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pour des applications aux systèmes d’injection de neutres
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To Guillaume

“Oui, mes amis, je crois que l’eau sera un jour employée comme

combustible, que l’hydrogène et l’oxygène, qui la constituent,

utilisés isolément ou simultanément, fourniront une source de

chaleur et de lumière inépuisables et d’une intensité que la

houille ne saurait avoir.”

Jules Verne - L’̂ıle mystérieuse

“Yes, my friends, I believe that water will one day be employed

as fuel, that hydrogen and oxygen which constitute it, used singly

or together, will furnish an inexhaustible source of heat and light,

of an intensity of which coal is not capable.”

Jules Verne - The mysterious island
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Abstract

This work is part of a larger project called SIPHORE (SIngle gap PHOtoneutralizer energy

RE-covery injector), which aims to enhance the overall efficiency of one of the mechanisms

through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection

(NBI) system. An important component of a NBI system is the neutralizer of high energetic

ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI

systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot

cavities. This mechanism should allow a relevant NBI global efficiency of η > 60%, significantly

higher than the one currently possible (η < 25% for ITER).

The present work concerns the feasibility study of an optical cavity with suitable properties

for applications in NBI systems. Within this context, the issue of the determination of an ap-

propriated optical cavity design has been firstly considered and the theoretical and experimental

analysis of a particular optical resonator has been carried on. The problems associated with the

high levels of intra-cavity optical power (∼3 MW) required for an adequate photo-neutralization

rate have then been faced. In this respect, we addressed both the problem of the thermal effects

on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one

associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical

resonator.

Keywords: nuclear fusion, neutral beam injection, photodetachment of atomic negative ions,

high power optical cavity, laser optical systems: design and operation, thermoelastic deforma-

tion.

PACs: 28.52.-s, 52.50.Gj, 32.80Gc, 42.60-v, 34.50.-s
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Resumé détaillé

Contexte du travail du doctorat

Depuis ces dernières décennies, la demande énergétique a crucialement augmenté à travers le

monde et elle devrait s’intensifier dans un proche avenir. En conséquence, notre besoin de

moyens plus sûrs pour produire de l’ énergie à grande échelle est de plus en plus pressant. Dans

ce contexte, plusieurs projets ont été développés afin de réaliser de la fusion nucléaire contrlée sur

Terre. En effet, la chaleur produite par les réactions de fusion nucléaire peut être utilisée pour

alimenter les centrales électriques. La raison pour l’utilisation de ces réactions comme source

d’énergie pour générer de électricité est basée sur le fait que ces réactions peuvent produire un

haut niveau d’énergie en toute sécurité. En particulier, dans les mêmes conditions de poids du

carburant, les réactions de fusion fourniraient plus d’énergie que n’importe quelle autre source

d’énergie consommatrice de carburant actuellement utilisée dans les centrales électriques. Par

exemple, la consommation annuelle de carburant pour produire 1000 MW d’électricité, en une

seule centrale électrique de taille typique, est d’environ 2.7 ×106 tonnes de charbon, 1.9 ×106

tonnes de pétrole, 28 tonnes de UO2 pour la fission, et 100 kg de deutérium et de 150 kg de

tritium pour la fusion [1].

Actuellement, le principal programme de recherche sur la fusion nucléaire est ITER (Inter-

national Thermonuclear Experimental Reactor), projet international lancé en Novembre 1985.

La construction du réacteur de fusion nucléaire ITER est en cours à Cadarache, dans le sud de

la France. Les réacteurs de fusion nucléaire sont des machines où les conditions de la matière

pour obtenir des réactions de fusion nucléaire sont atteintes. En particulier, dans un réacteur

de fusion, la matière est présente à l’état de plasma, et elle doit avoir une température élevée

(1.5×108 K). Par conséquent, à des fins de fusion, une question cruciale concerne les mécanismes

de chauffage du plasma. À cet égard, notons que, dans la chambre à plasma d’un réacteur de

fusion, appelée Tokamak, le plasma est chauffé par la puissance ohmique, P = I2R, qui est la

combinaison du courant circulant dans le plasma et sa résistance électrique du plasma. Puisque
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ce processus n’ est pas efficace pour des températures de plasma supérieures à T> 2keV, deux

mécanismes de chauffage supplémentaires sont présents: chauffage par Radio-fréquence (RF)

et injection de neutres (IDN). Le chauffage par Radio-fréquence est un système impliquant des

micro-ondes de haute puissance injectées dans le plasma, qui transfèrent leur énergie aux par-

ticules du plasma par des interactions de résonance. Le système IDN concerne l’injection d’un

faisceau à haute énergie d’atomes neutres (par exemple deutérium) dans le coeur du plasma de

fusion, dont l’énergie est finalement transférée aux particules du plasma, par le biais de collisions.

Le système IDN est le seul mécanisme de chauffage placé loin de l’environnement du plasma.

