obtained a functional equation for S from its relationship to θ and Jacobi identity satisfied by θ, from which he deduced that for all 0 = p q ∈ Q we have:

S p q + h -S p q = R(p, q)p -1/2 e πih/(4|h|) |h| 1/2 h |h| - h 2 + O(|h| 3/2 ),
where R(p, q) is a constant that depends on p and q and is zero if and only if p and q are both odd. He read off the behaviour of S around rational points from this equation. In 1991, Duistermaat used this method to study Hölder regularity exponent of S(x) reproving the results on its differentiability on R, see [START_REF] Duistermaat | Self-similarity of "Riemann's nondifferentiable function[END_REF]. He showed that S is exactly C 1/2 at the rational points not of the form odd odd . Then in 1996, Jaffard and Meyer showed that S is exactly C 3/2 at the rational points of the form odd odd . In the same year Jaffard, using wavelet methods, proved in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF] that the Hölder regularity exponent of S at an irrational point x is equal to

α(x) = 1 2 + 1 2µ e (x)
.

In the first part of the thesis we exploit the approach proposed by Itatsu, in the second part we use the approach of Jaffard in the study of the described families of functions.

Statement of the results

Let k ≥ 4 be even. The Eisenstein series of weight k over the upper-half plane H is defined as

E k (z) = 1 2ζ(k) m,n∈Z
We require k ≥ 4 even to have an absolutely convergent sum. For k = 2 we consider

E 2 (z) = 3 π 2 lim εց0     m,n∈Z (m,n) =(0,0) 1 (m + nz) 2 |m + nz| ε     + 3 πIm(z)
.

For k ≥ 2 the Fourier expansion of E k is E k (z) = 1 - 2k B k ∞ n=1 σ k-1 (n)e 2πinz ,
where B k is the k-th Bernoulli number and σ k-1 (n) = d|n d k-1 . For all k ≥ 4, E k is modular of weight k under the action of SL 2 (Z), and E 2 is quasi-modular of weight 2 under the action of SL 2 (Z), see for example [START_REF] Zagier | Introduction to modular forms[END_REF]. The function E 2 can be viewed as a modular (or Eichler) integral on SL 2 (Z) of weight 2 with the rational period function -2πi z , see for example [START_REF] Knopp | Modular integrals and their Mellin transforms[END_REF].

For k ≥ 2 even and s > k we consider

F k,s (x) = ∞ n=1 σ k-1 (n) n s sin(2πnx) and G k,s (x) = ∞ n=1 σ k-1 (n) n s cos(2πnx).
Since σ k-1 (n) ≤ n k-1 σ 0 (n) and σ 0 (n) = o(n ε ) for all ε > 0 (see for example [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]p. 83]), these series converge on R to continuous functions. The sine series exhibits different behaviour with respect to differentiability than the cosine series. We have Theorem 1.2. Neither F 2,3 nor G 2,3 is differentiable at any point in Q. However, G 2,3 is right and left differentiable at each rational point.

At each rational p q the derivative of G 2,3 drops by π 4 3q 2 , where we take q = 1 when p q = 0, i.e. if we denote the left and the right derivative of G 2,3 at p q by G ′ 2,3

p q -, G ′ 2,3 p q + respectively, then G ′ 2,3 p q --G ′ 2,3 p q + = π 4 3q 2 .
For the irrational points, we have

Theorem 1.3. (i) If x ∈ R \ Q is a square-Brjuno number satisfying ( * ) or ( * * ), then F 2,3 is differentiable at x. On the other hand, if x ∈ R \ Q is not a square-Brjuno number, then F 2,3 is not differentiable at x. (ii) If x ∈ R \ Q satisfies ( * ) or ( * * ), then G 2,3 is differentiable at x.
In particular, F 2,3 and G 2,3 are differentiable almost everywhere. However, we believe that conditions ( * ) and ( * * ) are technical and could be removed from the theorem and G 2,3 would be everywhere differentiable. The difficulty is explained in Chapter 3.

Then we consider the modulus of continuity of F 2,3 and G 2,3 .

Theorem 1.4. For all x ∈ (0, 1) \ Q and all y ∈ (0, 1), we have

|F 2,3 (x) -F 2,3 (y)| ≤ C 1 |x -y| log 1 |x -y| + C 2 |x -y|, (1.2.1)
and

|G 2,3 (x) -G 2,3 (y)| ≤ C 3 |x -y| log 1 |x -y| + C 4 |x -y|, (1.2.2) for some constants C 1 , C 2 , C 3 , C 4 dependent only on x.
If x is square-Brjuno satisfying ( * ) or ( * * ), then C 1 = 0. If x is satisfies ( * ) or ( * * ), then C 3 = 0. However, there exist C 1 , C 3 > 0, C 2 , C 4 absolute such that (1.2.1) and (1.2.2) are satisfied for all x ∈ (0, 1) \ Q and all y ∈ (0, 1).

We believe that we could extend our results on differentiability of F k,k+1 and G k,k+1 to any even k. Therefore, we formulate the following conjecture.

Conjecture 1.5. Let k ∈ N * be even. We have the following.

(i) Neither F k,k+1 nor G k,k+1 is differentiable at any rational number; however, G k,k+1 is right and left differentiable at each rational number.

(ii) The function G k,k+1 is differentiable at each irrational number.

(iii) The function

F k,k+1 is differentiable at x ∈ R \ Q if and only if ∞ n=0 log(q n+1 (x)) q n (x) k < ∞. (1.2.3)
In order to prove Theorems 1.2-1.4, we use the approach proposed by Itatsu. The detailed proofs are presented in Chapter 3, where we also give arguments justifying Conjecture 1.5.

The Brjuno function satisfies a functional equation B 1 (x) = -log(x)+xB 1 1 x on (0, 1). Marmi, Moussa and Yoccoz studied a generalised version of Brjuno function, namely they define a linear operator T α f (x) = x α f 1

x and then consider the equation (1 [START_REF] Marmi | The Brjuno Functions and Their Regularity Properties[END_REF][START_REF] Marmi | Some Properties of Real and Complex Brjuno Functions[END_REF]. The "kth-Brjuno condition" in (1.2.3) corresponds to studying this equation with α = k and f (x) = -log(x).

-T α )B f = f such that B f (x + 1) = B f (x), see
We now consider Hölder regularity exponents. We have Theorem 1.6. Let k ≥ 4, even, and M k be a modular form of weight k under SL 2 (Z) not a cusp form. For x ∈ R \ Q, let α M k,s (x) be the Hölder regularity exponent of M k,s at x.

Assume that s > k + k ν(x) - k µ(x)
.

(1.2.4)

Then,

α M k,s (x) = s -k + k µ(x)
.

The same is true if we replace M k,s with N k,s .

We note that (1.2.4) is satisfied for almost all x for any s > k. We do not know if (1.2.4) can be relaxed to s > k for any x ∈ R \ Q.

Remark 1.7. In this thesis we are interested in real-valued functions. If we consider a modular form M k with complex coefficients r n , then Theorem 1.6 remains valid for the functions of the form ∞ n=0 Re(rn)

n s sin(2πnz), ∞ n=0 Im(rn) n s sin(2πnz), ∞ n=0 Re(rn) n s cos(2πnz), ∞ n=0 Im(rn) n s cos(2πnz). Moreover, s -k + k µ(x)
is a lower bound of the Hölder regularity exponent of the complex-valued function M k,s at x ∈ R \ Q in this case.

If s > 3k 2 then Condition (1.2.4) is satisfied for all x ∈ R \ Q. Also, as the set of rational points has Hausdorff dimension 0, we can describe the spectrum of singularities of M k,s as follows, where we use the standard convention that the empty set has Hausdorff dimension -∞.

Theorem 1.8. Let k ≥ 4, even, M k be a modular form of weight k under SL 2 (Z) not a cusp form and s > 3k 2 . Let α M k,s (x) be the Hölder regularity exponent of M k,s at x. Then

dim H {x ∈ R|α M k,s (x) = α} =    2 k α -2 k s + 2, if α ∈ s -k, s -k 2 , 0 or -∞, otherwise.
Since E k is not a cusp form for all k ≥ 4 even, we can apply Theorem 1.

6 if M k = E k , then F k,s (x) = -B k
2k M k,s , and Theorems 1.6 and 1.8 are valid for F k,s for all k ≥ 4. We can also evaluate the Hölder regularity exponent of F 2,s .

We have Theorem 1.9. For x ∈ R \ Q, let α M 2,s (x) be the Hölder regularity exponent of F 2,s at x.

Assume that s > 2 + 2 ν(x) - 2 µ(x)
.

(1.2.5)

We have

α M 2,s (x) ≥ s -2 + 2 µ(x)
.

Furthermore, if for infinitely many n,

a n (x) ≥ 7, (1.2.6) then α M 2,s (x) = s -2 + 2 µ(x)
.

The same is true if we replace F 2,s with G 2,s .

Condition (1.2.6) is satisfied for almost all x, as the sequence of partial quotients is unbounded for almost all x, see for example [START_REF] Ya | Continued Fractions[END_REF]p. 60]. Therefore, for all k ≥ 2 and all s > k, we have α M k,s (x) = s -k 2 for almost all x ∈ R. On the other hand, if µ(x) = ∞, then Condition (1.2.6) is satisfied, and we obtain the optimality in this case as well. It is likely that Condition (1.2.6) could be removed.

We now consider cusp forms.

Theorem 1.10. Let k ≥ 4, even, and M k be a cusp form of weight k under SL 2 (Z). For x ∈ R \ Q, let α M k,s (x) be the Hölder regularity exponent of M k,s at x. Assume that

s > k 2 + 1 + 2 ν(x) - 2 µ(x)
.

(1.2.7)

(i) We have α M k,s (x) ≥ s - k 2 -1 + 2 µ(x)
.

(ii) Moreover, if there exists N ∈ N such that for infinitely many n a n (x) = N, (1.2.8)

and if µ(x) = 2, then α M k,s (x) = s - k 2 .
We get the same results if we replace M k,s with N k,s .

Let π i (x, n) = 1 n |{1 ≤ j ≤ n|a j = i}| denote the frequency of appearance of i among the first n partial quotients of x. It is well-known that for almost all x we have lim n→∞ π i (x, n) = 1 log(2) log(1 + 1 i(i+2) ), see [START_REF] Iosifescu | Metrical theory of continued fractions[END_REF]p. 225]. It shows that Condition (1.2.8) is satisfied for almost all x. Furthermore, ν(x) = µ(x) = 2 for almost all x, then for all M k cusp form, for all s > k 2 + 1 we have α M k,s (x) = s -k 2 for almost all x. Consider the discriminant modular form ∆ of weight 12, which can be written

∆(z) = (2π) 12 ∞ n=1 τ (n)e 2iπnz = (2π) 12 1728 (E 4 (z) 3 -E 6 (z) 2 ),
where τ is the Ramanujan function. Since ∆ is a cusp form, for any s > 6 the series

∆ s (x) = ∞ n=1 τ (n) n s cos(2πnx)
converges for all x ∈ R. We apply Theorem 1.10 to it.

Corollary 1.11. For x ∈ R \ Q, let α ∆s (x) be the Hölder regularity exponent of ∆ s at x. Assume that s > 8. Then for almost all x we have α ∆s (x) = s -6.

Zagier in [START_REF] Zagier | Quantum modular forms[END_REF] considered series of the type of ∆ s , in particular he studied ∆ 11 (which he regards as an extension of a quantum modular form) and mentioned that it is 4 times but not 6 times continuously differentiable on R. By Corollary 1.11, for almost all x, we have α ∆ 11 (x) = 5.

In order to prove Theorems 1.6-1.10, we use the approach proposed by Jaffard in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF]. The detailed proofs are presented in Chapter 4.

Studying the Hölder regularity exponents of F k,s and G k,s enables us to prove some cases of Conjecture 1.5. By Theorem 1.6, we have that for k ≥ 4 and

x ∈ R \ Q, if 1 ν(x) -1 µ(x) < 1
k , then the Hölder regularity exponents of F k,k+1 and G k,k+1 at x are both 1 + k µ(x) . If µ(x) < ∞, then we conclude that both F k,k+1 and G k,k+1 are differentiable at x. The condition µ(x) < ∞ implies (1.2.3), and we see that one direction of Conjecture 1.5 (iii) is true. It is also worth noting that since for almost all x we have µ(x) = ν(x) = 2, the conjecture is proved for almost all x for all k ≥ 4.

We now present results concerning S d,s and T d,s .

Theorem 1.12. Neither S 3,2 nor T 3,2 is differentiable at 0. Theorem 1.13. The functions S 3,2 and T 3,2 are not differentiable at any rational point p q such that p and q are not both odd. However, if p ∈ 4Z + 3, then S 3,2 is right differentiable, and if p ∈ 4Z + 1, then S 3,2 is left differentiable at p q . Theorem 1.14. Let x ∈ R \ Q such that µ e (x) > 4. Then neither S 3,2 nor T 3,2 is differentiable at x. Again, we prove Theorems 1.12-1.14 by following Itatsu's method in Chapter 3.

We also examine Hölder regularity of these series. Let {y} denote the fractional part of y, we then have

Theorem 1.15. Let d ∈ N * . For x ∈ R \ Q, let α S d,s (x) be the Hölder regularity exponent of S d,s at x. Assume that s > d 2 + d 2ν e (x) - d 2µ e (x)
, (1.2.9)

and {s} < dµ e (x) -d 2µ e (x) , (1.2.10) then α S d,s (x) = s - d 2 + d 2µ e (x)
.

The same is true if we replace S d,s with T d,s .

In fact, a detailed analysis shows that if (1.2.9) is satisfied and there exists ε ≥ 0 such that {s} < 2dµe(x)+dε-2d 4µe(x)+2ε

(which is a weaker assumption than (1.2.10)), then α S d,s (x) ≥ s -d 2 + d 2µe(x)+ε . Consider now S 3,2 and T 3,2 . We observe that Conditions (1.2.9) and (1.2.10) are satisfied for all x ∈ R \ Q with µ e (x) < 6. We deduce that the Hölder regularity exponent of S 3,2 (and T 3,2 ) at such an x is equal to α S 3,2 (x) = 1 2 + 3 2µe(x) . In particular, it follows from Theorem 1.15 that S 3,2 and T 3,2 are differentiable at x ∈ R \ Q if µ e (x) < 3 and are not differentiable at x if 3 < µ e (x) < 6. Since Theorem 1.14 addresses the case when µ e (x) > 4, we formulate the following result.

Corollary 1.16. Let x ∈ R \ Q. (i) If µ e (x) > 3, then neither S 3,2 nor T 3,2 is differentiable at x.
(ii) If µ e (x) < 3, then S 3,2 and T 3,2 are both differentiable at x.

If s > 3d

4 , then (1.2.9) is satisfied for all x ∈ R \ Q, and when d ≥ 4, Condition (1.2.10) is satisfied for all x ∈ R \ Q. We describe the spectrum of singularities of S d,s in this case.

Theorem 1.17.

Let d ∈ N, d ≥ 4. Let s > 3d 4 , then dim H {x ∈ R|α S d,s (x) = α} =    4 d α -4 d s + 2, if α ∈ s -d 2 , s -d 4 , 0 or -∞, otherwise.
Theorems 1.15 and 1.17 are proved in Chapter 4.

The Riemann function S corresponds to S 1,1 , and more precise results than in Theorems 1.15 and 1.17 were obtained by Jaffard in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF]. The details of this work are presented in Chapter 4. Oppenheim in his thesis [START_REF] Oppenheim | Ondelettes et multifractals : application à une fonction de Riemann en dimension 2[END_REF] applied wavelet theory in his study of regularity of a two-dimensional analogue of the Riemann series (1.1.1). Namely, he considered n s , where S(x) = f 2,2 (x). They studied the differentiability, Hölder exponent and spectrum of singularities of f k,s by using methods from number theory and harmonic analysis. They related these concepts to µ(x) and ν(x). Then in [START_REF] Chamizo | Multifractal behavior of polynomial Fourier series[END_REF] Chamizo and Ubis studied the spectrum of singularities of even more generalised functions, namely

S α (x, y) = m,n≥0 (m,n) =(0,0) 1 (m 2 +n 2 ) α e iπ(m 2 x+n 2 y) in
f s (x) = ∞ n=1 e 2iπP (n)x n s
, where P ∈ Z[x]. They introduced new methods based on some special diophantine approximations and fine analytic and arithmetic estimations of exponential sums.

The function θ appears in the study of continued fractions. For example Kraaikamp and Lopes in [START_REF] Kraaikamp | The Theta group and the continued fraction expansion with even partial quotients[END_REF] establish the relation between the group Γ θ and continued fraction with even partial quotients. See Rivoal and Seuret [RS] for an elaboration of this connection for functions similar to S(x).

Differentiability and Hölder regularity of series of these two types were also studied by Chamizo in [START_REF] Chamizo | Automorphic forms and differentiability properties[END_REF]. In this paper, he studied series arising from automorphic forms f (x) = ∞ n=0 r n e 2πinx of positive weights k under the Fuchsian group with a multiplier system: f s (x) = ∞ n=1 rn n s e 2πinx . His method is based on the theory of automorphic forms. He proved that if M k is a cusp form, then M k,s is not differentiable at any irrational x if s < k 2 + 1, and if k+1 2 < s < k 2 + 1, then M k,s is differentiable at all rational points. Moreover, it follows from [Cha04, Theorem 2.1] that the Hölder regularity exponent of f s at irrational points is equal to s -k 2 for all k 2 < s < k 2 + 1. However, his method is not applicable in the case of F k,s and G k,s considered here, because he requires s < k 2 + 1 for f not a cusp form and we consider s > k. In the same paper, he also proves that the function

f k,s (x) = ∞ n=1 r k (n)
n s e πinx , where r k (n) is the number of representations of n as a sum of k squares, where 0 are allowed, the sign and order matter, defined for

k 2 < s < k 2 + 1, is differentiable at x = p q if and only if p, q are both odd. We note that iS 3,2 (x) + T 3,2 (x) = ∞ n=1 R 3 (n)
n 2 e πinx , where R 3 (n) is the number of representations of n as a sum of 3 squares of strictly positive numbers and the order matters. Even though it is not precisely f 3,2 , Theorem 1.13 is coherent with Chamizo's results. Some of the results presented in this thesis were published in [START_REF] Petrykiewicz | Hölder regularity of arithmetic Fourier series arising from modular forms[END_REF][START_REF] Petrykiewicz | Note on the differentiability of Fourier series arising from Eisenstein series[END_REF][START_REF] Petrykiewicz | Differentiability of Fourier series arising from Eisenstein series[END_REF].

Chapter 2

Preliminaries 2.1 Continued fractions

Before we start proving the announced theorems, we will collect and prove some properties of continued fractions. For the introduction to continued fractions see classical textbooks by Hardy and Wright [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF] and Khinchin [START_REF] Ya | Continued Fractions[END_REF].

If not otherwise stated, we will write

a n = a n (x), p n = p n (x), q n = q n (x), κ n = κ n (x).
Let T be the Gauss map, ie. T (0) = 0 and T (x) = 1

x mod 1 otherwise. For brevity, write T 0 (x) = x and

T k (x) = T (T k-1 (x)) if k > 0.
The partial quotients of x can be calculated from the Gauss map by

a i = 1 T i-1 (x)
, where [y] is the floor function. Firstly, we note that from p n = a n p n-1 + p n-2 , q n = a n q n-1 + q n-2 we get that q n p n-1 -p n q n-1 = -(q n-1 p n-2 -p n-1 q n-2 ). Since q 0 p -1 -p 0 q -1 = 1, we obtain by induction that for all n ≥ 0

q n p n-1 -p n q n-1 = (-1) n .
(2.1.1) It follows from (2.1.1) that µ e (x) and ν e (x) are well-defined. The convergents satisfy the following.

Proposition 2.1. Let x ∈ (0, 1) \ Q and k ∈ N. We have:

(1) F k+1 ≤ q k , where F j is the jth Fibonacci number;

(2)

∞ j=0 1 q j < ∞;
(3)

k j=0 q j ≤ 3q k ; (4) q k 2q k+1 ≤ T k (x) ≤ 2q k q k+1 .
Proof. These properties can be deduced from the definitions. However, for the convenience of the reader we present the details. By definition

q k = a k q k-1 + q k-2 , since a n ≥ 1 it follows that F k+1 ≤ q k . Then ∞ j=0 1 q j ≤ ∞ j=0 1 F j+1 which converges. Also, k j=0 q j = q k + q k-1 + k-2 j=0 q j = q k + q k-1 + k-2 j=0 (q j+2 -a j+2 q j+1 ) ≤ q k + q k-1 + k-2 j=0 (q j+2 -q j+1 ) = q k + q k-1 -q 1 + q k ≤ 3q k . Since 1 T k (x) = a k+1 , we have a k+1 ≤ 1 T k (x) ≤ a k+1 + 1.
Finally, by definition of q k , we have a k+1 = q k+1 -q k-1 q k , and hence 1

T k (x) ≤ q k+1 -q k-1 q k + 1 ≤ 2q k+1 q k . On the other hand, q k = a k q k-1 + q k-2 ≥ 2q k-2 and 1 T k (x) ≥ q k+1 -q k-1 q k ≥ q k+1 -q k+1 /2 q k = q k+1
2q k . This completes the proof of the Proposition.
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If x ∈ Q, then x = [a 0 ; a 1 , a 2 , ..., a n ] for some n ∈ N. Proposition 2.1 holds also in this case for all p k and q k with k ≤ n.

Let

β k (x) = k j=0 T j (x) for k ≥ 0, and β -1 (x) = 1. Let γ k (x) = β k-1 (x) log( 1 T k (x)
), for k ≥ 0. Note that for all k and for all x,

0 ≤ β k (x) ≤ 1 and 0 ≤ γ k (x).
We state the important facts about β k (x) and γ k (x).

Proposition 2.2. Let x ∈ (0, 1) \ Q. Then we have (1) T k (x) = -p k -xq k p k-1 -xq k-1 ;
(2)

β k (x) = (-1) k-1 (p k -q k x);
(3) β k (x) = 1 q k+1 +T k+1 (x)q k , for all k ≥ -1. Proof. This follows from the definitions, however, for the convenience of the reader we present the details. We note that

x = [0; a 1 , a 2 , ..., a k + T k (x)] = -p k +p k-1 T k (x) q k +q k-1 T k (x) and it follows that T k (x) = -p k -xq k p k-1 -xq k-1 proving (1). Since p -1 = 1 and q -1 = 0, we get (2) by definition of β k and (1). Substituting x = -p k+1 +p k T k+1 (x)
q k+1 +q k T k+1 (x) gives (3). We now estimate the values of β k (x) and γ k (x).

Proposition 2.3. Let x ∈ (0, 1) \ Q. We have:

(1)

1 2q k+1 ≤ 1 q k +q k+1 ≤ β k (x) ≤ 1 q k+1
, for all k ≥ -1;

(2) log(q k+1 )

q k -log(2q k ) q k ≤ γ k (x) ≤ log(q k+1 ) q k + log(2)
q k , for all k ≥ 0. Proof. These properties were derived in [MMY97, Proposition 1.4(iii)] and [BM12, Section 3]. However, for the convenience of the reader we present the details. By Proposition 2.2 (3) we obtain (1). The right-hand-side inequality of (2) follows from Proposition 2.1 (4) and Proposition 2.2 (3). For the other inequality, we note that

γ k (x) = log 1 T k (x) q k +q k-1 T k (x) is a de- creasing function in T k (x), since T k (x) ≤ 1 a k+1 , we have γ k (x) ≥ a k+1 log(a k+1 ) q k+1 . If a k+1 = 1, then (1) is satisfied. If a k+1 ≥ 2, then q k+1
q k ≥ 2 and by the properties of the logarithm we have

γ k (x) ≥ q k+1 -q k-1 q k log q k+1 -q k-1 q k q k+1 ≥ q k+1 q k -1 log q k+1 q k -1 q k+1 ≥ q k+1 q k log q k+1 2q k q k+1 = log q k+1 2q k q k
completing the proof of the proposition.

We can relate q n and q n-1 via κ n .

Lemma 2.4. Let x ∈ (0, 1) \ Q, then

1 q κ n-1 -1 n-1 ≤ 1 q n ≤ 2 q κ n-1 -1 n-1 . Proof. We have x -p n-1 q n-1 ≤ p n-1 q n-1 -pn qn = p n-1 qn-pnq n-1 q n-1 qn = 1 q n-1 qn , by (2.1.1). On the other hand x -p n-1 q n-1 ≥ 1 2 p n-1 q n-1 -pn qn = 1 2q n-1 qn .
The result follows by the definition of κ n-1 .

We call an open interval defined by endpoints [0; a 1 , a 2 , ..., a k ] and [0; a 1 , a 2 , ..., a k + 1] a basic interval on the kth level I(a 1 , a 2 , ..., a k ). The order depends on the parity of k. We will write I k (x) for the basic interval on the kth level that contains x. For all x ∈ (0, 1) \ Q and all k ∈ N there exists exactly one basic interval on the kth level that contains x. For x ∈ (0, 1) ∩ Q, we will say that x is of depth k if x belongs to some basic interval on the kth level but to none on the level k + 1. For x ∈ (0, 1) \ Q the end points of

I k (x) are p k q k and p k +p k-1 q k +q k-1 .
We now summarise some observations concerning the basic intervals.

Proposition 2.5. Let x ∈ (0, 1) \ Q. Then we have

(1) the functions T i (x), β i (x), log(T i (x)), γ i (x) are continuous and differentiable on I k (x) for all i ≤ k;

(2) for all

x ∈ I k (x) we have (T k (x)) ′ = (-1) k β k-1 (x) 2 ; (3) for all x ∈ I k (x) we have β k-1 (x) = 1 q k (1 -q k-1 β k (x)
). Proof. The first statement follows from the definitions. Then differentiating the expression in Proposition 2.2 (1) we obtain (T k (x)

) ′ = -(-xq k (p k-1 -xq k-1 )+(p k -xq k )q k-1 (p k-1 -xq k-1 ) 2
. By (2.1.1) and Proposition 2.2 (2) we get (2), cf. [Riv12, Section 1.1]. Finally, it follows from (2.1.1) and Proposition 2.2 (2) that 1 = q k β k-1 (x) + q k-1 β k (x) and we obtain (3), cf. [MMY97, Proposition 1.4(iii)] .

We can relate β k (x) to q k using the following claim.

Claim 2.6. We have (-1) k β k (x) k j=0 (-1) j T j (x) β j (x) 2 = q k , for all x and all k. Proof. We proceed by induction. If k = 0, then by convention

(-1) 0 β 0 (x) 0 j=0 (-1) j T j (x) β j (x) 2 = β 0 (x) 1 β 0 (x)β -1 (x) = 1 = q 0 . Assume (-1) k-1 β k-1 (x) k-1 j=0 (-1) j T j (x) β j (x) 2 = q k-1 . By Proposition 2.5 (3) we have (-1) k β k (x) k j=0 (-1) j T j (x) β j (x) 2 = (-1) k 1 -q k β k-1 q k-1 k-1 j=0 (-1) j T j (x) β j (x) 2 + (-1) k β k (x)(-1) k β k (x)β k-1 (x) = (-1) k 1 -q k β k-1 q k-1 (-1) k-1 q k-1 β k-1 (x) + 1 β k-1 (x) Chapter 2. Preliminaries = - 1 β k-1 (x) + q k + 1 β k-1 (x) = q k .
This completes the proof of the claim.

We will now prove that if µ(x) < ∞, then x is square-Brjuno satisfying ( * ). Assume that µ(x) < ∞, then κ n ≤ M for all n ∈ N and some M > 2. By Lemma 2.4, we have

∞ n=0 log q n+1 q 2 n ≤ ∞ n=0 log q κn-1 n q 2 n ≤ ∞ n=0 κn-1 log qn q 2 n ≤ M ∞ n=0 log qn q 2 n , which converges.
Similarly, lim n→∞

log q n+4 q 2 n ≤ lim n→∞ M 4 log qn q 2 n = 0.
We finish this section with demonstrating that the square-Brjuno condition and ( * ) are independent. Define x ∈ (0, 1) \ Q by its partial quotients: for all n ∈ N let

a n+1 = q √ qn n . We then have ∞ n=0 log q n+1 q 2 n = ∞ n=0 log(a n+1 qn+q n-1 ) q 2 n ≤ ∞ n=0 log(2qn) q 2 n + log a n+1 q 2 n ≤ ∞ n=0 log(2qn) q 2 n + √ qn log qn q 2 n which converges. On the other hand, log q n+4 q 2 n ≥ log a n+4 q 2 n ≥ log a n+3 q 3/2 n ≥ log q n → ∞ as n → ∞. This shows that x is square-Brjuno, but
does not satisfy ( * ). Consider now x defined by its partial quotients: for all k ∈ N let a 4k+1 = 2 [q 2 4k /k] and a n = 1 otherwise. We then have

∞ n=0 log q n+1 q 2 n ≥ ∞ k=0 log q 4k+1 q 2 4k ≥ ∞ k=0 log a 4k+1 q 2 4k ≥ 1 2 ∞ k=0 log 2
k which diverges. On the other hand, log q n+4 (x)

qn(x) 2 ≤ 4 log 2 q 2 n + log qn q 2 n + log(a n+4 a n+3 a n+2 a n+1 ) q 2
n and only one of a n+4 , a n+3 , a n+2 , a n+1 is different than 1. We than have,

log q n+4 (x) qn(x) 2 ≤ 4 log 2 q 2 n + log qn q 2 n + 4 4 log 2 n+3 → 0 as n → ∞.
This shows that x is not square-Brjuno, but it does satisfy ( * ).

Modular and quasi-modular forms

In this thesis, one family of objects studied are Eisenstein series. For any k ≥ 4, E k is a modular form of weight k, not a cusp form. Whereas, E 2 is quasi-modular, that is for any γ = a b c d ∈ SL 2 (Z) and z ∈ H, we have

E 2 (z) = E 2 (γ • z) (cz + d) 2 - 6 iπ c (cz + d) . (2.2.1)
Another family of functions is related to θ function. We recall some facts about it now. The theta modular group Γ θ is the set of fractional transformations defined by γ

∈ SL 2 (Z) such that γ = 0 1 1 0 mod 2, or γ = 1 0 0 1 mod 2.
The θ function is defined in the upper-half plane as follows:

θ(z) = n∈Z e iπn 2 z . If γ = a b
c d defines a transformation from Γ θ , then θ satisfies the following equality. For all z ∈ H we have

θ(z) = ρ γ (cz + d) -1/2 θ(γ • z), (2.2.2)
where ρ γ is a constant dependent only on c and d. It is equal to ρ γ = e πim(-d/c)/4 , with m(-d/c) an integer defined as:

m(∞) = 0, m(0) = 1, m(-d/c) = m(-d/c + 2), m(c/d) = m(-d/c) -sign(-d/c).
For more details, see for example [CQ09, VII.].

Remark 2.7. We have the following.

