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Introduction 

1. Background 

In the second part of the last century, due to relative market stability and low product 

diversity, hierarchical manufacturing control architectures were widely accepted and 

deployed for manufacturing control, since long-term optimality was possible. Nevertheless, 

this scenario evolved towards more customer-designed products, higher product variety, 

shorter product life cycles, smaller lot sizes and shorter lead times, requiring more flexibility, 

reactivity and adaptability of manufacturing control. Flexible manufacturing systems (FMS) 

tried to respond to such challenges but their efficiency had been constrained by hierarchical 

control architectures. Therefore, heterarchical FMS control architectures emerged supported 

by leading-edge-technologies advocating for more decentralization of control decisions. 

Heterarchical architectures also provide other benefits in terms of low-complex control 

architecture, local reactivity to internal and external perturbations, and adaptability to 

production and market changes among others. Unfortunately and despite the benefits claimed 

by heterarchical FMS control, these architectures have been rarely adopted in industry 

because of two main reasons. First, it is not easy to predict outcomes due to local behavior 

and the absence of centralized control. Second, as a consequence of local behavior, it is 

difficult to guarantee a minimum level of operational performance, yet production objectives 

can be compromised by critical issues such as deadlocks. These two barriers are mainly due 

to the myopic behavior showed by local decisional entities in heterarchical FMS control. This 

myopic view comes from the high degree of autonomy, local goal orientation and locally 

contained information experienced by decisional entities. 

2. Motivation and objectives 

Given the opportunities and the benefits that heterarchical FMS control architectures can 

offer to the development and implementation of agile, highly-adapted and competitive 

manufacturing systems; the question is how can these architectures provide better global 

performance without losing the benefits obtained with decentralization? Specifically, since 

myopic behavior is one of the causes of the lack of global performance guarantee, the main 

questions are can myopic behavior be reduced or controlled? If so, can this reduction or 

control be achieved by structural and/or operational features? And what is the impact of those 

structural changes and additional features to the underlying heterarchical architecture?  
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So far, heterarchical FMS control architectures that have been proposed by researchers 

focused on enhancing global performance but not explicitly tackling myopic behavior. As a 

result, they proved to be more complex, putting at stake important characteristics of 

heterarchy such as reactivity, fault-tolerance and adaptability, possibly yielding more rigid 

hierarchies than heterarchy. The scope of this dissertation can be summarized as follows: 

Myopic behavior can be reduced by means of simulation-based optimization techniques 

within a semi-heterarchical architecture, in which different decision-making roles and 

interaction modes between decisional levels can coexist, aiming for a balance between global 

performance and reactivity. 

This assumption is based on the following foundations: 

 Semi-heterarchical architectures can merge the benefits of hierarchy in terms of global 

performance and heterarchy in terms of reactivity, adaptability and fault tolerance 

 Simulation-based optimization techniques can be used for decision making support within 

a hierarchical decisional level with the possibility of different decision-making roles, thus 

different ways of reducing myopic behavior may exist. 

 Within a semi-heterarchical approach, different types of dynamic behaviors between 

decisional levels may exist, therefore myopic behavior can be reduced through various 

instances of the architecture 

In this dissertation, the proposed semi-heterarchical architecture is composed of two 

decisional levels, global and local. The global level aims at explicitly reducing myopic 

behavior of the local level while it also ensures certain global performance. The proposed 

configuration for the global level is based on, looking for a balance between myopic behavior 

reduction (hence performance improvement) and reactivity to disruptions caused by market 

fluctuations and the stochastic nature of manufacturing processes. Operationally, myopic 

behavior can be reduced by different decision-making roles adopted by the simulation-based 

optimization techniques and different interaction modes between the two decisional levels. 

The following specific requirements were also sought: 

 The methodological approach should be focused on dealing with myopic behavior from a 

granular perspective to decouple myopic behavior into several myopic control decisions 

that can be dealt individually. 

 The configuration of the global decisional entity should be modular and adaptive to be 

able to reduce myopic decisions with the same granular perspective. Adaptability should 

be accomplished on the basis of internal and external perturbations. 
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 Such modularity should also be present in the interaction between global and local 

decisional entities so different levels of local autonomy can be achieved. 

 The proposed semi-heterarchical architecture must be generic so it is capable to support 

different types of local control approaches and/or highly reactive rules at the local level. 

 The proposed approach must be evaluated on benchmark problems. 

3. Outline of the thesis 

This dissertation is organized in five chapters as follows: 

Chapter 1. It presents important definitions of manufacturing control, flexible 

manufacturing systems, the existing decision-making algorithms that can be used in 

heterarchical-based FMS control, and the evolution of control architectures. In addition, 

myopic behavior is defined and typified in regards to other domains and the few works that 

treat this issue in the manufacturing context. 

Chapter 2. This chapter focuses on reviewing the state-of-the-art in myopic behavior 

reduction. Several approaches were reviewed and classified according to the type of control 

architecture, fully heterarchical or semi-heterarchical; and the technique used to reduce 

myopic behavior, optimization, simulation or simulation-based optimization. In order to 

better understand this literature review, a general framework for reducing myopic behavior, 

issued from the analysis of the literature, is proposed to the reader. 

Chapter 3. Taking as reference the literature review and the proposed general 

framework, a semi-heterarchical simulation-based optimization approach to reduce myopic 

behavior in FMS control is described in this chapter. At first, the general features of the 

proposed approach are detailed and then the proposed semi-heterarchical FMS (SHFMS) 

control architecture is described. Since the core of the SHFMS is the decisional entity, the 

internal structure of global and local decisional entities is detailed as well as the possible 

hierarchical interaction modes. The control strategy under normal and abnormal conditions is 

also explained as well as a procedure to generate an instance of the proposed approach. 

Chapter 4. This chapter describes an instance of the approach proposed in the 

precedent chapter. To this end, the FMS control problem, its parameters, assumptions and 

constraints taken into account are described first. Such information is afterwards used to 

configure the semi-heterarchical architecture by defining global and local decisional entities, 

as well as their interaction modes and control strategy. 
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Chapter 5. With all the constituent components being described in the previous 

chapter, herein a prototype implementation of the proposed approach into an assembly cell is 

described. At first, the experimental data is detailed and then the implementation of each 

decisional entity is described. The evaluation of the proposed approach was executed on the 

basis of a simulation study and then with hardware-in-the-loop experimentations on the 

assembly cell. The simulation study was carried out for static and dynamic scenarios taking 

into consideration two objective functions (single-objective problems) and three different 

configurations of the global decisional entity. Hardware-in-the-loop experimentations took 

some problem instances under normal and abnormal conditions to be executed at the 

assembly cell. 

Some conclusions and future work are offered at the end of this dissertation.
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Chapter I. Myopic Behavior in Flexible 

Manufacturing Systems Control 

1. Introduction 

The objective of this chapter is to define and position myopic behavior as a key research 

topic in manufacturing control. To this end, some important concepts about manufacturing 

systems and control are defined in Section I-2. The chapter focuses on flexible manufacturing 

systems (FMSs) presenting among others some important types of flexibilities (Section I-3). 

Two dimensions of FMS control are then detailed: the decision-making algorithms and the 

control architectures, respectively in Sections I-4 and I-5. This is followed by a discussion on 

current challenges, requirements and issues related to FMS control (Section I-6). Being 

myopic behavior one of those issues and the topic of this work, myopic behavior in 

manufacturing control is defined and typified in Section I-7. 

2. Manufacturing systems 

Manufacturing is the transformation process of raw materials into finished products 

demanded by the market. In a manufacturing system additional inputs are required, e.g., 

energy, equipments and facilities, labor, market information, and product design; and 

inevitably, non-desired outputs such as waste and scrap are also generated (Papadopoulos et 

al., 2009). An efficient and effective management of a manufacturing system is necessary to 

attain the company’s objectives while optimizing inputs and minimizing non-desired outputs. 

Performance criteria to assess the efficiency and effectiveness of a manufacturing system can 

be defined by four factors: flexibility, quality, cost, time and re-configurability 

(Chryssolouris, 1992; Brennan et al., 2008). 

From a systemic point of view, a manufacturing system is composed of three sub-

systems: physical, informational and decisional (Blanc et al., 2008)blanc. The physical sub-

system (i.e., manufacturing resources such as machines and material-handling systems) is in 

charge of the transformation of raw materials, labor work and energy into finished products; 

and other functions such as goods transport and storage. The informational sub-system 

gathers all the information required to monitor internal and external variables necessary for 

controlling the system. The informational sub-system also supplies the decisional sub-system 
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with the required data so the latter can control the entire manufacturing system to meet the 

objectives (Blanc et al., 2008).  

As depicted in Figure I-1, the decisional sub-system has been typically decomposed into 

three levels: strategic, tactical and operational depending on the long, medium or short term 

horizon of control decisions executed at each level (Caramia and Dell’Olmo, 2006; Gudehus 

and Kotzab, 2012).  

 

The strategic level is the administrative level of the organization and is responsible for 

developing strategies to ensure the capability of the company to reach its goals and fulfill the 

requirements of the future. Activities at this level can be classified as business, design and 

production planning activities. Business activities are related to customer agreements and 

supplier contracting. Design activities establish which types of products need to be 

manufactured, types of manufacturing resources needed and the layout to support production 

(further information on shop floor layouts is available in Appendix A-I). Production planning 

then issues the production requirements (i.e., quantities, products, due dates, etc) in a master 

production schedule, using information based on forecasts and market analysis, and the 

capacity status returned by the tactical level.  

At the tactical level, the master production schedule is used to calculate medium-term 

plans, transformed into production orders, either predicted orders or real customer orders 

Manufacturing resources

Real-time data

Raw materials, 

labor work, energy
Finished products, waste, 

environmental impact

Process perturbations

Product 

dispatching

On-line 

monitoring

Schedules

Material & capacity requirements 

planning

Business goals

Long-term planningStrategic level  

Tactical level  

Manufacturing Control 

Capacity status

Production 

performance

Schedule 

performance
Manufacturing status

Market demands and fluctuations

Production order 

execution

Production orders

Production plans

Operational Level

Information flow

What Where

Scheduling (short term)

When

 

Figure I-1: Typical decisional levels in manufacturing systems (adapted from (Caramia and Dell’Olmo, 2006; 

Leitão, 2004)) 
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depending on the type of production environment, make-to-stock or make-to-order 

(production environments and their related performance criteria are detailed in Appendix A-

II). On the basis of product composition (known as bill of materials), these plans issue the 

adequate material requirements and procurement orders to the suppliers. In addition, a rough-

cut capacity plan is also generated to check if the manufacturing system can handle the 

imposed demand. Typically, Material Requirements Planning (MRP), Manufacturing 

Resource Planning (MRP-II) and/or Enterprise Resource Planning (ERP) carry out decision 

tasks at the strategic and tactical levels. 

On the operational level, the production orders generated at the tactical level are executed 

based on real time and current conditions of manufacturing resources. The operational level is 

also known as manufacturing control (Chryssolouris et al., 1991). The word "control" is 

used since this level is also in charge of monitoring the production order execution and 

making the necessary decisions to meet the imposed requirements defined at the upper levels, 

taking the appropriate corrective actions if any perturbation appears. 

As shown in Figure I-1, manufacturing control is the main activity at the operational 

level. However,  maintenance (Gao et al., 2006), inventory (Hnaien et al., 2010) and capacity 

(Cho and Prabhu, 2007) are other control problems, strongly related to manufacturing that are 

dealt at the operational level. Henceforth, this work focuses on manufacturing control. In the 

most general sense, manufacturing control is mainly composed of three activities: scheduling, 

product dispatching and on-line process monitoring (Caramia and Dell’Olmo, 2006; Leitão, 

2004). Scheduling, also termed as detailed or short-term scheduling due to the short 

decision horizon,  defines the product flow though manufacturing resources, deciding "what" 

must be manufactured, at what time and during which time periods (i.e., "when"); and by 

using which manufacturing resources (i.e., "where") (Parunak, 1991). What-type decisions 

are related to what product should be processed next (i.e. product sequencing), what 

manufacturing task should be executed next (i.e., task sequencing), what path should be taken 

(i.e. routing). When-type decisions precise start and finish times for the aforementioned 

problems, for instance, when a product should be released (i.e. release time), when a product 

should enter a machine’s waiting line (i.e., arrival times). Last, where-type decisions allocate 

specific resources to accomplish manufacturing tasks, e.g., manufacturing operations, 

transport, and storage. All those decisions generate several manufacturing control sub-

problems (e.g., task and product sequencing, product routing, machine selection, among 

others) because those decisions must be made respecting managerial and technical constraints 

such as manufacturing resources’ capacity, preemptions, precedence, setup times, among 

others (Pinedo, 2008; Shafaei and Brunn, 2000).  
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An usual industrial practice is to generate short-terms schedules and then proceed to 

product dispatching to execute those schedules taking into account current status of 

manufacturing resources (Caramia and Dell’Olmo, 2006). Last, the on-line monitoring 

revises possible deviations caused by internal errors, process and machine perturbations and 

reports the schedule performance to the scheduling module so this can react and adapt 

properly, ensuring the continuing operation of the system. 

With the constant emergence of new technologies, higher product variety, smaller lot 

sizes and shorter lead times, the concept of flexibility in manufacturing has become a key 

competitive attribute to respond to market, product and process related changes (Sethi and 

Sethi, 1990; Petkova and van Wezel, 2006). The emergence of flexible manufacturing 

systems (FMSs) is an important development in this direction. 

3. Flexibility in manufacturing systems 

Several definitions of flexibility can be found in related literature since there has been no 

agreement on a particular definition and also on the types of flexibility present in a 

manufacturing system (Buzacott and Mandelbaum, 2008). So far, based on the review made 

by Petkova and van Wezel, (2006), 141 different definitions of flexibility have been proposed 

and flexibility has been classified in 49 different types. In the broadest sense, flexibility can 

be defined as "the manufacturing capability to cope with internal and external changes" 

(Pyoun and Choi, 1994). Therefore, flexibility of a manufacturing system is dependent upon 

its components (machines, MHS, etc.), capabilities, interconnections, and the mode of 

operation and control (Joseph and Sridharan, 2011a). 

3.1. Types of flexibility 

Manufacturing flexibilities can be classified in three main types: basic, system and 

aggregate (Sethi and Sethi, 1990). Basic flexibilities, i.e., machine, material handling and 

operation flexibilities, are related to manufacturing system’s components and parts to be 

produced. System and aggregate flexibilities concern the manufacturing system as a whole. In 

the context of this dissertation, the flexibilities defined below are considered relevant. Further 

information of these and other types of flexibilities can be found in (Bordoloi et al., 1999; 

ElMaraghy, 2006; Naim et al., 2006; Sethi and Sethi, 1990). 

Machine flexibility refers to the variety of operations that a machine can perform with 

reasonable changeover time.  

Material-handling flexibility is the ability to offer alternative transfer routes to different 

product types. 
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Operation flexibility is a property of the product that allows alternative manufacturing 

operation sequences to process the same product.  

Process flexibility relates to the set of products that can be manufactured without major 

setup changes. A direct consequence of this flexibility is the absence of constraints on the 

sequence of operations (i.e., products) on each manufacturing resource (i.e., multiple product 

release sequences). 

Machine-sequence flexibility is its ability to produce a part by alternative machine 

sequences. In the operations research domain, this type of flexibility is known as routing 

flexibility. The term machine-sequence flexibility was adopted to avoid any confusion with 

the transfer routes between machines. The effect of machine-sequence flexibility on FMS 

performance has been widely recognized (Baykasoğlu and Özbakir, 2008); Joseph and 

Sridharan, 2011b). 

Volume flexibility is the ability to change the volume of output of a manufacturing 

process (D’Souza and Williams, 2000). In continuously changing markets and consumer 

behaviors, companies' profitability lies in the extent to which they can adapt their production 

volume to the demand (Hallgren and Olhager, 2009). 

3.2. Flexible manufacturing systems (FMS) 

Highly specialized transfer lines dedicated to mass production have evolved towards 

flexible systems, with heterogeneous components and different layouts. Flexible 

manufacturing systems (FMS) were introduced in the 1970s aiming for greater 

responsiveness to market changes, rapid turnaround, high quality, low inventory costs, and 

low labor costs (Basnet and Mize, 1994; ElMaraghy, 2006). Browne et al., (1984) defined a 

FMS as “an integrated, computer controlled complex of automated material handling devices 

and compute numerically controlled (CNC) machine tools that can simultaneously process 

medium-sized volumes of a variety of product types”. Generally speaking, a FMS is expected 

to combine the productivity efficiency of transfer lines and the flexibility of job shops to 

attain mid-volume, mid-variety needs (Chan and Chan, 2004). Two examples of commercial 

FMS are shown in Figure I-2
1,2

. 

On one hand, the positive effects of a FMS are in fact attained if FMS’s flexibility is 

properly utilized by the FMS control system (Anand and Ward, 2004; Baykasoğlu and 

Özbakir, 2008).  On the other hand, internal flexibilities related to components, products and 

                                                 
1
  Image from http://www.arnold-gruppe.de/index.php?id=2&L=1 (visited 12/03/2014) 

2
 Image from http://kuka.corporate-reports.net/reports/kuka/annual/2010/gb/English/1050/bric-nations-growth-market.html (visited 

12/03/2014) 
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processes together with the number and heterogeneity of FMS components and their 

interrelationships, impose more complexity into the FMS control system (Chan and Chan, 

2004; ElMaraghy et al., 2012; Pereira, 2013). Consequently, flexibility and FMS control are 

inseparable and obviously major elements necessary for providing a good performance level 

(Anand and Ward, 2004; Baykasoğlu and Özbakir, 2008). 

 

Figure I-2: Examples of an FMS. a) Basic FMS
1
, b) FMS in automobile industry

2
 

Our interest is focused on FMS control, and to design it, it is necessary to define the 

decision-making algorithms responsible for making control decisions and specify the control 

architecture that allocates those decision-making algorithms to one or more control system 

components. The next section presents a review of decision-making algorithms while Section 

I-5 takes a closer look on control architectures. 

4. Decision-making algorithms 

According to definitions of manufacturing control given in Section I-2, FMS control 

corresponds to operational level decisions dealing with scheduling, dispatching and on-line 

monitoring of FMS components and production status. For the most part, it is FMS 

scheduling that is in charge of orchestrating resource utilization, ensuring responsiveness to 

changes in resource conditions and production demands, and meet production objectives. 

CNC
Industrial robots

Storage systems

Material-handling systems
a..
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Thus, FMS performance strongly depends on scheduling decisions. Therefore, since the FMS 

scheduling algorithm takes into the decision-making process carry out in the operational 

level, herein we consider scheduling algorithms as decision-making algorithms. This section 

focuses on those decision-making algorithms that have been used for FMS control.  

From an Operations Research perspective, scheduling in FMS is a more complex version 

of the classical flexible job-shop scheduling problem, which is known to be NP-hard 

(Conway et al., 2003). Therefore, it is frequently observed in literature that the FMS 

scheduling problem is addressed with hard assumptions (e.g., neglecting transport times, 

unlimited buffer capacity), constraint relaxations, and regular and single performance criteria 

(Shnits et al., 2004; Shirazi et al., 2011). Since there are different types of algorithms, there 

has been extensive studies on scheduling algorithms, each one proposing their own 

classification depending on different features, such as algorithm complexity, optimality 

degree and type of environment, i.e., deterministic or stochastic (Baker, 1998; Spano et al., 

1993; Vieira et al., 2003). Herein, scheduling algorithms are classified in four basic 

approaches depending on the quality of solutions and algorithm complexity: optimal and 

near-optimal, artificial intelligence, heuristics and dispatching rules (denoted from a) to d) in 

Figure I-3). 

 

The algorithm complexity refers to the amount of information and the computational 

effort the algorithm requires to analyze the continuous expansion of possible combinations of 

FMS control states with time, either combinatorial or periodic (Chryssolouris et al., 2013). 

Hence, the algorithm complexity determines the reactivity of the decision-making algorithm, 

meaning its capacity to start a decision making process for searching alternative solutions, 

evaluating them and selecting one at each decisional point (e.g., due to a perturbation) as 

shown in Figure I-4. Thus, there is a high risk of global performance loss if decision making 
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is not undertaken or the algorithm’s time to provide a solution is significantly high compared 

to system dynamics. Therefore, the overall performance of a decision-making algorithm can 

be defined as the balance between the quality of the solution (i.e., alternative solution 

analysis) and the algorithm’s reactivity. 

As mentioned in Section I-3.2, FMS are characterized by a high level of complexity; 

hence analytical methods searching for optimal solutions are solvable only for small 

problems under simplified assumptions and can rarely provide good reactivity (Lee and 

Cheng, 1996). Conversely, low-complex scheduling algorithms applying heuristics and 

dispatching rules have been proposed to reduce such complexity by assessing less amounts of 

information, tackling control decisions for short-time periods and simultaneously improving 

the control system’s reactivity. In the middle (Figure I-3), artificial intelligence techniques 

have demonstrated their success because of their ability to find good (not necessarily 

optimum) solutions in reasonable time periods. 

In complex cases such as FMS scheduling, coupling simulation with optimization 

techniques can be a suitable alternative to improve the algorithm’s performance under 

different conditions (Iassinovski et al., 2003). More on the role of simulation in FMS control 

is given in Section 4.4. 

 

4.1. Optimal and nearly optimal approaches 

These methods are issued from the Operations Research domain. Optimal methods are 

based on mathematical programming, such as linear programming algorithms, dynamic 

programming and branch and bound methods (Pinedo, 2008). Since using optimal methods to 

solve realistic problems is computationally intensive, nearly optimal methods try to reduce 

the algorithm complexity by relaxing certain problem requirements and constraints, with for 
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example Lagrangian relaxation techniques (Baker, 1998). For instance, the FMS problem can 

be modeled as the travelling salesman problem or the flexible job shop problem (Toth, 2000; 

Rossi and Dini, 2007). Some examples implementing integer linear programs in FMS control 

are reported by Pach (2013) and Gou et al., (1994). 

4.2. Artificial Intelligence (AI) approaches 

Contrary to optimal algorithms, AI-based algorithms try to mimic the human brain or 

biological systems in an attempt to find good solutions (possibly the optimal) to high 

complex problems, with less calculation effort thus favoring reactivity (Brooks, 1995). Meta-

heuristics such as simulated annealing (SA), Tabu search (TS), genetic algorithms (GA), ant 

colony optimization (ACO) and particle-swarm optimization (PSO) are some examples. For 

instance, AI-based approaches dealing with the FMS problem divide the scheduling problem 

into various sub-problems (i.e., machine allocation, route and task selection), for which 

different AI-based algorithms can be used, either sequentially or integrated (Roshanaei et al., 

2013). In the cases of Kang et al., (2007) and Asadzadeh and Zamanifar, (2010) ACO and 

parallelized GAs are used within a multi-agent architecture to deal with job-shop-based 

problems. 

Artificial intelligent approaches have evolved towards distributed approaches (distributed 

artificial intelligence, DAI) to avoid that a single entity carries out with global information 

and centralized algorithms necessitating global models. The DAI field has significantly 

contributed to manufacturing control with modeling approaches based on biology, physics 

and social organizations (a brief description of some well-known modeling approaches is 

presented in Appendix B). In DAI approaches, decisional entities are typified based on the 

manufacturing control components (e.g., machines, products, orders, workcells) and they 

create schedules progressively using negotiation protocols, such as bidding (Lima et al., 

2006; Wei et al., 2007), market-like mechanisms (Lin and Solberg, 1992; Wu and Weng, 

2005) or product-driven techniques (Zbib et al., 2012). More examples are reported in 

literature reviews conducted by Shen et al. (2006a) and Shen et al. (2006b).  

4.3. Heuristics and dispatching rules approaches 

Heuristics and dispatching rules are probably the simplest techniques and by far the most 

commonly implemented techniques in industry (Baker, 1998). Their success lies in that 

feasible solutions can be generated in a reasonable amount of time, even for highly complex 

problems. Though they are highly reactive, their performance cannot be proven to be within 

an acceptable range or evolve towards optimality. Forward/backward heuristics, beam search 

and greedy are some of the mostly used heuristics. For example, Wang et al., (2008) 
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proposed a filtered-beam-search-based heuristic inside a cell coordination agent to control 

FMSs. 

In turn, dispatching rules are the most simple rules, since they are temporally local and do 

not try to predict the future, but make decisions based on current and local information. 

Dispatching combined with priority rules for resource allocation is the best known heuristic 

for scheduling (Reaidy et al., 2006). Hybrid dispatching rules, either sequential or integrated, 

can also be implemented to improve the system response to various types of conditions (Sels 

et al., 2012). 

4.4. Simulation-based optimization 

(Shannon, 1998) defined simulation as "the process of designing a model of a real system 

and conducting experiments with this model for the purpose of understanding the behavior of 

the system and/or evaluating various strategies for the operation of the system". A simulation 

model can be conceived as a set of algorithms, instructions, rules or equations that represent 

the system (Zeigler et al., 2000). The valuable contribution of simulation for manufacturing 

systems modeling and analysis relies in several advantages (Habchi and Berchet, 2003; 

Shannon, 1998). For instance, a simulation model can be constructed from a system that 

already exists or a system that is in the designing stage. More, realistic models are possible, 

especially for complex and stochastic systems (e.g., FMSs) for which analytical methods are 

perceived unhelpful or extremely difficult. Furthermore, several options and alternatives can 

be considered for evaluating different conditions and situations that otherwise would not be 

possible. 

Simulation of manufacturing systems is performed using one of three simulation 

methods: Discrete Event Simulation (DES), System Dynamics (SD), and Agent-Based 

Modeling and Simulation (ABS
3
) (Seleim et al., 2012). Although these simulation techniques 

have been mainly used for manufacturing systems design, with the first models dating back to 

the 1960s (Law and McComas, 1987); an increasing number of research is being focused on 

simulation for manufacturing systems operation applications, especially for complex 

manufacturing systems such as FMSs. Within the operation of manufacturing systems, 

simulation has been used to address different problems regarding operations planning and 

scheduling, maintenance operations planning, real-time control and operating policies 

(Negahban and Smith, 2014).  

The features provided by the new generation of simulation software facilitate the 

integration of the simulation models with production control systems. Mainly used as a 

                                                 
3 Herein, the term ABS (Agent-based Simulation) is used as a generic term, which includes ABM (Agent-based 

Modeling). 
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descriptive technique, simulation has been applied to evaluate schedules through a series of 

computer-based experiments, estimate performance measures of re-scheduling strategies, 

assess the impact of a re-scheduling interval or test what-if scenarios and use such 

information for rescheduling (Pfeiffer et al., 2008). Schedules can be generated using 

traditional approaches such as dispatching rules and heuristics or artificial intelligence 

techniques (Li et al., 2000; Chan and Chan, 2004; Negahban and Smith, 2014). The main 

drawback of this technique is to know how to drive the experiments since multiple simulation 

replications with possible multiple parameter combinations require abundant computing 

capacity (Hong and Nelson, 2009). Optimization techniques such as gradient, stochastic, 

response surface and heuristic-based methods have been proposed to orchestrate simulation 

experiments, aiming to improve the process by only evaluating a smaller percentage of 

alternatives, without sacrificing performance (Paris and Pierreval, 2001; Law and McComas, 

2002; Habchi and Berchet, 2003). Due to these reasons, simulation-based optimization 

techniques have attracted increasing attention for many researchers in areas such as supply 

chain (Ding et al., 2005), vehicle control (Montoya-Torres et al., 2005), manufacturing 

systems design (Truong and Azadivar, 2003), among others. 

5. Control architectures 

The control architecture defines the blueprint for the design and construction of FMS 

control (Smith et al., 1996). Depending on the structure, the control architecture allocates 

control responsibilities on one or more decisional entities, determines the inter-relationships 

between them and establishes the coordination mechanisms for the execution of control 

decisions. According to the definition proposed by Trentesaux (2009), a decisional entity 

(DE) is a generic term referring to any kind of autonomous unit able to communicate, to 

make decisions and to act within a manufacturing scenario.  

Four basic manufacturing control architectures have been identified (Dilts et al., 1991; 

Trentesaux, 2009): centralized, fully hierarchical, fully heterarchical and semi-heterarchical 

(Figure I-5). The centralized control is characterized by a single DE, i.e., centralized 

controller, which controls the entire system (Vieira and Veiga, 2009; Dilts et al., 1991). Aside 

from the fact that centralized control allows global optimization since the controller has an 

entire view of the system, there are hardly any other benefits of this control architecture 

(Duffie, 2008; Vieira and Veiga, 2009). In the following, the other control architectures are 

briefly described. 
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5.1. Fully hierarchical control architectures 

These architectures divide the control system into various control levels to reduce the 

complexity of centralized approaches. In a hierarchical structure, interactions strictly follow a 

top-down flow of commands, establishing a rigid master-slave relationship between decision-

making levels. Hence, decisions at one level constraint the decisions at the sub-sequent lower 

level, limiting the responsibilities and authority at each level (Smith et al., 1996). Typically, 

at the top of the hierarchy there is a single decisional entity that is in charge of tracking the 

overall system efficiency along the entire planning horizon. Planning horizons become 

shorter as the level goes down, shifting level functions from planning to execution. Feedback 

and status report from subordinate levels are sent to upper levels, integrating data and feeding 

aggregate data bases at each level (Dilts et al., 1991; Parunak, 1991). Compared to the 

centralized structure, hierarchical architectures allow an incremental and gradual 

implementation of control, which results in reduced software development time. More, the 

division of control into several levels not only allows integrating adaptive behaviors, but also 

limits the complexity, resulting in faster response times (Dilts et al., 1991).  

Since the AMRF architecture was proposed in 1981 (Jones and McLean, 1986), other 

architectures such as MSI (Senehi et al., 1994), CIM-OSA (Kosanke et al., 1999) and PAC 

(Maglica, 1997) have been proposed, focusing more on the operational decisional level, 

instead of the complete enterprise system. But it is probably the concept of computer 

integrated manufacturing (CIM) that benefits more from hierarchical control architectures, 

since most of CIM implementations display a hierarchical structure (Bongaerts et al., 2000; 

Nagalingam and Lin, 2008).  

In spite of these benefits, the rigidity of hierarchical control imposes some major 

disadvantages. As pointed out by Trentesaux (2009) sufficient long-term and global 

optimization is only achieved when deterministic behaviors are assumed. And, due to the 
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rigid structure, entities can hardly be reactive and take the initiative to deal with 

perturbations. Instead, perturbations must be propagated to the upper planning levels, 

generating lags and disfavoring the system’s agility (Van Brussel et al., 1999; Monostori et 

al., 2006). As a consequence, introducing fault tolerance into hierarchical structures without 

significantly increasing system complexity is a difficult and expensive task (Duffie, 1990). In 

addition, hierarchical architectures are difficult to modify and maintain, making any 

structural changes (e.g., adding or withdraw machines, controllers) difficult while the system 

is operating (Van Brussel et al., 1999). 

5.2. Fully heterarchical control architectures 

Since the 1980s, several researches have expressed their concern about the rigidity of 

fully hierarchical architectures. Hatvany (1985) pointed out the need for a new type of control 

architecture taking advantage on distributed computing and inspired on open system 

architectures, such as communication networks. Heterarchical control architectures were thus 

proposed based on fully decentralized control, retention of a minimal amount of global 

information (eliminating the need of global databases), and cooperation among loosely 

coupled, autonomous, communicating decisional entities (Hatvany, 1985; Duffie, 1990; 

Duffie, 2008). Fault tolerance is achieved by the decomposition of the system into quasi-

independent decisional entities, resulting in high local autonomy and avoiding master-slave 

relationships. Time critical responses are handled locally and should be independent of other 

time critical responses from other entities. However, decisional entities are encouraged to 

cooperate with each other, but following the principle of least commitment (Duffie, 1996). 

The adaptability of heterarchical architectures is ensured by independent modes of operation 

of decisional entities and their equal rights to access resources.  

Regardless its numerous benefits, fully heterarchical architectures have been rarely 

implemented due to several issues (Prabhu, 2003; Trentesaux, 2009). Leitão (2009) classified 

these issues in two groups: development- and conceptual-related aspects. Development-

related restrictions arise from the lack of design methodologies and standards defining 

explicitly the structure of decisional entities, the cooperation methods, communication and 

interoperability protocols. Advances in commercial platforms and industrial controllers are 

also necessary to handle real-size industrial applications (Mařík and McFarlane, 2005). 

Conceptual issues are consequence of the high local autonomy. Since there is no central 

control element, these systems can be highly unpredictable and non-expected emergent 

behaviors can appeared, including chaotic behavior (Hogg and Huberman, 1991; Thomas et 

al., 2012). In addition to that, incomplete information make difficult to ensure that local 

decisions are globally coherent, thus it is hard to guarantee a minimum level of performance 

(Duffie and Prabhu, 1994). Hence, global optimization is not possible, and conversely, local 
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responses to perturbations can induce still larger perturbations in the system (Van Brussel et 

al., 1999). 

5.3. Semi-heterarchical control architectures 

Semi-heterarchical control (also called modified hierarchical by Dilts et al. (1991) tries to 

combine the advantages of hierarchical and heterarchical architectures, while avoiding their 

respective drawbacks. Though semi-heterarchy implies multi-level relationships, the 

difference with purely hierarchical structures lies in the low-level autonomy. In this particular 

architecture, the notion of upper-level suggests more flexible and adaptive entity 

relationships, avoiding rigid structures. Thus, the upper-level decisional entity
4
 (or entities) 

becomes an assistant, capable of processing more information than low-level entities, 

handling all sorts of interaction issues and conflicts at the lower level, and solving the duality 

of local and global performance (Dilts et al., 1991). Consequently, the overall efficiency of 

the system is managed by the upper level since it has a better view of the entire system, while 

robust operation and reactivity to perturbations is provided at the lower level (Monostori et 

al., 2006; Rahimifard, 2004). Two important points about semi-heterarchies have been also 

highlighted by Bongaerts et al. (2000). The first refers to the fact that hierarchy into 

heterarchy helps to predict the behavior of the control system. This is an important issue for 

industrial adoption of heterarchical-based approaches (i.e., fully heterarchical or semi-

heterarchical). The second benefit of hierarchy in heterarchy is that it eases the migration 

from current industrial fully hierarchical applications to more decentralized control 

approaches. 

The main shortcomings of this type of architecture are inherited from hierarchical 

relationships, the specification of autonomy for low-level entities and the coordination 

between levels. So far, most of semi-heterarchical approaches have proposed structural 

modifications that tend more towards hierarchy than heterarchy (Leitão, 2009). Although the 

basic heterarchical structure is not lost at all, the disadvantages of hierarchical dependencies 

overshadow the heterarchical principles. 

6. Challenges, requirements and issues of FMS control 

Manufacturing control, including FMS control, is facing several challenges issued from 

rapid technological innovations, globalized and customer-driven (i.e., mass customization) 

markets. Increasingly rapid technological leaps not only concern products but also 

manufacturing systems themselves. Rapid changes in manufacturing technology require 

manufacturing resources and control systems to be easily upgradeable, so new technologies 

                                                 
4
 Decisional entities at this level are usually refer as supervisors, mediators or coordinators depending on their functionalities. 
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and new functions can be readily integrated (Pereira and Carro, 2007). Manufacturing 

enterprises are intensively deploying computer, communication and information technologies 

in order to face constant changes pulled by globalization and mass customization (Morel et 

al., 2003). 

Indeed, globalization allows manufacturing companies to increase markets opportunities; 

however, globalization also leads to new issues related to the conception and management of 

supply chains. Supply chains are evolving towards extended and virtual enterprises aiming 

more dynamic and interoperable organizations. Such interoperability require full integration 

of heterogeneous software and hardware systems within at all levels of the enterprise and 

across the supply chain (Shen et al., 2006a). In the era of interconnection, we are moving 

towards the "Internet/Web of Things domain" were millions of devices can provide, request 

and obtain information available on the network (Guinard and Trifa, 2009; Atzori et al., 

2010). Nowadays, there is a weak coupling between enterprise resource planning (ERP), with 

the manufacturing execution system (MES) and control systems, even weaker or inexistent at 

the supply chain level (Pawlewski et al., 2009; Brintrup, 2010). 

Mass customization results in rapidly changing customer requirements, accelerated 

innovation and shorter product lifecycles. Nowadays, customers significantly influence 

manufacturing processes through the imposition of personal specifications and exigency for 

products with higher quality (Christo and Cardeira, 2007). As a consequence, manufacturing 

control has to deal with lower sized batches, even one-of-a-kind products, and smaller 

delivery times. Therefore, to accommodate such variations in product quantity, quality and 

specification types, manufacturing control requires to be flexible, scalable, and easily 

reconfigurable (McFarlane and Bussmann, 2003). In addition, control systems need to be 

reactive and adapt rapidly to external changes, fault tolerant to detect and gracefully recover 

from system failures and minimize their consequences; as well as modular and easy to 

interoperate to manage efficiently recent manufacturing technologies and legacy systems 

(Colombo and Karnouskos, 2009; Chituc and Restivo, 2009). In addition, new managerial 

philosophies such as Just-in-time production (JIT) impose additional requirements to 

eliminate or reduce several sources of waste (more insight on JIT production is imparted in 

Appendix A-III). 

Nevertheless, in the pursuit of those requirements there are still some issues to take into 

consideration such as high investment costs, the need of new interdisciplinary engineering 

and design methodologies, the guarantee of near-optimal or satisfactory performances with 

sufficient reactivity to face perturbations (Trentesaux, 2009; Leitão, 2009). Precisely, in the 

search for reactivity, adaptability and fault tolerance, it is likely to fall into low complex 

approaches that only evaluate few alternative solutions to favor rapid responses to production 
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changes, internal or external. Such myopic approaches would, most likely, yield short-term 

and partial gains (e.g., particular to certain clients, orders, products, etc). However, more 

often than not, such gains may lead to significant performance losses in the long-term and for 

the entire production. This myopic behavior has been identified as an issue in various areas 

related to manufacturing such as enterprise management and planning (Miller, 2002), 

marketing (Johnston, 2009), and manufacturing control (Trentesaux, 2009). The following 

section focuses on this myopic behavior, proposing a definition and typology of such 

behavior, along with its implication in FMS control. 

7. Myopic behavior 

Decision making is an everyday practice in human and productive organizations, aimed at 

setting-up goals and accomplishing them. The analogy of this term with that in the medical 

domain is the limited “visibility” of decision makers, i.e., human or artificial entities, to 

gather and assess information in the current and the long term, necessary to drive the system 

or organization towards the global objective (Trentesaux, 2009).  

With the evolution of control architectures towards non-centralization, i.e., heterarchy, 

myopic behavior becomes a more evident issue because each decisional entity has a narrower 

visibility of the entire system and it is only focused on its local objective. In addition, the fact 

that there is no central entity that guides them towards a global objective does not ensure that 

those local decisions are aligned with the global objective. Though myopic behavior seems an 

interesting attribute to keep with fast pace events and achieve short-delay responses, it is also 

a critical issue that affects the guarantee of a minimum operational performance (Duffie and 

Prabhu, 1994; Trentesaux, 2009).  

Aside from some authors that have identified this issue and very few works on the 

subject, myopic behavior has not been formally studied in heterarchical-based FMS control 

(HFMS), i.e., FMS control with heterarchical relationships, fully heterarchical or semi-

heterarchical (Zambrano Rey et al., 2011a). Different works and collaboration within the 

Production, Services and Information (PSI) Team of TEMPO Laboratory have allowed us to 

define and typify this behavior (Pach and Zambrano Rey, 2011; Pach, 2013). To this end, 

some concepts and characterizing elements were first withdrawn from other domains and 

then transferred in the HFMS control context. This section then follows this logic. 

7.1. Concepts of myopic behavior in other domains 

Myopic behavior has been studied in several domains such as economics, organizational 

behavior, finances, marketing, inventory theory and robotics. Table I-1 summarizes various 

types of myopic behaviors, their causes, the characteristics displayed by decision-makers, 
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possible consequences of myopic decisions and context. The conclusions of those works 

reveal that, in all cases, myopic decisions yield in performance losses, overemphasizing 

short-term and local efficiency instead of maximizing long-term share-holder performance. 

 

7.2. Myopic behavior in HFMS control 

In HFMS control, several characteristics reported in Table I-1 are manifested due to the 

local goal orientation, locally-contained information, and high degree of autonomy of 

loosely-linked decisional entities (Trentesaux, 2009; Leitão et al., 2010). For instance, 

bidding, market-like and product-driven approaches use frequent estimation of outcomes and 

decisional entities display selfish and competing behavior (Zbib et al., 2012); multi-agent and 

holonic systems encourage the formation of societal structures, such as holarchies, coalitions, 

teams, congregations, etc., limiting the interactions among entities and creating tight 

collaborations (Isern et al., 2011). Entities count on limited processing capacities, avoiding 

complex decision making rules and forecasting methods. Taking those elements and some 

previous works (Adam et al., 2011; Zambrano Rey et al., 2011a), the following definition of 

myopic behavior is then proposed (Zambrano Rey et al., 2013): 

  "Myopic behavior in heterarchical-based control occurs when entities are not capable 

of balancing their local objectives with the system’s global objectives, thus compromising the 

overall system’s performance. A myopic decisional entity experiences a social myopic 

Table I-1: Concepts of myopic behavior 

Domain Type of myopic 

behavior 

Causes Characteristics Consequences Context 

Economic 
(Thaler et al., 

1997) 

Myopic loss 
aversion 

External 
pressures 

Urgent decisions 

Frequent estimation of outcomes 
Short-term decisions 

Underestimation of sequences of 

investments 

Rejection of investment 
programs that would 

have been accepted 

otherwise 

Temporal 

Organization

al behavior 

(Reb and 

Connolly, 

2009) 

Myopic regret 

avoidance 

Self-concern over 

collective 

benefits 

Aversion to feedback 

Protection of the decision-makers in 

the short term 

Reduced task learning in 

the long term 

Social  

and  

temporal 

Marketing  
(Johnston, 

2009) 

Marketing Myopia 
(extensions of 

capability and 

boundary myopia) 

Unawareness of 
competences 

Isolation 

 

No idea of what customers really 
want 

Tight collaborations 

Lack of diversity 

Failure in creating new 
value propositions 

Social 

Knowledge 

inventory 

(Miller, 
2002) 

   

Managerial myopia Cognitive 

limitations 

Sequential attention to goals 

Limited, single-period foresight 

Lack of awareness of alternatives 
Considering investment decisions 

singularly rather than evaluating 

them as part of the overall portfolio 

Missing optimization 

opportunities and 

eliminates consideration 
of interactions 

 

Temporal 

and 

social 

Robotics 

(Mataric, 

1992) 

Myopia Ignorant 

coexistence 

Unreachable 
information 

 

Selfish behavior 

Local minima 

Oscillatory behavior 

Loss efficiency to reach 

global objectives and 

longer response times 

Social  

and 

temporal 

Robotics 
(Bajracharya 

et al., 2009) 

Myopic path 
planning 

Restricting 
perceptual look-

ahead distance 

Short-range sensing 
Short-range learning 

Restriction of the 
maximum safe driving 

speed 

Social 
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behavior and a temporal myopic behavior in terms of, respectively, projecting its decisions 

towards other entities in the organization and projecting its decisions in the long-term" 

Below, the social and the temporal dimensions of myopic behavior are explained before 

analyzing the implications of this issue for HFMS control. In Appendix C, an analysis of 

social and temporal myopia is carried out on two examples of FMS control approaches. 

