B. , L. Báez-duarte, M. Balazard, B. Landreau, and E. Saias, ´ Etude de l'autocorrélation multiplicative de la fonction " partie fractionnaire, The Ramanujan Journal, vol.9, pp.215-240, 2005.

B. [. Balazard and . Martin, Comportement local moyen de la fonction de Brjuno, Fundamenta Mathematicae, vol.218, issue.3, pp.193-224, 2012.
DOI : 10.4064/fm218-3-1

URL : https://hal.archives-ouvertes.fr/hal-00723616

B. [. Balazard and . Martin, Sur l'autocorrélation multiplicative de la fonction " partie fractionnaire " et une fonction définie par, J. R. Wilton. Preprint, 2013.

]. A. Brj71 and . Brjuno, Analytic form of differential equations. I (Russian), Trudy Moskov. Mat. Ob??, vol.25, pp.119-262, 1971.

]. A. Brj72 and . Brjuno, Analytic form of differential equations. II (Russian), Trudy Moskov. Mat. Ob??, vol.26, pp.199-239, 1972.

H. [. Choimet and . Queffélec, Analyse mathématique. Grands théorèmes du vingtì emesì ecle, Calvage & Mounet, 2009.

A. [. Chamizo and . Ubis, Some Fourier series with gaps, Journal d'Analyse Math??matique, vol.69, issue.1, pp.179-197, 2007.
DOI : 10.1007/s11854-007-0007-z

A. [. Chamizo and . Ubis, Multifractal behavior of polynomial Fourier series, Advances in Mathematics, vol.250
DOI : 10.1016/j.aim.2013.09.015

A. [. Chowla and . Walfisz, ¨ Uber eine Riemannsche Identität, Dau92] I. Daubechies. Ten Lectures on Wavelets, pp.87-112, 1935.

]. J. Dui91 and . Duistermaat, Self-similarity of Riemann's nondifferentiable function " . Nieuw Arch. Wisk, pp.303-337, 1991.

]. J. Ger70 and . Gerver, The differentiability of the Riemann function at certain rational multiples of ?, Amer. J. Math, vol.92, pp.33-55, 1970.

I. [. Gradshteyn and . Ryzhik, Table of integrals, series, and products, 2007.

]. G. Har16 and . Hardy, Weierstrass's non-differentiable function, Trans. Amer. Math. Soc, vol.17, pp.301-325, 1916.

]. G. Har99 and . Hardy, Ramanujan, Twelve Lectures on Subjects Suggested by His Life and Work, 1999.

]. E. Hec22, . H. Heckehl14-]-g, J. E. Hardy, and . Littlewood, ¨ Uber analytische Funktionen und die Verteilung von Zahlen mod. eins Some problems of Diophantine approximation, Abh. Math. Sem. Univ. Hamburg Acta Math, vol.1, issue.37, pp.54-76193, 1914.

. [. Holschneider, . Ph, and . Tchmitchian, Pointwise analysis of Riemann's ?nondifferentiable? function, Inventiones Mathematicae, vol.1, issue.6, pp.157-175, 1991.
DOI : 10.1007/BF01232261

E. [. Hardy and . Wright, An introduction to the theory of numbers, Bulletin of the American Mathematical Society, vol.35, issue.6, 1960.
DOI : 10.1090/S0002-9904-1929-04793-1

C. [. Iosifescu and . Kraaikamp, Metrical theory of continued fractions, 2002.
DOI : 10.1007/978-94-015-9940-5

]. S. Ita81 and . Itatsu, Differentiability of Riemann's function, Proc. Japan Acad. Ser. A Math. Sci, vol.57, issue.10, pp.492-495, 1981.

]. H. Iwa97 and . Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics. AMS, vol.17, 1997.

]. S. Jaf91 and . Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publications Mathematiques, vol.35, pp.155-168, 1991.

]. S. Jaf95 and . Jaffard, Local behavior of Riemann's function. In Harmonic analysis and operator theory (Caracas, Contemp. Math, vol.189, pp.287-307, 1994.

]. S. Jaf96 and . Jaffard, The spectrum of singularities of Riemann's function, Revista Mathematica Iberoamericana, vol.12, issue.2, pp.441-460, 1996.

]. S. Jaf04 and . Jaffard, On Davenport expansions In Fractal geometry and applications: a jubilee of Beno??tBeno??t Mandelbrot, Proc. Sympos. Pure Math, vol.72, pp.273-303, 2004.

Y. [. Jaffard and . Meyer, Wavelet methods for pointwise regularity and local oscillations of functions. Memoirs Amer, Math. Soc, vol.123, issue.587, p.110, 1996.

]. A. Khi64, . Ya, and . Khinchin, Continued Fractions, 1964.

A. [. Kraaikamp and . Lopes, The theta group and the continued fraction expansion with even partial quotients, Geometriae Dedicata, vol.59, issue.3, pp.293-333, 1996.
DOI : 10.1007/BF00181695

]. M. Kno90 and . Knopp, Modular integrals and their Mellin transforms, Analytic number theory, pp.327-342, 1989.

]. S. Lan76 and . Lang, Introduction to modular forms, 1976.

J. [. Li, W. P. Ma, and . Zhang, On some Diophantine fourier series, Acta Mathematica Sinica, English Series, vol.1, issue.2, pp.1125-1132, 2010.
DOI : 10.1007/s10114-010-8387-x

P. [. Marmi, J. Moussa, and . Yoccoz, The Brjuno Functions and Their Regularity Properties, Communications in Mathematical Physics, vol.186, issue.2, pp.265-293, 1997.
DOI : 10.1007/s002200050110

P. [. Marmi, J. Moussa, and . Yoccoz, Some Properties of Real and Complex Brjuno Functions, Frontiers in number theory, physics, and geometry. I, pp.601-623, 2006.

]. H. Opp97 and . Oppenheim, Ondelettes et multifractals : applicationàapplicationà une fonction de Riemann en dimension 2, 1997.

]. I. Pet and . Petrykiewicz, Differentiability of Fourier series arising from Eisenstein series

]. I. Pet13 and . Petrykiewicz, Hölder regularity of arithmetic Fourier series arising from modular forms, 2013.

]. I. Pet14 and . Petrykiewicz, Note on the differentiability of Fourier series arising from Eisenstein series, C. R. Math. Acad. Sci. Paris, vol.352, issue.4, pp.273-276, 2014.

]. T. Riv12, On the convergence of diophantine Dirichlet series, Proc. Edinb, pp.513-541, 2012.

S. [. Rivoal and . Seuret, Hardy-Littlewood series and even continued fractions, Journal d'Analyse Math??matique, vol.63, issue.2
DOI : 10.1007/s11854-015-006-4

URL : https://hal.archives-ouvertes.fr/hal-00756399

]. J. Ser73 and . Serre, A course in Arithmetic, 1973.

J. [. Sun and . Wu, A dimensional result in continued fractions, International Journal of Number Theory, vol.10, issue.04, pp.849-857, 2014.
DOI : 10.1142/S179304211450002X

]. G. Ten95 and . Tenenbaum, IntroductionàIntroductionà la théorie analytique et probabiliste des nombres, 1995.

]. J. Wil33 and . Wilton, An approximate functional equation with applications to a problem of Diophantine approximation, J. reine angew. Math, vol.169, pp.219-237, 1933.

]. D. Zag91 and . Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math, vol.104, issue.3, pp.449-465, 1991.

]. D. Zag92 and . Zagier, Introduction to modular forms, From number theory to physics (Les Houches, pp.238-291, 1989.

]. D. Zag10 and . Zagier, Quantum modular forms, Quanta of maths, pp.659-675, 2010.