If q = 1 mod 4, then m ∈ {1, 5} and ρ γ = ± √ 2 2 + i √ 2 2 . If q = 3 mod 4, then m ∈ {3, 7} and ρ γ = ± √ 2 2 -i √ 2 2 .
If p = 1 mod 4, then m ∈ {0, 4} and ρ γ = ±1.

If p = 3 mod 4, then m ∈ {2, 6} and ρ γ = ±i. Remark 2.8. If γ 1 , γ 2 ∈ Γ θ such that γ 1 • y = γ 2 • y = ∞ for some y, then γ 1 = τ • γ 2 ,
where τ is a translation over an even integer.

Chapter 3

Itatsu's method

The differentiability of

F k,k+1 (x) = ∞ n=1 σ k-1 (n)
n k+1 sin(2πnx) depends on the continued fraction of x. Already in 1933, Wilton in his work [START_REF] Wilton | An approximate functional equation with applications to a problem of Diophantine approximation[END_REF] proved that there is a connection between some series involving the divisor functions and continued fractions. In this paper (among other series) he considered the following two series

∞ n=1 σ 0 (n) n cos 2πnx; ∞ n=1 σ 0 (n) n sin 2πnx.
He showed that the convergence of these series at x depends on the diophantine properties of x. This kind of series were first introduced by Riemann and also studied by Chowla and Walfisz [START_REF] Chowla | Über eine Riemannsche Identität[END_REF], see also [START_REF] Li | On some Diophantine Fourier series[END_REF] The approach developed by Itatsu has been implemented by various mathematicians. Recently, Balazard and Martin used it in studying the differentiability of the function

A(x) = ∞ 0 {t}{xt} 1 t 2 dt,
where {y} is the fractional part of y. The function A(x) is interesting, because the Riemann hypothesis can be reformulated in terms of A(x) or more precisely, the Nyman and Beurling criterion can be rephrased in terms of A(x). Consider the Hilbert space H = L 2 (0, +∞; t -2 dt). For α ∈ R, let e α (t) = t α , t > 0. The Nyman and Beurling criterion says that the Riemann hypothesis is equivalent to the indicator function χ of [1, +∞) being the limit of the linear combinations of e α , α ≥ 1 in H. We have that dist H (χ, Vect(e α 1 , ..., e αn )) 2 = Gram(eα 1 ,...,eα n ,χ)

Gram(eα 1 ,...,eα n ) , with Gram(u 1 , ..., u n ) = det( u i , u j ) 1≤i,j≤n . For all α > 1, we have e α , χ = log(α)+1-γ α
, where γ is the Euler constant, and for all

α, β > 0 we have e α , e β = 1 α A α β = 1 β A β α .
Therefore, in order to study the distance dist H (χ, Vect(e α 1 , ..., e αn )), we could study the function A. For details, see [START_REF] Báez-Duarte | Étude de l'autocorrélation multiplicative de la fonction "partie fractionnaire[END_REF]. It has been shown by Báez-Duarte, Balazard, Landreau and Saias that for all x > 0 we have

A(x) = 1 2 log(x) + C + 1 2π 2 x ∞ n=1 σ 0 (n) n 2 cos(2πnx) - x π 2 ∞ x ∞ n=1 σ 0 (n) n 2 cos(2πnt)dt,
where C is a constant. Balazard and Martin proved that A is differentiable at x if and only if x > 0 / ∈ Q, and ∞ k=0 (-1) k log(q k+1 (x))

q k (x)
converges, where q i (x) is the denominator of the ith convergent of x, see [START_REF] Balazard | Comportement local moyen de la fonction de Brjuno[END_REF][START_REF] Balazard | Sur l'autocorrélation multiplicative de la fonction "partie fractionnaire[END_REF].

The first two sections of this chapter correspond to the papers [START_REF] Petrykiewicz | Note on the differentiability of Fourier series arising from Eisenstein series[END_REF] and [Pet]. 19

Differentiability of F k,k+1 and G k,k+1

In order to prove Theorem 1.2, we will proceed as Itatsu in [START_REF] Itatsu | Differentiability of Riemann's function[END_REF]. For k > 0 even, consider the complex valued function

ϕ k (t) = ∞ n=1 σ k-1 (n) n k+1 e 2πint ,
whose imaginary part is F k,k+1 and real part is G k,k+1 . We start by the case when k = 2 and then we consider a general case.

Functional equation for ϕ 2

We use the convention that 0 • ∞ = 0 and throughout this chapter we will work with the principal branch -π < arg(z) ≤ π of z ∈ C. We have the following proposition.

Proposition 3.1. Let γ = a b c d ∈ SL 2 (Z) with c = 0 and x ∈ R. We have ϕ 2 (x) = (cx + d) 4 ϕ 2 (γ • x) - iπ 3 3c 3 (cx + d)Log(cx + d) + P -d c (x) - π 2 c 2 (cx + d) 2 Log(cx + d) + 6 x -d c c(ct + d) 2 (c(x -t) -(ct + d))ϕ 2 (γ • t)dt,
where Log denotes the principal value of the complex logarithm and

P -d c (x) ∈ C[x]
is a polynomial of degree less than or equal to 3 that depends on c d .

The proof of Proposition 3.1 is very technical, therefore we will split the calculations into various lemmas and claims. Firstly, we note that ϕ 2 is differentiable in the upper-half plane, thus we have the following.

Claim 3.2. Let z ∈ H. We have ϕ ′ 2 (z) =2iπ ∞ n=1 σ 1 (n) n 2 e 2iπnz , (3.1.1) ϕ ′′ 2 (z) = -4π 2 ∞ n=1 σ 1 (n) n e 2iπnz , (3.1.2) ϕ ′′′ 2 (z) = -8iπ 3 ∞ n=1 σ 1 (n)e 2iπnz = iπ 3 3 E 2 (z) - iπ 3 3 . (3.1.3)
We then find a functional equation for ϕ ′′ 2 , which will be useful later.

Lemma 3.3. Let γ = a b c d ∈ SL 2 (Z) with c = 0 and τ, α ∈ H. We have

ϕ ′′ 2 (τ ) = ϕ ′′ 2 (γ • τ ) -ϕ ′′ 2 (γ • α) - iπ 3 3c(cτ + d) + iπ 3 3c(cα + d) -2π 2 Log(cτ + d) + 2π 2 Log(cα + d) + ϕ ′′ 2 (α) - iπ 3 3 τ + iπ 3 3 α. Proof. Let γ = a b c d ∈ SL 2 (Z) with c = 0 and τ, α ∈ H. We have ϕ ′′ 2 (τ ) = -4π 2 ∞ n=1 σ 1 (n) n e 2iπnτ = iπ 3 3 τ i∞ (E 2 (t) -1)dt by (3.1.2) = iπ 3 3 α i∞ (E 2 (t) -1)dt + iπ 3 3 τ α (E 2 (t) -1)dt = ϕ ′′ 2 (α) + iπ 3 3 τ α E 2 (γ • t) (ct + d) 2 - 6 iπ c (ct + d) dt - iπ 3 3 τ + iπ 3 3 α by (2.2.1) = ϕ ′′ 2 (α) + ϕ ′′ 2 (γ • τ ) -ϕ ′′ 2 (γ • α) - iπ 3 3c(cτ + d) + iπ 3 3c(cα + d) -2π 2 Log(cτ + d) + 2π 2 Log(cα + d) - iπ 3 3 τ + iπ 3 3 α,
where Log denotes the principal value of the complex logarithm.

For γ = a b c d ∈ SL 2 (Z) with c = 0 and z ∈ H define

f γ (z) = ϕ ′′ 2 (z) -ϕ ′′ 2 (γ • z) + iπ 3 3c(cz + d) + 2π 2 Log(cz + d) + iπ 3 3 z. (3.1.4)
The next claim shows that f γ depends only on c and d.

Claim 3.4. For each γ ∈ SL 2 (Z) the function f γ is constant on H. Moreover, if γ 1 = a 1 b 1 c d , γ 2 = a 2 b 2 c d ∈ SL 2 (Z), then f γ 1 = f γ 2 . Proof. It follows from Lemma 3.3 that f γ (τ ) = f γ (α) for all τ, α ∈ H, hence it must be a constant function on H. Let f γ (z) = f γ for all z ∈ H. For the second part, let γ 1 = a 1 b 1 c d , γ 2 = a 2 b 2 c d ∈ SL 2 (Z). Observe that the Lemma 3.3 implies that ϕ ′′ 2 (γ 1 • z) -ϕ ′′ 2 (γ 2 • z) = f γ 1 -f γ 2 ,
for all z ∈ H. Since f γ does not depend on z, we have

lim z→-d c Im(z)>0 |ϕ ′′ 2 (γ 1 • z) -ϕ ′′ 2 (γ 2 • z)| = |f γ 1 -f γ 2 |.
Writing z = x + iy we have

|ϕ ′′ 2 (γ 1 • z) -ϕ ′′ 2 (γ 2 • z)| = 4π 2 ∞ n=1 σ 1 (n) n e 2iπnγ 1 •z - ∞ n=1 σ 1 (n) n e 2iπnγ 2 •z = 4π 2 ∞ n=1 σ 1 (n) n e 2iπn a 1 x+b 1 +ia 1 y cx+d+icy -e 2iπn a 2 x+b 2 +ia 1 y cx+d+icy ≤ 4π 2 ∞ n=1 σ 1 (n) n e - 2πny (cx+d) 2 +(cy) 2 e 2iπn a 1 c 2 +b 1 cx+a 1 dx+b 1 d+a 1 cy (cx+d) 2 +(cy) 2 -e 2iπn a 2 c 2 +b 2 cx+a 2 dx+b 2 d+a 1 cy (cx+d) 2 +(cy) 2 ≤ 8π 2 ∞ n=1 σ 1 (n) n e - 2πny (cx+d) 2 +(cy) 2 . (3.1.5) Since x → -d c and y → 0 + , as z → -d c , we conclude from (3.1.5) that |ϕ ′′ 2 (γ 1 • z) -ϕ ′′ 2 (γ 2 • z)| → 0 as z → -d c
. This shows that f γ 1 = f γ 2 . We will now find a functional equation for ϕ ′ 2 .

Lemma 3.5. Let γ = a b c d ∈ SL 2 (Z) with c = 0 and τ, α ∈ H. We have

ϕ ′ 2 (τ ) = (cτ + d) 2 ϕ ′ 2 (γ • τ ) -2c(cτ + d) 3 ϕ 2 (γ • τ ) + 6c 2 τ α (ct + d) 2 ϕ 2 (γ • t)dt - iπ 3 3c 2 Log(cτ + d) -2π 2 (cτ + d) c Log(cτ + d) + Q γ,α (τ ),
where Q γ,α (τ ) ∈ C[τ ] of degree less than or equal to 2 depending on γ and α.

Proof. Let γ = a b c d ∈ SL 2 (Z) with c = 0 and τ, α ∈ H. We have ϕ ′ 2 (τ ) = iπ 3 3 τ i∞ (τ -t)(E 2 (t) -1)dt by (3.1.1) = iπ 3 3 α i∞ (τ -t)(E 2 (t) -1)dt + iπ 3 3 τ α (τ -t)E 2 (t)dt - iπ 3 3 τ α (τ -t)dt =(τ -α)ϕ ′′ 2 (α) + ϕ ′ 2 (α) + iπ 3 3 τ α (τ -t)E 2 (t)dt - iπ 3 6 (τ -α) 2 . (3.1.6)
We apply the relationship (2.2.1) and we integrate the remaining integral.

τ α (τ -t)E 2 (t)dt = τ α (τ -t) 1 (ct + d) 2 E 2 (γ • t) - 6c iπ(ct + d) dt = τ α (τ -t) (ct + d) 2 E 2 (γ • t)dt - 6 iπ (cτ + d) c Log(cτ + d) - (cτ + d) c Log(cα + d) -τ + α = 3 iπ 3 τ α (τ -t) (ct + d) 2 ϕ ′′′ 2 (γ • t)dt - 1 c 2 Log(cτ + d) + 1 c 2 Log(cα + d) + (cτ + d) c 2 (cα + d) - 1 c 2 - 6 iπ (cτ + d) c Log(cτ + d) - (cτ + d) c Log(cα + d) -τ + α by (3.1.1) = 3 iπ 3 -(τ -α)ϕ ′′ 2 (γ • α) + (cτ + d) 2 ϕ ′ 2 (γ • τ ) -(cα + d) 2 ϕ ′ 2 (γ • α) -2c(cτ + d) 3 ϕ 2 (γ • τ ) + 3c(cα + d) 3 ϕ 2 (γ • α) + 6c 2 τ α (ct + d) 2 ϕ 2 (γ • t)dt - 1 c 2 Log(cτ + d) + 1 c 2 Log(cα + d) + (cτ + d) c 2 (cα + d) - 1 c 2 - 6 iπ (cτ + d) c Log(cτ + d) - (cτ + d) c Log(cα + d) -τ + α .
Substituting it into (3.1.6) gives

ϕ ′ 2 (τ ) = (cτ + d) 2 ϕ ′ 2 (γ • τ ) -2c(cτ + d) 3 ϕ 2 (γ • τ ) + 6c 2 τ α (ct + d) 2 ϕ 2 (γ • t)dt - iπ 3 3c 2 Log(cτ + d) -2π 2 (cτ + d) c Log(cτ + d) + Q γ,α (τ ),
where

Q γ,α (τ ) = B ′ τ 2 + C ′ τ + D ′ , with B ′ = - iπ 3 6 C ′ =ϕ ′′ 2 (α) -ϕ ′′ 2 (γ • α) + iπ 3 3c(cα + d) + 2π 2 Log(cα + d) + 2π 2 + iπ 3 3 α =f γ + 2π 2 by Lemma 3.3 D ′ = -α(ϕ ′′ 2 (α) -ϕ ′′ 2 (γ • α)) + ϕ ′ 2 (α) -(cα + d) 2 ϕ ′ 2 (γ • α) + 2c(cα + d) 3 ϕ 2 (γ • α) + iπ 3 3c 2 Log(cα + d) + 2π 2 d c Log(cα + d) + iπ 3 3 d c 2 (cα + d) - iπ 3 3c 2 -2π 2 α - iπ 3 6 α 2 = -αf γ + ϕ ′ 2 (α) -(cα + d) 2 ϕ ′ 2 (γ • α) + 2c(cα + d) 3 ϕ 2 (γ • α) + iπ 3 3c 2 Log(cα + d) + (cα + d) 2π 2 c Log(cα + d) -2π 2 α + iπ 3 6 α 2 by Lemma 3.3.
This completes the proof of the lemma.

For γ = a b c d ∈ SL 2 (Z) with c = 0 and ρ, z ∈ H define

g γ (z, ρ) = -zf γ + ϕ ′ 2 (z) -(cz + d) 2 ϕ ′ 2 (γ • z) + 2c(ct + d) 3 ϕ 2 (γ • z) + iπ 3 3c 2 Log(cz + d) + (cz + d) 2π 2 c Log(cz + d) -2π 2 z + iπ 3 6 z 2 -6c 2 z ρ (ct + d) 2 ϕ 2 (γ • t)dt.
The next claim shows that g γ depends only on ρ and γ.

Claim 3.6. For each γ ∈ SL 2 (Z), for all ρ ∈ H we have g γ (z, ρ) = g γ (w, ρ) for all z, w ∈ H.

Proof. It follows from Lemma 3.5.

For all z ∈ H write g γ (z, ρ) = g γ (ρ). We note that Lemma 3.5 implies that

ϕ ′ 2 (α) -(cα + d) 2 ϕ ′ 2 (γ • α) = g γ (α) + αf γ -2c(cα + d) 3 ϕ 2 (γ • α) - iπ 3 3c 2 Log(cα + d) -(cα + d) 2π 2 c Log(cα + d) + 2π 2 α - iπ 3 6 α 2 . (3.1.7)
We can now prove Proposition 3.1.

Proof of Proposition 3.1. Fix α ∈ H and γ = a b c d ∈ SL 2 (Z) with c = 0, let τ ∈ H.
Integrating by parts we get

ϕ 2 (τ ) = iπ 3 6 τ i∞ (τ -t) 2 (E 2 (t) -1)dt = iπ 3 6 τ α (τ -t) 2 E 2 (t)dt - iπ 3 6 τ α (τ -t) 2 dt + iπ 3 6 α i∞ (τ -t) 2 (E 2 (t) -1)dt = iπ 3 6 τ α (τ -t) 2 E 2 (t)dt + iπ 3 (α -τ ) 3 18 + (τ -α) 2 2 ϕ ′′ 2 (α) + (τ -α)ϕ ′ 2 (α) + ϕ 2 (α). (3.1.8)
We apply (2.2.1) to the first term, we then obtain:

iπ 3 6 τ α (τ -t) 2 E 2 (t)dt = iπ 3 6 τ α (τ -t) 2 1 (ct + d) 2 E 2 (γ • t) - 6c iπ(ct + d) dt = iπ 3 6 τ α (τ -t) 2 (ct + d) 2 E 2 (γ • t)dt - π 2 c 2 (cτ + d) 2 Log(cτ + d) -(cτ + d) 2 Log(cα + d) -2(cτ + d) 2 + 2(cτ + d)(cα + d) + (cτ + d) 2 2 - (cα + d) 2 2 .
(3.1.9) By (3.1.3), using the substitution u = γ • t and integrating by parts we get:

iπ 3 6 τ α (τ -t) 2 (ct + d) 2 E 2 (γ • t)dt = 1 2 τ α (τ -t) 2 (ct + d) 2 ϕ ′′′ 2 (γ • t)dt + iπ 3 6 τ α (τ -t) 2 (ct + d) 2 dt = 1 2 τ α (τ -t) 2 (ct + d) 2 ϕ ′′′ 2 (γ • t)dt - iπ 3 3c 3 (cτ + d)Log(cτ + d) + iπ 3 6c 3 (cτ + d) 2 (cα + d) + 2(cτ + d)Log(cα + d) -(cα + d) = τ α (τ -t)ϕ ′′ 2 (γ • t)dt - 1 2 (τ -α) 2 ϕ ′′ 2 (γ • α) - iπ 3 3c 3 (cτ + d)Log(cτ + d) + iπ 3 6c 3 (cτ + d) 2 (cα + d) + 2(cτ + d)Log(cα + d) -(cα + d) = - τ α (ct + d)(2cτ -3ct -d)ϕ ′ 2 (γ • t)dt -(cα + d) 2 (τ -α)ϕ ′ 2 (γ • α) - (τ -α) 2 2 ϕ ′′ 2 (γ • α) - iπ 3 3c 3 (cτ + d)Log(cτ + d) + iπ 3 6c 3 (cτ + d) 2 (cα + d) + 2(cτ + d)Log(cα + d) -(cα + d) =(cτ + d) 4 ϕ 2 (γ • τ ) + 2(cτ + d)(cα + d) 3 ϕ 2 (γ • α) -3(cα + d) 4 ϕ 2 (γ • α) + τ α c(ct + d) 2 (6c(τ -t) -6(ct + d))ϕ 2 (γ • t)dt -(cα + d) 2 (τ -α)ϕ ′ 2 (γ • α) - (τ -α) 2 2 ϕ ′′ 2 (γ • α) - iπ 3 3c 3 (cτ + d)Log(cτ + d) + iπ 3 6c 3 (cτ + d) 2 (cα + d) + 2(cτ + d)Log(cα + d) -(cα + d) .
(3.1.10) Substituting (3.1.9) and (3.1.10) into (3.1.8) and gathering the terms we get

ϕ 2 (τ ) = (cτ + d) 4 ϕ 2 (γ • τ ) - iπ 3 3c 3 (cτ + d)Log(cτ + d) + P α,γ (τ ) - π 2 c 2 (cτ + d) 2 Log(cτ + d) + 6 τ α c(ct + d) 2 (c(τ -t) -(ct + d))ϕ 2 (γ • t)dt, with P α,γ (τ ) = Aτ 3 + Bτ 2 + Cτ + D, where A = - iπ 3 18 B = 1 2 (ϕ ′′ 2 (α) -ϕ ′′ 2 (γ • α)) + iπ 3 6 α + π 2 Log(cα + d) + 3π 2 2 + iπ 3 6c(cα + d) = 1 2 f γ + 3π 2 2 by Lemma 3.3 C = -α(ϕ ′′ 2 (α) -ϕ ′′ 2 (γ • α)) + ϕ ′ 2 (α) -(cα + d) 2 ϕ ′ 2 (γ • α) + 2c(cα + d) 3 ϕ 2 (γ • α) + 3π 2 d c + 2π 2 d c Log(cα + d) + iπ 3 3c 2 Log(cα + d) - iπ 3 6 α 2 - 2π 2 c (cα + d) + iπ 3 d 3c 2 (cα + d) =g γ (α) + iπ 3 3c 2 + π 2 d c by Lemma 3.3 and (3.1.7) D = 1 2 α 2 (ϕ ′′ 2 (α) -ϕ ′′ 2 (γ • α)) -α(ϕ ′ 2 (α) -(cα + d) 2 ϕ ′ 2 (γ • α)) -(cα + d) 4 ϕ 2 (γ • α) -2c(cα + d) 3 αϕ 2 (γ • α)) + ϕ 2 (α) + π 2 d 2 c 2 Log(cα + d) + iπ 3 d 3c 3 Log(cα + d) + iπ 3 18 α 3 + 3π 2 d 2 2c 2 - 2π 2 d c 2 (cα + d) + π 2 2c 2 (cα + d) 2 + iπ 3 d 2 6c 3 (cα + d) - iπ 3 6c 3 (cα + d) = - 1 2 α 2 f γ -αg γ (α) -(cα + d) 4 ϕ 2 (γ • α) + ϕ 2 (α) + (cα + d) iπ 3 3c 3 Log(cα + d) + (cα + d) 2 π 2 c 2 Log(cα + d) -2π 2 α 2 + iπ 3 18 α 3 + 3π 2 d 2 2c 2 - 2π 2 d c 2 (cα + d) + π 2 2c 2 (cα + d) 2 -α iπ 3 3c 2 .
by Lemma 3.3 and (3.1.7)

Then we observe that if we let α → -d c , then A, B, C, D are well defined. Moreover, . Hence we have

since D = ϕ 2 (-d c ) we have g γ -d c = π 2 d 2c + iπ 3 d 2 18c 2 -iπ 3 3c 2 + d 2c f γ . Therefore, we obtain A = -iπ 3 18 , B = 1 2 f γ + 3π 2 2 , C = d 2c f γ + 3π 2 d 2c + iπ 3 d 2 18c 2 , D = ϕ 2 -d c .
ϕ 2 (τ ) = (cτ + d) 4 ϕ 2 (γ • τ ) - iπ 3 3c 3 (cτ + d)Log(cτ + d) + P -d c (τ ) - π 2 c 2 (cτ + d) 2 Log(cτ + d) + 6 τ -d c c(ct + d) 2 (c(τ -t) -(ct + d))ϕ 2 (γ • t)dt.
Letting τ → x ∈ R gives the result.

Proof of Theorem 1.2

Before we start proving Theorem 1.2, we rewrite the polynomial P -d c as

P -d c (x) = Ã(cx + d) 3 + B(cx + d) 2 + C(cx + d) + D with à = - iπ 3 18c 3 ; B = f γ 2c 2 + 3π 2 2c 2 + iπ 3 d 6c 3 ; C = - d 2c 2 f γ + 3π 2 d 2c 2 - d 2 iπ 3 9c 3 ; D = ϕ 2 - d c .
Proof of Theorem 1.2. Let p q ∈ Q, p, q coprime, if x = 0, then let q = 1, p = 0. By Bézout's identity, we can choose γ = a b q -p ∈ SL 2 (Z). By Proposition 3.1 we have

ϕ 2 (x) = (qx -p) 4 ϕ 2 (γ • x) - iπ 3 3q 3 (qx -p)Log(qx -p) + P p q (x) - π 2 q 2 (qx -p) 2 Log(qx -p) + 6 x p q q(qt -p) 2 (q(x -t) -(qt -p))ϕ 2 (γ • t)dt.
We observe that since ϕ 2 (x) is bounded on R we have

6 x p q q(qt -p) 2 (q(x -t) -(qt -p))ϕ 2 (γ • t)dt ≤ c 1 |q| x p q (qt -p) 2 |q(x -t) -(qt -p))|dt ≤ c 2 (qx -p) 4 ,
for some constants c 1 , c 2 .

As x → p q + , Log becomes the natural logarithm log, and we have

ϕ 2 (x) = ϕ 2 p q - iπ 3 3q 3 (qx -p) log(qx -p) + C(qx -p) + O((qx -p) 2 log(qx -p)). (3.1.11)
Taking the imaginary part of the both sides of Equation (3.1.11) shows that F 2,3 is not differentiable on p q . On the other hand, taking the real part of the both sides of Equation (3.1.11) shows that G 2,3 is right-differentiable at p q , and the value of the right derivative at p q is qRe( C). As x → p q -, we have

ϕ 2 (x) = ϕ 2 p q - iπ 3 3q 3 (qx -p) log(|qx -p|) + C + π 4 3q 3 (qx -p) + O((qx -p) 2 log(|qx -p|)),
(3.1.12) where the coefficient π 4 3q 3 in front of (qx -p) comes from the complex logarithm. Taking the real part of the both sides of Equation (3.1.12) shows that G 2,3 is also left-differentiable at p q . The value of the left derivative at p q is qRe( C) + π 4 3q 2 . In particular, G 2,3 is not differentiable at p q . At each rational p q , if we denote the left and the right derivative of

G 2,3 at p q by G ′ 2,3 p q -, G ′ 2,3 p q + respectively, then G ′ 2,3 p q --G ′ 2,3 p q + = π 4 3q 2 .
This completes the proof of the Theorem.

Functional equations for F 2,3 and G 2,3

We have the following proposition.

Proposition 3.7. Let x ∈ (0, 1). We have

F 2,3 (x) = -x 4 F 2,3 (T (x)) - π 3 3 x log(x) + P (x) -6 x 0 t 2 (x -2t)F 2,3 (T (x))dt, (3.1.13) G 2,3 (x) = x 4 G 2,3 (T (x)) -π 2 x 2 log(x) + Q(x) + 6 x 0 t 2 (x -2t)G 2,3 (T (x))dt, (3.1.14)
where P (x), Q(x) ∈ R[x] are polynomials of degree less than or equal to 3.

We note that

x 0 t 2 (x -2t)F 2,3 (T (x))dt and x 0 t 2 (x -2t)G 2,3 (T (x)
)dt are continuous and differentiable on (0, 1).

Proof. Let x ∈ (0, 1). We apply Proposition 3.1 with γ = 0 -1 1 0 . Since x > 0, Log(x) is just the natural logarithm log(x), and we obtain

ϕ 2 (x) = x 4 ϕ 2 - 1 x - iπ 3 3 x log(x) + P 0 (x) -π 2 x 2 log(x) + 6 x 0 t 2 (x -2t)ϕ 2 - 1 x dt, (3.1.15)
where

P 0 (x) = -iπ 3 18 x 3 + fγ 2 + 3π 2 2
x 2 + ϕ 2 (0) with f γ (z) = 2iπ 3 obtained by evaluating (3.1.4) at z = i. We take imaginary and real parts of Equation (3.1.15) respectively and we get

F 2,3 (x) = x 4 F 2,3 - 1 x - π 3 3 x log(x) + Im(P 0 )(x) + 6 x 0 t 2 (x -2t)F 2,3 - 1 x dt, G 2,3 (x) = x 4 G 2,3 - 1 x + Re(P 0 )(x) -π 2 x 2 log(x) + 6 x 0 t 2 (x -2t)G 2,3 - 1 x dt.
Write P = Im(P 0 ), Q = Re(P 0 ). We conclude by observing that since F 2,3 is odd and G 2,3 is even, and they are both 1-periodic we have that

F 2,3 -1 x = -F 2,3 1 x = -F 2,3 (T (x)) and G 2,3 -1 x = G 2,3 1 x = G 2,3 (T (x)).
We iterate Equations (3.1.13) and (3.1.14) to obtain:

Corollary 3.8. For all n ∈ N * and x ∈ (0, 1) \ Q we have:

F 2,3 (x) =(-1) n F 2,3 (T n (x))β n-1 (x) 4 + π 3 3 n k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) + n k=0 (-1) k P (T k (x))β k-1 (x) 4 + 6 n k=0 (-1) k+1 β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt, (3.1.16) G 2,3 (x) =G 2,3 (T n (x))β n-1 (x) 4 + π 2 n k=0 β k-1 (x)β k (x) 2 γ k (x) + n k=0 Q(T k (x))β k-1 (x) 4 + 6 n k=0 β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)G 2,3 (T (t))dt.
(3.1.17)

Letting n → ∞, we get: 

F 2,3 (x) = π 3 3 ∞ k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) + ∞ k=0 (-1) k P (T k (x))β k-1 (x) 4 + 6 ∞ k=0 (-1) k+1 β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt, (3.1.18) G 2,3 (x) =π 2 ∞ k=0 β k-1 (x)β k (x) 2 γ k (x) + ∞ k=0 Q(T k (x))β k-1 (x) 4 + 6 ∞ k=1 β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)G 2,3 (T (t))dt. ( 3 
|(-1) n F 2,3 (T n (x))β n-1 (x) 4 | → 0 and |G 2,3 (T n (x))β n-1 (x) 4 | → 0 as n → ∞. Thus, F 2,3 (x) = ∞ k=0 π 3 3 (-1) k β k-1 (x) 2 β k (x)γ k (x) + (-1) k P (T k (x))β k-1 (x) 4 + (-1) k+1 6β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt , (3.1.20) G 2,3 (x) = ∞ k=0 π 2 β k-1 (x)β k (x) 2 γ k (x) + Q(T k (x))β k-1 (x) 4 + 6β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)G 2,3 (T (t))dt . (3.1.21)
Finally, we note that

T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt , |P (T k (x))| are bounded on [0, 1], therefore we have ∞ k=0 π 3 3 (-1) k β k-1 (x) 2 β k (x)γ k (x) + (-1) k P (T k (x))β k-1 (x) 4 + (-1) k+1 6β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt ≤ π 3 3 ∞ k=0 β k-1 (x) 2 β k (x)γ k (x) + c 1 ∞ k=0 β k-1 (x) 4 ≤ 2π 3 3 ∞ k=0 log(q k+1 ) q 3 k q k+1 + c 1 ∞ k=0 1 q 4
k by Proposition 2.3 (1) and (2)

≤c 2 ∞ k=0 1 q 3 k ≤ c 2 ∞ k=1 1 F 3 k by Proposition 2.1 (1),
for some constants c 1 and c 2 . This shows that the series (3.1.20) converges absolutely and we can change the order of summation obtaining (3.1.18). In a similar way, we can show that (3.1.21) converges absolutely and we have (3.1.19). This completes the proof of the corollary.