7.3. The social dimension of myopic behavior 

Social myopia can be understood as a knowledge limitation of decisional entities. 

Knowledge constraints concern data awareness and decision techniques (Filip, 2008). Data 

awareness is a difficult task due to the highly dynamic nature of FMS and the amount of data 

to be collected and processed. In heterarchies, data is gathered locally by sensing the 

environment or inquiring other entities. Information sharing is the basis of cooperation
5
. 

Therefore, an entity becomes socially myopic when it is not able to directly access the data it 

requires, or it is able to obtain only partial information  (e.g., myopia in robotics – informed 

coexistence (Mataric, 1992). 

Once a certain amount of information has been gathered, it is the turn of the decision-

making algorithm to analyze it, to achieve its local goals and contribute to the 

accomplishment of global goals as well. To do so, decisional entities usually put together 

some planning, which is the sequence of actions or sub-actions that will leads from their 

current state to the objective (Pomerol, 1997). A decisional entity is also socially myopic due 

to its finite computation capabilities to construct such planning. As such, the problem is 

usually partitioned because it not only results in less information to collect and analyze, but 

also low-complex decision methods can be used and faster responses can be obtained. Thus, 

the solution is usually constructed progressively and decisional entities proceed depending on 

how results confirm their choices (as in myopic loss aversion (Thaler et al., 1997; Reb and 

Connolly, 2009), managerial myopia and myopic path planning (Bajracharya et al., 2009)). A 

particular example of this behavior results from using priority and dispatching rules, given 

that each rule only needs current production conditions and local information (Sels et al., 

2012).  

Taking these elements as reference, social myopia can be defined as a decision-making 

limitation concerning data gathering from the environment and from other entities, and its 

subsequent analysis to find alternative solutions. 

 

                                                 
5
 Herein, cooperation is understood as the ability of a decisional entity to built mutually acceptable plans and execute them (McFarlane and 

Bussmann, 2003) 
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7.4. The temporal dimension of myopic behavior 

Temporal myopia can be analyzed from two time-related limitations. The first limitation 

concerns the solution search process which depends on the time spent for searching 

alternative solutions. For instance, in cooperation-based approaches the communication costs 

can be determinant, especially in systems with a large number of participating entities 

(Becker et al., 2009). The second limitation is related with decision-making techniques and 

estimations of long-term consequences of short-term decisions. Given the high local 

autonomy of decisional entities in heterarchical-based control, it is very hard to anticipate 

reactions of other entities and the environment because of the combinatorial nature of entities 

interactions and delays between actions and reactions (Feigenbaum et al., 2003; Benaissa et 

al., 2008). From this assumption, it can be concluded that temporal and social myopic 

behaviors are closely related. 

To reduce temporal myopic behavior, additional look-ahead capabilities may be used but 

at the price of incurring in supplementary costs issued from longer processing times. 

Therefore, temporal myopic entities end up by working on smaller decision horizons 

overemphasizing current-term results at the expense of long-term performance. Then, the 

quality of the final solution is very sensitive to the definition of such decision horizon (Jia et 

al., 2009).  

As for social myopia, the following definition of temporal myopia is proposed: temporal 

myopia is a time-related knowledge limitation concerning the long-term estimation of current 

decisions, on a local and a collective perspective. 

Though myopic behavior is beneficial for reactivity and low-complex decision making, it 

has certain implications on FMS control, which are presented in the next part.  

7.5.  Implications of myopic behavior for HFMS control 

Myopic behavior has been recognized as an important barrier for adopting heterarchical 

control in industrial applications because it makes it hard to predict and guarantee a certain 

level of global performance (Duffie and Prabhu, 1994; Mařík and Lažanský, 2007). As it has 

been mentioned, the behavior expected from interacting myopic entities results in local 

optimality since there is no explicit way to relate the effect of those local actions to global 

system performance. Therefore, global performance is highly sensitive to the underlying 

myopic decision-making algorithms (Maione and Naso, 2003). 

A second implication of myopic behavior has been identified as system nervousness 

(Hadeli et al., 2006). This issue arises when decisional entities react abruptly and without 

forecasting their decisions. The system becomes nervous because those decisions may trigger 
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subsequent disruptions in other planning activities such as maintenance, inventory, 

procurement, etc; resulting in additional rescheduling costs (Pujawan, 2004). 

Last, another undesirable effect of myopic behavior is the unpredictability associated to 

the decision-making algorithm. On one hand, myopic behavior helps to respond quickly to 

unpredictable changes in the manufacturing system and its environment; but on the other 

hand, the way in which decision-making algorithms will react is also unpredictable, so it is 

hard to determine beforehand if a perturbation will be handled efficiently or not. In some 

cases, myopic decisions can lead to deadlocks, which probably results in more performance 

losses than those caused by the perturbation. 

8. Synthesis and discussion 

Manufacturing is one of the most important wealth generators for a country, and therefore 

manufacturing efficiency is at the most important matter. In the last decades, manufacturing 

industry has been facing several challenges (e.g., globalization, mass customization, market 

volatility, short product life-cycles), requiring highly adaptive, reactive and fault-tolerant 

manufacturing control. Flexible manufacturing systems have been implemented in the search 

of efficient production systems in environments with rapid changes, small batches and high 

variety of products. However, to achieve those requirements it is necessary an intelligent 

control system that makes an efficient use of flexibility. 

Leading-edge technologies in computing, industrial communications and software 

platforms have allowed the upcoming of new control architectures and algorithms focused on 

heterarchical control and intelligent decisional entities, capable to communicate, make 

decisions and cooperate to reach global objectives. Those new paradigms are suitable for 

FMS control given its complexity and the heterogeneity of components and manufacturing 

operations. However, in spite of promising advances, heterarchical-based control leaves some 

important issues among which myopic behavior. Since this issue has been recognized as an 

important barrier for adopting heterarchical-based control in industrial applications and this 

behavior has not been formally studied in HFMS, this dissertation focuses on myopic 

behavior in HFMS. 

Given that myopic behavior affects significantly FMS global performance of 

heterarchical-based control, several approaches have been proposed to improve global 

performance, indirectly tackling myopic behavior. Among the different possible solutions to 

reduce myopic behavior, two main options seem possible: increase the efficiency of the 

decision-making algorithm or integrate additional techniques to the underlying decision-

making algorithms. The former is for instance achievable by using more complex algorithms, 
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such as enumerative methods embedded into local decisional entities. However, not only the 

construction of models is a difficult task and already induces inaccuracies due to modeling 

assumptions and errors in data collection, but also these methods are prohibitively expensive 

in computing cost (O’Grady and Menon, 1986). On the same track, decision making can be 

improved by reusing historical system states and data, so it is possible to better characterize, 

analyze, predict and even learn (Li and Yeh, 2008; Choudhary et al., 2009). This may seem 

possible if there is a strong regularity, causal relationships can be identified and large sets of 

data are available for analysis. 

In the second set of approaches, integrating additional techniques to the underlying 

heterarchical-based approaches is another strategy to reduce myopic decision-making. These 

approaches have mainly considered the introduction of additional optimization and 

simulation techniques in order to improve solution exploration, solution evaluation and look-

ahead assessment. The main benefit of doing so is to keep low complex control while global 

performance can be enhanced. Since we consider this spectrum of possibilities a promising 

path for this research, in the following chapter, simulation, optimization and simulation-based 

optimization techniques introduced into HFMS control are studied and analyzed in regards to 

myopic behavior.
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Chapter II. Literature Review on Myopic 

Behavior Reduction Using Simulation and 

Optimization 

1. Introduction 

As concluded in the Chapter I, integrating simulation and optimization techniques seem a 

promising possibility to reduce myopic behavior in heterarchical-based FMS (HFMS) 

control, i.e., fully heterarchical or semi-heterarchical FMS control. Since the integration of 

such techniques may induce architectural changes, this chapter aims at studying how those 

techniques have been used to reduced temporal and social myopic behaviors in fully 

heterarchical FMS control (FHFMS) and semi-heterarchical FMS control architectures 

(SHFMS). To this end, the approaches reported in this chapter are classified taken into 

consideration the type of technique used for improving global performance: optimization, 

simulation or simulation-based optimization (Sections II-3, II-4 and II-5 respectively). 

With the purpose of facilitating the comprehension of such classification and positioning 

this literature review, a general synthesis framework for reducing myopic behavior, emerged 

from the analysis of all approaches reported herein, is proposed beforehand in Section II-2. 

The last section of the chapter presents a summary and discussion on the effectiveness and 

drawbacks of the reported approaches from three perspectives: myopic behavior reduction, 

decision-making algorithm complexity and gain in the overall performance. 

2. General synthesis framework for reducing myopia behavior 

Generally speaking, several approaches have been proposed to improve the global 

performance of heterarchical control based on techniques such as optimization, simulation or 

simulation-based optimization. Architecturally, certain techniques have been added 

preserving fully heterarchical FMS control (FHFMS), while other techniques have required 

adding a hierarchical level to the underlying heterarchical level, resulting in semi-

heterarchical FMS control architectures (SHFMS). This modeling choice influences aspects 

such as the decision-making algorithm and the control strategy. The control strategy 

determines the control system dynamics under normal conditions and in the occurrence of 

internal and external perturbations. Between fully reactive, proactive and predictive-reactive, 
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the latter is the most frequently used control strategy. More information of these control 

strategies is given in Appendix D.  

With the purpose of differentiating decisional entities participating in both types of 

architectures, henceforth a decisional entity working on a heterarchical level is denominated 

local decisional entity (   ), and that working on the hierarchical level is denominated 

global decisional entity (   ).    s can be assigned to represent physical objects (e.g., 

machines, products) or logical objects (e.g., production orders) in the working environment, 

i.e., the FMS; while    s are more concerned on global tasks such as global performance 

monitoring, and    s coordination and guidance. The         denomination also helps 

to distinguish the entity’s decision-making span; while    s work on local solutions with 

local decision-making algorithm,    s work on more global solutions using global decision-

making algorithm. More, each entity adopts differently the additional simulation/optimization 

(S/O) techniques.  

Figure II-1 presents the proposed general synthesis framework making the distinction 

between FHFMS and SHFMS architectures (Zambrano Rey et al., 2014). As seen in Figure 

II-1, for those approaches that can be classified as FHFMS, additional S/O techniques can be 

introduced mainly for one of three roles: evaluating, cooperating or informing other 

decisional entities. These additional techniques are either adopted by the    s as part of their 

decision-making algorithm or as part of their control strategy. In the first category ((1) in 

Figure I-1), the S/O role aims to improve the entity’s data analysis, yielding better solution 

evaluation. The S/O techniques work directly on the    ’s decision-making algorithm.  

The second category ((2) in Figure II-1) gathers those techniques used to improve 

entities’ cooperation (e.g., negotiation protocols) and the third category ((3) in Figure II-1) 

congregates those techniques that try to improve the way in which local information is 

exchanged between entities. These two types of techniques affect the control strategy and the 

entities’ interactions by defining, for instance, the access to information. In general, the main 

objective of additional S/O techniques is to broaden the    s’ solution exploration, improve 

their look-ahead solution assessment and reach a tradeoff between local and global 

performance. 

By introducing a specialized entity (one or more    s) with a global view of the system, 

it has been possible to obtain a SHFMS in which a larger set of S/O techniques and notably 

simulation-based optimization techniques have been used. In most of the reported 

approaches, these techniques are localized within the    ’s decision-making algorithm. For 

instance, the PROSA reference holonic manufacturing architecture proposed by Van Brussel 

et al. (1998) already defines a specialized entity (i.e., the staff holon) that can hold centralized 
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algorithms, useful when basic holons perform badly. Contrary to FHFMS approaches, 

SHFMS architectures have demonstrated better overall performance, even in highly uncertain 

environments (Brennan, 2000; Bongaerts et al., 2000; Cavalieri et al., 2000). Furthermore, 

Wong et al., (2006) demonstrated that including an upper decisional level also reduced 

communication overheads. Nevertheless, the SHFMS architecture inherits the disadvantages 

of hierarchy (discussed in Section I-5.1) as well as an additional challenge related to the 

management of    ’s autonomy. It is important to point out that, the two-level SHFMS is a 

basic structure that can be recursively replicated, for instance to comply with holonic and 

fractal principles. This fact still needs to be studied and it is out of scope of this dissertation. 

 

As depicted in Figure II-1, there are five roles adopted by S/O techniques: resolving, 

evaluating, tuning, selecting or influencing    ’s behavior. Those roles represent five 

distinct ways to handle    ’s autonomy, going from the strong interventions proper of role 

(a), to the most indirect type of intervention displayed by approaches with role (e). The red-

degraded arrow in Figure II-1 represents such spectrum of possibilities (from high autonomy 

(e) to low (a)).  
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Figure II-1: General framework for myopic behavior reduction 
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With the first role ((a) in Figure II-1), the S/O resolves detailed FMS scheduling 

problems, for instance by generating complete or partial solutions that are subsequently 

executed by    s. This hierarchical intervention is often only effective under normal 

conditions, searching for near-optimal performance. Otherwise, it is expected that    s react 

using their own local decision-making algorithms (Leitão and Restivo, 2006). In the second 

role ((b) in Figure II-1), the     uses intelligently    s’ processing capacities and their 

local decision-making algorithms.    s create proposals that are evaluated by the     using 

its S/O technique, since this latter can relate better those local plans in regards to the global 

objective. 

As pointed out by Van Brussel et al. (1998), global performance in heterarchical control 

is extremely sensitive to the definition and fine-tuning of    ’s decision-making algorithms, 

e.g., heuristics, artificial intelligence or dispatching/priority rules. More, it has been proven 

that static and pre-programmed algorithms can constraint the effectiveness of heterarchical 

control (Tay and Ho, 2008). Therefore, in the third and fourth roles ((c) and (d) in Figure 

II-1) the     uses S/O techniques to fine-tune the parameters of    ’s decision-making 

algorithm or select which algorithms suits bests the current conditions. Hence, these two 

cases, the     is not directly involved in the    s’ decision-making process but indirectly 

orchestrate their actions. 

In the last category, ((e) in Figure II-1) the     influences    s’ perception of the 

current situation by changing the values of environmental variables (e.g., traffic through a 

conveyor segment, state of an input buffer, traveling distance between two machines). The 

purpose of such indirect intervention is slowly taking the system towards the objective 

without applying drastic changes.    s have more autonomy to make their own decisions, 

keeping entirely their ability to react and adapt to changes. However, it is expected that the 

response time of these approaches is slower than approaches in the other categories. 

In the following sections, optimization, simulation and simulation-based optimization 

approaches are reported and typified on the basis of the proposed framework. 

3. Approaches based on optimization 

Table II-1 presents different approaches based on optimization techniques, clearly 

identifying the type of control (i.e., FHFMS or SHFMS), the additional optimization 

technique, and its role, the underlying local control approach, control strategy, concerned 

myopic behavior and related reference. 
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3.1. Optimization approaches in fully heterarchical FMS control 

Under a fully heterarchical architecture, local optimization is mostly based on basic and 

partial information (e.g., current status, current needs) issued from exchanged messages and 

proposals (i.e., negotiation, bids). With the purpose of better evaluating job proposals ((1) in 

Figure II-1) Boccalatte et al., (2004) proposed an extension of the Contract-Net basic 

protocol to update local schedules based on dynamic product priorities. A heuristic strategy 

based on a set of probability selection functions characterizes an agent’s tendency to take into 

account other bidders and their objectives, reinforcing the    s’ perception of the situation. 

In this case, agents (i.e.,    s) are fully reactive and their social myopia is tackled using the 

generation of priorities, though they continue to be temporally myopic since negotiations 

only deal with current manufacturing operations. 

Table II-1: Approaches based on optimization 

Control 

architecture 

Additional 

optimization 

technique 

Optimization 

role 

Local control 

approach  

Control 

strategy 

Concerned 

myopic 

behavior 

Reference 

FHFMS 

 

Heuristic rule -
Probability selection 

functions 

Evaluate MAS with contract-net 
protocol 

Reactive Social  (Boccalatte et al., 
2004) 

Simulated annealing 
algorithm 

Cooperate MAS with currency-
like mechanism 

Reactive Temporal  (Lim et al., 2009) 

Stigmergy-based 

approaches 

Inform MAS with negotiation 

protocol 

Reactive Social and 

temporal  

(Valckenaers et al., 

2006; Weyns et al., 
2007) 

Heuristic rule based on 

intentions 

Evaluate/ 

Inform 

HMS with operation 

recursive division and 
delegation 

Predictive-

reactive 

Social and 

temporal  

(Zambrano Rey et 

al., 2012) 

Heuristic rule based on 

leveled commitment 
contracts 

Cooperate MAS with negotiation 

protocol 

Reactive Social and 

temporal 

(Andersson and 

Sandholm, 2001) 

Multi-level contracts Cooperate HMS with contract net 

protocol 

Reactive Temporal (Suesut et al., 2004) 

SHFMS 

Optimization 
algorithms 

Resolve 
(complete) 

HMS with self-
organization 

Predictive-
reactive 

Temporal 
and social  

(Leitão and Restivo, 
2006) 

Genetic algorithms Resolve 

(complete) 

MAS with negotiation 

protocol 

Predictive-

reactive 

Social and 

temporal 

(Wang et al., 2008) 

Mixed-integer linear 
program 

Resolve 
(partial) 

MAS with potential 
fields approach 

Predictive-
reactive 

Social and 
temporal  

(Zambrano Rey et 
al., 2011) 

Genetic algorithm Evaluate MAS with network 

representation and 
negotiation 

Predictive-

reactive 

Social (Li et al., 2010) 

Mathematical models 

from local information 

Evaluate MAS with negotiation 

protocol 

Predictive-

reactive 

Social (Nejad et al., 2011) 

Tabu Search Evaluate MAS with ant-colony 

optimization 

Predictive-

reactive 

Social (Böhnlein et al., 

2011) 

Optimization 

techniques 

Evaluate MAS with negotiation 

protocol 

Predictive-

reactive 

Social (Heragu et al., 2002) 

Inductive decision tree Tune up MAS  with negotiation 

protocol 

Reactive Social (Zimmermann and 

Mönch, 2007) 
Evolutionary approach Tune up HMS with mixed-

heuristic rules 

Reactive Social (Walker et al., 2005) 

Scheduling policies Influence MAS with bidding 
mechanism 

Reactive Social (Shen et al., 2000) 

 Meta-heuristics Influence HMS with contract-net 

protocol 

Predictive-

reactive 

Social and 

temporal 

(Leitão, 2011; 

Leitão and 
Rodrigues, 2012) 

MAS: Multi-agent systems      HMS: Holonic manufacturing system 
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For better cooperating, Lim et al., (2009) proposed to increase the solution-space 

exploration by introducing a currency-like mechanism hybridized with a simulated annealing 

(SA) algorithm ((2) in Figure II-1). The SA is called iteratively by job agents and aims to 

improve job-machine cooperation by adjusting currency values and minimizing production 

costs and lead times. More, machine agents forward job agent’s bids in order to evaluate the 

plan as a whole. In this way, the job agent analyzes machines’ bids and obtains larger 

decision horizon, reducing its temporal myopia. Nonetheless, the evident shortcoming of this 

strategy is that job agents have to record all the bids received and follow a heuristic rules to 

evaluate them (the first-in first-out rule in this case). Thus, the combinatorial explosion of the 

bid forwarding strategy may have an overwhelming effect on the job agent’s tasks, slowing 

down the decision-making process. 

Informing other entities aims at helping them to make more informed decisions ((3) in 

Figure II-1). Bio-inspired techniques bring interesting perspectives for achieving distributed 

optimization without sacrificing reactivity and adaptability (Barbosa et al., 2011). Certain 

bio-inspired mechanisms use pheromone trails to pass on information indirectly and without 

any compromise, respecting the principles of heterarchy. For instance, Valckenaers et al., 

(2006) and Weyns et al., (2007) used exploring and intention ant agents to create short-term 

forecasts and share local intentions through pheromones deposited in the environment. These 

ants go back and forth bringing updated information to the decider agent and depositing new 

intentions that emerge from those decisions. Heuristic rules are used to manage exploration 

and intentions, as well as local decision making. Likewise, Zambrano Rey et al., (2012) 

proposed a similar method sending representative    s to product service providers. Once 

these representatives are allocated they start working cooperatively to construct plans and 

inform others through intentions. These mobile representatives and the way they disperse out 

local information is a way to strengthen social bounds and reduce social myopia. Moreover, 

as these representatives work on different time horizons, they project decisions throughout 

the whole production sequence. In these approaches, the level of projection can be adjusted 

by determining a "traveling distance" tackling temporal myopia. The main advantage of these 

approaches is the distribution of control and the forecasting capacity achieved by the 

representatives, becoming an alternative method to simulation. Major issues are related to 

agent mobility, scalability issues, communication overhead and pheromone and intention 

modeling. 

Other techniques to extend the regular immediate-future negotiation approaches are 

proposed by Andersson and Sandholm (2001) and Suesut et al. (2004). In the former, the 

authors studied algorithms for optimizing the contract itself and then propose de-commitment 

policies that expand the negotiation possibilities of each agent. Thus, agents become less 

socially and temporally myopic since they can explore and propagate other production 
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possibilities, even for sub-sequent operations. In the latter, multi-level contracts are used to 

enhance the agent look-ahead capabilities allowing them to better explore the long-term 

performance of each contract, avoiding a simple operation-based decision-making. Some 

potential drawbacks of extending contracts are the additional communication burden and 

non-negligible negotiation delays that might affect the    s’ reactivity. 

3.2. Optimization approaches in semi-heterarchical FMS control 

Under the resolving role ((a) in Figure II-1), the     resolves completely or partially 

detailed FMS scheduling problems. In general, the     can, for example, host meta-heuristic 

approaches, such as genetic algorithms (Y. Wang et al., 2008) or mathematical models 

(Zambrano Rey et al., 2011b) to periodically generate optimized schedules that are proposed 

to    s which, despite their autonomy, follow these pre-defined plans. The level of social 

myopia can be defined by the size of the optimization problem, meaning the number of    s 

concerned (i.e., number of jobs, number of machines). In turn, the steadiness of conditions 

used by the     to run the global optimization determines the temporal validity of the 

solution. The most evident shortcoming of this type of approaches is the FMS scheduling 

problem complexity. 

In order to speed up the     process, optimization can be used for evaluating    s’ 

proposals and get more effective solutions, rather than generating a solution from scratch. 

The optimization agent (OA) proposed by Li et al. (2010) is a clear example of the evaluating 

role ((b) in Figure II-1). The OA evaluates plans created by job and machine agents with the 

aid of an evolutionary algorithm. The OA has a complete model of the shop floor (i.e., a 

flexible job-shop) that allows it to better explore the search space and get more effective 

solutions. Likewise, Nejad et al., (2011) introduced a coordination agent capable of making 

mathematical models according to information sent from the machine tool and product 

agents, and then it chooses the proposal that better meets the objective function. In the same 

way, Böhnlein et al., (2011) developed an ant-based MAS with AntTabu agents responsible 

for creating vehicle routing plans in a pre-optimization step. After all plans have been 

received, the AntTabu coordination agent performs a Tabu Search in order to post-optimize 

vehicle routing plans. The framework developed by Heragu et al. (2002) can also be included 

in this category. Middle-level and high-level global optimizer agents are integrated to analyze 

   s solutions and grant permission for their execution if those solutions meet global 

objectives. The     reduces    s’ social myopia by running centralized optimization 

algorithms that orchestrate local proposals with global objectives. The main drawback of 

approaches in this category is that, since the supervisor evaluations are necessary during 

negotiation or decision-making,    ’s reactivity is hardly compromised, under normal and 
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abnormal conditions. In addition, only current conditions are considered then the overall 

performance span is temporarily limited (temporal myopia). 

The single parameterization agent proposed by Zimmermann and Mönch (2007) is an 

example of the tuning role ((c) in Figure II-1). In that work, the authors proposed 

optimization techniques to dynamically setup the decision rules (i.e., decision-making 

algorithms) hosted within    s. For instance, the maximum number of negotiation cycles in 

an auction-based protocol can be used as a parameterization attribute that influences agents’ 

performances. Similarly, Walker et al., (2005) proposed a dynamic and responsive schedule 

by integrating traditional heuristic job-shop scheduling approaches and holonic 

manufacturing approaches. The    , called resource-scheduling dynamic mediator agent 

(RSDMA), coordinates local optimization for resource and order agents along with the global 

optimization that the work cell and FMS require. The     fine tunes the weights associated 

to the mixed heuristic rules used to create the schedules. Within this perspective, it is the 

decisional entity that evolves rather than the solution. The main advantage of the 

aforementioned techniques is that in any operating condition, the worst performance of the 

    is never lower than the performance obtained with the worst decision rule. In addition, 

the rule evolution is executed in parallel, thus the     does not, in theory, hold back the 

   ’s decision making process. Conversely, in highly perturbed environments, it is highly 

probable that the     will have a hard time updating rule parameters, so    s risk using 

poor global performance rules. 

Under the influencing role ((e) in Figure II-1), supervisors influence decisional entities 

through the environment, which in the case of MetaMorph (Shen et al., 2000) is defined by 

the virtual agent cluster dynamically created by mediator agents (i.e.,    s). Intelligent 

agents find and cooperate with other agents through mediators, thus, the social myopia of an 

intelligent agent is dynamically adapted depending on the cluster to which the agent is 

assigned.   Es can also influence    s’ behaviors by adjusting environmental data or fine-

tuning parameters used by the environmental optimization techniques. This concept was also 

introduced by Adam et al., (2009) as implicit control, in which the     influences    s 

externally without actually dictating them any specific orders or imposing any kind of rules. 

Leitão et al., (2012a) propose stigmergic approaches as a way to implement such implicit 

control. Another way in which the influencing role can be carried out is by using meta-

heuristics to find patterns and analyze larger data set at the global level, aiming for giving 

some behavioral advices to the low level (Leitão, 2011; Leitão and Rodrigues, 2012). At the 

end, it is up to    s to decide whether or not such additional information must be taken into 

account for decision making. A possibly defect of those approaches is the necessary time 

   s and the entire FMS would take to reach the desired level of performance. Since    s 
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preserve a high level of autonomy, it is uncertain how they will react to those stimuli, being 

difficult to forecast their outcomes. 

4. Approaches based on simulation 

As briefly mentioned in Section I-4, the increased complexity of flexible manufacturing 

systems and decision-making algorithms, reduced computing costs, for both design and 

execution, and the improvements in simulation platforms have stimulated the use of 

simulation for manufacturing control (Habchi and Berchet, 2003). Simulation can be 

employed off-line and/or integrated in online control strategies (Leitão et al., 2012a; Cardin 

and Castagna, 2009). Off-line simulations can be used for solution validation, parameter 

sensitivity analysis and evaluation of robustness and performance, usually on the control 

design process (Jernigan et al., 1997; Smith, 2003). Conversely, online simulations are suited 

for anticipating deviations and prospectively analyzing multiple scenarios and strategies, 

before a decision is made (Pfeiffer et al., 2008; Monostori et al., 2010). In their study about 

the industrial applications of agent technology, Mařík and Lažanský, (2007) pointed out that 

simulation (and emulation) is the only way to predict the global behavior and detect patterns 

of highly autonomous systems exhibiting emergent behaviors, without the excessive cost of 

realistic experiments. Simulation can then support seamlessly the industrial adoption of 

heterarchical FMS control approaches. 

Concerning myopic behavior, the purpose of using online simulation is twofold: first, 

simulations allow evaluating    s’ interactions; hence the impact of a decision can be 

foreseen. Second, such evaluation can be extended to larger horizons, so mid- and long-term 

performance estimations are possible. The introduction of online simulation into heterarchical 

control approaches follows almost the same categories as in the optimization case, for 

FHFMS and SHFMS (Figure II-1). Table II-2 reports some approaches based on simulation, 

describing the type of simulation model, simulation role (according to Figure II-1), local 

control approach, control strategy, concerned myopic behavior and the work’s reference. 

4.1. Simulation approaches in fully heterarchical FMS control 

In order to improve local decisions ((1) in Figure II-1), Papakostas et al., (2012) proposed 

that agents generate alternative solutions for each decision, and each alternative is evaluated 

by simulating its performance during a certain time span. Any decision is executed until its 

global effects are known, avoiding local optima. In the same way, Cardin and Castagna, 

(2009) placed the simulation tool into the staff holon, from which decisional holons request 

solution evaluation. The staff holon then helps basic holons to find a better local 

performance, ensuring also certain global coherence of their decisions. With the similar 
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purpose, Rolón and Martínez, (2012) proposed Gantt charts as the interaction mechanism in 

the @MES framework. Order and resource agents interact directly and indirectly through 

Gantt charts that are generated in a simulated scheduling world deployed with agent-based 

simulation. The Gantt chars depict the effect of a local decision, i.e., a manufacturing 

operation reservation, on the entire solution and for the complete order time span. One of the 

possible shortcomings of the precedent approaches is the requesting frequency of the 

simulation entity, especially if    s have to evaluate several alternatives, and for each 

alternative a simulation run is required. Then, the    ’s decision-making is strongly 

dependant on the simulation model efficiency and the    ’s decision-making algorithm. 

 

Duffie and Prabhu, (1994) proposed a look-ahead cooperative scheduling strategy, in 

which tentative schedules are evaluated in time-scaled, distributed simulations using a replica 

of the real system. Simulations incorporate failures and other unexpected events into schedule 

evaluation, and once the simulation is complete, each virtual entity broadcasts the local merit 

of its proposal, so a global merit can be calculated and the best local plan can be executed. 

For most of these cases, temporal myopia is sensitive to the simulation horizon, defined as 

the extent of solution evaluation (e.g., number of operations in the job manufacturing 

sequence) and social myopia is related with the number of participating entities in the 

simulation model. (Prabhu and Duffie, 1995; Prabhu, 2003) also proposed a part-driven 

heterarchical manufacturing system in which the arrival time of each part is individually 

calculated using closed-loop controllers. In order to close the control loop, time-scaled 

Table II-2: Approaches based on simulation 

Control 

architecture 

Type of 

simulation 

Simulation 

role 

Local control 

approach 

Control 

strategy 

Concerned 

myopic 

behavior 

Reference 

FHFMS 

 

ND Evaluate MAS with commitment 
protocol 

Predictive-
reactive 

Social and 
temporal 

(Papakostas et al., 2012) 

DES Evaluate HMS with negotiation 

protocol 

Reactive Social and 

temporal 

(Cardin and Castagna, 2009) 

ABS Evaluate MAS with interaction 

mechanism 

Predictive-

reactive 

Social and 

temporal 

(Rolón and Martínez, 2012) 

DES Evaluate Look-ahead cooperative 
strategy 

Reactive Social and 
temporal 

(Duffie and Prabhu, 1994) 

DES Evaluate Arrival-time control and 

priority rules 

Predictive-

reactive 

Temporal (Prabhu and Duffie, 1995) 

DES Evaluate  

(off-line) 

MAS with priority rules Reactive Social and 

Temporal 

(Aissani et al., 2014) 

DES Cooperate MAS with auction-
based approach 

Predictive-
reactive 

Social and 
temporal 

(Wang et al., 2013) 

ND Evaluate/ 

Inform 

Delegate MAS with bio-

inspired mechanism 

Reactive Social and 

temporal 

(Holvoet et al., 2009) 

SHFMS 

ND Resolve MAS with bidding 
process 

Predictive-
reactive 

Social and 
temporal 

(Wang and Lin, 2009) 

ABS Resolve MAS with auction-

based negotiation 

Predictive-

reactive 

Temporal (Hodík et al., 2005) 

ND Evaluate Fractal Manufacturing Predictive-

reactive 

Temporal (Ryu and Jung, 2003) 

DES Select Dispatching rules Reactive Temporal (O’Keefe and Rao, 1992)  
 DES Select Dispatching rules Reactive Temporal (Kim et al., 2012) 

 ND Select Dispatching rules Reactive Temporal (Metan et al., 2010) 

ND: Not explicitly defined     DES: Discrete-event simulation     ABS: Agent-based modeling and simulation 
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simulations are used to estimate part completion times, calculate the deviation with the part 

due date and evolve arrival times to a steady-state. Once arrival times are stabilized, parts are 

released into the shop floor (i.e., form one machine to job-shop like) and follow priority rules 

to allocate their manufacturing operations into appropriate resources. Temporal myopia is 

then reduced since simulations are run for the complete part production horizon, taking also 

into consideration part interactions. 

Another way to improve the    ’s decision-making is by allowing the entity to change 

its decision-making strategy according to current conditions. To do so, Aissani et al., (2014) 

developed a simulation study to generate a database related with different job-shop 

scheduling cases, so several rules can be automatically extracted. The extraction process is 

executed off-line but the set of rules is embedded into resource agents, which launch their 

cellular decisional module to choose the appropriate priority rule to execute. Since the chosen 

rule has proven its efficiency under normal conditions (or similar), entities are less myopic 

and make more informed decisions. The main limitation of this approach is the tedious work 

necessary to generate a consistent database based on the evaluation of a significant number of 

possible situations. It is also likely that    s’ will use less adequate rules for non-record 

situations. 

More focused on improving cooperation (role (2) in Figure II-1) to reach better decision-

making, Wang et al., (2013) also proposed a control-based technique to develop a closed-loop 

feedback simulation (CLFS) approach. The CLFS included adaptive control of an auction-

based bidding sequence in order to prevent the first-bid first-serve rule and dynamically 

allocate production resources to operations. The CLFS technique deals directly with myopic 

bids avoiding possible contradictions between local and global objectives. The CLFS 

iteratively adjusts the bidding sequence using the deviation between the predicted completion 

time issued from simulation and the due date fixed for each part. As approaches in Section II-

3.1 the combinatorial explosion of subsequent bids is strongly dependant on FMS flexibility 

and the size of job sequences. Thus, since in this case subsequent bids are handled by tree 

exploration, the job agent can be affected by significant communication and decision costs. 

The smart messages introduced by Holvoet et al. (2009) are autonomous and mobile 

messages that carry both, a behavior and state, and are an example of dissemination of local 

information (role (3) in Figure II-1). The behavior of a smart message is executed at every 

node, and determines how the entity will interact with others at that node, and decides on 

which node to move next. By doing so, smart messages aggregate information at every node 

and then they disseminate it in locations where such information is considered relevant. 

Smart messages trajectory choices are based on what-if symbiotic simulations on every node 

they pass. Simulation is then used as a technique to predict future system state and behavior, 
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reducing the smart messages temporal myopia. The coordination of several types of 

decisional entities (e.g., exploring, resource, product, etc.) with different behaviors is one of 

the main challenges of delegate-based methods. 

4.2. Simulation approaches in semi-heterarchical FMS control 

Generally speaking, in all these approaches, the     hosts a complete model of the FMS, 

being possible to obtain complete or partial solutions performing what-if simulations to 

explore more than one alternative solution ((a) in Figure II-1). For instance,  Wang and Lin, 

(2009) integrated a simulation module employed to evaluate the feasibility of production and 

operations schedule in terms of a predetermined performance target. Scheduling agents 

request simulations before executing a solution, under normal and abnormal conditions. 

Instead of one single simulation entity, Hodík et al., (2005) introduced several simulation 

agents that model various properties of simulated resources such as production times or 

failure rates. The community of simulation agents emulates manufacturing resources (e.g., 

machines or human resources) and provides feedback to the planning system on the actual 

time spent on the plan realization. If the actual time differs from the plan, re-planning is 

executed. If on the first approach both dimensions of myopic behavior were addressed, the 

fact of having distributed and local simulators only reduces partially the resource agents’ 

social myopia, since anyway each agent has partial results only corresponding to its local 

activities. 

 Proactive simulations are an interesting alternative for providing temporal visibility and 

conflict detection of local strategies proposed by    s ((b) in Figure II-1). In the fractal-

based architecture of Ryu and Jung, (2003), an analyzer module first decides the best 

dispatching rule based on the status of fractals and the goal of the factory. Then, job profiles 

are scored using online simulations results and then, those job profiles are put together by 

resolver modules for execution. The proposed fractal model was implemented using multi-

agent technology, thus a simulation agent performs such tasks using a centralized model. The 

main drawback of this approach is that each local solution has to be analyzed individually 

using a centralized model, possibly carrying out with high simulation costs.  

Rather than analyzing each solution, look-ahead simulations can be used for evaluating 

the long-term performance of different myopic rules and choose the most appropriate one ((d) 

in Figure II-1) as proposed by O’Keefe and Rao (1992), Kim et al. (2012) and Metan et al., 

(2010). The selected rule is used by LDEs either during a pre-defined scheduling period or 

until an estimated performance value differs significantly (e.g., over a given limit) from the 

actual performance. In these cases, temporal myopia is not only related to the time period in 

which the rule is applied, but also the triggering policies for changing or adapting the rule. In 
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these approaches, the     is less intrusive because decision-making remains local. As 

mentioned before, the main drawback of these approaches is the possibly high cost of 

simulation, especially when different    s can host different myopic rules, given their needs 

and current situation. 

5. Approaches based on simulation-based optimization 

Recent technological advances in computing and the rapid evolution of simulation 

software support the use of online simulation in real-time manufacturing control (Habchi and 

Berchet, 2003; Fu et al., 2005; Cardin and Castagna, 2009). In fact, optimization methods 

have also been integrated in commercial simulation software as detailed by Hong and Nelson 

(2009). As explained by Klemmt et al. (2009),  simulation-based optimization (SbO) can be 

obtained when online simulation and optimization algorithms are coupled in a closed-loop 

(Figure II-2).  

 

A control vector X is modified by the optimization algorithm and introduced into the 

simulation model. In turn, the simulation model returns a value for the objective function 

    , used by the optimization algorithm to evaluate the proposed solution. The model is 

simulated iteratively until a stopping criterion is met. Several optimization methods can be 

coupled with simulation, ranging from heuristics and meta-heuristics to operations research 

techniques (Weigert et al., 2006; Lemessi et al., 2011; Law and McComas, 2002; Tekin and 

Sabuncuoglu, 2004).  

As seen in Table II-3, all approaches cited display semi-heterarchical architectures, given 

the centralized nature of the global optimization methods and the simulation models 

employed.  Table II-3 reports, for each approach, the global optimization method, type of 

simulation, the SbO role as described in Section II-2, and the other aspects presented on 

precedent tables. 

Chu et al., (2014) described a three-phase hybrid method integrating agent-based 

modeling and heuristic tree search to solve complex batch scheduling problems. In the first 

Decision-making 

algorithm

Simulation model

Control vector XObjective C(X)

Set/changeEvaluate

SimulateCalculate

Information flow

Iterative process

 

Figure II-2: Simulation-based optimization 
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phase the batch process is agent-based modeled, so in the second phase myopic agents can 

tackle the problem as a multi-stage decision problem by taking into consideration the 

constraints set up in the first phase. Each agent creates a tree of possible solutions using a 

negotiation protocol and evaluating each possibility with an agent-based simulation model. 

Phase three is executed at each branching point and controls the tree expansion by choosing 

the best solutions with a beam-search heuristic. Once each operation has been analyzed, it is 

assigned to a unit and executed immediately. By following that procedure, the simulation-

optimization method resolves the scheduling problem by performing an intelligent 

exploration of the solution space, and taking into consideration the consequences of each 

decision (role (a) in Figure II-1). Hence, temporal myopia of agent decisions is reduced while 

social myopia still remains due to the local evaluation of each agent’s decisions. 

 

By dividing the FMS control problem into dynamic allocation and routing processes 

Berger et al., (2010) proposed a semi-heterarchical active-product-based control system in 

which partial solutions (role (a) in Figure II-1), only concerning the routing problem, are 

simulated in a virtual level. By following stigmergic principles, virtual active products make 

decisions in the virtual level that are afterwards downloaded to the physical level where 

physical active products make allocation decisions. By using travel history to update 

pheromones, virtual products share information with each other though the environment, 

Table II-3: Approaches based on simulation-based optimization 

Control 

architecture 

Global 

optimization 

Type of 

simulation  

SbO role Local control 

approach 

Control strategy Concerned 

myopic 

behavior 

Reference 

SHFMS 

Beam search  ABS Resolve 
(complete 

solution) 

MAS with 
negotiation 

protocol 

Predictive-reactive 
(iterative simulation 

runs) 

Temporal  (Chu et al., 2014) 

Stigmergy for 
routing 

process  

ABS Resolve 
(partial 

solution) 

Contract-net 
for allocation 

Reactive (single 
simulation run) 

Social  (Berger et al., 2010) 
 

Genetic 

algorithm 

DES Evaluate MAS with 

bidding 

approach 

Predictive-reactive 

(iterative simulation 

runs) 

Social and 

temporal 

(Zhang et al., 2007) 

Control 
theory 

heuristic 

ABS Evaluate HMS with 
recursiveness 

and social 

factor 

Predictive-reactive 
(iterative simulation 

runs) 

Social and 
temporal 

(Zambrano Rey et 
al., 2013) 

Iterative 

search 

method  

ABS Tune up Priority rules Reactive (parallel 

simulation runs) 

Temporal  (Low et al., 2005) 

Genetic 

algorithm  

DES Tune up Dispatching 

rules 

Predictive-reactive 

(iterative simulation 

runs) 

Temporal 

and social  

(Maione and Naso, 

2003) 

Pattern search ND Tune up/ 

Select 

Dispatching 

rules 

Predictive-reactive Temporal 

and social 

Kouiss et al., (1997) 

Genetic 
algorithm 

DES Select Multi-
attribute 

dispatching 

rules 

Reactive (single 
simulation run) 

Temporal 
and social  

(Korytkowski et al., 
2013; Geiger et al., 

2006; Gaham et al., 

2014) 

Neural 

network 

DES Select Dispatching 

rules 

Predictive-reactive 

(iterative simulation 

runs) 

Temporal  (Mouelhi-Chibani 

and Pierreval, 2010) 

ND: not explicitly defined     DES: Discrete-event simulation     ABS: Agent-based modeling and simulation 
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reducing their social myopic behavior. However, since the dynamic allocation process is 

executed on operation-basis, products only reason with a limited decision horizon, thus they 

continue to be temporarily myopic. 

