
HAL Id: tel-01197041
https://theses.hal.science/tel-01197041v1

Submitted on 11 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based system engineering enabling design-analysis
data integration in digital design environments :

application to collaborative aeronautics simulation-based
design process and turbojet integration studies

Thomas Vosgien

To cite this version:
Thomas Vosgien. Model-based system engineering enabling design-analysis data integration in digital
design environments : application to collaborative aeronautics simulation-based design process and
turbojet integration studies. Other. Ecole Centrale Paris, 2015. English. �NNT : 2015ECAP0011�.
�tel-01197041�

https://theses.hal.science/tel-01197041v1
https://hal.archives-ouvertes.fr

ÉCOLE CENTRALE DES ARTS

ET MANUFACTURES

 « ÉCOLE CENTRALE PARIS »

THÈSE
présentée par

Thomas Vosgien

pour l’obtention du

GRADE DE DOCTEUR

 Spécialité : Génie Industriel

 Laboratoire d’accueil : LGI – Laboratoire Génie Industriel

 SUJET :

Ingénierie Systèmes basée sur les Modèles appliquée à la Gestion et l’Intégration des don-

nées de Conception et de Simulation: application aux métiers d’intégration et de simula-

tion de systèmes aéronautiques complexes

-

Model-Based System Engineering enabling Design-Analysis Data Integration in Digital

Design Environments: application to collaborative aeronautics simulation-based design

process and turbojet integration studies

 soutenue le : 27 janvier 2015

devant un jury composé de :

Abdelaziz BOURAS – Professeur des universités (ictQATAR) – Rapporteur

Vincent CHEUTET – Professeur des universités (INSA Lyon) – Rapporteur

Thomas NGUYEN VAN – Docteur (Snecma, Groupe SAFRAN) – Examinateur

Benoît EYNARD – Enseignant Chercheur HDR (UTC) – Co-encadrant de thèse

Marija JANKOVIC – Maitre de conférence HDR (ECP) – Co-encadrant de thèse

 Jean-Claude BOCQUET – Professeur des universités (ECP) – Directeur de thèse

Chris PAREDIS – Professeur des universités (Georgia Tech) – Président du jury

 2015 - ECAP0011

“We keep moving forward, opening up new doors and doing new things, because we are curious.

And curiosity keeps leading us down new paths.”

Walt Disney

Remerciements T. Vosgien

REMERCIEMENTS

Je voudrais avant tout remercier Jean Claude Bocquet, directeur du Laboratoire Génie Industriel

à l’Ecole Centrale Paris et directeur de cette thèse, pour son soutien, de m’avoir fait confiance pour

mener à bien ces travaux et de m’avoir accueilli dans son laboratoire.

J’adresse aussi de vifs remerciements à Benoit Eynard et Marija Jankovic pour avoir bien voulu co-

encadrer cette thèse. Leur aide fut précieuse pour le positionnement scientifique de ces travaux mais

également pour me former à l’écriture scientifique. Je tiens aussi à les remercier pour la confiance

qu’ils m’ont accordée, pour leurs encouragements et leur soutien permanent.

Je remercie également Abdelaziz Bouras et Vincent Cheutet, qui ont bien voulu être rapporteurs

de ce mémoire. Merci aussi à Chris Paredis pour son regard critique sur mes travaux et qui a accepté

de présider mon jury de thèse.

Un grand merci à mon encadrement Snecma et particulièrement à Thomas Nguyen Van et

Arnaud Quenardel qui, grâce à leur expertise respective, ont grandement contribué à ma compréhen-

sion du contexte industriel et qui sont à l’origine de nombreux concepts présentés dans ce manuscrit.

Je souhaite également remercier Pascal Graignic, autre doctorant à Snecma, pour ces trois années de

collaboration et de partage pendant lesquelles nous nous sommes enrichis mutuellement. Enfin je re-

mercie Clément Leclerc qui à travers son stage de fin d’études a développé un générateur de code qui

fut très utile pendant la phase de prototypage.

Merci également aux partenaires du projet CRESCENDO avec qui j’ai eu la chance de collaborer.

Je souhaite notamment remercier toute l’équipe du “Product Integration Scenario” qui ont permis de

donner vie à certains concepts proposés dans ce manuscrit et en particulier Judith Crockford (AIRBUS

GROUP), Vincent Tuloup et Jennifer Berquet (Dassault Systèmes), Gilles Dubourg (Siemens PLM Soft-

ware), Camille Richard (Vinci Consulting) et Joao Saraipa (UNINOVA).

Merci aussi à Bernard Yannou, directeur adjoint du laboratoire LGI, pour m’avoir accueilli dans son

équipe de recherche, ainsi que pour ses conseils et encouragements. Je n’oublie pas non plus le per-

sonnel (assistants, doctorants et chercheurs) du laboratoire LGI, pour m’avoir accompagné pendant

ces trois ans et pour tous les bons moments passés ensemble. J’ai une pensée particulière pour Carole,

Corinne, Delphine, Denise, Guillaume, Hakim, Karim, Oualid, Pascal, Sylvie, Toufik et tout ceux que

j’aurai du mentionner.

Un immense merci finalement à ma famille proche; mes parents mes frères, ma sœur et ma cou-

sine qui ont toujours été présents pour moi et qui ont fait que je suis ce que je suis aujourd’hui.

Je ne peux terminer cette page de remerciements sans remercier Inès, ma fiancée, qui a su me

soutenir et m’accompagner pendant toute la durée de cette thèse. Je remercie également sa famille

pour m’avoir chaleureusement accueilli et m’avoir permis de me ré-oxygéner avec l’air pur de leurs

jolies montagnes.

Enfin j’adresse une pensée à mes grands parents, à ma tante et à tous les proches qui nous ont

déjà quittés.

Abstract T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-5-

ABSTRACT

In the context of large-scale partnerships, developing complex systems (such as aeronautical prod-

ucts) is a collaborative and distributed work involving several domains/disciplines, teams, processes,

design environments, tools and modelling languages. In such a context, engineering data have to be

processed and managed in the most consistent way so as to be used by all the partners and through

the different activities. System design, integration and simulation are essential phases for the verifica-

tion and optimization of system capabilities. Due to the increasing complexity of aeronautical products,

the Systems Engineering approach, offering multi-domain, multi-actors and multi-level system charac-

terization, can significantly contribute to the subsystem consistency insurance within the integration

phase. The main objective of the integration phase is to validate the global behaviour of a system based

on carefully planned and chosen numerical simulations. Depending on the considered discipline and

the kind of performed analysis, these numerical simulations require defining specific models of prod-

uct architecture in order to create the required simulation models. A major issue for the integrator is

to manage these models in order to identify the relevant data set to be used for the simulation and to

organize this data set into a new adapted product structure and “engineering environment”. Further-

more, integrating numerous components in complex system design is iterative and often produces

large scale intermediate data with heterogeneous formats and multiple relationships.

During the last decade, The Digital Mock-Up (DMU) – supported by Product Data Management

(PDM) systems – became a key integrated environment to exchange/share a common 3D model-based

product definition between design teams. It gives to designers and downstream users (analysts) an

access to the geometric definiton of product assembly. While enhancing 3D and 2D simulations in a

collaborative and distributed design process, the DMU offers new opportunities for analysts to retrieve

the appropriate CAD data inputs used for Finite Element Analysis (FEA); allowing hence to speed-up

the simulation preparation process. However, current industrial DMUs suffer from several limitations

among which: the lack of flexibility in terms of content and structure, the lack of digital interface ob-

jects describing the relationships between its components and a lack of integration with simulation

activities and data.

The PhD introduces the concept of multi-disciplinary digital integration chains which are multi-

level design-simulation loops where sub-systems models and data (potentially coming from several

disciplines) are integrated to enable the prediction of global system behaviour, and hence verifying the

compliance with expected system performances. In the context of digital integration chains, the PhD

especially underlines the DMU transformations required to provide adapted DMUs that can be used

as direct input for FEA of large assembly. These transformations must be consistent with the simulation

context and objectives and lead to the concept of “Product View” applied to DMUs and to the concept

of “Behavioural Mock-Up” (BMU). A product view defines the link between a product representation

and the activity or process (performed at least by one stakeholder) that use or generate this represen-

tation. The BMU is the equivalent of the DMU for simulation data and processes. Beyond the geometric

definition, which is represented in the DMU, the so-called BMU should logically link all data and models

that are required to simulate the physical behaviour and properties of a single component or an as-

sembly of components.

Abstract T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-6-

The key enabler for achieving the target of extending the concept of the established CAD-based

DMU to the behavioural CAE-based BMU is to find a bi-directional interfacing concept between the

BMU and its associated DMU. This concept is the kernel of the Design-Analysis Integration Framework

(DASIF) proposed in this PhD. This framework might be implemented within PLM/SLM1 environments

and interoperate with both CAD-DMU and CAE-BMU environments. DASIF combines configuration

data management capabilities of PDM systems with system modelling concepts of MBSE and Simula-

tion Data Management capabilities. In PhD dissertation, the PDM and System Modelling capabilities

and related concepts of DASIF are described as well as the related data model to be implemented.

This PhD has been carried out within a European research project: the CRESCENDO project which

aims at delivering the Behavioural Digital Aircraft (BDA). The BDA concept might consist in a collabo-

rative data exchange/sharing platform for design-simulation processes and models throughout the de-

velopment life cycle of aeronautical products. Within this project, the Product Integration Scenario

and related methodology have been defined to handle digital integration chains and to provide a test

case scenario for testing DASIF concepts. Latter have been used to specify and develop a prototype of

an “Integrator Dedicated Environment” implemented in commercial PLM/SLM applications

(CATIA/SIMULIA V6 and Teamcenter for Simulation 9). These prototypes have permitted to assess the

current commercial tools maturity regarding these concepts and to have a feedback regarding the fea-

sibility of their implementation. Finally the conceptual data model of DASIF has also served as input

for contributing to the definition of the Behavioural Digital Aircraft Business Object Model: the stand-

ardized data model of the BDA platform enabling interoperability between heterogeneous PLM/SLM

systems and to which existing local design environments and new services to develop could be pluged.

1 PLM for Product Lifecycle Management and SLM for Simulation Lyfecycle Management

Table of contents T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-7-

TABLE OF CONTENTS

Abstract ... 5

Table of contents .. 7

Figure Index ... 12

Table Index .. 19

List of acronyms .. 20

Chapter 1: General Introduction..22

1.1 Introduction and research context ... 22

1.2 Research methodology and process... 23

Part I: Problem statement ... 24

Chapter 2: Industrial context and challenges ..26

2.1 Particularities of the aeronautics industry: contextual changes and industrial stakes 26

2.2 Design and integration of complex aeronautics system .. 27

2.2.1 Definition of the Complex System.. 27

2.2.2 Definition of complexity for an aircraft Power Plant System ... 27

2.2.3 Collaborative PDP in the aeronautics extended enterprise ... 31

2.3 Challenges of System Engineering and Integration .. 34

2.3.1 Definitions .. 34

2.3.2 System integration : a simulation-based design process ... 35

2.3.3 The design-analysis integration challenge ... 37

2.4 Conclusion .. 39

Chapter 3: Collaborative digital design environments ..41

3.1 CAX systems.. 41

3.1.1 Computer Aided Design ... 41

3.1.2 Computer Aided Engineering and Finite Element Analysis .. 42

3.1.3 Digital integration chains and the issue of FE assembly models .. 44

3.2 Introduction to Engineering Data Management Systems .. 46

3.3 The Digital Mock-Up: a major industrial stake ... 48

3.3.1 Digital Mock-Up’s fundamentals .. 48

3.3.2 Digital Mock-Up Applications ... 48

3.3.3 Evolution of a Digital Mock-Up during the product life cycle .. 49

3.3.4 Synchronizing the DMU with the product definition ... 50

3.4 Conclusion: From Digital Mock-Up to Behavioural Mock-Up ... 52

Chapter 4: Key technical requirements ...54

4.1 Synthesis of key technical requirements .. 54

4.1.1 Requirements related to the use of the DMU for CAD-FEA integration 54

Table of contents T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-8-

4.1.2 Requirements related to system architecture modelling capabilities with an object-

oriented approach ... 59

4.1.3 Requirements related to Multi-Aspect information structure in existing Product Data

Models and PDM/PLM systems ... 60

4.2 Conclusion and research objectives ... 64

PART II: State of the art ... 65

Chapter 5: Scientific positioning ..66

5.1 Lean Product Development and Simulation-Based Design .. 66

5.1.1 Introduction to Lean Product Development .. 66

5.1.2 What and where are the value and waste drivers in PDP? .. 67

5.2 Bridging the gap between Design and Analysis for efficient System Integration 69

Chapter 6: Model-Based System Engineering and Integration methodologies...72

6.1 Model-Based Product/System Design Definition ... 72

6.1.1 Model-based definitions .. 72

6.1.2 Model-Based System Engineering and Integration .. 73

6.2 System modelling languages, frameworks and tools ... 74

6.2.1 Object-oriented System modelling languages ... 74

6.2.2 MBSE modelling frameworks and tools ... 78

6.3 Object-Oriented System modelling for design-analysis data integration............................... 82

6.4 Synthesis of current MBSE gap and limitations .. 86

Chapter 7: The DMU as the backbone of Model-Based and Simulation-Based Mechanical Product Design

 ...89

7.1 DMU: the multi-view point product definition referential ... 89

7.2 DMU transformations for integrated assembly FEA .. 91

7.2.1 DMU shapes transformation .. 91

7.2.2 Explicit Functional and Topological description of Assemblies in DMUs 93

7.2.3 Simulation-driven DMU structural transformation .. 97

7.3 From DMU to BMU and integration with PDM systems .. 98

7.4 Conclusions ... 101

Chapter 8: Impact on Product Data Models and PLM systems .. 103

8.1 Multi-aspects product data and meta-data models ... 103

8.1.1 Generic product data management capabilities .. 104

8.1.2 Capturing product assembly and interfaces information in PDM systems 125

8.1.3 Continuity of design and simulation data in product data models 132

8.1.4 Multi-view and multi-domain aspects in PDM ... 136

8.1.5 The multi-view consistency and multi-domain engineering change propagation issues 140

8.2 Conclusion on current PDM and SDM remaining gaps .. 146

PART III: Proposal for a design-analysis integration framework ... 148

Chapter 9: Research & Development Methodology ... 151

Table of contents T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-9-

9.1 Research context .. 151

9.2 A Lean-6σ approach to integrate People, Processes and Tools ... 152

9.3 Research study ... 154

9.4 “Define”, “Measure” and “Analyze” phases ... 154

9.4.1 Define phase .. 154

9.4.2 Measure and Analyze ... 156

9.5 Design and Verify phases: development methodology .. 157

Chapter 10: Proposition of a MBSE framework for Design-Analysis Integration 159

10.1 Results of the Functional Analysis .. 159

10.1.1 Objectives and fundamental need expression ... 159

10.1.2 Place of DASIF in the Product Development Process ... 162

10.1.3 Stakeholders and Use cases .. 162

10.1.4 Conceptual and software environment architecture of DASIF 165

10.1.5 Information flow map ... 167

10.1.6 Functional synthesis ... 170

10.2 Proposed approach for exploiting DMUs in DASIF ... 176

10.2.1 Definitions .. 176

10.2.2 Proposed approach: from “Referential DMUs” to “Downstream DMUs” 178

10.2.3 Conditions and required capabilities for exploiting downstream DMUs in design-

simulation loops ... 182

10.3 DASIF related capabilities and concepts proposal .. 184

10.3.1 Referential DMUs and derived representations ... 185

10.3.2 Multi-view DMU Configurations and Product Views Management 189

10.3.3 DMU enrichment with digital interfaces definitions .. 194

10.3.4 Digital MBSE system modelling and integration framework .. 204

10.3.5 CAD-CAE data integration within the DASIF framework .. 216

10.3.6 Semantic data mapping for PDM/SDM interoperability .. 218

10.4 Conclusion .. 219

Chapter 11: Conceptual Data Model .. 221

11.1 System Definition Layer .. 222

11.1.1 System Artefact Definition and Taxonomy ... 222

11.1.2 Functional, Design and Behavioural System Artefacts Definitions 224

11.1.3 DMU and BMU assembly structures .. 227

11.1.4 Interface and Interaction definition ... 229

11.1.5 System Models ... 232

11.2 From Artefact System Definition Layer to Topological Layer ... 232

11.2.1 CAD topological layer.. 233

11.2.2 FE topological Layer and links with the CAD topology ... 234

Table of contents T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-10-

11.3 Configuration Management Layer.. 235

11.3.1 Multi-view and design-oriented configuration management .. 236

11.3.2 Engineering Design Change Management .. 238

11.4 Conclusion .. 239

PART IV: Implementation and demonstrations of concepts ... 240

Chapter 12: DASIF prototype development and exploitation .. 241

12.1 Prototype architecture ... 241

12.2 Logical data model for implementation ... 242

12.3 Generation and enrichment of the DASIF product data base .. 245

12.3.1 Generation of the DASIF relational data base system .. 245

12.3.2 Generation of the test-case DMU XML file for database enrichment 247

12.3.3 Enrichment of the database ... 250

12.4 Developed Functions and overview of prototyped GUIs ... 250

12.5 Conclusions ... 253

Chapter 13: Potential implementations in commercial tools for operational use in multi-partner projects

 .. 254

13.1 The Product Integration scenario and methodology.. 254

13.1.1 Introduction to Power Plant Integration use case .. 254

13.1.2 The product integration test-case scenario .. 255

13.2 Developed prototypes .. 257

13.2.1 Industrial test data set .. 257

13.2.2 Demonstrators .. 258

13.3 Contribution to the BDA BOM .. 282

13.3.1 System, CAD and FEM interfaces specifications in the BDA BOM 283

13.3.2 Product Integration scenario example using BDA BOM Classes 286

13.4 Conclusion .. 289

Chapter 14: Results and validation ... 290

14.1 The Product Integration Scenario key results and gap analysis ... 290

14.2 PPI capabilities assessment .. 292

14.3 DASIF concepts and capabilities assessment.. 294

14.4 Conclusion .. 295

Chapter 15: Conclusions and future work .. 296

15.1 PhD Synthesis ... 296

15.1.1 Synthesis of addressed challenges and issues .. 296

15.1.2 Contribution summary.. 297

15.2 Future work .. 300

REFERENCES .. 303

APPENDIX I .. 315

Table of contents T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-11-

APPENDIX II ... 316

APPENDIX III .. 318

APPENDIX IV .. 320

APPENDIX V ... 321

APPENDIX VI .. 322

APPENDIX VII ... 323

APPENDIX VIII .. 324

APPENDIX IX .. 325

APPENDIX X ... 327

APPENDIX XI .. 374

APPENDIX XII ... 387

APPENDIX XIII .. 393

APPENDIX XIV .. 394

APPENDIX XV ... 395

APPENDIX XVI .. 402

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-12-

FIGURE INDEX

Figure 1: Research methodology and structure of the PhD thesis .. 23

Figure 2 : Simplified 3D digital mock-up of an IPPS ... 28

Figure 3: Multi-disciplinarily nature of an aero-engine ... 28

Figure 4 : GE-Snecma modular work sharing for CFM56 engines development ... 30

Figure 5: New IPPS concepts positioned regarding their environmental impacts .. 30

Figure 6: Multi-layer and multi-partner work breakdown into design packages. Adapted from [Nguyen Van,

2006] ... 31

Figure 7 : Engine development life cycle [Nguyen Van, 2006] .. 32

Figure 8: Engine and Aircraft development cycle in parallel [Nguyen Van, 2006] .. 33

Figure 9: Examples of inter-dependant numerical simulation to perform IPPS integration along the

development lifecycle ... 36

Figure 10: Illustration of time and knowledge gaps from a micro perspective: non-synchronisation of

mechanical and aerothermal studies in an aero-engine development life cycle ... 36

Figure 11: Mechanical Design-Simulation loop of a compressor disk ... 37

Figure 12: Design and Analysis data involved in a CAD-CAE loop process .. 38

Figure 13: The FBS framework and scope of Simulation-Based Design (from [Bajaj, 2008]) 38

Figure 14: CAD model created with Catia V5 .. 41

Figure 15: Example of design in context ... 41

Figure 16: Example of updating a disk which contextual design is based on an aerodynamic outline 42

Figure 17: Integrated Mechanical Finite Element Model of a power plant system 43

Figure 18: FAN blade-off simulation results due to a bird ingestion ... 43

Figure 19: Part of a mechanical digital integration chain at IPPS and engine levels 44

Figure 20: IPPS mechanical model integration .. 45

Figure 21: Evolution of digital engineering tools functionalities – adapted from [Nguyen Van et al., 2006b]

 .. 47

Figure 22: SAM146 digital mock-up .. 48

Figure 23 : Digital Mock-Up schema ... 48

Figure 24: DMU applications adapted from [Nguyen Van, 2006] ... 49

Figure 25 : Design in context in preliminary design – Mechanical Skeleton of an integrated aero-engine

assembly ... 50

Figure 26 : Parallelism between project stages and DMU evolution [Nguyen Van, 2006] 50

Figure 27: Illustration of required simulation-driven DMU adaptations for two different FEAs 54

Figure 28: Principle of removal details at component level from [Hamdi et al., 2007] 55

Figure 29: Example of DMU simplifications required for an aero-engine structural analysis 55

Figure 30: Fan assembly example of different modelling dimensions for the structural analysis of an areo-

engine ... 56

Figure 31: Functional modular reference DMU structure Vs Mechanical DMU structure 57

Figure 32: CAD Bearing sub-system and its corresponding FE 1D representation for a specific structural

analysis .. 58

Figure 33: High-level traceability between CAD-CAE metadata objects ... 62

Figure 34: Example of required fine grain CAD-CAE association adapted from [Nolan et al., 2011] 63

Figure 35: Synthesis of industrial requirements to optimize digital integration chains 64

Figure 36 : The Lean Product Development scope (extracted from [Hoppmann, 2009]) 66

Figure 37: Time and knowledge gaps to reduce risk and achieve PDP performance (adapted from

[Wenzel&Bauch, 1996]) .. 68

Figure 38: PhD scientific positioning and contributions regarding Design-Analysis integration research areas

 .. 70

Figure 39: INCOSE MBSE Roadmap from [Murray, 2012] ... 73

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-13-

Figure 40: UML and SysML diagrams taxonomy ... 75

Figure 41: Formalism difference between Modelica (on the left) and SysML (on the right) 77

Figure 42: Phoenix Integration applications and PDM systems interoperating principle from [Woyak, 2010]

 .. 80

Figure 43: CATIA/SIMULIA V6 RFLP framework integrated with 3D CAD DMU environment 81

Figure 44: Conceptual Architecture of SLIM from [Bajaj et al., 2011] ... 82

Figure 45: Configuration of components and interfaces and selection their behavioural models from [Sinha

et al., 2002] ... 83

Figure 46: Interactions (left) and ports (right) taxonomies proposed by [Sinha et al., 2001b]..................... 84

Figure 47: COB/MRA-based panorama for CAD-CAE interoperability from [Peak et al., 2007b] 85

Figure 48: Design- Analysis activity and data chart from [Andersson, 1999] .. 86

Figure 49: Differentiation of DMU stakeholders roles re-created from [Drieux, 2006] 90

Figure 50: Structure of a DMU processing to produce a DDMU for a given product view from [Drieux, 2006]

 .. 90

Figure 51: Correspondence between an assembly graph in GAIA and the equivalent DMU structure in a

3DXML file from [Drieux, 2006] .. 94

Figure 52: Skeleton entities definition via PEGASUS CAD Assistant within CATIA v5 from [Demoly et al.,

2011a] ... 95

Figure 53: Conventional Interfaces Graph of a simple cap-screw model from [Shahwan et al., 2011] 96

Figure 54: Conventional interfaces and Functional Interpretations combinations from [Shahwan et al., 2012]

 .. 96

Figure 55: Structure of an assembly simulation preparation process [Boussuge et al., 2012] 97

Figure 56: SEED environment architecture from [Shephard et al., 2004] ... 99

Figure 57: Meta-modelling Concept of the BMU from [Riel, 2005] .. 99

Figure 58: Behavioural Digital Aircraft Enabling Capabilities and Use Cases .. 101

Figure 59: PLCS DEX architecture - DEXs, Capabilities, Templates, and Reference Data. 108

Figure 60: Conceptual view of AP233 from [Herzog, 2004] .. 109

Figure 61: PDM schema scope and positioning .. 109

Figure 62: Overview of AP242 scope and content .. 110

Figure 63: Overview of AP242business object model capabilities .. 110

Figure 64: Product sub-types entities in the PLCS ... 111

Figure 65: Part identification schema and the meaning of STEP entities ... 111

Figure 66: UML representation of the AP214 “Part Identification” UoF ... 112

Figure 67: Property Definition Associated with Product Data in the PDM schema 112

Figure 68: UML representation of the AP214 “Item_property” UoF .. 113

Figure 69: UML schema of part geometric properties as managed within the PDM schema 114

Figure 70: shape and shape aspects association ... 114

Figure 71: the PDM schema methods to relate a geometric model file to product identification data 115

Figure 72: Product structure elements relationships as defined in [[ISO, 2000b], Fischer&Sachers, 2002]117

Figure 73: Assembly_component_usage relationship representing the usage occurence of a

product_defintion within the immediate parent assembly definition accordig to the PDM schema 118

Figure 74: Abstract Vs Explicit product structure information model as defined in AP214 CC8 119

Figure 75: UML representation of the configuration management schema as defined in [ISO, 2004a] 120

Figure 76: From Abstract product structure to Explicit configured and positioned DMU structure

[Fischer&Sachers, 2002].. 121

Figure 77: UML class diagram of the STEP Representation Schema as defined in Part 43 [ISO, 2011a] 122

Figure 78: Comparison of the two methods for relating a component part's shape to the shape of its parent

assembly ... 122

Figure 79: UML class diagram of the Core Product Model from [Fenves et al., 2007] 124

Figure 80: A Systems Model and its Relationships [Sellgren&Drogou, 1998] ... 126

Figure 81: Behaviour Feature and Mating Face Associated to Design Shape [Sellgren&Drogou, 1998] 126

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-14-

Figure 82: Implicit Master-Slave Selection [Sellgren&Drogou, 1998] ... 127

Figure 83: Interface modelling as a 3-layered architecture: design, behaviour, and applicative layers

[Sellgren, 2006a] ... 127

Figure 84: Interface model objects put into the context of a larger product information model [Sellgren,

2006a] ... 128

Figure 85: Mating definition as defined in ISO 10303-214 .. 128

Figure 86: AP233 interface connection and connectors concepts .. 129

Figure 87: Interface information model as defined by [ISO, 2012] ... 129

Figure 88: Class diagram of the open assembly model from [Sudarsan et al., 2006] 130

Figure 89: Product-component relationships within the MUOVA data model redesigned from [Demoly et al.,

2010b] ... 132

Figure 90: Morphological Analysis Tool Components [Belaziz et al., 2000] .. 133

Figure 91: Analysis vs. Design Discipline Product Definition recreated from [ISO, 1999] 134

Figure 92: Recommended data structure for relating Analysis Shape to Analysis 135

Figure 93: Conceptual working principle of the Breakdown Structure Model as defined in [ISO, 2004b, ISO,

2012] ... 139

Figure 94: UML class diagram representing breakdowns as defined in [ISO, 2004b, ISO, 2012] 140

Figure 95: SysML generic meta-model .. 142

Figure 96: IEEE 1471 multi-view system meta-model and its adaptation by [Demoly et al., 2010b] 142

Figure 97: Description of information flow between views defined in the MUVOA model from [Demoly et

al., 2011c] .. 143

Figure 98: UML class diagram for managing engineering change in AP214 ... 143

Figure 99: Multilayer network model from [Pasqual&Weck, 2012] ... 145

Figure 100: As-Is collaborative mechanical digital integration chain .. 148

Figure 101: To-Be collaborative mechanical digital integration chain .. 149

Figure 102: PhD research context and methodology .. 152

Figure 103: The 13 LPD components (extracted and adjusted from [Morgan&Liker, 2006]) 152

Figure 104: Study scope and Lean-6σ research & development methodology proposal 154

Figure 105: Business units of the Snecma PPS integration division .. 155

Figure 106: addressed Snecma business processes .. 155

Figure 107: Example of VSM performed within Snecma Integration Division .. 156

Figure 108: V-model development method .. 158

Figure 109: Fundamental need expression using the APTE method bull chart .. 160

Figure 110: SADT/IDEF0 representation of DASIF top-level function ... 160

Figure 111: Simplified SADT of DASIF and positioning of PhD scope .. 161

Figure 112: Position of the DASIF framework in the Product Development Processes 162

Figure 113: Simplified use case diagram of DASIS environment ... 164

Figure 114: Conceptual scope and architecture of DASIF and link with the BDA 165

Figure 115: Other representation of DASIF architecture - the System Module cornerstone 167

Figure 116: Map of Design-Analysis Information flow within DASIF and within a design integration chain

 .. 168

Figure 117: DASIF A1 SADT decomposition – High level functions to provide .. 170

Figure 118: A4 SADT - SADT - FE Sub-systems Integration & Pre-Processing ... 176

Figure 119: Two different scenarios and approaches for preparing and managing RDMUs and DDMUs .. 179

Figure 120: Content of “StudyManagement” package ... 182

Figure 121: Mass properties management principle proposal ... 186

Figure 122: example of 3D-2D inconsistencies between a DMU and a 2D cross-section 187

Figure 123: Proposed To-Be process for generating DMU-based and simulation-oriented 2D cross-sections

 .. 188

Figure 124: illustration of the cross-section cutting results on a turbojet FAN module 189

Figure 125: Effectivity-based product configuration working principle .. 190

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-15-

Figure 127: Master, Manufactured and Design Disciplines Configurations .. 191

Figure 128: Conceptual model for managing configurations and related product views 191

Figure 129: Illustration of a multiple usage occurrences of DMU components in a modular referential

configuration, in the mechanical configuration and some possible derived DMU views. 192

Figure 130: Engineering change process schema .. 193

Figure 131: Change propagation from a master configuration to a related design discipline configuration

 .. 193

Figure 132: Examples of solid-solid interfaces usually found in a turbojet engine system......................... 194

Figure 133: Example of fluid-solid interface ... 195

Figure 134: place of the bearing interfaces in a mechanical DMU structure .. 196

Figure 135: Balls and Rolls Bearing CAD templates ... 197

Figure 136: Fan case and inter-case designed in context using CAD interface templates 198

Figure 137: Example of connection template form .. 199

Figure 138: Proposed interface-based CAD design approach for enriching DMUs 199

Figure 139: Suggestion for using CAD Connection Template for automatic creation of unexpected bolted

flanges ... 200

Figure 140: Cellular Modelling concept enabling CAD mating features extraction adapted from [Robinson et

al., 2011] ... 202

Figure 141: Fluid domain extraction demonstration from [ANSYS, 2013] .. 202

Figure 142: Automatic bolted flange FE modelling based on design intent [Nolan et al., 2013] 203

Figure 143: Use of CAD mating features and related interface design intent to define FE models connections

 .. 204

Figure 144: Proposed MBSE framework formalism and related objects .. 205

Figure 145: Physical interaction and port delegation within a system model internal block diagram 206

Figure 146: Example 1 of an IPPS DMU mechanical system integrator view - Engine block shared as black box

 .. 207

Figure 147: Example 2 of an IPPS DMU mechanical system view - Engine modules blocks shared as black

boxes ... 207

Figure 148: Example 3 of an IPPS DMU mechanical system view - Engine block shared as white box in initial

configuration ... 208

Figure 149: Example 3 of an IPPS DMU mechanical system view - Engine block shared as white box in

mechanical configuration .. 208

Figure 150: Links between SE objects and engineering data – Example with a FAN Case assembly 209

Figure 151: LPTC-TBH assembly specified with the MBSE integration framework 209

Figure 152: Interface design intent definition example .. 212

Figure 153: Automatic assembly of FE models based on a BMU specified in the system modelling framework

 .. 214

Figure 154: Generic process for defining a simulation intent ... 216

Figure 155: Simulation intent data package for FEA ... 216

Figure 156: the AMN concept as defined in the BDA Business Object Model from [CRESCENDO, 2013] .. 217

Figure 157: Example of Associative Model Networks extracts for FEA ... 218

Figure 158: Framework for model language independent semantic mapping adapted from [Agostinho et al.,

2010] ... 219

Figure 159: Synthesis of contributions regarding PhD scientific positioning .. 220

Figure 160: Conceptual architecture of DASIF data model - packages organisation 221

Figure 161: System Artefact Definition and Taxonomy .. 222

Figure 162: Functional, Design and Behavioural System Artefact Definition diagram 224

Figure 163: Global data structure of an item design definition .. 226

Figure 164: Global data structure of an artefact behavioural definition .. 227

Figure 165: Instance diagram of a DMU Fan-Booster assembly structure.. 228

Figure 166: Proposed Interface Taxonomy ... 229

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-16-

Figure 167: System Interface Data Model ... 231

Figure 168: Data model for defining DMU and BMU system models ... 232

Figure 169: Link between System Definition and Topological Layers ... 233

Figure 170: Links between Design Layer and Topological Layer ... 234

Figure 171: Links between Behavioural Layer and Topological Layer ... 235

Figure 172: Product configuration data model - links between configurations and system definitions 237

Figure 173: Engineering change management data model - links between changes, configurations and

system definitions ... 238

Figure 174: first DASIF prototype architecture ... 241

Figure 175: implemented logical data model - system artefact definition basis .. 242

Figure 176: implemented logical data model - system artefacts and components properties 243

Figure 177: implemented data model - interface and interaction topology... 243

Figure 178: implemented data model - Interface and interaction definition ... 244

Figure 179: implemented data model - Bolted joint definition .. 244

Figure 180: implemented data model - product configuration management .. 245

Figure 181: implemented data model - engineering change management .. 245

Figure 182: Working process of the GENEPY generator.. 247

Figure 183: Launching the XML DMU EXPORT script in CATIA V5R18 .. 248

Figure 184: simplified view of the CATIA XML_DMU_EXPORT macro procedure....................................... 248

Figure 185: Structure of the DMU exported XML file ... 249

Figure 186: the xml description of a component definition .. 249

Figure 187: the CHILDREN_LIST elements recursively capturing the children components for each DMU

constituent .. 249

Figure 188: the Model_List capturing all individual parts CAD models, their attributes and their constituting

bodies .. 250

Figure 189: the LINKAGE_LIST element capturing all pre-defined mechanical linkages and related CAD

mating features ... 250

Figure 190: DASIF Prototyped GUI - Artefact Definition Form .. 251

Figure 191: DASIF Prototyped GUI – Configuration Manager Module – Business Structure Manager 252

Figure 192: DASIF Prototyped GUI – Configuration Manager Module – Structure Compare 253

Figure 193: Process description of the Product Integration scenario ... 256

Figure 194: Mechanical system architecture and interface specifications for IFEM creation 258

Figure 195: Re-usable simulation template used to define simulation context and intent 259

Figure 196: Retrieval of the work breakdown structure for the study ... 259

Figure 197: retrieval of the simulation workflow definition and related technical data package in ENOVIA V6

 .. 260

Figure 198: referential PPS DMU before transformations .. 260

Figure 199: SIMULIA V6 RFLP framework - Logical architecture and corresponding DDMU after

transformations and filters ... 261

Figure 200: Referencing and Associating Ports-CAD Publications links in CATIA/SIMULIA V6 261

Figure 201: Visualising Ports-CAD Publications “implement links” in CATIA/SIMULIA V6 262

Figure 202: Interfaces catalog request engine .. 262

Figure 203: result of the request in the interfaces catalog ... 263

Figure 204: Instantiation of the parameterised bolted flange connection template in the logical mechanical

architecture ... 263

Figure 205: instantiation of interface FE modelling parameters... 263

Figure 206: Creation of a CAD-FEM geometrical interface template .. 264

Figure 207: CAD-FEM geometrical interface template instantiation – definition of expected mating features

 .. 264

Figure 208: PPS mechanical IFEM structure with attached documents and related attributes 265

Figure 209: overview of PPI developed capabilities in the commercial PLM solutions 266

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-17-

Figure 210: extract of the BDA BOM used for the product integration scenario and modeled in sDM© .. 267

Figure 211: Simulia/Enovia V6 and Teamcenter for Simulation 9 data models modeled in sDM© 267

Figure 212: mapping of Enovia V6 and Teamcenter for simulation 9 data models with the BDA BOM in sDM©

 .. 268

Figure 213: Required transformations for the semantic data mapping with the BDA BOM 268

Figure 214: PLM-XML file generated from sDM and imported in Teamcenter for Simulation 9 269

Figure 215: Engine mechanical logical architecture managed with an integrated Visio module in TC4SIM 9

 .. 271

Figure 216: Referencing and Associating Ports-CAD Publications links in TC4SIM 9 271

Figure 217: Setting-up mechanical connections from catalog to the system view in TC4SIM 272

Figure 218: TC4SIM relation browser for visualising dependency links between simulation intents, meshes

and CAD models .. 272

Figure 219: Associative model network implementation – the relation browser or traceability report in

TC4SIM 9 ... 273

Figure 220: script automating the IFEM assembly - creation of NX-CAE FE links objects 274

Figure 221: illustration of the FE model quality check procedure .. 274

Figure 222: Automated FE model quality check workflow modelled and configured in Isight Design Gateway

 .. 275

Figure 223: output of the workflow executed in batch - text file containing displacement results and their

comparison ... 275

Figure 224: visualisation of quality ratio (results accuracy) on the integrated engine FEM 276

Figure 225: 3D visual report after the maximum jacobian ratio checking procedure 276

Figure 226: Completed multi-view integrator environment in TC4SIM 9 ... 277

Figure 227: Modelling requirements compliance checking - comparison of FE features with FE modlling

requirements .. 278

Figure 228: script automating the assembly of the PPS mechanical IFEM in Abaqus CAE 278

Figure 229: script automating the IFEM assembly - creation of Abaqus FE links objects 279

Figure 230: DDMU and corresponding BMU integrated in the RFLP environment 279

Figure 231: simulation execution and results visualisation in Abaqus CAE .. 280

Figure 232: the logical view of the integrator dedicated environment used as a decision support tool for

interface results validation in CATIA/SIMULIA V6 ... 281

Figure 233: interfaces results extraction in ENOVIA V6 .. 281

Figure 234: Engine interfaces loads automatically imported in TC4SIM and applied on engine FEM interfaces

in NX-CAE .. 282

Figure 235: The interface definition via the system framework in the BDA BOM semantic....................... 284

Figure 236: The interface definition via the system framework in the BDA BOM semantic....................... 285

Figure 237: Representations of Interface elements in the Physical View ... 286

Figure 238: links between System and Product views for one iteration ... 287

Figure 239: Adding Integrated model for second iteration - bold links .. 287

Figure 240: Product View subset: showing derived from and evolution relationships over two iterations 288

Figure 241: Illustration of the AMN concept and methodology – Meaning of the AMN BDA BOM object 288

Figure 242: Generic Product Development Process according to [Pahl et al., 2007].................................. 315

Figure 243: System Engineering and Integration V cycle and the design iterations 317

Figure 244: Conceptual framework for Value creation in PDP (adapted from [Chase, 2001]) 318

Figure 245: Data, information, knowledge and their value added (copied from [Bauch, 2004] but according

to [Schwankl, 2002] and [Irlinger, 1999]) .. 318

Figure 246: Overview of waste drivers in PDP [Bauch, 2004] ... 319

Figure 247: General process chain of product development with the corresponding used CAX technologies

[Werner Dankwort et al., 2004] .. 320

Figure 248: Units of functionalities covered by the STEP PDM schema [Srinivasan, 2011] 321

Figure 249: PLCS Conceptual Data Model [ISO, 2004b] .. 322

Figure index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-18-

Figure 250: Express-G diagram of the Assembly_constraint_schema and

Assembly_feature_relationship_schema [ISO, 2003b] ... 323

Figure 251: UML class diagram of the MUVOA model extracted from [Demoly et al., 2010b] 324

Figure 252: Simplified GENEPY neutral model .. 328

Figure 253: Product Integration process in BPMN .. 393

Figure 254: BDA Architecture Framework Layers and related artefacts ... 402

Figure 255: The information model hierarchy and how it relates to business processes and services. 403

Figure 256: Business Concept Model Overview .. 405

Figure 257: Business Object Model overview ... 406

Table index T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-19-

TABLE INDEX

Table 1: Standardized product data and meta-data managed in ISO STEP AP214 conformance classes

[Srinivasan, 2011] .. 105

Table 2: Lean-6sigma framework to integrate Processes, Tools and People .. 153

Table 3: GEOMAlgoSplitter algorithm used for extracting a mating feature between two shapes from

[PythonOCC, 2013] .. 201

Table 4: Description of the system framework’s objects content - Links between system model entities and

engineering data ... 210

Table 5: Engine-Pylon assembly model described with different system views – illustration of the use of

interface system blocks for defining the mount system ... 211

Table 6: Creation of an integrated thermo-mechanical model for the power plant – two different model

architect view points ... 215

Table 7: technological choices for DASIF data base generation and management 246

Table 8: DMU CAD test data set for Product Integration scenario ... 257

Table 9: FE models test data set for Product Integration Scenario ... 258

Table 10: Content of the PLM-XML technical data package - Global view (a), Physical view (b), System/Logical

view (c) and Fucntinal/Requirements view (d) ... 270

Table 11: automatic "fit-for-purpose" meshing process of the intercase thanks to a script developed by

[Nolan et al., 2013] .. 273

Table 12: PPI capabilities - achievements and gap analysis .. 292

Table 13: PPI capabilities - assessment criteria and related potential benefits .. 293

Table 14: PPI capabilities assessment matrix .. 294

Table 15: DASIF concepts and capabilities assessment matrix ... 295

Table 16: System Engineering process phases and related activities (according to [IEEE, 2005]) 316

Table 17: Finite Elements Multi-Point Constraints in the MSC Patran and Marc pre-processing tools 326

Table 18: Extract of the XMI file of the logical DASIF prototype data model .. 327

Table 19: Generated Python source code of the DASIF data base (extract) ... 373

Table 20: CATIA macro for generating the DMU exported XML file ... 386

Table 21: Extract of the python script for enriching the database with test-case data set (from the DMU XML

file generated from CATIA) ... 392

Table 22: Detailed interface specifications for PPS IFEM creation ... 394

Table 23: XML representation of the logical and behavioural architecture of the PPS exported from Enovia

V6 .. 398

Table 24: Equivalent representation of the logical and behavioural architecture of the PPS transformed into

in RDF1 .. 401

List of acronyms T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-20-

LIST OF ACRONYMS

Acronym Complete Designation
AAM Application Activity Model
AIM Application Interpreted Model
AFIS Association Francaise d’Ingénierie Système
ALM Application Lifecycle Management
AMN Associative Model Network
AP Application Protocol
ARM Application Reference Model
BC Boundary Conditions
BDA Behavioural Digital Aircraft
BDA BOM Behavioural Digital Aircraft Business Object Model
BMU Behavioural Mock-Up
BOM Bill of Materials
BPMN Business Process Model and Notation
BRep Boundary Representation
CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Aided Manufacturing
CAX Computer Aided for X
CC Conformance Class
CFD Computational Fluid Dynamics
CM Configuration Management
CPD Collaborative Product Development
CPM Core Product Model

CRESCENDO
Collaborative & Robust Engineering using Simulation Capability Enabling Next De-
sign Optimization

CRUD Create, Remove, Update, Delete (functions)
DAG Directed Acyclic Graph
DASIF Design-Analysis System Integration Framework
DDMU Downstream Digital Mock-Up
DEX Data EXchange specifications
DMD Material ID at Snecma
DMU Digital Mock-Up
DOF Degree of Freedom
DSM Design Structure Matrix
EC Engineering Change
ECO Engineering Change Order
EDM Engineering Data Management
FBS Function – Behaviour – Structure
FE Finite Element
FEA Finite Element Analysis
GUI Graphical User Interface
ICD Interface Control Document or Drawing
(I)FEM (Integrated) Finite Element Model
IGES Initial Graphics Exchange Specification
INCOSE International Council on Systems Engineering
IPPS Integrated Power Plant System
IPR Intellectual Property Right
ISO International Standardisation Organisation
IVVQ Integration, Verification, Validation and Qualification

List of acronyms T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-21-

LPD Lean product Development
MBE Model-Based Engineering
MBD Model-Based Design or Model-Based Definition
MBSE Model-Based System Engineering
MDA Model-Driven Approach
NAUO Next Assembly Usage Occurrence
NIST National Institute of Standards and Technology
OAM Open Assembly Model
OCC Open Cascade CAD (library)
OMG Object Management Group
PDM Product Data Management
PDP Product Development Process
PLCS Product Life Cycle Support
PLM Product Lifecycle Management
PPI Power Plant Integration
PPS Power Plant System
RDF Resource Description Framework
RDMU Referential Digital Mock-Up
RFLP Requirements, Functional, Logical and Physical
SADT Structured Analysis and Design Technique
SBD Simulation-Based Design
SDM Simulation Data Management
SLM Simulation Lifecycle Management
SE Systems Engineering
SoS Systems of Systems
STEP STandard for the Exchange of Product model data
UML Unified Modelling Language
UoF Unit of Functionality
V&V Verification and Validation
VSM Value Stream Mapping
XMI XML Metadata Interchange
XML eXtensible Mark-up Language

General Introduction T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-22-

Chapter 1: General Introduction

1.1 Introduction and research context

The research work presented in this dissertation has been carried out within the Integration

Division of the Snecma company which belongs to the SAFRAN Group. This work is done in collabora-

tion with the Industrial Engineering Laboratory (LGI) of the Ecole Centrale de Paris (ECP).

Conssidering nowadays context of strong competitiveness, European aircraft, engine and equip-

ment manufacturers are facing greater challenges than ever before. The market demands that more

complex products are developed with shorter lead times and more cost effectiveness. Therefore, the

reduction of the time to market has become a strategic variable for firms, particularly for manufactur-

ers of complex systems such as aeronautical products. Nowadays, aeronautics and aerospace pro-

grams have evolved towards large-scale partnerships. The development of these complex prod-

ucts/systems is hence a collaborative and distributed work involving several domains/disciplines,

teams, processes, design environments, tools and modelling languages. In this context, engineering

data have to be processed and managed in the most consistent way so as to be used by all the partners

and through the different activities.

In such a context, the PhD has also carried out during the European FP7 project called

CRESCENDO (Collaborative & Robust Engineering using Simulation Capability Enabling Next Design Op-

timization). This project aims at developing methodological approaches and tools in order to support

channels of digital integration in the aeronautical extended enterprise through a collaborative digital

platform called the Behavioural Digital Aircraft (BDA). Indeed, aeronautics and more especially product

development activities have been impacted in recent years by the advent of the use of digital engi-

neering technologies. This PhD was hence initiated to investigate the use of digital technologies within

collaborative product development processes in the aeronautical extended enterprise and specifically

within integration phases.

The aim of this PhD is to contribute to the improvement of design, integration and simulation

activities in aeronautics, but more generally in the context of collaborative complex product develop-

ment. This objective is expected to be achieved through the use and improvement of digital engineer-

ing capabilities. These capabilities need to fulfil the needs of the various engineering business pro-

cesses and actors using them. Moreover, the needs to ensure the continuity of information between

working teams, the data exchange efficiency, the interoperability between systems and the control

through an integrated reference framework for collaborative product development have rapidly ap-

peared while analyzing the industrial context.

This PhD introduces our investigations for developing an integrated reference framework to en-

sure a better integration between design and analysis data. This integration will support the needed

“analysis product views” regarding the scope and objectives of the various performed analyses. This

framework and related new digital engineering capabilities (engineering data management and com-

puter-aided technologies) also aim at supporting the definition of product architectures so as to or-

ganize and facilitate modelling and simulation activities. This framework also supports the specification

of system interfaces, hence enabling a better integration of sub-system models and of several product

behaviour simulations. The assessment and the use of standards for data exchange in this study also

complies with very constraining interoperability issues encountered by engineers while using the digi-

tal engineering technologies which support their design and simulation activities.

General Introduction T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-23-

1.2 Research methodology and process

Our research methodology and process was inspired by the one proposed in []. Our research work

has been guided and structured by four major stages (cf. Figure 1):

 Part I: the problem statement phase which mainly consisted in performing an audit and an

analysis of the industrial context as observed at Snecma and as discussed with Crescendo in-

dustrial partners. This phase permitted first to better clarify the PhD scope and objectives and

secondly to identify the industrial problems and requirements.

 Part II: the state-of-the-art phase which has consisted first to derive our industrial require-

ments into high-level research questions to define our scientific positioning and the state-of-

the-art focus. This phase ends by a gap analysis of the existing research works regarding in-

dustrial requirements and by the identification of our potential PhD contribution.

 Part III: the concepts proposal and development phase in which we introduce all concepts and

related capabilities proposed in order to meet the industrial requirements and to further de-

velop and implement concepts already previously defined.

 Part IV: the demonstration and industrial validation phase which lead to an assessment study

and gap analysis regarding the implementation of the proposed concepts (proof of concepts).

Finally the PhD ends by the identification of new open perspectives for future research work

and development.

The circle which appears in Figure 1 represents our scientific positioning and contributions regard-

ing three main research areas that have been identified for bridging the gap between design and sim-

ulation for efficient system integration (see section 5.2).

Figure 1: Research methodology and structure of the PhD thesis

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-24-

PART I: PROBLEM STATEMENT

Currently two main limitations that currently impact the efficiency of engineering design activities

in the aeronautic industry have been identified in this research work: 1) the complexity of the product

itself but also its impact on the complexity of the related organisation and process to develop it; 2) the

lack of a “central reference” for design, integration and simulation activities to make the right data and

information available at the right time and for the right actor to perform efficiently these activities.

Concerning the first limitation, the aero-engine systems, operating in a very constrained environ-

ment, are not only complex because of the number of their components and interactions, but also

because these components and interactions have to satisfy many multi-disciplinary functional require-

ments at the same time. The validation of these functional requirements requires the involvement and

coordination of several inter-dependant simulation disciplines (mechanical, aerodynamics…) at differ-

ent system breakdown levels. As a result aeronautical companies face increasing needs in simulating

not only standalone components but also large assemblies containing up to thousands of components

(such as aero-engines). In the context of collaborative and distributed design, integrating and validat-

ing these subsets is great challenge because it requires synchronizing inter-dependant processes and

related data, but it also requires providing appropriate “product definition views” (characterising the

ideal content and organization of product data for a discipline).

The multi-disciplinary nature of complex system projects like aeronautical programs results in

large quantities of design data, managed in different tools used in various application domains. More-

over, aeronautics projects have evolved through large-scale partnership and with the advent use of

computer-aided applications, a large amount of data is then produced by the different partners, co-

designers through the various involved engineering disciplines. In this context, product data has to be

processed and managed in the most consistent way so as to be used by the different partners and

through the different activities [Nguyen Van et al., 2006a]. Since the 90’s, Product Data Management

(PDM) tools have appeared and provided a strong support to address this challenge. However, and as

it will be further explained in this section, the mentioned “central reference” or “common referential

framework” is still missing in these PDM systems, especially while addressing the issue of integrating

design and simulation/analysis data.

This entire part of this PhD thesis is based on the observation and analysis of the industrial context.

This PhD has been undertaken within the SNECMA company (SAFRAN group) and more precisely within

the Power Plant System Integration Division. It has also been carried out within a European research

project: the CRESCENDO project. CRESCENDO means Collaborative & Robust Engineering using Simu-

lation Capability Enabling Next Design Optimization. This European consortium involves 59 partners

representing a cross section of European aeronautics. The project aims at delivering the modelling and

simulation backbone of the aeronautical extended enterprise: the Behavioural Digital Aircraft (BDA).

The BDA concept might consist in a collaborative data exchange/sharing platform for design-simulation

processes and models throughout the development life cycle of aeronautics products.

The first chapter of this part introduces:

 the contextual changes and industrial stakes of the aeronautics industry and the key strategic

variables of aeronautical product development programs,

 the characterisation of an aircraft’s power plant system complexity and the business and or-

ganisational impacts of this complexity on engineering design activities,

 the related system engineering and integration challenges to manage efficiently this complex-

ity and the importance of handling efficiently design-simulation loops.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-25-

Therefore, the second chapter of this part is dedicated to the analysis of the collaborative digital

engineering environments and related challenges to support efficiently design-simulation loops. This

analysis is exposed in Chapter 3 and includes:

 An overview of the various digital design environments and related industrial practices,

 An introduction to digital integration chains and an emphasis on the role and potential usages

of the Digital Mock-Up (DMU) in collaborative simulation-based design.

Finally, based on all these observations, chapter 4 underlines the limits encountered while using

data extracted from current DMU and Engineering Data Management environments and synthesises

the key identified industrial requirements.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-26-

Chapter 2: Industrial context and challenges

Before introducing the specific industrial challenges addressed by this PhD, it is important to re-

mind briefly the key strategic variables of aeronautics product development programs; it is the aim of

the first section of this chapter. The second section aims at characterising the complexity of an air-

craft’s power plant system complexity and the business and organisational impacts of this complexity

on engineering design activities. Third section introduces the notions of System Engineering and Sys-

tem Integration and underlines the challenges to manage efficiently this complexity as well as the im-

portance of handling efficiently design-simulation loops. Finally a conclusion summarizes the industrial

challenge addressed by this PhD.

2.1 Particularities of the aeronautics industry: contextual changes

and industrial stakes

Until the end of the 1980’s, the aeronautics and aerospace industry was characterized by a domi-

nant emphasis on the performance of systems rather than on time or cost to develop and sustain the

systems. From the 1960’s until the 1990’s, the time required to develop aeronautics and aerospace

systems, increased (by 80% for American DoD systems [McNutt, 1999]). Several authors have stated

or even demonstrated that the root causes for these time increases are growing project, process and

product complexity [Clift&Vandenbosch, 1999] [Murman et al., 2000] [Kim&Wilemon, 2003].

By the 1990s, with an industry facing global competition in both commercial and military markets,

all the aeronautics and aerospace sectors try to develop their systems “Better, Faster, Cheaper”

[Murman et al., 2000]. In 1991, Clark and Fujimoto define the three main outcomes and performance

dimensions of the product development process that affect the ability of a product to attract and sat-

isfy customers [Clark&Fujimoto, 1991]:

 the total product quality: the extent to which a product satisfy customer requirements,

 the lead-time or time-to-market: the measure of how quickly a company can move from con-

cept to market. By reducing time to market, companies can deliver a product to market before

their competitors, thereby capturing market share and expand the number of new products

they develop.

 the productivity: the level of resources required to take the project from concept to market;

this dimension directly impacts the product development cost and time.

In the last decade (from 2000 to 2010) the trend has been inversed since aeronautics and aero-

space companies have made great efforts to reduce their development times in order to gain compet-

itive advantages and to quickly meet their customers changing needs with high quality and low cost

products. Indeed, for companies developing complex systems, time-to-market is largely impacted by

the development cycle time [Griffin, 1997]. The focus on the reduction on development time is seen

as an organizing focus from which to organize development efforts. They have found that by focusing

on the reduction of development time, they force improvements in their business processes

[Clark&Fujimoto, 1991].

Therefore PDP and its cycle time largely impact time-to-market. This statement is particularly true

for complex system/product to design (see section 2.2.1). Several authors have demonstrated the neg-

ative impact of project and product complexity on the development cycle time and cost [Griffin, 1993]

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-27-

[Griffin, 1997] [Meyer&Utterback, 1995] [Kim&Wilemon, 2003]. It is hence essential, before address-

ing the particularities of aeronautics programs and identifying the potential opportunities to improve

PDP efficiency, to better apprehend the complexity of aeronautics products (particularly aero-engines)

and what are the business and organisational impacts of this complexity on the way of managing PDP

activities.

2.2 Design and integration of complex aeronautics system

2.2.1 Definition of the Complex System

According to Weinberg and other system theorists, a system describes a specific way to look at

the world considering its components as part of a whole [Weinberg, 1975]. In this whole, each compo-

nent’s features and behaviours result from the features of the organized interactions that unify these

components to make the system exist [Capra, 1997]. One main characteristic of this vision is the abil-

ity to move our attention between systems levels and apply similar concepts to different systemic

levels. For this PhD thesis and from an engineering perspective, the following definition of a system is

used, based upon the definitions of [Pahl et al., 2007], [Lindemann et al., 2009] and [NASA, 2007]:

A system is a construct or collection of different technical artefacts that are artificial, concrete,

mostly dynamic, and consist of ordered elements, which interrelated, produce results not obtaina-

ble by the artefacts alone. The results include system-level qualities, properties, characteristics,

functions, behaviour, and performance. The value added by the system as a whole and its behaviour,

to which the parts contribute independently, is primarily created by the relationship among the

parts; that is to say, how they are interconnected. Systems are delimited by boundaries and con-

nected to their surroundings or other external systems by inputs and outputs. Changes to parts of a

system or modifications of their features and/or parameters during a time period characterize what

is called the “system dynamic” distorting the whole system behaviour and its stability during this

time period.

This dynamic is one of the major factors of system complexity. The adjective “complex” is a notion

that often get mixed up with the adjective “complicated”. A complicated system is a large system

(many components) that encompasses many parameters with intense connectivity [Lindemann et al.,

2009]. A system, complicated or not, becomes complex when its system or parts’ parameters and

interactions are subjected to high dynamic of change. In [Suh, 2005a] [Suh, 2005b], Suh defines the

complexity as the measure of uncertainty in achieving the functional requirements of a system within

their specified design range. When there are many functional requirements that a system must sat-

isfy at the same time, the complexity of the system is determined by whether or not the design

parameters chosen to satisfy the functional requirements couple functional requirements to each

other.

Based on these definitions, next section aims at characterizing and analyzing the complexity of an

aircraft power plant system. This complexity is analyzed from two perspectives:

 The static complexity: characterized by number of interactions between system’s constitu-

ents and static complexity of these interactions;

 The dynamic complexity: characterized by the dynamics of interactions between system’s

constituents in the various operational states of the system and the number of multi-discipli-

nary functional requirements to fulfil and related behaviours to study in the same time.

2.2.2 Definition of complexity for an aircraft Power Plant System

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-28-

Before the development of the turboprop technology, turbojet engines only supplied the propul-

sion to the aircraft, with speed and reliability as main customer requirements. Nowadays, reliability is

still a key requirement but the speed criterion has been replaced by the efficiency ratio. An aero-engine

with a modern turbofan, provides not only the motorisation of the aircraft but also supply the aircraft

manufacturer with three vital elements for the aircraft: the electric energy, the air required for pres-

surizing the cabin and for starting the engines, as well as the hydraulic power needed to operate the

various equipments of the aircraft. Integrated with the aircraft, an aero-engine is part of a higher sys-

tem called Integrated Power Plant System (IPPS). In the case of an assembly under the wing, an IPPS

consists of the main elements that are the turbofan (1), the nacelle (2), the suspensions (3), the various

equipments (4) and the interface with the aircraft: the pylon (6 and 7) (see Figure 2 below).

Figure 2 : Simplified 3D digital mock-up of an IPPS

The development of an aero-engine requires deep technical knowledge in very specialized scien-

tific disciplines among which aerodynamics, structural mechanics, aero-acoustics, fluid mechanics,

thermodynamics, materials science, etc. The turbo machines should endure intense thermal, mechan-

ical and vibratory stresses and meet high operating constraints.

Figure 3: Multi-disciplinarily nature of an aero-engine

The dynamic complexity of an aero-engine is characterized by the dynamics of interactions be-

tween system’s constituents and combination of possible paths through the various operational states

of the system. It highlights the impossibility of a complete validation/verification of all the possible

scenarios by combining all possible behaviours of the modules and their interactions. The effects of

couplings (multiple simultaneous physical phenomena) that may emerge in operation are also im-

portant complexity drivers. They can change the properties of a hardware module due to thermal ef-

fect related to the proximity of a heating flow (thermo-mechanical coupling) or electromagnetic ef-

fects. The prediction of these potential coupling behaviours is also of primary importance for efficient

system integration.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-29-

Today, the static complexity of an IPPS is characterized by the large number of subsystems and

components (more than 10 000 thousands of parts) interacting together via a large number of inter-

faces that need to be defined, specified and validated all along the development life cycle.

Interfaces define the physical relationships between product components. They represent the phys-

ical or theoretical boundaries where two or more system components meet and interact and where

domain-specific applied rules and conventions define their interaction and related design intent.

Interactions are the physical phenomena that occur at the interfaces between connected compo-
nents. Their definition specifies the domain-specific functional, physical, behavioural and semantic
features that define the rules and conventions to apply. These rules and conventions concern do-
main-specific physical features (mechanical, electrical, thermal, etc.) semantic or functional features
as well as potential information exchange.

The scheme by which the sub-systems, components and interfaces are arranged is called “product

architecture” or “product structure”.

Product architecture is the scheme by which the functional elements of the product are arranged

into physical chunks (building blocks or modules) and by which the chunks interact [Ulrich et al.,

2011].

The definition and choice of product architectures are fundamentals in preliminary design stages

since it provides the basis to organize PDP activities, define partnerships actors and rules as well as to

manage/reduce system complexity [Yassine et al., 2003] [Sosa et al., 2004] through the concept of

modularity.

Modularity is defined as the degree to which a product’s architecture is composed of modules with

minimal interactions between modules [Gershenson et al., 2003]. Ulrich and Eppinger even state

that modularity is the most important characteristic of product architecture.

The most modular architecture is one in which each functional element of the product is imple-

mented by exactly one chunk (subassembly) and in which there are few interactions between chunks

[Ulrich et al., 2011]. Modularisation introduces challenges for integrating the system modules by man-

aging efficiently interface/interactions and identifying impacts between sub-systems on the behav-

ioural level. For instance and as shown on Figure 4, in large-scale projects like an aero-engine develop-

ment program, products are decomposed into functional modules, sub-modules and so on, and work-

packages of the studies on this product are externalized to partners and/or sub-contractor

[Eynard&Yan, 2008]. Design teams are no longer working alone on the design of a module but perform

it within the whole product environment and in interaction with the work of others [Fuh&Li, 2005].

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-30-

Figure 4 : GE-Snecma modular work sharing for CFM56 engines development

New aero-engine concepts and architectures are being explored to reduce mass, fuel consump-

tion, development cost and environmental impact while increasing performance [Sandberg et al.,

2009]. As a result, the main ongoing requirements of future IPPS are defined by a reduction in CO2

emissions and noise. The innovative concepts and architectures proposed for the medium term are

positioned according to these two variables on Figure 5.

Figure 5: New IPPS concepts positioned regarding their environmental impacts

This significant change can only be done in very close and early cooperation with the design of the

aircraft. Indeed, new engine architectures will have impacts on the way of interfacing with the aircraft

and will probably lead to new aircraft architectures. However this kind of projects are subjected to

high risk and uncertainties since they require a lot of development resources investment without hav-

ing any guaranty to get a better product or to not increase the product complexity by not anticipating

new unknown design constraints. The high competition in the aeronautics sector and the time-to-mar-

ket pressure are real barriers to such innovative projects.

That is why world-class aeronautic leaders need to develop very strong partnerships and rela-

tionships in order to reduce technological, financial, and market risks, as well as to pooling best-in-

class competencies and sharing development and operational costs. [Esposito, 2004] and

[Pritchard&MacPherson, 2007] highlight the peculiarity of the aircraft sector characterized by “the ex-

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-31-

istence of a complex network of long-term relationships having an evolutionary nature where collab-

oration and competition exist hand in hand and where the stability of the network is guaranteed by its

constant change”. In order to survive and gain competitive advantages in such a business environment,

companies are increasingly motivated and/or forced into more extensive interactions with its sur-

roundings (e.g. suppliers and customers); they are establishing/joining extended enterprises.

2.2.3 Collaborative PDP in the aeronautics extended enterprise

The extended enterprise notion is based on a product-oriented strategy aiming at increasing

the effectiveness and decreasing the time of the product development while integrating both prod-

uct and process requirements as early as possible. The aim of this organisation is to use available

competencies, both within and outside the company [Benchimol, 1993]:

 Inside: through the different entities which belong to the company,

 Outside: through the different partners’ firms, suppliers, sub-contractors, distributers, cus-

tomers etc. composing what is called “the extended enterprise”.

We can thus distinguish three main types of entities that can be involved in the extended enter-

prise: the source mother enterprise, the internal sub-contractors, the external sub-contractors and

project partners. The product is decomposed into several modules which developments and studies

are distributed to partners and sub-contractors. According to both functional and physical breakdowns

of the system and its sub-systems or modules, multiple layers of collaboration appear [Nguyen Van et

al., 2006a] (see Figure 6 below).

Figure 6: Multi-layer and multi-partner work breakdown into design packages. Adapted from [Nguyen Van, 2006]

In this configuration, multi-partner development programs rely on the integration of design work

and data between the different partners. Therefore the extended enterprise requires a deep change

within the enterprise organization and needs adaptation of bilateral agreements with its partners (Cus-

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-32-

tomer or Supplier) to implement partnerships in specific areas. This new collaborative way for devel-

oping complex systems induces changes in designing, producing, operating, maintaining and disposing

of systems.

Collaborative Product Development (CPD) is seen as the application of team-collaboration practices

to total product development efforts. According to Willaert et al, CPD is a systematic approach to

control life cycle cost, product quality and time to market during product development by concur-

rently developing products and their related processes with response to customer expectations

[Willaert et al., 1998]. The difficulties that are underpinned in the collaborative tasks of PDP come

as well from the application of the principles of systems engineering, management of cross-func-

tional departments and of course linked strategy of developing the program portfolio management

[Davis et al., 2004].

Although PDP models and design practices differ between companies and professional habits, PDP

is always iterative and sequenced in phases [Pahl et al., 2007] implying the necessity to introduce

validation steps/gates and segment PDP. According to what is done currently at Snecma, the engine

development life cycle is also divided in four main phases (see Figure 7 below). Figure 7 also displays

the milestones that structure the engine life cycle. To progress in its lifecycle, the engine must be pro-

moted at each milestone (e.g. RFP: Request for Proposal; FETT: First Engine To Test, Certification, etc.).

Figure 7 : Engine development life cycle [Nguyen Van, 2006]

Each phase corresponds to a specific state of the engine:

 The preliminary phase: this stage is a pre-definition study of the product. The first product

concepts are established and the commitments on cost & project plan are defined. The phase

ends by the choice of a robust architecture, compliant with the airframe manufacturer’s re-

quirements but also driven by internal requirements. This phase corresponds to the aggrega-

tion of the clarification task and Conceptual Design phase introduced above.

 The definition phase: this phase validates the previous one. Engine specifications are detailed

and the product architecture is validated for further studies and design. This phase ends by

the freeze of the IPPS architecture and the technical specifications. The sub-systems and main

equipments are then available with the appropriate level of design to guarantee an optimal

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-33-

performance stack-up and sufficient interface definitions. This phase corresponds to the em-

bodiment phase.

 The detailed design phase (include industrialization and validation): this is the phase where

the engine is being designed, virtually simulated and validated, manufactured and finally

tested. All activities are synchronized and many loops can be performed to define the product

in details. At the end of this phase all requirements must be demonstrated, the design vali-

dated and the airworthiness requirements demonstrated and approved.

 The in service preparation phase: the last phase before delivery. The engine is completely

manufactured and prepared in order to be delivered to customers.

Nowadays, CPD is characterized by “Simultaneous Engineering” (performing different process

steps at the same time) and “Concurrent Engineering” (developing neighbouring components in par-

allel). The aim of concurrent and simultaneous engineering is to parallelise activities in order to reduce

the product development time and cost by enabling overlapping of design activities and phases of the

development life cycle. However the difficulty is to coordinate design activities and information ex-

change between partners and co-designers. Communication, negotiation, coordination and coopera-

tion are essential in order to use systematic cross functional processes, methods and tools within the

extended enterprise [Pardessus, 2001]. In the case of CPD and simultaneous engineering, the first one

is characterized by an overlapping of design processes and activities. For instance, an aero-engine is

part of a higher system (the IPPS) which is itself part of an even higher system: the aircraft. As a con-

sequence, the first customer of the engine manufacturer is the aircraft manufacturer. Both have a

specific life cycle to follow the development of their product. Figure 8 shows both life cycles in parallel.

Each phase has specific milestones to overcome. Similar to the engine life cycle phase those phases

have specific meaning for the aircraft life cycle.

Figure 8: Engine and Aircraft development cycle in parallel [Nguyen Van, 2006]

For a product as complex as an engine, many levels of life cycles exist. Indeed, each partner is in

charge of a product that is part of a higher product. All those life cycles must be synchronized to ensure

an efficient integration of the sub-systems. The harmonization and synchronization between develop-

ment of the engine and the aircraft are hence a critical issue to ensure a delivery on time of the final

product to the final customer. To overcome this issue the different partners often define an integration

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-34-

planning between stages. The integration planning is considered to be the basis of the collaboration.

All along the aircraft development, communication with the engine development is therefore very im-

portant to ensure a good integration and avoid delays, design mistakes and rework. This integration

involves the exchange of engineering data and information between partners all along the develop-

ment life cycle. The large amount of data created by the different partners has to be processed and

managed in the most consistent way so as to be used by the different partners, at the right time, and

through the different activities. Hence, there is an increasing need of creating referential and associ-

ated processes for data management purpose from the early phases of a project.

As System Integration is crucial to successful CPD and simultaneous engineering, it is necessary to

have a finer description of the different level of design granularity and the various disciplines and inter-

related processes to which the systems and sub-systems are designed and integrated during this de-

velopment life cycle. System Engineering processes and methods can help to efficiently manage these

multi-domain, multi-actors and multi-level system characterization. Next section gives an overview of

System Engineering and System Integration notions in order to further detail the analysis of the related

issues and challenges.

2.3 Challenges of System Engineering and Integration

2.3.1 Definitions

Systems Engineering (SE) is an interdisciplinary and methodological approach that encompasses all

activities appropriate to design, develop, make evolve and test a set of products, processes and

people skills, providing an economical and efficient solution to the needs of stakeholders and that

is acceptable by all [IEEE, 2005] [NASA, 2007]. This set is integrated in a system, by continuously

searching for balance and optimization throughout its life cycle [AFIS, 2009].

A variety of SE process standards have been proposed by different international standards. The pur-

pose of each major SE process model standard can be summarized as follows:

 ISO/IEC 15288 – Establish a common framework for describing the lifecycle of systems [ISO,

2008].

 ANSI/EIA 632 – Provide an integrated set of fundamental processes to aid a developer in the

engineering or re-engineering of a system [ANSI, 1999].

 IEEE 1220 – Provide a standard for managing a system [IEEE, 2005].

System Integration consists in building a system by a progressively assembling the systems’ compo-

nents following an incremental and systematic process properly planned. This process results in in-

tegrating the systems’ components that have already been validated, checking each time the inter-

facing conditions and the behaviour compliance (functions and performance) of the obtained as-

sembly [Meinadier, 1998]. This is done until obtaining the complete integrated and validated sys-

tem. The integration ascending branch is generally based on a V&V (Verification and Validation) or

IVVQ (Integration, Verification, Validation and Qualification) approach [Haskins&Forsberg, 2011]

[AFIS, 2009].

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-35-

2.3.2 System integration : a simulation-based design process

System integration aims at validating the global system behaviour through carefully planned and

chosen interdependent numerical simulations (see Figure 9). Numerical simulation refers to the use of

computational models to analyze and evaluate the behaviour of a designed system. Both in design and

integration phases, numerical simulations gradually became one of the key industrial resource to re-

duce the design cycles while ensuring the improvement of the quality and the performances of the

products [Charles et al., 2005]. The numerical/digital simulation is not a stand-alone process. It is an

iterative approach where loop of simulation aims to validate and to optimize the physical behaviour

of a principle solution. We have observed that simulations are very important performance and hence

value or waste drivers in an aero-engine development life cycle for the following reasons:

 Performed digital simulations provide an approximate (depends on the detail degree of mod-

els) knowledge on the product behaviour;

 Digital simulations of complex models require many data inputs which are difficult to obtain

and the overall simulation process is very time consuming, and hence may be delayed because

of inaccessible data (if inputs come from other simulations results that do not exist or that are

not accessible), unsuitable or outdated data (due to simulation tools interoperability capabil-

ities, or from lack of coordination rules between design offices);

 The more accurate virtual prototyping and simulation are performed, the less testing proto-

types are needed. Aeronautics and aerospace products are subjected to very strict certifica-

tion rules and are obliged to perform a lot of expensive certification tests. The physical proto-

types used for these certification tests are expensive, and hence increase development and

product costs.

For these reasons, a major part of PDP in high value-added industries has become a Simulation-

Based Design (SBD) process where simulation is the primary means of design evaluation and verifica-

tion. When coupled with appropriate validation processes executed during the development of a sim-

ulation-based design system, the resulting capabilities can provide companies with the ability to design

superior products in less time and at lower costs [Shephard et al., 2004].

As observed and shown in Figure 9, all along an IPPS development life cycle, numerical simulations

are performed in every scientific domain and at each system breakdown level in order to enable de-

tailed exploration of the design space and significant performance improvements. In addition to these

disciplinary-centred requirements, the tight coupling of several phenomena interacting together

makes it a huge challenge to find a global optimum for the entire system, which can be very far from

a collection of single-discipline optimizations. The search for this optimal performance stresses the

need to adopt an integrated design approach: it is desirable to design components using a system

(whole aero-engine or whole aircraft system) approach in order to optimize component design for

system-level performance [Defoort et al., 2012].Two simulations are inter-dependant when the results

of one of them are used as input by the other one. There are two kinds of simulation inter-dependen-

cies:

 Multi-domain inter-dependency between simulations performed at the same system break-

down level: due to the coupling of physical phenomena interacting together (e.g. a mechanical

analysis uses the temperature and pressure fields resulted from the thermal analysis);

 Multi-level inter-dependency between single-domain simulations performed at different sys-

tem breakdown levels: the simulation results of the sub-system interfaces of the studied sys-

tem are transferred to the external interfaces of each sub-system and used as boundary con-

ditions for the sub-systems simulations.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-36-

The models used for these various simulations have not the same level of abstraction depending

on the breakdown level and the solver algorithms used to perform the simulation. As a result the time

to create the models and the final simulation lifecycle times differ from one discipline to another.

Therefore, the synchronisation of these multi-domain and multi-level interdependent simulations, per-

formed by different partners using different tools, represents a big integration challenge. These time

gaps between analysis studies generate also some knowledge gaps and hence risk and uncertainties in

PDP.

Figure 9: Examples of inter-dependant numerical simulation to perform IPPS integration along the development lifecycle

From a micro perspective, Figure 10 illustrates these knowledge and time gaps within an aero-

engine development life cycle. In red is represented the product definition life cycle (the evolution of

design definition (geometries, design parameters, bill of materials with mass properties, etc.). In blue

is represented the mechanical analyses life cycle that correspond to the successive mechanical simu-

lation and in green the Aerothermal analyses life cycle.

Figure 10: Illustration of time and knowledge gaps from a micro perspective: non-synchronisation of mechanical and aer-

othermal studies in an aero-engine development life cycle

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-37-

In current practices, performing an analysis require freezing the product definition until the next

iteration. An aerothermal analysis iteration (time between two analyses of the same system or sub-

system) is about two times longer than a mechanical analysis. This is due to the fact that aerothermal

simulation models are much longer to create. Moreover, mechanical analyses use the results of aero-

thermal analyses (pressure and temperature fields) to take into account the deformation caused by

the pressure of the fluid on the structure or the modifications of material properties dependant of the

temperature. The consequence is that, when starting the mechanical iteration N, the mechanical en-

gineer use the Aerothermal analysis results from the Aerothermal iteration N-X (X depending on the

time gap between a mechanical and an aerothermal iteration) that have been calculated from a prod-

uct definition freeze which is different from the one used by the mechanical engineer for the starting

iteration. As a result, the new mechanical analyses may be based on wrong assumptions and there is

a risk to be obliged to perform new avoidable iterations (rework). This is an example of the knowledge

and time gaps that can emerge in complex PDP. These gaps are often unavoidable because simulation

models and tools are specific to the discipline addressed. However, the gaps are also due to the time

required to get the relevant product definition view and data inputs used to create the simulation

model. Therefore the reduction of these gaps and uncertainties is still an ongoing challenge that can

be addressed by fastening the design-analysis iterations.

2.3.3 The design-analysis integration challenge

Previous section has underlined an important issue related to complex system engineering and

integration challenges: coordinating efficiently inter-dependant and multi-disciplinary simulation ac-

tivities. Simulation-based design is an iterative and collaborative process involving designers and ana-

lysts, spanning all PDP phases and targeting the optimisation of design-simulation loops in the different

PDP phases [Bajaj et al., 2007].

Figure 11 shows a design-simulation loop process as it can be observed at Snecma in disciplines

using computer-aided design (CAD) models as input for their calculations. In that case we illustrate a

mechanical analysis performed on a compressor disk.

Figure 11: Mechanical Design-Simulation loop of a compressor disk

To complete this figure, Figure 12 displays the various data involved during such a loop as well as

the relationships between CAD and CAE activities and data. It underlines that a numerical simulation

involves a lot of input data and requires a significant modelling work. Indeed, it is about describing the

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-38-

most relevant physical data while taking into account the limitations of the modelling and computa-

tional constraints. The relationship between design and simulation appears to be a crucial iterative

activity.

Figure 12: Design and Analysis data involved in a CAD-CAE loop process

As illustrated on Figure 13, Bajaj proposes to formalize the scope of SBD with the Gero’s function–

behaviour–structure (FBS) framework.

Figure 13: The FBS framework and scope of Simulation-Based Design (from [Bajaj, 2008])

The basis for Gero’s FBS framework is formed by three classes of variables describing different

aspects of the product design object [Gero&Kannengiesser, 2004]:

 Function (F) variables: describe the teleology of the object, i.e. what it is for.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-39-

 Behaviour (B) variables: describe the attributes that are derived or expected to be derived

from the structure (S) variables of the object, i.e. what it does.

 Structure (S) variables: describe the components of the object and their relationships, i.e.

what it is.

A designer constructs connections between the function, behaviour and structure of a design ob-

ject through experience, knowledge and know-how. Specifically, the designer ascribes function to be-

haviour and derives behaviour from structure. As shown on Figure 13, Bajaj [Bajaj, 2008] makes clearly

the analogy between the scope of simulation-based design and the FBS framework design process

[Gero, 1990]. The scope of SBD corresponds exactly to the scope of design-analysis iterations. The

design part consists in defining and specifying components and interfaces (the structure S) and the

analysis part consists in first defining the expected behaviour (Be) based on functional requirements

(formulation of simulation objectives) and in analysing the behaviour of this structure (evaluation per-

mitting to get the actual behaviour (Bs) of the structure). The analyst compares the simulation results

to the functional requirements that the simulation must verify (synthesis). Then, the design structure

can be whether validated whether re-designed leading to another design-analysis iteration where

whether the structure whether just some design parameters are modified (reformulation) and the

simulation models updated for a new analysis and synthesis.

However, one major challenge in this FBS triptych is that functional and design information has to

be suitable to the product operational state, its configuration within the design process and the disci-

pline of the simulation. The analysis process consisting in deriving Behaviours (Bs) from Structures can-

not be achieved directly because it requires defining domain-specific behavioural configurations. This

is one of the major challenges of simulation-based design: managing the system/product complexity

by integrating and coupling various functional variables with different multi-level and multi-domain

structures and behaviours.

2.4 Conclusion

Developing complex aeronautic systems such as aero-engines in the current business context

(faster, better, cheaper) require having a precise view of the structural and multi-disciplinary system

complexity in order to better organise and synchronise design and simulation activities between co-

designers and partners within the extended enterprise.

Complex PDP is always subjected to risks, uncertainties, as well as difficulties to coordinate inter-

disciplinary design activities. System Engineering and Integration methodologies and standards pro-

vide a process framework to handle this complexity and these uncertainties. All along an IPPS devel-

opment life cycle, the tight coupling of several phenomena interacting together makes it a great inte-

gration challenge to find a global optimum for the entire system. The search for this optimal perfor-

mance stresses the need to adopt an integrated and simulation-based design approach.

The synchronisation and the reduction of time and knowledge gaps between multi-domain and

multi-level interdependent simulations, performed by different partners using different tools, are ma-

jor integration challenges. These gaps and uncertainties can be addressed by fastening the design-

analysis iterations. The design-analysis iterations and integration challenges have been formalized with

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-40-

the help of the FBS framework. This has enabled us to underline the need to provide appropriate “def-

inition view”; characterising the ideal content and organization of product data (corresponding to the

appropriate behavioural structure) for a specific discipline and simulation context.

System engineering standards and methods only describe each process task outcome and do not

specify the details of “how to” implement these processes for engineering a system. Neither do they

specify the methods or tools the designers/integrators could or should use to implement the SE pro-

cess, nor do they prescribe the name, format, content and structure, of the design product data. The

collaborative and multi-disciplinary nature of aeronautics development programs as well as the need

for integrating a great number of product components as well as related models often results in large

quantities of intermediate design data with heterogeneous formats and complex relationships. The

efficient organization and management of engineering data are therefore a bottleneck of product de-

sign performance [Feng et al., 2009]. Therefore, adequate collaborative design environments are nec-

essary to ensure that partners and co-design teams can share or/and exchange engineering data cre-

ated all along the product development life cycle [Kleiner et al., 2003] [Eynard&Yan, 2008]. These col-

laborative digital environments might provide an integrated IT design environments enabling part-

ners involved in the extended enterprise to harmonize their design processes exchanging the appro-

priate data in the appropriate context. The objective of defining an IT integrated design environment

is to provide an integrated view of the product namely a product reference framework for the project

partners. The key resulting issue is how to manage and enable the data migration between partners’

IT environments systems, and how these exchanges would be managed through the integrated design

environment [Kleiner et al., 2003]. This integration of data consistency is strongly linked to the concept

of interoperability which can be considered as the environment capability to enable multiple systems

and multiple partners to access data in a multi-view design approach.

Therefore, the remaining field to analyse to fully identify all the industrial challenges and issues is

the field of digital design environments and tools. Next section aims at characterizing the main digital

engineering capabilities used in current PDP activities as well as to highlight the remaining challenges

and required capabilities to handle complex system design and integration more efficiently.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-41-

Chapter 3: Collaborative digital design environments

The development of complex systems like an aero-engine, requires the implementation and the

use of methodologies and tools (supporting the methodologies) enabling to manage efficiently the

product complexity. Aeronautics industry and more especially PDP activities have been impacted in

recent years by the advent of the use of digital engineering such as CAX (computer-aided for X) sys-

tems. According to the various application fields, different CAX-systems were developed: Computer

Aided Design (CAD) for product design; Computer Aided Engineering (CAE) for validation of the prod-

uct definition/design (validation on virtual product behaviour); the Digital Mock-Up (DMU) enabling

collaboration and contextual design. On one hand, these tools can be seen as supporting the manage-

ment of the product and organisational complexity introduced in previous chapter. In the other hand,

the enhanced use of CAX technologies has increased the amount of data created during the PDP. It has

also created a big potential for value creation and conversely, information and knowledge waste. En-

abling movement of such masses of data through the different activities has enhanced the need for

Engineering Data Management (EDM) systems. Their use is nowadays inseparable from CAX systems.

All these digital engineering environments are supporting what we have called the digital integration

chains; a digital design process that is introduced in this chapter.

3.1 CAX systems

3.1.1 Computer Aided Design

Computer Aided Design (CAD) consists in using computer sys-

tems to assist engineers in the creation, modification and optimi-

sation of a design [Narayan, 2008]. CAD tools enable to make de-

sign changes at lower cost and have 2D and 3D representation in

the space of a part or an assembly. At Snecma designers use CATIA

V5 which is recognized as one of the most complete suite of CAD

tools (see opposite Figure 14).
Figure 14: CAD model created with Catia V5

Today CAD modellers have integrated new functionalities to meet the need of reducing design

cycle times among which feature-based design, assembly design, kinematics, material application, etc.

[Fuh&Li, 2005] [Li et al., 2005]. Featured-based design and modelling have become the most common

method used by mechanical engineers [Li et al., 2004]. It consists in storing in CAD models not only

geometric information but more function-oriented information and design intents. This is done using

features in feature-based models. Therefore, feature-based modellers allow operations such as creat-

ing holes, fillets, chamfers, bosses, and pockets to be associated with specific edges and faces.

Another important CAD capability is the ability to link and assem-

ble different CAD models. This associativity allows models to imple-

ment, among other things, a so-called design context method. The de-

sign context facilitates updates of assemblies. It also prevents that

neighbouring parts interpenetrate.

Figure 15: Example of design in context

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-42-

This approach relies on two axes:

 Using interfaces;

 Use of adjacent parts being designed.

CAD interfaces are a particular category of 3D objects. They define the links between two 3D mod-

els [Nguyen Van, 2006] . In contextual design, interfaces permit to define the limits and the positioning

of an object in its environment; i.e. its space allocation. In Figure 16, it is explained how a design based

on an interface definition allows a quick update of its position within an assembly.

Figure 16: Example of updating a disk which contextual design is based on an aerodynamic outline

However, although today CAD systems allow designers to store a great amount of useful product

and engineering knowledge and data into the CAD models, there is a crucial lack of modelling stand-

ardisation (especially in large scale projects where the product consists of thousands parts designed

by distributed design teams). This standardisation can concern model format, the modelling methods

or the content and structure of information contained in the CAD models. CAD is only one part of the

digital product development activity. Within the product lifecycle CAD applications are not used as

stand-alone applications. CAD tools and models are the basis for digital product definition and are

necessarily coupled with the use of other digital engineering applications such as Computer-aided en-

gineering (CAE) such as Finite element analysis (FEA), Computer-aided manufacturing (CAM) and Engi-

neering Data Management systems.

3.1.2 Computer Aided Engineering and Finite Element Analysis

Computer-Aided Engineering (CAE) systems are dedicated to the verification and validation of the

product design definition enabling to perform deep analysis, simulation and validation of virtual prod-

uct behaviour. Nowadays CAE applications encompass many engineering disciplines among which:

 Mechanical analysis: stress analysis (dynamic or static, linear or non-linear) and mechanical

vibration using Finite Element Analysis (FEA);

 Thermal and fluid flow analysis Computational fluid dynamics (CFD); Heat transfer (conduc-

tion, convection, radiation);

 Performance simulations;

 Multi-body dynamics and Kinematics;

 Acoustics;

 Manufacturing analysis, process analysis;

Finite Element Analysis (FEA), as applied in engineering, is a computational tool for simulating the

behaviour of an object using the finite element method. This method consists in breaking a real object

down into a large number of “finite elements” (e.g. cubes, tetrahedrons, octahedrons, etc.) that con-

stitute the Finite Element Model (FEM) generated through the use of mesh generation techniques and

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-43-

FEM algorithms. The behaviour of each finite element is predicted by a set of mathematical equations

representing physical phenomena laws (e.g. Euler-Bernoulli beam equation, the Navier-Stokes equa-

tions). The sum of the individual element behaviours produces the expected behaviour of the whole

studied object.

Figure 17: Integrated Mechanical Finite Element Model of a power plant system

In general, there are three phases in any computer-aided engineering and more particularly in a

FEA process:

 Pre-processing: that consists in creating the FEM and defining the environmental factors to

be applied to it. Therefore, FEA begins with the use of the finite-element modeller (sometimes

called a mesher or pre-processor).

 Analysis solver (usually performed on high powered computers): Solvers are the engines of

FEA. They take elements, boundary conditions, and loads in order to output a solution con-

taining all the information needed to review and understand results. Solvers may be divided

into two categories: linear and nonlinear.

 Post-processing of results (using visualization tools): utilize the data generated by the solver

to create easily understandable graphics and reports (see Figure 18 below).

Figure 18: FAN blade-off simulation results due to a bird ingestion

It is important to notice that the time to perform a FEA process and resulting cost are heavily

dependent on the pre-processing phase since the most consuming time activity is the creation of the

model for analysis [Zhou et al., 1997]. That is why, in order to effectively incorporate analysis into the

design cycle, this phase consisting in creating the required models for analysis need to be the most

efficient possible. In order to generate the appropriate mesh for a specific analysis, FE modellers re-

quire CAD data inputs and physical properties about the modelled components. Much of the time and

effort of creating analysis models is a result of not using the information from CAD design models or

past analysis models [Mocko&Fenves, 2003]. Moreover, acquiring the data inputs (that can come from

various data sources) to create an integrated FE models is a very time-consuming and tedious work.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-44-

3.1.3 Digital integration chains and the issue of FE assembly models

A digital integration chain is a process where subsystems (or components) models are integrated

enabling system behaviour prediction, validating expected system performances.

In order to analyse problems in digital integration chains we have conducted and observation on

the mechanical integration process of an IPPS. In Figure 19, we have schematised this IPPS mechanical

digital integration chain. In this example, the integration is performed in a collaborative and distributed

environment between the integrator of the IPPS and the integrator of the engine sub-system.

Figure 19: Part of a mechanical digital integration chain at IPPS and engine levels

This process occurs at each system level, starting by defining and cascading simulation objectives

and requirements at system level, defining the interfaces between the components (1-2), designing

and meshing the sub-systems (3), integrating these models (4-6), setting-up and performing the simu-

lation (7-8) and distributing results for downstream simulations; whether for other disciplines, whether

for simulations at lower system breakdown distributing specific results at interfaces as shown in Figure

19 (9-12). If the simulations performed within these digital chains do not validate the expected related

behaviour, they also include feedbacks from simulation results to CAD design and the whole change

impact chain (e.g. 13); leading to new design-analysis iterations

Unlike modelling a standalone component having no adjacent component, a mechanical assembly

model must be able to transmit displacements/stresses from one component to another. An assembly

simulation model is not just a set of meshed sub domains positioned geometrically in a global coordi-

nate system. These sub domains must be interconnected to each other to generate global displace-

ments and stresses. Therefore, the preparation of an assembly model compared to a standalone com-

ponent implies a need to clearly define and prepare interfaces specifications.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-45-

Figure 20: IPPS mechanical model integration

An assembly simulation model derives from shape transformations to produce a mechanical

model containing a set of domains discretised into FEs connected together. From this perspective,

idealization eases the integration of simulations in PDP. However, even if the idealized sub domains

reduce the analysis time, today they are obtained through a very tedious preparation process. To pro-

cess large assemblies with over hundreds of parts, an automation of this preparation process is re-

quired to better and faster integrate assembly simulations within a PDP. To speed-up this process, it is

necessary to identify the origin of lengthy operations.

Moreover, depending on the discipline and the type of analysis performed, these digital integra-

tion chains and related numerical simulations require defining specific product architecture models

(using specific representation of the product) in order to create the appropriate simulation models. A

major issue for the integrator is to manage these models so as to identify the relevant data set to be

used for the simulation and to organize this data set into a new adapted product structure and “engi-

neering environment”. Therefore, in order to ensure the continuity of information within digital inte-

gration chains and between involved design working teams, we can state several challenge in complex

product design:

 Interoperability between systems: from our observation, we noticed that there was still a lack

in integrating efficiently tools and then data conveyed through these tools. This lack of effi-

ciency is currently a problem while attempting to communicate in a meaningful way between

heterogeneous CAX and EDM systems; which explains the importance the importance of im-

plementing product data standards in such applications.

 Consistency between data and models: a consequence of interoperability constraints (even

using standards) is the loss of data consistency between data managed in different domain-

specific tools but also between tools of the same nature. The model consistency concerns the

quality and the semantic of the data conveyed through these models. This loss of consistency

causes the problem of data interpretation between multi-partner and multi-disciplinary co-

designers.

 The control of design and analysis data through an integrated reference framework: this

environment is required for a better integration and traceability between design and analysis

data in view to provide the appropriate “analysis product views” and enhance re-use of ap-

propriate design artefacts (e.g. CAD models, physical properties or past analysis models) re-

garding the scope and objectives of the various performed analyses.

These represent major challenges in complex product design: make Engineering Data Manage-

ment systems and Digital Mock-Up functionalities in phase with these digital integration chains needs.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-46-

3.2 Introduction to Engineering Data Management Systems

Engineering Data Management (EDM): is the process of organizing, structuring, storing, and track-

ing the design information created by engineering and development activities [Feng et al., 2009].

 Complex product design process is tentative and iterative. Therefore it produces large scale inter-

mediate data with heterogeneous formats and complex relationships. The use of EDM systems is es-

sential for PDP performance (enhancing information and communication flows) and is inseparable

from CAX systems. This approach coupled with the need to manage and access different data created

all along the lifecycle (for the use of connected activities such as configuration management or manu-

facturing) increases the need for EDM systems deployments.

Product Data Management (PDM): PDM systems aim at managing and storing the product data and

also information related to its entire lifecycle (design, manufacturing, assembly, maintenance, etc.)

[Eynard et al., 2006]. A PDM system provides computational tools that support the management of

either engineering (or product data) and development process information (or product workflow)

[Feng et al., 2009] [Stark, 2011].

These tools provide valuable functionality with process management particularly as it relates to

configuration management or engineering change control [Crow, 2002]. PDM systems typically man-

age product-related information such as geometry, engineering drawings, project plans, product spec-

ifications, analysis results, bills of material, engineering change orders, and many more. PDM can also

be seen as an integration tool connecting many different areas of product development, which ensures

that the right information is available at the right moment for the right actor and in the right format

with the right semantic objects for activity [Chen&Jan, 2000] [William Xu&Liu, 2003]. In other words,

PDM should manage consistent and meaningful information regarding the lifecycle stage and the ac-

tivity, in order to create the most adapted environment for the engineer. This leads to the concept of

Product Life Cycle Management (PLM).

Product Lifecycle Management (PLM): PLM is the activity of managing company’s products all the

way across their lifecycle in the most effective way. It aims at bringing better product to market

faster [Stark, 2011]. PLM is a business strategy that helps companies share product data, apply com-

mon processes, and leverage corporate knowledge for the development of products from design to

retirement, across the extended enterprise [DS, 2010].

PLM actually has its inception in PDM applications which are the major and most important com-

ponent of PLM systems. PLM solutions help to define, execute, measure and manage key product-

related business processes. It should links information from many different authoring tools and other

systems to the evolving product configuration. More than a tool, PLM is then a strategy for integrating,

tools, actor and processes within a common referential environment enabling to manage, share and

exchange product data all along the product life cycle. . Now, with the multiplication of CAE applica-

tions and with the deployment of simulation-based design approaches in the aeronautics industry, the

new trend in PLM systems is to integrate and manage simulation processes and related data enlarging

its functional scope with Simulation Data Management and Simulation Lifecycle Management systems.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-47-

Simulation Lifecycle Management (SLM): Lalor defines SLM as the management of the intellectual

property associated with simulation tools, data, and processes as related to product or process de-

velopment [Lalor, 2007].

To bring simulation data and processes into the enterprise lifecycle, SLM must be considered as a

major part of the PLM strategy and systems. As traditional PLM routinely captures the form and fit of

product designs through digital mock-up (DMU), SLM compliments PLM by associating behavioural

simulation data and processes with the DMU [CIMdata, 2011]. In doing so, the objective is to provide

a single source of “truth” for all design and analyses information and processes. Therefore, a major

objective of SLM is to transform simulation from a specialty operation to an enterprise product devel-

opment enabler that spans many segments of the product lifecycle. To do this, SLM should provide

technology in four foundational areas [CIMdata, 2011]: Simulation and test data management (and

their correlations), Simulation and test process management, Decision support and Collaboration.

Simulation Data Management (SDM): SDM systems are as PDM for PLM the fundamental basis for

SLM. This is a specific PDM system which manage all the necessary engineering data (CAD inputs

data, loads, boundary conditions, material properties, scenario of simulation, results reports, etc.)

permitting the engineers to perform simulations in the most efficient way.

PDM and SDM systems are built differently since SDM are not built around the product structure

but use product data and organize links in a specific way and with specific rules driven by simulation

processes and data. Simulation data management is similar functionally to PDM but designed specifi-

cally for analysis needs. It enables users to more easily and quickly find the simulation information they

need. They can query for simulation inputs and results and the status of simulation processes.

As already mentioned and as shown on Figure 21, PLM had its inception in PDM applications dur-

ing the mid 1980s. In the last two decades, the increasing amount of data to manage through these

systems and the increasing collaborative needs of the extended enterprise have made the scope and

capabilities of EDM systems evolved so as to support the collaborative creation, management, dissem-

ination, and use of product definition information.

Figure 21: Evolution of digital engineering tools functionalities – adapted from [Nguyen Van et al., 2006b]

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-48-

Among all these CAX and EDM applications, the Digital Mock-Up has become the major federating

environment of the product definition. It provides an integrated view of the product where geometric

data and other aspects of product definition can be linked to the configuration management aspects

(bill of materials, product configurations, engineering change management process, etc.).

3.3 The Digital Mock-Up: a major industrial stake

3.3.1 Digital Mock-Up’s fundamentals

The digital mock-up is a collection of CAD 3D mod-

els which are positioned in 3D space to represent the form

of the product to be developed. The DMU enables collab-

oration and contextual design which permits different

partners to delimit their 3D working environment through

an integrated view of the models [Sadoul, 2000]

[Eynard&Yan, 2008]. It is as a major tool supporting con-

current engineering [D'Adderio, 2001] and enabling limit-

ing physical prototyping.
Figure 22: SAM146 digital mock-up

A DMU is created through the integration of a CAD system with a PDM system (see Figure 23

below). All geometry is accessed via a database. Models may be in database or pointed to by the da-

tabase. Each model is attached to a part in the Bill Of Materials (BOM) and the product data structure

of the PDM. The links between models and product data are defined in the mock-up data database.

Figure 23 : Digital Mock-Up schema

3.3.2 Digital Mock-Up Applications

One of the most important functionality and the original reason to which DMU have been imple-

mented in industries is that it allows collaborative contextual design. Indeed, the DMU provides a

common framework for all partners to position the modules. To this end, CAD files for interfaces are

created and positioned in the DMU. Like the CAD interfaces introduced in section 3.1.1, the CAD

definition of partners’ modules are based on these interfaces. Thus the modules are assembled

correctly and parts updates is faciltated when interfaces are modified.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-49-

The second advantage of the DMU is that it integrates partners CAD data, which allows

designers to use these parts as the context of their own design, preventing from having parts interfer-

ence/clashes. The DMU provides an overall vision for verifying the assembly design of the engine.

Indeed, it enhance error detections earlier in process performing several analyzes of the complete

engine assembly model:

 positioning analysis: detects interference/clashes between parts;

 kinematic analysis: to determine whether the rotor parts do not fit in stator parts;

 analysis of assembly / disassembly: simulates the operations of assembly and disassembly of

parts to optimize the number of operations required for these tasks

 accesibility analysis: checking accessibility of components for maintenance.

Figure 24: DMU applications adapted from [Nguyen Van, 2006]

In [Nguyen Van, 2006] and as shown in Figure 24, the author has identified the different po-

tential usage of the DMU. However, the high complexity of aeronautics products containing thousands

of objects performing many different functions requires DMU adaption and transformations to differ-

ent user’s needs and knowledge.

DMUs can also be used by analysts to approach more complex geometry and speed up simulation

models generation. In order to reach the needs of large assembly simulation models it is mandatory

to speed up as much as possible the required DMU transformations to meet simulation objectives

[Boussuge et al., 2012]. One of the objectives of this PhD dissertation is to characterize and analyze

some specific issues related to the use of DMUs for assembly simulation model preparation.

A DMU is actually an extraction of a given configuration (defined in a PDM system), at a given time

for a given use. This is done via a request to the PDM system that returns a product configuration.

When the DMU is used, the DMU is not any more configured by the PDM, but corresponds to a specific

technical solution, representing the geometry of the product components positioned in the reference

frame of the product. It can therefore be assimilated to a snap shot at a given time, i.e. at a maturity

level of the product configuration definition.

3.3.3 Evolution of a Digital Mock-Up during the product life cycle

As shown on Figure 25, the construction of the DMU starts from the earliest design stages. Figure

25 exemplifies the mechanical skeleton of an aero-engine which is the starting point for the engine

DMU defining the different space allocations required for the design of the sub-systems and compo-

nents constituting the power plant system. In the case of an aero-engine, these space allocations are

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-50-

specified by the aerodynamics outlines, the surface of the blades of each modules and the interfaces’

plans and design patterns permitting to position and size them.