3.1.4 Proof of Theorem 1.3 (i)

Let x ∈ R \ Q. Since F 2,3
is 1-periodic, we can assume x ∈ (0, 1). For brevity, let

u 1,k (x) =(-1) k β k-1 (x) 2 β k (x)γ k (x) u 2,k (x) =(-1) k P (T k (x))β k-1 (x) 4 (3.1.22) u 3,k (x) =(-1) k+1 β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt.
With this notation, we have

F 2,3 (x) = (-1) n F 2,3 (T n (x))β n-1 (x) 4 + π 3 3 n k=0 u 1,k (x) + n k=0 u 2,k (x) + 6 n k=0 u 3,k (x) = π 3 3 ∞ k=0 u 1,k (x) + ∞ k=0 u 2,k (x) + 6 ∞ k=0 u 3,k (x).
We are interested in the limit F 2,3 (x+h)-F 2,3 (x) h as h → 0. For each h, let K h ∈ N such that x + h ∈ I k (x) for all k ≤ K h and x + h / ∈ I K h +1 (x) (where I k (x) denotes the basic interval on the kth level that contains x). By Corollary 3.8 we have

F 2,3 (x + h) -F 2,3 (x) h = (-1) K h -1 F 2,3 (T K h -1 (x + h))β K h -2 (x + h) 4 -F 2,3 (T K h -1 (x))β K h -2 (x) 4 h + π 3 3 K h -1 k=0 (u 1,k (x + h) -u 1,k (x)) h + K h -1 k=0 (u 2,k (x + h) -u 2,k (x)) h + 6 K h -1 k=0 (u 3,k (x + h) -u 3,k (x)) h . (3.1.23)
We are considering (K h -1)th iterate from Corollary 3.8, because the underlined idea is to use the Mean Value Theorem to estimate the values of

u i,k (x+h)-u i,k (x) h
, i ∈ {1, 2, 3}. The functions u i,k are continuous and differentiable on I k (x), therefore

u i,k (x+h)-u i,k (x) h = u ′ i,k (t i,k
), i ∈ {1, 2, 3} for all k ≤ K h for some t i,k between x and x + h. However, we exclude K h , because in the derivative of u 1,k the factor γ k (x) = log( 1 T k (x) ) k-1 j=0 T j (x) appears. This factor can be estimated by log(q k+1 )

q k + O(q -1/2 k ) (see Proposition 2.3 (2)). Since x + h / ∈ I K h +1 (x), we cannot relate q K h +1 (t 1,K h +1 ) to q K h +1 (x).
We calculate the limit of (3.1.23) as h → 0. The calculation is long (but not very difficult), therefore we split it into various lemmas, in which we consider each term separately. Before we do it, we make the following observation. Lemma 3.9. Let x ∈ (0, 1) \ Q, |h| > 0 and K h defined as above, then

1 2q K h +2 q K h +3 ≤ |h| ≤ 2 q 2 K h .
If a k = 1 only for finitely many indices k, then there exists

h 0 > 0 such that if |h| ≤ h 0 we have 1 2q K h +1 q K h +2 ≤ |h| ≤ 2 q 2 K h .
(3.1.24)

Proof. Since x + h ∈ I K h (x), |h| must be smaller than or equal to the distance from x to one of the endpoints of I K h (x), which are

p K h q K h and p K h +p K h -1 q K h +q K h -1 . We then have |h| ≤ max x - p K h q K h , x - p K h + p K h -1 q K h + q K h -1 = max β K h (x) q K h , β K h +1 (x) q K h +1 + a K h +1 -1 q K h +1 (q K h + q K h -1 ) ≤ max 1 q K h q K h +1 , 1 q K h +1 q K h +2 + 1 (q K h + q K h -1 )(q K h + q K h -1 )
by Proposition 2.3 (1)

≤ 2 q 2 K h .
On the other hand, since x + h / ∈ I K h +1 (x), |h| must be greater than the distance from x to the boundary of

I K h +1 (x). By [BM12, Proposition 4], |h| ≥ 1 2q K h +2 q K h +3 . If a k = 1
only for finitely many indices k, then there exists h 0 > 0 such that for all |h| ≤ h 0 , for all k ≥ K h we have a k > 1. Then the distance from x to the boundary of I K h +1 (x) is greater than or equal to

1 2q K h +1 q K h +2 , by [BM12, Proposition 4].
Remark 3.10. We cannot improve the lower bound on |h| without imposing further conditions on x. To illustrate it, we show that we do not even have (3.1.24) in a general case. Let x a square-Brjuno number such that it has infinitely many continued fraction quotients equal to 1 and infinitely many different than 1, then there exists a sequence (h Kn ) n such that h Kn → 0, as n → ∞, x + h Kn ∈ I Kn (x), x + h Kn / ∈ I Kn+1 (x) and |h Kn | ≤ 1 q Kn+2 q Kn+3 . Indeed, let K n such that: (1) K 1 is smallest possible and

K n+1 > K n ; (2) a Kn+2 = 1 and a Kn+3 = 1. Then let |h Kn | > 0 such that x + h Kn = p Kn+1 +p Kn q Kn+1 +q Kn . We have that |h Kn | → 0 as n → ∞; x + h Kn ∈ I Kn (x), x + h Kn / ∈ I Kn+1 (x); and |h Kn | ≤ 1 q Kn+2 q Kn+3 .
We consider the first term.

Lemma 3.11. Let x ∈ (0, 1) \ Q such that it satisfies ( * ) or ( * * ), then

F 2,3 (T K h -1 (x + h))β K h -2 (x + h) 4 -F 2,3 (T K h -1 (x))β K h -2 (x) 4 h → 0, as h → 0.
Proof. We have the following

F 2,3 (T K h -1 (x + h))β K h -2 (x + h) 4 -F 2,3 (T K h -1 (x))β K h -2 (x) 4 h = β K h -2 (x) 4 F 2,3 (T K h -1 (x + h)) -F 2,3 (T K h -1 (x)) h + β K h -2 (x + h) 4 -β K h -2 (x) 4 h F 2,3 (T K h -1 (x + h)) . (3.1.25)
We consider the first summand. We have

F 2,3 (T K h -1 (x + h)) -F 2,3 (T K h -1 (x)) h = | ∞ n=1 σ 1 (n) n 3 (sin(2πnT K h -1 (x + h)) -sin(2πnT K h -1 (x)))| |h| = 2| ∞ n=1 σ 1 (n) n 3 (sin((T K h -1 (x + h) -T K h -1 (x))πn) cos((T K h -1 (x + h) + T K h -1 (x))πn))| |h| .
Let N be the smallest integer greater or equal to 1 h 2 , that is N = ⌈ 1 h 2 ⌉, then we have

F 2,3 (T K h -1 (x + h)) -F 2,3 (T K h -1 (x)) h ≤ 2 N n=1 σ 1 (n) n 3 | sin((T K h -1 (x + h) -T K h -1 (x))πn)| |h| + 2 ∞ n=N +1 σ 1 (n) n 3 |h| ≤ 2π N n=1 σ 1 (n) n 2 |T K h -1 (x + h) -T K h -1 (x)| |h| + 2 ∞ n=N +1 σ 1 (n) n 3 |h| ≤ 8πq 2 K h -1 N n=1 σ 1 (n) n 2 + 2 ∞ n=N +1 σ 1 (n) n 3 |h| . (3.1.26)
The last line follows from the fact that T K h -1 is continuous and differentiable on I K h (x), and by the Mean Value Theorem

|T K h -1 (x+h)-T K h -1 (x)| |h| = |(T K h -1 (t)) ′
| for some t between x and x + h. By Proposition 2.5 (2.d) we have that (T k (y)

) ′ = (-1) k β k-1 (y) -2 . By Proposition 2.3 (1) we conclude that |(T K h -1 (t)) ′ | ≤ 4q 2 K h -1 . Consider N n=1 σ 1 (n)
n 2 , by Abel's summation formula

N n=1 σ 1 (n) n 2 = N -1 n=1 1 n 2 - 1 (n + 1) 2 n k=1 σ 1 (k) + 1 N 2 N n=1 σ 1 (n) ≤3 N -1 n=1 1 n 3 n k=1 σ 1 (k) + 1 N 2 N n=1 σ 1 (n).
By Theorem 3 in [Ten95, p. 40], there exists c 1 > 0 such that k j=1 σ 1 (j) ≤ π 2 12 k 2 + c 1 k log k for all k ∈ N, and we have

N n=1 σ 1 (n) n 2 ≤3 N -1 n=1 1 n 3 π 2 12 n 2 + c 1 n log n + 1 N 2 π 2 12 N 2 + c 1 N log N ≤ π 2 4 N -1 n=1 1 n + 3c 1 N -1 n=1 log n n 2 + π 2 12 + c 1 log N N ≤ π 2 4 + 3c 1 N -1 n=1 1 n + π 2 12 + c 1 log N N ≤ c 2 log N, (3.1.27) 
for some constant c 2 > 0, as k n=1

1 k ≤ log(k) + 2 for all k ∈ N. Consider N n=1 σ 1 (n) n 3
. By [Ten95, p. 88], we have σ 1 (k) ≤ c 3 k log(log(k)) for some constant c 3 for all k ∈ N. We have 

∞ n=N +1 σ 1 (n) n 3 ≤c 3 ∞ n=N +1 log(log(n)) n 2 ≤ c 3 ∞ n=N +1 (log(n)) 1/2 n 2 ≤ c 3 ∞ n=N +1 1 n 7/4 ≤ c 3 (N + 1) 7/4 + c 3 ∞ N +1 1 x 7/4 dx = c 3 (N + 1) 7/4 + 4c 3 3(N + 1) 3/4 ≤ 7c 3 3N 3/4 . ( 3 
F 2,3 (T K h -1 (x + h)) -F 2,3 (T K h -1 (x)) h ≤ 8πc 2 q 2 K h -1 log N + 14c 3 3N 3/4 |h| ≤ 8πc 2 q 2 K h -1 log 2 h + 14 3 |h| 1/2 ,
by the choice of N .

By Lemma 3.9 and Proposition 2.3 (1), we have

F 2,3 (T K h -1 (x + h)) -F 2,3 (T K h -1 (x)) h β K h -2 (x) 4 ≤ 8πc 2 q 2 K h -1 log(4q K h +2 q K h +3 ) + 14 3q 4 K h -1 |h| 1/2 ≤c 3 log(q K h +3 ) q 2 K h -1 + 14 3q 4 K h -1 |h| 1/2 ,
for some constant c 3 > 0. If x satisfies ( * ), it converges to 0 as h → 0. If x satisfies ( * * ), then Lemma 3.9 and Proposition 2.3 (1) imply

F 2,3 (T K h -1 (x + h)) -F 2,3 (T K h -1 (x)) h β K h -2 (x) 4 ≤ c 4 log(q K h +2 ) q 2 K h -1 + 14 3q 4 K h -1 |h| 1/2 ,
for some constant c 4 > 0, and it converges to 0.

Finally, we consider the second summand of (3.1.25). Since the function β K h -2 (y) 4 is continuous and differentiable on I K h (x), the Mean Value Theorem implies that for some t between x and x + h we have

|β K h -2 (x + h) 4 -β K h -2 (x) 4 | |h| = |(β K h -2 (t) 4 ) ′ | = 4β K h -2 (t) 3 (-1) K h -2 q K h -2 by Proposition 2.2 (2) ≤ 4 q 2 K h -1 by Proposition 2.3 (1).
Observing that |F 2,3 | is bounded, and writing F 2,3 ∞ = sup y∈[0,1) |F 2,3 (y)|, we obtain

β K h -1 (x + h) 4 -β K h -1 (x) 4 h F 2,3 (T K h (x + h)) ≤ 4 F 2,3 ∞ q 2 K h -1
, which converges to 0 as h → 0 for all x ∈ (0, 1)\Q. This completes the proof of Lemma 3.11.

Lemma 3.12. Let x ∈ (0, 1) \ Q be a square-Brjuno number, then

K h -1 k=0 (u 1,k (x + h) -u 1,k (x)) h → ∞ k=0 β k-1 (x)γ k (x) + 4 ∞ k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 - ∞ k=0 β k-1 (x) 2
as h → 0.

Before we start proving Lemma 3.12, we will prove the following two lemmas, which we will use in proving Lemma 3.12.

Lemma 3.13. Let x ∈ (0, 1) \ Q. The series ∞ k=0 β k-1 (x)γ k (x) converges if and only if ∞ k=0 log(q k+1 ) q 2 k converges.
Proof. Since ∞ k=0 β k-1 (x)γ k (x) is positive, we have:

∞ k=0 β k-1 (x)γ k (x) ≤ ∞ k=0 log(2q k+1 ) q 2 k ≤ ∞ k=0 log(2) q 2 k + ∞ k=0 log(q k+1 ) q 2 k ,
where the first inequality follows from Proposition 2.3. Since ∞ k=0 log(2)

q 2 k converges for all x ∈ (0, 1) \ Q, if ∞ k=0 log(q k+1 ) q 2 k converges, then ∞ k=0 β k-1 (x)γ k (x)
converges as well. For the converse note that:

∞ k=0 log(q k+1 ) q 2 k ≤ ∞ k=0 γ k (x) q k + ∞ k=0 log(2q k ) q 2 k by Proposition 2.3 (2) = ∞ k=0 β k-1 (x)γ k (x) + ∞ k=0 β k-1 (x)γ k (x)T k (x) q k-1 q k + ∞ k=0 log(2q k ) q 2 k by Proposition 2.2 (3) ≤2 ∞ k=0 β k-1 (x)γ k (x) + ∞ k=0 log(2q k ) q 2 k , as T k (x) q k-1 q k ≤ 1. The sum ∞ k=0 log(2q k ) q 2
k converges for all x, which completes the proof of the lemma.

Lemma 3.14. Both series

4 ∞ k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 , ∞ k=0 β k-1 (x) 2
converge for all x ∈ (0, 1) \ Q.

Proof. By Claim 2.6, we have

4 ∞ k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 + ∞ k=0 β k-1 (x) 2 ≤ 4 ∞ k=0 |β k-1 (x)β k (x)γ k (x)q k-1 | + ∞ k=0 β k-1 (x) 2 ≤ 4 ∞ k=0 q k-1 q k q k+1 log(2q k+1 ) q k + ∞ k=0 1 q 2 k by Proposition 2.3 ≤ 9 ∞ k=0 1 q k ,
which converges by Proposition 2.1 (2).

Proof of Lemma 3.12. Let x ∈ (0, 1) \ Q be square-Brjuno. By Proposition 2.2 (2), for all k ≤ K h -1 we have

u 1,k (x + h)-u 1,k (x) = (-1) k β k-1 (x + h) 2 β k (x + h)γ k (x + h) -β k-1 (x) 2 β k (x)γ k (x) = (-1) k+1 ((x + h)q k -p k ) log(T k (x + h))(-(x + h)q k-1 + p k-1 ) 3 -(xq k -p k ) log(T k (x))(-xq k-1 + p k-1 ) 3 = (-1) k+1 β k (x)β k-1 (x) 3 (log(T k (x + h)) -log(T k (x))) + (-1) k+1 (-1) k β k-1 (x) 2 h + 4(-1) k-1 β k-1 (x) 2 β k (x)q k-1 h + A k h 2 + B k h 3 + C k h 4 log(T k (x + h)),
with

A k = -3β k-1 (x) 2 q k-1 q k + 6β k-1 (x)β k (x)q k-1 + 3(-1) k β k-1 (x) 2 β k (x)q 2 k-1 B k = (-1) k (3β k-1 (x)q 2 k-1 q k -3β k (x)q 2 k-1 -β k (x)q 3 k-1 ) -3β k-1 (x)β k (x)q 3 k-1 (3.1.29) C k = -q 3 k-1 q k .
Therefore, by Proposition 2.5 and Claim 2.6, we have

K h -1 k=0 (u 1,k (x + h) -u 1,k (x)) h - ∞ k=0 β k-1 (x)γ k (x) -4 ∞ k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 + ∞ k=0 β k-1 (x) 2 ≤ K h -1 k=0 β k-1 (x) 2 log(T k (x + h)) + K h -1 k=0 β k-1 (x)γ k (x) + 4 K h -1 k=0 (-1) k+1 β k-1 (x) 3 β k (x) log(T k (x + h)) k-1 j=0 (-1) j T j (x) β j (x) 2 - K h -1 k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 + K h -1 k=0 (-1) k+1 β k-1 (x) 3 β k (x)(log(T k (x + h)) -log(T k (x))) h + K h -1 k=0 β k-1 (x) 2 + K h -1 k=0 (-1) k+1 A k h log(T k (x + h)) + K h -1 k=0 (-1) k+1 B k h 2 log(T k (x + h)) + K h -1 k=0 (-1) k+1 C k h 3 log(T k (x + h)) + ∞ k=K h β k-1 (x)γ k (x) + 4 ∞ k=K h (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 - ∞ k=K h β k-1 (x) 2 . (3.1.30)
By Lemmas 3.13 and 3.14, the last term converges to 0 as h → 0. We will now show that all the other terms also converge to 0.

We observe that by Proposition 2.5, for all k ≤ K h the function T k is non-zero, continuous, and differentiable on I k (x), hence log(T k ) is continuous, and differentiable on

I k (x). Then for all k ≤ K h -1 and y ∈ I k (x) we have log(T k (y)) ′ = (-1) k T k (y)β k-1 (y) 2 . By the Mean Value Theorem | log(T k (x + h)) -log(T k (x))| = |h| 1 T k (t k ) 1 β k-1 (t k ) 2 ,
for some t k between x and x + h. Since t k ∈ I k (x), by Proposition 2.1 (4) and 2.3 (1), we have

1 T k (t k ) 1 β k-1 (t k ) 2 ≤ 2q k+1 q k 4q 2 k = 8q k q k+1 and | log(T k (x + h)) -log(T k (x))| ≤ 8q k q k+1 |h|. Thus, K h -1 k=0 β k-1 (x) 2 log(T k (x + h)) + K h -1 k=0 β k-1 (x)γ k (x) = K h -1 k=0 β k-1 (x) 2 (log(T k (x + h)) -log(T k (x))) ≤ 8|h| K h -1 k=0 β k-1 (x) 2 q k q k+1 ≤ 8|h| K h -1 k=0 q k+1 q k ≤ 16 1 q K h K h -1 k=0 1 q k ,
by Lemma 3.9, which converges to 0 as h → 0.

Using the same arguments and applying Claim 2.6, we obtain 4

K h -1 k=0 (-1) k+1 β k-1 (x) 3 β k (x) log(T k (x)) k-1 j=0 (-1) j T j (x) β j (x) 2 - K h -1 k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 ≤4 K h -1 k=0 β k-1 (x) 2 β k (x)q k-1 | log(T k (x + h))q k-1 -log(T k (x))| ≤32 K h -1 k=0 q k-1 q k |h| ≤ 64 1 q K h K h -1 k=0 1 q k ,
which converges to 0 as h → 0.

By the Mean Value Theorem, we have

K h -1 k=0 (-1) k+1 β k-1 (x) 3 β k (x)(log(T k (x + h)) -log(T k (x))) h + K h -1 k=0 β k-1 (x) 2 = K h -1 k=0 β k-1 (x) 3 β k (x) β k-1 (t k )β k (t k ) - K h -1 k=0 β k-1 (x) 2 ,
for some t k between x and x + h. Also, β k-1 (y)β k (y) is continuous and differentiable on I k (x) with the derivative (β k-1 (y)β k (y)) ′ = (-1) k β k (y)q k-1 + (-1) k-1 β k-1 (y)q k . By Proposition 2.3 (1) for all y ∈ I k (x) we have |(β k-1 (y)β k (y)) ′ | ≤ 2. Therefore, we have

K h -1 k=0 (-1) k+1 β k-1 (x) 3 β k (x)(log(T k (x + h)) -log(T k (x))) h + K h -1 k=0 β k-1 (x) 2 = K h -1 k=0 β k-1 (x) 2 -β k-1 (x)β k (x) + β k-1 (t k )β k (t k ) β k-1 (t k )β k (t k ) ≤2 K h -1 k=0 β k-1 (x) 2 |x -t k | β k-1 (t k )β k (t k ) ≤ 8 K h -1 k=0 q k+1 |h| q k by Proposition 2.3 (1) ≤16 1 q K h K h -1 k=0 1 q k ,
by Lemma 3.9, which converges to 0 as h → 0 by Proposition 2.1 (2).

By Proposition 2.3 (1), we have |A k | ≤ 3 q k-1 q k (x) + 6 q k-1 q k q k+1 + 3

q 2 k-1 q 2
k q k+1 ≤ 12. Also by Proposition 2.1 (4), | log(T k (x + h))| ≤ 2q k+1 q k . Then by Lemma 3.9, we have

K h -1 k=0 (-1) k+1 A k h log(T k (x + h)) ≤ 24 K h -1 k=0 q k+1 q k |h| ≤ 48 q K h ∞ k=0 1 q k ,
which converges to 0 as h → 0 by Proposition 2.1 (2). Similarly,

|B k | ≤ 3q 2 k-1 + 3 q 2 k-1 q k+1 + 3 q 3 k-1 q k q k+1 + q 3 k-1 q k+1 ≤ 10q 2 k-1 . We then have K h -1 k=0 (-1) k+1 B k h 2 log(T k (x + h)) ≤ 20 K h -1 k=0 q 2 k-1 q k+1 q k h 2 ≤ 80 1 q K h ∞ k=0 1 q k .
which converges to 0 as h → 0 by Proposition 2.1 (2). Finally,

K h -1 k=0 (-1) k+1 C k h 3 log(T k (x + h)) ≤ K h -1 k=0 q 3 k-1 q k q k+1 q k |h| 3 ≤ 8 1 q K h ∞ k=0 1 q k ,
which converges to 0 as h → 0 by Proposition 2.1 (2). This shows that (3.1.30) converges to 0 as h → 0 completing the proof of the lemma.

Lemma 3.15. Let x ∈ (0, 1) \ Q, then

K h -1 k=0 (u 2,k (x + h) -u 2,k (x)) h → ∞ k=0 (P (T k (x))) ′ β k-1 (x) 2 + 4 ∞ k=0 (-1) k P (T k (x))β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ,
as h → 0, where (P (T k (x))) ′ is the derivative of the polynomial P evaluated at T k (x).

Before we start proving Lemma 3.15, we will prove the following lemma, which we will use in proving Lemma 3.15.

Lemma 3.16. The series

∞ k=0 (P (T k (x))) ′ β k-1 (x) 2 + (-1) k 4P (T k (x))β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2
converges for all x ∈ (0, 1) \ Q.

Proof. Firstly, by Claim 2.6 we have

q k-1 = (-1) k-1 β k-1 (x) k-1 j=0 (-1) j T j (x) β j (x) 2
. Write P ∞ = sup y∈(0,1) |P (y)| and P ′ ∞ = sup y∈(0,1) |P (y) ′ |. Since P and P ′ are polynomials, we have P ∞ and P ′ ∞ are finite. We then have: 4 where P (y) = Ây 3 + By 2 + Ĉy + D, for some constants Â, B, Ĉ, D ∈ R. We then have

∞ k=0 (P (T k (x))) ′ β k-1 (x) 2 + (-1) k 4P (T k (x))β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ≤ P ′ ∞ ∞ k=0 β k-1 (x) 2 + 4 P ∞ ∞ k=0 β k-1 (x) 3 q k-1 ≤ P ′ ∞ ∞ k=0 1 q 2 k-1 + 4 P ∞ ∞ k=0 q k-1 q 3 k by Proposition 2.3 (1) ≤ ( P ′ ∞ + 4 P ∞ ) ∞ k=0 1 q 2 k-1 , which converges for all x ∈ (0, 1) \ Q by Proposition 2.1 (2). Proof of Lemma 3.15. Let x ∈ (0, 1) \ Q. We have u 2,k (x) = (-1) k P (T k (x))β k-1 (x)
K h -1 k=0 (u 2,k (x + h) -u 2,k (x)) h = Â h K h -1 k=0 (-1) k β k (x + h) 3 β k-1 (x + h) -β k (x) 3 β k-1 (x) + B h K h -1 k=0 (-1) k β k (x + h) 2 β k-1 (x + h) 2 -β k (x) 2 β k-1 (x) 2 + Ĉ h K h -1 k=0 (-1) k β k (x + h)β k-1 (x + h) 3 -β k (x)β k-1 (x) 3 + D h K h -1 k=0 (-1) k β k-1 (x + h) 4 -β k-1 (x) 4 . (3.1.31)
We consider each term separately. By Proposition 2.2 (2), for all k ≤ K h -1 we have

(-1) k β k-1 (x + h)β k (x + h) 3 -β k-1 (x)β k (x) 3 = (-1) k ((-1) k-1 (p k -xq k -hq k )) 3 (-1) k (p k-1 -xq k-1 -hq k-1 ) -β k (x) 3 β k-1 (x) = (-1) k (β k (x) + (-1) k hq k ) 3 (β k-1 (x) + (-1) k-1 hq k-1 ) -β k (x) 3 β k-1 (x) = 3hβ k-1 (x)β k (x) 2 q k -hβ k (x) 3 q k-1 + 3h 2 (-1) k β k-1 (x)β k (x)q 2 k + h 3 β k-1 (x)q 3 k + 3h 2 (-1) k-1 β k (x) 2 q k-1 q k -3h 3 β k (x)q k-1 q 2 k + h 4 (-1) k-1 q k-1 q 3 k . Let S 1 (h) = 3h K h -1 k=0 (-1) k β k-1 (x)β k (x)q 2 k + h 2 K h -1 k=0 β k-1 (x)q 3 k + 3h K h -1 k=0 (-1) k-1 β k (x) 2 q k-1 q k -3h 2 K h -1 k=0 β k (x)q k-1 q 2 k + h 3 K h -1 k=0 
(-1) k-1 q k-1 q 3 k .

We now consider the second term of (3.1.31). Again by Proposition 2.2 (2), for all k ≤ K h -1 we have

(-1) k β k (x + h) 2 β k-1 (x + h) 2 -β k (x) 2 β k-1 (x) 2 = (-1) k ((-1) k-1 (p k -xq k -hq k )) 2 ((-1) k (p k-1 -xq k-1 -hq k-1 )) 2 -β k (x) 2 β k-1 (x) 2 = (-1) k (β k (x) + (-1) k hq k ) 2 (β k-1 (x) + (-1) k-1 hq k-1 ) 2 -β k (x) 2 β k-1 (x) 2 = 2hβ k-1 (x) 2 β k (x)q k -2hβ k-1 (x)β k (x) 2 q k-1 + h 2 (-1) k β k-1 (x) 2 q 2 k -4h 2 (-1) k β k-1 (x)β k (x)q k-1 q k -2h 3 β k-1 (x)q k-1 q 2 k + h 2 (-1) k β k (x) 2 q 2 k-1 + 2h 3 β k (x)q 2 k-1 q k + h 4 (-1) k q 2 k-1 q 2 k . Let S 2 (h) = h K h -1 k=0 (-1) k β k-1 (x) 2 q 2 k -4h K h -1 k=0 (-1) k β k-1 (x)β k (x)q k-1 q k -2h 2 K h -1 k=0 β k-1 (x)q k-1 q 2 k + h K h -1 k=0 (-1) k β k (x) 2 q 2 k-1 + 2h 2 K h -1 k=0 β k (x)q 2 k-1 q k + h 3 K h -1 k=0 (-1) k q 2 k-1 q 2 k .
We now consider the third term of (3.1.31). Similarly, by Proposition 2.2 (2), for all k ≤ K h -1 we have

(-1) k β k (x + h)β k-1 (x + h) 3 -β k (x)β k-1 (x) 3 = (-1) k (-1) k-1 (p k -xq k -hq k )((-1) k (p k-1 -xq k-1 -hq k-1 )) 3 -β k (x)β k-1 (x) 3 = (-1) k (β k (x) + (-1) k hq k )(β k-1 (x) + (-1) k-1 hq k-1 ) 3 -β k (x)β k-1 (x) 3 = -3hβ k-1 (x) 2 β k (x)q k-1 + hβ k-1 (x) 3 q k + 3h 2 (-1) k β k-1 (x)β k (x)q 2 k-1 -h 3 β k (x)q 3 k-1 + 3h 2 (-1) k-1 β k-1 (x) 2 q k-1 q k + 3h 3 β k-1 (x)q 2 k-1 q k + h 4 (-1) k-1 q 3 k-1 q k . Let S 3 (h) = 3h K h -1 k=0 (-1) k β k-1 (x)β k (x)q 2 k-1 -h 2 K h -1 k=0 β k (x)q 3 k-1 + 3h K h -1 k=0 (-1) k-1 β k-1 (x) 2 q k-1 q k + 3h 2 K h -1 k=0 β k-1 (x)q 2 k-1 q k + h 3 K h -1 k=0 (-1) k-1 q 3 k-1 q k .
Finally, we consider the last term of (3.1.31). As before, by Proposition 2.2 (2), for all k ≤ K h -1 we have

(-1) k β k-1 (x + h) 4 -β k-1 (x) 4 = (-1) k ((-1) k (p k-1 -xq k-1 -hq k-1 )) 4 -β k-1 (x) 4 = (-1) k (β k-1 (x) + (-1) k-1 hq k-1 )) 4 -β k-1 (x) 4 = -4hβ k-1 (x) 3 q k-1 + 6h 2 (-1) k β k-1 (x) 2 q 2 k-1 -4h 3 β k-1 (x)q 3 k-1 + h 4 (-1) k q 4 k-1 . Let S 4 (h) = 6h K h -1 k=0 (-1) k β k-1 (x) 2 q 2 k-1 -4h 2 K h -1 k=0 β k-1 (x)q 3 k-1 + h 3 K h -1 k=0 (-1) k q 4 k-1 .
Then we have

K h -1 k=0 (u 3,k (x + h) -u 3,k (x)) h = Â(3 K h -1 k=0 β k-1 (x)β k (x) 2 q k - K h -1 k=0 β k (x) 3 q k-1 + S 1 (h)) + B(2 K h -1 k=0 β k-1 (x) 2 β k (x)q k -2 K h -1 k=0 β k-1 (x)β k (x) 2 q k-1 + S 2 (h)) + Ĉ(-3 K h -1 k=0 β k-1 (x) 2 β k (x)q k-1 + K h -1 k=0 β k-1 (x) 3 q k + S 3 (h)) + D(-4 K h -1 k=0 β k-1 (x) 3 q k-1 + S 4 (h)) = K h -1 k=0 3 Âβ k-1 (x) 3 (T k (x)) 2 q k - K h -1 k=0 Â(T k (x) 3 )β k-1 (x) 3 q k-1 + ÂS 1 (h) + K h -1 k=0 2 Bβ k-1 (x) 2 T k (x)q k -2 K h -1 k=0 Bβ k-1 (x)β k (x) 3 q k-1 + BS 2 (h) + K h -1 k=0 Ĉβ k-1 (x) 3 q k -3 K h -1 k=0 Ĉβ k-1 (x) 3 T k (x)q k-1 + ĈS 3 (h) -4 D K h -1 k=0 β k-1 (x) 3 q k-1 + DS 4 (h) = K h -1 k=0 (3 Â(T k (x)) 2 + 2 BT k (x) + Ĉ)β k-1 (x) 3 q k - K h -1 k=0 ( Â(T k (x) 3 ) + 2 B(T k (x) 2 ) + 3 ĈT k (x) + 4 D)β k-1 (x) 3 q k-1 + ÂS 1 + BS 2 + ĈS 3 + DS 4 .
By Proposition 2.2 (3), we have

(3 Â(T k (x)) 2 + 2 BT k (x) + Ĉ)β k-1 (x) 3 q k = (3 Â(T k (x)) 2 + 2 BT k (x) + Ĉ)β k-1 (x) 3 1 β k-1 (x) (1 -q k-1 β k (x)) = (3 Â(T k (x)) 2 + 2 BT k (x) + Ĉ)β k-1 (x) 2 (1 -q k-1 β k (x)) = (3 Â(T k (x)) 2 + 2 BT k (x) + Ĉ)β k-1 (x) 2 -(3 Â(T k (x)) 3 + 2 B(T k (x)) 2 + ĈT k (x))β k-1 (x) 3 q k-1 .
Hence, we have

K h -1 k=0 (u 2,k (x + h) -u 2,k (x)) h = K h -1 k=0 (P (T k (x))) ′ β k-1 (x) 2 -4 K h -1 k=0 P (T k (x))β k-1 (x) 3 q k-1 + ÂS 1 (h) + BS 2 (h) + ĈS 3 (h) + DS 4 (h),
where (P (T k (x))) ′ is the derivative of the polynomial P evaluated at T k (x), that is

(P (T k (x))) ′ = 3 Â(T k (x)) 2 + 2 BT k (x) + Ĉ.
We then have

K h -1 k=0 (u 2,k (x + h) -u 2,k (x)) h - ∞ k=0 (P (T k (x))) ′ β k-1 (x) 2 + 4 ∞ k=0 P (T k (x))β k-1 (x) 3 q k-1 ≤ ∞ k=K h (P (T k (x))) ′ β k-1 (x) 2 -4 ∞ k=K h P (T k (x))β k-1 (x) 3 q k-1 + | ÂS 1 (h)| + | BS 2 (h)| + | ĈS 3 (h)| + | DS 4 (h)|. (3.1.32)
The first term converges to 0 as h → 0 by Lemma 3.16. Then applying Proposition 2.3 (1) and Lemma 3.9, we obtain

|S 1 (h)| + |S 2 (h)| + |S 3 (h)| + |S 4 (h)| ≤ 22 q K h K h -1 k=0 1 q k + 22 q K h K h -1 k=0 1 q k + 22 q K h K h -1 k=0 1 q k + 22 q K h K h -1 k=0 1 q k --→ h→0 0.
It shows that the expression in (3.1.32) converges to 0 as h → 0 which completes the proof of Lemma 3.15.