Instead of allocating the simulation functionalities externally, Zhang et al., (2007) 

proposed a simulation device allocated within the agent. Agents integrate their sub-models 

forming active clusters to create a more complete simulation model for evaluating their own 

decisions. An agent coordination algorithm, operating iteratively under the control of a 

genetic algorithm (GA), is developed to enable optimal planning and control, carried out 

through agent interactions. When satisfactory solutions cannot be found, subsystems are 

allowed to regroup to form new configurations which are evaluated using discrete-event 

simulations. For this example, simulation-optimization is used for evaluating agent 

configurations, so this approach can be classified in role (b) as described in Section II-2. 

Another example of this category is the holonic framework proposed by Zambrano Rey et 

al. (2013). By using recursive divisions of the product holon, adjunct holons are created to 

generate complete plans for the product holon, avoiding temporarily myopic decisions. Each 

product holon hosts a control theory loop that generates release times, which are afterwards 

used by adjunct holons as the input parameter for plan generation. In order to improve 

cooperation and reduce social myopia, product holons calculate locally a social factor that 

changes their role in the organization from altruist to competition. Thus, product holons are 

more aware of other holons’ needs and become able to balance local and global objectives, 

depending on their current status. The predictive phase is carried out using agent-based 

simulation supported in the control layer and when a solution is found, the operational layer 

of each holon is in charge of executing it, providing some sort of granularity. 

Since myopic priority rules are very dynamic, rule fine-tuning (role (c) in Figure II-1) is a 

way to improve their efficiency. Low et al. (2005) described a symbiotic simulation system 

that employed software agents for monitoring, optimizing and controlling a semiconductor 

assembly and test operation. The local control is executed distributed by priority rules, tuned 

up by a control agent that sets lower and upper thresholds. The optimization agent (OA) 

carries out a simulation-based optimization to decide the best approach for handling a given 

situation. The OA creates a number of models with threshold combinations and distributes 

those models to simulation agents to carry out “what-if” analysis. Likewise, G. Maione and 

Naso, (2003) applied a genetic algorithm to adapt the decision strategy of autonomous part 

entities within a MAS-based heterarchical control structure. Part agents use a set of pre-

assigned weighted decision rules and obey a weight adaptation policy as a reaction to 

unforeseen perturbations. In the latter, although a GDE is not defined, the genetic algorithm 
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is executed online and centralized. The length of the simulated scenario determines the 

evaluation horizon; hence it defines the temporal myopia of agent decisions. 

But probably, one of the most used applications of simulation-optimization methods has 

been the analysis and selection (role (d) in Figure II-1) of myopic dispatching/priority rules 

(Frantzén et al., 2011). For instance, Kouiss et al., (1997) used pattern search to detect 

symptoms and change the low level agents behavior by for example selecting a particular 

dispatching rule that performs better under current conditions. Similarly, Korytkowski et al., 

(2013) developed an evolutionary simulation-based heuristic to construct near-optimal 

solutions for dispatching rule (DR) allocation. Different multi-attribute DRs may be assigned 

to each workstation by means of a genetic algorithm where the sequence of DRs is encoded 

into a chromosome. The fitness function is calculated as a mean value obtained from running 

a set of replications of discrete-event simulation runs. Similarly, Geiger et al. (2006) and 

Gaham et al. (2014) approached the problem of finding new DRs by combining simulation 

and genetic algorithm techniques. In order to reduce the cost of rule selection, Mouelhi-

Chibani and Pierreval (2010) proposed a new approach based on neural networks for 

selecting the most suited DR in accordance with the current system state and the FMS 

operating conditions. The rule selection is executed on real time because the neural network 

does not need a training set and instead, its parameters are determined through simulation-

optimization.  

6. Synthesis and discussion 

To synthesize, Figure II-3 positions the aforementioned approaches regarding three major 

aspects: the decision-making algorithm complexity, overall performance, understood as the 

balance between long-term global performance and reactivity; and a rough judgment of the 

level of myopia. The blue curve assumes that by increasing the algorithm complexity and 

global visibility of the controlled system, myopic behavior can be reduced. This could be true 

up to some point but after that there is no guarantee of that because of the required short-

delay responses, which limits the amount of time for information gathering and analysis. 

Precisely, the red curve represents the assumption that global performance can be improved 

by enhancing the decision-making algorithm until it becomes hard to find a balance between 

reactivity and global performance; thus a good overall performance.  

Fully heterarchical FMS control approaches remain in the low complexity area in Figure 

II-3, but because of their unpredictable behavior and myopic behavior, long-term optimality 

is not necessarily ensured. Global performance is then partially improved by introducing 

additional S/O techniques. However, as mentioned by Leitão et al., (2009) in their analysis of 

Simon’s assumptions, intelligent decisional entities have bounded rationality due to their 
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finite computation and communication capabilities. Introducing S/O techniques require more 

communication effort and computation efficiency. Indeed, the overall system performance is 

improved compared to basic FHFMS control approaches, yet there will still be no guarantee 

of that.  

 

By introducing hierarchical interventions, better long-term optimality and predictability 

can be achieved; consequently myopic behavior can be reduced. In SHFMS control 

approaches the problem may turn to centralization and possible architectural rigidity that 

undeniably penalize important features achieved by heterarchy. The main issue with 

centralization lies on the S/O techniques that have been conceived for solving the entire 

detailed scheduling problem as if the system was centralized, overshadowing    s’ control 

skills and processing capabilities. Therefore, the     usability becomes highly dependable 

on the combinatorial nature of the FMS problem, resulting in higher algorithm complexity 

translated into loss of reactivity and adaptability (Jeong and Kim, 1998; Baykasoğlu and 

Özbakır, 2010). 

In order to avoid architectural rigidity, some works proposed a dynamic switch between 

hierarchy and heterarchy trying to balance global performance and reactivity (Pach, 2013). 

From that, it is possible to conclude that in those dynamic control architectures there is a 

preliminary effort to actually control myopia, by passing from a "less myopic" architecture to 

a "more myopic" architecture, taking into account the system’s conditions. In order to 

actually control myopic behavior based on a desired overall performance, first it would be 
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necessary to establish a target level of myopia (or interval as seen in Figure II-3), then be 

capable of measuring its current level and finally be able to adjust local decisions to achieve 

the target myopia level and global objective. This is not an easy task because it is still not 

clear if having an optimal myopia level or interval means reaching an optimal overall 

performance (Figure II-3). More, it will be necessary to associate myopia measuring metrics 

to metrics used to determine system performance. In spite of its clear benefits concerning 

global performance and predictability, the switching mechanism and its required self-

organization still need further research to avoid chaotic behavior and nervousness (Hadeli et 

al., 2006; Barbosa et al., 2012). 

Another possibility to eliminate the architectural rigidity is by applying self-organizing 

principles allowing the possibility to completely change the structure of architecture (Leitão 

and Restivo, 2006; José Barbosa et al., 2013; Jose Barbosa et al., 2013). In addition to the 

internal adaptation of each decisional entity, the whole society of decisional entities is 

reconfigured to deal more effectively with perturbations. Hence, myopic behavior takes an 

additional dimension since not only local decisions are concerned by also architectural 

decisions need also to be made. Decisions regarding which entities should remain active, 

which entity should step out, and how to avoid continuous architectural changes that 

exacerbate system nervousness are some of the decisions that can be affected by myopia.  

Several conclusions can be inferred from this literature review. First and foremost, in all 

reported works, S/O techniques have been introduced to enhance global performance. 

Meanwhile, despite the fact that they are all concerned with myopic behavior, none of them 

explicitly handle myopia, thus myopia is reduced indirectly. Second, as pointed out by Leitão 

and Restivo, (2006), to obtain a reactive, adaptable and fault-tolerant architecture, "it is 

necessary to be as decentralized as possible and as centralized as necessary". Third, as 

synthesized in the proposed generic framework, the hierarchical interactions are not restricted 

to only provide solutions for the entire FMS scheduling problem, but they can adopt different 

roles from which different         relationship schemes can be conceived. 

From these conclusions, the following requirements can be highlighted: 

 There is a need of control approaches that explicitly deal with myopic behavior, in which 

the benefits provided by heterarchy are preserved, notably the reactivity and adaptability. 

An improvement on global system performance should be then a consequence of reducing 

or controlling myopic behavior. 

 Reducing or controlling myopic behavior should be done from a granular perspective, 

identifying particular myopic decisions and introducing different techniques for each one 

of them, so the control system can remain modular and re-configurable. In addition, that 
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identification will determine if myopic behavior should be reduced totally or partially, 

and the benefits and implications of the choice. 

 In order to maintain an easy adaptation and evolution of HFMS control, combination and 

dynamic adaptation of the S/O techniques should also be possible. This would clearly 

ease the migration of current hierarchical approaches because current decision-making 

algorithms can possibly be re-used in conjunction with HFMS principles. 

 Different kind of entity interactions should also be supported. A dynamic HFMS control 

should be capable of reducing myopic behaviors through different kind of entity 

interactions, accommodating different degrees of    ’s autonomy. Again, this would 

allow a gradual migration from current rigid hierarchical to more heterarchical control 

approaches.  

 Tackling myopic behavior should also bring other benefits, such as guaranteeing and 

predicting certain operational performance at all times. This is one of the main drawbacks 

of switching architectures because during perturbation handling, the system becomes 

fully myopic and possibly unpredictable. Hence, highly dynamic and adaptable semi-

heterarchical approaches where centralization and decentralization coexists may lead to 

more stable approaches. 

Some leads on accomplishing those functional requirements can be found in the works 

reviewed in this chapter. For instance, the fact that FMS control sub-problems can be 

addressed separately (S. Wang et al., 2008; Berger et al., 2010), make possible to have 

different techniques to deal with myopic decisions within each sub-problem. This FMS 

control problem decomposition is possible because of the logical sequence of FMS control 

decisions (e.g., a task needs to be chosen first, then a machine can be selected, and then a 

route to get to the destination machine can be selected). Thus, the introduction of simulation-

based optimization into HFMS control seems to bring interesting benefits to deal with the 

social and temporal dimensions of those myopic decisions. On the optimization side, meta-

heuristics, especially evolutionary algorithms have been widely used for simulation-based 

optimization. The main reason is that this type of algorithms allows addressing problems with 

mixed numerical and non-numerical variables (Pierreval and Paris, 2000). On the simulation 

side, given that the complexity of real FMS problems is too high to be solved by usual 

analytical or enumeration methods (Fu et al., 2005; Weigert et al., 2006), simulation becomes 

the only tool to depict and predict entity interactions within HFMS control. The use of agent-

based simulation models has become more popular to this purpose. 

It also seems interesting that, in regards to the proposed generic framework, the 

combination of simulation and optimization techniques may allow different roles and entity 
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interactions within semi-heterarchical control architectures. The resulting semi-heterarchical 

control architecture can certainly support the desired functional aspects. Thus, all these 

concepts are taken into consideration and translated into modeling features for the proposed 

semi-heterarchical FMS control approach described in the next chapter.
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Chapter III. A Semi-Heterarchical Simulation-

based Optimization Approach to Reduce Myopic 

Behavior in FMS 

1. Introduction 

In order to accomplish the requirements described in the previous chapter, a semi-

heterarchical FMS (SHFMS) control approach is presented in this chapter. Therefore, we part 

from the premise that, for now, myopic behavior can be reduced with an architectural 

approach. This approximation allows us to be generic and give us the possibility of defining 

several instantiations of the proposed approach in regards to myopic behavior reduction and 

the target FMS. A key concept of our approach is the insertion of simulation-based 

optimization techniques into a global decisional level as a tool to reduce the impact of 

myopic control decisions made at the local decisional level.  

This chapter starts by describing in Section III-2 the general features of the proposed 

approach. Then, the proposed SHFMS control architecture is described in Section III-3. Since 

the core of the SHFMS is the decisional entity, Section III-4 starts by describing a generic 

decisional entity’s structure that is afterwards instantiated into decisional entities composing 

the proposed SHFMS control architecture. Then, the control strategy under normal and 

abnormal conditions is explained in Section III-5. As it will be seen through this chapter, 

there are various decisions necessary to instantiate and implement the propose semi-

heterarchical architecture. Therefore, a possible procedure that can be helpful to realize the 

FMS control architecture is described in Section III-6. A final synthesis and assessment of the 

main attributes of the proposed approach is offered at the end of this chapter in Section III-7. 

2. General features of the proposed approach 

As concluded in the previous chapter, up to know most of research in heterarchical-based 

FMS (HFMS) control (i.e., fully heterarchical or semi-heterarchical FMS control) has 

focused on improving global performance, implicitly reducing myopic behavior. Our 

perspective goes on an alternative direction and the proposed approach relies on the 

combination of structural and functional features to explicitly reduce myopic behavior, hence 

achieving better global performance. The main objective to do so is to preserve some 
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important features of HFMS control, such as reactivity, adaptability and fault tolerance. In 

regards to the requirements listed in Section II-6, the general features of the proposed 

approach are: 

 "Explicitly deal with myopic behavior, aiming to preserve reactivity and adaptability". 

Our approach proposes to reduce myopic behavior by establishing a semi-heterarchy 

composed of global and local decisional levels, in which global and local decisional 

entities reside respectively. The global level’s objective is to reduce myopic behavior of 

the local level, within a combined control strategy.  

 "Reducing or controlling myopic behavior should be done from a granular perspective". 

To this end, the FMS control problem is decoupled into sub-problems for which myopic 

behavior is treated individually. The purpose of this particularization is to accept 

configurations in which myopic behavior for some sub-problems is reduced while for 

other sub-problems is accepted. In regards to the previous requirement, this combined 

control strategy aims to preserve certain level of reactivity, adaptability and tolerance to 

perturbations.  

 "To maintain an easy adaptation and evolution of HFMS control, combination and 

dynamic adaptation of the S/O techniques should be possible". Our approach proposes the 

integration of simulation-based optimization (SbO) techniques in the global decisional 

level to deal with different myopic decisions. Different SbO techniques can be used for 

each myopic decision, maintaining a modular design of the global decisional entity. On 

the local decisional level, local decisional entities are endowed with low complex 

decision-making algorithms for all control sub-problems. 

 "Different kind of entity interactions should also be supported". The aforementioned 

modular designed of the global decisional level is exploited by allowing the coexistence 

of a variety of roles for the SbO techniques, e.g., resolving, evaluating, tuning, selecting 

or influencing, as explained in Section II-2. Issued from these roles, the proposed 

approach tries to be as generic as possible by supporting different types of hierarchical 

interactions between global and local decisional entities. Therefore, as it will be further 

explained later on, different types of entity interactions (i.e., interactions between global 

and local entities) can be conceived, even for the same SbO role with the same SbO 

technique. One of the main benefits of this feature is the possibility to accommodate 

different degrees of local entities’ autonomy, which should also be dynamically adjusted 

in the presence of abnormal conditions. 

 "Other benefits, such as guaranteeing and predicting certain operational performance at 

all times, should also be withdrawn while dealing with myopic behavior". This 
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requirement is achieved by integrating simulation and maintaining myopic behavior 

reduced for at least some control sub-problems. Simulation allows the global level to have 

an estimation of global performance and be able to predict undesirable events resulting 

from local decisions, such as deadlocks. Only a priori feasible control decisions should be 

allowed for execution. If the simulation model reflects the local entities’ behavior, it is 

probable to foresee such events.  

In the following, these general features are described as part of the architecture, the 

internal decisional entities structure and the control strategy that drives the dynamic behavior 

of the proposed approach. 

3. Description of the SHFMS architecture 

The proposed semi-heterarchical FMS control (SHFMS) architecture is composed of two 

levels: a global decisional level (   ) and a local decisional level (   ) as depicted in 

Figure III-1. Each local decisional entity (     is assigned to control an actuator ( ), e.g., a 

product or a resource within the FMS. The proposed architecture has no restrictions on the 

modeling approach, e.g., multi-agent systems (MAS), holonic manufacturing systems (HMS), 

Product-driven (PD), used for implementation (some of these modeling approaches are 

described in Appendix B). 

3.1. The local decisional level 

The local decisional level (LDL) is formed by a set of local decisional entities (    ), 

such that     {                 } as seen in Figure III-1. Each      is assigned to 

control one of the actuators,       {     }, such as products, or FMS resources, e.g., 

material-handling systems, machines, storage units. The     follows a set of local objective 

functions (   ) so each      can be assigned with one those objectives         

{              } as depicted in Figure III-1. Each      can host one or several decision-

making algorithms to achieve the local objective (   ), providing local control decisions to 

the assigned control sub-problems. Other activities assigned to each      consist in 

calculating its local performance (   ) in regards to the local objective and survey the local 

status (   ) of the controlled actuator. 
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3.2. The global decisional level 

In the more general sense, the global decisional level (   ) is composed of one or more 

global decisional entities (    ) such that     {                 }, as seen in 

Figure III-1. The     works on a set of global objective functions (   ), then each      

can be assigned to one global objective function          {                 } 

(examples of manufacturing objective functions can be found in Appendix A-II). Each      

is hierarchically related to a set of subordinate    s as depicted in Figure III-1. For instance, 

one     can handle product    s and another     resource    s (i.e., machines, material 

handling, storage, etc.), each one with its own objectives. The hierarchical interaction mode is 

meant to reduce the myopic behavior of subordinate    s. Therefore each      can survey 

local performances (  ) of subordinate    s, making it possible to calculate the actual 

global performance associated to its assigned global objective. 

The proposed     configuration aims to be generic by allowing the possibility of 

targeting multiple objectives. In that case,    s will have to cooperate with each other and 

coordinate to manage subordinate    s. This heterarchical configuration at the global level 
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Figure III-1: Proposed semi-heterarchical FMS control architecture 
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allows managing strongly correlated FMS problems to yield more realistic industrial cases.  

For instance, manufacturing, maintenance and inventory, among other problems, can be 

managed by independent    s working together under objectives such as production rates, 

production and storage costs, maintenance costs, energy consumption, etc. Our motivation to 

propose such distribution at this level is twofold. First, different FMS problems handle 

different types of variables (e.g., release times that are continuous, machine selection that are 

discrete, maintenance times that are continuous, etc.) and have to deal with different 

constraints. Hence, myopic behavior for each problem can be handled individually by each 

    . Second, by proposing a heterarchical configuration at the    , complex models 

resulting from problem aggregation are avoided, improving the reactivity of each     . 

Indeed, myopic decisions related to FMS problems other than manufacturing are an 

interesting research topic envisaged within future works (see Conclusions and Further Work). 

Henceforth, only FMS control problems related to manufacturing will be taken into 

consideration. 

3.3.         hierarchical interaction modes 

Our approach parts from the premise that it is not advantageous to eliminate myopic 

behavior because it is an essential behavior inherited from heterarchy and necessary to obtain 

desirable features such as reactivity, adaptability and fault tolerance. Given that the FMS 

control problem can be decoupled into control sub-problems (e.g., operation and product 

sequencing, product routing, machine selection as mentioned in Section II-6) myopic 

behavior for each of those sub-problems can be treated individually. Our approach proposes a 

limited scope of myopic behavior reduction (   ) as described in Figure III-2. If the FMS 

control problem associated to      (denoted at    ) can be decoupled into   control sub-

problems (   ), such that     {    
        

       
 }, the      will only focus on those 

k control sub-problems that are more sensitive to myopic control decisions and contribute the 

most to global performance. The other     control sub-problems are dealt locally by 

   s’, which have full autonomy for those control decisions. Given this shared control 

strategy, simulation is at the outmost important to provide a global performance estimation 

based on the proposals made by the optimization techniques and the local decision making 

algorithms (out of MBR scope). 

With the purpose of reducing myopic behavior individually for each control sub-problem, 

the      is configured modularly so different optimization techniques (Opt-technique in 

Figure III-2) can be implemented to deal with each control sub-problem. The integration of 

optimization techniques and a simulation model can result in different SbO roles (e.g., 

resolving, evaluating, tuning, selecting or influencing as described in Section II-2), allowing 

the possibility of dealing with each control sub-problem differently. One of the possible 
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criteria to decide which control sub-problems should be dealt and which optimization 

technique and SbO role can be used, could be the computational complexity of the control 

sub-problem. The FMS control sub-problem complexity results from the level of the 

associated types of flexibility, FMS size and production volume. Another criteria can be the 

FMS state and conditions. If the FMS has over capacity or is saturated, reducing myopic 

behavior may not result in any major changes in regards to global performance. 

 

As seen in Figure III-2, each      can be configured to work on   control sub-problems 

(   ), therefore each      handles the set of global decision variables      where      

{    
        

 }. The purpose of each      is to find the set of values     
  

{    
         

  } that meet its global objective function     , under normal and abnormal 

conditions. The optimization technique that handles each control sub-problem works on the 

associated global decision variable. This one-to-one assignment is not a restriction but a 

practical configuration to handle different types of variables (e.g., numerical, continuous or 

discrete, or non-numerical), reduce problem complexity and provide better modularity and 

adaptability. For instance, the product release problem can be modeled with continuous 

variables, i.e., a release date; discrete variables, i.e., product release sequence or with non-

numerical variables such as choosing one dispatching rule. 

The      interacts with each      by taking the values     
  and sending them to the 

corresponding decision-making algorithm in the     . According to the chosen SbO role, 

there can be three possible hierarchical interaction modes. These hierarchical interaction 

modes determine the way in the value     
  is exploited by the local decision-making 
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Figure III-2: Scope of myopic behavior reduction 
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algorithm in the     .     
  can for instance be assumed as the value or possible values for 

     (where      is the set of local decisional variable managed by local decision-making 

algorithms), or as a parameter of the decision-making algorithm. Three         

hierarchical interactions modes are proposed: coercive, limitary and steering. These 

interaction modes are described below and some examples are also given to explain them 

better. 

 Coercive interaction: the definition of “coerce” fully explains this interaction mode. 

According to the Collins dictionary (“Collins Dictionary. 

http://www.collinsdictionary.com/ (visited 07/04/2014),” 2014) coerce means “to compel 

or restrain by force or authority without regard to individual wishes or desire”. Indeed, 

this interaction mode overrules    ’s autonomy for the concerned control sub-problem. 

Though      can use their local decision-making algorithms to make their own 

decisions, it is strongly advised to assume the value     
   obtained by the SbO technique 

as local control decisions (    
 ). This is particularly true if the SbO takes the resolving 

role. Other alternative solutions will affect the global dynamics, possibly affecting global 

performance. 

o Example 1 - resolving role: if the      is configured to reduce myopic machine 

allocations, then the SbO technique must provide the sequence of machines that 

each product needs to follow in order to accomplish their operation sequence. The 

     sends to each subordinate product      the machine sequences and this 

latter has to follow the imposed sequences unless a perturbation is detected.  In 

this case, the     
  is a matrix in which, for instance, each column represents a 

product, each row an operation, and the selected machine is placed in the 

intersection of rows and columns.  

 Limitary interaction: this interaction mode does not overrules completely    s’ 

autonomy because     
   is a set of values that are adopted as boundaries by    s. Thus, 

   s can use their local decision-making algorithms to make their own decisions to find 

    
 , but within the values provided by the associated SbO. Resolving and evaluating 

SbO roles can be used for such interaction mode. Remaining within the boundaries 

guarantee that performance will also remain bounded, if FMS conditions used to make 

those solutions are maintained. Two examples of this interaction mode are explained 

below: 

o Example 2 - resolving role: if the      is configured to reduce myopic machine 

allocations and the SbO converges to a population of possible solutions, i.e., 

machine sequences for each product; each product has the possibility to chose 
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from a set of machines for each manufacturing operation. Then, each      will 

assess the FMS current conditions and make a decision within the possibilities 

found by the SbO technique. 

o Example 3 - evaluating role: if the      is configured to reduce myopic routing, 

and each      makes several routing proposals, then the      can cluster a set of 

proposals with similar estimated performances and each      will only need to 

chose among one of them, taking into account the current traffic conditions.  

 Steering interaction: is the less intrusive interaction mode since     
  is not used as a 

solution but as a parameter or a policy for the local decision-making algorithm (Carvalho 

et al., 2012). This interaction mode takes advantage of the    s’ capabilities to gather 

and analyze data.    s’ actions are in turn interpreted by the     , which may redirect 

   s’ behavior by tuning up the parameters or sending a new policy. Therefore, each 

     steers the local decisions by adapting the    s’ decision-making algorithm 

according to current FMS conditions. This interaction mode is suitable if the SbO 

technique takes the tuning or selecting roles. Two examples of this interaction mode are 

described below: 

o Example 4 - tuning role: if the      is configured to reduce myopic routing and 

the control decision to select a route results from a weighted sum of two variables, 

route load and distance to the destination, such that                       

                  , then     
  {    } and      

  {              }.  

o Example 5 - selecting role: if the      is configured to reduce myopic machine 

allocations and each      is endowed with a set of priority rules for making that 

choice, then the      can dynamically evaluate which of those priority rules suits 

best the current FMS conditions. 

It is important to point out that the influencing SbO role has not been included in the 

aforementioned interaction modes since under the influencing role, both decisional entities 

(     and     ) do not interact directly but indirectly through the environment. For 

instance, in approaches based on stigmergy (Hadeli et al., 2004; Sallez et al., 2009), 

pheromone values left in the environment can be treated as      in order to change    s’ 

perception of their environment.  

As seen in Figure III-2, the proposed approach has no restriction of combining various 

interaction modes and SbO roles in order to grant    s with different autonomy degrees for 

each control sub-problem. This is an interesting feature since autonomy is not anymore 
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defined for the entire entity but for each control sub-problem that the local decisional entity 

handles. 

4. Decisional entities structure 

To realize the proposed SHFMS control architecture it is fundamental to define and 

develop the building block of the control architecture: the decisional entity (  ) (Jung et al., 

1996). The configuration of the    can be inspired of any of the control units proposed by 

modeling approaches such as multi-agent systems (Shen et al., 2000), bionic manufacturing 

systems (Okino, 1993), holonic manufacturing systems (Christensen, 1994) or intelligent 

products (Sallez et al., 2010). In general, the aforementioned    models have three internal 

modules in common: a control, an interaction and an information storage module. Since the 

internal architecture of an holon proposed by Babiceanu and Chen, (2006) contains those 

basic modules, herein, such configuration is adopted as generic    and it is depicted in 

Figure III-3. 

The core of the    is its control module in which decision making resides. The 

information module stores, among others, the parameters required for decision making, tasks 

supported, performance metrics and other data needed to achieve the assigned objective. In 

turn, the interaction module supports decision making by allowing information exchange 

between decisional entities, the environment or the actuator as in the case of    s (Figure 

III-1). The global and local decisional entities constituting the proposed SHFMS are instances 

of the generic   . The internal structure of the     and     are explained below. 

 

4.1. The local decisional entity (   ) 

Figure III-4 shows the internal configuration of an    . Each      is capable of 

handling a set of local decision variables      {    
        

 }. The purpose of each 

Information 

Storage module

Interaction module

(Collective behavior)

Information flow

Control module

(Individual behavior)

DE
DE DE

. . .

Environment

Actuator

 

Figure III-3: The generic decisional entity (Babiceanu and Chen, 2006) 
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     is to find the set of values     
  that optimizes a local objective    , taking into 

consideration the current status     of its controlled actuator and its local performance    . 

4.1.1. The control module 

The control module of      is divided into two sub-modules: high-level and low-level 

control sub-modules as shown in Figure III-4.  

 

This division of control is inspired by the different natures of both control processes as 

described in (Zambrano Rey et al., 2013). Though in the low-level decision-making can be 

executed periodically on high frequency basis, the high-level control is event-oriented. The 

high-level control sub-module hosts decision-making algorithms for dealing with the 

assigned control sub-problems, to achieve the entity’s local objectives. In turn, the low-level 

sub-module is in charge of translating the high-level control decisions (    
 ) into low-level 

commands that the controlled actuator (  ) can execute. For example, if an     controls a 

material-handling component, e.g., an automated guided vehicle, product routing decisions 

are taken in the high-level control sub-module, and then those decisions are translated by the 

low-level control into moving commands (e.g. forwards, backwards). Also, the low-level 

control monitors the actual position of the vehicle, i.e., local status (   ), and informs the 

high-level control when the task has been accomplished or if an abnormal condition appears. 
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Figure III-4: The    s structure 
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4.1.2. The interaction and information storage modules 

The interaction module is also divided into high-level and low-level interaction sub-

modules to handle data related to their corresponding control sub-modules. The high-level 

interaction sub-module discriminates between interactions with global and local decisional 

entities. Although each      has the capabilities to locally resolve the assigned FMS control 

sub-problems, in order to reduce its myopic behavior each      establishes a two-way 

interaction with the global decisional level by accepting global decisions     
  and returning 

local information such as its local performance     and local status    . High-level 

interactions with other    s are performed with the purpose of collecting the required 

information to execute the local decision-making algorithms and accomplish the tasks 

assigned. To do so, each      cooperates with other    s by exchanging a partial or a 

complete set of temporary values      (e.g., proposals, bids, etc.) where           ; or 

their final decisions      
      

  to inform others about their intentions or future actions. 

The fact that each      may only exchange a partial set of its decision variables (    ) is one 

the causes of social myopia. The other cause of social myopia is more an internal issue of 

each      related to the exploration of possible alternatives for     , meaning a limitation of 

the local decision-making algorithms. Both, the high-level and low-level interaction sub-

module implements the necessary protocols and technological requirements to ensure data 

exchange with other decisional entities and the controlled   .  

Last, the information storage module contains all configuration parameters of the local 

decision-making algorithms (e.g., thresholds), parameters associated to the controlled   , the 

local decision variables (    ) and their current values, as well as the local objective function 

(   ). 

4.2. The global decisional entity (   ) 

Figure III-5 shows the internal configuration of each     . The control, interaction and 

information storage modules are described below. 

4.2.1. The control module 

As depicted in Figure III-5, in order to reduce the    ’s myopic behavior, in the control 

module of each     , simulation-based optimization techniques are coupled in a closed loop 

as proposed in (Zambrano Rey et al., 2014). Each      is configured to work only on   

control sub-problems which are functions of      ( in Figure III-5). Those   control sub-

problems are resolved by a simulation-based optimization loop, in which optimization 

techniques propose values for      ( in Figure III-5) and time-scaled simulations ( in 

Figure III-5) evaluate the impact of      on    s’ behavior. Simulation outputs ( in 
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Figure III-5) are necessary to calculate an estimated global performance,      ( in Figure 

III-5) from estimated local performances,      (in Figure III-5). The simulation-based 

optimization loop continues to explore alternative values for      until stopping criteria are 

met ( in Figure III-5). For instance, the SbO loop can be stopped after a certain deadline, 

elapsed time or lack of solution improvement during a certain time. 

 

The use of simulation-based optimization is justified by the following benefits. First and 

foremost, the optimization mechanism allows an intelligent exploration of the solution space 

for     , taking also into consideration the    s’ behavior. Indeed, it is the simulation 

model that allows integrating    s’ behavior into    ’s solutions. Second, the simulation 

model provides an estimated global performance for the current and future states of the 

system, making possible to reduce the temporal myopia of local decisions. Third, simulation 

allows estimating the impact of local decisions of each      in regards to other    s, then 

the impact of their social myopic decisions can be reflected on the estimated local 

performances. Last, the      can be used as lower or upper bounds to monitor production 

execution and trigger recalculations if necessary.  Additional description on the optimization 

module and the simulation model are provided below. 

The optimization module 

The proposed optimization module ( in Figure III-5) is characterized by a modular 

configuration in which different optimization techniques can be hosted. One important aspect 

of the optimization module is the type of connection between optimization mechanisms, 

which can be of two types: decoupled or coupled. In decoupled connection, each optimization 

technique works on each problem individually, creating successive SbO loops, as depicted in 

Figure III-6.  Therefore, for each control sub-problem the value for the corresponding     
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is fixed and passed to the next SbO loop as a parameter. For instance, in the k
th  

SbO cycle, 

the set of values     
      {         } have already been fixed by the precedent (k-1) 

optimization techniques, the     
  variable is under evaluation and the set of (K-k) control 

sub-problems for which myopic behavior will not be reduced are dealt locally by    s using 

their local decision-making algorithms. As a result, global performance estimation is obtained 

through simulation replications and feedback to the optimization technique to drive the search 

process (Figure III-6). 

 

 This type of connection aims to gradually obtained solutions for those control sub-

problems assigned to the optimization module. More, since each control sub-problem is dealt 

separately, it is also expected that computational complexity would be reduced. Furthermore, 

any changes in the control sub-problem variables and constraints can be easily adopted in the 

concerned optimization technique without affecting others. Last, the     ’s modularity and 

adaptability is also preserved since one optimization technique can be easily replaced to 

maintain each      up to date. 

Contrary to the decoupled type, in the coupled connection all optimization mechanisms 

work integrated possibly embedded into each other, sending a complete set of values for 

     to the simulation model (Figure III-7).  
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Figure III-6: Decoupled connection between optimization techniques 
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As in the previous case, all those (K-k) control sub-problems not assigned to optimization 

techniques are dealt locally by    s’ decision-making algorithms (out of MBR scope). The 

main advantage of this configuration is that all decision variables are explored at the same 

time, so at any point in time a value for the entire set of      can be used to reduce    s’ 

myopic behavior. However, coupling optimization techniques may entail a larger solution 

search space, possibly incurring in more computation costs that in the decoupled 

configuration. More, the configuration of each optimization technique needs to take into 

consideration the other techniques so they can actually work together. Furthermore, it is 

necessary to evaluate not only the efficiency of optimization techniques, individually (if 

possible), decoupled and coupled so the most appropriate techniques and connection type can 

be used. 

 

 The simulation model 

Simulation has become a key tool for evaluating complex systems with complex 

relationships between entities, such as those driven by heterarchical approaches. Simulation 

outputs ( in Figure III-5) not only help moving a solution towards finding a good or near-

optimal value (inputs of the optimization mechanisms), but also help to describe    s 

interactions. In the proposed approach, simulation is of the outmost importance because it 

allows predicting how values of      affect    ’s local control decisions and an estimated 

global performance can be calculated based on the    ’s behavior. 

The simulation model is mainly composed of three data types: the structural data, the 

simulation parameters and the    s’ behavior model. The structural data ( A  in Figure III-5) 

describes the FMS layout and its components. This type of information rarely changes and it 
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is the result of the FMS design process. In addition, some model assumptions, managerial and 

technical constraints are also used to structure the simulation model. 

The    s’ behavior model ( B  in Figure III-5) contains the    s’ decision-making 

algorithms, making possible to analyze    s’ interactions and estimate how    s deal with 

FMS control sub-problems. It is important that this module reflects the    s’ behavior 

resulting from their high autonomy, especially for those problems for which myopic behavior 

is not reduced. If the     takes into consideration the    s’ behavior,    ’s estimations 

will be more coherent with the actual    s’ behavior during solution execution in the FMS.  

Simulation parameters ( C  in Figure III-5) congregate data that needs to be specified for 

each simulation replication. Simulation parameters consist in two types of input data: the first 

type is the solution to evaluate which correspond to the outputs of the optimization 

mechanisms (i.e., values for     ). The second comes from current FMS status which 

enables adaptation in the presence of internal perturbations. The dynamic nature of the FMS 

(i.e., machine breakdowns, machine activation/deactivation, machine maintenance, etc.) is 

constantly monitored to update the simulation model and obtain valid solutions.  

4.2.2. The interaction and information storage modules 

The interaction module is composed of two sub-modules, one for cooperating with other 

decisional entities in the     and another for interacting with subordinate     . Through 

the     sub-module, cooperation between      is achieved by exchanging temporary 

values of      (for instance in the case of negotiation where proposals are exchanged) or 

    
  when a final decision has been made. 

Through the     interaction sub-module, each      can hierarchically interact with 

subordinate    s, depending on the SbO roles and the interaction mode as described in 

Section III-3.3. Incoming information from    s (i.e., local performance and local status of 

the controlled actuator as shown in Figure III-1) allows each      to calculate deviations 

between the estimated and actual local performance for each subordinate     . More, 

reported status of the controlled actuator is needed to update parameters of the optimization 

mechanisms and simulation model. In the information storage, the assignation of each      

to a particular global objective (    ), subordinae     , control sub-problems and global 

decisional variables (         ), corresponding parameters of the optimization mechanisms 

and incoming information from    s are stored and maintained up to date as shown in 

Figure III-5.  

 



 Chapter III. A Semi-Heterarchical Simulation-based Optimization Approach to Reduce 
Myopic Behavior in FMS 

 

62 

 

5. The control strategy 

As defined in Section II-2, the control strategy determines the control system dynamics 

under normal conditions and in the occurrence of internal and external perturbations. 

Between fully reactive, predictive-reactive and proactive (Appendix D), our hypothesis is that 

the predictive-reactive strategy supports best the proposed SbO roles and hierarchical 

interaction modes. This section first covers the control strategy under normal conditions and 

then under abnormal conditions. 

5.1. Control strategy under normal conditions 

Figure III-8 depicts in detail how entities in the proposed architecture handle reactivity 

and global performance as described in Figure I-4.  

On the basis of the predictive-reactive control strategy, the global decisional entity works 

in the predictive phase and the local decisional entity takes care of the reactive phase. The 

purpose of the control strategy is to maintain the global performance within a target profile 

established around a desired level of global performance. In the predictive phase, the      

triggers its optimization mechanisms for exploring the solution space for the k control sub-

problems assigned to the global decisional entity (global solution search in Figure III-8). 

Each alternative solution is composed of temporary values for      related to those control 

sub-problems. The simulation model is then in charge of evaluating those alternative 

solutions for a time horizon    (solution evaluation in Figure III-8). It is then expected that 

after a certain number of SbO cycles, a set of values     
  satisfying the target performance 

profile are found. In this way, an estimated performance of the selected solution can be 

calculated. As shown in Figure III-8, certain global performance variability is anticipated and 

accepted given that the expected global performance remains within bounds. Such variability 

is mainly due to    s’ full autonomy to deal with (K-k) control sub-problems. Since myopic 

behavior for those control sub-problems is not reduced, those myopic decisions appear during 

simulation replications and are strongly dependant on      values under evaluation. Model 

assumptions concerning the optimization mechanisms and simulation model may also 

contribute to such variability. 

Once the      obtains     
 , these values are adopted by    s using one of the three 

interaction modes explained in Section III-3.3. Except for the coercive interaction mode in 

which     
  values are adopted as control solutions for the k control sub-problems, for other 

interaction modes    s have to gather the necessary information to find alternative solutions 

for all control sub-problems (local solution search Figure III-8). In such cases, the local 

objective (     is used to evaluate alternative solutions and select one of those alternatives 

for execution (solution evaluation and execution in Figure III-8). The reactive phase is 



 Chapter III. A Semi-Heterarchical Simulation-based Optimization Approach to Reduce 
Myopic Behavior in FMS 

 

63 

 

launched each time a control decision has to be made, since the local solution search is made 

for short decision horizons, contrary to the global solution search process in the predictive 

phase. As shown in Figure III-8 it is most likely that a deviation exists between estimated and 

actual performances due to modeling and data assumption, as well as local control decisions. 

It is important to have in mind that under normal conditions, the reactive phase is triggered to 

make decisions that are out of the MBR scope and not only to face a perturbation. 

 

5.2. Control strategy under perturbed conditions 

The control strategy under perturbed conditions is categorized as those within    ’s 

domain and those within    ’s domain: 

Perturbation handling within    ’s domain: these perturbations concern those control 

sub-problems for which myopic behavior is not reduced. Therefore, all perturbations in this 

category are handled locally by each      given that this latter has full autonomy for making 

the necessary control decisions. Each      must be capable of indentifying the perturbation 

and decide how to act. As depicted in Figure III-9, the reactive phase comprises local solution 

search, alternative solution evaluation and solution execution. Since the     is not guided to 

make such control decisions, the     makes myopic decisions given its reduced view of the 

entire FMS and the restricted amount of time it has to come up with a solution. In addition to 

the expected variability caused by myopic control decisions under normal conditions 

(forecasted during the predictive phase), myopic decisions to overcome internal perturbations 

may cause additional variations and deviations of the expected global performance. As 
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depicted in Figure III-9, since no simulation is carried out, it is not possible to estimate global 

performance, only the actual global performance monitored by the     will tell if    ’s 

intervention is necessary or not to maintain the system within the target profile. 

Perturbation handling within    ’s domain: these perturbations concern those control 

sub-problems for which myopic behavior is reduced. In such cases, the     launches SbO 

cycles to calculate new     
  values. Two main features of the proposed approach are crucial 

for handling perturbed conditions within the     ’s domain. First and foremost, the different 

SbO roles and the proposed interaction modes allow several strategies. While coercive and 

limitary modes require recalculation at the global decisional level, the steering interaction 

does not require that    s wait for     ’s solutions. It is then possible to think in adaptive 

configurations in which an interaction mode is used under normal conditions and another 

mode is triggered for perturbed conditions. This adaptive strategy joint with the fact that 

interaction cooperation modes can be particular for each control sub-problem makes the 

proposed approach generic and highly adaptable. The main requirement would be to have 

multiple optimization mechanisms for the same control sub-problem or optimization 

mechanisms that allow multiple interaction modes. 

 

The second feature is issued from the modular configuration of the    ’s optimization 

module. In order to be more reactive, the optimization module can be re-configured to use 

only those optimization mechanisms that are concerned by the perturbation. In such case, the 

decoupled connection between optimization mechanisms would be the most suitable 

configuration to achieve such re-configuration. An adaptive strategy between the two 
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connection types would make this approach more reactive and can be envisaged in future 

works. 