Figure 25 : Design in context in preliminary design – Mechanical Skeleton of an integrated aero-engine assembly

From the view of the mechanical skeleton illustrated above, the DMU evolves during PDP toward

more and more detailed representations since it is progressively enriched with the detailed definition

of the product components. As observed in the context of Snecma, Figure 26 describes the evolution

of an aircraft engine’s DMU all along its development life cycle. In the preliminary stages, the geomet-

rical representation is based on the 2D cross-section and then on the mechanical skeleton of the prod-

uct. Once the concept is validated, the cross section is transformed into a 3D model using rotation. At

this stage, the DMU represents the design space allocated for the different components of the product.

In the definition stage, the DMU is deeply modified. As design departments are working on the devel-

opment of modules, the new design definitions are integrated into the DMU to provide a new realistic

representation of the product. Finally, before the service stage, the DMU is the final virtual product

which will be transformed into a real product after manufacturing.

Figure 26 : Parallelism between project stages and DMU evolution [Nguyen Van, 2006]

3.3.4 Synchronizing the DMU with the product definition

 The DMU and its evolutions deeply depend on the evolution of technical definition by design

offices. Furthermore, all modifications performed during the design definition must be integrated into

the DMU. In consequence, all internal workflows and procedures must be adapted so that the DMU

Aerodynamics outlines

Interfaces 'plans and design patterns
(bolted flange and bearings)

FAN blades
surface

Internal FAN Case boundary

Engine axis

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-51-

evolution is consistent with the current state of the technical definition. It means that all information

concerning the design technical definition must be integrate into the DMU (3D models referencing

validated drawings, reference, “effectivities”, quantity of items, functional item relationships, etc.).

The technical definition of an aero-engine is driven by the configuration management process.

One of the major processes supporting and allowing management of design definitions and their

evolutions is the configuration management process.

Configuration management (CM) is a process enabling to establish and maintain consistency of
product’s performance, functional, and physical attributes with its requirements, design and oper-
ational information throughout its life [DoD, 2001].

CM emphasizes the functional relation between parts, subsystems, and systems for effectively

controlling system change. It helps to verify that proposed changes are systematically considered to

minimize adverse effects. CM verifies that changes are carried out as prescribed and that documenta-

tion of items and systems reflects their true configuration.

Configuration: Rule describing the composition and structure of a hierarchical system. Configura-
tions are used to describe different product structures adapted to the needs of the project.

The definition of the components (item instances) that constitute a configuration is managed

through the concept of “effectivity”.

Effectivity: An effectivity is the identification of a domain of applicability for product data [ISO,
2004a]. From a PDM/PLM perspective, the effectivity is a product structure link attribute that de-
fines if a usage occurrence of an item definition (i.e. instance of component) is relevant for a given
configuration or list of configurations.

Our field research has shown that the product configurations are defined at Snecma according to

the product variants defined for specific customers needs and according to the various “engine-

mounts” couples (called units) defined by the test plan. The configuration management process en-

compasses:

 The creation of items and technical definition that define and compose the product structure;

 The definition and the management of the Bill of Materials (BOM): that specifies the parts

that compose a product configuration. The parts’ attributes generally are: the functional ref-

erence (SNS), the part number, the designation, the mass parameters (masses, inertia, centre

of mass), the material, the quantity;

 The engineering change management process: a review process ensuring that for each mod-

ification or revision of items’ definition, changes to the system are proposed, evaluated, and

implemented using a standardized, systematic approach that ensures consistency. Proposed

changes are evaluated in terms of their anticipated impact on the entire system.

 The synchronization with partners’ modules definition and the specifications of modules in-

terfaces: this process especially specifies interfaces (both they provide to the appropriate ac-

tors interface control drawings that specify functionally and physically the interfaces.

As a result, the content and structure of a DMU and its evolution is closely related to the configu-

ration management process. The bill of materials is traditionally considered as the reference of the

technical definition. The evolution of the DMU actually follows the technical definition defined in the

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-52-

BOM. Each part has to be associated to the appropriate product configuration(s), and has to be posi-

tioned into the integrated environment of the DMU. As an objective, the Digital Mock-Up data must

reflect exactly all the data (means reference, SNS, quantity…) that are present in the BOM. The coher-

ency between DMU and configuration management must be ensured to provide the best design envi-

ronment and view on the product. To summarize the quality of a DMU can be measured assessing the

following criteria:

 Completeness: number of existing parts regarding the parts referenced in the BOM, presence

of CAD models (internal or partners’ models), availability of models at the right time, synchro-

nization with partners’ DMU, presence of partners’ models.

 Number of clashes or gaps: due to a bad positioning of the models in the relative product

referential or due to discrepancies between the definition of the models to assemble.

 Number of incoherencies with the BOM: when the parts present in the DMU don’t corre-

spond to the parts referenced in the BOM;

 Number of discrepancies between the whole product 2D sketches and the DMU.

An aero-engine DMU, composed of thousands of objects and built from the collaboration of hun-

dreds or thousands designers, require to be enriched correctly and to match the current product def-

inition. As a result, with such an approach (considering the BOM as the product definition reference),

there is always a gap between the current product definition and the contents of the DMU. In a model-

based approach (see section 6.1), the opposite approach must be used: the DMU must be the refer-

ence of the product definition and the BOM must be generated from the DMU. Doing so, inconsisten-

cies between these two product definitions are avoided. However this requires establishing very strict

and standardized rules and methods between all co-designers and partners involved in the enrichment

and exploitation of the DMU. For instance, the content of CAD models that enrich the DMU must be

rich enough to produce relevant BOMs. For a large and complex product developed in the context of

the extended enterprise (distributed and collaborative environments), where partners might use dif-

ferent CAD and PDM systems, as well as different routines and methods, this appears as one of the

major challenges and industrial stakes that these companies are facing today while managing DMU

environments.

3.4 Conclusion: From Digital Mock-Up to Behavioural Mock-Up

The development and use of DMUs in a Product Development Process (PDP), even with large as-

sembly models, make 3D CAD models available for the engineers. The DMU offers new perspectives

for analysts to approach more complex geometry and speed up the simulation model generation

[Boussuge et al., 2012]. In view to this perspective and in view to extend the scope of PLM adding SLM

functionalities, another big DMU-related challenge for these companies, is to integrate behavioural

simulation data and processes with the DMU; offering what Dassault Systèmes and CIMdata have

called Behavioural-Digital Mock-Up.

The Behavioural Mock-Up (BMU) concept was initiated by Riel who extends the DMU concept

with the required information using a meta-modelling approach [Riel, 2005]. The BMU is the equiva-

lent of the DMU for simulation data and processes. Beyond the geometry, which is represented in the

DMU, the so-called BMU should logically link all data and models that are required to simulate the

physical behaviour and properties of a single component or an assembly of components. These include

mechanics, thermal, hydraulics, electronics, and whatever other disciplines which are relevant. Prob-

ably the most fundamental requirement to the BMU is its ability to be integrated into existing IT infra-

structures. Since the BMU aims at acting as a layer above all the different modelling tools, it will have

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-53-

to have interfaces to all of them. This can be a major problem in an area where there are no interface

standards available (like in CAE) [Riel, 2005].

The key enabler for achieving the target of extending the concept of the established CAD-based

DMU to the behavioural CAE-based BMU is to find a bi-directional interfacing concept between the

BMU and its associated DMU. The BMU could use all the DMU-data it needs for model calculation, and

all relevant BMU calculation results could be made available and physically accessed via the DMU.

Within this relationship, the DMU could serve as the key link between the BMU and the PDM-system.

These requirements demand a concept to handle the structural information that is necessary to deter-

mine the relationships among components and to map DMU and BMU content and structures [Riel,

2005]. Riel did not define precisely neither demonstrate this concept in his PhD, but it is now the aim

of SLM systems and of some R&D aeronautics consortium projects.

This is as well one of the main objective of this PhD which is realized within one of those R&D

projects: the CRESCENDO project. CRESCENDO means Collaborative & Robust Engineering using Simu-

lation Capability Enabling Next Design Optimization. This European consortium involves 59 partners

representing a cross section of European aeronautics. This includes European aircraft, engine and

equipment manufacturers, some universities, research institutes and PLM/SLM and CAD/CAE software

vendors. The project aims at delivering the modelling and simulation backbone of the aeronautical

extended enterprise: the Behavioural Digital Aircraft (BDA). The BDA concept represents the BMU of

the aeronautics extended enterprise and might consist in a collaborative data exchange/sharing plat-

form for simulation processes and models throughout the development life cycle at aircraft level and

in the entire supply chain. The BDA is the system which will describe and host the set of simulation

models and processes enabling to link, federate, couple and interact with different models with seam-

less interoperability, hierarchical, cross-functional and contextual associativity [CRESCENDO, 2010].

Regarding the diagnosis of the current industrial context, related issues and requirements, we

have highlighted and enhance the need of harmonization between design and simulation activities and

their related data and technologies. The primary questions that this research intends to answer can be

formulated as below:

In the context of a collaborative, distributed, multi-partners, multi-level, multi-physics and multi-do-

main design environment, how to align digital engineering capabilities with business processes and

specific requirements associated to product/system integration?

In this environment, what are the appropriate methods and tools to provide the right product engi-

neering data (with the necessary level of information and in the right format) in the appropriate

engineering context, to the right person and at the right moment?

Regarding the importance and the needs of design-simulation loops and integration activities in

SBD process, we have focused this general issue in a more specific and model-based oriented issue

derived from the perspectives of Riel’s PhD:

How to make DMU the key link between the BMU and the PDM-system? How to handle

the structural information that is necessary to determine the relationships among compo-

nents and to map DMU and BMU content and structures?

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-54-

Chapter 4: Key technical requirements

The industrial context and related concepts described in this chapter have permitted to highlight

some major industrial stakes and challenges related to complex aeronautic systems and related to the

digital engineering systems that support their development. This chapter aims at clarifying the focus

of this PhD thesis and at deriving, from the identified stakes and challenges, the key technical require-

ments and issues that our research work addresses.

4.1 Synthesis of key technical requirements

4.1.1 Requirements related to the use of the DMU for CAD-FEA inte-

gration

As previously stated, depending on the discipline and the type of performed analysis, digital inte-

gration chains and related numerical simulations require defining specific product design models (us-

ing specific representation of the product) in order to create the appropriate simulation models. There-

fore, using the DMU as the principal source of CAD data inputs for FEA requires a flexible management

of the DMU environment. Only a few and recent research works highlight the potential for the DMU

for being the backbone of design-simulation loops and to be adapted for domain-specific engineering

needs and especially for simulation needs [Drieux, 2006, Nguyen Van et al., 2006b, Foucault et al.,

2011, Shahwan et al., 2011a, Boussuge et al., 2012, Shahwan et al., 2012, Shahwan et al., 2013]. Nev-

ertheless, DMU is often used as input for structural analyses of a whole assembly or for thermal and

CFD calculations. Below Figure 27 illustrates this high-level requirement by displaying two adapted

DMUs from a referential DMU: one for the creation of the mechanical IFEM used for a structural anal-

ysis of the IPSS, the other one the CFD calculation of the nacelle ventilation in the core compartment.

Figure 27: Illustration of required simulation-driven DMU adaptations for two different FEAs

Assumption:

 The DMU is consistent: we are only interested in consistent DMUs that represent a functional

product and contain no contradictory information. This assumption allows us to derive rea-

sonable conclusions.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-55-

Adapting DMUs represents a very time-consuming and tedious effort due to the technical gaps

presented below.

4.1.1.1 DMU shapes transformation

Design models are usually refined for the purposes of manufacturing, and therefore contain fine

details that are part of the as-manufactured component. These details can complicate the mesh gen-

eration process. Therefore, generating models for FEA from the B-Rep CAD models composing the

DMU requires shape transformations to remove details or idealize sub-domains. The principle of re-

moval details, as shown in Figure 28, consists in removing or modifying details in order to simplify the

simulation model without affecting the results of the analysis. In the case of the structural analysis, the

details to be eliminated are defined by entities of small size which are not carrying boundary conditions

(solicitations), not subjected to stress concentrations and which do not influence the deformation and

stress field in the remainder of the part. In practice, the analyst will eliminate the details such as holes,

embossing and chamfers.

Figure 28: Principle of removal details at component level from [Hamdi et al., 2007]

Hence, the resolution of the geometric model is coarsened so that it more closely matches the

objectives and the fidelity level of the target analysis. This simplification process reduces the subse-

quent mesh generation time, for little cost in terms of analysis accuracy. Currently, these simplification

tasks are mostly manual and already very tedious for small assemblies with tens of components and it

is not achievable for very large ones because most of the processing is performed interactively by

structural engineers. In order to decide whether and how components can be idealized, analysts refer

to the type of simulation performed, to the functions of the components and to the level of abstraction

of the system/sub-system which is analysed. For instance and as shown in Figure 29, a whole engine

model is created from individual engine casings. Those casings contain details of minor importance at

whole engine level, although generating a lot of extra nodes, and, as a consequence, degrees of free-

dom, which has an impact on computation times. Without the removal of those details, the whole

engine computations could not be performed.

Figure 29: Example of DMU simplifications required for an aero-engine structural analysis

The related technical requirement is to automate these DMU shapes transformation to meet the

engineer’s requirements in terms of FE mesh generation, simulation objectives, accuracy and time to

fit into a Product Development Process (PDP) [Boussuge et al., 2012]. However, this requirement (au-

tomating shape simplifications) is out of the scope of this PhD, but the management of the resulting

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-56-

idealized/simplified DMUs and related CAD models within PDM and/or SDM systems will be addressed

in view to be integrated with their related simulation data.

Assumptions:

 The geometric models present in the “referential” DMU are highly detailed (“as-manufac-

tured”).

 An increase of computer resources which would make detail suppression useless will not hap-

pen in the next few years.

 We cannot rely on the designers (and surcharge their work) to prepare and provide simplified

CAD models (already hard inside a company, even harder in a collaborative environment).

4.1.1.2 Simulation-Driven DMU structures

The DMU of a complex system is generally based on a very large product structure, referencing

thousands of CAD models. Very few analyses require the whole product DMU. Most of them require a

subset of it. For instance, and as shown in Figure 30, the finite element model used for the structural

analysis of an aero-engine is created using different modelling dimensions. The structural elements (in

blue and beige in Figure 30) have two different types of modelling (3D shell elements for the stator

components and 1D/2D elements for the rotors). Other rotor elements like the blades (transparent in

Figure 30) can be modelled with a 0D punctual mass element corresponding to the total mass of the

blades crown applied on its centre of mass. In that case, only the 3D and 2D elements use 3D or 2D

CAD models as input to be created. 1D and 0D elements are created based on the mass or stiffness

properties of the corresponding components. Therefore the DMU used for the creation of the FE model

does not require containing the components modelled in 1D or 0D. However the analyst needs to easily

access the mass properties of these elements.

Figure 30: Fan assembly example of different modelling dimensions for the structural analysis of an areo-engine

Preparing this kind of subset and maintaining it up to date quickly turns into a time consuming

task. As-is, the DMU tools only provide features allowing to create “on the fly” the subset of the DMU

contained in a geometric envelop. As such, either the user prepares a very detailed envelop (time con-

suming) either he gets useless parts.

Moreover, analysts often need that the structuring of the components represented in the DMU

matches with the structure of their simulation model. It is obviously not the case in As-Is DMUs. Re-

arrangement of DMU product structures is also a tedious, time-consuming but essential activity to

prepare the simulation model. For instance, one important input for mechanical simulations is the

mass properties of the various components; if the structure of the DMU does not match with the struc-

ture of the simulation model, they have to reorganize it so that the mass properties (mass, centre of

mass and inertia moments) values of assemblies specifically defined for the analysis are correct. The

current DMU structure used for an aero-engine is generally organised into functional modules (FAN

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-57-

module, Compressor module, and Turbine module) and sub-modules (FAN assembly and inlet, Low

pressure compressor /Booster, High-pressure compressor, Low-pressure turbine, High pressure tur-

bine, etc.) where the place of the different modules and sub-modules in the DMU structure can vary

in function of the established partnership DMU’s management rules. In this kind of organisation stator

and rotor components of the engine are spread within these different functional modules. To perform

mechanical analyses, the engineer has to reorganise this structure in a rotor-stator breakdown match-

ing with the structure of the integrated FE model. Indeed the FE representation of a rotor and a stator

is not the same and the engineer can require for instance to isolate a rotor assembly for measuring its

inertia moments. Figure 31 illustrates this issue on a FAN assembly, displaying the modular reference

DMU structure on the left side and the structure used for mechanical analyses.

Figure 31: Functional modular reference DMU structure Vs Mechanical DMU structure

Reorganizing a DMUs representing a large system is a very time-consuming and tedious effort due

to the following issues that currently impact such usage of the DMU:

 DMU has often inconsistencies regarding the functional description of assemblies resulting

from geometric inconsistencies.

 Current PDM configuration management capabilities that permit to structure and make the

DMU evolves, only allow the management of customer-oriented product variants. There exists

a crucial need to extend the concept of structure nodes/links effectivities for discipline-ori-

ented product variants.

 Current engineering change management process is not often synchronized with the DMU

content; there exists a time gap between the moment a CAD design change is proposed and

validated and the time the new related CAD model revision is integrated within the DMU. And

even when it is synchronized, the change propagation rules and methods across all the poten-

tial product DMU representations are not ensured.

As a consequence, both from shape and structural points of views, the representations of an as-

sembly are multiple. Therefore, handling shape transformations of assemblies as well as their structure

transformation requires specific operators in addition to lacking of topological description as well as

structure transformations, many operations are manual and very time consuming.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-58-

4.1.1.3 Explicit Functional and Topological description of Assemblies in DMUs

As above stated, The DMU tends to become a central source of data for the analysts. However, it

lacks this crucial information about how the parts interact (not even mentioning how the parts interact

with fluids). Interaction is known by the end-user, which has to manually create the links. This effort is

reduced by functionalities available in CAE systems consisting in pairing coincident faces. However the

system cannot guess what is the mechanical behaviour (glued, sliding contact, interference fit, etc.).

This step is manual, time consuming and error prone. The interfaces are also used to ensure that it will

be possible to assemble components.

In assembly modules of CAD systems, mating conditions are in fact geometric constraints but have

no connections with the topological model of an assembly. Indeed, many FEAs are strongly based on

the explicit topological description of an assembly, which means that the topology of links between

components should be available [Hamri et al., 2008]. Organization of models in a DMU is defined with

respect to the reference frame of the assembly. Hence, there is no geometric constraint between the

components and the relative position of components may be subjected to errors. Concerning large

systems it is difficult for the integrator to update a set of constraints when there is a modification on

components that impacts several geometric constraints. As a result, the interaction areas between

components are not captured in most DMUs, while this information is required to represent intrinsi-

cally system interfaces. Even though CAD or PDM systems can incorporate assembly modules enabling

to define the mating conditions between components, these conditions are limited to the identifica-

tion of the faces of the components involved in a contact. This information is already interesting but

its efficiency is limited in collaborative and distributed design environments because its transfer

through standards cannot be performed easily and this type of information is frequently not available

in DMUs [Drieux et al., 2007].

The key information needed to transform CAD assembly model into an integrated FE model, are

the precise area of the contact area between components as well as the expected behaviour in this

area. The contact areas between analyzed component its surrounding ones are of high interest when

defining the boundary conditions (BCs) for the analysis of the studied component since they are the

locus of interaction forces between this component and its surrounding ones. Therefore, when ex-

pressing hypotheses to model, idealize, approximate the BCs, it is critical to precisely define this con-

tact area for modelling a pressure area or considering this area as a boundary between two different

types of materials when there is a cantilevered BC between two components or reducing this area to

a point if a concentrated force/mass is acceptable to model the interaction between the two compo-

nents. Figure 32 illustrates the issue representing a CAD bearing sub-system model and its equivalent

representation for a specific structural FE analysis.

Figure 32: CAD Bearing sub-system and its corresponding FE 1D representation for a specific structural analysis

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-59-

Without more topological information besides geometry, model positioning and the asscoiative

links between CAD models and FE model, it is a tedious work for the analyst to identify within the DMU

the contact areas where he has to apply BCs and what are the coordinates of the rotor node he has to

project on the engine axis.

Considering these technical issues, the ability of a DMU to model a system from multiple view-

points such as different disciplinary domains, life-cycle phases, or levels of detail, fidelity and ab-

straction is of importance today. However causes of these issues have emphasised necessary im-

provements in the management of complex systems architectures modelling techniques and on cur-

rent PDM information models and capabilities.

4.1.2 Requirements related to system architecture modelling capabili-

ties with an object-oriented approach

Most of system architecture modelling approaches concern functional, structural and behavioural

architectures and intend to describe the relationships between functions, behaviours and structures

during the design process. As previously mentioned, the modularisation of product architecture (in-

tending to reduce the number of interfaces between modules and to handle more easily the structural

complexity) introduces challenges in integration phase because of the difficulty of predicting possible

integration impacts due to interfaces between sub-systems.. Integrators face many difficulties to re-

trieve and gather the appropriate design information and to manage the sub-systems interactions in

order to assemble integrated product. Most of rework is done due to inadequate input data to perform

integration and simulations. Indeed, during system integration, issues often arise from unsuitable

components models, from interactions that are often insufficiently (or improperly specified) and/or

from unsuitable structure and view of the product. That is why it is desirable to provide to integrators

and analysts a view of the system that is tailored to their particular task or design context.

A key issue in dealing with multiple views is that different views of a system all relate to the same

system and thus depend on each other. However, since different information is represented across

multiple views, only portions of different views are related to each other [Shah et al., 2009]. Conse-

quently, a mechanism is needed to integrate the required information between views. In current prac-

tice, the views are usually represented in different tools and are often maintained independently of

each other by the users, resulting in significant non-value-added effort and in significant opportunity

for errors. In addition to integration between domain-specific views, a mechanism for multi-level sys-

tem design is required to ensure the continuity of information between views at different system

breakdown levels. This integration is difficult to handle due to a lack of systems-level modelling capa-

bilities. To overcome all these problems, three different approaches are commonly discussed in the

literature:

 The use of customized mappings between different product views and structures;

 The use of system modelling language (e.g. SysML) and formalisms for both multi-level system

design and for integrating multiple domain-specific views of the system. These languages and

formalisms aim at providing the designer the ability to maintain bidirectional consistency be-

tween models from different domains [Shah et al., 2009].

 Models interoperability approaches: consisting in exporting the system model into standard

file formats to achieve single-direction integration.

These approaches aim at enhancing information exchange between domains and to allow design-

ers to start from a systems perspective and automatically generate domain specific models that are

necessary for the latter stages of the design process. The difficulties encountered to implement such

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-60-

an approach are due to a crucial lack of integration between definitions of design contexts, configura-

tions and processes’ activities with the existing product data and their relevance in those contexts.

Currently these product data are neither managed consistently regarding the design context for which

they are relevant (except customer-oriented product configurations managed through effectivities),

neither controlled through an integrated reference framework that permit to display the appropriate

view of the product to use in the specified context.

Considering the use of such system modelling approaches for simulations and especially in FEA,

the functional, behavioural and structural aspects of a complex system can be viewed and understood

differently regarding the discipline of the simulation. Therefore the simulation model must represent

the product view that match with this discipline, by gathering relevant design information of the prod-

uct and the studied breakdown structure. Current EDM systems require intelligent objects and opera-

tions enabling to provide the suitable and reliable CAD and DMU data inputs regarding the specifica-

tion and the purpose of simulation (mismatch between study requirements and data used to perform

the simulation). They also have to support the interface specification that includes multiple levels of

hierarchy and multiple level of abstraction in order to optimize the integration/assembly activities

whether it is for contextual CAD design of assemblies for the creation of Integrated FEM (IFEM).

4.1.3 Requirements related to Multi-Aspect information structure in

existing Product Data Models and PDM/PLM systems

4.1.3.1 Multi-view and Multi-domain Product data models

For a complex product where multidisciplinary engineering teams are involved, product data mod-

els must support collaborative design, hence the link between the various representations of the prod-

uct handled by designers. This model has to be able to cover all experts' intents. Indeed, each expert

studies the product for a particular perspective (or with different objectives) and gives his special de-

scription of the product [Labrousse et al., 2004]. Indeed each designer represents a product with dif-

ferent elements and different hierarchical compositions. Each representation is context dependent. It

is thus a unique view of a product configuration. This context dependence comes from the fact that

design objectives are different and therefore both modelling rules as well as design parameters taken

into account will have a certain angle. Each point of view and each representation must be integrated

into a coherent representation of the product.

With product development evolution, product data will change in numbers and types. Therefore,

there is a crucial need to be able to encapsulate the tools, data, models, methods, and other resource

objects that are used in a single specific engineering discipline and/or a specific lifecycle stage. There

exist different product data models used for different engineering domains. Product feature attributes

describe product data objects. For an engineering domain, product feature attributes describe the

product data objects for this domain. From the perspective of object-oriented technology, product

feature attributes are integrated by the data subset of product data models in every domain. So both

mapping of product data structure between engineering domains and mapping of product featuring

attributes are required [Li et al., 2011].

Unfortunately, product data model currently implemented in PDM and PLM applications do not

take into account these multi-domain and multi-view notions, although these notions are fundamental

to efficient integrated collaborative design. The challenge still remains as to how to connect the rep-

resentations of product models and actual products in a structured and formal fashion so as to accom-

plish the harmonization. This harmonization enables to define links, allow the exchange of information

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-61-

and ensure consistency between views and domains in integrated environments. These links can also

support the process of propagating engineering changes across these multiple product views.

4.1.3.2 Engineering change propagation

Engineering changes (ECs) provide a unique and official channel in a company for change propa-

gation between multi-level and multi-domain design teams and from design to other departments (e.g.

manufacturing or customer support departments). However, ECs can also be a major source of incon-

sistency if they are not properly propagated to the collaborating departments. Therefore, companies

require product data views for each department that support their specific views and EC propagation

procedures that maintain consistent product data between design departments [Do et al., 2008].

Therefore, for consistent EC management between multi-domain or multi-disciplinary design teams,

ECs should provide product structure-oriented representations, and “effectivity” management for do-

main-specific product views, integrated objects for workflow applications and integration with product

configurations. Existing academic research efforts have paid little attention to the required integration

between the definition of domain-specific engineering contexts and related product data views to the

EC process and more especially the change propagation channel for data consistency maintenance

between multi-level and multi-disciplinary design teams. These industrial requirements are addressed

by international standards such as ISO 10303. However, current industrial implemented methods and

used commercial EDM applications are far from fulfilling these requirements.

The EC propagation issue through the multi-level and multi-domain product representations and

related structures is closely related to the topic of interfaces data management and CAD-CAE data

associativity. Indeed, information exchange and design changes impacts effects between multi-level

and multi-domain design teams generally occurs at what we have called product interfaces. Moreover

when a design change occurs, there is a critical inertia phenomenon between the moment the change

is proposed and the moment the change and its related impacts are validated by simulations. This is

due to the fact that EDM applications and product data models do not ensure explicit links between

the objects defining the EC intent (that can be for instance linked to another EC object, or to answer

new engineering requirements), the CAD data features and parameters that physically characterize it

and the current domain-specific simulation models and results that could be impacted by this EC. In-

terfaces objects and functions can also be used to predict and support change propagation since a

change on the design of one component or sub-system might have impacts on the design of the neigh-

bouring components or sub-systems because of the potential modification of the features of the in-

teractions that take place at these interfaces.

That is why before considering the use of digital engineering change objects according to an ex-

tended usage of product configurations and “effectivity” management methods in EDM applications,

two requirements must be addressed:

 The use of digital interfaces objects as corner stone objects in product data models in order

to efficiently capture product assembly and interfaces information in PDM and DMU environ-

ments;

 The associativity between design and analysis data: it means the possibility of linking them

through a product data or product meta-data aspect (e.g. linking a CAE model with the CAD

model used to generate it), or through a parametric or topologic aspect (e.g. linking a geomet-

ric face of the CAD model to the corresponding elements in the FE models generated from it).

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-62-

4.1.3.3 Capturing product assembly and interfaces information in PDM systems

The issue of exchanging parts and assembly information between modelling systems is critical for

unrestricted exchange of product data. An assembly information model contains information regard-

ing parts and their assembly relationships (hierarchical relationships, assembly features, kinematics

joints, topology of interfaces, etc.).

Interface management is a cornerstone of systems engineering. Stevens argues that interfaces

must be clear, kept stabile, and be kept separated [Stevens, 1998]. A common method to manage

interface information is to specify the intended interactions in an Interface Control Document (ICD).

This is a coarse-granular and document-centred approach, which offer limited possibilities to effi-

ciently support or automate down-stream life-cycle activities.

A more fine-granular approach is to treat each interface as an object that relates a pair of mating

features, located on different material objects, i.e. features on physical parts, human organs, or the

environment [Sellgren, 2009]. The challenge is to define and capture interfaces features (defines in

CAD and CAE models) that can be stored and managed as fine-granular explicit models by a centralized

product data management (PDM) system. Present mechanical CAD-technology is generally feature-

based, which makes most CAD-tools suitable for representing geometric mating features and in some

cases also non-geometric properties can be represented and managed. A severe limitation in present

PDM/PLM-systems is that part features are not represented in the standard information models. This

limitation is a major obstacle for managing fine-granular systems models that are composed of com-

ponent models (material objects or parts and mating features) and interface models [Sellgren, 1999].

These interface data models must be implemented in PDM/PLM systems, but require mating feature

and interface extensions, to the PDM information model.

Although product data models were developed in the literature to propose standard representa-

tions that specify assembly information/knowledge, these standards are sources of data loss and of

information duplication since they are not yet fully implemented in commercial applications. However

there is still a lack of capabilities and implementation methodologies permitting to make these models

interoperate with current commercial CAD and CAE applications.

4.1.3.4 The various level of Design-Analysis data associativity

Another important capability that product data models must support is the consistent integration

of design information from the product definition (e.g. CAD data present in DMUs, Bill of materials)

with the associated simulation data in order to ensure a complete traceability of the design/simulation

information chain and facilitate the management of change impact in PDP. This capability can be man-

aged through high-level traceability between CAD-CAE metadata objects.

Figure 33: High-level traceability between CAD-CAE metadata objects

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-63-

Figure 33 highlights the missing traceable links that permit to retrieve which CAD data has been

used as input for a specific CAE activity. These traceable links can enhance re-use of models (avoiding

re-work) when information about the context in which the data have been used is provided. One CAD

model can be idealized differently to create different meshes for various levels of abstraction. Several

meshes can be generated from one CAD model depending on the needs of the users (disciplines, level

of detail…). The goal is that any mesh created is managed and related to the geometry it is represent-

ing. It is necessary to easily navigate through this CAD-CAE models network in order to find quickly all

existing meshes for a given CAD model. This will avoid mesh creation redundancy by increasing the

awareness of the user about existing meshes, and more generally decrease mesh generation effort

(avoid re-work, ease re-use) and increase modelling quality. Moreover, in CAD parametric modelling,

another tricky challenge is to manage the association between specific analyses results and geometric

parameters and features to make them evolve according to the results of the simulations.

In modern CAE environments, the user interacts indirectly with the mesh through the geometry.

For example, boundary conditions are applied on faces of the geometry. It allows also being able to

define uniquely the boundary conditions applicable to all the different meshes associated to the ge-

ometry. Therefore fine associations between the FE mesh and the topology of the CAD model it is

representing (vertex, edge, face) are also required. Figure 34 gives a concrete example of that kind of

issue. Depending on the simulation intent [Nolan et al., 2011] and the complexity of the geometry,

different types of geometric areas can be defined on a CAD model and these areas can be meshed

differently. If for instance a face on the 3D model need to be transformed into a mid-surface to be

meshed, the association between the face on the 3D model and the equivalent edge on the mid-sur-

face is required.

Figure 34: Example of required fine grain CAD-CAE association adapted from [Nolan et al., 2011]

If product data models cannot ensure these levels of traceability between CAD and FEA data the

links between states progress of the design model and calculation remain uncertain. The lack of trace-

ability also complicates the reconciliation between product changes and their impact on the analysis

results. This has resulted to affect the confidence in the analyses results. In addition, it is important to

provide rapid access to critical data for the two activities to prevent from going too far in a wrong

direction.

 Part I: Problem Statement T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-64-

4.2 Conclusion and research objectives

Previously analysed industrial requirements have been highlighted in order to propose further

development (framework) to enhance digital integration chains and design-simulation loops efficiency.

Figure 35 illustrates the synthesis of previous section regarding the industrial requirements and high-

lights the need for a multi-view, enriched and flexible DMU environment supported by intelligent

multi-aspect product data models and system modelling frameworks.

In terms of research objectives, and to fulfil these requirements, this PhD intends to answer the

following research questions:

 How to ensure a more rapid and easier acquisition of simulation data inputs making the DMU

more flexible so as to be used as the main model-based source of information?

 How to identify the relevant data set to be used for the simulation and to organize this data

set into a new adapted product structure and “engineering environment”?

 How to ensure a more efficient and consistent integration of adjacent product components

models so that integrators and analysts can numerically and easily verify the behaviour of the

integrated product and reiterate faster within design integration chains?

 Furthermore, integrating different product components in complex system design is iterative

and often produces large scale intermediate data with heterogeneous formats and complex

relationships. The efficient organization and management of engineering data are therefore a

bottleneck of product design performance and this topic is discussed in this PhD around two

issues:

 How to ensure the continuity of information between working teams and more espe-

cially between design and multi-disciplinary analysis models/data?

 How to enable PDM systems and surrounding CAX applications to display appropriate

system representations from multiple viewpoints such as different disciplinary do-

mains, life-cycle phases, or levels of detail, fidelity and abstraction?

Figure 35: Synthesis of industrial requirements to optimize digital integration chains

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-65-

PART II: STATE OF THE ART

In order to achieve the research objectives and issues mentioned in the previous part, it is im-

portant to position our research works regarding the literature and to identify the related works that

have already addressed such issues. This part corresponds to the state of the art of this PhD and is

made of 4 chapters.

The first one (chapter 5) introduces our scientific positioning and provides a clear understanding

of the structure and content of the following state of the art.

The following chapters address respectively the main research areas mentioned in Chapter 5 un-

derlining the most interesting works as well as the current related gaps and limitations.

Chapter 6 addresses the topic of Model-Based Systems Engineering (MBSE) since it appears as

being the most appropriate approach to describe a system from different viewpoints such as different

disciplinary domains, life-cycle phases, or levels of detail. It hence provides an overview of ongoing

research works and MBSE concepts, methodologies and formalisms that intend to provide a consistent,

interoperable, and evolving model of a system throughout its lifecycle.

Chapter 7 specifically deals with the topic of using the DMU as a main product definition referen-

tial for implementing a MBSE approach in simulation-based mechanical (in opposition to software

products) product design. It provides a literature review of existing approaches, methods and tools

aiming at ensuring the continuity and traceability of information between CAD models, their assem-

blies in DMUs and the simulation data and activities that use them as input. We are particularly inter-

ested in existing works dealing with the issue of adapting the content and structure of DMUs according

to their usage in the product lifecycle.

Since a DMU is supported by a PDM a system, Chapter 8 provides an exhaustive review of existing

product data models enabling to manage and represent product design information according to var-

ious discipline-specific aspects of a design artefact. This includes generic product data management

capabilities, explicit description of assemblies’ structures and components’ interfaces, the continuity

and traceability of CAD and CAE data at different levels of abstraction and the re-use of design artefacts

in the appropriate context. The exchange and consistency of information as well as change propaga-

tion across multiple multi-domain and multi-level views of the system are also addressed.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-66-

Chapter 5: Scientific positioning

The aim of this chapter is to justify and clarify the scientific positioning of this PhD dissertation

and to provide a clear understanding of the structure and content of the following state of the art.

Adopting a lean approach, we have investigated the value chains that operate in system engineering

and integration processes of aeronautics products such as aero-engines. The results of this analysis are

summarized in the first section of this chapter by first introducing the Lean Product Development prin-

ciples, defining what mean value and waste in PDP and finally identifying the main related value and

waste drivers. As explained in section 5.1, this analysis has permitted to justify the importance of ad-

dressing current design-analysis integration issues for achieving the objectives of lean engineering.

That is why section 5.2 introduces the various design-analysis integration research areas to investigate

and provides the structure of the following state of the art.

5.1 Lean Product Development and Simulation-Based Design

5.1.1 Introduction to Lean Product Development

Since the 90’s and the publication of “the machine that changed the world” [Womack et al., 1990],

the lean approach has proven its positive results concerning efficiency and reduction of overall busi-

ness process time. Product Development Processes (PDP) has an important role in the value definition

since it aims at defining the product and customer value, and this definition largely impacts production

costs and production times. Therefore, in the past few years industrialist and researchers have shown

a great interest in transferring the lean principles to PDP; called Lean Product Development (LPD) or

Lean engineering.

Lean Product Development (LPD) consists in creating the right products by first managing effec-

tively the product lifecycle and the enterprise integration and by using efficient engineering processes

and applying lean thinking to eliminate wastes and improve cycle time and quality in engineering [Mc

Manus et al., 2007]. Lean thinking is essentially a corporate culture oriented towards customer satis-

faction in terms of added value as well as in terms of permanent reduction of the time required for

creating this added value. Therefore Lean philosophy consists in doing the “just needed” to create the

desired value. This “just needed” can only be achieved through the identification, monitoring, analysis

and continuous improvement of value chains in the company. As shown in Figure 36, the purpose of

this approach is to create a continuous flow of material and information to deliver the desired cus-

tomer value with the least possible waste of resources and minimized delays.

Figure 36 : The Lean Product Development scope (extracted from [Hoppmann, 2009])

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-67-

In "Lean Thinking", [Womack&Jones, 2003] define an iterative approach, inspired by the Deming‘s

“quality wheel”, sequenced in 5 steps called the 5 basic lean principles:

 Defining what creates value for customers: customers must not pay the additional costs of

products and /or services purchased to compensate for its supplier inefficiency and waste

(with the risk to see the client going to a more competitive supplier). To set the value correctly

will also permit to see if we make over-quality.

 Identifying the value stream: it means mapping processes and identifying added value activi-

ties and non added value activities that waste resources.

 Promote the flow of the stream by ensuring that the stages of value creation are optimized:

once the sequencing of the tasks is set for an optimized workflow, it is necessary to standard-

ize and make processes transparent in order to be able to monitor and control them.

 Pull the flow downstream: the production is triggered only after a customer order (with some

safety stock to overcome all unpredictable variations in demand).

 Striving for perfection to achieve excellence: repeat the loop indefinitely in a continuous im-

provement process.

Value definition is the starting point of the lean approach. However, contrary to production, PDP

are multidirectional, processes and process chains are highly connected, and the feedback loops and

iterations intersect at multiple hierarchical levels. [Chase, 2001], [Bauch, 2004] and others consider

PDP as an “information creation factory”, hence, “the product of product development is information”.

Assuming that, lean engineering is not based on a product and customer oriented value definition but

more on a knowledge/information oriented value definition. The PDP value chain hence operates

through the different information flows containing the engineering product data and enabling prod-

uct and process knowledge capture. Before applying the other lean principles to PDP, it is therefore

crucial to define what value and waste mean in product development.

5.1.2 What and where are the value and waste drivers in PDP?

In [Womack&Jones, 2003] authors state that only the customer can define the value, which is “a

capability provided to a customer at the right time at an appropriate price, as defined in each case by

the customer”. This definition, according to Chase, is useful for applications where the final product is

explicitly defined, such in manufacturing [Chase, 2001]. Therefore, in view to the optimization of PDP,

he proposes a more specific value definition considering product, process and organization dimensions

and integrating different perspectives. The same author proposes a framework that underlines that

PDP activities aim at increasing information and knowledge about the product definition in time

while reducing risk and uncertainties on the product, hence on the project (see Appendix III, Figure

243)

The question of waste definition is crucial if one wants to contribute to the global optimization of

the PDP system and to increase this process efficiency. What is the waste in PDP? And what are the

related waste drivers? The first question was initially addressed by transposing seven types of produc-

tion waste to the area of PDP and eventually adding some categories [Womack&Jones, 2003],

[McManus&Millard, 2004]. Morgan considers other specific types of waste, but he has sometimes

mixed types of waste and waste drivers [Morgan, 2002]. In [Bauch, 2004] and afterwards in [Kato,

2005], authors map all the ideas from the previous studies in order to identify all potential type of

waste. Bauch has elaborated a cause and effect diagram in order to distinguish waste types from waste

drivers. This diagram is given in Figure 245 of Appendix III. In [Wenzel&Bauch, 1996], authors highlight

one of the most significant problems and waste driver within PDP: uncertainty and risk. They argue

that, at any point of time in the PD life cycle, even if the characteristics of a system are planned and

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-68-

specified, the actual knowledge about the system at this point in time, gained and confirmed through

testing and verification, always falls below the planned level. Consequently, there always exists a

knowledge gap between assumed and verified characteristics (see Figure 37). Since it always lasts a

while until planned features are verified, there also exists a time gap between assumption and verifi-

cation. During this time, design activities may be based on wrong assumptions what in turn can end up

in loops and high levels of rework that can be considered as waste if this rework could have been

avoided. To conclude, uncertainty and risk are the main waste drivers in PDP and everything that

generate uncertainty and risk can be considered as a potential waste driver, whereas everything that

permit to reduce this uncertainty and risk gap is considered as a value driver.

In Simulation-Based Design (SBD) (see section 2.3.2), the knowledge and time gaps above men-

tioned can mainly be observed and addressed within iterations between design and simulation ac-

tivities. In chapter 2, we have already underlined the importance of these simulations for efficient

system integration. Section 2.3.2 particularly underlines the reasons for adopting a SBD process in such

a context: “when coupled with appropriate validation processes, the resulting capabilities can provide

companies with the ability to design superior products in less time and at lower costs” [Shephard et

al., 2004]. Therefore, we argue that simulation-based design is an inherent part of lean engineering

applied to the design and integration of complex systems. Hoppmann, inspired by the "The Toyota

Product Development System" and its related 13 components defined by [Morgan&Liker, 2006], cor-

roborates this argument by defining “Rapid Prototyping, Simulation and Testing” as one of the eleven

LPD system building blocks [Hoppmann, 2009].

As already mentioned, the numerical simulations performed in a SBD process aim at verifying that

the product definition satisfies the expected requirements; that the anticipated/expected product

knowledge correspond to the verified knowledge: the product behaviour. The related design-analysis

iterations (or design-simulation loops) and the way they are handled are therefore of primary im-

portance. In Figure 37 below, we have drawn a parallel between a simplified and traditional PDP pro-

cess (where design iterations are highlighted in red) and the graph representation of the knowledge

and time gap from [Wenzel&Bauch, 1996].

Figure 37: Time and knowledge gaps to reduce risk and achieve PDP performance (adapted from [Wenzel&Bauch, 1996])

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-69-

Figure 37 illustrates one important challenge in PDP: in order to reduce the development cycle

time and delivering the expected customer requirements, the challenge of lean engineering is there-

fore to reduce this knowledge and time gap the fastest possible to reach the expected product defi-

nition with the expected value added. In section 2.3.2, an example and illustration (see Figure 10) of

such knowledge and time gaps occurring between inter-dependant simulations loops of an aero-en-

gine development process are provided. Based on these considerations and based on the synthesis of

the industrial requirements described in chapter 4, we believe that addressing current design-analysis

integrations issues in PDP is the most important challenge for achieving the objectives of lean engi-

neering applied complex system design and integration. The following state of the art hence focuses

on design-analysis integration issues.

5.2 Bridging the gap between Design and Analysis for efficient Sys-

tem Integration

Industrial context analysis shown in previous part has underlined some of the issues related to

digital integration chains and more especially design-analysis integration issues. According to a survey

by Mocko and Fenves, current design-analysis integrations issues in PDP are discussed in three do-

mains [Mocko&Fenves, 2003]:

 The Object-Oriented Modelling: it concerns all methods and techniques for modelling physi-

cal systems, with benefits of reusability and modularity that provides an intuitive way to

model physical objects.

 CAD-FEA Integration: most issues of design-analysis integration are presented specifically re-

lated to the integration of CAD activities and models with FEA, since CAD data serve as input

for the pre-processing process.

 Multi-Aspect information structure researches concern implementations of product data

models enabling to manage and represent product design information according to various

discipline-specific aspects of the design artefact. These models might also supports evolution

of these information and domain-specific views of the product during the entire lifecycle of

the product. Therefore, this area is strongly related to product data standards developments

and implementations in PDM/PLM environments.

In view to research questions, contributions in this work can be identified and positioned using a

framework for Design-Analysis Integration research scope defined by [Mocko&Fenves, 2003] (see Fig-

ure 38. We have detailed the sub-topics that correspond to our focus of attention according to the

identified industrial requirements introduced in Chapter 4.

In the area of “Object-Oriented Modelling” the following topics are investigated:

 Model-based system architecture modelling languages and frameworks: this section in-

cludes an introduction to Model-Based System Engineering (MBSE) and object-oriented mod-

elling methodologies. It hence surveys existing graphical modelling languages and frameworks

for supporting the practice of MBSE and especially for representing and specifying functional,

physical and behavioural system architectures.

 Continuity of design and behavioural models: this section includes existing object approaches

permitting to link design and behavioural models parameters in order to automate the com-

position and the update of the models. It also addresses object-oriented approaches permit-

ting to enrich interfaces and interaction information to be able to change components defini-

tion without modifying the interfaces definition.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-70-

Figure 38: PhD scientific positioning and contributions regarding Design-Analysis integration research areas

(adapted from [Mocko&Fenves, 2003])

In the area of “CAD-FEA integration” a special emphasis is done about all the DMU transformations

required to provide multi-level and multi-domain DMU product-views in order to make the DMU the

central product definition referential supporting model-based and simulation-based mechanical sys-

tem design. This section hence encompasses the following sub-topics:

 DMU shapes transformation: addressing existing approaches and methodologies enabling to

automate the details removal, shape simplification and idealization of geometric CAD models

that are required for the preparation of usable FE assembly models.

 Explicit Functional and Topological description of Assemblies in DMUs: addressing existing

approaches that permit to enrich the DMU with the design intent of the assembly which is

expressed more precisely by the functional and topological description of interfaces and in-

teractions. This information is missing and required to express the right modelling assump-

tions and requirements for the creation of FE assembly models.

 Simulation-Driven DMU structures: addressing the existing methodologies that support dif-

ferent organizations of the DMU to offer to different actors a DMU structuring corresponding

to their point of view and business needs (or simulation objectives in our case).

In the area of “Multi-Aspect information structure” we investigate all existing standardized or non-

standardized product data models aiming to be implemented for PDM applications so that they can

support the concept of multiple DMU product-views. We believe that this concept, coupled with the

use of object-oriented system modelling frameworks, is the missing bi-directional interfacing concept

enabling to manage usable Behavioural Mock-Ups and the links with their associated contextual, func-

tional and physical product definition data or meta-data. This chapter hence provides an exhaustive

literature review of product data models supporting

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-71-

 Generic product data management capabilities: this includes especially design artefacts def-

inition, components’ physical properties and shapes, product structure and configuration

management capabilities;

 Explicit description of assemblies using specific objects and methods to capture the functional

and topological description of components interfaces;

 The continuity and traceability of CAD and FEA data at different levels of abstraction and the

re-use of design artefacts, models and knowledge in the appropriate context;

 The exchange and consistency of information across multiple multi-domain and multi-level

views of the system as well as the propagation of engineering changes across these multiple

product views.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-72-

Chapter 6: Model-Based System Engineering and Integration

methodologies

The first part of this PhD dissertation has highlighted that the multi-disciplinary nature of complex

system engineering projects results in large quantities of design data, managed in different tools cor-

responding to each domain. Maintaining consistency between these multiple data sets and tool-spe-

cific models becomes an issue when analyzing different system architectures during the design pro-

cess. The first objective of this chapter is to explain why Model-Based Systems Engineering (MBSE)

appears as being the most appropriate approach to describe a system from different viewpoints such

as different disciplinary domains, life-cycle phases, or levels of detail. The chapter provides an overview

of ongoing research works and MBSE concepts, methodologies and formalisms that intend to provide

a consistent, interoperable, and evolving model of a system throughout its lifecycle. Finally current

limitations and gaps related to these MBSE challenges are underlined.

6.1 Model-Based Product/System Design Definition

6.1.1 Model-based definitions

Model-Based Engineering (MBE) approach is using models and modelling activities as the corner-

stones of the design process [Estefan, 2007]. They are used for the specification, design, integration,

validation, and operation of a system; beginning in the conceptual design phase and continuing

throughout development and later life cycle phases [ODASD, 2011] [Bergenthal, 2011]. MBE leverages

modelling and simulation techniques to deal with the increasing complexity of systems. Models can

assist with all aspects of the complex system life cycle, from the interaction of stakeholders in an easy

to use environment, to enabling the automatic interaction of sub-modules at different physical scales

and across multiple domains [Hamilton, 2010]. In the field of engineering design, MBE is an approach

in which models:

 Evolve throughout the development life cycle,

 Are integrated across all program disciplines,

 Can be shared and/or reused across various domain-specific design processes to improve pro-

cesses efficiency achieve faster expected product quality requirements,

 Can scale up to complex systems and enable to analyze complex relationships and dependen-

cies between design and analysis data,

 Enable visualisation of design artefacts and can be powerful communication enabler,

 Promote automation in modelling and simulation activities

Model-based definition (MBD) is a new strategy of product lifecycle management (PLM) based on
CAD models transition from simple gatherers of geometric data to comprehensive sources of infor-
mation for the overall product lifecycle. With MBD, most of the data related to a product are struc-
tured within native CAD models, instead of being scattered in different forms through the PLM da-
tabase. MBD aims are suppression of redundant documents and drawings, better data consistency,
better product/process virtualization, and better support for all computer-aided technologies tasks
under engineering and manufacturing disciplines [Alemanni et al., 2011].

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-73-

6.1.2 Model-Based System Engineering and Integration

MBSE "is the formalized application of modelling to support system requirements, design, analysis,
verification and validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [Friedenthal et al., 2007]. MBSE encompass a
set of processes, methods, and tools used to support the discipline of systems engineering with a
“model-based” or “model-driven” approach. In MBSE, models are used to represent Functional,
Structural, Operational and Behavioural characteristics of the system being developed.

MBSE enhances the ability to capture, analyze, share, and manage the information associated with

the complete specification of a product, resulting in the following benefits [Murray, 2012]:

 Improved communications among the development teams

 Increased ability to manage system complexity by enabling a system model to be viewed from

multiple perspectives, and to analyze the impact of changes.

 Improved product quality by providing an unambiguous and precise model of the system that

can be evaluated for consistency, correctness, and completeness.

 Enhanced knowledge capture and reuse through information gathering in more standardized

ways and leveraging built in abstraction mechanisms inherent in model driven approaches.

This in-turn can result in reduced cycle time and lower maintenance costs to modify the de-

sign.

 Improved ability to teach and learn systems engineering fundamentals by providing a clear

and unambiguous s representation of the concepts

However MBSE is an emerging practice and little evidence exists that quantifies the benefits. In

[Murray, 2012], the author provides the most complete and recent overview of MBSE methodologies

recognized by the INCOSE (International Council on Systems Engineering). The description of these

methodologies won’t be detailed here. However an overview of the system modelling frameworks that

support some of these methodologies is given in section 6.2.2. According to these expected benefits

and regarding the required high-level capabilities to achieve them, the INCOSE has proposed a

roadmap for MBSE concepts and methodologies development. This roadmap is given in the following

Figure 39.

Figure 39: INCOSE MBSE Roadmap from [Murray, 2012]

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-74-

This roadmap includes the following technical challenges:

 Providing system architecture modelling languages and frameworks to produce and control a

coherent system model, and using this model to specify/design the system and ensure cross-

domain models integration

 Defining domain-specific modelling languages and visualization enabling the systems engineer

to focus on modelling of the user domain

 Developing standards based on a firm mathematical foundation that support high fidelity sim-

ulation and real-world representations

 Extensive reusing of model libraries, taxonomies and design patterns

 Specifying standards that support integration and management across a distributed model

repository

 Ensuring highly reliable and secure data exchange via published interfaces.

The current MBSE methods do not adequately support management of highly complex cross-do-

main models, including configuration, version, and variant management and reuse of models and the

modelling environment, or the ability to propagate changes from one model to changes in other mod-

els. Specific gaps to be closed include domain specific languages and data standards, and formal se-

mantics to encourage and enable model interoperability and reuse [Bergenthal, 2011].

6.2 System modelling languages, frameworks and tools

MBSE approaches address different system modelling formalisms, languages and frameworks in

order to provide and control a system model enabling to represent all aspects of a system at all levels

of abstraction across the lifecycle and across disciplines. This section gives an overview of existing and

recognized object-oriented languages that intend to answer these requirements as well as the frame-

works that have been developed based on these formalisms.

6.2.1 Object-oriented System modelling languages

6.2.1.1 The Object-oriented approach

Object-oriented modelling is a modelling paradigm that has its inception in computer program-

ming and also known as object-oriented programming. The object-oriented paradigm intended to help

programmers to handle the complexity of a system and related problems by considering the system

not only as a set of hierarchical functions that need to be performed, but above all, as a set of related,

interacting objects. Each object represents some entity of interest in the system being modelled, and

is characterized by its class, its state (data elements), and its behaviour. Various models can be created

to show the static structure, dynamic behaviour, and run-time deployment (instances) of these collab-

orating objects. The object-oriented programming and its fundamental concepts (abstraction, encap-

sulation, inheritance and polymorphism) are now widely proven. The object-oriented approach has

become a key technology when one seeks to develop complex software or system which functionalities

and behaviours might evolve continuously.

However, the object approach is less intuitive than the procedural or functional approach. It is

easier for the human mind to break a problem as a hierarchy of functions and data than in terms of

objects and interaction between these objects. Therefore in order to guide the system designer to use

object-oriented approach and concepts, an object-oriented language and formalism was required. This

language must enable to represent abstract concepts (e.g. graphically), reduce ambiguity (speak a

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-75-

common language with a precise vocabulary), be independent of existing programming object-ori-

ented language (like C, Java or Python) and enable analysis (simplify the comparison and evaluation of

solutions). Between 1970’s and 1990’s, with the advent of software engineering, many researchers

have developed object-oriented approaches. However, only three methods have truly emerged: The

OMT method Rumbaugh [Rumbaugh et al., 1990], the BOOCH'93 method [Booch, 2006] and the OOSE

[Jacobson, 1992]. In 1994, Rumbaugh and Booch (joined in 1995 by Jacobson) have joined their efforts

to develop a unified approach incorporating the advantages of each of the above methods. This unified

approach was subject to the Object Management Group (OMG) - a group of experts developing com-

puter industry standards for validation: the object-oriented Unified Modelling Language (UML) was

born. UML is a visual language for specifying, constructing, and documenting the artefacts of systems.

It is a general-purpose modelling language that can be used with all major object and component

methods, and that can be applied to all application domains and implementation platforms [Booch et

al., 2000].

The version 2.0 of UML addresses the problems of modelling architectures. It enhances the capa-

bility for modelling hierarchical structure and behaviour. [OMG, 2010b]. It was the first step towards

an object-oriented language dedicated to system engineering. However it did not allow the modelling

of flows on links. Moreover, links to requirements, parametric equations and others were still not ad-

dressed. Therefore, the Object Management Group (OMG) developed SysML for systems engineering

support, extending some existing modelling diagram functionalities and adding parametric and re-

quirement diagrams functionalities. The following Figure 40 shows the various types of diagrams that

are handled by the UML language and the ones added by SysML.

Figure 40: UML and SysML diagrams taxonomy

6.2.1.2 SysML

The Object Management Group OMG has developed SysML: “a general-purpose graphical model-

ling language for representing systems that may include combinations of hardware, software, data,

people, facilities, and natural objects”. SysML supports the practice of model-based systems engineer-

ing (MBSE) that is used to develop system solutions in response to complex and often technologically

challenging problems [Friedenthal et al., 2011].

In the structure diagram, the physical system architecture is represented by block definition dia-

grams and internal block diagrams. A block definition diagram describes the system hierarchy and

system/component classifications. The internal block diagram describes the internal structure of a sys-

tem in terms of its components (blocks), ports, and connectors [OMG, 2010a].

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-76-

Blocks are modular units of system description. Each block defines a collection of features to de-

scribe a system or other element of interest. These may include both structural and behavioural fea-

tures, such as properties and operations, to represent the state of the system and behaviour that the

system may exhibit. Blocks provide a general-purpose capability to model systems as trees of modular

components. Therefore they enable to represent multiple hierarchical levels of the system on a same

diagram and specify links between different breakdown levels of the system (like behavioural links at

interfaces) [OMG, 2010a].

A port is an interaction point between a block or part and its environment that is connected with

other ports via connectors. Specifying such ports on system elements allow the design of modular

reusable blocks, with clearly defined interfaces. SysML provides three types of ports [OMG, 2010a]:

 Standard Ports are used to specify service oriented peer-to-peer interaction which is typical

for software component architectures. Standard ports typically contain operations that spec-

ify bidirectional flow of data, so they are typically used in the context of peer-to-peer synchro-

nous request/reply communications.

 A flow port specifies the input and output items that may flow between a block and its envi-

ronment. Flow ports are interaction points through which data, material, or energy can enter

or leave the owning block. The specification of what can flow is achieved by typing the flow

port with a specification of things that flow.

 Item flows represent the things that flow between blocks and/or parts and across associations

or connectors. Whereas flow ports specify what “can” flow in or out of a block, item flows

specify what “does” flow between blocks and/or parts in a particular usage context. This im-

portant distinction enables blocks to be interconnected in different ways depending on its

usage context.

The behaviour diagram enables the sequence of events and activities that the system must exe-

cute. The requirements diagram captures requirements of the client to the model and guides the

whole design work to provide unambiguous traceability between the requirements and system design

[Paredis et al., 2010]. The requirement diagram provides a bridge between typical requirements man-

agement tools and the system models. The parametric diagram is dedicated to modelling networks of

constraints on system properties to support engineering analysis, such as performance, reliability, and

mass properties analysis. Parametric diagrams include usages of constraint blocks to constrain the

properties of another block. The usage of a constraint binds the parameters of the constraint to specific

properties of a block that provide values for the parameters [OMG, 2010a].

In the scope of our research work and in view to model mechanical systems and to ensure conti-

nuity of information between system design and analysis models across multiple domains, we focus

our attention on the structural diagrams. However, according to [Paredis et al., 2010], the behavioural,

structural diagrams and the requirements diagram together provide not only an integrated view but

also multiple views of a system. These multiple views can be maintained consistently due to the se-

mantic underpinning of the modelling language. Moreover in section 6.3 (Object-Oriented System

modelling for design-analysis data integration), a research work proposing to use parametric SysML to

ensure associations the behavioural parameters of a mechanical analysis model to the related CAD

model parameters is mentioned.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-77-

6.2.1.3 Modelica

Modelica is a non-proprietary, object-oriented, equation based language to conveniently model

complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal, con-

trol, electric power or process-oriented subcomponents [Modelica, 2010]. The behavioural model is

based on ordinary and differential algebraic equation (OAE and DAE) systems combined with discrete

events, so-called hybrid DAEs. Such models are ideally suited for representing physical behaviour and

the exchange of energy, signals, or other continuous-time or discrete-time interactions between sys-

tem components. The Modelica Language is defined and maintained by the Modelica Association

which publishes a formal specification but also provides an extensive Modelica Standard Library that

includes a broad foundation of essential models covering domains ranging from (analogical and digital)

electrical systems, mechanical motion and thermal systems, to block diagrams for control [Schamai et

al., 2009]. A large number of Modelica simulation environments are already available in commercial

and free applications; the list is provided here: https://www.modelica.org/tools.

Modelica models are similar in structure to SysML models in the sense that Modelica models con-

sist of compositions of sub-models connected by ports that represent energy flow (undirected) or sig-

nal flow (directed). Figure 41 Shows the same system (a mass suspended by a spring) represented in

Modelica (on the left side) and in SysML.

Figure 41: Formalism difference between Modelica (on the left) and SysML (on the right)

OpenModelica is an open-source Modelica-based modelling and simulation environment in-

tended for industrial and academic usage. Its long-term development is supported by a non-profit or-

ganization – the Open Source Modelica Consortium [Fritzson et al., 2006].

6.2.1.4 SysML-Modelica transformations

SysML and Modelica are two complementary languages, integrating the descriptive power of

SysML models with the analytic and computational power of Modelica models provides a capability

that is significantly greater than provided by SysML or Modelica individually. According to the overview

proposed by [Paredis et al., 2010], there are three main methods related to the transformation be-

tween SysML and Modelica up to now.

[Pop et al., 2007] propose to convert SysML diagrams to Modelica simulation and to provide a

SysML/UML view of Modelica for documentation purposes and language understanding as well as ex-

tending Modelica with additional design capabilities. The translation between Modelica and SysML

models is done via XMI (XML Metadata Interchange) which is an Object Management Group (OMG)

https://www.modelica.org/tools

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-78-

standard for exchanging metadata information via Extensible Mark-up Language (XML). They have cre-

ated a UML profile called ModelicaML that reuses some of UML and SysML diagrams while adding

several new diagram types such as the equation diagram, and the simulation diagram.

More recently, [Schamai et al., 2009] has extended this work. As Modelica models are similar in

structure to SysML models, authors represent Modelica models with related ModelicaML diagrams. As

such, Modelica structures are represented by Modelica structural diagrams, Modelica conditional

equation or algorithm statements are modelled using ModelicaML behaviour diagrams. Requirements

diagram in ModelicaML enables traceability between textual requirements and design artefacts, and

supports impact analysis when requirements and/or the model change.

Since SysML models and Modelica models can both be represented graphically, [Kindler&Wagner,

2007] propose to simplify model transformations to graphical transformations, using Triple Graph

Grammars. Triple Graph Grammars (TGGs) are a technique for defining the correspondence between

two different types of models in a declarative way. The power of TGGs comes from the fact that the

relation between the two models cannot only be defined, but the definition can be made operational

so that one model can be transformed into the other in either direction; even more, TGGs can be used

to synchronize and to maintain the correspondence of the two models, even if both of them are

changed independently of each other.

6.2.2 MBSE modelling frameworks and tools

Most of MBSE methodologies mentioned in 6.1.2 do not have any process framework tool to sup-

port the methodology since they were created as tool- and vendor-neutral methodologies. For the

ones having a supporting framework tool, it is necessary to distinguish:

 tools dedicated to generic system modelling engineering including all enterprise systems mod-

elling applications such as enterprise, software, hardware or product architectures modelling

tools,

 tools only dedicated to software engineering process,

 model-based and object-oriented applications integrated in domain-specific engineering and

analysis applications or within PLM platforms.

The scope of this PhD concerning improvement for modelling mechanical physical and behavioural

systems and for ensuring continuity of information between system design and analysis data/models

across engineering domains, this section only surveys a subset of these system modelling tools that

can be relevant for this scope.

The IBM RUP-SE methodology is supported by a RUP-SE plug-in in the Rational Method Composer

(RMC) tool integrated in the IBM Rational suite of tools aiming at supporting analysis, modelling, de-

sign, and construction with a software development focus [Estefan, 2007]. Most of these tools men-

tioned, including RMC, are supported on the Eclipse open source platform managed under the auspices

of the Eclipse Foundation.

IBM Rational Rhapsody tools suite family encompass Rational Rhapsody Designer supporting the

MBSE Rhapsody methodology using SysML for visualization of complex requirements and model exe-

cution for early validation of requirements, architectural trade off analysis and mitigation of project

risks [INCOSE, 2008].

CORE (Vitech Corporation) is a system modelling environment that includes integrated modelling

capabilities to assess and control design and program risks. The aim is to link “all” elements of the

system through a central model with an emphasis on visualizing system development risk drivers. Main

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-79-

CORE’s capabilities include integrated requirements engineering management tool, system architec-

ture modelling and development tools based on SysML to assign functionality and requirements to

physical architecture models. A model repository to track of all the necessary components and subsys-

tem elements is also provided to ensure change propagation from one modified diagram to all related

impacted views and executable behaviour models based on system logical diagrams and information

flows diagrams to demonstrate system functionality and performance [INCOSE, 2008].

Cradle (developed by 3SL) is presented as a systems engineering environment supporting the en-

tire system lifecycle. This includes requirements management, process definition and business analy-

sis, system architecture definition and assessment, high-level and component design, test manage-

ment, V&V. It focuses on gathering and crossing information from all of these activities in order to

ensure traceability and coverage analyses across the entire system lifecycle [3SL, 2013].

ArKItect™ (developed by Knowledge-Inside) is an object-oriented environment for modelling

multi-disciplinary systems and specifications. Main functionalities enable to describe functional and

physical architectures, allocate requirements to functions, construct validation plans, and follow-up

models evolutions. The principle of ArKItect is to use and synchronize these different representations

and ensure their consistency within a single system model. A hierarchical types definition system ena-

bles to customize the graphical representation and to apply arKItect ™ to “any” kind of technical do-

mains. arKItect™ Designer and Developer modules permit to define graphic meta-models and deploy

them. A relation matrix editor allows the user to define his own objects and flows, to assign attributes

to them and to define their composition rules. System Engineering Essentials is a specific provided

meta-model that enables to develop your systems following standard system design stages.

Knowledge Inside has developed two domain-specific extensions of System Engineering Essentials: a

Mechatronics module and a Safety module [Knowledge Inside, 2013].

Sodius has developed MD Workbench that focus on models interoperability, enabling the creation

of new tooling connectors and encapsulation complexity of direct connection to authored data; provid-

ing a kind of adaptable model hub architecture. For instance it provides a variety of translators be-

tween SysML applications, including diagrams, a number of specialized modelling tools for Space and

Defence, meta-models to gather interface data coming from various sources and connectors between

UML/SysML and non-UML-based tools such as DOORS or Matlab-Simulink [Sodius, 2013].

Thales has developed its own MBSE methodology named Arcadia. The toolset supporting

ARCADIA is named ORCHESTRA and runs over Eclipse. The heart of ORCHESTRA is an architecture mod-

eller/checker called MELODY ADVANCE. MELODY ADVANCE provides a modelling environment based

on UML/SysML but customized with engineering semantics. It enables to enrich and extend ARCADIA

basic concepts (so called “meta model”) for specific domains and specialty engineering, to customize

existing diagrams and create new kinds of diagrams (with a Domain Specific language) for dedicated

analysis, to define model analysis and check rules, as needed for each viewpoint, to develop multi-

viewpoint compromise analysis tools and to reuse design artefacts in appropriate context and capital-

ize decisions (e.g. reuse libraries and checking viewpoints, architectural patterns management) [Voirin,

2010].

Phoenix Integration has developed the Phoenix Integration Software Suite for meeting the needs

of Simulation Driven Design. The aim of the Phoenix Integration platform is to create and maintain a

library of modelling and simulation tools and simulation workflows, automatically execute the work-

flow, leverage computing resources to perform trade studies and ask “what-if” questions, and archive,

manage, and share the resulting data and meta-data. The Phoenix product suite is divided into four

primary applications:

 ModelCenter: process integration environment enabling to create simulation workflows, per-

form trade studies, and analyze, visualise the results;

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-80-

 Analysis Server: a light-weight server tool for remotely executing analysis tools;

 CenterLink: web based application for executing collaborative ModelCenter simulation work-

flows;

 AnalysisLibrary: shared drive replacement for managing simulation file content and enhancing

re-use.

 As shown in Figure 42, the Phoenix Software Suite is designed so that it can be flexibly deployed

in conjunction with PDM systems. In this scenario, the simulation management framework acts as a

low overhead “simulation sandbox” for the engineering team. Engineers check requirements and ge-

ometry out of one or more PDM systems, utilize the simulation framework to run analyses. After a

final result has been achieved, updated geometry and final analysis results can be checked back into

the PDM systems. In addition to the core capabilities, ModelCenter can also be upgraded with addi-

tional CAD and CAE plug-ins enabling a direct integration of ModelCenter with CAD tool (automating

the import of CAD design parameters for use as variables in ModelCenter) and CAE tools (to interop-

erate and automate CAE tools such as MSC Nastran, NX Nastran, ANSYS, Abaqus, LS-Dyna, and MSC

Adams) [Woyak, 2010].

Figure 42: Phoenix Integration applications and PDM systems interoperating principle from [Woyak, 2010]

The CATIA/SIMULIA V6 platform developed by Dassault Systèmes (DS) is now based on the unified

RFLP approach (Requirements, Functional, Logical and Physical Design). This platform provides an ob-

ject-oriented system architecture modelling framework with full traceability between functional, re-

quirements and logical blocks, ports, connectors and flow items. V6 virtual execution platform enables

to execute and analyze system models, mixing dynamic and state logic behaviours. CATIA Systems Log-

ical 3D Architecture brings 3D to logical systems for space reservation and pathways connection. It

provides 3D modelling tools for systems architect to define and investigate several 3D layout alterna-

tives early in the product design process. Integrated with DS Digital Mock-Up and “Knowledgeware”

products CATIA Systems Logical 3D Architecture allows the validation of the 3D architecture of logical

systems with respect to installation requirements.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-81-

Figure 43: CATIA/SIMULIA V6 RFLP framework integrated with 3D CAD DMU environment

In order to simulate logical system architectures, DS PLM platform has integrated Dymola; the

foundation technology for “CATIA V6 Dynamic Behaviour Modelling”, based on Modelica. Dymola is a

modelling and simulation environment which aim is to simulate the dynamic behaviour and complex

interactions between systems and sub-systems. It provides ready-to-use model libraries and the struc-

ture based on components, including 3D and their behaviour for many engineering fields (such as me-

chanical, electrical, thermodynamic, hydraulic, pneumatic, thermal and control systems). In order to

simulate 3D CAD models, SIMULIA provides simulation capabilities and seamless integration into their

CAD environment using the DesignSight and CATIA Analysis products. Coupled with Isight Execution

Engine (formerly Fiper) it permits to combine multiple cross-disciplinary models and applications to-

gether in a simulation process flow, automate their execution across distributed compute resources,

explore the resulting design space, and identify the optimal design parameters subject to required

constraints.

Teamcenter 9 (developed by Siemens PLM software) offers the same kind of system engineering

approach with Systems Architect. This application enables to create systems-level product architecture

by capturing multiple product views, including views of the product’s features, functions, physical con-

tent and logical hierarchy. Although logical architecture are modelled with an integrated Visio module

that still present some modelling limitations compared to SysML or Modelica formalisms, Teamcenter

also provides full traceability between functional, requirements and physical design artefacts. In this

platform there is also the will to provide traceability between CAD and CAE in specific defined design

context allowing to opportunities for re-use, as well as cross-discipline and cross platform trade-off

integration.

SLIM (developed by InterCAX) is an integrated software platform for systems lifecycle manage-

ment. It is envisioned to provide capabilities that combine the strengths of model-based systems en-

gineering and product lifecycle management (PLM). It uses SysML as the front-end for multi-discipli-

nary teams to collaboratively develop a unified, coherent representation of the system from the earli-

est stages of development. The system model (in SysML) can ‘co-evolve’ with the associated domain-

specific models, such as Computer-Aided Design and Engineering (CAD/CAE) models. Relationships be-

tween the system model and the domain-specific models can range from qualitative dependency re-

lations to quantitative causal parametric relations which are executable on-demand for seamless

model traceability and interoperability. Figure 44 shows the conceptual architecture of SLIM.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-82-

Figure 44: Conceptual Architecture of SLIM from [Bajaj et al., 2011]

6.3 Object-Oriented System modelling for design-analysis data inte-

gration

In the literature, two complementary approaches enhance the use of object-oriented modelling

techniques to support Design-Analysis and more specifically CAD-CAE data integration. The first one

consists in using the object approach (use of blocks, ports and connectors) to link design and behav-

ioural models parameters in order to automate the composition and the update of the models. The

second consist in using ports and connectors to enrich interfaces and interaction information and to

be able to change components definition without modifying the interfaces definition.

The Composable Simulation Project, originally developed for mechatronics systems at the Insti-

tute for Complex Engineered Systems of Carnegie Mellon University, is based on the idea that system

level simulations can be automatically generated from individual components from a CAD system. This

allows for systems to be simultaneously designed and simulated [Sinha et al., 2002]. This approach

proposes to design CAD models and “Composable simulation models” in an object-oriented formal-

ism. The technology permits to define a simulation models hierarchy and multiple models (models

fragments) can be associated with a single system component. These models are organized so that

model fragments can be easily reconfigured (through composition and instantiation) to suit a particu-

lar simulation context and hence enhance re-use by selecting the appropriate model for the current

phase in the design process. Model parameters are automatically extracted from the CAD geometry

and material properties [Paredis et al., 2001] [Sinha et al., 2002]. The Composable Simulation Project

is supported by Reconfigurable Models and Component Libraries.

A Reconfigurable Model is a system representation based on interface and implementation. Inter-

face is used to describe the interaction through ports and implementation described the internal be-

haviour of a system. The Component Library is a set of reconfigurable models for use by the de-

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-83-

signer/analyst. The goal is to achieve different configurations of the same system by altering the dif-

ferent implementations while keeping the interfaces constant. Reconfigurable component models pro-

vide a mechanism for describing system changes to both structure and parameters. Multiple configu-

rations and simulation instances can be achieved by changing parameters and reconfiguring system

components, known as composition and instantiation [Diaz-Calderon, 2000].

The component library permits to store and re-use a set of reconfigurable models. Two kinds of

models are present in the library: system component models and component interaction models. The

idea is to organize and classify the models in an intuitive manner so that the designer can easily retrieve

and compose the appropriate analysis model. Additionally, a component may be an abstract simula-

tion model, where the structure is defined, but the system parameters are not yet instantiated. The

intent was to permit designers to progress from highly abstract representations for first-run simulation

to detailed components for final design [Diaz-Calderon et al., 2000].

To achieve tight integration of design and analysis, design models should support the creation of

composable simulation/behavioural models. Simulation models should also support design model

views. Sinha, et al. developed a design environment using the component library and where the simu-

lation model and the design model can be created simultaneously [Sinha et al., 2000, Sinha et al.,

2001a, Sinha et al., 2002]. As shown on Figure 45, in this environment, a component is a modular

design entity with a complete specification describing how it may be connected to other components

in a configuration. Behavioural models capture the mathematical description of the physical and infor-

mational behaviour of a component. Behavioural models can also be composed out of other behav-

ioural models through the port-based modelling paradigm [Sinha et al., 2002]. A component object

can contain multiple behavioural models with different levels of detail. This technology is based on

encapsulations: an object can only be accessed through its public interface, which is independent of

the underlying implementation.

Figure 45: Configuration of components and interfaces and selection their behavioural models from [Sinha et al., 2002]

Authors apply the same principle for modelling mechatronics systems by making a clear distinction

between the physical interactions of an object with its environment (interface) and its internal behav-

iour (implementation) [Sinha et al., 2002]. This allows modelling a system by composing and connect-

ing the interfaces of its sub-systems, independently of the future implementations of these subsys-

tems. In this environment all interactions between components are mediated by ports. The high-level

component ports in the component interface are related to the ports of the behavioural model inter-

faces encapsulated in the component. The interaction model then becomes a container for this set.

The container holds all the possible behavioural models that can be used to represent this interaction.

The container is populated with interaction models stored in a library for re-use. The parameters of

the interaction can be inferred by geometric reasoning on the CAD data in each component. In order

to organize and maintain the space of all possible interaction models, and to support evolution of the

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-84-

design, authors propose port and interaction model taxonomies (see Figure 46 below). Within each of

these categories, models are classified by the physical domains that they represent. The choice of a

particular model from the container depends on the nature of the simulation experiment that is being

performed [Sinha et al., 2001a, Sinha et al., 2002].This type of design and analysis integration has been

implemented in electrical CAD (ECAD). However, most commercial mechanical CAD applications do

not support this type of integration.

Figure 46: Interactions (left) and ports (right) taxonomies proposed by [Sinha et al., 2001b]

The Multi-view Representation Architecture (MRA), developed at the Engineering Information

System Laboratory (EISLab) at the Georgia Institute of Technology, is addressing the gaps between CAD

and CAE tools. The methodology is based on knowledge patterns that naturally exist in engineering

analysis processes and on explicit design-analysis models associativity. The goals are to automate rou-

tine analyses, ensure design and analysis associativity and of the relationships among the models, and

to provide and re-use analysis models throughout the life cycle of the product. The MRA attempts to

bridge the gap between design and analysis based on four building block constructs [Peak et al., 1999]:

 The Solution Method Models (SMM) represents solution-specific methods combining inputs,

output, and control for a single type of analysis solution. It is a wrapper that serves as tool

agent to provide information on what solution tool to use, the inputs to the tool, the control

for the tool, and how to retrieve results from the tool.

 Analysis Building Blocks (ABB) represent engineering concepts that include engineering se-

mantics and are independent of the SMM. Analysis systems are assemblies of ABBs to repre-

sent a particular model. ABBs are constructed utilizing constraint graphs and object-oriented

techniques. ABBs use transformation operators to be linked with SMMs. The SMM instance is

created from inputs based on the ABB. The nature of ABBs allows for different solution meth-

ods to be used.

 Product Model (PM) is the product data model representing all data associated with the prod-

uct over its lifecycle. In addition to CAD and CAE geometric data the PM model encompass

design information items such as loading and boundary conditions. When it was created the

PM was one of the first steps towards an integration of simulation data within PDM systems:

a sketch and a basis for future SDM systems. The idea was to capture idealizations and simpli-

fications rules applied on analysis models in the PM in order to be re-used. Product Model-

Based Analysis Models (PBAMs) contain the linkages between the PM and the ABBs. PBAM

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-85-

analysis models are particularly useful for routine analysis where libraries of ready-to-use

analysis modules are created and available for use in later analysis activities.

Later, Peak et al. also introduce the Composable Objects (COB) representation which is based on

object and constraint graph concepts allowing capturing diverse multi-fidelity models and their fine-

grained relations. Later, Peak et al have transformed the MRA patterns and representations into COBs

that can be implemented in SysML. Within a MRA context applied on a flap linkages part, authors have

demonstrated the usage of parametric SysML and COBs at component level, linking the behavioural

parameters of a mechanical FEA model to the related CAD model parameters [Peak et al., 2007a, Peak

et al., 2007b] (see Figure 47).

Remaining challenges are to manage this CAD-CAE integration at assembly level and establish re-

lations at different levels of system decomposition as well as to ensure the continuity of information

between cross-domain models.

Figure 47: COB/MRA-based panorama for CAD-CAE interoperability from [Peak et al., 2007b]

The MOSAIC (Integrated modelling and simulation of physical behaviour of complex systems) pro-

ject, based on research by K. Andersson and U. Sellgren at the Royal Institute of Technology in Sweden,

aims at developing of an object-oriented model of behaviour of the product. Toward this end, a general

product model applicable to the entire product development process and a prototype system to sup-

port design and simulation of complex products have been developed [Andersson, 1999]. The proto-

type MOSAIC system consists of a process model, object model, libraries of requirements and analysis

models, system models, methods for validation, and methods for translating requirements to technical

specifications. Figure 48 shows the activity and data chart proposed by Anderson to represents the

data associated with design and analysis activities.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-86-

Figure 48: Design- Analysis activity and data chart from [Andersson, 1999]

The approach of the MOSAIC system enables the product to be divided into a number of subsys-

tems to be analyzed. Each system can be characterized by what is within its boundaries and how it

interacts with other systems. Interfaces between systems are described by mating features and inter-

face features. Mating features are used to characterize the position of the connected systems. Inter-

face features characterize the connection between the mating features. In other word, mating features

are what is connected between two systems and interface features are how the two systems are con-

nected. Because connections consist of both mating classification and interface classification, the sys-

tems are easy to modify. Multiple design alternatives can be developed by changing the interface con-

nections [Andersson&Sellgren, 1998]. Interfaces have characteristic properties that cannot be directly

derived from the related mating features. [Sellgren, 1999] highlights the need to rely on a modular

model architecture that enables configuration of systems models from a stored library of sub-models

and interface models. Later Sellgren proposes a model-based and feature-based interface information

model as extension and improvement of PDM data models [Sellgren, 2006a, Sellgren, 2009] (see sec-

tion 8.1.2).

6.4 Synthesis of current MBSE gap and limitations

The dominating issue of the dysfunction in MBSE is the lack of connection between models and

model elements, which appears not only between different languages but also within one language.

According to [Herzig et al., 2011], consistency implies an absence of contradictions. Authors classify

consistency in two groups:

 Internal consistency and external consistency. Internal consistency problems relate to axio-

matic systems that are well understood (e.g. logic systems and mathematics). Based on these

systems we construct modelling languages. Models that are internally consistent do not vio-

late the axioms and rules of the underlying formal system – they are theorems of the system.

 External consistency imposes an additional constraint, namely, that the model be true to re-

ality.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-87-

Finally authors conclude that checking for external consistency issues is impossible to achieve,

since it would require perfect knowledge about the processes occurring in nature; And it is impossible

to say with certainty whether a set of models is consistent. Instead, we can only detect specific types

of inconsistencies within the bounds of a formal system.

Concerning SysML and Modelica formalisms several limitations have been identified:

 SysML structural architecture is described in terms of blocks but it is not possible to highlight

a difference between hardware and software components.

 The synchronization between SysML and Modelica models, while defined with the help of ste-

reotypes in SysML, are not distinguishable within Modelica anymore. This makes the automa-

tion of the feed-back of simulation results into the system description challenging and still not

standardized [Votintseva et al., 2012].

 When simulation models need to be modified another limitation for the analyst is to keep

simulation models compliant with the original model in SysML.

 As most multi-domain systems are designed in increasingly large teams, component interfaces

are often set up at early design stages, and later can be modified corresponding to new re-

quirements or other changes in the environment. This implies rework on the existing models.

 To fully synchronize SysML structural models with simulation models (behavioural models), it

has to be decided which information should be modelled within the system description lan-

guage and the simulation model. A system architect must be able to identify the goal of the

simulation at different development phases and specify simulation relevant attributes in a non

intrusive way. Therefore, SysML models needs to be fed with the appropriate data sets rele-

vant for the generation of a meaningful simulation model.

In [Bajaj et al., 2011], authors underline two major gaps to close in order to ensure a MBSE design-

analysis integration approach.

The first gap concerns the lack of model-based continuity of system design and simulation activi-

ties from the early mission design phases to the later design phases. This gap exists because the mod-

elling and simulation tools used to create system models (design and analysis) are different in early

mission phases versus the later mission phases.

The second gap concerns disconnects between design and analysis/simulation models in different

design phases, such as between conceptual system design models and math-based analysis models in

early design phases or between CAD and CAE models in detailed design phases. In general, the second

gap manifests in heterogeneous model transformations beyond design and analysis, such as between

requirements and structure, logical structure and physical structure, and structure and behaviour

[Bajaj et al., 2011].

Majority of identified MBSE tools provide system modelling architectures capabilities (whether

functional, structural or behavioural). Some of them also provide capabilities for workflow simulations

or simulations of 1D behaviour models. Many of them also provide a system meta-model ensuring

cross-domain models consistency and integration. However, very few provide capabilities to make

these system architectures, process or other simulation models, interact with PDM systems and DMU

environments. The reason is that these tools have been mainly developed for software system engi-

neering applications, which do not require interacting with CAD or CAE models. [Sinha et al., 2001a]

propose that the object-oriented programming design methodology can be applied to mechanical sys-

tems modelling. According to authors, the object-oriented modelling approach, as leveraged from the

software development domain, is a step in the natural progression of modelling mechanical systems.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-88-

For mechanical system design, the DMU has become the main federating environment for sharing

3D digital data within a collaborative context. In [Alemanni et al., 2011] authors even underlines the

predominant role of CAD-DMU environments and data/models in a MBSE approach applied to digital

product design. Nowadays, design, integration and verification/validation activities are performed

through the use of CAD and CAE tools. In an MBSE approach these tools and related models should

populate, interrogate and exploit the system model in order to identify, structure, retrieve, share, dis-

seminate and visualize product engineering data. Therefore, the majority of existing MBSE tools needs

a technological leap to offer new system modelling capabilities exploitable in the field of digital me-

chanical product design and enabling to interoperate efficiently with CAD and CAE tools.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-89-

Chapter 7: The DMU as the backbone of Model-Based and

Simulation-Based Mechanical Product Design

In a model-based approach, the design phase of a product life cycle aims at creating a complete

DMU including all information on the product coming from multiple points of view: functions, compo-

nents, form features, materials, multi-physical behaviours [Shah, 1991], [Tichkiewitch&Véron, 1997]

[Yan, 2003]. Therefore, in a MBSE process applied to mechanical systems, and as mentioned in the

DMU-related industrial challenges, the DMU must be the reference of the product definition and the

BOM must be generated from the DMU. Doing so, inconsistencies between these two product defini-

tions are avoided. However this requires establishing very strict and standardized rules and methods

between all co-designers and partners involved in the construction, enrichment and exploitation of

the DMU.

Another mentioned DMU-related challenge is to integrate behavioural simulation data and pro-

cesses with the DMU and providing the Behavioural-Digital Mock-Up. Although the bi-directional in-

terfacing concept between the BMU and its associated DMU is still not defined in the literature, there

have been initiatives to ensure continuity and traceability of information between CAD models, their

assemblies in DMUs and the simulation data and activities that use this design definition support as

input.

7.1 DMU: the multi-view point product definition referential

The DMU has been wrongly considered as an environmental "catch-all" to which many people and

trades involved in the product development seek to cling to [Drieux, 2006]. In theory, it is generally

seen as a reference object of the product definition. Several authors have performed analyses of the

deployment and exploitation of DMU environments in the aircraft industry; demonstrating the poten-

tial benefits of using it as the product definition reference and underlining the related technical chal-

lenges in a collaborative and distributed environment [Nguyen Van, 2006] [Garbade&Dolezal, 2007]

[Guyot et al., 2007] [Dolezal, 2008] [Toche et al., 2012].

Unfortunately, in practice this is still not the case because of the inconsistencies issues mentioned

in 3.3.4. In order to be considered and used as the product definition referential, it is essential for a

DMU environment to enable the representation of a system from multiple viewpoints such as different

disciplinary domains, life-cycle phases, or levels of detail, fidelity and abstraction. This enhances the

application of the multiple product views concepts – as it has been defined from an engineering design

perspective [Rosenman&Gero, 1996] [Léon, 1999] – on the DMU product representation.

Along the product life cycle, group of stakeholders involved in the development of the product

addresses the product from a particular viewpoint. The corresponding description of the product from

a particular viewpoint characterizes a product representation, i.e. a model in terms of elements ex-

ploitable in the field of knowledge of the corresponding stakeholders [Hamri et al., 2008]. A product

view defines the link between a product representation and the activity or process (performed at least

by one stakeholder) that use or generate this representation as respectively input or output. However,

the concept of DMU conveys different meanings and has not been clearly defined with regard to the

concept of product view.

As shown in Figure 49, [Drieux, 2006] makes a clear distinction between the DMU used as a prod-

uct definition reference and the DMU used in downstream applications. He also distinguishes the DMU

data providers (designers) who build the referential DMU and the DMU data consumers that use

whether the referential DMU whether a derivative and adapted DMU representation.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-90-

Figure 49: Differentiation of DMU stakeholders roles re-created from [Drieux, 2006]

Thus the author introduces the concept of Downstream DMU (DDMU) referring to the product

views where simulations activities involving the product/component shapes may take place. From the

product development process point of view, the product views other than the Design view performed

by the engineering office and producing the DMU can be regarded as tasks located downstream with

respect to the Design view, hence the name of the digital models that can be produced through the

simulations operated by these Downstream product views . Indeed, DDMU designates digital product

models derived either from the DMU or from DDMUs previously generated. Figure 50 provides a sche-

matic view of the main processes attached to a DDMU processing. The task flow between the design

process and the downstream process illustrates the interactions between DMU and DDMUs over time

according to the progress of the Design process.

Figure 50: Structure of a DMU processing to produce a DDMU for a given product view from [Drieux, 2006]

All these transformations/adaptations must be performed consistently with regard to the domain-spe-

cific needs of the activity using the “DDMU”. In addition to mechanisms of adaptation, the process

transforming a DMU into a DDMU might integrate enrichment mechanisms. For this PhD dissertation

the focus of attention are the adaptations required to provide the appropriate DMU content and struc-

ture to be used for large integrated assembly FEA. In such a context, three kind of required transfor-

mation to pass from a DMU to a DDMU have been identified:

 DMU shapes transformation

 DMU enrichment in terms of functional and topological components’ interfaces

 DMU Structural transformations

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-91-

7.2 DMU transformations for integrated assembly FEA

To reach the needs of large assembly simulation models, improvements in processing DMUs are

a real challenge in aircraft companies. Only a few and recent research works highlight the DMU poten-

tial for being the backbone of design-simulation loops and to be adapted for domain-specific engineer-

ing needs and especially for simulation needs. Nevertheless, DMU is often used to prepare the struc-

tural analysis of a whole assembly or to generate a fluid domain for thermal and CFD calculations.

Therefore adapting DMUs represents a very time-consuming and tedious effort due to gaps introduced

in section 4.1.1. This section gives an overview of current research works that aim at speeding-up the

required DMU enrichment and transformations operations so that DMUs can serve as reliable input

for FEA. According to [Mocko&Fenves, 2003], CAD-FEA integration research can be categorized into

two focus groups:

 Microscopic approaches deal with automatic mesh generation, model simplifications and ide-

alizations, loading boundary condition required for creating the FE models;

 Macroscopic approaches are concerned with the overall product data structuring and with

the sharing and reuse of product data among applications.

Both microscopic and macroscopic approaches are required to address the issue of making the

DMU content and structure match with the needs of large assemblies FEA.

This section is more dedicated on microscopic approaches. The first sub-section introduces the

microscopic CAD-FEA integration methodologies for the preparation of FE models on both standalone

components and large assemblies. The second sub-section spans relevant research works dealing with

the issue of integrating functional and topological information of components and interfaces within

DMU environments. A last topic, not really addressed in the literature concerns the DMU product

structure adaptation, since analysts often need that the organisation of the components represented

in the DMU matches with the structure of their simulation model.

The macroscopic approaches for product data structuring and knowledge capitalization for sharing

and reusing product data among applications are addressed in Chapter 8 which is dedicated to the

product data models that might support these transformations.

7.2.1 DMU shapes transformation

Substantial simplification of the design geometry is required to create a usable analysis model for

the FEA. In order to get a simpler mesh and speed the computation, FE models are generated based

on details removal, shape simplification and CAD models idealization.

To automate the creation of analysis models, the operations must use knowledge of the design to

automatically create the analysis model. Armstrong, et al. use the idea of a priori knowledge and a

posterior analysis of the results to make appropriate idealizations. Additional operations, such as me-

dial-axis transform, dimensional reduction, and feature removal are used to create the analysis model

[Armstrong, 1994, Armstrong et al., 1996]. Authors also describe the operations that allow analysts to

suppress details and reduce the dimensionality of the part. Detail suppression is used to remove the

geometric features that cause disturbances in the stress field. Finally, the idealization operations, as

presented are automated by use of command files. These contributions did not address explicitly the

relationship between detail removal and idealisation.

[Léon&Fine, 2005] describe how an appropriate geometric model and a set of geometric operators

may significantly improve the efficiency of the FE model preparation phase. The geometric model is

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-92-

associated to a set of operators enabling skin detail removal, topological changes, manifold changes

(dimension reduction).

[Ferrandes et al., 2009] extend the approach associating these operators to mechanical hypothe-

ses/criterion to bring an objective estimation of the model simplification and control the component

shape changes. If a shape detail removed during the shape simplification process proves to be influent

on the mechanical behaviour, it can be re-inserted on the simplified model, so readapting the initial

simulation model.

In industrial CAE or CAD software, a set of geometric approaches are available to apply shape

transformations to solids. Although automated operators exist, they are currently effective on simple

configurations of standalone components. To process complex models, the user interactively modifies

the object using shape transformation operators according to his/her appreciation priori appreciation

of the simulation model created. There, a model preparation reduces to a global geometric operator

without connection to criteria derived from simulation objectives and hypotheses.

More recently, researches concentrated on the identification of specific regions to automatically

subdivide a complex shape before meshing. First, [Chong et al., 2004] propose operators to decompose

solid models based on concavity shape properties before the mid-surface extraction to reduce dimen-

sionally the model. [Robinson et al., 2011] propose to decompose thin/thick sections and produce a

mixed-dimensional shell as simplified model. [Makem et al., 2012] propose shape metrics to analyse a

part and identify automatically long, slender regions within a volume body. Finally, [Nolan et al., 2013]

propose to automate the creation of mixed dimensional meshes based on the concept of simulation

intent. The idea is to capture the explicit link between the simulation objectives and modelling intents

at the beginning of the analysis process such as mesh dimensionality and type. Doing so, many other-

wise manual processes can be automated. Using non-manifold modelling, authors propose to use au-

tomatically gleaned interface data that can be mapped from one dimensionality to another using

“equivalence” (i.e. fine grain associations are captured between topology and features of the “base”

solid model and derived reduced models). Thus, one mesh model and can lead to various simulation

models through definition of new simulation intents. Changes to the base model are automatically

propagated to the downstream simulation models through recalculation of the interface data and

mesh equivalences.

These research works enforce the significance of CAD and FEM region decomposition to speed-up

the FEA process. However, most of these decompositions are only available for specific configurations

extracted from isolated components and essentially incorporate geometric criteria. These approaches

still face difficulties to obtain consistent results on single mechanical components; similar approaches

for large assembly models have not been demonstrated yet.

Few authors have studied the problem of assembly simulation preparation. Either the feature sup-

pression method of [Gao et al., 2010] or the surface simplification of [Andújar et al., 2002] considers

an assembly as a single solid and not as a component structure with functional junctions. To avoid the

interactive generation of component interfaces, some CAE software are able to automatically detect

interfaces into an assembly. However, the algorithms look for face pairs characterized under a global

tolerance of geometric proximity to define contact areas and are not defining the non-manifold inter-

face area. It appears also that component interfaces in DMUs are not restricted to contact areas

[Shahwan et al., 2012]. [Clark et al., 2008] propose to detect these interfaces and create a non-mani-

fold representation of the assembly with CUBIT software before meshing. [Boussuge et al., 2012] un-

derline the importance of the interfaces between adjacent volumes to generate conformal assembly

meshes. However, authors do not consider the relationship between interfaces and the simplification

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-93-

and/or idealisation part processes. [Quadros et al., 2010] propose a framework to generate size func-

tions controlling assembly meshes. Other authors like [Chouadria&Veron, 2006] identify a re-mesh

contact interfaces in polyhedral assemblies. However, these methods are used directly on already de-

signed mesh without establishing a link between CAD and CAE models and are restricted to contact

interfaces.

Finally, [Hamri et al., 2008, Drieux et al., 2007] focus on the main characteristics of product views

regarding the shape transformations that are needed to generate a suitable shape description and

reference model for a specific simulation. They develop the product view interface concept based on

mixed shape representation generated and provided for the specific objectives of the simulation task.

The above review shows that CAD-CAE integration is currently focused on standalone compo-

nents; preparations of assembly models have not been addressed in depth under global simulation

objectives. An assembly can be regarded as a set of components interacting with each other through

interfaces. These interfaces contribute to mechanical functions of components or sub-assemblies [Kim

et al., 2004]. An assembly simulation model derives from shape transformations interacting with these

functions to produce a mechanical model containing a set of domains discretized into FEs connected

together to form a discretized representation of a continuous medium [Boussuge et al., 2012]. There-

fore, assembly simulation models, not only suppose the availability of geometric models of compo-

nents, but they must also take into account the physical interfaces and behavioural interactions of the

entire assembly as needed to reach simulation objectives. This suggests two requirements:

 the entire assembly must be considered when specifying shape transformations rather than

reducing the preparation process to a sequence of individually prepared parts that are cor-

rectly located in 3D space [Boussuge et al., 2012].

 explicit functional and topological description of interfaces and interactions are required

within the DMUs.

7.2.2 Explicit Functional and Topological description of Assemblies in

DMUs

Unlike modelling a standalone component having no adjacent component, an assembly simulation

model must be able to transmit displacements/stresses from one component to another. Therefore,

the preparation of an assembly model compared to a standalone component implies a preparation

process of interfaces connecting components together. According to [Boussuge et al., 2012], to obtain

a continuous medium, the analyst must be able to monitor the stress distribution by adding or retriev-

ing either kinematic constraints inside the assembly model or prescribing a non-interpenetration hy-

pothesis between components by adding physical contacts. Thus, modelling hypotheses must be ex-

pressed by the analyst at each interface of the assembly [Boussuge et al., 2012]. To express the right

modelling assumptions and requirements for their integrated FE models, integrators and/or analysts

need to get the design intent of the assembly which is expressed more precisely by the functional and

topological description of interfaces and interactions within the DMU.

[Kim et al., 2004] introduce a design formalism for collaborative assembly design to capture joining

relations and spatial relationship implications between assembly parts. This modelling notation allows

the joining relations to be described symbolically for computer interpretation, and the model can be

used for inferring mathematical and physical implications. Based on this formalism, an assembly rela-

tion model and a generic assembly relationship diagram are generated to be shared / exchanged with

co-designers.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-94-

The use of oriented or directed graphs to represent an assembly product model is a relatively

common approach. [Zheng et al., 2006] introduce a theory of directed acyclic graph (DAG) and related

concepts such as such as scene, entity, scene graph, linear scene graph, nonlinear scene graph.

A Scene is a role management and visualization space like a “stage” in a virtual prototyping system
on which it plays all sorts of roles, consisting of the entity objects with geometrical elements to be
displayed, the world coordinate system to position the entities and the lighting objects.
Entity is a graphic object to be displayed, consisting of geometrical elements and their status on the
scene whether it is a product assembly or a part.

[Zheng et al., 2006] propose a modelling method for virtual prototyping based on DAG. In this

method, the entities are managed with DAG by the scenes. Authors developed an application where

the scene graph model, based on DAG and expressed in a neutral graphic format, describes geometric

constraint relation as a node and interoperate with CAD systems to manage various “DMU assembly

scenes” in a collaborative context.

In [Ballu et al., 2006, Falgarone&Chevassus, 2006], authors present research works performed at

the Research Centre of EADS dealing with tolerancing. Authors propose a systematic approach for rep-

resenting and handling complex assemblies with thousands of parts with many functional require-

ments. The proposed method integrates GASAP, an approach for modelling parts, assembly and toler-

ance specifications in a CAD system. The method is supported by GAIA, a new software tool built on

assembly-nested graphs. The GAIA software enables to describe functionally the product, specify in-

terfaces and constraints (functional and dimensional) and propagate cascading requirements between

the different levels of graphs (see Figure 51).

Figure 51: Correspondence between an assembly graph in GAIA and the equivalent DMU structure in a 3DXML file from

[Drieux, 2006]

In [Iacob et al., 2008] a process and a framework for contact identification is presented. The pro-

posed method provides a smarter way to manage collisions, using the contacts information. The pro-

cess is automated by a contact identification operators (identifying the common area between com-

ponents) combined with the topological description of partitions of the geometric model. Then, the

assembly is analyzed and all the information about contacts is stored in a data structure. The approach

only addresses specific types of contacts and is only applied for better collision detection and kinematic

constraints processing in haptic devices simulations.

In [Demoly, 2010, Demoly et al., 2010a, Demoly et al., 2011b, Demoly et al., 2011d], an integrated

framework entitled Proactive ASsembly-Oriented DEsign (PASODE) is introduced. This framework,

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-95-

based on a multiple views data model called MUltiple Views Assembly Oriented (MUVOA) (see section

8.1.2.4), enables to automate the definition of assembly sequences as well as the definition of a skel-

eton-based assembly context in the preliminary product design process. To achieve these automa-

tions, authors introduce the concept of “Bill-of-Relations” and a set of successive procedures are re-

quired to capture four kinds of assembly components relationships that are captured and exchanged

via XML files: assembly-components decomposition relations, physical contact relation between two

components, kinematic relations and technological relation (defining the mating relation between two

components in contact). The proposed MUVOA model and PASODE framework have been imple-

mented in a prototype application called PEGASUS at the interface of PDM systems, MPM (Manufac-

turing Process Management) and CAD systems. Starting from a product structure imported from the

PDM system, a liaison graph describing contact relations and assembly pairs between product compo-

nents is defined in PEGASUS. This latter provides the so-called PDM-oriented ‘Bill of Relations’ describ-

ing composition, interface, and representation links between product components in the PDM system.