Lemma 3.17. Let x ∈ (0, 1) \ Q, then

K h -1 k=0 (u 3,k (x + h) -u 3,k (x)) h → ∞ k=0 β k (x) 2 T k (x)F 2,3 (T k+1 (x)) + β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + 4(-1) k+1 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt • β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ,
as h → 0 where p(k) is the smaller endpoint of the interval

I k (x), that is p(k) = p k q k if k is even, and p(k) = p k +p k-1 q k +q k-1 if k is odd.
Before proving Lemma 3.17 we will prove some claims and lemmas, which then we will use in the proof of Lemma 3.17. First note that for all k ≤ K h the function u 3,k is continuous and differentiable on I K h (x). For brevity, write

I k (x) = T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt.
We will now calculate the derivative of u 3,k . We begin by calculating the derivative of I k (x).

Claim 3.18. Let x ∈ (0, 1) \ Q. For all k ∈ N we have

I ′ k (x) = (-1) k+1 β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + (-1) k+1 β k-1 (x) 2 T k (x) 3 F 2,3 (T k+1 (x)),
where p(k) ∈ Q is the smaller endpoint of the interval

I k (x), that is p(k) = p k q k if k is even, and p(k) = p k +p k-1 q k +q k-1 if k is odd.
Proof. We use the substitution y = T k (x), hence dy dx = (-1) k β k-1 (x) 2 , and we have

I ′ k (x) = d dx T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt = (-1) k β k-1 (x) 2 d dy y 0 t 2 (y -2t)F 2,3 (T (t))dt = (-1) k β k-1 (x) 2 d dy p(k) 0 t 2 (y -2t)F 2,3 (T (t))dt + (-1) k β k-1 (x) 2 d dy y p(k) t 2 (y -2t)F 2,3 (T (t))dt = (-1) k β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + (-1) k β k-1 (x) 2 y 2 (y -2y)F 2,3 (T (y)) = (-1) k β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + (-1) k+1 β k-1 (x) 2 T k (x) 3 F 2,3 (T k+1 (x)),
by the Fundamental Theorem of Calculus and the fact that

t 2 (T k (x) -2t)F 2,3 (T (t))dt is continuous on (p(k), T k (x)]. Claim 3.19. Let x ∈ (0, 1) \ Q. For all k ∈ N we have u ′ 3,k (x) = β k (x) 2 T k (x)F 2,3 (T k+1 (x)) + β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + 4(-1) k+1 I k (x)β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 .
Proof. We have

u ′ 3,k (x) =(-1) k+1 I k (x)(β k-1 (x) 4 ) ′ + (-1) k+1 (I k (x)) ′ β k-1 (x) 4 =4(-1) k+1 I k (x)β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 + (-1) k+1 (-1) k+1 β k-1 (x) 2 T k (x) 3 F 2,3 (T k+1 (x))β k-1 (x) 4 + (-1) k+1 (-1) k+1 β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dtβ k-1 (x) 4 by Claim 3.18 =β k (x) 2 T k (x)F 2,3 (T k+1 (x)) + β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + 4(-1) k+1 I k (x)β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 .
This completes the proof of the claim.

Lemma 3.20. The series

∞ k=0 u ′ 3,k (x)
converges for all x ∈ (0, 1) \ Q.

Proof. Since |F 2,3 | is bounded, we have

|I k (x)| ≤ F 2,3 ∞ T k (x) 0 |t 2 (T k (x) -2t)|dt ≤ F 2,3 ∞ 1 0 |t 2 ||(T k (x) -2t)|dt ≤ F 2,3 ∞ , (3.1.33) and ∞ k=0 β k (x) 2 T k (x)F 2,3 (T k+1 (x)) + β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + 4(-1) k+1 I k (x)β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ≤ F 2,3 ∞ ∞ k=0 β k (x) 2 + ∞ k=0 β k-1 (x) 2 p(k) 0 t 2 dt + 4 F 2,3 ∞ ∞ k=0 β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ≤ F 2,3 ∞ ∞ k=0 β k (x) 2 + ∞ k=0 β k-1 (x) 2 + 4 F 2,3 ∞ ∞ k=0 β k-1 (x) 3 q k-1 by Claim 2.6 ≤(5 F 2,3 ∞ + 1) ∞ k=0 1 q 2 k ,
by Proposition 2.3 (1). It converges for all x ∈ (0, 1) \ Q by Proposition 2.1 (2).

We can now prove Lemma 3.17.

Proof of Lemma 3.17. Let x ∈ (0, 1) \ Q. By the Mean Value Theorem and the fact that u 3,k is continuous and differentiable on I k (x) for all k ≤ K h , we have

u 3,k (x+h)-u 3,k (x) h = u ′ 3,k (t k
) for some t k between x and x + h for all k ≤ K h . Then

K h -1 k=0 (u3,k(x+h)-u3,k(x)) h = K h -1 k=0 u ′ 3,k (t k ). We have K h -1 k=0 (u 3,k (x + h) -u 3,k (x)) h - ∞ k=0 u ′ 3,k (x) = K h -1 k=0 u ′ 3,k (t k ) - ∞ k=0 u ′ 3,k (x) ≤ K h -1 k=0 (u ′ 3,k (t k ) -u ′ 3,k (x)) + ∞ k=K h u ′ 3,k (x)
.

By Lemma 3.20, | ∞ k=K h u ′ 3,k (x)| converges to 0 as h → 0. Then K h -1 k=0 (u ′ 3,k (t k ) -u ′ 3,k (x)) ≤ K h -1 k=0 β k (t k ) 2 T k (t k )F 2,3 (T k+1 (t k )) -β k (x) 2 T k (x)F 2,3 (T k+1 (x)) + K h -1 k=0 β k-1 (t k ) 2 p(k,t k ) 0 t 2 F 2,3 (T (t))dt -β k-1 (x) 2 p(k,x) 0 t 2 F 2,3 (T (t))dt + K h -1 k=0 4(-1) k+1 I k (t k )β k-1 (t k ) 4 k-1 j=0 (-1) j T j (t k ) β j (t k ) 2 -I k (x)β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 .
(3.1.34)

We will now show that each of these terms converges to 0 as h → 0.

We start with the first term. We have

K h -1 k=0 (β k (t k ) 2 T k (t k )F 2,3 (T k+1 (t k )) -β k (x) 2 T k (x)F 2,3 (T k+1 (x))) ≤ K h -1 k=0 |β k (t k ) 2 T k (t k ) -β k (x) 2 T k (x)||F 2,3 (T k+1 (t k )| + K h -1 k=0 |F 2,3 (T k+1 (t k )) -F 2,3 (T k+1 (x))|β k (x) 2 T k (x).
The function β k (y) 2 T k (y) is continuous and differentiable on I K h (x) for all k ≤ K h , and by Proposition 2.2 (2) we have (

β k (y) 2 T k (y)) ′ = 2β k (y)T k (y)(-1) k q k + β k (y) 2 (-1) k 1 β k (y) 2 .
Thus for all y ∈ I K h (x) we have |(β k (y) 2 T k (y)) ′ | ≤ 3. By the fact that |F 2,3 |, the Mean Value Theorem and Lemma 3.9 we have

K h -1 k=0 |(β k (t k ) 2 T k (t k ) -β k (x) 2 T k (x)||F 2,3 (T k+1 (t k )| ≤ F 2,3 ∞ K h -1 k=0 3|h| ≤ 3 F 2,3 ∞ 1 q K h ,
which converges to 0 as h → 0. Let N = q 2 K h . Using the same arguments as in the proof of Lemma 3.11, for some constants c 1 , c 2 we have

K h -1 k=0 |F 2,3 (T k+1 (t k )) -F 2,3 (T k+1 (x))|β k (x) 2 T k (x) ≤c 1 K h -1 k=0 |h|β k (x) 2 T k (x)q 2 k+1 log N + c 2 K h -1 k=0 β k (x) 2 T k (x) 1 N 3/4 ≤c 1 2 q K h K h -1 k=0 2 log q K h q K h + c 2 K h -1 k=0 1 q 2 k q 3/2 K h
, by Proposition 2.3 (1) and Lemma 3.9, which converges to 0 as h → 0.

For the second term, note that since for all k ≤ K h we have t k ∈ I K h (x), then for k ≤ K h we have that p(k, t k ) = p(k, x). As before, we will denote it p(k). Since p(k) 0 t 2 F 2,3 (T (t))dt is bounded by F 2,3 ∞ for all k, we have

K h -1 k=0 β k-1 (t k ) 2 p(k) 0 t 2 F 2,3 (T (t))dt -β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt ≤ F 2,3 ∞ K h -1 k=0 |β k-1 (t k ) 2 -β k-1 (x) 2 | ≤ F 2,3 ∞ K h -1 k=0 2 q k-1 q k |h| ≤ 2 F 2,3 ∞ 1 q K h K h -1 k=0 1 q k .
The last line follows from the fact that for all k ≤ K h the function β k-1 (y) 2 is continuous and differentiable on

I K h (x); by Proposition 2.2 (2) (β k-1 (y) 2 ) ′ = 2β k-1 (y)(-1) k-1 q k-1 . Then by Proposition 2.3 (1) |(β k-1 (y) 2 ) ′ | ≤ 2 q k-1 q k ,
for all y ∈ I k (x). By the Mean Value Theorem, the fact that |h| ≥ |x -t k | and Lemma 3.9 we obtain the result. It follows from Proposition 2.1 (2) that the term converges to 0 as h → 0.

We consider the last term. Applying Claim 2.6, we get

K h -1 k=0 4(-1) k+1 I k (t k )β k-1 (t k ) 4 k-1 j=0 (-1) j T j (t k ) β j (t k ) 2 -I k (x)β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ≤ 4 K h -1 k=0 q k-1 |I k (t k ) -I k (x)|β k-1 (t k ) 3 + 4 K h -1 k=0 q k-1 |β k-1 (t k ) 3 -β k-1 (x) 3 ||I k (x)|.
By Proposition 2.3 (1) and the fact that |F 2,3 | is bounded, we have 4

K h -1 k=0 q k-1 |I k (t k ) -I k (x)|β k-1 (t k ) 3 ≤ 4 K h -1 k=0 q k-1 q 3 k |I k (t k ) -I k (x)| ≤ 4 K h -1 k=0 q k-1 q 3 k T k (t k ) T k (x) -2t 3 F 2,3 (T (t))dt + T k (x) 0 t 2 (T k (t k ) -T k (x))F 2,3 (T (t))dt + T k (t k ) T k (x) t 2 T k (t k )F 2,3 (T (t))dt ≤ 4 F 2,3 ∞ K h -1 k=0 q k-1 q 3 k 2 T k (t k ) T k (x) t 3 dt + T k (x) 0 t 2 (T k (t k ) -T k (x))dt + T k (t k ) T k (x) t 2 dt ≤ 4 F 2,3 ∞ K h -1 k=0 q k-1 q 3 k |T k (t k ) 4 -T k (x) 4 | 2 + T k (x) 0 t 2 |T k (t k ) -T k (x)|dt + |T k (t k ) 3 -T k (x) 3 | 3 .
By Proposition 2.5, the functions T k (y) 4 , T k (y) 3 and T k (y) are continuous and differentiable on

I K h (x) for all k ≤ K h with (T k (y) 4 ) ′ = 4(-1) k T k (y) 3 β k-1 (y) 2 , (T k (y) 3 ) ′ = 3(-1) k T k (y) 2 β k-1 (y) 2 and (T k (y)) ′ = (-1) k β k-1 (y) 2 . It follows that for y ∈ I K h (x) we have |(T k (y) 4 ) ′ | ≤ 16q 2 k , |(T k (x) 3 ) ′ | = 12q 2 k and |(T k (x)) ′ | = 4q 2 k .
By the Mean Value Theorem, the fact that |t k -x| ≤ |h| and Lemma 3.9 we get 4

K h -1 k=0 q k-1 |I k (t k ) -I k (x)|β k-1 (t k ) 3 ≤ 4 F 2,3 ∞ |h| K h -1 k=0 q k-1 q k 8 + 4 T k (x) 0 t 2 dt + 4 ≤ 48 F 2,3 ∞ |h| K h -1 k=0 q k-1 q k ≤ 48 1 q K h K h -1 k=0 1 q k ,
which converges to 0 as h → 0 by Proposition 2.1 (2). Also, for all k ≤ K h the function β k-1 (y) 3 is continuous and differentiable on

I K h (x) and (β k-1 (y) 3 ) ′ = 3(-1) k-1 β k-1 (y) 2 q k-1 . Hence, |(β k-1 (y) 3 ) ′ | ≤ 3 q k-1 q 2
k for all y ∈ I k (x). By (3.1.33) and Lemma 3.9, we have 4

K h -1 k=0 q k-1 |β k-1 (t k ) 3 -β k-1 (x) 3 ||I k (x)| ≤ 12 F 2,3 ∞ K h -1 k=0 q k-1 |h| q k-1 q 2 k ≤ 12 F 2,3 ∞ 1 q K h K h -1 k=0 1 q k ,
which converges to 0 as h → 0 by Proposition 2.1 (2).

This shows that (3.1.34) converges to 0 as h → 0 completing the proof of Lemma 3.17.

We are now ready to prove Therem 1.3 (i). For the convenience of the reader, we recall it.

Theorem 1.3. (i) If x ∈ R \ Q is a square-Brjuno number satisfying ( * ) or ( * * ), then F 2,3 is differentiable at x. On the other hand, if x ∈ R \ Q is not a square-Brjuno number, then F 2,3 is not differentiable at x.
Proof. Let x ∈ (0, 1) \ Q be a square-Brjuno number satisfying ( * ) or ( * * ). By (3.1.23) and Lemmas 3.11, 3.12, 3.15 and 3.17 we conclude that F 2,3 is differentiable at x and

F ′ 2,3 (x) = lim h→0 F 2,3 (x + h) -F 2,3 (x) h = π 3 3 ∞ k=0 β k-1 (x)γ k (x) + 4π 3 3 ∞ k=0 (-1) k β k-1 (x) 2 β k (x)γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 - π 3 3 ∞ k=0 β k-1 (x) 2 + ∞ k=0 (P (T k (x))) ′ β k-1 (x) 2 + 4 ∞ k=0 (-1) k P (T k (x))β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 + 6 ∞ k=0 β k (x) 2 T k (x)F 2,3 (T k+1 (x)) + β k-1 (x) 2 p(k) 0 t 2 F 2,3 (T (t))dt + 4(-1) k+1 T k (x) 0 t 2 (T k (x) -2t)F 2,3 (T (t))dt • β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 ,
where (P (T k (x))) ′ is the derivative of the polynomial P evaluated at T k (x) and p(k) is the smaller endpoint of the interval

I k (x), that is p(k) = p k q k if k is even, and p(k) = p k +p k-1 q k +q k-1 if k is odd.
We formally showed that if x is square-Brjuno and satisfies ( * ) or ( * * ), then

F 2,3 (x) = π 3 3 ∞ k=0 u 1,k (x) + ∞ k=0 u 2,k (x) + 6 ∞ k=0 u 3,k (x) is differentiable at x and F ′ 2,3 (x) = π 3 3 ∞ k=0 u ′ 1,k (x) + ∞ k=0 u ′ 2,k (x) + 6 ∞ k=0 u ′ 3,k (x).
Suppose now that x ∈ (0, 1) \ Q is not square-Brjuno. We will show that there exists a sequence h n → 0 such that F 2,3 (x+hn)-F 2,3 (x) hn → ∞ as n → ∞. For each n ∈ N odd choose h n > 0 such that if x ∈ I(a 1 , a 2 , ..., a n , a n+1 ), then x + h n ∈ I(a 1 , a 2 , ..., a n , a n+1 + 2) \ Q. We have x + h n ∈ I k (x), but x + h n / ∈ I n+1 (x), and h n → 0 as n → ∞, and [x, x + h n ] contains the basic interval I(a 1 , a 2 , ..., a n , a n+1 + 1). We also note that if t ∈ [x, x + h n ] then q n+1 ≤ q n+1 (t) ≤ 3q n+1 , (3.1.35) which implies that

1 18q 2 n+1 < 1 q n+1 (t)(q n+1 (t) + q n ) = |I(a 1 , a 2 , ..., a n , a n+1 + 1)| < h n ≤ 1 q n q n+1 . (3.1.36)
By Equation (3.1.18), we have

F 2,3 (x + h) -F 2,3 (x) h n = π 3 3 ∞ k=0 (u 1,k (x + h n ) -u 1,k (x)) h n + ∞ k=0 (u 2,k (x + h n ) -u 2,k (x)) h n + 6 ∞ k=0 (u 3,k (x + h n ) -u 3,k (x)) h n .
We will now show that the last two terms converge to some finite limits as n → ∞.

Since ∞ k=0 u 2,k (y) converges absolutely for all y, we have

∞ k=0 (u 2,k (x+h n )-u 2,k (x)) = n k=0 (u 2,k (x + h n ) -u 2,k (x)) + ∞ k=n+1 (u 2,k (x + h n ) -u 2,k (x))
. By the same arguments as in the proof of Lemma 3.15, we conclude that n k=0 u 2,k (x+hn)-u 2,k (x) hn converges to some finite limit as n → ∞. By Proposition 2.3 (1) and since 0 ≤ |P (y)| ≤ P ∞ for all y ∈ (0, 1), we have

∞ k=n+1 (u 2,n (x + h k ) -u 2,k (x)) h n ≤ ∞ k=n+1 |P (T k (x + h n ))|β k-1 (x + h n ) 4 + |P (T k (x))|β k-1 (x) 4 h n ≤ P ∞ h n ∞ k=n+1 1 (q k (x + h n )) 4 + 1 q 4 k ≤ 18 P ∞ ∞ k=n+1 1 (q k (x + h n )) 2 + 1 q 2 k by (3.1.35) and (3.1.36). It converges to 0 as n → ∞ by Proposition 2.1 (2). Since ∞ k=0 u 3,k (y) converges absolutely for all y, we have ∞ k=0 (u 3,k (x+h n )-u 3,k (x)) = n k=0 (u 3,k (x + h n ) -u 3,k (x)) + ∞ k=n+1 (u 3,k (x + h n ) -u 3,k (x))
. By the same arguments as in Lemma 3.17 we conclude that n k=0 (u 3,k (x+hn)-u 3,k (x)) hn converges to some finite limit as n → ∞. By Proposition 2.3 (1) and since |F 2,3 | is bounded, we have Since ∞ k=0 u 1,k (y) converges absolutely for all y, we have

∞ k=n+1 (u 3,k (x + h n ) -u 1,k (x)) h n ≤ F 2,3 ∞ h n ∞ k=n+1 1 (q k (x + h n )) 4 + 1 q 4 k ≤ 18 F 2,3 ∞ ∞ k=n+1 1 (q k (x + h n )) 2 + 1 q 2 k ,
∞ k=0 (u 1,k (x+h n )-u 1,k (x)) = n n=0 (u 1,k (x + h n ) -u 1,k (x)) + ∞ k=n+1 (u 1,k (x + h n ) -u 1,k (x))
. By Proposition 2.3 (1) and (2), we have As in the proof of Lemma 3.12, we have

∞ k=n+1 (u 1,k (x + h n ) -u 1,k (x)) h n ≤ 1 h n ∞ k=n+1 log(2q k+1 (x + h n )) (q k (x + h n )) 3 q k+1 (x + h n ) + log(2q k+1 ) q 3 k q k+1 ≤ 36 ∞ k=n+1 1 q k (x + h n ) + 1 q k , by ( 
n k=0 (u 1,k (x + h n ) -u 2,k (x)) h n = - n k=0 β k-1 (x) 2 log(T k (x + h n )) + n k=0 4(-1) k+1 β k-1 (x) 3 β k (x) log(T k (x + h n )) k-1 j=0 (-1) j T j (x) β j (x) 2 + n k=0 (-1) k+1 β k-1 (x) 3 β k (x)(log(T k (x + h n )) -log(T k (x))) h n + n k=0 (-1) k+1 A k h n log(T k (x + h n )) + n k=0 (-1) k+1 B k h 2 n log(T k (x + h n )) + n k=0 (-1) k+1 C k h 3 n log(T k (x + h n )),
where A k , B k , C k were defined in (3.1.29). By the same arguments as in the proof of Lemma 3.12, we conclude that the last three sums converge to 0 as n → ∞. We also have that the two series n k=0 4(-1)

k+1 β k-1 (x) 3 β k (x) log(T k (x+h n )) k-1 j=0 (-1) j T j (x) β j (x) 2 and n k=0 (-1) k+1 hn β k-1 (x) 3 β k (x) (log(T k (x + h n )) -log(T k (x)
)) both converge to finite limits as n → ∞. Finally, we have

- n k=0 β k-1 (x) 2 log(T k (x + h n )) = n k=0 β k-1 (x)γ k (x) + β k-1 (x) 2 log T k (x) T k (x + h n ) = n k=0 β k-1 (x)γ k (x) + n k=0 β k-1 (x) 2 log T k (x) T k (x + h n ) . Since h n > 0, we have x < x + h n . If k is odd then log( T k (x) T k (x+hn) ) > 0, and if k is even then log( T k (x)
T k (x+hn) ) ≥ -log(4) by Proposition 2.2. Thus, we have

n k=0 -β k-1 (x) 2 log(T k (x + h n )) ≥ n k=0 β k-1 (x)γ k (x) - n k=0, k odd β k-1 (x) 2 log(4), ≥ n k=0 β k-1 (x)γ k (x) -log(4) ∞ k=0 β k-1 (x) 2 .
By Propositions 2.3 (1) and 2.1 (2) we have

| -log(4) ∞ k=0 β k-1 (x) 2 | < ∞. Since x is not square-Brjuno, -n k=0 β k-1 (x) 2 log(T k (x + h n )) → ∞ as n → ∞. This shows that F 2,3 (x+hn)-F 2,3 (x)
hn → ∞ as n → ∞, and we conclude that F 2,3 is not differentiable at x. This completes the proof of Theorem 1.3 (i).

Proof of Theorem 1.3 (ii)

Let x ∈ R \ Q. Since G 2,3 is 1-periodic, we may assume x ∈ (0, 1). For brevity, let

v 1,k (x) =β k-1 (x)β k (x) 2 γ k (x) v 2,k (x) =Q(T k (x))β k-1 (x) 4 v 3,k (x) =β k-1 (x) 4 T k (x) 0 t 2 (T k (x) -2t)G 2,3 (T (t))dt
By Corollary 3.8, with this notation, for all n ∈ N, we have

G 2,3 (x) = G 2,3 (T n (x))β n-1 (x) 4 + π 2 n k=0 v 1,k (x) + n k=0 v 2,k (x) + 6 n k=0 v 3,k (x).
(3.1.37)

For each h, let K h ∈ N such that x + h ∈ I k (x) for all k ≤ K h and x + h / ∈ I K h +1 (x). We then have

G 2,3 (x + h) -G 2,3 (x) h = G 2,3 (T K h -1 (x + h))β K h -2 (x + h) 4 -G 2,3 (T K h -1 (x))β K h -2 (x) 4 h + π 2 K h -1 k=0 (v 1,k (x + h) -v 1,k (x)) h + K h -1 k=0 (v 2,k (x + h) -v 2,k (x)) h + 6 K h -1 k=0 (v 3,k (x + h) -v 3,k (x)) h . (3.1.38)
We proceed as in the proof of Part (i) of Theorem 1.3. We consider each summand as h → 0.

Lemma 3.21. Let x ∈ (0, 1) \ Q such that it satisfies ( * ) or ( * * ), then

G 2,3 (T K h -1 (x + h))β K h -2 (x + h) 4 -G 2,3 (T K h -1 (x))β K h -2 (x) 4 h → 0, as h → 0.
Proof. The proof is very similar to the proof of the Lemma 3.11, and therefore omitted. The difference is that instead of the sum-to-product identity for the sine function we use the sum-to-product identity for the cosine.

Lemma 3.22. Let x ∈ (0, 1) \ Q, then

K h -1 k=0 (v 1,k (x + h) -v 1,k (x)) h → 2 ∞ k=0 (-1) k β k (x)γ k (x) + 4 ∞ k=0 β k-1 (x)β k (x) 2 γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 + ∞ k=0 (-1) k+1 β k-1 (x)β k (x) < ∞, as h → 0.
Proof. The proof is very similar to the proof of Lemma 3.12, and therefore omitted. The difference is that we have an additional factor of T k (x) and no (-1)

k in v 1,k . Lemma 3.23. Let x ∈ (0, 1) \ Q, then K h -1 k=0 (v 2,k (x + h) -v 2,k (x)) h → ∞ k=0 (-1) k (Q(T k (x))) ′ β k-1 (x) 2 + 4 ∞ k=0 Q(T k (x))β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 < ∞,
as h → 0, where (Q(T k (x))) ′ is the derivative of the polynomial Q evaluated at T k (x).

Proof. The proof is very similar to the proof of the Lemma 3.15, and therefore omitted.

The difference is that we have an additional factor of (-1) k in v 2,k .

Lemma 3.24. Let x ∈ (0, 1) \ Q, then

K h -1 k=0 (v 3,k (x + h) -v 3,k (x)) h → ∞ k=0 (-1) k+1 β k (x) 2 T k (x)G 2,3 (T k+1 (x)) + (-1) k+1 β k-1 (x) 2 p(k) 0 t 2 G 2,3 (T (t))dt + 4 T k (x) 0 t 2 (T k (x) -2t)G 2,3 (T (t))dt • β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 < ∞,
as h → 0 where p(k) is the smaller endpoint of the interval

I k (x), that is p(k) = p k q k if k is even, and p(k) = p k +p k-1 q k +q k-1 if k is odd. Proof.
The proof is very similar to the proof of the Lemma 3.17, and therefore omitted. The difference is that we do not have the factor (-1) k in v 3,k .

We are now ready to prove Therem 1.3 (i). For the convenience of the reader, we recall it.

Theorem 1.3. (ii) If x ∈ R \ Q satisfies ( * ) or ( * * ), then G 2,3 is differentiable at x.
Proof. Let x ∈ (0, 1)\Q satisfy ( * ) or ( * * ). By (3.1.38) and Lemmas 3.21-3.24 we conclude that G 2,3 is differentiable at x and

G ′ 2,3 (x) = lim h→0 G 2,3 (x + h) -G 2,3 (x) h =2π 2 ∞ k=0 (-1) k β k (x)γ k (x) + 4π 2 ∞ k=0 β k-1 (x)β k (x) 2 γ k (x) k-1 j=0 (-1) j T j (x) β j (x) 2 + π 2 ∞ k=0 (-1) k+1 β k-1 (x)β k (x) + ∞ k=0 (-1) k (Q(T k (x))) ′ β k-1 (x) 2 + 4 ∞ k=0 Q(T k (x))β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2 + 6 ∞ k=0 (-1) k+1 β k (x) 2 T k (x)G 2,3 (T k+1 (x)) + (-1) k+1 β k-1 (x) 2 p(k) 0 t 2 G 2,3 (T (t))dt + 4 T k (x) 0 t 2 (T k (x) -2t)G 2,3 (T (t))dt • β k-1 (x) 4 k-1 j=0 (-1) j T j (x) β j (x) 2
where (Q(T k (x))) ′ is the derivative of the polynomial Q evaluated at T k (x) and p(k) is the smaller endpoint of the interval I k (x), that is p(k) = p k q k if k is even, and p(k) = p k +p k-1 q k +q k-1 if k is odd.

Functional equation for ϕ k

In order to prove Conjecture 1.5 for k ≥ 4, we would proceed as in the case k = 2. There are a lot of terms to analyse, but we believe that for any given k ≥ 4 this method would work (adding a technical condition similar to ( * ) of the type log(q n+4 ) q k n → 0). However the calculations become very long, and we do not do it explicitly. We present arguments justifying the conjecture. We start by finding the functional equation for ϕ k .