6. Procedure to instantiate the proposed approach 

There are various design decisions to make in order to instantiate and implement the 

propose semi-heterarchical architecture. Figure III-10 depicts a possible procedure that can be 

helpful to realize the FMS control architecture.  

The first stage is to gather all data necessary to build a FMS model. Data related to FMS 

resources, supported products, manufacturing operations, FMS layout, and production 

volume can be considered as static and dynamic parameters for the model. Technical and 

managerial constraints are also necessary to limit the model scope and allow its 

implementation. At the end of this stage, the global performance indicator(s) and the FMS 

control sub-problems issued from the model must be identified.  

The second stage starts by taking those control sub-problems and allocating them into 

decisional entities in the local and global levels to achieve a general description of the 

architecture. To this end, global and local decisional entities participating in the architecture 

can be identified at this stage. By defining those entities, the interaction mode between    s 

and    s for each control sub-problem can be determined. Then, in the third and fourth 

stages, the internal structure of local and global decisional entities can be configured. Either 

these two stages are done in parallel, for instance for each control sub-problem, or 

sequentially. After defining the local decisional level, it should be possible to carry out an 

experimental study to assess the efficiency of the local decisional level. If a centralized 

version of the FMS model is achievable, then it should be possible to establish the deviation 

between results obtained with the     and optimal or near-optimal values obtained with the 

FMS model (e.g, linear or non-linear programming, meta-heuristics) for static and dynamic 

cases. Static studies aiming to determine the global performance under normal conditions can 

be accomplished through simulation or real experimentations if an FMS is available. In turn, 

dynamic experimentations should be carried out to determine the architecture’s reactivity, 

adaptability, and fault tolerance under perturbed conditions. At this time, myopic decisions 

and their impact on global performance can be assessed, becoming a critical point that may 

define and/or introduce changes in the configuration of the global decisional level, the 

interaction modes and the following stages of this procedure. 

The next stage is focused on explaining the dynamic interactions between decisional 

entities, during normal and abnormal conditions (i.e., the control strategy). For these latter, it 

is then helpful to define processes and entities in charge of responding to different situations. 
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Last, the global evaluation stage looks for assessing the efficiency of the architecture in terms 

of the global performance indicator. As for the partial evaluation, simulation studies and real 

experimentations can be executed. In order to prove myopic behavior reduction, results 

obtained from partial and global evaluations should be compared. For both experimental 

studies, benchmark cases such as the ones proposed  by Cavalieri et al., (2000), Wörner and 

Wörn, (2006) and Trentesaux et al., (2013) can be followed. On the basis of results analysis, 

new information, desired functionalities or changes in the FMS model, and the necessary 

adjustments and changes at each stage should be made aiming to keep the architecture up to 

date. 

 

7. Synthesis of the proposed approach 

Now that all the constituent elements of the proposed approach have been described, 

herein the main features and pertinence of this proposition are highlighted. As expressed in 

the introduction of this chapter, our vision to reduce myopic behavior has an architectural 

perspective, with specific structural and functional features. Based on the concepts proposed 

herein, a detailed study on myopic behavior at the local decisional level, aiming for 

mathematical-based models that allows us to actually measure and control myopic behavior 

will be addressed in future works (see Conclusions and Further Work). 
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Figure III-10: Procedure to instantiate the proposed approach 
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The first structural element and the main feature of the proposed approach is the 

configuration of a global decisional entity endowed with simulation-based optimization 

techniques. The main objective of such entity is to focus on control sub-problems that 

required the most attention according to the impact of those myopic control decisions on 

global performance. This division of control is a novelty in regards to similar semi-

heterarchical architectures in which the global decisional level is redundant (Y. Wang et al., 

2008; Li et al., 2010) from the control perspective to the local decisional level. In our 

approach, it is possible to accept myopic behavior as part of the control strategy because it 

allows rapid control responses given the limited information and temporal assessment needed 

to make those decisions. 

The second structural element concerns the internal configuration of the global and local 

decisional entities. For the global decisional entity, the configuration of the optimization 

module avoids aggregation of control decisions into one optimization mechanism, which is 

one of the most common features found in semi-heterarchical approaches reported in Chapter 

II (Heragu et al., 2002; Walker et al., 2005; Nejad et al., 2011). In those cases,    ’s 

interventions strongly depend on highly complex optimization mechanisms. In addition, the 

modular configuration of the optimization module makes possible to adapt optimization 

mechanisms and their connectivity to face changeable conditions. Such adaptation favors 

reactivity and adaptability of the whole architecture, always paying close attention to myopic 

behavior. Regarding the local decisional entity, the internal structure of the 

    differentiates between operational and strategic decisions, and high and low-level 

interactions making implementation more straightforward. 

The third structural element is the integration of a simulation model. Simulation is 

necessary for      to account for and assess    ’s myopic control decisions. Simulation 

allows      to estimate global performance out of solutions proposed by the optimization 

module and solutions proposed by    ’s. Consequently, simulation plays an important role 

in predicting future states of the system and detecting issues such as deadlocks before they 

actually arise. The main different with SbO approaches reported in Section II-5 is the joint 

work between the optimization module and simulation model. In other works, such as the 

ones proposed by Low et al. (2005) and Zhang et al. (2007), the simulation model is only 

used for evaluating the outcomes of the solutions proposed by the optimization mechanism. 

Functionally, the control strategy is based on the different roles the simulation-based 

optimization technique may have in regards to myopic behavior. Those roles allowed us to 

define three interaction modes between     and    : coercive, limitary or steering. These 

interaction modes state clearly how to integrate    ’s results into    ’s local decision-

making algorithms to reduce myopic decisions. More, these interaction modes do not impose 
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any restriction on the type of local decision-making algorithms, yielding generic our myopic 

behavior reduction strategy. The second functional feature refers to the    s’ autonomy.  

Since    s have a set of problems for which they have full autonomy, they can easily react 

to deal with perturbations affecting those control problems. On the contrary, if perturbations 

reach    s control sub-problems, these latter are called to react. As a result, reactivity is 

achieved at both levels. In most of semi-heterarchical approaches described in Chapter II, the 

global level is call to intervene every time an event perturbs the current plan, or it is up to the 

local level to do so (Shen et al., 2000; Leitão et al., 2005; Chu et al., 2014). 

Following the procedure explained in the previous section, an instance of the proposed 

approach is described in the following chapter. Then, in Chapter V, a case study will serve 

for evaluating the concepts introduced herein. 
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Chapter IV. Reducing Myopic Behavior in a 

Flexible Manufacturing System: A Case Study 

1. Introduction 

This chapter aims at describing the applicability of the simulation-based optimization 

approach proposed in the previous chapter to reduce the myopic behavior when the FMS is 

controlled by a semi-heterarchical approach. The big dilemma encountered when controlling 

flexible manufacturing systems (FMSs) is to optimize a certain performance criteria by 

efficiently utilizing its flexibilities while maintaining reactivity to internal and external 

perturbations. In this chapter, the semi-heterarchical approach proposed previously was 

instantiated to control a particular type of FMS. The local decisional level (   ) provides 

local reactivity but due to its myopic behavior, a global decisional level (   ) was 

configured to reduce such myopic behavior, striking a balance between the ability to react to 

disturbances and global performance.  

The choices on the different structural elements aimed to maintain modular, adaptable 

and low complex control architecture are explained in this chapter. To this end, this chapter 

follows the procedure explained in Section III-6. At first, the FMS control problem, its 

parameters, assumptions and constraints taken into account are described in Section IV-2. 

Also in this section, two global performance indicators are explained. In Section IV-3, the 

entire architecture is described as well as the chosen interaction modes between local and 

global decisional entities for the control sub-problems for which myopic behavior tries to be 

reduced. With the functional description of the local and global decisional levels, Section IV-

4 explains in detail the internal configuration of local and global decisional entities. Section 

IV-5 deals with the control strategy and the global evaluation of the resulting architecture is 

explained in Chapter V. A synthesis of the chapter is presented in Section IV-6. 

2. Description of the FMS control problem 

This section describes the FMS scheduling model and the FMS control sub-problems 

issued from those scheduling decisions. 
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2.1.  FMS scheduling model 

The following FMS scheduling model provides the main parameters, assumptions and 

constraints that can afterwards be employed in this particular case study. This model was 

inspired from the flexible job-shop scheduling (FJSS) model used as reference by Trentesaux 

et al., (2013) in their benchmarking. Other FJSS models reported in literature (Demir and 

Kürşat İşleyen, 2013) did not consider some of the realistic features, conditions and 

constraints described below or included specifications and conditions that are for now not 

necessary in this particular case study (e.g., sequence dependent setup times, maintenance, 

overlapping, etc.). Further works can be focused on integrating such conditions and 

constraints, enlarging the variety, number and complexity of control sub-problems. 

In this model, the FMS is composed of two types of resources: machines and transport 

devices. The FMS has been configured to assemble a set of products, each product with a 

different operation sequence and component requirements. The static parameters and 

dynamic parameters as well as the assumptions and constraints taken into consideration are 

described below. 

2.2.  Static Parameters 

These parameters were considered as static because they were defined on the basis of 

FMS components, configuration and technical features, which remain unchanged for long 

periods of time. Parameters related to product design were also considered static and included 

herein. 

   is the set of types of product supported that the FMS can process 

   is the set of machines,      {             } 

    is the operation sequences for the supported types of products;   

      {     |  |}     

   is the set of operations supported by the FMS 

     is the operation   of product  ,              

   
 is the set of manufacturing operations supported by machine   ,           

      
   

     
 is the distance between machines    and   ;         

    is the number of available transport devices 



Chapter IV. Reducing Myopic Behavior in a Flexible Manufacturing System: A Case Study 

 

71 

 

     is the minimum distance between transport devices 

     is the transport device’s nominal speed, i.e., linear speed 

    
 is the maximal input buffer capacity of machine    

     
 is the set of alternative transport routes to go from     and   ;        , 

i.e., transport network topology. 

      
 is the minimum transport time incurred to go from     and    by a transport 

device travelling at    . 

2.3.  Dynamic Parameters 

The following parameters were considered dynamic because they depend on FMS current 

status and production order data coming from the tactical level (Figure I-1). 

   is the set of products to be manufactured,   {         }     

    is the set of active redundant machines for each operation,      

     is the number of machine sequences available for product   

   

  
 is the processing time of operation   of product   on machine    

  
    

 is the set of available transport routes to go from     to    

       
  is the actual transportation time from    and    

2.4.  Assumptions and constraints 

The following assumptions and technical and managerial constraints are mostly taken into 

considerations in FMS studies with realistic implementations (Luh, 1998; Caumond et al., 

2009; Herrero-Perez and Martinez-Barbera, 2010; Berger et al., 2010).  

 A machine can process one operation at a time: 

                    Eq. IV-1                                                            

where       is a binary variable set to 1 if operation     is performed before operation 

   ; otherwise zero (0). 

 An operation is performed by only one machine: 

∑      
                                                                    Eq. IV-2 
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where      
 is set to 1 if product j chooses machine    to execute operation    ; 

otherwise zero (0). 

 Precedence constraints may exist between operations of the same product. In certain 

industrial cases such as automobile repair, quality control centers, semiconductor 

manufacturing and satellite communications, this constraint can be relaxed to achieve 

better machine utilization and reduce work-in-progress (Witkowski et al., 2010). 

 Machine’s input buffer capacity is limited. A limited input buffer capacity is the 

consequence of several physical characteristics (e.g., the actual size of the objects, the 

shop layout or the capacity of the material handling system) and/or managerial policies 

(e.g., minimizing the in-process inventory). The scheduling problems that take into 

account this constraint are not abundant because limiting buffers can lead to deadlocks, 

blocking or machine starvation (Mati et al., 2011). 

 A product, once it has finished on a machine, is transferred directly to an available 

machine’s input buffer (    
). When machines’ input buffer is unavailable, there are 

two possibilities: the product blocks the machine until a downstream machine’s input 

buffer becomes available or the product is taken care by the material-handling system at 

the cost of additional transport or intermediate storage times (Tavakkoli-Moghaddam et 

al., 2005; Mati et al., 2011). 

If consecutive product operations are executed on different machines, there is a transport 

operation between those machines. If blocking machines is not considered, the product 

remains on transport until it finds a spot in the target machine’s input buffer. Therefore, 

the actual transportation time depends on the input buffer capacity of the subsequent 

machine and the interactions between transport devices, which depend on the transport 

network utilization and the transport device circulation rules (e.g., priorities due to 

possible blockage): 

       
       

        
                                         Eq. IV-3 

       
 {

       
            

       
 

       
            

       

                             Eq. IV-4    

where        
 is an additional transportation time, and        

 is the remaining waiting 

time for product   in the input buffer of   , where   is the last product in the machine’s 

input buffer. If blocking the machine is accepted, then the processing time of operation   

of product   in machine    (being   the last operation of product   on the machine, if 

multiple operations for   are possible): 
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                                                  Eq. IV-5 

    
 {

    
            

       
 

    
            

       

                                  Eq. IV-6 

where     

  
 is the actual processing time of operation   of product   on machine    and 

the blocking time is denoted as     
.  

 Product re-circulation is allowed, meaning that a product can visit a machine more than 

once, increasing machine-sequence flexibility. 

 The number of simultaneous products in the FMS is limited. Limiting the number of 

products is a measure to avoid internal deadlocks (Caumond et al., 2009). Herein, we 

consider the case where a transport device is associated to a product during all its 

production time. Therefore, the number of transport devices (  ) was chosen to 

determined the maximum number of products within the FMS at any instant  . This is 

usually a technical restriction issued from limited resources or space. 

 Since machines can support various operations, a changeover from one operation to 

another may incur in setup times. The impact of this constraint can be reduced by for 

instance arranging similar products in batches. Within one batch, setup times can be 

neglected. 

 Preemptions may or may not be forbidden depending on the manufacturing operation. 

When preemptions are not accepted, an operation has to be completed without 

interruption once it has started.  

2.5. Control sub-problems 

Control sub-problems can be defined based on flexibilities provided by the FMS and the 

aforementioned assumptions and constraints. Out of the FMSs flexibilities mentioned in 

Section I-3.1, the operation flexibility was not considered in the present study. Thus, it is 

assumed that products have a pre-defined and fixed operation sequence, which corresponds to 

FJSS models. For this case, the following control sub-problems were studied: 

Release Sequencing: this problem deals with finding a sequence to release a set of   

products into the FMS. The release sequencing problem can be modeled as a discrete or 

continuous problem. If modeled as a discrete problem, a product release order needs to be 

found. The product release order is a vector containing the product position in the sequence, 

which is treated as a discrete variable. Conversely, if the problem is modeled with continuous 

variables, the product’s release time is treated as a real-value decision variable. Release 
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sequencing has a significant impact on shop floor workload, the work-in-progress and 

resource work balance (Shafaei and Brunn, 2000).  

 Decision variable (discrete problem):   , release sequence for the set of   products to be 

manufactured,      and      . 

 Decision variable (continuous variable):     , release time of product  ,       

  

Machine allocation: due to machine and machine-sequence flexibility, this problem deals 

with choosing one machine among the set of machines capable of performing each of the 

products’ manufacturing operations. This problem is usually modeled with discrete variables. 

 Decision variable:     , the machine sequence for product  , and         

Product sequencing: this problem consists in ordering products within the machine’s 

input buffer. This problem can be modeled with discrete variables or continues variables. 

 Decision variable (discrete problem):     
, is the product’s priority at   , where   

    
 {           

} in decreasing order. 

 Decision variables (continuous variable):      
 is the arrival time of product   at   . 

Other variables related to the elapsed waiting time, remaining processing times, slack 

times can also be used. 

Product routing: if multiple routes are available for transporting one product from    to 

  , then this problem deals with selecting one of those alternative routes. The routing 

problem can be modeled also with discrete variables as follows. 

 Decision variables:        
 is the selected route, where        

   

    
. 

In the following section, the semi-heterarchical control architecture described in the 

previous chapter is instantiated to control the aforementioned sub-problems and reduce the 

myopic behavior emerged when those control sub-problems are dealt with local decision-

making algorithms. 

2.6.  The global performance indicator 

Our hypothesis to chose a particular global performance indicator is founded on the fact 

that myopic control decisions can cause longer waiting times at machines’ input buffers and 

longer routing times, resulting in greater completion times, unbalanced machine utilization, 

among others. Hence, indicators measuring the completion time dispersion can be used to 
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calculate the FMS performance and also as a possible indirect myopic behavior measure. 

Among the non- regular performance indicators that can be used to measure dispersion, two 

were chosen for this study: the completion time variance (CTV) and the due date mean 

square deviation (MSD). 

2.6.1. The completion time variance 

(Kubiak, 1995) defined the CTV to measure the uniformity of the service provided to 

products. If myopic control decisions affect the way in which products use FMS resources, 

then control decisions that seem advantageous for some products may incur in greater 

completion time for others, resulting in greater dispersions around the mean completion time. 

Thus, it is expected that in the presence of myopic decisions, the CTV increases. The CTV is 

calculated with product completion times (   ) as follows: 

    (
 

   
)∑       ̅  

   
       Eq. IV-7 

 ̅  (
 

   
)∑    

   
                      Eq. IV-8 

where     is the cardinality of  . 

2.6.2. The due date mean square deviation 

As seen in Eq. IV-9, the MSD evaluates the dispersion of completion times, but instead of 

doing it around the mean completion time ( ̅) it does it on a given due date. 

    (
 

   
)∑          

    
                 Eq. IV-9 

In order to have a meaningful result in terms of the completion time dispersion around the 

due dates, we adopt the square root of the MSD, which could be seen as the standard 

deviation of due-date deviations (Eq. IV-10). More, for this case we consider a common due-

date for all products, then        so all products have the same local objective. 

              √   
 

 √(
 

   
)∑          

   
   

 
                       Eq. IV-10 

Having the MSD as an objective function allows us to position our approach in a Just-in-

Time (JIT) context. Therefore, myopic behavior can be related with inventory costs, customer 

satisfaction and on-time deliveries, which are important performance criteria for 

industrialists. In JIT, products that are finished early than the due date carry out with higher 



Chapter IV. Reducing Myopic Behavior in a Flexible Manufacturing System: A Case Study 

 

76 

 

inventory costs and those that are finished after their due dates result in customer 

dissatisfaction (Jozefowska, 2007).  

3. Description of the SHFMS architecture 

The constituent elements of the semi-heterarchical control architecture described in 

Section III-3 were particularized on the basis of the FMS model described in the precedent 

section. Figure IV-1 shows the resulting semi-heterarchical architecture.  

3.1.  The local decisional level 

As depicted in Figure IV-1 the local decisional level comprises two types of local 

decisional entities: transport decisional entities (        {      }) and machine 

decisional entities (        {     }).     s are concerned with release sequencing, 

machine allocation and product routing sub-problems and     s only make control 

decisions concerning product sequences within input buffers. For this particular case, 

machine decisional entities are temporally and socially myopic because their control 

decisions do not consider a global objective and local decisions are not shared with other 

    s. Hence,     s’ myopic behavior is accepted and not reduced. The relationship 

between local decisional entities is fully heterarchical. 

If the global decisional level did not exist, the FMS would be controlled as follows. As 

soon as a production order arrives, composed of   products, those products are released into 

the FMS in the order sent by the tactical level (Figure I-1). Once loaded in the FMS, products 

are assigned to available     s. Then, each      makes machine allocation and routing 

decisions to fulfill the products’ operation sequences.     s make their decisions on the 

basis of data furnished by     s and the state of FMS, e.g., route load, distances. At each 

machine, the      makes sequencing decisions to select one of the products in its input 

buffer. Once a product has been manufactured, the product is discharged from the FMS and 

the      becomes available for an upcoming product.     s are temporally myopic since 

machine allocation and routing decisions are made stepwise.  

For the machine allocation problem, machine allocations are made for one operation     

at a time without assessing the consequence of machine allocations for the rest of the 

operation sequence. A machine allocation that might seem beneficial (e.g., reduced input 

buffer time) may result in greater completion times. In turn, routing decisions experienced the 

same behavior by choosing one route at a time and possibly assessing routes by segments. 

    s are also socially myopic because they do not share their local control decisions with 

other     s. Based on the definitions of Pétin et al. (2007) and Meyer et al. (2011), this type 
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of control can be situated in the context of product-driven control. Product-driven control 

consists in providing the product with information, decision and communication capabilities 

so the product becomes an active decider capable of controlling and the executing its 

manufacturing sequence (Pétin et al., 2007). 

 

Mostly issued from the distributed artificial intelligence field, several approaches can be 

used for implementing the local decisional level. Figure IV-2 makes a partial summary of 

possible approaches that can be used taking into account the aforementioned description 

(Baker, 1998; Monostori et al., 2006). Among these approaches, the potential fields approach 

(PFA) has proven its efficiency and reactivity for heterarchical FMS control (Zbib et al., 

2012; Pach et al., 2012). Then, PFA with attractive fields has been chosen as the local 

decision-making algorithm for     s and a simple priority rule is used by     s to make 

their control decisions. More insights on these choices are given in Sections IV-4.1 and IV-

4.2. 
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. . . vLDEMJ

Manufacturing shop floor

. . . . . .

vLS1 vLSMJ mLS1 mLSR

Transport Machines

Product Product

· LOr=max(wtr)

· Decision-making algorithm à PR

. . . mLDER

· LOj=min(ctp)

· Decision-making 

      algorithm à PFA

GOF

LO

Global objective function

Local objective

LS Local status

LP Local performance

SbO Simulation-based optimization

MBR Myopic behavior reduction

GA Genetic algorithm

ATC Arrival-time control

PFA Potential fields approach

PR Priority rule

vLDE

pGDE

mLDE

Production global 

decisional entity

Transport local 

decisional entity

Machine local 

decisional entity

Interaction modeà Coercive

vLPMJ ,vLSMJvLP1 ,vLS1

· GOF=min(CTV)/min(MSD)

· MBR à Release sequencing, machine allocation

· SbO à GA-ATC & ABS

· SbO role à Resolving

Tansport device Tansport device

ABS Agent-based simulation
 

Figure IV-1: The SHFMS control architecture 
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As mentioned in Section III-3, there are no restrictions on the modeling approach, e.g., 

multi-agent systems (MAS), holonic manufacturing systems (HMS), Product-driven (PD), 

used for implementing the local decisional level. 

3.2. The global decisional level 

The global decisional level is composed of only one global decisional entity,       

(    , assigned with one production-related global objective function    , i.e., the CTV 

or MSD. As seen in Figure IV-1, the global decisional level is configured to reduce myopic 

control decisions related to release sequencing and machine allocation sub-problems, given 

the proven significant effects of these control decisions in FMS performance (Shafaei and 

Brunn, 2000; Joseph and Sridharan, 2011b). For this case study, it is considered that product 

routing decisions can be dealt locally due to frequent interactions between transport devices, 

needing constant product routing decisions.  

According to definitions given in the previous section,       has to be configured to 

deal with either the CTV or the MSD as objective functions.  To reduce myopic decisions 

concerned by the      , two optimization algorithms, the arrival-time control algorithm 

(ATC) by Duffie and Prabhu, (1994) and a genetic algorithm (GA) specifically conceived for 

this case study were chosen. The ATC was conceived to deal with release sequencing 

decisions and the GA with machine allocation decisions. As seen in Figure IV-3, other 

algorithms can be selected, from which heuristics and meta-heuristics are the most popular 

ones based on the literature review reported in Chapter II. Features and advantages of chosen 

algorithms are explained later in Section IV-4.3.  

Local 

decision-making 

approaches

· Auction/ Bidding

· One-to-one negotiation

· Bargaining

· Argumentation

· ContractNet

· Stigmergy 

mechanisms

· Ant colony
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· Bird Flocks

· Potential 

Fields
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· Repulsive fields

· Blackboard

· Pull algorithms (Kanban)

· Dispatching and priority rules

 

Figure IV-2: Possible local decision-making approaches 
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3.3.         hierarchical interactions modes 

Figure IV-4 shows the chosen interactions between the global and the local decisional 

levels, only for transport decisional entities (    s). For the two control sub-problems for 

which       is configured to reduce     s’ myopic behavior, the chosen interaction mode 

was the coercive mode because for both cases the proposed simulation-based optimization 

(SbO) technique takes the resolving role. This choice was straightforward because both 

optimization algorithms, GA and ATC, were conceived to deal with the machine allocation 

and release time variables, and values can be transparently adopted by     s. 
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Figure IV-4: The chosen         interaction mode 
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Figure IV-3: Possible global decision-making algorithms 
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On the     ’s side, the potential fields approach deals with machine allocation and 

routing decisions. Since PFA is not concerned by the release sequence, a pre-defined release 

position (e.g., position in the batch, availability, etc.) for each product or a dispatching rule 

(DR), e.g., shortest or longest processing times, earliest due date, etc., can be used to locally 

determined how products are launched into the FMS. The following section explains in 

details each of these algorithms and the internal structure of decisional entities. 

4. Decisional entities structure 

This section describes first the internal structure of the local decisional entities, transport 

decisional entity       and machine decisional entity       and then it focuses on the 

global decisional entity      . 

4.1.  Transport local decisional entity       

The transport decisional entity is an instance of the local decisional entity described in 

Section III-4.1 (Figure III-4). As shown in Figure IV-4, the       is endowed with the 

potential fields approach to make machine allocation and routing decisions. For a product   

assigned to      , the local decision variables are      {           
} where   is a 

release position of   and    ,    is a selected machine for each     where      , 

       
 and       

 is a transport route connecting the current position (i.e.,   ) to the 

selected machine    and       
    

    
. The      ’s control and interaction modules 

are depicted in Figure IV-5. 
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Figure IV-5: vLDEj control and interaction modules 
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4.1.1. The control module 

For the high-level control, the potential fields approach proposed by Zbib et al., (2012) 

and Pach et al., (2012) was chosen as the decision-making algorithms. PFA is a real-time, 

totally reactive and heterarchical manufacturing control strategy based on attractive fields. 

Machines in the FMS emit 1D-attractive fields along the transportation system for each 

service they can provide. The field’s intensity is reduced by the current status of the machine, 

the number of products (or operations) in its input buffer and the expected transportation time 

to reach the machine. Throughout the transportation network, the       gathers field values 

at decisional points where it can reassess its decision. At each decisional point, each       

chooses the machine    with the highest field emitted for the manufacturing operation 

    the product needs. As explained before, each       carries out a product   from the 

moment it is released into the FMS until it has finished its operation sequence   . During that 

time, PFA serves as an allocation strategy and also as a product routing strategy when there 

are multiple routes to reach a destination. More information on PFA can be found in 

Appendix E. 

Our motivations for working with PFA can be explained vis-à-vis the following aspects. 

First, high myopic behavior regarding release sequencing, machine allocation and product 

routing has been identified in PFA (Zambrano Rey et al., 2011a; Zbib et al., 2012; Pach et al., 

2012). Products are released into the FMS as they arrive and machine selection is executed 

stepwise for each task in the manufacturing sequence, without assessing the long term. In 

addition, each       is only concerned by its own objective, self-containing its decisions and 

avoiding information exchange with other     s. Second, PFA is flexible, adaptable and 

reactive to internal and external changes. Since PFA is also used within the simulation model 

into the global decisional entity, updating FMS conditions is straightforward, thus favoring 

solution coherence. PFA’s low complexity lies in the fact that machine allocation and product 

routing decisions depend exclusively on the information gathered by     s, therefore there 

are no negotiations and less communication overhead. In addition,     s constantly assess 

their decisions and do not require reservations or commitments of any kind. Clearly, the key 

aspect of this approach is the formulation of the attractiveness that drives the entire system 

and the way fields are propagated throughout the FMS (field attenuation). Last, PFA has been 

compared with other heterarchical approaches, i.e., contract-net (Zbib et al., 2012), and exact 

optimization models, i.e., an integer linear program (Pach et al., 2012), showing promising 

results. However, PFA has not been evaluated for the CTV and will require a dispatching rule 

or another algorithm that takes due dates into consideration in order to deal with the MSD. 

The low-level control contains the control algorithms to move the transport device (   in 

Figure IV-5) to the selected destination. The distance between transport devices (   ) and the 
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device’s nominal speed (   ) are handled at this level. In some cases, transfer priorities and 

collision avoidance could also be managed by low-level control.  

4.1.2. The interaction and information storage modules 

Through the strategic interaction sub-module each       receives data coming from the 

global decisional entity and reports its local performance (i.e., the completion time       ) 

when the operation sequence has been finished (Figure IV-5). As mentioned before, the PFA 

restricts the interactions between entities of the same kind. Thus, through the LDL interaction 

sub-module the       only exchanges information with    Es, indirectly through attractive 

fields (as represented by the dotted arrow in Figure IV-5)  and directly in form of two-way 

communication when the       arrives at the machine and requests for a specific operation 

    (represented by the solid double arrow in Figure IV-5).  

Given the low complexity of the potential fields approach, only the minimum distance 

between transport devices (   ) and the transport device’s nominal speed (   ) are 

configuring parameters requiring storage. In addition to that, product-related information 

such as product identification, product type and product operation sequence are also saved in 

the storage module, and updated every time the transport device (   ) is assigned with a new 

product.  

4.2.  Machine local decisional entity       

The machine decisional entity is also an instance of the local decisional entity described 

in Section III-4 (Figure III-3). The main purpose of this entity, in terms of control sub-

problems, is to make decisions to sequence products within the input buffer. To do so, a 

priority rule is embedded into the high-level control module in charge of selecting one of the 

products from the machine’s input buffer. The first-input first-output rule was chosen to solve 

the product sequencing problem, thus the product arrival time (     
) was used as variable.  

The     ’s local objective is to maximize its working time (         in Figure IV-1), 

for which a heuristic algorithm is also placed in the high-level control module. This heuristic 

algorithm is the core of the potential fields approach because it determines the attractiveness 

values according to the local machine’s status. The attractiveness value is inversely 

proportional to the remaining processing time, which includes the processing time of the 

current operation and operations waiting in the input buffer (Pach et al., 2012). In order to 

maximize the working time, the attractiveness value is updated every time an operation has 

finished. 

Once a product has been chosen, the       low-level control handles the       

passage from the input buffer to the machine and proceeds to execute the requested operation. 
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The information storage module contains data related to the maximum attractiveness value, 

supported manufacturing operations (   
 , maximum buffer capacity (   

) and the 

machine state (available or unavailable). 

4.3.  Global decisional entity       

As mentioned before,       was configured to work on two control sub-problems:     
  

the release sequence sub-problem and     
  is the machine allocation sub-problem (Figure 

IV-4). Thus,      {           }    {   }. The purpose of       is to find the set 

of values     
  that optimize the global objective function     . 

4.3.1. The control module 

Taking as reference the internal    ’s structure proposed in Section III-4.2.1 (Figure 

III-5) the      ’s control module structure proposed for this case is presented in Figure 

IV-6
6
. The optimization module and the simulation model are described below. 

 

The optimization module 

Two optimization mechanisms were chosen to tackle myopic release sequencing and 

myopic machine allocations. The release sequencing sub-problem was treated with a 

continuous variable, the release time (rtp(t)), because it provides more information that a 

                                                 
6
 For better visualization, control sub-problems and optimization mechanisms are presented in descending order. 
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simple sequence. In turn, the machine allocation sub-problem was modeled as a discrete 

combinatorial problem, aiming at selecting a complete machine sequence for each product 

(    ).  

Among the various simulation-based optimization mechanisms that can be used to tackle 

myopic release sequences (e.g., dispatching rules, heuristics, and meta-heuristics capable of 

handling continuous variables such as particle swarm optimization), a distributed cooperative 

approach, the arrival-time control was chosen (Prabhu and Duffie, 1995)(Opt. Tech 1 in 

Figure IV-6). ATC is a distributed and autonomous decision-making algorithm for part-

driven systems in which local schedules are generated in a purely distributed manner using 

minimal global information (Prabhu and Duffie, 1995). ATC is based on continuous variable 

control, hence its convergence and dynamic behavior can be analyzed and predicted (Prabhu 

and Duffie, 1996). Several reasons support our choice. First, ATC is a low complexity 

approach because each controller works independently without requiring explicit information 

from other controllers, resulting in no combinatorial complexity. Second, each decisional 

entity (i.e.,     ) has its own controller in the      , working on its local goal. Third, ATC 

requires time-scaled simulations that are used to provide feedback for local solution 

adjustment. The simulation model can use any decision-making algorithm for the    ’s 

behavior model to solve machine allocation and product routing decisions. And last, due to its 

closed-loop structure, ATC can adapt gracefully to internal and external perturbations. The 

ATC is described in detailed in Appendix F-I. 

Several priority rules, heuristics and meta-heuristics have been proposed to manage the 

machine allocation sub-problem (some examples are referenced in Section IV-3.2). Out of 

those optimization techniques, a genetic algorithm (GA) was conceived for such purpose 

(Opt. Tech. 2 in Figure IV-6). The encoding, operators and parameters are described in more 

detail in Appendix F-II. We have chosen genetic algorithms over other meta-heuristics due to 

the following reasons: 

 Flexibility: GAs have been implemented effectively for many different problems in many 

fields. The numerous studies proposing encoding techniques, genetic operators and 

enhancement strategies have given GA the necessary maturity for their commercial usage 

(Grupe and Jooste, 2004; Nie et al., 2013). Thus, GA matches the requirements for the 

previously explained FMS model.  

 Efficiency: GAs are known for their efficiency in finding nearly optimal solutions in a 

reasonable time (Honghong and Zhiming, 2003). Another indicator of the GA flexibility 

and efficiency is that several techniques can be adopted in order to improve the initial 

population generation and the population evolution in order to avoid falling into local 

optima (Pezzella et al., 2008; Gao et al., 2006). 
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 Scalability: GA have been tested for large-scale problems, and their behavior can be 

adapted depending on the size of the problem (He and Hui, 2007). A linear encoding 

technique or dividing the problem into multiple chromosomes (as proposed herein) can 

help to reduce the computing burden. Parameter control is also another tool that tries to 

adapt the genetic algorithm to problem conditions (Eiben et al., 2007). Although GA 

usually offer interesting computing costs, several strategies can be used to accelerate their 

processing speed (Rossi and Dini, 2000). 

 Parallelism: GA maintain a population of good solutions instead of adjusting a single 

solution, making the search process more robust. In the context of real-time problems, 

GA can be stopped at any moment so the best solution out of the available solutions can 

be executed. 

As described in Section III-4.2 the genetic algorithm can be connected with ATC in two 

ways: decoupled, where the two algorithms work separately; or coupled where ATC is 

embedded into the GA forming a close loop. More information on these two coupling modes 

and their efficiency to solve a flexible job-shop problem similar to the modeled considered 

herein can be found in Zambrano Rey et al., (2014). A feasible solution proposed by the two 

optimization approaches is composed of a release sequence (based on the release times for 

each product,    ) and a selected machine route (    ), for each product. In addition, the GA 

contributes with ATC’s initial conditions in the form of a discrete release sequence   . The 

flow diagrams explaining these two types of interactions are presented in Appendix F-III and 

Appendix F-IV. 

The simulation module 

In the proposed approach, agent-based modeling and simulation (ABS) was used to 

model the FMS and basic heterarchical behavior of local decisional entities. Between 

discrete-event simulation (DES) and ABS, this latter offers individual-based models, bottom-

up approaches and a more natural representation of heterarchical-based approaches where 

decisional entities have autonomous behavior (Siebers et al., 2010). Agent-based models can 

explicitly represent the complexity resulting from individual actions and interactions 

occurring in the real FMS. Siebers et al., (2010) summarized a list of problems that are good 

candidates to be modeled using ABS. All features mentioned in Siebers’s paper apply to FMS 

control problems and make ABS suitable for the proposed semi-heterarchical approach. 

For this particular case, the FMS simulation model was implemented using the multi-

agent programmable modeling environment NetLogo (Wilensky, 1999) (the Agent-based 

Simulator in Figure IV-6). This tool was chosen for its functionalities to model complex 

systems evolving over time, such as heterarchical-based control approaches (Tisue and 
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Wilensky, 2004). NetLogo contains the appropriate elements to model each local decisional 

entity, its behavior(s) and its interactions with other local decisional entities. More, Netlogo 

has been used as an on-line tool in distributed applications (Wang, 2009; Rolón and Martínez, 

2012) or as an evaluation tool (Barbosa et al., 2011; Berger et al., 2010). 

4.3.2. The interaction and information storage modules 

Since in this particular case there is only one global decisional entity, the     interaction 

sub-module is not required. On the contrary, the     interaction sub-module must be 

implemented using industrial networks, wired and wireless, this latter given the mobility of 

local decisional entities (    ). Machine sequences (    ) and product release times 

(      ) for each product are send to     s and actual completion times (      ) are 

received to calculate the deviation with estimated local and global performances 

(respectively,         and               in Figure IV-6). In turn, the storage module 

contains the internal parameters to configure the two optimization mechanisms, as described 

in Appendix F, as well as the static parameters, constraints and assumptions issued from the 

FMS model (Section IV-2) and necessary for the ABS model.  

5. Control Strategy 

The control strategies under normal and abnormal conditions are detailed in this section, 

following the predictive-reactive strategy described in Section III-5. 

5.1.  Control strategy under normal conditions 

The control strategy explained herein refers only to       and     s given that 

    s’ myopic behavior is accepted. Thus,     s follows a totally reactive strategy for 

controlling product sequences within input buffers.  

Under stable conditions, reducing myopic behaviors is encouraged to achieve a better 

performance as explained in Section III-5.1. Therefore, in the predictive phase (Figure IV-7) 

      proceeds to explore iteratively several possible solutions for the machine allocation 

and release sequence sub-problems. The optimization mechanisms (GA and ATC in Figure 

IV-7) develop the solution until convergence (Eq. IV-11) and stop when the solution remains 

steady for an itermax number of iterations. Other stopping criteria can be used depending on 

the optimization mechanism(s), SbO role, problem complexity and desired reactivity. For the 

latter, it should be possible to stop the SbO cycle at any given time and use the best solution 

found until that moment, this is an advantage of population-based techniques. 

                            ⁄                                       Eq. IV-11 
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The SbO techniques are in charge of evaluating those alternative solutions for a time 

horizon   . Herein, the notion of time horizon is related to the number of products evaluated 

within the time horizon, as it is handled in rolling horizon approaches (Jia et al., 2009). If    

is small, i.e., few products, a myopic short-tem solution is obtained at a lesser cost for  

     . This decision usually depends on the planning made by the tactical level and the size 

of the production order P and their operation sequences. For now,    is setup to include all 

products in a production order P. 

Once a solution is passed down to      , this latter assumes      ’s solutions and 

execute them. However, since the product routing sub-problem is not dealt by the global 

decisional entity, an internal iterative process is triggered every time a routing decision has 

been made. The iterative process depicted in Figure IV-7 (marked as ) fits the most generic 

case in which each route can be divided in multiple segments with divergent and convergent 

nodes (examples of  multi-segment routes can be found in (Herrero-Perez and Martinez-

Barbera, 2010; Zhang et al., 2012; Zbib et al., 2012)). In a multi-segment route, decisions 

have to be made at each divergent point. Since       does not intervene in these decisions 

each       handles route selection myopically, making short term decisions at each 

divergent node (temporal myopia). More,     s are socially myopic because they retain 
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Figure IV-7: Control strategy under normal conditions (FMS case study) 
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information concerning route selection, so low communication burden can be maintained.  

Under these circumstances,     s have to constantly assess traffic state, thus dealing locally 

with routing decisions seems a logical solution to ensure a high reactivity to traffic 

conditions. When the       has finished with the assigned product, it reports the actual 

completion time (     and waits for a new product assignation. 

5.2. Control strategy under abnormal conditions 

Abnormal conditions arise when the state of the FMS used to obtain control solutions 

changes, hence those solutions are either not valid or will potentially take the system out of 

the established target profile. As described in Section III-5.2, some perturbations are handled 

locally by     s and others will require the       intervention. For this particular case, the 

perturbation handling procedure is predefined depending on the type of perturbation and the 

decisional entity in charge of responding. Perturbation handling proceeds as described below. 

Perturbation handling within v   ’s domain: transport-related perturbations (e.g., 

longer than expected transportation times due to traffic or route segment blockage) are 

handled locally because     s are fully autonomous for dealing with such control decisions. 

Exceptionally,       may intervene if     s cannot handle a critical situation such as 

deadlock. 

Perturbation handling within      ’s domain: under the resolving SbO role and 

coercive interaction mode, perturbations concerning the control sub-problems for which 

      is configured should be handled by this latter. Thus,       may be concerned by 

external and internal perturbations. External perturbations affect the current production order 

( ), for instance changing the number of products to be manufactured (e.g., urgent order, 

product/order cancellation) or the parameters of the current order (e.g., changes in due dates, 

type of products). Internal perturbations are the consequence of FMS components’ health. 

Machine/tool performance variability (e.g., highly variable processing times) and breakdowns 

may perturbed control solutions provided by      , making the machine partially or totally 

unavailable for production. The modular configuration of the proposed optimization module 

allows two possible strategies to react to external and internal perturbations. The first strategy 

aims at dynamically changing the connection mode from coupled to decoupled to speed up 

     ’s SbO cycles. The second strategy aims at only dealing with the release time sub-

problem at the global level and leave machine allocations to be dealt at the local level. This 

strategy is suitable when FMS’s machines deteriorate, so operation times cannot longer be 

considered deterministic, and the failure rate increases putting the machine frequently 

unavailable. In such cases,     s can locally make machine allocation decisions using PFA, 

until the machine state gets back to more reliable conditions. On the     ’s side, any event 

affecting product sequences in the input buffer is treated locally by the FIFO rule.  
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6. Synthesis of the chapter 

This chapter described one possible implementation of the proposed semi-heterarchical 

simulation-based optimization approach to reduce the myopic behavior of particular FMS 

control. Several choices were made throughout the stages of the implementation procedure. 

Indeed, other architectures can result by making slight changes of the proposed configuration 

or by taking other options at every decisional point of the procedure, i.e., interaction modes, 

simulation-based optimization techniques, SbO roles, local decision-making algorithms, etc. 

Hence, the fact that several configurations are possible makes our approach sufficiently 

generic, not only in the context of FMS control but also in other problems that have 

similarities with the FMS control problem, i.e., logistics, hospital management, transportation 

management, etc.  