This Bill of Relations (BOR) served as input for automating the definition of assembly context in pre-

liminary design CAD models. A CATScript use the xml-based bill of relations to generate the product

structure in CATIA including parts and sub-assembly CAD documents. Then, the PEGASUS CAD Assis-

tant makes use of this data structure to assign, through each structure level, a parameterised assembly

skeleton. Figure 52 shows the import feature of “Bill of relations”, and a display of graphs defined in

the PEGASUS application. It also shows the PEGASUS CAD Assistant helping in the definition of kine-

matic/technological relations between product components, hence permitting to automatically build

the skeleton entities in the CATIA v5 environment.

Figure 52: Skeleton entities definition via PEGASUS CAD Assistant within CATIA v5 from [Demoly et al., 2011a]

The extraction of functional data from a DMU through a bottom-up approach as the one con-

ducted by [Shahwan et al., 2012] demonstrates its efficiency in characterizing functional interfaces in

a mechanical assembly. The authors identify the functional designation of components through a com-

bination of their geometric interactions with a qualitative mechanical reasoning process. This approach

shows that the geometric interactions between components in a DMU are not only contacts and clear-

ances but can be interferences, which leads to the concept of Conventional Interfaces. A conventional

interface is initially defined by a geometric interaction that can be a contact or interference between

two components [Shahwan et al., 2012]. This bottom-up process starts with the generation of a Con-

ventional Interfaces Graph (which is an oriented graph) with components as nodes, and conventional

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-96-

interfaces as arcs (see Figure 53). Conventional interfaces are then populated with Functional Inter-

pretations according to their geometric properties; producing potentially many combinations (see Fig-

ure 54).

Figure 53: Conventional Interfaces Graph of a simple cap-screw model from [Shahwan et al., 2011]

Figure 54: Conventional interfaces and Functional Interpretations combinations from [Shahwan et al., 2012]

Authors also introduce the concept of DMU state which describes a physical and qualitative be-

haviour of a DMU through equilibrium equations. A behaviour law is applied to each component of the

DMU where each interface is assigned a possible functional interpretation. States and design rules are

introduced to express the elementary behaviour of some DMU components (e.g. a spring relaxed or

not) through a qualitative reasoning process. This reasoning process, based on domain knowledge

rules, checks the validity of certain hypotheses considered to hold true during a specific stage of the

design process. This verification against reference states reduces the number of Functional Interpre-

tations per Conventional Interfaces. Domain knowledge rules are then applied to group semantics of

components interfaces into one functional designation per component to connect together geometric

entities of its boundary with its function [Shahwan et al., 2013]. The objective of the approach is to

provide the basis to automate the shape transformations of components and interfaces during an as-

sembly preparation process.

Finally, based on the works done by [Hamri et al., 2008, Foucault&Léon, 2010, Foucault et al.,

2011, Shahwan et al., 2011a, Shahwan et al., 2011b, Shahwan et al., 2012, Shahwan et al., 2013],

[Boussuge et al., 2012] analyze the content of a DMU and explain why information about interfaces

between components is missing in DMUs and how to derive the shape idealization of industrial assem-

bly models, resulting in categories of DMU transformations. Authors propose a methodology for auto-

mating the preparation of assembly FE models. The methodology consists in using the identification of

functional features of the assembly through the interfaces between components to locate groups of

components related to similar assembly functions [Shahwan et al., 2013] and set a connection with

the simulation objectives. The simulation objectives are expressed through user-defined hypotheses

on shape transformations. According to authors, the multiple idealizations and interfaces between

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-97-

sub-domains can generate repetitive patterns that can be re-used in order to speed-up the FEA prep-

aration processes. This preparation process is given on Figure 55.

Figure 55: Structure of an assembly simulation preparation process [Boussuge et al., 2012]

7.2.3 Simulation-driven DMU structural transformation

As mentioned in Chapter 4, when dealing with large DMUs (referencing thousands of CAD models),

very few analyses require the whole product DMU. Most of them require a subset of it. Moreover,

analysts often need that the organisation of the components represented in the DMU matches with

the structure of their simulation model. It is obviously not the case in “As-Is” DMUs.

To make the DMU the product definition referential [Drieux, 2006] underlines the importance for

PDM system to support different organizations of the DMU to offer to different actors a DMU struc-

turing corresponding to their point of view and business needs.

Structural transformations refer to the operations related to the reorganization of groups of com-

ponents, independent from their shapes, that is to say, the modification of their hierarchical inter-

relationships within a product structure. These types of DMU transformations leading to “DMU

scenes” is not really addressed, or at least not explicitly, in the literature. The tools to achieve this are

also rare whereas the required technology already exist. According to [Drieux, 2006] there are several

reasons explaining this observation:

 Formats for describing a structure as a tree or graph are not standardized and uncommon,

which does not facilitate exchanges between software. However formats as 3D-XML or STEP

can capture the DMU structure or the PDM tree for further processing. The lack of specific

formats for the structural description of DMU assemblies makes this description restricted

because of the export capacity of the geometric format used by the CAD software.

 Therefore, in many cases, the transition to a format suitable for downstream application re-

sults in a loss of all or part of the structural information. In some cases the receiving system

can import a structure of component groups as a tree. If the tree can be imported within the

system, the reorganization of its structure, if permitted by the system, is often the responsi-

bility of the user and hence manual.

 The organization of components for the visualisation of DMU scenes is generally managed by

the CAD software in which the DMU is visualised and where the scene is displayed. These tools

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-98-

already have their own specific data structure optimized for their own operation, which justi-

fies that they do not necessarily need to use a possible pre-existing standardized data struc-

ture. For instance, collision detection tools use subdivision and decomposition algorithms of

the space containing the scene to optimize the number of intersection tests between pairs of

objects. 3D rendering engines also use these kinds of algorithms to reorganize themselves

objects according to distance or materials criteria.

Existing approaches to semi-automatically reorganize a DMU are often applied in the field of “Vir-

tual reality” and “Design For Assembly” mainly to perform assembly/disassembly trajectories simula-

tions within CAD environments. [Jayaram et al., 2004] present a set of developed tools enabling a semi-

automatic reorganization of a product from a tree view "As designed" extracted from a CAD software

to a view "As planned" corresponding to the actual simulated assembly sequence. [Graf et al., 2002]

propose a mechanism to perform a mapping between the CAD tree and the structure of virtual model

as a tree scene taking into account different product configurations, the multiple instances of CAD

parts and using external references for the geometric elements.

[Drieux, 2006, Drieux et al., 2007] and [Ballu et al., 2006, Falgarone&Chevassus, 2006] underline

that an assembly described by directed graph, specifying relations between parts in an assembly, en-

able to consider reorganizations of different assembly sequences. We also believe that such an ap-

proach can enhance automated or semi-automated generation of simulation-driven DMU se-

quences/structures/scenes.

[Kibamba, 2011] also underlines the important requirement of providing new adapted product

structures fulfilling specific simulation requirements. The author proposes a methodology consisting

in first enriching product structures with fluid elements not traditionally present in DMUs (required to

generate CFD models). Then the structure is enriched with components interfaces elements providing

the functional and kinematic definition of mechanical interfaces but also includes fluid-structure inter-

faces. Finally the methodology also consists in using the interface elements definition to generate a

directed graph of the corresponding assembly. Based on this directed graph, the author proposes a

procedure to reorganize components according to the kinematic definition of their interfaces (group-

ing embedded components).

7.3 From DMU to BMU and integration with PDM systems

Design and structural behaviour simulation are not regarded as two independent disciplines any

more. [Eckard, 2000] showed that the early integration of structural simulation in a design process

could improve a PDP leading to a shorter time-to-market. To help analysts, [Troussier, 1999] [Peak et

al., 1999] and then [Bellenger et al., 2008] formalized simulation objectives and hypotheses applied to

a design model when setting up simulations to capitalize and reuse them in future model preparations.

The approach of adapting PDM systems to numerical simulation activities was taken over by

[Klaas&Shepard, 2001] and then [Shephard et al., 2004]. In their approach an emphasis is placed on

the technical components that must be added to existing CAD and CAE tools to enable the application

of simulation-based design. The authors propose a called SEED environment, based on of the CAD/FEA

integration principles set by [Arabshahi et al., 1993]. As shown on Figure 56, SEED components include

a simulation model manager, simulation data manager, adaptive control tools and simulation model

generators.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-99-

Figure 56: SEED environment architecture from [Shephard et al., 2004]

The BMU (see Figure 57) is the equivalent of the DMU for simulation data and processes. Beyond

the geometry, which is represented in the DMU, the so-called BMU shall logically link all data and

models that are required to simulate the physical behaviour and properties of a single component or

an assembly of components [Riel, 2005]. BMU shall use all the DMU-data it needs for model calcula-

tion, and all relevant BMU calculation results shall be made available and physically accessed via the

DMU.

Figure 57: Meta-modelling Concept of the BMU from [Riel, 2005]

Within this relationship, the DMU shall serve as the key link between the BMU and the PDM-

system. These requirements demand a concept to handle the structural information that is necessary

to determine the relationships among components and to map DMU and BMU content and structures

[Riel, 2005].

In [Nguyen Van, 2006] the author proposes a centralised architecture to ensure multi-partnership

collaborative design and “multi-view engineering” by providing a common referential for data seman-

tic in order to ease the migration of data between a PDM system and a SDM system. Based on STEP

standards, a prototype has been developed during the VIVACE project: the Engineering Data Manage-

ment (EDM) framework. The aims of the EDM framework was “to manage engineering data in a

broader perspective than the current aeronautics engineering activities bounded to the static DMU

view by encompassing requirements domain, product domain as well as simulation data” [Tabaste,

2005]. An emphasis was placed on all the characteristics inherent to a common framework link be-

tween design and simulation domains. In this project, partners have introduced the concept of “heavy

simulation interface” which is a CAD-CAE integration approach requiring several capabilities [Tabaste,

2005]:

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-100-

 The management of the large data sets between the activities of SDM and PDM. This part

concerns the definition of common repositories in which information is shared by the different

activities and partners;

 The management of the large data sets between the activities of simulation and design. This

part defines the global relation and coherence between design data and associated models

and simulation data and linked models.

 The management of the functionalities required for simulation activities. For example to ena-

ble the relation between a simulation model and a design model for the assembly interfaces

in order to keep a global coherence in the study of the product.

 The management of the hardware architecture and infrastructure in order to have a physical

view on the interface definition.

The European CRESENDO project is the following of the VIVACE project. The project aims at deliv-

ering the modelling and simulation backbone of the aeronautical extended enterprise: the Behavioural

Digital Aircraft (BDA). The BDA concept represents the BMU of the aeronautics extended enterprise

and might consist in a collaborative data exchange/sharing platform for simulation processes and mod-

els throughout the development life cycle at aircraft level and in the entire supply chain extending the

concept to the “Mastered Behavioural Digital Aircraft” (MBDA). In CRESCENDO, the MBDA is consid-

ered to comprise:

 The “Behavioural Digital Aircraft” (BDA), as a federated and orchestrated suite of enabling

capabilities for models data and information management (the Model Store), together with

simulation process management (the Simulation Factory), including modelling and simulation

quality management methods and procedures (the Quality Laboratory), and supported by in-

formation and knowledge sharing to enable cross-enterprise decision-making (the Enterprise

Collaboration).

 The complete range of models and simulations needed by multiple overall aircraft design

views that describe the behavioural, functional and operational aspects of the whole aircraft

and constituent systems (e.g. engines, avionics, fuel systems), sub-systems, and components.

A schematic representation of the expected BDA architecture and the CRESCENDO use cases that

have permitted to define it is provided in Figure 58 below.

http://www.crescendo-fp7.eu/

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-101-

Figure 58: Behavioural Digital Aircraft Enabling Capabilities and Use Cases

Another French consortium research project called ADN ended in 2010. This project aimed at cap-

italizing, reusing and managing design knowledge to ensure capitalization, traceability, consistency and

reuse of design and simulation parameters, business rules in the design process and throughout the

product life cycle. In [Badin, 2011, Badin et al., 2011] authors proposed a method of knowledge man-

agement used in several interacting activities within a design process. There, analysts and designers

collaborate and exchange design information. However, the authors assume that relationships be-

tween dimensional parameters of CAD and simulation models of components are available, which does

not currently exist. Additionally, they refer to configurations where the shapes of components are

identical in the design and simulation contexts.

Finally a French research project called ROMMA (RObust Mechanical Models for Assemblies) and

financed by the French National Research Agency (ANR) has been launched in 2010 and will end in

2014. The aim of this project is to remove a number of scientific locks on the modelling and simulation

of the behaviour of assemblies of mechanical structures applied to industrial cases with a large number

of fasteners. Based on the statement that for such situations much useful information for the simula-

tion are absent from the initial 3D geometry (CAD), the project focuses on the development of enrich-

ment strategies of geometric model in order to automatically create simplified simulation models. It

also covers the construction of automatic 3D local calculation model and their use in the framework

of re-analyses around a few local fasteners.

7.4 Conclusions

Simulation-Based Design, as a part of MBSE, relies on the use of consistent design models repre-

senting the system or sub-system to analyse. While dealing with large assembly simulation models,

assembly information such as geometric interfaces must be specified and captured in the design mod-

els. MBSE object-oriented modelling techniques can help focusing on these interface specifications but

also providing and linking consistent multiple views of the product.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-102-

In mechanical product design, one of the key federating environments to exchange/share product

definition data is the DMU. Indeed, while enhancing 3D and 2D simulations – that use 3D and 2D CAD

models as input – in a collaborative and distributed design process, the DMU appears as a simulation

data inputs referential permitting to speed-up the simulation preparation process.

However this chapter has underlined the DMU transformations required to provide adapted

DMUs that can be used as direct input for large assembly FEA. These transformations must be con-

sistent with the simulation objectives. Three types of transformation have been identified:

 DMU shapes transformation: current researches on this topic mainly focus on standalone

components; preparations of assembly models have not been addressed in depth under global

simulation objectives.

 DMU enrichment in terms of functional and topological components’ interfaces: the most rel-

evant work on this topic use directed graphs to represent an assembly product model enrich-

ing the DMU content with interface information.

 DMU structural transformations: These types of DMU transformations leading to “DMU

scenes” is not really addressed, or at least not explicitly, in the literature.

During the last decade significant research efforts have been made and several R&D consortium

projects (gathering industrial and academic partners but also software editors) have been launched in

order to define how to provide and implement the BMU as well as its links with the DMU and the PDM

systems. The aim of these projects is to be able to:

 Integrate both CAD and CAE data in a common engineering data management framework.

 Formalise simulation objectives and ensuring traceability between CAD and CAE data to en-

hance re-use of CAD and CAE models for downstream simulations

 Provide capabilities to adapt CAD data inputs regarding simulation objectives and speed-up

the input data acquisition as well as automating the mesh generation process.

However efforts remain necessary to provide the essential missing link between the PDM-based

DMU and the SDM-based BMU.

A barrier preventing to achieve these objectives is that CAD and PDM systems used as demonstra-

tion platforms are supported by data models that are not currently adapted to make explicit links be-

tween CAD and CAE data and to provide consistent multiple views of the product regarding the simu-

lation objectives. Indeed, when using an integrated system model, the modelling notation must explic-

itly allow for information to be shared in different views [Shah et al., 2009]. Implementing such a for-

malism in PDM and PLM systems requires an evolution towards better standardization, data con-

sistency, and concentration on a few robust sources, and that the MBSE approach must be part of

this new PLM strategy [Alemanni et al., 2011]. Therefore, there is a crucial need to improve the prod-

uct data models that support both PDM and SDM systems and to implement MBSE concepts in these

digital collaborative platforms.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-103-

Chapter 8: Impact on Product Data Models and PLM systems

This chapter aims at identifying the existing product data models enabling to manage and repre-

sent product design information according to various discipline-specific aspects of a design artefact. It

includes a literature review of existing standardised and non-standardised product data models sup-

porting:

 Generic product data management capabilities: such as product identification and classifica-

tion, product components and other design artefacts definition, components’ physical prop-

erties and shapes, product structure and configuration management capabilities;

 Explicit description of assemblies structures and components’ interfaces: this concerns prod-

uct data models encompassing specific objects and methods to capture the functional and

topological description of components interfaces;

 The continuity and traceability of CAD and CAE data at different levels of abstraction and the

re-use of design artefacts, models and knowledge in the appropriate context;

 The exchange and consistency of information across multiple multi-domain and multi-level

views of the system.

 The propagation of engineering changes across these multiple product views.

NB: The STEP-based data models presented in the following literature review, and which are originally

defined in EXPRESS and represented in EXPRESS-G, are represented here in UML class diagrams. This

effort has been done for a better understanding and to avoid ambiguity and potential varying interpre-

tation of this complex standard and related concepts and definitions.

8.1 Multi-aspects product data and meta-data models

Managing, accessing and integrating information from multiple scientific data sources is a major

challenge for product design [Feng et al., 2009] and is tightly coupled with the existence and the evo-

lution of product data and meta-data standards [Krause&Kaufmann, 2007]. Such standards for de-

tailed geometry-related product data are important for consistent interpretation of product geometry

specification and verification, and for interoperability among engineering tools such as CAD, CAM and

CAE systems. But to reach out to other engineering needs, to make heterogeneous PDM systems in-

teroperable and to make these product data contextualized and interpretable by the data consumer,

standardized product meta-data models are required. Product meta-data are “data describing the

data” or “data about the data” and in our scope, this covers such information as author, approver,

version, change history, configuration data, etc. as well as “aggregate data” such as part number, prod-

uct assembly structure, etc. Traditionally, PDM systems defined and managed the product meta-data,

leaving the bulky, detailed geometric and other data to the CAD, CAM, and CAE systems [Srinivasan,

2011].

This section first introduces existing standardized and non-standardized generic product meta-

data models proposed in the literature. Secondly a review of existing product data models supporting

the explicit functional and topological description of assemblies is given. Product data models support-

ing tight integration and traceability between CAD and CAE data as well as re-use methodologies are

then identified. Finally the section ends by identifying the current product data models and gaps re-

lated to the exchange of consistent information across multiple multi-domain and multi-level views of

the system and to the propagation of engineering changes across these multiple product views.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-104-

8.1.1 Generic product data management capabilities

8.1.1.1 Introduction to ISO 10303 - STandard for the Exchange of Product model data

ISO 10303, also known as STEP (STandard for the Exchange of Product model data), is an interna-

tional standard for the representation and exchange of product model data. The objective is to provide

a mechanism that is able to describe product data throughout the lifecycle of a product, independent

from any commercial system. STEP was primarily developed with the purpose of developing a vendor-

independent and neutral exchange format of CAD data describing both product structure and geomet-

ric information [Kemmerer, 1999]. However, STEP’s scope has evolved into a much broader scope than

that of other existing CAD data exchange standards, notably the Initial Graphics Exchange Specification

(IGES), a US standard that has been in use for more than 20 years. Whereas IGES was developed pri-

marily for the exchange of pure geometric data between CAD systems, STEP is designed to handle a

much wider range of product related data covering the entire life cycle of a product [Pratt, 2005]. This

range is continually expanding as new parts of the standard are issued. However the majority of STEP

translator implementations concerns only CAD applications and are only used to exchange/share struc-

tural and geometric CAD data either between heterogeneous CAD systems [Gerbino, 2003], either be-

tween heterogeneous PDM systems or between CAD and PDM systems [Oh et al., 2001].

The entities to be captured and exchanged using STEP, and their relationships, are defined in sche-

mas written in an object-oriented information modelling language called EXPRESS (Schenk and Wilson,

1994). The syntax and related information of EXPRESS are described in ISO 10303 — Part 11 [ISO,

1994b]. EXPRESS-G is a subset of the EXPRESS language supporting the graphical notations of schema,

entity, type and their relationship concepts.

STEP defines a number of data models for various aspects of product data. The ISO10303 encom-

passes six main categories of standards called Parts. Individual parts are referred to as ISO 10303-xxxx,

where xxxx is the part number, and each is a standard in its own right, though it is interdependent on

other parts and consequently a component of a larger whole. The Parts are organized into seven

groups as follows [ISO, 1994a]:

 Description methods — Parts 11—19;

 Implementation methods — Parts 21—29;

 Conformance testing methodologies and framework —Parts 31—39;

 Integrated generic resources — Parts 41—99;

 Integrated application resources — Parts 101—199;

 Application protocols — Parts 201—1199;

 Abstract test suites — Parts 1201—2199.

The STEP information models are built with a three-layer structure, i.e., the physical layer, the

logical layer, and the application layer. The principal product representation entities for all phases of

product life cycle are defined in the logical layer. Such entities are classified by their properties into

several specific parts called Integrated Resources. The EXPRESS language enables to classify and con-

struct Integrated Resources by their data entities, attributes, rules, relationships, functions and con-

straints [Peng&Trappey, 1998]. The core integrated resources of STEP mainly used in existing applica-

tion protocols are:

 Part 41 - Fundamentals of product description and support

 Part 43 - Representation structures

 Part 42 - Geometric and topological representation

 Part 44 - Product structure configuration

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-105-

The application layer provides the Application Protocols (AP) to support various types of applica-

tions (e.g. automotive and aerospace design, ship building, printed circuit board, etc.). Each AP consists

of the relevant data entities, relationship, and some constraints for a specific application domain. Some

entities exist as the integrated resource models, defined in the logical layer [Peng&Trappey, 1998]. The

first section of an AP describes what is in and out of scope for data exchange. Then each STEP AP

encompasses:

 an Application Activity Model (AAM) which describes the intended context and the process

that the AP enables (written in the IDEF0 modelling language);

 an Application Reference Model (ARM) which describes the application view of the product

data providing a documented information (data) model of all of the information requirements

of the AP;

 an Application Interpreted Model (AIM) which is an information model that specifies the nor-

mative part of the standard. An AIM is a specialized subset of the Integrated Resources that is

the result of the mapping of the ARM requirements information model to the STEP integrated

resources information models.

The goal of this structure is to avoid duplication of work and to enable APs to “speak” more or less

the same language. To support the conformance testing of STEP implementations so-called Conform-

ance Classes are defined for each AP. These Conformance Classes (CC’s) are subsets of an AIM with

additional testing and instantiation procedures [Gielingh, 2008] so that the standard can be imple-

mented "meaningfully" within that application domain without having to implement all aspects of the

AP. Each CC consists of a group of one or more Units of Functionality (UoF). Implementation of se-

lected conformance classes can be seen in those AP's that have been commercially implemented to

date (i.e. AP203 and AP214). These CCs specify subsets of the total AP content that must be completely

implemented by STEP translators if they are to claim conformance with the standard. For instance and

as shown in Table 1, in the AP214, CC1 and CC2 cover the part and assembly geometry data. CC 6 and

CC 8 were created to cover product meta-data handled by PDM systems that can treat geometric

model data as files.

AP214 Class Description Content

Data
(Engineering objects)

CC1 Component design with 3D shape
representation.

Covers 3D geometry of single parts, including wire-
frame, surface, and solid models.

CC2 Assembly design with 3D shape
representation.

Covers 3D geometry of assemblies of parts, includ-
ing the assembly and model structure.

Meta-data
(Business objects)

CC6 Product data management (PDM)
without shape representation.

Covers PDM systems that manage geometric mod-
els as files. It also covers administrative data of
parts, assemblies, documents, and models.

CC8 Configuration controlled design
without shape representation.

Covers CC 6, with additional requirements for prod-
uct configuration control.

Table 1: Standardized product data and meta-data managed in ISO STEP AP214 conformance classes [Srinivasan, 2011]

STEP AP214 has several other CCs (20 in total), but these four are the ones that are currently

supported by CAD and PDM vendors. It is not enough to indicate that an application has a STEP or an

APxxx translator. The most important is to know what conformance classes of the AP have been im-

plemented and to understand the coverage of those conformance classes. For instance, the AP214

conformance classes 1 and 2 represent a subset of this AP that is roughly equivalent to AP 203 and

most vendors who claim to have an AP214 translator have only implemented cc1 and/or cc2 that are

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-106-

essentially identical to AP203 geometry/topology related CCs with a somewhat different set of config-

uration management data.

More than 40 application protocols have emerged from the ISO 10303. The main areas addressed

by STEP are currently mechanical design, manufacturing, electronics, shipbuilding, architecture and

civil engineering. In the field of mechanical product design, the key APs enable to exchange data re-

lated to technical drawing (AP201, AP202), 3D modelling with configuration management (AP203),

structural finite element analysis data (AP209), automotive design (AP214), aerodynamic calculation

(AP237). The STEP protocols AP203 and AP214 are the mostly used ones in the domain of 3D CAD data

exchange.

8.1.1.2 Overview of STEP Application Protocols

ISO10303-203 or STEP AP203 (“Configuration controlled 3D designs of mechanical Parts and As-

semblies”) is mainly used in the aerospace and defence industries by builders of aeroplanes and sup-

pliers of engines [Gielingh, 2008]. It is also used by a few other companies and governmental bodies

[PDES, 2006]. AP203 focuses on the design of manufactured product. Therefore to support their design

and their configuration management, AP203 permit to describe:

 The global engineering context: the people and their roles, companies, dates, and the

product / supplier / customer relationships, authorizations monitoring, data confidentiality,

the measure units employed;

 The Product: its identification, its classification, some of its related data (drawing,

contract, shape, ...), its reference if it is an external product, its structure, assembled parts and

their positioned shapes, its evolution and history;

 The 3D geometric representation of the product: bounded wireframe models and surface

models, wire-frame models with topology, manifold surface models with topology, faceted

and non-faceted boundary representations.

The first version of AP203 did not take into account many data or features used by current com-

mercial CAD systems and the models exchanged thanks to application protocols are frozen and most

of the time not re-used. STEP AP203-based CAD models geometries are considered “dead” since it is

not possible to resize or change function parameters. This is to close these

gaps that the proposed definition of AP203 Edition 2 has emerged [ISO, 2005].

ISO10303-214 or STEP AP214 (“Core Data for Automotive Mechanical Design Process”), was orig-

inally emerged as an extension of AP203 but specifically developed for the automotive industry and its

specific business needs. Its scope was wider including the same UoF than AP203’s CCs plus new capa-

bilities such as the management of raw materials data, material properties and simulation data (for

the description of kinematic structures), process plan information (to manage the relationships among

parts and the tools used to manufacture them), standard parts, tolerance data, features, numerical

control (NC) and engineering change management. However the really addressed scope of AP214 in

mechanical CAD is roughly equivalent to AP203, overall after the publication of the 2nd edition of AP203

(in which PDM modules have been harmonized with AP214). AP214 is applied by the automotive in-

dustry, especially by European car manufacturers. The uptake by US car manufacturers is minimal

[Tassey et al., 1999, Gallaher et al., 2002, ISO-SCRA, 2006, Gielingh, 2008].

These two AP's cover most of the current commercial use of STEP. Although AP203 and AP214 are

still mainly used to exchange CAD data describing product structure and geometric information be-

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-107-

tween heterogeneous CAD systems, its usage can be and must be extended to the area of PDM sys-

tems. The automotive sector is now using AP203 and AP214 more frequently for the exchange of con-

figuration management data [Gielingh, 2008].

The requirements to share geometric shape and analysis information in a large-scale system have

been addressed by an emerging STEP standard: the ISO10300-209. AP209 (“Composite and Metallic

Structural Analysis and Related Design”). This AP specifies computer-interpretable composite and me-

tallic structural product definition including their shape, their associated finite element analysis (FEA)

model and analysis results as well as the material properties. The scope of AP209 is the product defi-

nitions of the analysis and design disciplines. The analysis discipline of AP209 primarily focuses on FEA

models and analysis controls, results and reports. The design discipline of AP209 is concerned with

shape representation of components and assemblies. AP209 provides an important mechanism for

sharing information between analysis design models and a standards-based solution to iterative de-

sign-analysis integration problems and will be more specifically addressed in 8.1.3.

Previous relevant standards only address very specific areas of the overall product life-cycle. ISO

10303-239 or AP239 (“Product Life Cycle Support”) (PLCS) is currently the only international standard

available that intents to cover the entire product life cycle spectrum [Sudarsan et al., 2008]. Within the

AP239 perspective, information need only be acquired once in the product life cycle, but may be used

many times. Some of the key areas addressed by AP239 are:

 Product Description: the definition of product requirements and configurations, including re-

lationships between parts and assemblies, in multiple evolving product structures (as-de-

signed, as-built and as-maintained);

 Work Management: the request, definition, justification, approval, scheduling and feedback

capture for product life cycle activities and their related resources

 Property, State and Behaviour: the representation of feedback on product properties, operat-

ing states, behaviour and usage

 Support Solution and Environment: the definition of the support required for a given set of

products in a specified environment, and of support opportunity, facilities, personnel and or-

ganisations;

 Risk assessment and risk management: the representation of risk related data associated with

the product life cycle.

Appendix VI provides the PLCS Concept Model which is a high level model of the main concepts

used in ISO 10303-239. Because the information model defined by ISO 10303-239 (PLCS) has a scope

that is wider than most applications, it is unlikely that any single software application will be able to

declare compliance to the whole of PLCS. It is would also be difficult to contract for data to be provided

according to the whole of ISO 10303-239 as the scope is so large. The DEXs (Data EXchange specifica-

tions) address this problem by providing a way of narrowing down the scope of the information model

to be used in any given exchange. The PLCS DEX architecture is shown in Figure 59. There are a number

of data structure patterns of the PLCS model that will be common to many DEXs. Rather than each DEX

replicating the detailed specification of these data structures, "Templates" are defined for common

elements of the model and are reused across different DEXs. Templates are defined within "Capabili-

ties" (a description of how EXPRESS entities are used and related to represent a given concept and

what Reference Data should be used) which, collectively, provide a complete usage guide for the PLCS

model. Additional semantics may be represented by extending the entities of the generic PLCS infor-

mation model through classification with so called "Reference Data". This provides a mechanism for

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-108-

adapting the model to the semantics of more specialized domains [Eurostep, 2013] and hence for ex-

tending or tailoring it through the use of Reference Data Libraries [Pratt, 2005].

Figure 59: PLCS DEX architecture - DEXs, Capabilities, Templates, and Reference Data.

In common with all STEP APs, AP239 distinguishes between the semantics of the data and its man-

ner of representation. This standard propose, based on the Gero’s FBS framework

[Gero&Kannengiesser, 2004] and system engineering concepts, to manage multiple evolving product

structures by defining different types of product breakdowns among which functional, system and

physical breakdowns.

In that sense, there is some overlap of AP239 with the capabilities of another developed STEP

standard: ISO10303-233 or AP233 (“Systems engineering data representation”). The AP233 has its in-

ception in the SEDRES project and resulted data models [Johnson et al., 1999, Johnson, 2000,

Müller&Heimannsfeld, 2000] which objectives was to produce a workable “Systems Engineering data

exchange standard”, to progress with this standard in the ISO forum and to provide a set of prototype

of data exchange tool interfaces. Originally AP233 UoFs were System architecture, Requirements,

Functional design, Behavioural design, Data Types, Physical design / architecture, Properties, Graphics

and Configuration Management. Today these UoFs have been reorganised and refined even if the

scope of the standard remains the same. [Herzog, 2004] has classified these UoF according to 5 func-

tional groups structuring the information model:

 System architecture – representing the building blocks for covering all information valid for a

system, partial view of a system or system interfaces.

 Specification elements - defining the basic building blocks enabling to cover common specifi-

cation techniques, including requirements, functional and physical architectures as well as

verification and validation data;

 Requirement and functional allocation - defining the mechanisms for tracing requirements to

functions (including behaviour), as well as physical architecture elements and functional ar-

chitecture elements to physical architecture elements.

 Engineering process - covering the building blocks for activities in the engineering process, and

associating specification information to related activities.

 Support information - representing the building blocks for representing supplemental systems

engineering information. This large group encompasses configuration management infor-

mation, visual layout information as well as mechanisms for referencing external documents,

administrative information, data types and properties.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-109-

Figure 60 shows a UML conceptual view of the AP233 system model as defined in

[Müller&Heimannsfeld, 2000, Düsing, 2000, Herzog, 2004].

Figure 60: Conceptual view of AP233 from [Herzog, 2004]

The extensions to the original geometry oriented parts of the STEP standard as well as the concur-

rent development of APs such as AP233 and AP239 using common UoFs illustrate the relevance of the

STEP development modular approach. In order to cover many aspects of the product life-cycle and to

provide generic standards that can be used in various application domains, the trend is to develop

STEP parts defined as intersection of functionalities present in a set of different APs.

The STEP PDM Schema, developed and maintained by two prominent standards consortia (PDES

Inc and ProSTEP iViP), contains some of the most important standardised product meta-data models

that came out of the ISO STEP efforts. The STEP PDM Schema is a refer-

ence information model for the exchange of a central, common subset

of the data being managed within a PDM system. It represents the inter-

section of requirements and data structures from a range of STEP Appli-

cation Protocols as shown on Figure 61. The PDM Schema covers 15

units of functionality (UoF) such as Part Identification, Part Classification,

Part Structure and Relationships, Document Identification, Authoriza-

tion, Work Management Data.
Figure 61: PDM schema scope and positioning

ISO 10303-242 (STEP AP242) or “Managed model based 3D engineering" is the merging of the two

leading STEP application protocols for Mechanical Design: Aerospace's STEP AP203 and Automotive's

STEP AP214. Both standards are widely used in the supply chains of many industrial sectors and they

share common data structures. Rather than pursue costly parallel development and maintenance ef-

forts, developing a new convergent STEP standard has been proposed. The major technical impact of

the STEP AP 242 standard covers the following areas: Model-Based Development, PDM integration and

PDM services, Long Term Archiving, supply chain integration, engineering design data exchange includ-

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-110-

ing composites, advanced Product Manufacturing Information, mechatronics and requirement man-

agement. STEP AP 242 Edition 1 provides all the functionalities covered by the AP 203 ed2 and AP 214

ed3.

As shown on opposite Figure 62, the

scope of AP242 includes also new func-

tionalities, such as the “Shape Quality”

modules and its “Product data quality

business object model”, a new model for

STEP 3D tessellated geometry (e.g. laser

scanning, …), capabilities for STEP “exter-

nal element references” used for kine-

matics and other disciplines such as CAD

3D construction history / parametric / 3D

assembly constraints).
Figure 62: Overview of AP242 scope and content

Figure 63 below provides an overview of the current AP242 business object model capabilities.

Figure 63: Overview of AP242business object model capabilities

8.1.1.3 STEP-based product and part identification and definition

The Product entity represents the product master base information in STEP. According to ISO/TS

10303-1017:2010, a Product is the identification of a product or of a type of product. This entity col-

lects all information that is common among the different versions and views of the product. In the

STEP PDM Schema, a general product can be conceptually interpreted either as a part or as a docu-

ment. In this way, parts and documents are managed in a consistent and parallel fashion

[ProSTEP_iViP, 2002]. As illustrated by the taxonomy in Figure 64 below, the PLCS defines other sub-

types of the product entity: it can be whether a part, a system, an interface, a breakdown, a require-

ment, a document or a slot.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-111-

Figure 64: Product sub-types entities in the PLCS

According to ISO/TS 10303-1017:2010, a Part is a discrete object that may come into existence as

a consequence of a manufacturing process. The Part entity is a sub-type of product that contain all

information related to the successive versions of a part or a product constituent that cannot be dis-

mantled. The UoF “Part Identification” of the PDM schema is the centre for assignment of further

product management data. It provides the information model to capture the various product/part def-

initions and the link to the related properties and representations as shown on Figure 65 below.

Figure 65: Part identification schema and the meaning of STEP entities

AP 203 has a rule (product_requires_version) which requires that all part products be associated

with a Product_definition_formation entity supporting the versioning of parts. A Product has one or

more Product_definition_formation or Product_definition_formation_with_specified_source which

corresponding technical definitions used in specific application context are captured by the Prod-

uct_definition entity. One definition is related and characterised a set of properties (Property_defin-

tions) which are associated to their corresponding Representation with the entity Property_defini-

tion_representation. This is the semantic used in Part 41, in AP203 and in the PDM schema.

AP214 and AP239 use other semantics but the data structure remains approximately the same.

For instance, in the PLCS, a product_definition_formation becomes a product_version and the prod-

uct_definition becomes a product_view_definition defined by a view_definition_context. In the

AP214 a part is identified by the entity Item instead of Product. An Item is either a single object or a

unit in a group of objects. It collects the information that is common to all versions of the object. An

Item may be either a single piece part, an assembly of arbitrary complexity, a raw material, or a tool.

An item version can have multiple applicative views: Design_Discipline_Item_Definition, each having

one or more Application_Context (defined by a life cycle stage and an application domain). A De-

sign_discipline_item_definition is a view of an Item version relevant for the requirements of one or

Product

RequirementBreakdown DocumentPart SystemInterface

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-112-

more life cycle stages and application domains. This view collects product data for a specific task. For

each usage of a part in a product assembly an Item_Instance is created. These instances refer to a

definition related to a view of the item version. An Item instance is the occurrence of an object that is

defined either as a Design_discipline_item_definition or as a Product_Specification. Each Item in-

stance is a Single instance, a Quantified instance, a Selected or Specified instance. Each of these in-

stances may carry additional information like placement or its relevance for a specific product config-

uration (effectivity). Interchangeable parts (design alternatives or alternate parts) can be identified

with the entity Alternate_Item_Relationship, and the dependencies between various item versions

can be captured with the entity Item_Version_Relationship (see Figure 66).

Figure 66: UML representation of the AP214 “Part Identification” UoF

8.1.1.4 STEP-based part properties and shape representations

The PDM Schema based on part 41, allows specifying properties associated product data and parts

definitions by linking a representation of the property values to the object with which the property is

associated. A property is the definition of a special quality and may reflect physics or arbitrary, user

defined measurements. A number of pre-defined property type names are also proposed for use when

appropriate (recyclability property, mass property, quality property, cost property and duration prop-

erty). A representation, in the context of part properties, is a collection of one or more representa-

tion_items related to a property_definition through the entity property_definition_representation

(see Figure 67 below).

Figure 67: Property Definition Associated with Product Data in the PDM schema

Item

+Id

+Name

+Description

Item_version

+Id

+Description

+item

+versions

1

1..*

Design_discipline_item_definition

1

1..*
Application_context

+description +initial_context

1 0..*

+additionnal_context

0..* 0..*

+relating

+related

1

0..*

Item_version_relationship

+description

Item_instance

+Id

+Definition

+Description
Quantified_instance

+quantity

Single_instance

application_domain

<<enumeration>>

+assembly study

+electrical design

+mechanical design

+...
1

life_cycle_stage

<<enumeration>>

+preliminary_design

+detailed_design

+manufacturing

+...
1

item_type

<<enumeration>>

+part

+raw material

+tool

1

+alternates

+base

0..*

1
Alternate_Item_Relationship

+instances+definition

0..*1

PRODUCT_DEFINITION PROPERTY_DEFINITION

+name

+description

REPRESENTATION

+name

+properties+definition

0..*1

+used_representation

+definition

1

1

SHAPE_REPRESENTATION

PROPERTY_DEFINITION_REPRESENTATION

representation_item

1..*

1
Property_value_representation

+name

+upper_limit

+lower_limit

+value_interpretation

measure_representation_item

+name

+value_component

+unit_component

geometric_representation_item

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-113-

The sub-types of representation_items used to describe the property depend in function of the

type of representation used (i.e. shape_representation or property_value_representation). For in-

stance, a measure_representation_item is a value element that participates as an item in one or more

property_value_representation. The representation_context defines the context of interpretation for

the values of items in a representation. The PDM schema uses the same item_property types than

AP214 but does not include material properties. In AP214, an EXPRESS “Select data type” entity called

“Item_information_select” is associated to the Design_discipline_item_definition entity and enables

to select the relevant properties that characterise the definition of the item version (see Figure 68

below). The UML language/representation used in Figure 68 does not allow managing “Select data

type” entities. Specific inheritances and operations must be defined to get the equivalent principle in

UML. Three sub-types of Property are defined in the AP214:

 Item_property: An Item property is a characteristic of an item. Each Item property is either a

General item property, a Recyclability, an Item cost property, a Mass, a Material property or

an Item quality property;

 Shape_dependant_property: it is a characteristic of an object that is closely related to the

shape of the product/item. In the ideal case most of the Shape_dependent_property objects

can be derived from the geometric shape representation. Each Shape_dependent_property

refers to zero or one Item_shape (corresponding to the Shape_Representation entity in AP203

or in the PDM schema);

 Process_property: it is a characteristic of a process related object.

Figure 68: UML representation of the AP214 “Item_property” UoF

In STEP, a special case of part properties is that of the part shape property - the representation of

the geometrical shape model of the part or item. Part geometry is identified in the PDM Schema as a

representation of a property of a part definition. The external part shape is represented by the entity

shape_representation, a subtype of representation. As with general part properties, a representation

of a property is identified and linked to the product definition by the entity property_definition. As

shown Figure 69, for the part shape property, property_definition is specialised to the subtype prod-

uct_definition_shape and property_definition_representation is specialised to the sub-type

shape_definition_representation. The product_definition_shape may be a conceptual shape for

which a specific geometric representation is not required [ProSTEP_iViP, 2002].

STEP Application Protocols define various subtypes of shape_representations with differing con-

straints on the allowable representation_items to explicitly represent the detailed geometric model.

This geometry may be defined in STEP format as well as in native CAD format. Certain detailed ele-

ments of the shape are required to be able to place and relate the external geometric models together.

Item

+Id

+Name

+Description

Item_version

+Id

+Description+item +versions

1 1..*
Design_discipline_item_definition1 1..*

Property

*

1

Item_Property

Shape_dependent_property

Process_property

mass material_property center_of_mass ticknessmoments_of_inertia... item_cost_property general_item_property

Item_Shape

0..11

0..* 1

Shape_aspect

1

0..*

Property_relationship

+related

+relating

value_with_units

+value

+unit

Property_value_representation

+name

+upper_limit

+lower_limit

+value_interpretation

0..11

0..1

1

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-114-

Therefore, placement information is placed in the set of items of each shape_representation. Place-

ment information is modelled using the entity axis2_placement_3d, a subtype of geometric_repre-

sentation_item that specifies the location and orientation in three-dimensional space of two mutually

perpendicular axes that can be used to define transformations between shape_representations.

Figure 69: UML schema of part geometric properties as managed within the PDM schema

The shape information represented is either the complete shape of a part or corresponds to a

specifically identified portion of a part shape model are as shape_aspects. Typically the geometric el-

ements that establish the shape_aspect are collected in a shape_representation which is related to

the shape_aspect via instances of property_definition and shape_definition_representation as

shown on Figure 70 below.

Figure 70: shape and shape aspects association

In STEP, shape representations are managed as part meta-data that does not typically represent

the detailed geometry of the part shape. The PDM Schema rather recommends to link instances of

shape_representation to the corresponding part master data. The external part shape is an external

geometric model related to the part master data and is referenced as an external CAD file

[ProSTEP_iViP, 2002]. External files are managed in STEP through the Document_Identification UoF

according to the fundamental STEP “Document as Product” principle. The “Document as Product” ap-

proach consists in identifying and managing documents PDM objects like the products or parts objects.

In Figure 71, the Document entity inherits from the Product entity which means that a Document has

one or more Document_versions (product_formation) that are characterized by a set of properties

PRODUCT_DEFINITION

PRODUCT_DEFINITION_SHAPE

SHAPE_REPRESENTATION

PROPERTY_DEFINITION

+name

+description

+properties

+definition

0..*

1

axis2_placement_3D

+name

+location

+axis

+ref_direction

10..*REPRESENTATION

+name

PROPERTY_DEFINITION_REPRESENTATION

+used_representation

+property

1

1

SHAPE_DEFINITION_REPRESENTATION

+shape_representation

+shape_property

1

1

geometric_representation_context

+context_id

+context_type

+coordinate_space_dimension

0..*

1

PRODUCT_DEFINITION PRODUCT_DEFINITION_SHAPE

SHAPE_REPRESENTATION

SHAPE_ASPECT

PROPERTY_DEFINITION

+name

+description

SHAPE_DEFINITION_REPRESENTATION
+definition

+used_representation

1

1

1

0..*

0..*1

+of_shape

0..*1

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-115-

defined by several representations. A representation, in the context of document properties, is a col-

lection of one or more descriptive_representation_items (content, creation properties, format, etc.)

or measure_representation_items (file size, page count, etc.). A document representation definition

may optionally be associated with one or more constituent external files (document_file) that make it

up. External files in the PDM Schema represent a simple external reference to a named file. The exter-

nal file that contains the detailed geometry is attached to the part master data in two ways (see Figure

71):

 Related to the shape_representation representing the external geometric model using the

entities property_definition and property_definition_representation (Figure 71a);

 Related to the product identification data using applied_document_reference (Figures 71b1

and 71b2).

Figure 71a - Geometric model file related to part identification via property_definition_representation

Figure 71b1 - Geometric model file related to part

identification via applied_document_reference
Figure 71b2 - Relating a part definition to a constituent
file of a document master

Figure 71: the PDM schema methods to relate a geometric model file to product identification data

The PDM schema generally recommends using the entity applied_document_reference to relate

an external data file to the product_definition of a part identification. However several scenarios ex-

ist:

 If the document_file representing the CAD model exists alone as an unmanaged external file

reference, the applied_document_reference relates the product_definition of a part identi-

fication directly to the document_file representing the CAD model.

 If the document_file representing the CAD model exists as a constituent file of a managed

document (using the “Document as Product” approach), the document_reference should be

applied from the managed document via the document_product_equivalence entity which

PRODUCT_DEFINITION

PRODUCT_DEFINITION_SHAPE SHAPE_REPRESENTATION

axis2_placement_3D

+name

+location

+axis

+ref_direction

10..*

SHAPE_DEFINITION_REPRESENTATION

+used_representation+shape_property

1
1

geometric_representation_context

+context_id

+context_type

+coordinate_space_dimension

+context_of_items

0..*

1

PROPERTY_DEFINITION_REPRESENTATION

PROPERTY_DEFINITION

+name = external_definition

+description

+definition

+shapes

1

1..*

DOCUMENT_FILE

+definition

1 0..*

+definition

+used_representation

1

1

PRODUCT_FORMATION

+id

+name

+versions1..*

1

PRODUCT_DEFINITION

1..*1

CAD File

Part Definition Part Shape

DOCUMENT

+id

+name

+description

PRODUCT

+id

+name

PRODUCT_FORMATION

+id

+name

1..*

1

PRODUCT_DEFINITION

1..*

1

PROPERTY_DEFINITION

+name = external_definition

+description

+properties

+definition

0..*

1

REPRESENTATION

+name

+used_representation+definition

11

APPLIED_DOCUMENT_REFERENCE

+source

+assigned_document

+items

DOCUMENT_FILE

DOCUMENT_TYPE

+product_data_type

+kind

10..*

document_representation_type

<<enumeration>>

+digital

+physical

+represented_document

1
document_product_equivalence

+name = 'equivalence'

+description

Document Identification

Product_Formation Product_DefintionProduct

1..*1

1 1..*

Part Identification

Product_Formation Product_DefintionProduct

1..*1

1 1..*

0..1

1

+related_product

0..1

1

0..1

1

Document

+id

+name

+description

Document Master

applied_document_reference

+relating_document

11

+item

+asigned_document

1

1

elt of the document master

Part Definition

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-116-

asserts that the related product (or product_definition_formation or product_definition) rep-

resents an element of a document master that is assigned as a reference to some other prod-

uct data.

Various relationships are defined between external geometrical models to represent geometric

model structure and the associated transformation information required for digital mock-up of assem-

bly structures. These aspects are explained in the next section below.

8.1.1.5 STEP-based configured DMU product structures

This section describes how STEP proposes to manage hierarchical product structures representing

assemblies and the constituents of those assemblies.

A product structure, as defined in [Fischer&Sachers, 2002], can contain abstract components, as-

semblies and parts (also software) of a product or component. It can be expressed through various

representations. In the AP214 CC8 recommended practices [Fischer&Sachers, 2002], authors distin-

guish two types of product structure to manage Digital Mock-Ups:

 Abstract product structure: based on abstract/logical/generic/conceptual product compo-

nents or functions, which each serves as a “placeholder” for one or more representations of

physical components (technical solutions). Abstract product structures usually contain config-

uration information (specifications and configuration rules);

 Explicit assembly/product structure: that contains all non-variant sub-assemblies and parts

of a product.

A component is defined in [Fischer&Sachers, 2002] as an object within a product structure that is

part of a product. Components can represent abstract product_component or product_function, or

physical components like non-variant explicit assemblies or parts (items). AP214 CC8 defines a product

components taxonomy including the following notions and entities:

 Product Class: A Product_class is the identification of a set of similar products to be offered

to the market. The top level element of a product_class structure is a product_component

identified as root_entry_for the product_class.

 Product_Complex: It is an object with the capability that it can be realized by, decomposed

into or specialized as Product_constituent objects in a functional, logical, or physical way. Each

Complex_product is a Product_function, a Product_component, or an Alternative_solution.

 Product_Constituent: A Product_constituent is an object that may participate in the func-

tional, logical, or physical breakdown or be an alternate realization of a Complex_product.

Each Product_constituent is a Product_component, a Product_function, or an Item_instance.

 Product_Component: A Product component is an element in a product decomposition struc-

ture. A Product component is represented by a set of alternate Item solution (see Figure 72)

objects with common functional requirements. The top level Product component of the de-

composition tree shall be associated to a Product class as root entry. The corresponding de-

composition structure is identical for all variations of all products of that Product class.

 Product_Function: A Product function is the mo de of action or activity by which a product

fulfils a certain purpose.

 Item_Instance: An Item_instance is a sub-type of product_constituent acting as the occur-

rence of an object that is defined by a Design_discipline_item_definition.

 An Alternative_solution or Item_solution is the identification of one of potentially many mu-

tually exclusive implementations of a Product_function or of a Product_component.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-117-

However the multi-inheritances of product_component and product_function which are both

complex_product sub-types and product_constituent sub-types are difficult to implement. That is why,

most implemented conformance classes do not use these entities and recommend to use and instan-

tiate their sub-types (product_component, product_function, technical solution and item_instance).

AP214 hence supports two kinds of product breakdown:

 Structural breakdown: a hierarchical structure whose nodes are the Product_Component.

 Functional breakdown: a hierarchical structure whose nodes are the Product_Function.

As shown in Figure 72, different kind of relationships can be established between these break-

downs and their elements through the use of Product_structure_relationship and its sub-types (de-

composition, functionality, realisation, derivation). A Product_structure_relationship relates a Prod-

uct_Complex (function, component or solution) to a Product_constituent (function, component or

item_instance). [Chambolle, 1999] defines the various types of relationships that can be established

between these entities and as well as the related implementation methods for managing these rela-

tionships:

 Functionality: relationship permitting to allocate a product_function to a product_component

or to a product_class, corresponding to the entity function_component_association;

 Decomposition: relationship permitting to define hierarchical links between product_func-

tions (for functional breakdowns) or between product_components (for structural break-

downs);

 Realisation: relationship enabling to associate a set of potential alternative_solutions to the

corresponding product_components or item_instances that the solution implements; it cor-

responds for instance to the entity solution_instance_association;

 Derivation: relationship permitting to relate various alternatives solutions and get the tracea-

bility of the successive design alternatives that have been proposed for a given solution.

Figure 72: Product structure elements relationships as defined in [[ISO, 2000b], Fischer&Sachers, 2002]

Concerning structural assemblies - whose structures involve hierarchical relationships between

product_components - two similar methods can be found in STEP to define the product breakdown

nodes relating a parent assembly to its related constituents:

product_complex product_constituent

product_function

product_component

item_instance

product_structure_relationship

+description

ps_relation_type

<<enumeration>>

+decomposition

+functionality

+realisation

+derivation

+relation_type

1

+related+relating

11

alternative_solution

final_solution

supplier_solution

technical_solution

product_class

+id

+name

+version_id

+root 0..1

+is_root_entry_for 0..1
product_class_hierarchy

+sub_class

+super_class

1

1

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-118-

 Parent-children relationships are made between product_definition entities representing a

view definition of the part master through the use of the sub-types of the assembly_compo-

nent_usage entity. In that case, the relationship itself represents the usage occurrence of a

constituent definition within the immediate parent assembly definition (see Figure 73). This

method is the most commonly used in the majority of STEP APs.

 Parent-children relationships are made between the Design_discipline_item_definition of

the parent assembly and the Item_instances used as parts or components of this assembly

through the use of a sub-type of the item_definition_instance_relationship entity: assem-

bly_component_relationship. In that case, the item_instance represents the usage occur-

rence of a Design_discipline_item_definition within the immediate parent assembly definition

(see Figure 74). This method has been used only in STEP-AP214.

These two methods are similar since, in both cases, the assembly_component_usage or the as-

sembly_component_relationship permit to relate the product_definition or design_disci-

pline_item_definition of the parent assembly to the product_definition or design_disci-

pline_item_definition of its constituents. The difference is that in the first method, the product_defi-

nition usage occurrence is represented by the assembly_component_usage relationship, whereas in

the second method it is represented directly by the Item_instance entity. This difference comes from

the fact that the second method proposes to manage both abstract and explicit product structures

where the item_instances are used as realisation of one of the variants of an abstract product_com-

ponent.

STEP has also the capability to identify individual occurrences of component in a multi-level as-

sembly. This provides the ability to assign to each occurrence an identifier, a position in the assembly,

a geometrical representation, or other properties that may be different from that assigned to the part

definition of the component.

Figure 73: Assembly_component_usage relationship representing the usage occurence of a product_defintion within the

immediate parent assembly definition accordig to the PDM schema

The PDM schema does not recommend to instantiate the assembly_component_usage entity as

itself, but to instantiate its subtype next_assembly_usage_occurrence (NAUO). This subtype repre-

sents a unique individual occurrence of a component definition as used within the parent assembly.

As used in an immediate next higher parent assembly. The id attribute contains a unique instance

identifier for the individual component occurrence and can correspond to the identifier of a functional

item relationship. Other assembly_component_usage sub-types are defined:

 quantified_assembly_component_usage: It adds the attribute quantity to identify the num-

ber of occurrences of the constituent definition that are used in the parent assembly. This

PRODUCT

+id

+name

PRODUCT_DEFINITION
PRODUCT_DEFINITION_FORMATION

+id

+name
1..*1 1..*1

PRODUCT_DEFINITION_RELATIONSHIP

PRODUCT_DEFINITION_USAGE

ASSEMBLY_COMPONENT_USAGE

NEXT_ASSEMBLY_USAGE_OCCURENCE

QUANTIFIED_ASSEMBLY_COMPONENT_USAGE

+quantity: integer

PROMISSORY_USAGE_OCCUREENCE

SPECIFIED_HIGHER_USAGE_OCCURENCE

+next_usage

1

+relating

+related

1

1

+upper_stage1

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-119-

entity should be instantiated when quantities greater than one need to be represented, but

when the individual occurrences do not need to be independently distinguished. This is cre-

ated as a "complex" instance of next_assembly_usage_occurrence AND quantified_assem-

bly_component_usage.

 promissory_usage_occurrence: It represents the usage occurrence of a component within a

higher-level assembly that is not the immediate parent, in the case where the detailed assem-

bly structure in between the component and the higher-level assembly is not represented. A

promissory_usage_occurrence specifies the intention to use the constituent in an assembly.

It may also be used when the product structure is not completely defined.

 specified_higher_usage_occurrence: It represents the specific use occurrence within a

higher-level assembly of an individual occurrence of a component definition used in an imme-

diate parent sub-assembly.

The other method (as defined in AP214 CC8) uses product_components and product_struc-

ture_relationships to describe the common decomposition structure of all products of a product class;

i.e. the abstract product structure. Item_solutions are used to describe the variants for a product com-

ponent and item instances are used to identify elements of an item_solution that are used in an ex-

plicit assembly structure. Figure 74 illustrates the distinction and the links between entities permitting

to manage explicit assembly structures (red area) and entities permitting to manage abstract product

structures (green area).

Figure 74: Abstract Vs Explicit product structure information model as defined in AP214 CC8

In AP214, a Variant is defined as an alternative solution for an abstract product component or

product function. A variant is a technical solution that fulfils the functional requirements of a function

or abstract product component in a certain way. The abstract product component includes all variants.

In AP214 a Configuration is a part/product structure that represents a valid product variant. The in-

stances of the parts in a specific configuration can be physically composed to a valid manufactured

product. For representing the configuration information, in AP214 the configuration object is used to

associate product classifying objects with rules and product structure in order to determine which ob-

jects are valid in the context of a certain product class (configuration information). Therefore, and as

shown on Figure 76, configuration information is the information required to identify the relevant var-

iants (item_solutions and related item_instances) of abstract product_components that are used in

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-120-

an explicit assembly structure of a product_class. A configuration may point to all levels of prod-

uct_component or item_ instances.

The PDM schema, based on the integrated resource Part 44 [ISO, 2004a]– Product structure con-

figuration – defines the configuration_item entity which represents the identification of a particular

configuration, i.e., variation of a product_concept (equivalent to product_class in AP214). A configu-

ration_item is defined with respect to the product concept, i.e., the class of similar products of which

it is a member. The configuration_item defines a manufacturable end item, or something that is con-

ceived and expected as such. The valid use of component parts for planned units of manufacturing of

a particular configuration_item may be specified using the concept of “effectivity”. Effectivity is a ge-

neric concept defining the valid use of the product data to which the effectivity is assigned. It is hence

the designation that something or a relationship between two things is used or planned to be used in

some configuration_item. Within the PDM Schema, there are two areas identified for the usage of the

“effectivity concept” [ProSTEP_iViP, 2002]:

 Configuration_effectivity: in that case effectivity is designated on relationships between

product_definitions and are restricted to be assigned to a particular usage occurrence of a

constituent part in some higher-level assembly (see Figure 75).

 General_validity _period_effectivity: restricting the domain of applicability of the associated

product data to a date range, a particular lot or serial number range, or to a time interval

respectively. In that case effectivities can be assigned more generically to a much wider variety

of product data by using the applied_effectivity_assignment entity.

Figure 75 provides a UML class diagram of the configuration management schema as defined in

Part44 [ISO, 2004a]. Figure 75 only illustrates the usage of configuration_effectivity applied on the

sub-types of the product_definition_usage entity.

Figure 75: UML representation of the configuration management schema as defined in [ISO, 2004a]

As shown on the above class diagram, effectivity is designated on relationships between prod-

uct_definitions by either range of serial numbers, ranges of dates or a lot. This is accomplished through

a complex instance of configuration_effectivity and one of either serial_numbered_effectivity,

dated_effectivity, lot_effectivity or time_interval_based_effectivity. It should be noted that, in the

ISO standard, these entities are immediate sub-types of the effectivity entity. However, translating the

express-defined standard in UML, this model corresponds to the correct data structure. A serial_num-

bered_effectivity specifies an effectivity_start_id with an optional effectivity_end_id. If the effectiv-

ity_end_id does not exist, the effectivity is good for the starting serial number and all following serial

numbers. A dated_effectivity follows the same pattern using dates rather than serial numbers. A

Effectivity

+id

+name

+description

dated_effectivity

+effectivity_start_date

+effectivity_end_date

lot_effectivity

+effectivity_lot_id

+effectivity_lot_size

product_definition_effectivity

serial_numbered_effectivity

+effectivity_start_id

+effectivity_end_id

time_interval_based_effectivity

configuration_design

configuration_item

+id

+name

+purpose

configuration_effectivity

+id

Product_Defintion product_definition_formation

11..*

Product

1..*

1

+related +relating1 1

configuration_item_relationship

Product_Concept

product_definition_usage

+relating

+related

+item_concept

0..*1

+design

+configuration

1

1

+usage

11..*

+configuration

time_interval_with_bounds

+primary_bound: date_or_event_occurrence

+secondary_bound: date_or_event_occurrence

time_measure_with_unit

+value

+unit

+effectivity_period

+duration

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-121-

lot_effectivity indicates an effectivity_lot_id and an effectivity_lot_size. These entities are related to

a product_definition_relationship through the usage attribute in the product_definition_effectivity

entity. The configuration_effectivity entity relates these relationships to a configuration_design

which generally relates a configuration_item to a product_definition_formation. This does mean that

all configuration_items must be associated to a design version in order to have effectivity. It should be

noted that, in STEP, all effectivities are explicit and there are no assumed effectivities. If a part is effec-

tive for all instances of a product model, the data should explicitly state all the effective instances [ISO,

2004a].

Figure 76 shows how explicit assembly structures may be related by documents enclosing geom-

etry models for the related parts, assemblies and/or sub-assemblies. These documents can be con-

nected with each other representing the document structure for the appropriated assembly structure.

Each item_instance used in an assembly, as well as each corresponding assembly_component_rela-

tionship that permit to relate it to the parent assembly definition, must carry placement information

defined by transformation matrixes positioning the item_instance in the reference frame of the parent

assembly. It is also possible to integrate placements of abstract product components by transformation

matrices the entity Component_placement or Instance_placement (depending the edition of AP214)

can be used. It specifies the relationship between two Product_components added by placement in-

formation. A Component_placement is the information pertaining to the placement of a Prod-

uct_component, which is defined in its own Cartesian_coordinate_space or in the coordinate space

of a reference Product_component.

Figure 76: From Abstract product structure to Explicit configured and positioned DMU structure [Fischer&Sachers, 2002]

The PDM Schema, based on part 43 (“Representation Structures”), allows linking geometric struc-

tures that result from relating different shape_representations with associated product structure

when applicable. The UML class diagram of the Representation_Schema of Part 43 is given in Figure

77.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-122-

Figure 77: UML class diagram of the STEP Representation Schema as defined in Part 43 [ISO, 2011a]

There are two methods that may be used to relate a component part's shape to the shape of the

assembly in which it is assembled:

 The first method (red area in Figure 77) consists of defining the shape for each part (compo-

nent and assembly), and then relating the two shapes and providing the information that de-

fines the orientation of the component part with respect to the assembly part through a trans-

formation. This method shall be used to relate the shapes that are represented by different

representation types.

 The second method (blue area in Figure 77) consists of defining the shape for each part (com-

ponent and assembly), and then incorporating the shape of the component directly in the

shape of the assembly. This method may be used if the types of the components representa-

tion within the assembly's representation are the same.

Figure 78 illustrates the use of both methods on a house/building assembly example extracted

from ISO 10303-43 [ISO, 2011a].

78a- Use of representation relationship with transformation 78b- Use of mapped_item and representation_map
Figure 78: Comparison of the two methods for relating a component part's shape to the shape of its parent assembly

When using the first method (Figure 78a), each of the shape_representation entities that define

the shapes of the component and assembly product_definitions is related through references in the

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-123-

shape_representation_relationship entity. In this case, orientation information is provided by a “com-

plex instance” of shape_representation_relationship and representation_relationship_with_trans-

formation entities. The representation_relationship_with_transformation entity references a trans-

formation allowing the orientation to be defined using an axis2_placement_3d entity in each repre-

sentation for an item_defined_transformation or a cartesian_transformation_operator entity for a

functionally_defined_transformation. On Figure 78a, three instances of representation are shown.

The first representation R1 (the roof) contains the geometry G1 and an axis2_placement_3d A1 and

the second representation R2 contains the geometry G2 and an axis2_placement_3d A2. Two in-

stances of representation_relationship_with_transformation allow R1 and R2 to be associated with

a third representation, R3 representing the shape of the building assembly. In that case, R3 contains a

single item: an axis2_placement_3d. The associations between R1 and R3, and between R2 and R3, do

not make R1 and R2 parts of R3. However, the associations between R1 and R3, and between R2 and

R3, allow an application to infer that G1 and G2 can be combined and used to describe the shape of

the building assembly.

When using the second method (Figure 78b), the shape_representation entity that is referenced

by an instance of a representation_map entity that is referenced by the mapping_source attribute of

an instance of the mapped_item entity. The attribute mapped_representation of the representa-

tion_map will reference the shape_representation subtype that defines the geometric and/or topo-

logical representation of the shape. The instance of the mapped_item entity is then added to the set

of items in the shape_representation entity that defines the geometry of the assembly. Figure 78b

shows how the mapped_item and representation_map entity data types can be used to describe the

composition of one representation from other instances of representation. In that case, two instances

of representation_map allow R1 and R2 to be used as elements in a third representation, R3 repre-

senting the shape of the assembly. Respectively, the instances of representation_map RM1 and RM2

reference R1 and R2 as their mapped_representations and A1 and A2 as their mapping_origins. R3

contains as its items an axis2_placement_3d and two instances of mapped_item, M1 and M2. Respec-

tively M1 and M2 reference RM1 and RM2 as their mapping_source and they share a common map-

ping_target: A3. The result is that R3 uses R1 and R2 as parts of its definition.

The usage of both alternatives is considered reasonable, because both mechanisms make sense

even in mixed combinations. With regard to the transformations in the context of assembly, a part is

in principle incorporated in the assembly only by rigid motion (i.e., translation and/or rotation)

[ProSTEP_iViP, 2002]. In AP214, a Transformation is a geometric transformation composed of transla-

tions and rotations which are defined based on the reference frames (placement entities) of the

shape_representations of the component and of its parent assembly. Each Transformation is either a

Transformation_3d or a Transformation_2d depending on the coordinate space dimension.

8.1.1.6 The Core Product Model and its extensions

In addition to these standards, the NIST [Sudarsan et al., 2005b] propose a product information

modelling framework to support the full range of PDM/PLM information. This framework intends to

capture product data, design rationale, assembly, tolerance information, product evolution and, prod-

uct families. It is based on the NIST Core Product Model (CPM) and its extensions. The CPM is a generic,

abstract product meta-data model with generic semantics, defined as a UML class diagram (shown in

Figure 79) that gives equal status to three aspects of a product or artefact: its function, form and be-

haviour. Therefore, the key object in the CPM is the “Artifact” that represents a distinct entity in a

product, whether that entity is a component, part, subassembly or assembly.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-124-

CPM consists of two sets of classes, called object and relationship classes. There are five abstract

classes (classes that cannot be instantiated but their sub-types) from which all CPM objects or rela-

tionships inherit [Fenves et al., 2007]:

 CoreProductModel represents the highest level of generalization;

 CommonCoreRelationship is the base class for all association classes;

 CommonCoreObject is the base class for all object classes;

 CoreEntity is the base class from which Artifact and Feature are specialized;

 CoreProperty is the base class from which Function, Flow, Form, Geometry and Material are

specialized.

There are four relationship classes [Fenves et al., 2007]:

 Constraint is a specific shared property of a set of entities that must hold in all cases. In CPM,

only the entity instances that constitute the constrained set are identified;

 EntityAssociation is a set membership relationship among artifacts, features and ports;

 Usage is a mapping from CommonCoreObject to CommonCoreObject, particularly useful

when constraints apply to the specific “target” entity but not to the generic “source” entity,

or when the source entity resides in an external catalog or design repository;

 Trace is structurally identical to Usage, particularly useful when the “target” entity in the cur-

rent product description depends in some way on a “source” entity in another product de-

scription. The type attribute of Trace specifies the nature of the dependence (alternative_of,

version_of, derived_from, is_based_on, etc.).

Figure 79: UML class diagram of the Core Product Model from [Fenves et al., 2007]

We will not detail all CPM objects and relationships definition but certain aspects of this data

model will be referenced in the following sections because some data structures of this model have

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-125-

proven their relevance in the area of product data management and for addressing issues that are

common to our research work. The initial objectives of the CPM was to provide a common data model

among four in-house research and development projects at NIST as well as a base-level data represen-

tation for a multilevel design information flow model [Fenves et al., 2007]. The first version of the Core

Product Model (CPM) responding to these objectives was presented in [Fenves, 2002]. The objective

therefore became to expand the CPM to serve as the basic, top-level model for all product realization

information [Fenves et al., 2007] leading to some CPM extensions among which:

 the Open Assembly Model (OAM) provides a standard representation and exchange protocol

for assemblies [Sudarsan et al., 2005a, Sudarsan et al., 2006]. The assembly model defines

both a system level conceptual model and the associated hierarchical relationships. The model

provides a way for tolerance representation and propagation, kinematics representation, and

engineering analysis at the system level.

 the Design-Analysis Integration project proposes a conceptual data architecture that can pro-

vide tighter integration of spatial and functional design and support analysis-driven design and

opportunistic analysis [Fenves et al., 2003]. CPM serves as the organizing principle of the Mas-

ter Model from which discipline-specific functional models (views) are idealized.

 the Product Family Evolution Model extends CPM to the representation of the evolution of

product families and of the rationale of the changes involved [Wang et al., 2003]. The model

represents the independent evolution of products and components through families, series

and versions, and the rationale for the changes with a case study on the CFM aero-engines

product family evolutions.

Extensions and implementations of CPM may explicitly assign attributes to specializations of the

CPM objects and relationships so as to provide interoperability with new systems, legacy data models

such as STEP, or existing CAD programs. The OAM and the Design-Analysis Integration conceptual data

models are respectively addressed in sections 8.1.2 and 8.1.3.

8.1.2 Capturing product assembly and interfaces information in PDM

systems

Since the design of complex and large engineering systems is increasingly becoming a collabora-

tive task among distributed design teams, exchanging parts and assembly information between mod-

elling and analyses systems is critical for unrestricted exchange of product data. However, little has

been done in terms of developing standard representations that specify assembly information and

knowledge [Sudarsan et al., 2006]. An assembly information model, according to Sudarsan et al, con-

tains information regarding parts and their assembly relationships. As mentioned in section 7.2.2, the

preparation of a large assembly simulation model compared to a standalone component implies a

preparation process of interfaces connecting components together. Therefore, assembly relationships

concern not only hierarchical links between parts or sub-assemblies instances within various product

structures, but also the interfaces objects specifying how components are connected together. Previ-

ous section has permitted to understand how the STEP standard proposes to model hierarchical rela-

tionships. This section provides an overview of current existing data models enabling to capture in-

terfaces and interaction objects specifying how components are functionally and physically con-

nected together.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-126-

8.1.2.1 The MOSAIC project and related Sellgren’s works

Within the MOSAIC project [Andersson&Sellgren, 1998], authors developed an object-oriented

approach to FEA modelling where products are considered as systems described by recursive sub-

systems and related through interfaces. The modelling paradigm defines a system model as an ideal-

ized representation of a system at a level of complexity and detail to complete analysis. As represented

in EXPRESS-G in Figure 80, system models are aggregated models that can be decomposed into models

of sub-systems, interfaces that connect the sub-systems, and an orientation object that defines the

spatial orientation of the system. Each interface is an aggregation of two mating faces that are related

to two different sub-models [Sellgren&Drogou, 1998]. A sub-model can have a finite set of mating

faces.

Figure 80: A Systems Model and its Relationships [Sellgren&Drogou, 1998]

As shown in Figure 81, the building blocks of sub-models are referred to Behaviour features that

represent a form features at a specific level of abstraction for a specific physical domain. According to

authors, a behaviour feature should describe the physical properties and behaviour of an object inde-

pendent of how it will be connected to other features. Authors also state that “due to the strong rela-

tionship between shape and behaviour, it is strongly desirable that objects in the two domains have

and associativity relation, i.e. that the CAD and behaviour domains are integrated”. A mating face is

an object that reference discrete FE entities in a behaviour feature. A mating face is a geometric face

located at the boundary of a form feature (defining a shape) and may exist at different levels of ab-

straction.

Figure 81: Behaviour Feature and Mating Face Associated to Design Shape [Sellgren&Drogou, 1998]

The FEA mating relations are treated as relations between nodal degrees of freedom (DOFs) in

two different bodies. The sub-models may be compatible or incompatible. Incompatible sub-models

make it very difficult to mesh transitions. The interface between models can be specified as contact or

attachment. To deal with incompatible bodies, the nodal relations are based on the master and slave

node concept (see Figure 82 below).

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-127-

Figure 82: Implicit Master-Slave Selection [Sellgren&Drogou, 1998]

A few years later, in [Sellgren, 2006a], the author highlights the need to rely on a modular model

architecture that enables configuration of systems models from a stored library of sub-models and

interface models. He also proposed a model-based and feature-based interface information model as

extension and improvement of PDM/PLM data models [Sellgren, 2006b, Sellgren, 2009]. This

information model aims at linking design and behavior assembly models by proposing a three-layered

architecture data model (see Figure 83) that include interface objects.

Three-layered Interface data model Geometric meaning
Figure 83: Interface modelling as a 3-layered architecture: design, behaviour, and applicative layers [Sellgren, 2006a]

The design layer manages design models (i.e. CAD models) and related features such as shape,

material, and orientation in space. The interactions between design sub-models take place at inter-

faces, where an interface is a pair of mating faces. The “generic behavior layer” manages behaviour

models designed to represent a specific behaviour of a design model. Within these two layers, mating

features are related to design models’ mating faces as their discrete representations in the behavioural

model. An interface feature is the discrete representation of an interface at a generic behaviour level.

The application layer permits to relate an interface feature (i.e. actual connection of two behavioural

sub-models) to its equivalent meaning and representation in FE software-specific proprietary formats.

As shown in Figure 84, Sellgren integrates these concepts within a more complete product information

model so that these metadata can be managed within PDM/PLM applications. In order to interoperate

with CAX and PDM applications, sub-models’ features (such as material, node numbers, property

ranges) and connect features are stored in source files that are self-contained models in proprietary

format.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-128-

Figure 84: Interface model objects put into the context of a larger product information model [Sellgren, 2006a]

8.1.2.2 STEP-based interface data models

In AP214, the mated_item_association entity is a sub-type of item_definition_instance_relation-

ship. But instead of representing a hierarchical link between two item_instances, it represents a phys-

ical mating link between two product constituents, that is to say two item_instances. Figure 85 pro-

vides the corresponding UML class diagram showing the difference between an assembly definition

defining the hierarchical link between two item_instances and a mating definition (in red) defining the

physical mating link between two item_instances.

Figure 85: Mating definition as defined in ISO 10303-214

A Mating_definition, as sub-type of Design_discipline_item_definition, is a view of an Item_ver-

sion defining the physical connection of two or more Item_instance objects including technical infor-

mation about the kind of connection. This information is independent from the hierarchical assembly

structure. A Mated_item_association allows specifying the involvement of an Item_instance within a

Mating_definition. A Mated_item_relationship is a relationship between two Mated_item_associa-

tion objects specifying additional information about the mating of two particular Item_instances that

go into a Mating definition. The two Mated_item_association objects that are referenced by the

Mated_item_relationship refer to the same Mating_definition. The mated_shape specifies the

Shape_aspect_relationship that relates the two Shape_aspect objects that form the area of mating

contact.

The integrated application resources ISO 10303-105 (“Kinematics”) and ISO 10303-109 (“Kine-

matic and Geometric Constraints for Assembly Models”) permit to capture respectively the assembly

Design_discipline_item_definition

Assembly_definitionItem_instance

Item_definition_instance_relationship

assembly_type

<<enumeration>>

+functionnal assembly

+design assembly

+analysis_assembly

+manufacturing assembly
1

Assembly_component_relationship Geometric_model_relationship_with_transformation+transformation

1

Mated_item_association

+instances

+definition

0..*

1

Mating_definition +related+relating +related+relating

+relating

+related

Mated item relationship

Material

Shape_aspect_relationship

+relation_type = 'shape_aspect_associativity'

Shape_aspect

+related

+relating

Item_Shape

10..*

+mated_shape1

mating_type

<<enumeration>>

+bolted_joint

+brazing

+glueing

+riveting

+welding

+...

+mating_type

+mating_material0..*

Transformation+transformation

0..1

+transformation1

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-129-

constraints (specifying explicit geometric constraints between item instances) and the kinematic links

and constraints between two adjacent components at a joint. The kinematic structure schema in ISO

10303-105 defines the kinematic structure of a mechanical product in terms of links, pairs, and joints.

The kinematic motion schema in ISO 10303-105 defines kinematic motion used to represent the rela-

tive motion between assembly components. The related used entities are kinematic_pair representing

the geometric aspects of the kinematic constraints of motion between two assembled components

and the KinematicPath representing the relative motion between assembly components.

The assembly_feature_relationship_schema defined in ISO 10303-109 provides resource con-

structs for bridging shape_aspect_relationship with its representation_relationship and for detailing

geometric information of the representation_relationship. Detailed geometric relation between two

components can be represented via necessary number of pairs of assembly features one belonging to

one constituent and the other belonging to the other constituent. This enables feature level corre-

spondence between constituents. In most assembly related applications, not only correspondence of

assembly features but also more detailed geometric constraint information (such as parallelism, coin-

cidence, tangency, co-axial) are required in geometric entity level. These geometric constraint specifi-

cations applied between two constituents are summarised in the assembly_constraint_schema [ISO,

2003b].

The terms used in AP233 related to interfaces and connections does not align exactly with the

terms used in other standards. In AP233, an Interface connector is the term for the part of a system

that interacts with other systems or the environment and the Interface connection is the link between

connectors. The connectors correspond to the concept of “Ports” as defined in object-oriented mod-

elling approaches. This is illustrated in the Figure 86.

Figure 86: AP233 interface connection and connectors concepts

These concepts are supported by the information model shown on the UML class diagram of Fig-

ure 87.

Figure 87: Interface information model as defined by [ISO, 2012]

An Interface_connector is a specialization of Product that identifies a part of a product with which

one or more other products or the environment interacts. An Interface_connector_definition is a spe-

cialization of Product_view_definition that identifies a view of an Interface_connector_version. The

connector_on attribute references the item/component for which the Interface_connector_definition

Product Product_version Product_view_definition

Interface_connector Interface_connector_version

Interface_specification Interface_specification_version Interface_specification_definition

Interface_connector_definition

Interface_connection

Interface_definition_for

0..*1 0..*1

0..*1

+view_definitions

0..*1

+connecting +connected1 1

+interface_component 1

0..*

+interface

0..*1

+connector_on1

0..*

Hierarchical_interface_connection

Interface_connector_occurrence

+occurence_of

1 0..*

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-130-

provides an interface capability. An Interface_connector_occurrences is an occurrence of an Inter-

faceConnectorDefinition. Each Interface_connector_occurrence represents the place where a prod-

uct used in an assembly can interact with other products in the assembly. The interaction is repre-

sented by an Interface_connection that relates a connected pair of Interface_connector_occurrences.

An Interface_specification is a specialization of Product that provides a definition of necessary attrib-

utes for one or more items that participate in an interface. The Interface_specification specifies an

Interface_connection that conforms to the specification and the relationship is captured through the

use of the Interface_definition_for entity. A Hierarchical_interface_connection is a specialization of

InterfaceConnection that provides an interconnection between components at different levels in an

assembly. Each connection point in the assembly is represented by an InterfaceConnectorOccurrence.

8.1.2.3 The Open Assembly Model (NIST)

In [Sudarsan et al., 2005a, Sudarsan et al., 2006], a group of researchers working for the NIST have

proposed a standard representation and exchange protocol for assembly and system-level tolerance

information: the Open Assembly Model (OAM). This model incorporates tolerance representation, kin-

ematics, assembly relationships, and assembly features. In the OAM, an Assembly is a composition of

its subassemblies and parts. A Part is the lowest level component. The OAM is based on the data struc-

ture of the NIST Core Product Model since the Assembly and Part entities inherit function, behaviour,

and form from the Core Product Model’s Artifact class. The OAM assembly data structure for specify-

ing explicit geometric and kinematic constraints between artefacts uses the data structures of STEP

(mainly ISO10303-105, ISO10303-108 and ISO10303-109). Figure 88 shows the main UML class dia-

gram of the OAM. This diagram schema incorporates information about assembly relationships and

component composition through the use of the class AssemblyAssociation. An AssemblyAssociation

represents the component assembly relationship of an assembly. It is the aggregation of one or more

ArtifactAssociation.

An ArtifactAssociation class represents the assembly relationship between one or more artifacts.

ArtifactAssociation is specialized into the following classes: PositionOrientation, RelativeMotion, and

Connection. PositionOrientation represents the relative position and orientation between two or

more artifacts that are not physically connected and describes the associated constraints between the

artifacts. RelativeMotion represents the relative motions between two or more artifacts that are not

physically connected and describes the associated constraints between the artifacts.

Figure 88: Class diagram of the open assembly model from [Sudarsan et al., 2006]

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-131-

Connection represents the connection between artifacts that are physically connected. Connec-

tion is further specialized as FixedConnection, MovableConnection, or IntermittentConnection.

FixedConnection represents a connection in which the participating artifacts are physically connected

and describes the type and/or properties of the fixed joints. MovableConnection represents the con-

nection in which the participating artifacts are physically connected and movable with respect to one

another and describes the type and/or properties of kinematic joints. IntermittentConnection repre-

sents the connection where the participating artifacts physically connect only intermittently (e.g.,

cam). Connector realizes Connection, which is a specialization of the Artifact.

Each assembly component, whether it is a sub-assembly or a part, is made up of one or more

features represented in the model by OAMFeature. OAMFeature is a subclass of the CPM Feature

class. AssemblyFeature, a subclass of OAMFeature, represents assembly features. Assembly features

are a collection of geometric entities of artifacts. They may be partial shape elements of any artefact.

The class AssemblyFeatureAssociation represents the association between mating assembly features

through which relevant artifacts are associated. The class ArtifactAssociation is the aggregation of As-

semblyFeatureAssociation. An artefact association is the aggregation of assembly feature associa-

tions. Any assembly feature association relates in general to two or more assembly features (except in

the case where an artefact association involves only one artefact; it may involve only one assembly

feature). The class AssemblyFeatureAssociationRepresentation represents the assembly relationship

between two or more assembly features. This class is an aggregation of ParametricAssemblyCon-

straints, a KinematicPair and/or a KinematicPath as defined in ISO10303-105.

8.1.2.4 The MUVOA model

The “MUlti-View Assembly Oriented” (MUVOA) data model presented in [Demoly, 2010, Demoly

et al., 2011c] support the definition, specification and capture of various product-component relation-

ships. Figure 89 shows an extract of the MUOVA UML class diagram. This model encompasses four

kinds of product-component relationships:

 Contact relation: physical contact relation between two components;

 Precedence relation: assembly logical order for two components in contact and in non-con-

tact;

 Kinematic relation: additional information on contact relation which enables the description

of constrained degrees of freedom (rotation and translation) for each part of the product;

 Technological relation: additional information on contact relation which enables the definition

of the “assemblability” of the product, and therefore on the mating relation between two

components in contact.

These relationships are aggregated into “Bill of Relations” to describe an “assembly configura-

tions” that will serve to automate the generation of assembly sequences and skeleton for providing

the contextual design of preliminary design CAD models. Assembly constraints, assembly interface fea-

tures and related geometric specifications are as well specified and captured within this model. Ap-

pendix VIII (and related Figure 250) provides the complete MUVOA model UML class diagram.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-132-

Figure 89: Product-component relationships within the MUOVA data model redesigned from [Demoly et al., 2010b]

8.1.3 Continuity of design and simulation data in product data models

This section focuses on the formal description of frameworks for integrating CAD and FEA infor-

mation and on product data models enabling to support the related integration capabilities. Such ca-

pabilities concern the sharing of product information within design-simulation loops, traceability of

related activities inputs and outputs and the enhancement of re-use of appropriate design and analysis

artefacts regarding simulation objectives and related modelling requirements.

8.1.3.1 Frameworks for integrating CAD and FEA activities and data

In the early 1990's, Arabshahi, et al. presented a vision of CAD and FEA based design-analysis in-

tegration [Arabshahi et al., 1991]. The authors develop an IDEF0 process model of the FEA process. As

a natural extension to this work, [Arabshahi et al., 1993] present the activities of an automated CAD-

FEA transformation. The aim of the work is to enable the analysis of the product to respond to design

changes and allow seamless integration between design and analysis. The proposed framework aims

at automating the creation of analyses models from the design model. The framework consists of the

following:

 A Product Description System (PDS) to hold the geometric data and non-geometric data asso-

ciated with the product;

 A semi-automatic means for transforming the geometric and non-geometric data to an anal-

ysis model that can be meshed;

 Intelligent meshing routines to provide varying degrees of meshing and feedback on the

meshed geometry;

 A series of finite element solvers for a range of solutions;

 A post-processing capability to associate results from the idealized model to the design model

and allow for modifications.

In summary, Arabshahi, et al. developed a vision for integrating CAD and CAE. Although technology

has increased greatly, the problems that existed 20 years ago are still present in the current state of

engineering analysis.

Product

ComponentAssembly configuration

Assembly feature
Form feature

Functional surface Interface

Relationship

Assembly skeleton

Skeleton entity Design skeleton Technical functionFunction

Contact relation

Precedence relation

Kinematic pair

Technological relation

Assembly constraint

Coincidence Equidistant DistanceAngleFit ...

1..*

1 1

1..*

1..*

1..*

1..*

1..*

1

Functional requirement1 1..*

1..*

11

1..*

1 1..*

1

1..*

1..*

1

1..*

11

1 1

1

1..*

precedence

positioning1

1..*

Geometric specification

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-133-

In [Belaziz et al., 2000], authors develop a feature-based tool to aid in the integration of analysis

during design. The tool is based on the morphological analysis of solid models, and a simplification and

idealization process. Modifications can be made to the design features based on parameterization. It

is possible to walk back from the idealized model to

a new modified solid model based on analysis results.

The morphological analysis concept is based on the

idea that an object is created from a solid "stock"

through a progression of modification steps. The

morphological features are classified into elemen-

tary features, composite, interacting, and character-

istic relationships. The morphological analysis is com-

pleted in three steps: (1) detect all characteristic

modifications; (2) re-constitute the previous model

based on the modifications; and (3) code the modifi-

ers. The structure of the morphological analysis is in-

cluded in Figure 90.
Figure 90: Morphological Analysis Tool Components [Belaziz et al., 2000]

The form feature model can be obtained in two ways. If the geometry exists, the features can be

mapped to the geometric model. This allows each feature to be associated with a particular function.

If the geometry does not exist, designers can create a feature description. Next, the analysis model is

generated in a two-phase process of simplification and idealization. In the simplification phase, irrele-

vant information is cleaned out of the model. In the idealization phase, the geometry is constructed to

ideal shapes. The analysis is then completed on the idealized model. Finally, reconstruction enables

the recreation of a solid model based on analysis results. This idea supports the bi-directionality

needed for design-analysis integration. The reconstruction allows modification made during the anal-

ysis phase to propagate to the design phase.

More recent research works on design-analysis integration focused on modelling knowledge cap-

italisation in order to enhance re-use of design-analysis artefacts as well as the appropriate modelling

methodologies. [Troussier, 1999], [Peak et al., 1999] and [Bellenger et al., 2008] formalized simulation

objectives and hypotheses applied to a design model when setting up simulations to capitalize and

reuse them in future model preparations.

In [Mocko et al., 2004], authors define a knowledge representation and proof-of-concept reposi-

tory implementation for capturing and sharing engineering behavioural models. The goal is to develop

a clean graphical user interface that permit to reduce the knowledge gap between engineering design

and analysis by facilitating the reuse of behavioural models. To achieve this, authors propose a meta-

data representation for formally characterizing behavioural models. The meta-data representation

captures the assumptions, limitations, accuracy and context of engineering behavioural models. Based

on this knowledge representation, a proof-of-concept repository is implemented for archiving and ex-

changing reusable behavioural models. This “knowledge repository” allows designers and analysts to

select behavioural models that are appropriate for their desired simulation context and understand

the underlying assumptions and limitation of the model. The reuse of behaviour models can be in-

creased while reducing the risk of misuse because validated behavioural models and the associated

application context are published to the repository.

In [Badin, 2011, Badin et al., 2011], authors proposed a method of knowledge management used

in several interacting activities within a design process. There, analysts and designers collaborate and

exchange design information. However, the authors assume that relationships between dimensional

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-134-

parameters of CAD and CAE/FEA models of components are available, which does not currently exist.

Additionally, they refer to configurations where the shapes of components are identical in the design

and simulation contexts.

8.1.3.2 CAD-CAE integration in product data models

The Design/Structural Analysis integration problem is typified by the requirement to share geo-

metric shape and analysis information in an iterative environment. Most CAE systems currently employ

point-to-point translators to facilitate the connection between design and analysis. However, point-

to-point translation does not solve all CAD-CAE integration issues, because it does not contain the full

richness of the product information originally associated with the solid model. A standards-based data

model is required to enable this integration and hence reduce the number of translators [Hunten,

1997].

The ISO 10303-209 (“Composite and Metallic Structural Analysis and Related Design”) has been

developed to address this approach to the Design/Structural Analysis problem. The approach used in

AP209 is to define and integrate separate product definitions for the analysis and design disciplines

[Hunten, 1997]:

 The analysis discipline product definitions concern finite element models, analysis controls,

and analysis outputs. Loads and boundary conditions may be applied to either mesh or geom-

etry. Linear statics, modes, and frequency analysis types are supported.

 The design discipline product definition is concerned with shape representation and assem-

blies. The geometric shape representations within AP209 are entirely interoperable with those

in AP203 that are currently being implemented by most CAD and CAE vendors. There is one

additional shape representation unique to AP209 that is utilised to represent the shape of

composite constituents.

According to [Hunten, 1997], both design and analysis product definitions may be independently

configuration controlled, and many aspects of each are subject to approvals. Another crucial concept

is that the shape and analysis information is meant to be implemented to enable bi-directional transfer

to enable the feedback of information in design-simulation loops. Figure 91 shows the overall infor-

mation model of an analysis_discipline_product_definition (in red) and underlines the relationships

(in purple) with its corresponding design_discipline_product_definition (in blue).

 Figure 91: Analysis vs. Design Discipline Product Definition recreated from [ISO, 1999]

design_discipline_product_definition

part part_version

analysis_design_version_relationship

analysis_discipline_product_definition

analysis_version analysis

analysis_type

<<enumeration>>

+linear_static_structural_analysis

+modal_analysis

+transient_dynamic_analysis

+...+analysis_type

1
1..* 1

+analysis+design

111..*1

+version

1..*

1 +version

1..*

1

nominal_design_shape idealized_analysis_shape node_shape+basis

0..*1

analysis_shape

fea_model

+cae_file_name

+creating_software

+description

representation

shape_representation

+design_view

0..*

1 +analysis_view

0..*

1

fe_analysis+model_ref

0..*1

Shape_aspect

geometric_model_representation

+geometry1

point_model

+parent_shape

1 1..*

+defining_shape

1

+defining_shape1

+modeled_by+definition

0..*1

fe_analysis_control_step

fe_analysis_state

1

*

fe_analysis_results_step

fe_analysis_results

analysis_report_representation

+result+control

11

+steps

+analysis

*

1

+result

+control

1

1

+analysis_type

specification

10..*

design_specification

material_specification

...

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-135-

An analysis is defined in AP 209 in the same manner as STEP products or parts; i.e. all analysis

products are associated with a set of analysis_versions (i.e. product_definition_formation); them-

selves referencing a set of analysis_discipline_product_definitions (i.e. product_definition) to estab-

lish specific analysis stage views of the analysis information. The analysis_discipline_product_defini-

tion entity establishes many important relationships (such as analysis to analysis shape and finite ele-

ment models) to aggregate and integrate all the information required to perform the analysis. AP 209

allows for separate versioning of analysis and part (design) versions. The relationships between design

parts and the analyses that verify their behaviour are established between the corresponding prod-

uct_definition_formations. The part and analysis versions are hence related through a sub-type of

product_definition_formation_relationship: the analysis_design_version_relationship.

An Analysis_shape is a shape for a Part_version as defined for the specific needs of an analysis.

An Analysis_shape is whether an Idealized_analysis_shape or a Node_shape. An Idealized_analy-

sis_shape represents a shape on which points are associated for the location of nodes in a finite ele-

ment model, or a shape that is suitable for mesh generation. Mesh generation shape may include the

topological information necessary to specify mesh generation curves, areas, or volumes, or may be

just the bounding geometry of the mesh generation curves, areas, or volumes. The geometry may be

the Nominal_design_shape or geometry that has been idealized by generating shape information that

is derived from the Nominal_design_shape. A Node_shape is defined by the points of the nodes in a

Fea_model. In AP209 the analysis shape is directly associated with the analysis_discipline_prod-

uct_definition. However, to be compliant with other STEP APs (especially AP203) and as shown in Fig-

ure 92, the link between the configuration management data for an analysis and its shape is defined

with the entities product_definition_shape and shape_definition_representation.

Figure 92: Recommended data structure for relating Analysis Shape to Analysis

As shown on both Figure 91 and Figure 92, AP209 provides the ability to link the idealized_analy-

sis_shape to the actual nominal_design_shape. The design_specification entity shown in Figure 91

can be used to specify intent of the designer in order to create the correct idealized shape. However,

it is not clear in the presentation how the idealized shapes are created. AP209 provides a mechanism

to relate the shapes, but does not provide any mechanism to capture modelling methodologies re-

garding the analysis type and objectives.

Research in the development and improvement of the STEP standards to address design-analysis

integration issues has continued. In [Gabbert&Wehner, 1998] and based on current step-based CAD-

FEA coupling approaches, authors propose the concept of an object-oriented CAD-FEA integration data

model to allow for bidirectional and process conform data exchange. The Engineering Analysis Core

Model (EACM) is part of the STEP standard suite and describes the way that engineering analysis data

are stored and the way that engineering analysis information is exchanged. According to Leal, AP203

design_discipline_product_definition analysis_discipline_product_definition

shape_definition_representation

nominal_design_shape

+shape_property

+used_representation

idealized_analysis_shape node_shape

+shape_property +shape_property

+used_representation +used_representation

+rep1+rep2=basis

shape_representation_relationship

product_definition_shape product_definition_shape

shape_definition_representation shape_definition_representation

0..*

1 +definition1

0..*

analysis_shape

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-136-

and 209 are useful but limited in scope [Leal et al., 1999]. The goal of EACM is to increase the scope by

capturing all engineering information to support business practices. The EACM deals with three key

aspects in engineering information management:

 The management of engineering analysis and design information;

 The linking of engineering information to activities, decisions, and analyses;

 The storage of information about a product in time and space.

In [Charles, 2005, Charles&Eynard, 2005, Charles et al., 2005, Charles et al., 2006], authors inves-

tigate the management and integration of CAD and FEA Data in PDM/PLM environments. These works

lead to the specifications of a simulation data management environment within a PLM approach. This

environment, named EGDS, proposes an innovative modelling of simulation cycles through the adap-

tation and the enrichment of data management methods of the PLM approach. In order to guarantee

its interoperability, EGDS also implements a neutral format dedicated to simulation data management

exchanges based on STEP AP209 standard: the SDM schema.

In [Nguyen Van, 2006], the author specifies the so-called “Collaborative schema” that aims mainly

at ensuring simulation and design data interoperability and transactions as well as trans-enterprises

exchanges. A part of this step-based data model has been implemented within the EDM framework

demonstrator developed within the VIVACE project [Tabaste, 2005] and in collaboration with MSC

software. In view to ensure a better consistency of data conveyed between design and simulation de-

partments, this framework has especially demonstrated the capability to perform a standardized data

migration between the Snecma PDM system (ENOVIA-VPM from Dassault Systèmes) and the SimMan-

ager tool developed by MSC software. These latter mentioned research works are the first implemen-

tation and development of Simulation Data Management principles.

More recently in [Gujarathi&Ma, 2010, Gujarathi&Ma, 2011], authors propose a CAD/CAE inte-

gration method using a common data model containing all the required parametric information for

both CAD modelling and CAE analysis. This data model is used as a parametric data model repository

and as the supply source of input for those associative entities of CAD and CAE models and thus main-

taining the associative dependences among them. The structure as well as the CAD-CAE data flow is

governed according to design-simulation loop processes. According to authors designers can hence

relate the expected scenarios with the engineering changes proposed and can take the parametric

actions accordingly. CDM acts as the centralized parametric input for computer modelling software

tools through their APIs. Their method suggest that the common data model gets modified during each

development cycle according to designer’s intent, the changes in it are consistently reflected in both

CAD and CAE models through regenerations and analysis iterations semi-automatically. However au-

thors do not provide the detailed data structure of this data model and they do not specify neither the

way the developed software prototype integrates APIs and interoperate with other domain-specific

tools that can populate and/or modify the CAD and CAE models parameters. The method to integrate

modelling knowledge rules within the data model and within the engineering procedures managed by

the developed software prototype remains ambiguous.

8.1.4 Multi-view and multi-domain aspects in PDM

Several research groups are exploring design-analysis integration through a multi-aspect model-

ling paradigm. With the advent use of collaborative CAD modelling in the end of the 90’s, researchers

have brought into focus the requirement of multiple views and representations of the same design

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-137-

object by different design disciplines. Indeed through the entire lifecycle of a product and through the

various disciplines involved in its development, the related engineering data can be viewed through

different domain-specific aspects or views by applications to generate, display, or modify the product

information. Hence, each designer’s view and representation must be customised and integrated

within any comprehensive representation of the design under concern.

In [Rosenman&Gero, 1996], authors introduced the concept of product views based on functional

contexts. According to authors, a view prescribes the relevant functional sub-systems which in turn

prescribe a particular model of a design object, i.e. which design prototypes, design elements and

properties are relevant to that view. They argue that the representation of functional properties is the

essential aspect of the modelling of multiple representations.

In [Tichkiewitch, 1996, Tichkiewitch&Véron, 1997], authors present an integrated design method-

ology and product data model enabling the representation of the product through the different views

of any participant. The product views are defined through the various required combination of system

components, links and relations. A link is a characteristic of a specified component which allows an

external consideration of the component. A relation may be specified between two or several links of

the same component or between links of different components. The various required combinations

are defined by a grammar based on the rules of decomposition, substitution and multi-view repre-

sentation. Decomposition of a component allows different levels of abstraction to be displayed and

specified. Substitution realises the possibility of replacing a relation between several links by a set of

components, links and relations, in order to specify how the replaced relation is realised. Contrary to

the decomposition, the substitution does not change the level of abstraction that is studied. A three

layered CAD design modeller prototype supporting these concepts is presented. The first layer is the

management layer for the product database access permitting to filter and select the relevant data

required by the user. The second layer includes classical CAD software building blocks such as an infer-

ence engine, a geometric development kernel and a feature based engine. The third layer enables the

use of external software and encompasses all graphic applications which permit to display the specific

representations (e.g. realist 3D visualisation tool or a mesh generator).

In [Yoshioka&Tomiyama, 1997], authors present a mechanism for integrating various aspect mod-

els, such as geometric, kinematic and finite element models. The KIEF (Knowledge Intensive Engineer-

ing Framework) is constructed using these multiple objects (i.e., aspect models) expressed through a

meta-model mechanism. The meta-model represents the relationships between the concepts in the

aspect models. The framework hence integrates and maintains the consistency of the various models.

The KIEF framework also integrates commercially available software tools through a “Pluggable Meta-

model Mechanism” [Yoshioka&Tomiyama, 1997]. An aspect model is a model of a designed artefact

from a particular point of view. For example, a FEA aspect model may be completely different from

the geometric shape aspect model. Aspect models are built by first constructing relationships between

models. The meta-model mechanism provides the framework for integrating the many aspect models

associated with a technical artefact. Aspect models are built by determining the level of abstraction

desired, determining the appropriate simplification needed, and finally by the exchange of data be-

tween aspect models. The meta-model mechanism also describes how information is exchanged

among the aspect models. However, it is not always easy to extract all the necessary parameters to

complete the aspect model. For this reason, the ability to plug in existing modellers is presented. How-

ever, it is not clear how the various modellers share product information to support the various aspect

models.

In [De Martino et al., 1998], authors introduced an approach to CAD-CAE integration based on

design-by-features and feature recognition. The developed integrated feature-based CAD modeller al-

lows the user to design with features and to derive different context-dependent semantic and feature-

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-138-

based representations from solid models. The sharing of semantic information across engineering ap-

plications and domains has been achieved through the development of an “intermediate model” which

is the common shared product data model that maintains a homogeneous, multiple-view, feature-

based representation of the part. From this model, specific views can be derived. To maintain con-

sistency between different views, only the designer client is allowed to modify the model. In this sys-

tem, a single data structure stores the information of all views. This system allows application tools to

incorporate application-specific data into the shared intermediate model. Further, it allows applica-

tions to extract specific data needed in the various contexts. At this time this work was a major step

towards application tool integration based on a common shared and feature-based object model.