Theorem 3.25. For k ≥ 4 even, for α ∈ H, and τ ∈ H, we have

ϕ k (τ ) = τ k+2 ϕ k - 1 τ - k C k τ Log(τ ) + P k,α (τ ) + τ α Q k,α (t, τ )ϕ k - 1 t dt, (3.1.39)
where Log denotes the principal value of the complex logarithm, P k,α (τ ) is a polynomial in τ of degree less than or equal to k + 1 depending on α, Q k,α (t, τ ) is a polynomial in t and τ of degree less than or equal to k + 1 also depending on α, and

C k = -k!2k (2iπ) k+1 B k .
We divide the proof into various lemmas. Let 4 ≤ k ∈ N even, α ∈ H and τ ∈ H be all fixed. We make the following observations. Claim 3.26. We have

C k • ϕ k (τ ) = τ i∞ (τ -t) k (E k (t) -1)dt, (3.1.40)
where Claim 3.27. For 1 ≤ j ≤ k + 1 we have

C k = -k!2k ( 
ϕ (j) k (τ ) = (2πi) j ∞ n=1 σ k-1 (n) n k+1-j e 2iπnτ , (3.1.41) in particular ϕ (k+1) k (τ ) = k! C k (E k (τ ) -1), (3.1.42)
where C k is as in the Claim 3.26.

Proof. We obtain (3.1.41) by differentiating ϕ k (τ ) j times. Equality (3.1.42) follows from (3.1.41) and the definition of Eisenstein series.

Claim 3.28. We have

C k • ϕ k (τ ) = τ α (τ -t) k E k (t)dt + p k,α (τ ),
where p k,α (τ ) is a polynomial in τ of degree less than or equal to k + 1, which depends on α. In particular,

p k,α (τ ) = (τ -α) k+1 k+1 -k m=0 k!(τ -α) k-m (k-m)!(2iπ) k+1 ϕ (k-m) k (α).
Proof. We note that Claim 3.26 implies that

C k ϕ k (τ ) = τ α (τ -t) k E k (t)dt - τ α (τ -t) k dt + α i∞ (τ -t) k (E k (t) -1)dt. (3.1.43)
We have

- τ α (τ -t) k dt = (τ -α) k+1 k + 1 . (3.1.44)
Then integrating by parts the last term in (3.1.43) k times gives

α i∞ (τ -t) k (E k (t) -1)dt = - k m=0 k!(τ -α) k-m (k -m)!(2iπ) k+1 ϕ (k-m) k (α).
Then by (1.0.1) with γ = 0 -1 1 0 , we get

τ α (τ -t) k E k (t)dt = τ α (τ -t) k t k E k - 1 t dt. Substituting (3.1.42) with τ = -1 t , we obtain τ α (τ -t) k t k E k - 1 t dt = τ α (τ -t) k t k 1 + C k k! ϕ (k+1) k - 1 t dt = τ α (τ -t) k t k dt + C k k! τ α (τ -t) k t k ϕ (k+1) k - 1 t dt. (3.1.45) Claim 3.29. We have τ α (τ -t) k t k dt = -kτ Log(τ ) + q k,α (τ ), (3.1.46)
where q k,α (τ ) is a polynomial in τ of degree less than or equal to k depending of α. In particular, q k,α (τ

) = k-2 m=0 (-1) m k m 1 m-k+1 (τ -τ k-m α m-k+1 ) + kτ Log(α) + τ -α.
Proof. To see that, we note 

ϕ k (τ ) = - k C k τ Log(τ ) + 1 k! τ α (τ -t) k t k ϕ (k+1) k - 1 t dt + 1 C k (p k,α (τ ) + q k,α (τ )). (3.1.47) It rests to evaluate the integral τ α (τ -t) k t k ϕ (k+1) k -1 t dt. Then we have Claim 3.30. We have τ α (τ -t) k t k ϕ (k+1) k - 1 t dt = k!τ k+2 ϕ k - 1 τ + r k,α (τ ) + τ α s k,α (t, τ )ϕ k - 1 t dt,
where r k,α (τ ) is a polynomial in τ of degree less than or equal to k + 1 depending on α, and s k,α (t, τ ) is a polynomial in t and τ of degree less than or equal to k + 1.

Proof. We use the substitution u = -1 t , and we have

τ α (τ -t) k t k ϕ (k+1) k - 1 t dt = -1 τ -1 α u k-2 τ + 1 u k ϕ (k+1) k (u)du.
For simplicity, we will define v 0 (x, τ ) = -

1 x k-2 (τ -x) k , and for m ≥ 0, v m (x, τ ) = ∂ m u k-2 (τ+ 1 u ) k ∂u m u=-1 x
. By Leibniz product formula for m ≤ k, we have

v m - 1 u , τ = ∂ m u k-2 τ + 1 u k ∂u m = m j=0 (-1) j m!k!(j + 1) (m -j)!(k -m + j)! u -j-2 τ m-j (τ u + 1) k-m+j = m j=0 (-1) j m!k!(j + 1) (m -j)!(k -m + j)! u -2+k-m τ m-j τ + 1 u k-m+j
.

Hence for all 0 ≤ m ≤ k, we have v m (τ, τ ) = 0. Then integrating by parts k times gives

-1 τ -1 α u k-2 τ + 1 u k ϕ (k+1) k (u)du = k-1 i=0 (-1) i+1 v i (α, τ )ϕ (k-i) k - 1 α + -1 τ -1 α v k - 1 u , τ ϕ ′ k (u)du.
We observe that k-1 i=0 (-1)

i+1 v i (α, τ )ϕ (k-i) k
-1 α is a polynomial in τ of degree less than or equal to k. We then note that

v k - 1 u , τ = k!u -2 τ k + k j=1 (-1) j k!k!(j + 1) (k -j)!(j)! u -2 τ k-j τ + 1 u j .
For simplicity, write

w k -1 u , τ = k j=1 (-1) j k!k!(j+1) (k-j)!(j)! u -2 τ k-j τ + 1 u j .
We then have:

1. w k (τ, τ ) = 0; 2. w k (α, τ
) is a polynomial in τ of degree less then or equal to k;

3. ∂w k (-1 u ,τ ) ∂u = -k j=1 (-1) j k!k!(j+1) (k-j)!(j)! τ k-j u -3 2 τ + 1 u j + ju -1 τ + 1 u j-1 ; 4. ∂w k (-1 u ,τ )
∂u u=-1 t can be written as t 2 w k+1,α (t, τ ), where w k+1,α (t, τ ) is a polynomial in t and τ of degree less than or equal to k + 1.

Therefore we have

-1 τ -1 α v k - 1 u , τ ϕ ′ k (u)du = k!τ k+2 ϕ k - 1 τ -k!α k ϕ k - 1 α -w k (α, τ )ϕ k - 1 α + τ α s k,α (t, τ ) + 2k!tτ k ϕ k - 1 t dt. Letting r k,α (τ ) = k-1 i=0 (-1) i+1 v i (α, τ )ϕ (k-i) k -1 α -k!α k ϕ k -1 α -w k (α, τ )ϕ k -1 α , and s k,α (t, τ ) = w k+1,α (t, τ ) + 2k!tτ k , gives the result.
Proof of Theorem 3.25. If follows from Equations (3.1.46) and (3.1.47) that for α ∈ H, and τ ∈ H, we have

ϕ k (τ ) = τ k+2 ϕ k - 1 τ - k C k τ Log(τ ) + P k,α (τ ) + τ α Q k,α (t, τ )ϕ k - 1 t dt, where P k,α (τ ) = 1 C k (p k,α (τ ) + q k,α (τ )) + 1 k! r k,α ( 
τ ) is a polynomial in τ of degree less than or equal to k + 1, and

Q k,α (t, τ ) = 1 k! s k,α (t, τ
) is a polynomial in t and τ of degree less than or equal to k + 1. This completes the proof of Theorem 3.25 3.1.7 Heuristic approach to Conjecture 1.5

We assume we can let α → 0. For x ∈ R + , letting τ → x, we get:

ϕ k (x) = x k+2 ϕ k - 1 x - k C k x log(x) + P k,0 (x) + x 0 Q k,0 (t, x)ϕ k - 1 t dt. (3.1.48)
We read the behaviour of F k,k+1 and G k,k+1 around 0 from this equation. In order to prove part (i) of Conjecture 1.5, we would find another functional equation for ϕ k in a similar way to the proof of Theorem 3.25. We would apply the modular property of E k with t ∈ H and γ = a b c d ∈ SL 2 (Z). Taking imaginary parts on both sides of Equation (3.1.48), we get

F k,k+1 (x) = x k+2 F k,k+1 - 1 x +D k x log(x)+P k (x)+ x 0 Q k (t, x)F k,k+1 - 1 t dt, (3.1.49)
where Q k (t, x) = Im(Q k,0 (t, x)), P k (x) = Im(P k,0 (x)), and

D k = (2i) k π k+1 B k k!
. Taking real parts on both sides of Equation (3.1.48), we get

G k,k+1 (x) = x k+2 G k,k+1 - 1 x + R k (x) + x 0 S k (t, x)G k,k+1 - 1 t dt, (3.1.50)
where S k (t, x) = Re(Q k,0 (t, x)) and R k+1 (x) = Re(P k,0 (x)).

Claim 3.31. Let x ∈ (0, 1)\Q. Assume that (3.1.48) holds.

1. We have:

F k,k+1 (x) = -x k+2 F k,k+1 (T (x)) + D k x log(x) + P k (x) - x 0 Q k (t, x)F k,k+1 (T (t))dt; G k,k+1 (x) = x k+2 G k,k+1 (T (x)) + R k (x) + x 0 S k (t, x)G k,k+1 (T (t))dt. (3.1.51)
2. For all n ∈ N, we have

F k,k+1 (x) =(-1) n+1 β n (x) k+2 F k,k+1 (T n+1 (x)) -D k n j=0 (-1) j β j-1 (x) k β j (x)γ j (x) + n j=0 (-1) j β j-1 (x) k+2 P k (T j (x)) + n j=0 (-1) j+1 β j-1 (x) k+2 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt; (3.1.52) G k,k+1 (x) =β n (x) k+2 G k,k+1 (T n+1 (x)) + n j=0 β j-1 (x) k+2 R k (T j (x)) + n j=0 β j-1 (x) k+2 T j (x) 0 S k (t, T j (x))G k,k+1 (T (t))dt.
3. Letting n → ∞, we have

F k,k+1 (x) = -D k ∞ j=0 (-1) j β j-1 (x) k β j (x)γ j (x) + ∞ j=0 (-1) j β j-1 (x) k+2 P k (T j (x)) + ∞ j=0 (-1) j+1 β j-1 (x) k+2 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt; (3.1.53) G k,k+1 (x) = ∞ j=0 β j-1 (x) k+2 R k (T j (x)) + ∞ j=0 β j-1 (x) k+2 T j (x) 0 S k (t, T j (x))G k,k+1 (T (t))dt.
Proof. Equations 3.1.51 follow from (3.1.49), (3.1.50) and the fact that

F k,k+1 -1 x = -F k,k+1 (T (x)) and G k,k+1 -1 x = G k,k+1 (T (x)
) for all x ∈ (0, 1) \ Q. Iterating the equations in (3.1.51) gives (3.1.52). Then we observe that (-1)

n+1 β n (x) k+2 F k,k+1 (T n+1 (x)) → 0 and β n (x) k+2 G k,k+1 (T n+1 (x)) → 0 as n → ∞. As the series ∞ j=0 D k (-1) j+1 β j-1 (x) k β j (x)γ j (x) + (-1) j β j-1 (x) k+2 P k (T j (x)) + (-1) j+1 β j-1 (x) k+2 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt , ∞ j=0 β j-1 (x) k+2 R k (T j (x)) + β j-1 (x) k+2 T j (x) 0 S k (t, T j (x))G k,k+1 (T (t))dt
converge absolutely, we obtain (3.1.53).

We then have Claim 3.32. Let x ∈ (0, 1) \ Q. For all j ∈ N we have that β j-1 (x) k β j (x)γ j (x) is differentiable at x and

(β j-1 (x) k β j (x)γ j (x)) ′ = (-1) j β j-1 (x) k+2 + (-1) j (k + 2)β j-1 (x) k-1 β j (x)γ j (x)q j-1 -(-1) j β j-1 (x) k-1 γ j (x).
We also have

∞ j=0 β j-1 (x) k+2 + (k + 2)β j-1 (x) k-1 β j (x)γ j (x)q j-1 -β j-1 (x) k-1 γ j (x) < ∞, if and only if ∞ j=0 log(q j+1 ) q k j < ∞.
Proof. The first part of the claim follows from Proposition 2.5. We obtain the second part by Proposition 2.3.

Claim 3.33. Let x ∈ (0, 1) \ Q. For all j ∈ N we have that β j-1 (x) k+2 P k (T j (x)) is differentiable at x and

(β j-1 (x) k+2 P k (T j (x))) ′ = (-1) j-1 (k + 2)β j-1 (x) k+1 q k-1 P k (T j (x)) + (-1) j β j-1 (x) k P ′ k (T j (x)),
where P ′ k (T j (x)) is the derivative of P k (y) with respect to y evaluated at T j (x). We also have that

∞ j=0 -(k + 2)β j-1 (x) k+1 q j-1 P k (T j (x)) + β j-1 (x) k P ′ k (T j (x)) < ∞,
for all x ∈ (0, 1)\Q.

Proof. The first part of the claim follows from Proposition 2.5 and the fact that P k is differentiable on R. We obtain the second part by Proposition 2.3 and the fact that |P k | and |P ′ k | are bounded on (0, 1).

Claim 3.34. For all j ∈ N we have that

β j-1 (x) k+2 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt is differentiable at x ∈ (0, 1) \ Q and β j-1 (x) k+2 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt ′ = (-1) j-1 (k + 2)β j-1 (x) k+1 q j-1 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt + (-1) j β j-1 (x) k p(j) 0 Q ′ k (t, T j (x))F k,k+1 (T (t))dt + (-1) j β j-1 (x) k Q k (t, T j (x))F k,k+1 (T j+1 (t)),
where

Q ′ k (t, T j (x)
) is the derivative of Q k (t, y) with respect to y evaluated at y = T j (x), and p(j) is the smaller endpoint of the interval I j (x).

We also have

∞ j=0 (k + 2)β j-1 (x) k+1 q j-1 T j (x) 0 Q k (t, T j (x))F k,k+1 (T (t))dt -β j-1 (x) k p(j) 0 Q ′ k (t, T j (x))F k,k+1 (T (t))dt -β j-1 (x) k Q k (t, T j (x))F k,k+1 (T j+1 (t)) < ∞,
for all x ∈ (0, 1)\Q.

Proof. The first part of the claim follows from Proposition 2.5, the Foundamental Theorem of Calculus and the fact that Q k (t, T j (x))F k,k+1 (T (t))dt is continuous on (p(j), T j (x)]. We obtain the second part by Proposition 2.3 and the fact that

|F k,k+1 |, |Q k | and |Q ′ k | are bounded on (0, 1).
Supposing that we can let α → 0 in (3.1.39). The individual terms in the two sums in (3.1.53) are differentiable at every x ∈ (0, 1) \ Q and the sums of the derivatives evaluated at x ∈ (0, 1) \ Q converge. Since we are dealing with infinite sums, we cannot say that the derivative of F k,k+1 (x) is the sum of derivatives from Claims 3.32-3.34 over j ∈ N. Formally, to prove Conjecture 1.5 (ii) and (iii), we would proceed as in Sections 3.1.4 and 3.1.5 first showing that we can let α → 0 in (3.1.39).

Modulus of continuity of F 2,3

Proof of Theorem 1.4

In this section, we prove Theorem 1.4. For the convenience of the reader, we recall it.

Theorem 1.4. For all x ∈ (0, 1) \ Q and all y ∈ (0, 1), we have

|F 2,3 (x) -F 2,3 (y)| ≤ C 1 |x -y| log 1 |x -y| + C 2 |x -y|, (1.2.1)
and

|G 2,3 (x) -G 2,3 (y)| ≤ C 3 |x -y| log 1 |x -y| + C 4 |x -y|, (1.2.2)
for some constants C 1 , C 2 , C 3 , C 4 dependent only on x.

Proof. Let x ∈ (0, 1) \ Q, let y ∈ (0, 1) and K y ∈ N such that y ∈ I Ky (x), and y / ∈ I Ky+1 (x). By Corollary 3.8, we have

|F 2,3 (x) -F 2,3 (y)| ≤ |F 2,3 (T Ky-1 (x))β Ky-2 (x) 4 -F 2,3 (T Ky-1 (y))β Ky-2 (y) 4 | + π 3 3 Ky-1 k=0 |u 1,k (x) -u 1,k (y)| + Ky-1 k=0 |u 2,k (x) -u 2,k (y)| + 6 Ky-1 k=0 |u 3,k (x) -u 3,k (y)|,
where u 1,k , u 2,k , u 3,k were defined in (3.1.22). We will consider each term separately.

Let N = ⌈ 1 |x-y| 2 ⌉. By the same arguments as in Lemma 3.11, we have

|F 2,3 (T Ky-1 (x))β Ky-2 (x) 4 -F 2,3 (T Ky-1 (y))β Ky-2 (y) 4 | ≤ |(F 2,3 (T Ky-1 (x)) -F 2,3 (T Ky-1 (y)))β Ky-2 (y) 4 | + |(β Ky-2 (x) 4 -β Ky-2 (y) 4 )F 2,3 (T Ky-1 (x))| ≤ β Ky-2 (y) 4 N n=1 σ 1 (n) n 3 | sin(2πnx) -sin(2πny)| + β Ky-2 (y) 4 ∞ n=N +1 σ 1 (n) n 3 | sin(2πnx) -sin(2πny)| + 4 F 2,3 ∞ |x -y| ≤ c 1 |x -y|q -2 Ky-1 log N + c 2 1 N 3/4 β Ky-2 (y) 4 + 4 F 2,3 ∞ |x -y| ≤ 2c 1 |x -y| log 1 |x -y| + (4 F 2,3 ∞ + c 2 )|x -y|, (3.2.1)
for some constants c 1 , c 2 independent of x and y.

We observe that u 1,k , u 2,k , u 3,k are continuous and differentiable on I k (x) for all k ≤ K y . Therefore, by the Mean Value Theorem, for each k there exists t k between x and y such that

Ky-1 k=0 |u 1,k (x) -u 1,k (y)| = Ky-1 k=0 |x -y||(4β k-1 (t k ) 2 β k (t k )q k-1 -β k-1 (t k ) 2 ) log(T k (t k )) -β k-1 (t k ) 2 | ≤ |x -y| 4(log(2) + 1) ∞ k=0 1 F k+1 + Ky-1 k=0 |β k-1 (t k ) 2 log(T k (t k ))| + ∞ k=0 1 F 2 k+1 .
Observe that for all k ≤ K y -1, we have q k 2q k+1 ≤ T k (t k ) ≤ 2q k q k+1 , and hence

1 4 T k (x) ≤ T k (t k ) ≤ 4T k (x). We then have Ky-1 k=0 |β k-1 (t k ) 2 log(T k (t k ))| ≤ Ky-1 k=0 1 q 2 k log 1 T k (t k ) ≤ Ky-1 k=0 1 q 2 k log 4 T k (x) ≤ log(4) ∞ k=0 1 F 2 k+1 + Ky-1 k=0 1 q 2 k log 2q k+1 q k ≤ log(8) ∞ k=0 1 F 2 k+1 + log(q Ky ) ∞ k=0 1 F 2 k+1 .
We note that y ∈ I Ky (x) implies that |x -y| ≤ |I Ky (x)| ≤ 1 q 2 Ky , and hence 2 log(q Ky ) ≤ log 1 |x-y| . We have

Ky-1 k=0 |u 1,k (x) -u 1,k (y)| ≤ c 3 |x -y| log 1 |x -y| + c 4 |x -y|, (3.2.2) with c 3 = 1 2 ∞ k=0 1 F 2 k+1 and c 4 = (log(16) + 5) ∞ k=0 1 F 2 k+1 .
By the Mean Value Theorem and the same arguments as in the proof of Lemma 3.15, for some t k between x and y we have

Ky-1 k=0 |u 2,k (x) -u 2,k (y)| = Ky-1 k=0 |x -y||(P (T k (t k ))) ′ β k-1 (t k ) 2 -4P (T k (t k ))β k-1 (t k ) 3 q k-1 | ≤ |x -y| Ky-1 k=0 P ′ ∞ 1 q 2 k + 4 Ky-1 k=0 P ∞ 1 q 2 k ≤ ( P ′ ∞ + 4 P ∞ )|x -y| ∞ k=0 1 F 2 k+1 , (3.2.3) since q k (x) = q k (t k ) for all k ≤ K y , for P ∞ = sup y∈(0,1) |P (y)| and P ′ ∞ = sup y∈(0,1) |P (y) ′ |.
By the Mean Value Theorem and the same arguments as in the proof of Lemma 3.17, for some t k between x and y we have

Ky-1 k=0 |u 3,k (x) -u 3,k (y)| = Ky-1 k=0 |x -y||β k (t k ) 2 T k (t k )F 2,3 (T k+1 (t k ))| + β k-1 (t k ) 2 p(k) 0 t 2 F 2,3 (T (t))dt + 4(-1) k+1 I k (t k )β k-1 (t k ) 4 k-1 j=0 (-1) j T j (t k ) β j (t k ) 2 ≤ |x -y| Ky-1 k=0 1 q 2 k+1 F 2,3 ∞ + Ky-1 k=0 1 q 2 k F 2,3 ∞ + 4 Ky-1 k=0 F 2,3 ∞ 1 q 2 k ≤ 6 F 2,3 ∞ |x -y| ∞ k=0 1 F 2 k+1 . (3.2.4) since q k (x) = q k (t k ) for all k ≤ K y .
The result follows from (3.2.1)-(3.2.4) by letting

C 1 = 2c 1 + π 3 6 ∞ k=0 1 F 2 k+1 and C 2 = 4 F 2,3 ∞ + c 2 + ( π 3 3 (log(16) + 5) + P ′ ∞ + 4 P ∞ + 36 F 2,3 ∞ ) ∞ k=0 1 F 2 k+1 .
As we can see, we can choose the constants C 1 , C 2 independent of x.

In the same way we show that for all x ∈ (0, 1) \ Q and all y ∈ (0, 1) we have

|G 2,3 (x) -G 2,3 (y)| ≤ C 3 |x -y| log 1 |x -y| + C 4 |x -y|,
for some constants C 3 , C 4 > 0, which depend on x. The proof follows from (3.1.37), the arguments in the proof of Lemma 3.21 and Lemmas 3.22-3.24

3.3 Differentiability of S 3,2 and T 3,2 Let Υ d,s (x) = ∞ n 1 =1 ... ∞ n d =1 e iπ(n 2 1 +...+n 2 d )x (n 2 1 + ... + n 2 d ) s ,
whose imaginary part is S d,s and real part is T d,s . We start by finding the functional equation for Υ 3,2 .

Functional equation for Υ 3,2

We have the following proposition.

Proposition 3.35. Let γ = a b c d ∈ Γ θ = 1 2 0 1 , 0 -1 1 0 ⊂ SL 2 (Z) with c = 0 and x ∈ R. We have Υ 3,2 (x) = ρ 3 γ (cx + d) 5/2 Υ 3,2 (γ • x) + 3π 2 8c 2 ρ 2 γ (cx + d)Log(cx + d) + Ã(cx + d) 2 + B(cx + d) 3/2 + C(cx + d) + D(cx + d) 1/2 + Ẽ + 3 2 ρ 2 γ ρ γ (cx + d) 5/2 -(cx + d) 3 (Υ 2,2 (γ • x) + Υ 1,2 (γ • x)) + 3 4 ρ γ (cx + d) 7/2 -ρ 2 γ (cx + d) 5/2 Υ 1,2 (γ • x) -ρ 3 γ x -d c 3c(ct + d) 3/2 + 3c 2 4 (t -x) (ct + d) 1/2 Υ 3,2 (γ • t) dt - 3c 2 ρ 2 γ x -d c 3ρ γ (ct + d) 3/2 -4(ct + d) 2 + t -x 3c 4 ρ γ (ct + d) 1/2 -2c(ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t)) dt - 3c 4 ρ γ x -d c 5(ct + d) 5/2 -3ρ 2 γ (ct + d) 3/2 + t -x 15c 4 (ct + d) 3/2 - 3c 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t) dt with à = π 2 16c 2 B = - π 2 2c 2 ρ γ C = - 3π 2 8c 2 ρ 2 γ - π 2 d 8c 2 + h γ c D = ρ 3 γ π 2 2c 2 Ẽ =Υ 3,2 - d c
where Log denotes the principal value of the complex logarithm, x 1/2 denote the principal value of the complex square root.

The proof of Proposition 3.35 is very technical, therefore we will split the calculations into various lemmas and claims. Firstly, we note that Υ 3,2 is differentiable in the upper-half plane, thus we have the following.

Claim 3.36. Let z ∈ H. We have

Υ ′ 3,2 (z) =iπ ∞ n=1 ∞ m=1 ∞ k=1 e iπ(n 2 +m 2 +k 2 )z n 2 + m 2 + k 2 = iπΥ 3,1 (z), (3.3.1) Υ ′′ 3,2 (z) = -π 2 ∞ n=1 ∞ m=1 ∞ k=1 e iπ(n 2 +m 2 +k 2 )z = - π 2 8 (θ(z) -1) 3 . (3.3.2)
We then find a functional equation for Υ ′ 3,2 , which will be useful later. Lemma 3.37. Let γ = a b c d ∈ Γ θ with c = 0 and τ, α ∈ H. We have

Υ ′ 3,2 (τ ) = Υ ′ 3,2 (α) + ρ 3 γ (cτ + d) 1/2 Υ ′ 3,2 (γ • τ ) -ρ 3 γ (cα + d) 1/2 Υ ′ 3,2 (γ • α) - cρ 3 γ 2 (cτ + d) 3/2 Υ 3,2 (γ • τ ) + cρ 3 γ 2 (cα + d) 3/2 Υ 3,2 (γ • α) + ρ 3 γ τ α 3c 2 4 (ct + d) 1/2 Υ 3,2 (γ • t) dt + 3π 2 8c ρ 2 γ Log(cτ + d) - 3π 2 8c ρ 2 γ Log(cα + d) - 3π 2i ρ 2 γ ρ γ (cτ + d) 1/2 -(cτ + d) (Υ 2,1 (γ • τ ) + Υ 1,1 (γ • τ )) + 3π 2i ρ 2 γ ρ γ (cα + d) 1/2 -(cα + d) (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) - 3 2 ρ 2 γ c 2 ρ γ (cτ + d) 3/2 -c(cτ + d) 2 (Υ 2,2 (γ • τ ) + Υ 1,2 (γ • τ )) + 3 2 ρ 2 γ c 2 ρ γ (cα + d) 3/2 -c(cα + d) 2 (Υ 2,2 (γ • α) + Υ 1,2 (γ • α)) + 3 2 ρ 2 γ τ α 3c 2 4 ρ γ (ct + d) 1/2 -2c 2 (ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t))dt - 3π 2 4c ρ γ (cτ + d) 1/2 + 3π 2 4c ρ γ (cα + d) 1/2 - 3π 4i ρ γ (cτ + d) 3/2 -ρ 2 γ (cτ + d) 1/2 Υ 1,1 (γ • τ ) + 3π 4i ρ γ (cα + d) 3/2 -ρ 2 γ (cα + d) 1/2 Υ 1,1 (γ • α) - 3 4 ρ γ 3c 2 (cτ + d) 5/2 - c 2 ρ 2 γ (cτ + d) 3/2 Υ 1,2 (γ • τ ) + 3 4 ρ γ 3c 2 (cα + d) 5/2 - c 2 ρ 2 γ (cα + d) 3/2 Υ 1,2 (γ • α) + 3 4 ρ γ τ α 15c 2 4 (ct + d) 3/2 - 3c 2 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t)dt + ρ 3 γ π 2 4c (cτ + d) -1/2 - ρ 3 γ π 2 4c (cα + d) -1/2 + π 2 8 τ - π 2 8 α. Proof. Let γ = a b c d ∈ Γ θ . Fix α ∈ H. We have Υ ′ 3,2 (x) = -π 2 τ i∞ θ(t) -1 2 3 dt = -π 2 α i∞ θ(t) -1 2 3 dt -π 2 τ α θ(t) -1 2 3 dt = Υ ′ 3,2 (α) - π 2 8 τ α (θ(t) -1) 3 dt.
Then by (2.2.2) the second term becomes

- π 2 8 τ α (θ(t) -1) 3 dt = - π 2 8 τ α ρ γ (ct + d) -1/2 θ (γ • t) -1 3 dt = ρ 3 γ τ α (ct + d) -3/2 Υ ′′ 3 (γ • t) dt - 3π 2 8 ρ 2 γ τ α ρ γ (ct + d) -3/2 -(ct + d) -1 θ (γ • t) 2 dt - 3π 2 8 ρ γ τ α (ct + d) -1/2 -ρ 2 γ (ct + d) -3/2 θ (γ • t) dt - π 2 8 τ α ρ 3 γ (ct + d) -3/2 -1 dt,
We evaluate each integral in turn. We have

ρ 3 γ τ α (ct + d) -3/2 Υ ′′ 3 (γ • t) dt = ρ 3 γ (cτ + d) 1/2 Υ ′ 3,2 (γ • τ ) -ρ 3 γ (cα + d) 1/2 Υ ′ 3,2 (γ • α) - cρ 3 γ 2 (cτ + d) 3/2 Υ 3,2 (γ • τ ) + cρ 3 γ 2 (cα + d) 3/2 Υ 3,2 (γ • α) + ρ 3 γ τ α 3c 2 4 (ct + d) 1/2 Υ 3,2 (γ • t) dt.
Also, using the substitution u = γ • t and integrating by parts, we have

- 3π 2 8 ρ 2 γ τ α ρ γ (ct + d) -3/2 -(ct + d) -1 θ (γ • t) 2 dt = 3π 2 4c ρ 3 γ (cτ + d) -1/2 + 3π 2 8c ρ 2 γ Log(cτ + d) - 3π 2 4c ρ 3 γ (cα + d) -1/2 - 3π 2 8c ρ 2 γ Log(cα + d) - 3π 2i ρ 2 γ ρ γ (cτ + d) 1/2 -(cτ + d) (Υ 2,1 (γ • τ ) + Υ 1,1 (γ • τ )) + 3π 2i ρ 2 γ ρ γ (cα + d) 1/2 -(cα + d) (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) - 3 2 ρ 2 γ c 2 ρ γ (cτ + d) 3/2 -c(cτ + d) 2 (Υ 2,2 (γ • τ ) + Υ 1,2 (γ • τ )) + 3 2 ρ 2 γ c 2 ρ γ (cα + d) 3/2 -c(cα + d) 2 (Υ 2,2 (γ • α) + Υ 1,2 (γ • α)) + 3 2 ρ 2 γ τ α 3c 2 4 ρ γ (ct + d) 1/2 -2c 2 (ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t))dt.
Again, using the substitution u = γ • t and integrating by parts, we obtain

- 3π 2 8 ρ γ τ α (ct + d) -1/2 -ρ 2 γ (ct + d) -3/2 θ (γ • t) dt = - 3π 2 4c ρ γ (cτ + d) 1/2 - 3π 2 4c ρ 3 γ (cτ + d) -1/2 + 3π 2 4c ρ γ (cα + d) 1/2 + 3π 2 4c ρ 3 γ (cα + d) -1/2 - 3π 4i ρ γ (cτ + d) 3/2 -ρ 2 γ (cτ + d) 1/2 Υ 1,1 (γ • τ ) + 3π 4i ρ γ (cα + d) 3/2 -ρ 2 γ (cα + d) 1/2 Υ 1,1 (γ • α) - 3 4 ρ γ 3c 2 (cτ + d) 5/2 - c 2 ρ 2 γ (cτ + d) 3/2 Υ 1,2 (γ • τ ) + 3 4 ρ γ 3c 2 (cα + d) 5/2 - c 2 ρ 2 γ (cα + d) 3/2 Υ 1,2 (γ • α) + 3 4 ρ γ τ α 15c 2 4 (ct + d) 3/2 - 3c 2 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t)dt.
Finally, we have

- π 2 8 τ α ρ 3 γ (ct + d) -3/2 -1 dt = ρ 3 γ π 2 4c (cτ + d) -1/2 - ρ 3 γ π 2 4c (cα + d) -1/2 + π 2 8 τ - π 2 8 α.
Summing up gives the result.