At first, a FMS model was proposed, taken into account realistic assumptions and 

constraints. From that model, four control sub-problems were identified (i.e., release 

sequencing, machine allocation, product sequencing, product routing). In this case, one global 

entity was configured with two optimization algorithms, a GA and the ATC, and an agent-

based simulation model to reduce the myopic machine allocation and release sequence sub-

problems. In turn, product and machine decisional entities were endowed with local decision-

making algorithms, PFA and FIFO rule, that allowed them partial and total autonomy to deal 

with product routing and product sequencing sub-problems, respectively. This chapter 

particularly described the case in which myopic behavior is reduced only for some control 

sub-problems and accepted for other control sub-problems in order to preserve good local 

reactivity to perturbations. The control strategy clearly defines the procedures to follow and 

the entities responsible when handling external and internal perturbations. 

As mentioned in the introduction, the next chapter relates simulation and real 

experimentation studies carried out in the AIP-PRIMECA assembly cell in order to evaluate 

our approach. Also, other results reporting the efficiency of the GA and GA-ATC on other 

FMS benchmark problems are also provided.
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Chapter V. An Experimental Case Study: The 

AIP-PRIMECA Cell 

1. Introduction 

Now that all the constituent elements of the proposed approach have been described, 

herein the prototype implementation of the proposed approach into an assembly cell will be 

described. At first, the experimental data will be presented in Section V-2 and then, the 

implementation of each decisional entity will be detailed (Section V-3). The evaluation of the 

proposed approach was executed on the basis of a simulation study (Section V-4 and V-5) 

and hardware-in-the-loop experimental evaluations on the AIP-PRIMECA assembly cell 

(Section V-6). The simulation study was carried out for static and dynamic scenarios, taking 

into consideration two objective functions and three different configurations of the global 

decisional entity. Some conclusions and results analysis are offered at the end of the chapter 

(Section V-7). 

2. General description of the AIP-PRIMECA cell 

The flexible assembly cell located in the AIP-PRIMECA Center at Valenciennes 

University allowed us to evaluate our approach. The AIP-PRIMECA cell (in short AIP cell) 

shown in Figure V-1, can be considered as an FMS because it provides the different types of 

flexibilities, i.e., machine flexibility, material-handling flexibility, process flexibility and 

machine-sequence flexibility. This cell is composed of industrial elements such as industrial 

robots, conveyor system, sensors, actuators, programmable controllers. Therefore, the AIP 

cell is an interesting platform for hardware-in-the-loop evaluation of FMS control 

approaches. More, this assembly cell has been modeled as a Flexible Job Shop (Trentesaux et 

al., 2013). Therefore, linear and quadratic programming models have been conceived inspired 

from this cell, which can be used to obtain reference scheduling solutions. 

To instantiate the FMS model presented in Section IV-2 it is necessary to analyze and 

describe in detail the AIP cell. Therefore, the AIP cell’s data related to material-handling, 

product and machines can be assumed as parameters and model constraints. All these data is 

also necessary for the internal configuration of the global and local decisional entities. In the 

following sub-section the AIP cell is described in detail and then in Section V-3 the 

technological implementation of decisional entities is explained. 
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2.1. Material-handling data 

The AIP cell’s machines are linked by a unidirectional and flexible conveyor system as 

depicted in Figure V-2.  
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Figure V-2: The AIP cell's layout 

The conveyor is composed of a main loop, several derivations to reach the machines, 

positioning units in front of machines, and four transversal sections composing multiple inner 

loops to allow material-handling flexibility (Montratec, 2014).  

 

Figure V-1: The AIP-PRIMECA assembly cell 
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Wago
®
 controllers (a. in Figure V-3), model 750-841, (WAGO Kontakttechnik, 2005), 

are used to drive the transfer gates allowing (when needed) to transfer a shuttle from one loop 

towards another (b. in Figure V-3). Also, the same type of controllers are used to handle the 

machine’s input buffers and the positioning units in front of the machine so the shuttle can be 

maintained fixed in place while an operation is being executed by the machine, i.e., a robot 

(c. Figure V-3). Dotted shaded regions in Figure V-2 represent the areas concerned by each 

Wago
®
 controller. 

 

Shuttles are self-propelled transport devices, placed on the conveying rail, which carry the 

physical product through the conveyor system (a. in Figure V-4). Each shuttle embeds an 

infrared control mechanism to avoid colliding with a shuttle position in front and maintain a 

minimal security distance between the two shuttles (   ). Other control mechanisms to 

manage their own speed in curves and straight segments (   ), dock into machines and stop 

before transfer gates make also part of shuttle’s control. Throughout the conveyor, decisional 

nodes (n in Figure V-2) have been set up to let the shuttle communicate with dedicated 

Wago
®
 controllers (d. in Figure V-4) that are in charge of tracking the shuttles’ position. To 

this end, radio frequency identification (RFID) technology is used for shuttle identification 

and localization purposes (b. in Figure V-4). In this way, at each decisional node (c. in Figure 

V-4), the shuttle stops, localizes itself and gathers other data necessary to make a decision. In 

total, 11 Wago
®
 controllers manage all transfer gates and shuttle tracking. 

For hardware-in-the-loop evaluations, a maximum of 10 shuttles are available, thus at a 

given time t no more than ten products can be present in the AIP cell (     ). For the 

simulation model and the FMS formal model the number of shuttles is a variable that can take 

different values, with no restriction other than saturation.  

 

b.

c.

Sensors

Commands

Sensors

Commands

a.

 

Figure V-3: a. Wago
®
 controller, b. Transfer gate, c. Positioning unit. 
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Product routing flexibility is accomplished by transversal sections, proving more than one 

route (     
  ) between two machines. Though in certain cases there is only one direct 

route (e.g., m1 to m2), looping around may be seen as a way to obtain multiple transport 

routes. Table V-1 reports the minimum transport times (in seconds) incurred to go from one 

node to the followings.  

 

From these values, minimum transport times between machines (      
) can be 

obtained. These transport times were measured under normal conditions and for only one 

shuttle in the conveyor. For the FMS model these transport times are deterministic. 

 

 

Table V-1: Minimum transport times (in seconds) between nodes 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1   6                 7   

2   4                 5   

3     5 4                 

4     5 4                 

5       6         7       

6       4         5       

7         5 4             

8         5 4             

9           13 5           

10           11 3           

11             7 6         

12             5 4         

13        7       6        

14        5       4        

15                 5 4     

16                 5 4     

17    7               6    

18    5               4    

19                     7 4 

20                     7 4 

21 13 12                     

22 10 9                     

 

 

a.

c.

Wired connection

Wireless connection d.

b.

 

Figure V-4: a. Shuttle, b. RFID tag (small) and reader, c. Decisional node, d. Wago® controller for shuttle 

tracking 
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2.2. Product data 

Contrary to AIP cell’s components, which are industrial elements, the products assembled 

at the AIP cell are didactic products created for proof-of-concept evaluations. Therefore, 

products were conceive to exploit the AIP cell’s flexibilities and allow evaluating various 

scenarios, e.g., product mixture, different operation sequences, etc. The AIP cell’s machines 

are configured to assemble 6 different components (axis, r-shape, L-shape, I-shape, screw as 

seen in Figure V-5) into a matrix pallet carried by the shuttle. With these five components, 

seven different types of products (   ) can be assembled by the AIP: "B", "E", "L", "T", 

"A", "I" and "P" as illustrated in Figure V-5. Once a product has been assembled it is 

unloaded with its matrix pallet so an empty one can be loaded into the shuttle. 

 

To assemble each product, a sequence of manufacturing operations has to be followed 

(  ). Product routing is not considered as a manufacturing operation. The AIP cell supports 

nine manufacturing operations (   ): “plate loading”, “axis mounting”, “r_comp 

mounting”, “I_comp mounting”, “L_comp mounting”, "screw_comp mounting”, 

“inspection”, “manual recovery” and “plate unloading”. Given that the automated inspection 

and the manual recovery unit do not offer any machine and machine-sequence flexibility, 

these operations are not taken into consideration for the experimental cases reported in this 

chapter, then     henceforth. Table V-2 presents the operation sequences for each type of 

product. 

 

Table V-2: Product operation sequences 

oip B-product E-product L-product T-product A-product I-product P-product 

1 plate loading plate loading plate loading plate loading plate loading plate loading plate loading 

2 axis mounting axis mounting axis mounting axis mounting axis mounting axis mounting axis mounting 

3 axis mounting axis mounting axis mounting axis mounting axis mounting axis mounting axis mounting 

4 axis mounting axis mounting axis mounting r_comp mounting axis mounting I_comp mounting r_comp mounting 

5 r_comp mounting r_comp mounting I_comp mounting L_comp mounting r_comp mounting screw_comp mounting L_comp mounting 

6 r_comp mounting r_comp mounting I_comp mounting plate unloading L_comp mounting plate unloading plate unloading 

7 I_comp mounting L_comp mounting screw_comp mounting  I_comp mounting   

8 screw_comp mounting plate unloading screw_comp mounting  screw_comp mounting   

9 plate unloading  plate unloading  plate unloading   

 

ComponentsMatrix Pallet

Axis I-Shape L-Shape r-Shape Screw

Finished Products

B-Product E-Product L-Product T-Product A-Product I-Product P-Product
 

Figure V-5: Product types and components 
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2.3. Machine data 

The AIP cell is composed of 7 machines as follows: a loading/unloading unit (m1),  three 

assembly workstations (m2, m3 and m4), an automatic inspection unit (m5), a recovery unit 

(m6), which is the only manual workstation in the cell, and an optional assembly workstation 

(m7) that can be used to increase the machine-sequence flexibility. From these machines, only 

five (m1, m2, m3, m4 and m7) are used in this case study, then (   ).  

As depicted in Figure V-2, each machine has an input buffer. Due to conveyor derivation 

dimensions, the maximal input buffer capacity     
 is setup at two shuttles for m3, m6 and 

m7 and only one for the rest of machines. Herein, the raw material buffer is considered with 

unlimited capacity. The FIFO rule implemented to control product sequencing within 

machines’ input buffers (Section IV-4.2) is the consequence of this technical restriction, 

given that input buffers can only accommodate shuttles sequentially in arrival order. Figure 

V-6 shows some of these machines. 

 

Table V-3 presents the processing times (in seconds) of supported operations. An empty 

cell in the table means the operation is not supported by the machine. From Table V-3 it is 

possible to deduct the machine-sequence flexibility given the operation redundancy. For the 

FMS model this processing times are considered deterministic. 

 

Table V-3: Processing times (in seconds) of operations 

Operation (oi)/processing time(    
 

) 
m1 m2 m3 m4 m7 

axis mounting  20 20  20 

r_comp mounting  20 20  20 

screw_comp mounting   20 20 20 

L_comp mounting  20  20 20 

I_comp mounting   20 20  

plate loading 10     

plate unloading 10     

 

 

Figure V-6: a. machine m2, b. machine m7, c. machine m4, and d. loading/unloading unit 

 

a. b. c. d.
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3. Decisional entities 

This section describes the technological implementation of each decisional entity. This 

implementation has been possible due to collaboration with Cyrille Pach during the 

development of its holonic control architecture (Pach, 2013). Local decisional entities 

descriptions are given first, followed by the global entity. Further details on this 

implementation can be found in Appendix G-I and G-II. 

3.1.  Transport local decisional entity       

The transport local decisional entity is composed of the transport device (i.e., the shuttle), 

the matrix pallet that supports the product and a processing unit in which the control, 

interaction and information storage modules are implemented (a. in Figure V-7).  

 

The transport local decisional entity (      was conceived following the principles of 

“active” or “intelligent products”, in which the physical product capabilities are augmented 

with informational, communicational and decisional capacities (Sallez, 2012). To this end, 

the processing unit is instrumented with a portable computer (for a proof-of-concept version), 

an Eeepc (AsusTek, 2014), given its portability and capabilities. Within this processing unit, 

the control module (Section IV-4.1.1) was developed in Java programming language and 

since the Wago
® 

controllers communication protocol supports Modbus TCP, the Jamod class 

package was used to implement the interaction module (Section IV-4.1.2). By means of a 

wireless access point (b. in Figure V-7) and an Ethernet network,     s can communicate 

with Wago
® 

controllers managing transfer gates, machines and the global decisional entity. 

The Jamod class package allows     s to read and write to Wago
® 

controllers variables. 

  

Processing Unit (Eeeepc)

Matrix pallet to support 

product

Shuttle

a.

b.

 

Figure V-7: a. The vLDE, and b. The wireless access point 
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3.2. Machine local decisional entity       

Seven (7) Wago
®
 controllers (a. in Figure V-8) manage each of the AIP cell’s machines 

(b. in Figure V-8). The Wago
®
 controller handles the machine’s input buffer, the list of 

operations supported by the machine, the attractiveness value under the potential fields 

approach and the information exchange with     s when they arrive at the machine and 

request for operations. In addition, the Wago
®
 controller ensures the information exchange 

with the machine controller. Consequently, the control, interaction and information storage 

modules of a      are all implemented in the Wago
®
 controller. 

 

As in the previous case,     s and     s use wireless connections to exchange 

information with each other (c. in Figure V-8). Instead, all 18 Wago
®
 controllers exchange 

data through a wired connection, so potential fields can go around the entire AIP cell and 

    s can gather machines’ attractiveness values at any decisional node. More details on the 

potential fields approach (PFA) implemented at the AIP cell can be found in Appendix E and 

(Zbib et al., 2012; Pach et al., 2012). 

3.3. Global decisional entity       

For now, the       control module was programmed in Java programming language as 

classes that can be arranged in different ways according to the configuration of the 

optimization module and the global objective function. A set of methods to translate and pass 

variables, as well as to call NetLogo simulations, were also programmed in Java to ensure the 

integration of NetLogo with the rest of the      ’s control module. The Netlogo simulator 

and the Java programs run on a PC Intel(R) Core(TM) i5-3317U CPU@ 1.70Ghz with 4.00 

GB of RAM memory. Appendix G-III describes in detail the configuration of the AIP cell 

a.

b. c.

Other Wago 

controllers
. . .

mLDE

Ethernet network. . . . . .

d.

 

Figure V-8: The mLDE, a. The Wago
®
 controller, b. The machine and its controller, c. vLDEs, and d. The 

wireless access point 
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model into NetLogo. Figure V-9 presents the user interface of the NetLogo simulator that 

models the AIP cell. 

 

4. Static simulation study 

The simulation study presented in this section was carried out to evaluate the proposed 

approach under static scenarios where no perturbations occur. Therefore, all theoretical 

values presented in the previous sections of this chapter apply. In Appendix H-I and H-II 

results from a static simulation study aiming to evaluate the efficiency of the genetic 

algorithm and the GA-ATC, decoupled and coupled, are reported.  

4.1.  General description of the static simulation study 

The objective of this simulation study is to evaluate the efficiency of the proposed 

approach to deal with myopic decisions concerning release sequence and machine allocation 

sub-problems. As presented in the previous chapter, the product routing sub-problem is dealt 

exclusively by the local decisional entities, using a myopic decision-making algorithms. For 

this study, three independent instances of       were conceived and evaluated. As 

described in Table V-4, the optimization module (as explained in Section IV-4.3.1) is 

reconfigured to deal with myopic release sequences, myopic machine allocations or both 

types of myopic decisions. For this study, the coercive interaction is the only interaction 

mode that was evaluated. 

For a better analysis of our approach, another myopic policy, the classical First Available 

Machine (FAM), was also used instead of PFA. The availability of a machine was determined 

by its remaining busy time, which includes the product on the machine and those in the 

 

Figure V-9: The NetLogo graphical user interface for the AIP PRIMECA assembly cell 
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queue. Once a machine has been chosen, the product calculates the Shortest Path to reach the 

machine. Compared to PFA, FAM is more myopic regarding machine and routing choices 

since they are both stepwise and, sequentially. Regarding product release sequences, both 

rules are equally myopic. The three instances were evaluated for both decision-making 

algorithms, PFA and FAM. 

 

4.2. Factors and assumptions for the static simulation study 

To evaluate the three instances presented before, three experimental factors were 

considered as seen in Table V-5. The first factor, |R’|, represents the set of active redundant 

machines. This factor allowed us to evaluate our approach with two levels of machine-

sequence flexibility. The second factor, |P|, is the size of the production order. A production 

order is composed of a set of products with no constraints of product mixture. This factor 

allowed us to evaluate the scalability of the proposed approach. Last, the type of local 

decision-making algorithm, PFA or FAM, was also considered as an experimental factor.  

Results of the three instance problems were compared with the results obtained from 

simulating the local control level as it worked with no global decisional level. This would be 

the case in which the AIP cell would be controlled by a fully heterarchical approach 

(FHFMS). 

 

Since there are experimental factors with more than two levels, a factorial design was 

executed resulting in 20 design points for each instance in Table V-4. All the experimental 

results are reported in Appendix H-III. The experiments were executed as follows: 

Table V-5: Factors for the static simulation study 

Factors Levels  Values 

|R'| 2 
3 m2,m3,m4 

4 m2,m3,m4,m7 

|P| 5 

4 1*(BELT) 
8 1*(BELT),1*(AIP), 1*(B) 

16 2*(BELT),2*(LATE) 

24 3*(BELT),4*(AIP) 
28 4*(BELT),4*(AIP) 

Local decision-making algorithm (vLDE) 2 
1 PFA 

2 FAM 

 

Table V-4: Instances evaluated 

Instance Myopic Decision Optimization Mechanism 

Instance A Release Sequence Arrival-Time Control (ATC) 

Instance B Machine Allocation Genetic Algorithm (GA) 

Instance C Release Sequence and Machine Routing Arrival-Time Control and Genetic Algorithm 

(GA-ATC) 
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 Each design point for the FHFMS case had only one replication (given the low variability 

provided by the simulation model), but design points for other instances were replicated 

10 times (10 independent trials) and mean values were used for the comparison. 

 Each replication was independent and finished when the solution converged (=0.1 and 

remained steady for itermax=5 in Eq. IV-11).  

 There was no warm-up period and the cell was considered empty at the beginning and at 

the end of each simulation replication.  

 Simulation of the FHFMS case terminated when all the products had been manufactured. 

 For comparing, the gaps between the FHFMS and the proposed problems instances are 

calculated as in Eq. V-1, where GOF (the CTV or MSD’) is the global objective function 

and LDMA is the local decision-making algorithm, PFA or FAM. 

    
                             

             
         Eq. V-1 

4.3. Simulation results for the static scenario 

4.3.1. Results for Instance A 

The control module of       for this instance is presented in Figure V-10. For analyzing 

the myopic behavior related to the release sequence sub-problem, P contains a certain product 

mixture (random combination of product types) as described in Table V-5. In the ABS 

(Agent-based model and simulation environment) the FHFMS approach (i.e., PFA or FAM) 

deals with machine allocation and product routing decisions. 
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Figure V-10:  The control module of       for problem instance A 

As seen in Figure V-11, the FHFMS approaches are myopic to the release sequence, as 

expected. The arrival-time control (ATC) is capable of improving the CTV for both PFA and 

FAM, up to FMS saturation (28 products when |R’| =3). There are two main contributions of 

this simulation-optimization configuration. First, the balance between decisional levels since 

the global level partially interacts with the local level and only deals with one FMS sub-

problem. Reactivity to internal perturbations is the ensured by the FHFMS approach, while 

ATC deals with incoming production orders and related perturbations or changes (i.e., urgent 

orders). Second, the low complexity of the ATC allowing important improvements without a 

prohibitive computing cost (see Appendix H-III).  

 

Figure V-12 shows the convergence of the solution for the 4-product problem, |R’|=4, 

using FAM rule. The total time for this case is 10 seconds, including the time necessary to 

launch the NetLogo model with the static parameters (almost 3 seconds). Since the dynamic 

 

Figure V-11: Improvement by tackling the release sequencing sub-problem 
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parameters sent at each iteration only include the product release times, each iteration takes 

less than one second for this specific case.  

 

4.3.2. Results for Instance B 

The control module of       for this instance is shown in Figure V-13. In order to 

isolate the machine-sequencing sub-problem, P is composed of the same type of product. 

Product “A” was chosen because the AIP cell provides up to 13 different machine sequences 

when |R’|=4. In this configuration, the GA works until convergence and proposes machine 

sequences to the ABS for each product (smrp Section IV-2.5). The ABS, in turn, simulates the 

product interactions due to product routing decisions and outputs the final completion times. 

Solution evaluation between then GA and the ABS continue until a stable solution is found. 

The main contribution of this simulation-optimization configuration is that the global 

decisional entity deals with the combinatorial problem of machine sequences and PFA or 

FAM deals with product routing dynamics, which are highly dependent on product 

interactions and physical variables such as the transportation device speed, number of 

products, conveyor capacity and flexibility. The purpose of the ABS is to simulate such 

dynamics. Reactivity to all kinds of transportation issues is then ensured by the myopic rule, 

while the GA deals with machine and order issues. 

 

Figure V-12: Solution convergence of the ATC 
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Figure V-13: The control module of       for problem instance B 

Figure V-14 shows the improvement curves for an increasing number of products and the 

two levels of machine-sequence flexibility in regards to PFA and FAM. The results for PFA 

and FAM were the same at each design point, since both rules are only myopic for the 

material-handling sub-problem, and both end up using the shortest paths, since the cell does 

not offer that much material-handling flexibility, especially when |R’|=3. The minimum 

improvement obtained was around 79%, which demonstrates the high sensitivity of PFA and 

FAM to machine-selection decisions. This sensitivity is more evident when machine-

sequence flexibility is increased.  

 

Figure V-15 shows the convergence of the GA with |P|=8, FAM rule and |R’|=4. Since the 

GA finds a good solution in the first iteration, the GA-ABS loop converges rapidly at itermax 

iterations. 

 

Figure V-14: Improvement by tackling the machine allocation sub-problem 
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For the last design point (28 products) with the FAM rule and low machine-sequence 

flexibility (|R’|=3) a deadlock appeared. Since all the products were in the FMS at the same 

time, predatory behavior emerged when a spot in an input buffer became available. At that 

point, all the products chose the same machine and overpopulated the same region on the 

conveyor. This is an issue of heterarchical approaches that, in this case, does not arise with 

the solution proposed by the global level.  

Despite the increasing complexity of the machine allocation sub-problem, meta-heuristics 

(in this case GA) are a good choice for the global decisional level since the computing cost is 

not prohibitive (see Appendix H-III) and a certain level of reactivity can be preserved. 

Nonetheless, this can become an issue if the machine-sequence flexibility is improved or the 

number of products becomes much larger. 

4.3.3. Results for Instance C 

The control module of       for this instance is shown in Figure V-16. The two 

optimization mechanisms were coupled as described in Section III-4.2.1 and worked as 

follows: the GA proposes a population of solutions (machine sequences per product) to ATC, 

which in turn works on the release sequences until its convergence. The ATC returns the 

completion times to the GA which calculates the CTV for each individual (i.e., its fitness). 

The GA continues to evolve the population until a steady solution is found. The best solution 

is then sent to the ABS to obtain the final completion times, which might change due to local 

product routing decisions. This cycle is repeated until solution convergence. 

For this problem instance, product orders are the same as in instance A. Improvement 

curves are reported in Figure V-17, comparing results from instance C with those of instance 

A and the FHFMS approach. The combination of GA-ATC not only improves the FHFMS 

solution, but also exceeds the improvement proposed by ATC alone. To deal with 

perturbations, in this case, the GA will deal with machine allocation issues and ATC with 

production order issues. Indeed, this configuration makes the coercive interaction more 

 

Figure V-15: Convergence of the CTV for the first iteration of the GA-ABS loop 
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significant but it achieved improvements of no less than 75% and 65% for both levels of 

machine-sequence flexibility, respectively. Hence, such improvement makes the computing 

cost worthy. 

Structural data

(FMS model)

Simulation 

parameters

LDEs’ behavior 

model

ABS Simulation 

model (Netlogo)FMS 

control sub-problems

yes

no

To vLDEs 

))(()(1 tectECTVtEGP p
Simulation outputs

Control module

Stopping 

criteria met?

psmr

)(1 trt
)(trtp

)(trtP

......

Optimization module

allocationmachine:

sequencerelease

2

1csp

1

1csp :

Information flow Assignation Iterate until convergence

Genetic 

Algorithm
Population 

Evolution

Arrival-Time 

Control

mrj

 cj

 

Figure V-16: The control module of       for problem instance C 

 

Figure V-18 shows the Gantt charts for the 8-problem products, FAM rule and |R’|=4 

(one of the 10 trials). From these diagrams it is possible to see the myopic machine allocation 

of the FAM rule (FHFMS) and the resulting longer queuing and transport times (a. in Figure 

V-18). Indeed, the combination of myopic decisions for all sub-problems results in large 

deviations in product completion times, thus a bigger CTV. On the contrary,      ’s 

solution (b. in Figure V-18) balances better the machine weights, resulting in all the products 

finishing within short periods.  

 

Figure V-17: Improvement by tackling the machine allocation and the release sequencing sub-problems 
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For the same trial, Figure V-19 shows the rapid convergence (in terms of computing cost) 

of the GA-ATC coupling. Although computing cost increases with problem complexity (see 

Appendix H-III), a non-negligible time is lost due to technical issues related to the 

interconnection between Java and the ABS platform (parameter exchange at each iteration). 

 

5.  Dynamic simulation study 

The main purpose of the dynamic scenario is to evaluate our approach in the presence of 

perturbations. From the possible internal and external perturbations reported in Trentesaux et 

al. (2013), we chose a maintenance task that arrives unexpectedly (scenario #PS9). This 

scenario simulates the limited machines’ reliability. Once the machine is out for maintenance, 

the machine remains down for certain maintenance time that in this case depends on 

production volume. Herein, the affected machine is m2. The necessary parameters, for this 

scenario are detailed in Table V-6. In this simulation study, neither the optimization module 

in the global decisional entity nor the interaction modes between global and local decisional 

 

Figure V-19: Evolution of CTV within the GA-ATC loop 

 

600
700
800
900

1000
1100
1200
1300
1400
1500
1600

3 49

C
TV

Computing Cost (s)

Evolution of the CTV

 

Figure V-18: Gantt charts 
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entities are adapted to overcome the perturbation. The optimization module (i.e., GA-ATC 

coupled) and the interaction mode (i.e, coercive) remained the same throughout all simulation 

time. 

 

Given that local decision-making algorithms, PFA and FAM, were not designed to deal 

with due dates as local objectives, we cannot compare the aforementioned problem instances 

with the fully heterarchical approach (FHFMS) as did before. Then, for this dynamic scenario 

we compared instance C with instance A, to analyze the improvement gained when the 

machine allocation is dealt by the GA at the global level. Figure V-20 shows the dynamic 

behavior when the global decisional level (   ) takes the configuration of problem instance 

C (GA-ATC).  

 

At first, the     calculates a solution and predict certain MSD’. The solution to execute 

is composed of a release sequence and machine sequences for each product. After certain 

execution time, m2 breaks down and require maintenance ( in Figure V-20) and the global 

level triggers the GA-ATC to recalculate a new solution. For now, either the product in m2 or 

in m2’s input buffer informs the global level and other     s that a recalculation is needed. 

When maintenance has finished and the machine becomes available (in Figure V-20) the 

recalculation process is triggered again. In this case, it is the global level that monitors the 

concerned machine and triggers recalculations. Other ways for recalculation triggering and 

handing will make part of future developments in association with a dynamic reconfiguration 

of the global decisional entity. 
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Figure V-20: Dynamic behavior under a maintenance perturbation 

Table V-6: Parameters for the dynamic scenario  

|P| Product Mixture Due Date (s) 1Duration of 

Maintenance (s) 

2Maintenance 

start time 

4 1 LATE 211 100 5 

8 1 BELT + 1 LATE 303 200 5 

16 2 BELT + 2 LATE 523 400 10 

24 3 BELT + 3 LATE 658 600 20 

28 3 LATE + 4 BELT 761 700 30 
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The difference between problem instance C and A is that in the latter both events (i.e., 

machine out for and machine back from maintenance) are taken care by PFA and the global 

level is not required. Table V-7 and Figure V-21 report the results and the gap (%) between 

problem instances A and C. The values reported represent the final MSD’. 

 

From these results, it can be conclude that when the AIP’s machine-sequence flexibility is 

affected for a significant amount of time (i.e., up to 42% of the total production time), using 

an optimization algorithm (i.e., GA) to deal with the machine-allocation sub-problem does 

not provide that much of improvement. In the best case the difference between both instances 

is around 20%. More, such improvement is drastically reduced when production volume 

increases, given that the AIP cell becomes saturated and there are not that much machine 

allocation choices for the number of products. Hence, PFA ended up offering the same 

performance than GA with the advantage of less processing time and locally made decisions. 

 

One important conclusion of this dynamic study is that a dynamic reconfiguration of the 

optimization module would allow the passage between instance C and A, offering almost the 

same performance with less computing cost. To achieve such dynamic reconfiguration it 

would be necessary to clearly establish the conditions under which each optimization 

technique is required, so the global decisional level is used only when a significant 

performance gain can be obtained. In addition, such dynamic reconfiguration would allow the 

local decision-making algorithm to take its role in improving reactivity. Other possibilities 
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Figure V-21:  Gap between the two problem instances, C and A 

 

Table V-7: Final MSD results for the dynamic scenario  

|P| Product Mixture Instance A (MSD') Instance C (MSD') Gap (%) 

4 1 LATE 83,5 69,7 20 

8 1 BELT + 1 LATE 153,4 146,1 5 

16 2 BELT + 2 LATE 301,5 286,5 5 

24 3 BELT + 3 LATE 464,6 458,7 1 

28 3 LATE + 4 BELT 478,3 474 1 
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regarding the interaction modes are also envisaged as explained later on (see Conclusions and 

Further Work). 

6.  Hardware-in-the-loop experimental study 

The experimental study reported in this section was carried out in the AIP cell located at 

Valenciennes University. The objective of this study was to evaluate the real-time behavior of 

our approach, under normal and abnormal conditions. Only instance C was chosen for this 

experimental case given its efficiency. Since the AIP cell only counts with 10 shuttles, the 

two first cases proposed in Table V-6 (Section V-5) were carried out. 

6.1.  Hardware-in-the-loop results under normal conditions 

Table V-8 reports results under normal conditions. The deviation between the predicted 

MSD’ and actual MSD’ values were between 8% and 13%. This difference is due to the fact 

that the simulation model is based on deterministic transport times and it does not take into 

account response delays due to communication between vLDEs and Wago
®
 controllers, 

mechanical issues related to transfer gate turning and other non-modeled times, e.g., time 

from shuttle storage to loading, time from input buffer to machine position unit, etc. In spite 

of this expected deviation, the global decisional level was able to predict a certain behavior 

for vLDEs and global performance value.  

 

6.2.  Hardware-in-the-loop results under abnormal conditions 

The maintenance scenario with 4 and 8 products was also implemented in the AIP cell. 

This time, maintenance times were reduced to 40 and 60 seconds to have more product 

interactions. Table V-9 reports results for these cases. The difference between the predicted 

MSD’ and actual values ranged from 17% to 20% given that more shuttles are present at the 

same time within the AIP cell. More, during M2’s down time, products only have M3 for the 

axis-mounting and r-component mounting so a predator behavior emerged in the vicinity of 

that machine. Differences between the simulation model and reality are evidently the main 

sources of deviation. 

 

Table V-9: Results from the experimental results - abnormal conditions  

|P| Predicted MSD' Predicted MSD' 

when M2 down 

Predicted MSD' when M2 

active 

Actual MSD' Gap (%) 

4 38,2 91,1 66,6 78,2 17,3 

8 73,3 188,3 134,5 161,4 19,9 

 

 

Table V-8: Results from the experimental results - normal conditions  

|P| Predicted MSD' Actual MSD' Gap (%) 

4 46,9 51 8,8 

8 81,5 92,4 13,4 
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For these small production orders the computing costs incurred by the global decisional 

entity were not prohibitive, remaining around 1 seconds for the 4-product order and 6 

seconds for the 8-product order. Figure V-22 depicts the entire experiment. 

In Figure V-22 Gantt charts on top show the predicted solutions, Figure V-22.a shows the 

actual production sequence (Gantt chart at the bottom) and Figure V-22.b plots the evolution 

of the predicted MSD’ obtained by      ’s optimization module every time a calculation is 

triggered (in red the evolution of the average MSD’ and in blue the evolution of the best 

MSD’) and.  

The Gantt chart displaying the actual production sequence was made by collecting 

information from the information storage module of each product. This information contained 

all the operation start and finish times and the actual machines where the operation was 

executed. It is then possible to see the small differences between simulation results and 

hardware-in-the-loop results given the differences between the actual AIP cell and its model. 

For instance, the time required from the machine’s input buffer to the machine was 

considered into transport time while in reality it can take a few seconds, especially for the 

loading machine. 
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6.3. Return of experience 

The fact that our approach could be implemented in a real assembly cell was a 

satisfactory achievement. A significant programming effort was made because four different 

programming environments were handled, MatLab for preliminary tests, NetBeans for Java 

language programming, CodeSys
® 

for Wago
® 

controllers and NetLogo
®
 for the agent-based 

simulation (work entirely executed by Thérèse Bonte, Research Engineer at TEMPO-PSI). 

Once at the AIP cell, the debugging process took a significant amount of time. Indeed much 

work needs to be done in order to improve the current developments so the control system 

becomes more robust to several sources of perturbations, e.g., communications, mechanical 

and electrical issues, collisions, etc. An interesting feature of the current implementation is 

related to using an EeePC as processing unit for the     . Such configuration allowed the 

debugging process to be done more easily in comparison with other devices, for instance 

without a screen. 

 

Initial solution

Solution after first 

recalculation

Solution after second 

recalculation

a. Final production sequence

4 5 62 76 115 116

Machine 2 out of service

Re-calculation start Machine 2 in service

Re-calculation start

b. MSD evolution

 

Figure V-22: Gantt charts and MSD' evolution for the 4-product order with maintenance perturbation 
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7. Summary 

This chapter mainly described the implementation on the proposed semi-heterarchical 

architecture to control a real assembly cell. After describing the AIP PRIMECA cell, the 

implementation of each one of the proposed decisional entities was described. Two 

campaigns were launched to evaluate the proposed concepts, the first relying only on 

simulation results and the second on the real assembly cell (hardware-in-the-loop). 

The three problem instances proposed for the static scenario proved that the global 

decisional entity may have different configurations to deal with different myopic decisions. 

Each configuration reached non-negligible improvements compared to the myopic decision-

making algorithms within a fully heterarchical architecture. In addition, by changing the 

machine allocation algorithm from the potential fields approach to a myopic priority rule 

(FAM), it was possible to show that the proposed approach is flexible and adaptable to 

different local decision-making algorithms. More, the fact that two optimization techniques 

were used to deal with two myopic decisions showed that dealing with myopic behavior from 

a granular perspective allows having modular and reconfigurable control architecture. 

Furthermore, the coercive interaction mode demonstrated its efficiency in dealing with 

myopic decision making, easing the execution of solutions obtained at the global decisional 

level. Figure V-23 positions the proposed SHFMS against other approaches reported in 

Chapter II. Mainly, the proposed features regarding the possible roles adopted by the 

simulation-based optimization techniques, the interaction modes and the limited myopic 

behavior reduction scope make possible to achieve a reduction of the impact of myopic 

behavior while striking a balance between global performance and reactivity. However, these 

conclusions can be inferred from separate evaluation of three different instances of the 

architecture. Therefore, a dynamic strategy to take advantage of the proposed features is 

envisaged to exploit all the benefits of the proposed architecture. In addition, open questions 

still remain concerning the evolution of the curves and the definition of an optimal myopic 

behavior region. 

From these simulation results, it can also be concluded that performance improvement 

can be significantly dependent on FMS capacity. Based on results of Instance A, it is not 

worth it tackling myopic release sequences when the FMS reaches saturation. Conversely, 

dealing with machine-routing decisions can help to avoid deadlocks such as those that 

occurred with the FAM rule and a large number of products. In addition, coupling two 

optimization mechanisms can further improve the solution (Instance C vs. Instance A) with a 

certain compromise on reactivity. 

Regarding the dynamic cases, the capability of the proposed approach to react to an 

internal perturbation was evaluated, under simulation and experimental study at the AIP. 
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From the simulation study it was possible to conclude that despite the fact that the global 

decisional entity was capable to react to the internal perturbation, a dynamic and possibly 

case-based reconfiguration strategy for the optimization module is necessary. In that way, the 

local decision-making algorithm can actually accomplish its role, reaching performance 

values similar to those proposed by the global level. This will definitely make part of the 

future work. 

 

Results from the experimental campaigns on the real AIP cell (hardware-in-the-loop) 

confirmed the deviation caused by simulation model assumptions, communication delays, 

and deterministic values. However, an estimate of the actual global performance was able to 

be estimated beforehand. More general conclusions and further work are presented in the next 

part.
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Figure V-23: The proposed SHFMS control approach 
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Conclusions and Further Work 

Manufacturing efficiency is at the most important matter, especially in the current 

scenario in which manufacturing has to face globalized markets, product customization, 

higher client expectations, market volatility, and short product life-cycles among others. In 

the last decades, technological advances have permitted to rigid manufacturing systems to 

evolve toward more flexible manufacturing systems (FMS) capable to accommodate rapid 

changes, small batches and high variety of products. On the control of such flexible systems, 

new control architectures, paradigms, strategies and algorithms have appeared advocating for 

heterarchical architectures, low complex and highly reactive control residing on local 

decisional entities. However, in spite of promising advances, new issues have also emerged 

concerning their predictability, implementation costs, technologies and standards, as well as 

the guarantee of a minimal operational performance, in part due to myopic behavior of local 

decisional entities. Though such behavior has been recognized for some researchers as an 

important barrier for adopting heterarchical-based FMS (HFMS) control in industrial 

applications, until know this issue had not been formally studied in HFMS.  

While analyzing other domains in which myopic decision making has been studied, 

similar aspects with FMS could be identified. Thus, our contribution starts by defining 

myopic behavior and identifying, defining and describing two dimensions of it, the social and 

temporal dimensions. In few words, myopic behavior results from the narrow visibility that 

each local decisional entity has on the current and future states of the FMS, given their focus 

on their own local objectives.  

One of the conclusions that could be withdrawn after reviewing several papers concerning 

HFMS control was that until know most of works had focused on improving the global 

efficiency of HFMS control, implicitly dealing with myopic behavior. By doing so, features 

achieved by heterarchical principles, such as reactivity, adaptability and fault tolerance had 

been affected in regards to the underlying heterarchical approach. Therefore, our work part 

from an alternative perspective in which a global level, within a semi-heterarchical 

architecture, is configured to explicitly deal with myopic behavior resulting from those local 

control decisions. In the proposed semi-heterarchical architecture, the local decisional level 

ensures certain reactivity to perturbations, and the global decisional level focuses on myopic 

behavior and its impact on global performance. In regards to other semi-heterarchical 

approaches, our approach followed a more granular methodology in which the global 
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decisional level displays a flexible configuration to deal with myopic behavior of FMS 

control sub-problems. Therefore, myopic behavior can be reduced totally or partially 

depending on the number of control sub-problems that the global decisional level is 

configured for.  

More, the proposed approach shows a modular configuration supported by simulation-

based optimization (SbO) techniques. Different techniques into the global decisional level 

can coexist in order to reduce myopic control decisions. Such modularity is achieved by 

dedicated optimization techniques focused on reducing myopic decisions for each control 

sub-problem. In turn, given that some control sub-problems can be handled locally, the 

simulation model was used to determine the impact of local control decisions on the global 

objective function.  

Furthermore, our approach also focused on the integration of solutions obtained at the 

global level into the local level. For that, three interaction modes, i.e., coercive, limitary and 

steering, between the two decisional levels were proposed in order to grant different 

autonomy levels to local decisional entities. Due to the modularity of the global decisional 

entity, the global decisional entity can take different roles (i.e., resolving, evaluating, 

selecting, tuning and influencing) and based on data obtained from the SbO technique(s), 

interaction modes can be different for each control sub-problem. Until know, the relationship 

between global and local levels had been understood as a whole. In our approach, such 

relationship is more granular so the local decisional entity may have different levels of 

autonomy for different control decisions. Consequently, our approach accepts configurations 

in which myopic behavior can be accepted for some control sub-problems (i.e., full local 

autonomy) and reduced for others (i.e., reduced local autonomy), favoring local reactivity and 

fault tolerance. 

We were able to implement and evaluate our approach taking as a reference the AIP- 

PRIMECA cell at Valenciennes Universisty. At first static and dynamic simulation studies 

were executed and then hardware-in-the loop experimentations were carried out. From the 

static simulation study we could infer that myopic behavior affected importantly the global 

performance of local decision-making algorithms. Hence, significant improvements could be 

obtained with the proposed semi-heterarchical architecture under three different 

configurations of the global decisional entity. From the dynamic simulation study, it could be 

concluded that the global decisional entity could overcome an abnormal condition, always 

dealing with myopic control decisions and achieving improvements in terms of global 

performance. 

The hardware-in-the-loop experiments allowed us to demonstrate a possible realistic 

implementation of our approach. An important programming effort was made since it was 



Conclusions and Further Work 

 

117 

 

necessary to work on different programming languages, communication protocols and 

networks, as well as with industrial controllers and conveying systems. Results from these 

experiments showed us that the simulation model was good enough and helped to obtain 

estimated global performances not only for preliminary studies but also for online 

experimentations. Expected deviations from simulation to actual results were confirmed.  

 Based on the requirements presented in Section II-6 and the return of experience from 

these evaluations, some research perspectives for the sort-, mid- and long-term could be 

identified. As mentioned before, our contribution relies on an architectural concept in which a 

global decisional entity with simulation-based optimization techniques deal with myopic 

decisions made in a local level. Indeed, several questions on this choice have to be made so 

other research paths can be undertaken. For instance, could it be possible to endow local 

decisional entities with more complex algorithms while respecting decentralization? Would 

those complex local algorithms take care of all decisions or a global decisional level would 

still be required? What type of complex algorithms may work in decentralized architectures? 

What type of entity interactions would apply, direct or indirect? 