In [Hoffman&Joan-Arinyo, 1998] authors introduce a similar approach based on the “product mas-

ter model” paradigm. The design-analysis association is predicated on the master model being an ob-

ject-oriented repository that has mechanisms for maintaining the integrity and consistency of the in-

formation structures for the various engineering domains. Additionally, the master model has several

clients, one of which is the CAD application responsible for creating the initial net shape and also for

modifying the net shape. For each additional clients associated with the master model (such as CAE

applications, tools for manufacturing process planning, for cost estimation, etc.) there is a correspond-

ing view of the product. Each client application can deposit product information it processes to the

master model, as well as keep a private repository of information relevant to itself.

In [KwangHoon et al., 2003], uses a combination of a multi-level modelling approach which consist

in building a feature-based design model and mapping it to executable representations of secondary

“viewpoint models”. This multi-level modelling approach is implemented in three-level architecture.

Top of this level is a feature-based description for each viewpoint, comprising a combination of form

features and other features such as loads and constraints for analysis. The middle level is an executable

representation of the feature model. The bottom of this multi-level modelling is an evaluation of a

feature-based CAD model obtained by executable feature representations defined in the middle level.

The proposed system has two stages of mapping between models. First, the mappings concerns map-

ping between the top level feature representations associated with different viewpoints; for instance

for the geometric simplification and addition of boundary conditions associated with moving from a

design model to an analysis model. Then, the mapping is done between the top level and the middle

level representations in which the feature model is transformed into the executable representation.

In [Yan, 2003], the author proposes to model a product or system from multiple perspectives in

order to generate a complete virtual model representation of the product to support multi-life phase

design decision exploration and decision making.

A similar approach to the one suggested by [De Martino et al., 1998] has been used by

[Bronsvoort&Noort, 2004] to develop a multiple-view feature modelling methodology to support con-

ceptual design, assembly design, part detail design and part manufacturing planning. This methodol-

ogy does not only provide views with form features to model single parts, as previous approaches to

multiple-view feature modelling did. It also provides a view with conceptual features to model the

product configuration with functional components and interfaces between these components as well

as a view with assembly features, to model the connections between components.

In STEP, and as defined in Part 44 [ISO, 2004a], since the effectivity is related to a product_defini-

tion_relationship, many different views of the effectivity can be established by varying the relat-

ing_product_definition. For instance, effectivity can be maintained based on the "design" product_def-

inition and another based on the "manufacturing" product_definition. The various product_definitions

can move into other life cycle stages for the design as well. In this way, effectivities can be defined for

any of a number of views and life cycle stages of the design.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-139-

AP239 and AP233 information models enable to manage multiple evolving product views and

product structures and hence enable the identification of the various systems, functions, or physical

parts, together with identifying zones within the product or a combination of these (hybrid view). This

is done by defining different types of product breakdowns among which functional, system and phys-

ical breakdowns. A breakdown is always related to a design or a real product, of which it is a break-

down. It is identified and versioned as an object in its own rights. It has a number of constituents

(breakdown_elements), often structured hierarchically, that makes up the breakdown structure. It is

possible to relate a breakdown_element to breakdown_elements in other breakdowns, but a specific

breakdown_element will always only be part of one product breakdown. Each breakdown_element

may or may not relate to any number of designs (assembly structures) of which one should be used to

realize the constituent [ISO, 2004b, ISO, 2012]. Figure 93 captures the essential areas for representing

a breakdown.

Figure 93: Conceptual working principle of the Breakdown Structure Model as defined in [ISO, 2004b, ISO, 2012]

As shown in Figure 93, breakdowns are represented as a set of objects that may be change man-

aged and version controlled. The breakdown of systems into components can also be change managed

and version controlled. The breakdown itself is processed separately from the thing it breaks down.

Entities in the green area represent the product under consideration. Those in light-red represent in-

termediate concepts between the product and its elements (the Breakdown itself). Those entities in

shades of blue represent the numerous elements of the product. Those in light-yellow indicate where

relationships are used to link the concepts of the different levels. These colours are also displayed in

the following UML class diagram of Figure 94 that shows how breakdowns are identified and related

to the thing they break down.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-140-

Figure 94: UML class diagram representing breakdowns as defined in [ISO, 2004b, ISO, 2012]

Neither AP233 nor AP239 specify behavioural breakdowns to manage analysis breakdown models

and to relate the corresponding behavioural breakdown element (e.g. simulation models) related them

to functional, system or physical breakdowns of a product. However, AP239 allows other types of

breakdowns to be defined and used through the definition of reference data. An additional work is

hence necessary to define these reference data enabling explicit specification of the bi-directional links

between functional, structural and behavioural elements of product structure breakdowns; which is

required to ensure continuity, consistency and traceability between design and analysis data across

the multiple domain-specific views of the product. Configuration management in AP239 has proved to

be a particular challenge [Pratt, 2005]. Earlier parts of the STEP standard handle product definition,

but AP239 requires knowledge of the permitted, required and actual configuration of every individual

product in a product class. Each individual may be modified over time to meet updated requirements.

It is hence necessary to generate multiple application views of the data at each life cycle stage, and to

manage historical archiving responsible for the generation of feedback.

8.1.5 The multi-view consistency and multi-domain engineering

change propagation issues

Previous research efforts on product data views and their consistency maintenance have concen-

trated mainly on limited and specific areas, such as multi-view geometric features. In [Hoffman&Joan-

Arinyo, 1998], authors raise crucial issues regarding the capacity for the product master model to main-

tain the integrity and consistency of the information structures for the various engineering domains

that populate the master model repository:

“…the data in the master model originate from different domain-specific pro-

grams, how can this information be kept consistent and how is it maintained under

design changes? In our view, the CAD system is one of the clients of the master

model, with the primary charge of creating and maintaining the net shape infor-

mation. … How can we establish and maintain a persistent association between the

geometry data contributed by the CAD system and data originating from other ap-

plication programs? ”

As continuation of the work presented in [Hoffman&Joan-Arinyo, 1998], the same authors present

three mechanisms for maintaining consistent product views in a distributed product information da-

tabase [Hoffmann&Joan-Arinyo, 2000]. The mechanisms are used when one of the views makes a

Product Product_view_definitionProduct_version

Breakdown_element

Breakdown

Breakdown_element_version

Breakdown_version

Breakdown_context Breakdown_element_definition

Breakdown_of

Breakdown_element_usage

View_definition_usage

View_definition_relationship

+relating_view

1 *

+related_view

1 *

+of_product

1 *

+defined_version

1 *

+of_view

+breakdown

1

1

+breakdown 1

*
+breakdown_element

1*

Functional_breakdown

Physical_breakdown

System_breakdown

Zone_breakdown

Hybrid_breakdown

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-141-

change to the product model and the other views must be updated to maintain consistency. When a

change is made to a model (deposited on the master model repository), a protocol is followed to en-

sure the most up-to-date product data is available to all clients. The change information is posted and

it is up to the clients to re-associate with the new information. In the earlier paper, authors identified

two mechanisms for maintaining consistency of views, an external information association mecha-

nism, and a constraint reconciliation procedure. In the second paper they expand on the details and

applicability of those mechanisms and add a third mechanism as a complementary technique for main-

taining consistent views under distributed updates. The master model updates only concerns shape

changes, changes of parameters, dimensions, constraints and changes of model attributes. According

to the authors, shape changes are the most difficult ones to respond to. However, not all changes can

be automatically propagated across the various product views and authors suggest whether imposing

restrictions on shape changes whether involving human intervention if required. They demonstrated

that it is possible to automate a wide range of view updating operations while preserving privacy of

proprietary information. However authors underlined the difficulty for maintaining different feature

views with the current history-based CAD design approach [Hoffmann&Joan-Arinyo, 2000]. Their algo-

rithm only partially automates change updates; they tried to apply a set of techniques familiar from

the feature recognition literature when dealing with updating the feature history. They found that in

many situations an adjustment is possible purely by constraint reconciliation. Were it not for the se-

quential design history implemented by CAD systems, constraint reconciliation would be more widely

applicable. Finally, the maintenance of attributes can be completely automated, and, with it, the

maintenance of many downstream views that can be derived from attributes and relations maintained

on the net shape elements.

According to [Hoffmann&Joan-Arinyo, 2000], to deal with the multiple-view and multi-applica-

tions data consistency and association issues, developed systems are organized as either one-way or

multi-way architectures. In one-way architectures, features in an application view are derived from

the features that belong to a privileged view, usually the design view. The designer defines this view

and conversion modules derive application-dependent feature models. If a modification is required by

a downstream application, it must be entered in the privileged view first. Only thereafter can one de-

rive new, application-dependent views [De Martino et al., 1998]. In the one-way approach, feature

conversion is triggered whether when the design is considered completed whether incrementally after

each feature attachment operation in the design view. In multi-way architectures, modifications re-

quired by an application are introduced in the view in which the need for them arises, and each mod-

ification, in any view, is propagated automatically to every other view. However very few works explain

precisely how a feature in a specific product design view can change the net shape of another related

product design view and there is a paucity of techniques to formalize such changes. In

[Bronsvoort&Noort, 2004], authors specify the net shape by a cell complex where the cells are refined

such that every feature of an application view is composed of entire cells. That allows one to edit shape

mechanically in any feature view and to achieve consistency across all views using constraint tech-

niques. If an inconsistency between different views is found, the approach rebuilds the view that gen-

erated the inconsistency. The view is rebuilt incrementally by first removing some features and then

adding new features.

Modelling approaches for multi-view feature can provide only limited product views and con-

sistency maintenance for a small group of design or manufacturing engineers. Although these re-

searches are relevant for ensuring multi-view consistency between CAD feature-based product views,

they do not support company level consistency maintenance between other kind of product data views

(such as CAE or simulation-driven product data views).

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-142-

[Shah et al., 2009] believe that a common language such as SysML can serve as a unifying language

between the various views of a system. Authors use SysML for defining the high-level relationships

that exist between functional, structural, and behavioural product views and related models.

Their method provides the designer with the ability

to trace decisions made to corresponding requirements

defined in SysML as well as maintain bidirectional con-

sistency between other domains that are linked with

SysML. As shown in opposite Figure 95, the SysML ge-

neric model can be represented according to three pack-

ages and a parametric diagram enabling the constraint

relationships between system views.
Figure 95: SysML generic meta-model

In [Demoly, 2010, Demoly et al., 2011c], the MUOVA model defines a set of interrelated product

views (functional, behavioural, structural, geometric, technological and contextual) according to pro-

files (role, concern, concepts, business process, etc.) of the stakeholders involved in assembly oriented

design issues. The MUVOA model is based on the model proposed by [Gomes&Sagot, 2002] called

Multiple Domains and Multiple View-points (MD-MV) which is broken down in domains (project, prod-

uct, process, and usage) and viewpoints (functional, structural, behavioural, geometric, and physical).

As shown in Figure 96, authors propose a meta-model adapted from IEEE 1471 Standard [Koning&van

Vliet, 2006] enabling the logical definition and identification of viewpoints/views and domains for the

system.

[Koning&van Vliet, 2006] [Demoly et al., 2010b]
Figure 96: IEEE 1471 multi-view system meta-model and its adaptation by [Demoly et al., 2010b]

The MUVOA model considers activities within the product lifecycle as network of business do-

mains. In such a context, each domain corresponds to a product lifecycle stage and is defined as a

system integrating views and viewpoints. Each view represents system with the perspective of a view-

point. A view-point describes conventions and rules to build and define the related view in order to

fulfil stakeholders’ concerns. Based on this comprehensive multiple viewpoints model, a novel product

relationship management approach entitled PROMA has been proposed. Authors underline the im-

portance of having a full representation of these relationships to facilitate and propagate information

flow towards other related views as well.

Figure 97 extracted from [Demoly et al., 2011c], shows an example of product views dependences

as defined between the generic product engineering domain and the assembly sequence domain. Au-

thors also suggest using SysML Package diagrams to organise identified domains and related views for

the proposed MUVOA model.

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-143-

Figure 97: Description of information flow between views defined in the MUVOA model from [Demoly et al., 2011c]

Change propagation is defined by [Giffin et al., 2009] as: “the process by which a change to one

part or element of an existing system configuration or design results in one or more additional changes

to the system, when those changes would not have otherwise been required”.

As defined in the PDM schema, most STEP APs only provides data structures for representation of

the data used to manage the work being done during an engineering release and/or change process.

The work management area contains the constructs to describe initial part design requirements and

the change requirements and issues for revising part designs, as well as the proposed work and the

directive for work to proceed in the development of these initial or modified part designs

[ProSTEP_iViP, 2002]. However they do not provide the required data structure and mechanism to

capture the detailed description an engineering change object. An engineering change object must

capture both meta-data about the design artefact (e.g. derivation link between the previous and the

new item_version or product_defintion) that has been changed but also the detailed technical data

that have been changed (e.g. referencing the geometric feature/parameter or physical properties (e.g.

material property) that has changed and that is responsible of the new product_definition release).

The AP214, is the only AP that provide a data structure for defining an engineering change object.

Figure 98: UML class diagram for managing engineering change in AP214

As shown in Figure 98, a Change in AP214 is a composition of a set of Property_changes and/or

Model_changes. Property_changes and Model_changes entities provide the mechanism required to

describe the differences between two objects concerning the properties and/or the models describing

these objects. A change hence capture the differences between the two objects referenced by the

Change

+change_relationship_select()

Property_change Model_change detailed_element

Property

detailed_geometric_model_element

detailed_model_element

Kinematic_joint

Kinematic_link

Kinematic_structure

Hybrid_geometric_model_3d

+elements 0..*

1+element_for0..*

1

Property_definitionProduct_Defintion

0..*1

0..*

1

0..*

+added_properties 0..* +deleted_properties

+added_elements0..*1

+deleted_elements0..*1

Geometric_model_relationship

Geometric_model

+relating

+related

1

1

+change_description0..1

0..*

Item_version_relationship

Product_component_relationship

Shape_aspect_relationship

Product_function_relationship

...

+described_change0..*

+described_change0..*

+described_change0..*

+described_change0..*

+described_change

0..*

0..*

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-144-

described_change attribute which can reference different kind object relationships such as item_ver-

sion_relationship, product_component_relationship, shape_aspect_relationship, etc.

In [Bettaieb&Noel, 2006], authors propose an integrative approach for the definition of a generic

framework to schedule domain-specific business models synchronisation. In this approach, a common

model is shared by every designer. Analysts’ results must be synchronised before changing the com-

mon model. Authors describe various options for the synchronization process and propose a generic

framework providing every synchronisation schemes. The main ideas are to anticipate the change no-

tification towards interested designers without changing the shared model and to assist the selection

of the right time when designer results must be synchronised.

In [Do et al., 2008], authors propose a procedure for engineering change propagation in order to

maintain consistency between various product data views. This procedure is based on a product data

model which integrates base product definitions for product design, and product data views for other

manufacturing or customer support. The product data view in the proposed model enables manufac-

turing or customer support engineers to define their own product data views, without copying the

existing product definition. In the proposed data model, the engineering changes provide structure-

oriented change history, effectivity management for production, and integration with product config-

urations. Based on the integrated product data model, the proposed procedure propagates engineer-

ing changes to product data views using the history of product structure changes. However, since the

proposed propagation procedure is based on a non-standardized product data model, its application

is limited.

Matrix-based approaches such as Design Structure Matrix (DSM) have been largely used for the

quantitative investigation of change propagation. For instance, in [Clarkson et al., 2004, Eckert et al.,

2006], the Change Prediction Model (CPM) uses the DSM representation of a product to trace potential

propagation paths among its interconnected components. Similarly, [Giffin et al., 2009] extend the

DSM concept to create the Change DSM for identifying instances of change propagation from one

component to another by mapping and documenting interconnections between subsystem areas in-

cluding physical connections, as well as information and energy flows. Authors also use Graph theory

and directed acyclic graphs to draw Change networks. In these graphs, the nodes represent the change

requests and the edges the change request dependencies that have emerged during a development

program. These change networks are then broken down into one-, two-, and three-node motifs as the

fundamental building blocks of change activity. A change “motif” is a simple pattern of connected

change requests from which more complex change networks emerge. The idea of the change motifs

concept is to provide a means of systematically analyzing change networks as well as the definition of

three indices to quantify each sub-system area in terms of its propensity for accepting, reflecting or

propagating changes (change propagation index).

 In [Ahmad, 2010], the author presents a framework to create a model which captures the four

domains of requirements, functions, components/subsystems and detailed design process and subse-

quently shows how the resulting models could be used to generate “cross-domain models”. Elements

are linked within and across these four domains via a systematic approach, which allows representa-

tion of key aspects of designers’ knowledge regarding the change process. The dissertation shows how

changes in requirements can be viewed as propagating through these four domains to cause rework

in the design process, and how a traceability approach based on the data model can be used to help

reason about the cost of implementing a given requirement change.

In [Hamraz et al., 2012], authors propose a multi-domain model which combines concepts from

the FBS structure model from Gero and the change prediction method from [Clarkson et al., 2004,

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-145-

Eckert et al., 2006]. The proposed FBS linkage model is represented in a network and a corresponding

multi-domain matrix of structural, behavioural, and functional elements and their links. Change prop-

agation is described as spread in that network using principles of graph theory. Authors have demon-

strated that the FBS linkage model accounts explicitly for all possible dependencies between product

elements and allows capturing and modelling relevant change requests. It also provides information

of why and how changes propagate and the model is scalable to different levels of decomposition and

levels of abstraction.

In [Pasqual&Weck, 2012], authors introduce a multilayer network model (see Figure 99) integrat-

ing three coupled layers, that contribute to change propagation: the product, the change and the social

layer. The approach place engineers in the social layer. They work on changes in the change layer that

affect components in the product layer. The multilayer network model captures the interactions within

and across the product, change and social layer. Each layer of the multilayer network model consists

of a distinct, directed network composed of nodes connected by intra-layer edges. The product layer

is a network representation of the product or system being designed. The nodes of the network rep-

resent product components and associated documentation (e.g. requirements). The product intra-

layer edges of the network represent technical interfaces among the components. The interfaces can

be physical connections or channels for the flow of energy or information. The change layer is a net-

work representation of change propagation. The nodes of the network represent individual changes

or change requests. The change intra-layer edges of the network represent propagation relationships

among the changes. As in [Giffin et al., 2009], directed edges can identify parent-child relationships,

while bi-directional edges can identify sibling relationships be-

tween children of the same parent, or two changes related in

a significant way. The social-layer is a network representation

of the organization. The nodes of the network represent

teams, sub-teams, or individual employees. The intra-layer

edges of the network represent various relationships among

individuals and groups. The other half of the multilayer net-

work model consists of the inter-layer edges represents the

critical relationships between the layers of the model (to re-

late a change to a person or to a product component).

These matrix-based and graph-based approaches are rel-

evant to analyze a change propagation network and hence

predict the potential change impact chain that will occur in fu-

ture development programs. However they do not specify the

data structure that is required to implement in PDM systems

in order to capture and notify the engineering changes, their

detailed description and their potential impacts on other de-

sign artefacts definition. Engineering Change data models also

have to dynamically propagate these changes across the po-

tential multiple domain-specific and multi-level product views

that are concerned by this change.
Figure 99: Multilayer network model from [Pasqual&Weck, 2012]

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-146-

8.2 Conclusion on current PDM and SDM remaining gaps

This chapter has permitted to review exhaustively various standardized or non-standardized prod-

uct data models and other approaches for product data structuring and for re-use of product data

among various applications.

The use of an MBSE approach supporting digital integration chains challenges introduced in chap-

ter 4 and especially the design-analysis integration requirements have lead to consider several aspects

of product data models that are necessary to implement in PDM systems. These data models have

been analysed in detail in order to identify the relevant data structures that are necessary to provide

and support a flexible and multi-view DMU environment that can become the common referential

framework for the design and analysis data used within digital integration chains.

In addition to existing and already implemented product data management capabilities (such as

product definition and versioning of this definition, management of part properties, management of

CAD data and other technical documents, configuration management including management of bill of

materials and engineering change objects) other product data structuring functionalities are required

to answer the requirements of such an integrated DMU-based environment for digital integration

chains:

 Product assembly and interface data models (such as the OAM or the MUOVA model, AP233

and Sellgren interface data models):

 Design-analysis integration data models (such as AP209 or the Charles’ SDM schema)

 Multi-view data models (such as AP239): enabling to manage multiple evolving product views

and product structures and hence enable the change propagation across these multi-level and

multi-disciplinary product views and related system breakdowns.

Concerning the management of interfaces data, current PDM systems only provide information

about product-component relationships referring to their functional role through functional item re-

lationships and configuration effectivities. The information about components interfaces (how com-

ponents are connected together) within the scope of given functions is still missing in PDM data models

and hence cannot be managed in DMUs neither as they are supported by PDM systems.

All identified design-analysis integration data models are step-based (AP209) product data mod-

els. In these models the entities permitting to establish the relationships between a design_disci-

pline_product_definition and an analysis_discipline_product_definition only enable to manage design-

analysis data associativity and traceability at a high level of abstraction (product meta-data level). The

relationships at a finer level of abstraction (topological level) are missing. Moreover the analysis disci-

pline product definition, as defined in AP209, and its related configuration management rules are not

linked to any simulation context definition (such as studied breakdown level, simulation objectives,

operational state, requirements to satisfy, etc.).

Concerning the management of multiple evolving product views within PDM systems, several ap-

proach have been identified. On one hand, approaches based on the specification of data structures

for a product model do not incorporate the mechanisms of shape changes between product views.

Usually, the research work focusing on global product model definition has been addressing the spec-

ification of the model from top-down, leading to high level data structure rather than detailed studies

of the interaction between product technical parameters and its shape. On the other hand, “CAD Multi-

view feature modelling” approaches can only provide limited product views and consistency mainte-

nance for a small group of design or manufacturing engineers. These kinds of approach do not support

company level consistency maintenance between other kind of product data views (such as CAE or

Part II: State of the art T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-147-

simulation-driven product data views). Therefore we are convinced that a combination of both mac-

roscopic approaches (defining the necessary data structure to implement in PDM applications to man-

age design-analysis data integration issues as well as to manage multiple-product data views and the

change propagation procedures across these views) and microscopic approaches (defining the re-

quired mechanisms for simulation-driven structural and shapes DMU adaptations) is required.

The use of product data standards in PDM and CAX systems is especially important in collaborative

and distributed design. It is essential when trying to implement a MBSE approach to ensure interoper-

ability between systems and hence permitting to share/re-use design artefact models and other re-

lated product data while avoiding the loss of data consistency when exchanging information between

heterogeneous applications.

Collaboration around CAD individual models and assemblies has become a widespread practice in

the industry and has been widely used for almost 15 years. Whereas there exist neutral formats (IGES,

STEP) and direct translators widely accessible (directly in the CAD packages or as standalone solutions),

the simulation side lacks this kind of tools. It is arguable that the data model for describing a finite

element simulation is far more complex than for describing a geometric model. However, all the effort

put into the creation of the STEP application protocol AP209 and all its underlying integrated resources

has not reached the market applications, as AP203/214 did for CAD data exchange. Only AP209 trans-

lators prototypes have been developed within some research projects (e.g. in PATRAN from MSC soft-

ware) in order to ensure interoperability between CAE applications themselves and between CAD and

CAE systems.

The issue of formalizing product metadata from an unambiguous and generic point of view is often

not addressed by the PDM and/or SDM systems. Indeed, the data that need to be managed within

these environments are often defined and structured following the PDM or SDM editor formalism. This

often affects the understanding of meta-data and their reuse in other applications. The PDM schema,

the AP239 or AP233 but as well NIST’s CPM and related extensions have been developed in order to

support this interoperability between PDM systems mainly managing product data and meta-data ex-

change. However no current commercial application is using these standards and information related

to simulation activities are not considered in these standards.

Moreover, the interoperability between CAD and PDM systems is currently ensured by PDM and

CAD applications developed by the same editor and enabling to import/export as well as synchronizing

product assembly structures used in both PDM and CAD systems. We did not identify any study defin-

ing a neutral format for enhancing interoperability between data managed in CAE applications (FE

models, nodes, models connectivity, loads and boundary conditions, analysis results) and the product

meta-data managed within PDM systems. Some companies have developed their own tools to ensure

interoperability between FEA data and product and process meta-data. However, no standard format

has emerged and the high level data formalism managed by these tools is lost.

These interoperability issues emphasize the need for providing collaborative digital platforms

(where both design and simulation data are managed within a common federated environment) sup-

ported by a neutral and standardized product data model. Regarding the gaps identified in existing

product data models, we believe that this product data model must be based on a combination of

geometric and configuration management data standards (e.g. AP203/214/209 and the PDM schema)

but also of product lifecycle and system engineering standards (e.g. AP233/239, OAM).

Next chapter is dedicated to the formalisation of our contribution regarding the gaps previously

discussed. A “Design-Analysis Integration System Framework” is proposed in order to support a flexible

and multi-view DMU environment that can be used as the common referential framework for the de-

sign and analysis data used within collaborative digital integration chains.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-148-

PART III: PROPOSAL FOR A DESIGN-
ANALYSIS INTEGRATION FRAMEWORK

An observation in industrial environment has allowed us to understand and model actual integra-

tion chains. This observation phase lasted about six months and was performed through audit and

interviews conducted within four inter-dependant design offices and involving ten operational engi-

neers.

For instance, below Figure 100 provides an illustration of the current (As-Is) situation highlighting

the various product information flows that occur through a mechanical IPPS digital integration chain.

Figure 100: As-Is collaborative mechanical digital integration chain

As we can see in this figure, the assembly structures, the CAD models and their position as well as

the configuration data are extracted from the PDM data base to create the referential DMU in the CAD

environment. However, when creating this referential DMU or the derived simplified mechanical DMU

used for producing the mechanical IFEM, many other data (like Interface Control Drawings (ICD), mass

properties, idealised CAD models) are used and spread across various local data repositories. When

creating the mechanical IFEM, the FE models but also the mass and material properties are stored and

extracted from local data repositories or from dedicated data bases (e.g. the material data base storing

all the material references and their related properties). The same occurs when dealing with the FEA

results distribution process where the results at the interfaces of the studied system are sent through

spread sheets to the various co-designers or analysts concerned by these results. As these data are not

managed within a federated environment and are spread across these local data repositories or data

bases, it is very difficult to integrate efficiently all these data. This integration must ensure the tracea-

bility between design and analysis data but also the consistency between data/models used at various

levels of abstraction and for different disciplines in order to enhance re-use and avoid re-work or usage

of unsuitable data.

Figure 100 also displays the various and numerous product data exchanges between partners in-

volved in the digital integration chain. Standardized data exchange is only achieved in the area of CAD

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-149-

data exchange. Most of other product data exchanges between partners (using for instance heteroge-

neous PDM) are performed through the use of translators that ensure the transformation of system

data output into another. This method is not efficient because it requires a lot of different translators

due to the variety of tools used in the aeronautical extended enterprise (N²-N translators if we consider

the collaboration between N partners each one using a different PDM system).

The analyses and the reflexions conducted with Snecma experts and other industrial partners has

allowed us to propose a picture of the “To-Be” situation as illustrated in Figure 101 below.

Figure 101: To-Be collaborative mechanical digital integration chain

In order to achieve this situation, the objective of this PhD study is to define the concepts, methods

and tools that are needed to provide the federated design and integration environment supporting a

flexible and multi-view DMU environment that can become the common referential framework for the

design and analysis data used within collaborative digital integration chains. We propose to contribute

by:

 Defining a dedicated integrator environment based on MBSE concepts to implement in PLM

environments in order to:

 Specify system architectures (system’s constituents and interfaces) from multiple view-

points such as different disciplines, life-cycle phases, or levels of details;

 Enrich DMU models with required information (physical properties, interfaces identifi-

cation);

 Facilitate the acquisition, the restructuration and reuse of the appropriate product

definition data to use for the simulation;

 Manage multiple levels of detail and data consistency between multi-level and multi-

domain system representations;

 Innovatively define and specify components’ interactions and interfaces to ensure

more efficient contextual design and integration through the use of 3D-based CAD and

FE interface templates.

 Defining the supporting product data model (mainly based on existing or adapted standards)

that will:

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-150-

 Ensure consistent, seamless generation of design artefacts within an Integrated envi-

ronment where functional, logical, physical and behavioural architectures and related

data can be easily defined and consistently integrated;

 Provide appropriate product definitions views according to the application domain;

 Manage digital interfaces objects and enrich physical and behavioural assembly defini-

tions;

 Consistently integrate CAD and CAE data to ensure a bi-directional traceability be-

tween nominal CAD models, idealised CAD models, CAE models and CAE results

 Permit to capture modelling methodologies to perform the appropriate DMU transfor-

mations regarding the nature of the simulation models and the simulation objectives;

 Ensure change propagation across multi-level and multi-domain product engineering

views.

Therefore the contribution of this PhD can be summarized as follows:

 Providing the definition of the dedicated “integrator environment” in order to prove the ap-

plication of MBSE system modelling concepts to mechanical product design;

 Providing the product data model supporting such a framework;

 Identify implementation difficulties by assessing the maturity of existing commercial PLM/SLM

applications to implement these concepts;

 Contributing to the definition of the BDA Business Object Model to support our concepts,

methods and tools and integrate them in the BDA environment and enhance standardized

product data exchange in the aeronautics extended enterprise.

This part of the dissertation is made of three chapters. Chapter 9 describes our research context

and details the successive steps of our research and development methodology that led to the devel-

opment of the concepts presented in Chapter 10. These concepts are related to the contributions

above mentioned. Finally, chapter 11 provides a documented conceptual data model (UML class dia-

grams) describing some of the concepts introduced in chapter 10. In order to provide the DASIF con-

ceptual environment introduced in section 10.1.4, we propose multi-layered data model architecture

to implement in PDM and SDM data bases or repositories.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-151-

Chapter 9: Research & Development Methodology

9.1 Research context

This PhD has been undertaken within the SNECMA company (SAFRAN group) and more precisely

within the Power Plant System (PPS) Integration Division. It has also been carried out within a European

research project: the CRESCENDO project. CRESCENDO means Collaborative & Robust Engineering us-

ing Simulation Capability Enabling Next Design Optimization. This European consortium involves 59

partners representing a cross section of European aeronautics. The project aims at delivering the mod-

elling and simulation backbone of the aeronautical extended enterprise: the Behavioural Digital Air-

craft (BDA). The BDA concept might consist in a collaborative data exchange/sharing platform for de-

sign-simulation processes and models throughout the development life cycle of aeronautics products.

However, it is not expected that the BDA is a unique design environment, replacing existing ones. In-

stead, the BDA has been considered as a standard data model enabling interoperability, to which

existing local design environments and new services to be developed could plug.

In that context, we have developed a research and development methodology structured around

these two complementary research contexts (see Figure 102):

 Within Snecma PPS integration division: we have established a Lean-6σ methodology (ex-

plained in next section) in order to clearly analyse the processes, identify the root causes of

waste and propose the necessary improvements to make the proposed concepts and capabil-

ities match with the business requirements. Within this division we have analysed the DMU

building process, the configuration management process and 3 kinds of PPS FEA process. This

methodology has lead to the concepts and capabilities proposal presented in Chapter 10 and

the multi-aspect product data model presented in Chapter 11. A first prototype of the pro-

posed design-analysis integration framework has been developed and is presented in Chapter

12.

 Within CRESENDO project: we have been involved in the “Detailed Model Set-Up” work-pack-

age. In this work-package, and in collaboration with aeronautical industrial partners, we have

defined the PLM/SLM and modelling capabilities requirements to implement in local design

environments as well as the necessary BDA data structures to support the related proposed

concepts. Within this work-package we have also defined a new methodology to handle digital

integration chains and its related scenario test case: the Product Integration scenario. Further,

we have monitored the development of the implementation of our methodology and con-

cepts proposal within commercial applications. All these results are presented in Chapter 13.

Both contexts are clearly related. First the concepts and related data models, developed and de-

rived from the processes/tools analyses performed at Snecma, have been standardized and imple-

mented in some packages of the BDA meta-data model. Secondly, the results of the prototypes devel-

oped within CRESCENDO have served to assess the maturity of existing PLM/SLM commercial applica-

tions to implement our concepts, and to provide the preliminary specifications for the development of

a SLM platform at Snecma.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-152-

Figure 102: PhD research context and methodology

9.2 A Lean-6σ approach to integrate People, Processes and Tools

In their book, "The Toyota Product Development System", Morgan & Liker define 13 components

supporting managers in Lean Product Development (LPD) system implementation (see Figure 103 be-

low).

Figure 103: The 13 LPD components (extracted and adjusted from [Morgan&Liker, 2006])

Regarding this system and its components, the major high level challenge for implementing a LPD

system is to be able to integrate the triptych: People – Process – Tools & Technology. We propose to

add to this triptych an additional transversal component which is the “Information conveyed” through

this triptych. Analyzing and optimizing the way information flows through this triptych will contribute

to build a learning organization and to capitalize the knowledge produced during PDP and which is

profitable for operational value streams. Reducing the time to perform design-analysis iterations re-

quires adopting a lean approach tracking and eliminating waste within these design-simulation loops.

With the development, spread and diversification of digital engineering tools used in design-simulation

Lean
Product

Development
System

1. Establish Customer-Defined Value to separate value-
added from waste.

2. Front-Load the Product Development Process to
Explore Thoroughly Alternative Solutions while there is
Maximum Design Space.

3. Create a leveled Product Development Process Flow.
4. Utilize Rigorous Standardization to reduce Variation,

and Create Flexibility and Predictable Outcomes.

Process

11. Adapt Technology to Fit your
People and Process.

12. Align your Organization through
simple and visual Communication.

13. Use Powerful Tools for
Standardization and Organization
Learning.

5. Develop a Chief Engineer System to
Integrate Development from Start to Finish.

6. Organize to Balance Functional Expertise
and Cross-Functional Integration.

7. Develop Towering Technical Competence in
all Engineers.

8. Fully Integrate Suppliers into the Product
Development System.

9. Build in Learning and Continuous
Improvement.

10. Build a Culture to Support Excellence and
Relentless Improvement.

Information Conveyed

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-153-

loops activities (see section chapter 3), we propose to study how to align the triptych Processes - Tools

– People and understanding how the information is conveyed through this triptych. This matching can

be achieved only considering the entire mentioned triptych, as well as considering the other important

LPD component: the human factor (Skilled People). To ensure the scientific validation of the approach,

the methodology is based on a Lean-6σ approach (see Table 2): the DMADV (Define-Measure-Analyze-

Design-Verify). This approach is based on the methodology described by both [Jugulum&Samuel, 2010]

in “Design for Lean Six Sigma” and [McCarty et al., 2005] in “The six sigma black belt hand book”. The

“Define” and “Measure” phases are dedicated to the identification of these waste and value drivers

within the studied process. The “Analyse” phases aim at finding the root causes of the identified waste.

The “Design” phase aim at finding the appropriate solutions that will permit to reduce or eliminate

these wastes. Finally the “Verify” phase will permit to verify that the implemented solutions are in

adequacy with the business processes and users’ requirements and that the potential changes and/or

rules brought to the process are maintained and respected.

 Process Tools Users

Define the “As-Is” process and identify
waste and bottlenecks within
the processes

 The current capabilities
exploitable by users in the
tools

 the missing capabilities

 the content of the data
bases as well as the cur-
rent information/data
model behind

 Users’ daily life issues

 Requirements and expec-
tations

 Users’ skills adequacy with
digital tools capabilities.

Measure process performance and met-
rics enabling to identify
waste’s root causes

The impacts of missing capa-
bilities or missing information
in the data bases as well as the
impact of redundant infor-
mation.

 Users’ performance

 Impacts of waste related
to users’ unfitness to ex-
ploit tools capabilities

 Impacts of users’ motiva-
tion and frustration due to
their daily life issues.

Analyze the problems impacts and
identify the main root causes
to address

The impacts of these prob-
lems and identify the most
problematic issues to address
to identify the most relevant
areas of improvement.

The root causes of users’ daily
life issues and identify the
most relevant issues to ad-
dress.

Design if needed (if wastes are due to
organisation of activities
within the process) we can pro-
pose improvements by propos-
ing a “To-Be” process consist-
ently with the proposed digital
capabilities developed in the
tools.

 new tools capabilities
and/or services based on
innovative concepts

 the required information/
data model

 the required data-base for
the demonstrator of the
proposed concepts

 Tools’ user guides of de-
veloped capabilities

 Trainings or/and tutorials

Verify that the new “To-Be” process is
more efficient using the meas-
urement system previously de-
fined

 The tools’ capabilities ad-
equacy with the business
processes and users’ re-
quirements

 The benefits brought by
these capabilities on pro-
cess performance

 User satisfaction

 Ergonomics of GUI

 Users’ performance

 That users are well in-
formed and trained to
new capabilities

Table 2: Lean-6sigma framework to integrate Processes, Tools and People

The framework presented above can be managed in several ways. Usually, DMADV projects might

last in average six month and generate solutions to the studied problem involving certain rupture and

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-154-

change with traditional ways of working. The resulting change and potential benefits are permanently

controlled with rigorous measures that have been set-up during the verify phase. However, if resulted

benefits are not as expected or considered potentially improvable and if time, financial and human

resources can be dedicated to it, the approach and the project can be iterative and the sequential

DMADV process can become an iterative cycle of continuous improvement.

9.3 Research study

In order to tackle the issue of optimizing the performances of the triptych and to make the ex-

pected digital capabilities generic to be exploitable by different working teams having different pro-

cesses, an experimental study in the aircraft industry is proposed (Figure 104).This study aims at

demonstrating how the use of digital engineering and the improvement of existing tools capabilities

can contribute to optimize the design and integration processes (including simulation) of the Inte-

grated Power Plant System (IPPS).

The left part of Figure 104 presents the scope of the study encompassing two design teams (me-

chanical and aerothermal integration), and the triptych Business Processes – Information conveyed –

Supporting tools. The potential future tools are related to tools which are being implemented (CAD,

CAE and PDM systems) and tools which have to be developed in the frame of the study (the Design-

Analysis Integration Framework and the SDM system). The study emphasizes on the use of these tools

for acquiring and exploiting data inputs for activities related to mechanical and aerothermal simula-

tions. This study has been identified as it shows difficulties of design related to these two major disci-

plines in the development of an IPPS. This allow also tackling multi-disciplinary aspects in collaborative

product development.

Figure 104: Study scope and Lean-6σ research & development methodology proposal

9.4 “Define”, “Measure” and “Analyze” phases

9.4.1 Define phase

At the time this PhD was launched, the Snecma PPS integration division was composed of seven

business units as illustrated in Figure 105.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-155-

Figure 105: Business units of the Snecma PPS integration division

We have focused our analysis on three inter-dependant business units and related business pro-

cesses as illustrated in Figure 106:

 the DMU building process and the configuration management process (handled by the Con-

figuration & DMU Management unit);

 and three IFEM creation processes:

 the creation of a mechanical IFEM;

 the creation of thermo-mechanical IFEM;

 the creation of an Aerothermal IFEM.

Figure 106: addressed Snecma business processes

The define phase consists in capturing and modelling the business processes mentioned in Figure

106. To provide a detailed map of these processes and their interactions we have performed several

“Value Stream Mapping” (VSM). These VSM have been performed and validated in the frame of a Lean-

6σ project and have permitted to collaboratively identify the waste drivers and the non-added value

steps in these processes. These processes have been modelled in BPMN. These BPMN models capture:

 The sequencing of activities

 The input and output of each activity

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-156-

 The problems / waste potentially identified related whether to the way of performing some

activities whether to the data used for these activities or to some missing capabilities of the

digital tools used to perform the activities.

 Value/waste indicators (or key performance indicators) in order to assess the negative or pos-

itive impacts of each activity on the global process efficiency and on the value created by this

process.

Figure 107 shows an example of a VSM performed for this study. Unfortunately this picture has

been blurred for confidential reasons.

Figure 107: Example of VSM performed within Snecma Integration Division

9.4.2 Measure and Analyze

The Measure phase consists in defining the measurement system and the appropriate metrics and

key performance indicators for the studied process. These metrics must be consistent with the type of

performed activities, the type of value (process, product or information value) and the type of stake-

holders considered. The definition of this measurement system and related metrics was based on the

product development waste drivers mapping performed by [Bauch, 2004] and provided in appendix 3

(Figure 245). This measurements system and related metrics are not presented in this PhD thesis be-

cause their relevancy could not be assed and validated on operational processes. However it has ena-

bled us to question ourselves when trying to define if an activity is a full value-added activity, a partial

value-added activity, a necessary no-value-added activity or a non-necessary no-value-added activity.

Moreover this measure phase has permitted to better prioritize our required capabilities in the Analy-

sis phase and to better assess or identify the proposed solutions impact or benefits in the verify phase.

The Analysis phase consists in identifying the root causes of the waste or issues identified in the

VSMs and to classify and prioritize the functional requirements that will be addressed. The results of

the Analysis phase have lead to the industrial issues and requirements that have been introduced and

summarized in Chapter 4.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-157-

9.5 Design and Verify phases: development methodology

Our development methodology is based on a classical software system engineering method struc-

tured as a V model and a UML approach for the software specification and design (see Figure 108).

The design top-down side of the V corresponds to all the specification and design phases. From

the results of the VSM analyses of the studied processes we have identified the main waste and waste

driver in digital integration chains. We have used the results of these analyses to express the high level

objectives and functional requirements of the required design-analysis system integration framework.

Performing a detailed functional analysis (using SADT methodology and formalism) we could define

the required detailed functions, the software and environment architecture of framework as well as

the information flow cartography. Then we have defined and developed our concepts and solutions

proposal leading to the conceptual model. In the detail design phase we have enriched the data model

with required attributes, links and methods and, when necessary, simplify it for easier implementation.

The implementation phase consisted in generating an empty data base from the logical data

model, filling it with test-cases data, coding the specified object methods and designing and coding the

GUI of the data base client application that will host our framework.

The integration phase (ascending branch of the V) consists in progressively testing the developed

capabilities/functionalities individually and eventually re-iterating on data structures and/or object

methods definition. When individually validated, a generic scenario of digital integration chain can be

proceeded to validate the methods sequence and the usage of the framework within a business pro-

cess. The cycle ends by the provision of a β-test solution and related documentation and their assess-

ment by future potential users to validate the capabilities and/or make change recommendations.

The following chapters 10 and 11 summarise the results of the design phase; i.e. the functional

synthesis, the description of concepts and related capabilities and the explanation of the conceptual

data model.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-158-

Figure 108: V-model development method

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-159-

Chapter 10: Proposition of a MBSE framework for Design-

Analysis Integration

This chapter addresses the specification of a multi-view and multi-disciplinary DMU and product

data manager for simulation-based design. This framework is the major component of the federated

and model-based environment required to answer the industrial requirements mentioned in Chapter

4 as well as fill the design-analysis integration issues and related gaps highlighted in the state of the

art. We have called this environment the Design-Analysis System Integration Framework (DASIF). The

objective is to define and develop a PDM prototype which functionalities and supporting data model

enable to manage “multi-level” and “multi-domain” logical and physical (DMUs) product views en-

riched with assembly information in order to provide to analysts and integrators relevant data struc-

tures and inputs for creating FE assembly models.

This chapter is made of 6 sections. First section provides the results of the performed functional

analysis including the general objectives of DASIF, the place of this framework in the product develop-

ment process, the UML use cases of DASIF and the related list of involved actors and business roles,

the conceptual and software environment architecture. Another sub-section specifies the structure

and the representation of the various information and data which are conveyed through this environ-

ment and the functionalities of DASIF are synthesized. The question of its integration with other PDM

and SDM systems but also with CAD and CAE environments is also tackled. Finally a conclusion provides

a synthesis of this chapter. The second part of this chapter introduces the proposed approaches and

related scenarios to exploit DMUs within DASIF. It also provides a list of conditions and required capa-

bilities to support these scenarios. The third section is dedicated to our concepts and solutions pro-

posal to provide some of these capabilities.

10.1 Results of the Functional Analysis

10.1.1 Objectives and fundamental need expression

The objective of the DASIF environment is to provide to system architects/integrators, designers

and analysts a product data management systems and an “integration framework” enabling to iden-

tify, gather, acquire and organise the relevant data set used for simulations (particularly assembly FEA).

The various digital product definition mediums and representations (bills of materials, digital models

and system architectures) should be able to be derived and adapted according to the different views

of the product used during the product development lifecycle and across the various engineering do-

mains or disciplines. Hence, the resulting product data model should help to integrate various product

views and gather the appropriate design data set relevant for specific needs and objectives of the sim-

ulations and related involved actors (depending on the life cycle stage, the discipline and the level of

detail and abstraction required).

Figure 109 shows a bull chart (defined according to the functional analysis APTE method [De la

Bretesche, 2000]) used to clarify the need of such an environment.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-160-

Figure 109: Fundamental need expression using the APTE method bull chart

The top-level function of DASIF is represented in SADT/IDEF0 formalism in Figure 110 below.

Figure 110: SADT/IDEF0 representation of DASIF top-level function

Structured Analysis and Design Technique (SADT) is a diagrammatic notation designed specifically

to describe systems as a hierarchy of functions defined as activities of the system under specification.

These functions are represented by activity building blocks and a variety of arrows to relate these

functions/activities. In the boxes the name of the process or the action is specified. On the left-hand

side of this box, incoming arrows represent the data inputs or consumables that are needed by the

activity. On the upper part, the incoming arrows (or lightening for constraints) represent constraints,

commands or data which influence the execution of the activity but which are not consumed. On the

bottom of the box, incoming arrows (called mechanism) identify the means, components or tools used

to accomplish the activity. Finally, on the right-hand side of the box, outgoing arrows identify the out-

puts data or products that are produced by the activity [Marca&McGowan, 1993].

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-161-

In order to describe the functional scope and packages of DASIF we have divided the top-level

function A0 (see Figure 110) according to a classical Simulation-Based Design and Integration process

as it generally occurs in the aeronautics industry. As illustrated on Figure 111, this process should fol-

low the following steps:

 A1 - Build & Manage System Architectures and related multi-view DMUs: this functional

package consists mainly in building the domain-specific product structures and DMUs that fit

with the behavioural model structure. It includes the specification of components interfaces

definition and their capture and visualisation within DMUs. This package should also ensure

the consistency and synchronisation of the different product representations (product tree,

system model, DMU, etc.) - corresponding to multi-domain and multi-level system character-

isations (with several levels of abstraction) - with the product definition.

 Provide the relevant design data set to use for simulations: this functional package encom-

passes all the capabilities and methods developed to enable the analyst to retrieve the appro-

priate design data set to use for the simulation. This includes capabilities such as requesting

and retrieving a specific DMU product view and access/identify/visualise components inter-

faces and interactions definitions, the capture and visualisation of CAD-CAE data links and the

visualisation of design evolutions between two successive iterations.

 A2 - Study Context Definition: this functional package consists in defining all the information

related to the study context: related product and project, base-line, objectives, type of study,

involved disciplines, processes and methods to apply resources to use, etc. All these infor-

mation will drive the way of performing the simulation(s) to perform for the study.

 A3 - Sub-System FE Models Integration & Pre-processing: this functional package uses the

information defined in the two previous steps to specify, create, re-use, assess and exchange

all the appropriate data that are needed to create and integrate efficiently the requested sim-

ulation models (potentially created by different partners) in order to deliver the integrated

simulation model ready to be set-up for the computation.

 A4 & A5 - Analysis Set-up and launch & Results data management: once the computation

done, this functional package aims at providing services for the verification of the obtained

results, the analysis and post-treatment of these results and finally the dissemination of spe-

cific interfaces results to partners and/or co-designers for downstream design and simulation

activities. This functional package must also ensure the traceability of the results with the

study and related data/models that permitted to obtain them.

Figure 111: Simplified SADT of DASIF and positioning of PhD scope

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-162-

10.1.2 Place of DASIF in the Product Development Process

The usage of the DASIF framework occurs all along the product development process to support

digital integration chains and related design-simulation loops. As shown in Figure 112, it is hence situ-

ated between the CAD design modelling activities leading to the constitution of product DMUs and the

CAE modelling and analysis activities leading to the creation of BMUs and related simulations results.

DASIF also takes part of the configuration management process in order to configure these DMUs and

related BMUs and maintain their consistency to the current product definition. Figure 112 shows the

interactions of DASIF with CAD design modelling process activities, with Configuration Management

Process activities and a classical FEA process. In this figure, the concept of Multi-view DMUs is intro-

duced. They correspond to the domain-specific and simulation-oriented DMU product views that have

been built through content and structural transformations of referential DMUs. They might be used as

direct inputs for FE modelling activities and be consistently associated to their original DMU and the

integrated FE model and simulation that they have permitted to perform.

Figure 112: Position of the DASIF framework in the Product Development Processes

10.1.3 Stakeholders and Use cases

The UML use case diagram (Figure 113) summarises the main capabilities ensured by DASIF. In this

diagram the involved stakeholders are represented. As well as a traditional PDM system, DASIF offers

different functionalities depending of the respective role(s) of the various stakeholders or users of the

application. A user can have a specific role or several roles depending of the context and the organisa-

tion he belongs to. For instance a designer can also perform FEA and the analyst or “simulation engi-

neer” can be considered as a designer. An integrator can also be considered as a designer. We propose

to speak about roles instead of speaking about different actors and we have defined a role taxonomy

related to the various DASIF stakeholders:

 The User: it is the top-level role that represents any kind of user of DASIF with no specific

attributions and rights.

 The Administrator: this "Super" user owns all the rights. He can create and delete users, de-

fine their rights and configure all system variables. He has access to all the data bases and can

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-163-

manipulate, modify, create and delete any kind of data or meta-data managed by the applica-

tion.

 The Designer: A designer can act as whether a simple design engineer, a system architect, a

system integrator or as a simulation engineer or analyst. The designer role has all the rights

apart from those of the Administrator to configure the DASIF environment and those from the

Configuration Manager for managing the engineering change process. The Designers act up-

stream the simulation processes. They define and provide most of the technical product defi-

nition information/data that serve as input for simulations such as the 3D CAD models and

related parameters and features, the components physical properties or the system architec-

tures definitions. The designers can also access the simulation results and validate or invali-

date their suitability to the functional requirements that the analyses intended to verify.

 The System Architect: this actor is in charge of the global system behaviours (e.g. thermal,

mechanical, aerodynamic, etc) and of ensuring their compliance with related functional and

performance requirements. The architect develops the behavioural architectures (with inter-

faces between components), matures these architectures by requesting new simulations. He

makes decisions concerning global compromises between conflicting design parameters veri-

fied by different domain-specific simulations and concerning optimisation of behavioural ar-

chitectures. He also commits on certification requirements fulfilment and their verification

through physical tests. The architect is “mono-system” (reports to a given “Programme Chief”

or “Chief System Engineer”) but he can be mono or multi-disciplines (e.g. in charge of thermal

aspects or in charge of all physical aspects). The system architect has the same rights than a

Designer and an Analyst plus specific dedicated “integrator rights” such as the definition and

modification of system architectures.

 The System Integrator: this actor is similar to the system architect and has the same rights.

However, we decided to attribute to this actor the responsibility for defining and monitoring

the appropriate simulation and integration processes and related activities and actors. He de-

signs the network of work tasks and allocates work tasks to the various involved co-designers

and industrial sub-contractors. He is particularly in charge of defining and monitoring the re-

lated simulation workflow (design-simulation loops organisation, iteration duration, mile-

stones and deadlines, resource allocation (load balancing), nature and format of data and de-

sign deliverables to provide). In the frame of DASIF and digital integration chains, the integra-

tor specifies physical/functional (in relation with the architect)/behavioural interfaces be-

tween system components in an integration perspective. He also in charge of the validation

of technical data provided for the integration such as the compliance of sub-system models

with interface specifications or the simulation results distribution for downstream applica-

tions (e.g. feedback to design or downstream simulations).

 The Configuration Manager: the management of product configurations generally involved

many functions and actors within a company. Here the configuration manager represents the

actor responsible for defining the “master” product structures and related variants (from pre-

liminary design to production and “in service” phase). He is also in charge of the management

of product interfaces; maintaining the matrix interfaces in terms of coding, but also making

interface data available to partners sharing the same interface. This actor needs to follow the

technical definition of these interfaces since he is also responsible for monitoring the engi-

neering change process and for ensuring that the validated design changes are properly prop-

agated through the appropriate product configurations and related product views.

 The Analyst or Simulation Engineer: This actor retrieves through the DASIF application all the

necessary and relevant design data sets required for the simulation activities of which he is in

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-164-

charge. He uses these data sets to create or re-use the appropriate simulation models regard-

ing the simulation context and objectives. Within DASIF, the analyst can request and load a

specific DMU product view relevant for his simulation context and objectives. He can visualise

and compare the data inputs used for two successive iterations to know which data need to

be modified/updated. Within the requested DMU, he can access, identify and visualise the

various component interfaces definition/specifications that allow him to make the right mod-

elling assumptions and to assemble easier the sub-system FE models to integrate. The analyst

also needs to visualise the complete CAD-CAE information chain to know, for instance, from

which CAD model a certain FE model has been created. He can hence be notified if a change

on a CAD model can potentially impact the FE model that he has created/used to perform a

simulation.

Figure 113: Simplified use case diagram of DASIS environment

System

System Architectures and Multi-View DMU Management

Relevant Simulation Data Inputs Provision

DASIF access and administration

Configuration and Product Data Management

Connect to the

application

Define/Modify System

Architectures

Load a DMU in

CAD environment

Configure the

environment

Manage, Modify,

Visualise Product

Definition Data

Manage and Propagate

Engineering Changes

Visualise and Compare

data inputs used for two

succesive iterations

Idenitfy and visualise

components interfaces

and interactions

definitions

Request and

retrieve a specific

DMU product view

Visualise a CAD-CAE

traceability chain

User

Administrator

Conf. Manager

Designer

System
Architect /
Integrator

Analyst /
Simulation
Engineer

Specify, Capture,

Modify and Visualise,

Components

Interfaces within

DMUs

Create Dependency links

between Design and

Analysis Data Objects

Transform a DMU

into a new

domain-specific

DMU product view

FE modelling Simulation Data Management

Design-Analysis System Integration Framework

Out of our scope

Define Master

Product

Configurations and

related variants

Simulation Workflow Management

Results Data

Management

Launch

Simulation
Define

study

context

Launch

Pre-Processing

Simulation

Card Building

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-165-

In addition to this list it is important to underline the role of the Programme Chief or Chief System

Engineer: he is the chief engineer in charge of programme targets (cost/delay/quality). He does not

appear on the use case diagram because it is not planned that this actor uses the DASIF framework.

However, this actor is generally involved in digital integration chains in order to give system technical

orientations but also to arbitrate between System Architects conflicting alternatives.

NB: In the use case diagram shown in Figure 113, a functional package called “Simulation Data

Management” (SDM) is characterized by an annotation “Out of our scope”. This SDM package is sub-

ject of a different, yet complementary research study related to Graignic’s PhD as well as in collabora-

tion with CRESCENDO project partners [Graignic et al., 2013]. Through the SDM environment, the an-

alyst has access to all analysis data and meta-data; i.e. simulation workflows, simulation context and

objectives, FE modelling assumptions and specifications, mesh models, load cases, boundary condi-

tions, and simulation results. As it is within the SDM environment that the simulation workflows are

defined and monitored, simulation activities inputs and outputs can be associated in order to access

and visualize the complete CAD-CAE traceability chain (links between nominal, idealized CAD models,

design parameters, simulation models and simulation results). That is why, even though it is out of our

research scope, the SDM package and related data models and structures need to be considered when

developing DASIF.

10.1.4 Conceptual and software environment architecture of DASIF

DASIF is a federated digital design framework dedicated to the needs of digital integration chains

activities. It provides a combination of PDM/PLM and SDM/SLM capabilities as well as a federated

MBSE system modelling framework for managing system architectures and enhance design-analysis

integration.

Figure 114: Conceptual scope and architecture of DASIF and link with the BDA

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-166-

 As shown in Figure 114, DASIF encompasses the following digital design environments:

 PLM/SLM client application: in the frame of DASIF, this application encompass three main

functional modules which are:

 The Configuration Management Module: managing the creation, modification, ver-

sioning and access of all design product data and their configuration according to multi-

level and multi-domain product definition views. This module is also in charge of main-

taining the consistency between these product views and related representations as

well as ensuring engineering changes propagation all along the development lifecycle.

 The System (Modelling) Module: managing the system models enabling definition and

specification of structural and behavioural architectures of the system using an object-

oriented system modelling formalism. The dependency links between product views

can also be defined in this module.

 The Simulation Module: encompasses all capabilities dedicated to the management of

simulation workflows defining study contexts, building the simulation cards and launch-

ing the computations (i.e. putting together the meshes and boundary conditions sub-

mitting it to a specific solver), getting and storing the analyses outputs and preparing

the analysis report.

 CAD/DMU environment: relates to all CAD software applications permitting to create, modify

and visualise the CAD product models.

 CAE/BMU environment: relates to all CAE applications (pre/post-processing tools and solvers)

enabling to create, modify, visualise, simulate and analyse CAE models and results.

The PLM/SLM client application interacts with both a PDM data base and a SDM data base ena-

bling the storage and re-use of CAD and CAE models/results in, respectively, the CAD and CAE vaults.

The PDM data base is built upon a product data model defined in Chapter 11. The SDM data base and

related data model are out of the scope of this PhD and might be defined within another research

work.

Moreover, the concepts and capabilities proposed for the DASIF framework can also be imple-

mented in the BDA digital collaborative platform in order to integrate and synchronise design-simula-

tion processes between partners and to exchange/share design and analysis data/models throughout

the development life cycle of aeronautical products. The BDA platform is built on a standard data

model enabling interoperability, to which existing local design environments and new services to be

developed could plug. To enable this interoperability the use of a semantic data mapping tool is pro-

posed. This tool aims at mapping the proprietary PLM/SLM data models and formats of commercial

applications to the BDA standardized business object model.

Figure 115 below proposes another representation of DASIF architecture underlining the central

role of the “System Module”.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-167-

Figure 115: Other representation of DASIF architecture - the System Module cornerstone

This system module is a MBSE framework that uses an object-oriented system modelling language

(similar to SysML) as the front-end for multi-disciplinary teams to collaboratively develop a unified,

consistent representation of the system from the earliest stages of development. The system model

(in SysML) can ‘co-evolve’ with the associated domain-specific models, such as CAD and CAE models.

Relationships between the system model and the domain-specific models can range from qualitative

dependency relations to quantitative parametric relations which are executable on-demand for seam-

less model traceability and interoperability. The SysML-based system model is a conceptual abstrac-

tion of the system that has sufficient details for orchestrating digital integration activities, ranging from

structural and behavioural architectures definitions (including domain-specific interfaces specifica-

tions), automated structural DMU transformations and FE assembly operations, access to appropriate

design and analysis models through the use of building blocks and components and interfaces model

libraries. This unified system model is not a data store but a description of the system which can be

used to federate domain-specific models of different aspects (links between interdependent product

views used at different system breakdown levels or for different design disciplines) of the system.

10.1.5 Information flow map

The Figure 116 shows all activities and related information/data flows taken into account by DASIF.

It enables to identify and visualise all activities inputs and outputs, hence all the business object and

related data objects that are conveyed between the DASIF framework, EDM systems (PDM and SDM

data base), the CAD/DMU environment and the CAE/BMU environment. The activities that take place

within the PLM/SLM client application of DASIF are the ones contained in the central green area. The

other activities can take place in the CAD/DMU environment or in the CAE/BMU environment.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-168-

Figure 116: Map of Design-Analysis Information flow within DASIF and within a design integration chain

This information flow chart is built around the key digital integration chain activities which are:

 CAD modelling and DMU enrichment activities: DASIF will impact these activities by enabling

to configure DMU content and structures. It will also provide a support for creating and man-

aging interface digital objects within DMUs in order to support design in context, the automa-

tion of FE assembly modelling activities and potential automated DMU structure re-arrange-

ment. These activities take place in the CAD/DMU environment but use and/or enrich the in-

formation present in the DASIF client application; especially the ones managed by the Config-

uration Management module and the System Modelling module.

 System architectures definitions: these activities might take place in the “System Modelling”

module of the PLM/SLM client application of DASIF. Within this module DASIF must offer an

integrator dedicated environment that permits defining and relating functional, structural and

behavioural architecture definitions with the use of an object-oriented system modelling for-

malism. The SysML-based system model is a conceptual abstraction of the system that has

sufficient details for orchestrating digital integration activities, ranging from structural and

behavioural architectures definitions (including domain-specific interfaces specifications), au-

tomated structural DMU transformations and FE assembly operations, access to appropriate

design and analysis models through the use of building blocks and components and interfaces

model libraries. This unified system model is not a data store but a description of the system

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-169-

which can be used to federate domain-specific models (links between interdependent product

views used at different system breakdown levels or for different design disciplines) of the sys-

tem.

 CAD/DMU transformations: These activities take place in the DMU environment but use the

information displayed by the DASIF client application. When running a simulation, not all DMU

parts are required: there is a geometric zone of interest. Moreover, the implicit “groups” cre-

ated by the tree chosen to structure the DMU is often not the best choice for structuring the

simulation inputs. As a result, there is a need of additional layer on top of DMU, which allows

reorganizing the DMU for simulation purposes. Therefore DASIF might offer capabilities to

filter a DMU and keep the parts present in the geometric zone of interest, automate or semi-

automate the reorganisation of DMU structures and to manage consistently the resulted dis-

cipline-oriented DMU configurations.

 FE assembly modelling: These activities take place in the CAD/DMU environment but use the

information present in the DASIF client application. These activities bridge the DMU geometry

and the mesh used inside the simulation. Within the DASIF client application the simulation

card - gathering components and interfaces FE models, boundary conditions and load cases –

is built based on simulation templates and on the structure of the assembly FE model corre-

sponding to a behavioural architecture defined in the system modelling module. Within the

CAE/BMU modelling environment, DASIF must provide automatic routines to translate the

system behavioural model into an authoring tool format/language and import it in the dedi-

cated pre-processor to automate the assembly of FE models. In this layer, DASIF might also

handle the complexity of the geometries contained in the DMU, and serve the users of meshes

of fit-for-purpose size and quality, involving idealization procedures. DASIF should integrate in

new discipline-oriented DMU configurations the simplified and idealised CAD models used to

create assembly FE models and relate them to their original nominal CAD models.

 Simulation related activities (out of scope but considered): this concerns all simulation activ-

ities downstream the pre-process. It encompasses submitting the simulation card to a specific

solver, getting and storing the analyses outputs, and preparing the analysis report. Several

analyses may be chained, and/or the same analysis may be done several times, with different

parameter values. This is driven by the module “simulation workflow management” which is

a pre-requisite for putting robust design/optimisation on top. The simulation results distribu-

tion for downstream activities can be supported by system models associating interface re-

sults to corresponding interface objects (ports) in the system model.

 Engineering Change Propagation: After an engineering design change is decided and per-

formed, all information related to this change is gathered within a configured change object.

Within DASIF this change object and its configuration serve to propagate this change in the

appropriate product configurations and related representations (product trees, DMUs, system

models).

 Standardized data exchange through the BDA: since the product is developed in a collabora-

tive and distributed design environment where sub-systems are designed at each partner site,

DASIF should be able to communicate with other different PLM/SLM systems via a digital col-

laborative platform. The BDA hub represents this collaborative platform. It is supported by a

standard data model and an IT infrastructure to which existing local design environments and

new services to be developed could plug. In the functional scope of DASIF the data/infor-

mation exchanged through the BDA are: system architecture definitions including interface

definition, CAD and CAE models associated to the building blocks of the architectures as well

as related modelling specifications.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-170-

10.1.6 Functional synthesis

Figure 117: DASIF A1 SADT decomposition – High level functions to provide

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-171-

The objective of our work was to study the way to define and organize the relevant design data

sets used for simulations regarding the objectives and the type of the analysis, in order to reduce the

time for the creation/integration of simulation models and also to ensure exchange between partners

in a collaborative environment. As shown on the above SADT/IDEF0 diagram of Figure 117, the func-

tional analysis of DASIF lead us to gather A1 and A3 in the same functional building block and to break-

down the top-level function A1 -“Build System Architectures and related multi-view DMUs & Provide

the Relevant design data set to use for the simulation”- into the five following principal functions that

are detailed in this section:

 A11: Exploit an existing product definition to build and provide the hierarchical and configured

product structures and related DMU and system representations;

 A12: Maintain product representations (DMUs, system models, BOMs, 2D drawings) con-

sistent with current product definition;

 A13: Integrate the definition of components interfaces within DMUs and related product def-

inition views;

 A14: Transform a referential DMU into a domain-specific DMU product view adapted for the

simulation;

 A15: Identify and provide the relevant design data set to use for an integrated assembly FEA.

The A3 function – “FE sub-systems Integration & Pre-Processing” – is also partially detailed be-

cause it encompasses two important steps and functions regarding the PhD scope: the automated

assembly of FE models and the exchange of system architectures and modelling specifications through

a federated digital collaborative platform.

10.1.6.1 A11: Exploit an existing product definition to build and provide the hierarchical and
configured product structures and related representations

Identified need: currently product data are neither managed consistently regarding the design

context for which they are relevant, neither controlled through an integrated reference framework

that permit to display the appropriate view of the product to use in the specified context. Different

views of a system all relate to the same system and thus depend on each other. In addition to integra-

tion between domain-specific views, a mechanism for multi-level system design is required to ensure

the continuity of information between views at different system breakdown levels. This integration is

difficult to handle due to a lack of systems-level modelling capabilities. The integrators might need to

specify and design these product views and their links through the use of an object-oriented language

enabling to specify system blocks interactions and interfaces but also the links between product views.

The designers and integrators might be able to visualise and exploit a DMU and corresponding System

Model representing the appropriate product view to use in the specified context.

Functions & capabilities to develop:

 A111: Import an existing product definition

 A112: Configure product definition views applying effectivity rules adapted to the lifecycle

stage of the product and the application domain of the product view.

 A113: Represent and organise a product configuration (assembly structure) into a hierarchical

tree structure and build the equivalent system representations.

 A114: Create/Specify and Modify system architectures with an object-oriented formalism.

 A115: Create dependency links between system architectures and related elements

 A116: Apply identified effectivities and obtain the exact content of product configuration

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-172-

 A117: Create, Modify or Delete effectivities of product structure links

 A118: Relate appropriate CAD models to corresponding parts and ensure their relative posi-

tioning according to the reference frame of the parent component in the configuration

 A119: Load a configured and positioned Digital Mock-Up in a CAD modeller application

10.1.6.2 A12: Maintain product representations consistent with current product definition

Identified need: In order to be considered and used as the product definition referential, it is es-

sential for a DMU environment:

 to be consistent with the current product definition and to integrate progressively and con-

sistently the engineering design changes occurring during the development lifecycle;

 to enable representating a system from multiple viewpoints such as different disciplinary do-

mains, life-cycle phases, or levels of detail

 to be able to generate from the DMU assembly definition the other corresponding product

representations (BOMs, system model, 2D drawings)

Current EDM systems require intelligent objects and operations enabling to provide the suitable

and reliable CAD and DMU data inputs regarding the specification and the purpose of simulation (mis-

match between study requirements and data used to perform the simulation). They also must support

interface definition and specification that include multiple levels of hierarchy and multiple level of ab-

straction in order to optimize the integration/assembly activities whether it is for contextual CAD de-

sign or for the creation of Integrated FEM (IFEM).

Companies require product data views for each department that support their specific views and

engineering change (EC) propagation procedures that maintain consistent product data between de-

sign departments. For consistent EC management between multi-domain or multi-disciplinary design

teams, ECs should provide product structure-oriented representations, and “effectivity” management

for domain-specific product views, integrated objects for workflow applications and integration with

product configurations.

Functions & capabilities to develop:

This function encompasses the following capabilities:

 A121: Identify, save and visualise the successive states of product or system components def-

inition.

 A122: Save and Freeze the successive states of a product configuration and associate it to a

simulation iteration/loop.

 A123: Be notified when an engineering design change impacts a product configuration for

which the designer is involved

 A124: Visualise the nature and status of the design change

 A125: Integrate the changes to the current product definition and propagate them to the re-

lated product variants (domain-specific configurations) and representations.

 A126: Generate BOMs from DMUs

 A127: Generate 2D drawings from DMUs

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-173-

10.1.6.3 A13: Integrate the definition of components interfaces within DMUs and related
product definition views

Identified need:

In order to prepare the FE model of sub-systems interfaces and interactions, CAD systems are

reduced to an interactive and intensive use of components surfaces cutting operations to define the

contact areas and connect the resulted trimmed geometric areas. These manual operations represent

a really time-consuming and tedious effort for analysts. Therefore, the preparation of FE models re-

quires that the CAD product assemblies, represented in the DMU environment, contain the following

information:

 The explicit representation of the geometry of the contact (or clearance) surface between the

connections and the assembled components;

 In some cases (mechanical analysis), the type of kinematic linkage involved in these connec-

tions;

 The linkages semantic and technologic information (bolted flange, bearing, groove, rivets, sus-

pensions, etc.) as well as the related specifications regarding the contacts or clearances re-

quired to ensure this technological linkage. The semantics is highly dependent on the system

studied, on the semantic codes of the industrial sector and organisations involved or even on

the language used by the organisations. The topology specification of a technological linkage

might be captured by templates in order to re-use and re-instantiate them.

There is a specific need to integrate fluid domains and their geometries within DMUs in order to

specify the interactions and interfaces between a fluid and a solid component or even between two

fluid domains.

Functions & capabilities to develop:

 A131: Enrich PDM data base and DMUs with “Fluid Domain” components and related geom-

etries

 Create, integrate and manage “Fluid Domain” components within the relevant product

configurations (e.g. thermal DMU)

 Generate, save and relates to the appropriate artefact definition the fluid domain ge-

ometries: fluid/solid exchange surfaces, fluid domain envelope.

 A132: Create and integrate consistently components interfaces definition within product

structures and within DMUs.

 Create, define and save the various types of interface artefacts: managed like other sys-

tem components but with specific definitions and attributes.

 Integrate them consistently within product structures (to the right product configura-

tion(s) and at the right breakdown level) and within system representations.

 A133: Identify and localise the area of interactions (CAD mating features) between system

components within DMUs through the use of publications inherent to the CAD models and

reference them within the definition of the corresponding interface artefact definition in the

PDM data base.

 A134: Associate a technology and related CAD model(s) to the definition of an “interface ar-

tefact” when the interaction that takes place at the interface is ensured by a physical compo-

nent.

 A135: Create and manage “standards interfaces” to store in a interface library/catalogue and

to be instantiated while creating and specifying a new interface artefact

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-174-

 A136: Exploit functional, physical and technological definition of the various components in-

terfaces within DMUs to design in context the integrated product:

 Access and visualise interface properties and related mating features

 Automating the update of components placement when an interface is re-sized or

moved.

 For the “standards interfaces”, access and visualise the required interface template

 Use interface templates to place an “interface component” CAD model representing

the technology used to ensure the interaction

10.1.6.4 A14: Transform a referential DMU into a domain-specific DMU product view adapted
for the simulation;

Identified need: Analysts often need that the organisation of the components represented in the

DMU matches with the structure of their simulation model. It is obviously not the case in As-Is DMUs.

Re-arrangement of DMU product structures is also a tedious, time-consuming but essential activity to

prepare the simulation model. There is a crucial need to enhance automated or semi-automated gen-

eration of simulation-driven DMU sequences/structures/scenes.

Functions & capabilities to develop:

 A141: Generate a system or graph representation of an assembly from a DMU containing in-

terface definitions

 A142: Reorganize components according to the functional and kinematic definition of their

interfaces.

10.1.6.5 A2: Study context Definition

Identified need: the first step in simulation activities is to define the context of the study. Simula-

tion has a purpose, which copes with the study of a behaviour of the product in order to validate,

optimize, evaluate its performances. The type of study (behaviour and goal of simulation) implies spe-

cific information that will drive the way of performing simulation (type of model, type of simulation

and solvers used, expected result). Regarding all the data implies in a simulation, they have to be or-

ganized and structured to know for what study these data has been used or created. To define a study

context the following required information must be captured and retrieve:

 The purpose/goal of the simulation study: In the product development process, simulation is

linked to a specific objective. This objective is to study the behaviour of the product in a de-

fined situation, environment, in order to validate the design studies, or to specify the design

of the product.

 The simulation type: Following the different goal of the behavioural study, a kind of simulation

is used. Simulation could be an acoustic, thermal, mechanical, CFD simulation or an optimiza-

tion, a multi-physic simulation, a distributed simulation. The type of models and/or the type

of solver to use will be derived from the different defined simulation types.

 Product description: The simulation is performed on a specific baseline of the product, which

are characterized by its configuration and version status regarding the development process.

This information enables to select appropriate models linked to the configuration and version

of the product. This product description is complete by the operational state of the product.

This information provides each case study about the condition of use of the product.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-175-

Functions & capabilities to develop:

 Define a study / analysis context

 Define and re-use study/simulation templates

 Use the study context information to identify and provide the relevant data set to provide for

the simulation

10.1.6.6 A3: Provide the relevant design data set to use for an integrated assembly FEA.

Identified need: product data models must support the consistent integration of design infor-

mation from the product definition (and especially the CAD data present in DMUs) with the associated

simulation data (FE models, results) in order to ensure a complete traceability of the design/simulation

information chain and to enable the management of change impact in PDP. The analyst might be able

to retrieve all the design data inputs used to create a simulation model. He also might be able to freeze

a product definition and related views and to compare two similar product configurations taken at two

different time t in order to analyse design evolutions. He might be informed about the nature and

details of the design changes.

Functions & capabilities to develop:

 A31: Retrieve all the design data inputs used to create a simulation model and be able to trace

all the CAD-CAE in information chain

 A32: Visualise and compare two similar product configurations taken at two different time t

 A33: Request and retrieve a specific DMU product view and access/identify/visualise compo-

nents interfaces and interactions definitions

10.1.6.7 A4: FE sub-systems Integration & Pre-Processing

Based on a common shared product definition (a behavioural system architecture), and based on

the study context definition, the goal of this functional package is to create an Integrated Finite Ele-

ment Model (or assembly FE model). The main hypothesis is that we are working in a collaborative and

distributed design environment where sub-systems are designed at each partner site. In that context,

the integrated simulation model is built from the assembly of sub-systems simulation models specified

by the integrator but created at partners’ sites. Figure 118 below, describes the sub-functional pack-

ages that compose the “System Integration” package:

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-176-

Figure 118: A4 SADT - SADT - FE Sub-systems Integration & Pre-Processing

Identified need

 Exchange and use of interface and modelling specifications for the integrator to be supplied

with appropriate FE models of fit-for-purpose type, size and quality;

 Interoperate with CAE pre-processing applications to create or re-use the required FE models;

 Assess the quality of FE models to integrate;

 Speed-up the FE process by automating the assembly of sub-systems models;

Functions & capabilities to develop:

 A41: Behavioural interface and modelling specifications;

 A42: Exchange of interface and modelling specifications between heterogeneous PLM/SLM

systems;

 A47: Automate the assembly of sub-systems FE models within the appropriate CAE pre-pro-

cessing applications.

10.2 Proposed approach for exploiting DMUs in DASIF

10.2.1 Definitions

In the following sections, the reader might be confused by the use of complementary and close

notions. It is hence important to provide a precise definition for each of these notions.

Referential DMU (RDMU): as defined in 3.3.2, a RDMU is a snapshot at a given time, i.e. at a

maturity level, of a product configuration definition permitting to display its 3D representation in a

CAD modeller or viewer. As its name suggest a RDMU is, for a certain time period, a product definition

reference for deriving other related product representations (e.g. BOM, 2D cross-sections) and

adapted Downstream DMUs. Therefore, the CAD models contained in a RDMU evolve during detailed

design phase to an “as-manufactured” definition; i.e. with all constituting parts and with a high level

of geometric details.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-177-

Downstream DMU (DDMU): A DDMU, and based on the definition from [Drieux, 2006], is a 3D-

based product view gathering the just needed information for a given usage, i.e. a targeted down-

stream application (e.g. various multi-disciplinary finite element analyses, manufacturing sequence

simulations, maintenance and accessibility checking, etc.). The DDMU is partially generated from data

retrieved and/or adapted from a RDMU. However, a RDMU, even if more detailed, may not contain all

the information and data required for the targeted application. Therefore, in addition to mechanisms

of adaptation, the process of RDMU transformation into DDMU might integrate enrichment mecha-

nisms.

DMU product view: A DMU product view is a restriction (or subset) and a specific data organiza-

tion of another initial or referential DMU, defining together an understandable and appropriate rep-

resentation according to a specific business perspective (e.g. the design view, as designed) or to a spe-

cific application. Therefore, all the generated DDMUs defined for a business or a given targeted appli-

cation, allows defining new views of the product for this business or this type of application: a DDMU

is a specific view of a RDMU.

Product configuration: Rule describing the composition and structure of a hierarchical sys-

tem/product. Therefore configuration rules enable the definition of the structure and the relevant

content of the various DMU product views.

Master product configuration: it is a product configuration that is established each time it is nec-

essary to agree on a reference which is the basis for identifying further configurations and related

product views.

Targeted downstream application: a DDMU is hence specific to a targeted downstream applica-

tion. While a business may be linked to a specific product representation corresponding to this busi-

ness, a downstream application defines a specific usage of this representation to access certain aspects

of the product that may or may not be present in the RDMU. This application is defined by the user

needs (in terms of structure, content and details of the data to be present in the product representa-

tion) regarding the objectives of this application but also by the constraints for generating and exploit-

ing the related product representation. For a given business, a targeted downstream application is

defined by:

 One Discipline or Business: defines the business or discipline (mechanical integration, thermal

integration, acoustics, marketing, manufacturing assembly) in which the product representa-

tion is used;

 One Use Case/Scenario: within a same discipline, several different use cases of the product

representation can exist (e.g. simulate the impacts of a physical phenomena, design in con-

text, specify components interfaces, exchange of CAD data, etc.).

 One Context in which the use case is performed: the context refers to the product lifecycle

stage, the system breakdown level, the considered product configuration and the role(s) of

the user(s).

 One or several Objectives: defining the final targets of such a usage of the product represen-

tation (e.g. verify system compliance to design requirements X, Y, and Z).

DMU Scene: as defined in 7.2.2, the word “scene” is generally used in the context of visualization

of 3D CAD models to identify all the elements/entities (3D objects, materials, attributes, etc.) needed

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-178-

to visualize and to possibly handle. In a more generic approach, the scene can be considered as the set

of data needed to achieve an application scenario, whether it concerns visual data, simulation models

or various associated attributes. A scene only contains the relevant and significant data/information

(entities and relationships) for this application scenario and also strongly refers to the organization of

these data; which is itself linked to the targeted application scenario. The “scene” notion differs from

the DDMU notion since it designates a representation of a RDMU or a DDMU which is directly accessi-

ble and exploitable by the end user, whether the scene is visual or interactive. The generation of a

DMU scene correspond to the stage of translating the DMU data in the specific language and format

of the modelling, viewer or simulation tools that make these data understandable and exploitable by

the end user.

10.2.2 Proposed approach: from “Referential DMUs” to “Downstream

DMUs”

Due to the complexity and variety of possible targeted applications and related use case/scenar-

ios, it is impossible to provide a generic and valid solution for all these applications and use cases. Since

our research work focus on the exploitation of DMUs for assembly FEA, the targeted downstream ap-

plications mentioned above will only concern different types of FEAs. In this context, the related use

cases will correspond to the nature and type of the analysis (e.g. for the “mechanics” discipline: per-

forming a mechanical static linear constraints analysis, performing a crash landing dynamic analysis

etc.).

For a given set of targeted downstream applications, i.e. for a given set of different FEAs and re-

lated objectives, we propose to study and clarify:

 The links between the data objects present in a DDMU, their organization and their con-

sistency regarding the objectives of the FEA;

 The relationship between the DDMU at a given t time of its preparation process and the RDMU

or the other related data sources, i.e. the links between the initial data sets and the adapted

data sets;

 The way of generating such a DDMU, i.e. the DDMU preparation process.

10.2.2.1 DDMUs preparation process

A targeted downstream application (i.e. a FEA and related objectives) being specific, the

preparation process that encompass both adaptation and/or enrichment mechanisms will also be

specific and dependant of the requirements of the targeted application. To define and manage this

DDMU preparation process we have been inspired by the DDMU preparation process proposed by

[Drieux, 2006] and the concept of “Intermediate Model” defined by [Fine, 2001]. The approach consists

in using a common and enriched product assembly model (DMU) as a support for the transformation

of one design CAD model into one or several analysis CAD models used for FEA. However, according

to what we have observed at Snecma and more generally in the aeronautics extended enterprise in

terms of DMU usage, we have identified two different approaches for managing such DDMUs.

Therefore we propose two scenarios that are illustrated in Figure 119.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-179-

Figure 119: Two different scenarios and approaches for preparing and managing RDMUs and DDMUs

Scenario 1 or “ Ideal scenario”- Enriching and managing one RDMU and related DDMUs product

views at the same time from the earliest design stages

This scenario starts at the first stages of preliminary design when the DMU still does not exist.

Then this scenario should be repeatable since the idea is to build, enrich and configure RDMUs and

related DDMUs conjointly all along the development lifecycle. To achieve this objective, not only the

designers and the configuration manager configure product data, but all the actors involved in the

generation of DDMUs and their components definitions. This scenario starts from the first structural

architectures leading to the first DMU representations: the mechanical skeletons (see section 3.3.3)

that are still not configured. When these architectures are validated to launch the preliminary design

phase, the master referential configurations can be defined. Based on pre-defined validation plan, and

on the experience of previous projects, the derived “design discipline configurations” or “analysis-ori-

ented configurations” can also be defined because designer already knows which kind of DDMU struc-

ture he needs for his specific needs. A master product configuration can lead to several “analysis-ori-

ented configurations” so that their associativity must be ensured. Then, starting by using the context

defined by the mechanical skeletons, the RDMUs and Intermediary DDMUs are enriched together: if a

component is effective in a master product configuration and in a derived “analysis-oriented configu-

rations”, its definition (CAD models and properties) will be accessible in both configurations, and the

design changes of this component (or its suppression for instance) will be propagated in both related

product views. Since we have underlined the predominant role of interfaces definitions for FEAs, this

DMU enrichment phase might also include the definition and specification of these interfaces all along

design activities. Afterwards, from 1 one of these “Intermediary DDMUs”, the analyst, according to the

modelling requirements related to the FEA, can perform shapes transformation (mainly details re-

moval and idealisations) to obtain a direct exploitable DDMU for the generation of an integrated FE

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-180-

model compliant with the simulation objectives and related modelling requirements. The specific ge-

ometries in the final DDMU mentioned in Figure 119 concern for instance the fluid domain geometries

used for CFD calculations.

Scenario 2 or “Retro-fit scenario” – Generating a DDMU from an already existing, complete,

consistent and frozen RDMU

This scenario relates to the detailed design phase where DMUs are enriched with “as manufac-

tured” parts and assemblies definitions. In this scenario, instead of enriching progressively the DMU

along the development lifecycle with all required data and configure this data according to their rele-

vancy for such or such applications, the DMU is enriched in “retro-fit” in view to the future adaptations.

Starting from a selected “master product configuration” and its related DMU representation (a Refer-

ential DMU), a first step consists in enriching this RDMU with the definition of components interfaces

(see section 10.3.3) and eventually enriching the DMU with fluid domains geometries (useful for aer-

othermal and CFD analyses). Afterwards, filtering mechanisms permit to filter the DMU content and

create different DMU subsets regarding the required 3D geometries since not all components are mod-

elled in 3D in the resulted FE model. Based on the interfaces relations defined previously, the structure

of these DMU sub-sets are reorganised according to the business structuring rules and requirements

of the FEA leading to a set of re-structured “Intermediary DDMUs” still containing the remaining (not

filtered) nominal CAD models. These intermediary DDMUs will generate new product views that need

to be considered as new “Analysis-oriented configurations”. To obtain the direct exploitable DDMU for

a specific application the shapes transformation process applied on these “Intermediary DDMUs” is

similar to scenario 1 but still specific for the simulation objectives and related modelling requirements.

This scenario is similar to the one proposed by [Drieux, 2006].

Currently this scenario 2 is usefull for on-going programs where already existing and consistent

DMUs are available. It is not the ideal scenario we would recommand. However, in a “cross-project

knowledge transfer strategy”, it is mandatory to consider it since a new program can correspond to

the development of a new product version that will be based on the definition and DMUs of its

previous version. In this context optional steps can be added to this scenario including for example

DMU scaling transformations.

10.2.2.2 Links between referential and downstream DMUs

In scenario 1, all DDMUs related to a RDMU evolve conjointly and the content and structure of the

DDMUs are in principle always consistent regarding the RDMU. However there are two approaches

considering a RDMU in a digital integration chain:

 Static frozen RDMU: A RDMU can be frozen for a given multi-disciplinary digital integration

chain in order to ensure that all simulations involved in this integration chain are based on the

same product definition. In that case, the related DDMUs are also frozen. When starting a new

iteration, an update and refreeze of the RDMU and related DDMUs is necessary. This approach

permit to avoid discrepancies between two independent asynchronous simulation loops (re-

ferring to the issue illustrated in Figure 10) in terms of used product definitions.

 Dynamic evolving RDMU: in that case the RDMU used in digital integration chain iteration is

always evolving. The actors involved in the independent simulations are not obliged to use the

same definition but might be able to retrieve which product definition have been used for

such or such simulation models and results.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-181-

In both cases, whether a time or a knowledge gap is unavoidable. Indeed, the analyst involved in

the fastest simulation loop that uses the results of the other simulation as inputs, will have to wait for

the end of the other simulation if he wants to use consistent results. Otherwise, he has to use the most

recent available results and be informed from which product definitions they have been generated.

Thus, he might be able to compare the product definitions to analyse the design evolutions and their

impacts on the simulation models and results. These gaps reinforce the importance of improving such

a DDMU preparation process with the objective of reducing the time to prepare the simulation models.

In scenario 2, the DDMU preparation process requires a given time during which the RDMU

evolves. Considering these evolutions, the creation of a simulation model for a given application can

lead the analyst to execute some more or less regular and complete DDMU updates according to the

type of design evolutions that have been integrated in the used configuration. These updates occur

whether after the simulation loop to re-adjust the simulation models and results according to the

RDMU up-to-date data, whether inside the loop to perform partial updates.

The update of the DDMU data inside or outside the simulation loop is hence sometimes necessary,

justifying the implementation of adequate tools for change monitoring such as product configuration

comparison and geometry comparison tools. Another approach, that we will further specify, consists

in storing the nature, details and impacts of a design change within a “design change object” and to

permit to the analyst to identify all the design change objects - impacting the used product configura-

tion - that have been created between two time t.

10.2.2.3 Links between simulations and DMUs

The formalisation and capture of targeted downstream applications specifically dedicated to sim-

ulations and particularly FEA applications is mandatory for our approach. As already defined, such an

application is defined by a discipline (or application domain), a type of simulation and a specific ana-

lyzed behaviour (the scenario), a simulation context, and some simulation objectives. Again, accord-

ing to the nature of the downstream simulation, we have identified three different scenarios:

 New FEA: the targeted downstream application is new (the analysed behaviour, its type, its

objectives, etc.) and/or never led to the creation of DDMU;

 Update of FEA: the targeted application and the corresponding intermediary DDMU (with

nominal CAD models) and final DDMU(s) (with the idealized CAD models) already exist. How-

ever the DDMU used for the previous iteration has evolved and the analyst might be able to

identify and analyse the design evolutions and their impact on the FEA models and results.

 Equivalent FEA: a similar targeted application (same discipline and same use case but different

context) already led to the creation of a DDMU but for a different design and /or analysis data

set (e.g. same simulation analyzing the same behaviour but analyzing a different assembly or

product configuration)

The simulation context which gathers information about the product lifecycle stage (or program

phase), the system breakdown level (or base-line), the considered product configuration is the object

that makes the link between the simulation data set and the analyzed system or sub-system design

data set (referenced by the system breakdown level and the product configuration) and representa-

tions; i.e. the DDMU in the case of assembly FEA if it already exists. The simulation objectives, pointing

towards the design requirements of the analyzed system or sub-system that the simulation is supposed

to verify/validate, permit to establish a link with the functional definition and the design intent of the

analyzed artefact. Further in this chapter we propose to use the concept of simulation intent to capture

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-182-

the simulation objectives with associated modelling requirements. Therefore the data model support-

ing such concepts might gather all these study context information. Figure 120 shows a study manage-

ment package which is composed of several classes that permit to capture the required information

for defining a study context.

Figure 120: Content of “StudyManagement” package

The class Study might be the main entry to collect and access to the different context of the study

inside the design process. It is a central class that gathers all the information about the study. The

other class ensures the definition of the context of the study:

 Concept / Study Objective / Study Type: the user might define the goal or simulation intent

(design requirements to verify or concept to experiment), the type of simulation to perform

(mechanical, thermal, linear, non-linear, etc.) and the methodology to do it;

 The Baseline gathers all the data linked to the product and its configuration and the models

associated to it;

 The Programme Phase indicates the stage of the product development process in which the

simulation is performed (Feasibility, Conceptual Design, Detailed Design, Certification).

All these classes that are used to describe the study context might be associated to other packages

in order to access to all the data required for performing the study: product design definition, models,

boundary conditions and load cases.

10.2.3 Conditions and required capabilities for exploiting downstream

DMUs in design-simulation loops

In this section we define the list of the conditions and required capabilities for exploiting down-

stream DMUs in design-simulation loops and for considering the DMU as a flexible product definition

reference for handling collaborative digital integration chains. This is essential to identify the entire

scope of the development phase and for prioritising the development tasks regarding the potential

impact of these capabilities, the effort required to implement them and regarding the scientific posi-

tioning of this PhD. These conditions and capabilities have been classified according to their functional

use cases.

In terms of DMUs consistency with product definition and other product representations:

 C0a: Starting the DDMU preparation process with a complete consistent RDMU (prerequisite

for scenario 2);

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-183-

 C0b: Possibility to use a “3D-2D operator” permitting to derive from a RDMU or a DDMU 2D

cross-sections used for instance for 2D axisymmetric simulation models (prerequisite for en-

suring the consistency of the final integrated FE model);

 C0c: DMU enriched with material references to be able to derive the mass properties (prereq-

uisite for deriving BOMs from DMUs and ensuring their a DMU-BOM consistency);

In terms of product configuration management process capabilities:

 C1: Possibility to configure the product according to design/analysis discipline-oriented prod-

uct structures;

 C2: Possibility to integrate new kind of product data (such as idealised models, interfaces def-

initions, fluid domains, behavioural item definitions and related models) within these config-

urations;

 C3: Consistency between master product configurations and analysis-oriented configurations;

 C4: Possibility to use design change monitoring and analysis capabilities such as a product

configuration/structure comparison tool or geometries comparison tools;

 C5: Possibility to capture inter-related design change within a “Design Change Object” and

retrieve these design changes between two instants t.

In terms of DMU enrichment mechanisms:

 C6: DMU enriched with interfaces definition integrating the functional, topological, and tech-

nological aspects of the interface;

 C7: Possibility to use operators capturing topological contact areas between components

(mainly for scenario 2);

 C8: Possibility to create and re-use interface templates in order to easily integrate these inter-

face definitions within DMUs;

 C9: Possibility to use operators to extract fluid domain geometries and to consistently inte-

grate and configure them within the DMU;

 C10: Possibility to define/specify structural and behavioural architectures and to enrich/adapt

DMUs jointly and consistently with these architectures;

In terms of DMU adaptation mechanisms:

 C11: Possibility to use a “3D-System” operator permitting to derive from a DMU assembly and

related interfaces definitions the corresponding multi-level system model representing the

components, their interactions and permitting to navigate through the system breakdown lev-

els;

 C12: Possibility to declare business structuring rules on these system models and specific in-

terface definitions to re-organise DMU structures;

 C13: Possibility to filter a DMU according to simulation objectives and related modelling re-

quirements;

 C14: Possibility to use idealisation tools and to monitor the necessary idealisations according

to the simulation objectives and related modelling requirements;

In terms of links between DMUs and simulation data and meta-data:

 C15: Possibility to reference a product base-line and a product configuration in simulation

templates to retrieve which product definition has been used for such or such simulation mod-

els and/or results;

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-184-

 C16: CAD-CAE data high level associativity to retrieve which CAD model has been used for such

or such simulation models and/or results;

 C17: CAD-FE topological associativity to identify the relevant topological elements in both CAD

and FE models in order to associate an identified interface CAD mating feature to the corre-

sponding FE mating feature or to apply the relevant boundary conditions on the right FE ele-

ments;

 C18: Possibility to capture a DDMU preparation process and associate it to a specific targeted

downstream application (FEA in our case) and to re-use it on updated (in the case of a FEA

update) or different data sets (same kind of FEA applied to a different context).

In terms of interoperability and collaboration:

 C19: Possibility to visualise and modify a DMU in one or several CAD modellers or viewers;

 C20: Possibility to exploit a final DDMU in the right FE pre-processing environments;

 C21: Possibility to exploit definitions of behavioural architectures (defining the structure and

content of an integrated FE model) in the right FE pre-processing environments in order to

automate the assembly of FE models;

 C22: Possibility to exchange a product definition (and particularly structural and behavioural

architectures integrating interfaces design, behavioural definitions and modelling specifica-

tions) between heterogeneous PDM/SDM systems.

10.3 DASIF related capabilities and concepts proposal

Considering all these conditions, the scope is too large to integrate the development of all related

required capabilities in the scope of this PhD. Therefore we have identified the priorities and this re-

search work focuses on:

 Specifying the capabilities required to respect the pre-required hypotheses (C0a, C0b, and

C0c);

 Specifying some transformation and enrichment mechanism and related operators (C6, C7,

C8, C9, C11, C12, C13);

 Defining the DASIF product data model supporting such a use of DMUs, supporting the system

integration framework and design-analysis data integration (C1, C2, C3, C5, C15, C16, C17);

 Specifying and develop a system integration framework using an object-oriented system mod-

elling language to define/specify multi-level and multi-domain system architectures, to enrich

and adapt DMUs conjointly and consistently with these architectures and to support design-

analysis data integration (C10);

 Studying how to exploit behavioural architectures definitions FE pre-processing environments

in order to automate the assembly of FE models (C21);

 Supporting standardized exchange of product and simulation data within collaborative aero-

nautics digital integration chain and hence between heterogeneous PDM-SDM applications by

mapping these concepts and the proposed data model to standardised product data models

(C22);

The solutions and concepts proposed in this section are based on three important hypotheses:

1) Imported product definitions and representations are considered consistent;

2) Existing DMUs and related CAD models are enriched with mass properties (mass, centre of

mass and moments of inertia) and a material reference attribute;

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-185-

3) The product is developed in a collaborative and distributed design environment where sub-

systems are designed at each partner site.

10.3.1 Referential DMUs and derived representations

The first capabilities to develop must ensure that the previous mentioned hypotheses are fulfilled.

In order to get a DMU consistent with the current product definition and other related representations,

we propose to use the DMU as the reference for generating other representations of product defini-

tion such as the Bill of Materials and the 2D drawings.

10.3.1.1 Integration of mass properties in DMUs to generate BOMS

A Bill of Material is a list of all individual parts constituting the assembly. For each of these parts,

the BOM provides the following information:

 The designation of the part;

 The part number: code referencing the item;

 Its functional reference (SNS in the aeronautical industry): code referencing the function of

the part in the assembly;

 The quantity: when the same part is multi-instantiated within the same assembly;

 The material reference;

 The mass properties of the part: the indicative mass, the coordinates of the centre of mass

and the inertia moments.

In order to generate a BOM from a DMU, it is therefore required to integrate all these information

within the DMU. As-is DMU already contains the name, the part number and the functional reference

of its components since they are already stored and accessible in the PDM data base. However some

current DMUs still do not consider the mass properties of the components and the material reference

of the parts. In PDM systems, the definition of the system components is generally structured around

these three entities:

 The definition of the item: which is common to all the instances of this item (designation, part

number, CAD model, etc.);

 The definition of the item instance: describing features related to the instance itself (function

and related functional reference, placement in the parent assembly) and describing the chil-

dren components of the item instance if the item is an assembly;

 The product structure link or node (or assembly_usage_occurence): describing the attach-

ment of an item instance to the definition of its parent assembly. This entity can contain the

same information related to the item instance since there is one structure node for exactly

one instance.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-186-

Figure 121: Mass properties management principle proposal

In order to integrate the mass properties and the material reference within DMUs, we propose to

integrate them in the CAD model parameters and we recommend setting a DMU rule: “A component

can be integrated in the DMU if and only if its CAD model contains a material reference enabling to

derive the absolute mass properties”. Figure 121 provides the conceptual model we propose to sup-

port this capability. Moreover, the mass property must be an alternative to the 3D geometrical repre-

sentation (representation "0D"). This representation must be attached, such as 3D representation, to

the definition of the part item. Services must be able to derive the mass properties of a system from

the mass properties of its components.

10.3.1.2 Generation of relevant 2D drawings from DMUs

For products which geometry is mainly axisymmetric, analysts performing simulations at the top

integration level often use 2D axisymmetric models in addition to 3D models to accelerate the compu-

tation time. In that case the main design data input is not a 3D DMU but a 2D drawing representing a

cross-section of the DMU. Currently the cross sections used for 2D axisymmetric models present some

inconsistencies with the corresponding DMU:

 Inconsistencies related to the delta or gap between the current technical product definition

and the status of the DMU: because the creation of 2D cross-sections is not synchronised with

the DMU evolutions (see Figure 122).

 Inconsistencies related to the fact that the cross-section does not include certain non-axisym-

metric elements that need to be considered and/or modelled for the simulation

 Topological inconsistencies: large cross-sections often have some non-closed outlines forcing

the analyst to manually refine the corresponding edges.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-187-

Figure 122: example of 3D-2D inconsistencies between a DMU and a 2D cross-section

To avoid these inconsistencies we propose:

 To generate these cross-sections directly from the DMU and to capture the link between the

3D CAD assembly model and the equivalent 2D CAD cross-section (associating these models

to the same definition of the assembly).

 To integrate in the cross-section the relevant required non-axisymmetric elements regarding

the simulation objectives: these elements must be projected on the cross-section plan.

When considering the non-axisymmetric elements in the simulation model, mechanical or

thermo-mechanical analysts need the information concerning the “filling ratio” of these elements. The

“filling ratio” is the ratio between the volume currently occupied by the non-axisymmetric element on

the total circumference and the volume occupied if we would perform a complete revolution of the

same element on the circumference. For an axisymmetric element the ratio equal to 100%. For in-

stance, the impact of ventilation holes for a rotor part with a small diameter may be significant for

mechanical analyses and should be taken into account in the 2D axisymmetric mesh used for stiffness

calculations. Therefore, this “filling ratio” information must be accessible directly from the 2D cross-

section.

Finally associativity between 2D topological elements of the cross-section and 3D topological ele-

ments of the 3D DMU is required so that:

 The 2D cross-section can follow automatically the updates of the DMU;

 There exists a bi-directional associative link between the data sets used for 2D and 3D com-

putations;

 This associativity can be exploited in pre-processing environment.

Figure 123 shows the proposed methodology and related process to provide these consistent 2D

cross-sections.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-188-

Figure 123: Proposed To-Be process for generating DMU-based and simulation-oriented 2D cross-sections

This process is made of the following steps:

 DMU loading and definition of the cross-section plan: the process starts by requesting and

retrieving the desired product configuration in the PDM client application and to load the cor-

responding DMU in the CAD modeller.