For γ = a b c d ∈ Γ θ define h γ : H → H by h γ (z) = Υ ′ 3,2 (z) -ρ 3 γ (cz + d) 1/2 Υ ′ 3,2 (γ • z) + cρ 3 γ 2 (cz + d) 3/2 Υ 3,2 (γ • z) + 3π 2 4c ρ γ (cz + d) 1/2 - π 2 4c ρ 3 γ (cz + d) -1/2 - 3π 2 8c ρ 2 γ Log(cz + d) - π 2 8 z + 3π 2i ρ 2 γ ρ γ (cz + d) 1/2 -(cz + d) (Υ 2,1 (γ • z) + Υ 1,1 (γ • z)) + 3 2 ρ 2 γ c 2 ρ γ (cz + d) 3/2 -c(cz + d) 2 (Υ 2,2 (γ • z) + Υ 1,2 (γ • z)) + 3π 4i ρ γ (cz + d) 3/2 -ρ 2 γ (cz + d) 1/2 Υ 1,1 (γ • z) + 3 4 ρ γ 3c 2 (cz + d) 5/2 - c 2 ρ 2 γ (cz + d) 3/2 Υ 1,2 (γ • z) -ρ 3 γ z -d c 3c 2 4 (ct + d) 1/2 Υ 3,2 (γ • t) dt - 3 2 ρ 2 γ z -d c 3c 2 4 ρ γ (ct + d) 1/2 -2c 2 (ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t))dt - 3 4 ρ γ z -d c 15c 2 4 (ct + d) 3/2 - 3c 2 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t)dt. (3.3.3) Since Υ 3,2 , Υ 2,2 , Υ 1,2 are bounded on C, the function h γ is well defined. Claim 3.38. For each γ ∈ Γ θ the function h γ is constant on H. Moreover, if γ 1 = a 1 b 1 c d , γ 2 = a 2 b 2 c d ∈ Γ θ , then h γ 1 = h γ 2 .
Proof. By Lemma 3.37, for all α, τ ∈ H we have h γ (α) = h γ (τ ). Therefore, it is a constant function on H. As seen in Section 2.2, ρ γ depends only on c and d. Moreover, Υ i,j is 2 periodic and by Remark 2.8 Υ i,j (γ 1 • z) = Υ i,j (γ 2 • z) for i ∈ {1, 2, 3} and j ∈ {1, 2}.

We can now prove Proposition 3.35. Proof of Proposition 3.35. Fix α ∈ H and γ = a b c d ∈ Γ θ with c = 0, let τ ∈ H. Integrating by parts we get

Υ 3,2 (τ ) =π 2 τ i∞ (t -τ ) θ(t) -1 2 3 dt =π 2 α i∞ (t -τ ) θ(t) -1 2 3 dt + π 2 τ α (t -τ ) θ(t) -1 2 3 dt =(τ -α)Υ ′ 3,2 (α) + Υ 3,2 (α) + π 2 τ α (t -τ ) θ(t) -1 2 3 dt. (3.3.4)
We apply (2.2.2) to the second term, we then obtain:

π 2 τ α (t -τ ) θ(t) -1 2 3 dt = π 2 8 τ α (t -τ ) ρ γ (ct + d) -1/2 θ (γ • t) -1 3 dt = -ρ 3 γ τ α (t -τ )(ct + d) -3/2 Υ ′′ 3,2 (γ • t) dt = 3π 2 8 ρ 2 γ τ α (t -τ ) ρ γ (ct + d) -3/2 -(ct + d) -1 θ (γ • t)) 2 dt + 3π 2 8 ρ γ τ α (t -τ ) (ct + d) -1/2 -ρ 2 γ (ct + d) -3/2 θ (γ • t) dt = π 2 8 τ α (t -τ ) ρ 3 γ (ct + d) -3/2 -1 dt. (3.3.5)
We evaluate each integral in turn. We have

-ρ 3 γ τ α (t -τ )(ct + d) -3/2 Υ ′′ 3,2 (γ • t)) dt = ρ 3 γ (α -τ ) (cα + d) 1/2 Υ ′ 3,2 (γ • α) + ρ 3 γ (cτ + d) 5/2 Υ 3,2 (γ • τ ) -ρ 3 γ (cα + d) 5/2 + c 2 (α -τ ) (cα + d) 3/2 Υ 3,2 (γ • α) -ρ 3 γ τ α 3c(ct + d) 3/2 + 3c 2 4 (t -τ ) (ct + d) 1/2 Υ 3,2 (γ • t) dt. (3.3.6)
Also, using the substitution u = γ • t and integrating by parts we get:

3π 2 8 ρ 2 γ τ α (t -τ ) ρ γ (ct + d) -3/2 -(ct + d) -1 θ (γ • t)) 2 dt = 3π 2 2c 2 ρ 3 γ (cτ + d) 1/2 + 3π 2 8c 2 ρ 2 γ (cτ + d)Log(cτ + d) - 3π 2 8c 2 ρ 2 γ (cτ + d) - 3π 2 4c 2 ρ 3 γ (cτ + d)(cα + d) -1/2 - 3π 2 8c 2 ρ 2 γ (cτ + d)Log(cα + d) - 3π 2 4c 2 ρ 3 γ (cα + d) 1/2 + 3π 2 8c 2 ρ 2 γ (cα + d) - 3π 2i ρ 2 γ (α -τ ) ρ γ (cα + d) 1/2 -(cα + d) (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) + 3 2 ρ 2 γ ρ γ (cτ + d) 5/2 -(cτ + d) 3 (Υ 2,2 (γ • τ ) + Υ 1,2 (γ • τ )) - 3 2 ρ 2 γ ρ γ (cα + d) 5/2 -(cα + d) 3 + (α -τ ) c 2 ρ γ (cα + d) 3/2 -c(cα + d) 2 • (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) - 3c 2 ρ 2 γ τ α 3ρ γ (ct + d) 3/2 -4(ct + d) 2 + t -τ 3c 4 ρ γ (ct + d) 1/2 -2c(ct + d) • (Υ 2,2 (γ • t) + Υ 1,2 (γ • t)) dt. (3.3.7)
Again, using the substitution u = γ • t and integrating by parts we get:

3π 2 8 ρ γ τ α (t -τ ) (ct + d) -1/2 -ρ 2 γ (ct + d) -3/2 θ (γ • t)) dt = - π 2 2c 2 ρ γ (cτ + d) 3/2 - 3π 2 2c 2 ρ 3 γ (cτ + d) 1/2 - π 2 4c 2 ρ γ (cα + d) 3/2 + 3π 2 4c 2 ρ 3 γ (cα + d) 1/2 + 3π 2 4c 2 ρ γ (cτ + d)(cα + d) 1/2 + 3π 2 4c 2 (cτ + d)ρ 3 γ (cα + d) -1/2 - 3π 4i ρ γ (α -τ ) (cα + d) 3/2 -ρ 2 γ (cα + d) 1/2 Υ 1,1 (γ • α) + 3 4 ρ γ (cτ + d) 7/2 -ρ 2 γ (cτ + d) 5/2 Υ 1,2 (γ • τ ) - 3 4 ρ γ (cα + d) 7/2 -ρ 2 γ (cα + d) 5/2 + (α -τ ) 3c 2 (cα + d) 5/2 - c 2 ρ 2 γ (cα + d) 3/2 • Υ 1,2 (γ • α) - 3c 4 ρ γ τ α 5(ct + d) 5/2 -3ρ 2 γ (ct + d) 3/2 + t -τ 15c 4 (ct + d) 3/2 - 3c 4 ρ 2 γ (ct + d) 1/2 • Υ 1,2 (γ • t) dt. (3.3.8) Finally, π 2 8 τ α (t -τ ) ρ 3 γ (ct + d) -3/2 -1 dt = ρ 3 γ π 2 2c 2 (cτ + d) 1/2 - ρ 3 γ π 2 4c 2 (cα + d) 1/2 - ρ 3 γ π 2 4c 2 (cτ + d)(cα + d) -1/2 + π 2 16 τ 2 + π 2 16 α 2 - π 2 8 τ α. (3.3.9)
Substituting (3.3.5)-(3.3.9) into (3.3.4) and gathering the terms, we get

Υ 3,2 (τ ) = ρ 3 γ (cτ + d) 5/2 Υ 3,2 (γ • τ ) + 3π 2 8c 2 ρ 2 γ (cτ + d)Log(cτ + d) + Aτ 2 + B(cτ + d) 3/2 + C(cτ + d) + F τ + D(cτ + d) 1/2 + E + 3 2 ρ 2 γ ρ γ (cτ + d) 5/2 -(cτ + d) 3 (Υ 2,2 (γ • τ ) + Υ 1,2 (γ • τ )) + 3 4 ρ γ (cτ + d) 7/2 -ρ 2 γ (cτ + d) 5/2 Υ 1,2 (γ • τ ) -ρ 3 γ τ α 3c(ct + d) 3/2 + 3c 2 4 (t -τ ) (ct + d) 1/2 Υ 3,2 (γ • t) dt - 3c 2 ρ 2 γ τ α 3ρ γ (ct + d) 3/2 -4(ct + d) 2 + t -τ 3c 4 ρ γ (ct + d) 1/2 -2c(ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t)) dt - 3c 4 ρ γ τ α 5(ct + d) 5/2 -3ρ 2 γ (ct + d) 3/2 + t -τ 15c 4 (ct + d) 3/2 - 3c 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t) dt with A = π 2 16 B = - π 2 2c 2 ρ γ C = - 3π 2 8c 2 ρ 2 γ + 3π 2 4c 2 ρ γ (cα + d) 1/2 - 3π 2 8c 2 ρ 2 γ Log(cα + d) - π 2 4c 2 ρ 3 γ (cα + d) -1/2 F =ρ 3 γ c 2 (cα + d) 3/2 Υ 3,2 (γ • α) + Υ ′ 3,2 (α) -ρ 3 γ (cα + d) 1/2 Υ ′ 3,2 (γ • α) - π 2 8 τ α + 3π 2i ρ 2 γ ρ γ (cα + d) 1/2 -(cα + d) (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) + 3 2 ρ 2 γ c 2 ρ γ (cα + d) 3/2 -c(cα + d) 2 (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) + 3π 4i ρ γ (cα + d) 3/2 -ρ 2 γ (cα + d) 1/2 Υ 1,1 (γ • α) + 3 4 ρ γ 3c 2 (cα + d) 5/2 - c 2 ρ 2 γ (cα + d) 3/2 Υ 1,2 (γ • α) =h γ + ρ 3 γ π 2 4c (cα + d) -1/2 - 3π 2 4c ρ γ (cα + d) 1/2 + 3π 2 8c ρ 2 γ Log(cα + d) + ρ 3 γ α -d c 3c 2 4 (ct + d) 1/2 Υ 3,2 (γ • t) dt + 3 2 ρ 2 γ α -d c 3c 2 4 ρ γ (ct + d) 1/2 -2c 2 (ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t))dt + 3 4 ρ γ α -d c 15c 2 4 (ct + d) 3/2 - 3c 2 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t)dt by Lemma 3.37 D = ρ 3 γ π 2 2c 2 E =Υ 3,2 (α) -ρ 3 γ (cα + d) 5/2 + c 2 α(cα + d) 3/2 Υ 3,2 (γ • α) -αΥ ′ 3,2 (α) + ρ 3 γ α(cα + d) 1/2 Υ ′ 3,2 (γ • α) + π 2 16 α 2 - π 2 4c 2 ρ γ (cα + d) 3/2 + 3π 2 8c 2 ρ 2 γ (cα + d) - ρ 3 γ π 2 4c 2 (cα + d) 1/2 - 3π 2i ρ 2 γ α ρ γ (cα + d) 1/2 -(cα + d) (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) - 3 2 ρ 2 γ ρ γ (cα + d) 5/2 -(cα + d) 3 + α c 2 ρ γ (cα + d) 3/2 -c(cα + d) 2 • (Υ 2,1 (γ • α) + Υ 1,1 (γ • α)) - 3π 4i ρ γ α (cα + d) 3/2 -ρ 2 γ (cα + d) 1/2 Υ 1,1 (γ • α) - 3 4 ρ γ (cα + d) 7/2 -ρ 2 γ (cα + d) 5/2 + α 3c 2 (cα + d) 5/2 - c 2 ρ 2 γ (cα + d) 3/2 Υ 1,2 (γ • α) =Υ 3,2 (α) -ρ 3 γ (cα + d) 5/2 Υ 3,2 (γ • α) - π 2 16 α 2 - π 2 4c 2 ρ γ (cα + d) 3/2 -αh γ + 3π 2 8c 2 ρ 2 γ (cα + d) - π 2 4c 2 ρ 3 γ (cα + d) 1/2 + α 3π 2 4c ρ γ (cα + d) 1/2 -α ρ 3 γ π 2 4c (cα + d) -1/2 -α 3π 2 8c ρ 2 γ Log(cα + d) - 3 2 ρ 2 γ ρ γ (cα + d) 5/2 -(cα + d) 3 (Υ 2,2 (γ • α) + Υ 1,2 (γ • α) - 3 4 ρ γ (cα + d) 7/2 -ρ 2 γ (cα + d) 5/2 Υ 1,2 (γ • α) -αρ 3 γ α -d c 3c 2 4 (ct + d) 1/2 Υ 3,2 (γ • t) dt -α 3 2 ρ 2 γ α -d c 3c 2 4 ρ γ (ct + d) 1/2 -2c 2 (ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t))dt -α 3 4 ρ γ α -d c 15c 2 4 (ct + d) 3/2 - 3c 2 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t)dt by Lemma 3.37.
Rearranging gives

Υ 3,2 (τ ) = ρ 3 γ (cτ + d) 5/2 Υ 3,2 (γ • τ ) + 3π 2 8c 2 ρ 2 γ (cτ + d)Log(cτ + d) + Ã(cτ + d) 2 + B(cτ + d) 3/2 + C(cτ + d) + D(cτ + d) 1/2 + Ẽ + 3 2 ρ 2 γ ρ γ (cτ + d) 5/2 -(cτ + d) 3 (Υ 2,2 (γ • τ ) + Υ 1,2 (γ • τ )) + 3 4 ρ γ (cτ + d) 7/2 -ρ 2 γ (cτ + d) 5/2 Υ 1,2 (γ • τ ) -ρ 3 γ τ α 3c(ct + d) 3/2 + 3c 2 4 (t -τ ) (ct + d) 1/2 Υ 3,2 (γ • t) dt - 3c 2 ρ 2 γ τ α 3ρ γ (ct + d) 3/2 -4(ct + d) 2 + t -τ 3c 4 ρ γ (ct + d) 1/2 -2c(ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t)) dt - 3c 4 ρ γ τ α 5(ct + d) 5/2 -3ρ 2 γ (ct + d) 3/2 + t -τ 15c 4 (ct + d) 3/2 - 3c 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t) dt (3.3.10) with à = π 2 16 B = - π 2 2c 2 ρ γ C = - 3π 2 8c 2 ρ 2 γ - π 2 d 8c 2 + h γ c + ρ 3 γ α -d c 3c 2 4 (ct + d) 1/2 η 3,2 (γ • t) dt + 3 2 ρ 2 γ α -d c 3c 2 4 ρ γ (ct + d) 1/2 -2c 2 (ct + d) (η 2,2 (γ • t) + η 1,2 (γ • t))dt + 3 4 ρ γ α -d c 15c 2 4 (ct + d) 3/2 - 3c 2 4 ρ 2 γ (ct + d) 1/2 η 1,2 (γ • t)dt D = ρ 3 γ π 2 2c 2 Ẽ =η 3,2 (α) -ρ 3 γ (cα + d) 5/2 η 3,2 (γ • α) - π 2 16c 2 (cα + d) 2 -(cα + d)h γ + 3π 2 8c 2 ρ 2 γ (cα + d) - π 2 2c 2 ρ 3 γ (cα + d) 1/2 - 3π 2 8c ρ 2 γ (cα + d)Log(cα + d) - 3 2 ρ 2 γ ρ γ (cα + d) 5/2 -(cα + d) 3 (η 2,2 (γ • α) + η 1,2 (γ • α)) - 3 4 ρ γ (cα + d) 7/2 -ρ 2 γ (cα + d) 5/2 η 1,2 (γ • α) -(cα + d)ρ 3 γ α -d c 3c 4 (ct + d) 1/2 η 3,2 (γ • t) dt -(cα + d) 3 2 ρ 2 γ α -d c 3c 4 ρ γ (ct + d) 1/2 -2c(ct + d) (η 2,2 (γ • t) + η 1,2 (γ • t))dt -(cα + d) 3 4 ρ γ α -d c 15c 4 (ct + d) 3/2 - 3c 4 ρ 2 γ (ct + d) 1/2 η 1,2 (γ • t)dt.
Then we observe that if we let α → -d c , Equation 3.3.10 is well defined. Letting τ → x ∈ R gives the result.

Proof of Theorems 1.12 and 1.13

In this section, we prove Theorems 1.12 and 1.13. For the convenience of the reader, we recall them and then prove them simultaneously.

Theorem 1.12. Neither S 3,2 nor T 3,2 is differentiable at 0. Theorem 1.13. The functions S 3,2 and T 3,2 are not differentiable at any rational point p q such that p and q are not both odd. However, if p ∈ 4Z + 3, then S 3,2 is right differentiable, and if p ∈ 4Z + 1, then S 3,2 is left differentiable at p q .

Proof. Let p q ∈ Q, p, q coprime and not both odd, if x = 0, then let q = 1, p = 0. Since p q belongs to Γ θ -orbit of 0 (see for example [START_REF] Duistermaat | Self-similarity of "Riemann's nondifferentiable function[END_REF]), we can choose γ = a b q -p ∈ Γ θ . We note that by the definition of ρ γ , Remark 2.8 and Claim 3.38 the choice of γ does not matter.

As |Υ 3,2 |, |Υ 2,2 |, |Υ 1,2 | are bounded, Proposition 3.35 implies that Υ 3,2 (x) = Υ 3,2 p q + ρ 3 γ π 2 2q 2 (qx -p) 1/2 + 3π 2 8q 2 ρ 2 γ (qx -p)Log(qx -p) + - 3π 2 8q 2 ρ 2 γ + π 2 p 8q 2 + h γ q (qx -p) + O((qx -p) 3/2 ) (3.3.11)
as x → p q . We take the imaginary part of both sides of Equation (3.3.11), and we obtain that as x → p q + we have

S 3,2 (x) = S 3,2 p q + Im(ρ 3 γ )π 2 2q 2 (qx -p) 1/2 + 3π 2 8q 2 Im(ρ 2 γ )(qx -p) log(qx -p) + - 3π 2 8q 2 Im(ρ 2 γ ) + Im(h γ ) q (qx -p) + O((qx -p) 3/2
), (3.3.12) and as x → p q -we have

S 3,2 (x) = S 3,2 p q + Re(ρ 3 γ )π 2 2q 2 |qx -p| 1/2 + 3π 2 8q 2 Im(ρ 2 γ )(qx -p) log |qx -p| + - 3π 2 8q 2 Im(ρ 2 γ ) + Im(h γ ) q + 3π 2 8q 2 Re(ρ 2 γ ) (qx -p) + O(|qx -p| 3/2 ). (3.3.13)
By definition of ρ γ , Im(ρ 3 γ ) and Im(ρ 2 γ ) are both 0, if p ∈ 4Z + 3, but then Re(ρ 3 γ ) and Im(ρ 2 γ ) are not both 0 (see Remark 2.7); therefore we deduce from (3.3.12) and (3.3.13) that S 3,2 is not differentiable at any p q with p, q not both odd. However, if p ∈ 4Z + 3 then Im(ρ 3 γ ) and Im(ρ 2 γ ) are both 0 and (3.3.12) implies that S 3,2 is right differentiable at p q . On the other hand, if p ∈ 4Z + 1, then Re(ρ 3 γ ) and Im(ρ 2 γ ) are both 0 and (3.3.13) implies that S 3,2 is left differentiable at p q .

We take the real part of both sides of Equation (3.3.11), and we obtain that as x → p q + we have

T 3,2 (x) = T 3,2 p q + Re(ρ 3 γ )π 2 2q 2 (qx -p) 1/2 + 3π 2 8q 2 Re(ρ 2 γ )(qx -p) log(qx -p) + - 3π 2 8q 2 Re(ρ 2 γ ) + π 2 p 8q 2 + Re(h γ ) q (qx -p) + O((qx -p) 3/2 ). (3.3.14)
Since Re(ρ 3 γ ) and Re(ρ 2 γ ) cannot be both 0, we conclude from (3.3.14) that T 3,2 is not differentiable at p q with p, q not both odd. Also x → p q -we have

T 3,2 (x) = T 3,2 p q - Im(ρ 3 γ )π 2 2q 2 |qx -p| 1/2 + 3π 2 8q 2 Re(ρ 2 γ )(qx -p) log |qx -p| + - 3π 2 8q 2 Re(ρ 2 γ ) + π 2 p 8q 2 + Re(h γ ) q - 3π 2 8q 2 Im(ρ 2 γ ) (qx -p) + O(|qx -p| 3/2 ). (3.3.15)
Since Im(ρ 3 γ ) and Re(ρ 2 γ ) cannot be both 0, we conclude from (3.3.15) that T 3,2 is neither left nor right differentiable at p q . This completes the proof of the Theorems.

Proof of Theorem 1.14

In this section, we prove Theorem 1.14. For the convenience of the reader, we recall it.

Theorem 1.14. Let x ∈ R \ Q such that µ e (x) > 4. Then neither S 3,2 nor T 3,2 is differentiable at x.

Proof. We will prove the case of T 3,2 , the case of S 3,2 is done in a very similar way. Let x ∈ R \ Q, such that there exists an infinite subsequence of continued fraction approximations of x,

pn k qn k k
, with p n k , q n k are not both odd and x -

pn k qn k ≤ 1 q 4 n k
. For each

pn k qn k , let γ k ∈ Γ θ , such that γ k pn k qn k = ∞.
Because of Claim 3.38 and the definition of ρ γ we conclude that the choice of γ k does not matter.

For brevity, let

η γ (z) = ρ 3 γ (cz + d) 5/2 Υ 3,2 (γ • z) + π 2 16c 2 (cz + d) 2 - π 2 2c 2 ρ γ (cz + d) 3/2 + 3 2 ρ 2 γ ρ γ (cz + d) 5/2 -(cz + d) 3 (Υ 2,2 (γ • z) + Υ 1,2 (γ • z)) + 3 4 ρ γ (cz + d) 7/2 -ρ 2 γ (cz + d) 5/2 Υ 1,2 (γ • z) -ρ 3 γ z -d c 3c(ct + d) 3/2 + 3c 2 4 (t -z) (ct + d) 1/2 Υ 3,2 (γ • t) dt - 3c 2 ρ 2 γ z -d c 3ρ γ (ct + d) 3/2 -4(ct + d) 2 + t -z 3c 4 ρ γ (ct + d) 1/2 -2c(ct + d) (Υ 2,2 (γ • t) + Υ 1,2 (γ • t)) dt - 3c 4 ρ γ z -d c 5(ct + d) 5/2 -3ρ 2 γ (ct + d) 3/2 + t -z 15c 4 (ct + d) 3/2 - 3c 4 ρ 2 γ (ct + d) 1/2 Υ 1,2 (γ • t) dt.
We observe that η γ -d c = 0. With this notation, by Proposition 3.35 we have

Υ 3,2 (x) = 3π 2 8c 2 ρ 2 γ (cx + d)Log(cx + d) + - 3π 2 8c 2 ρ 2 γ - π 2 d 8c 2 + h γ c (cx + d) + ρ 3 γ π 2 2c 2 (cx + d) 1/2 + Υ 3,2 - d c + η γ (x). (3.3.16)
Then for all z ∈ R we have

|η γ (z)| ≤Υ 3,2 (0)|cz + d| 5/2 + π 2 16c 2 |cz + d| 2 + π 2 2c 2 |cz + d| 3/2 + 3 2 Υ 2,2 (0) |cz + d| 5/2 + |cz + d| 3 + 3 4 Υ 1,2 (0) |cz + d| 7/2 + 3|cz + d| 5/2 + 2|cz + d| 3 + 15|c| 4 Υ 3,2 (0) z -d c |ct + d| 3/2 dt + 3|c| 4 Υ 3,2 (0)|cz + d| z -d c |ct + d| 1/2 dt + 3|c| 2 (Υ 2,2 (0) + Υ 1,2 (0)) z -d c 6|ct + d| 2 + 15 4 |ct + d| 3/2 dt + 3|c| 2 (Υ 2,2 (0) + Υ 1,2 (0))|cz + d| z -d c 3 4 |ct + d| 1/2 + 2|ct + d| dt + 15|c| 16 Υ 1,2 (0) z -d c 7|ct + d| 5/2 + 3|ct + d| 3/2 dt + 9|c| 16 Υ 1,2 (0)|cz + d| z -d c 5|ct + d| 3/2 + |ct + d| 1/2 dt ≤|cz + d| 3/2 Υ 3,2 (0)|cz + d| + π 2 16c 2 |cz + d| 1/2 + π 2 2c 2 + 3 2 Υ 2,2 (0) |cz + d| + |cz + d| 3/2 + 3 4 Υ 1,2 (0) |cz + d| 2 + 3|cz + d| + 2|cz + d| 3/2 +2Υ 3,2 (0)|cz + d| + 3 2 (Υ 2,2 (0) + Υ 1,2 (0)) 3|cz + d| 3/2 + 2|cz + d| + 3 2 Υ 1,2 (0) 2|ct + d| 2 + |ct + d| .
Assume that |cz + d| < 1, then we have

|η γ (z)| ≤ c 1 |cz + d| 3/2 , (3.3.17)
for a constant c 1 ∈ R.

Then we let y be such that:

1. |q n k y -p n k | < 1; 2. if m pn k qn k = 2 mod 4, then y < pn k qn k , if m pn k qn k
= 0 mod 4, then we will consider

y > pn k qn k (this ensures that Re(ρ 3 γ k (q n k y -p n k ) 1/2 ) = 0); 3. y - p n k q n k = a x - p n k q n k (3.3.18)
for some constant a that will be described below.

Taking the real part of (3.3.16) we get

T 3,2 (y) -T 3,2 p n k q n k = 3π 2 8q 2 n k Re(ρ 2 γ k (q n k y -p n k ) log |q n k y -p n k )| + - 3π 2 8q 2 n k Re(ρ 2 γ k ) - -π 2 p n k 8q 2 n k + Re(h γ k ) q n k (q n k y -p n k ) + Re π 2 ρ 3 γ k 2q 2 n k (q n k y -p n k ) 1/2 + Re(η(y)) ≥ π 2 2 √ 2q 2 n k |q n k y -p n k | 1/2 - 3π 2 8q 2 n k |q n k y -p n k | log 1 |q n k y -p n k | - 3π 2 8q n k + π 2 p n k 8q n k + |h γ k | + 3π 3 8q n k 1 q n k |q n k y -p n k | -c 1 |q n k y -p n k | 3/2 .
We now consider |h γ k |. As it is a constant which depends on the pole of γ k , we can estimate its size using (3.3.3) with z =

pn k qn k + i q α n k . Then Im(z) = 1 q α n k
, and Im(γ

k • z) = 1 q 2-α n k . Let z ∈ H. We first note that Υ 2,1 (z) = ∞ ℓ=1 R 2 (ℓ)
ℓ e iπℓz , where R 2 (ℓ) is the number of ways of writing ℓ as a sum of two squares where zeros are not allowed and the order matters. We have R 2 (ℓ) ≤ r 2 (ℓ), where r 2 (ℓ) is the well-known sum of squares function, namely the number of ways of writing ℓ as a sum of two squares where zeros are allowed and the order and the sign matters. We have that r 2 (ℓ) = d|ℓ d odd (-1) (d-1)/2 , see for example [START_REF] Berndt | Number Theory in the Spirit of Ramanujan[END_REF]p. 56]. It follows that R 2 (ℓ) = o(ℓ ε ) for all ε > 0, therefore we conclude that |Υ 2,1 (z)| ≤ c 4 Im(z) , for some constant c 2 > 0 for all z ∈ H. This bound is not optimal, nonetheless because of estimation of |Υ ′ 3,2 (z)| which we will see in the next paragraph, it is sufficient in our case.

Also, Υ ′ 3,2 (z) = 1 π Υ 3,1 (z) = 1 π ∞ ℓ=1 R 3 (ℓ)
ℓ e iπℓz , where R 3 (ℓ) the sum of squares function, that is the number of ways of writing ℓ as a sum of three squares where zeros are not allowed and the order matters. We have

R 3 (ℓ) ≤ ℓ n=1 r 2 (n) = πℓ + O(ℓ 1/2 ) = O(ℓ), see [Har99, p. 67]. Therefore |Υ ′ 3,2 (z)| ≤ c 3 ∞ ℓ=1 e -Im(z)πℓ ≤ c 4 Im(z)
, for some constant c 4 > 0 for all z ∈ H.