Since the proposed approach demonstrated promising results, the next step in the short-

term could be to make the entire architecture dynamic and adaptive in the presence of internal 

and external perturbations. Mainly, a dynamic reconfiguration of the optimization module 

should be implemented according to the perturbation type and criticality. Hence, it is 

necessary to determine which control sub-problems should be handled by each decisional 

level and under which conditions. Indeed, with the current configuration, an evolution of 

interaction modes, from coercive to limitary, is achievable. In this way, the local decisional 

entity may experience different autonomy levels according to FMS conditions.  It is thus 

possible to think on using a population of good solutions instead of only using the best 

solution given by the GA. A dynamic control strategy switching between the two interaction 

modes needs to be implemented. More for the mid-term, a second possibility for such 

dynamism and adaptability could be to implement optimization mechanisms that allow other 

roles for the global decisional entity. For instance, the influencing role can be achieved if an 

optimization technique is used to dynamically modify the machines’ attractiveness values 

when using PFA in the local decisional level. The tuning role can also be envisaged if the 

product holds a more complex decision making rule in which other variables are considered, 

e.g., number of operations to be executed at the machine. Few modifications to the current 

configuration would allow evaluating these new approaches. 

Continuing with myopic behavior, a shift between myopic behavior reduction to control 

can also be foreseen. A detailed study on myopic behavior at the local decisional level aiming 

for mathematical-based models should be done first so myopic behavior can be measured and 



Conclusions and Further Work 

 

118 

 

controlled. This would definitely allow us to have a dynamic architecture capable of changing 

its myopic behavior level to deal with abnormal conditions. Also, this study can be extended 

to other production-related problems with other control problems such as maintenance, 

inventory, quality, and personnel allocation in order to reach a complete model. To this end, 

it would be necessary to identify control sub-problems and the impact of myopic decisions 

for the global objective function related to each problem. The interaction between global 

decisional entities at the global level and with the local level needs to be studied given the 

multiple objectives and the target myopic behavior. Also, dynamic allocation of local 

decisional entities and resources to global decisional entities should be envisaged to achieve 

dynamic flexibility, instead of static flexibility as currently conceived in FMS. 

An important aspect that is frequently neglected in FMS control is the human interaction 

with artificial decisional entities. Therefore, another perspective in the short and mid-term 

that allows us to follow a parallel research path is the integration of human entities in the 

global or in the local levels. For instance, for personnel scheduling problems, machine 

operators would be considered as local decisional entities while production managers would 

be placed in the global level. The challenge is to adapt the current artificial decisional entity 

to a biological decisional entity. In fact, putting the human-in-the-loop is not an easy task 

given the decentralized architecture, the high frequency of decisions, the difficulty of making 

behavior models so humans can have a global perspective of what is happening with 

decisional entities and the entire system, among others. Some work in such direction has 

already been started in collaboration with the Florida Institute of technology (Zambrano Rey 

et al., 2013). The fact that our approach counts on different interaction modes and roles of the 

artificial global decisional entity provides certain flexibility to deal with human interactions. 

Last, in the long-term, our approach should also be tested in other contexts, e.g., other 

production objectives than JIT ones, other types of processes, and applied in other application 

areas such as healthcare engineering, supply chains, transport management. One interesting 

way to motivate industrialist to adopt heterarchical-based approaches is to take an industrial 

case, retake their current production decision-making algorithms and insert them into the 

proposed semi-heterarchical approach in conjunction with local decision-making algorithms. 

This exercise would show how to handle the migration between current hierarchical 

approaches and heterarchical-based approaches as well as the significant improvements in 

reactivity and fault tolerance that can be achieved.
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Appendix A. The Manufacturing Environments 

A-I. Types of Manufacturing Shop Floors 

In practice, discrete manufacturing systems are classified by their shop floor layout. The 

layout determines the production flow through the shop floor resources, i.e., human operators 

or machines. Mainly, there are five different shop floor layouts: the single machine shop, 

project shop, flow shop, cellular system and job shop (Chryssolouris, 1992; Caramia and 

Dell’Olmo, 2006). 

a. The single machine shop 

It is the simplest layout consisting in only machine performing all the operations (Figure 

A-1 a.). Usually, the machine operates continuously until a new setup is required for 

manufacturing a different product. Therefore, the operation of a single-machine is dictated by 

the sequence in which products pass by the machine, and the formation of product batches for 

scheduling setup operations (Coffman et al., 1990).  

b. The project shop 

It is also known as fixed-position shop because, contrary to other shop floor layouts, the 

product remains fixed and resources are brought to the product as requested (Figure A-1 b.). 

This shop layout is reserved to large size products such as aircrafts and ships. 

a. The flow shop 

In this shop floor layout, machines and resources are organized according to the product 

sequences. Therefore, products have to visit all the machines of the flow line and each 

operation has to be executed on a specific machine, in a specific order (Figure A-2 a.). The 

flow of products is unidirectional. This organization results in dedicated flow lines, in order 

to avoid expensive and frequent setups. The flexible (also known as hybrid) flow shop is an 

extension of this layout, in which identical, uniform or unrelated machines are placed in 

parallel, at least at one stage of the flow line.  Flow-shop-based layouts are often found in the 

electronic manufacturing environment such as IC packaging and PCB fabrication (Linn and 

Zhang, 1999). 
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b. The cellular system 

As it name infers, cells of machines and resources are created according to the process 

combinations that occur in a particular product family. Then, a cell is configured for a 

specific product family. Within a cell, the material flow is determined by the product 

operation sequence (Figure A-2 b.). The main objective of this layout is to simplify the 

scheduling process by creating independent cells and reduce transportation times.  

 

c. The job shop 

In a job shop machines and resources are grouped together in the basis of their processing 

capabilities (e.g., lathes, milling machines, etc). Machines are usually general-purpose 

machines and due to their process flexibility, they can perform several manufacturing 

operations, thus they can handle different types of products (Figure A-2 c.). Products visit 
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Figure A-2: a. Flow shop layout, b. Cellular system layout and c. Job shop layout 
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Figure A-1: a. Single machine layout and b. Project layout 
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machines depending on their operation sequence since there is a priory assignment of 

operations to machines. Product use material-handling systems to be transferred from one 

machine to the other. An extension of the classic job shop is the flexible job shop. In this new 

version, for each manufacturing operation there is a set of equivalent machines, possibly with 

different processing characteristics (e.g., processing time, quality of service, etc). Hence, 

there exist different machine sequences for the same type of product. If the manufacturing 

operations of a product can be swapped, then the flexible job shop becomes an open shop 

(Pinedo, 2008). 

An FMS can present several shop floor layouts: spine, circular, ladder and open field 

(respectively a., b., c. and d. in Figure A-3). 

 

In the spine layout, workstations are disposed in a line and products flow through in one 

direction. The circular or loop layout is similar to the previous one, but the loading/unloading 

stations coincide. The ladder layout differs from the precedent configurations by proposing 

alternative product routings in order to reduce transport times. The open field layout is the 

most flexible one because there is no predetermined layout pattern, and the FMS is divided in 

specialized cells according to the group technology concept (Rajasekharan et al., 1998). 

A-II. Performance criteria in manufacturing control 

One of the main functions of manufacturing control is to allocate (i.e., where and when) 

products to manufacturing resources in order to accomplish the objectives set up at the 

planning level. Such allocation process generates detailed short-term schedules, which 

purpose is to minimize or maximize certain performance criteria. Accomplishing certain 
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performance level depends on the shop floor layout, its physical and operational constraints, 

current production and shop floor status, and production requirements (Caramia and 

Dell’Olmo, 2006; Chryssolouris, 1992).  

In manufacturing control, performance measures are important because they allow the 

controller to understand the current state of the manufacturing system and take the 

appropriate actions necessary to reach the goals (Hon, 2005). But, before mentioning the 

various performance criteria used in manufacturing control, it is important to differentiate 

between a performance criterion and a constraint. A performance criterion allows certain 

flexibility or degree or freedom, while a constraint must always be respected. In some cases, 

a constraint can determine if there is a feasible solution or no solution at all. For instance, a 

constraint for a shop floor controller can be that no products can be late regarding a specific 

due date, leaving no margin for the controller. Contrary, a performance criterion would look 

for reducing the number of late products, though there can be products that finish after the 

due date (Tàkindt and Billaut, 2006). 

Performance criteria have been divided in two types: regular and non-regular (Nagar et 

al., 1995). A regular criterion is a non-decreasing function of the product completion times. 

Examples of regular criteria are: job flow time (F), makespan (Cmax), tardiness (T) and their 

derivatives, e.g., mean flow time ( ̅), mean completion time ( ̅), mean tardiness ( ̅) and 

number or tardy jobs (nT).  

Contrary to regular criteria, a non-regular measure is usually not a monotone function of 

the product completion times (Baker and Scudder, 1990). With the advent of Just-in-time 

(JIT) production (more information on Just-in-time is provided in the next section of this 

appendix) new non-regular performance criteria have been proposed based on earliness (E) 

and tardiness (T), and the combination of both. 

Another way to differentiate performance criteria is on the basis of the type of production 

strategy: make-to-stock (MTS) or make-to-order (MTO). The main difference between MTO 

and MTS is the time in which an order is received and treated. In MTS a product is already 

available in stock when the order is placed by the customer, thus the product can be 

dispatched immediately to the customer (Weng et al., 2008). Then, the objective of the 

manufacturing system under MTS production is to replenish the inventory. Since for MTS 

production due dates are not explicitly defined, regular performance measures are usually 

utilized (Jozefowska, 2007). 

In MTO production some part of the production process or even the entire production is 

done after the client order has been accepted. Production under MTO imposes two problems: 

the due-date setting and the posterior due-date accomplishment (Sawik, 2009). The company 
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competitiveness is determined by how the company replies to the customer and how the 

company respects its engagements. On one hand, customers would like to have early due 

dates and on the other hand manufactures would prefer to extend those due dates in order to 

better plan and execute production and ensure on-time deliveries. However, order acceptance 

and due-date setting is not an easy task, not only because of the unpredictable nature of order 

arrivals, but also because of the additional costs in relation to inventory (if the order is 

finished earlier than the due date) and customer service level (if the order is finished after the 

quoted due date) (Weng et al., 2008). Non-regular performance measures penalizing earliness 

and tardiness are usually utilized for MTO production and JIT production.  

A-III.  Just-in-time production 

Just-in-Time (JIT) manufacturing was introduced by Toyota in the 1950s to reduce 

inventory costs and satisfy customer demands with on time deliveries. Sugimori et al., (1977) 

describe JIT as a "method whereby the production lead time is greatly shortened by 

maintaining the conformity to changes by having all processes produce the necessary parts at 

the necessary time and have on hand only the minimum stock necessary to hold the processes 

together". As Kannan and Tan, (2005) pointed out, JIT principles improve the production 

process by integrating customers and suppliers into the production process and reducing all 

sources of waste including: waste due to overproduction, longer storage times, waiting times 

due to machine or shop floor organizational issues, badly prepared production processes, 

among others (Tàkindt and Billaut, 2006).  

The impact of JIT strategies on manufacturing performance has been the subject of 

several studies (Fullerton and McWatters, 2001; Huson and Nanda, 1995; Kannan and Tan, 

2005). These studies concluded that benefits from JIT implementation extent to better 

product quality, shorter delivery times, better production mix and volume, more efficient 

utilization of workers capabilities, and better relationships with customer and suppliers. 

Regarding manufacturing control, the most important objective of JIT production is to 

keep production rate for each type of product, per unit of time, as smooth as possible 

(Monden, 2012). If the customer demands are known in advance, JIT production tries to 

minimize the deviation concerning customer delivery times. On one hand, completing 

production beforehand incurs in additional inventory costs, which depends on the type of 

product, quantity and total time the inventory is carried. On the other hand, tardy deliveries 

result in customer dissatisfaction, which can carry out additional costs due to contractual 

penalties (Jozefowska, 2007). 
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From the optimization perspective, among the JIT objectives to optimize, the attention 

has been focused on inventory costs minimization, resulting in criteria such as earliness and 

tardiness costs (Baker and Scudder, 1990). The main difficulty arises with the formulation of 

inventory and customer dissatisfaction costs and their corresponding relationship 

(Jozefowska, 2007).  Different performance criteria resulting from the combination of 

earliness and tardiness costs can be found in (Jozefowska, 2007; Baker and Scudder, 1990). 

An additional difficulty is that the JIT problem is considered intractable because even the 

minimization of the tardiness cost in a one-machine environment is proven to be NP-hard (Du 

and Leung, 1990). Consequently, most of the studies tackle the one-machine problem with 

both criteria, earliness and tardiness (Sourd and Kedad-Sidhoum, 2003) or specific cases of 

the multiple machine problems: job-shops with tardiness costs and other regular measures 

(Mattfeld and Bierwirth, 2004), identical parallel machines with earliness and tardiness costs 

(Su, 2009) or problems with common due-dates with earliness and tardiness penalties (Kim et 

al., 2012).
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Appendix B. Modeling Approaches for 

Manufacturing Control 

B-I. Bionic and Bio-inspired approaches 

Bionic or biological manufacturing systems (BMSs) were proposed by Okino, (1993), 

Ueda, (1992) and Ueda et al., (1997). BMS adopt biologically-inspired features such as self-

organization, evolution, adaptation and learning to deal with complex environments subject 

to uncertain events (Ueda et al., 2006). By analogy, shop floor machines can be compared 

with cells, in which materials enter (raw materials) and exit (processed products) through the 

membrane. A BMS is composed of cells, which in turn can contain lower level cells forming 

a hierarchical structure. Enzymes are in charge of preserving the harmony between entities 

and resolve potential conflicts, while genes store information (Figure B-1). In BMS, there are 

two types of biological information: (a) genetic information that evolves through generations, 

DNA-type and (b) the information learned individually during the lifetime of single 

organism, BN-type (Ueda et al., 1997). 

 

Instead of focusing on the internal structure of living organisms, other bio-inspired 

methods focus on the interaction between living entities and the emergent behavior issued 

from their societies. Such emergent behavior has been denominated swarm intelligence, 

usually seen in ant and bee societies. Swarm intelligence has been used to model distributed 

systems where interactions between entities lead to an intelligent global behavior (Bonabeau 

et al., 1999).  In such societies, entities use indirect communication means instead of direct 

 

Figure B-1: Concept of BMS at the shop floor level (Kanji Ueda, Vaario, and Ohkura 1997) 



Appendix B. Modeling Approaches for Manufacturing Control 

 

148 

 

message exchange as it happens in human societies. For example, ants communicate using 

pheromones and bees through a waggle dance. Stigmergical approaches are based on 

pheromones laid down on the environment that are used for guidance. Pheromones pass 

information and thus they can be reinforced or evaporated depending on their value for 

reaching the objective. For an ant colony, a strong pheromone trace usually defines the 

shortest path form the nest to the food (Leitão et al., 2012a). 

Some examples in manufacturing control using the concept of stigmergy are proposed by 

Peeters et al., (2001), Sallez et al., (2009), Valckenaers et al., (2001) and Hadeli et al., (2006). 

For instance, Holvoet et al., (2009) and Leitão et al., (2012a) combine stigmergy with multi-

agent systems to introduce self-adaptation and self-optimization in vehicle routing and 

manufacturing systems, respectively. 

Bio-inspired systems adopt emerging system methodologies inspired on self-organization, 

evolution and learning. Such features allow BMS to be highly adaptable and re-configurable 

in uncertain and dynamic environments (Ueda et al., 1997). In addition, bio-inspired methods 

have been widely adopted for solving hard optimization problems including dynamic and 

stochastic features, as well as with multiple objectives (Dorigo and Birattari, 2010). 

B-II. Multi-agent systems 

The multi-agent system (MAS) paradigm emerged from the distributed artificial 

intelligence (DAI) field, in which autonomous entities, called agents, are organized in a 

decentralized structure (Leitão, 2009). An "agent" according Ferber, (1999) is a virtual or real 

entity that possesses its own resources and skills used to pursue its own objectives. In MAS, 

agents interact and cooperate with each other and with the environment. An agent is highly 

dependent on its perception and representations of the environment and other agents (Pichler, 

2000). 

Three types of architectures are commonly studied in MAS: functional, blackboard, and 

heterarchical architectures (Baker 1998). In a functional architecture, each agent represents a 

functional capability and there is usually only one agent per function. In a blackboard 

architecture, each agent has expertise in a certain area and agents share their expertise by 

posting partial solutions to a problem on a central blackboard (Baker, 1998). Agents 

organized in heterarchical structures are characterized by their high-level of autonomy and 

cooperation, restraining tight master/slave relationships. Information is handled locally and 

agents communicate with each other when needed (Leitão, 2009).  

In agent-based manufacturing control, an agent can represent a physical resource such as 

a machine or a product or a logical object such as production order, as shown in Figure B-2 
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(Shen et al., 2006a; Colombo, 2005). For instance, by using negotiation protocols, machines 

and product agents can cooperate with each other and make their own manufacturing control 

decisions to allocate product operations into available resources. Several rules or protocols 

can be used for agent negotiation. More information about frameworks, applications and 

examples can be found in (He and Babayan, 2004; Shen and Norrie, 1999; Shen et al., 2006a; 

Leitão, 2009; Kouiss et al., 1997; G. Maione and Naso, 2003). In turn, Mařík and Lažanský, 

(2007) and Leitão et al., (2012b) offer an interesting summary of industrial applications of 

agent-based approaches. 

As pointed out by (Mařík and McFarlane, 2005), the benefits of agent technology rely on 

the robustness, flexibility, adaptability and re-deplorability of the control structure. However, 

there are still some barriers to overcome concerning the economical investment, the 

unpredictability due to their emergent behavior when there is no supervisory level, the 

number of agents required for an industrial application, the lack of commercial platforms and 

standards, among others.   

 

B-III.  Holonic manufacturing systems 

The Holonic Manufacturing System (HMS) concept came up in the early 1990s when the 

Intelligent Manufacturing Consortium put together a program to widespread the use of 

distributed manufacturing systems. The HMS paradigm is based on the concepts from Arthur 

Koestler’s studies about biological and social systems (Koestler, 1967). The main idea behind 

Koestler’s view is that an entity is at the same time a part and a whole.  

HMSs are composed of autonomous and cooperative entities called holons, that normally 

are assigned to manufacturing physical units, such as resources, products, material-handling 

systems, etc; or manufacturing operations namely, planning, scheduling, maintenance, etc.  

Holarchies are the societies formed by holons in order to accomplish their individual and 

 

Figure B-2: Multi-agent system for manufacturing control (Colombo 2005)  
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collective goals (Botti and Giret, 2008). The basic rules for cooperation and holon autonomy 

specifications are also defined by the holarchy. Holons are encouraged to cooperate with each 

other to develop and execute mutually acceptable plans. 

The first holon structure was described by Christensen, (1994) establishing a explicit 

separation between the informational and physical parts of an holon. In turn, various holonic 

manufacturing architectures, such as PROSA by Van Brussel et al., (1998), ADACOR by 

Leitão and Restivo, (2006), HCBA by Chirn and McFarlane, (2000), and PROSIS by Pujo et 

al., (2009) have been proposed. As examples, Figure B-3 shows the set of four holons: 

resource, order, product and staff of PROSA and Figure B-4 shows the set of ADACOR 

holons and their interactions. 

 

Holonic Manufacturing Systems aim to provide effective decision-making processes by 

empowering autonomy, adaptability, agility and reactivity, among other characteristics 

(Sousa et al., 2007). So far, distributed agent architectures have made MAS theory 

appropriate for HMS implementation. Thus, HMS and MAS benefits and challenges are 

strongly related (Babiceanu and Chen, 2006). As concluded by Giret and Botti, (2004) the 

main difference between the two paradigms is the concept of recursiveness, which introduces 

hierarchical relationships into an heterarchical structure.  

Before HMSs are widely implemented in industry, there are still several open issues to 

addressed (McFarlane and Bussmann, 2003): there is a need for definitive and proven design 

methodologies providing unambiguous guidelines. More, it is necessary to demonstrate the 

potentials of HMSs to improve manufacturing systems performance, through serious studies 

using realistic industrial context. Furthermore, the migration process between current 

manufacturing systems to HMS control implies further studies on more holistic approaches 

gathering multiple manufacturing functions that are currently treated separately, such as 

production planning and control. 

 

Figure B-3: Basic holons of HMS (Van Brussel et al. 1998)   
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Figure B-4: ADACOR holons and their interactions (Leitão and Restivo, 2006) 
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Appendix C. Examples of Myopic Behavior in 

Heterarchical FMS Control 

C-I. A soft computing approach for task contracting in multi-agent 

manufacturing control 

In this work, Maione and Naso (2003) proposed a new multi-objective task-contracting 

mechanism based on fuzzy decision-making for real-time part flow control in flexible 

manufacturing systems. Based on multi-agent systems (MAS) design principles, information, 

decision and control is, as much as possible, physically and logically distributed across 

autonomous agents in the plant. Agents are software entities associated to physical entities 

operating in the manufacturing plant such as machines, raw parts, automated guided vehicles 

(AGV). Manufacturing control results from the concurrent actions of the multiple agents 

operating in the plant. 

Herein, the decision-making process is based on the Contract-Net protocol (CNP) 

proposed by Smith, (1980). Two interacting agents are modeled: a part agent (PA) and a 

workstation agent (WA). The part processing priority at any workstation is solved by a 

negotiation process. The PA retains all the information related to its manufacturing operation 

sequence and the workstations that can execute each operation. The PA’s main objective is to 

minimize the total time required to fulfill its operation sequence, i.e., part flow time, and the 

cost of service. In turn, the task of each WA is to assign priorities to PAs requesting an 

operation on the associate workstation. The processing priority depends on the buffer 

capacity and it is inversely proportional to the waiting time. WAs respond to PAs proposals 

depending on their current capacity (own capacity), setup changes with respect to the 

preceding and next part in queue, and estimated delivery time. The objective of WAs is to 

maximize the rate of parts processed per time unit, i.e., the throughput, and minimize the 

setup and idle times. 

Herein, the analysis of social myopia is carried out only for the PA’s decision algorithms 

(described in Figure C-1) but it can be equally done for the WA’s. The decision-making 

process carried out by PAs goes as follows. When a part is ready for an operation, the 

associated PA can request such operation only to the set of m machines that can execute it, 

where m  Ms and Ms is the set of workstations in the manufacturing system. WAs that were 

requested reply with a message containing hj offers, j=1...m. Hence, the total number of 
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alternatives available for PA is   ∑    . Each offer Oij=[pi, c(pi)]j ,i=1... hj is a duple. The 

first value is the offered position in the workstation’s buffer and the second value is the 

associated cost of the position based on the workload.  

 

Now, let m’  m be the subset of WA that can propose further offers, and m’’  m the 

subset of WA that have no other places to offer (m’m’’=m and m’m’’=). In Figure C-1, 

m’={WA1,WA3} and m"={WA2}. Available positions are left hoping to maximize current 

setups, give opportunity to other parts, and/or other upcoming operations of the same part. At 

this point, the PA can either decide with current offers or start new negotiations, with 

different priorities and fictitious offers, with any of the m’. The purpose of fictitious offers is 

to enlarge the set of alternatives and may be, improve the cost/priority tradeoff of the offer. 

The difference between regular and fictitious offers is a cost reduction (i.e., a discount) 

managed by a tuning parameter called negotiation factor that is set according to the WA 

pricing strategy. The higher the negotiation factor, the more the PA tends to negotiate. A 

negotiation is carried out until the PAs selects an offer as final decision. To avoid indefinite 

negotiation loops, a negotiation counter (NPI) is defined. In case the NPI reaches the 

maximum number of allowed iterations, the PA accepts the best available offer in the last 

negotiation. Then, the PA informs the selected WA and waits for a confirmation. A timeout 

bound is set to avoid infinite waits due to lost messages or communication faults. In case of 

WA rejection or timeout expiration, a new negotiation cycle must be started. 

On the PA side, social myopia is manifested by the PA’s decision to enlarge the set of 

alternatives and take further negotiations. Also, PAs are socially myopic since they do not 

know the evolution of other PAs’ negotiations (red dotted line in Figure C-1). On the WA 

side, tuning the negotiation factor limits also PAs perception of the negotiation process, thus 

it restricts the search of further alternatives. PAs are also socially myopic due to reduced 

WA1

PA2PA1
PA3

WA2 WA3

5

2

5

3

1

4

Request/response 

pi Offered position

Position still available for 

negotiation

Ocupied or sold positions

i=1, p1=2, c(p1)=.20

i=2, p2=5, c(p2)=.15 i=3, p3=5, c(p3)=.10

i=2, p2=3, c(p2)=.20

i=1, p1=1, c(p1)=.30

i=1, p1=4, c(p1)=.20

j=1, h1=2 j=2, h1=3 j=3, h3=1

 

Figure C-1: Decision making based on negotiation 
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decision-makings costs obtained by avoiding interactions between PAs (reducing 

communication cost) and by implementing low-complex rules. 

The negotiation factor, the negotiation counter and timeout bounds are time-related 

parameters that render PAs temporally myopic. Those parameters constraint the solution 

search, thus they limit the set of alternatives to analyze. In addition, the decision-making 

horizon is reduced to its minimum since each PA deals with one operation at a time. 

Furthermore, there are no look-ahead techniques to assess the outcomes of a decision so at 

any point in time overall performance is estimated. 

C-II. Market-like multi-agent architecture 

This model, proposed by Lin and Solberg, (1992), is inspired from the negotiations 

carried out in a marketplace where sellers aim to sell their goods at the highest price, while 

buyers try to buy goods of the desired types and of the required quality at the lowest prices 

(Cavalieri et al., 2000). Two types of highly autonomous agents represent manufacturing 

objects, part agents and resource agents. The part agent contains all data regarding its type, 

process plan and managerial information such as local goals, current state of negotiations and 

a budget for each manufacturing operation. The part agent is endowed with decision-making 

rules for carrying out the negotiation process and controlling its production. In turn, the 

resource agent represents any production resource. It also contains manufacturing and 

managerial information, as well as decision making rules for carrying out the negotiation 

process with part agents. 

The negotiation process between part and resource agents aims at allocating part agents’ 

operations at resources. This process is carried out in a way similar to an open marketplace. 

Part agents selfishly try to achieve their local objectives, for which they have a certain 

amount of currency, representing their capacity to purchased resource services. In turn, 

resource agents sells services at a fixed price according to their current capacity and the 

global state of the system, also with the objective of maximizing their own local objectives 

(e..g, utilization rate). Concurrent behaviors emerge when part agents try to obtain, at the 

same time, services offered by resources, which in fact are limited. As depicted in Figure C-2 

the control strategy is carried out through the ContractNet protocol with a combination of 

price and objective mechanism. The bid submission is broadcasted with a purchase price of 

the requested service and on the basis of the unit prices offered, the resource selects which of 

the announced tasks is more interesting. Indeed, the price system plays a fundamental role 

since the bid selection between two task announcements takes place according to their unit 

price. Finally, the model also foresees information and monitoring agents which upon request 

provide explicit information about the global current state of the system. 
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In regards to temporal myopia, as described by Lin and Solberg, (1992) the negotiation 

process is executed for only one operation at a time. Then, part agents are not able to 

estimate the future consequences of task commitments and budget management. In turn, 

resource agents only count of unit prices to determine part priorities, which may also be 

temporally valid. Given the competitive behavior of part agents and the fact that there is no 

negotiation between part agents, these latter are socially myopic since their decisions only 

rely on information coming from resource agents. Though certain global information is 

available, it only gives a glimpse of how the entire system is being directed towards the 

global objective. More precise information related to each part agent will be then necessary 

to adjust local decisions and improve global 

performance.
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Figure C-2: Model of the market-like negotiation 
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Appendix D. Control Strategies in Heterarchical 

FMS Control 

This appendix described three control strategies issued from dynamic scheduling: fully 

reactive, predictive-reactive, and proactive control strategies (Ouelhadj and Petrovic, 2009). 

D-I. Fully reactive control strategy 

Fully reactive strategies are supported on total distribution of control since there is no 

central unit capable of generating schedules beforehand and decisions are made locally on 

short-term basis. Usually a production order is divided into short-term decisions, scheduled 

stepwise by a decisional entity, revising shop floor conditions at each decision (i.e., task) 

(Figure D-1). 

 

If the control architecture is fully heterarchical, decisional entities mostly hold distributed 

artificial intelligence (DAI) algorithms or heuristics. An example of a fully decentralized and 

reactive FMS control approach is PROSIS, the holonic-based isoarchic structure proposed by 

Pujo et al., (2009). In the case of semi-heterarchical architectures, the role of the upper level 

is focused more on coordination rather than on control, and then low-level entities have a 

significant level of autonomy. In most of the cases, the upper level is called to solve 

operational issues between low-level decisional entities such as conflicts or deadlocks, or is 

engaged with performance monitoring, entity registration and identification to ensure the well 

functioning of the organization (Boccalatte et al., 2004; López-Ortega et al., 2008; 

Rajabinasab and Mansour, 2011). Then, the low level is completely in charge of short-term 

scheduling. 
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Figure D-1: Fully reactive control 
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D-II. Predictive-reactive control strategy 

Predictive-reactive strategies are probably the most common strategies reported in 

literature. In the predictive phase, a schedule is generated for a production order and revised 

in the reactive phase, in case the shop floor conditions used in the predictive phase have 

changed (Figure D-2). Usually, this strategy requires a semi-heterarchical structure since in 

order to generate predictive schedules, a complete or at least a partial model of the 

manufacturing system is needed. This functionality is regularly held in the upper level of the 

architecture. Reactivity and perturbation handling is mostly entitled to low-level decisional 

entities due to their low-complex decision-making algorithms, though the upper level can 

also participate. Optimal, near-optimal and artificial intelligence approaches usually utilize 

this control strategy in the upper decisional level, while priority rules and DAI approaches are 

embedded into low-level entities. 

 

Compared to the fully reactive strategies, the benefit of this control strategy is twofold. 

Firstly, the upper level is capable of estimating the system output on a longer term than 

entities at the lower level; and secondly, based on plans proposed by the upper level, 

performance can be estimated a priori and used as an objective for low-level entities to 

achieve and maintain. The studies made by Cavalieri et al., (2000) and Brennan, (2000) 

showed than upper-level entities with certain planning capabilities help the system guarantee 

a better global performance even under the presence of uncertain events. Nevertheless, this 

strategy also implies several drawbacks. First, the upper-level entities require a complete or 

at least a partial model of the system, which not only can be difficult to build, but can 

restraint the control system adaptability. Second, the upper-level entities require a whole 

view of the entire system, which is not necessarily easy to achieve, and may involve an 

important communication burden. Third, there could be a significant hierarchical 

dependence on the high level, which may result in non-negligible lags, penalizing the control 

system’s agility. Fourth, it is necessary to clearly define the conditions that trigger reactive 

control, otherwise with a minimal deviation reactive control may take over without being 

necessary. On this switching issue, Pach et al., (n.d.) reviewed various approaches and 
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Figure D-2: Predictive-reactive control 

 



Appendix D. Control Strategies in Heterarchical FMS Control 

 

159 

 

proposed a typology depending on the homogeneity or heterogeneity of the switching 

mechanism. 

D-III.  Proactive control strategy 

Contrary to predictive-reactive approaches in which any disruption affecting the 

predictive schedule triggers a re-scheduling process; proactive strategies propose a less 

efficient schedule in theoretical conditions which can turn out to yield better results once 

completed (Al-Fawzan and Haouari, 2005). Consequently, the predictive schedule introduces 

some slack so one solution among a set of possible solutions can be accommodated to remain 

efficient if unexpected disturbances occur. 

Most of works using this control strategy use an evaluation of the candidate schedules’ 

robustness, so as to be able to determine the best solution to select (Aytug et al., 2005). This 

evaluation is generally based on measures, which are used to quantify the capacity of a 

schedule to remain efficient in various types of circumstances. Although such quantitative 

approach is convenient for optimization objectives, characterizing the robustness of a 

scheduling solution through a single number may be quite restrictive when many solutions 

have to be compared (Ghezail et al., 2010). 
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Appendix E. The Potential Fields Approach 

This appendix briefly describes the potential fields concept for heterarchical machine 

allocation and product routing within a FMS. The potential fields concept was first used in 

the field of robot navigation to plan the movement of mobile robots in real time (Khatib, 

1986; Mamei et al., 2006). In this application, attractive fields serve to guide robots to their 

destination while repulsive fields help them to avoid obstacles. In manufacturing systems, 

this concept has been used by Vaario and Ueda, (1998) for dynamic product allocation 

among a set of resources, Ueda et al., (2001) for line-less production system, and Weyns et 

al., (2008) for AGV transportation systems. Herein, the potential fields approach (PFA)  

proposed by Zbib et al., (2012) and Pach et al., (2012) is used since it takes multiple aspects 

into account in order to define attractiveness such as resource workloads, extra events and the 

influence of travel times for a FMS network topology. 

In this PFA, the product is an active entity capable of making allocation and routing 

decisions.  As depicted in Figure E-1at every divergent node where a product needs to make a 

decision, the product senses the attractive fields emitted by FMS resources (e.g., machines, 

inspection units, etc). The product looks for those fields related to the manufacturing 

operation it is interested. Products take care of their manufacturing operation sequence 

stepwise, so short-term schedules are generated by each product. Decision making is based 

on the strongest field. 
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Figure E-1: Example of potential fields from (Pach et al. 2012) 
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In this study, resources emit 1D- fields for each service they can provide and repulsive 

fields are not considered. If there are multiple divergent nodes between the chosen 

destination, decisions are reassessed at each divergent node looking always for the strongest 

field. Therefore, if a resource state changes between two divergent nodes (i.e., the traveling 

time), the product will take into account new conditions for decision making. This feature 

makes this approach highly reactive and adaptable. 

Each potential field depends on the attractiveness value of the emitting resource. Four 

types of data are used to calculate attractiveness: 

 Types of services the resource provides 

 The resource sate in the current time, e.g., available, unavailable 

 The number of free places in the resource’s input buffer 

 The time at which the resource will be available again for new products. 

One key aspect for decision making is the distance between the product and the possible 

destination resources. In order to account for that, the attractiveness value is affected by the 

distance. Then, at each divergent node the modified attractiveness becomes the potential field 

sensed by the product. Thus, products follow uphill gradients to route themselves toward 

their chosen resources. The attractiveness at any time   providing service    is calculated as 

follows: 

       
          

  ∑ ∑                            
                               Eq. E-1     

where        is a binary variable set to 1 if the resource   is available for service   and     is 

the maximum attractiveness value. If the resource is unavailable or it does not support service 

  this variable is set to 0;     is the processing time of operation   of product  ;      is a 

binary variable set to 1 if operation    of product   is waiting in the input buffer of   at time 

 ;     is the processing time of operation   of product   which is under manufacturing; and 

     is a real variable in the interval [0,1] that express the percentage of in-progress operation. 

This variable is set to 0 at the beginning and 1 when the operation has ended. This variable 

increases linearly with time. 

The potential field at any time  , sensed by product on a divergent node  , for the service 

 , emitted from resource   is as follows:  
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                                          Eq. E-2 

where     is the distance (expressed in time units) between the node   and the resource  . A 

linear decreasing envelope was used by Zbib et al., (2012). Though the field evolves over 

time, the envelope is the same. Figure E-2 shows the variation of attractiveness with the time, 

as well as the decreased attractiveness of the potential field over distance.  

At every divergent node, the product senses all fields, filters the one related to the service 

it is looking for and chooses the resource    by applying the following rule: 

                                                        Eq. E-3 

According to some previous evaluations, the maximum attractiveness value (   ) is fixed at 

200 units for all machines and all services (Pach et al., 2012).  

       

 

Figure E-2: Variation of attractiveness over time from (Pach et al. 2012) 
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Appendix F. Optimization Techniques for the 

Global Decisional Entity 

This appendix described two optimization algorithms used within the optimization 

module of the global decisional entity. The arrival-control (ATC) and the genetic algorithm 

(GA) described in Zambrano Rey et al., (2014), were designed to minimize the due-date 

mean square deviation (MSD) and the completion time variance (CTV). After describing 

each algorithm, two connection modes between these algorithms are presented as proposed 

by Zambrano Rey et al., (2014).                                   

F-I. The arrival-time control (ATC) 

In discrete production processes, such as in manufacturing, the arrival time is the time in 

which the part
7
 enters into the manufacturing system, reaches a queue of a machine or starts a 

specific production process. Controlling the arrival times of all parts in the system have a 

significant impact of system’s performance because it determines how parts interact with 

each other. For instance, if the first-come first-serve policy is applied by manufacturing 

machines, the arrival times of parts influence the sequence and the order in which these are 

processed, the amount of machine idle times, and the accomplishment of part objectives. 

Based on this assumption, Prabhu and Duffie, (1995) proposed the arrival-time feedback 

control as a scheduling methodology for any part-driven system. Because arrival times can be 

modeled as continuous variables, a control loop can adjust iteratively the arrival times until 

the objective is closely or completely achieved. 

Each part has its own control loop, resulting in the multivariable and distributed arrival-

time control shown in Figure F-1. For a system with n parts, there will be n arrival time 

controllers (ATCs), one for each job j. Using a simulation plant, the completion times (cj) are 

estimated and feedback into the loops in order to calculate the deviations (zj) around the due 

dates (dj). Each loop works simultaneously and iteratively until the arrival times (atj) reach 

their steady-state. Control loops are capable of reacting and adapting to any internal or 

external changes. When the arrival times reach their steady-state, a schedule is ready for 

                                                 
7
 The term part is equivalent to job for the terminology used in job-shop like problems or product in FMS. This is the term used in 

ATC for the sake of generality. 
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execution, and then parts can be released according to the sequence imposed by their arrival 

times. 

 

The choice of the control law is critical because it impacts the system dynamics as well as 

its stability and convergence. The arrival time control for the j
th

 part has the form in Eq. F-1 

where kj is the controller gain, zj is the due-date deviation, atj(o) is an arbitrary initial 

condition, and  is the integration variable, which can take values from zero to t (Prabhu, V. 

and Duffie, N., 1995). When capacity is sufficient for the requested parts and there is no 

queuing, due-date deviations converge to zero. When capacity is not sufficient, the controller 

adjusts the arrival times, penalizing equally earliness and tardiness. The only requirements of 

arrival time control are that processing times, due dates and non-modeled errors are 

guaranteed to be bounded. 

      ∫        
 

 
                                              Eq. F-1 

 The ATC does not make any hard assumptions about the system configuration. For 

shop floor layouts without routing flexibility, the ATCs solve the sequencing problem by 

calculating the arrival times and then the machine allocation needs to be solved with another 

algorithm. The only ATC configuration parameter is the controller gain kj, which is usually 

the same value for all control loops. By selecting control system parameters such that 0≤ kj 

≤2, the bounding of the digital arrival time control algorithm can be guaranteed (Jun et al., 

2010). 

F-II. A genetic algorithm for solving the flexible job-shop scheduling 

problem (GA) 

The flexible job-shop scheduling problem (FJSSP) has been classically decomposed into 

two sub-problems: the product-sequencing problem, which is responsible for ordering the 

jobs’ manufacturing operations, and the machine-sequencing problem, which is responsible 
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Figure F-1: Multi-variable arrival time control 
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for allocating each manufacturing operation to one of the redundant machines (Xia and Wu, 

2005). Based on this problem decomposition, two types of approaches have been proposed to 

deal with the FJSSP: integrated approaches and hierarchical approaches (Fattahi and Fallahi, 

2010). Unlike integrated approaches, hierarchical approaches handle sub-problems 

independently and sequentially. According to this typology, Table F-1 provides a summary of 

a literature review, clearly describing the type of approach, the objective function(s) and the 

realistic characteristics necessary to model a flexible manufacturing system (FMS) based on a 

FJSS model, i.e., intermediate storage capacity, maximum number of jobs (limited capacity), 

possibility of job re-circulation and rework, and transportation time. 

 

From an optimization perspective, the general FMS scheduling problem is a more 

complex version of the classical flexible job-shop scheduling problem (FJSSP), which is 

known to be NP-hard (Conway et al., 2003). According to Luh, (1998), the realistic 

characteristics already mentioned make part of the major differences between job-shop 

problems and FMS scheduling problems, which complicate even more the FMS scheduling 

problem but yield more realistic models. These characteristics need to be considered to 

Table F-1: Summary of a literature review on FJSSP 

Author Type Approach Objective function Inter. 

storage 

capacity 

Max. 

number 

of jobs 

Job re-

circulation 

Transport 

times 

(Brandimarte 1993) FJSSP Hierarchical min(makespan, 

weighted tardiness) 

No No No No 

(Zribi et al. 2006) FJSSP Hierarchical min(total tardiness) No No No No 
Integrated min(total tardiness) No No No No 

(Gao et al., 2007) FJSSP Hierarchical min (makespan, max. 

machine workload, 
total workload) 

No No No No 

(Vilcot and Billaut, 

2011) 

FJSSP Hierarchical min(max. lateness, total 

tardiness, makespan) 

No No No No 

(Guo et al., 2008) FAL1 Integrated min(weighted sum of 

earliness/tardiness, 

min. production flow) 

No No No No 

(Sun et al., 2010) FJSSP Integrated min(makespan) No No No No 

(Hussain and Joshi 

1998) 

FJSSP Hierarchical min(sum of squared 

due-date deviation) 

No No No No 

(Prabhu 2003) FSP2 N/A min(mean square due-

date deviation 

No No No No 

(Valente et al., 2011) 
and (Kianfar and 

Moslehi, 2012) 

SM3 N/A min(sum of the 
weighted quadratic 

earliness and 

tardiness costs) 

No No N/A N/A 

(Gomes, Barbosa-

Póvoa, and Novais 

2005) 

FJSSP Integrated min(weighted sum of 

earliness/tardiness) 

Yes No Yes No 

(Caumond et al. 2009) FMS N/A min(makespan) Yes Yes No Yes 
(Mati, Lahlou, and 

Dauzère-Pérès 2010) 

FJSSP Integrated min(makespan) Yes Yes No Yes 

(Zhang, Manier, and 

Manier 2011) 

FJSSP Integrated min(makespan and min. 

of the storage capacity) 

Yes No No Yes 

(El Khoukhi et al. 
2011) 

JSP2 N/A min(sum of 
earliness/tardiness, 

empty movements) 

Yes No No Yes 

(Zbib et al. 2012; 
Pach et al. 2012) 

FMS Integrated min(makespan) Yes No Yes Yes 

1
Flexible Assembly Line 

2
 Job-shop scheduling problem  

3
Single Machine 
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accomplish more applicable schedules and to avoid problems such as congestion, deadlocks 

or other blocking situations.  