 Generation of single parts 2D cross sections: this step is the main step of the process and is a

sub-process that might be performed for each DMU parts that need to be projected in the

cross-section: the user only perform this sequence for the relevant parts that might appear in

the cross-section. This sub-process is composed of the following steps:

 Select a part and open the corresponding CAD model;

 Define filtering criteria: the filtering criteria are defined by the user and are based on

commonly used CAD features (such as holes, embossing, chamfers, etc.). The user might

select in a feature list, the ones that will not be projected in the cross-section;

 Projection of the necessary elements and generation of the cross-section: the tool

might perform a 360° revolution scanning (around the axis orthogonal to the cross-sec-

tion plan) of the part geometry and project all the related topological elements (point,

edges and curves) on the cross-section plan, except the ones corresponding to the CAD

features selected in the previous step. This is during this step that the tool might auto-

matically capture the associative links between the 3D topological elements and the 2D

topological elements that it has generated;

 Calculate and capture the filling ratio of non-axisymmetric elements: while scanning

the geometry, the tool might be able to calculate the range of degrees where there is

no “solid matter” and derive the corresponding “filling ratio”. If this ratio is not constant

for the whole part geometry, different ratios might be assigned to different geometric

areas according to an adjustable “precision parameter” defining for which “ratio step”

the tool generate a new geometric sub-area;

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-189-

 Cut the section into constant “filling ratio” and material sub-areas: based on a material

parameter (defined for all parts or for each body of the part if the part is made of several

materials) inherent to the CAD model and on the “filling ratio” measure of the previous

step. This step consists in providing a visible cutting of the section that gather the geo-

metric areas where the material is the same and where the “filling ratio” is constant

(the expected result is illustrated in Figure 124);

 Assembly of individual cross-sections: once the cross-sections of all necessary DMU parts have

been generated, the tool might be able to progressively assemble all the individual cross-sec-

tions of the DMU parts. This assembly is only based on the relative position of each part in the

reference frame of their parent assembly.

Figure 124: illustration of the cross-section cutting results on a turbojet FAN module

Recommendation: in order to generate a coherent integrated cross-section, the filtering criteria

and the “ratio precision” parameter might be the same for all the assembled parts.

10.3.2 Multi-view DMU Configurations and Product Views Manage-

ment

10.3.2.1 Main product configuration principle

The definition of the components (item instances) that constitute a configuration is managed

through the concept of “effectivity”. An effectivity is the identification of a domain of applicability for

product data [ISO, 2004a]. From a PDM/PLM perspective, the effectivity is a product structure link

attribute that defines if a usage occurrence of an item definition (i.e. instance of a system artefact) is

relevant for a given configuration or list of configurations. The principle of product configuration ap-

plying effectivities on artefacts “Definition_Usage_Occurences” is illustrated in Figure 125. This princi-

ple is based on classical PDM and standards recommended practices. There might be different kind of

effectivities as already illustrated in Figure 75. One effectivity can be a list of configurations, a range of

configurations (if they are sequentially defined) or even a dated_effectivity (with a start date and an

end date; this supposes to assign a start and an end date attribute on the configuration entity).

Each product is associated to a “Root” entity which is the top-level component the non-configured

product structure and carrying the configurations for design and manufacturing. It might be noticed

that it should be possible to define non-configurable structure nodes if it agreed that one component

might be present in all configurations. It could be the case for the highest level components.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-190-

Figure 125: Effectivity-based product configuration working principle

10.3.2.2 Master, Manufactured and Design Discipline Configurations

A master product configuration is established each time it is necessary to agree on a reference

which is the basis for identifying further configurations and related product views. In current configu-

ration management practices, they are commonly three main types of master or referential product

configurations according to the development cycle stages [BNAE, 2003]:

 Functional referential configuration: is a reference agreed for launching the preliminary design

phase. It generally corresponds to the first described functional architecture (structure of

functional packages/modules and related design requirements) and/or to the first conceptual

and structural architectures.

 Development or Design referential configuration: is a reference agreed for launching the de-

tailed design phase. These configurations take into consideration the items identified and de-

signed at this stage of the development process. An item configuration at this stage is gener-

ally composed of its design requirements and of the technical definition elements fulfilling

these requirements (i.e. the structural architecture of the item, its preliminary internal inter-

faces definitions, performances allocations, its geometry and other agreed definition ele-

ments like the parts materials)

 Manufacturing referential configuration: is a reference agreed for launching the industrialisa-

tion/manufacturing phase. Such configuration is achieved when the technical definition of its

constituting items and their integration have been validated and enough justified to serve as

reference for manufacturing and assembling these items.

The traceability and consistency between these configurations must be ensured. As illustrated on

Figure 126, further configurations based on these master configurations, and particularly the ones de-

fined for specifying given design or analysis views of the product, are required.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-191-

Figure 126: Master, Manufactured and Design Disciplines Configurations

Reminding that a view is a restriction (or subset) and a specific data organization of a product

defined to provide an understandable and appropriate representation according to a specific business

perspective, one approach could consist in defining a design discipline configuration each time a spe-

cific view of a product is required. However, with such an approach the configuration management

process and the assignment of product component definitions in the relevant configurations can be-

come complex. A view is hence defined by a re-organisation of the product structure and by filtering

the relevant elements that appear in the view. In STEP, “the View_definition_context” entity defines

the context in which the design definition of an artefact (properties, documents, structures, etc) is

valid. A View_definition_context is the grouping of an application domain and a life cycle stage. There-

fore we propose an extension of this vision as illustrated in the UML class diagram in Figure 127.

Figure 127: Conceptual model for managing configurations and related product views

Configurations are defined in a specific application context specifying the application domain or

discipline and the product development lifecycle stage for which the configuration is relevant. A view

being associated to a specific configuration is associated to this context. However, a “view definition

context” needs additional information justifying the specific used representations: the usage scenario.

In the context of this PhD, the usage scenarios will be the different FEA simulations using this view.

10.3.2.3 DMU views associated to configurations

In the context of configured DMU product representations, a view is also obtained, according to

the objective of the targeted application, by filtering the DMU content (selecting only relevant parts)

or/and by the use of specific representations for the components present in the configuration. For

Configuration

Design_Discipline_ConfigurationManufacturable_Configuration

Effectivity

Configuration_Context

+application_domain

+lifecycle_syage

View_Definition_Context

Definition_Usage_Occurence

Artefact_Definition

+instances

+def

0..*

1

+children

+parent

0..*

1

Effectivity_List

+effectivities
+nauos0..*

0..*

Usage_Scenario

1

10..*0..*

1..*1

Master_Configuration

Configuration_Relationship

+def+inital_context

1

+def+additional_context

10..*

+def+context

*1

+related+relating 1..*1

+slaves+master 1..*1

System_Artefact

+artefact

+defs

1

1..*

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-192-

instance, instead of filtering a component 3D model, it could be replaced it by its equivalent 2D cross-

section or by its 0D mass representation. Therefore, for a same design_discipline_configuration several

DMU product views can be defined. These DMU views have the same structure between assemblies,

sub-assemblies and parts, but display different items representations and hence specific items defini-

tions. A DMU view can also be a final idealised and exploitable DDMU for FEA if the idealised repre-

sentations are available. These DDMU configurations and views concepts and the way they are man-

aged are illustrated in below Figure 128.

Figure 128: Illustration of a multiple usage occurrences of DMU components in a modular referential configuration, in the

mechanical configuration and some possible derived DMU views.

Therefore, an artefact definition might be associated to a specific set of representations. The

view_definition_context will allow capturing for which context(s) and usage scenario(s) this definition

is relevant and used. For instance the definition of a fluid domain and its associated geometry will only

be used in specific thermo-mechanical and aero-thermal usage scenarios (CFD calculations).

10.3.2.4 Engineering change propagation between DMU product views

As mentioned in section 4.1.3.2, engineering changes can be a major source of inconsistency if

they are not properly propagated within the various product configurations and related representa-

tions. Therefore, companies require product data views for each domain that support their specific

views and EC propagation procedures that maintain consistent product data between design depart-

ments. Figure 129 proposes an engineering change process schema relating the engineering change

process to the design change objects and the product data definitions. In this schema, the process

should be monitored by a review workflow aiming at defining all the features and impacts of the design

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-193-

change. The design change makes evolve the item definitions in different ways (CAD modification,

structural change, deleted component, property change, etc.). The design change can be propagated

in all configurations where the impacted item definitions are effective.

Figure 129: Engineering change process schema

When a design change occurs, such as a modification of one of the DMU components geometry,

a new version or a new instance of the artefact_defintion is created. The previous definition had po-

tentially several definition_usage_occurrences effective is several related master and design discipline

configurations. Therefore a mechanism is required for propagating the changes in these configurations

to maintain them up to date.

Figure 130: Change propagation from a master configuration to a related design discipline configuration

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-194-

The mechanism we propose is illustrated in Figure 130. The propagation relies on two important

relationships: a master-slave relationship relating the two configurations and a master-slave relation-

ship relating the two design_usage_occurences (NAUOs). The propagation might occur only when the

design change is validated. The related design change object might have a status attribute permitting

to trigger or not the propagation. When the CAD modification is validated the previous Artefact_defi-

nition is replaced by the new one. The new artefact_definition might retrieve all the definition_us-

age_occurences which was associated to this definition in order to assign the new definition to all

relevant configurations. The master-slave NAUO relationship ensures for instance that when a compo-

nent (master NAUO) is deleted from a master product structure it is also deleted on the other config-

urations. If new components appear in a master product structure, the slaves NAUO has to be manually

created. In that case, the definition of the parent component has changed (since it has a new child

component) and if the parent component definition is effective in other configurations, the modifica-

tion will be propagated as soon as it is validated with the same mechanisms. There are many possible

scenarios for monitoring the engineering change propagation process. These scenarios highly depend

on the nature of the change and on the impact of the change on other product components. These

different types of change and related scenarios are further explained in the next chapter while speci-

fying the conceptual data model.

10.3.3 DMU enrichment with digital interfaces definitions

10.3.3.1 Interface types

The interface is a real or virtual area where there exists an interaction between two elements. In

this area, the interaction enables to link two elements to ensure functional, structural and behavioural

continuity. There exist several types of system’s interactions. Some interactions are functional (in-

tended) and the system behaviour and performances highly depend on them. Other non-functional

interactions can be identified and specified in order to better simulate the unintended phenomena

and anticipate them. In the context of DMUs, whether the interaction is functional or not, we propose

to consider three types of interfaces:

 “Solid-Solid” interfaces: it is an interaction or non-interaction (clearances) between two phys-

ical components. Except for clearances, which will be processed separately, these interactions

occur between geometric features of the components (contact between two surfaces, for ex-

ample). They are characterized by a kinematic and the resulting degrees of freedom which are

needed to model the interface behaviour. For an aero-engine, the two most commonly used

interfaces which define the overall design context are the bolted flanges and the bearings.

However we can mention other sub-types of mechanical interfaces: engine-equipments inter-

faces, suspensions interfaces, groove interfaces, etc.

Figure 131: Examples of solid-solid interfaces usually found in a turbojet engine system

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-195-

 “Fluid-Solid” interfaces: It is any kind of interaction between a fluid domain and physical com-

ponents of the product (the solid domain). They can be generally classified into two sub-cate-

gories:

 Pressure of a fluid on a solid surface: to consider the dis-

placements of the solid surface resulting from the ap-

plied pressure.

 Thermal/Heat transfer on a solid surface: this type of in-

teraction need to be analysed to consider the solid dis-

placements of the solid surface resulting from the heat

transfer (modifications of the material properties)
Figure 132: Example of fluid-solid interface

 “Fluid-Fluid” interfaces: These are all the other interactions occurring between the product

fluid domains. They can be materialized physically by ventilations holes or scoops. These in-

terfaces are necessary to specify for instance the section of a functional air intake designed

for cooling down a hot area in the “high pressure” parts of the engine.

All these interfaces are characterized by a function (the role of the interface and the related design

intent), a structure (localisation and geometrical definition of the interface) and behaviour (the behav-

ioural representation of the interface and its related parameters). This characterization is not depend-

ant on the type of interface. The type of interface will impact the type of representation used to de-

scribe the interface as well as the associated modelling parameters.

10.3.3.2 Creation of an interface

When the product is designed, the different pieces that composed the model are created and

defined in the way to ensure the function that they have to perform. It is the same for the interface.

The designer create interface to ensure a specific function. An interface is always defined as a way to

ensure the link between two components and the continuity of the mater, and supports the flow of

energy that goes through one component to another. The design of interface starts with the research

of a technical solution. The choice of the solution is constraints by some technical specification that

are:

 The geometric constraints of the interface which are given by:

 The shape of the surface of each component in interaction

 The location of the interface inside the product

 The specification regarding the function to perform (Strength, Temperature Pressure,

Weight...)

In this situation, the designer, even before any simulation, knows the type of behaviour that the

interface must have – i.e. the design intent. The designer defines an interface which fits with the re-

quirements of the function to ensure. This information is created and might be captured from the

creation of components’ geometry. The interacting parts are then identified and specified for the as-

sembly. Instead of specifying this information via Interface Control Drawing documents (as-is practice)

we propose to integrate all these information within a DMU through the use of digital interface objects

that might gather the following information:

 The function: defining the role of the interface within the system (e.g. “to make a rigid con-

nection between the two component”, “to ensure a thermal exchange between two fluid do-

mains”...)

Blade

Air

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-196-

 The design intent: justifying the choice of the type of interface;

 Application domain (mechanical, thermal, etc.);

 Type of connection (the kinematic pair for mechanical joints, convection/conduction for ther-

mal interfaces, etc.)

 Associated technological components ensuring the interaction (bolted flange, bearing, etc.)

and their representation (e.g. CAD model of bearing or the bolt-nut assembly).

 Identification of the parts and geometric elements that interact;

 Assembly constraints and mating features at these interactions (contact, coincidences, clear-

ance, plot, etc.);

This description need to be directly accessible from the DMU by selecting the component that

manages the interface. Information listed previously is associated to the geometric data (CAD files)

used to represent the interface, and managed inside the DMU. The DMU ensures the update of the

definition of the interface but also to manage different design alternative for the connection. Moreo-

ver, the DMU enables to share the information about the interface among the different design depart-

ments.

10.3.3.3 Capturing product component relationships and CAD mating features within DMUs

We propose to integrate interface in product structures and DMUs as a specific type of product

components (new kind of system artefact) in order to access all these data sets. When integrated

within a product structure the “interface component” must be placed in the tree structure at the same

breakdown level than the inter-related components. This position in the tree structure hence depends

of the used DMU product view/configuration in which the interfaces are specified. This is illustrated

on where bearings interfaces are defined at the same level than the stator and rotor assembly compo-

nents, whereas in the modular reference structure they are spread in their respective modules.

Information listed previously is associated to the geometric data (CAD files) used to represent the

interface, and managed inside the DMU. The DMU ensures the update of the definition of the interface

but also to manage different design alternative for the connection. Moreover, the DMU enables to

share the information about the interface among the different design units.

Figure 133: place of the bearing interfaces in a mechanical DMU structure

The topological (identification of mating faces/features) and technological definition (technologi-

cal components) of the interface can be accessed directly using the CAD models. However, the topo-

logical definition will be accessible only if it has been captured previously. We have identified two

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-197-

possible scenarios for capturing the design intent, the topological and technological definition of in-

terfaces. These scenarios correspond to the two scenarios mentioned in 10.2.2.

1) Scenario 1: Specifying the interfaces during CAD design modelling

In this case the topology of the interface (mating features) cannot be defined directly since the

geometry of the inter-connected components is still not defined. However, in preliminary design, one

of the first design steps consists in building a product structure according to the pre-chosen architec-

ture and defining the interfaces between modules. Then the internal module interfaces are also de-

fined to permit the module designers to start designing their parts in context. For an aero-engine, the

first interfaces to be specified are the “inter” and intra-modules bolted flanges and the bearing joints

between the rotor and the stator. As a result the first mating features are explicitly defined (e.g. plane

and alignment of bolted flange) and must be captured. To achieve this we propose to use CAD inter-

face templates.

CAD interface templates are geometric entities created or instantiated in the CAD modeller (in

our case CATIA V5/V6) via the "Product Knowledge Template" application in order to create and cap-

ture the design context. The templates are created either directly or created from existing geometric

entities in other CAD models and are called instantiation. They can contain not only geometry, but also

all the associated parameters or relationships, including design rules, providing the ability to encapsu-

late the design specifications for the design context. For their positioning, the CAD interface templates

require input data such as the reference plane relative to which the interface is positioned and the

centre point of the interface. A CAD interface template is specific to the type of interface, connection

it might specify and hence the technology used. Figure 134 provides an illustration showing two dif-

ferent CAD templates used for positioning and specifying both balls and rolls bearings.

Figure 134: Balls and Rolls Bearing CAD templates

Afterwards the designers can start using the mechanical skeleton and design the product parts

relying on the CAD interface template as shown on Figure 135.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-198-

Figure 135: Fan case and inter-case designed in context using CAD interface templates

Since a CAD interface template is specific to a technology, we propose possible to link them with

a standardized components catalog allowing, according to the specific design requirements and the

dimensional constraints, to choose the appropriate technological component and to put it under the

interface component in the tree structure.

Now, the designer might specify the topology of the interface to capture it for downstream appli-

cations. A CAD interface template, according to its technology, needs the expected mating features

permitting to ensure this interaction. Indeed the template must also contain semantic information

about these mating features. For instance, for a bolted joint with alignment, the user will have to spec-

ify the mating features ensuring:

 The planar contact that coincide with the bolted flange plan define previously by the template;

 The alignment face contacts (or interference if it is a clamped mounting);

 The co-axial constraint for the holes;

 And potential cylindrical and planar contact, clearance or interference with the bolt-nut as-

sembly if already integrated.

These mating features (or mating faces) are captured directly on the CAD model topology of the

interacting components through the use of Publications containing semantic information about the

role of this mating feature. We propose to store the other interface features (function, application

domain, type of connection) and other behavioural parameters in a CAD connection template that will

also reference the mating feature and assembly constraint defined with the CAD interface template.

Figure 136 shows an example of possible connection template form.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-199-

Figure 136: Example of connection template form

The synthesis of the proposed approach for scenario 1 is summarized and illustrated in Figure 137.

Figure 137: Proposed interface-based CAD design approach for enriching DMUs

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-200-

We have identified another use case of CAD interface and connection templates that has to be

investigated. The use case corresponds to the following scenario:

 The interface was not specified up-stream in the design process;

 The interface design intent results from a design change or from recommendations from a FEA

analyses (e.g. stiffen the fan case with a bolted flange);

 The involved component’s geometries are already defined.

The creation of this interface involves the sub-division of the component into two or more sepa-

rated components linked by this interface.

A solution (illustrated in Figure 138) consists of automating the creation of this interface and the

creation of the resulted new components based on specific CAD connection templates associated to

operators (e.g. macro CATIA). The interface creation operator necessitates a certain number of topo-

logical features and parameters to help in positioning and dimensioning correctly the interface. The

automation of the component sub-division(s) and the creation and integration of resulted components

and interfaces within the product structure highly depend on the complexity of the interface and on

the intelligence of the operator algorithm. For a bolted flange, when the interface template is correctly

positioned and dimensioned, the operator performs the necessary geometry division following the

bolted flange plan. Two shape bodies are hence created from the shape body of the cut part. Two new

parts are as well created in the product structure. The shapes bodies are respectively transferred in

the appropriate part models. And the cut part is deleted. If the operator can manage these operations,

it can manage as well the publication of the mating features (at least the planar contacts which coin-

cide with the bolted flange plan defined previously by the template). Such operators are conceivable

but their development requires rich code programming resources and CAD modeller customisations

to be applied on different type of interfaces.

Figure 138: Suggestion for using CAD Connection Template for automatic creation of unexpected bolted flanges

2) Scenario 2: Automatic retro-fit interfaces capture from an existing and consistent DMU

In the second scenario RDMUs are already complete and coherent. However, we suppose that

they have not been enriched with interface definition. In that case the manual capture of components

mating features can be very tedious and time consuming on very large assemblies. Therefore, for this

scenario, we recommend the use of automatic operators to capture these mating features. Three kind

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-201-

of mating feature can be captured within a DMU: shape contacts, clearances and interferences and

fluid solid boundaries (which are shape contact between a solid and a fluid domain envelope).

Several approaches can be whether found in the literature whether in existing commercial or open

applications. An intuitive approach for the detection of geometric interfaces is to use Boolean opera-

tors between volume pairs of the DMU at hand. It has already been proven that this approach is inef-

ficient on large assemblies and is not robust at all [Shahwan et al., 2013].

In CATIA the clash analysis tool performs the appropriate algorithm and is really efficient (even on

large assemblies) but it is impossible to capture the topology of the mating feature. Nevertheless, as

we will see in chapter 4, we have tried to exploit the results of the clash analysis to capture the mating

features topologies calculating the bounding boxes of each solid “in clash” and identifying the faces

that interact within the intersections of the bounding boxes of the two solids. The algorithm works but

the operation on large assemblies is not robust and become inefficient. Limitations come from model-

ling constraints set by B-Rep modellers and that any face of a solid can be subdivided into smaller ones

during a design process hence lengthening the procedure time. [Shahwan et al., 2013] propose to

overcome this inconvenience by merging all adjacent surfaces and curves that share the same geomet-

ric properties (type, 3D location and intrinsic parameters). The authors have used the OpenCascade

CAD (OCC) library to extract “conventional interfaces” (i.e. mating features).

Indeed, the OCC library provides an algorithm - “GEOMAlgo_Splitter”- for splitting a number of

shapes with a set of surfaces [OCC, 2013]. In the python OCC community [PythonOCC, 2013] an effi-

cient algorithm has been defined to exploit this function to extract a shape contact mating feature

between two shapes (see Table 3). However, although it is an open source platform, this implies to be

familiar to the OCC libraries and to python programming language in order to customise this function

and test it on large and complex geometries. Even if we did not check this technology on large and

complex DMUs, [Shahwan et al., 2013] and members of the community have underlined its limitations

for providing the accurate mating prints.

def CylinderOnPlate():

 Box = BRepPrimAPI_MakeBox(gp_Pnt(0,0,0), 100,100,20).Shape()

 Cyl = BRepPrimAPI_MakeCylinder(gp_Ax2(gp_Pnt(50,50,20), gp_Dir(0,0,1)), 25,

50).Shape()

 Splitter = GEOMAlgo_Splitter()

 Splitter.AddShape(Box)

 Splitter.AddShape(Cyl)

 Splitter.Perform()

 result=Splitter.Shape()

 # find the shared face

 sharedface = None

 FSMap = TopTools_IndexedDataMapOfShapeListOfShape()

 TopExp().MapShapesAndAncestors(result, TopAbs_FACE, TopAbs_SOLID, FSMap)

 Ex = TopExp_Explorer(result, TopAbs_FACE)

 while Ex.More():

 face = TopoDS().face(Ex.Current())

 index = FSMap.FindIndex(face)

 if (index!=0) and (FSMap.FindFromIndex(index).Extent()==2):

 sharedface = face; break

 Ex.Next()

 return result, sharedface

Table 3: GEOMAlgoSplitter algorithm used for extracting a mating feature between two shapes from [PythonOCC, 2013]

A certain number of commercial CAE applications (among which NX-CAE) offer the capability to

capture these mating features pairing automatically coincident faces. However, since it is not related

to the design intent and CAD interface features, the systems cannot guess what the mechanical be-

haviour is (glued, sliding contact, interference fit, etc.).

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-202-

[Armstrong, 1994, Makem et al., 2012, Nolan et al., 2011, Nolan et al., 2013] use an opposite

approach than the one conducted by [Shahwan et al., 2013] since they integrate in their CAD-FEA in-

tegration approach the concept of “cellular modeling” that consist in partitioning solid models into

separate ‘cells’. They use this decomposition for capturing what they call the simulation intent using

these “cells” to apply specific boundary conditions, for automatic dimensional reduction and meshing

of different kinds of topological areas (thin sheets, long slender regions, ‘chunky’ parts) and for ex-

tracting fluid volumes and fluid-solid interfaces. Their extraction algorithm permits to capture an ac-

curate print of the mating features (not only the two faces in interaction but their intersection). Illus-

tration of their approach is given in Figure 139 below.

Figure 139: Cellular Modelling concept enabling CAD mating features extraction adapted from [Robinson et al., 2011]

Concerning the extraction of fluid domains their approach consist in using fluid domains for de-

signing space rather than being derived from solid parts or gas paths. However, their approach has not

been tested on large and complex assemblies such as an aero-engine DMU with a multitude of equip-

ments crossing the fluid domains. Other CAE applications such as the ANSYS DesignModeler have fluid

extraction tools as illustrated in Figure 140 below.

Figure 140: Fluid domain extraction demonstration from [ANSYS, 2013]

10.3.3.4 Use of the DMU interfaces in the preparation of FE model

The aggregation of all the information contained in both CAD interface and connection templates

constitute the design intent of the interface on which the analyst can rely to model FE connections.

The objective of this proposal is as well to integrate in this definition features supporting the definition

of system behaviours:

 The interface behavioural modelling parameters (e.g. interface mesh specifications expressed

through the use of CAE mating features),

 The finite element (FE) representation of the interface specific to the analysis domain that are

derived from the interface design properties (function, technology, design intent) - e.g. a rigid

beam node-to-node connection for a bolted flange, combination of a spring and rigid body

element for a bearing, etc.,

 The behavioural parameters of the connection (e.g. the stiffness/rigidity of a bolted flange),

 The behaviour at the interface (degrees of freedom, boundary conditions, etc.).

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-203-

The different FE connections are made by using the different interfaces which are specifically in-

volved for the discipline studied; for example, in mechanical simulation, and following the system level

of interest, only specific interfaces are used so as to represent the mechanical behaviour of the prod-

uct. In an attempt to use interface for FEA simulations, a specific extraction of the information from

the DMU has to be done to fit for the simulation. This information has to be exploited for the prepa-

ration of the simulation model, from the DMU to the Finite Element modeller. The exploitation of the

DMU interfaces for FEA is performed in two steps:

 Localisation of the interfaces to be used in the finite element modeller: the interface might

reference the components in interaction and associated CAD mating features publications

which indicate the portion of the component geometry the interface is connecting.

 Translations of the design intent into functional and design parameters linked to the simula-

tion discipline and objectives.

This precise and meaningful information can be used for downstream processes, like the aggrega-

tion of the individual meshes (detailed later on). The goal is to be able to set up automatically the finite

element model of the interface that ensures the connection between two components. Our proposi-

tion is to be able to use any information contained in the DMU and translate it into a behaviour defi-

nition of the connection. Therefore, we need to define some generic objects in the data model that

can be suitable for both design and analysis definitions.

Then FE mating features can be defined in two following ways:

 From CAD model referring to a geometric element that has been published. The information

is published on the CAD model is propagated to the mesh of the finite element model. Created

on the mesh, the FE mating feature publication will reference groups of mating finite element

nodes that will be used to connect the model with the interface. Based on the CAD interface

topology and the design intent, automated decisions can be made about the nature of the

MPCs2 based on the type of interface used (Cylindrical to cylindrical shear connection and

Planar to planar axial connection) see related works from [Nolan et al., 2013] and illustration

in Figure 141 below.

Figure 141: Automatic bolted flange FE modelling based on design intent [Nolan et al., 2013]

2 A MPC (multi-point constraint) is a constraint that defines the response of one or more nodal degrees-of-freedom (called dependent degrees-

of-freedom) to be a function of the response of one or more nodal degrees-of-freedom (called independent degrees-of-freedom). MPCs specify

the possible displacement of a node with respect to the displacement of other adjacent and related nodes. MPCs can be used to model certain

physical phenomena that cannot be easily modelled using finite elements, such as rigid links, joints (revolute, universal, etc.), and sliders, to
name a few. MPCs can also be used to allow load transfer between incompatible meshes. However, it is not always easy to determine the

explicit MPC equation that correctly represents the phenomena you are trying to model.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-204-

 Directly from a mesh, having the ability to define nodes, finite element, finite element faces

that will be referenced by a FE mating feature publication and potentially associated to the

corresponding CAD mating feature publication if available.

The Figure 142 below illustrates how the CAD mating features and related design intent (specifi-

cation of the interaction taking place at these mating features) are used in a FE modeller to define the

FE connections.

Figure 142: Use of CAD mating features and related interface design intent to define FE models connections

Another advantage of enriching DMUs with interfaces definitions is that can serve as a basis for

re-structuring more or less automatically a product structure. Indeed, we believe that semantically

enriched directed graphs specifying the interactions between components can help in automating this

required structure reorganisation according to captured business specific structuring rules. However

we propose to use the same kind of approach using an object-oriented system modelling language.

10.3.4 Digital MBSE system modelling and integration framework

10.3.4.1 Framework for defining system architectures and system models

The system modelling framework that we propose to develop is focused on the definition of logi-

cal, physical and behavioural system architectures and especially CAD/DMU and CAE/BMU model ar-

chitectures.

Our approach consists in developing a system modelling framework within PDM systems and cou-

pling it with the use of DMU and BMU representations and to assist designer/integrators in:

 Organising and configuring multi-level and multi-domain system architectures;

 Capturing and exploiting both design and simulation intents of system artefacts (and in par-

ticular system interfaces) by accessing and capturing features present in CAD and CAE models

and referencing them in the PDM system;

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-205-

 Supporting the functional, structural, topological and behavioural specification of system in-

teractions and interfaces including multiple levels of hierarchy via ports and ports delegations

optimizing the integration/assembly activities;

 Integrating or referencing more or less automatically and consistently CAD design data sets

with the associated CAE data sets in order to ensure a traceable design/simulation information

chain.

The objective is to enable the exploitation of the resulted system architecture models for:

 Building and/or loading the corresponding DMU representation: using CAD models assigned

to each system blocks, positioning attributes assigned to each hierarchical link and assembly

constraint define on interfaces;

 Building the corresponding finite element BMU representation: using FE models, using inter-

face definitions for automating DMU structural transformation and using a complete behav-

ioural system architecture model to automate the assembly of FE models;

 Maintaining consistency between multi-level and multi-domain product views: relating sys-

tem blocks via hierarchical, interaction or dependency links.

As shown in Figure 143, the proposed modelling formalism is similar to the internal block diagrams

as defined in SysML language. From a user’s perspective, the resulted system model is a representation

of the product architecture describing the various product components and their relationships. These

components are represented by “systems blocks” or “interface blocks” interconnected by connec-

tions via ports. Each of these system objects allow to access specific engineering data sets.

The system blocks are themselves representations of a system. In other words, this representation

is multi-level: a system consists of sub-system and so on. One system blocks represents a usage occur-

rence of system artefact design definition with its corresponding analysis definition. It hence enables

to access to the appropriate design and analysis definitions data sets of the system artefact.

Figure 143: Proposed MBSE framework formalism and related objects

The connections or connectors define the physical interactions between components and capture

the design interaction properties and hence the related behaviour features of the interface (linked to

the technology used). These features permit to specify the behavioural representation (i.e. the way to

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-206-

model the FE connection in pre-post tools). When a technological or physical component/system is

required to ensure an interaction (i.e. a connection), the system model can be enriched with “Interface

Blocks” which behave like another component block since it is system composed of different sub-sys-

tems (e.g. a bolted flange composed of a ring of bolt-nut assemblies themselves composed of a bolt, a

nut and a washer). These interface blocks permit to access to the functional and technological descrip-

tion of the interface and allow multi-level representation of the interface system. They can be captured

in and created from a stored library of interface models.

The connection between components is modelled using ports. Ports are elements of interaction

of a component connecting it to another component through a component interface. We propose to

use port objects to specify the interaction area; i.e. the geometric or topological definition of the in-

terface. They hence consist of a geometric specification using features extracted from CAD models

(e.g. mating faces) as well as for interface mesh specification using CAE mating features. CAD and CAE

mating features associated to the same port should represent the same topology and hence will be

associated. Additional information such as modelling requirements and simulation results can be as-

sociated to these port objects to help integrators to maintain consistency between models to assemble

or between interdependent simulations.

As illustrated in Figure 144, two main types of ports connections (or connectors) have been de-

fined:

 The physical interaction: which permit to encapsulate the design interaction properties and

hence the related behaviour features of the interface.

 The ports delegation: Interactions at outer ports of a parent block are delegated to ports of

children blocks. To define a port delegation, ports must match (same kind, type, direction,

etc.). Connectors can cross a component block boundary without requiring ports at each level

of nested hierarchy. Port delegation can be used to preserve encapsulation of block (black box

vs. white box).

Figure 144: Physical interaction and port delegation within a system model internal block diagram

This system modelling framework enables to breakdown the studied system and sub-systems into

multi-level breakdowns. According to the pre-established partnership work-sharing rules, system or

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-207-

sub-systems integrators can share/exchange a more or less detailed view of the sub-systems in inter-

action.

Figure 145 shows an IPPS DMU mechanical system view composed of a pylon, a nacelle, an aero-

engine and the various mechanical interactions between these sub-systems. For instance, and as illus-

trated on this view, the IPPS integrator does not have access to the detailed definition of the aero-

engine. The engine block is exchanged / shared as a “black box” only exhibiting the interfaces and

interactions with the pylon and the nacelle.

Figure 145: Example 1 of an IPPS DMU mechanical system integrator view - Engine block shared as black box

Figure 146 shows another DMU system model of the same system. In that case the system inte-

grator needs to have access to a more detailed view of the engine in order to know to which engine

modules the nacelle and the pylon interfaces will be attached. However the integrator does not have

access to the detailed definition of these modules.

Figure 146: Example 2 of an IPPS DMU mechanical system view - Engine modules blocks shared as black boxes

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-208-

In the example of Figure 147, the integrator now has access to the detailed definition of the engine

system block. However, the engine block is not yet configured for mechanical analysis in this view. The

mechanical system integrator will need to perform some structure reorganisations to use this system

view for the future mechanical analysis (see Figure 148).

Figure 147: Example 3 of an IPPS DMU mechanical system view - Engine block shared as white box in initial configuration

Figure 148: Example 3 of an IPPS DMU mechanical system view - Engine block shared as white box in mechanical configu-

ration

10.3.4.2 Framework for specifying components interfaces and interactions

We propose to couple the interface information model proposed by [Sellgren, 2006a] with the use

of an object-oriented system modelling language such as SysML. In SysML, the system architecture is

made of building blocks connected by connections. Each of these connections relates two ports of the

connected components. In SysML, these ports represent energy, data, material or signal flow. We pro-

pose to use this visual modelling language but extend its usage using ports and connectors to specify

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-209-

the functional, geometric/topological, technological and behavioural system interfaces. The idea is to

provide a better support to define hierarchical links (multi-level system blocks) and the physical inter-

actions and/or assembly constraints/features between components but above all between their de-

sign and simulation models.

 Figure 149 illustrates the concept giving the equivalent meaning of an aero-engine’s fan case 3D

assembly with the proposed system modelling language. This example also illustrates the links be-

tween the system architecture objects and related numerical engineering data.

Figure 149: Links between SE objects and engineering data – Example with a FAN Case assembly

Figure 150 provides another illustration of the above example. On the left side of the picture, it

represents the physical view (CAD and CAE) of the assembly. In the middle is the equivalent meaning

of this assembly in the system view. And on the right side are the corresponding used engineering data

which need to be associated to the different system framework’s object in order to specify the inter-

face. The result is the integrated FE model presented in the physical view (the red one), which should

be automatically generated from the definition given in the system framework.

Figure 150: LPTC-TBH assembly specified with the MBSE integration framework

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-210-

Table 4 synthesises the content of the different system framework’s objects enabling to define a

model-based product/system representation encompassing the definition of the interactions between

two system’s constituents.

System Model Object Associated engineering data

Component Block

Structural, geometrical and physi-
cal definition of system compo-
nents

Component’s CAD and CAE models

Associated physical parameters

Interface Block:

Functional and structural specifi-
cation of the interface

Function of the interface

Technological definition and design intent

CAD model of the interface component (technology)

Interface’s sub-systems blocks if the interface is a system

Port:

Localisation and geometrical spec-
ification of the interface

Assembly Geometrical Features

Mesh specifications: mesh type, mesh size, imposed meshed surface,
nodes group and file describing the nodes references, numbering and
positions.

Boundary conditions and load cases

Interface Results: which need to be cascaded and used as boundary
conditions for downstream simulations.

Interface design requirements

Connector:

Behavioural Interface specifica-
tions

Domain definition: defining the type of connection (Mechanical,
Thermo-mechanical, Fluid-Fluid)

Associated behavioural parameters

Generic FE link representation (in neutral format)

FE link model (in authoring format)

Table 4: Description of the system framework’s objects content - Links between system model entities and engineering
data

The benefit of using interface system blocks is to be able to describe an interface as a system. To

illustrate this concept, Table 5 shows various system representation of an engine-pylon DMU assembly

model (view A). In the view B, the engine block is shared as a white box, whereas in the view C it is

shared as a black box. The view D includes the mount system blocks ensuring the interaction between

the engine and the pylon. In that case, the mount system blocks are shared as black boxes. The view E

includes a detailed definition of the mount system and its compoents interaction.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-211-

A) Engine-Pylon DMU assembly model

B) Engine-Pylon mechanical assembly system view with
the engine block as white box

C) Engine-Pylon mechanical assembly system view
with the engine block as black box

D) Engine-Pylon mechanical assembly system view
inluding the mount system interface blocks shared as
black box.

E) Engine-Pylon mechanical assembly system view
inluding the mount interface system blocks
shared as white box.

Table 5: Engine-Pylon assembly model described with different system views – illustration of the use of interface system
blocks for defining the mount system

For the preparation of the simulation model, interfaces have to be automatically derived from the

information kept in the DMU, and exploited in the finite element modeller. The extraction can be con-

sidered as an automatic translation of the design intent of the interface in a simulation model that

describes the function performed by the interface. The goal is to be able to set up automatically the

finite element model of the interface that ensures the connection between two components.

Interface Area
A

Interface Area
B

Interface Area
C

B C A

B A C

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-212-

Our proposition is to be able to use the information contained in the DMU and to translate it into

a behaviour definition of the connection. Therefore, we need to define some generic objects in the

data model that can be suitable for both technical definition and simulation. Generic objects are de-

fined in the system representation of the product with the object “Port” and “connectors”. “Ports”

and “connectors” are elements that materialize the definition of the interface and ensure the asso-

ciation between the technical definition and the behavioural definition.

The “port” enables to define and locate the area of interaction (represented by features) of the

component’s representation (CAD or CAE model). It is used to identify where the connection takes

place. To ensure the capture of this information, the proposed solution is the “publication”. The pub-

lication is a reference that points out an element or a group of elements contained in a CAD file or in

a Finite element model. These elements can be surfaces, vertex, lines, curves for CAD mating features

and nodes and elements for CAE mating features. The publications capture the information about the

location of the position of the CAD or FE elements/features used to connect the interface. These pub-

lications (for CAD model and for FE model) are attached to the object “port”. Ports ensure the associ-

ation between the definition of the location of the interface in CAD model and its representation in FE

model. This information needs to be extracted and specified to partners in order to ensure that they

model appropriate and well located connection.

For the simulation, the design intent of the interface, which is composed by the function of the

interface and technology used to manage this function, is translated in specific information:

 Function and Role:

 Simulation type (Mechanical, Thermal, etc.);

 Nature of the connection (rigid embedded connection, thermal convection, etc.).

 The technology used (Bolted-Flange, bearing...):

 The finite element model of the interface;

 The parameters describing the nature of the connection and its modelling requirements

(node-to-node connection, MPC type, etc.).

Figure 151: Interface design intent definition example

Once the simulation has been performed, the results are extracted from the interface. Interfaces

have a particular role in the simulation of system, because they describe how the system behaves. In

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-213-

system engineering, the results are derived from the interfaces and transposes to different component

connected to it. If we consider a system which is composed of sub-systems linked together by inter-

faces, the interfaces must respect some specifications regarding the system. But for the sub-system

the result of the interface is used as a boundary condition of the sub-systems simulation.

For large and complex systems, component and interface definitions are generally multi-instanti-

ated or used in different system architecture corresponding to specific product business view points.

It is therefore of primary importance to provide a library of interfaces in order to be able to re-use

parameterized interface templates encapsulating the physical and behavioural modelling parameters

of an interface. The idea is to support the analyst to use appropriate interface system model according

to its simulation intent.

10.3.4.3 Automatic FE assembly modelling based on system models of behavioural architec-
tures

The translated design intent from DMU described previously contains the data and information

needed to create the simulation model. These data are associated to the system view dedicated ob-

jects (blocks, ports and connection). All these information have to be used in the different simulation

authoring tools (Pre processor and solvers).

Once the CAE models have been provided and validated through an appropriate quality assess-

ment process, the analyst need to check if all requested models are gathered and assigned to the ap-

propriate elements of the analysis system view (Block, ports, and connectors). Now, the specified in-

terfaces design intents need to be translated into simulation intents; that is to say into modelling hy-

potheses and specifications according to the nature and objectives of the simulation to perform.

These behavioural descriptions of interaction between components are performed directly

through the system view using an interface library. Dedicated parameters and finite element models

are assigned to system model objects. This information, ensure the description of the behaviour re-

garding the type of analysis to perform. For instance, the behavioural descriptions of a bolted-flange

are defined through a linear finite element with stiffness parameters that connect two features of the

component’s CAE models.

When the information required to assemble the simulation model is defined, some routines are

needed to create automatically from the system view the related translation to a pre-processing tools

(as illustrated in Figure 152), in order to compute it in the solver.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-214-

Figure 152: Automatic assembly of FE models based on a BMU specified in the system modelling framework

10.3.4.4 Management of multi-disciplinary product views through the use of a system model

Section 10.3.4.1 shows how the MBSE integrator modelling framework enables defining, manag-

ing and linking different DMU and BMU multi-level system view points. Next step was to investigate

how this framework could be used not only to manage and link multi-level view points but also multi-

domain and multi-disciplinary view points.

Table 6 gives an illustration of two different viewpoints for creating and structuring an integrated

thermo-mechanical FE model for the power plant system. On these two view points, the thermal FE

models or results are coupled with the structure of the integrated mechanical model. This is done to

take into account fluid/structure interactions and hence heat flow impacts to make the structural ma-

terial properties of the PPS structure more realistic. In the first viewpoint, the thermo-mechanical FE

model consists in mapping temperature fields as boundary conditions on specific area of each of PPS

subs-systems (the engine, the pylon and the nacelle) mechanical FE models. In the second view point,

we first create the two integrated FE models (mechanical and thermal models) of the PPS. Then a

mapping of temperature fields is performed directly from the integrated thermal model results to the

integrated mechanical model. These two viewpoints highlight the fact that even for doing the same

type of simulation on the same system there exist several ways of doing it according to the architect

model or model integrator viewpoints and constraints. For instance, the second architecture model

should theoretically provide more accurate results and be more efficient (less mapping to perform)

than the first architecture model. However, in the context of a collaborative and distributed process,

there exist many more constraints to integrate heterogeneous thermal models in different data for-

mats. The first model architecture is easier to handle because it just requires defining temperature

fields (resulted from the thermal analysis of each sub-systems and not from a bigger integrated model)

as boundary conditions of the integrated mechanical model.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-215-

Table 6: Creation of an integrated thermo-mechanical model for the power plant – two different model architect view
points

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-216-

10.3.5 CAD-CAE data integration within the DASIF framework

10.3.5.1 Definition of the simulation intent

The first step of generic CAE process is the definition of the simulation intent. Defining a simulation

intent consists in several steps that the analyst performs in order to efficiently run its analysis process

and enable first the reuse of appropriate CAD and/or CAE artefacts and secondly the automation of

some modelling procedures (as illustrated in Figure 34). Figure 153 and Figure 154 respectively illus-

trate the process of defining simulation intents and the simulation intent data package that we pro-

pose to implement. The process aims to be generic, but the M&S (Modelling and Simulation) hypoth-

eses and specifications package is specific to the type of analysis and models used (in our case FE mod-

els).

Figure 153: Generic process for defining a simulation intent

Figure 154: Simulation intent data package for FEA

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-217-

10.3.5.2 Integration of CAD-CAE data through the use of the MBSE modelling framework

In their own environment, the various simulation integrators and designers can use the MBSE

modelling framework as simulation definition referential, containing the whole description of their

simulation models architectures. In the first step of the simulation process, the simulation components

identified in the above architecture aim at representing the issue to be analysed in a given discipline

view (for instance in the form of a mesh-like model) and resulting from a CAD data transformation

process. So there is a link between the simulation components (models) and the DMU components

(CAD parts), that need to be traced. That is why this framework must be perfectly synchronized with

the corresponding Digital Mock-Up and product definition. But, as mentioned above, the added value

for integration activities, is the capability to manage all the behavioural configurations corresponding

to fit-for-purpose behavioural mock-up for a specific simulation, as well as to integrate in a single sys-

tem referential CAD and CAE data, ensuring traceability and enabling easy re-use of models.

10.3.5.3 Definition of the associative CAD-CAE model network

The AMN (associative model network) concept is derived from works performed in the frame of

the CRESCENDO project (see Figure 155).

Figure 155: the AMN concept as defined in the BDA Business Object Model from [CRESCENDO, 2013]

An implicit concept appears in this figure: the high level definition of the simulation intent defined

here by the entities Study, Concept, Baseline, Objective and Requirement.

An AMN is a container/controller object identifying all the specific Model Instances and Key Value

Instances (such as CAD and CAE models / results including boundary conditions and load cases) that

together comprises a set of "results" for the Study. It is a network showing how Model Instances and

Key Value Instances have been derived from each other.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-218-

Figure 156 shows how this kind of model networks can be used and defined consistently with

simulation intent definitions. In this figure, the notion of models reuse is highlighted. Indeed, an AMN

is generally associated to a simulation intent but models used in different AMNs can be used for dif-

ferent simulation intents. This enhances the need to aggregate several AMNs for having full traceability

of Model Instances and Key Value Instances that have been derived from each other.

Figure 156: Example of Associative Model Networks extracts for FEA

10.3.6 Semantic data mapping for PDM/SDM interoperability

All the above mentioned concepts need to be implemented in whether CAD/CAE applications

whether in EDM systems such as PDM or SDM systems.

In order to support the interoperability between heterogeneous EDM systems used by partners

involved in collaborative digital integration chains the CRESCENDO project had the final objective to

deliver the Behavioural Digital Aircraft (see sections 7.3 and 9.1).

As already mentioned, the BDA concept might consist in a collaborative data exchange/sharing

platform for design-simulation processes and models throughout the development life cycle of aero-

nautical products. However, it is not expected that the BDA is a unique design environment, replacing

existing ones. Instead, the BDA has been considered as a standard data model (the BDA Business

Object Model) enabling interoperability, to which existing local design environments and new ser-

vices to be developed could plug. In order to ensure the plugging of the various partners PDM/SDM

systems with BDA platform and enable standardised information exchange, we propose, and based on

the work from [Agostinho et al., 2010], a framework for model language independent P2P mappings.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-219-

Figure 157: Framework for model language independent semantic mapping adapted from [Agostinho et al., 2010]

As illustrated on Figure 157, this framework is based on three levels of information modelling:

 Level 3 (meta-meta model): corresponding to the language independent conceptual

model that might be ideally based on standardised information data models (i.e. in our

case the BDA Business Object Model)

 Level 2 (meta-models): corresponding to the meta-models of the various EDM systems

that need to interoperate (language dependant) and to parts of the federated conceptual

model (standardised and hence language independent) that enable a language semantic

mapping between the two heterogeneous meta-models of EDM system 1 and EDM sys-

tem 2.

 Level 1 (models): corresponding to parts of the meta-models that will be used in the frame

of a specific information exchange scenario.

 Level 0 (data): corresponding to the possible technological implementations of level 1

models in data exchange formats such as XML or RDF files.

An illustration and a demonstration of the use of such a framework for PDM-SDM interoperable

information exchange are provided in section 13.2.2.3.

10.4 Conclusion

This chapter has first introduced a MBSE framework for design-analysis system integration: DASIF.

DASIF could be extended and be used for any kind of design-simulation loops. In this PhD we have

focused on CAD-FEA loops. The objective was to develop the digital engineering capabilities and sup-

porting data models enabling to manage “multi-level” and “multi-domain” logical and physical DMUs

enriched with assembly information in order to provide to FEA analysts and integrators the appropriate

data structures and inputs to create FE assembly models.

The main approach consists in considering the DMU as a flexible product definition reference and

the supporting PDM system as the main information source for designers and analysts collaborating

within theses digital integration chains. The concepts of RDMU and DDMU have been introduced as

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-220-

well as the conditions and scenarios for building these DDMUs. The set of concepts and solutions de-

veloped during this PhD have been introduced. Unfortunately, not all of required capabilities (derived

from the functional analysis) could have been developed during this PhD. That is why Figure 158 gives

an overview of what has been achieved; synthesizing the PhD contributions regarding the scientific

positioning introduced in section 5.2 and derived from our industrial requirements introduced in Chap-

ter 4.

Figure 158: Synthesis of contributions regarding PhD scientific positioning

As shown in Figure 158, one of our contributions is the conceptual and logical multi-aspect product

data models for Design-Analysis integration and multi-view DMU management. Extracts of this con-

ceptual data model have been introduced in this chapter in order to clarify certain capabilities working

principles. The whole DASIF conceptual data model – which is intended to be implemented whether in

EDM systems data bases whether for providing standardised data structures for CAX models and re-

lated files to be exchanged – is introduced and detailed in the next chapter.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-221-

Chapter 11: Conceptual Data Model

This chapter details all the UML class diagrams describing the concepts introduced in chapter 10.

In order to provide the DASIF conceptual environment introduced in section 10.1.4, we propose a

multi-layered data model architecture as shown in the package diagram of Figure 159 below.

Figure 159: Conceptual architecture of DASIF data model - packages organisation

The Configuration Management Layer enables to manage on one hand the different product de-

sign and analysis/behavioural configurations corresponding to fit-for-purpose domain-specific analysis

and on the other hand the engineering design changes and their propagation across the appropriate

product configurations.

The System Definition Layer: this package defines the different kinds of system artefacts (e.g.

parts, assemblies, interfaces) and includes all the entities permitting to define the constituents of a

system/product (i.e. the system artefacts) in terms of functional, structural and behavioural aspects.

Therefore it is decomposed in the three layers following layers:

 The Functional Layer: this layer manages the functional definition of the system artefacts; i.e.

the functional system architectures and the definition of an artefact in terms of functions and

related design requirements.

 The Design Layer: this layer manages the design definition of the system artefacts; i.e. the

structural product architectures and the definition of an artefact in terms of design models

and properties.

 The Behavioural Layer: this layer manages the behavioural definition of the system artefacts;

i.e. the behavioural system architectures. It permits to manage the structure and content of

System Definition Layer

Functional LayerDesign Layer Behavioural Layer

Topological Layer

Applicative Layer

Configuration Management Layer

Organisational
Layer

Product
Configuration Layer

Engineering Change
Layer

is_evaluated_in

simulation_intentdesign_intent

is translated_in

configured_by design_changes

is_modelled_in

CAD applicative layer CAE applicative layer

is_modelled_in

is_exploited_by

change propagation change notification

propagate_changes

CAD Topological Layer Finite Element
Topological Layer

is translated_in

is_exploited_by

topological association

topological association

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-222-

the simulation data sets (i.e. simulation models, results, behaviours description) used to verify

the system artefact design definition compliance with its design requirements.

The Topological Layer: the topological layer provides a common data model for accessing and

referencing the topological elements of whether a CAD design model whether a FE analysis model. It

hence encompasses the two sub-packages: the CAD and the FE topological layers.

The Applicative Layer: the applicative layer should permit to use the topological description of

both design and analysis models described in the topological layer, to exploit it in the appropriate CAD

or CAE software authoring tools. In the applicative layer, specific mappings are necessary to translate

a topological description into source files that are self-contained models in proprietary formats.

NB: the UML class diagrams have been simplified (without attributes) to provide a better reada-

bility and understanding.

11.1 System Definition Layer

11.1.1 System Artefact Definition and Taxonomy

SystemArtefact is the base abstract class for all the different kind of elements/objects participat-

ing in the definition of a system/product. It is a collector of data common to all versions of a system

constituent. Therefore the instances of this class are the constituents / components of a system/prod-

uct; whether they are items, structural assemblies, interfaces or even fluid domains. Below Figure 160

shows the different sub-types of SystemArtefact and also underline the three sub-types of an Arte-

factDefinition.

Figure 160: System Artefact Definition and Taxonomy

One SystemArtefact has 1 or more Artefact_Definitions which represents an abstract entity gath-

ering all the characteristics and design information of a SystemArtefact. Inspired from the FBS ap-

proach from [Gero&Kannengiesser, 2004]. The three ArtefactDefinition sub-types which are Func-

tionalDefinition, DesignDefinition and BehaviouralDefinition respectively gather:

 The artefact functional variables: describe the teleology of the considered artefact, i.e. what

it is for and what are the related technical targets (i.e. functional design requirements). It en-

compasses the functional building blocks permitting to describe the functional architectures

of a system artefact;

 The artefact structural or design variables: describe the technical definition of the artefact in

terms of design properties and design models as well as the components of the considered

System_Artefact

Item Interface Fluid_DomainStructural_Assembly

Item_Part Item_AssemblyRoot Group

Artefact_Definition

+artefact +defs

1 1..*
Design_Definition

Functional_Definition

Behavioural_Definition

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-223-

artefact and their relationships (hierarchical and functional relationships i.e. their interfaces

and interactions);

 The artefact behavioural variables: describe how the considered system behaves in a given

operational state and permit to assess if the system fulfil the design requirements to respond

to the function in this operational state. To perform this verification, a behavioural definition

encompasses all the analysis definition data (analysis models, analysis results, simulation in-

tent, etc.) .

Next section details the content of these ArtefactDefinition sub-types.

Each time a change is done on the functional, design or behavioural definition of an artefact, a

new version of this Artefact_Definition is created. The Artefact Definition entity has a version identifier

attribute considering that one Artefact Definition object represents a specific version (or revision) of

this definition. Concerning the taxonomy of the different SystemArtefact sub-types, we have defined

the entities as follows:

 Item: the items are the tangible constituents of a system. They represent all artefacts that

make the system exist in a real world. An item intends to be the result of a manufacturing

process. An item is a product that has its own characteristics (e.g. a pencil is a product and

there must be different items defined for the same product (e.g. the red and the blue pencil)).

An item can be whether an ItemPart or an ItemAssembly:

 Item_Part: it is a single item (piece) generally considered as undismantled. However we

can distinguish two kinds of ItemPart: manufacturing intermediary parts which are sin-

gle items only, and parts ready to be assembled that can be whether a single item or

pre-assembled items. A Part is the lowest level component. The list of ItemParts in-

volved in a product configuration and their respective properties constitute the Bill of

Materials of this configuration;

 Item_Assembly: An Item_Assembly is a gathering of several ItemParts or sub-assem-

blies. An Assembly is a composition of its sub-assemblies and parts.

 Structural_Assembly: This class is necessary to represent and store the breakdown elements

of a system that defines the hierarchy and the various groups of a product structure. They are

not items because they only exist to structure the items and do not represent tangible con-

stituents of a system. The StructuralAssembly entity is not abstract and can be instantiated

directly. However we have defined two StructuralAssembly specific sub-types:

 Root: the root is the highest level component of a product structure;

 Group: They are mainly used for gathering in a same functional assembly a set of multi-

instantiated parts/assemblies (e.g. a ring of bolt-nut assemblies).

 Fluid_Domain: it is another type of system elements that need to be considered in the defini-

tion of the product. However they are not tangible for the customer or for the manufacturing

process; as a result FluidDomain elements must be integrated in product structures used in

specific engineering domains, but they do not make part of the Bill of Materials;

 Interface: this entity intends to define/specify the physical relationships between product

components. We define an Interface as the physical or theoretical boundaries where two or

more system components meet and interact and where domain-specific applied rules and

conventions define their interaction and related design intent. These rules and conventions

concern domain-specific physical features (mechanical, electrical, thermal, etc.) semantic or

functional features, and potential exchanges of information.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-224-

11.1.2 Functional, Design and Behavioural System Artefacts Definitions

The following section details each of the three sub-types of an Artefact_Definiton. The diagram

of Figure 161 below gives the global data structure and underlines the links between functional, design

and behavioural system variables.

Figure 161: Functional, Design and Behavioural System Artefact Definition diagram

11.1.2.1 Functional, Structural and Behavioural product structure

An Artefact_Definition provides the technical definition of an artefact within a specific context

(View_Definition_Context). A technical definition consists of a set of representations (models) and

properties (mainly mass and material properties). An Artefact_Definition, whatever its type, can be

used and instantiated in several different contexts and product views through the use of the Defini-

tion_Usage_Occurence entity that represents a usage occurrence of a specific artefact definition.

Therefore, one Artefact_Definition has zero or more Definition_Usage_Occurence. In order to define

the different kind of product structures (functional, structural, behavioural) each created instance (us-

age occurrence) can be attached to the definition of a parent assembly/function through the use of

two sub-types of the Definition_Usage_Occurence entity (see section 11.1.3). An inheritance mecha-

nism has been defined between Artefact_Definition and its sub-types (functional, design and behav-

ioural definitions) in order to apply the same principle to define and manage product structures

whether they are functional, structural or behavioural.

11.1.2.2 Functional, Design and Behavioural Definition core entities and relationships

A Functional_Definition is an aggregation of Functions specifying the role of the artefact in a spe-

cific context and configuration. It describes the functional architecture of a system artefact; i.e. the

decomposition of an artefact function into several sub-functions. A function is an aggregation of a set

of Design_Requirements specifying more technically and quantitatively the expected features of the

artefact required to ensure the function and related expected performances (e.g. a targeted mass

value of a part or assembly, the stiffness of a structural part, etc.).

A Design_Definition describes an artefact as an aggregation of Design_Models and Design_Prop-

erties. It also defines the Design_Intent of such a definition; i.e. the link with the Design_Requirements

System Definition Layer

Behavioural_LayerFunctional Layer Design Layer

System_Artefact

Artefact_Definition

+artefact

+defs

1

1..*

Definition_Usage_Occurence+instances+def

0..*1

+children+parent

0..*1

Artefact_Model

Artefact_Model_Relationship

+related+relating 11

+def+models

10..*

Design_Model

Analysis_Model

Design_Model

Design_Definition

+def

+models

1

0..*

Design_Property

+def

+props

1

0..*

Design_Intent

+def

+intent

1

1

Functional_Definition

Function

Design_Requirements

Behavioural_Definition

Analysis_Model

Behaviour_Description

+def +behaviours

1 1..*

Analysis_Definition

+def

+adef

1

1

+model

+def

0..1

1

Analysis_Shape

+def

+shape

1

0..1

Analysis_Result

+def

+results

1

0..*

Simulation_Intent

+def +intent

1 1

Simulation_Objective

+intent

+objectives

1

1..*

+def

+functions

1

1

+function

+reqs

1

0..*

might_fulfill

+reqs +intent

1..* 1

+adefs

+behaviour

1..*

1

verify

+intents +objective

1..* 1

NAUO

Functional_Structure_Node

Design_Structure_Node

CAE_Structure_Node

System_Model

Analysis_Shape

Digital_File

+model

+file

1

0..1

+component

+function

1

1

Artefact_Definition_Relationship

+related+relating 11

Dependency_Relationship

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-225-

that this definition might fulfil. For an assembly, the Design_Definition also encompass the composi-

tion of its children components. The artefact design definition of an assembly is related to the defini-

tion of its constituting sub-assemblies and parts through the use of the NAUO (Next Assembly Usage

Occurrence) entity that represents the nodes of the design product structure.

A Design_Model is any kind of representation describing the structural and geometric features of

the artefact. In our case the sub-type entity Nominal_CAD _Model will be instantiated for referencing

the geometric model of the artefact. A Design_Property refers to all design features that can be useful

for both designer and analyst when accessing an artefact definition. It includes features such as the

mass properties or the material reference of the artefact.

A Behavioural_Definition is an aggregation of one Analysis_Definition and a set of Behaviours to

be analysed (Behaviour_Description). An Analysis_Definition is an aggregation of the following entities:

 Analysis_Model: it is any kind of representation that permits to analyse the behaviour of a

system artefact. In our case we will instantiate the sub-type FE_Model for referencing the

finite element model used for a finite element analysis;

 Analysis_Shape: corresponds to the idealised CAD model used for the creation of the

FE_Model of the FEA;

 Analysis_Result: the class permitting to access the results (raw and post-treated results) of

the analysis;

 Simulation_Intent: this class gathers a set of simulation objectives and a set of modelling hy-

potheses and specifications.

The Behaviour_Description entity specifies the analysed behaviour in terms of the analysed phys-

ical phenomenon and their origin (specific potential product situations of life) in potential different

operational phases (or Product_State), leading to the definition of “mission parameters” permitting to

define the load cases to apply on the FE model.

11.1.2.3 Design and Analysis definition links

An important rule to notice is that an Artefact can have several Functional_Definitions, several

Design_Definitions and several Behavioural_Definitions. Indeed each artefact definition instance cor-

responds to a specific version of the definition. Therefore the links between a functional, a design and

a behavioural definition of a same artefact are not explicit. Traceable links can be established between

functional, design and behavioural of a same artefact through the Artefact_Definition_Relationship

entity and its sub-type Dependency_Relationship. These links can also be traced through the use of

Design and Simulation Intent entities. The Design_Intent permits to link a Design_Definition to the set

of Design_Requirements of the associated Functional_Definition. The Simulation_Intent (referring

some Simulation_Objectives) permits to link a Behavioural_Definition to the Design_Intent of the as-

sociated Design_Definition and hence to the set of Design_Requirements the simulation intents to

verify in a specific behavioural configuration.

11.1.2.4 Focus on Item Design Definition

Figure 162 provides the data structure of an item design definition. An Item_Design_Definition is

a sub-type of an Artefact Design_Definition for which specific Item_Properties are defined and which

is generally geometrically characterised by a Nominal_CAD_Model. Some Item_Properties are derived

from this geometric model; these are the Shape_Dependant_Properties (volume, mass properties,

etc.). Other Item_Properties can be defined independently from the geometry of the item.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-226-

Figure 162: Global data structure of an item design definition

A CAD model can be decomposed into Shape_Bodies. It is useful to capture this level of CAD model

decomposition because different material parameters can be defined for these different constituting

Shape_Bodies hence impacting the mass properties of the entire item. This information is particularly

required when using these material parameters for creating a FE model in the CAE pre-process.

Item_Properties must be distinguished from the Instance_Properties which are associated to the

instance of the item_design_definition as used in a specific assembly. These Instance_Properties are

mainly used in our context to derive relative mass properties of the instance in the coordinate system

of the parent component in the assembly.

11.1.2.5 Focus on Behavioural Definition

As shown in Figure 163, in our proposed approach, an artefact Behavioural_Definition is defined

as an aggregation of an Analysis_Definition (describing the analysis and the artefacts used for or de-

rived from this analysis) and a set of Behaviour_Descriptions (defining the physical phenomena to sim-

ulate).

An Analysis_Definition is defined by the set of engineering artefacts that will be consumed or gen-

erated during the specific analysis process: a Simulation_Intent, an Analysis_Type, a Method, an Anal-

ysis_Model, an Analysis_Shape, and a set of Analysis_Results. For the CAD-FEA loop context, we have

defined specific sub-types of Analysis_Shape and Analysis_Model:

 Idealised_Analysis_Shape: An Idealised_Analysis_Shape is a type of Analysis_Shape that rep-

resents a shape on which points are associated for the location of nodes in a finite element

model, or a shape that is suitable for mesh generation. Mesh generation shape may include

the topological information necessary to specify mesh generation curves, areas, or volumes,

or may be just the bounding geometry of the mesh generation curves, areas, or volumes [ISO,

1999]. The geometry may be the Nominal_CAD_Model of a Design_Definition of the same

Artefact.

 Node_Shape: A Node_shape is a type of Analysis_shape that is defined by the points of the

nodes in a FEA_Model.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-227-

 FEA_Model: A FEA_Model is a collection of information that represents the finite element

analysis of a product. The information includes nodes, elements, materials, properties, and

groups which are combined to form a discrete mesh model of the product [ISO, 1999].

A Behaviour_Description intends to capture which physical phenomena and hence which behav-

ioural parameters (load cases) have to be applied on the FE model to simulate these phenomena. A

physical phenomenon is semantically described by the entity Phenomenon_Origin which might de-

scribe the original event of the physical phenomenon which is analysed (unbalance phenomena caused

by a FAN blade-off event, a bird or ice ingestion, specific operation of the aircraft, transportation, cross-

wind conditions, thermal effects, etc.). A physical phenomenon occurs in a specific Product_State

(product situations of life) to which are associated a set of Usage_Status. The entity Usage_Status pro-

vides information about the operating status (working conditions) and age (new, old, end of life) of the

product. It allows applying a certain coefficient/ratio to the Mission_Parameters. Product_States are

defined by a set of Mission_Profiles, themselves described by a set of phases (e.g. take-off, landing,

cruise, etc.) and for each of these phases a set of Mission_Parameters are defined and can be derived

into Load_Cases parameters.

Figure 163: Global data structure of an artefact behavioural definition

11.1.3 DMU and BMU assembly structures

The data model for describing assembly structure is strongly based on the Part 44 (Product struc-

ture configuration) of the ISO-STEP standard [ISO, 2004a]. In order to define the different kind of prod-

uct structures (functional, structural, behavioural) each created instance (usage occurrence) can be

attached to the definition of a parent assembly/function through the use of two sub-types of the Def-

inition_Usage_Occurrence entity:

 Functional_Structure_Node: It represents a single individual occurrence of an artefact Func-

tional_Definition as used in an immediate next higher function of another artefact functional

definition.

 Next_Assembly_Usage_Occurrence (NAUO): it represents a single individual occurrence of

an artefact Design or Behavioural Definition as used in an immediate next higher parent as-

System Definition Layer

System_Artefact Artefact_Definition

+artefact +defs

1 1..* Definition_Usage_Occurence+instances+def

0..*1
NAUO

+children+parent
0..*1

Behavioural Layer

Behaviour Description Analysis Definition

Behavioural_Definition

Behaviour_Description
Analysis_Definition

+def

+behaviours

1

1..*

+def

+adef

1

1

Product_State Mission_Profile

Mission_Parameter

Load_Case

Phenomenon_Origin

PhaseUsageStatus

+behaviour

+states

1

*

+behaviour +origin

1 1..*

1

1..*

+state +profiles

1 1..*

+usage

+state1

1

+params

+usagecoeff

0..*

1 +phase

+params

1

0..*

+loadcases1..*

1

Methods

<<enumeration>>

+FiniteElementAnalysis

+CFD

+MonteCarlo

+...

+def +method

1 1

Analysis_Type

<<enumeration>>

+Linear

+NonLinear

+type+def

11

Analysis_Model

+model

+def

0..1

1

FEA_Model

Analysis_Shape

+def

+shape

1

0..1

Node_ShapeIdealised_Analysis_Shape

Analysis_ResultSimulation_Intent

+def

+results

1

0..*

+def

+intent

1

1

Simulation_Objective Modelling_Requirement

+intent

+objectives

1

1..* +reqs 0..*

BehaviourStructureNode

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-228-

sembly definition. The NAUOs permits to instantiate design artefacts within a product struc-

ture and within specific product configurations (through the use of effectivities), localize com-

ponents in a product structure indicating their respective parent components, retrieve the

definition used by components/instances and configure a product structure applying effectiv-

ities on it. The NAUO entity has two sub-types:

 Design_Structure_Node: these structure nodes permit to structure, configure and po-

sition the CAD assembly models in the DMU environment; since this structure node re-

fers to an artefact definition instance, the instance properties such as the instance

placement and the relative mass properties are associated to this entity.

 Behaviour_Structure_Node: these structure nodes permit to structure and configure

the CAE simulation assembly models (e.g. integrated finite element models) in the BMU

environment.

In the case of DMU or CAD assembly models and structures, the entity NAUO and its sub-types

are used to define the parent-children relationships between system components. Figure 164 below

shows an instance diagram of a Fan-Booster DMU assembly structure. The top level component of the

product structure is created instantiating the entity Root (sub-type of Structural_Assembly). The other

assembly components are created instantiating the entities Item_Assembly and Structural_Assembly.

The individual parts are created instantiating the Item_Part entity. Multi-instanced parts groups such

as the bolt-nut assemblies or the rotor blades group are created using the entity Group (sub-type of

Stuctural_Assembly). In that case the same Design_Definition is instantiated (used) several times un-

der the same parent assembly; only the instance placement property is evolving. The NAUO relation-

ship is unique and relates a child component Design_Definition to the Design_Definition of its parent

component in the assembly.

Figure 164: Instance diagram of a DMU Fan-Booster assembly structure

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-229-

Since the usage of an Artefact_Definition and hence a Design_Definition is described by a Defini-

tion_Usage_Occurence, many different views of the usage can be established by varying the parent

Artefact_Definition and hence creating new NAUOs of this Artefact_Definition. Thus, various Arte-

fact_Definitions can move into other life cycle stages and usages or parts lists can be defined for any

of a number of views and life cycle stages of a development process (see section 11.3.1).

11.1.4 Interface and Interaction definition

11.1.4.1 Interface taxonomy

The artefact Interface has a specific Design_Definition (Interface_Design_Definition) which is de-

fined as an aggregation of a set of Interface_CAD_Features (partial shape elements of any geometric

CAD model) and which is necessarily associated to or composed of an Interaction. Based on [Sinha et

al., 2001b] and as shown in Figure 165, we have defined a taxonomy of Interactions distinguishing the

Single_Domain_Interaction, the Cross_Domain_Interactions, Unintented_Interaction and Intermit-

tent_Interaction (where the interfacing artefacts physically connect only intermittently). We have also

proposed to define the following sub-types of Interface_CAD_Feature:

 CAD_Mating_Feature: CAD topological features specifying the interface geometrical area

(surface of interaction or of non-interaction for clearances) between two interfacing compo-

nents.

 Assembly_Constraint: CAD topological features specifying the relative position of two com-

ponents in an assembly and implicitly defining the degrees of freedom between these com-

ponents.

 Kinematic_Pair: CAD topological features specifying how the interfacing artefacts are mova-

ble with respect to one another and describes the type and/or properties of kinematic joints.

One kinematic pair can point to a set of pre-defined Assembly_Constraints.

Figure 165: Proposed Interface Taxonomy

An interaction is potentially associated to a Technology (e.g. a bolted flange for a bolted joint or a

roll bearing for a bearing joint). The main concept exposed here, is the idea to create Inter-

face_CAD_Templates which enable to capture the set of specific Interface_CAD_Features required to

define and specify a specific technological connection or Interaction (e.g. the set of planar or cylindrical

contacts, clearances and/or interferences required to specify the position, the dimensions and the

Interface_Design_Definition

Interface_CAD_Feature Interaction

+interface_def

+linkage

1

1

+interface_def

+cad_features

1

0..*

Shape_Contact

Functional_Interference

Functional_Clearance

FluidSolid_Boundary

Unintended_InteractionCrossDomainInteractionSingleDomainInteraction

MechanicalJoint

ThermoMechanical_LinkageThermal_Interaction

Mechatronic_Interaction

...

...

Bearing_Joint

Bolted_Joint

Artefact_Definition Design_Definition

CAD_Mating_Feature Kinematic_PairAssembly_Constraint

Co-axial

Parallel

Coincidence

Angle

Distance

...

Revolute_Pair

Prismatic_Joint

Screw_pair

Cylindrical_Joint

Spherical_Joint

Technology

+techno +linkage

0..1 1

FluidFluid_Section

11..*

Interface_CAD_Template

...

Intermittent_Connection
* 1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-230-

alignment features of a bolted flange). Thus, the design intent of an interface (why the designer spec-

ifies an interface this way and what is the functional meaning of these mating features) is captured

and re-usable.

The whole conceptual interface data model defining the functional, structural (design) and behav-

ioural definition of an Interface artefact is provided in the following section 11.1.4.2.

11.1.4.2 Interface data model

Figure 166 illustrates the proposed data structure for defining an Interface. As other artefacts, an

Interface has a functional a design and a behavioural definition and links between these three defini-

tions are also shown in this figure.

As introduced in section 10.3.3, we propose to define an Interface according to its:

 Functional definition: specifying the function of the interface and the related set of design

requirements (e.g. a stiffness constraint on a mechanical embedded connection or a friction

ratio for a slide connection)

 Technological definition: specifying via NAUOs the usage of specific artefacts (and hence their

appropriate definition) playing the role of connectors and enabling to ensure the interaction.

 Kinematic definition (specifically for mechanical joints): specifying the kinematic pair and re-

lated set of degrees of freedom (DoF) between two interfacing solid components. DoF are also

used as behavioural parameters in the behavioural definition of a mechanical interface.

 Topological definition (specifically in the context of CAD-CAE loops): in the design layer it rep-

resents the set of partial shape elements (CAD model surfaces) defining geometrically the in-

terface area by publishing Shape_Feature_Publications from CAD models and linking them

through the entity Shape_aspect_relationship and its sub-types Interface_CAD_Feature and

CAD_Mating_Feature. In the behavioural layer, it represents the corresponding set of

FE_Mating_Features (nodes, group of nodes or elements) defining geometrically the interface

area on the FE_Model of the interfacing components. It is possible to create an association

between CAD and FE mating features to help analyst to retrieve the right location of an inter-

face and to better understand the way a re-used assembly FE model has been created.

 Behavioural Definition: The Interface_Behavioural_Definition is, like another behavioural

definition, related to a specific CAE analysis. It gathers the FE topological definition, a set of

behavioural parameters and potentially a set of Boundary_Conditions to apply on this inter-

face to run the simulation. Moreover, the Interface_Behavioural_Definition is potentially rep-

resented by a FE_Link_Model specifying physical connections between two FE_Models.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-231-

Figure 166: System Interface Data Model

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-232-

11.1.5 System Models

This part of the DASIF conceptual data model has been defined in order to define the data struc-

ture of a system model and to define the possible associations with the engineering artefacts and their

definitions used for configuring, with an object-oriented and systemic formalism, the DMU and BMU

assembly models. As shown below in Figure 167 and based on SysML internal block and parametric

diagrams [Friedenthal et al., 2011], a System_Model is an aggregation of System_Blocks, Ports and

Connectors.

Figure 167: Data model for defining DMU and BMU system models

System_Blocks are used to reference one and only one usage of any Artefact_Definition in a spe-

cific system view. Since it references Definition_Usage_Occurences, it is possible to access to this def-

inition and hence to the required artefact models and properties.

To one System_Block several Ports can be defined as the different interface area associated to the

referenced component usage.

Connectors enable to connect two System_Blocks via Ports. It necessarily references an Interac-

tion with its associated Interface_Design_Definition and Interface_Behavioural_Definition. Ports can

reference a set of CAD_Mating_Features and FE_Mating_Feature. If a set of CAD_Mating_Features

and FE_Mating_Feature are associated to the same port, they are implicitly associated for specifying

the same interface area. As mentioned in section 10.3.4.2, Interface_Blocks enable to describe an in-

terface as a system constituted of sub-systems or components. An Interface_Block is also necessarily

associated to an Interaction with its related Interface_Design_Definition and Interface_Behav-

ioural_Definition.

11.2 From Artefact System Definition Layer to Topological Layer

Each Artefact_Definition is potentially described by a set of numerical models; the Artefact_Mod-

els. The entity Digital_File represents the numerical data file containing the information describing the

Artefact_Model. An artefact model has potentially one Topological_Representation if it is a geometric

model. In the case of CAD and FEA models this Topological_Representation is whether a Shape_Rep-

resentation (for CAD models) whether a FE Representation (for FE models) as illustrated in Figure 168.

System_Model

System_Block Port Connector

1..*
0..* 0..*

+ports+block

0..*1

+port

+delegations

1

0..*

+ports +connector

2 1

Interface_CAD_Feature

Definition_Usage_Occurence

+def_usage_occurence

+block

1

1

Interaction

Interface_Block

+parent

+child

1

1

Artefact_Definition

+instances

+def

0..*

1

+children

+parent

0..*

1

+connector

1..*

1

+interaction

+block
1

0..1

Interface_Design_Definition

+interface_def +linkage

1 1+interface_def+cad_features

10..*

Interface_Behavioural_Definition

1

1

FE_Mating_feature

+fe_mating_features +def

0..* 1

+fe_topo1

CAD_Mating_Feature

+port

+cad_topo

1

1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-233-

Figure 168: Link between System Definition and Topological Layers

The Shape_Representation data structure is based on the Part 42 (Geometric and topological rep-

resentation) of the ISO-STEP standard [ISO, 2003a]. The FE_Representation data structure is based on

the Part 52 (Mesh-based topology) [ISO, 2011b] and Part 104 (Finite element analysis) [ISO, 2000a] of

the ISO-STEP standard. Figure 169 and Figure 170 provides the data models describing how the system

definition layer and the topological layer are linked for respectively representing the topology of CAD

models (such as the Nominal_CAD_Model and the various sub-types of Analysis_Shapes) and FEA

models.

11.2.1 CAD topological layer

A Shape_Representation has one specific type of representation (Brep model, wireframe 2D, sur-

face model, etc.). A Shape_Representation, according to its type of representation, is described by a

set of Geometric_Representation_Items (which are the concrete topological elements) permitting to

describe the geometry. Each Geometric_Representation_Item is defined in a specific Geometric_Rep-

resentation_Context (identifying the coordinate space in which it is defined) and positioned for in-

stance in a 3D coordinate system defined by the entity Axis2_placement_3D (sub-type of the Place-

ment entity which is a specific type of Geometric_Representation_Item). The relative positioning of

different Shape_Representations in an assembly can be captured through the use of the Shape_rep-

resentation_relationship_with_transformation referencing a Cartesian_Transformation_Operator

(position matrix). This information can be passed on to the system definition layer through the In-

stance_Placement entity, enabling to get this information without loading the CAD model in a CAD

modeller.

System Definition Layer

Topological Layer

CAD Topological Layer

Shape_Representation

FE Topological Layer

FE_Representation

Topological_Representation

Digital_File

+format

+path

Artefact_DefinitionArtefact_Model +def+models

10..*

+model+file

10..1

+rep

+model

0..1

1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-234-

Figure 169: Links between Design Layer and Topological Layer

11.2.2 FE topological Layer and links with the CAD topology

A FEA_Model is an aggregation of a FE_Representation with a set of Load_Representations. A

Load_Representation represents the numerical values of load cases to apply to the FE Representation

to run the simulation and assess the expected behavioural phenomenon. A FE_Representation is an

aggregation of FE_Nodes and FE_Elements. A FE_Node is a discretization point for the field variables

of the FEA_Model. A FE_Element is the basic building block of a FEA_Model. It defines the mathemat-

ical relationship between the finite element Nodes. An Element shall be one of the following in

ISO10303-104 [ISO, 2000a]: Curve_element, Directionally_explicit_element, Explicit_element,

Point_element, Substructure_element, Surface_element, Volume_element. We have categorised

these types of elements according to their respective dimensions (0D, 1D, 2D or 3D). The Node_Place-

ment entity specifies the location and hence the coordinates of the Node with respect to the founding

FE_Placement_Coordinate_System. The FE_Placement_Coordinate_System entity specifies the coor-

dinate system for the analysis variables at the Node. Groups of Nodes can be created and related to-

gether (specifically useful in assemblies to define a FE connection between two mating groups of

nodes).

System Definition Layer

Topological Layer

CAD Topological Layer

Design Layer

System_Artefact Artefact_Definition

Design_Definition

+artefact +defs

1 1..*
Definition_Usage_Occurence+instances+def

0..*1 NAUO

Design_Structure_Node

Design_Model

+children+parent

0..*1

Design_Artefact_Property

+def+models

10..*

+def

+props

1

0..*

Shape_Dependant_Property

Nominal_CAD_Model

+props+shape

0..*1

CAD_material

Shape_Body+cad_model +bodies

1 0..*

+body
+mat_ref

1

0..1

InstancePlacement

+relative_placement

+instance

1

1

Digital_File

+format

+path

+file

+model

0..1

1

Geometric_Representation_Item

+items

+shape

1..*

1

Point

Placement

Direction

Curve

Cartesian_transformation_operator

Edge_curve Face_surface Shell_based_surface_model ...Solid_modelSurfaceVector

Vertex_point

...

...

...

...

...

Shape_Representation

geometric_representation_context

+context_id

+coordinate_space_dimension
+reps +geo_context

0..* 1

axis2_placement_3D

+name

+location

+axis

+ref_direction

+reps

+placement

0..*

1

Rep_Type

<<enumeration>>

+brep_model

+wireframe_model3d

+wireframe_model2d

+faceted_brep_model

+csg_model

+surface_model

+...

+type +rep

1 1

+rep

+cad_model

0..1

1

Shape_Feature_Publication

+model

+publications

1

0..*
Shape_aspect_relationship

+relating

+related

1

1

+rep

+shape_aspect

0..1

1

Shape_representation_relationship_with_transformationShape_representation_relationship

+rep2

+rep1

1

1

+transformation1

+matrix_position

+transformation

1

1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-235-

Topological associations can be made between the CAD topological elements of a nominal or ide-

alised CAD model and the FE topological elements of a FEA model. These “fine-grain” associations are

captured by the entities Node_Shape_Relationship and Element_Shape_Relationship for linking Ge-

ometric_Representation_Items of a Shape_representation with respectively FE_Nodes and

FE_Elements.

Figure 170: Links between Behavioural Layer and Topological Layer

11.3 Configuration Management Layer

The Configuration Management Layer enables to manage on one hand the different product de-

sign and analysis/behavioural configurations corresponding to fit-for-purpose domain-specific analysis

and on the other hand the engineering design changes and their propagation across the appropriate

product configurations. Therefore this layer is sub-divided in three sub-packages which are:

 The Product Configuration layer: this package encompasses all the product manufacturing

and design configurations as well as the configurations effectivities assignments to the rele-

vant component definitions;

 The Engineering Change layer: this package defines the Engineering Change object that per-

mit to capture the evolutions of the technical definition of components. This object might

identify the nature of the design change(s) and enable the access to the data or meta-data

that have evolved. This object is also configured since a design change might concern one or

several product configurations;

Topological Layer

FE Topological Layer

System Definition Layer

System_Artefact Artefact_Definition

+artefact +defs

1 1..* Definition_Usage_Occurence+instances+def

0..*1 NAUO

+children+parent
0..*1

FE_Representation Element Element_Properties

Node

Load_Representation

Dynamic_LoadStatic_Load
0D_Rep 1D_Rep 2D_Rep 3D_Rep

+elts

+nodes

1..*

1..*

+fe_rep+loadrep

11 +rep +elts

1 1..*

+rep

+nodes

1

1..*

+props+elt

1..*1

Behavioural_Layer

Behaviour Description Analysis Definition

Behavioural_Definition

Behaviour_Description
Analysis_Definition

+def

+behaviours

1

1..*

+def

+adef

1

1

Product_State Mission_Profile

Mission_Parameter

Load_Case

Phenomenon_Origin

PhaseUsageStatus

+behaviour

+states

1

*

+behaviour +origin

1 1..*

1

1..*

+state +profiles

1 1..*

+usage

+state1

1

+params

+usagecoeff

0..*

1 +phase

+params

1

0..*

+loadcases1..*

1

Methods

<<enumeration>>

+FiniteElementAnalysis

+CFD

+MonteCarlo

+...

+def +method

1 1

Analysis_Type

<<enumeration>>

+Linear Static

+NonLinear Static

+...

+type+def

11

Analysis_Model

+model

+def

0..1

1

FEA_Model

Analysis_Shape

+def

+shape

1

0..1

Node_ShapeIdealised_Analysis_Shape

Analysis_ResultSimulation_Intent

+def

+results

1

0..*

+def

+intent

1

1

Simulation_Objective Modelling_Requirement

+intent

+objectives

1

1..* +reqs 0..*

+model

+rep

1

0..1

+model

+loads

1

1..*+fe_rep

+loadcase

1

1

CAE_Structure_Node

CAD Topological Layer

Shape_Representation

Geometric_Representation_Item

+items

+shape

1..*

1

Topological_Representation

+rep

+model

0..1

1

Nodes_Group

+grp +nodes

1 *

Node_Shape_Relationship

+relating

+related

Element_Shape_Relationship

FE_Placement_Coordinate_System Node_Placement

+fe_model+shape

Placement

+location

+node

1

1

+coordinate_space
+location

+shape_rep

1

1

+node

+results_coordinate_space

1

1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-236-

 The Organisational layer: this package manages the organisations (companies, departments

and business units) involved in the product development process, as well as their relationships

(e.g. hierarchical or supplier-customer relationships). One organisation is composed of em-

ployees which are potential users of DASIF. This package also manages the assignment of

product data or meta- data to some users (responsible of a design definition, responsible of a

design change, responsible of an analysis, etc.).

The Configuration Management layer has several relationships with the system definition layer. It

defines the “effective usage” s of artefact definitions in the appropriate product configurations. This

layer also captures the various design changes / evolutions coming from the system definition layer

and enables to propagate these changes in the appropriate product configurations and views.

11.3.1 Multi-view and design-oriented configuration management

We consider the business/marketing definition of a product: a thing (a tangible good in our case)

that can be offered to a market that might satisfy a want or need and which is the result of a manufac-

turing process. Therefore, a Product_Class is the identification of a set of similar products to be offered

to the market. It rather specifies an aero-engine or the related aircraft application. That is why there

can be hierarchal links between Product_Classes (e.g. The LEAP-X engine will be the child of rather an

A320 Neo or 737MAX aircraft).

A Configuration is a product variant (or Configuration Item in ISO10303-44), i.e., the identification

of a particular variation of a Product_Class. A product variant is defined with respect to the product

class (product concept in part44), i.e., the class of similar products of which it is a member. We distin-

guish three different kinds of configurations according to what is proposed in section 10.3.2.2:

 Master_Configuration: it is a product configuration that is established each time it is neces-

sary to agree on a reference which is the basis for identifying further configurations and re-

lated product views. Based on pre-defined validation plan, and on the experience of previous

projects, the derived “design discipline configurations”;

 Design_Discipline_Configuration: These configurations correspond to variants of a product

used in specific application domains related to the design /development activities. These con-

figurations are not necessarily intended to be delivered to a customer organisation as a man-

ufacturable item, but they can be and are generally based on or associated to a manufactura-

ble configuration. They are variation of a product class, or its discrete portions that are treated

as a single unit in the configuration management process. This can be for example a mechan-

ical configuration of the aero-engine that decomposes the engine with a rotor-stator decom-

position in view to perform mechanical-specific analyses;

 Manufacturable_Configuration: These configurations define a manufacturable end item, or

something that is conceived and expected as such. Depending on the kind of industry and

products, a product_concept (Product_Class) might be offered to the customers in one or

many different manufacturable configurations. If the product concept is offered in different

configurations, each of these configurations is a member of the class of products defined by

this product concept.

Dependency links between a Master_Configurations, Design_Discipline_Configuration and Manu-

facturable_Configurations can be defined by instantiating the entity Configuration_Relationship.

These relationships enable to trace from which configuration another configuration has been derived.

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-237-

This implies that there are master-slave links enabling change propagation between Definition_Us-

age_Occurences used in these configurations (see next section 11.3.2).

Figure 171 shows the data model enabling to build, capture, modify and make evolve the various

product configurations and how they are linked to their constituting elements (usage occurrences of

Artefact_Definitions) through the concept of “effectivity”.

Figure 171: Product configuration data model - links between configurations and system definitions

Effectivity is the key concept for linking the system Artefact_Definitions to the appropriate prod-

uct configurations in which they are valid. An Effectivity is the identification of a domain of applicability

for product data; i.e. defining the valid use of the product data to which the effectivity is assigned.

Effectivity allows control of the constituent parts (instances of Artefact_Definitions) that should be

used to build the physical instances of a product configuration. The composition of the product con-

figurations for planned units of manufacture may be controlled for a given time period, lot, or serial

number range. This is managed using Dated_Effectivity, Range_Effectivity, or Effectivity_List. In-

stances of Effectivity may be applied to any Artefact_Definition instances or usage occurrences (e.g.

NAUO).

The View_Definition_Context defines the context in which the design definition of an artefact

(properties, documents, structures, etc.) is valid. A View_Definition_Context is the grouping of a Con-

figuration_Context (defining the application domain(s) and the life cycle stage(s) in which an artefact

definition is valid) and a Usage_Scenario (representing the use case(s) of the artefact definition and

related representations). Indeed, within a same discipline or application domain and a same life cycle

stage, several different use cases of a same product representation can exist (e.g. simulate the impacts

of a physical phenomena, design in context, specify components interfaces, exchange of CAD data,

etc.).

An Artefact_Definition is a characterization of an artefact definition version, relevant in one or

more context application domains, one or more life cycle stages and for potentially several use cases.

An Artefact_Definition is a collector of the properties that characterize the System_Artefact in the ini-

tial_context and additional_contexts.

The organisational layer – here encompassing the User and Organisation entities – enable first to

define the structure of an Organisation around a product development program or project (identified

Configuration Management Layer

Product Configuration Layer

Configuration

Design_Discipline_ConfigurationManufacturable_Configuration

Effectivity

Configuration_Context

+application_domain

+lifecycle_syage

System Definition Layer

View_Definition_Context

Definition_Usage_Occurence

Artefact_Definition

+instances

+def

0..*

1

+children

+parent

0..*

1

Effectivity_List

+effectivities +nauos

0..* 0..*

Usage_Scenario

1

10..*0..*

+confs +list

1..* 1

Master_Configuration

Configuration_Relationship

+def+inital_context

1

+def+additional_context

10..*

+def+context

*1

+related+relating 1..*1

+slaves+master 1..*1

System_Artefact

+artefact

+defs

1

1..*

Product_Class

+confs

+product

*

1

Organisational Layer

Organisation

User

+employees

+orga

*

1

+dep_users

+dep

*

0..1

+confs+deps

0..

+confs

+customers

1..*

0..*

+programs

+orgas

0..*

1..*

+modified_by

+modified_def

1

0..*

+created_by

+created_def

1

0..*

+mother

+daughters

1

0..*

Range_Effectivity

Dated_Effectivity

+start_conf

1
+end_conf

1

+conf

1

+sub-products

+product

0..*

1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-238-

through the use of Product_Class) and to assign Users of the environment to the different Organisa-

tions involved in the program. An Organisation can be assigned to specific product Configurations to

develop or to produce. This layer also enables, according to these assignments, to define specific roles

and access rights to users. Users are also assigned to the Artefact_Definition they have created or

modified and to subscribe to several definitions to be notified of their evolutions.

11.3.2 Engineering Design Change Management

Figure 172 below provides the proposed data model for engineering change management inspired

from principles defined in ISO10303-214 [ISO, 2000b].

Figure 172: Engineering change management data model - links between changes, configurations and system definitions

A Design_Change is a mechanism to collect the Model_Change objects and the Property_Change

objects that describe the differences between the two objects referenced by the described relation-

ship.

A Model_Change is a mechanism to describe the differences between two objects concerning the

models describing these objects. Model_Change mechanisms enable first to specify the Arte-

fact_Model_Relationship that identifies the original (relating) model and the changed (related) model

and secondly to access to the Detailed_Model_Elements (topological elements such as Geomet-

ric_Representation_Items for Shape_Representations) that have been added or deleted to the related

or relating Artefact_Model. For a CAD model, a Detailed_Model_Element is a single geometric element

of a geometric model. In ISO10303-214 a Detailed_Model_Element can also be a Kinematic link, a

Template instance, a Kinematic structure or a Kinematic joint (see [ISO, 2000b]).

A Property_Change is a mechanism to describe the differences between two objects concerning

the properties of these objects. This entity capture all added, deleted or modified Design_Properties

of an Artefact Design_Definition. If modified properties have a Property_Value, the Property_Change

object also references the Value_Change object enabling that captures and traces the evolution of a

certain Property_Value.

A Change_Relationship provides the identification of the successive modification whether it is a

definition version, a model revision, a new design alternative, or a modification of a Definition_Us-

age_Occurrence (new one, removal).

System Definition Layer

Design Layer

Configuration Management Layer

Engineering Change Layer
Organisational Layer

Product Configuration Layer

Product_Class

+confs

+product

*

1

Configuration

Effectivity_List Range_Effectivity Dated_Effectivity

+conf

1

+end_conf 1+start_conf 1+confs

+list

1..*

1

Effectivity

User Design_Change Property_Change

Value_Change

Change_Relationship

+change_relationship_select()

Definition_Version_Relationship

Alternated_Version_Relationship

Replaced_Usage_Relationship

+def

+models

1

0..*

Artefact_Model

Artefact_Definition

System_Artefact

+artefact

+defs

1

1..*

Definition_Usage_Occurence

+children

+parent

0..*

1

+instances

+def

0..*

1

Design_Definition

+def

+props

1

0..*

Design_Property

+added_prop

+prop_change

0..*

1

+modified_prop+prop_change

0..*1

+deleted_prop+prop_change

0..*1

Property_Value

+value0..1+value_modif

+change

0..*

1

0..*1

+new_value+value_change

11

+old_value+value_change

11+described_change

+change

0..*

1

+alternate+change

11

+base

+change 11

+old_version+change

0..11

+new_version+change

11

+previous_duo+change

0..11

+new_duo+change

11

+change+created_by

11

+effectivities

+change

*

1

+effectivities

+nauos

0..*

0..*

+concerned_defs

+change

1..*

1

+slaves

+master

1..*

1

Model_Change

0..*

detailed_model_elementArtefact_Model_Relationship

+related

+relating

1

1

0..1

0..*

+elements0..*

1 +element_for0..*

1

+deleted_elts0..*

1

+added_elts0..*

1

Part III: Proposal for a design-analysis integration framwork T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-239-

Each created Design_Change object references the User that has created this Design_Change.

Each Design_Change is associated to a list of Effectivities referencing the various Configurations in

which the change might be propagated. One Design_Change object can concern and impact several

Artefact_Definitions. And one Artefact_Definitions could have been impacted or concerned by several

Design_Change objects. It is hence possible to trace all Design_Change objects created for one Arte-

fact_Definition.

11.4 Conclusion

The conceptual data model introduced in previous sections provides the required informational

model to organise and manage the engineering artefacts used in the frame of the DASIF framework. It

intends to support the management of product data generated and/or consumed project activities and

actors involved in CAD-CAE digital integration chains. Although class and objects behaviours as well as

relationships between entities are provided in the documentation, attributes and operations of classes

are not displayed in this conceptual data model.

This data model has several objectives:

 To be enriched with required attributes and operations/methods according to the specific

business requirements of the environment where it has to be implemented;

 To be implemented in a relational database and its client applications constituting the product

and simulation data management systems supporting DASIF;

 To specify the data structure of exchanged CAD and CAE data files (topological and applicative

layers);

 To contribute to the enrichment of the BDA object model with the proposed concepts and

services so that they can potentially be implemented within the BDA hub platform in order to

support collaborative data exchange within CAD-CAE digital integration chains.

Not all parts of this conceptual data model have been implemented in the prototypes introduced

in next chapters. Next part introduces the different implementations of these concepts performed in

the frame of this PhD.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-240-

PART IV: IMPLEMENTATION AND
DEMONSTRATIONS OF CONCEPTS

This part of the dissertation aims at demonstrating that the concepts proposed in Part III can be

implemented and that they can fulfil the industrial requirements that this PhD addresses. This part is

made of four chapters.

In order to develop and implement these concepts, a PDM system mock-up has been proposed

and developed at Snecma. One important objective of this prototype is also to allow testing of related

concepts and identify difficulties related to implementation. This prototype and related achievements

are presented in chapter 12.

Moreover, within the CRESECNDO project we have also contributed in assessing the maturity of

existing commercial application to implement our concepts. Indeed we have developed, in collabora-

tion with PLM/SLM software vendors, prototypes intending to prove the feasibility of implementing

such concepts in PLM and SLM platforms. We hence developed a demonstration scenario of a “To-Be”

integration process: the product integration scenario. This scenario and the related demonstrators

are fully explained in Chapter 13. Reminding that one of the major objectives of CRESCENDO is to pro-

vide the Behavioural Digital Aircraft (BDA) (see sections 3.4 and 7.3), we have also contributed in de-

fining some parts of the BDA Business Object Model (BDA BOM). The BDA BOM represents the data

model capturing information used or provided by the BDA functions and services. Our contribution to

the development of the BDA BOM is also addressed in Chapter 13.

Chapter 14 is dedicated to the PhD results validation; i.e. to the assessment of the capabilities

developed for the DASIF prototype and for the Product Integration scenario.

Finally Chapter 15 is the general conclusion of this PhD. It provides a general synthesis of our re-

search works and contributions but also new open perspectives for future research works and devel-

opments.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-241-

Chapter 12: DASIF prototype development and exploitation

12.1 Prototype architecture

The developed prototype has been built on a classical server-clients environment (see Figure 173).

The server is a relational data base system host on a local machine. The clients are on one side the

DASIF PDM system and on the other side the CAD modeller application (here CATIA V5). In the future

other clients can be considered such as CAE applications and the DASIF SDM system.

Figure 173: first DASIF prototype architecture

A specific CAD vault has been set-up to save all the CAD models so that the DASIF PDM data base

is not obstructed and slowed by loading all these voluminous CAD data and so that they can be ac-

cessed and exploited by other data base systems. The DASIF relational data base system implements

the logical data model introduced in next section. It aims at storing and managing product data and

meta-data. The data base is enriched whether by creating and saving new objects in the PDM client

application or by extracting data directly from the CAD modeller based on existing DMUs.

For this first prototype, the data base has been enriched with an XML file generated with a dedi-

cated macro in CATIA V5 (see section 12.3.2). The DMU that served for enriching the data base has

been configured for the demonstration purpose and enriched with interface mating features and the

generated XML file also includes mechanical interaction specifications referencing these mating fea-

tures.

The PDM client application is structured in 6 applicative modules:

 The data base access module: includes applicative functions enabling to connect the client to

the data base, to enrich/update the data base with new created/modified objects and to load

the objects saved in the data base so that they can be accessed and displayed within the other

applicative modules.

 The lifecycle query engine: this interface permits to search and query objects in the data base

through the use of simple queries.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-242-

 The configuration manager: this module permits to create, tovisualise, to modify product con-

figurations structures, to compare configurations (visualise modifications) and to generate

specific business configurations and map them to the referential configurations.

 The artefact definition module: enables to display and to modify artefact attributes, mainly

the product components attributes (name, item identifier, functional item relationship, mass

properties, position, material reference, etc.)

 The system modelling module: enables to visualise and manage product configurations as sys-

temic representations (blocks, embedded blocks, connectors and ports).

 The viewer (visualisation module): permits to visualise CAD model in standardised visualisa-

tion formats (JT, STEP).

 An overview of the developed graphical user interfaces of some of these modules is provided in

section 12.4.

12.2 Logical data model for implementation

This section provides the UML class diagram of the DASIF data base as it was implemented for the

prototype developed at Snecma. This data model is similar to the conceptual data model introduced

in Chapter 11, but it has been simplified to enable an easier and faster implementation. Simplifications

consist in factorising classes and relationships and in removing some abstraction levels (inheritence

and/or specialisation relationships). No additional documentation is provided in this section since the

explanations are the same than the ones provided in Chapter 11. The attributes and methods/opera-

tions of the classes are documented in the corresponding generated data base code provided by ap-

pendix X and Table 19.