Therefore, we have

|h γ k (z)| ≤ 9 4 Υ 1,2 (0)q 7/2-5/2α n k + c 4 + 3πc 4 2 + 3Υ 2,2 (0) + 3Υ 1,2 (0) q 3-2α n k + 3πc 2 2 + Υ 3,2 (0) + 3 2 Υ 2,2 (0) + 9 4 Υ 1,2 (0) q 5/2-3/2α n k + 3π 4 Υ 1,1 (0)q 3/2-3/2α n k + 3π 2 Υ 1,1 (0)q 1-α n k + 9π 4 Υ 1,1 (0)q 1/2-1/2α n k + c 4 q α n k + 3π 2 4 q -1/2-1/2α n k + π 2 4 q -3/2+1/2α n k + 3π 2 |1 -α| 8q n k log(q n k ) + π 2 8 z.
If we let α = 1, noting that |z| is bounded, we get

|h γ k (z)| ≤ c 5 q n k ,
for some constant c 5 independent of k and z. It follows that 3π 2

8qn k + π 2 pn k 8qn k + |h γ k | + 3π 3 8qn k ≤ c 6 q n k
, for some constant c 6 . Also observing that if t > 1, then log(t) ≤ 4t 1/4 we have

T 3,2 (y) -T 3,2 p n k q n k ≥ π 2 2 √ 2q 2 n k |q n k y -p n k | 1/2 - 3π 2 2q 2 n k |q n k y -p n k | 3/4 -c 6 |q n k y -p n k | -c 1 |q n k y -p n k | 3/2 .
By the choice of y we have

T 3,2 (y) -T 3,2 p n k q n k ≥ π 2 2 √ 2q 2 n k a 1/2 |q n k x -p n k | 1/2 - 3π 2 2q 2 n k a 3/4 |q n k x -p n k | 3/4 -c 6 a|q n k x -p n k | -c 1 a 3/2 |q n k x -p n k | 3/2 = a 1/2 q 2 n k |q n k x -p n k | 1/2 π 2 2 √ 2 - 3π 2 2 |a 1/4 q n k x -p n k | 1/4 -c 6 a 1/2 q 2 n k |q n k x -p n k | 1/2 -c 1 q 2 n k a|q n k x -p n k | ≥ a 1/2 q 2 n k |q n k x -p n k | 1/2 π 2 2 √ 2 - 3π 2 2 a 1/4 -c 6 a 1/2 -c 1 a . Now if we choose a > 0 such that π 2 2 √ 2 -3π 2 2 a 1/4 -c 6 a 1/2 -c 1 a > 0, we have T 3,2 (y) -T 3,2 p n k q n k ≥ b q 2 n k |q n k x -p n k | 1/2 ,
for some constant b > 0, which is independent of k.

If T 3,2 (x) -T 3,2

pn k qn k ≤ |T 3,2 (x) -T 3,2 (y)|, then let x k = y, otherwise let x k = pn k qn k .
In either case T 3,2 (y) -T 3,2

pn k qn k ≤ 2 |T 3,2 (x) -T 3,2 (x k )|, and 
|T 3,2 (x) -T 3,2 (x k )| ≥ C 1 q 2 n k |q n k x -p n k | 1/2 , with C 1 = b 2 . Then we observe that |x -x k | ≤ C 2 x - p n k q n k ,
with C 2 = a + 1.We then have

|T 3,2 (x) -T 3,2 (x k )| |x -x k | ≥ C 1 q 2 n k |q n k x -p n k | 1/2 |x -x k | ≥ C 1 C 2 q 3/2 n k x - pn k qn k 1/2 ≥ C 1 C 2 q 1/2 n k → ∞,
as k → ∞. This completes the proof of the the Theorem.

Chapter 4

Jaffard's method

In this chapter we describe the relationship between wavelets and regularity, and we apply this method to M k,s , N k,s , S d,s and T d,s series. The first two sections correspond to the paper [START_REF] Petrykiewicz | Hölder regularity of arithmetic Fourier series arising from modular forms[END_REF].

Wavelet transform and regularity

For background information about wavelets, we refer the reader to the book by Ingrid Daubechies, "Ten Lectures on Wavelets" [Dau92], chapter 2 is especially relevant for this chapter.

We define the transform of an L ∞ function f with respect to the wavelet ψ ∈ L 1 (R) as follows:

C(a, b)(f ) = 1 a R f (t)ψ t -b a dt,
where ψ denotes the complex conjugate of ψ, a > 0, and b ∈ R. On the other hand, we can reconstruct the function from its wavelet transform, using the formula:

f (t) = ∞ 0 da a 2 R g t -b a C(a, b)(f )db,
where g is a reconstruction wavelet, i.e. g satisfies the following: a) da a = 1; It is not unique, but in some cases we can have g = ψ, see [START_REF] Holschneider | Pointwise analysis of Riemann's "nondifferentiable" function[END_REF]p.160]. In the last 20 years, it has been established that wavelets, which originate from applied mathematics, can be very useful in the analysis of pointwise regularity. Apart from the paper by Holschneider and Tchmitchian [START_REF] Holschneider | Pointwise analysis of Riemann's "nondifferentiable" function[END_REF], we should mention monographs by Stéphane Jaffard and Yves Meyer [START_REF] Jaffard | Wavelet methods for pointwise regularity and local oscillations of functions[END_REF], [START_REF] Meyer | Wavelets, Vibrations and Scaling, volume 9 of CRM Monograph Series[END_REF] in which they describe in detail the connection between wavelets and regularity. Also Oppenheim in his thesis [START_REF] Oppenheim | Ondelettes et multifractals : application à une fonction de Riemann en dimension 2[END_REF] applied wavelet theory in his study of regularity of a two-dimensional analogue of Riemann series (1.1.1).

a) a -1 ψ(a) g(a) ∈ L 1 (R); b) ∞ 0 ψ(a) g(a) da a = 1; c) ∞ 0 ψ(-a) g(-
We will denote the Fourier Transform of a function g by g(ξ) = R g(x)e -ixξ dx. We now recall Proposition 1 from [START_REF] Jaffard | Local behavior of Riemann's function[END_REF].
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Then we calculate the Fourier transform of ψ s . Lemma 4.2. For s > 1, we have

ψ s (ξ) = e -iπ(s+1) ξ s c(s + 1)e -ξ if ξ > 0, 0 if ξ < 0.
Proof. By definition of the Fourier Transform, we have

ψ s (ξ) = R e -ixξ (x + i) s+1 dx = e -iπ(s+1) ξ s R e it (t-iξ) s+1 dt if ξ > 0, -e iπ(s+1) ξ s R e it (t-iξ) s+1 dt if ξ < 0.
We conclude by Lemma 4.1.

• Assumption 2 Lemma 4.3. For s > 1 and α < s, we have

R ψ s (x)dx = R xψ s (x)dx = ... = R x m ψ s (x)dx = 0, with m = [α].
Proof. Set ψ s (0) = 0. Since s > 0, by Lemma 4.2 ψ s is a continuous function. Then for all n < s, we have

ψ (n) s (ξ) = R (-ix) n e -ixξ (x + i) s+1 dx = c(n, s)(ξ s e -ξ ) (n) if Im(iξ) ≥ 0, 0 if Im(iξ) ≤ 0,
for some constant c(n, s). In particular, the function is 0 at ξ = 0. As α < s, it follows that for all n ≤ m, we have R x n (x + i) s+1 dx = 0.

• Assumption 3

See Lemma 4.2.

• Assumption 4

Lemma 4.4. We have

∞ 0 | ψ s (ξ)| 2 dξ ξ < ∞. Proof. By Lemma 4.2 we have ∞ 0 | ψ s (ξ)| 2 dξ ξ = | c(s + 1)| 2 ∞ 0 ξ 2s-1 e -2ξ dξ = | c(s + 1)| 2 2 -2s Γ(2s) < ∞.
We have shown that ψ s fulfils the assumptions 2-4 of Proposition J.

Proof of Lemma 4.1

In this section we present the proof of Lemma 4.1. In fact, we will prove something stronger, namely, we will show that the formula is true for all ρ > 0. First we observe, that if ρ > 1, then the integral

∞ -∞ e it
(t-z) ρ dt converges in the sense of Lebesgue. Otherwise, the integral is a convergent generalised Riemann integral. We divide the proof into three claims. First we consider ρ ∈ (0, 1), then ρ ∈ R + \ N, and finally ρ ∈ N.

Claim 4.5. Let ρ ∈ (0, 1), and z such that Im(z) = 0. Then

∞ -∞ e it (t -z) ρ dt = 2πe iπρ/2 Γ(ρ) e iz if Im(z) > 0, 0 if Im(z) < 0.
Proof. We will consider two cases depending on the sign of Im(z).

Case 1: Im(z) < 0. We fix R > 0 and we integrate along the contour Γ R presented in Figure 4.1. Case 2: Im(z) > 0. We integrate along the contour Γ ε,δ,R presented in Figure 4.2.

x y C R -R R • z Figure 4.1: Contour Γ R Since Im(z) < 0, the function t → e it (t-z) ρ is analytic on Im(t) > -ε, for some 0 < ε < |Im(z)|, hence we have 0 = Γ R e it (t -z) ρ dt = R -R e it (t -z) ρ dt + C R e it (t -z) ρ dt. Let t = Re iθ , then C R e it (t -z) ρ dt = π 0 e -R sin(θ) (Re iθ -z) ρ iRe iθ e iR cos(θ) dθ,
x y C R •z C ε,δ -T R Im(z)+δ Im(z)-δ Figure 4.2: Contour Γ ε,δ,R
We set z = x + iy, and we have

Γ ε,δ,R e it (t -z) ρ dt = x+(y+δ)i -T +(y+δ)i e it (t -z) ρ dt + C ε,δ e it (t -z) ρ dt + -T +(y-δ)i x+(y-δ)i e it (t -z) ρ dt + -T -T +iy e it (t -z) ρ dt + R -T e it (t -z) ρ dt + C R e it (t -z) ρ dt. (4.1.1)
We analyse the integrals in turn. We have

x+(y+δ)i -T +(y+δ)i e it (t -z) ρ dt → x -T e i(u+iy) |u + iy -z| ρ e iρ arg(u+iy-z) du = x -T e i(u+iy) (x -u) ρ e iρπ du; (4.1.2) -T +(y-δ)i x+(y-δ)i e it (t -z) ρ dt → -T x e i(u+iy) |u + iy -z| ρ e iρ arg(u+iy-z) du = x -T e i(u+iy) (x -u) ρ e -iρπ du, (4.1.3) as δ → 0. Moreover, C R e it (t -z) ρ dt → 0, as R → ∞, (4.1.4) as in the Case 1. Also C ε,δ e it (t -z) ρ dt ≤ π -π e i(z+εe iθ ) (εe iθ ) ρ iεe iθ dθ ≪ ε 1-ρ → 0, (4.1.5) as ε → 0. Finally, -T -T +iy e it (t -z) ρ dt = y 0 e i(-T +iv) (-T + iv -z) ρ idv → 0, (4.1.6) as T → ∞. Since Γ ε,δ,R
e it (t-z) ρ dt = 0 for all R > 0, δ > 0 and ε > 0, by substituting (4.1.2)-(4.1.6) into (4.1.1), and letting R → ∞, δ → 0 and ε → 0, we deduce

∞ -∞ e it (t -z) ρ dt = -∞ x e i(u+iy) (x -u) ρ e iρπ du - -∞ x e i(u+iy) (x -u) ρ e -iρπ du = (e iρπ -e -iρπ ) ∞ 0 e i(x+iy) e -iv v ρ dv = 2i sin(πρ)e iz ∞ 0 v -ρ e -iv dv. It is a standard result, that if 0 < ρ < 1, then ∞ 0 v -ρ e -iv dv = -ie iρπ/2 Γ(1 -ρ),
see for example [GR07, p. 346], Equation 7 with k = 1 -ρ, and µ = 1. Summing up and using the identity Γ

(ρ)Γ(1 -ρ) = π sin(ρπ) , we have ∞ -∞ e it (t -z) ρ dt = 2 sin(πρ)e iz e iρπ/2 Γ(1 -ρ) = 2πe iρπ/2 Γ(ρ) e iz .
This completes the proof of Claim 4.5.

Claim 4.6. Let ρ ∈ R + \ Z, and z such that Im(z) = 0. Then

∞ -∞ e it (t -z) ρ dt = 2πe iπρ/2 Γ(ρ) e iz if Im(z) > 0, 0 if Im(z) < 0. (4.1.7)
Proof. We will prove the claim by induction. Let α ∈ N, and ρ ∈ (0, 1), R > 0, integrating by parts gives:

R -R e it (t -z) ρ = ρ i R -R e it (t -z) ρ+1 + e it i(t -z) ρ R -R . Letting R → ∞ lim R→∞ e it i(t -z) ρ R -R = 0, and, by Claim 4.5, ∞ -∞ e it (t -z) ρ+1 dt = 2iπe iπρ/2 ρΓ(ρ) e iz = 2πe iπ(ρ+1)/2 Γ(ρ+1) e iz if Im(z) > 0, 0 if Im(z) < 0.
This shows that formula (4.1.7) holds for ρ ∈ (1, 2). Let ρ ∈ (k, k + 1), and assume Equation (4.1.7) is true for all n < k, in particular for ρ -1. Integrating by parts, we have

R -R e it (t -z) ρ-1 = ρ -1 i R -R e it (t -z) ρ + e it i(t -z) ρ-1 R -R . Again, letting R → ∞ we have lim R→∞ e it i(t-z) ρ-1 R -R
= 0, and using the inductive hypothesis, we get

∞ -∞ e it (t -z) ρ dt = 2πe iπρ/2 Γ(ρ) e iz if Im(z) > 0, 0 if Im(z) < 0.
This completes the proof of Claim 4.6.

Claim 4.7. Let ρ ∈ N + , and z such that Im(z) = 0. Then

∞ -∞ e it (t -z) ρ dt = 2πe iπρ/2 Γ(ρ) e iz if Im(z) > 0, 0 if Im(z) < 0.
Proof. If Im(z) < 0, then we repeat the proof from Claim 4.5. Assuming that Im(z) > 0, we integrate along the contour Γ R presented in Figure 4.3.

x y C R -R R • z Figure 4.3: Contour Γ R We then have R -R e it (t -z) ρ dt + C R e it (t -z) ρ dt = 2iπRes e it (t -z) ρ , t = z . We have that lim R→∞ C R e it (t -z) ρ dt = 0, and also e it (t -z) ρ = e iz e it-z (t -z) ρ = e iz ∞ k=0 i k k! (t -z) k-ρ .
Thus the residue for k = ρ -1 is e iz i ρ-1 (ρ-1)! = e iz i ρ-1 Γ(ρ) . The result follows.

Proof. By Lemma 4.8 we can change the the order of summation and integration, and we have

C(a, b)(M k,s ) = 1 a R M k,s (x) 1 x-b a -i s+1 dx = 1 a ∞ n=1 r n n s R sin(2πnx) x-b a -i s+1 dx.
Then we use the substitution u = 2πnx, and we obtain

C(a, b)(M k,s ) = 1 a ∞ n=1 r n n s R sin(u) u 2πn -b a -i s+1 du 2πn = 1 a ∞ n=1 r n n s R a s+1 (2π) s+1 n s+1 sin(u) (u -2πnb -2πnai) s+1 du 2πn = 1 a ∞ n=1 r n n s R a s+1 (2π) s+1 n s+1 sin(u) (u -2πnb -2πnai) s+1 du 2πn = (2π) s a s ∞ n=1 r n R sin(u) (u -2πnb -2πnai) s+1 du.
Then, by Lemma 4.9 we have

C(a, b)(M k,s ) = a s (2π) s c(s + 1) ∞ n=1
r n e 2πin(b+ia) = Ca s (M k (b + ia) -r 0 ), with C = (2π) s c(s + 1) = (2π) s πe iπs/2 Γ(s+1) .

The result is still valid if we let

M k = E 2 . If M k = E k , then F k,s (x) = -B k 2k M k,s
. Therefore for all k ∈ N * even, the wavelet transform of F k,s with respect to the wavelet

ψ s is C(a, b)(F k,s ) = a s c k (s)(1 -E k (b + ia)), with c k (s) = e iπs/2 2 s-1 π s+1 B k kΓ (s+1) 
. We will now estimate the value of C(a, b)(M k,s ) distinguishing between cusp form and non-cusp form, and the case of E 2 .

Estimating

C(a, b)(M k,s ) when M k is not a cusp form We first estimate |M k (z)|.
Claim 4.11. Let M k be a modular form, not a cusp form. There exist r, c 1 , c 2 , c 3 > 0, such that:

if Im(z) ≤ r, then |M k (z)| ≤ c 1 Im(z) k ; if Im(z) ≥ r, then c 2 ≤ |M k (z)| ≤ c 3 . Proof. Let r > 0 such that |r 0 | > ∞ n=1 |r n |e -2πnr
. Again, by Hecke we have r n = O(n k-1 ) (see [START_REF] Serre | A course in Arithmetic[END_REF]). Therefore, there exists c z) . Then there exists a polynomial P k-1 of degree k -1 vanishing at 0 such that ∞ n=1 n k-1 e -2πnIm(z) = P k-1 (e -2πIm(z) )

1,k > 0 such that |M k (z)| ≤ |r 0 | + c 1,k ∞ n=1 n k-1 e -2πnIm(
(1-e -2πIm(z) ) k . Since 0 < e -2πIm(z) < 1, there exists c 2,k > 0 such that |P k-1 (e -2πIm(z) )| ≤ c 2,k e -2πIm(z) . Finally, there exists c 3,k > 0 such that We define half-rings around the point x, see (4.2.1) below and Figure 4.4, and estimate the size of |C(a, b)(M k,s )| using Claim 4.11. The following proposition is an analogue of Proposition 2 in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF]. The significant difference is that Jaffard fixes D = 3. This is possible because in the analogue of Claim 4.11 he can take r = 1. We cannot do it in general. In order to be able to use the lower bound from Claim 4.11, we need to carefully choose D, as we will see in the proof of the Proposition. 

e -2πIm(z) (1-e -2πIm(z) ) k ≤ c 3,k (2πIm(z)) k . Summing up, we get that |M k (z)| ≤ |r 0 | + c 1,k c 2,k c 3,k (2π) k 1 Im(z) k . If Im(z) ≤ r, then the first part of the Claim follows from setting c 1 = |r 0 |r k + c 1,k c 2,k c 3,k (2π) 
x ∈ R \ Q. Let a ∈ (0, 1), b ∈ R. (i) Let D > 1. For each n, if D x - p n q n ≤ |b -x + ia| ≤ D x - p n-1 q n-1 , (4.2.1)
we have either:

|C(a, b)(M k,s )| ≤ Ca s-k+k/κ n-1 1 + |b -x| a k/κ n-1 , or |C(a, b)(M k,s )| ≤ Ca s-k+k/κn 1 + |b -x| a k/κn
, for a constant C that may depend on k, s, x and D.

(ii) There exists D 0 > 1 depending at most on k, s and x, and there exists C > 0 that may depend on k, s, x and D 0 such that for infinitely many n, there exists a point b + ia in the domain (4. The first part of the proposition is later used to find the lower bound for the Hölder regularity exponent of M k,s at x, whereas we use the second part to find the upper bound for it, see the proof of Theorem 1.6.

Proof. Consider

γ n = (-1) n q n-1 (-1) n-1 p n-1 q n -p n .
By (2.1.1) we have γ n ∈ SL 2 (Z). Let z ∈ C with Im(z) > 0. We have

γ n • p n q n + z = (-1) n q n-1 pn qn + z + (-1) n-1 p n-1 q n pn qn + z -p n = (-1) n (p n q n-1 -p n-1 q n ) + z(-1) n q n-1 q n q 2 n z = -1 + (-1) n zq n-1 q n q 2 n z = (-1) n q n-1 q n - 1 q 2 n z
.

By (1.0.1) we have

M k p n q n + z = M k γ n • pn qn + z q n pn qn + z -p n k = M k (-1) n q n-1 qn -1 q 2 n z |q n z| k . (4.2.2)
Then we observe that Im (-1) n q n-1 q n -1 q 2 n z = Im(z) q 2 n |z| 2 . We now consider two cases.

Case 1: Assume that Im(z) q 2 n |z| 2 ≤ r. By Claim 4.11 we have

M k p n q n + z ≤ c 1 |q 2 n z 2 | k |q n z| k Im(z) k = c 1 q k n |z| k Im(z) k . For z = b + ia -pn qn , we have |M k (b + ia)| ≤ c 1 a -k q k n b + ia - p n q n k .
By (4.2.1), we have

D -1 D |b + ia -x| ≤ b + ia - p n q n ≤ D + 1 D |b + ia -x|. (4.2.3)
Also by (4.2.1) and Lemma 2.4, since

D q κn n ≤ |b + ia -x| ≤ D q κ n-1 n-1 we have |b + ia -x| -1/κn ≤ q n ≤ D|b + ia -x| (1-κ n-1 )/κ n-1 . (4.2.4)
Substituting it, we get

|M k (b + ia)| ≤ c 1 (D + 1) k a -k |b + ia -x| k/κ n-1 ≤ c 1 (D + 1) k a -k+k/κ n-1 1 + |b -x| a k/κ n-1 . ( 4 

.2.5)

Since -k + k/κ n-1 < 0 and a ∈ (0, 1), we have a -k+k/κ n-1 > 1. Also, as k/κ n-1 > 0, we

have 1 + |x-b| a k/κ n-1 > 1. Then |C(a, b)(M k,s )| = |a s c k (s)(1 -M k (b + ia))| ≤ a s |c k (s)|(1 + |M k (b + ia)|) ≤ a s |c k (s)| 1 + c 1 (D + 1) k a -k+k/κ n-1 1 + |b -x| a k/κ n-1 ≤ a s |c k (s)| 1 + c 1 (D + 1) k a -k+k/κ n-1 1 + |b -x| a k/κ n-1 . The result follows with C = |c k (s)| 1 + c 1 (D + 1) k .
Case 2: Assume that Im(z) q 2 n |z| 2 > r. By Claim 4.11 we have

M k p n q n + z ≤ c 3 |q n z| k .
By (4.2.4) and (4.2.3), we get

|M k (b + ia)| ≤ c 3 D D -1 k |b + ia -x| -k+k/κn ≤ c 3 D D -1 k a -k+k/κn ≤ c 3 D D -1 k a -k+k/κn 1 + |x -b| a k/κn . (4.2.6) As before, since a -k+k/κn 1 + |x-b| a k/κn > 1, we have |C(a, b)(M k,s )| = |a s c k (s)(1 -M k (b + ia))| ≤ a s |c k (s)|(1 + |M k (b + ia)|) ≤ a s |c k (s)| 1 + c 3 D D -1 k a -k+k/κn 1 + |x -b| a k/κn ≤ a s |c k (s)| 1 + c 3 D D -1 k a -k+k/κn 1 + |x -b| a k/κn . The result follows with C = |c k (s)| 1 + c 3 D D-1 k .
For the second part of Proposition 4.12, first suppose that (q κn-2 n

) n is unbounded. Then for any D > 1 there exists an increasing sequence (n m ) m , such that for all m we have

q κn m -2 nm > (D 2 + 1) D r, (4.2.7)
where r is the constant defined in Claim 4.11, and n m is large enough so that q

kκn m -k nm > 4( √ D 2 + 1) k . Now consider the point a = D q κn m nm , b = x, which satisfies (4.2.1). Then we see that with z = b + ia -pn m qn m , |z| = √ D 2 + 1 q κn m nm
, and it follows that Im(z)

q 2 n |z| 2 = D D 2 + 1 q κn-2 n .
Then by Claim 4.11, we have

M k (-1) nm q nm-1 q nm - 1 q 2 nm z ≥ c 2 .
By (4.2.2) we have

M k p nm q nm + z ≥ c 2 |q nm z| k = c 2 q -k+kκn m nm ( √ D 2 + 1) k , (4.2.8)
and hence by (4.2.7), we have

|C(a, b)(M k,s )| ≥ c k (s) c 2 2( √ D 2 + 1) k q -sκn+kκn-k n ≥ C D q κn m nm s-k+k/κn m = C (a) s-k+k/κn m 1 + |b -x| a k/κn m , with C = c 2 c k (s) 2( √ D 2 +1) k D s-k+k/2
, and D 0 = D. Now consider the second case, namely suppose that (q κn-2 n ) n is bounded. We will describe how we choose D 0 . As (q κn-2 n ) n is bounded, it has a converging subsequence, and the limit L 0 is greater than or equal to 1, because q n ≥ 1 and κ n ≥ 2, for all n. Then

q κn ℓ -2 n ℓ → L 0 ≥ 1, as ℓ → ∞.
(4.2.9)

We also observe that (-1) n ℓ q n ℓ -1 qn ℓ ℓ is bounded, and has a converging subsequence. Suppose

(-1) n ℓ(m) q n ℓ(m) -1 q n ℓ(m) → L 1 . (4.2.10)
Finally, since (-1) n ℓ(m) = 1 for infinitely many m or (-1) n ℓ(m) = -1 for infinitely many m, we may extract a constant subsequence of (-1) n ℓ(m) . We will thus assume that all the elements are equal to 1, the same arguments apply to the other case. For simplicity we will denote this subsequence (n m ) m . Since M k is a holomorphic function in H, we can choose D 0 > 1 and δ > 0 such that

M k L 1 - 1 -iD 0 D 2 0 + 1 L 0 = 0, (4.2.11) and M k L 1 - 1 -iD 0 D 2 0 + 1 L 0 + ε > δ, (4.2.12)
for ε small enough. Let ε 0 > 0 such that for all ε ≤ ε 0 , (4.2.12) is satisfied. For each m consider the point

a = D 0 q κn m nm ; b = x,
which satisfies (4.2.1). Using the previous notation z = b + ia -pn m qn m

, we have

(-1) nm q nm-1 q nm - 1 q 2 nm z = q nm-1 q nm - 1 q 2 nm D 0 q κn m nm i + x -pn m qn m = q nm-1 q nm - 1 q 2 nm D 0 q κn m nm i + (-1) nm q κn m nm = q nm-1 q nm - q κn m -2 nm iD 0 + 1 = q nm-1 q nm - (1 -iD 0 )q κn m -2 nm D 2 0 + 1 → L 1 - 1 -iD 0 D 2 0 + 1 L 0 ,
as m → ∞, by (4.2.9) and (4.2.10). Therefore, there exists L ∈ N such that for all m ≥ L we have

q nm-1 q nm - (1 -iD 0 )q κn m -2 nm D 2 0 + 1 -L 1 + 1 -iD 0 D 2 0 + 1 L 0 < ε 0 , and 
q kκn m -k nm > 2 √ D 2 0 +1 k δ
. By (4.2.2) and (4.2.12) we have

M k p nm q nm + z ≥ δ |q nm z| k = δq -k+kκn m nm ( D 2 0 + 1) k . Then we have |C(a, b)(M k,s )| ≥ c k (s)δ 2( D 2 0 + 1) k q -sκn+kκn-k n ≥ C D 0 q κn m nm s-k+k/κn m = Ca s-k+k/κn m 1 + |b -x| a k/κn m , with C = c k (s)δ 2( √ D 2 0 +1) k D s-k+k/2 0
. This completes the proof of the proposition with D 0 satisfying (4.2.11).

Estimating

C(a, b)(F 2,s ) We first estimate |E 2 (z)|. Claim 4.13. If Im(z) ≤ 1 then |E 2 (z)| ≤ c 4 Im(z) 2 , for some c 4 > 0. If Im(z) > 1 then 19 20 ≤ |E 2 (z)| ≤ 21 20 .
Proof. We have

|E 2 (z)| ≤ 1 + 24 ∞ n=1 σ 1 (n)e -2πnIm(z) ≤ 1 + 24 n≤ 1 Im(z) σ 1 (n) + 24 ∞ j=1 e -2 j π n≤ 2 j Im(z) σ 1 (n).
Since N n=1 σ 1 (n) = O(N 2 ), see for example [HW60, p. 266], it follows that there exists

c 4 > 0 such that if Im(z) ≤ 1, then |E 2 (z)| ≤ c 4 Im(z) 2 . The second part of the claim follows from 24 ∞ n=1 σ 1 (n)e 2iπnz ≤ 24 ∞ n=1 σ 1 (n) e 2iπnz ≤ 24 ∞ n=1 n 2 e -2πnIm(z) ≤ 24 ∞ n=1 n 2 e -2πn ≤ 1 20 .
Proposition 4.14. Let a ∈ (0, 1), b ∈ R.

(i) For each n, if

3 x - p n q n ≤ |b -x + ia| ≤ 3 x - p n-1 q n-1 , (4.2.13)
we have either:

|C(a, b)(F 2,s )| ≤ Ca s-2+2/κ n-1 1 + |b -x| a 2/κ n-1 , or |C(a, b)(F 2,s )| ≤ Ca s-2+2/κn 1 + |b -x| a 2/κn
, for a constant C that may depend on s and x.

(ii) Moreover, if for infinitely many n a n ≥ 7, (4.2.14) then there exists C > 0 that may depend on s and x, such that for infinitely many n (which satisfy (4.2.14)) there exists a point b + ia in the domain (4.2.13) with

|C(a, b)(F 2,s )| ≥ Ca s-2+2/κ n-1 1 + |b -x| a 2/κ n-1 . (4.2.15) Proof. Consider γ n = (-1) n q n-1 (-1) n-1 p n-1 q n -p n ∈ SL 2 (Z),
as in the proof of Proposition 4.12. By (2.2.1), we have

E 2 p n q n + z ≤ E 2 γ n • pn qn + z q n pn qn + z -p n 2 + 6 π q n q n pn qn + z -p n = E 2 (-1) n q n-1 qn -1 q 2 n z |q n z| 2 + 6 π|z| . (4.2.16)
Then we observe that

Im (-1) n q n-1 q n - 1 q 2 n z = Im(z) q 2 n |z| 2 . Consider two cases. Case 1: Assume that Im(z) q 2 n |z| 2 ≤ 1. We have E 2 (-1) n q n-1 qn -1 q 2 n z |q n z| 2 ≤ c 4 |q 2 n z 2 | 2 |q n z| 2 Im(z) 2 = c 4 q 2 n |z| 2 Im(z) 2 .
For z = b + ia -pn qn , we have

|E 2 (b + ia)| ≤ c 4 a -2 q 2 n b + ia - p n q n 2 + 6 π b + ia -pn qn .
By (4.2.13), we have

2 3 |b + ia -x| ≤ b + ia - p n q n ≤ 4 3 |b + ia -x|.
Also by (4.2.13) and Lemma 2.4, since

3 q κn n ≤ |b + ia -x| ≤ 3 q κ n-1 n-1 , we have |b + ia -x| -1/κn ≤ q n ≤ 3|b + ia -x| (1-κ n-1 )/κ n-1 .
Substituting it, we get

|E 2 (b + ia)| ≤ c 4 4 2 a -2 |b + ia -x| (2)/κ n-1 + 9 π |b + ia -x| -1 ≤ c 4 4 2 a -2+2/κ n-1 1 + |b -x| a 2/κ n-1 + 9 π a -1 ≤ c 5 a -2+2/κ n-1 1 + |b -x| a 2/κ n-1
, for some constant c 5 , because -2 + 2/κ n-1 ≤ -1. Since -2 + 2/κ n-1 < 1 and a ∈ (0, 1), we have a -2+2/κ n-1 > 1. Also, 2/κ n-1 > 0 implies that 1 + |b-x| Case 2: Assume that Im(z) q 2 n |z| 2 > 1. By Claim 4.13, we have

E 2 p n q n + z ≤ 21 20|q n z| 2 + 6 π|z| .
Using the same estimates as above, we get We now prove (4.2.15). Consider the point a = 3 q κn n , b = x, which satisfies (4.2.13). Then we note that with the notation z = b + ia -pn qn , we have |z| = √ 10 q κn n , so that Im(z) q 2 n |z| 2 = 3 10 q κn-2 n .