Limited intermediate storage capacity and the maximum number of jobs are limitations 

due to several physical characteristics (e.g., the actual size of the objects, the shop layout or 

the capacity of the material handling system) and/or managerial policies (e.g., minimizing the 

in-process inventory). Transportation times are often neglected or modeled using simple 

constant times in FJSS. Transportation times depend on material handling flexibility and their 

costs compared to those of the manufacturing operations. Material handling flexibility 

assumes that there are different paths to transfer jobs between machines. According to Sethi 

and Sethi, (1990), this type of flexibility increases machine availability and use, thus reducing 

throughput times. For a FMS with this type of flexibility, transportation times must be 

considered with more accuracy since the actual transportation time incurred by each job 

affects the sequence in which the jobs are processed. Job re-circulation occurs when a job 

visits a machine more than once, and is a phenomenon that is quite common in the real world. 

This condition has a direct impact on the machine-sequence flexibility. 

In most of the aforementioned papers (Table F-1), the FJSSP addresses makespan 

minimization or a linear combination of the makespan with other objectives, such as machine 

workload, flow time, and maximum or total tardiness ((Brandimarte, 1993; Zribi et al., 2006; 

Gao et al., 2007; Vilcot and Billaut, 2011). Generally speaking, when JIT production 

objectives are considered, the scheduling models in the literature assume a linear relationship 

between earliness and tardiness costs (Guo et al., 2008; Sun et al., 2010; Gomes et al., 2005; 

El Khoukhi et al., 2011). Nevertheless, simply minimizing tardiness costs, or the linear 

combination of earliness and tardiness, is too simplistic since tardiness costs comprise other 

qualitative indicators related to customer loyalty (i.e., customer dissatisfaction and the risk of 

losing the customer). In these cases, a quadratic function represents the penalties for due date 

non-compliance better, which increases non-linearly (Jozefowska, 2007). 

To the best of our knowledge, and despite the industrial need for JIT scheduling methods 

(Vincent, 2011), few studies have dealt with quadratic earliness and tardiness costs for the 

FJSSP. One of the few studies dealing with quadratic JIT costs was carried out by Hussain 

and Joshi (Hussain and Joshi, 1998). They addressed the job-shop problem with alternative 

routing and minimization of the sum of the mean square due date deviation. They proposed a 

genetic algorithm that selects one of the machines from the alternative machines, and then a 

pure non-linear program (NLP) determines the job order and job start time. Other studies 

found in the literature dealing with these types of quadratic costs deal with the flow-shop-like 

problem (Prabhu, 2003) or the single machine problem (Valente et al., 2011; Kianfar and 

Moslehi, 2012). A second issue that was identified through the literature review presented in 
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Table F-1 was that, in addition to JIT scheduling objectives, several realistic characteristics 

are usually neglected by researchers when modeling the FJSSP. 

To sum up this literature review, either the FJSS models reported did not considered the 

MSD and the CTV as objectives functions, or hard assumptions were made to simplify the 

model. Therefore, a genetic algorithm (GA) in which a dual-chromosome encoding technique 

enables a hierarchical approach to the FJSSP was proposed. Since they were proposed by 

Holland (Holland, 1975), genetic algorithms (GAs) have become one of the most developed 

and most applied evolutionary-based meta-heuristics for combinatorial optimization 

problems. In the following, the GA procedure and configuration is detailed. 

a. GA procedure 

The pseudo code presented in Figure F-2 describes the procedure followed by the 

proposed genetic algorithm. 

 

b. GA encoding 

In this model, the product sequence sub-problem is dealt as a release sequence meaning 

that the GA focuses only on the product entry order. The order in which products are treated 

at each machine is solved locally by the machine, for instance using a priority rule such as 

first-input first-output. Due to the different nature of the machine sequence and release 

sequence problems, we propose an encoding technique that handles the two problems 

separately through a dual-chromosome encoding. Different advantages of this dual-

chromosome encoding are listed below:  

 

Figure F-2: Pseudo code to explain GA procedure 

Step 1: Population generation

Step 2: Evaluate fitness of each individual

Step 3: If apply, Select parents for crossover

Generate offspring

Step 4: Select offspring for mutation

if apply, Mutate the inviduatal

Step 5: Evaluate offspring’s fitness

Insert offspring within the population

Step 6: Insert random population 

if apply, Evaluate fitness of random population

Insert random individuals within the population

Step 7: Select best individuals

If population stable, then goto Step 8

If population no stable, Goto Step 4

Step 8: Select the best individual

Print out solution
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 It reduces the problem complexity, in some cases, this hierarchical division has proven to 

be more efficient than integrated approaches (Fattahi et al., 2007).  

 Dual-chromosome encoding allows generic problem modeling, making it possible to use 

the same structure for other kinds of problems (e.g., the job-shop problem, flow-shop-like 

problems).  

 If both chromosomes are independent, various genetic operations can be applied, 

allowing more diversity and easier chromosome manipulation, thus improving the 

efficiency of the algorithm. 

 This division allows integrating the GA with other optimization techniques such as the 

ATC 

Among the various encoding techniques applied to job-shop-like problems (Cheng et al., 

1996), the job-based representation was chosen. Each chromosome is a permutation of the 

integers from 1 to n, and represents a solution for the release sequence sub-problem (Figure 

F-3 a). The main advantage of this encoding technique is that it constraints the chromosome 

size to its minimum length. For the machine-sequence chromosome, an indirect encoding 

technique (inspired from Hussain and Joshi, (1998)) was used to explore the machine-

sequence alternatives available on the FMS.  

 

In this case, the machine sequence chromosome genes were generated by a uniform 

distribution and provide a value to choose one feasible machine sequence to their 

corresponding genes in the release sequence chromosome (Figure F-3 b). Figure F-3 also 

shows the dual-chromosome encoding for a 3-job order. 

The sequencing chromosome is ready to be used, but the raw chromosome needs a 

decoding process. First, the Machine-Sequence Flexibility vector (MSF) in Eq. F-1) is 

formed with the number of available machine sequences for each job type. A machine 

sequence is a sequence of machines that a job must follow in order to fulfill its manufacturing 

operation sequence. 

MSF = { S1, .., St,.., ST }                                                Eq. F-1 

......π1 π2 ... πn-2 πn-1 πn where π = j Є Ja.

......g1 g2 gi gn-2 gn-1 gn
b. where gi =u(0,1) 

Chromosome encoding Example for a 3-job client order

12 3

0.10.7 0.6
 

Figure F-3: Chromosome encoding 
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Out of all these machine sequences, one, called the selected machine-sequence (smrj in 

Eq. F-2), is selected on the basis of the corresponding gene in the raw machine-sequence 

chromosome (gj in Eq. F-2) and the maximum number of available machine sequences (Stj in 

Eq. F-2) available for the job. The value of smrj is the position of the selected machine 

sequence within the vector containing all the machine sequences for the job. 

      ⌈      ⌉                                                      Eq. F-2 

Figure F-4 shows the decoding process for the 3-job order of Figure F-3 b. The MSF is 

constantly updated to be coherent with FMS conditions. 

 

This encoding-decoding technique requires a pre-processing algorithm that constructs the 

selected machine sequence.  When new machines are added to or withdrawn from the FMS 

(or machine operations modified), the MSF must be updated in order to obtain feasible 

schedules. 

c. The initial population and fitness evaluation 

The initial population of dual-chromosomes (individuals) is created randomly, and all the 

individuals are then classified according to their fitness. The fitness evaluation can be 

explained by the flow diagram in Figure F-5.  

For the common due-date problem, Bagchi et al., (1987) defined two types of due-date 

mean square deviation (MSD) problems: the unconstrained MSD problem and the 

constrained MSD problem. With the unconstrained problem, increasing the due date does not 

result in any further increment of the MSD. Bagchi et al., (1987) proved that the schedule that 

minimizes the Completion Time Variance (CTV) also minimizes the MSD for any due date 

greater than or equal to its mean completion time ( ̅). As seen in Figure F-5, for each 

individual (δ), the mean completion time is calculated and depending on the common due 

date (ddc), the order release time is set to zero (rto=0) or to the difference between the two 

values so completion times (ctp) finish around the due date. 

Job sequence chromosome

Raw machine-routing chromosome

MRF

12 3

2 3 3

0.10.7 0.6     28.16.0*33 JOBsmr

    13.01.0*31 JOBsmr

    24.17.0*22 JOBsmr

 

Figure F-4: Decoding process for a 3-job order 
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d. Crossover 

To apply a crossover operator, a parent-selection mechanism needs to be chosen. The 

most common selection methods are the proportional (Holland, 1975), tournament and 

roulette wheel (Goldberg and Kalyanmoy, 1991) and linear methods (Back, 1994). Among 

techniques using fitness for selection the ranking technique proposed by Sevaux and 

Sörensen, (2004) is used herein. The first parent was chosen with the probability distribution 

p in (Eq. F-3) (where k is the chromosome’s ranking position), which gives a higher 

probability (2/(Pop_size+1)) to the best individual. The second parent was selected randomly. 

  
               

                    
                                           Eq. F-3 

Once the parents were chosen, two offspring were created, using one of the available 

crossover operators. Most of the available crossover operators are improved or modified 

versions of the classic one-, two- or three-cut point methods or the position-based method 

(Nearchou, 2004). In this case, we chose the two-cut point method since the size of the 

chromosome was limited to its minimum. The same selection criterion and crossover operator 

were applied to the sequence and machine-routing chromosomes, but the process was done 

independently. The crossover operator was applied if a value          was lower than a 

crossover probability Pcross. Otherwise, each child was a fair copy of its associated parent. 

 

            Fitness à  
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Figure F-5: Fitness evaluation 
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e. Mutation 

The most common mutation operators are adjacent exchange, swapping, shift, 

displacement, inversion and random insertion. Since the sequencing chromosome is a 

permutation chromosome, any of these operators can be used, with the exception of random 

insertion. Combining two-cut point crossover with shift and swapping operators gave the 

most efficient results for the flow-shop problem, when applied to multiple public benchmarks 

(Nearchou, 2004). The mutation operator was applied to the chromosome if a value 

         was lower than a mutation probability Pmuta. Each parent generated a new child 

chromosome if mutation was applied. Otherwise, each child was a fair copy of its associated 

parent. 

By using the crossover and mutation operators, Pop_size/2 new offspring were generated 

and inserted into the population, expanding it to Pop_size+Pop_size/2 individuals. However, 

the best Pop_size population was selected as the next generation, according to the natural law 

of survival of the fittest. 

f. Random offspring insertion 

In order to add diversity and avoid rapid convergence, thus falling into local minima, a 

number of random generated chromosomes, calculated as Pop_size/x, were created and 

inserted into the population at a certain insertion rate gr (Shaikh and Prabhu, 2009). The 

objective of this insertion rate was to perturb the population during stabilization, taking the 

solution from local minima if the randomly inserted individuals found a better result. The 

insertion rate (Eq. F-4) is inversely proportional to the number of jobs in order to favor 

solution space exploration as the problem size increases. The number of individuals NI to be 

inserted was obtained from (Eq. F-5), where x is the population ratio to be inserted. Although 

the population increased with random insertion, the selection of the best Pop_size individuals 

prevailed throughout all generations. 

          
 ⁄                                             Eq. F-4 

   
        

 ⁄                                              Eq. F-5 

g. Stop criterion 

The most common criterion is the maximum number of elapsed generations. In this case, 

to be more robust in relation to problem size and flexibility, the algorithm stopped when there 

was no further solution improvement after a prescribed number of generations (itermax). For 
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each generation iter, the solution was considered steady if (Eq. F-6) held true. When the 

solution was steady for itermax generations, the algorithm stopped, and the chromosome pair 

with the best fitness was selected. The CTV can be used instead of the MSD, if apply. 

                               ⁄   ]               Eq. F-6 

where ε determines the maximum range of solution variation. Table F-2 summarizes the 

configuration parameters of the GA used for the experimental cases. 

 

F-III. Decoupled connection between ATC and GA  

This first connection mode comprises two phases in which the GA and ATC worked 

sequentially (Figure F-6). In the first phase, the GA runs until the population stabilizes and 

one solution is found. The fitness evaluation of each individual (i.e., dual-chromosome) is 

executed using Eq. F-7 with release-times (    ) set to zero. The relationship between release 

times (release sequence), machine routes, completion times and product interaction can be 

explained by Eq. F-7. The first term is the product release time. The second term is the sum 

of all the processing times (   

  
), which depend on the machines selected (     ). The third 

term is the total waiting time experienced by the product when it is placed in the machine’s 

input buffer (  ). The last terms refers to the transportation times from one machine to the 

next. In this case, the transportation times depend on the queue capacity of the following 

machine (      
). If the following queue is at its maximum capacity, products remain in 

transfer until there is a place in the machine’s input buffer.  

 

    

         ∑    

  
       

          

 ∑              (     )                 Eq. F-7 

∑                   (      
)  

Table F-2: GA parameterization. 

Parameter Values 

Population Size Pop_size= n*  

n= number of jobs in the order 

=10 

Crossover Operator Two-cut point 

Crossover Probability Pc=0.7 

Mutation Operator Shift 

Mutation Probability Pm=0.4 

Stopping Criterion No further improvement during a prescribed number of 

iterations has elapse (ITERMAX=10) 

Randomly Inserted Population Size Pop_size/4 

Frequency of Insertion gr= itermax /n 
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    The objective of the GA is to narrow down the entire machine-allocation solution-

space to find just one selected machine sequence per job. The GA uses Eq. F-7 to calculate 

the fitness of each individual and evolve the population towards convergence. The solution 

given by the GA is thus formed by a job sequence, one machine sequence per job and a 

temporal MSD or CTV. In the second phase, the ATC uses the sequence given by the GA as 

its initial condition, and the machine sequence is used by the simulation model to calculate 

the completion times. The number of ATCs required is the same as the number of jobs. The 

objective of the second phase is to calculate the release times (i.e., arrival times at the FMS) 

that minimize the MSD or the CTV. A solution is found when all ATCs reach their steady-

state. The solution is formed by a job sequence, the release times per job, a machine sequence 

per job and an estimated MSD or CTV. 

  



Appendix F. Optimization Techniques for the Global Decisional Entity 

 

176 

 

 

Generation of 

initial population

Fitness (MSD’)
Determine the 

individual’s fitness

All 

individuals

?

no
Range the population 

by fitness

Selection

Crossover

Mutation

Fitness 

(MSD’)
Determine the 

offspring’s fitness

O
ff
s
p

ri
n

g
 g

e
n

e
ra

ti
o

n

Is solution 

stable?

Replace the worst 

individuals with good 

offspring

Randomly 

generate 

individuals

Insert 

individuals every 

gr iteration

Job sequence +

selected machine sequence

per job + temporal MSD’

no

yes

yes

Controller Completion time 

calculation using the 

selected machine 

sequence per job
Controller

Controller

d1(t)

d2(t)

dn(t)

z1(t)

z2(t)

zn(t)

c1(t)

c2(t)

cn(t)

Arrival times set 

to zero

Are arrival 

times stable?

Job release sequence+ selected 

machine sequence per job + arrival 

time per job +final MSD’F
in

a
l 

s
o

lu
ti
o

n

yes

Continue iterating

P
re

lim
in

a
ry

 

s
o

lt
u

io
n

Phase

 1

Phase 

2

 

Figure F-6: GA-ATC decoupled connection for the MSD 
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F-IV. Coupled connection between GA and ATC 

Contrary to the previous one, the purpose of this connection mode is to maintain a pool of 

valid solutions, and make the two algorithms work together by coupling them. In this way, 

the ATC efficiency is not constrained by the solution obtained by the GA. Hence, the ATC 

helps the GA to evolve its population including actual release time values for each product in 

each chromosome.  

This connection mode is described in Figure F-7. The genetic algorithm continues its role 

as the machine-sequence explorer, but the ATC is inserted into the GA loop becoming the 

fitness evaluator. The algorithm works as follows. The genetic algorithm generates a 

Pop_size number of individuals and each individual becomes the input of a set of arrival-time 

controllers. The ATCs work on the release times until the MSD or CTV (fitness) reaches its 

steady-state. Then, the set of given chromosomes is ranked by their fitness, and a selected 

number of individuals undergo the crossover and mutation operators to create new offspring. 

The offspring is also evaluated by sets of arrival-time controllers and then, these individuals 

are inserted into the population, replacing the worst parents. Randomly-generated individuals 

are also introduced to add diversity and minimize the possibility to fall into local minima. 

However, only the fittest individuals survive throughout generations. The termination 

criterion is based on the stabilization of the population’s MSD or CTV. The solution contains 

the same elements as in the sequential coupling. 

 Intuitively, although the coupled connection may incur in more computing cost than 

the decoupled connection, the intention is to fully take advantage of the capability of GA to 

evolve a certain population towards optimal or near optimal results. Anyway, since the 

number of machine-sequence combinations to explore is restricted, the computational cost is 

expected to be useful for FMS control. 
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Figure F-7: GA-ATC coupled connection for MSD 
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Appendix G. Software Developments for 

Implementation 

G-I. Wago
®
 Programs 

There are 18 in the AIP cell as depicted in Figure G-1. Wago
® 

controllers are 

programmed using CodeSys
® 

which is an  IEC 61131-3 development system (3S-Smart 

Software, 2014). In order to program Wago
® 

controllers, these latter are arranged in three 

groups depending on the nodes they handle. Therefore, three types of programs were 

developed but each Wago
® 

controller has to be coded individually given that each controller 

handles different nodes, hence different sensors and actuators. 

 

 Type A controllers: these are Wago
®
 controllers handle shuttle mobility from two regular 

source nodes to two destination nodes. Wago
®
 controllers 1, 6, 9 and 16 are of this kind. 

For instance, Wago
®

 controller 1 handles shuttles arriving at nodes 19 and 20, requesting 

transfer to nodes 21 or 22. 

 Type B controllers: These are Wago
®
 controllers that handle the machines at the AIP cell, 

hence the machine local decisional entities. These controllers handle the waiting line but 

they cannot control the transfer gates to let the shuttle depart from the machine. In order 

to let the shuttle pass they have to request type C Wago
® 

controllers.  Wago
® 

controllers 

2, 4, 7, 10, 12, 14 and 17 are of this kind. 
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Figure G-1: Node assignation to Wago
® 

 controllers 
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 Type C controllers: These are Wago
®

 controllers that handle a regular node (i.e., two 

source nodes and one destination node). One of the source nodes can be a machine-

related node then these Wago
® 

controllers receive requests from type B Wago
®

 

controllers.  Wago
®
 controllers 3, 5, 8, 11, 13, 15 and 18 are of this kind. 

One important feature of the Wago
® 

controller programs coded is their generality. 

Therefore, decisional entities can be coded in any language to control production and 

generate high-level control decisions (Section IV-4). Once control decisions are made, low-

level control actions are executed by the Wago
® 

controllers. However, in some cases as in the 

machine local decisional entity, high level and low level control is programmed in the Wago
® 

controller. 

a. Wago® controllers Type A and C 

Figure G-2 depicts, in a general way, the GRAFCET program for these types of Wago
® 

controllers.  

 

Nodes w or x represent source nodes and nodes y and z represent destination nodes. In the 

case of type C Wago
® 

controllers there is only one destination node so branches related to 

node z are not coded. 

 

 

Figure G-2: GRAFCET diagram for Wago
®
 controllers type A and C 
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b. Wago® controllers Type B 

Figure G-3 depicts the GRAFCET program for Type B controllers. The main purpose of 

these controllers is to provide the operation sequences requested by the product. In addition, 

when the product has finished all the possible operations at the machine, these controllers 

request type C controllers for transfer to the destination node. Communication between 

Wago
® 

controllers is achieved through environment variables that are exchanged through the 

network. Internal procedures are used to determine when such variables change their values 

so updated values can be used. For instance, potential fields are exchanged through those type 

of variables with every Wago
® 

controller. In that way, once a value changes all variables 

concerned in other Wago
® 

controllers are updated. 

 

G-II. Java Programs 

The global decisional entity and the transport local decisional entity were implemented in 

Java programming language. For the global decisional entity two java programs were coded, 

one for the control module and another for the interaction module, this latter called dispatcher 

program. Figure G-4 shows a flow diagram representing the main parts of the of the control 

module of the global decisional entity. The optimization mechanisms were program as 

methods so it is possible to use one or the other or both of them, coupled or decoupled. A 

TCP/IP communication method allows information exchange with the dispatcher program. 

 

Figure G-3: GRAFCET diagram for Wago
®
 controllers type B 
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Figure G-5 shows a flow diagram for the interaction module of the global decisional 

entity. This dispatcher program is in charge of monitoring production, establishing 

communication with transport local decisional entities and update AIP cell data in case of 

changes. It also collects production information either for recalculation or final global 

performance calculation when production has finished. 
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Figure G-4: Flow diagram of the control module of the global decisional entity 
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Figure G-6 shows the flow diagram of the control and interaction modules of the 

transport local decisional entity. One particular characteristic of the interaction module is that 

it communicates with the dispatcher program via TCP/IP protocol and Wago
® 

controllers 

(including the machine local decisional entities) via Modbus TCP/IP. Two threads were 

coded: one for handling the normal operation sequence and another thread for paying 

attention if another transport local decisional entity announces a perturbation. Perturbations 

are announced by broadcasting a message with a perturbation code. When a perturbation has 

been announced each entity finishes their current task, i.e., arrive at the next node, finishes an 

operation, and reports its current status and production history to the dispatcher (i.e., 

operations already executed). Afterwards the entity waits for new information coming from 

the global level.  
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Figure G-5: Flow diagram of the dispatcher program (interaction module of      ) 
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G-III. The NetLogo simulation model 

This NetLogo model was developed by Thérèse Bonte, research engineer at TEMPO-PSI. 

The AIP cell simulation model realized in Netlogo has four types of agents: "turtles", mobile 

or static, which are decisional entities; "patches", static, which provide a grid representation 

of the environment; "links", which are agents that connect two turtles; and “the observer” 
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Figure G-6: Flow diagram of control and interaction modules of the transport local decisional entity 
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who is in charge of giving instructions to the other agents. In this study, the FMS components 

were modeled with just turtles and links, as shown in the UML (Unified Modeling Language) 

class diagram in Figure G-7. The FMS topology is represented by a directed graph composed 

of Nodes linked by NodeLinks. Nodes can be structural, which define the FMS layout; 

decisional, to model products that collect information and make decisions; or directional, to 

define transport directions that guide products in the FMS (e.g., convergent or divergent 

nodes). 

 

Transport decisional entities (    s) are composed of two turtles: transport and product 

to differentiate between control decisions related to product routing, taken care by the 

transport turtle, and machine allocation that is taken care by the product turtle. Transport 

turtles are in charge of taking products turtles around the FMS. For instance, for a particular 

problem with   products and    transport turtles, once a product   is released into the FMS, 

if there is an empty transport turtle, a link (ProdShuttleLink) is created between the product 

and the transport turtles. While the transport turtle manages the mobility, traffic and possible 

collisions through the NodeLinks, the product turtle makes machine allocation decisions to 

accomplish its operation sequence. At the end of the sequence the link is broken; the product 

turtles change their state to finished and calculate their completion times (i.e., simulation 

outputs); and transport turtles are liberated to assist new product turtles or go to the transport 

stock area. 

A simulation replication starts by an initialization process consisting in loading the 

network topology (node and machine attributes), and the product and transport device 

attributes. These data along with the parameters, assumptions and constraints defined in 

Sections IV-2.2 to IV-2.4 are considered as static parameters that do not change during a 
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Figure G-7: The static structure of the simulation model in NetLogo 
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simulation replication. Then "ProdShuttleLink" are created depending on the number of 

available transport devices and the number of products. These links are created every time a 

new product is released into the FMS. Every time the simulation clock is incremented, 

transport turtles calculate their next position and after dealing with priorities, only those that 

are able to move will do so.  For instance, a transport turtle in a machine’s input buffer only 

enters the machine when the machine lets it do it; otherwise the transport turtle remains in its 

place. Depending on the new transport turtle position, e.g., a decisional node or a machine, 

the transport turtle executes the appropriate process, e.g., makes a decision, or starts an 

operation. In the    ’s behavior model transport, product and machine turtles are 

customized with the decision-making algorithms chosen for     s and     s, 

respectively, as described in Sections IV-4.1 and IV-4.2. 

The Netlogo simulation model can be controlled in two ways: manually and from a Java 

program. Figure G-8 shows the simulation model interface when the simulation model is 

controlled manually.  The first step to manually launch a simulation replication is to choose 

the type of local decision-making algorithm, i.e., the potential fields approach or the first 

available machine rule. ( in Figure G-8). Based on the benchmark study proposed by 

(Trentesaux et al., 2013) the simulation scenario must be chosen ( in Figure G-8). Then, the 

source files for the client order and product configuration must be specified ( in Figure G-

8). The model can then be launched (in Figure G-8) and simulation can start either stepwise 

or continuously until the client order finishes ( in Figure G-8). In order to see product 

interactions or get results quickly, the simulation clock can be modified (in Figure G-8). 

Intermediate results in terms of number and type of finished products are displayed (in 

Figure G-8) and the actual cell dynamics can be seen through the simulation screen (in 

Figure G-8). Figure G-9 shows the simulation screen for a simulation replication under 

normal conditions and Figure G-10 shows also a 3D view when machine m2 breaks down (

 in Figure G-10). 
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Figure G-8: View of the NetLogo simulator in manual mode 

 

Figure G-9: Simulation screen in 3D view for normal conditions 

When the Netlogo simulation model is controlled by a Java program, the model is 

launched without visualization to avoid higher simulation costs. The model accepts the client 

order (types of products, release times and machine allocations if apply) as entry data, and 

returns completions times for each product when the simulation replication has finished. The 

Java program launches the simulation replication and waits for simulation results. 
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Figure G-10: Simulation screen in 3D view for the breakdown case
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Appendix H. Results from Simulation Studies 

This appendix first describes the experimental protocol followed to evaluate the 

efficiency of the proposed genetic algorithm and the GA-ATC connection types, decoupled 

and coupled. The ATC efficiency to deal with the flexible job-shop scheduling problem 

(FJSSP) was also evaluated by evaluating all the combinations of machine sequences. These 

results are also compared with a quadratic linear program (QLP) conceived for the FJSSP for 

the minimization of the due-date mean square deviation (MSD). In the last section of this 

appendix, results from the simulation study described in Sections V-4 are also reported. 

H-I. Efficiency of the genetic algorithm 

The genetic algorithm, described in Appendix F was conceived to minimize the due-date 

mean square deviation (MSD) for the common due-date case. As mentioned in Appendix F, 

for the common due-date problem two types of MSD problems can be defined: the 

unconstrained MSD problem and the constrained MSD problem. A simulation study was 

carried out for both types of MSD cases and results were compared with those obtained from 

a quadratic linear program (QLP). The QLP used for comparison was inspired from the 

Mixed-Integer Linear Program (MILP) proposed by Trentesaux et al., (2013).  Such model 

already contains the necessary constraints to handle transportation times, intermediate storage 

capacity and the maximum number of jobs, agreeing with the AIP cell case. However, the 

model proposed by Trentesaux et al. was conceived for the minimization of the makespan, 

thus it had not been tested for the minimization of the MSD. The genetic algorithm (GA) was 

compared with a QLP using three benchmarks, one inspired from a real manufacturing cell 

(the AIP-PRIMECA cell) and two adapted from the related literature.  

Ten different client orders, ranging from 21 to 96 operations, were tested. For each client 

order, six different due dates were studied. Eq. H-1 is based on the work of Sourd and Kedad-

Sidhoum, (2003) that allows due dates to be selected according to two range factors: φ, which 

controls tightness, and ω, which controls due-date variance. Since transportation is a key 

completion time contributor, the worst case scenario for the total transportation time of the 

order TTo was used in the formulation. For all scenarios, φ =0.2 and ω =0.2 were chosen in 

order to obtain tight due dates, for which the constrained MSD problem was most likely to 

occur. 
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Results obtained from the GA were compared with the solutions given by the QLP (i.e., 

MSD’qlp). The gap between the GA and the QLP is expressed in Eq. H-2.  

    
            

       
         Eq. H-2 

a. Results and analysis for the AIP-PRIMECA cell 

For this evaluation protocol, the GA was solved using MatLab, running on an Intel 

Pentium® D PC with a 3.40 GHz processor and 1GB RAM. The QLP was solved using IBM 

Cplex 12.2 Concert Technology, running on an Intel Dual-Core PC with a 1.73 GHz 

Processor and 2GB RAM. Results from the 60 tests are shown in Table H-1. For the GA, the 

reported results are the average MSD’ for 20 trials for each test case, the minimum and 

maximum solutions for the MSD’, the computing cost and its minimum and maximum 

solutions.  

Performance comparison: As expected, the QLP had difficulty finding solutions for large 

problems. In this particular case, the QLP found optimal solutions for up to 4-job orders and 

some good heuristic solutions for 6-job orders. For the rest of the orders, the QLP found 

heuristic solutions and these results were, most of the time, outperformed by the GA (if the 

QLP found a solution after running for 5 hours).  Figure H-1 shows the results for the first 18 

cases because, for these cases only, we can make a fair comparison. The good behavior of the 

GA is represented not only for the very low gaps, but also for the low variation of its 

solutions. The largest QLP gap was 2.93% (compared with a lower bound) and the largest 

GA variability for this set of results was 7% around the average value.  

 

 

Figure H-1: MSD’ for the first 18 cases (Sc0t01-01, 02 and 03)  
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Table H-1: Results for 60 tests with an increasing number of jobs 

min max

Avg. 

MSD' Min MSD' Max MSD'

Avg. 

Comp. 

Time (s)

Min. Comp. 

Time (s)

Max. Comp 

Time (s)

MSD' Time % Exploration

1 AIP 194 59,54 59,47 60,19 1,83 1,71 2,41 59,47 2,49 Optimal 0,12 0,72

1 AIP 199 58,20 58,09 58,63 1,74 1,70 1,79 58,09 2,45 Optimal 0,19 0,54

1 AIP 181 64,86 64,74 65,86 1,73 1,70 1,84 64,74 3,38 Optimal 0,19 1,13

1 AIP 230 56,41 56,41 56,41 1,78 1,72 2,19 56,34 2,4 Optimal 0,13 0,00

1 AIP 251 56,41 56,41 56,41 1,75 1,72 1,87 56,34 2,47 Optimal 0,13 0,00

1 AIP 242 56,41 56,41 56,43 1,77 1,72 2,18 56,34 3,08 Optimal 0,13 0,03

1 LATE 223 59,19 58,57 62,47 4,45 3,41 6,26 58,56 47,13 Optimal 1,09 3,89

1 LATE 211 65,59 64,52 69,07 5,13 3,39 7,08 65,52 128,38 Optimal 0,10 4,55

1 LATE 235 55,13 54,65 56,25 4,49 3,40 7,42 53,98 92,39 Optimal 2,14 1,60

1 LATE 296 49,37 49,30 50,41 3,98 3,47 5,09 48,91 32,42 Optimal 0,93 1,10

1 LATE 320 49,35 49,30 49,46 4,12 3,50 6,58 48,91 33,4 Optimal 0,90 0,16

1 LATE 388 49,37 49,30 50,21 4,29 3,52 5,36 48,91 89,02 Optimal 0,94 0,90

2 AIP 270 61,30 60,81 63,10 15,03 10,45 18,79 60,32 3600 54,25 1,62 2,30

2 AIP 261 61,82 60,81 65,87 15,02 10,40 22,80 60,06 3600 14,82 2,93 5,07

2 AIP 253 62,24 60,81 64,33 16,27 10,29 22,05 75,93 3600 98,16 -18,03 3,52

2 AIP 437 59,46 59,36 60,28 13,70 10,42 18,79 58,8 3600 21,79 1,12 0,92

2 AIP 398 59,46 59,36 60,29 14,20 10,56 21,67 58,8 3600 55,07 1,12 0,92

2 AIP 492 59,59 59,36 60,88 14,09 10,38 18,84 58,806 3600 0,27 1,33 1,52

1 BELT + 1 AIP 291 74,79 70,91 86,60 26,74 14,97 38,21 87,7 18000 97,78 -14,72 15,69

1 BELT + 1 AIP 267 84,67 78,92 95,17 29,19 14,80 48,46 100,74 18000 98,12 -15,95 16,25

1 BELT + 1 AIP 302 72,22 69,74 77,36 26,01 14,94 40,83 81,55 18000 59,54 -11,44 7,63

1 BELT + 1 AIP 610 71,36 69,71 78,18 26,75 15,01 38,63 67,52 18000 30,85 5,69 8,47

1 BELT + 1 AIP 546 70,55 69,71 75,70 28,68 17,79 48,91 67,52 18000 52,45 4,48 5,99

1 BELT + 1 AIP 709 71,11 69,71 73,64 28,81 17,54 39,85 67,52 18000 12,98 5,31 3,93

2 LATE 284 114,09 111,59 116,74 35,57 20,78 53,83 124,69 18000 99,75 -8,50 5,15

2 LATE 298 108,53 101,26 115,18 37,13 20,85 91,70 120,03 18000 99,52 -9,58 13,91

2 LATE 311 102,31 96,70 109,50 39,65 20,71 63,99 128,51 18000 99,62 -20,39 12,80

2 LATE 573 95,00 92,48 101,01 40,35 20,87 59,45 106,34 18000 98,89 -10,67 8,53

2 LATE 668 95,51 92,48 100,95 36,84 22,73 67,47 99,52 18000 99,28 -4,03 8,47

2 LATE 731 95,25 92,48 100,10 39,03 20,91 59,45 102,53 18000 98,81 -7,10 7,62

1 BELT + 1 LATE 289 111,87 104,73 116,52 36,32 20,65 63,36 139,59 18000 99,39 -19,86 11,79

1 BELT + 1 LATE 292 110,00 103,39 114,56 38,35 20,41 61,05 128,26 18000 99,79 -14,24 11,16

1 BELT + 1 LATE 303 105,21 99,13 112,14 35,43 22,11 52,20 NR 18000 N/A N/A 13,01

1 BELT + 1 LATE 589 94,96 92,84 97,69 36,73 20,73 56,98 106,35 18000 99,56 -10,71 4,85

1 BELT + 1 LATE 686 95,53 92,84 99,98 39,37 22,53 58,04 NR 18000 N/A N/A 7,14

1 BELT + 1 LATE 797 96,38 92,84 101,15 34,16 20,80 51,58 131,06 18000 99,75 -26,46 8,31

3 AIP 323 96,97 94,91 102,84 54,06 33,83 83,42 181,6 18000 99,89 -46,60 7,92

3 AIP 312 101,06 98,54 106,40 48,47 26,84 73,32 NR 18000 N/A N/A 7,86

3 AIP 307 100,77 98,56 103,32 57,74 34,01 82,41 138,73 18000 99,9 -27,36 4,75

3 AIP 752 92,69 91,44 94,46 53,17 27,10 72,25 109,44 18000 99,64 -15,31 3,02

3 AIP 644 92,89 91,44 95,17 48,99 34,48 72,03 112,84 18000 99,71 -17,68 3,74

3 AIP 689 93,07 91,44 95,63 52,82 29,58 74,24 110,56 18000 99,77 -15,82 4,19

2 AIP + 1 BELT 321 128,06 119,65 137,00 46,90 25,67 78,17 NR 18000 N/A N/A 17,35

2 AIP + 1 BELT 327 125,89 120,51 130,94 48,38 27,57 77,72 NR 18000 N/A N/A 10,43

2 AIP + 1 BELT 317 129,43 125,41 137,34 44,14 25,28 62,63 308,86 18000 99,96 -58,09 11,92

2 AIP + 1 BELT 682 111,95 108,02 116,64 48,90 25,73 72,18 253,63 18000 99,96 -55,86 8,62

2 AIP + 1 BELT 759 113,11 110,31 117,35 44,05 30,11 58,22 NR 18000 N/A N/A 7,04

2 AIP + 1 BELT 825 112,72 107,30 119,19 52,95 34,03 102,10 NR 18000 N/A N/A 11,89

2 BELT + 1 AIP 358 150,18 141,63 153,54 50,63 32,23 84,73 NR 18000 N/A N/A 11,91

2 BELT + 1 AIP 416 136,64 132,79 141,38 62,02 37,54 85,93 NR 18000 N/A N/A 8,59

2 BELT + 1 AIP 403 138,24 132,22 147,54 63,17 32,75 92,78 NR 18000 N/A N/A 15,32

2 BELT + 1 AIP 749 136,12 133,22 139,91 63,56 37,97 96,28 NR 18000 N/A N/A 6,68

2 BELT + 1 AIP 691 135,60 131,78 142,08 61,48 40,37 81,59 NR 18000 N/A N/A 10,30

2 BELT + 1 AIP 563 136,15 133,05 140,96 58,63 35,27 81,95 NR 18000 N/A N/A 7,91

2 LATE + 1 BELT 390 168,23 161,78 175,63 81,86 53,79 119,30 NR 18000 N/A N/A 13,85

2 LATE + 1 BELT 412 164,15 157,31 173,02 69,10 40,80 126,51 NR 18000 N/A N/A 15,72

2 LATE + 1 BELT 456 159,45 154,50 167,74 72,13 44,38 120,68 NR 18000 N/A N/A 13,24

2 LATE + 1 BELT 632 159,05 156,09 164,42 73,82 50,87 91,48 NR 18000 N/A N/A 8,33

2 LATE + 1 BELT 619 158,77 155,03 163,58 77,89 44,38 133,77 NR 18000 N/A N/A 8,55

2 LATE + 1 BELT 703 158,83 153,18 166,10 74,70 41,03 136,76 NR 18000 N/A N/A 12,92

851 4

GAP (%)

MSD 

Variability   

( R )

839 4

847 4

816 4

Sc0t01-10 329

Sc0t01-08 315

Sc0t01-09 323

Sc0t01-06 284 798 4

Sc0t01-07 304

Sc0t01-05 279 784 4

Sc0t01-04 262 728 4

Sc0t01-02 206 392 3

Sc0t01-03 250 504 4

ID test Order

Due-

Sc0t01-01 180 252

QLP

2

Due-date MJ

GA

  
NR= No result for the prescribed time     N/A= not applicable 
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For larger instances, the QLP ran for 5 hours and still did not find any good solutions or 

no solutions at all (e.g., instances Sc0t01-08 thru Sc0t01-10). The largest GA variability 

attained, reported for a 10-job order, was 14% around the average value.  

Computing cost:  Figure H-2 reports the computational burden of the two methods. For 

orders of 6 jobs or more, the QLP was stopped between 1 and 5 hours while the GA only 

needed just over 2 minutes to find a solution (i.e., for a 12-job order).  

 

The GA’s behavior:  Figure H-3 shows the GA’s behavior for the best MSD’ and the 

average MSD’ for a 6-job order and a 398-second due date. This figure shows the good and 

rapid convergence of the best MSD’ and the average MSD’. 

 

An additional advantage of our GA over the QLP is the calculation of release times. As 

shown in the Gantt diagrams in Figure H-4, although both methods obtained very similar 

results for this given case (gap of 0.8%), the GA released the jobs 120 seconds after the QLP 

did. This behavior was accomplished by the shifting process that the GA executes over the 

schedule, due to the unconstrained nature of this particular problem. To accomplish the same 

 

Figure H-3: Best MSD’ and average MSD’ for a client’s 6-job order 
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Figure H-2: Computing time for the first 18 cases (Sc0t01-01, 02 and 03) 
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behavior with the QLP it would be necessary to use a multi-objective function, integrating 

flow time minimization with the MSD function.  

 

a) GA solution       b) QLP solution 

Figure H-4: Gantt charts for the scenario Sc0t01-02: 1 “LATE” order with a 388-second due date. 

The encouraging results obtained with our GA validate our choices, especially regarding 

the chromosome encoding technique. Our technique guarantees the minimal chromosome 

length, which equals the number of jobs in the order. For instance, the 10-job problem (2 

LATE+1 BELT) has 96 operations. Our chromosome length remains at 10, whereas with an 

operation-based representation, the chromosome length would be increased up to 96 genes. 

Handling the genetic operators for that number of genes is much more complex, and the 

solution is more costly. 

b. Results and analysis from two benchmarks from the literature 

Though GA and QLP results cannot be compared with results reported by other authors 

(due to the objective function), two sets of problem instances taken from the FJSSP literature 

have been considered in order to compare the QLP and the GA proposed. The reason for 

executing such evaluation is that these problem instances provide more generality (partial and 

full flexibility), thus a larger search space:   

 Kacem instances: the three problem instances from Kacem et al., (2002): problem 8x8, 

problem 10x10 and problem 15x10 are used for comparison. The first problem has partial 

flexibility and a total of 27 operations. The second and third problems have full flexibility 

and a total of 30 and 56 operations respectively. 

 BR instances: the first ten instances proposed by Brandimarte, (1993), denoted mk1 to 

mk10 are selected for comparison. The number of jobs varies from 10 to 20, the number 

of machines from 6 to 15 and the number of operations from 58 to 232.  

For each problem instance, two due dates were tested in order to obtain one constrained 

and one unconstrained MSD problem. Results from the GA (mean of 10 independent trials) 
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were compared with those obtained with the QLP. For these tests, transport times, queue 

capacity and the maximum number of jobs were not considered as they are not taken into 

consideration by the benchmarks. Given the machine-sequence flexibility in these problem 

instances, a simple local search procedure focused on searching a better allocation for the last 

operation of each job was executed on the final solution given by the GA. Three random 

instances, of different size and with different data to those used for validation, were used for 

this purpose. The only parameter that required adjustment from the AIP cell was the 

population size (σ), which was increased from 10 (Appendix F) to 3000. This change is 

evident since the search space for these problem instances is larger than that of the AIP cell 

case. Table H-2 and Table H-3 show the results for Kacem’s instances, for the constrained 

and unconstrained problems, respectively. For these instances, results with local search 

(GA
+LS

) and without local search (GA
-LS

) are reported. The solution improvement obtained 

with the simple local search procedure ranged from 10 to 38%. 

  

            

In Table H-2 and Table H-3, instances marked with a star (*) represent those for which 

the QLP found the optimal solution. The very high gaps (>39%) for these particular problems 

do not mean that the GA performance was poor. The optimal solution is zero (or <1), so any 

small deviation results in a considerable gap. For instance, for the 8x8 problem, a deviation of 

one second for only one job, leads to a gap of 35%.  Table H-4 reports the results for the BR 

instances.  