Figure 174: implemented logical data model - system artefact definition basis

DesignArtifact

+name: String(32)
+instance_required: Boolean = true

+__init__(name)
+__repr__()
+get_defs()
+new_def()

DesignDefinition

+version_id: String(4)
+status: String(32)
+description: String(32)
+has_additional_context: Boolean
+creation_date: Date
+modif_date: Date

+__init__(version, status, ivdc, has_avdc)
+__repr__()
+add_child()
+new_child()
+rem_child()
+new_nauo()
+rem_nauo()
+set_ivdc()
+add_avdc()
+new_ivdc()
+new_avdc()
+get_contexts()
+get_models()
+add_model()
+new_model()
+generate_assy_cad()
+rem_model()
+properties()
+set_property()
+creator()
+modif()
+suscribers()
+history()

+nauos+definition

0..*1

NAUO

+name: String(32)
+sns: String(7)
+sin: String(7)
+description: String(32)
+configurable: Boolean
+domain_related: Boolean

+__init__(name, sns, definition)
+__repr__()
+set_id()
+get_def()
+get_parent()
+add_effectivity()
+new_effectivity()
+rem_effectivity()
+is_effective(conf)
+multi_instantiate()
+create_slave_nauo()
+get_master()
+placement()
+mass_properties()
+create_block()
+get_ports()
+add_port()
+rem_port()

+parent +children

1 0..*

Property

+name: String(32)
+value: Float
+unit: String(32)
+description: String(32)

+__init__(name)
+__repr__()
+valuate()

has

+definition

+props

1

0..*

Model

+name: String(32)
+revision_id: String(4)

+__init__(file, name, type, rev)
+__repr__()
+history()

+definition

+models

1

0..*

ShapeDependantProperty

+__init__(shape)

ItemProperty

CADModel

+rep_type: String(32)

+__init__(file)
+get_bodies()
+mating_features()
+get_dmds(file)
+get_volume()
+get_mass_prop()

+shape +prop

1 0..*

+derived_from

+derived_models

1

*

+defs

+artefact

1..*

1

+succesors

+ancestor

*

1

StructuralAssembly

Item

+ref: String(32)
+index: String(32)

+__init__(ref, index)

Interface

+__init__(nauos, linkage)
+set_mating_features()
+get_topology()

+related_comps

+links

2..*

0..*

InterfaceTopology

+name: String(32)
+value: Float
+unit: String(8)

+__init__(name, type)
+__repr__()

Interaction

+domain: String(32)
+direct: Boolean
+permanent: Boolean

+__init__(interface, description, direct, permanent)
+__repr__()
+set_connector(nauo)
+link_ports(ports)

InstanceProperty

+name: String(64)
+unit: String(8)

+__init__(nauo, name)
+__repr__()

+props

+instance

0..*

1 +slaves

+master

0..*

1

+interface

+linkage

1

1

+interface +mating_features

1 *

+connectors

+linkage

0..*

1

InstancePlacement

+trans_x: Float
+trans_y: Float
+trans_z: Float
+rot_x: Float
+rot_y: Float
+rot_z: Float

+__init__(nauo)
+__repr__()

+position_to_parent+instance

11

MatingFeaturePublication

+name: String(32)

+__init__(name)+model +publis

1 0..*

+interface

+mating_features

1

2

ShapeBody

+name: String(32)
+main: Boolean

+__init__(model, name, main)
+get_dmd()

+model+bodies

10..*

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-243-

Figure 175: implemented logical data model - system artefacts and components properties

Figure 176: implemented data model - interface and interaction topology

DesignArtifact

+name: String(32)
+instance_required: Boolean = true

+__init__(name)
+__repr__()
+get_defs()
+new_def()

DesignDefinition

+version_id: String(4)
+status: String(32)
+description: String(32)
+has_additional_context: Boolean
+creation_date: Date
+modif_date: Date

Property

+name: String(32)
+value: Float
+unit: String(32)
+description: String(32)

+__init__(name)
+__repr__()
+valuate()

has

+definition

+props

1

0..*

ItemProperty
ShapeDependantProperty

+__init__(shape)

Model

+name: String(32)
+revision_id: String(4)

+__init__(file, name, type, rev)
+__repr__()
+history()

+definition

+models

1

0..*

CADModel

+rep_type: String(32)

+__init__(file)
+get_bodies()
+mating_features()
+get_dmds(file)
+get_volume()
+get_mass_prop()

+shape+prop

10..*

MassProperty Volume

CalculatedMass

PartPropertyMaterial

+ref: String(32)
+multi_dmd: Boolean

+__init__(dmd)

Density

MaterialProperty

+__init__(mat)

IndicativeMass

ShapeBody

+name: String(32)
+main: Boolean

+__init__(model, name, main)
+get_dmd()

CADMaterial

+dmd: String(10)

+__init__(body, dmd)

+body+dmd

10..1

DigitalFile

+path: String(128)
+format: String(32)

+__init__(path)
+open()
+set()

+dmd

+material

0..1

1

InstanceProperty

+name: String(64)
+unit: String(8)

+__init__(nauo, name)
+__repr__()

CgAbs

+cgx: Float
+cgy: Float
+cgz: Float

+__init__()

InertiaAbs

+polar_x: Float
+diametral_y: Float
+diametral_z: Float

+__init__()

CgRel

+cgx: Float
+cgy: Float
+cgz: Float

+__init__()

InertiaRel

+polar_x: Float
+diametral_y: Float
+diametral_z: Float

+__init__()

+defs +artefact

1..* 1

+model

+bodies

1

0..*

+props

+mat

*

1

+file+model

11

NAUO

+name: String(32)
+sns: String(7)
+sin: String(7)
+description: String(32)
+configurable: Boolean
+domain_related: Boolean

+props +instance

0..* 1

+nauos +definition

0..* 1

+parent+children

10..*

Instance_Mass

+mass_value: Float

+__init__()

MechanicalJoint

+rigid: Boolean
+can_be_dismantled: Boolean

+__init__(rigid, can_be_dismantled)
+set_dof()

Interface

+__init__(nauos, linkage)
+set_mating_features()
+get_topology()

InterfaceTopology

+name: String(32)
+value: Float
+unit: String(8)

+__init__(name, type)
+__repr__()

Interaction

+domain: String(32)
+direct: Boolean
+permanent: Boolean

+__init__(interface, description, direct, permanent)
+__repr__()
+set_connector(nauo)
+link_ports(ports)

SingleDomainInteraction CrossDomainInteraction UnintendedInteraction

FluidStructureLinkage

FunctionalClearance

+__init__(value, unit)

BoltedJoint

+type_bj: String(32)

+__init__(type_bj)
+customize()

FluidSolidBoundaryFunctionalInterference

+__init__(value, unit)

ShapeContact

Dof

+Tx: Boolean
+Ty: Boolean
+Tz: Boolean
+Rx: Boolean
+Ry: Boolean
+Rz: Boolean

+__init__(Tx, Ty, Tz, Rx, Ry, Rz)
+__repr__()

+set_of_dof+linkage

11

BoltedFlange

+aligned: Boolean
+nb_holes: Integer

+__init__(alignment, nb_holes)

BearingJoint

+technology: String(32)

+__init__(techno)

PreDefinedJoint

GenericJoint

+type_gen: String(32)

+__init__(type)
+generate_template()
+use_template(template)

+interface+mating_features

1* +interface +linkage

1 1

JointTemplate

+name: String(32)

+__init__(name, file)
+template +joint

0..1 1

DigitalFile

+path: String(128)
+format: String(32)

+__init__(path)
+open()
+set()

+file

+template

1

1

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-244-

Figure 177: implemented data model - Interface and interaction definition

Figure 178: implemented data model - Bolted joint definition

DesignDefinition

+version_id: String(4)
+status: String(32)
+description: String(32)
+has_additional_context: Boolean
+creation_date: Date
+modif_date: Date

InterfaceTopology

+name: String(32)
+value: Float
+unit: String(8)

+__init__(name, type)
+__repr__()

MatingFeaturePublication

+name: String(32)

+__init__(name)

ShapeContact FunctionalClearance

+__init__(value, unit)

Model

+name: String(32)
+revision_id: String(4)

+__init__(file, name, type, rev)
+__repr__()
+history()

+definition

+models

1

0..*

CADModel

+rep_type: String(32)

+__init__(file)
+get_bodies()
+mating_features()
+get_dmds(file)
+get_volume()
+get_mass_prop()

+model

+publis

1

0..*

Interaction

+domain: String(32)
+direct: Boolean
+permanent: Boolean

+__init__(interface, description, direct, permanent)
+__repr__()
+set_connector(nauo)
+link_ports(ports)

Port

+__init__(nauo)
+delegate(nauo)
+remove()
+set_mating_feature()
+linkages()

+interface

+mating_features

1

2
+mating_feature

+port

0..1

1

FunctionalInterference

+__init__(value, unit)

NAUO

+name: String(32)
+sns: String(7)
+sin: String(7)
+description: String(32)
+configurable: Boolean
+domain_related: Boolean

+__init__(name, sns, definition)
+__repr__()
+set_id()
+get_def()
+get_parent()
+add_effectivity()
+new_effectivity()
+rem_effectivity()
+is_effective(conf)
+multi_instantiate()
+create_slave_nauo()
+get_master()
+placement()
+mass_properties()
+create_block()
+get_ports()
+add_port()
+rem_port()

Interface

+__init__(nauos, linkage)
+set_mating_features()
+get_topology()

+related_comps+links

2..*
0..*

+nauos +definition

0..* 1

+parent+children

10..*

+nauo

+ports

1

0..*

+delegations

+port

0..*

1

+connectors+linkage

0..*1

+interface

+linkage

1

1

+interface

+mating_features

1

*

+ports

+topology

2

1

DesignArtifact

+name: String(32)
+instance_required: Boolean = true

+__init__(name)
+__repr__()
+get_defs()
+new_def()

+mating_comps

+int_topo
2

1

MechanicalJoint

+rigid: Boolean
+can_be_dismantled: Boolean

+__init__(rigid, can_be_dismantled)
+set_dof()

Interface

+__init__(nauos, linkage)
+set_mating_features()
+get_topology()

InterfaceTopology

+name: String(32)
+value: Float
+unit: String(8)

+__init__(name, type)
+__repr__()

Interaction

+domain: String(32)
+direct: Boolean
+permanent: Boolean

+__init__(interface, description, direct, permanent)
+__repr__()
+set_connector(nauo)
+link_ports(ports)

SingleDomainInteraction

FunctionalClearance

+__init__(value, unit)

BoltedJoint

+type_bj: String(32)

+__init__(type_bj)
+customize()

ShapeContact

BoltedFlange

+aligned: Boolean
+nb_holes: Integer

+__init__(alignment, nb_holes)

+bf_planars

+bolted_joint_ap

1..*

1

+bolt_nut

+bolted_joint_n

0..1

1

+alignment

+bolted_joint_al

0..1

1

+bolt_comp_acl

+bolted_joint_acl

0..1

1

+interface

+linkage

1

1

+interface

+mating_features

1

*

PreDefinedJoint

+bolt_comp_b

+bolted_joint_b

0..1

1

+bolt_comp_aco

+bolted_joint_aco

0..1

1

+bolt_comps

+bolted_joint_s

0..*

1

+other_alignments

+bolted_joint_als

0..*

1

BoltedJoint_Dof : Dof

False
False
False
False
False
False

Dof

+Tx: Boolean
+Ty: Boolean
+Tz: Boolean
+Rx: Boolean
+Ry: Boolean
+Rz: Boolean

+__init__(Tx, Ty, Tz, Rx, Ry, Rz)
+__repr__()

+set_of_dof

+linkage

1

1

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-245-

Figure 179: implemented data model - product configuration management

Figure 180: implemented data model - engineering change management

12.3 Generation and enrichment of the DASIF product data base

12.3.1 Generation of the DASIF relational data base system

12.3.1.1 Technological choices

In order to implement faster the logical data model introduced in section 12.2, and hence to gen-

erate the DASIF data base, we decided to use a model-driven approach to automate the generation of

Python classes and related CRUD (Create, Read, Update and Delete) functions.

ViewDefinitionContext

+life_cycle_stage: String(32)
+application_domain: String(32)
+description: String(32)

ProductClass

+name: String(32)
+version_id: String(4)
+type: String(16)

Configuration

+name: String(32)
+description: String(32)
+creation_date: Date
+date_of_freeze: Date

DatedEffectivity

+start_date: Date
+end_date: Date

RangeEffectivity

EffectivityList

+confs

+product

*

1

ManufacturableConfiguration DesignDisciplineConfiguration

+contexts+confs

0..*0..*

+confs +eff_list

1..* 1

+start_conf +range_s

1 1

+range_e+end_conf

11

Effectivity

+eff+conf

11

SystemDefinition

DesignDefinition

+version_id: String(4)
+status: String(32)
+description: String(32)
+has_additional_context: Boolean
+creation_date: Date
+modif_date: Date

NAUO

+name: String(32)
+sns: String(7)
+sin: String(7)
+description: String(32)
+configurable: Boolean
+domain_related: Boolean

+related_conf+base_conf

0..*0..1

+nauos

+definition

0..*

1+parent

+children

1

0..*

organisation

Organisation

+name: String(32)
+integrator: Boolean
+role: String(32) +orgas

+projects

1..*

0..*

+deps +confs

0..* 0..*

+customers

+conf

0..*

1..*

+mother

+daughters

1

0..*

User

+user_id: String(8)
+name: String(32)
+first_name: String(32)
+password: String(8)

+suscribe()

+employees

+company

*

1

+created_by

+created_defs

1

0..*

+modified_by

+modified_defs

1

0..*

+dep

+dep_users

0..1

*

+nauos
+effs

**

+def_a+additional_contexts

10..*

+def_i
+initial_context

11

+defs+context

*1

+sub-products

+product

0..*

1

DesignChange

+change_id: String(8)
+type: String(32)
+date_of_change: Date
+description: String(32)

+chge_rel_select()

PropertyChange

+type: String(32)

ChangeRelationship

+description: String(32)
+described_changes+change

0..*1

DefinitionVersionRelationship

AlternateItemRelationship

ModelRevisionRelationship

ReplacedUsageRelationship

+is_related_to+is_describing

0..*

ConfManagement

Configuration

+name: String(32)
+description: String(32)
+creation_date: Date
+date_of_freeze: Date

+freeze()
+new_conf()

SystemDefinition

Item

+ref: String(32)
+index: String(32)

+__init__(ref, index)

+alternate+change_a

11

+base+change_b

11

DesignDefinition

+version_id: String(4)
+status: String(32)
+description: String(32)
+has_additional_context: Boolean
+creation_date: Date
+modif_date: Date

NAUO

+name: String(32)
+sns: String(7)
+sin: String(7)
+description: String(32)
+configurable: Boolean
+domain_related: Boolean

+previous_nauo+change_p

0..11

+new_nauo+change_n

11

Model

+name: String(32)
+revision_id: String(4)

+__init__(file, name, type, rev)
+__repr__()
+history()

+definition

+models

1

0..*

Property

+name: String(32)
+value: Float
+unit: String(32)
+description: String(32)

+__init__(name)
+__repr__()
+valuate()

has

+definition

+props

1

0..*

+added_props+change_a

0..*1

+deleted_props+change_d

0..*1

Effectivity

+effs

+change

*

1

EffectivityList

+confs

+eff_list

1..*

1

RangeEffectivity

+start_conf

+range_s

1

1 +range_e

+end_conf

1

1

DatedEffectivity

+start_date: Date
+end_date: Date

+eff

+conf

1

1

+modified_props

+change_m 0..*1

ValueChange

+value_modifs

+change

0..*

1

+old_value+value_change_o

11

+new_value

+value_change_n

1

1

ProductClass

+name: String(32)
+version_id: String(4)
+type: String(16)

+__init__(name, version, type)
+__repr__()

+confs

+product

*

1

DesignArtifact

+name: String(32)
+instance_required: Boolean = true

+__init__(name)
+__repr__()
+get_defs()
+new_def()

concerns

+concerned_artefact

+change

1

1

+parent

+children

1

0..* +nauos

+definition

0..*

1

+previous_version+change_p

11

+new_version+change_n

11

+new_model
+change_n

11

+previous_model+change_p

0..11

+defs

+artefact

1..*

1

+nauos

+effs

*

*

organisation

User

+user_id: String(8)
+name: String(32)
+first_name: String(32)
+password: String(8)

+suscribe()

+change+created_by

0..*1

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-246-

Python3

Python is an object-oriented programming language that can
be used in numerous software development contexts. Python
is open source and can adapt to many types of use thanks to
the availability of many specialized libraries. It is particularly
used by the scientific community in order to develop proto-
types, and has numerous extensions for digital applications.
The main use of Python in our PhD is to manage a large quan-
tity of product data. However traditional data base tools only
permit to manage relational data base systems. The complex-
ity of the data to be managed drove us to choose an object-
oriented language in order to better structure these data and
be able to link the processing logic directly to the data. It is
thus possible to define individually the data objects and the
operations relating thereto. This has been considered neces-
sary, but is not naturally usable in a storage system within a
database.

SQL Alchemy4

It was hence necessary to use a tool enabling the communica-
tion between data bases systems and data as “objects” so that
they can be stored and manage in a data base. We have de-
cided to use the SQLAlchemy library designed and developed
specifically for Python.
This library enables on one hand the communication with re-
lational data base systems, and on the other hand to adapt
the data structure so that they can be used in a data base
thanks to its ORM module (Oriented Relational Mapper).
SQLAlchemy is not the only one Python library enabling to do
this, but it has the reputation to be complete and regularly
maintained.

Elixir

The syntax used to adapt the traditional python script in a py-
thon script usable for generate and manage a database being
complex, we decided to use the Elixir library. This library, also
designed and developed for Python, enable to drastically re-
duce the script length, the time to treat it, so that it can be
used in a data base.

PyQt5

The user interfaces of this prototype have been designed with
the Qt framework for python called PySide. This framework
enables to define easily and quickly portable graphical user in-
terfaces.

Table 7: technological choices for DASIF data base generation and management

12.3.1.2 Genepy

Thanks to a trainee work, we developed a tool enabling to automatically generate the data base

script in python from a UML model created in StarUML6. The development of this code generator was

a time-consuming task for the trainee. However, considering the complexity of the data model to im-

plement (see section 12.2), it has permitted to considerably accelerate the implementation of this data

model for the demonstrator (no need to encode the data base manually at each iteration/modification

of the data model).

The generator was developed in order to generate the code from XMI (XML Metadata Inter-

change) files representing the UML model. We initially wanted to develop a generator working for all

3 Official website of Python language and community: https://www.python.org/
4 Official website of SQLAlchemy library: http://www.sqlalchemy.org/
5 Official website of PySide: http://qt-project.org/wiki/PySide/

6 Official website of StarUML: http://staruml.io/

https://www.python.org/
http://www.sqlalchemy.org/
http://qt-project.org/wiki/PySide/
http://staruml.io/

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-247-

XMI exports from any kind of UML modelling tool but the structure of these XMI files is specific to each

tool. As a consequence and unfortunately, this generator only works for XMI exports from StarUML.

As shown on Figure 181, from StarUML, we generate a XMI export of the UML model introduced

in section 12.2. Genepy takes as input this XMI file and works as a parser reading this XMI file and

generating the corresponding python script enabling to generate the DASIF data base.

Figure 181: Working process of the GENEPY generator

The first step, targeting to translate the XMI file into a neutral model, consists in parsing the source

file to retrieve the data as a tree structure. Once this structure created, each data set is analyzed and

its equivalent in the neutral model is created. The second step is to sort the elements of the created

neutral model in dependency order and create “strings” in Python syntax constituting the code defini-

tion of the data model. The generated code is then written into files organized into packages respecting

the structure of the source data model. A Python additional file is also created to provide simplified

data base connection features. Appendix X provides:

 an extract of the XMI file of the logical DASIF prototype data model (see Table 18);

 a simplified view of the GENEPY neutral data model (Figure 251);

 the generated Python source code of the DASIF data base (see Table 19).

12.3.2 Generation of the test-case DMU XML file for database enrich-

ment

To enrich the database with test case data set, we developed a CATIA macro (VBA script) enabling

to generate a XML file describing:

 the whole DMU product structure and for each of its constituting components:

o the assembly and parts general attributes (name, functional item relationship, author,

date of creation, representation_id, etc.);

o the component position matrix;

o the components mass properties;

 the list of CAD models representing individual parts and:

o their attributes (DMD, name, revision, path, etc.);

o their constituting shape bodies and their attributes (DMD, volume, etc.)

 the list of mechanical linkages captured in CATIA including:

o the set of degrees of freedom

o the linkage parameters (depending on the linkage technology)

o the linkage topology; i.e. the CAD mating features

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-248-

Figure 182: Launching the XML DMU EXPORT script in CATIA V5R18

The script is fully provided in appendix XI, but a simplified view of the script procedure is described

in Figure 183 below.

Figure 183: simplified view of the CATIA XML_DMU_EXPORT macro procedure

The script is built around a recursive function (RecGenXMLComponent) permitting to browse and

describe the entire product structure and to make, for each component and for each CAD model, the

necessary calculations to export positions, material and mass properties parameters. Another applic-

ative function has been developed to create the mechanical linkages, to capture the interface CAD

mating features, publish them within the CAD model and to reference these publications as the topo-

logical description of the linkages. All these information are exported in the same XML file described

below:

 Figure 184 provides the high-level structure of the generated DMU XML file.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-249-

 Figure 185 shows the xml description of a component definition that includes the component

attributes, its position matrix and its mass properties.

 Figure 186 shows how the product structure hierarchical links are captured within the

CHILDREN_LIST elements.

 Figure 187 shows how all individual parts CAD models are captured with their attributes and

their constituting shape bodies (with related material, mass and volume parameters).

 Figure 188 describes the content of a LINKAGE element including the linkage attributes, pa-

rameters and the references to the appropriate CAD mating features.

Figure 184: Structure of the DMU exported XML file

Figure 185: the xml description of a component definition

Figure 186: the CHILDREN_LIST elements recursively capturing the children components for each DMU constituent

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-250-

Figure 187: the Model_List capturing all individual parts CAD models, their attributes and their constituting bodies

Figure 188: the LINKAGE_LIST element capturing all pre-defined mechanical linkages and related CAD mating features

12.3.3 Enrichment of the database

The python script permitting to parse the generated DMU XML file and to create the appropriate

objects (DASIF classes’ instances) in the DASIF prototype database is provided in appendix XII (Table

21).

12.4 Developed Functions and overview of prototyped GUIs

The generated data base code and the used SQL Alchemy and Elixir libraries enable to easily Cre-

ate, Remove, Update or Delete objects in the data base as it is shown in the script enabling to enrich

the database with test data set (shown in appendix XII). Now the data base server is ready to be ex-

ploited. We start to design the DASIF prototype client application (Simulation-Based DMU Manager)

graphical user interfaces (GUI). These GUI have been designed with the Qt framework for python called

PySide. This framework enables to define easily and quickly portable graphical user interfaces. The

development of this prototype could not be finalised before the end of the PhD, but some of the main

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-251-

DASIF applicative modules have been prototyped to be further developed and re-used after the PhD.

Figure 189 shows the main prototyped GUI that encompass several applicative areas:

After having connected the application to the data base, the user first has to select a product in area

(1). The non-configured product structure is then loaded and displayed in area (2). In area (1), the user

can now request a specific ManufacturableConfiguration filtering the list by selecting a Lifecycle stage.

If necessary he can also request a related business DesignDisciplineConfiguration by selecting a specific

application domain. Selecting a component in the product structure, several applicative modules can

be called and displayed by selecting the appropriate tab:

 Definition tab: enabling to display all the information related to the selected artefact defini-

tion (Areas (3), (4), (5) and (6) in Figure 189);

 Configuration Manager tab: enabling to create new configurations, to modify existing ones, to

define artefact definition usage occurrences effectivities and enabling to compare two succes-

sive configurations and visualise and trace engineering changes between these two configu-

rations.

 CAD tool tab: CAD viewer enabling to visualise the DMU representation of the selected com-

ponent and to load it in CATIA V5 if necessary.

 System Modeler tab: corresponding to the MBSE modelling and integration framework ena-

bling to represent the selected configuration or one of its sub-system as a system logical ar-

chitecture (as explained in 10.3.4) and specify logical DDMU and BMU architectures. This mod-

ule has been developed yet.

 Links graph tool tab: this module is dedicated to traceability functions. It should be a visual

interface enabling to visualise all dependency links that have been established between arte-

fact definition models or properties. This module has been developed yet.

Figure 189: DASIF Prototyped GUI - Artefact Definition Form

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-252-

In area (2) it should also be possible to import a product structure from the CAD system using the

“DMU Record” button to directly enrich the data base without using the DMU XML export macro in-

troduced previously. This functionality has not been developed yet.

In the definition tab, area (3) permits to browse the product structure and select a component to

access to its related artefact definition. Area (4) displays the artefact definition general attributes (ar-

tefact name and identifier, artefact type, definition version, creation/modification date, etc.). Area (5)

displays the properties defined for this definition; i.e. item properties and shape dependant properties

calculated from the CAD model and from the capabilities offered by the used CAD system (here CATIA

V5R18). If some of these properties (mass or material properties) could not be computed before, then

user can modify manually the item properties and update the calculation of the inertia moments if

necessary. Area (6) display the CAX models (here only CAD models) that are associated to this artefact

definition. In this area, models attributes and models dependency links (versioning links, derived_from

links, etc.) can be defined and displayed.

The Configuration Manager tab, shown on Figure 190 and Figure 191, encompass two sub-tabs:

 The Business Structure Manager tab (Figure 190): enabling to create new configurations, to

modify existing ones, to define artefact definition usage occurrences effectivities. This module

enables to define other specific business configurations (right side) and to define new compo-

nent usage occurrences (NAUO) and associated effectivity (for the created slave structure) of

the components existing in the master configuration (left side).

 The Structure Compare tab (Figure 191): enabling to compare two successive configurations

and visualise and trace engineering changes (model changes, properties changes, meta-data

changes, new created artefacts or new NAUOs) between these two configurations.

Figure 190: DASIF Prototyped GUI – Configuration Manager Module – Business Structure Manager

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-253-

Figure 191: DASIF Prototyped GUI – Configuration Manager Module – Structure Compare

12.5 Conclusions

Most of DASIF specified capabilities, introduced in section 10.3, was still not operational at the

end of the PhD. The completed data base code implementing the logical data model introduced in

section 12.2 has been generated. Query and CRUD functions are already operational but are called for

the moment via python command lines. CATIA API were used enabling the client application to call

CATIA functions for making mass properties calculation or to load a DMU from the product configura-

tions stored in the data base. This prototype has enabled to assess and validate the “implementat-

bility” of the logical data model of section 12.2. It might serve as a basis for further developments

within Snecma units.

The capabilities that could not be developed have been specified in the frame of the Crescendo

project. In this project, and based on the interviews and audit performed within Snecma design de-

partments, we develop a demonstrator scenario called “Product Integration” and introduced in next

chapter. Remaining DASIF advanced capabilities were hence fully specified to PLM/SLM software ven-

dors in order to demonstrate the feasibility and “implementability” of DASIF proof of concepts in com-

mercial PLM solutions.

The scenario, the demonstrator and related results are detailed in Chapter 13.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-254-

Chapter 13: Potential implementations in commercial tools

for operational use in multi-partner projects

13.1 The Product Integration scenario and methodology

13.1.1 Introduction to Power Plant Integration use case

The product integration scenario is part of a bigger industrial use case developed in the frame of

the Crescendo project: the Power Plant Integration (PPI) use case. This industrial use case implies the

participation of a large supply chain, covering the airframe (aircraft or helicopter), engine, nacelle or

cowlings, and component manufacturers. The engine and the airframe influence each other and drive

overall product performance. The integration of the power plant in the overall aircraft architecture is

studied from the very beginning of preliminary design phase, and its iterative optimisation is achieved

during the detailed definition and development phases.

Nowadays, the Power Plant Integration activities are facing growing complexity in the way the

product is defined and new challenges regarding engineering, business and collaboration. First, there

is the complexity of the product itself. There is also the complexity regarding business with the increas-

ing need for multi-physics simulations to better understand product behaviour as well as multi-disci-

plinary analyses and optimisation to improve the product definition and performance. And finally, a

complexity of collaboration involving several layers of partners and sub-contractors and that requires

tackling Intellectual Property Right (IPR) preservation of companies as well as managing information

integration between heterogeneous information systems. The new industrial performance regarding

Power Plant Integration activities (all along the lifecycle of the product) will then come from the con-

sideration and conjunction of all of these aspects (engineering tools and methods, business and col-

laboration).

The Power Plant Integration challenges have been addressed by 9 Test Cases and related scenarios

that consider the following issues:

 How to manage the preliminary design phases considering the process from “client expecta-

tions and requirements” to the design evaluation.

 How power plant system design optimization can be made more robust by including the sub-

system and component properties.

 How the integration of subsystem models in the overall system modelling (a necessity for cross

system-level optimization) will be enabled by common interface architecture. This will allow

more accurate modelling of the overall system so that trade-offs between design, manufac-

turing and services can be more easily and accurately studied from a cross-company perspec-

tive. This “new” consistency (sustained by increased maturity) of the overall system modelling

enables a better exploration of how subsystem properties affect the overall system perfor-

mance for the purposes of optimisation convergence.

 How increased communication and collaboration between the system level and the subsys-

tem level, and homogeneous modelling of the power plant elements, will reduce the amount

of re-work and development lead time by a concurrent approach ensuring up-to-date config-

uration and model management.

 How the BDA system (see sections 3.4, 7.3 and 10.3.6) will enable a joint multidisciplinary and

integrated development plan; trade-off studies for power plant optimisation; mature design

data delivery for product design reviews and critical design reviews; efficient “verification by

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-255-

analysis” of power plant specifications, and the development of meaningful product and de-

sign process quality indicators.

 How reduction in physical testing can be achieved, due to reduction of iteration or rework

loops and higher quality, more consistent modelling of the physical properties, allowing

shorter development tests (fewer configurations and better simulation quality).

The Product Integration scenario is a part of this global industrial PPI use case and addresses the

following technical challenges:

 Improvement of lead time for setting-up and simulating the integrated product by managing

multi-level and multi-physics analyses of complex products thanks to:

 A systemic approach based data management for complex product to manage physical

links properties and facilitate assemblies;

 Collaborative exchanges and consistent integration of partners’ technical data using the

BDA object model.

 Improvement of the traceability of models and simulations, thanks to :

 A systemic approach based data management that helps to manage links and associated

contexts between the “sub-systems” of the product;

 The introduction of the “simulation intent” that should manage the knowledge and cap-

ture of the information during the simulation process.

 Decrease of rework time, thanks to:

 Exchange of specifications for technical data reducing interpretation issues;

 New automated quality check processes.

Regarding the technical challenges, significant efforts have been made on the definition, specifi-

cation and development of a dedicated environment for product integration called “integrator envi-

ronment”. This environment has been developed on the basis of a systemic approach and object-ori-

ented system modeling formalism and language. It has been applied to the product breakdown so as

to solve the issues related to CAD-CAE integration, multi-domain representation and multi-level man-

agement of the product, collaboration and interoperability. It proposes a common framework to rep-

resent and manage the product in different engineering activities during the product development

process.

13.1.2 The product integration test-case scenario

The Product Integration scenario aims at setting-up an integrated mechanical analysis and ensur-

ing partner collaboration through exchange of appropriate data sets in order to:

 Specify models interfaces and modelling properties;

 Integrate efficiently sub-systems models (FE models) coming from involved co-designers and

partners;

 Feedback downstream design departments and partners with results.

The concrete objectives of this scenario are:

 Assemble automatically PPS sub-systems FEMs using the integrator dedicated environment;

 Interoperable SLM data exchange and partners collaboration via BDA BOM;

 Use simulation intents and modelling requirements to create automatically fit-for-purpose

meshes;

 Quality process to assess the reliability of the models.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-256-

This scenario starts from the following hypotheses:

 The scenario takes place in detailed design phase where a consistent and exhaustive DMU is

available (detailed geometries exist and are available);

 Work sharing rules already established;

 FE models to be integrated come from several partners using different tools and data formats;

 System architectures and mechanical interfaces between components are already defined.

Figure 192 below illustrates the process of the Product Integration scenario showing an integra-

tion chain between the Power Plant system (PPS) integrator (e.g. Airbus) and the engine model pro-

vider (e.g. Snecma) which is itself an integrator of the different engine’s modules. The integration pro-

cess scenario will be showed for the integration of the engine inside the IPPS. This demonstration sce-

nario involves two different partners with their respective SLM environments and the BDA object

model which ensures the interoperability and the information exchanges between these partners.

Figure 192: Process description of the Product Integration scenario

Here is the description of each scenario’s steps:

 STEP 1 – Initiate the simulation: In this step, we capture the simulation context and the simu-

lation intent so as to define the appropriate activities and integrate them within the global

design process. We illustrate the re-use of pre-defined simulation processes (through the use

of simulation templates).

 STEP 2 – Specify models and interfaces: The integrator collects and prepares the models for

the study from the DMU, and sends all the modelling requirements needed for the engine

supplier in order to obtain the required finite element model.

 STEP 2-3 (first arrow): the objective of this step is to demonstrate the potential use of a com-

mon BDA Business Object Model (BDA BOM) used for heterogeneous SLM data exchanges.

The BDA BOM is the common language developed within Crescendo. In this step, BDA BOM

modules have been implemented in a semantic data mapping tool enabling partners PLM sys-

tems to understand this language by mapping their respective data models to the BDA BOM.

 STEP 3 – Create engine FEM: in this step, we demonstrate the use of simulation intents and

templates (including simulation context and associated models and interfaces modelling re-

quirements) for performing automatic fit-for-purpose meshing.

 STEP 4 – Assess and check models quality/reliability: this step demonstrates how an auto-

mated quality check procedure can be set-up to generate models quality criteria and hence

assess recued models’ reliability and provide iinformation about the potential accuracy of in-

tegrated analysis’ results.

 STEP 5 – Check and integrate sub-systems FE models: Similarly to export package to supplier,

the integrator imports the engine model in its own PLM system through a dedicated process

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-257-

template. The automated process enables to check the compliance with modelling require-

ments and to integrate the engine FE model within the assembly model.

 STEP 6 – Prepare the IFEM and perform simulation: The assembly model is ready to be exe-

cuted, the boundary conditions are applied on interfaces and the engineer can perform the

simulation.

 STEP 7 – Exploit and distribute simulation results: once the crash landing simulation per-

formed, the post treatment can be started. If the results are satisfying, then they are distrib-

uted to sub-system models suppliers in order to perform more accurate simulations at sub-

systems and component levels.

 STEP 8 – Exploit cascaded results: in this step it is shown how the engine integrator (engine

model provider) retrieves the interface loads derived from the previous IPPS simulation and

automatically apply them to its engine FEM in order to perform a more accurate analysis at

the engine level.

Appendix XIII provides a more detailed representation of the Product Integration process in

BPMN7.

13.2 Developed prototypes

13.2.1 Industrial test data set

The test data set used for the demonstration are the CAD models constituting the PPS DMU de-

signed by Crescendo partners (see Table 8), the FE models created for the mechanical crash landing

simulation of the integrated PPS (see Table 9) and the mechanical system architecture and interface

specifications used for automating the assembly of these FE models (Figure 193 and Table 22 (appendix

XIV)).

Engine Assembly CAD model Pylon CAD model Nacelle CAD model

Engine DMU with interface CAD mating features IPPS assembly model with interface CAD mating fea-

tures
Table 8: DMU CAD test data set for Product Integration scenario

7 Business Process Model and Notation : http://www.bpmn.org/

http://www.bpmn.org/

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-258-

Engine Assembly CAD model Pylon CAD model Nacelle CAD model
Table 9: FE models test data set for Product Integration Scenario

Figure 193: Mechanical system architecture and interface specifications for IFEM creation

13.2.2 Demonstrators

13.2.2.1 STEP 1: Initiate the simulation

The Integrator chief engineer (from Airbus and using CATIA/ENOVIA V6) creates a study process

in order to log all information about the crash landing simulation: he uses a search function to find a

standard simulation process template. He can navigate in a library of methods and select the appro-

priate template. He can then instantiate it. As shown in Figure 194, he populates the study template

through a simple panel where he defines and populates characteristics of the study (crash landing

simulation), and he references inputs like product structure root from DMU and corresponding behav-

ioural architecture system view. The process is configured for the crash landing study. The study can

now be started. The study template is composed of the following attribute groups:

 Simulation context:

 product and configuration: selection of the product configuration to access the appro-

priate DMU;

 domain of the study : mechanical/ thermal/ CFD/ Thermo-mechanical, select mechani-

cal.

 Study features:

 name of the study;

 type of the study: depending of the study domain (structural analysis/ Dynamic/ NVH,

linear or non linear , select linear value, etc.);

 Behavioural scenario and/or situation of life:

- Mission profile: take off, cruise, landing, etc.

- Situation of life: crash landing, whirling, FAN blade-off, ice ingestion, etc.

 solver to use.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-259-

Once the template instantiated and the inputs data retrieved, we can visualise the whole study

work breakdown structure defining all sequencing activities to perform for this study (see Figure 195).

Figure 194: Re-usable simulation template used to define simulation context and intent

Figure 195: Retrieval of the work breakdown structure for the study

As illustrated in Figure 196, we access to the related technical data packages including inputs to

use (DMU data, system view, requirements and design parameters to assess, etc.) and outputs to de-

liver (CAE modelling requirements, FE models, Quality reports, etc.).

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-260-

Figure 196: retrieval of the simulation workflow definition and related technical data package in ENOVIA V6

13.2.2.2 STEP 2: Specify models and interfaces

The OEM can start the study. Its teams first retrieve the root component of the DMU assembly

model. As integrator, they use a specific integrator dedicated environment enabling to represent the

logical architecture of the physical DMU assembly and to start specifying the behavioural architecture

for the creation of the PPS IFEM. They retrieve a standard system view showing the complete assembly

product (see Figure 197 below).

Figure 197: referential PPS DMU before transformations

However they only need the most important parts. Here engineers can filter the system root ac-

cording to the discipline of the study (in this example: a mechanical study). Same thing is possible on

the 3D CAD, once filters are applied both on system and 3D view, it is possible to store the filter and

save it. If the analyst needs to modify or simplify the geometry, he can duplicate only the needed

representations. This prevents any sensible augmentation of the data volumetry. When the prepara-

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-261-

tion of the coupled models is ready, the user references the filtered models in the previous study pro-

cess. So the specific study view can be directly opened. He keeps only necessary components and data

that are relevant for the discipline of the study.

Figure 198: SIMULIA V6 RFLP framework - Logical architecture and corresponding DDMU after transformations and filters

The PPS mechanical integrator has now all necessary information to define the simulation require-

ments for a crash landing analysis: needed FE models and interfaces specifications.

Identify and publish the interaction areas (CAD mating features)

A Ports-Publications association referencing between the CAD mating features defined within the

DMU and the system’s ports is required. In order to match both systems and 3D views, the user can

set-up “implement-links” between the systems and the corresponding 3D parts. Here, the engineer

identifies the interfaces of the engine within the PPS DMU assembly (see Figure 199 and Figure 200).

One interface has a physical (geometric) representation through publication of surfaces from the CAD

models, and a logical and behavioural representation in the system view through ports.

Figure 199: Referencing and Associating Ports-CAD Publications links in CATIA/SIMULIA V6

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-262-

For large systems like an aircraft or an aero-engine, capturing manually all these mating features

can be a really tedious and time-consuming task. That is why automated services are needed to auto-

matically identify within a system model the geometric features of the sub-systems models that are in

contact with other adjacent sub-systems models. We propose to automate this tedious task through

the use of a modelling infrastructure whereby all solid and fluid domains are represented as neigh-

bouring volumes in a subdivision of the complete space containing the model. This approach is some-

times called cellular modelling, and is available in some of the commercial geometric modelling librar-

ies. With this method, the user can make use of higher level and hence more stable entities within the

model, such as solid cells, to define interfaces (see Figure 139). When the user navigates on the system

view, he can visualize the corresponding location of these interfaces in the geometric view. Here the

association between system view and 3D view is complete.

Figure 200: Visualising Ports-CAD Publications “implement links” in CATIA/SIMULIA V6

Select the appropriated technical connection from catalog for logical parts

Here we illustrate how the integrator can specify behavioural connections for the crash landing

study and more precisely how he defines the appropriate connection between pylon and engine mod-

els. Figure 201 shows how the user browses an interface catalog/library which contains all standard

connections.

Figure 201: Interfaces catalog request engine

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-263-

Figure 202: result of the request in the interfaces catalog

In Figure 203, the mechanical integrator instantiates 7 times a bolted flange connection.

Figure 203: Instantiation of the parameterised bolted flange connection template in the logical mechanical architecture

The interface blocks parameters which are mesh specifications (size and type of mesh, maximum

number of nodes, etc.) can now be instantiated directly in the RFLP environment as shown on Figure

204 below.

Figure 204: instantiation of interface FE modelling parameters

That way the 3D simulation intent is defined at system level. As with the system view, the engineer

instantiates a physical template: he creates the bolted flange geometry and Finite Element model of

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-264-

the interface from a catalog. The creation of a CAD-FEM geometric interface template is displayed in

Figure 205.

Figure 205: Creation of a CAD-FEM geometrical interface template

The filter used previously to find the interfaces in the catalog is called again in order to find and

instantiate the corresponding “fit for purpose” mesh template. Then, as shown in Figure 206, the user

should select the appropriate CAD interface publication where the mesh template needs to be instan-

tiated and he chooses the orientation of the mesh representation.

Figure 206: CAD-FEM geometrical interface template instantiation – definition of expected mating features

The implement link can be precisely traced, so that if a displacement is supposed to be applied

over a port, it is possible to know exactly on which surface that displacement should be applied. This

method enables precise definition of the interfaces on the FE models that shall be provided by suppli-

ers, and ensures that all models delivered will match together when doing the FE assembly.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-265-

Define the modelling requirements the engine provider has to comply to

As shown in Figure 207 below, at this step of the scenario, the PPS mechanical integrator now has

to check the table describing the whole mesh assembly structure with the attached files.

Figure 207: PPS mechanical IFEM structure with attached documents and related attributes

In order to send this package to the model providers, the PPS Integrator is going to use a dedicated

standard process for simulation data exchanges. He instantiates the template and references the data

needed to be sent to the supplier:

 Instantiated simulation template defining the simulation context, inputs and all expected out-

puts.

 xml describing the mechanical system architecture specified by the integrator (blocks, con-

nectors and ports + associative links between CAD models and blocks and between CAD mat-

ing features and ports);

 xml describing the relation CAD-FEM (CAD mating features with FE mesh templates)

 xml file describing the FE modeling requirements and the attached files (publication text file,

CAE requirements, Quality report)

The process is run and the whole technical data package is exported and sent to the BDA hub.

13.2.2.3 STEP 2-3: PLM/SLM Interoperability via BDA hub and semantic data mapping

This capability supports the data exchange steps (between steps 2 and 3, between steps 4 and 5

and between steps 7 and 8). The objective is to demonstrate the potential use of a common BDA Busi-

ness Object Model (BDA BOM) used for heterogeneous PLM/SLM data exchanges. The BDA BOM is the

common language developed within Crescendo. In this step, BDA BOM modules have been imple-

mented in a semantic data mapping tool - sDM© (semantic Data Management) developed by Vinci

Consulting8 and illustrated in the middle of Figure 208. The sDM© application is based on a multi-

layered (conceptual and logical) and scalable (easy follow-up of applications changes) architecture en-

abling to define a neutral conceptual meta-model and to map, when it is possible, various business

applications to this meta-model.

8 Official website of Vinci Consulting: http://www.vinci-consulting.com/

http://www.vinci-consulting.com/

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-266-

Figure 208: overview of PPI developed capabilities in the commercial PLM solutions

The general methodology to perform this mapping is:

 Prepare the specification package respecting standards and exchange rules defined within the

partnership;

 Select a subset of concepts present in the BDA Business Object Model answering the use case

needs;

 With the selected concepts, model the conceptual layer. If necessary (if a concept or object

does not exist in the BDA BOM), customize the conceptual layer adding the necessary ob-

jects/classes;

 Model the applications semantics i.e. the meaning of the information present in respective

commercial PLM/SLM tools;

 Describe how an application data model is mapped to the conceptual layer (semantic links

between the conceptual layer and the application layer);

 Access to data sources without any modification of their native data model;

In the context of the Product Integration scenario, the BDA Business Object Model (BDA BOM) is

the common language or the shared data semantics and sDM© is the connector or mediator enabling

PLM applications to understand this language.

1) Model concepts extracted from BDA BOM

The main capability proposed by sDM© is to manage shared data semantics by modelling a neutral

and conceptual meta-model on the top of the business proprietary applications. Conceptual and logical

data models are all defined in RDF triplets in sDM© so that to exploit the semantic web technologies.

The RDF9 (Resource Description Framework) is a major component in the W3C's Semantic Web activity

and is supposed to enable automated software to store, exchange, and use machine-readable infor-

mation distributed throughout the Web. The RDF triplet is a mechanism for describing resources

(mainly web resources) and linking these resources to properties and property values. This mechanism

enables to check the quality of the data and aggregate them. In Figure 209, a part of the BDA BOM has

been modelled in sDM© which automatically generate a BDA BOM compliant RDF file (transparent for

the user) that will serve for mappings other specific logical data models.

9 http://www.w3.org/RDF/

http://en.wikipedia.org/wiki/Software_componentry
http://en.wikipedia.org/wiki/Semantic_Web
http://www.w3.org/RDF/

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-267-

Figure 209: extract of the BDA BOM used for the product integration scenario and modeled in sDM©

2) Model business applications

As shown on Figure 210, sDM© enables to design any kind of data model coming from any kind

of business application. In this figure, extract of the Simulia/Catia V6 data models have been modelled

as well as the ENVOVIA V6 and Teamcenter for Simulation 9 data models.

Figure 210: Simulia/Enovia V6 and Teamcenter for Simulation 9 data models modeled in sDM©

3) Map applications to BDA BOM

As shown in Figure 211, the sDM© graphical user interface allows an easy mapping of classes and

attributes between the BDA BOM meta-model and the business applications that need to interoperate.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-268-

Figure 211: mapping of Enovia V6 and Teamcenter for simulation 9 data models with the BDA BOM in sDM©

Once the mapping defined, sDM© offers the capability to automatically generate the RDF file

compliant with the appropriate application data model.

4) Required transformation services

The data exchange sequence and the successive transformations required for the semantic data

mapping are detailed in Figure 212 below.

Figure 212: Required transformations for the semantic data mapping with the BDA BOM

The red parts of Figure 212 indicate the scope of sDM© and the scope of the demonstrator

presented at the end of the Crescendo project. The BDA BOM meta-model is described in RDF1 triplets.

Therefore, input data (XML files generated in STEP 2) need to be translated as RDF1 triplets. This trans-

formation has been performed using the D2RQ Mapping Language10 which is a declarative mapping

language for describing the relation between ontologies expressed in RDF triplets or OWL and rela-

tional data models. The transformation of the XML file exported from Enovia V6 into RDF1 triplets is

shown in appendix XV. Table 23 and Table 24 shows respectively the XML file representing the PPS

logical and behavioural architecture exported from Enovia V6 and its equivalent representation in

RDF1 triplets.

13.2.2.4 STEP 3 – Create engine FEM

Once the 3D-XML files exported from ENOVIA V6 have been translated and mapped to the BDA

BOM and translated again into a PLM-XML files compliant with Teamcenter for Simulation data model,

the engine model provider receives a notification and imports the technical data package containing

10 Official website of D2RQ platform : http://d2rq.org/d2rq-language/

http://d2rq.org/d2rq-language/

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-269-

the study model request with the engine mesh and interfaces modelling requirements (see Figure 213

below).

Figure 213: PLM-XML file generated from sDM and imported in Teamcenter for Simulation 9

Table 10 displays the content of the PLM-XML file. Similarly to SIMULIA/ENOVIA V6, where prod-

uct and simulation data are structured according to the RFLP framework, in Teamcenter for Simulation

9 (TC4SIM9) product and simulation data are structured and displayed according to four viewpoints:

 DMU view (Product view): managing product configurations and 3D CAD data;

 Logical view (System view): managing logical architectures where simulation models and in-

terfaces are specified;

 Functional view (Requirements): managing the whole product and simulation requirements

tree and their links with DMU, logical or behavioural items;

 Behavioural view (FEM view): managing BMU FE data (FE models and FEA results) and their

links with DMU, logical and requirements items.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-270-

Table 10: Content of the PLM-XML technical data package - Global view (a), Physical view (b), System/Logical view (c)

and Fucntinal/Requirements view (d)

From the requirements perspective, the engine integrator opens the logical mechanical architec-

ture of the engine and its sub-systems and components as shown in Figure 214 below.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-271-

Figure 214: Engine mechanical logical architecture managed with an integrated Visio module in TC4SIM 9

The integrator realises that the intercase mesh model is missing to provide the appropriate engine

IFEM. Moreover the logical architecture is not complete and some interfaces are not yet specified.

First the engine integrator needs to complete its mechanical architecture specifying the CAD mating

features between engine sub-systems and link these mating features to the appropriate ports in the

system diagram. Like in step 2 for the PPS integrator, the engine model provider acts as the engine

model integrator and has to specify CAD mating features and mechanical connections and their asso-

ciation with their corresponding logical items. Figure 215 shows how the CAD mating features are de-

fined between the hot strut and the intercase models.

Figure 215: Referencing and Associating Ports-CAD Publications links in TC4SIM 9

Similarly to the solution prototype proposed in CATIA/SIMULIA V6 and as shown in Figure 216,

TC4SIM also proposes an interface catalog/library which contains standard connections for specific

simulations. The methodology remains the same:

 Specify the connection attributes (domain, type, technology) to search in the catalog;

 Access and retrieve the appropriate FE connection template in "interface catalog"

 Instantiate each FEM template and synchronize with system parameters

 Populate the parameters of each system connection

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-272-

Figure 216: Setting-up mechanical connections from catalog to the system view in TC4SIM

After having completed the mechanical architecture of the requested engine FEM, the engine in-

tegrator has to cascade the CAE modelling requirements (simulation intent) and send a simulation

model request to the intercase model provider. First the engine model integrator needs to attach a

specific set of modelling requirements (simulation intent) to the added Intercase component occur-

rence used in the IFEM architecture previously completed (see Figure 217 below).

Figure 217: TC4SIM relation browser for visualising dependency links between simulation intents, meshes and CAD mod-

els

In this step, and thanks to the collaboration and support of the Aerospace and Manufacturing

Research Cluster of Queen University of Belfast and in particularly thanks to the work of [Nolan et al.,

2013], we demonstrate the use of simulation intents and templates (including simulation context and

associated models and interfaces modelling requirements) for performing automatic fit-for-purpose

meshing. The whole process performed and automated in NX-CAE is illustrated in Table 11.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-273-

Idealised CAD model used for the mesh creation “Thin” regions transformed in mid-surface elements

Long-slender regions transformed into beam elements
Remaining thin regions transformed into shell ele-

ments and complex regions into tetrahedral elements

Table 11: automatic "fit-for-purpose" meshing process of the intercase thanks to a script developed by [Nolan et al.,

2013]

The associative model network – displayed here in the TC4SIM relation browser – is then enriched

with new generated models (see Figure 218 below).

Figure 218: Associative model network implementation – the relation browser or traceability report in TC4SIM 9

Dependency links are created between the mesh model and the simulation intent (modelling re-

quirements), between the mesh model and the idealised CAD model. We can notice that another sim-

ulation intent (or thermal analysis) is also linked to the idealised CAD model but not to the mesh.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-274-

Finally, after having retrieved all the required FE models, the engine mechanical integrator call a

specific NX-CAE script to automatically create FE links objects and to integrate the engine components

FE models. The result is shown in Figure 219 below.

Figure 219: script automating the IFEM assembly - creation of NX-CAE FE links objects

13.2.2.5 STEP 4 – Assess and check models quality/reliability

Generated and provided simulation FE models are gathered from several sources and the integra-

tor has no control on the reliability of the data for the simulation to perform. Due to this statement,

some models imply approximate results that can drive to false interpretations about the product be-

haviour prediction. In order to ensure the reliability of the model, two main tests are required:

 Ensure the reliability of models by modelling requirement verification;

 Accuracy assessment of simulation model.

This step demonstrates how an automated quality check procedure can be set-up to generate

models quality criteria and hence to assess reduced models reliability and to provide information con-

cerning the potential accuracy of integrated analysis’ results. We propose to set-up a virtual testing of

the component model with a light simulation process (e.g. static linear analysis) as shown in Figure 220

below.

Figure 220: illustration of the FE model quality check procedure

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-275-

This light simulation process is applied on two different meshes:

 A reference mesh with 3D finite element, directly based from the original CAD files;

 The mesh to check is created manually and based on behaviour assumptions (use of shell,

beam or mass elements).

The goal is to compare the result of the analysis of the two meshes and give a confidence rate

about the good representation of the behaviour of the product regarding the modelling assumptions.

The comparison has to give information on two levels of the results. The first level stands for evaluation

of global results on the entire mesh. The second stands for local evaluation of the meshes. A correlation

has been done between the two meshes, the reference mesh and the mesh to check. The comparison

of the results provided by the two meshes has to be transparent for the user and be driven by an

automatic workflow as illustrated in Figure 221.

Figure 221: Automated FE model quality check workflow modelled and configured in Isight Design Gateway

The user has only to initiate the simulation and to define the local area inside the meshes to make

the local comparison. Based on these comparisons, a rate of confidence will be applied. This rate gives

a level of confidence in the accuracy of the results provided by the mesh (see Figure 222 below).

Figure 222: output of the workflow executed in batch - text file containing displacement results and their comparison

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-276-

TC4SIM 9 also proposes 3D visual report capabilities to visualise the quality ratio on the whole

integrated FE model (see Figure 223 below).

Figure 223: visualisation of quality ratio (results accuracy) on the integrated engine FEM

The user can also use these 3D visual reports to visualise and check the compliance of the mesh

features with its simulation intent and related FE modelling requirements as shown in Figure 224

where the engine model provider checks the values of the jacobian ratio of all engine constituting FE

models.

Figure 224: 3D visual report after the maximum jacobian ratio checking procedure

The comparison result and the confidence ratio need to be managed in the SLM data models in

order to ensure the traceability by associations between the mesh, the simulation intent and the re-

sults of the quality check procedure.

The assessment of the whole engine FEM to provide is now finished. The technical data package,

containing the engine IFEM and its quality report, is ready to be sent back to the PPS mechanical inte-

grator. The data exchange sequence is performed similarly to the first one (see 13.2.2.3) but in the

opposite direction.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-277-

Figure 225 synthesises how the “integrator dedicated environment has been implemented in

TC4SIM 9. Whereas, in CATIA/SIMULIA V6 the data are managed and organised following the RFLP data

structure, here TC4SIM 9 provides a similar multi-view integrator environment where functional, logi-

cal, structural and behavioural product data and viewpoints of a same product or system can be man-

aged in parallel. This enables to easily define dependency links between functional, structural and be-

havioural features of the studied system (if the data model permits it).

Figure 225: Completed multi-view integrator environment in TC4SIM 9

13.2.2.6 STEP 5: Check and integrate sub-systems FE models

Once the PPS sub-systems FE models provided by the sub-systems integrators and before inte-

grating these models, the study chief engineer and final integrator has to check the compliance of

these FE models features with the modelling requirements he specified in STEP 2. The method for

checking the compliance of FE models features with specified modelling requirements consists of set-

ting-up some specific attributes to describe the mesh. These attribute will be like the identity card of

the mesh:

 The description of the simulation for which the mesh is used;

 The modelling requirements of the mesh depending of the type of the simulation;

 The mesh characteristic and metric parameters;

 Nodes numbering rules;

 Number of elements and nodes;

 Interface modelling requirements for assembly;

 Topological requirements based on boundaries for mesh measures (Jacobian, aspect ratio,

mesh area, etc.)

The mesh characteristics stand for all attributes which measures the mesh topology with its dif-

ferent characteristics (Mesh type, number of nodes, Jacobian ratio, aspect ratio...). All these attributes

are associated to the FE model or gathered in a quality report associated to the FE model. In any case,

these attributes have to be accessible within the PLM/SLM environment.

Back in the ENOVIA V6 environment, and as shown in Figure 226, the PPS integrator calls an auto-

mated task providing a comparison table between the CAE modelling requirements and the corre-

sponding FE models features. The non-compliant features are highlighted in red.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-278-

Figure 226: Modelling requirements compliance checking - comparison of FE features with FE modlling requirements

Once all requested meshes have been provided, checked and considered enough reliable to be

integrated by the PPS mechanical integrator, they can now be assembled. The mechanical logical ar-

chitecture designed for the creation of the PPS mechanical IFEM need to be completed by assigning

the provided FE models to the appropriate system representation elements (blocks, ports and connec-

tions). The behavioural parameters and representations of the interactions between FE models are

hence specified within the logical architecture describing the PPS IFEM mechanical architecture de-

fined in STEP 2. This architecture is used to perform automatically the assembly of these sub-systems

FE models. To automate the assembly task, Dassault Systèmes has developed a specific script (see

Figure 227) enabling to translate the architecture of the IFEM described in the system view (Logical

architecture in the RFLP tree) into the language of the appropriate pre-processing tool (here Abaqus

CAE), in order to compute it with the appropriate specified solver.

Figure 227: script automating the assembly of the PPS mechanical IFEM in Abaqus CAE

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-279-

An activity for integration is created from template. This activity uses the script of Figure 227 to

merge all meshes. As shown in Figure 228, the script launches Abaqus CAE in batch mode, the FE mod-

els (INP files) are automatically imported, the FE links object (defining the connections between the FE

models) automatically created and the nodes with same numbering and location merged.

Figure 228: script automating the IFEM assembly - creation of Abaqus FE links objects

Now the global power plant assembly is created and this file can be saved in the PLM/SLM data

base.

13.2.2.7 STEP 6 – Prepare the IFEM and perform simulation

As shown on Figure 229, the generated PPS IFEM is now integrated in the RFLP tree and associated

to its corresponding logical architecture and to the DDMU from which it was derived.

Figure 229: DDMU and corresponding BMU integrated in the RFLP environment

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-280-

The assembly model is ready to be computed: the boundary condition are applied on interfaces

and the engineer can launch the simulation through an activity template gathering all required data

(IFEM, boundary conditions and load cases) and launching the solver in batch mode again. Once it is

executed, the global results (result files and reports) can be visualized (see Figure 230 below) and post-

processed (analyzed).

Figure 230: simulation execution and results visualisation in Abaqus CAE

The crash landing simulation is done. The post process can be started. If the results are satisfying

and exploitable, they will be distributed to models suppliers in order to perform finer simulations at

sub-systems and parts levels.

13.2.2.8 STEP 7 – Exploit and distribute simulation results

In this step we demonstrate how a standard dedicated and automated process can be used to:

 dispatch the displacements, loads and strains at the components interfaces in a file;

 attach the file to the appropriate ports in system view;

 Use the system/logical view as a decision support environment to display status of results

compared to requirements.

The results are retrieved from an execution activity and added to extraction activity. Similarly to

previous execution the user splits the global result file into several files for each interface. These files

represent what happens at the interfaces, between the modules. Now, they can be attached to the

appropriate ports in the logical/system view. In order to provide a better idea of what is happening at

assembly level, an activity maps these results on attributes of the ports so that it is possible to navigate

on them by clicking on the ports (see Figure 231).

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-281-

Figure 231: the logical view of the integrator dedicated environment used as a decision support tool for interface results

validation in CATIA/SIMULIA V6

The navigation on results displays also the targeted range values derived from design require-

ments (Requirements/Functional artefacts). This will allow non specialists to better understand the

behaviour of the systems for each scenario, and observe directly where there is an issue.

As shown in Figure 232, the integrator now uses another standard process to distribute the dis-

placements at the corresponding interface to suppliers. It is similar to the export activity executed at

the end of STEP 2 for packaging the modelling requirements to send to the different models providers.

The displacement results at the interfaces can be extracted in a XLS or text file and the values are

extracted and defined as interfaces/ports attributes.

Figure 232: interfaces results extraction in ENOVIA V6

The xml files describing the logical architectures of the PPS sub-systems are now enriched with

new interface loads to apply. These interface loads are now packaged with the appropriate xml file

and exported to be mapped with the BDA BOM and transformed into PLM-XML files understandable

by TC4SIM 9.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-282-

13.2.2.9 STEP 8 – Exploit cascaded results

In this step it is shown how the engine integrator (engine model provider) retrieves the interface

loads derived from the previous IPPS crash landing simulation and automatically applies them to its

engine FEM in order to perform a more accurate analysis at the engine level. This sequence is driven

by a process template and its corresponding workflow. Within this workflow an activity is waiting for

new loads to apply on engine external interfaces. Once the new interfaces loads imported, a routine

enables to map these loads to the appropriate interface ports (thanks to ports naming references in

the PLM-XML file) on the engine mechanical architecture that has served the engine FEM generation.

Finally, the workflow launches NX-CAE in batch mode and a routine permits to automatically apply the

new loads on engine FEM interfaces. The whole process is illustrated in Figure 233. This is the last step

of the Product Integration scenario demonstrator.

Figure 233: Engine interfaces loads automatically imported in TC4SIM and applied on engine FEM interfaces in NX-CAE

13.3 Contribution to the BDA BOM

The whole BDA architecture framework is described and explained in appendix XVI as well as the

BDA information model hierarchy and mapping principles.

If the BDA is to be implemented as an open and modular architecture, information models should

be specified and based on standards. In particular, the following has been defined, with reference to

the related layers of the BDA architecture framework:

 The Business Concept model i.e. the information requirements identified during the develop-

ment of the processes that are to be supported by the BDA;

 The Business Object model i.e. the information that is created or consumed by BDA functions

and services;

 The BDA data model i.e. the information that is managed by the BDA components.

The Business Object Model (see appendix XVI and Figure 256) is positioned in the Functional Layer

of the BDA architecture framework. The Business Object Model is derived from the Business Concept

model (and influenced by the process models) and is also represented as an information model, but

might have another structure. The BDA data model is mainly based on STEP-AP239 (Product Lifecycle

Support – PLCS) and STEP-AP233 (Systems Engineering) standards.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-283-

In the context of the product integration scenario demonstrator, and based on the test case intro-

duced in section 10.3.4.2 and Figure 150: the LPTC-TBH assembly test case), this section aims at trans-

lating this proof of concept in the BDA BOM semantic. The purposes of this activity are:

 To better understand how the BDA BOM can be used in the frame of the product Integration

scenario;

 To see if the BDA BOM enables to manage interfaces like we would like to do in the frame of

the Product Integration scenario;

 To have a meta-model describing a common way of managing behavioural (e.g. mechanical)

interfaces and a common way of structuring the related data;

 To identify the missing objects/links and complete the data model so that it can answer our

expectations;

 To implement this meta-model in sDM (in a more generic way) to be able to perform the map-

ping sequence between heterogeneous PLM/SLM systems.

13.3.1 System, CAD and FEM interfaces specifications in the BDA BOM

Figure 234 introduces an example of a simple assembly (LPT Case – Tail Bearing Housing) and its

representation in the system framework. This figure describes which data need to be associated to the

different system framework’s objects. From this basic test case we built the corresponding meaning in

the BDA BOM semantic (see Figure 234). The assembly and interface constituents are presented in

Figure 234:

 The assembly and its constituents (Component and ComponentAssemblyUsage);

 The interface objects (InterfacePortInstance, InterfaceConnectionInstance);

 The corresponding CAD models (GeometryModelInstance);

 The published faces which are in interaction (AccessibleModelInstanceConstituent) attached

to the corresponding ports);

 The meshed surface in interaction imposed by the integrator (1st solution for mesh specifica-

tion) which is a model (the green GeometryModelInstance attached to the InterfaceConnec-

tionInstance).

This example is for a mechanical interface between the Low Pressure Turbine Case, and the Tail

Bearing Housing. It shows a ConnectionInstance with property values that define how the connection

is to be modelled. The ConnectionType has the definitions for the properties, and the image shows the

different options for the connections as the different choices are made for the properties. The two

ports point to the same InterfaceSpecification, and this contains details of the geometry and node

locations for the interface. The node locations are provided either by a text document, or as a Nastran

representation.

The Physical View is also shown, with the Components having ModelInstance representations, and

the ports having representations of AccessibleModelInstanceConstituents inside the ModelInstances.

The Connection also has a ModelInstance representation.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-284-

Figure 234: The interface definition via the system framework in the BDA BOM semantic

Figure 235 shows the same system description but considering the 2nd solution for mesh specifi-

cation: the mesh specification is done specifying the nodes list (number and position/coordinates) that

have to match at the interface of the two components’ meshes. In that case the mesh specification

(InterfaceSpecification attached to InterfaceConnectionInstance) could be for example a step AP209

file (or other formats supported by the main pre-post tools) created by the integrator and providing

the nodes list (DigitalFile attached to Document attached to InterfaceSpecification).

Each of the interface elements in the system view can have zero to many "representations" in the

physical view. The class of representation allowed depends on the interface class as follows:

 InterfaceConnectionType - ModelType;

 InterfacePortType - ModelType and/or AccessibleModelTypeConstituent;

 InterfaceConnectionInstance - ModelInstance;

 InterfacePortInstance - ModelInstance and/or AccessibleModelInstanceConstituent;

 Component - ModelInstance;

 ComponentAssemblyUsage - ModelInstance.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-285-

Figure 235: The interface definition via the system framework in the BDA BOM semantic

When the representation relationships are initially set up, it is an indication of what data needs to

be created. For example, if a Mesh-ModelInstance is to be a representation of a Component, then the

ModelType that the Instance “isAnInstanceOf”, has documentation containing the definition of the

expected mesh characteristics. The representations for ports can be used to indicate the type of

boundary expected (e.g. a mesh, a node, a geometric surface or curve etc.), and also used to indicate

the interface boundary conditions. For example, a typical "Product Integration" problem has the fol-

lowing steps:

 Step 1: an integrated model is created which is made up of simplified models of the elements

being integrated;

 Step 2: From this, boundary conditions are extracted for the interfaces between the elements;

 Step 3: Each element is then analysed separately using more complex models;

 Step 4: New simplified models are then created;

 Step 5: The simplified models are then integrated back together into a single model for the

next iteration.

Because all the interfaces are contained in the integrated model, it is a representation of all the

Connections. The boundary conditions can be exposed either using AccessibleModelInstanceConstitu-

ents, or by creating new models containing just the boundary conditions that are derived from the

integrated model. These become the representations for the Ports. Using boundary conditions in sep-

arate models has the advantage that separate element analysis steps only need the model of the

boundary conditions, not the complete integrated model from which to access the constituents. This

is illustrated in Figure 236 on the PPS IFEM generated for the product integration scenario presented

in previous sections.

 object mesh_CAD v iew for #2

Specification for interface mesh

:Component

names = Low Pressure Turbine Case

:InterfacePortInstance

names = LP_port1

:GeometryModelInstance

names = LPT_C CAD model

:AccessibleModelInstanceConstituent

names = LPT_publication

identifiers = "ACFGE02384583"

:InterfaceConnectionInstance

names = LP_TBH_connection

:InterfaceSpecification

names = nodes spec for #2 ports

:InterfacePortInstance

names = TBH_port1

:Document

descriptions = the nodes specification .dat document

:DigitalFile

extension = .dat

:Component

names = Tail Bearing Housing

Geometry and published interface geometry

When all information is in one specification, the ports

and the connection can point to the same

InterfaceSpecification.

Or they could point to different InterfaceSpecification

which have the same documnet

:GeometryModelInstance

names = LPT_C CAD model

:AccessibleModelInstanceConstituent

names = LPT_publication

identifiers = "ACFGE02384583"

Geometry and published interface geometry

+files

+specifiedBy

+portOn

+representation

+formalDocumentation

+to+from

+specifiedBy

+constituent

+specifiedBy

+representation

+portOn

+representation

+constituent

+representation

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-286-

Figure 236: Representations of Interface elements in the Physical View

The above image also shows that the ports have representations which are AccessibleModelIn-

stanceConstituents in the simplified models from step 4. This means that the integrated model of Step

5 is generated from the assembly of the models from Step 4 using the "recipe" defined by the port

representations and connections between ports. For example the port on the engine that is connected

to the pylon has a representation of a accessible constituent (e.g. publication) inside the Engine model.

This publication can be matched up to the accessible constituent (publication) inside the Pylon model

that is a representation of the port on the pylon that is connected to the engine. The rules for how to

match them up will be contained inside the specifications for the ports (and connections).

At each iteration, new instances of the models are created in the Physical view, and these are

representations of the same Components, Ports and Connections in the system view. So the Compo-

nents, Ports and Connections will end up with many model representations, but those models will have

isEvolvedFrom relationships making it possible to view their lifecycle.

13.3.2 Product Integration scenario example using BDA BOM Classes

The below diagrams (Figure 237, Figure 238 and Figure 239) show the same scenario but using the

Business Object Model classes. The figures are laid out in the same way as the schematic figures above.

The full example has both Front and Rear ports and connections, but only the fronts are shown for

clarity.

file:///C:/Documents and Settings/Judith/My Documents/Customers/Airbus/crescendo/5.1/data_model/documentation/BOM Documentation V2.1.4/objects/images/interfaces_ppi_representations1.png

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-287-

Figure 237: links between System and Product views for one iteration

Figure 238: Adding Integrated model for second iteration - bold links

file:///C:/Documents and Settings/Judith/My Documents/Customers/Airbus/crescendo/5.1/data_model/documentation/BOM Documentation V2.1.4/objects/images/interfaces_ea_ppi_representations1.png
file:///C:/Documents and Settings/Judith/My Documents/Customers/Airbus/crescendo/5.1/data_model/documentation/BOM Documentation V2.1.4/objects/images/interfaces_ea_ppi_representations2.png

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-288-

Figure 239: Product View subset: showing derived from and evolution relationships over two iterations

The “isDerivedFrom” relationships (in blue) are a simplification. The Business Object Model uses a

ModelInstanceIsDerivedFrom class with additional relationships to other classes. Including these

makes the diagram too complex so they have been replaced with a simple relationship instead. These

relationships are managed by the Associative Model Network concept illustrated in Figure 240 below.

Figure 240: Illustration of the AMN concept and methodology – Meaning of the AMN BDA BOM object

file:///C:/Documents%20and%20Settings/Judith/My%20Documents/Customers/Airbus/crescendo/5.1/data_model/documentation/BOM%20Documentation%20V2.1.4/objects/documents/EA_HTML/EARoot/EA3/EA1/EA5/EA1522.htm
file:///C:/Documents and Settings/Judith/My Documents/Customers/Airbus/crescendo/5.1/data_model/documentation/BOM Documentation V2.1.4/objects/images/interfaces_ea_ppi_derivedfrom.png

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-289-

13.4 Conclusion

The Product Integration scenario has permitted industrialists and software vendors to reach a

higher maturity level about the understanding, the feasibility and implementability of the proposed

DASIF concepts. The demonstrations have revealed current limits of commercial solutions that are de-

tailed in section 14.1. This gap analysis will serve for future industrial specifications of PLM/SLM solu-

tions for the ones who want to implement such concepts.

Concerning our contribution to the development and implementation of the BDA BOM, our sce-

nario has permitted to highlight missing concepts and objects that cannot be handled by the BDA data

model which only implements AP233 and AP239 protocols which were not developed for supporting

collaborative simulation data management. Technical standards such as STEP-AP209 would have been

needed to handle for instance the exchange of standardised FE models and results. No differentiation

between standards for structuring the information model of the shared BDA repository and standards

for exchanging data containers (models or results data files) has been made, generating hence ambi-

guities regarding the usage of such a common repository.

However, for the data exchange sequences of the Product Integration scenario, and thanks to the

AP233 that covers SysML concepts and objects, we demonstrated that is was possible to exchange

logical system architectures and related modelling requirements between two heterogeneous

PLM/SLM systems (CATIA/ENVIA V6 and Teamcenter for Simulation 9).

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-290-

Chapter 14: Results and validation

14.1 The Product Integration Scenario key results and gap analysis

Concerning the Product Integration demonstrators and related prototypes, five main proofs of

concepts were developed:

 The integrator / simulation architect dedicated environment enabling to:

o define and manage DDMU configurations and related logical architectures with a

MBSE framework based on an object-oriented visual modelling language in order to

prepare the creation of a fit-for purpose BMU;

o integrate and link functional, structural, topological and behavioural specifications of

system artefacts and especially components interactions and interfaces including mul-

tiple levels of hierarchy via ports and ports delegations;

o automate the assembly of FEMs translating the complete BMU architecture into the

appropriate pre-processing tool language.

 The 3D CAD and FEM interface templates enabling to:

o Create and exploit 3D-based interface specifications using the DMU models and mak-

ing the links between CAD and FE topologies more explicit and traceable;

o Capture and exploit both design and simulation intents of system artefacts (and in

particular system interfaces) by accessing and capturing features present in CAD and

CAE models and referencing them in the PDM/SDM system;

 Semantic Data Mapping for interoperable SLM data exchange via the BDA BOM: demon-

strating an implementation of some of the BDA concepts and using web semantic technologies

(RDF) to map the proprietary applications data models to the BDA BOM.

 Use simulation intents and modelling requirements to create automatically fit-for-purpose

meshes.

 Automated quality process and visual reports to assess the compliance and the reliability of

the provided FE models.

The demonstrations have revealed current limits of commercial solutions and the gap analysis

regarding the initial technical objectives is detailed below. To make this gap analysis, we defined with

other Crescendo industrial partners a certain number of assessment criteria based on the key innova-

tions supposed to be brought by the BDA:

 Multi-partner collaboration and engineering data exchange: The ability to provide a flexible

multi-partner collaboration based on standards and best practices ensuring security and trust.

 Integrator / Simulation Architect dedicated environment to manage product complexity in

terms of:

o Consistent organisation and configuration of multi-level and multi-domain system ar-

chitectures representations;

o Functional, structural, topological and behavioural definition and integration of sys-

tem artefacts including multiple levels of hierarchy via ports and ports delegations op-

timizing the integration/assembly activities;

o Dissemination of results to sub-systems and components levels and for weak multi-

physic coupling.

 Automation and “fit-for-purpose” FE modelling: be able to trace and capture the modelling

specifications/assumptions and to automate the related modelling routines/rules that lead to

the creation of a finite element model for a specific study context and intent. The goal is to be

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-291-

able, for a given study context and intent, to re-use the appropriate automated modelling

procedures for new simulation scenarios involving different or updated data sets.

 Re-usability in order to capture engineering knowledge and avoid unnecessary rework by:

o Ensuring the traceability of the design-analysis information chain for re-using suitable

simulation data inputs and/or models

o Providing libraries of re-usable and parameterised simulation and models templates

enabling to re-use simulation workflows, product and model configurations, modelling

requirements, automated modelling procedures, etc.

 Models Quality: ability to quickly check models reliability and ensure results accuracy without

re-work

All the “Product Integration” scenario prototyped capabilities have been listed in following Table

12 and categorised according to the expected BDA innovations defined by the consortium. This table

summarises the achievements of the demonstrator and the limitations faced for each capability im-

plementation tested in commercial and proprietary applications.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-292-

Table 12: PPI capabilities - achievements and gap analysis

14.2 PPI capabilities assessment

The proposed and developed capabilities have not already been set up in an operational environ-

ment. Gains and benefits are then more difficult to assess. However, the main potential benefits of the

proposed and developed demonstrator capabilities have been identified jointly with other industrial

partners and can be synthesised as follows (see Table 13).

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-293-

Table 13: PPI capabilities - assessment criteria and related potential benefits

The “Verification” step of the initial planned research methodology introduced in Chapter 9, con-

sisted in performing new Value Stream Mapping on the business processes studied at Snecma using

the developed capabilities. However, since these capabilities could not be implemented and assessed

in operational processes, we have decided to use a matrix-based approach to identify the potential

benefits of the provided or specified capabilities. This matrix-based approach consists in crossing the

capabilities coverage regarding the assessment criteria of Table 13. This enables to analyse and assess

the impact of the proposed proof of concepts.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-294-

Table 14: PPI capabilities assessment matrix

14.3 DASIF concepts and capabilities assessment

Similarly to the assessment of the capabilities developed for the PPI demonstrator, we applied the

same assessment method for analysing and assessing the impact of the proposed DASIF concepts ca-

pabilities. Conditions and capabilities - derived from the functional analysis of section , listed in sec-

tion 10.2.3 and detailed for some of them in section 10.3 – are crossed in Table 15 with the same

assessment criteria of Table 13.

Part IV: Implementation and Demonstrations of Concepts T.Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-295-

Table 15: DASIF concepts and capabilities assessment matrix

14.4 Conclusion

The assessment of the specified and/or prototyped capabilities – concerning whether DASIF

whether the PPI demonstrator – will be used only when the implementation of these capabilities will

be mature enough in existing commercial tools so that “Beta-test” procedures (assessment by the final

users) can be performed and the efficiency of operational business processes will be measurable per-

forming new VSMs. However, the combined usage of our gap analysis (performed and validated with

other industrial partners) with the assessment matrices has permitted to validate the future develop-

ment roadmap and future research work that we introduce in the next and final Chapter 15.

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-296-

Chapter 15: Conclusions and future work

15.1 PhD Synthesis

15.1.1 Synthesis of addressed challenges and issues

The analysis of the industrial context and requirements introduced in Part I have highlighted some

major industrial stakes and challenges related to the development of complex aeronautical systems

and its supporting digital engineering technologies. Complex PDP is always subjected to risks, uncer-

tainties, as well as difficulties to coordinate interdisciplinary design and simulation activities. All along

an IPPS development life cycle, the tight coupling of several phenomena interacting together makes it

a great integration challenge to find a global optimum for the entire system. The search for this optimal

performance stresses the need to adopt an integrated and simulation-based design approach. The

synchronisation and the reduction of time and knowledge gaps between multi-domain and multi-level

interdependent simulations, performed by different partners using different tools, are major integra-

tion challenges. These gaps and uncertainties can be addressed by fastening the design-analysis itera-

tions. The design-analysis iterations and integration challenges have been clarified with the help of the

FBS framework. This has underlined the need to provide appropriate “definition view”; characterising

the ideal content and organization of product data (corresponding to the appropriate behavioural

structure) for a specific discipline and simulation context.

We then introduced and defined the concept of “Digital Integration Chains” as a process in which

separately subsystems (or components) models are merged into one integrated product model ena-

bling the analysts to predict the behaviour of the whole assembly and to validate that the integrated

product delivers the expected system performances. In order to ensure the continuity of information

within digital integration chains and between involved design teams and based on our analysis, we

have identified three main challenges in complex product development:

 The management of design and analysis data through an integrated reference framework:

this environment is required for a better integration and traceability between design and anal-

ysis data in view to provide needed “analysis product views” and to enhance re-use of relevant

design artefacts (e.g. CAD models, physical properties or past analysis models) regarding the

scope and objectives of the various performed analyses.

 Interoperability between systems: from our observation, we noticed that there was still a lack

in integrating efficiently tools and the data exchanged through these tools. This lack of effi-

ciency is currently a problem while attempting to exchange in a meaningful way between het-

erogeneous CAX and EDM systems; which explains the importance of implementing product

data standards in such applications.

 Consistency between data and models: a consequence of interoperability constraints (even

using standards) is the loss of data consistency between data managed in different domain-

specific tools but also between tools of the same nature. The model consistency concerns the

quality and the semantic of the data conveyed through these models. This loss of consistency

causes the problem of data interpretation between multi-partner and multi-disciplinary co-

designers.

Therefore, adequate collaborative design environments are necessary to ensure that partners and

design teams can share or/and exchange the engineering data created all along the product develop-

ment process. These collaborative design environments should enable partners involved in the ex-

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-297-

tended enterprise to harmonize their design processes by exchanging the right data in the right con-

text. The objective of defining such an integrated design environment is to provide and share an inte-

grated and a common product definition for the project partners.

The Digital Mock-Up (DMU) – supported by Product Data Management (PDM) systems – be-came

during the last decade a key federating environment to exchange/share a common 3D model-based

product definition between design teams. It gives to designers and downstream users (analysts) an

access to the geometry of the assembly. While enhancing 3D and 2D simulations in a collaborative and

distributed design process, the DMU offers new perspectives for analysts to retrieve the appropriate

CAD data inputs used for Finite Element Analysis (FEA); permitting hence to speed-up the simulation

model generation. Another big DMU-related challenge for these companies to reach this objective and

in view to extend the scope of PLM (by adding SLM functionalities), is to integrate behavioural simula-

tion data and processes with the DMU. The PhD has been oriented for addressing this challenge: the

ability for a DMU to represent a system from multiple viewpoints such as different disciplinary do-

mains, life-cycle phases, or levels of detail, fidelity and abstraction. However, current industrial DMUs

suffer from several limitations that we have introduced and analysed in Chapter 4: the lack of flexibility

in terms of content and structure, the lack of digital interface objects describing the relationships be-

tween its components and a lack of integration with simulation activities and data. This PhD especially

underlines the DMU transformations required to provide adapted DMUs that can be used as direct

input for FEA of large assemblies. These transformations must be consistent with the simulation con-

text and objectives and lead to the concept of “Product View” applied to DMUs and to the concept of

“Behavioural Mock-Up” (BMU). A product view defines the link between a product representation and

the activity or process (performed at least by one stakeholder) that use or generate this representation

as respectively input or output. The BMU is the equivalent of the DMU for simulation data and pro-

cesses. Beyond the geometry, which is represented in the DMU, the so-called BMU should logically link

all data and models that are required for simulating the physical behaviour and properties of a single

component or an assembly of components.

15.1.2 Contribution summary

The key enabler for achieving the target of extending the concept of the established CAD-based

DMU to the behavioural CAE-based BMU is to find a bi-directional interfacing concept between the

BMU and its associated DMU. This concept is the kernel of the Design-Analysis Integration Framework

(DASIF) proposed in this PhD. The objective was to develop the digital engineering capabilities and

supporting data models enabling to manage “multi-level” and “multi-domain” logical and physical

DMUs enriched with assembly information for providing to analysts and integrators the required data

structures and inputs to automate the assembly of FE models constituting an appropriate and con-

sistent integrated finite element model ready to be computed. The main approach consists in consid-

ering the DMU as a flexible product definition reference and the supporting PDM system as the main

information source for designers and analysts collaborating within theses digital integration chains.

The concepts of RDMU and DDMU have been introduced as well as the conditions and scenarios for

building these DDMUs.

Regarding all these aspects, our proposal and contributions consist in the specification and devel-

opment of the Design-Analysis System Integration Framework (DASIF). DASIF could be extended and

to be used for any kind of design-simulation loops. We have focused on CAD-FEA loops. DASIF should

be implemented within PLM/SLM environments and interoperate with both CAD-DMU and CAE-BMU

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-298-

environments. DASIF combines configuration data management capabilities of PDM systems with sys-

tem modelling concepts of MBSE and Simulation Data Management capabilities. We hence define our

contribution according to the following developments:

 The development and implementation of MBSE concepts in product data management sys-

tems in order to:

 Synchronise the DMU with the current product definition: using the DMU as the 3D-

based referential product definition to derive other product representations used in

downstream applications;

 Provide an Architect/Integrator dedicated environments for design-analysis data inte-

gration enabling to:

- Define and integrate (D)DMU and BMU architectures with an object-oriented mod-

elling formalism enabling to:

 encapsulate and re-use 3D-based interface specifications;

 automate the assembly of FE models by translating the BMU architecture

language in the appropriate implemented pre-processing tool language.

- Consistently integrate Functional, Behavioural and Structural design parameters in

a multi-view (multi-level and multi-domain) environment;

 The definition of the conceptual and logical multi-aspect product data models providing the

required informational model to organise and manage the engineering artefacts used within

the DASIF framework. This data models have several objectives:

 To be enriched with required attributes and operations/methods according to the spe-

cific business requirements of the environment where it has to be implemented;

 To be implemented in a relational database and its client applications constituting the

product and simulation data management systems supporting DASIF;

 To specify the data structure of exchanged CAD and CAE containers (digital data files);

 To contribute to the enrichment of the BDA object model with the proposed concepts

and services so that they can potentially be implemented within the BDA hub platform

in order to support collaborative data exchange within CAD-CAE digital integration

chains.

 The development of the interoperability between engineering applications supporting digital

integration chains. This has been addressed by:

 Combining and adapting product data models mainly based on existing standards for

product data exchange;

 Defining a modular and multi-layered “standardised” data model enabling to dissociate

but also integrate configuration management data, system definition data (functional,

structural and behavioural engineering artefacts) and topological data. Finally an ap-

plicative layer has been added to manage the required import/export functions ena-

bling to transform DASIF language constructions into the appropriate languages for CAD

and CAE authoring tools.

 Using semantic data mapping and the technology of web semantics for heterogeneous

PLM/SLM data exchange; with the BDA BOM as neutral data model.

This PhD work has been carried out within a European research program: the CRESCENDO project

which aims at delivering the Behavioural Digital Aircraft (BDA). Along the CRESCENDO project, partners

have proposed and assessed innovations that improve the way of collaboratively developing and sim-

ulating aeronautical products by developing both modelling/simulation and SDM capabilities in order

to:

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-299-

 Reduce lead time in performing modelling and analysis activities;

 Provide accurate and robust simulation for product behavioural analyses;

 Enhance the cross-domain interaction by using multi-physics and distributed simulation;

 Improve the quality of modelling to limit re-work and computational issues.

The work package in which this PhD work was integrated, has studied different aspects of simula-

tion in detailed design phase. Within this work-package, the Product Integration Scenario and related

methodology have been defined to handle digital integration chains and to provide a test case scenario

for assessing DASIF concepts. These latter have been used to specify and develop a prototype of an

“Integrator Dedicated Environment” implemented in commercial PLM/SLM applications

(CATIA/SIMULIA V6 and Teamcenter for Simulation 9). These prototypes have allowed assessing the

current commercial tools maturity regarding these concepts and have a feedback regarding the feasi-

bility of their implementation. Finally the conceptual data model of DASIF has also provided inputs to

define the Behavioural Digital Aircraft Business Object Model: the standardized data model of the BDA

platform enabling interoperability between heterogeneous PLM/SLM systems and to which existing

local design environments and new services to be developed could plug. The product Integration sce-

nario has permitted industrialists and software vendors to reach a higher maturity level about the

understanding, the feasibility and implementability of the proposed DASIF concepts. The main achieve-

ments have been:

 The automated assembly of FE models by using the logical DDMU and BMU system architec-

tures defined in the system modelling framework of the integrator dedicated environment;

 Full traceability of the CAD-CAE data chain;

 Re-use or automated generation of fit-for-purpose meshes based on simulation intent.

These demonstrations have revealed current limits of commercial solutions that are detailed in

section 14.1. This gap analysis will serve for future industrial specifications of PLM/SLM solutions for

the ones who want to implement such concepts. The developed prototypes would also need further

capabilities developments for:

 Improving the automation of the CAD and CAE features extraction and the automation of cre-

ating the links between CAX models’ features and system objects.

 Better integration between CAD and CAE data within the implemented solution for traceability

purpose.

 Application and demonstrations of the proposed approach and concepts in other disciplines

(e.g. Aerothermal analysis and management of fluid interfaces)

 Coupling interdependent system views permitting multi-physics coupling (e.g. thermo-me-

chanical analysis and thermo-mechanical interfaces management).

Concerning our contribution to the development and implementation of the BDA BOM, our sce-

nario has highlighted missing concepts and objects that cannot be handled by the BDA data model

which only implements AP233 and AP239 step protocols which were not developed for supporting

collaborative simulation data management. Technical standards such as STEP-AP209 would have been

necessary to handle for instance the exchange of standardised FE models and results. No differentia-

tion between standards for structuring the information model of the shared BDA repository and stand-

ards for exchanging data containers (models or results data files) has been made. For the data ex-

change sequence of the Product integration scenario, and thanks to the AP233 that covers SysML con-

cepts and objects, we demonstrated that it was possible to exchange logical system architectures and

related modelling requirements between two heterogeneous PLM/SLM systems (CATIA/ENOVIA V6

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-300-

and Teamcenter for Simulation 9). The demonstrators have also highlighted some limitations regarding

standard implementation and usage:

 functional scope and information coverage of the standards regarding specific business needs

 no way of assessing the quality/conformity of standards implementations in PLM solutions

Finally, in this PhD we adopted a MBSE approach to introduce a systems engineering dimension

in current PLM/SLM systems. Using an extended SysML notation and based on an innovative model-

based and feature-based interface data model, the proposed approach provides a robust interface

modelling capability to designers and integrators. The proposed “integrator dedicated framework”

also allows to have a multi-level (hierarchical), multi-physics and multi-domain system and interfaces

characterization. This framework and related new digital capabilities aim at improving the lead time

for setting-up and simulating an integrated product. The approach consists mainly by enriching the

engineering knowledge contained in CAX models and enabling to adapt DMU structure and content in

order to reduce time and rework in design/analysis modelling and data processing (acquiring, struc-

turing, analyzing, verification, etc.) activities. A barrier preventing to achieve these objectives is that

CAD and PDM systems used as demonstration platforms are supported by data models that are not

currently adapted to make explicit links between CAD and CAE data. Moreover they do not provide

neither consistent multiple views of the product regarding the simulation objectives. Indeed, when

using an integrated system model, the modelling language must explicitly allow for information to be

shared in different views. Implementing such a framework in PDM and PLM systems requires a gen-

eral transformation towards better standardization, data consistency, and concentration on a few

robust sources. The MBSE approach must be part of this new PLM strategy.

15.2 Future work

One lesson learnt from this PhD is the understanding and vision of the PLM and Systems Engineer-

ing approaches. PLM is not a tool but a strategy for managing complex System of Systems in dynamic

manufacturing networks. PLM is itself a system of systems in which different systems of interest need

to be considered. According to ISO 15288 [ISO, 2008], the system of interest, i.e. the manufactured

product, and the supporting systems, i.e. system for designing, manufacturing, operating and support-

ing the product, are distinguished. For each of them, all of the phases of the lifecycle are to be consid-

ered in order to ensure adequacy between industrial processes and enterprises’ capabilities. Within a

dynamic manufacturing network, all these different systems evolve during the product life cycle – in-

cluding the organisations and the software applications – making the configuration management of

these systems even more complex to handle and leading to other extensions of the PLM approach

such as Application Lifecycle Management (ALM).

Therefore, some overlapping exists between PLM and Systems Engineering. The scope of applica-

tion of PLM is larger than the one covered by Systems Engineering processes and can be applied being

Systems Engineering processes independent. PLM is also more concerned by the information system

and by the technical applications, while Systems Engineering is more concerned by engineering meth-

ods and processes. Finally, both Systems Engineering and PLM are concerned by interoperability. While

PLM is concerned by data exchange, sharing and long term archiving, Systems Engineering is concerned

not only by possible interaction between systems and by automated reconfiguration of systems of

systems but also by enhancing communication and hence interoperability between multi-disciplinary

design teams. Moreover, Systems Engineering also focuses on the adaptation of the overall system in

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-301-

order to achieve the targeted objectives and on the way the different sub-systems of a system of sys-

tems have to be aggregated dynamically and to interact easily. This PhD has focused on the system to

develop (aeronautical manufactured products) and the related systems (EDM and CAX systems) for

designing and simulating the manufactured product.

This PhD has raised multiple challenges concerning the ability to develop a “central reference” for

design, integration and simulation activities to make the right data and information available at the

right time and for the right actor to handle efficiently digital integration chains.

We are convinced that a combination of both macroscopic approaches (defining the necessary

data structure to be implemented in PDM applications to manage design-analysis data integration

issues as well as to manage multiple-product data views and the change propagation procedures

across these views) and microscopic approaches (defining the required mechanisms for simulation-

driven structural and shapes DMU adaptations) is required. This combination must be considered as

a crucial step toward the integration of MBSE concepts and methods in the PLM strategy required for

the consistency of product data along the product lifecycle and for the interoperability of engineering

applications in dynamic manufacturing networks.

Then still open research outlines for future work have been identified to take the plunge of this

technological leap:

 In the area of Design-Analysis (CAD-CAE) integration:

 Our contribution should permit to further develop and implement DDMU and BMU con-

cepts for demonstrating their operational usage and efficiency on realistic industrial

test-cases (thousands of parts) and for other kind of simulations and application do-

mains. As stated above the management of consistent DDMUs will be operational when

we will be able to drive and automate the DMU transformations operators (shape and

structural transformations) within PDM and SDM systems using object-oriented model-

ling techniques and languages such as graph of relations based on graph theories or

system modelling frameworks;

 The implementation of Simulation Data Management and adapted configuration man-

agement capabilities as well as a full integration with PDM and CAX systems are still on-

going challenges for researchers and software vendors. Some of these capabilities still

require efforts to be implemented like the management of BMUs configurations, their

links with associated DDMUs and their application context (domain of validity). We pro-

pose a data model supporting these configuration management capabilities for FEA (to

be able to manage the effectivities of the various FE representations (0D, 1D, 2D, 3D) in

a BMU) but they could not be implemented during this PhD;

 Simulation Lifecycle Management is dedicated to the management and capitalisation

of the intellectual property related to simulation methods, data, and processes. There-

fore a more long-term perspective is to develop and implement Knowledge-Based En-

gineering and expert systems in SDM and CAE tools in order to:

- Capture the tacit knowledge of designers, analysts and other experts (e.g. the jus-

tification of modelling choices and specifications regarding the simulation context);

- Re-produce the cognitive mechanisms developed by the experts and be able to re-

use and automate modelling and simulation procedures for new simulation scenar-

ios.

Conclusions and future work T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-302-

 The extension of the Downstream DMUs (DDMU) concept for other downstream applications

and application domains. Among the possible downstream applications we can quote DDMUs

for manufacturing and DDMUs for support and maintenance.

 In the area of PLM/SLM interoperability and standards:

 Extension of standardised object-oriented modelling languages for specifying

- Structural and behavioural architectures: enabling system models to better inte-

grate geometric and behavioural models and parameters;

- Simulation models and models interfaces: the need for a standardised language for

defining and exchanging these specifications between multi-level and multi-do-

main design teams is crucial and represents a short-term perspective for industri-

alists.

 Reduce the number of redundant units of functionalities within the different STEP ap-

plication protocols. This is the aim of the AP242 standard merging AP214 developed for

the automotive industry and AP203 developed for the aeronautics industry. For han-

dling design-analysis interoperability issues, the next step consists in developing an ap-

plication protocol merging AP242, AP233 and AP209 with dedicated units of function-

alities for structuring and standardising data models of PDM/SDM shared repositories

and for standardising exchanged PDM/SDM and CAD/CAE data containers.

 Reduce the time for developing and implementing STEP application protocols: this could

be addressed by developing an experimental and open platform for standards imple-

mentations assessment. This platform should allow to industrialists to better specify

their data exchange scenarios with a model-driven approach (MDA) in order to simulate

these scenarios by plugging their applications (implementing the standards) on the plat-

form. This kind of platform should integrate technologies such as virtualisation clusters,

workflow engines, enterprise service bus (ESB), application and data integration serv-

ers, large triple stores and a set of referential standards-oriented quality checking tools.

 Create a community integrating the stakeholders of the PLM interoperability eco-sys-

tem (industrial associations (AIA, ASD-SSG, GALIA, etc.), software vendors, research in-

stitutes and universities, standardisation organisms, etc.) to share the referential imple-

mentations of standards, quality checkers, industrial test-cases and best-practices with

the finality to increase the maturity of the eco-system and speed-up the standards de-

velopment and implementation process.

 The development of SLM Hubs (further BDA developments for the European aeronau-

tical industry): once required SDM capabilities and PLM standards implementations will

have reached a sufficient maturity level, the next step will be to develop PLM/SLM col-

laborative hubs. The objective of the Crescendo project – developing the BDA platform

– was may be too ambitious at the time the project was launched. However, it has en-

abled industrial partners and software vendors to reach a higher maturity level in the

development and implementation of modelling and simulation capabilities for collabo-

rative simulation-based design processes in the extended enterprise.

Acknowledgements

The research leading to these results has received funding from the European Seventh Framework

Programme (FP7/2007-2013) under grant agreement n° 234344 (www.crescendo.fp7.eu/).

http://www.crescendo.fp7.eu/

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-303-

REFERENCES

3SL (2013) Cradle from 3SL.
AFIS, G. D. T. I. S. (2009) Découvrir et comprendre l'Ingénierie Système. Association Française

d'Ingénierie Système.
AGOSTINHO, C., CORREIA, F. & JARDIM-GONCALVES, R. (2010) Interoperability of complex business

networks by language independent information models. New World Situation: New Directions
in Concurrent Engineering. Springer.

AHMAD, N. (2010) Supporting the management of the engineering change management process
through a cross-domain traceability model. PhD Thesis, University of Cambridge.

ALEMANNI, M., DESTEFANIS, F. & VEZZETTI, E. (2011) Model-based definition design in the product
lifecycle management scenario. The International Journal of Advanced Manufacturing
Technology, 52, 1-14.

ANDERSSON, K. (1999) A design process model for behavior simulations of complex products. IN
ASME (Ed.) DETC 1999, Computers in Engineering Conference. Las Vegas Nevada, USA

ANDERSSON, K. & SELLGREN, U. (1998) MOSAIC - Integrated modeling and simulation of physical
behavior of complex systems. Proceedings of NordDesign 98 Stockholm, Sweden.

ANDÚJAR, C., BRUNET, P. & AYALA, D. (2002) Topology-reducing surface simplification using a discrete
solid representation. ACM Transactions on Graphics (TOG), 21, 88-105.

ANSI, A. N. S. I., SYSTEMS ENGINEERING COMMITTEE. (1999) Standard: ANSI/EIA-632 - Processes for
Engineering a System.

ARABSHAHI, S., BARTON, D. C. & SHAW, N. K. (1991) Towards integrated design and analysis. Finite
Elements in Analysis and Design, 9, 271-293.

ARABSHAHI, S., BARTON, D. C. & SHAW, N. K. (1993) Steps towards CAD-FEA integration. Engineering
with Computers, 9, 17-26.

ARMSTRONG, C. G. (1994) Modeling Requirements for Finite-Element Analysis. Computer-Aided
Design, Volume 26, Number 7, pp. 573-578.

ARMSTRONG, C. G., DONAGHY, R. J. & BRIDGETT, S. J. (1996) Derivation of appropriate Idealizations
in Finite Element Modeling. Third International Conference on Computational Structures
Technology. Budapest, Hungary.

BADIN, J. (2011) Ingénierie hautement productive et collaborative à base de connaissances métier :
vers une méthodologie et un méta-modèle de gestion des connaissances en configurations.
Thèse de Doctorat, Université de Technologie de Belfort-Montbéliard (UTBM).

BADIN, J., CHAMORET, D., GOMES, S. & MONTICOLO, D. (2011) Knowledge configuration management
for product design and numerical simulation. Proceedings of the 18th International Conference
on Engineering Design (ICED11), Vol. 6. Copenhague, Danemark.

BAJAJ, M. (2008) Knowledge Composition Methodology for Effective Analysis Problem Formulation in
Simulation-based Design. Engineering Information Systems Lab Atlanta, USA, Georgia Institute
of Technology

BAJAJ, M., PEAK, R. S. & PAREDIS, C. J. (2007) Knowledge Composition for Efficient Analysis Problem
Formulation: Part 2 Approach and Analysis Meta-Model. ASME.

BAJAJ, M., ZWEMER, D., PEAK, R., PHUNG, A., SCOTT, A. & WILSON, M. (2011) Satellites to Supply
Chains, Energy to Finance - SLIM for Model-Based Systems Engineering. INCOSE International
Symposium.

BALLU, A., FALGARONE, H., CHEVASSUS, N. & MATHIEU, L. (2006) A new Design Method based on
Functions and Tolerance Specifications for Product Modelling. CIRP Annals - Manufacturing
Technology, 55, 139-142.

BAUCH, C. (2004) Lean product development: making waste transparent. Massachusetts Institute of
Technology and Technical University of Munich.

BELAZIZ, M., BOURAS, A. & BRUN, J. M. (2000) Morphological analysis for product design. Computer-
Aided Design, 32, 377-388.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-304-

BELLENGER, E., BENHAFID, Y. & TROUSSIER, N. (2008) Framework for controlled cost and quality of
assumptions in finite element analysis. Finite Elements in Analysis and Design, 45, 25-36.

BENCHIMOL, G. (1993) L'entreprise étendue (Coll. Systèmes d'information), Paris.
BERGENTHAL, J. (2011) Final Report - Model Based Engineering (MBE) Subcommittee. NDIA Systems

Engineering Division - M&S Committee.
BNAE (2003) Guide pour la mise en oeuvre des principes de la gestion de la configuration.

Recommandations Générales. Bureau de normalisation de l'aéronautique et de l'espace, Issy
les Moulineaux, France.

BOOCH, G. (2006) Object Oriented Analysis & Design with Application, Pearson Education India.
BOOCH, G., JACOBSON, I. & RUMBAUGH, J. (2000) OMG unified modeling language specification.