We now assume that there exists an increasing sequence (n m ) m , such that for all m we have a nm+1 ≥ 7. It follows that 3 s-1 . As in the case of k ≥ 4 we could show that even if the condition a nm+1 ≥ 7 is not satisfied, we could choose a sequence of points, each in the domain of (4.2.13), and δ > 0 such that E 2 (-1) nm q nm-1 qn m -1 , however the calculation then becomes considerably more technical and it would not solve all the remaining cases, namely the cases when 1 ≤ a n ≤ 6 for all n ∈ N.

q κn m -2 nm = 1 q 2 nm x -pn qn ≥ q nm+1 q nm > a nm+1 ≥
q 2 nm z ≥ δ.

Estimating C(a, b)(M k,s ) when M k is a cusp form

If M k is a cusp form, |M k (z)| is not bounded below by a strictly positive constant as Im(z) → ∞. In the case of M k not a cusp form, the lower bound was used to prove the optimality of the Hölder exponent. Therefore we add a condition on (a n ) n and µ(x).

Claim 4.15. Let M k be a cusp form. There exists c 1 > 0, such that for all z ∈ H we have:

|M k (z)| ≤ c 1 Im(z) k/2+1 .
Proof. By Hecke we have r n = O(n k/2 ) (see [START_REF] Serre | A course in Arithmetic[END_REF]p. 153]). Therefore, there exists c 1,k > 0 such that |M k (z)| ≤ c 1,k ∞ n=1 n k/2 e -2πnIm(z) . Then there exists a polynomial P k/2 of degree k 2 vanishing at 0 such that ∞ n=1 n k/2 e -2πnIm(z) = P k/2 (e -2πIm(z) )

(1-e -2πIm(z) ) k/2+1 . Since 0 < e -2πIm(z) < 1, there exists c 2,k > 0 such that |P k/2 (e -2πIm(z) )| ≤ c 2,k e -2πIm(z) . Finally, there exists c 3,k > 0 such that e -2πIm(z) .

Proof. As in the proof of Propostion 4.12, consider γ n = (-1) n q n-1 (-1) n-1 p n-1 q n -p n ∈ SL 2 (Z).

As in (4.2.2), we have

M k p n q n + z = M k (-1) n q n-1 qn -1 q 2 n z
|q n z| k . (4.2.20)

We observe that Im (-1) n q n-1 q n -1 q 2 n z = Im(z) q 2 n |z| 2 . Then by Claim 4.15 we have

M k p n q n + z ≤ c 1 (q 2 n |z| 2 ) k/2+1 |q n z| k Im(z) k/2+1 = c 1 q 2 n |z| 2 Im(z) k/2+1 .
For z = b + ia -pn qn , we have

|M k (b + ia)| ≤ c 1 a -k/2-1 q 2 n b + ia - p n q n 2 .
By (4.2.3) and (4. For the second part of Proposition 4.16, suppose that a n = N for infinitely many n for some N ∈ N. Since q κn-2 n ≤ 4a n+1 we have that (q κn-2 n ) n has a converging subsequence. The results then follows from exactly the same arguments as in the proof of Proposition 4.12. 4.2.5 Proofs of Theorems 1.6, 1.9 and 1.10

We will start by considering the first assumption of Proposition J. Recall that µ(x) = lim sup n→∞ κ n (x) and ν(x) = lim inf n→∞ κ n (x).

Lemma 4.17. For all k ∈ N * even, s > k and x ∈ R, there exists δ 0 > 0 such that for all 0 < δ ≤ δ 0 we have . Since k -{s} > 0 and kµ(x) -k -{s}µ(x) > 0 for all x ∈ R, s > k and k ≥ 2, we have δ 0 > 0. It follows that {s} + (1-k)(µ(x)-δ 0 )+k µ(x)-δ 0 < 1, therefore s -k + k µ(x)-δ ≤ s -1 for all δ ≤ δ 0 , which completes the proof of the Lemma.

The proofs of Theorems 1.6, 1.9 and 1.10 are very similar and follow from Lemma 4.17, Propositions 4.12, 4.14, 4.16 and Proposition J. Therefore we will only present the details of the proof of Theorem 1.6. For the convenience of the reader, we recall it.

Theorem 1.6. Let k ≥ 4, even, and M k be a modular form of weight k under SL 2 (Z) not a cusp form. For x ∈ R \ Q, let α M k,s (x) be the Hölder regularity exponent of M k,s at x. Assume that

s > k + k ν(x) - k µ(x)
.

(1.2.4)

Then,

α M k,s (x) = s -k + k µ(x)
.

The same is true if we replace M k,s with N k,s .

Proof. Let x ∈ R \ Q, and assume that s > k + k ν(x) -k µ(x) . Let δ 0 as in Lemma 4.17. Assume that µ(x) < ∞, very similar arguments apply to the other case, and therefore we omit the details. There exists δ 1 > 0 such that for all 0 < δ < δ 1 we have .

s > k + k ν(x) -δ - k µ(x) + δ . ( 4 
Then we conclude by (4.2.21) and Proposition J that M k,s ∈ C s-k+k/(µ(x)+δ) at x. Letting δ → 0 shows that α M k,s (x) ≥ s -k + k µ(x) . For the optimality of this exponent, we see that Proposition 4.12 (ii) implies that for each δ > 0 there exists a point b + ia, arbitrarily close to x such that |C(a, b)(M k,s )| ≥ Ca s-k+k/(µ(x)-δ) 1 + |b -x| a k/(ν(x)+δ)

.

By Proposition J, we conclude that M k,s / ∈ C s-k+k/(µ(x)-δ) at x. Letting δ → 0 shows that α M k,s (x) = s -k + k µ(x) .

This completes the proof of the theorem.

Proof of Theorem 1.8

In this section, we prove Theorem 1.8. For the convenience of the reader, we recall it.

Theorem 1.8. Let k ≥ 4, even, M k be a modular form of weight k under SL 2 (Z) not a cusp form and s > 3k 2 . Let α M k,s (x) be the Hölder regularity exponent of M k,s at x. Then

dim H {x ∈ R|α M k,s (x) = α} =    2 k α -2 k s + 2, if α ∈ s -k, s -k 2 , 0 or -∞, otherwise.
Proof. It is well known that the set E µ = {x ∈ R|µ(x) ≥ µ} has the Hausdorff dimension dim H E µ = 2 µ , see for example [START_REF] Falconer | Fractal Geometry[END_REF]p. 157]. It has been shown in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF] that dim H E µ \ ∪ µ ′ >µ E µ ′ = dim H E µ = 2 µ . The result follows by noting that dim H Q = 0.

Proof of Theorem 1.15

We will consider the first assumption of Proposition J.

Lemma 4.20. For all d ∈ N * , s > d 2 and x ∈ R, if {s} < dµe(x)-d 2µe(x) , then there exists δ 0 > 0 such that for all 0 < δ ≤ δ 0 we have The same is true if we replace S d,s with T d,s .

Proof. Let x ∈ R \ Q. Assume that s > d 2 + d 2νe(x) -d 2µe(x) . Suppose that µ e (x) < ∞ the case when µ e (x) = ∞ is treated a very similar way and therefore omitted. There exists Proof. Let E e,µ = {x ∈ R|µ e (x) ≥ µ}. It has been shown in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF] that dim H E e,µ \ µ ′ >µ E e,µ ′ = 2 µ .

However, for the convenience of the reader, we present the main steps of the proof. Let µ o (x) = lim sup n→∞ {κ n (x)|p n (x), q n (x) are both odd}, and let E o,µ = {x ∈ R|µ o (x) ≥ µ}; E µ = {x ∈ R|µ(x) ≥ µ}. We have

E µ = E e,µ ∪ E o,µ .
By [START_REF] Falconer | Fractal Geometry[END_REF]p.115,157], we have that dim H E µ = 2 µ and the 2 µ dimensional Hausdorff meausure H 2/µ of E µ is positive. If the H 2/µ -measure of E o,µ is zero, then the H 2/µmeasure of E e,µ must be positive. On the other hand, if x ∈ E o,µ , then x 2 ∈ E e,µ , thus if the H 2/µ -measure of E o,µ is positive, so is the H 2/µ -measure of E e,µ . Finally, since the H 2/µmeasure of µ ′ >µ E e,µ ′ is zero, dim H E e,µ \ µ ′ >µ E e,µ ′ = 2 µ . The result follows by noting that dim H Q = 0.

Chapter 5

Conclusion

Alternative approaches

The differentiability of G k,k+1 could be also studied using the connection to ((y)) map. Let ((y)) = {y}-1 2 , its Fourier series is ((y

)) = -1 π ∞ m=1 sin(2πmy) m . Let L k (x) = 2π 2 ∞ r=1 ((rx))
r k . It is an example of Davenport series which appear in the work of Hecke [START_REF] Hecke | Über analytische Funktionen und die Verteilung von Zahlen mod. eins[END_REF]. The regularity of Davenport series was studied by Jaffard, see [START_REF] Jaffard | On Davenport expansions[END_REF]. The function L k converges uniformly on R and it is integrable. Then for x ∈ R we have G k,k+1 (x) = We could then study the differentiability of x 0 L k (t)dt. This approach was suggested to the author by Don Zagier.

Furthermore, the functions ϕ k could be studied in the context of the theory of periods of modular forms. A period with moment s of a cusp form f of weight k introduced by Eichler is defined by r s (f ) = i∞ 0 f (z)z s dz, for 0 ≤ s ≤ k -2. This notion can be extended to modular forms, see [START_REF] Zagier | Periods of modular forms and Jacobi theta functions[END_REF]. Stefano Marmi asked the question whether it is possible to obtain the functional equation of ϕ k (3.1.48) using the methods presented in [START_REF] Zagier | Periods of modular forms and Jacobi theta functions[END_REF] and [Lan76, Chapter V].

Another approach would be to analyse M k,s in a more general context, namely twomicrolocal spaces C s,s ′ , see for example [START_REF] Jaffard | Wavelet methods for pointwise regularity and local oscillations of functions[END_REF][START_REF] Jaffard | Pointwise smoothness, two-microlocalization and wavelet coefficients[END_REF], as it was done by Oppenheim for 2-dimensional Riemann function in [START_REF] Oppenheim | Ondelettes et multifractals : application à une fonction de Riemann en dimension 2[END_REF]. Let s, s ′ ∈ R, x 0 ∈ R n , the two-microlocal space C s,s ′

x 0 is the Banach space of distributions such that |S 0 (f )(x)| ≤ C(1 + |x -x 0 |) -s ′ and |∆ j (f )(x)| ≤ C2 -js (1 + 2 j |x -x 0 |) -s ′ , where S 0 is a convolution operator. They generalise Hölder spaces in the sense that, for s + s ′ > 0 and s > 0 we have C s,s ′ (x 0 ) ⊂ C s (x 0 ) ⊂ C s,-s (x 0 ); and they can be characterised by wavelet transforms: a function f belongs to C s,s ′

x 0 if its wavelet transform satisfies |C(a, b)(f

)| ≤ Ca s 1 + |b-x 0 | a -s ′
. They allow to investigate local behaviour of functions like chirps and logarithmic chirps, which describe strong local oscillations (for example of the type x α sin(x -β )).

Further work

The method used in calculating Hölder regularity exponent of M k,s was only applicable for irrational points, as we used the infinite continued fraction expansion at x. In the study 111 of rational points of the Riemann function, it was used that S is 2-periodic and satisfies: S(1 + x) = 1 2 S(4x) -S(x). We do not have an analogue of such an equation in a general case. Therefore, one of the first questions to consider would be Question 5.1. What is the Hölder regularity exponent of M k,s at a rational x?

Even though the functions F k,s and G k,s arose from Eisenstein series which exist only for k even, we could consider F k,s and G k,s for k odd. However, in this case we do not have the underlined modularity on which Itatsu's and Jaffard's methods were based in an essential way. New approaches would need to be developed.

The next step would be to generalise the findings to automorphic forms.

Question 5.2. Let A k be an automorphic form of weight k under a Fuchsian group G ⊆ SL 2 (Z) of finite index such that 1 1 0 1

∈ G and having multiplier system m such that m(γ) = 1. It admits a Fourier expansion A k (z) = ∞ n=0 a n e 2πinz , see for example [Iwa97, Section 2.7]. Define a series A k,s (x) = ∞ n=1 an n s e 2πinx for suitable s. Chamizo showed that if s < k 2 + 1 then A k,s is not differentiable at any irrational number, [Cha04, Corollary 2.1.1]. He also showed that the Hölder regularity exponent of A k,s at irrational points is equal to s -k 2 for all k 2 < s < k 2 + 1 if A k is a cusp form, [Cha04, Theorem 2.1]. What is the Hölder regularity exponent of A k,s at an irrational x for s > k 2 + 1? What is the Hölder regularity exponent of A k,s at an irrational x if A k is not a cusp form?

A further direction would be to consider functions of multiple variables depending on a parameter. For example, for t ∈ [0, 1] and and x ∈ [0, 2] we could study We note that F 2 (x, 0) is the Riemann function. The procedure would be to use the method of Itatsu and find the functional equation exploiting the connection to θ(z, τ ) = n∈Z e πin 2 z+2πinτ , which satisfies certain Jacobi identities. It is conjectured that F 2 (x, 2 3 ) is differentiable at x = 3 4 , for instance. Another question that remains open is the behaviour of S 3,2 and T 3,2 at irrational points with µ e (x) = 3. By Theorem 1.15, the Hölder regularity exponent at these points is equal to 1. Moreover, both functions are differentiable at irrationals such that µ e (x) < 3 and not differentiable at irrationals such that µ e (x) > 3, therefore we ask Question 5.3. Are the functions S 3,2 and T 3,2 differentiable at irrational points with µ e (x) = 3?

Conjecture 0. 5 .

 5 Soit k ∈ N * pair. (i) Les fonctions F k,k+1 et G k,k+1 ne sont dérivables en aucun rationnel. Cependant, G k,k+1 est dérivable à droite et à gauche en chaque rationnel.

  the context of two-microlocal spaces and determined the regularity and the spectrum of singularities of this function. Chamizo and Ubis in [CU07] considered a different generalisation of S: they considered the function f k,s (x) = ∞ n=1 e 2iπn k x

  .1.28) Assume |h| < 1. Substituting (3.1.27) and (3.1.28) into (3.1.26), we get

  by (3.1.35) and (3.1.36). It converges to 0 as n → ∞ by Proposition 2.1 (2).

  3.1.35) and (3.1.36). It converges to 0 as n → ∞ by Proposition 2.1 (2).

  2iπ) k+1 B k . Proof. It follows by integrating the right-hand side of Equation (3.1.40) by parts k times.

  m t m-k -kτ t -1 + 1 dt. Substituting (3.1.44), (3.1.45) and (3.1.46) into (3.1.43) gives

  this converges to 0, as R → ∞ by the dominated convergence theorem. It follows thatlim R→∞ R -R e it (t -z) ρ dt = 0.

  k . On the other hand, if Im(z) ≥ r, then letting c 2 = |r 0 | -∞ n=1 |r n |e -2πnr and c 3 = |r 0 | + ∞ n=1 |r n |e -2πnr gives the result.

|

  Figure 4.4: Half-rings around x

  2.1) with D = D 0 satisfying |C(a, b)(M k,s )| ≥ Ca s-k+k/κn 1 + |b -x| a k/κn .

a 2/κ n- 1 >.

 1 1. We have|C(a, b)(F 2,s )| = |a s c 2 (s)(1 -E 2 (b + ia)| ≤ a s |c 2 (s)|(1 + |E 2 (b + ia)|) ≤ a s |c 2 (s)| 1 + c 5 a -2+2/κ n-1 1 + |b -x| a 2/κ n-1 ≤ a s |c 2 (s)| (1 + c 5 ) a -2+2/κ n-1 1 + |b -x| a 2/κ n-1The result follows with C = |c 2 (s)| (1 + c 5 ).

≤

  c 6 a -2+2/κn 1 + |x -b| a 2/κn , fors some constant c 6 , since -2 + 2/κ n ≤ -1. As a -2+2/κn 1 + |x-b| a 2/κn > 1, we have |C(a, b)(F 2,s )| = |a s c 2 (s)(1 -E 2 (b + ia)| ≤ a s |c 2 (s)|(1 + |E 2 (b + ia)|) ≤ a s |c 2 (s)| 1 + c 6 a -2+2/κn 1 + |x -b| a 2/κn ≤ a s |c 2 (s)| (1 + c 6 ) a -2+2/κn 1 + |x -b| a 2/κn .The result follows with C = |c 2 (s)| (1 + c 6 ).

2κn m - 2 =

 2 nm> 400, and we conclude that|C(a, b)(F 2,s )| ≥ c 2 Ca s-2+2/κn m 1 + |b -x| a 2/κn m , with C = c 2 (s) 1 400 1

  (1-e -2πIm(z)) k/2+1 ≤ c 3,k (2πIm(z)) k/2+1 . We estimate |C(a, b)(M k,s )| inthe half-rings defined in (4.2.1) using Claim 4.15. Proposition 4.16. Let k ≥ 4 be even. Let M k be a cusp form of weight k, and let s > k 2 +1. Let x ∈ R \ Q. Let a ∈ (0, 1), b ∈ R.

  (i) Let D > 1. For each n, if b + ia satisfies (4.2.1), then we have:|C(a, b)(M k,s )| ≤ Ca s-k/2-1+2/κ n-1 1 + |b -x| a 2/κ n-1, for a constant C that may depend on k, s, x and D.(ii) Moreover, let us assume that there exists N ∈ N such that for infinitely many n,a n = N. (4.2.19)Then, there exists C > 0 that may depend on k, s and x, such that for an increasing subsequence of n, there exists a point b + ia in the domain (4.2.1) with|C(a, b)(M k,s )| ≥ Ca s-k+k/κ n-1 1 + |b -x| a k/κ n-1

  2.4) we have|M k (b + ia)| ≤ c 1 (D + 1) 2 a -k/2-1 |b + ia -x| 2/κ n-1 ≤ c 1 (D + 1) 2 a -k/2-1+2/κ n-1 1 + |b -x| a 2/κ n-1 . Then |C(a, b)(M k,s )| = a s |c k (s)| |M k (b + ia)| ≤ |c k (s)|c 1 (D + 1) 2 a s-k/2-1 |b + ia -x| 2/κ n-1 .The result follows with C = |c k (s)|c 1 (D + 1) 2 .

  |ψ s (x)| + ψ (1) s (x) + ... + ψ (m+1) s (x) ≤ c (|x| + 1) m+2 , with m = s -k + k µ(x)-δ , for some constant c.Proof. For all x ∈ R, from (|x| -1) 2 ≥ 0 we get2 1/2 |x| + 1 ≥ 1 (|x| 2 + 1) 1/2 = 1 |x + i| .Then we note that for all n ∈ N * we haveψ (n) s (x) = (s + 1)(s + 2)...(s + n) (x + i) s+1+n . If δ 0 ≤ 1, then s + 1 + n ≤ m + 2, we have |ψ (n) s (x)| ≤ c (|x + 1|) m+2 , for all n ∈ N * for some constant c. It suffices to show now that |ψ s (x)| ≤ 1 (|x|+1) m+2 . Let δ 0 < kµ(x)-k-{s}µ(x) k-{s}

.

  .2.21) Let 0 < δ < min(δ 0 , δ 1 ) be given. Then, there exists N ∈ N such that for all n ≥ N we haveν(x) -δ ≤ κ n ≤ µ(x) + δ. (4.2.22) Let D > 1 and let ω = b + ia ∈ H be such that |ω -x| ≤ D x -p N q N .As (4.2.1) defines half-rings around x converging to x (see Figure4.4), there exists n ω > N such thatD x -p nω q nω ≤ |ω -x| ≤ D x -p nω-1 q nω-1 .By Proposition 4.12 we have|C(a, b)(M k,s )| ≤ Ca s-k+k/κn ω 1 + |b -x| a k/κn ω or |C(a, b)(M k,s )| ≤ Ca s-k+k/κ nω -1 1 + |b -x| a k/κ nω-1 It follows from (4.2.22) that |C(a, b)(M k,s )| ≤ Ca s-k+k/(µ(x)+δ) 1 + |b -x| a k/(ν(x)-δ)

  |ψ s (x)| + ψ (1) s (x) + ... + ψ (m+1) s (x) ≤ c (|x| + 1) m+2 , with m = s -d 2 + d 2µe(x)-δ , for some constant c.Proof. By Lemma 4.17 for all x ∈ R and all n ∈ N * we haveψ (n) s (x) = (s + 1)(s + 2)...(s + n) (x + i) s+1+n . If δ 0 ≤ 1, then s + 1 + n ≤ m + 2, we have |ψ (n) s (x)| ≤ c |x + 1|) m+2 , for all n ∈ N * for some constant c. It suffices to show now that |ψ s (x)| ≤ 1 (|x|+1) m+2 . Let δ 0 < 2dµe(x)-2d-4{s}µe(x) d-2{s}. Since {s} < dµe(x)-d 2µe(x) , we have δ 0 > 0. It follows that {s}+ (2-d)(2µe(x)-δ 0 )+2d 2µe(x)-δ 0 < 1, therefore s -d 2 + d 2µe(x)-δ≤ s -1 for all δ ≤ δ 0 , which completes the proof of the Lemma.We are ready to prove Theorem 1.15. For the convenience of the reader, we recall it.Theorem 1.15. Let d ∈ N * . For x ∈ R \ Q, let α S d,s (x) be the Hölder regularity exponent of S d,s at x. Assume that

x 0 L

 0 k (t)dt + ζ(2)ζ(k + 1).

F

  s (x, t) = ∞ n=1 sin(πn 2 x) cos(2πnt) n s .

  alors la condition (0.2.6) est satisfaite et nous avons l'optimalité dans ce cas également. Il est probable que la condition (0.2.6) pourrait être supprimée.Nous considérons maintenant les formes paraboliques.

Théorème 0.10. Soit k ≥ 4 pair et M k une forme parabolique de poids k sous SL 2

  . Il a démontré que si M k est une forme parabolique, alors M k,s n'est pas dérivable en x irrationnel si s < k 2 + 1 et si k+1 2 < s < k 2 + 1, alors M k,s est dérivable en tout nombre rationnel. De plus, on déduit de [Cha04, Théorème 2.1] que l'exposant de Hölder de f s aux points irrationnels vaut s -k 2 pour tout k 2 < s < k 2 + 1. Cependant, sa méthode n'est pas applicable dans le cas de F k,s et G k,s considéré ici, parce qu'il demande que s < k 2 + 1 pour f non-parabolique, alors que nous considérons s > k. Dans le même article, il a démontré que la fonction f k,s
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  By Claim 3.4, we deduce that the polynomial P -d

c ,γ depends only on d and c. Write P -d c ,γ = P -d c

  However, this is not enough to conclude that|C(a, b)(F 2,s )| ≥ Ca s-2+2/κn m 1 + |b-x| a 2/κn m . Since E 2 (z)is quasimodular, there is an additional term 6 π|z| coming from (2.2.1), which has the same order of magnitude as 1 |qn m z| 2 for our choice of z, and we do not see another choice of z that would counteract this extra term. Furthermore, in (4.2.18) we could use the other inequality, namely |E 2 (b + ia)| ≥

	6 π|z| -	E 2	(-1) n q n-1 qn |qnz| 2	-1 q 2 n z

or a number terrorist, as Pieter Moree's colleague says.
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Conversely, if for some C that depends on x 0 and f we have

for an α ′ < α, as b → x 0 and a → 0, then f ∈ C α (x 0 ).

The wavelet ψ s

As in the previous chapter, we work with the principal branch -π < arg(z) ≤ π of z ∈ C. For s > 0 and x ∈ R, consider ψ s (x) = 1 (x + i) s+1 . We now show that ψ s satisfy the assumptions 2-4 of Proposition J. Assumption 1 will be considered separately in the proofs of Theorems 1.6 and 1.15. We start by noting the following fact that will be used later.

Proof. First assume that Im(z) > 0. Then we have R

(-iz+it) ρ dt. The result follows from [GR07, p. 347] Equation 6, with p = -1, ν = ρ and β = -iz. On the other hand, if Im(z) < 0, then R

(iz-it) ρ dt. The result then follows from [GR07, p. 347] Equation 7, with p = -1, ν = ρ and β = iz. However in this reference, no proof is given and therefore we provide a proof in Section 4.1.2 for the convenience of the reader.

Hölder regularity exponent of

Before we calculate the wavelet transform, we show the convergence of M k,s for certain s.

Lemma 4.8. The series M k,s converges normally on R for all s > k, and for all s > k 2 + 1 if M k is a cusp form. Moreover, if M k is a cusp form, then M k,s is well-defined and continuous on R for all s > k 2 . Proof. By a result of Hecke, if M k is not a cusp form, then r n = O(n k-1 ), and if M k is a cusp form, then r n = O(n k/2 ), which proves the first part of the Lemma. Then Deligne proved that if M k is a cusp form, then r n = O(n (k-1)/2+ε ), for all ε > 0. For details, see for example [START_REF] Serre | A course in Arithmetic[END_REF]. Chamizo improved Deligne's result, showing that if M k is a cusp form, then M k,s is well-defined and continuous on R for all s > k 2 , [Cha04, Proposition 3.1].

We also need the following fact in order to calculate the wavelet transform of M k,s . Lemma 4.9.

Proof. Recall that by Lemma 4.1, we have

On the other hand

The result then follows from sin(u) = e iu -e -iu 2i . Now we will calculate the wavelet coefficients of M k,s with respect to the wavelet ψ s . Lemma 4.10. Let s > k 2 + 1 if M k is a cusp form and s > k otherwise. The wavelet transform of M k,s with respect to the wavelet ψ s is

Substituting cosine for sine

Theorems 1.6-1.10 remain still valid if we replace F k,s with G k,s and M k,s with N k,s , since the wavelet transform of the series with cosine function with respect to ψ s differs from the wavelet transform of the series with sine only by a multiplicative constant. For example, the wavelet transform of G k,s with respect to ψ s is b+ia) .

We see that it differs from the wavelet transform of F k,s only by a multiplicative constant.

Hölder regularity exponent of S d,s and T d,s

Before we start proving the theorems we note that the series that we consider are welldefined and continuous on R. It follows from the next lemma.

Lemma 4.18. The series S d,s and T d,s converges normally on R for s > d 2 . Proof. Recall that the series

We then note that we can write S d,s (and similarly T d,s ) as

where R d (ℓ) is a number of ways to write ℓ as a sum of d squares of positive numbers where the order matters. We remark that Stéphane Jaffard in [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF] considered the case when d = s = 1. He proved the following theorem.

.

Also

Our theorems are the generalisation of the first part of this result.

Wavelet transform of S d,s

We start by computing the wavelet coefficients of S d,s with respect to ψ s .

Lemma 4.19. Let s > d 2 . For a > 0 and b ∈ R we have

where c d (s) = π s+1 e iπs/2 2 d+1 Γ(s+1) .

Proof. Since S d,s converges normally on R, we have

Then we use the substitution u = π(n 2 1 + ... + n 2 d )x, and we obtain

Then by Lemma 4.9 we have have

Therefore, the wavelet transform of S d,s with respect to the wavelet ψ s is 

depending on the parity of p n and q n for some constant C. However, when p n and q n are both odd there seems to be a technical problem. Namely, on page 456 Jaffard is writing that if p n , q n are both odd, 3 x-

Consider the example of x = 1 e , p 5 q 5 = 7 19 , a = 10 -6 , b = 0.37001. Then it verifies all the assumption, but Inequality (4.3.1) is not satisfied. We do not see how to fix this problem easily. Because of that, we use estimations of the size of |θ(b + ia) -1| in regions which were proposed by Oppenheim in his thesis [START_REF] Oppenheim | Ondelettes et multifractals : application à une fonction de Riemann en dimension 2[END_REF].

Oppenheim defined the regions around 0 and then he used the estimations of θ(x+b+ia) for b + ia in one of the regions, and looked at the estimate when a → 0 and b → 0. In order to be consistent with the previous sections, we will redefine these regions by shifting each element by x. In this way we would consider the estimate of θ(b + ia) as a → 0 and b → x.

We define a disk Γ n centred at pn qn , 1

, that is: 

Then we define

In other words,

The contour of Ω n depends of the values of a n , a n+1 , a n+2 and all possible cases are presented in [START_REF] Oppenheim | Ondelettes et multifractals : application à une fonction de Riemann en dimension 2[END_REF]. We have

for all n, and as n → ∞ the region Γ n gets closer and closer to x. Then it is proved that

for some constants C ′ n that depends on σ and n and C n that depends on n. On the other hand, if b + ia ∈ Γ n and p n , q n are not both odd, then

As b → x and a → 0 we deduce that we can replace θ(b + ia) with θ(b + ia) -1, only changing the constants.

Since there exists N ∈ N such that for all n ≥ N with p n , q n are not both odd, we have κ n < µ e (x) + δ 2 . Therefore lim sup , by Lemma 4.20 and Proposition J we conclude that S d,s / ∈ C s-d/2+d/(2µe(x)-δ) at x. Letting δ → 0 shows that α S d,s (x) = s -d 2 + d 2µe(x) . This completes the proof of the theorem.

Proof of Theorem 1.17

In this section, we prove Theorem 1.17. For the convenience of the reader, we recall it.

Theorem 1.17.

Propriétés analytiques et diophantiennes de certaines séries de Fourier arithmétiques

Résumé: Nous considérons certaines séries de Fourier liées à la théorie des formes modulaires. Nous étudions leurs propriétés analytiques : la dérivabilité, le module de continuité et l'exposant de Hölder. Nous utilisons deux méthodes différentes. La première revient à trouver et itérer une équation fonctionnelle de la fonction étudiée (méthode d'Itatsu) et la deuxième provient de l'analyse en ondelettes (méthode de Jaffard). L'étape essentielle de chacune dépend de la modularité sous-jacente. Nous trouvons que les propriétés analytiques de ces séries aux points irrationnels sont liées aux propriétés diophantiennes de ces points. Ce travail a été motivé par l'étude de la fonction de Riemann. Mots clés: dérivabilité, module de continuité, exposant de Hölder, formes modulaires, séries d'Eisenstein, fonction thêta, ondelettes, fractions continues Analytic and Diophantine properties of certain arithmetic Fourier series Abstract: We consider certain Fourier series which arise from modular or automorphic forms. We study their analytic properties: differentiability, modulus of continuity and the Hölder regularity exponent. We use two different methods. One is based on finding and iterating a functional equation for the function studied (Itatsu's method), the second one comes from wavelet analysis (Jaffard's method). The crucial steps in both of them are based on the underlined modularity. We find that the analytic properties of these series at an irrational x are related to the fine diophantine properties of x, in a very precise way. The work was motivated by the study of the Riemann series. Keywords: Differentiability, Modulus of continuity, Hölder regularity, Modular forms, Eisenstein series, Theta function, Wavelets, Continued fractions