In general terms, the GA
+LS 

exceeded the QLP for almost all the problems (negative gaps) 

and the QLP was unable to find an optimal solution for any of them. The QLP only reported 

better results than the GA
+LS

 for one problem: Mk1 with a due date set at 100s (gap=54%). 

For this case the completion time deviations between the GA and the QLP do not go over 2 

seconds. 

 

Table H-3: Results for Kacem's instances – Unconstrained problems 

Instance Due date 

(s) 

GA-LS GA+LS QLP Gap (GA+LS/QLP) 

(%) MSD’ CT(s) MSD’ CT(s) MSD’ CT(s) 

8 x 8* 100 1.14 74 0.70 78 0 74.68 N/A 

10 x 10* 100 0.95 101 0.79 117 0 26.65 N/A 

15 x 10 100 2.07 551 1.86 1.36 30.12 3600 -93 

 N/A: not applicable  

Table H-2: Results for Kacem's instances – Constrained problems 

Instance Due date 

(s) 

GA-LS GA+LS QLP Gap (GA+LS/QLP) 

(%) MSD’ CT(s) MSD’ CT(s) MSD’ CT(s) 

8 x 8 10 4.64 97 4.08 100 2.93 3600 39 

10 x 10* 10 0.69 197 0.51 206 0.22 3600 N/A 

15 x 10 10 7.58 430 6.11 454 N/S oom N/A 

N/A: not applicable   N/S: no solution found  oom: out of memory 
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H-II. Efficiency of the optimization module 

In this section we report the results obtained from the two connection types (i.e., also 

named hybrid approach) between the genetic algorithm and the ATC: the decoupled (denoted 

as SG-ATC) and the coupled coupling (IG-ATC) as presented in Zambrano Rey et al., 

(2014). We compared the two approaches against the quadratic linear program (QLP) to 

determine the gap with optimal results, the ATC with full exploration of machine sequences 

(detailed ATC, DATC) to determine the impact of the genetic algorithm in the searching 

process, and the pure version of the GA to determine the gain of introducing the ATC. 

The two hybrid approaches, the DATC and he GA were programmed in MatLab
®
, 

running on an Intel Pentium
®
D PC with a 3.40 GHz processor and 1 GB of RAM. The QLP 

was solved using IBM Cplex 12.2 Concert Technology, running on an Intel Dual-Core PC 

with a 1.73 GHz Processor and 2GB of RAM. Herein, results from simulations for static 

scenarios are reported.  All results are detailed in Table H-5. Figure H-5 depicts the tendency 

for an increasing number of jobs, by plotting the case of one particular due-date for each 

scenario “Sc0t01-0#” in Table H-5. MSD’ values are drawn in two figures depending on the 

type of MSD problem, constrained or unconstrained. The tables accompanying the figures 

present the scenario number, the number of jobs considered (which coincides with those in 

the horizontal axis of the figure) and the due date set for that particular instance. As with the 

GA, comparisons with optimal results (QLP) can be made for 3- and 4-jobs orders. Up to 9- 

and 10-job orders, the QLP had to be stopped and some heuristic solutions were found, but 

not for all cases. For orders with more than 10 jobs there are no solutions at all.  

Table H-4: Results for BR instances 

Inst. Constraint Problems Unconstraint Problems 

Due  

date  

(s) 

GA+LS QLP Gap 

(GA+LS,QL

P) (%) 

Due  

date  

(s) 

GA+LS QLP Gap 

(GA+LS/QLP) 

(%) 
MSD’ CT 

(s) 

MSD’ CT 

(s) 

MSD’ CT 

(s) 

MSD’ CT 

(s) 

Mk1 10 17.4 107 22.1 3600 -21 100 54 252 0.77 3600 54 

Mk2 10 10.6 153 113.5 3600 -90 100 -48 178 1.72 3600 -48 

Mk3 10 176.4 401 N/S oom N/A 300 N/A 639 N/S oom N/A 

Mk4 30 34.1 356 40.4 3600 -24 300 -6 656 3.43 3600 -6 

Mk5 40 93.9 585 180.7 3600 -48 350 -30 437 14.17 3600 -30 

Mk6 70 25.6 625 N/S oom N/A 350 N/A 300 N/S oom N/A 

Mk7 70 9.24 678 N/S oom N/A 500 N/A 1190 N/S oom N/A 

Mk8 100 116.8 718 244.9 3600 -60 500 -64 1065 34.82 3600 -64 

Mk9 100 200.3 849 N/S oom N/A 750 N/A 1643 N/S oom N/A 

Mk10 120 126.3 1118 N/S oom N/A 850 N/A 1070 N/S oom N/A 

N/A: not applicable   N/S: no solution found  oom: out of memory 
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The IG-ATC reports the lower gaps compared to the SG-ATC that behaves badly for 

the unconstrained MSD problems, reaching an 80% gap. This behavior is due to the lack of 

feedback between the ATC and the GA. The job sequence found by the GA is related with 

the machine sequence chosen, and since the ATC finds new job sequences, these do not 

match well the machine sequences proposed by the GA. By coupling the ATC with the GA, 

both algorithms achieve better results and display a more consistent behavior for the two 

kinds of problems. 

 Compared to the ATC with complete exploration (DATC) hybrid approaches reported 

similar results for some tests, meaning that the GA accomplishes well its machine-sequence 

screening process. For other cases, hybrid approaches proposed better solutions than the 

complete exploration, because the GA also explores the job sequence and the ATC is 

sensitive to the initial conditions.

  

  

Figure H-5: Some results from the static scenario. 
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Table H-5: Simulation results for static scenarios. 

min max

Avg. 

MSD'

Avg. 

Comp. 

Time (s) Avg. MSD'

Avg. Comp. 

Time (s) Avg. MSD'

Avg. Comp. 

Time (s) Avg. MSD'

Avg. Comp. 

Time (s)

MSD' Time % Exploration

1 AIP 194 59,54 1,83 59,47 1,25 59,52 1,91 60,26 4,96 59,47 2,49 Optimal 0,12 0,00 0,09 1,33

1 AIP 199 58,20 1,74 58,09 0,90 58,18 1,81 58,79 5,68 58,09 2,45 Optimal 0,19 0,00 0,14 1,20

1 AIP 181 64,86 1,73 64,74 0,89 64,79 1,84 65,48 5,52 64,74 3,38 Optimal 0,19 0,00 0,09 1,14

1 AIP 230 56,41 1,78 56,41 0,96 56,38 2,06 56,46 5,13 56,34 2,4 Optimal 0,13 0,13 0,08 0,22

1 AIP 251 56,41 1,75 56,64 1,24 58,63 1,95 56,77 5,97 56,34 2,47 Optimal 0,13 0,53 4,07 0,77

1 AIP 242 56,41 1,77 56,59 1,13 56,65 1,85 56,69 5,84 56,34 3,08 Optimal 0,13 0,45 0,55 0,62

1 LATE 223 59,19 4,45 69,36 3,95 59,60 4,83 62,23 11,01 58,56 47,13 Optimal 1,09 18,46 1,79 6,27

1 LATE 211 65,59 5,13 73,64 3,93 66,04 5,16 67,83 10,72 65,52 128,38 Optimal 0,10 12,39 0,80 3,52

1 LATE 235 55,13 4,49 66,99 3,88 55,38 4,95 56,32 10,17 53,98 92,39 Optimal 2,14 24,09 2,59 4,33

1 LATE 296 49,37 3,98 63,34 4,56 49,46 5,13 49,57 12,82 48,91 32,42 Optimal 0,93 29,50 1,12 1,35

1 LATE 320 49,35 4,12 63,34 5,11 51,36 4,43 49,52 14,66 48,91 33,4 Optimal 0,90 29,50 5,00 1,25

1 LATE 388 49,37 4,29 63,34 7,39 60,72 4,79 49,90 21,64 48,91 89,02 Optimal 0,94 29,50 24,15 2,03

2 AIP 270 61,30 15,03 60,81 47,45 61,73 16,54 62,29 40,34 60,32 3600 54,25 1,62 0,81 2,34 3,27

2 AIP 261 61,82 15,02 60,87 45,66 62,24 16,78 62,27 44,06 60,06 3600 14,82 2,93 1,34 3,63 3,67

2 AIP 253 62,24 16,27 60,81 45,58 62,01 16,34 62,39 44,72 75,93 3600 98,16 -18,03 -19,92 -18,34 -17,83

2 AIP 437 59,46 13,70 59,37 80,67 73,03 15,62 59,68 74,66 58,8 3600 21,79 1,12 0,97 24,21 1,50

2 AIP 398 59,46 14,20 59,37 70,27 72,28 17,54 59,88 60,20 58,8 3600 55,07 1,12 0,97 22,93 1,84

2 AIP 492 59,59 14,09 59,38 89,48 77,78 15,85 59,67 83,90 58,806 3600 0,27 1,33 0,97 32,27 1,47

1 BELT + 1 AIP 291 74,79 26,74 88,58 114,87 74,53 25,10 74,84 78,70 87,7 18000 97,78 -14,72 1,00 -15,01 -14,66

1 BELT + 1 AIP 267 84,67 29,19 93,14 117,78 83,95 27,45 86,06 71,16 100,74 18000 98,12 -15,95 -7,54 -16,66 -14,57

1 BELT + 1 AIP 302 72,22 26,01 87,41 114,28 72,47 29,00 73,38 76,00 81,55 18000 59,54 -11,44 7,19 -11,13 -10,01

1 BELT + 1 AIP 610 71,36 26,75 85,39 206,53 116,72 25,68 73,25 163,04 67,52 18000 30,85 5,69 26,46 72,87 8,49

1 BELT + 1 AIP 546 70,55 28,68 85,58 191,49 106,18 24,84 72,44 151,40 67,52 18000 52,45 4,48 26,74 57,26 7,28

1 BELT + 1 AIP 709 71,11 28,81 85,50 226,79 121,00 28,09 72,53 160,49 67,52 18000 12,98 5,31 26,63 79,20 7,42

2 LATE 284 114,09 35,57 115,68 581,41 114,63 33,95 117,55 82,93 124,69 18000 99,75 -8,50 -7,22 -8,07 -5,72

2 LATE 298 108,53 37,13 111,40 569,20 108,10 43,46 110,42 93,58 120,03 18000 99,52 -9,58 -7,19 -9,94 -8,01

2 LATE 311 102,31 39,65 108,89 567,52 103,12 40,39 105,33 92,19 128,51 18000 99,62 -20,39 -15,27 -19,76 -18,04

2 LATE 573 95,00 40,35 103,39 911,94 118,26 38,20 96,03 188,33 106,34 18000 98,89 -10,67 -2,78 11,21 -9,69

2 LATE 668 95,51 36,84 103,90 1028,31 136,89 34,14 97,37 188,44 99,52 18000 99,28 -4,03 4,40 37,55 -2,16

2 LATE 731 95,25 39,03 104,15 1103,26 147,39 37,79 96,50 214,36 102,53 18000 98,81 -7,10 1,58 43,76 -5,88

1 BELT + 1 LATE 289 111,87 36,32 114,03 401,69 113,01 32,40 114,35 89,72 139,59 18000 99,39 -19,86 -18,31 -19,04 -18,08

1 BELT + 1 LATE 292 110,00 38,35 113,22 397,07 110,71 33,38 113,01 97,77 128,26 18000 99,79 -14,24 -11,73 -13,68 -11,89

1 BELT + 1 LATE 303 105,21 35,43 110,87 382,02 106,73 32,02 109,41 98,03 NR 18000 N/A N/A N/A N/A N/A

1 BELT + 1 LATE 589 94,96 36,73 103,62 626,58 127,59 35,18 98,39 144,03 106,35 18000 99,56 -10,71 -2,57 19,98 -7,48

1 BELT + 1 LATE 686 95,53 39,37 103,90 699,86 151,36 33,33 98,30 174,35 NR 18000 N/A N/A N/A N/A N/A

1 BELT + 1 LATE 797 96,38 34,16 103,82 768,96 164,78 33,39 96,65 203,52 131,06 18000 99,75 -26,46 -20,79 25,73 -26,26

3 AIP 323 96,97 54,06 103,30 1270,66 97,41 56,65 99,87 142,06 181,6 18000 99,89 -46,60 -43,12 -46,36 -45,01

3 AIP 312 101,06 48,47 103,11 1280,32 100,90 50,79 102,83 125,57 NR 18000 N/A N/A N/A N/A N/A

3 AIP 307 100,77 57,74 103,34 1304,91 102,06 46,42 105,10 131,20 138,73 18000 99,9 -27,36 -25,51 -26,44 -24,24

3 AIP 752 92,69 53,17 101,84 2526,98 150,54 64,26 94,75 276,93 109,44 18000 99,64 -15,31 -6,95 37,55 -13,43

3 AIP 644 92,89 48,99 101,83 2265,69 133,17 63,17 94,37 247,36 112,84 18000 99,71 -17,68 -9,75 18,01 -16,37

3 AIP 689 93,07 52,82 101,93 2384,78 137,53 60,12 93,81 266,98 110,56 18000 99,77 -15,82 -7,80 24,39 -15,15

2 AIP + 1 BELT 321 128,06 46,90 132,01 2914,88 129,41 42,38 134,37 103,32 NR 18000 N/A N/A N/A N/A N/A

2 AIP + 1 BELT 327 125,89 48,38 130,90 2907,48 126,56 47,14 130,82 110,84 NR 18000 N/A N/A N/A N/A N/A

2 AIP + 1 BELT 317 129,43 44,14 132,89 2924,55 130,03 45,14 133,79 110,61 308,86 18000 99,96 -58,09 -56,97 -57,90 -56,68

2 AIP + 1 BELT 682 111,95 48,90 126,38 4844,60 154,37 47,03 114,16 217,12 253,63 18000 99,96 -55,86 -50,17 -39,14 -54,99

2 AIP + 1 BELT 759 113,11 44,05 126,19 5351,54 167,40 49,98 116,05 226,64 NR 18000 N/A N/A N/A N/A N/A

2 AIP + 1 BELT 825 112,72 52,95 126,16 5533,42 171,19 51,91 115,28 240,27 NR 18000 N/A N/A N/A N/A N/A

2 BELT + 1 AIP 358 150,18 50,63 156,26 6621,85 149,22 57,51 153,54 132,27 NR 18000 N/A N/A N/A N/A N/A

2 BELT + 1 AIP 416 136,64 62,02 146,40 6581,98 137,45 60,02 140,42 150,38 NR 18000 N/A N/A N/A N/A N/A

2 BELT + 1 AIP 403 138,24 63,17 147,54 6578,21 139,19 59,47 143,83 131,89 NR 18000 N/A N/A N/A N/A N/A

2 BELT + 1 AIP 749 136,12 63,56 146,70 10624,27 191,37 51,73 139,02 239,46 NR 18000 N/A N/A N/A N/A N/A

2 BELT + 1 AIP 691 135,60 61,48 145,60 9913,77 167,42 59,72 139,05 221,32 NR 18000 N/A N/A N/A N/A N/A

2 BELT + 1 AIP 563 136,15 58,63 145,91 8020,05 145,99 63,82 137,54 183,35 NR 18000 N/A N/A N/A N/A N/A

2 LATE + 1 BELT 390 168,23 81,86 174,82 18000,00 169,57 72,81 174,92 155,32 NR 18000 N/A N/A N/A N/A N/A

2 LATE + 1 BELT 412 164,15 69,10 171,40 18000,00 164,01 76,71 167,59 176,96 NR 18000 N/A N/A N/A N/A N/A

2 LATE + 1 BELT 456 159,45 72,13 174,82 18000,00 158,14 81,61 163,11 160,97 NR 18000 N/A N/A N/A N/A N/A

2 LATE + 1 BELT 632 159,05 73,82 167,86 18000,00 167,03 82,59 161,65 222,03 NR 18000 N/A N/A N/A N/A N/A

2 LATE + 1 BELT 619 158,77 77,89 168,8 18000,00 169,17 73,93 162,50 203,99 NR 18000 N/A N/A N/A N/A N/A

2 LATE + 1 BELT 703 158,83 74,70 166,79 18000,00 184,18 76,68 160,39 302,99 NR 18000 N/A N/A N/A N/A N/A

Due-date MJ

GA DATC SG-ATC

GAP (%) SG-

ATC

GAP (%) IG-

ATC

QLP

2

ID test Order

Due-

Sc0t01-01 180 252

Sc0t01-02 206 392 3

Sc0t01-03 250 504 4

Sc0t01-05 279 784 4

Sc0t01-04 262 728 4

Sc0t01-06 284 798 4

Sc0t01-07 304 816 4

Sc0t01-10 329

Sc0t01-08 315

Sc0t01-09 323

851 4

839 4

847 4

Unconstrained

IG-ATC

GAP(%) 

DATC

GAP (%) 

GA

Type MSD 

Problem

Unconstrained

Constrained

Unconstrained

Constrained

Unconstrained

Constrained

Unconstrained

Constrained

Constrained

Unconstrained

Constrained

Unconstrained

Constrained

Unconstrained

Constrained

Unconstrained

Constrained

Unconstrained

Constrained

 
NR= No result for the prescribed time     N/A= not applicable 
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Compared to the pure version of the GA, the IG-ATC behaves similarly for the common 

due date case. Indeed, the IG-ATC offers a more generic approach since it could also be used 

for non-common due date cases, for which the pure version of the GA is restricted. Figure H-

6 a. reports the computing cost for the constrained MSD case and 6 b. for the unconstrained 

ones.  

 

From these graphs we can see how the second phase of the SG-ATC does not add any 

major cost, since the values are similar to those of the pure GA. It is also evident the 

increasing computational cost of the full exploration approach and the QLP, as the problem 

becomes more complex. The DATC had to be stopped at 5 hours for the 12-job problem in 

the constrained case and at 11- and 12-job problems in the unconstrained case. Starting from 

7-job problems, the QLP was stopped at 5 hours, and sometimes after all this time it did not 

find a solution. The IG-ATC reports a similar behavior than the SG-ATC and the GA. 

Even though results favor the IG-ATC, simulation results of 6 cases are subjected to an 

analysis of variance (ANOVA) F-test procedure (Girden, 1991) to look for an statistical 

difference that supports the choice. The different algorithms are considered as factors and the 

MSD’ as the response variable. The assumptions of similar variances were examined and 

they hold true for all cases. Table H-6, Table H-7 and Table H-8 show the ANOVAs for 4-, 

7- and 9-job orders (constrained MSD); and Table H-9, Table H-10 and Table H-11 report the 

ANOVAs for the same orders but for the unconstrained MSD problem. Table H-12 shows the 

Tukey’s multiple comparison tests for the six cases. 

 

  

Figure H-6: Computing cost 
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Table H-6: Analysis of variance for a 4-job order (1 LATE) with due date at 211s 

Source Sum of Squares Df Mean Square F P

Between groups 159.9734 3 53.3245 2.87 0.041881

Within groups 1414.0908 76 18.6065

Total 1574.0642 79  

Table H-7: Analysis of variance for a 7-job order (1 BELT + 1 AIP) with due date at 267s. 

Source Sum of Squares Df Mean Square F P

Between groups 798.1175 3 266.0392 13.21 <.0001

Within groups 1530.0377 76 20.1321

Total 2328.1553 79  

Table H-8: Analysis of variance for a 9-job order (3 AIP) with due date at 307s. 

Source Sum of Squares Df Mean Square F P

Between groups 672.5915 3 224.1972 11.67 <.0001

Within groups 1459.4798 76 19.2037

Total 2132.0713 79  

Table H-9: Analysis of variance for a 4-job order (1 LATE) with due date at 388s. 

Source Sum of Squares Df Mean Square F P

Between groups 2970.8778 3 990.2926 31.06 <.0001

Within groups 2422.7709 76 31.8786

Total 5393.6488 79  

Table H-10: Analysis of variance for a 7-job order (1 BELT + 1 AIP) with due date at 709s. 

Source Sum of Squares Df Mean Square F P

Between groups 36032.9472 3 12010.9824 293.31 <.0001

Within groups 3112.1726 76 40.9496

Total 39145.1198 79  

Table H-11: Analysis of variance for a 9-job order (3 AIP) with due date at 644s. 

Source Sum of Squares Df Mean Square F P

Between groups 13351.5866 3 4450.5289 168.25 <.0001

Within groups 2010.2919 76 26.4512

Total 15361.8785 79  

Table H-12: Pair wise comparison by Tukey’s HSD Test. 

Methods 4-jobs 7-jobs 9-jobs 4-jobs 7-jobs 9-jobs

M1 vs M2 NS P<.01 P<.01 P<.01 P<.01 P<.01

M1 vs M3 NS P<.01 P<.01 NS NS P<.01

M1 vs M4 P<.05 P<.01 P<.01 P<.01 P<.01 P<.01

M2 vs M3 NS NS NS P<.01 P<.01 P<.01

M2 vs M4 NS NS NS NS NS NS

M3 vs M4 NS P<.05 NS P<.01 P<.01 P<.01

Constrained MSD Unconstrained MSD

 
M1=DATC M2=GA  M3=SG-ATC  M4=IG-ATC  NS=non significance 

 For all cases, there is a significant statistically difference between the means MSD’ 

values, with 95% confidence (p-value=0.041) for the case with a 4-job order and 99% for the 

other cases (p-value<0.0001). According to the Tukey’s pair wise comparison (Table H-12), 

the IG-ATC is statistically different from the DATC with complete exploration (for all cases) 
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and with the SG-ATC just for the unconstrained MSD cases. In all cases, the IG-ATC offers a 

better performance than the two other approaches. Concerning the GA, there is no significant 

statistical difference with the IG-ATC for any case.  

 As a conclusion from these tests, we chose the IG-ATC approach as the most suitable 

for the global decisional entity, better responding to different due date problems and ensuring 

an excellent performance, compared to the other four approaches. However, further ANOVA 

tests could be executed to determine the impact of larger instances, and other flexibility 

degrees. 

H-III. Results from the static simulation study 

In this section, results from the simulation study described in Section V-4 are reported in 

Table H-13. CTV values reported in this table are mean values out of 10 independent trials. 

The only design point that generated an issue was |R’=3|, with FAM policy (FHFMS) and 

|P|=28. For this case, a lot of products travel in the inner loop close to machines m2, m3 and 

m4 until they all get stuck and no shuttle can move. This situation is overcome with |R’=4| 

because products are attracted to the other side of the AIP cell, then the inner loop close to 

machines m2, m3 and m4 is not overcrowded.   

An additional conclusion that can be withdrawn from these data is the small gap between 

the purely heterarchical approach (FHFMS) and Instance A when the number of products 

gets over 24. Thus, when the FMS becomes saturated, dealing with myopic behavior is not 

worthy. However, as seen in these results, setting up a threshold is not an easy tasks because 

saturation not only dependant on the FMS capacity but also on the local decision-making 

algorithm, the machine-sequence flexibility and possibly on the product mixture. This latter 

hypothesis needs to be evaluated. Last, though the increasing computing cost makes 

necessary a more thorough study to determine the applicability of the global decisional level, 

based on these results, we can conclude that it is still worthy to deal with both types of 

myopic decisions, i.e., release sequence and machine allocation, even for a large number of 

products. 
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Table H-13: Result from simulation study 

|R'| FHFMS |P| CTV
Computing 

Cost (s)
CTV

Computing 

Cost (s)
CTV

Computing 

Cost (s)
Gap (%) CTV

Computing 

Cost (s)
Gap (%) CTV

Computing 

Cost (s)

Gap (%) 

with  

Instance 0

Gap (%) 

with  

Instance A

4 1667 3 1653 3 917 10 45 225 19,4 86 125 25 93 86

8 6892 4 9738 4 6091 19 12 1411 35 86 1268 50 82 79

16 44978 6 46931 6 42255 51 6 9041 40 81 8350 141 81 80

24 82293 9 105424 10 77698 101 6 19891 85 81 12973 375 84 83

28 111018 12 140695 13 107550 94 3 27444 114 80 26136 476 76 76

4 1885 3 1744 3 917 8 51 225 19,4 87 125 25 93 86

8 10097 4 9730 4 7216 27 29 1411 35 85 1268 50 87 82

16 52574 6 43532 6 39626 60 25 9041 40 79 8350 141 84 79

24 96858 10 114330 10 78121 124 19 19891 85 83 12973 375 87 83

28 120967 12 N/S N/A 120967 154 0 27444 114 N/A 26136 476 78 78

4 4831 3 4873 3 1318 12 73 163 20,1 97 125 25 97 91

8 7492 4 6106 4 2637 14 65 573 25 91 620 49 92 77

16 23158 6 25385 7 16362 39 29 3082 40 88 3285 160 86 80

24 42886 8 60603 9 34801 79 19 8091 77 87 5918 402 86 83

28 60700 9 95916 11 48197 125 21 9976 103 90 16728 434 72 65

4 2914 3 1367 3 1081 10 63 163 20,1 88 125 25 96 88

8 7810 4 5408 4 2978 14 62 573 25 89 620 49 92 79

16 24187 6 47678 7 18291 41 24 3082 40 94 3285 160 86 82

24 46939 7 93271 9 38186 92 19 8091 77 91 5918 402 87 85

28 64022 10 104263 11 50922 162 20 9976 103 90 16728 434 74 67

Instance CInstance BInstance A

3

4

PFA

FAM

PFA

FAM

FHFMS 

Product Mixture

FHFMS

Single Type Product
Factos and Leves

N/A: not applicable 
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Résumé 

Introduction. Les systèmes manufacturiers doivent faire face à la globalisation des 

marchés, la personnalisation des produits, les exigences élevées des clients, la volatilité du 

marché et les cycles de vie des produits sans cesse réduits. Dans les dernières décennies, les 

avancées technologiques ont permis aux systèmes manufacturiers classiques d'évoluer vers 

des systèmes manufacturiers plus flexibles (FMS en anglais, Flexible Manufacturing 

Systems). Ces systèmes sont capables de s'adapter rapidement aux changements, aux tailles 

réduites de lots et à une grande variété de produits. Afin de contrôler ces systèmes flexibles, 

de nouvelles architectures, paradigmes, stratégies et algorithmes de contrôle ont vu le jour. 

Ceux-ci préconisent l'hétérarchie au lieu de la hiérarchie basée sur un contrôle local, peu 

complexe et hautement réactif supporté localement par des entités décisionnelles. Cependant, 

en dépit d'avancées prometteuses, de nouveaux problèmes ont aussi émergé (e.x, la 

prévisibilité, les coûts d'implémentation, les technologies et les normes) notamment celui lié 

à la garantie d'une performance opérationnelle minimale, et cela principalement à cause du 

comportement myope des entités décisionnelles locales. Même si ce comportement a été 

reconnu par certains chercheurs comme une barrière importante pour l'adoption du contrôle 

hétérarchique des FMS, jusqu'à maintenant ce comportement reste encore peu étudié. 

Cette thèse se concentre sur le comportement myope des entités décisionnelles constituant 

les architectures de contrôle et plus particulièrement sur les approches permettant de réduire 

ce comportement. Les approches de contrôle hétérarchique des FMS existants se concentrent 

actuellement sur l'amélioration de la performance globale mais ne traitent pas explicitement 

le problème de myopie. En conséquence, ces approches deviennent plus complexes en 

entraînant la perte de certaines caractéristiques de l'hétérarchie telles que la réactivité, la 

tolérance aux perturbations et l'adaptabilité. Cette thèse est organisée en 5 chapitres. 

Chapitre 1. Ce chapitre présente les définitions importantes du contrôle des systèmes 

manufacturiers, les FMS, ainsi que les algorithmes et les architectures de contrôle existants 

(centralisés, entièrement hiérarchiques, entièrement hétérarchiques et semi-hétérarchiques) 

qui peuvent être utilisés pour le contrôle des FMS. Pour d'étudier le comportement myope, 

une étude de la littérature a été réalisée dans des domaines autres que celui du contrôle des 

FMS afin de trouver des caractéristiques communes au niveau de la prise de décision. Le 

comportement myope résulte de la visibilité réduite que chaque entité décisionnelle locale a 

sur l'états actuel et futur du FMS. Cette visibilité réduite est la conséquence de la priorité 

donnée par les entités décisionnelles à leurs objectifs locaux plutôt qu'aux objectifs globaux. 

Deux dimensions de ce comportement myope ont aussi été identifiées : sociale et temporelle. 
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La dimension sociale traduit une capacité limitée soit à récupérer des donnée globales 

(notamment auprès des autres entités), soit à traiter correctement ces données lors de la prise 

de décision. La dimension temporelle peut être définie d'une part comme un temps limité 

pour la rechercher de solutions alternatives et d'autre part comme une capacité limitée à se 

projeter dans le futur et évaluer les conséquences à long terme des décisions de court terme. 

En plus d'être une barrière pour l'adoption industrielle du contrôle hétérarchique, ce 

comportement provoque d'autres effets indésirables comme la nervosité du système, le 

manque de prévisibilité et la perte de performance.  Pour faire face à ce comportement 

myope, l'efficacité de la prise de décision au niveau local doit être renforcée, soit en utilisant 

des algorithmes de contrôle plus complexes, soit en intégrant des techniques supplémentaires 

aux algorithmes de prise de décision locale. La première possibilité est réalisable, par 

exemple, en utilisant des méthodes d'énumération ou en utilisant un historique des données 

pour mieux modéliser le système. La seconde possibilité peut être réalisée principalement en 

ajoutant des techniques de simulation/optimisation. Etant donné le spectre important des 

possibilités dans cette seconde voie, dans cette thèse nous avons choisi l'utilisation de 

l'optimisation et de la simulation pour faire face au comportement myope dans le contrôle des 

FMS basé sur l'hétérarchie. 

Chapitre 2. Ce chapitre est consacré à une revue de l'état de l'art sur la réduction du 

comportement myope. Plusieurs approches ont été examinées et classées selon le type 

d'architecture de contrôle, entièrement hétérarchique (FHFMS: Full Heterarchical FMS 

control) ou semi-hétérarchique (SHFMS: Semi-Heterarchical FMS control) d’une part et la 

technique utilisée pour réduire ce comportement myope, l'optimisation, la simulation ou 

l'optimisation basée sur la simulation d’autre part. Suite à cette analyse de la littérature, une 

typologie générale pour la réduction du comportement myope a été réalisée. D'une manière 

générale, l'introduction de techniques simulation/optimisation (S/O) dans les FHFMS peut 

être réalisée dans le but de mieux évaluer les décisions locales, renforcer la coopération ou 

améliorer l'échange d'informations entre les entités décisionnelles. Cependant, l'architecture 

résultante peut nécessiter un coût plus élevé en communication et en traitement de 

l'information. La performance globale du système est alors améliorée par rapport aux 

approches de base, sans qu'on puisse le garantir. De plus, les techniques de S/O dans les 

SHFMS ont été principalement introduites avec cinq rôles différents : la « résolution», 

l'« évaluation », la « sélection », le « réglage » et l'« influence ». Les techniques S/O sont 

intégrées dans une entité décisionnelle globale qui, selon le rôle S/O, intervient directement 

ou indirectement dans le processus décisionnel des entités locales subordonnées. De cette 

analyse de l'état de l'art, une liste des exigences a été proposée à la fin de ce chapitre. 

L'objectif est de trouver un équilibre entre la réduction du comportement myope et la 

préservation des caractéristiques importantes des architectures hétérarchiques.  
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Chapitre 3. A partir de la typologie générale proposée pour la réduction du 

comportement myope, une approche de contrôle semi-hétérarchique des FMS pour réduire le 

comportement myope en intégrant des techniques d'optimisation basées sur la simulation est 

décrite dans ce chapitre. L'architecture proposée est basée sur deux niveaux décisionnels, un 

niveau global et un niveau local, dans lesquels résident des entités décisionnelles globales et 

locales. Chaque entité décisionnelle globale (GDE) se concentre sur un objectif global et peut 

gérer un ensemble d'entités décisionnelles locales (LDE). Si plusieurs GDE existent, des 

relations hétérarchiques sont établies entre elles. A l'intérieur d'une GDE, une boucle 

d'optimisation basée sur la simulation est implantée. Le problème de contrôle d'un FMS est 

alors découpé en plusieurs sous-problèmes de contrôle et pour chaque sous-problème une 

technique d'optimisation est configurée. Les techniques d'optimisation explorent l'espace de 

recherche de chaque sous-problème et le modèle de simulation permet d'évaluer l'efficacité 

de ces solutions par rapport à la fonction objectif globale. Une des principales nouveautés de 

cette approche est que l'entité globale se concentre uniquement sur les sous- problèmes de 

contrôle qui ont le plus d'impact sur la performance globale. Par conséquent, il est possible 

d'accepter le comportement myope dans le cadre de la stratégie de contrôle, car il permet des 

réponses rapides. Une autre nouveauté est la proposition de trois modes d'interaction entre les 

entités décisionnelles globales et locales : coercitif, limitatif et directif. Ces modes sont 

définis sur la base du rôle de la GDE et le degré d'autonomie souhaité pour le niveau local. La 

stratégie de contrôle dans des conditions normales et anormales est également décrite, ainsi 

que le processus pour générer une instance de l'approche proposée. 

Chapitre 4. Ce chapitre décrit une instance de l'approche proposée dans le chapitre 

précédent. Tout d'abord, le problème du contrôle d'un FMS, ses paramètres, hypothèses et 

contraintes prises en compte sont décrits. Le problème de contrôle d'un FMS est divisé en 

plusieurs sous-problèmes : la séquence d'entrée des produits dans le FMS, l'allocation des 

tâches, le routage des produits et la séquence des produits sur chaque machine. Dans cette 

instance, une entité décisionnelle globale (pGDE) et deux types d'entités décisionnelles 

locales sont proposées: une entité machine ( mLDE ) et une entité véhicule (vLDEs). Le 

niveau global se concentre uniquement sur la réduction des décisions myopes des vLDEs. 

Dans le niveau global, la pGDE est dotée d'un algorithme génétique en charge de 

l'exploration du sous-problème d'allocation des tâches et d'un algorithme basé sur la théorie 

du contrôle pour la séquence d'entrée. Les deux algorithmes sont couplés et un modèle de 

simulation à base d'agents est utilisé pour évaluer les solutions proposées par les techniques 

d'optimisation. Dans le niveau local, les vLDEs sont dotées d'une technique basée sur les 

champs de potentiel pour réaliser l'allocation des tâches et le routage des produits. Les 

mLDEs utilisent une règle myope de priorité (premier entré-premier sorti) pour gérer la 

séquence des produits dans la file d'attente de chaque machine. Le mode d'interaction 

coercitif est utilisé pour intégrer les décisions de la pGDE dans le module de contrôle des 
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vLDEs. Par conséquent, la stratégie de contrôle dépend du type de perturbation. Les 

perturbations liées au routage des produits et la séquence des produits dans la file d'attente 

sont traitées localement par les vLDEs et mLDEs, tandis que les perturbations liées à 

l'allocation des tâches et la séquences d'entrée des produits sont traitées au niveau global. 

Chapitre 5. L'instance décrite dans le chapitre précédent a été mise en œuvre et 

implémenté pour contrôler une cellule flexible d'assemblage afin d'évaluer l'approche 

proposée. Dans un premier temps, les données expérimentales sont détaillées puis la mise en 

œuvre de chaque entité décisionnelle est décrite. L'évaluation de l'approche proposée a été 

réalisée sur la base d'une étude en simulation, puis avec des expérimentations réelles sur la 

cellule flexible de l'AIP-PRIMECA de l’université de Valenciennes. L'étude en simulation a 

été réalisée pour divers scénarios statiques et dynamiques, en tenant compte de deux 

fonctions objectives : la variance du temps d'achèvement (CTV) et l’écart quadratique moyen 

autour d'une date d'échéance (MSD). Trois configurations différentes de l'entité décisionnelle 

globale ont été évaluées tout d’abord afin de déterminer l'applicabilité de notre approche 

lorsqu'il s'agit de différents types de décisions myopes. Dans tous les cas, le niveau global a 

permis d'atteindre une amélioration significative de la performance globale par rapport au 

scénario où il n’existait que le niveau local. Puis une étude en simulation avec des scenarios 

dynamiques, dans laquelle une tâche de maintenance curative affecte l'une des machines 

redondantes, a été réalisée. Les résultats ont montré que la performance globale peut être 

améliorée en ajoutant un niveau global, sans pour autant perdre en réactivité. Des 

expérimentations réelles sont été réalisées sur la cellule AIP-PRIMECA. Pour ces 

expérimentations, certains cas déjà évalués dans l'étude de simulation avec des scenarios 

dynamiques ont été réalisées et des résultats prometteurs ont été obtenus. 

Conclusions et travaux futurs. Jusqu'à maintenant, la plupart des travaux concernant le 

contrôle hétérarchique des FMS ont porté sur l'amélioration de la performance globale en, 

traitant implicitement le comportement myope. Notre travail s’est focalisé sur une autre 

alternative dans laquelle un niveau global, dans une architecture semi- hétérarchique, est 

configuré pour traiter explicitement le comportement myope résultant de décisions de 

contrôle locales. Dans l'architecture semi-hétérarchique proposée, le niveau décisionnel local 

assure une certaine réactivité aux perturbations alors que le niveau décisionnel global se 

concentre sur la réduction du comportement myope et de son impact sur la performance 

globale. Par rapport à d'autres approches semi-hétérarchiques, notre approche a suivi une 

méthodologie plus granulaire dans laquelle le niveau décisionnel global permet une 

configuration flexible et modulaire pour faire face au comportement myope du niveau local. 

Par conséquent, le comportement myope peut être réduit en totalité ou en partie en fonction 

du nombre de sous-problèmes de contrôle pour lesquels le niveau de décision global est 

configuré. 
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Basé sur les exigences présentées dans le deuxième chapitre et le retour d'expérience de 

ces évaluations (en simulation et en réel) de l'architecture proposée, des perspectives de 

recherche pour le court, moyen et long terme ont pu être identifiées. Etant donné que 

l'approche proposée a montré des résultats prometteurs, l'étape suivante à court terme pourrait 

être de rendre l'ensemble de l'architecture plus dynamique et adaptatif, en présence de 

perturbations internes et externes. Principalement, une reconfiguration dynamique du module 

d'optimisation peut être mise en œuvre en fonction du type de perturbation et la criticité de 

celle-ci. Pour aller plus loin sur le comportement myope, une orientation vers le contrôle de 

la myopie peut être envisagée. Une étude détaillée du comportement myope au niveau 

décisionnel local, utilisant des modèles mathématiques, pourrait être faite afin de le mesurer 

et de le contrôler. Un aspect important qui est souvent négligé dans le contrôle des FMS est 

l'interaction humaine avec les entités décisionnelles artificielles. Par conséquent, une autre 

perspective à court et moyen terme est l'intégration d’entités humaines dans les niveaux 

globaux et locaux. Finalement, à long terme, notre approche doit aussi être évalué dans 

d'autres contextes, par exemple, dans le domaine hospitalier, les chaînes 

d'approvisionnement, la gestion des transports. 
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Réduction du Comportement Myope dans le contrôle des FMS : Une Approche Semi-

Hétérarchique basée sur la Simulation-Optimisation 

Résumé 

Le contrôle hétérarchique des systèmes de production flexibles (FMS) préconise un contrôle 

peu complexe et hautement réactif supporté par des entités décisionnelles locales (DEs). En dépit 

d'avancées prometteuses, ces architectures présentent un comportement myope car les DEs ont une 

visibilité informationnelle limitée sue les autres DEs, ce qui rend difficile la garantie d'une 

performance globale minimum.  Cette thèse se concentre sur les approches permettant de réduire cette 

myopie. D'abord, une définition et une typologie de cette myopie dans les FMS sont proposées. 

Ensuite, nous proposons de traiter explicitement le comportement myope avec une architecture semi-

hétérarchique. Dans celle-ci, une entité décisionnelle globale (GDE) traite différents types de 

décisions myopes à l'aide des différentes techniques d'optimisation basée sur la simulation (SbO). De 

plus, les SbO peuvent adopter plusieurs rôles, permettant de réduire le comportement myope de 

plusieurs façons. Il est également possible d'avoir plusieurs niveaux d'autonomie en appliquant 

différents modes d'interaction. Ainsi, notre approche accepte des configurations dans lesquelles 

certains comportements myopes sont réduits et d'autres sont acceptés. Notre approche a été instanciée 

pour contrôler la cellule flexible AIP- PRIMECA de l'Université de Valenciennes. Les résultats des 

simulations ont montré que l'architecture proposée peut réduire les comportements myopes en 

établissant un équilibre entre la réactivité et la performance globale. Des expérimentations réelles ont 

été réalisées sur la cellule AIP-PRIMECA pour des scenarios dynamiques et des résultats prometteurs 

ont été obtenus. 

MOTS CLES : Pilotage Semi-Hétérarchique, Myopie, Réactivité, Performance Globale, 

Simulation, Optimisation, FMS  

 

Reducing Myopic Behavior in FMS Control: A Semi-Heterarchical Simulation-

Optimization Approach 

Abstract 

Heterarchical-based control for flexible manufacturing systems (FMS) localizes control 

capabilities in decisional entities (DE), resulting in highly reactive and low complex control 

architectures. However, these architectures present myopic behavior since DEs have limited visibility 

of other DEs and their behavior, making difficult to ensure certain global performance. This 

dissertation focuses on reducing myopic behavior. At first, a definition and a typology of myopic 

behavior in FMS is proposed. In this thesis, myopic behavior is dealt explicitly so global performance 

can be improved. Thus, we propose a semi-heterarchical architecture in which a global decisional 

entity (GDE) deals with different kinds of myopic decisions using simulation-based optimization 

(SbOs). Different optimization techniques can be used so myopic decisions can be dealt individually, 

favoring GDE modularity. Then, the SbOs can adopt different roles, being possible to reduce myopic 

behavior in different ways. More, it is also possible to grant local decisional entities with different 

autonomy levels by applying different interaction modes. In order to balance reactivity and global 

performance, our approach accepts configurations in which some myopic behaviors are reduced and 

others are accepted. Our approach was instantiated to control the assembly cell at Valenciennes AIP-

PRIMECA center. Simulation results showed that the proposed architecture reduces myopic behavior 

whereby it strikes a balance between reactivity and global performance. The real implementation on 

the assembly cell verified the effectiveness of our approach under realistic dynamic scenarios, and 

promising results were obtained. 

 

Keywords: heterarchy, myopic behavior, simulation-based optimization, FMS, reactivity, global 

performance 

 