Object Management Group ed: Object Management Group, 1034.
BOUSSUGE, F., LÉON, J.-C., HAHMANN, S. & FINE, L. (2012) An analysis of DMU transformation

requirements for structural assembly simulations. The Eighth International Conference on
Engineering Computational Technology, 4-7 September 2012, Dubrovnik, Croatia.

BRONSVOORT, W. F. & NOORT, A. (2004) Multiple-view feature modelling for integral product
development. Computer-Aided Design, 36, 929-946.

CAPRA, F. (1997) The web of life: A new scientific understanding of living systems, Anchor.
CHAMBOLLE, F. (1999) Un modèle produit piloté par les processus d'élaboration: application au

secteur automobile dans l'environnement STEP. Laboratoire Génie Industriel. Chatenay-
Malabry, FRANCE, Ecole centrale des arts et manufactures.

CHARLES, S. (2005) Gestion Intégrée des données CAO et EF – Contribution à la liaison entre conception
mécanique et calcul de structure. Conception Mécanique et Ingénierie Simultanée. Thèse de
doctorat, Université de Technologie de Troyes.

CHARLES, S., DUCELLIER, G. & EYNARD, B. (2006) CAD and FEA Integration in a Simulation Data
Management Environment based on a knowledge-based system. Proceedings of TMCE 2006,
April 18–22, 2006, Ljubljana, Slovenia.

CHARLES, S., EYNARD, B., BARTHOLOMEW, P. & PALECZNY, C. (2005) Standardization of the finite
element analysis data-exchange in aeronautics concurrent engineering. Journal of Computing
and Information Science in Engineering, 5, 63-66.

CHASE, J. P. (2001) Value creation in the product development process. Massachusetts Institute of
Technology.

CHEN, Y.-M. & JAN, Y.-D. (2000) Enabling allied concurrent engineering through distributed
engineering information management. Robotics and Computer-Integrated Manufacturing, 16,
9-27.

CHONG, C., SENTHIL KUMAR, A. & LEE, K. (2004) Automatic solid decomposition and reduction for non-
manifold geometric model generation. Computer-Aided Design, 36, 1357-1369.

CHOUADRIA, R. & VERON, P. (2006) Identifying and re-meshing contact interfaces in a polyhedral
assembly for digital mock-up. Engineering with Computers, 22, 47-58.

CLARK, B. W., HANKS, B. W. & ERNST, C. D. (2008) Conformal assembly meshing with tolerant
imprinting. Proceedings of the 17th International Meshing Roundtable. Springer.

CLARK, K. B. & FUJIMOTO, T. (1991) Product development performance: Strategy, organization, and
management in the world auto industry, Harvard Business Press.

CLARKSON, P. J., SIMONS, C. & ECKERT, C. (2004) Predicting Change Propagation in Complex Design.
Journal of Mechanical Design, 126, 788-797.

CLIFT, T. B. & VANDENBOSCH, M. B. (1999) Project Complexity and Efforts to Reduce Product
Development Cycle Time. Journal of Business Research, 45, 187-198.

CRESCENDO, C. (2010) Crescendo FP7 Europeean Project.
CRESCENDO, C. (2013) Crescendo FP7 Europeean Project.
CROW, K. (2002) Configuration management and engineering change control.
D'ADDERIO, L. (2001) Crafting the virtual prototype: how firms integrate knowledge and capabilities

across organisational boundaries. Research Policy, 30, 1409-1424.
DAVIS, J. M., KEYS, L. K., CHEN, I. J. & PETERSEN, P. L. (2004) Collaborative product development in an

R&D environment. National Aeronautics and Space Administration, E-14440.
DE LA BRETESCHE, B. (2000) La Méthode APTE: analyse de la valeur, analyse fonctionnelle, Ed. Pétrelle.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-305-

DE MARTINO, T., FALCIDIENO, B. & HAßINGER, S. (1998) Design and engineering process integration
through a multiple view intermediate modeller in a distributed object-oriented system
environment. Computer-Aided Design, 30, 437-452.

DEFOORT, S., BALESDENT, M., KLOTZ, P., SCHMOLLGRUBER, P., MORIO, J., HERMETZ, J., BLONDEAU,
C., CARRIER, G. & BÉREND, N. (2012) Multidisciplinary Aerospace System Design: Principles,
Issues and Onera Experience. Journal of Aerospace Lab.

DEMOLY, F. (2010) Conception intégrée et gestion d'informations techniques : application à l'ingénierie
du produit et de sa séquence d'assemblage. Thèse de doctorat, Université de Technologie de
Belfort-Montbéliard (UTBM), France.

DEMOLY, F., GOMES, S., EYNARD, B. & RIVEST, L. (2010a) PLM-based approach for Assembly Process
Engineering. International Journal of Manufacturing Research, 5, 413-428.

DEMOLY, F., MONTICOLO, D., EYNARD, B. T., RIVEST, L. & GOMES, S. (2010b) Multiple viewpoint
modelling framework enabling integrated product-process design. International Journal on
Interactive Design and Manufacturing (IJIDeM), 4, 269-280.

DEMOLY, F., TOUSSAINT, L., EYNARD, B., KIRITSIS, D. & GOMES, S. (2011a) Geometric skeleton
computation enabling concurrent product engineering and assembly sequence planning.
Computer-Aided Design, 43, 1654-1673.

DEMOLY, F., TROUSSIER, N., EYNARD, B., FALGARONE, H., FRICERO, B. & GOMES, S. (2011b) Proactive
assembly oriented design approach based on the deployment of functional requirements.
Journal of Computing and Information Science in Engineering, 11.

DEMOLY, F., YAN, X.-T., EYNARD, B., GOMES, S. & KIRITSIS, D. (2011c) Integrated product relationships
management: a model to enable concurrent product design and assembly sequence planning.
Journal of Engineering Design, 23, 544-561.

DEMOLY, F., YAN, X.-T., EYNARD, B., RIVEST, L. & GOMES, S. (2011d) An assembly oriented design
framework for product structure engineering and assembly sequence planning. Robotics and
Computer-Integrated Manufacturing, 27, 33-46.

DIAZ-CALDERON, A. (2000) A composable simulation environment to support the design of
mechatronic systems. Carnegie Mellon University.

DIAZ-CALDERON, A., PAREDIS, C. J. & KHOSLA, P. K. (2000) Architectures and languages for model
building and reuse: organization and selection of reconfigurable models. Proceedings of the
32nd conference on Winter simulation. Society for Computer Simulation International.

DO, N., CHOI, I. J. & SONG, M. (2008) Propagation of engineering changes to multiple product data
views using history of product structure changes. International Journal of Computer Integrated
Manufacturing, 21, 19-32.

DOD, M.-H. (2001) 61A (SE) Military Handbook Configuration Management Guidance. DoD, US.
DOLEZAL, W. R. (2008) Success Factors for Digital Mock-ups (DMU) in complex Aerospace Product

Development. Technische Universität München, Genehmigten Dissertation, Munich, Germany.
DRIEUX, G. (2006) De la maquette numérique produit vers ses applications aval: propositions de

modèles et procédés associés. Thèse de doctorat, Laboratoire Sols, Solides, Structures de
Grenoble. Grenoble, INPG.

DRIEUX, G., LÉON, J. C., GUILLAUME, F., CHEVASSUS, N., FINE, L. & POULAT, A. (2007) Interfacing
product views through a mixed shape representation. Part 2: Model processing description.
International Journal on Interactive Design and Manufacturing (IJIDeM), 1, 67-83.

DS, D. S. (2010) PLM (Product Lifecyle Management) PLM Glossary.
DÜSING, C. (2000) Towards the emerging Systems Engineering data exchange standard – AP233.

ProSTEP Science Days Conference Paper.
ECKARD, C. (2000) Advantages and disadvantages of fem analysis in an early state of the design

process. Proc. 2nd worldwide automotive conf., MSC software corp., USA.
ECKERT, C. M., KELLER, R., EARL, C. & CLARKSON, P. J. (2006) Supporting change processes in design:

Complexity, prediction and reliability. Reliability Engineering & System Safety, 91, 1521-1534.
ESPOSITO, E. (2004) Strategic alliances and internationalisation in the aircraft manufacturing industry.

Technological Forecasting and Social Change, 71, 443-468.
ESTEFAN, J. A. (2007) Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE

Focus Group, 25.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-306-

EUROSTEP (2013) PLCSlib and DEX repository.
EYNARD, B. & YAN, X.-T. (2008) "Collaborative Product Development''. Concurrent Engineering, 16, 5-

7.
EYNARD, B. T., GALLET, T., ROUCOULES, L. & DUCELLIER, G. (2006) PDM system implementation based

on UML. Mathematics and Computers in Simulation, 70, 330-342.
FALGARONE, H. & CHEVASSUS, N. (2006) Structural and Functional Analysis for Assemblies. Advances

in Design. Springer London.
FENG, G., CUI, D., WANG, C. & YU, J. (2009) Integrated data management in complex product

collaborative design. Computers in Industry, 60, 48-63.
FENVES, S., FOUFOU, S., BOCK, C. & SRIRAM, R. D. (2007) CPM: a core model for product data.

Manufacturing Systems, Integration, Division, National Institute of Standards and Technology,
Gaithersburg, USA Available at: http://www.mel.nist.gov/msidstaff/sriram/. Accessed on:
March 10th.

FENVES, S. J. (2002) Core Product Model for Representing Design Information, US Department of
Commerce, Technology Administration, National Institute of Standards and Technology.

FENVES, S. J., CHOI, Y., GURUMOORTHY, B., MOCKO, G. & SRIRAM, R. D. (2003) Master Product Model
for the Support of Tighter Integration of Spatial and Functional Design. Gaithersburg, USA., US
Department of Commerce, Technology Administration, National Institute of Standards and
Technology.

FERRANDES, R., MARIN, P., LEON, J.-C. & GIANNINI, F. (2009) A posteriori evaluation of simplification
details for finite element model preparation. Computers & Structures, 87, 73-80.

FINE, L. (2001) Processus et méthodes d'adaptation et d'idéalisation de modèles dédiés à l'analyse de
structures mécaniques. Thèse de doctorat, Institut nationale polytechnique de Grenoble.

FISCHER, M. & SACHERS, M. (2002) ISO10303-214 CC8 Recommended Practices, Version 1.2:
Specification and Configuration / Product Coding / Documents and Transformation Matrices.

FOUCAULT, G. & LÉON, J.-C. (2010) Enriching assembly CAD models with functional and mechanical
informations to ease CAE. Proceedingfs of the ASME 2010 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE
2010 August 15-18, 2010, Montréal, Canada.

FOUCAULT, G., SHAHWAN, A., LÉON, J.-C. & FINE, L. (2011) What is the content of a DMU? Analysis
and proposal of improvements. Actes du 12ème Colloque National AIP PRIMECA: Produits,
Procédés et Systèmes Industriels - intégration Réel-Virtuel. Le Mont Dore, France.

FRIEDENTHAL, S., GRIEGO, R. & SAMPSON, M. (2007) INCOSE Model Based Systems Engineering
(MBSE) Initiative. San Diego, INCOSE.

FRIEDENTHAL, S., MOORE, A. & STEINER, R. (2011) A practical guide to SysML: the systems modeling
language, Morgan Kaufmann.

FRITZSON, P., ARONSSON, P., POP, A., LUNDVALL, H., NYSTROM, K., SALDAMLI, L., BROMAN, D. &
SANDHOLM, A. (2006) OpenModelica-A free open-source environment for system modeling,
simulation, and teaching. Computer Aided Control System Design, 2006 IEEE International
Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control,
2006 IEEE. IEEE.

FUH, J. Y. H. & LI, W. D. (2005) Advances in collaborative CAD: the-state-of-the art. Computer-Aided
Design, 37, 571-581.

GABBERT, U. & WEHNER, P. (1998) The product data model as a pool for CAD-FEA data. Engineering
with Computers, 14, 115-122.

GALLAHER, M. P., O'CONNOR, A. C. & PHELPS, T. (2002) Economic impact assessment of the
international Standard for the Exchange of Product model data (STEP) in transportation
equipment industries. RTI International and National Institute of Standards and Technology,
Gaithersburg, MD.

GAO, S., ZHAO, W., LIN, H., YANG, F. & CHEN, X. (2010) Feature suppression based CAD mesh model
simplification. Computer-Aided Design, 42, 1178-1188.

GARBADE, R. & DOLEZAL, W. (2007) DMU@Airbus: Evolution of the Digital Mock-up (DMU) at Airbus
to the Centre of Aircraft Development. The Future of Product Development. Springer.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-307-

GERBINO, S. (2003) Tools for the interoperability among CAD systems. Proc. XIII ADM-XV INGEGRAF
Int. Conf. Tools and Methods Evolution in Engineering Design.

GERO, J. S. (1990) Design prototypes: a knowledge representation schema for design. AI magazine, 11,
26.

GERO, J. S. & KANNENGIESSER, U. (2004) The situated function-behaviour-structure framework. Design
Studies, 25, 373-391.

GERSHENSON, J. K., PRASAD, G. J. & ZHANG, Y. (2003) Product modularity: Definitions and benefits.
Journal of Engineering Design, 14, 295-313.

GIELINGH, W. (2008) An assessment of the current state of product data technologies. Computer-Aided
Design, 40, 750-759.

GIFFIN, M., KELLER, R., ECKERT, C., DE WECK, O., BOUNOVA, G. & CLARKSON, P. J. (2009) Change
Propagation Analysis in Complex Technical Systems. Journal of Mechanical Design, 131,
081001-081001.

GOMES, S. & SAGOT, J. (2002) A CONCURRENT ENGINEERING EXPERIMENT BASED ON A CO-OPERATIVE
AND OBJECT ORIENTED DESIGN METHODOLOGY. Integrated Design and Manufacturing in
Mechanical Engineering: Proceedings of the Third Idmme Conference Held in Montreal,
Canada, May 2000. Springer.

GRAF, H., BRUNETTI, G. & STORK, A. (2002) CAD2VR or how to efficiently integrate VR into the product
development process. CAD 2002: Corporate Engineering Research. GI German Informatics
Society.

GRAIGNIC, P., VOSGIEN, T., JANKOVIC, M., TULOUP, V., BERQUET, J. & TROUSSIER, N. (2013) Complex
System Simulation: Proposition of a MBSE Framework for Design-Analysis Integration.
Procedia Computer Science, 16, 59-68.

GRIFFIN, A. (1993) Metrics for measuring product development cycle time. Journal of Product
Innovation Management, 10, 112-125.

GRIFFIN, A. (1997) Modeling and measuring product development cycle time across industries. Journal
of Engineering and Technology Management, 14, 1-24.

GUJARATHI, G. P. & MA, Y.-S. (2010) Generative CAD and CAE integration using common data model.
Automation Science and Engineering (CASE), 2010 IEEE Conference on, 21-24 Aug. 2010, To-
ronto, Canada.

GUJARATHI, G. P. & MA, Y. S. (2011) Parametric CAD/CAE integration using a common data model.
Journal of Manufacturing Systems, 30, 118-132.

GUYOT, E., DUCELLIER, G., EYNARD, B., GIRARD, P. & GALLET, T. (2007) Product data and digital mock-
up exchange based on PLM. Proceedings of PLM07, 243-252.

HAMDI, M., AIFAOUI, N. & BENAMARA, A. (2007) Idealization of CAD Geometry Using Design and
Analysis Integration Features Models. IN BOCQUET, J.-C. (Ed.) ICED07: 16th International
Conference of Engineering Design. Paris, France, Design Society.

HAMILTON, B. A. (2010) Systems-2020 Study Final Report.
HAMRAZ, B., CALDWELL, N. H. M. & JOHN CLARKSON, P. (2012) A Multidomain Engineering Change

Propagation Model to Support Uncertainty Reduction and Risk Management in Design. Journal
of Mechanical Design, 134, 100905-100905.

HAMRI, O., LÉON, J. C., GIANNINI, F., FALCIDIENO, B., POULAT, A. & FINE, L. (2008) Interfacing product
views through a mixed shape representation. Part 1: Data structures and operators.
International Journal on Interactive Design and Manufacturing (IJIDeM), 2, 69-85.

HERZIG, S., QAMAR, A., REICHWEIN, A. & PAREDIS, C. J. (2011) A conceptual framework for consistency
management in model-based systems engineering. Proceedings of the ASME 2011
International Design Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2011. ASME.

HERZOG, E. (2004) An approach to systems engineering tool data representation and exchange.
Department of Computer and Information Science. Linköping, Sweden, Linköping universitet.

HOFFMAN, C. M. & JOAN-ARINYO, R. (1998) CAD and the product master model. Computer-Aided
Design, 30, 905-918.

HOFFMANN, C. M. & JOAN-ARINYO, R. (2000) Distributed maintenance of multiple product views.
Computer-Aided Design, 32, 421-431.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-308-

HOPPMANN, J. (2009) The Lean Innovation Roadmap - A Systematic Approach to Introducing Lean in
Product Development Processes and Establishing a Learning Organization. Braunschweig,
Germany, Technical University of Braunschweig & Massachusetts Institute of Technology.

HUNTEN, K. A. (1997) CAD/FEA integration with STEP AP209 technology and implementation. IPT Lead
- Analysis Tools and Integration, Virtual Product Development Initiative. Lockheed Martin
Corporation.

IACOB, R., MITROUCHEV, P. & LÉON, J.-C. (2008) Contact identification for assemblyâ€“disassembly
simulation with a haptic device. The Visual Computer, 24, 973-979.

IEEE, I. S. A.-S. S. E. S. C. (2005) IEEE 1220: Standard for Application and Management of the Systems
Engineering Process.

INCOSE (2008) Survey of Model-Based Systems Engineering (MBSE) Methodologies INCOSE.
IRLINGER, R. (1999) Methoden und Werkzeuge zur nachvollziehbaren Dokumentation in der

Produktentwicklung, Shaker.
ISO-SCRA (2006) STEP APPLICATION HANDBOOK ISO 10303 VERSION 3
ISO (1994a) ISO 10303-1: Overview and Fundamental Principles. Industrial Automation Systems and

Integration - Product Data Representation and Exchange. International Standard Organization,
Geneva, Switzerland.

ISO (1994b) ISO 10303-11: Description methods - The EXPRESS language reference manual. Industrial
automation systems and integration - Product data representation and exchange.
International Standard Organization, Geneva, Switzerland.

ISO (1999) ISO 10303-209: Application protocol: Composite and metallic structural analysis and related
design. Industrial Automation Systems and Integration - Product Data Representation and
Exchange. . International Standard Organization, Geneva, Switzerland.

ISO (2000a) ISO 10303-104: Integrated application resource: Finite element analysis. Industrial
automation systems and integration -- Product data representation and exchange.
International Organization for Standardization, Geneva, Switzerland.

ISO (2000b) ISO 10303-203. AP214Ed2: Core data for automotive mechanical design processes.
Industrial automation systems and integration - Product data representation and exchange.
International Standard Organization, Geneva, Switzerland.

ISO (2003a) ISO 10303-42: Geometric and topological representation. Industrial automation systems
and integration -- Product data representation and exchange. International Standard
Organization, Geneva, Switzerland.

ISO (2003b) ISO 10303-109: Kinematic and geometric constraints for assembly models. Industrial
automation systems and integration - Product data representation and exchange -.
International Standard Organization, Geneva, Switzerland.

ISO (2004a) ISO10303-44: Product structure configuration. Industrial automation systems and
integration - Product data representation and exchange. International Standard Organization,
Geneva, Switzerland.

ISO (2004b) ISO 10303-239: Product life cycle support. Industrial automation systems and integration
— Product data representation and exchange International Organization for Standardization,
Geneva, Switzerland.

ISO (2005) ISO 10303-203. AP203Ed2: Configuration controlled 3D designs of mechanical Parts and
assemblies. Industrial automation systems and integration — Product data representation and
exchange. International Standard Organization, Geneva, Switzerland.

ISO (2008) ISO/IEC 15288: Systems and software engineering -- System life cycle processes.
International Standard Organization, Geneva, Switzerland.

ISO (2011a) ISO10303-43: Representation structures. Industrial automation systems and integration -
- Product data representation and exchange --. International Standard Organization, Geneva,
Switzerland.

ISO (2011b) ISO 10303-52: Mesh-based topology. Industrial automation systems and integration --
Product data representation and exchange. International Organization for Standardization,
Geneva, Switzerland.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-309-

ISO (2012) ISO 10303-233: Systems engineering. Industrial automation systems and integration --
Product data representation and exchange --. International Organization for Standardization,
Geneva, Switzerland.

JACOBSON, I. (1992) Object-oriented software engineering: a use case driven approach, Pearson
Education India.

JAYARAM, U., KIM, Y., JAYARAM, S., JANDHYALA, V. K. & MITSUI, T. (2004) Reorganizing CAD Assembly
Models (as-Designed) for Manufacturing Simulations and Planning (as-Built). Journal of
Computing and Information Science in Engineering, 4, 98-108.

JOHNSON, J. (2000) The latest developments in design data exchange: towards fully integrated
aerospace design environments. Proceedings of 22nd International Congress of Aeronautical
Sciences.

JOHNSON, J., NILSSON, B., LUISE, F., TÖRNE, A., LOEUILLET, J.-L., CANDY, L., INDERST, M. & HARRIS, D.
(1999) The future systems engineering data exchange standard STEP AP-233: Sharing the
results of the SEDRES Project. International Council on Systems Engineering.

JUGULUM, R. & SAMUEL, P. (2010) Design for lean six sigma: A holistic approach to design and
innovation, Wiley. com.

KATO, J. (2005) Development of a process for continuous creation of lean value in product
development organizations. Massachusetts Institute of Technology.

KEMMERER, S. J. (1999) STEP: the grand experience, US Department of Commerce, Technology
Administration, National Institute of Standards and Technology.

KIBAMBA, Y. (2011) Spécification et développement d’un environnement collaboratif de gestion de
cycle de vie des données de simulation numérique. Thèse de doctorat, Université de
Technologie de Compiègne.

KIM, J. & WILEMON, D. (2003) Sources and assessment of complexity in NPD projects. R&D
Management, 33, 15-30.

KIM, K.-Y., WANG, Y., MUOGBOH, O. S. & NNAJI, B. O. (2004) Design formalism for collaborative
assembly design. Computer-Aided Design, 36, 849-871.

KINDLER, E. & WAGNER, R. (2007) Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. University of Paderborn.

KLAAS, O. & SHEPARD, M. S. (2001) Embedding Reliable Numerical Analysis Capabilities into an
Enterprise-Wide Information System. Engineering with Computers, 17, 151-161.

KLEINER, S., ANDERL, R. & GRÄB, R. (2003) A collaborative design system for product data integration.
Journal of Engineering Design, 14, 421-428.

KNOWLEDGE INSIDE (2013) arKItect Designer.
KONING, H. & VAN VLIET, H. (2006) A method for defining IEEE Std 1471 viewpoints. Journal of Systems

and Software, 79, 120-131.
KRAUSE, F. L. & KAUFMANN, U. (2007) Meta-Modelling for Interoperability in Product Design. CIRP

Annals - Manufacturing Technology, 56, 159-162.
KWANGHOON, K., MCMAHON, C. A. & LEE, K. H. (2003) Design of a feature-based multi-viewpoint

design automation system. International Journal of CAD/CAM, 3.
LABROUSSE, M., PERRY, N. & BERNARD, A. (2004) Modèle FBS-PPR: des objets d'entreprise\a la gestion

dynamique des connaissances industrielles. Gestion dynamique des connaissances
industrielles. Lavoisier.

LALOR, P. (2007) Simulation Lifecycle Management - Opens a New Window on the Future of Product
Design and Manufacturing. NAFEMS.

LEAL, D., PASHLEY, C. D., VAUGHAN, C. & CHILCOTT, S. (1999) The Engineering Analysis Core Model: A
'plain man's guide' Version 5.0. PDES, Inc. .

LÉON, J.-C. (1999) Multi-views and multi-representations design framework applied to a preliminary
design phase. IN CHEDMAIL, P., ET AL. (Ed.) Integrated Design and Manufacturing in
Mechanical Engineering (IDMME) conference. Kluwer.

LÉON, J.-C. & FINE, L. (2005) A new approach to the Preparation of models for F.E. analyses.
International Journal of Computer Applications in Technology, Vol 3, No 2/3/4, 166 - 184.

LI, W. D., LU, W. F., FUH, J. Y. H. & WONG, Y. S. (2005) Collaborative computer-aided design: research
and development status. Computer-Aided Design, 37, 931-940.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-310-

LI, W. D., ONG, S. K., FUH, J. Y. H., WONG, Y. S., LU, Y. Q. & NEE, A. Y. C. (2004) Feature-based design in
a distributed and collaborative environment. Computer-Aided Design, 36, 775-797.

LI, Y., WAN, L. & XIONG, T. (2011) Product data model for PLM system. The International Journal of
Advanced Manufacturing Technology, 55, 1149-1158.

LINDEMANN, U., MAURER, M. & BRAUN, T. (2009) Structural Complexity Management: An Approach
for the Field of Product Design, Berlin Heidelberg, Springer.

MAKEM, J. E., ARMSTRONG, C. G. & ROBINSON, T. T. (2012) Automatic decomposition and efficient
semi-structured meshing of complex solids. Proceedings of the 20th International Meshing
Roundtable. Springer.

MARCA, D. A. & MCGOWAN, C. L. (1993) IDEFO-SADT Business Process and Enterprise Modelling,
Eclectic Solutions Corporation.

MC CARTY, T., BREMER, M., DANIELS, L., GUPTA, P., HEISEY, J. & MILLS, K. (2005) The Six Sigma black
belt handbook, McGraw-Hill New York.

MC MANUS, H. L., HAGGERTY, A. & MURMAN, E. (2007) Lean engineering : a framework for doing the
right thing right, London, ROYAUME-UNI, Royal Aeronautical Society.

MC MANUS, H. & MILLARD, R. (2004) Value stream analysis and mapping for product development.
MC NUTT, R. T. (1999) Reducing DoD Product Development Time: The Role of the Schedule

Development Process. DTIC Document.
MEINADIER, J.-P. (1998) Ingénierie et intégration des systèmes, Hermes.
MEYER, M. H. & UTTERBACK, J. M. (1995) Product development cycle time and commercial success.

Engineering Management, IEEE Transactions on, 42, 297-304.
MOCKO, G., MALAK, R., PAREDIS, C. & PEAK, R. (2004) A knowledge repository for behavioral models

in engineering design. 24th ASME Computers and Information in Engineering Conference, Salt
Lake City, UT, September 28-October.

MOCKO, G. M. & FENVES, S. J. (2003) A Survey of Design-Analysis Integration Issues. NIST
Interagency/Internal Report (NISTIR) - 6996.

MODELICA (2010) Modelica® - A Unified Object-Oriented Language for Physical Systems Modeling
Language Specification Modelica Association.

MORGAN, J. M. (2002) High performance product development: a systems approach to a lean product
development process. University of Michigan.

MORGAN, J. M. & LIKER, J. K. (2006) The Toyota product development system, Productivity press New
York.

MÜLLER, D. & HEIMANNSFELD, K. (2000) Requirements Engineering Knowledge Management based
on STEP AP233. ProSTEP Science Days Conference Paper.

MURMAN, E., REBENTISCH, E. & WALTON, M. (2000) Challenges in the better, faster, cheaper era of
aeronautical design, engineering and manufacturing.

MURRAY, J. (2012) Model Based Systems Engineering (MBSE) Media Study International Council on
System Engineering (INCOSE).

NARAYAN, L. (2008) Computer aided design and manufacturing, PHI Learning Pvt. Ltd.
NASA, N. A. A. S. A. (2007) NASA Systems Engineering Handbook. NASA.
NGUYEN VAN, T. (2006) System Engineering for collaborative data management systems: application

to design / simulation loops. Thèse de doctorat, Laboratoire Génie Industriel, Chatenay
Malabry, Ecole Centrale Paris.

NGUYEN VAN, T., FÉRU, F., GUELLEC, P. & YANNOU, B. (2006a) Engineering Data Management for
extended enterprise-Context of the European VIVACE Project. Product Lifecycle Management
PLM-SP2.

NGUYEN VAN, T., MAILLE, B. & YANNOU, B. (2006b) Digital Mock-Up – Capabilities and implementation
in the PLM field. International Conference on Product Lifecycle Management. Bangalore, India,
Inderscience Enterprises Ltd.

NOLAN, D., TIERNEY, C., ROBINSON, T. & ARMSTRONG, C. (2011) Defining Simulation Intent. NAFEMS
European Conference: Simulation Process and Data Management (SDM). Munich, Germany.

NOLAN, D. C., TIERNEY, C. M., ARMSTRONG, C. G., ROBINSON, T. T. & MAKEM, J. E. (2013) Automatic
dimensional reduction and meshing of stiffened thin-wall structures. Engineering with
Computers, 30(4), 689-701.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-311-

OCC (2013) Open CASCADE Technology.
ODASD (2011) Office of the Deputy Assistant Secretary of Defense for Systems Engineering.
OH, Y., HAN, S.-H. & SUH, H. (2001) Mapping product structures between CAD and PDM systems using

UML. Computer-Aided Design, 33, 521-529.
OMG (2010a) OMG Systems Modeling Language (OMG SysML™) Version 1.2. Object Management

Group.
OMG (2010b) OMG Unified Modeling Language TM (OMG UML), Superstructure Version 2.3. Object

Management Group.
PAHL, G., BEITZ, W., SCHULZ, H.-J. & JARECKI, U. (2007) Engineering design: a systematic approach,

Springer.
PARDESSUS, T. (2001) The multi-site extended enterprise concept in the aeronautical industry. Air &

Space Europe, 3, 46-48.
PAREDIS, C., BERNARD, Y., BURKHART, R. M., DE KONING, H.-P., FRIEDENTHAL, S., FRITZSON, P.,

ROUQUETTE, N. F. & SCHAMAI, W. (2010) An overview of the SysML-Modelica transformation
specification. 2010 INCOSE International Symposium.

PAREDIS, C. J., DIAZ-CALDERON, A., SINHA, R. & KHOSLA, P. K. (2001) Composable models for
simulation-based design. Engineering with Computers, 17, 112-128.

PASQUAL, M. & WECK, O. (2012) Multilayer network model for analysis and management of change
propagation. Research in Engineering Design, 23, 305-328.

PDES (2006) STEP Success Stories.
PEAK, R. S., BURKHART, R., FRIEDENTHAL, S., WILSON, M. W., BAJAJ, M. & KIM, I. (2007a) Simulation-

based design using SysML - Part 1: a parametrics primer. INCOSE intl. symposium, San Diego.
PEAK, R. S., BURKHART, R. M., FRIEDENTHAL, S., WILSON, M. W., BAJAJ, M. & KIM, I. (2007b)

Simulation-based design using SysML - Part 2: Celebrating diversity by example. INCOSE intl.
symposium, San Diego.

PEAK, R. S., FULTON, R. E., NISHIGAKI, I. & OKAMOTO, N. (1999) Integrating engineering design and
analysis using a multi-representation approach. Engineering with Computers, 14, 93-114.

PENG, T.-K. & TRAPPEY, A. J. C. (1998) A step toward STEP-compatible engineering data management:
the data models of product structure and engineering changes. Robotics and Computer-
Integrated Manufacturing, 14, 89-109.

POP, A., AKHVLEDIANI, D. & FRITZSON, P. (2007) Towards unified system modeling with the
ModelicaML UML profile. Proceedings of the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLTâ€™07). Citeseer.

PRATT, M. J. (2005) ISO 10303, the STEP standard for product data exchange, and its PLM capabilities.
International Journal of Product Lifecycle Management, 1, 86-94.

PRITCHARD, D. & MACPHERSON, A. (2007) Strategic destruction of the Western commercial aircraft
sector: implications of systems integration and international risk-sharing business models.
Aeronautical Journal, 111, 327-334.

PROSTEP_IVIP (2002) Usage Guide for the STEP PDM Schema V1.2, Release 4.3.
PYTHONOCC (2013) 3D CAD/CAE/PLM development framework for the Python programming

language.
QUADROS, W. R., VYAS, V., BREWER, M., OWEN, S. J. & SHIMADA, K. (2010) A computational

framework for automating generation of sizing function in assembly meshing via disconnected
skeletons. Engineering with Computers, 26, 231-247.

RIEL, A. (2005) From DMU to BMU: Towards Simulation-Guided Automotive Powertrain Development.
Vienna, Austria, Vienna University of Technology.

ROBINSON, T., ARMSTRONG, C. & FAIREY, R. (2011) Automated mixed dimensional modelling from 2D
and 3D CAD models. Finite Elements in Analysis and Design, 47, 151-165.

ROSENMAN, M. A. & GERO, J. S. (1996) Modelling multiple views of design objects in a collaborative
CAD environment. Computer-Aided Design, 28, 193-205.

RUMBAUGH, J. R., BLAHA, M. R., LORENSEN, W., EDDY, F. & PREMERLANI, W. (1990) Object-oriented
modeling and design.

SADOUL, D. (2000) La maquette numérique : Un exemple de développement industriel. Mécanique &
Industries, 1, 373-382.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-312-

SANDBERG, M., KOKKOLARAS, M., AIDANPÄÄ, J.-O., ISAKSSON, O. & LARSSON, T. (2009) A master-
model approach to whole jet engine analysis and design optimization. 8th World Congress on
Structural and Multidisciplinary Optimization June.

SCHAMAI, W., FRITZSON, P., PAREDIS, C. & POP, A. (2009) Towards unified system modeling and
simulation with ModelicaML: modeling of executable behavior using graphical notations.
Proceedings 7th Modelica Conference, Como, Italy.

SCHWANKL, L. (2002) Analyse und Dokumentation in den frühen Phasen der Produktentwicklung.
München, Technische Universität München.

SELLGREN, U. (1999) Simulation-driven design: motives, means, and opportunities. PhD Thesis, KTH,
The Royal Institute of Technology, Stockholm, Sweden.

SELLGREN, U. (2006a) Interface modeling - a modular approach to identify and assess unintended
product behavior. NAFEMS 2nd Nordic Seminar: Prediction and Modelling of Failure Using FEA
Roskilde, Denmark.

SELLGREN, U. (2006b) A model-based approach to situated design reasoning with a PLM perspective.
1st Nordic Conference on Product Lifecycle Management, 25-26 January 2006, Göteborg,
Sweden.

SELLGREN, U. (2009) The journey towards PLM manged and interface driven design. 2nd Nordic
Conference on Product Lifecycle Management - NordPLM´09. Göteborg, Sweden.

SELLGREN, U. & DROGOU, R. (1998) A systems and process approach to behavior modeling in
mechanical engineering. Proc. Integrated design and Manufacturing in Mechanical
Engineering, IDMME´98. Compiègne, France.

SHAH, A. A., SCHAEFER, D. & PAREDIS, C. J. (2009) Enabling multi-view modeling with sysml profiles
and model transformations. International Conference on Product Lifecycle Management.

SHAH, J. J. (1991) Assessment of features technology. Computer-Aided Design, 23, 331-343.
SHAHWAN, A., FOUCAULT, G., LÉON, J.-C. & FINE, L. (2011) Towards Automated Identification of

Functional Designations of Components Based on Geometric Analysis of a DMU. 12èmes
Journées du Groupe de Travail en Modélisation Géométrique (GTMG 2011), 30-31 march 2011,
Grenoble, France.

SHAHWAN, A., LÉON, J.-C., FINE, L. & FOUCAULT, G. (2012) Reasoning about functional properties of
components based on geometrical descriptions. 9th International Symposium on Tools and
Methods of Competitive Engineering (TMCE 2012).

SHAHWAN, A., LÉON, J.-C., FOUCAULT, G., TRLIN, M. & PALOMBI, O. (2013) Qualitative behavioral
reasoning from components' interfaces to components' functions for DMU adaption to FE
analyses. Computer-Aided Design, 45, 383-394.

SHEPHARD, M. S., BEALL, M. W., O'BARA, R. M. & WEBSTER, B. E. (2004) Toward simulation-based
design. Finite Elements in Analysis and Design, 40, 1575-1598.

SINHA, R., PAREDIS, C., LIANG, V.-C. & KHOSLA, P. K. (2001a) Modeling and simulation methods for
design of engineering systems. Journal of Computing and Information Science in
Engineering(Transactions of the ASME), 123, 84-91.

SINHA, R., PAREDIS, C. J. & KHOSLA, P. K. (2000) Integration of mechanical CAD and behavioral
modeling. Behavioral Modeling and Simulation, 2000. Proceedings. 2000 IEEE/ACM
International Workshop on. IEEE.

SINHA, R., PAREDIS, C. J. & KHOSLA, P. K. (2001b) Interaction modeling in systems design. Proceedings
of DETC 2001, Computers in Engineering Conference.

SINHA, R., PAREDIS, C. J. & KHOSLA, P. K. (2002) Behavioral model composition in simulation-based
design. Simulation Symposium, 2002. Proceedings. 35th Annual. IEEE.

SODIUS (2013) Sodius - MDWorkbench.
SOSA, M. E., EPPINGER, S. D. & ROWLES, C. M. (2004) The misalignment of product architecture and

organizational structure in complex product development. Management science, 50, 1674-
1689.

SRINIVASAN, V. (2011) An integration framework for product lifecycle management. Computer-Aided
Design, 43, 464-478.

STARK, J. (2011) Product Lifecycle Management. Product Lifecycle Management: 21st century
paradigm for product realisation. London, Springer.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-313-

STEVENS, R. (1998) Systems engineering: coping with complexity, Pearson Education.
SUDARSAN, R., BAYSAL, M., ROY, U., FOUFOU, S., BOCK, C., FENVES, S., SUBRAHMANIAN, E., LYONS, K.

& SRIRAM, R. (2005a) Information models for product representation: core and assembly
models. International Journal of Product Development, 2, 207-235.

SUDARSAN, R., FENVES, S. J., SRIRAM, R. D. & WANG, F. (2005b) A product information modeling
framework for product lifecycle management. Computer-Aided Design, 37, 1399-1411.

SUDARSAN, R., SUBRAHMANIAN, E., BOURAS, A., FENVES, S. J., FOUFOU, S. & SRIRAM, R. D. (2008)
Information sharing and exchange in the context of product lifecycle management: Role of
standards. Computer-Aided Design, 40, 789-800.

SUDARSAN, R., YOUNG-HYUN, H., SEBTI, F., SHAW, C. F., UTPAL, R., FUJUN, W., RAM D., S. & KEVIN W.,
L. (2006) A model for capturing product assembly information. Journal of Computing and
Information Science in Engineering, 6, 11.

SUH, N. P. (2005a) Complexity in Engineering. CIRP Annals - Manufacturing Technology, 54, 46-63.
SUH, N. P. (2005b) Complexity: theory and applications, Oxford University Press, USA.
TABASTE, O. (2005) EDM FRAMEWORK DEFINITION. VIVACE Consortium.
TASSEY, G., BRUNNERMEIER, S. B. & MARTIN, S. A. (1999) Interoperability cost analysis of the US

automotive supply chain. Research Triangle Institute Final Report. RTI Project, 7007-03.
TICHKIEWITCH, S. (1996) Specifications on integrated design methodology using a multi-view product

model. The 1996 3 rd Biennial Joint Conference on Engineering Systems Design and Analysis,
ESDA. Part 8(of 9).

TICHKIEWITCH, S. & VÉRON, M. (1997) Methodology and product model for integrated design using a
multiview system. CIRP Annals-Manufacturing Technology, 46, 81-84.

TOCHE, B., PELLERIN, R., FORTIN, C. & HUET, G. (2012) Set-Based Prototyping with Digital Mock-Up
Technologies. Product Lifecycle Management. Towards Knowledge-Rich Enterprises. Springer
Berlin Heidelberg.

TROUSSIER, N. (1999) Contribution à l'intégration du calcul mécanique dans la conception de produits
techniques : proposition méthodologique pour l'utilisation et la réutilisation. Saint-Martin-
d'Hères, FRANCE, Université de Grenoble 1.

ULRICH, K. T., EPPINGER, S. D. & GOYAL, A. (2011) Product design and development, Irwin/McGraw-
Hill.

VOTINTSEVA, A., WITSCHEL, P., REGNAT, N. & STELZIG, P. (2012) Comparative Study of Model-Based
and Multi-Domain System Engineering Approaches for Industrial Settings. Modelling
Foundations and Applications. Springer Berlin Heidelberg.

VOIRIN, J.-L. (2010) METHOD & TOOLS TO SECURE AND SUPPORT COLLABORATIVE ARCHITECTING OF
CONSTRAINED SYSTEMS 27th Congress of the International Council of the Aeronautical
Sciences. Nice, France, ICAS.

WANG, F., FENVES, S. J., SUDARSAN, R. & SRIRAM, R. D. (2003) Towards modeling the evolution of
product families. Proceedings of 2003 ASME DETC, September 2–6, 2003, Chicago, USA.

WEINBERG, G. M. (1975) An introduction to general systems thinking, Wiley New York.
WENZEL, S. & BAUCH, T. (1996) Concurrent Engineering and More-Essentials for Successful Product

Development from International Case Studies. Masters Thesis. Fachgebiet Raumfahrttechnik.
Techn. Univ. Miinchen.

WILLAERT, S. S. A., DE GRAAF, R. & MINDERHOUD, S. (1998) Collaborative engineering: A case study of
Concurrent Engineering in a wider context. Journal of Engineering and Technology
Management, 15, 87-109.

WILLIAM XU, X. & LIU, T. (2003) A web-enabled PDM system in a collaborative design environment.
Robotics and Computer-Integrated Manufacturing, 19, 315-328.

WOMACK, J. P. & JONES, D. T. (2003) Lean thinking: banish waste and create wealth in your
corporation, revised and updated, Free Press.

WOMACK, J. P., JONES, D. T. & ROOS, D. (1990) The Machine that Changed the World: Based on the
MIT 5-million-dollar 5-year Study on the Future of the Automobile. New York: Rawson
Associates.

WOYAK, S. (2010) Simulation Driven Design: Creating an Environment for Managing Simulation Tools,
Processes, and Data. Phoenix Integration.

References T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-314-

YAN, X.-T. (2003) A multiple perspective product modeling and simulation approach to engineering
design support. Concurrent Engineering, 11, 221-234.

YASSINE, A., WHITNEY, D., DALEIDEN, S. & LAVINE, J. (2003) Connectivity maps: Modeling and analysing
relationships in product development processes. Journal of Engineering Design, 14, 377-394.

YOSHIOKA, M. & TOMIYAMA, T. (1997) Pluggable metamodel mechanism: A framework of an
integrated design object modelling environment. Computer Aided Conceptual Design97,
Proceedings of the 1997 Lancaster International Workshop on Engineering Design {CACD}'97.

ZHENG, X., SUN, G. & WANG, S. (2006) An Approach of Virtual Prototyping Modeling in Collaborative
Product Design. Computer Supported Cooperative Work in Design II. Springer Berlin
Heidelberg.

ZHOU, W. X., YIN, X. F., HSIUNG, C. H., FULTON, R. E., YEH, C.-P. & WYATT, K. (1997) CAD-Based Analysis
tools for Electronic Packaging Design (A new modeling methodology for Virtual development
Environment. InterPACK'97, ASME. Kohala Coast, Hawai.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-315-

APPENDIX I

Figure 241: Generic Product Development Process according to [Pahl et al., 2007]

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-316-

APPENDIX II

SE processes are defined by the norms IEEE 1220 and ANSI/EIA-632 and structure in four sequen-

tial sub-processes. As detailed in Table 16 and illustrated in Figure 242, the fundamental systems en-

gineering activities are Requirements Analysis, Functional Analysis and Physical Synthesis—all bal-

anced by techniques and tools collectively called System Analysis and Control. Systems engineering

controls are used to track decisions and requirements, maintain technical baselines, manage inter-

faces, manage risks, track cost and schedule, track technical performance, verify requirements are met,

and review/audit the progress. The System Analysis process includes all the trade study and assess-

ment activities. It requires a global and multidisciplinary understanding of the system to identify, ana-

lyze and resolve conflicts in terms of requirements, choice of functional decomposition, allocation of

performance requirements during the analysis functional, and in terms of selection of physical solu-

tions. Each of these processes is followed by a process of verification / validation where one identifies

and analyzes the differences and conflicts by comparing the results of phase with the entry require-

ments.

Phase Activities

Require-

ments Anal-

ysis

Problem analysis and initial expression of needs and constraints,

"External" functional analysis to define the functional and non-functional specifica-

tion of the system that leads to the requirements book.

Functional

Analysis

"Internal" functional analysis of potential solutions, from structural and behavioural

point of view,

Characterization of the solution (functional and non-functional specifications, con-

straints and relations on the parameters which characterize the system),

Optimisation and evaluation of competing solutions.

Logical

Synthesis

Defining the “logical” architecture of the system (kinematic schema, functional

breakdown, logic diagrams, electrical, electronic schemas...)

Setting a minimal behavioural model,

Allowing a pre-sizing of the system to verify and validate the retained solution

Physical

Synthesis

Defining the solution as an organic architecture supporting the functional architec-

ture, and projecting the functions on existing components or on components to be

developed,

Specifying the interfaces and constituents needs remaining to design or/and to inte-

grate,

Leading to the global digital product model (DMU), multi-technologic, realistic and

integrated,

Checking the design and the behaviour of the components using such simulation

software.

Table 16: System Engineering process phases and related activities (according to [IEEE, 2005])

SE approach is relevant when dealing with multiple breakdown system levels. It is hence insepa-

rable from the notion of System Integration. These two complementary approaches and related pro-

cesses are generally represented on the famous V cycle model. This V model establishes a logical ar-

rangement of the development project activities. The V-cycle (Figure 242) is based on two dimensions:

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-317-

 The decomposition level (vertically) or level of detail defined by the systematic finer and finer

breakdowns of the system: the customer’s needs level, the system level, the sub-systems level

or modules level until the individual part level.

 The time (horizontally) between the tasks of the development project, from left to right.

 These two dimensions hinge on a “V” with two branches (see Figure 242):

 A "design" descending branch where design activities are performed from a preliminary sys-

tem definition (architecture, design space, interfaces, etc.) to a detailed components defini-

tion (real and accurate geometry and behaviour, physical interfaces, etc.) through the design

of intermediate sub-systems or modules with an increasing granularity.

 An “integration” ascending branch composed of assembling, testing and validation activities

including the testing/control of the designed or purchased components (parts). Then compo-

nents’ assemblies (minor modules), modules’ assemblies (major modules or sub-system) and

finally the whole system designs are successively tested and validated according to technical

specifications (declined from customer’s requirements).

Legend:

Feedback from integration to design if the behavioural and/or dimensional analyses
are not validated after assembly.

System or sub-systems architectures, technical specifications, interfaces specifica-
tions and change impact transmission.

Refinement feedback from design unit to higher design unit: if the preliminary design

(geometry, design space, tolerances, behaviour, interfaces, etc.) of the system is not

well defined regarding the detailed design of the sub-system.

Figure 242: System Engineering and Integration V cycle and the design iterations

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-318-

APPENDIX III

In [Bauch, 2004], the authors introduce a model that draws a good parallel between the design

processes activities and the information value creation process. Indeed, through these different tran-

sitions, information becomes more valuable, since it is more and more usable through this process

[Bauch, 2004].

Figure 243: Conceptual framework for Value creation in PDP (adapted from [Chase, 2001])

Figure 244: Data, information, knowledge and their value added (copied from [Bauch, 2004] but according to [Schwankl,

2002] and [Irlinger, 1999])

The last stage (knowledge and know-how) is supposed to enable designers to take good and ra-

tional decisions about the design choices. Information is an immaterial product. It can be precious for

Process Value

Outputs

Outputs

Outputs

Product value

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-319-

the user, if it is taken into account in carrying out his tasks. Moreover, it is necessary to emphasize that

the information value depends upon the context and the moment the information is used.

Waste definition and discussion in PDP

Bauch [Bauch, 2004], and afterwards Kato [Kato, 2005], map all the ideas from the previous stud-

ies in order to identify all potential type of wastes. Bauch elaborates a cause and effect diagram in

order to distinguish waste types from waste drivers. We consider the categorization done by Bauch as

a necessary basis to track down the waste in PDP. The author defines 6 categories of waste: Resources,

Time, Information / Knowledge, Opportunity/ Potential, Money/Investments and Motivation. Since

these 6 categories are strongly linked to the project targets, he adds to this list “project flexibility” and

“quality to market”. He also defines 10 categories of waste drivers that encompass 37 sub-categories

as shown in Figure 245 below.

Figure 245: Overview of waste drivers in PDP [Bauch, 2004]

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-320-

APPENDIX IV

Figure 246: General process chain of product development with the corresponding used CAX technologies [Werner Dank-

wort et al., 2004]

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-321-

APPENDIX V

Figure 247: Units of functionalities covered by the STEP PDM schema [Srinivasan, 2011]

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-322-

APPENDIX VI

See: http://www.plcs.org/plcslib/plcslib/data/PLCS/concept_model/model_base.html

Figure 248: PLCS Conceptual Data Model [ISO, 2004b]

http://www.plcs.org/plcslib/plcslib/data/PLCS/concept_model/model_base.html

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-323-

APPENDIX VII

Kinematic and geometric constraints for assembly models according to [ISO, 2003b]

Figure 249: Express-G diagram of the Assembly_constraint_schema and Assembly_feature_relationship_schema [ISO,

2003b]

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-324-

APPENDIX VIII

Figure 250: UML class diagram of the MUVOA model extracted from [Demoly et al., 2010b]

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-325-

APPENDIX IX
The following table describes the MPC types which are supported for Marc (MSC Software).

MPC Type
Analysis

Type
Description

Explicit

Structural

Thermal

Coupled

Creates a SERVO LINK explicit MPC between a dependent degree-of-freedom and one or more independent

degrees-of-freedom. The dependent term consists of a node ID and a degree-of-freedom, while an independ-

ent term consists of a coefficient, a node ID, and a degree-of-freedom. An unlimited number of independent

terms can be specified, while only one dependent term can be specified.

Rigid (Fixed)
Structural

Coupled

Creates TYING Type 100 MPCs which constrains all degrees-of-freedom at one or more dependent nodes to

the corresponding degrees-of-freedom at one independent node. An unlimited number of dependent terms

can be specified, while only one independent term can be specified. Each term consists of a single node.

Linear Surf-

Surf

Structural

Coupled

Creates a TYING Type 31 MPC which constrains a dependent node on one linear 2D element to two independ-

ent nodes on another linear 2D element to model a continuum. One dependent term is specified, while two

independent terms are specified. Each term consists of a single node.

Linear Surf-

Surf
Thermal

Creates a TYING Type 87 MPC which constrains one dependent node to one independent node, which ties

temperatures between shell elements. One dependent and one independent term are specified. A second

independent term must be supplied but is ignored (it can be the same node). Each term consists of a single

node.

Linear Surf-

Vol
Thermal

Creates a TYING Type 85 MPC which constrains a dependent node on one linear 2D element to two independ-

ent nodes on another linear 2D element to tie temperatures. One dependent term is specified, while two

independent terms are specified. Each term consists of a single node.

Linear Vol-

Vol

Structural

Thermal

Coupled

Creates a TYING Type 33 MPC which constrains a dependent node on one linear 3D solid element to four

independent nodes on another linear 3D solid element to model a continuum. One dependent term is speci-

fied, while four (three for degenerate face) independent terms must be specified. Each term consists of a

single node.

Quad Surf-

Surf (quad-

ratic)

Structural

Coupled

Creates a TYING Type 32 MPC which constrains a dependent node on one quadratic 2D element to three

independent nodes on another quadratic 2D element to model a continuum. One dependent term is speci-

fied, while three independent terms are specified. Each term consists of a single node.

Quad Surf-

Surf
Thermal

Identical to Linear Surf-Surf for Thermal analysis except a third independent term must be supplied but is also

ignored.

Quad. Surf-

Vol
Thermal

Creates a TYING Type 86 MPC which constrains a dependent node on one quadratic 2D element to three

independent nodes on another quadratic 2D element to tie temperatures. One dependent term is specified,

while three independent terms are specified. Each term consists of a single node.

Quad Vol-

Vol

Structural

Thermal

Coupled

Creates a TYING Type 34 MPC which constrains a dependent node on one quadratic 3D solid to eight inde-

pendent nodes on another quadratic 3D solid element to model a continuum. One dependent term is speci-

fied, while eight (six for degenerate face) independent terms are specified. Each term consists of a single

node.

Tie DOFs

Structural

Thermal

Coupled

Creates a TYING Types 1-6 or 102-506 MPC which constrains two nodes at a selected degree-of-freedom or

at a range of degrees-of-freedom. One dependent term is specified which consists of a single node. One in-

dependent term is specified which consists of a single node and either one or two selected degrees-of-free-

dom. The Marc type number will be determined by the selected degrees-of-freedom. If one degree-of-free-

dom is specified, a Type 1-6 MPC is created. If two degrees-of-freedom are selected, a Type 102-506 MPC is

created.

Axi Shell-

Solid

Structural

Coupled

Creates a TYING Type 26 MPC which connects an axisymmetric shell element to a solid element. One depend-

ent term is specified which consists of a single node. One independent term is specified which also consists

of a single node.

Tri Plate-

Plate

Structural

Coupled

Creates a TYING Type 49 MPC which connects triangular flat plate elements. One dependent term is specified

which consists of a single node. One independent term is specified which also consists of a single node.

Quad

Plate-Plate

Structural

Coupled

Creates a TYING Type 50 MPC which connects rectangular flat plate elements. One dependent term is speci-

fied which consists of a single node. One independent term is specified which also consists of a single node.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-326-

Pinned Joint
Structural

Coupled

Creates a TYING Type 52 MPC which creates a pinned joint between beam elements. One dependent term is

specified which consists of a single node. One independent term is specified which also consists of a single

node.

Full Mo-

ment Joint

Structural

Coupled

Creates a TYING Type 53 MPC which is a full moment joint between beam elements. One dependent term is

specified which consists of a single node. One independent term is specified which also consists of a single

node.

Rigid Link
Structural

Coupled

Creates a TYING Type 80 MPC which creates a pinned rigid link between two nodes. One dependent term is

specified, while two independent terms are specified. The dependent term and the first independent term

are the nodes at the ends of the link, while the second independent term is an unattached node that provides

the rotational information about the link.

Cyclic Sym-

metry

Structural

Coupled

Creates a TYING Type 100 MPC which ties all degrees-of-freedom between matched nodes on opposite sides

of the cyclic sector. Unlimited nodes may be entered in the dependent and independent regions; however,

the same number of unique nodes must be specified in both regions.

Sliding Sur-

face

Structural

Coupled

Creates a SERVO LINK explicit MPC which ties the normal to the surface degrees-of-freedom between

matched nodes on opposite sides of the interface. Unlimited nodes may be entered in the dependent and

independent regions; however, the same number of unique nodes must be specified in both regions.

RBE2 Structural

Creates an MD Nastran style RBE2 element, which defines a rigid body between an arbitrary number of nodes.

Although the user can only specify one dependent term, an arbitrary number of nodes can be associated to

this term. The user is also prompted to associate a list of degrees of freedom to this term. A single independ-

ent term can be specified, which consists of a single node. There is no constant term for this MPC type. The

RBE parameter is also written.

RBE3 Structural

Creates an MD Nastran style RBE3 element, which defines the motion of a reference node as the weighted

average of the motions of a set of nodes. A finite number of dependent terms can be specified, each term

consisting of a single node and a list of degrees of freedom. The first dependent (tied) term is used to define

the reference node. Any (optional) dependent terms define additional nodes/degrees of freedom (dofs) that

are added to the m-set. These additional dependent (tied) nodes/dofs MUST be a subset of the independent

(retained) nodes/dofs as defined next. An arbitrary number of independent (retained) terms must also be

specified. Each independent term consists of a constant coefficient (weighting factor), a node, and a list of

degrees of freedom. All nodes with the same weighting factor and dof list should be grouped together. There

is no constant term for this MPC type and at the present time, the Thermal Expansion coefficient is ignored.

The RBE parameter is also written.

Overclosure

Structural

Thermal

Coupled

Creates a TYING Type 69 MPC which is used for creating gaps or overlaps between two parts of a model either

by prescribing the total force on the nodes on either side of the gap/overlap or by prescribing the size of the

gap/overlap. This is typically used for pretensioning of bolts or rivets. Dependent terms contain one node

each and independent terms contain two nodes each. Each dependent (tied) term consists of a node on one

side of the gap/overlap. The first node of the independent (retained) term consist of the corresponding node

on the other side of the gap/overlap. The second node of the independent term is a control node to which

LBCs may be applied. Each independent term must have the same control node otherwise an error is issued.

There must be the same number of independent vs. dependent terms also, otherwise an error is issued. The

control node should not be associated to any elements. In non-mechanical passes, this MPC reduces to a Type

100 between the dependent and first independent term internally to MSC.Marc.

Table 17: Finite Elements Multi-Point Constraints in the MSC Patran and Marc pre-processing tools11

11 http://www.mscsoftware.com/training_videos/patran/Reverb_help/index.html#page/Marc/marc02_model.3.4.html#ww74264

http://www.mscsoftware.com/training_videos/patran/Reverb_help/index.html#page/Marc/marc02_model.3.4.html

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-327-

APPENDIX X

<?xml version = "1.0" encoding = "UTF-8"?>
<XMI xmi.version = "1.1" xmlns:UML="href://org.omg/UML/1.3" timestamp = "Thu Apr 04 18:15:53 2013">
<XMI.header>
 <XMI.documentation>
 <XMI.owner></XMI.owner>
 <XMI.contact></XMI.contact>
 <XMI.exporter>StarUML.XMI-Addin</XMI.exporter>
 <XMI.exporterVersion>1.0</XMI.exporterVersion>
 <XMI.notice></XMI.notice>
 </XMI.documentation>
 <XMI.metamodel xmi.name = "UML" xmi.version = "1.3"/>
 </XMI.header>
<XMI.content>
<UML:Model xmi.id="UMLProject.1">
 <UML:Namespace.ownedElement>
 <UML:Model xmi.id="UMLModel.2" name="data_model" visibility="public" isSpecification="false" namespace="UMLProject.1" is-
Root="true" isLeaf="false" isAbstract="false">
 <UML:Namespace.ownedElement>
 <UML:Package xmi.id="UMLPackage.3" name="system_definition" visibility="public" isSpecification="false" namespace="UM-
LModel.2" isRoot="false" isLeaf="false" isAbstract="false">
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id="UMLClass.4" name="Design_Artifact" visibility="public" isSpecification="false" namespace="UMLPackage.3"
supplierDependency="UMLRealization.60 UMLRealization.254 UMLRealization.339 UMLRealization.466" isRoot="false" isLeaf="false"
isAbstract="true" participant="UMLAssociationEnd.653 UMLAssociationEnd.292" isActive="false">
 <UML:Classifier.feature>
 <UML:Attribute xmi.id="UMLAttribute.5" name="name" visibility="public" isSpecification="false" ownerScope="instance"
changeability="changeable" targetScope="instance" type="X.681" owner="UMLClass.4"/>
 <UML:Attribute xmi.id="UMLAttribute.6" name="type" visibility="public" isSpecification="false" ownerScope="instance"
changeability="changeable" targetScope="instance" type="X.681" owner="UMLClass.4"/>
 <UML:Attribute xmi.id="UMLAttribute.7" name="instance_required" visibility="public" isSpecification="false" ownerScope="in-
stance" changeability="changeable" targetScope="instance" type="X.684" owner="UMLClass.4">
 <UML:Attribute.initialValue>
 <UML:Expression xmi.id="X.685" body="true"/>
 </UML:Attribute.initialValue>
 </UML:Attribute>
 <UML:Operation xmi.id="UMLOperation.8" name="__init__" visibility="public" isSpecification="false" ownerScope="instance"
isQuery="false" concurrency="sequential" isRoot="false" isLeaf="false" isAbstract="false" specification="" owner="UMLClass.4">
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id="UMLParameter.9" name="name" visibility="public" isSpecification="false" kind="in" behavioralFea-
ture="UMLOperation.8" type=""/>
 <UML:Parameter xmi.id="UMLParameter.10" name="type" visibility="public" isSpecification="false" kind="in" behavioralFea-
ture="UMLOperation.8" type=""/>
 <UML:Parameter xmi.id="UMLParameter.11" name="instance_required" visibility="public" isSpecification="false" kind="in"
behavioralFeature="UMLOperation.8" type=""/>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id="UMLOperation.12" name="__repr__" visibility="public" isSpecification="false" ownerScope="in-
stance" isQuery="false" concurrency="sequential" isRoot="false" isLeaf="false" isAbstract="false" specification="" owner="UM-
LClass.4"/>
 <UML:Operation xmi.id="UMLOperation.13" name="defs" visibility="public" isSpecification="false" ownerScope="instance" is-
Query="false" concurrency="sequential" isRoot="false" isLeaf="false" isAbstract="false" specification="" owner="UMLClass.4"/>
 <UML:Operation xmi.id="UMLOperation.14" name="new_def" visibility="public" isSpecification="false" ownerScope="in-
stance" isQuery="false" concurrency="sequential" isRoot="false" isLeaf="false" isAbstract="false" specification="" owner="UM-
LClass.4"/>
 </UML:Classifier.feature>
 </UML:Class>
...

Table 18: Extract of the XMI file of the logical DASIF prototype data model

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-328-

Figure 251: Simplified GENEPY neutral model

-*- coding: utf-8 -*-
"""Empty documentation."""

Import Elixir definitions
from elixir import (
 Boolean,
 Date,
 Entity,
 Field,
 Float,
 Integer,
 ManyToMany,
 ManyToOne,
 OneToMany,
 OneToOne,
 String,
 using_options_defaults)

Setup Elixir
from datamodel import db
__metadata__ = db.metadata
__session__ = db.session
using_options_defaults(inheritance='multi')

import math
import numpy as np

import win32com.client
import os.path
import psutil
import datamodel

poo

classified

owned

abstract

Project

+extend()

Attribute

Operation

CodeLine Base

Class

Module

Container

Parameter

Named

Association

Connection

-module1

+clients

+suppliers

*

*

+owner

+members

0..1

*

-parents

0..*+type

+connections

1

*

+association

+master

1

1

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-329-

class DesignArtifact(Entity):
 """
 Description
 ===========
 This is the base abstract class for all the diffrent kind of
 elements/objects particpating in the definition of a system/product. It is
 a collector of data common to all versions of a system constituent.

 Therefore the instances of this class are the constituents / components of
 a system/product; wether they are items (parts or assemblies potentially
 intended to be produced), connectors (components that play the role of
 interfaces), structural assembly (enabling to structure the product) or
 even the fluid domains (that need to be considered in the definition of the
 product; especially for the definition of a turbo-machines).

 Fields

 name
 Empty documentation.

 type
 Empty documentation.

 instance_required
 Empty documentation.

 Relationships

 defs
 List of definitions for the artefact.

 change
 The change that describes the modification of a design artefact
 definition.

 """
 name = Field(String(64))
 instance_required = Field(Boolean)
 defs = OneToMany('DesignDefinition', inverse='artifact')
 change = ManyToOne('DesignChange')

 def __init__(self, name):
 """
 Description
 ===========
 Construct an instance of Design Artefact.

 Parameters

 name
 Empty documentation.

 type
 Empty documentation.

 instance_required
 Empty documentation.

 """
 # TODO

 self.name=name

 def __repr__(self):
 """
 Description
 ===========
 Return instance's representation: what the method print(artefact) returns.
 """

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-330-

 # TODO
 return "<Artefact Name= '{}'>".format(self.name)

 def get_defs(self):
 """
 Description
 ===========
 Return artefact's instance design definitions (definition versions).
 """
 # TODO
 raise NotImplementedError

 def new_def(self):
 """
 Description
 ===========
 Return a new instance of the artefact design_definition (new version).
 """
 # TODO
 raise NotImplementedError

class Item(DesignArtifact):
 """
 Description
 ===========
 The items are the tangible constituents of a system. They represents all
 artefacts that make system exist in a real world. An item intends to be the
 result of a manufacturing process.

 An item is a product that has its own characteristics. Example: A pencil is
 a product and there must be diffrent items defined for the same product
 (e.g. the red and the blue pencil).

 It is a specialization of the entity "CoreElement" since all constituents
 involved in a product structure are not necessarily items intended to be
 produced; that is why we need another specialization of the CoreElement
 class which is the structural assembly class.

 Fields

 ref
 Empty documentation.

 index
 Empty documentation.

 Relationships

 change_a
 Empty documentation.

 change_b
 Empty documentation.

 """
 ref = Field(String(64))
 index = Field(String(64))
 change_a = ManyToOne('AlternateItemRelationship')
 change_b = ManyToOne('AlternateItemRelationship')

 def __init__(self, name, ref, index):
 """
 Description
 ===========
 Empty documentation.

 Parameters

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-331-

 ref
 Empty documentation.

 index
 Empty documentation.

 """
 # TODO
 DesignArtifact.__init__(self, name)
 self.ref=ref
 self.index=index

class ItemPart(Item):
 """
 Description
 ===========
 A Part is a single item (piece) generally considered as undismantled.
 However we can distinguish two kind of parts: manufacturing intermediary
 parts which are single items only, and parts ready to be assembled that can
 be wether a single item or pre-assembled items.
 A Part is the lowest level component.

 The list of Item_Parts involved in a product configuration and their
 respective properties, constitute the Bill of Materials of this
 configuration.

 """
 multidmd=Field(Boolean)

 def __init__(self, name, ref, index):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 ref
 Empty documentation.

 index
 Empty documentation.

 """
 # TODO
 Item.__init__(self, name, ref, index)

class ItemAssembly(Item):
 """
 Description
 ===========
 An Item_Assemblyis a gathering of several item_parts or sub-assemblies. An
 Assembly is a composition of its subassemblies and parts.
 """
 has_representation=Field(Boolean)

 def __init__(self, name, ref, index):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 ref
 Empty documentation.

 index
 Empty documentation.

 """

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-332-

 # TODO
 Item.__init__(self, name, ref, index)

class StructuralAssembly(DesignArtifact):
 """
 Description
 ===========
 The structural assembly class is necessary to represent and store the
 breakdown elements of a system that defines the hierarchy and the various
 groups of a product structure.
 """
 def __init__(self, name):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 ref
 Empty documentation.

 index
 Empty documentation.

 # TODO
 """
 super(DesignArtifact, self).__init__(name)

class Group(StructuralAssembly):
 """
 Description
 ===========
 Group is a sub-type of Structural -Assembly that permits to gather
 components together. They are mainly used for groups of multi-instantiated
 parts/assemblies.
 """

 def __init__(self, name):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 ref
 Empty documentation.

 index
 Empty documentation.

 """
 # TODO

 super(StructuralAssembly, self).__init__(name)

class Root(StructuralAssembly):
 """
 Description
 ===========
 Empty documentation.

 Relationships

 is_root_for
 The product class for which the component is the root.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-333-

 """
 is_root_for = OneToMany('Configuration')

 def __init__(self, name, conf):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 root_for
 Empty documentation.

 """
 # TODO
 super(StructuralAssembly, self).__init__(name)
 self.is_root_for.append(conf)

class Interface(DesignArtifact):
 """
 Description
 ===========
 An Interface defines the physical relationships between product components.

 Physical or theoretical boundaries where two or more system components meet
 and interact and where domain-specific applied rules and conventions define
 their interaction and related design intent.
 These rules and conventions concern domain-specific physical features
 (mechanical, electrical, thermal, etc.) semantic or functional features,
 and potential exchanges of information.

 Relationships

 related_comps
 List of components connected by the link.

 mating_features
 List of mating features involved in the interface.

 linkage
 Empty documentation.

 """
 related_comps = ManyToMany('NAUO', inverse='links')
 mating_features = OneToMany('InterfaceTopology')
 linkage = ManyToOne('Interaction')

 def __init__(self, name, linkage):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 nauos
 Empty documentation.

 linkage
 Empty documentation.

 """
 # TODO
 DesignArtifact.__init__(self, name)
 self.linkage=linkage

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-334-

 def set_mating_features(self):
 """
 Description
 ===========
 Method to associate a set of mating_features to the interface definition.
 """
 # TODO
 raise NotImplementedError

 def get_topology(self):
 """
 Description
 ===========
 Returns the set of mating features that specify the design intent of the
 interface.
 """
 # TODO
 raise NotImplementedError

class NAUO(Entity):
 """
 Description
 ===========
 Next Assembly Usage Occurence: it represents a single individual occurrence
 of an artefact design definition as used in an immediate next higher parent
 assembly. The name attribute contains a unique instance identifier for the
 individual definition usage occurrence.

 NAUOs permits to:
 - instantiate design artifacts within a product structure
 - localize components in a product structure indicating their respective
 parent components.
 - indicate the definition used by components/instances
 - assign a function (via the attributes sns/sin)
 - configure a product structure applying effectivities on it.

 Fields

 name
 Empty documentation.

 sns
 Empty documentation.

 sin
 Empty documentation.

 description
 Empty documentation.

 configurable
 Empty documentation.

 domain_related
 Empty documentation.

 Relationships

 definition
 Definition used by the instance.

 parent
 Parent assembly definition of the child instance.

 links
 List of links that belongs to the instance/component

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-335-

 position_to_parent
 The transformation matrix of the instance.

 props
 List of properties describing the instance.

 linkage
 The interaction ensured by the connector.

 slaves
 List of slaves NAUO dependant of the definition of the master NAUO.

 master
 Empty documentation.

 ports
 List of ports belonging to a component.

 port
 The ports that is delegated on the diffrent component.

 int_topo
 Empty documentation.

 effs
 List of effectivities on which a nauo is relevant to be used.

 change_p
 Empty documentation.

 change_n
 Empty documentation.

 """
 name = Field(String(64))
 sns = Field(String(32))
 sin = Field(String(32))
 description = Field(String(64))
 configurable = Field(Boolean)
 domain_related = Field(Boolean)
 fullname=Field(String(128))

 definition = ManyToOne('DesignDefinition')
 parent = ManyToOne('DesignDefinition')
 links = ManyToMany('Interface')
 position_to_parent = OneToOne('InstancePlacement', inverse='instance')
 props = OneToMany('InstanceProperty', inverse='instance')
 linkage = ManyToOne('Interaction')
 slaves = OneToMany('NAUO', inverse='master')
 master = ManyToOne('NAUO')
 ports = OneToMany('Port')
 int_topo = ManyToOne('InterfaceTopology')
 effs = ManyToMany('Effectivity')
 change_p = ManyToOne('ReplacedUsageRelationship')
 change_n = ManyToOne('ReplacedUsageRelationship')

 def __init__(self, name, sns, definition):
 """
 Description
 ===========
 Construct a new instance of NAUO.

 Parameters

 sns
 Empty documentation.

 definition
 Empty documentation.

 configurable
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-336-

 effs
 Empty documentation.

 """
 # TODO

 self.name=name
 self.sns=sns
 self.definition=definition

 def __repr__(self):
 """
 Description
 ===========
 Return instance's representation: what the method print(nauo) returns.
 """
 # TODO
 return "<NAUO '{}'>".format(self.name)

 def get_position(self):
 Position=[]
 #x axis components
 Position.append(self.position_to_parent.rotxx)
 Position.append(self.position_to_parent.rotxy)
 Position.append(self.position_to_parent.rotxz)
 #y axis components
 Position.append(self.position_to_parent.rotyx)
 Position.append(self.position_to_parent.rotyy)
 Position.append(self.position_to_parent.rotyz)
 #z axis components
 Position.append(self.position_to_parent.rotzx)
 Position.append(self.position_to_parent.rotzy)
 Position.append(self.position_to_parent.rotzz)
 #origin point coordinates
 Position.append(self.position_to_parent.trans_x)
 Position.append(self.position_to_parent.trans_y)
 Position.append(self.position_to_parent.trans_z)

 return Position

 def load_in_catia(self):
 if "CNEXT.exe" in [psutil.Process(i).name for i in psutil.get_pid_list()]:
 dispatch = win32com.client.dynamic._GetGoodDispatch("CATIA.Application")
 typeinfo = dispatch.GetTypeInfo()
 attr = typeinfo.GetTypeAttr()
 olerepr = win32com.client.build.DispatchItem(typeinfo, attr, None, 0)
 CATIA = win32com.client.dynamic.CDispatch(dispatch, olerepr)
 dispatch = typeinfo = attr = olerepr = None
 #Set the CATIA popup file alerts to False
 #It prevents to stop the macro at each alert during its execution
 CATIA.DisplayFileAlerts = False
 CATIA.RefreshDisplay = True

 prddoc=CATIA.Documents.Add("Product")
 prddoc.Activate
 prdroot=CATIA.ActiveDocument.Product
 prdroot.PartNumber = self.definition.artifact.ref
 prdroot.Revision = self.definition.version
 prdroot.Definition = "J"
 prdroot.Nomenclature=self.sns
 prdroot.DescriptionRef = self.description

 children=self.definition.children
 load_children(prdroot, children)

 specsAndGeomWindow1 = CATIA.ActiveWindow
 viewer3D1 = specsAndGeomWindow1.ActiveViewer
 viewer3D1.Reframe

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-337-

 def get_mass(self):

 mass = [elt for elt in self.props if isinstance(elt, InstanceMass)][0]
 if mass != None:
 return self.props[2]
 else:
 mass_=0
 for child in self.definition.children:
 if isinstance(child.definition.artifact, ItemPart):
 child_model=[elt for elt in child.definition.models if isinstance(elt, CADModel)][0]
 print child_model.get_mass()
 mass_ += child_model.get_mass()

 mass_ += child.get_mass()
 return mass_

 def print_mass(self):
 mass = [elt for elt in self.props if isinstance(elt, InstanceMass)][0]
 if mass != None:
 return "<NAUO '{}' Mass = {} {}>".format(self.name, mass.mass_value, mass.unit)
 else:
 mass_=0
 for child in self.definition.children:
 if isinstance(child.definition.artifact, ItemPart):
 child_model=[elt for elt in child.definition.models if isinstance(elt, CADModel)][0]
 print child_model.get_mass()
 mass_ += child_model.get_mass()

 mass_ += child.get_mass()
 return mass_

 def get_volume(self):
 vol=0.0
 for child in self.definition.children:
 if isinstance(child.definition.artifact, ItemPart):
 child_model=[elt for elt in child.definition.models if isinstance(elt, CADModel)][0]
 vol += child_model.get_volume()

 vol += child.get_volume()

 return vol

 def print_volume(self):
 vol=0.0
 for child in self.definition.children:
 if isinstance(child.definition.artifact, ItemPart):
 child_model=[elt for elt in child.definition.models if isinstance(elt, CADModel)][0]
 vol += child_model.get_volume()

 vol += child.get_volume()

 return "<NAUO '{}' Volume = {} m3>".format(self.name, vol)

 def get_inertia(self):
 return self.props[1]

 def get_CG(self):
 return self.props[0]

 def set_id(self):
 """
 Description
 ===========

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-338-

 Empty documentation.
 """
 # TODO
 raise NotImplementedError

 def get_def(self):
 """
 Description
 ===========
 Return instance's design definition.
 """
 # TODO
 raise NotImplementedError

 def get_parent(self):
 """
 Description
 ===========
 Returns the parent assembly design definition.
 """
 # TODO
 raise NotImplementedError

 def add_effectivity(self, conf):
 """
 Description
 ===========
 Add an existing effectivity to the instance effectivity list.
 """
 # TODO
 for eff in self.effs:
 if isinstance(eff, datamodel.ConfManagement.conf.EffectivityList):
 eff.add_conf(conf)
 else:
 print "Only Effectivity_List method is implemented"
 raise NotImplementedError

 def new_effectivity(self):
 """
 Description
 ===========
 Create a new effectivity and add it to the instance's effectivities.
 """
 # TODO
 raise NotImplementedError

 def rem_effectivity(self):
 """
 Description
 ===========
 Remove an effectivity from the instance's effectivity list.
 """
 # TODO
 raise NotImplementedError

 def is_effective(self, confname):
 """
 Description
 ===========
 Return a boolean that describes if the instance is effective for a given
 conf.

 Parameters

 conf
 Empty documentation.

 """
 # TODO
 a=0
 conf=datamodel.ConfManagement.conf.Configuration.get_by(name=confname)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-339-

 for eff in self.effs:
 if isinstance(eff, datamodel.ConfManagement.conf.EffectivityList):
 if conf in eff.confs:
 a=1
 break
 else:
 a=0

 #elif eff isinstance(datamodel.ConfManagement.conf.Effectivity, DatedEffectivity):

 elif isinstance(eff, datamodel.ConfManagement.conf.RangeEffectivity):
 if conf.name< eff.end_conf and conf.name>eff.start_conf:
 a=1
 break
 else:
 a=0

 if a==1:
 return True
 else:
 return False

 def multi_instantiate(self):
 """
 Description
 ===========
 create a set of new nauos using the same design definition under the same
 parent assembly.
 """
 # TODO
 raise NotImplementedError

 def create_slave_nauo(self):
 """
 Description
 ===========
 Construct a new instance of NAUO using the same definition that will follow
 the master nauo changes.
 """
 # TODO
 raise NotImplementedError

 def get_master(self):
 """
 Description
 ===========
 returns the master nauo of a slave nauo.
 """
 # TODO
 raise NotImplementedError

 def placement(self):
 """
 Description
 ===========
 returns the position matrix indicating the position of the nauo in its
 parent assembly coordinate system.
 """
 # TODO
 raise NotImplementedError

 def mass_properties(self):
 """
 Description
 ===========
 returns the mass properties of the instance (centre of mass, inertia) in
 the parent assembly's coordinate system.
 """
 # TODO
 raise NotImplementedError

 def create_block(self):
 """

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-340-

 Description
 ===========
 Create a new instance of component block corresponding to the nauo.
 """
 # TODO
 raise NotImplementedError

 def get_ports(self):
 """
 Description
 ===========
 returns the set of ports associated to the nauo.
 """
 # TODO
 raise NotImplementedError

 def add_port(self):
 """
 Description
 ===========
 Create a new port instance to associate to the nauo.
 """
 # TODO
 raise NotImplementedError

 def rem_port(self):
 """
 Description
 ===========
 Delete an existing port associated to the nauo.
 """
 # TODO
 raise NotImplementedError

def load_children(prd, children):

 dispatch = win32com.client.dynamic._GetGoodDispatch("CATIA.Application")
 typeinfo = dispatch.GetTypeInfo()
 attr = typeinfo.GetTypeAttr()
 olerepr = win32com.client.build.DispatchItem(typeinfo, attr, None, 0)
 CATIA = win32com.client.dynamic.CDispatch(dispatch, olerepr)
 CATIA.DisplayFileAlerts = True
 dispatch = typeinfo = attr = olerepr = None

 products=prd.Products
 for child in children:
 if isinstance(child.definition.artifact, ItemAssembly):
 child_catia=products.AddNewProduct(child.definition.artifact.ref)
 child_catia.name=child.name
 child_catia.Nomenclature=child.sns
 child_catia.Revision=child.definition.version
 child_catia.DescriptionRef=child.description

 child_position=child.get_position()
 child_catia.Position.SetComponents (child_position)

 child_children=child.definition.children
 load_children(child_catia, child_children)

 if isinstance(child.definition.artifact, ItemPart):
 model= [elt for elt in child.definition.models if isinstance(elt, CADModel)][0]
 modelpath=model.digitalfile.path
 CATIA.DisplayFileAlerts = True
 print modelpath
 products.AddComponentsFromFiles ([modelpath], "All")
 print "ok"

class DesignDefinition(Entity):
 """
 Description
 ===========
 Design_definition (~ ddid in AP214) provides the technical definition of
 an artefact within a specific context (view).

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-341-

 A technical definition consists of a set of representations (models) and
 properties (mainly mass and material properties).

 For an assembly, the Design_Definition also encompass the composition of
 its children components. These children components are attached their parent
 assembly through the use of the NAUO (Next Assembly Usage Occurence) class
 that represents the nodes of the product structure.

 A Design_definition is a characterization of a design artefact definition
 version, relevant in one or more context application domains and one or
 more life cycle stages (view_definition_contexts).A design_definition is a
 collector of the properties that characterize the Product_version in the
 initial_context and additional_contexts (AP239).

 Fields

 version_id
 Empty documentation.

 status
 Empty documentation.

 description
 Empty documentation.

 has_additional_context
 Empty documentation.

 creation_date
 Empty documentation.

 modif_date
 Empty documentation.

 Relationships

 nauos
 List of occurrences of the instance.

 children
 List of children instances under the parent assembly.

 props
 List of properties of the design definition of an artefact.

 models
 List of models (nominal CAD model, idealized CAD model, CAE model,
 etc.) that permits to define geometry of the artefact.

 artefact
 The collector of data common to all versions of an artefact.

 successors
 List of versions derived from one previous version.

 ancestor
 The previous version.

 change_n
 Empty documentation.

 change_p
 Empty documentation.

 additional_contexts
 The set of instances of View_definition_context in which this
 Product_view_definition is also relevant.

 initial_context

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-342-

 The View_definition_context in which the defined design definition
 version has been primarily characterized.

 context
 Empty documentation.

 modified_by
 The identification of the user that has modified the definition (change
 of version).

 created_by
 The identification of the user that has created the definition version.

 """
 version = Field(String(4))
 status = Field(String(64))
 description = Field(String(64))
 has_additional_context = Field(Boolean)
 creation_date = Field(Date)
 modif_date = Field(Date)
 nauos = OneToMany('NAUO', inverse='definition')
 children = OneToMany('NAUO', inverse='parent')
 props = OneToMany('Property')
 models = OneToMany('Model')
 artifact = ManyToOne('DesignArtifact')
 successors = OneToMany('DesignDefinition', inverse='ancestor')
 ancestor = ManyToOne('DesignDefinition')
 change_n = ManyToOne('DefinitionVersionRelationship')
 change_p = ManyToOne('DefinitionVersionRelationship')
 additional_contexts = OneToMany('ViewDefinitionContext')
 initial_context = ManyToOne('ViewDefinitionContext', use_alter=True)
 context = ManyToOne('ViewDefinitionContext', use_alter=True)
 modified_by = ManyToOne('User', inverse='modified_defs')
 created_by = ManyToOne('User', inverse='created_defs')

 def __init__(self, version, status, initial_context):
 """
 Description
 ===========
 Construct a new instance of Design Definition (new version)

 Parameters

 version
 Empty documentation.

 status
 Empty documentation.

 description
 Empty documentation.

 ivdc
 Empty documentation.

 has_avdc
 Empty documentation.

 """
 # TODO
 self.version=version
 self.status=status
 self.initial_context=initial_context

 def __repr__(self):
 """
 Description
 ===========
 Return instance's representation: what the method print(design_definition)
 returns.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-343-

 """
 # TODO
 raise NotImplementedError

 def add_child(self):
 """
 Description
 ===========
 Add an existing NAUO to the related design definition's children.
 """
 # TODO
 raise NotImplementedError

 def new_child(self):
 """
 Description
 ===========
 Create a Next Assembly Usage Occurence (NAUO) and add it to the instance's
 children.
 """
 # TODO
 raise NotImplementedError

 def rem_child(self):
 """
 Description
 ===========
 Remove a NAUO from the related design definition's children.
 """
 # TODO
 raise NotImplementedError

 def new_nauo(self, nauo):
 """
 Description
 ===========
 Create a new NAUO of the definition.
 """
 # TODO
 self.nauo.append(nauo)

 def rem_nauo(self):
 """
 Description
 ===========
 Remove a NAUO of the definition.
 """
 # TODO
 raise NotImplementedError

 def set_ivdc(self):
 """
 Description
 ===========
 Set the existing intial view definition context in which the definition is
 relevant to use.
 """
 # TODO
 raise NotImplementedError

 def add_avdc(self):
 """
 Description
 ===========
 Add an existing additional context in which the definition is relevant to
 use.
 """
 # TODO
 raise NotImplementedError

 def new_ivdc(self):
 """
 Description

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-344-

 ===========
 Create a new intial context in which the definition is relevant to use.
 """
 # TODO
 raise NotImplementedError

 def new_avdc(self):
 """
 Description
 ===========
 Create a new additional context in which the definition is relevant to use.
 """
 # TODO
 raise NotImplementedError

 def get_contexts(self):
 """
 Description
 ===========
 Return design_defintion's related view defintiion contexts in which the
 definition is used.
 """
 # TODO
 raise NotImplementedError

 def get_models(self):
 """
 Description
 ===========
 Return design_defintion's related models instances.
 """
 # TODO
 raise NotImplementedError

 def add_model(self):
 """
 Description
 ===========
 Add an existing model (present in the models' vault) as part of the
 definition
 """
 # TODO
 raise NotImplementedError

 def new_model(self):
 """
 Description
 ===========
 Create a new model for the definition
 """
 # TODO
 raise NotImplementedError

 def generate_assy_cad(self):
 """
 Description
 ===========
 Method (only applicable for Item_Assemblies) generating an AllCATPart of
 the assembly in CATIA, save it in the CAD files' vault and associate it to
 the CAD model of the assembly.
 """
 # TODO
 raise NotImplementedError

 def rem_model(self):
 """
 Description
 ===========
 Remove a model from the list of models of the definition.
 """
 # TODO
 raise NotImplementedError

 def properties(self):

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-345-

 """
 Description
 ===========
 Return design_defintion's related properties.
 """
 # TODO
 raise NotImplementedError

 def set_property(self):
 """
 Description
 ===========
 Permit to create/modify certain item properties of the definition.
 """
 # TODO
 raise NotImplementedError

 def creator(self):
 """
 Description
 ===========
 Return the user who has created the definition.
 """
 # TODO
 raise NotImplementedError

 def modif(self):
 """
 Description
 ===========
 Return the user who has modified the definition.
 """
 # TODO
 raise NotImplementedError

 def suscribers(self):
 """
 Description
 ===========
 Return the list of users that have suscribed to the definition.
 """
 # TODO
 raise NotImplementedError

 def history(self):
 """
 Description
 ===========
 Return all the previous definition versions of one artefact design
 definition version.
 """
 # TODO
 raise NotImplementedError

class Property(Entity):
 """
 Description
 ===========
 A property is an attribute or a characteristic that complete the definition
 of an artifact. these properties are independant from the various instances
 of the artifact.
 Each Property is either an Item property or a Shape dependent property.

 Fields

 name
 Empty documentation.

 value
 Empty documentation.

 unit

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-346-

 Empty documentation.

 description
 Empty documentation.

 Relationships

 definition
 The Design definition that is described by the related set of
 properties.

 change_a
 Empty documentation.

 change_d
 Empty documentation.

 change_m
 Empty documentation.

 value_change_o
 Empty documentation.

 value_change_n
 Empty documentation.

 """
 name = Field(String(64))
 value = Field(Float)
 unit = Field(String(64))
 description = Field(String(64))
 definition = ManyToOne('DesignDefinition', inverse='props')
 change_a = ManyToOne('PropertyChange')
 change_d = ManyToOne('PropertyChange')
 change_m = ManyToOne('PropertyChange')
 value_change_o = ManyToOne('ValueChange')
 value_change_n = ManyToOne('ValueChange')

 def __init__(self, definition, name):
 """
 Description
 ===========
 Construct a new instance of Property.

 Parameters

 name
 Empty documentation.

 """
 # TODO
 self.definition=definition
 self.name=name

 def __repr__(self):
 """
 Description
 ===========
 Return instance's representation: what the method print(property) returns.
 """
 # TODO
 raise NotImplementedError

 def valuate(self):
 """
 Description
 ===========
 Assign a value to the property.
 """
 # TODO
 raise NotImplementedError

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-347-

class ShapeDependantProperty(Property):
 """
 Description
 ===========
 A shape_dependant_property is an artifact propertry that is derived from
 its shape (e.g. volume, mass properties) defined in the CAD_Representation.

 Relationships

 shape
 The CAD model that provides the shape_dependant_properties.

 """
 shape = ManyToOne('CADModel', inverse='props')

class MassProperty(ShapeDependantProperty):
 """
 Description
 ===========
 Mass properties in the local coordinate system of the artifact. They are
 calculated from the shape and material parameter defined in the CAD model.
 """

class Volume(ShapeDependantProperty):
 """
 Description
 ===========
 Volume of the geometry defined in the CAD model.
 """
 body_v = OneToOne('ShapeBody', inverse='body_volume')

 def __init__(self, value, unit, definition, name='Volume'):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 shape
 Empty documentation.

 """
 # TODO
 ShapeDependantProperty.__init__(self, definition, name)
 self.value=value
 self.unit=unit

 def __repr__(self):
 return "Volume= '%s' '%s'" % (self.value, self.unit)

class CalculatedMass(MassProperty):
 """
 Description
 ===========
 Mass of the artifact.
 """

 body_m=OneToOne('ShapeBody', inverse='body_mass')

 def __init__(self, value, unit, definition, name='Mass'):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 shape
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-348-

 """
 # TODO
 MassProperty.__init__(self, definition, name)
 self.value=value
 self.unit=unit

class CgAbs(MassProperty):
 """
 Description
 ===========
 Center of mass in the local coordinate system of the artifact.

 Fields

 cgx
 Empty documentation.

 cgy
 Empty documentation.

 cgz
 Empty documentation.

 """
 cgx = Field(Float)
 cgy = Field(Float)
 cgz = Field(Float)

 def __init__(self, nauo, definition, name='Local Center of Mass'):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 MassProperty.__init__(self, definition, name)
 #MODIFIER AVEC LES VALEURS RELATIVES

 self.cgx=CgRel.get_by(instance=nauo).cgx+nauo.position_to_parent.trans_x
 self.cgy=CgRel.get_by(instance=nauo).cgy+nauo.position_to_parent.trans_y
 self.cgz=CgRel.get_by(instance=nauo).cgz+nauo.position_to_parent.trans_z

class InertiaAbs(MassProperty):
 """
 Description
 ===========
 Moment of Inertia calculated in the local coordinate system of the artifact.

 Fields

 polar_x
 Empty documentation.

 diametral_y
 Empty documentation.

 diametral_z
 Empty documentation.

 """
 polar_x = Field(Float)
 diametral_y = Field(Float)
 diametral_z = Field(Float)

 def __init__(self, nauo, definition, name='Local Inertia Moments'):
 """
 Description
 ===========
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-349-

 """
 # TODO
 MassProperty.__init__(self, definition, name)
 #MODIFIER AVEC LES VALEURS RELATIVES

 rx=[nauo.position_to_parent.rotxx, nauo.position_to_parent.rotxy,
 nauo.position_to_parent.rotxz]
 ry=[nauo.position_to_parent.rotyx, nauo.position_to_parent.rotyy,
 nauo.position_to_parent.rotyz]
 rz=[nauo.position_to_parent.rotzx, nauo.position_to_parent.rotzy,
 nauo.position_to_parent.rotzz]
 RotMatrix=np.array([rx, ry, rz])
 InvRotMatrix=np.linalg.inv(RotMatrix)
 Ix=[nauo.props[1].polar_x, 0, 0]
 Iy=[0, nauo.props[1].diametral_y, 0]
 Iz= [0, 0, nauo.props[1].diametral_z]
 InertiaMatRel=np.array([Ix, Iy,Iz])
 B=np.dot(RotMatrix, InertiaMatRel)
 InertiaMatAbs=np.dot(B, InvRotMatrix)

 self.polar_x=InertiaMatAbs.item(0)
 self.diametral_y=InertiaMatAbs.item(4)
 self.diametral_z=InertiaMatAbs.item(8)

class ItemProperty(Property):
 """
 Description
 ===========
 An Item_Property is a property that is totally independant from the
 geometry of the artifact (e.g. Material information and properties).
 """

class PartProperty(ItemProperty):
 """
 Description
 ===========
 Properties that can be assigned only on leaf components (Item_Part).
 """

class Material(Property):
 """
 Description
 ===========
 Material reference (DMD) parameter defined in the CAD model.

 Fields

 dmd
 Empty documentation.

 Relationships

 body
 Empty documentation.

 material
 The material assigned to the Item_Part property.

 density
 The density/volumic mass corresponding the material defined in the CAD
 model.

 """
 refdmd = Field(String(16))
 body = OneToOne('ShapeBody', inverse='material')
 props = OneToMany('MaterialProperty', inverse='mat')

 def __init__(self, dmd, definition, name='Material'):

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-350-

 """
 Description
 ===========
 Empty documentation.

 Parameters

 dmd
 Empty documentation.

 """
 # TODO
 Property.__init__(self, definition, name)
 self.refdmd=dmd

 def __repr__(self):
 return "<'%s' : DMD='%s'" % (self.name, self.refdmd)

 def get_dmd_bom(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 raise NotImplementedError

class MaterialProperty(Property):
 """
 Description
 ===========
 Material physical property.

 Relationships

 mat
 The material described by the properties.

 """
 mat = ManyToOne('Material')

 def __init__(self, mat, definition, name):
 Property.__init__(self, definition, name)
 self.mat=mat

class Density(MaterialProperty):
 """
 Description
 ===========
 Denisty or volumic mass of the material.

 """

 def __init__(self, mat, value, unit, definition, name='Volumic Mass'):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 mat
 Empty documentation.

 """
 # TODO
 MaterialProperty.__init__(self, mat, definition, name)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-351-

 self.value=value
 self.unit=unit

 def __repr__(self):
 return "'%s' : '%s' '%s'" %(self.name, self.value, self.unit)

class Model(Entity):
 """
 Description
 ===========
 A model is a geometric representation of an artifact. In this case we only
 deals with CAD models that geometrically represent the more or less exact
 shape of an artifact.

 Fields

 name
 Empty documentation.

 model_type
 Empty documentation.

 revision_id
 Empty documentation.

 Relationships

 definition
 Definition that is describe by the model.

 files
 List of files where the model is stored.

 derived_from
 The previous model revision.

 derived_models
 List of model revisions derived from one previous model revision.

 change_n
 Empty documentation.

 change_p
 Empty documentation.

 """
 name = Field(String(64))
 revision_id = Field(String(4))
 definition = ManyToOne('DesignDefinition', inverse='models')
 digitalfile = OneToOne('DigitalFile', inverse='model')
 derived_from = ManyToOne('Model', inverse='derived_models')
 derived_models = OneToMany('Model')
 change_n = ManyToOne('ModelRevisionRelationship')
 change_p = ManyToOne('ModelRevisionRelationship')

 def __init__(self, name, revision_id, digitalfile):
 """
 Description
 ===========
 Construct a new instance of Model.

 Parameters

 file
 Empty documentation.

 name
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-352-

 type
 Empty documentation.

 rev
 Empty documentation.

 """
 # TODO
 self.name=name
 self.revision_id=revision_id
 self.digitalfile=digitalfile

 def __repr__(self):
 """
 Description
 ===========
 Return instance's representation: what the method print(model) returns.
 """
 # TODO
 return "<Model name:'%s'; revision:'%s'>" %(self.name, self.revision_id)

 def new_revision(self, name, previous_revision_id, newdigitalfile):
 self.__init__(self, name, previous_revision_id+1, newdigitalfile)
 self.derived_from=self.get_by(name=self.name, revision_id=previous_revision_id)

 def history(self):
 """
 Description
 ===========
 Return all the previous model revisions of one model revision.
 """
 # TODO
 previous_model=self.derived_from

 return previous_model

 self.history(previous_model)

class CADModel(Model):
 """
 Description
 ===========
 CAD representation that defines the nominal shape of the artifact design
 definition.

 Fields

 rep_type
 Empty documentation.

 Relationships

 property
 List of shape_dependant_properties derived from the CAD model.

 bodies
 List of bodies that compose the CAD model.

 publis
 List of mating feature publications present in the model.

 """
 rep_type = Field(String(64))
 props = OneToMany('ShapeDependantProperty')
 bodies = OneToMany('ShapeBody')
 publis = OneToMany('MatingFeaturePublication')

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-353-

 def __init__(self, name, revision_id, digitalfile):
 Model.__init__(self, name, revision_id, digitalfile)

 def __repr__(self):
 return "<CADModel name:'%s'; rev:'%s'>" %(self.name, self.revision_id)

 def get_bodies(self):
 """
 Description
 ===========
 Return the
 """
 # TODO
 for body in self.bodies:
 body.__repr__()

 return self.bodies

 def mating_features(self):
 """
 Description
 ===========
 Returns the list of meating feature publications defined in the CAD model.
 """
 # TODO
 return self.publis

 def get_volume(self):
 volpart=0
 for vol in [elt for elt in self.props if isinstance(elt, Volume)]:
 volpart += vol.value
 #vol_unit=vol.unit
 #print "<CADModel: '%s' Volume= '%f' '%s'>" %(self.name, volpart, vol_unit)
 return volpart

 def print_volume(self):
 volpart=0
 for vol in [elt for elt in self.props if isinstance(elt, Volume)]:
 volpart += vol.value
 vol_unit=vol.unit
 print "<CADModel: '%s' Volume= '%f' '%s'>" %(self.name, volpart, vol_unit)

 def get_mass(self):
 masspart=0
 for mass in [elt for elt in self.props if isinstance(elt, CalculatedMass)]:
 masspart += mass.value
 #massunit=mass.unit
 #print "<CADModel: '%s' Mass= '%s' '%s'>" %(self.name, masspart, massunit)
 return masspart

 def print_mass(self):
 masspart=0
 for mass in [elt for elt in self.props if isinstance(elt, CalculatedMass)]:
 masspart += mass.value
 massunit=mass.unit
 print "<CADModel: '%s' Mass= '%s' '%s'>" %(self.name, masspart, massunit)

 def get_dmds(self):
 """
 Description
 ===========
 Retrieve the dmd property for each shape body that compose the CAD model.

 Parameters

 file
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-354-

 """
 # TODO
 for body in self.bodies:
 if body.dmd.refdmd== None:
 return "Body_Name: '%s' DMD: Not sepcified" %(body.name)
 else:
 return "Body_Name: '%s' DMD:'%s'" %(body.name, body.dmd.refdmd)

 def get_mass_prop(self):
 """
 Description
 ===========
 Retrieve the mass properties of the CAD model in the local coordinate system
 of the part/assembly.
 """
 # TODO
 cg=[elt for elt in self.props if isinstance(elt, CgAbs)]
 inertia=[elt for elt in self.props if isinstance(elt, InertiaAbs)]
 model_mass=self.get_mass()

 print "<Model_Name: '%s' Mass_Properties(mass='%f';CGLocal=['%f'; '%f'; '%f']; InertiaLocal=['%f'; '%f'; '%f'])>" %(self.name,
model_mass, cg[0], cg[1], cg[2], inertia[0], inertia[1], inertia[2])
 return model_mass
 return cg
 return inertia

 def open_model(self):
 import psutil
 if "CNEXT.exe" in [psutil.Process(i).name for i in psutil.get_pid_list()]:
 import win32com.client
 CATIA = win32com.client.Dispatch("CATIA.Application")
 CATIA.RefreshDisplay = True
 CATIA.Documents.Open(self.digitalfile.path)

 #Set the CATIA popup file alerts to False
 #It prevents to stop the macro at each alert during its execution
 CATIA.DisplayFileAlerts = False
 CATIA.RefreshDisplay = True

 opened_model= CATIA.ActiveDocument

 return opened_model
 else:
 print "CATIA is not running. Please open a CATIA application"

class DigitalFile(Entity):
 """
 Description
 ===========
 Interface to work with vault's CAD files.
 Theses digital_files permit to open/read the CAD file in a CAD application
 (e.g CATIA, NX, etc.).

 Fields

 name
 Empty documentation.

 format
 Empty documentation.

 Relationships

 model
 Model which the file correspond to.

 template
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-355-

 """
 path = Field(String(128))
 format_ = Field(String(64))
 model = ManyToOne('Model')
 template = ManyToOne('JointTemplate')

 def __init__(self, path):
 """
 Description
 ===========
 Create a new ExternalFile instance.

 Parameters

 path
 Path of the file to load.

 """
 # TODO
 self.path=path

 def openfile(self, appli_path):
 """
 Description
 ===========
 Return a python read-only file object that is represented by the instance.
 """
 # TODO
 import subprocess
 subprocess.Popen("%s %s" % (appli_path, self.path))

 #open(self.path, 'r+b')

 def set(self):
 """
 Description
 ===========
 Load a new file and associate it to the instance
 """
 # TODO
 raise NotImplementedError

class Interaction(Entity):
 """
 Description
 ===========
 Interactions are the physical phenomena that occur at the interfaces
 between connected components.
 Their definition specify the domain-specific physical,functional and
 semantic features that define the rules and conventions to apply.

 Fields

 domain
 Empty documentation.

 direct
 Empty documentation.

 permanent
 Empty documentation.

 Relationships

 connectors
 The connector that permits to ensure the interaction.

 interface

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-356-

 Empty documentation.

 """
 domain = Field(String(64))
 direct = Field(Boolean)
 permanent = Field(Boolean)
 connectors = OneToMany('NAUO', inverse='linkage')
 interface = OneToOne('Interface', inverse='linkage')

 def __init__(self, direct, permanent):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 interface
 Empty documentation.

 description
 Empty documentation.

 direct
 Empty documentation.

 permanent
 Empty documentation.

 """
 # TODO
 self.direct=direct
 self.permanent=permanent

 def __repr__(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 return "<Interaction (Interface_Name= {}; Domain= {}; Direct={}; Permanent:{})>" .format(self.interface.name, self.domain, self.di-
rect, self.permanent)

 def set_connector(self, nauo):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 nauo
 Empty documentation.

 """
 # TODO
 raise NotImplementedError

 def link_ports(self, ports):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 ports
 Empty documentation.

 """
 # TODO
 raise NotImplementedError

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-357-

class SingleDomainInteraction(Interaction):
 """
 Description
 ===========
 Interaction where domain-specific physical phenomena occur.
 """

 def __init__(self, direct, permanent):
 Interaction.__init__(self, direct, permanent)

class CrossDomainInteraction(Interaction):
 """
 Description
 ===========
 Interaction where multiple physical phenomena from multiple
 domains/disciplines occurs.
 """
 def __init__(self, direct, permanent):
 Interaction.__init__(self, direct, permanent)

class UnintendedInteraction(Interaction):
 """
 Description
 ===========
 Interaction (single or cross-domain) that can occur but which is unintended
 and not functionnal. But they need to be specified and characterized to
 anticipate them.
 """

 def __init__(self, direct, permanent):
 Interaction.__init__(self, direct, permanent)

class FluidStructureLinkage(CrossDomainInteraction):
 """
 Description
 ===========
 Interaction generated by the action an internal or surrounding fluid flow
 on some movable or deformable structures.
 """

 def __init__(self, direct, permanent):
 CrossDomainInteraction.__init__(self, direct, permanent)

class MechanicalJoint(SingleDomainInteraction):
 """
 Description
 ===========
 A mechanical linkage is an assembly of bodies connected to manage forces
 and movement. The movement of a body, or link, is studied using geometry so
 the link is considered to be rigid. Therefore a mechanical linkage is
 specified by its kinematic feaures (dof) and its interface topology
 (provided here by CAD mating features which the type and function can be
 captured in templates).

 Fields

 rigid
 Empty documentation.

 can_be_dismantled
 Empty documentation.

 Relationships

 set_of_dof
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-358-

 """
 rigid = Field(Boolean)
 can_be_dismantled = Field(Boolean)
 set_of_dof = OneToOne('Dof', inverse='linkage')

 def __init__(self, direct, permanent, rigid=None, can_be_dismantled=None):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 rigid
 Empty documentation.

 can_be_dismantled
 Empty documentation.

 """
 # TODO
 SingleDomainInteraction.__init__(self, direct, permanent)
 self.rigid=rigid
 self.can_be_dismantled=can_be_dismantled

 def set_dof(self):
 """
 Description
 ===========
 Set the values of the associated dof table defining the kinematic of the
 joint.
 """
 # TODO
 raise NotImplementedError

class PreDefinedJoint(MechanicalJoint):
 """
 Description
 ===========
 Usual mechanical joints which the design can be parametrized with templates
 defining a list of specific mating features to design the joint.
 """

 def __init__(self, direct, permanent, rigid, can_be_dismantled):
 MechanicalJoint.__init__(self, direct, permanent, rigid,
 can_be_dismantled)

class BearingJoint(PreDefinedJoint):
 """
 Description
 ===========
 A revolute joint made with the use of a support, guide, or locating piece
 for a rotating or reciprocating mechanical part (ball bearing, roll
 bearing).

 Fields

 technology
 Empty documentation.

 Relationships

 trans_blocking
 Empty documentation.

 contact_rotor_stator
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-359-

 clearances
 Empty documentation.

 """
 technology = Field(String(64))
 trans_blockings = OneToMany('ShapeContact', inverse='joint_trans')
 contact_rotor_stators = OneToMany('ShapeContact', inverse='joint_rs')
 clearances = OneToMany('FunctionalClearance', inverse='bearing_joint')

 def __init__(self, direct, permanent, can_be_dismantled, techno,
 rigid=False):
 """
 Description
 ===========
 Construct a new instance of a bearing joint.

 Parameters

 techno
 Empty documentation.

 """
 # TODO
 PreDefinedJoint.__init__(self, direct, permanent, rigid,
 can_be_dismantled)
 self.technology=techno

class GenericJoint(MechanicalJoint):
 """
 Description
 ===========
 Mechanical joints without any pre-defined templates of mating features
 pointers. But the user (e.g. method engineer) can define himself a template
 if the joint need to be re-instanciated.

 Fields

 type_gen
 Empty documentation.

 Relationships

 template
 The template associated to the joint.

 contacts
 Empty documentation.

 clearances
 Empty documentation.

 interferences
 Empty documentation.

 """
 joint_type = Field(String(64))
 template = OneToOne('JointTemplate', inverse='joint')
 contacts = OneToMany('ShapeContact', inverse='generic_joint_co')
 clearances = OneToMany('FunctionalClearance')
 interferences = OneToMany('FunctionalInterference')

 def __init__(self, direct, permanent, rigid=None, can_be_dismantled=None,
 joint_type=None):
 """
 Description
 ===========
 Construct a new instance of generic joint.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-360-

 Parameters

 type
 Empty documentation.

 """
 # TODO
 MechanicalJoint.__init__(self, direct, permanent, rigid,
 can_be_dismantled)
 self.joint_type=joint_type

 def generate_template(self):
 """
 Description
 ===========
 Generate a xml file capturing the set of pre-defined named mating features
 that specifies the design intent of the interface whre the joint takes
 place.
 """
 # TODO
 raise NotImplementedError

 def use_template(self, template):
 """
 Description
 ===========
 Returns from a template a set of pre-defined named mating features that
 need to be specify to define the joint.

 Parameters

 template
 Empty documentation.

 """
 # TODO
 raise NotImplementedError

class BoltedJoint(PreDefinedJoint):
 """
 Description
 ===========
 Mechanism / assembly made with bolts. They consist of fasteners that
 capture and join other parts, and are secured with the mating of screw
 threads.

 Fields

 type_bj
 The type of bolted joint : bolted flange, pin joint, etc.

 Relationships

 bf_planar
 Empty documentation.

 bolt_nut
 Empty documentation.

 bolt_comp_acl
 Empty documentation.

 bolt_comp_b
 Empty documentation.

 bolt_comp_aco
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-361-

 bolt_comps
 Empty documentation.

 other_planars
 Empty documentation.

 """
 type_bj = Field(String(64))
 bolt_nut = OneToOne('ShapeContact', inverse='bolted_joint_n')
 bolt_comp_acl = OneToOne('FunctionalClearance', inverse='bolted_joint_acl')
 bolt_comp_b = OneToOne('FunctionalClearance', inverse='bolted_joint_b')
 bolt_comp_aco = OneToOne('ShapeContact', inverse='bolted_joint_aco')
 bolt_comps = OneToMany('FunctionalClearance', inverse='bolted_joint_s')
 bf_planars = OneToMany('ShapeContact', inverse='bolted_joint_aps')

 def __init__(self, type_bj, direct=False,
 permanent=True, rigid=True, can_be_dismantled=True):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 type_bj
 Empty documentation.

 """
 # TODO
 PreDefinedJoint.__init__(self, direct, permanent, rigid,
 can_be_dismantled)
 self.type_bj=type_bj

 def customize(self):
 """
 Description
 ===========
 Method that extends the defintion of a bolted_flange template when the
 bolted_flange connects more than two components together. In that case,
 there are potential additional clearances, alignment contacts and other
 planar contacts to define.
 The number of mating features to define is directly dependant of the number
 of connected components:

 - 3 components --> 2 planar contacts
 --> 3 clerances with the bolt
 --> 0 to 2 alignments
 - 4 components -->3 planar contacts
 --> 4 clearances with the bolt
 --> 0 to 3 alignments

 """
 # TODO
 raise NotImplementedError

class BoltedFlange(BoltedJoint):
 """
 Description
 ===========
 Specific bolted connection for locating, strengthening and connceting two
 cylindrical/rotational parts. The conncetion is made through a radially
 projecting collar or rim on the two connected components and a ring of
 bolts on the circonference.

 Fields

 aligned
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-362-

 nb_holes
 Empty documentation.

 Relationships

 alignment
 Empty documentation.

 other_alignments
 Empty documentation.

 """
 aligned = Field(Boolean)
 nb_holes = Field(Integer)
 nb_comps= Field(Integer)
 alignments = OneToMany('ShapeContact', inverse='bolted_joint_als')

 def __init__(self, nb_comps, alignment, nb_holes, type_bj='Bolted Flange',
 direct=False, permanent=True, rigid=True,
 can_be_dismantled=True):
 """
 Description
 ===========
 Construct a new instance of a bolted flange.

 Parameters

 alignment
 Empty documentation.

 nb_holes
 Empty documentation.

 """
 # TODO
 BoltedJoint.__init__(self, type_bj, direct, permanent, rigid,
 can_be_dismantled)
 self.nb_comps=nb_comps
 self.alignment=alignment
 self.nb_holes=nb_holes

class Dof(Entity):
 """
 Description
 ===========
 Set of degrees of freedom that defines the kinematic of the mechanical
 joint.

 Fields

 Tx
 Empty documentation.

 Ty
 Empty documentation.

 Tz
 Empty documentation.

 Rx
 Empty documentation.

 Ry
 Empty documentation.

 Rz
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-363-

 Relationships

 linkage
 Empty documentation.

 """
 Tx = Field(Boolean)
 Ty = Field(Boolean)
 Tz = Field(Boolean)
 Rx = Field(Boolean)
 Ry = Field(Boolean)
 Rz = Field(Boolean)
 linkage = ManyToOne('MechanicalJoint')

 def __init__(self, linkage):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 Tx
 Empty documentation.

 Ty
 Empty documentation.

 Tz
 Empty documentation.

 Rx
 Empty documentation.

 Ry
 Empty documentation.

 Rz
 Empty documentation.

 """
 # TODO
 self.linkage=linkage

 def __repr__(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 raise NotImplementedError

class JointTemplate(Entity):
 """
 Description
 ===========
 A generic joint's parametrizes the joint with a set of specific named
 mating_features that need to be specified to define and ensure the joint.
 It allows the re-use/re-instantiation of the joint.
 It consist to associate to the joint an xml file capturing the set of
 pre-defined named mating features todefine.

 Fields

 name

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-364-

 Empty documentation.

 Relationships

 joint
 The joint that the template parametrizes.

 file
 Empty documentation.

 """
 name = Field(String(64))
 joint = ManyToOne('GenericJoint')
 file = OneToOne('DigitalFile', inverse='template')

 def __init__(self, name, file):
 """
 Description
 ===========
 Construct a new instance of a joint template.

 Parameters

 name
 Empty documentation.

 file
 Empty documentation.

 """
 # TODO
 raise NotImplementedError

class InterfaceTopology(Entity):
 """
 Description
 ===========
 The topology of an interface specifies the area of interaction or
 non-interaction (clearance) that need to be defined between two components.
 It represents a physical relation between two ports or mating features that
 are parts of the two connected components.

 Fields

 name
 Empty documentation.

 type
 Empty documentation.

 value
 Empty documentation.

 unit
 Empty documentation.

 Relationships

 mating_features
 The 2 ports interfacing.

 interface
 The interface in which the mating features are involved.

 ports
 Empty documentation.

 related_comps
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-365-

 """
 name = Field(String(64))
 value = Field(Float)
 unit = Field(String(8))
 mating_features = OneToMany('MatingFeaturePublication')
 interface = ManyToOne('Interface', inverse='mating_features')
 ports = OneToMany('Port', inverse='topology')
 mating_comps = OneToMany('NAUO', inverse='int_topo')

 def __init__(self, name, nauo1, nauo2):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 name
 Empty documentation.

 type
 Empty documentation.

 """
 # TODO
 self.name=name
 self.mating_comps.extend([nauo1, nauo2])

 def __repr__(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 return "<Interface Topology name: '%s'; Comp1: '%s'; Comp2: '%s'>" %(self.name, self.mating_comps[0], self.mating_comps[1])

class FunctionalClearance(InterfaceTopology):
 """
 Description
 ===========
 A Functional_Clearance is an intended empty space between the shapes of two
 components. The clearance is defined as the loosest fit or maximum intended
 spatial distance between mating parts.

 The best example are the functional clearances between a rotor and stator
 elements.

 Relationships

 bolted_joint_acl
 Empty documentation.

 bolted_joint_b
 Empty documentation.

 bolted_joint_s
 Empty documentation.

 generic_joint_cl
 Empty documentation.

 bearing_joint
 Empty documentation.

 """
 bolted_joint_acl = ManyToOne('BoltedJoint')
 bolted_joint_b = ManyToOne('BoltedJoint')

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-366-

 bolted_joint_s = ManyToOne('BoltedJoint')
 generic_joint_cl = ManyToOne('GenericJoint', inverse='clearances')
 bearing_joint = ManyToOne('BearingJoint')

 def __init__(self, name, nauo1, nauo2):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 value
 Empty documentation.

 unit
 Empty documentation.

 """
 # TODO
 InterfaceTopology.__init__(self, name, nauo1, nauo2)

class ShapeContact(InterfaceTopology):
 """
 Description
 ===========
 A Shape_Contact is a direct intended contact between the shapes of two
 components.

 Relationships

 bolted_joint_ap
 Empty documentation.

 bolted_joint_n
 Empty documentation.

 bolted_joint_al
 Empty documentation.

 bolted_joint_aco
 Empty documentation.

 bolted_joint_aps
 Empty documentation.

 bolted_joint_als
 Empty documentation.

 generic_joint_co
 Empty documentation.

 joint_trans
 Empty documentation.

 joint_rs
 Empty documentation.

 """
 bolted_joint_n = ManyToOne('BoltedJoint')
 bolted_joint_aco = ManyToOne('BoltedJoint')
 bolted_joint_aps = ManyToOne('BoltedJoint')
 bolted_joint_als = ManyToOne('BoltedFlange')
 generic_joint_co = ManyToOne('GenericJoint')
 joint_trans = ManyToOne('BearingJoint')
 joint_rs = ManyToOne('BearingJoint')

 def __init__(self, name, nauo1, nauo2):
 InterfaceTopology.__init__(self, name, nauo1, nauo2)
 InterfaceTopology.value=0

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-367-

 InterfaceTopology.unit='mm'

class FunctionalInterference(InterfaceTopology):
 """
 Description
 ===========
 A Functional_interference is an intended clash that occurs between shapes
 of two components. In a DMU, this generally occurs for the
 interference/press or friction fits (e.g. interference fit thread, press
 fitting of shafts into bearings or bearings into their housings or
 interference between the abradable coating on the fan case and the fan
 blades).

 Relationships

 joint_int
 Empty documentation.

 """
 joint_int = ManyToOne('GenericJoint', inverse='interferences')

 def __init__(self, name, nauo1, nauo2):
 InterfaceTopology.__init__(self, name, nauo1, nauo2)

class FluidSolidBoundary(InterfaceTopology):
 """
 Description
 ===========
 A Fluid_Solid interface is the place where an interaction occurs between
 some movable or deformable structure and an internal or surrounding fluid
 flow.

 A fluid_solid interfaces are located on the structure and generally
 represent the boundaries of a fluid domain.

 """

class MatingFeaturePublication(Entity):
 """
 Description
 ===========
 Mating feature publication are publication of part/portion of the shape of
 a model (generally faces), that are publshed in order to identify and
 localize the interfaces (area of interaction) with other components.

 Fields

 name
 Empty documentation.

 Relationships

 model
 The model that contains the mating feature publications.

 interface
 The interface defined by the two ports.

 port
 The port of the leaf component (item_part instance).

 """
 name = Field(String(64))
 model = ManyToOne('CADModel', inverse='publis')
 interface = ManyToOne('InterfaceTopology', inverse='mating_features')

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-368-

 port = ManyToOne('Port')

 def __init__(self, model, name=None):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 name
 Empty documentation.

 """
 # TODO
 self.name=name
 self.model=model

class Port(Entity):
 """
 Description
 ===========
 A port represents an intended interaction between a component
 and its environment. All interactions between components are mediated by
 ports. It specifies the interaction area between two components.

 Relationships

 mating_feature
 The name of the publication of the mating feature (face) specified in
 the CAD model.

 nauo
 The component to which the ports belong to.

 delegations
 List of components on which the port is delegated.

 topology
 Empty documentation.

 """
 mating_feature = OneToOne('MatingFeaturePublication', inverse='port')
 nauo = ManyToOne('NAUO', inverse='ports')
 delegations = OneToMany('Port', inverse='port')
 port = ManyToOne ('Port')
 topology = ManyToOne('InterfaceTopology')

 def __init__(self, nauo):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 nauo
 Empty documentation.

 """
 # TODO
 raise NotImplementedError

 def delegate(self, nauo):
 """
 Description
 ===========
 Empty documentation.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-369-

 Parameters

 nauo
 Empty documentation.

 """
 # TODO
 raise NotImplementedError

 def remove(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 raise NotImplementedError

 def set_mating_feature(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 raise NotImplementedError

 def linkages(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 raise NotImplementedError

class ShapeBody(Entity):
 """
 Description
 ===========
 A shape body that is part of the CAD model.

 Fields

 name
 Empty documentation.

 main
 Empty documentation.

 Relationships

 model
 The CAD model that encompass the shape bodies.

 dmd
 Empty documentation.

 """
 name = Field(String(64))
 main = Field(Boolean)
 model = ManyToOne('CADModel', inverse='bodies')
 material = ManyToOne('Material')
 body_volume=ManyToOne('Volume')
 body_mass=ManyToOne('CalculatedMass')

 def __init__(self, model, name, main):
 """
 Description

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-370-

 ===========
 Empty documentation.

 Parameters

 model
 Empty documentation.

 name
 Empty documentation.

 main
 Empty documentation.

 """
 # TODO
 self.model=model
 self.name=name
 self.main=main

 def __repr__(self):
 return "<Body from Model {} : name={}>".format(self.model.name, self.name)

 def get_dmd(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 return "<BODY name={} DMD={} >".format(self.name, self.material.refdmd)

class InstancePlacement(Entity):
 """
 Description
 ===========
 An Instance_placement is the information pertaining to the
 placement of a component relatively to the the cartesian coordinate system
 of its parent assembly.

 It corresponds to the transformation matrix that permits to pass from the
 placement of the shape of the corresponding artifact definition in its own
 coordinate system to the intance_placement defined in the coodinate syystem
 of its parent assembly.

 Fields

 trans_x
 Empty documentation.

 trans_y
 Empty documentation.

 trans_z
 Empty documentation.

 rot_x
 Empty documentation.

 rot_y
 Empty documentation.

 rot_z
 Empty documentation.

 Relationships

 instance
 The instance that is positioned by the instance_palcement matrix.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-371-

 """
 trans_x = Field(Float)
 trans_y = Field(Float)
 trans_z = Field(Float)
 rotxx = Field(Float)
 rotxy = Field(Float)
 rotxz = Field(Float)
 rotyx = Field(Float)
 rotyy = Field(Float)
 rotyz = Field(Float)
 rotzx = Field(Float)
 rotzy = Field(Float)
 rotzz = Field(Float)
 instance = ManyToOne('NAUO')

 def __init__(self, nauo):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 nauo
 Empty documentation.

 """
 # TODO
 self.instance=nauo

 def __repr__(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 raise NotImplementedError

 def rot_vect(self, rotxx,rotyx,rotzx, rotzy,rotzz):

 rx=math.atan2(rotzz, rotzy)
 ry=-(math.asin(rotzx))
 rz=math.atan2(rotxx, rotyx)

 return "['%s'; '%s'; '%s']" % (rx, ry ,rz)
 '''
 #convert radians in degrees
 position_entity.rot_x=math.degrees(rx)
 position_entity.rot_y=math.degrees(-ry)
 position_entity.rot_z=math.degrees(rz)
 '''

class InstanceProperty(Entity):
 """
 Description
 ===========
 instance_Property are the sepcific properties relative to an instance
 (mainly relative mass properties). The intance properties values relative
 to the parent component coordonate system.

 Relationships

 instance
 Instance that is described by the property.

 """
 name=Field(String(32))

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-372-

 instance = ManyToOne('NAUO')
 unit=Field(String(8))

 def __init__(self, nauo, name):
 """
 Description
 ===========
 Empty documentation.

 Parameters

 nauo
 Empty documentation.

 position_to_parent
 Empty documentation.

 """
 # TODO
 self.name=name
 self.instance=nauo

 def __repr__(self):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 return "<InstanceProperty '{}'>".format(self.name)

class InstanceMass(InstanceProperty):

 mass_value=Field(Float)

 def __init__(self, mass_value, nauo, name='Mass'):
 InstanceProperty.__init__(self, nauo, name)
 self.mass_value=mass_value

 def __repr__(self):
 return "<Instance: name='{}'; {} = {} {}>".format(self.instance.name, self.name, self.mass_value, self.unit)

class CgRel(InstanceProperty):
 """
 Description
 ===========
 Center of mass in the relative coordinate system of the parent assembly.

 Fields

 cgx
 Empty documentation.

 cgy
 Empty documentation.

 cgz
 Empty documentation.

 """
 cgx = Field(Float)
 cgy = Field(Float)
 cgz = Field(Float)

 def __init__(self, nauo, name='Center of Mass'):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 InstanceProperty.__init__(self, nauo, name)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-373-

 def __repr__(self):

 return "'%s': (%f ; %f ; %f) %s" % (self.name, self.cgx, self.cgy, self.cgz, self.unit)

class InertiaRel(InstanceProperty):
 """
 Description
 ===========
 Moment of Inertia calculated in the relative coordinate system of the
 parent assembly.

 Fields

 polar_x
 Empty documentation.

 diametral_y
 Empty documentation.

 diametral_z
 Empty documentation.

 """
 polar_x = Field(Float)
 diametral_y = Field(Float)
 diametral_z = Field(Float)

 def __init__(self, nauo, name='Inertia Moments'):
 """
 Description
 ===========
 Empty documentation.
 """
 # TODO
 InstanceProperty.__init__(self, nauo,name)

 def __repr__(self):

 return "'%s': (%f ; %f ; %f) %s" % (self.name, self.polar_x, self.diametral_y, self.diametral_z, self.unit)
'''
appeller une fontion 'get_mass' de NAUO à définir
class InstanceMass(InstanceProperty):

 mass_value=Field(Float)

 def __init__(self, nauo, name='Mass'):
 designdef=nauo.definition
 mass=0
 for child in designdef.children:
 childdef=child.definition
 mass_child=childdef.props.get_by(name='Mass')
 mass=mass+mass_child

 self.mass_value=mass

 def __repr__(self):
 return "<Instance: name='{}' '{}'='{}' '{}'>".format(self.instance.name, self.name, self.mass_value, self.unit)

'''
class FluidDomain(DesignArtifact):
 """
 Description
 ===========
 Fluid_Element class is another type of system elements, that need to be
 consiedered in the defintion of the product, but that are not tangible for
 the customer or for the manufacturing process; as a result the must be
 integrated in product structures used in specific engineering domains, but
 they do not make part of the Bill of Materials.

 Their defintion (models and properties) is essential for the defintion of
 turbo-machines like an aero-engine.

 """

Table 19: Generated Python source code of the DASIF data base (extract)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-374-

APPENDIX XI

' *** '

' GLOBAL VARS '

' *** '

' Declare global container vars

Dim repDict As Scripting.Dictionary

Dim compDict As Scripting.Dictionary

Public LogList As Collection

' Declare gloal XML vars

Dim BOMxlpath As String

Dim MyBOMXL As Object

Dim NoDMDCounter As Integer

Dim answer As Integer

Dim xmldoc As DOMDocument

Dim xmlModels As IXMLDOMElement

Dim xmlComps As IXMLDOMElement

' *** '

' MAIN ROUTINE '

' *** '

Sub CATMain()

' Entry point of export macro.

'

' HOW TO :

' ========

' * Start associated form

 ' Init and show the main form

 ExportXML.Init_form

End Sub

' *** '

' CORE ROUTINES '

' *** '

Public Sub Export(ByVal filepath As String)

' Sub that export ActiveDocument's product description to an XML file.

'

' Parameters :

' - FilePath : The path of the file to export.

 ' Initialize Global vars

 Set repDict = New Scripting.Dictionary

 Set compDict = New Scripting.Dictionary

 Set LogList = New Collection

 Set xmldoc = New DOMDocument

 ' Log Process Start

 Call Misc.LogInfo(LogList, "Début du processus d'export XML.")

 ' Get the active Product ' Create XML structure

 Misc.LogInfo LogList, "Construction de la structure du fichier XML..."

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-375-

 Dim xmlRoot As IXMLDOMElement

 Set xmlRoot = xmldoc.createElement(XML_TAGS.TAG_XMLROOT)

 xmldoc.appendChild xmlRoot

 Set xmlComps = xmldoc.createElement(XML_TAGS.TAG_COMPS)

 xmlRoot.appendChild xmlComps

 Set xmlModels = xmldoc.createElement(XML_TAGS.TAG_MODELS)

 xmlRoot.appendChild xmlModels

 Dim xmlLinks As IXMLDOMElement

 Set xmlLinks = xmldoc.createElement(XML_TAGS.TAG_LINKS)

 xmlRoot.appendChild xmlLinks

 Misc.LogInfo LogList, "Identification du produit à traiter..."

 On Error Resume Next

 Dim prd As Product

 Set prd = CATIA.ActiveDocument.Product

 If Err.Number <> 0 Then

 ' Abort Process

 Misc.LogError LogList, "Impossible d'identifier le produit à traiter. Fin du processus."

 Exit Sub

 Else

 ' Reset Error Handler

 On Error GoTo 0

 End If

 ' Compute operation count

 ExportXML.ComputeTickCount prd

 NoDMDCounter = 0

 ' Generate Active Product XML description

 GenXMLComponent prd, xmlComps

 GenXMLLinks xmlLinks

 ' Generate the XML file

 Dim retry As Boolean

 Misc.LogInfo LogList, "Génération du fichier xml..."

 ExportXML.status "Generating XML file..."

 On Error Resume Next

 Do

 ' save the file

 xmldoc.Save filepath

 ' If an error occured

 If Err.Number <> 0 Then

 ' Log the error

 Misc.LogWarning LogList, "Impossible d'écrire sur le fichier de sortie spécifié."

 ' Ask if user want to retry

 Dim choice As Integer

 choice = MsgBox("Impossible d'écrire sur le fichier de sortie spécifié.", vbCritical Or vbRetryCancel, "Erreur")

 ' If user asks retry

 If choice = 4 Then

 filepath = CATIA.FileSelectionBox("Save export file...", "*.xml", CatFileSelectionModeSave)

 xmldoc.Save filepath

 ' Log and continue the Loop

 Misc.LogInfo LogList, "Nouvel essai de génération du fichier xml..."

 retry = True

 Else

 ' Log and stop the loop

 Misc.LogError LogList, "Abandon de la génération du fichier XML."

 retry = False

 End If

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-376-

 ' Else : no error

 Else

 ' Log and stop the loop

 Misc.LogInfo LogList, "Génération du fichier xml terminée."

 retry = False

 End If

 Loop While retry = True

 'Reset Error Handler

 On Error GoTo 0

 Dim ratio As Double

 ratio = NoDMDCounter * 100 / repDict.count

 MsgBox (trunc(ratio) & "% des articles de la DMU exportée n'ont aucun DMD spécifié")

 Dim YN As Integer

 Dim fpath As String

 Dim xlapp As Object

 Dim xlNoDMD As Object

 YN = MsgBox("Voulez-vous les lister dans un fichier Excel?", vbYesNo, "Lister les articles sans DMD?")

 If YN = vbYes Then

 Set xlapp = GetObject(, "Excel.Application")

 xlapp.Visible = True

 xlapp.UserControl = True

 Call xlapp.Workbooks.Add

 Dim XlSheet As Object

 Set XlSheet = xlapp.ActiveWorkbook.ActiveSheet

 XlSheet.Cells(1, 1).Value = "Item/Model_Ref"

 XlSheet.Cells(1, 2).Value = "Model_File_Path"

 Dim Model_List As IXMLDOMNode

 Dim node As IXMLDOMNode

 Dim dmdattr As IXMLDOMAttribute

 Dim nameattr As IXMLDOMAttribute

 Dim fileattr As IXMLDOMAttribute

 Dim RowIndex As Integer

 RowIndex = 1

 Set Model_List = xmldoc.selectSingleNode("//XML_ENRICHED_DMU_EXPORT/MODEL_LIST/").selectSingleNode(".//MODEL_LIST")

 For Each node In Model_List.childNodes

 If node.Attributes.Length <> 3 Then

 Set dmdattr = node.Attributes.getNamedItem("DMD_BOM_IfNotDefined")

 If dmdattr.nodeValue = "Unknown_DMD" Then

 Set nameattr = node.Attributes.getNamedItem("Name")

 Set fileattr = node.Attributes.getNamedItem("File")

 RowIndex = RowIndex + 1

 XlSheet.Cells(RowIndex, 1).Value = nameattr.nodeValue

 XlSheet.Cells(RowIndex, 2).Value = fileattr.nodeValue

 End If

 End If

 Next

 End If

 ' Clean up dicts

 Set repDict = Nothing

 Set compDict = Nothing

End Sub

Sub GenXMLComponent(ByRef component, ByRef xmlParent As IXMLDOMElement)

' Create an xml description of a Product.

'

' HOW TO :

' ========

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-377-

' * Start sub that recursivly create XML component elements from the root component.

'

' Parameters :

' ============

' - component : The product to describe.

' - xmlParent : The XML parent node of the description.

 ' Log Start operation

 ExportXML.status "Saving product's components..."

 Misc.LogInfo LogList, "Traitements des information du produit en cours..."

 ' Start Recursion generation

 RecGenXMLComponent component, xmlParent

 ' Log End operation

 Misc.LogInfo LogList, "Traitements des information du produit terminé : " _

 & compDict.count & " Composants et " & repDict.count & " representations."

End Sub

Sub RecGenXMLComponent(ByRef component, ByRef xmlParent As IXMLDOMElement)

' Create an xml description of a Product. (inderect recursion)

'

' HOW TO :

' ========

' * If the component isn't registered yet :

' * Register it.

' * Create a new xml Component element and add it to the input xmlParent element.

' * Call sub that Create an XML description of the component representation.

' * Call sub that create an XML description of the component position.

' * Call sub that create an XML description of the children components.

'

' Parameters :

' ============

' - component : The product to describe.

' - xmlParent : The XML parent node of the description.

 ' Declare XML objects

 Dim xmlComp As IXMLDOMElement

 Dim xmlAttr As IXMLDOMAttribute

 ' Declare and initialize ID var

 Dim compId As Long

 compId = 0

 ' Register the component if it is not already registered

 If Not compDict.Exists(component) Then

 ' Register it

 compId = compDict.count + 1

 compDict.Add component, compId

 ' Create XML objects

 Set xmlComp = xmldoc.createElement(XML_TAGS.TAG_COMP)

 xmlParent.appendChild xmlComp

 ' ID Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_ID)

 xmlAttr.nodeValue = compId

 xmlComp.setAttributeNode xmlAttr

 'Generate XML model attribute

 GenXmlModel component, xmlComp

 ' Instance_ID Attribute

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-378-

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_ID)

 xmlAttr.nodeValue = component.name

 xmlComp.setAttributeNode xmlAttr

 ' ID Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_NAME)

 xmlAttr.nodeValue = component.DescriptionRef

 xmlComp.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_SNS)

 xmlAttr.nodeValue = component.Nomenclature

 xmlComp.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_REF)

 xmlAttr.nodeValue = component.PartNumber

 xmlComp.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_VERSION)

 xmlAttr.nodeValue = component.Revision

 xmlComp.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_FULLNAME)

 xmlComp.setAttributeNode xmlAttr

 xmlAttr.nodeValue = component.PartNumber & "_" & component.DescriptionRef & "_" & component.Definition & "_" & component.Re-

vision & "_" & component.Nomenclature

 ' Generate XML position node

 GenXmlComponentPosition component, xmlComp

 ' Generate XML Mass_Properties node

 GenXmlComponentMassProp component, xmlComp

 ' Generate XML children node

 GenXmlComponentChildren component, xmlComp

 End If

End Sub

Sub GenXmlModel(ByRef component, ByRef xmlParent As IXMLDOMElement)

' Sub that create an XML description of a product representation.

'

' HOW TO :

' ========

' * If the component representation isn't registered yet :

' * Register it.

' * Create a new xml Representation element and add it to the input xmlParent element.

' * Else :

' * Get the ID of the registered representation.

' * Add the ID of the representation to the input xmlParent Element.

'

' Parameters :

' ============

' - component : The product to describe.

 ' Declare XML objects

 Dim xmlModel As IXMLDOMElement

 Dim xmlBody As IXMLDOMElement

 Dim xmlAttr As IXMLDOMAttribute

 Dim fso As New FileSystemObject

 ' Declare and initialize ID var

 Dim name As String

 Dim repID

 Dim rep

 ' If the component has a representation

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-379-

 If component.HasAMasterShapeRepresentation() Then

 ' Get the representation

 Set rep = component.GetShapeRepresentation(True, component.GetActiveShapeName(), catRep3D, True)

 ' If not already registered

 If Not repDict.Exists(rep) Then

 ' Register it

 repID = repDict.count + 1

 repDict.Add rep, repID

 ' Switch on document type

 Select Case TypeName(rep)

 ' If Part representation

 Case "PartDocument"

 name = rep.Part.name

 ' If other representation

 Case "Document"

 'Switch on file type

 Select Case UCase(fso.GetExtensionName(rep.FullName))

 ' CGR file

 Case "CGR"

 name = fso.GetBaseName(rep.FullName)

 ' STL file

 Case "STL"

 name = "Assembly"

 End Select

 End Select

 ' Generate Xml representation element

 Set xmlModel = xmldoc.createElement(XML_TAGS.TAG_MODEL)

 xmlModels.appendChild xmlModel

 ' ID Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_MODEL_ID)

 xmlAttr.nodeValue = repID

 xmlModel.setAttributeNode xmlAttr

 ' Name Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_MODEL_NAME)

 xmlAttr.nodeValue = name

 xmlModel.setAttributeNode xmlAttr

 ' File Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_CAD_FILE)

 xmlAttr.nodeValue = rep.FullName

 xmlModel.setAttributeNode xmlAttr

 'Create Bodies xml elements under Model elements

 GenXmlModelBodies rep, xmlModel

 ' Else get the representation's ID

 Else

 repID = repDict.Item(rep)

 End If

 ' Else set representation ID to 0

 Else

 repID = "No representation"

 End If

 ' RepID attribute of the parent node

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_MODEL)

 xmlAttr.nodeValue = repID

 xmlParent.setAttributeNode xmlAttr

End Sub

Sub GenXmlModelBodies(ByRef model, ByRef xmlParent As IXMLDOMElement)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-380-

Dim xmlBodies As IXMLDOMElement

Dim xmlBody As IXMLDOMElement

Dim xmlAttr As IXMLDOMAttribute

Dim xlapp As Object

Dim prd As Product

Set prd = CATIA.ActiveDocument.Product

Dim prt As Part

Set prt = model.Part

' Generate XML children element

Set xmlBodies = xmldoc.createElement(XML_TAGS.TAG_BODIES)

xmlParent.appendChild xmlBodies

' Gen count attribute

Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODIES_COUNT)

xmlAttr.nodeValue = prt.Bodies.count()

xmlBodies.setAttributeNode xmlAttr

If prt.Bodies.count <> 0 Then

 ' For each body defined in the model of the component, capture in the XML the mass, volume and material properties of the body

 Dim body As body

 Dim objSPAWkb As AnyObject

 Set objSPAWkb = CATIA.ActiveDocument.GetWorkbench("SPAWorkbench")

 Dim objRef As Reference

 Dim objMeasurable As Measurable

 Dim MyInertias As Inertias

 Dim myInertia As Inertia

 Dim M, V, MassVol As Double

 Dim dmddensity As String

 Dim dmd As Material

 Dim oManager As MaterialManager

 Set oManager = prd.GetItem("CATMatManagerVBExt")

 Dim counter As Integer

 counter = 0

 For Each body In prt.Bodies

 Set xmlBody = xmldoc.createElement(XML_TAGS.TAG_BODY)

 xmlBodies.appendChild xmlBody

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_NAME)

 xmlAttr.nodeValue = body.name

 xmlBody.setAttributeNode xmlAttr

 If body.name = prt.MainBody.name Then

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_MAIN)

 xmlAttr.nodeValue = "True"

 xmlBody.setAttributeNode xmlAttr

 Else

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_MAIN)

 xmlAttr.nodeValue = "False"

 xmlBody.setAttributeNode xmlAttr

 End If

 Set objRef = prt.CreateReferenceFromObject(body)

 Set objMeasurable = objSPAWkb.GetMeasurable(objRef)

 On Error Resume Next

 V = objMeasurable.Volume

 If Err.Number <> 0 Then

 V = 0

 End If

 Err.Clear

 On Error GoTo 0

 Set MyInertias = objSPAWkb.Inertias

 Set myInertia = MyInertias.Add(body)

 On Error Resume Next

 M = myInertia.Mass

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-381-

 If Err.Number <> 0 Then

 M = Nothing

 End If

 Err.Clear

 On Error GoTo 0

 MassVol = myInertia.Density

 oManager.GetMaterialOnBody body, dmd

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_MASS)

 xmlAttr.nodeValue = M

 xmlBody.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_VOL)

 xmlAttr.nodeValue = V

 xmlBody.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_DMD)

 On Error Resume Next

 xmlAttr.nodeValue = dmd.name

 If Err.Number <> 0 Then

 xmlAttr.nodeValue = "Unknown_DMD"

 xmlBody.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_DENSITY)

 xmlAttr.nodeValue = 8000

 xmlBody.setAttributeNode xmlAttr

 counter = counter + 1

 Err.Clear

 On Error GoTo 0

 Else

 xmlBody.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_BODY_DENSITY)

 xmlAttr.nodeValue = MassVol

 xmlBody.setAttributeNode xmlAttr

 End If

 Next

 'procédure nécessaire lorsque les DMD ne sont pas renseignés : récupérer d'une nomenclature un DMD et/ou une masse indicative à

mettre comme propriété de l'article

 If prt.Bodies.count = counter Then

 Dim dmd2

 Dim DMDFound As Boolean

 If BOMxlpath = "" Then

 Call MsgBox("La DMU exportée contient des modèles CAO sans DMD et aucune nomenclature n'a été fournie!", vbExclamation)

 answer = MsgBox("Souhaitez-vous importer les DMD depuis une nomenclature?", vbYesNo, "Do you need a BOM to import DMD

parameters?")

 If answer = vbYes Then

 Set xlapp = CreateObject("Excel.Application")

 BOMxlpath = CATIA.FileSelectionBox("Veuillez-sélectionner le fichier Excel de nomenclature contenant les DMD...", "*.xlsx", Cat-

FileSelectionModeOpen)

 Set MyBOMXL = GetObject(BOMxlpath)

 MyBOMXL.Application.Visible = True

 MyBOMXL.Parent.Windows(1).Visible = True

 End If

 End If

 'Call MsgBox("Aucun DMD n'est défini pour l'article : " & prt.name, vbExclamation, "No DMD found")

 'lancement d'une procédure permettant de recupérer les DMD d'une nomenclature et de renvoyer la vaelur du DMD appliquée à la

pièce

 If answer = vbYes Then

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-382-

 Call applyDMD.GetDMDtoApply(MyBOMXL, prt, dmd2, dmddensity, DMDFound)

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_MODEL_DMD)

 If DMDFound = False Then

 xmlAttr.nodeValue = "Unknown_DMD"

 xmlParent.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_DMD_DENSITY)

 xmlAttr.nodeValue = 8000

 xmlParent.setAttributeNode xmlAttr

 NoDMDCounter = NoDMDCounter + 1

 Else

 xmlAttr.nodeValue = dmd2.name

 xmlParent.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_DMD_DENSITY)

 xmlAttr.nodeValue = MassVol

 xmlParent.setAttributeNode xmlAttr

 'capture de la référence DMD au niveau du modèle

 Call applyDMD.applyDMD(prd, prt, dmd2)

 'appliquer la densité correspondante aux corps de pièces enfants

 For Each body In prt.Bodies

 'MsgBox (Body.name)

 Set myInertia = MyInertias.Add(body)

 MassVol = myInertia.Density

 Dim node As IXMLDOMElement

 Dim xmldensity As IXMLDOMAttribute

 For Each node In xmlBodies.childNodes

 Set xmldensity = node.getAttributeNode(XML_TAGS.ATT_BODY_DENSITY)

 'MsgBox (node.Attributes.item(0).nodeValue)

 xmldensity.nodeValue = MassVol

 Next

 Next

 End If

 End If

 End If

End If

End Sub

Sub GenXmlComponentPosition(ByRef component, ByRef xmlParent As IXMLDOMElement)

' Sub that create an xml description of a product's position.

'

' HOW TO :

' ========

' * Get the component axis system.

' * Create a new xml Position element and add it to the input xmlParent element.

' * Create xml elements for Origin, axis X, axis y and axis Z and ad them to the position element.

'

' Parameters :

' ============

' - component : The product to describe.

' - xmlParent : The XML parent node of the description.

 ' Declare XML objects

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-383-

 Dim xmlPos As IXMLDOMElement

 Dim xmlTVector, xmlRMatrix, xmlVectX, xmlVectY, xmlVectZ As IXMLDOMElement

 Dim xmlAttr As IXMLDOMAttribute

 Dim pos(11)

 ' Register the Component position

 component.Position.GetComponents pos

 ' Generate XML Position Element

 Set xmlPos = xmldoc.createElement(XML_TAGS.TAG_COMP_POS)

 xmlParent.appendChild xmlPos

 ' Generate Translation Vector of the local axis system of the component

 Set xmlTVector = xmldoc.createElement(XML_TAGS.TAG_COMP_POS_T)

 xmlPos.appendChild xmlTVector

 ' Gen X component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_POS_TX)

 xmlAttr.nodeValue = pos(9)

 xmlTVector.setAttributeNode xmlAttr

 ' Gen Y component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_POS_TY)

 xmlAttr.nodeValue = pos(10)

 xmlTVector.setAttributeNode xmlAttr

 ' Gen Z component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_POS_TZ)

 xmlAttr.nodeValue = pos(11)

 xmlTVector.setAttributeNode xmlAttr

 ' Generate Rotation Matrix

 Set xmlRMatrix = xmldoc.createElement(XML_TAGS.TAG_COMP_POS_R)

 xmlPos.appendChild xmlRMatrix

 ' Generate Vector X of Rotation Matrix

 Set xmlVectX = xmldoc.createElement(XML_TAGS.TAG_COMP_POS_RX)

 xmlRMatrix.appendChild xmlVectX

 ' Gen X component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_1)

 xmlAttr.nodeValue = pos(0)

 xmlVectX.setAttributeNode xmlAttr

 ' Gen Y component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_2)

 xmlAttr.nodeValue = pos(1)

 xmlVectX.setAttributeNode xmlAttr

 ' Gen Z component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_3)

 xmlAttr.nodeValue = pos(2)

 xmlVectX.setAttributeNode xmlAttr

 ' Generate Vector Y of Rotation Matrix

 Set xmlVectY = xmldoc.createElement(XML_TAGS.TAG_COMP_POS_RY)

 xmlRMatrix.appendChild xmlVectY

 ' Gen X component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_1)

 xmlAttr.nodeValue = pos(3)

 xmlVectY.setAttributeNode xmlAttr

 ' Gen Y component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_2)

 xmlAttr.nodeValue = pos(4)

 xmlVectY.setAttributeNode xmlAttr

 ' Gen Z component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_3)

 xmlAttr.nodeValue = pos(5)

 xmlVectY.setAttributeNode xmlAttr

 ' Generate Vector Z of Rotation Matrix

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-384-

 Set xmlVectZ = xmldoc.createElement(XML_TAGS.TAG_COMP_POS_RZ)

 xmlRMatrix.appendChild xmlVectZ

 ' Gen X component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_1)

 xmlAttr.nodeValue = pos(6)

 xmlVectZ.setAttributeNode xmlAttr

 ' Gen Y component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_2)

 xmlAttr.nodeValue = pos(7)

 xmlVectZ.setAttributeNode xmlAttr

 ' Gen Z component Attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_TAG_POS_3)

 xmlAttr.nodeValue = pos(8)

 xmlVectZ.setAttributeNode xmlAttr

End Sub

Sub GenXmlComponentChildren(ByRef component, ByRef xmlParent As IXMLDOMElement)

' Sub that create an xml description of product's children.

'

' HOW TO :

' ========

' * If the Component has Children.

' * Create a new xml Children list element and add it to the input xmlParent element.

' * For each component in the children list :

' * Call recursive sub that create XML component description.

'

' Parameters :

' ============

' - component : The product to describe.

' - xmlParent : The XML parent node of the children description.

 ' Declare XML objects

 Dim xmlChildren As IXMLDOMElement

 Dim xmlAttr As IXMLDOMAttribute

 ' Generate XML children element

 Set xmlChildren = xmldoc.createElement(XML_TAGS.TAG_COMP_CHILDREN)

 xmlParent.appendChild xmlChildren

 ' Gen count attribute

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_CHILDREN_COUNT)

 xmlAttr.nodeValue = component.Products.count

 xmlChildren.setAttributeNode xmlAttr

 ' If the component has children

 If component.Products.count <> 0 Then

 ' For each subproduct generate a new component description

 Dim child As Object

 For Each child In component.Products

 RecGenXMLComponent child, xmlChildren

 Next child

 Else

 ' Tick the status form

 ExportXML.Tick

 End If

End Sub

Sub GenXmlComponentMassProp(ByRef component, ByRef xmlParent As IXMLDOMElement)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-385-

 ' Declare XML objects

 Dim xmlMassProp As IXMLDOMElement

 Dim xmlMass As IXMLDOMElement

 Dim xmlCG As IXMLDOMElement

 Dim xmlInertia, xmlInertiaX, xmlInertiaY, xmlInertiaZ As IXMLDOMElement

 Dim xmlAttr As IXMLDOMAttribute

 Dim myInertia

 Set myInertia = component.GetTechnologicalObject("Inertia")

 Dim coordCG(2), matrixInertia(8)

 myInertia.GetCOGPosition coordCG

 myInertia.GetInertiaMatrix matrixInertia

 ' Generate XML Mass properties elements

 Set xmlMassProp = xmldoc.createElement(XML_TAGS.TAG_COMP_MASS_PROP)

 xmlParent.appendChild xmlMassProp

 Set xmlMass = xmldoc.createElement(XML_TAGS.TAG_COMP_MASS)

 xmlMassProp.appendChild xmlMass

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_MASS_VALUE)

 xmlAttr.nodeValue = myInertia.Mass

 xmlMass.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_MASS_UNIT)

 xmlAttr.nodeValue = "kg"

 xmlMass.setAttributeNode xmlAttr

 Set xmlCG = xmldoc.createElement(XML_TAGS.TAG_COMP_CG)

 xmlMassProp.appendChild xmlCG

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_CG_X)

 xmlAttr.nodeValue = coordCG(0)

 xmlCG.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_CG_Y)

 xmlAttr.nodeValue = coordCG(1)

 xmlCG.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_CG_Z)

 xmlAttr.nodeValue = coordCG(2)

 xmlCG.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_CG_UNIT)

 xmlAttr.nodeValue = "m"

 xmlCG.setAttributeNode xmlAttr

 Set xmlInertia = xmldoc.createElement(XML_TAGS.TAG_COMP_INERTIA)

 xmlMassProp.appendChild xmlInertia

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_UNIT)

 xmlAttr.nodeValue = "kg.m²"

 xmlInertia.setAttributeNode xmlAttr

 Set xmlInertiaX = xmldoc.createElement(XML_TAGS.TAG_COMP_INERTIAX)

 xmlInertia.appendChild xmlInertiaX

 Set xmlInertiaY = xmldoc.createElement(XML_TAGS.TAG_COMP_INERTIAY)

 xmlInertia.appendChild xmlInertiaY

 Set xmlInertiaZ = xmldoc.createElement(XML_TAGS.TAG_COMP_INERTIAZ)

 xmlInertia.appendChild xmlInertiaZ

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IXX)

 xmlAttr.nodeValue = matrixInertia(0)

 xmlInertiaX.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IXY)

 xmlAttr.nodeValue = matrixInertia(1)

 xmlInertiaX.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IXZ)

 xmlAttr.nodeValue = matrixInertia(2)

 xmlInertiaX.setAttributeNode xmlAttr

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-386-

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IYX)

 xmlAttr.nodeValue = matrixInertia(3)

 xmlInertiaY.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IYY)

 xmlAttr.nodeValue = matrixInertia(4)

 xmlInertiaY.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IYZ)

 xmlAttr.nodeValue = matrixInertia(5)

 xmlInertiaY.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IZX)

 xmlAttr.nodeValue = matrixInertia(6)

 xmlInertiaZ.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IZY)

 xmlAttr.nodeValue = matrixInertia(7)

 xmlInertiaZ.setAttributeNode xmlAttr

 Set xmlAttr = xmldoc.CreateAttribute(XML_TAGS.ATT_COMP_INERTIA_IZZ)

 xmlAttr.nodeValue = matrixInertia(8)

 xmlInertiaZ.setAttributeNode xmlAttr

End Sub

...

Table 20: CATIA macro for generating the DMU exported XML file

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-387-

APPENDIX XII

-*- coding: utf-8 -*-

"""

Created on Fri Apr 12 13:21:33 2013

@author: s064161

"""

from __future__ import print_function

Import modules

import os.path

import xml.etree.ElementTree as etree

import datetime

import datamodel

import math

import numpy as np

#Shortcuts creation for rapid access to database entities references

global DesignDef

DesignDef=datamodel.SystemDefinition.DesignDefinition

global nauo

nauo=datamodel.SystemDefinition.NAUO

global Item_Part

Item_Part=datamodel.SystemDefinition.ItemPart

global Item_Assy

Item_Assy=datamodel.SystemDefinition.ItemAssembly

global Item_StrAssy

Item_StrAssy=datamodel.SystemDefinition.StructuralAssembly

global root

root=datamodel.SystemDefinition.Root

global CADModel

CADModel=datamodel.SystemDefinition.CADModel

...

global ClassMatingFeature

ClassMatingFeature=datamodel.SystemDefinition.MatingFeaturePublication

global ClassShapeContact

ClassShapeContact=datamodel.SystemDefinition.ShapeContact

global ClassInterference

ClassInterference=datamodel.SystemDefinition.FunctionalInterference

global ClassClearance

ClassClearance=datamodel.SystemDefinition.FunctionalClearance

global ClassDof

ClassDof=datamodel.SystemDefinition.Dof

Connection to the existing database

#datamodel.db.connect("localhost","db_test_tv","tvosgien","cool01")

#Or creation of a new data base

datamodel.db.new("localhost","db_test_tv","tvosgien","cool01")

#Create Organisations instances

orga = datamodel.ConfManagement.organisation.Organisation

orga_entityM=orga(name="Snecma_WRS")

orga_entityM.integrator= True

orga_entityYY=orga(name="YY")

orga_entityYY.mother=orga_entityM

orga_entityYYT=orga(name="YYT")

orga_entityYYT.mother=orga_entityYY

orga_entityYYTD=orga(name="YYTD")

orga_entityYYTD.mother=orga_entityYYT

#Create a product, a configuration and view definition contexts instances

prd=datamodel.ConfManagement.conf.ProductClass

prd_entitySC=prd(name="SilverCrest", prdtype="Business_Jet_Engines")

prd_entitySC.orgas.append(orga_entityM)

confgen=datamodel.ConfManagement.conf.ManufacturableConfiguration

confdes=datamodel.ConfManagement.conf.DesignDisciplineConfiguration

conf_entityCT2=confgen(name="CT2")

conf_entityCT2.description="SC_CORE_TEST_2"

conf_entityCT2.creation_date = datetime.datetime.today()

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-388-

conf_entityYYTD=confdes(name="Mechanical Integration YYTD")

conf_entityYYTD.description="SC_CT_Dynamique Ensemble_YYTD"

conf_entityYYTD.base_conf=conf_entityCT2

conf_entityYYTD.creation_date = datetime.datetime.today()

prd_entitySC.confs.append(conf_entityCT2)

prd_entitySC.confs.append(conf_entityYYTD)

context=datamodel.__local__.ViewDefinitionContext

view_context1=context(life_cycle_stage= "Detailed Design", application_domain="Physical_Test")

view_context1.description="Conf Core-Test Generique"

view_context1.confs.append(conf_entityCT2)

view_context2=context(life_cycle_stage= "Detailed Design", application_domain="Mechanical De-

sign_YYTD")

view_context2.description="Vue dynamique d'ensemble YYTD"

view_context2.confs.append(conf_entityYYTD)

conf_list=[]

conf_list.append(conf_entityCT2)

global EffList_entity

EffList_entity=ClassEffList(conf_list)

#Commit the transaction of new created objects to the database

datamodel.db.session.commit()

#Child-Parent components dictionary

global parent_map

parent_map=dict()

global doc

global nauo_list

nauo_list=[]

Fill the data base with data extracted from a DMU export xml file

def imp_dmu_from_xml(file_path):

 """Import the DMU definition from a DMU xml export file and create the

 corresponding items, components, models, linkages in the database"""

 # Compute file's absolute path

 abs_path = os.path.abspath(file_path)

 print("Import : '{}'".format(abs_path))

 doc = etree.parse(abs_path)

 #Find the node 'Component_List'

 comp_list_elt=doc.find(".//COMPONENT_LIST")

 #Get the root component

 comp_root=comp_list_elt.find("COMPONENT")

 #Find the node 'Model_list'

 model_list=doc.find(".//MODEL_LIST")

 #Find the node 'Link_list'

 link_list=doc.find(".//LINKAGE_LIST")

 #Call parse_comp function with the root component as argument

 parse_comp(comp_root,None, model_list)

 #Update the data base with the created instances

 datamodel.db.session.commit()

 #Call parse_links function to retrieve information about components' linkages

 parse_links(model_list, link_list)

 #Update the data base with the created instances

 datamodel.db.session.commit()

def parse_comp(comp, nauo_parent, models):

 '''

 Recursive function to collect all components definition features present in the xml file

including hierarchy, definition, models, mass properties, interfaces, etc.

 '''

 #get component attributes

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-389-

 comp_attr=comp.attrib

 comp_name=comp_attr['InstanceID']

 sns=comp_attr['SNS']

 description= comp_attr['Description']

 configurable = True

 ref_item = comp_attr['Ref_Article']

 index = "A"

 nversion = comp_attr['Indice']

 status="Frozen"

 FullName= comp_attr['FullName']

 #Find the 'Children_List' node in xml

 comp_children_elt=comp.find(".//CHILDREN_LIST")

 children_count= len(list(comp_children_elt))

 #Create DesignDefinition corresponding entity required to construct the NAUO instance

 #check if the artifact and related definition already exist in the database

 if datamodel.SystemDefinition.NAUO.get_by(fullname=FullName) == None:

 def_exist=False

 DesignDef_entity=DesignDef(nversion, status, view_context1)

 #Create the NAUO instance

 nauo_entity=nauo(comp_name, sns, DesignDef_entity)

 nauo_entity.description=description

 nauo_entity.fullname=FullName

 nauo_entity.configurable=configurable

 nauo_entity.effs.append(EffList_entity)

 #Creation of the corresponding DesignArtifact entities

 if comp_name != "ROOT-SC":

 if children_count == 0:

 item_part_entity=Item_Part(description, ref_item, index)

 item_part_entity.defs.append(DesignDef_entity)

 else:

 item_assy_entity=Item_Assy(description, ref_item, index)

 item_assy_entity.defs.append(DesignDef_entity)

 else:

 root_entity=root(description, conf_entityCT2)

 root_entity.defs.append(DesignDef_entity)

 #Create the Nauo's parent instance

 if nauo_parent is not None:

 nauo_parent.definition.children.append(nauo_entity)

 else:

 #The definition already exist so a new NAUO of this definition is instantiated

 previous_nauo=datamodel.SystemDefinition.NAUO.get_by(fullname=FullName)

 DesignDef_entity=previous_nauo.definition

 nauo_entity=nauo(comp_name, sns, DesignDef_entity)

 nauo_entity.description=description

 nauo_entity.fullname=FullName

 nauo_entity.configurable=configurable

 nauo_entity.effs.append(EffList_entity)

 nauo_parent.definition.children.append(nauo_entity)

 def_exist=True

 #Retrieve instance's position and properties (Center of mass and Inertia Moments)

 #retrieve position

 position_node=comp.find('.//POSITION')

 node_trans=position_node.find('.//Translation')

 position_entity=ClassPosition(nauo_entity)

 position_entity.unit="Degrees"

 position_entity.trans_x=float(node_trans.attrib['TX'])

 position_entity.trans_y=float(node_trans.attrib['TY'])

 position_entity.trans_z=float(node_trans.attrib['TZ'])

 node_rx=position_node.find('.//Rotation/RX')

 node_ry=position_node.find('.//Rotation/RY')

 node_rz=position_node.find('.//Rotation/RZ')

 position_entity.rotxx=float(node_rx.attrib['X'])

 position_entity.rotxy=float(node_rx.attrib['Y'])

 position_entity.rotxz=float(node_rx.attrib['Z'])

 position_entity.rotyx=float(node_ry.attrib['X'])

 position_entity.rotyy=float(node_ry.attrib['Y'])

 position_entity.rotyz=float(node_ry.attrib['Z'])

 position_entity.rotzx=float(node_rz.attrib['X'])

 position_entity.rotzy=float(node_rz.attrib['Y'])

 position_entity.rotzz=float(node_rz.attrib['Z'])

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-390-

 #retrieve instance's mass properties

 mass_prop_node=comp.find('.//MASS_PROPERTIES')

 cg_node=mass_prop_node.find('.//CG')

 inertia_node=mass_prop_node.find('.//INERTIA_MATRIX')

 cgrel_entity=ClassCGRel(nauo_entity)

 inertia_entity1=ClassInertiaRel(nauo_entity)

 cgrel_entity.cgx=float(cg_node.attrib['CGX'])

 cgrel_entity.cgy=float(cg_node.attrib['CGY'])

 cgrel_entity.cgz=float(cg_node.attrib['CGZ'])

 cgrel_entity.unit='m'

 #creation of the inertia matrix

 vectorx=[float(inertia_node.find('.//VectorIx').attrib['Ixx']),

 float(inertia_node.find('.//VectorIx').attrib['Ixy']),

 float(inertia_node.find('.//VectorIx').attrib['Ixz'])]

 vectory=[float(inertia_node.find('.//VectorIy').attrib['Iyx']),

 float(inertia_node.find('.//VectorIy').attrib['Iyy']),

 float(inertia_node.find('.//VectorIy').attrib['Iyz'])]

 vectorz=[float(inertia_node.find('.//VectorIz').attrib['Izx']),

 float(inertia_node.find('.//VectorIz').attrib['Izy']),

 float(inertia_node.find('.//VectorIz').attrib['Izz'])]

 InertiaMatrix=np.array([vectorx, vectory, vectorz])

 #calculation of Inertia Matrix's eigenvalues

 lambda_=np.linalg.eigvals(InertiaMatrix)

 #diagonalisation of the inertia matrix to obtain the moments according to main axes

 inertia_entity1.polar_x=float(inertia_node.find('.//VectorIx').attrib['Ixx'])-lambda_[0]

 inertia_entity1.diametral_y=float(inertia_node.find('.//VectorIy').attrib['Iyy'])-

lambda_[1]

 inertia_entity1.diametral_z=float(inertia_node.find('.//VectorIz').attrib['Izz'])-

lambda_[2]

 inertia_entity1.unit='kg.m2'

 #idenitfy the model of the component

 model_id=comp.attrib['Model_ID']

 mass_node=mass_prop_node.find('.//Mass')

 #retrieve the mass of the component calculated from the geometry and material properties

 nauo_mass_entity=ClassInstanceMass(mass_node.attrib['Value'], nauo_entity)

 nauo_mass_entity.unit=mass_node.attrib['MassUnit']

 if model_id != "No representation":

 model=models.find(".//MODEL[@Model_ID='%s']" % (model_id))

 if CADModel.get_by(name=model.attrib['Name']) == None :

 file_entity=CADFile(model.attrib['File'])

 start=str(model.attrib['File']).find('.')+1

 file_entity.format=str(model.attrib['File'])[start:]

 model_entity=CADModel(model.attrib['Name'], model.attrib['Revision'],

 file_entity)

 DesignDef_entity.models.append(model_entity)

 #retrieve shape depandant properties

 body_list=models.find(".//MODEL/BODY_LIST")

 #retrieve volume, material and mass parameters for each body composing the model

 for body in list(body_list):

 body_entity=ClassShapeBody(model_entity, body.attrib['Name'],

 to_bool(body.attrib['Main']))

 model_entity.bodies.append(body_entity)

 volume=float(body.attrib['Volume_m3'])

 dmd_=body.attrib['DMD']

 rho=float(body.attrib['Density_kg.m3'])

 body_mass=float(body.attrib['Mass_kg'])

 #retrieve body volume parameter

 volume_body_entity=ClassVolume(volume, 'm3', DesignDef_entity)

 body_entity.body_volume=volume_body_entity

 mass_body_entity=ClassCADMass(body_mass, 'kg', DesignDef_entity)

 body_entity.body_mass=mass_body_entity

 volume_body_entity.shape=model_entity

 mass_body_entity.shape=model_entity

 #retrieve dmd parameter

 if ClassMaterial.get_by(refdmd=dmd_)==None:

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-391-

 dmd_entity=ClassMaterial(dmd_, DesignDef_entity)

 #material_entity=ClassMaterial(dmd_entity.dmd, DesignDef_entity)

 body_entity.material=dmd_entity

 ClassDensity(dmd_entity, rho, 'kg.m3', DesignDef_entity)

 else:

 body_entity.material=ClassMaterial.get_by(refdmd=dmd_)

 #local mass properties for assemblies

 cg_abs_entity=ClassCGAbs(nauo_entity, DesignDef_entity)

 cg_abs_entity.unit='m'

 inertia_abs_entity=ClassInertiaAbs(nauo_entity, DesignDef_entity)

 inertia_abs_entity.unit='kg.m2'

 #assign nauo's effectivities

 nauo_entity.effs.append(EffList_entity)

 if not def_exist:

 #apply the same procedure on children components

 for child in list(comp_children_elt):

 #fill the child-parent dictionnary

 parent_map[child]=comp

 #Recursion on the children components

 parse_comp(child, nauo_entity, models)

 return parent_map

 return nauo_list

 '''

 Recursive function to collect all interfaces definition features present in the xml file

including interfaces attributes, interacting components, mating features and CAD interfaces

publications, etc.

 ’’’

def parse_links(model_list, link_list):

 for link in list(link_list):

 link_name=link.attrib['Linkage_Name']

 link_direct=to_bool(link.attrib['Direct'])

 link_perma=to_bool(link.attrib['Permanent'])

 link_domain=link.attrib['Domain']

 link_type=link.attrib['Linkage_Type']

 dof_node=link.find('.//DOF')

 params_node=link.find('.//LINKAGE_PARAMETERS')

 topo_node=link.find('.//LINKAGE_TOPOLOGY')

 #Creation of associated Interaction instances

 if link_domain == 'Mechanical':

 if link_type=='Bolted Flange':

 nb_holes=params_node.attrib['Nb_holes']

 nb_comps=params_node.attrib['Nb_comps']

 alignment=to_bool(params_node.attrib['Centrage'])

 interaction_entity=ClassBoltedFlange(nb_comps, alignment,

 nb_holes)

 if link_type=='Bolted Joint':

 interaction_entity=ClassBoltedJoint(type_bj='Bolted Joint')

 if link_type=='Bearing Joint':

 interaction_entity=ClassBearingJoint(direct=link_direct,

 permanent=link_perma,

 can_be_dismantled=True,

 techno='Ball bearing')

 if link_type=='Generic joint':

 generic_type=params_node.attrib['Interface_Type']

 interaction_entity=ClassGenericJoint(direct=link_direct,

 permanent=link_perma,

 joint_type=generic_type)

 # Retrieve the associated set of degrees of freedom values

 dof_entity=ClassDof(interaction_entity)

 dof_entity.Tx=to_bool(dof_node.attrib['Tx'])

 dof_entity.Ty=to_bool(dof_node.attrib['Ty'])

 dof_entity.Tz=to_bool(dof_node.attrib['Tz'])

 dof_entity.Rx=to_bool(dof_node.attrib['Rx'])

 dof_entity.Ry=to_bool(dof_node.attrib['Ry'])

 dof_entity.Rz=to_bool(dof_node.attrib['Rz'])

 interface_entity=ClassInterface(link_name, interaction_entity)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-392-

 # creation of a dictionary of interacting components

 related_comps=dict()

 #Retrieve all defined and published mating features and associated publications

 for mating_feature in list(topo_node):

 topo_type=mating_feature.attrib['Topology_Type']

 topo_name=mating_feature.attrib['Topology_Name']

 prd1=mating_feature.find('.//FIRST_COMPONENT')

 prd1_name=prd1.attrib['Component_Name']

 prd1_id=prd1.attrib['Instance_Id']

 prd1_model=prd1.attrib['CAD_Model_Id']

 if prd1.attrib['Publication'] !="":

 pub1=prd1.attrib['Publication']

 prd2=mating_feature.find('.//SECOND_COMPONENT')

 prd2_name=prd2.attrib['Component_Name']

 prd2_id=prd2.attrib['Instance_Id']

 prd2_model=prd2.attrib['CAD_Model_Id']

 if prd1.attrib['Publication'] !="":

 pub2=prd2.attrib['Publication']

 nauo1=nauo.get_by(name=prd1_id)

 if prd1_id not in related_comps:

 related_comps[prd1_id]=nauo1

 nauo2=nauo.get_by(name=prd2_id)

 if prd2_id not in related_comps:

 related_comps[prd2_id]=nauo2

 mating_comps=[nauo1, nauo2]

 model1=model_list.find(".//MODEL[@Model_ID='%s']" % (prd1_model))

 model2=model_list.find(".//MODEL[@Model_ID='%s']" % (prd2_model))

 cao1=CADModel.get_by(name=model1.attrib['Name'])

 pub1_entity=ClassMatingFeature(cao1, pub1)

 cao2=CADModel.get_by(name=model2.attrib['Name'])

 pub2_entity=ClassMatingFeature(cao2, pub2)

 #Treatment pre-defined mating features to build the interface templates

 if topo_type=='contact':

 topo_entity=ClassShapeContact(topo_name, nauo1, nauo2)

 if link_type=='Bolted Flange':

 if topo_name[:16]=='Appui_Plan_Bride':

 interface_entity.mating_features.append(topo_entity)

 interaction_entity.bf_planars.append(topo_entity)

 if topo_name[:14]=='Centrage_Bride':

 interface_entity.mating_features.append(topo_entity)

 interaction_entity.alignments.append(topo_entity)

 if link_type=='Bearing Joint':

 if topo_name[:20]=='Contact_Rotor_Stator':

 interface_entity.mating_features.append(topo_entity)

 interaction_entity.contact_rotor_stators.append(topo_entity)

 if topo_name[:19]=='Blocage_Translation':

 interface_entity.mating_features.append(topo_entity)

 interaction_entity.trans_blockings.append(topo_entity)

 if topo_type=='interference':

 topo_entity=ClassInterference(topo_name, nauo1, nauo2)

 interface_entity.mating_features.append(topo_entity)

 if topo_type=='clearance':

 topo_entity=ClassClearance(topo_name, nauo1, nauo2)

 interface_entity.mating_features.append(topo_entity)

 topo_entity.mating_features.append(pub1_entity)

 topo_entity.mating_features.append(pub2_entity)

 interface_entity.mating_features.append(topo_entity)

 interface_entity.related_comps.extend(related_comps.values())

...

Table 21: Extract of the python script for enriching the database with test-case data set (from the DMU XML file gener-
ated from CATIA)

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-393-

APPENDIX XIII

Figure 252: Product Integration process in BPMN

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-394-

APPENDIX XIV

PART A INTERFACE PART B

 Part
Mesh

Element
type

Publication/
port name

domain type techno
Ele-
ment
finite

Mesh el-
ement
type

Publication
port name

Mesh
element

type
part

IPPS
system

Pylon RBAR P-N_FC1 mechanical
Bolted
flange

Rivets
Node

to
node

RBAR N-P_FC1 RBAR nacelle

Nacelle RBAR N-E_FCf1 mechanical
Bolted
flange

rivet
Node

to
node

RBE2 E-N_FCf1 RBAR Engine

Nacelle RBAR N-E_FCR1 mechanical
Linear
contact

v-groove
Node

to
node

RBE2 E-N_FCR1 RBAR Engine

Nacelle RBAR N-E_FCR2 mechanical
Planar
contact

bolt
Node

to
node

RBE2 E-N_FCR2 RBAR Engine

Engine
RBE3 +
CELAS1

E-P_TBHR mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_TBHR CROD Pylon

Engine
RBE3 +
CELAS1

E-P_TBHL mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_TBHL CROD Pylon

Engine
RBE3 +
CELAS1

E-P_TBHM mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_TBHM CROD Pylon

Engine
RBE3 +
CELAS1

E-P_ICR mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_HSR

CELAS+
RBAR

Pylon

Engine
RBE3 +
CELAS1

E-P_ICL mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_HSL

CELAS+
RBAR

Pylon

Engine
RBE3 +
CELAS1

E-P_FCL mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_FCL CROD Pylon

Engine
RBE3 +
CELAS1

E-P_FCR mechanical
Bolted
flange

Ball
socket
joint

Node
to

node
RBE2 P-E_FCR CROD Pylon

ENGINE
system

Front
Case

RBAR FC-IC mechanical
Bolted
flange

Bolt
Node

to
node

CELAS IC-FC RBAR InterCase

Front
Case

RBE2 FC-HPR mechanical Bearing
Ball bear-

ing

Node
to

node
CELAS2- HPR-FC RBAR HP Rotor

Table 22: Detailed interface specifications for PPS IFEM creation

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-395-

APPENDIX XV

<?xml version="1.0" encoding="UTF-8" ?>

<fl:RFLPImportExport xsi:schemaLocation="RFLP.ImportExport RFLPImportExport.xsd" Role="VPLMDesigner"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" CATIAInfo="B212_3_0" Organisation="Company Name"

xmlns:fl="RFLP.ImportExport" User="YFP" Project="Standard">

 <fl:ImplementLink Custo="CRE_Implement" Type="RefRef" ID="ID_Cnx_21" Name="Cnx_21" Modeler="RFLPLMImplementCon-

nection">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_ImplCnx_21" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Cnx_21" Type="String" Name="Name" Manda-

tory="N"/>

 <fl:SourceCtx IDRef="ID_YFP_ROOT_Product"/>

 <fl:TargetCtx IDRef="ID_YFP_Root_Logical"/>

 </fl:ImplementLink>

 <fl:ImplementLink Custo="CRE_Implement" Type="PortPort" ID="ID_Cnx_Port Logical on Root-YFP_Publication_3D"

Name="Cnx_Port Logical on Root-YFP_Publication_3D" Modeler="RFLPLMImplementConnection">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_ImplCnx_163" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Cnx_Port Logical on Root-YFP_Publication_3D"

Type="String" Name="Name" Mandatory="N"/>

 <fl:SourceCtx IDRef="YFP_ROOT_Product"/>

 <fl:SourcePath>

 <fl:Object IDRef="Publication_00"/>

 </fl:SourcePath>

 <fl:TargetCtx IDRef="YFP_Root_Logical"/>

 <fl:TargetPath>

 <fl:Object IDRef="Port_Logical on RootL"/>

 </fl:TargetPath>

 </fl:ImplementLink>

 <fl:ImplementLink Custo="CRE_Implement" Type="PortPort" ID="ID_Cnx_sub-1" Name="Cnx_sub-1" Modeler="RFLPLMImple-

mentConnection">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_ImplCnx_165" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Cnx_sub-1" Type="String" Name="Name" Manda-

tory="N"/>

 <fl:SourceCtx IDRef="YFP_ROOT_Product"/>

 <fl:SourcePath>

 <fl:Object IDRef=""/>

 </fl:SourcePath>

 <fl:TargetCtx IDRef="YFP_Root_Logical"/>

 <fl:TargetPath>

 <fl:Object IDRef="ID_CRE_LogicalRef_143.1"/>

 <fl:Object IDRef="Port_Logical on subL"/>

 </fl:TargetPath>

 <fl:SourceCtx IDRef="ID_YFP_ROOT_Product"/>

 <fl:SourcePath>

 <fl:Object IDRef=""/>

 </fl:SourcePath>

 <fl:TargetCtx IDRef="ID_YFP_Root_Logical"/>

 <fl:TargetPath>

 <fl:Object IDRef="ID_CRE_LogicalRef_143.1"/>

 </fl:TargetPath>

 </fl:ImplementLink>

 <fl:ImplementLink Custo="CRE_Implement" Type="PortPort" ID="ID_Cnx_sub-2" Name="Cnx_sub-2" Modeler="RFLPLMImple-

mentConnection">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_ImplCnx_167" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Cnx_sub-2" Type="String" Name="Name" Manda-

tory="N"/>

 <fl:SourceCtx IDRef="YFP_ROOT_Product"/>

 <fl:SourcePath>

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-396-

 <fl:Object IDRef=""/>

 </fl:SourcePath>

 <fl:TargetCtx IDRef="YFP_Root_Logical"/>

 <fl:TargetPath>

 <fl:Object IDRef="ID_YFP_Sub_Logical2.1"/>

 <fl:Object IDRef="Port_150"/>

 </fl:TargetPath>

 <fl:SourceCtx IDRef="ID_YFP_ROOT_Product"/>

 <fl:SourcePath>

 <fl:Object IDRef=""/>

 </fl:SourcePath>

 <fl:TargetCtx IDRef="ID_YFP_Root_Logical"/>

 <fl:TargetPath>

 <fl:Object IDRef="ID_YFP_Sub_Logical2.1"/>

 </fl:TargetPath>

 </fl:ImplementLink>

 <fl:Reference Custo="CRE_Logical" H="117" ID="ID_YFP_Root_Logical" Name="YFP_Root_Logical" ImagePath="/Im-

ages/ID_YFP_Root_Logical_---.emf" Modeler="RFLVPMLogical" W="252">

 <fl:ObjectAttribute InternalName="E_power_02" Value="0W" Type="Real" Name="Cooling power" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_01" Value="" Type="String" Name="E_Fem_Rep" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_03" Value="" Type="String" Name="E_Pub" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_02" Value="" Type="String" Name="E_Domain" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogRef_142" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="V_version" Value="---" Type="String" Name="Version" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_YFP_Root_Logical" Type="String" Name="Name"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Mandatory="N"/>

 <fl:Port Custo="CRE_Logical" ID="ID_Port_Logical on RootL" Name="Port_Logical on RootL" Modeler="RFLVPMLogi-

cal">

 <fl:ObjectAttribute InternalName="E_frc_01" Value="-1N" Type="Real" Name="Calculated max Force"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_01" Value="" Type="String" Name="Calculated Force direction"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_03" Value="" Type="String" Name="E_Pub" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogPort_43" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="V_Direction" Value="In" Type="Enumere" Name="Direction" Manda-

tory="N"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Port_Logical on RootL" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Port>

 <fl:Instance X="110" Y="148" Custo="CRE_Logical" H="48" ID="ID_CRE_LogicalRef_143.1"

Name="CRE_LogicalRef_143.1" IDRef="ID_YFP_Sub_Logical1" Modeler="RFLVPMLogical" W="72">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogInst_1" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_CRE_LogicalRef_143.1" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Instance>

 <fl:Instance X="234" Y="147" Custo="CRE_Logical" H="48" ID="ID_YFP_Sub_Logical2.1" Name="YFP_Sub_Logical2.1"

IDRef="ID_YFP_Sub_Logical2" Modeler="RFLVPMLogical" W="72">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogInst_113" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_YFP_Sub_Logical2.1" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Instance>

 <fl:Connection Custo="CRE_Logical" ID="ID_Cnx_sub1-sub2" Name="Cnx_sub1-sub2" Modeler="RFLVPMLogical">

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-397-

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogCnx_29" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Cnx_sub1-sub2" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 <fl:Path>

 <fl:Object IDRef="ID_YFP_Sub_Logical2.1"/>

 <fl:Object IDRef="ID_Port_150"/>

 </fl:Path>

 <fl:Path>

 <fl:Object IDRef="ID_CRE_LogicalRef_143.1"/>

 <fl:Object IDRef="ID_Port_Logical on subL"/>

 </fl:Path>

 </fl:Connection>

 </fl:Reference>

 <fl:Reference Custo="CRE_Logical" H="336" ID="ID_YFP_Sub_Logical1" Name="YFP_Sub_Logical1" ImagePath="/Im-

ages/ID_YFP_Sub_Logical1_---.emf" Modeler="RFLVPMLogical" W="504">

 <fl:ObjectAttribute InternalName="E_power_02" Value="0W" Type="Real" Name="Cooling power" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_01" Value="" Type="String" Name="E_Fem_Rep" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_03" Value="" Type="String" Name="E_Pub" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_02" Value="" Type="String" Name="E_Domain" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogRef_143" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="V_version" Value="---" Type="String" Name="Version" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_YFP_Sub_Logical1" Type="String" Name="Name"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Mandatory="N"/>

 <fl:Port Custo="CRE_Logical" ID="ID_Port_Logical on subL" Name="Port_Logical on subL" Modeler="RFLVPMLogical"

IDExposedInstance="ID_SignalInstanceType_21">

 <fl:ObjectAttribute InternalName="E_frc_01" Value="-1N" Type="Real" Name="Calculated max Force"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_01" Value="" Type="String" Name="Calculated Force direction"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_03" Value="" Type="String" Name="E_Pub" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogPort_42" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="V_Direction" Value="In" Type="Enumere" Name="Direction" Manda-

tory="N"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Port_Logical on subL" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Port>

 <fl:Instance Custo="CRE_Type" ID="ID_SignalInstanceType_21" Name="SignalInstanceType_21"

IDRef="ID_SignalInstance_21" Modeler="RFLVPMSystemType">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_TypeInst_21" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_SignalInstanceType_21" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Instance>

 </fl:Reference>

 <fl:Reference Custo="CRE_Logical" H="336" ID="ID_YFP_Sub_Logical2" Name="YFP_Sub_Logical2" ImagePath="/Im-

ages/ID_YFP_Sub_Logical2_---.emf" Modeler="RFLVPMLogical" W="504">

 <fl:ObjectAttribute InternalName="E_power_02" Value="0W" Type="Real" Name="Cooling power" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_01" Value="" Type="String" Name="E_Fem_Rep" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_03" Value="" Type="String" Name="E_Pub" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_02" Value="" Type="String" Name="E_Domain" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogRef_356" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="V_version" Value="---" Type="String" Name="Version" Mandatory="N"/>

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-398-

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_YFP_Sub_Logical2" Type="String" Name="Name"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Mandatory="N"/>

 <fl:Port Custo="CRE_Logical" ID="ID_Port_150" Name="Port_150" Modeler="RFLVPMLogical" IDExposedIn-

stance="ID_SignalInstanceType_22">

 <fl:ObjectAttribute InternalName="E_frc_01" Value="-1N" Type="Real" Name="Calculated max Force"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_01" Value="" Type="String" Name="Calculated Force direction"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_str_03" Value="" Type="String" Name="E_Pub" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_LogPort_150" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="V_Direction" Value="Out" Type="Enumere" Name="Direction" Manda-

tory="N"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_Port_150" Type="String" Name="Name"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Port>

 <fl:Instance Custo="CRE_Type" ID="ID_SignalInstanceType_22" Name="SignalInstanceType_22"

IDRef="ID_SignalInstance_21" Modeler="RFLVPMSystemType">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_TypeInst_22" Type="String" Name="E_Ex-

port_id" Mandatory="Y"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_SignalInstanceType_22" Type="String"

Name="Name" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Manda-

tory="N"/>

 </fl:Instance>

 </fl:Reference>

 <fl:Reference Custo="CRE_Type" ID="ID_SignalInstance_21" Name="SignalInstance_21" Modeler="RFLVPMSystemType">

 <fl:ObjectAttribute InternalName="E_export_id" Value="CRE_TypeRef_21" Type="String" Name="E_Export_id" Man-

datory="Y"/>

 <fl:ObjectAttribute InternalName="V_version" Value="---" Type="String" Name="Version" Mandatory="N"/>

 <fl:ObjectAttribute InternalName="PLM_ExternalID" Value="ID_SignalInstance_21" Type="String" Name="Name"

Mandatory="N"/>

 <fl:ObjectAttribute InternalName="V_description" Value="" Type="String" Name="Description" Mandatory="N"/>

 </fl:Reference>

</fl:RFLPImportExport>
Table 23: XML representation of the logical and behavioural architecture of the PPS exported from Enovia V6

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:j.0="http://www.vinci-consulting.com/siemens/" >

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/connection#1">

 <j.0:flowconnectionrevision_hasPorts rdf:resource="http://www.vinci-consulting.com/dssystemview/port#5"/>

 <j.0:flowconnectionrevision_revision>A</j.0:flowconnectionrevision_revision>

 <j.0:flowconnectionrevision_name>Cnx_sub1-sub2</j.0:flowconnectionrevision_name>

 <j.0:flowconnectionrevision_masterRef>#ID_Cnx_sub1-sub2master</j.0:flowconnectionrevision_masterRef>

 <j.0:flowconnectionrevision_hasMasterRef rdf:nodeID="A0"/>

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/flowconnectionrevision"/>

 <j.0:flowconnectionrevision_id>ID_Cnx_sub1-sub2</j.0:flowconnectionrevision_id>

 <j.0:flowconnectionrevision_hasPorts rdf:resource="http://www.vinci-consulting.com/dssystemview/port#4"/>

 <j.0:flowconnectionrevision_subType>Network</j.0:flowconnectionrevision_subType>

 <j.0:flowconnectionrevision_accessRefs>#id11</j.0:flowconnectionrevision_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A0">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/flowconnection"/>

 <j.0:flowconnection_subType>Network</j.0:flowconnection_subType>

 <j.0:flowconnection_name>Cnx_sub1-sub2</j.0:flowconnection_name>

 <j.0:flowconnection_id>ID_Cnx_sub1-sub2master</j.0:flowconnection_id>

 <j.0:flowconnection_catalogueId>ID_Cnx_sub1-sub2mastercatId</j.0:flowconnection_catalogueId>

 <j.0:flowconnection_accessRefs>#id11</j.0:flowconnection_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/reference#3">

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-399-

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/product"/>

 <j.0:product_subType>Functionality</j.0:product_subType>

 <j.0:product_productId>ID_YFP_Root_LogicalprodId</j.0:product_productId>

 <j.0:product_name>YFP_Root_Logical</j.0:product_name>

 <j.0:product_id>ID_YFP_Root_Logical</j.0:product_id>

 <j.0:product_accessRefs>#id11</j.0:product_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A1">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_parentRef>#ID_CRE_LogicalRef_143.1occProdId</j.0:occurrence_parentRef>

 <j.0:occurrence_instancedRef>#ID_Port_Logical on subL</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>ID_Port_Logical on subLoccPortId</j.0:occurrence_id>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/instance2#3">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/productrevision"/>

 <j.0:productrevision_subType>FunctionalityRevision</j.0:productrevision_subType>

 <j.0:productrevision_revision>A</j.0:productrevision_revision>

 <j.0:productrevision_name>YFP_Sub_Logical2.1</j.0:productrevision_name>

 <j.0:productrevision_masterRef>ID_YFP_Sub_Logical2</j.0:productrevision_masterRef>

 <j.0:productrevision_id>ID_YFP_Sub_Logical2.1</j.0:productrevision_id>

 <j.0:productrevision_hasMasterRef rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#3"/>

 <j.0:productrevision_hasChild rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#5"/>

 <j.0:productrevision_accessRefs>#id11</j.0:productrevision_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A2">

 <j.0:productview_hasOccurrence rdf:nodeID="A3"/>

 <j.0:productview_hasOccurrence rdf:nodeID="A4"/>

 <j.0:productview_hasOccurrence rdf:nodeID="A5"/>

 <j.0:productview_rootRefs>id6</j.0:productview_rootRefs>

 <j.0:productview_hasOccurrence rdf:nodeID="A6"/>

 <j.0:productview_hasOccurrence rdf:nodeID="A1"/>

 <j.0:productview_ruleRefs>#id2</j.0:productview_ruleRefs>

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/productview"/>

 <j.0:productview_hasOccurrence rdf:nodeID="A7"/>

 <j.0:productview_primaryOccurrenceRef>id6</j.0:productview_primaryOccurrenceRef>

 <j.0:productview_hasOccurrence rdf:nodeID="A8"/>

 <j.0:productview_id>id4</j.0:productview_id>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/instance2#2">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/productrevision"/>

 <j.0:productrevision_subType>FunctionalityRevision</j.0:productrevision_subType>

 <j.0:productrevision_revision>A</j.0:productrevision_revision>

 <j.0:productrevision_name>CRE_LogicalRef_143.1</j.0:productrevision_name>

 <j.0:productrevision_masterRef>ID_YFP_Sub_Logical1</j.0:productrevision_masterRef>

 <j.0:productrevision_id>ID_CRE_LogicalRef_143.1</j.0:productrevision_id>

 <j.0:productrevision_hasMasterRef rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#3"/>

 <j.0:productrevision_hasChild rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#4"/>

 <j.0:productrevision_accessRefs>#id11</j.0:productrevision_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A8">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_parentRef>#ID_YFP_Sub_Logical2.1occProdId</j.0:occurrence_parentRef>

 <j.0:occurrence_instancedRef>#ID_Port_150</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>ID_Port_150occPortId</j.0:occurrence_id>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A9">

 <j.0:plmxml_hasProductRevision rdf:resource="http://www.vinci-consulting.com/dssystemview/instance2#2"/>

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/plmxml"/>

 <j.0:plmxml_hasFlowConnectionRevision rdf:resource="http://www.vinci-consulting.com/dssystemview/connection#1"/>

 <j.0:plmxml_xmlns>http://www.plmxml.org/Schemas/PLMXMLSchema</j.0:plmxml_xmlns>

 <j.0:plmxml_hasProductView rdf:nodeID="A2"/>

 <j.0:plmxml_language>en-us</j.0:plmxml_language>

 <j.0:plmxml_hasProductRevision rdf:nodeID="A10"/>

 <j.0:plmxml_hasTerminal rdf:resource="http://www.vinci-consulting.com/dssystemview/port#5"/>

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-400-

 <j.0:plmxml_hasTerminal rdf:resource="http://www.vinci-consulting.com/dssystemview/port#4"/>

 <j.0:plmxml_hasTerminal rdf:resource="http://www.vinci-consulting.com/dssystemview/port#3"/>

 <j.0:plmxml_hasFlowConnection rdf:nodeID="A0"/>

 <j.0:plmxml_author>Teamcenter P9000.1.0.20120215.01 - Engineer, Ed@TC91 SiemensDC(-2079025999)</j.0:plmxml_author>

 <j.0:plmxml_hasProductRevision rdf:resource="http://www.vinci-consulting.com/dssystemview/instance2#3"/>

 <j.0:plmxml_schemaVersion>6</j.0:plmxml_schemaVersion>

 <j.0:plmxml_hasProduct rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#5"/>

 <j.0:plmxml_hasProduct rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#3"/>

 <j.0:plmxml_date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-06T18:53:26.516Z</j.0:plmxml_date>

 <j.0:plmxml_hasProduct rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#4"/>

 <j.0:plmxml_time rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-06T18:53:26.516Z</j.0:plmxml_time>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A10">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/productrevision"/>

 <j.0:productrevision_subType>FunctionalityRevision</j.0:productrevision_subType>

 <j.0:productrevision_revision>A</j.0:productrevision_revision>

 <j.0:productrevision_name>YFP_Root_Logical</j.0:productrevision_name>

 <j.0:productrevision_masterRef>#ID_YFP_Root_Logical</j.0:productrevision_masterRef>

 <j.0:productrevision_id>rootPRid</j.0:productrevision_id>

 <j.0:productrevision_hasChild rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#3"/>

 <j.0:productrevision_accessRefs>#id11</j.0:productrevision_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/port#5">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/terminal"/>

 <j.0:terminal_subType>Network_Port</j.0:terminal_subType>

 <j.0:terminal_portOn rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#5"/>

 <j.0:terminal_name>Port_150</j.0:terminal_name>

 <j.0:terminal_id>ID_Port_150</j.0:terminal_id>

 <j.0:terminal_accessRefs>#id11</j.0:terminal_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A11">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/reference"/>

 <j.0:reference_type>connection</j.0:reference_type>

 <j.0:reference_occurrenceRef>#ID_Port_Logical on subLoccPortId</j.0:reference_occurrenceRef>

 <j.0:reference_id>ID_Cnx_sub1-sub2ID_Port_Logical on subL</j.0:reference_id>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A7">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_parentRef>#id6</j.0:occurrence_parentRef>

 <j.0:occurrence_instancedRef>#ID_Cnx_sub1-sub2</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>ID_Cnx_sub1-sub2occConnId</j.0:occurrence_id>

 <j.0:occurrence_hasReference rdf:nodeID="A12"/>

 <j.0:occurrence_hasReference rdf:nodeID="A11"/>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A4">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_parentRef>#id6</j.0:occurrence_parentRef>

 <j.0:occurrence_instancedRef>#ID_Port_Logical on RootL</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>ID_Port_Logical on RootLoccPortId</j.0:occurrence_id>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A3">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_occurrenceRefs>ID_Cnx_sub1-sub2occConnId</j.0:occurrence_occurrenceRefs>

 <j.0:occurrence_occurrenceRefs>ID_Port_Logical on RootLoccPortId</j.0:occurrence_occurrenceRefs>

 <j.0:occurrence_occurrenceRefs>ID_YFP_Sub_Logical2.1occProdId</j.0:occurrence_occurrenceRefs>

 <j.0:occurrence_occurrenceRefs>ID_CRE_LogicalRef_143.1occProdId</j.0:occurrence_occurrenceRefs>

 <j.0:occurrence_instancedRef>#rootPRid</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>id6</j.0:occurrence_id>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/port#3">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/terminal"/>

 <j.0:terminal_subType>Network_Port</j.0:terminal_subType>

 <j.0:terminal_portOn rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#3"/>

 <j.0:terminal_name>Port_Logical on RootL</j.0:terminal_name>

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-401-

 <j.0:terminal_id>ID_Port_Logical on RootL</j.0:terminal_id>

 <j.0:terminal_accessRefs>#id11</j.0:terminal_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/reference#4">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/product"/>

 <j.0:product_subType>Functionality</j.0:product_subType>

 <j.0:product_productId>ID_YFP_Sub_Logical1prodId</j.0:product_productId>

 <j.0:product_name>YFP_Sub_Logical1</j.0:product_name>

 <j.0:product_id>ID_YFP_Sub_Logical1</j.0:product_id>

 <j.0:product_accessRefs>#id11</j.0:product_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A12">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/reference"/>

 <j.0:reference_type>connection</j.0:reference_type>

 <j.0:reference_occurrenceRef>#ID_Port_150occPortId</j.0:reference_occurrenceRef>

 <j.0:reference_id>ID_Cnx_sub1-sub2ID_Port_150</j.0:reference_id>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/port#4">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/terminal"/>

 <j.0:terminal_subType>Network_Port</j.0:terminal_subType>

 <j.0:terminal_portOn rdf:resource="http://www.vinci-consulting.com/dssystemview/reference#4"/>

 <j.0:terminal_name>Port_Logical on subL</j.0:terminal_name>

 <j.0:terminal_id>ID_Port_Logical on subL</j.0:terminal_id>

 <j.0:terminal_accessRefs>#id11</j.0:terminal_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:about="http://www.vinci-consulting.com/dssystemview/reference#5">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/product"/>

 <j.0:product_subType>Functionality</j.0:product_subType>

 <j.0:product_productId>ID_YFP_Sub_Logical2prodId</j.0:product_productId>

 <j.0:product_name>YFP_Sub_Logical2</j.0:product_name>

 <j.0:product_id>ID_YFP_Sub_Logical2</j.0:product_id>

 <j.0:product_accessRefs>#id11</j.0:product_accessRefs>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A5">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_parentRef>#id6</j.0:occurrence_parentRef>

 <j.0:occurrence_occurrenceRefs>ID_Port_150occPortId</j.0:occurrence_occurrenceRefs>

 <j.0:occurrence_instancedRef>#ID_YFP_Sub_Logical2.1</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>ID_YFP_Sub_Logical2.1occProdId</j.0:occurrence_id>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A6">

 <rdf:type rdf:resource="http://www.vinci-consulting.com/siemens/occurrence"/>

 <j.0:occurrence_parentRef>#id6</j.0:occurrence_parentRef>

 <j.0:occurrence_occurrenceRefs>ID_Port_Logical on subLoccPortId</j.0:occurrence_occurrenceRefs>

 <j.0:occurrence_instancedRef>#ID_CRE_LogicalRef_143.1</j.0:occurrence_instancedRef>

 <j.0:occurrence_id>ID_CRE_LogicalRef_143.1occProdId</j.0:occurrence_id>

 </rdf:Description>

</rdf:RDF>
Table 24: Representation of the logical and behavioural architecture of the PPS transformed into in RDF1

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-402-

APPENDIX XVI

The BDA architecture framework

The BDA Architecture Framework (BDA-AF) is a structured set of process and information models

and reference guidelines, which enables CRESCENDO partners to share a common understanding of

the objectives and concepts required to define and manage the Behavioural Digital Aircraft architec-

ture and system of enabling capabilities. To provide the structured set of process and information

models and reference guidelines, a four layered structure has been defined, as illustrated on Figure

253:

 Level 1: The Business (Process) Layer and architecture

 Level 2: The Functional (Logical) Layer and architecture

 Level 3: The Application (Tool) Layer and architecture

 Level 4: The (Information) Technology Layer and architecture

Figure 253: BDA Architecture Framework Layers and related artefacts

The layering enables a decoupling of the business processes, functions, applications and technol-

ogies supporting the BDA capability system. Therefore, when a layer is modified, the impacts on the

same level and on the others will be effectively identified; which offers a better change control.

The BDA Information Model Hierarchy

A key aspect of the BDA is the management and sharing of information by the components of the

BDA and the various actors that use the BDA. If the BDA is to be implemented as an open and modular

BUSINESS

Architecture

FUNCTIONAL

Architecture

APPLICATION

Architecture

TECHNOLOGY

Architecture

PRINCIPLES,

VISION &

REQTS

Technical

Coherency

Principles

CRESCENDO

BDA Vision for

M&S

USE CASES Benefits

assessment &

HLO

PP
Int’n

Therm
A/C

Value
Gen

Energy
A/C

Business

REQUIREMENTS

General + UC/TC

specific (database

+ templates)

PROCESSES

SP2 SP3 SP4

SP5 (BDA generic)

BUSINESS

CONCEPTS

MODEL

Prelim Design Detail Definition VT & VC

TC 1 TC x TC n

BDA ACTORS
BDA

GLOSSARY

BUSINESS

OBJECTS

MODEL

BDA

DATA

MODEL

BDA (SP5)

CAPABILITIES

Services /

Functions

(templates)

BUSINESS

(composite)

SERVICES

DATA

(lower level)

SERVICES

Technology

Standards

BDA (SP5)

CAPABILITIES

Specifications

IS / IT Solutions

Federated

Validation

Platform

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-403-

architecture, information models should be specified and based on standards. In particular, the fol-

lowing has been defined, with reference to the related layers of the BDA architecture framework:

 The Business Concept model i.e. the information requirements identified during the develop-

ment of the processes that are to be supported by the BDA;

 The Business Object model i.e. the information that is generated by or consumed by BDA

functions and services;

 The BDA data model i.e. the information that is managed by the BDA components.

The information models identified above are hierarchical with mappings between the layers in the

hierarchy as shown in Figure 254 below.

Figure 254: The information model hierarchy and how it relates to business processes and services.

BDA Business Concept model

The Business Concept Model (see Figure 255) is positioned in the Business Layer of the BDA-AF.

The Business Concept Model is used to define information at a business level and is referenced by the

process models that define how the BDA will be used. The definitions and terminology defining the

information are expressed in the language used by business domain experts (the end users). The in-

formation is conceptual. In other words, the information does not provide sufficient detail for imple-

mentation, but rather acts as a high level specification and requirement for the lower level information

layers.

The Business Concept Model does not need to have a formal mapping to the Business Object

model. However the Business Object model has the responsibility to be able to represent the concepts

and semantics expressed by the Business Concept model.

BDA Business Object model

The Business Object Model (see Figure 256) is positioned in the Functional Layer of the BDA-AF.

The Business Object Model is derived from the Business Concept model (and influenced by the process

models) and is also represented as an information model, but might have another structure.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-404-

From a Business Object model perspective, the Business Concept model serves as the require-

ments of the information and semantics that needs to be represented by a set of information entities

and their behaviour which results in the higher level BDA Business services / functions.

Hence, the Business Object Model is a more detailed information model that documents the in-

formation that is consumed by or provided by the BDA functions and services.

The Business Object Model is also seen from the Data Model perspective as an abstraction, or

aggregation of a set of entities governed by the Data Model. The Business Object Model is a strict

mapping to a selected set of Data Model entities and defines how these Data Model entities are pop-

ulated.

The Business Object model can be represented, for example, using UML class model with a defi-

nition, attributes and relationships.

BDA Data Model

The Data Model is positioned in the Application Layer of the BDA-AF. The Data Model is an inte-

grated information model for representing the product data through life (from concept, through de-

sign, to in service and disposal). The Business Object Model maps to the Data Model.

The BDA Data Model specifies the data that is consumed or provided by Data Services. These ser-

vices collect the data for the higher level Business or Composite Services.

In order to ensure an open and modular architecture, it is proposed that the BDA Data Model is

mainly based on appropriate existing information standards, such as ISO 10303-239/233.

The Data Model can be represented, for example, using UML class model with a definition, attrib-

utes and relationships

BDA Business services (Functions)

The Business services are positioned in the Functional Layer of the BDA-AF.

The BDA Business services comprise methods and functionality that operates on larger chunks of

Business Objects using business logic that cannot be expressed using the more fine-granular BDA Data

services. For example, a Business Service (function) could be invoked and also invoke other external

methods, or services. Some semi-automated orchestrations could be invoked as BDA Business services.

BDA Data Services

The Data Services are positioned in the Application Layer of the BDA-AF. The BDA Data services

provide an implementation model based on the BDA Business Object model. The Data services provide

CRUD (Create, Read, Update and Delete) functionality for the Business objects defined in the Business

Object model.

In addition to the characteristics defined for each Business Object, the Data Services defines addi-

tional characteristics necessary for using the Business Objects in an implementation environment. For

example, attributes for data provenance, internal system identification tokens, last updated, last mod-

ified, created by, created on etc.

The Data Services can be implemented using various technologies, for example by using Web Ser-

vices, or any other XML Schema based technology since the Business Object model and the Business

Services are defined independent from any communication protocol.

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-405-

The overview diagrams for the Business Concept and Business Object Models are shown below.

Figure 255: Business Concept Model Overview

Appendixes T. Vosgien

- Model-Based System Engineering enabling Design-Analysis Data Integration in Digital Design Environments -
Application to collaborative aeronautics simulation-based design process and turbojet integration studies

-406-

Figure 256: Business Object Model overview