Cela le rend particulièrement attrayant pour l’amélioration de son efficacité globale, η, définie

comme le rapport entre la puissance neutre à l’entrée du Tokamak et la puissance électrique

totale consommée pour la produire. Dans le cas général, les composants d’un système IDN sont

les suivants: une source d’ions qui génère un plasma froid de deutérium (T ∼ 2eV, n ∼ 1018

m3); un accélérateur électrostatique pour accélérer les ions extraits à haute énergie (1 MeV pour

ITER); un système pour neutraliser les ions de haute énergie; un système pour se débarrasser

des ions restants, laissant le faisceau neutre continuer vers le Tokamak. La construction du

réacteur expérimental de fusion nucléaire ITER a soulevé la question de la prochaine étape vers

une centrale réelle de fusion, DEMO, qui devrait être le premier réacteur de fusion avec produc-

tion d’électricité. L’un des principaux objectifs de DEMO est la démonstration de la production

d’électricité avec l’approvisionnement auto-suffisante de combustible à un coût modéré. À cet

égard, une amélioration du rendement global du réacteur à fusion nucléaire DEMO est nécessaire

par rapport à celui du réacteur ITER. Des études de Recherche et développement (R&D) sur

DEMO ont déjà commencé.

Mon travail de doctorat fait partie d’un projet plus large appelé Siphore (SIngle gap PHO-

toneutralizer energy RE-covery injector), qui est basé sur des collaborations entre le CEA

(Commissariatà l’Énergie Atomique) et plusieurs universités françaises. Le but de Siphore

est de démontrer la faisabilité d’un système IDN basé sur l’application de cavités de Fabry-

Pérot (3MW de puissance lumineuse par cavité) pour la photo-neutralisation d’un faisceau

de D− très énergétique, envoyé par la suite au plasma. Le photo-détachement, qui remplace

le système neutralisant à cellule de gaz de ITER, devrait permettre la mise en œuvre d’un

système de récupération d’énergie et d’atteindre une efficacité globale pour DEMO de η > 60%,

nettement plus élevée que celui d’ITER (inférieure à 25%). En particulier, j’ai modélisé une

cavité optique avec des propriétés appropriées pour les applications aux systèmes IDN pour la

prochaine génération de réacteurs de fusion nucléaire, qui pourrait aussi résoudre des possibles
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problèmes d’encombrement. De plus, après avoir réalisé la cavité dans notre laboratoire, j’ai

testé expérimentalement la conception de cette cavité. Jusqu’à présent, le problème principal

pour la mise en œuvre du principe de la photo-neutralisation de Siphore semble être l’absorption

de la puissance optique intra-cavité par les revêtements de miroir. En effet, cela provoque un

gradient de température important, avec des déformations conséquentes des surfaces des miroirs.

D’une part, les rayons de courbure des miroirs peuvent changer (par exemple, un miroir plat

peut assumer un rayon de courbure de plusieurs milliers de mètres) conduisant à des modi-

fications du mode résonant à l’intérieur de la cavité et à des problèmes de stabilité; d’autre

part, les écarts de la surface des miroirs d’un profil exactement sphérique génèrent des pertes de

diffusion (quelques milliers de ppm). En conséquence, la puissance intra-cavité accessible pour

une puissance d’entrée donnée est réduite. À cet égard, dans la deuxième partie de la thèse,

nous avons analysé plusieurs systèmes de compensation des effets thermiques, afin de corriger

les déformations des surfaces réfléchissantes des miroirs de la cavité.

En outre, des études de faisabilité du processus de la photo-neutralisation pour les systèmes

IDN montrent que la cavité optique utilisée pour la neutralisation du faisceau de D− doit être

alimentée par un faisceau laser d’entrée de haute puissance (environ 1kW). En ce qui concerne

cet aspect, la dernière partie de la thèse est dédiée à la description des tests expérimentaux que

nous avons effectués sur un nouveau concept des fibres optiques LMA (Large Mode Area), ap-

pelées fibres Leaky LMA, qui ont été développées pour permettre le fonctionnement monomode,

sans augmentation des effets non linéaires. En effet, ces fibres doivent être particulièrement ap-

propriées comme amplificateurs laser. Par conséquence, elles pourraient, en principe, permettre

la réalisation de faisceaux laser à haute puissance, tel que celui nécessaire à l’entrée de la cavité

optique appliqué pour les systèmes IDN.

Proposition d’une cavité optique pour les applications aux systèmes IDN

Des études récentes sur la faisabilité de la photo-neutralisation dans des systèmes IDN montrent

que le compromis optimal entre la finesse de la cavité optique, la puissance laser d’entrée et la

nécessité d’une faible charge thermique sur les miroirs de la cavité est donné par une cavité repliée

quatre fois avec une taille de faisceau laser intra-cavité de 1 cm, tandis que le faisceau d’ions

aura une largeur de 3 cm. En outre, la cavité doit être stable pour permettre la focalisation

du faisceau intra-cavité. De plus, elle doit être stable à des petites perturbations du mode

laser injecté dans la cavité et de lalignement des miroir, afin d’être moins sensible aux effets

thermiques. On observe que pour garantir le chevauchement complet entre le faisceau laser et
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le faisceau d’ions, les variations de la section du faisceau de photons intra-cavitaire doivent être

aussi petites que possible. De plus, les composants optiques de la cavité doivent être protégés

des régions polluées de l’environnement des systèmes IDN, où des radiations (rayons X durs,

neutrons), des vibrations mécaniques et le sputtering plasma-gaz peuvent réduire leur durée de

vie. Une cavité optique stable, de 100 m de long, semble être en mesure d’accueillir toutes les

exigences [35] mentionnées. Néanmoins, il a été souligné qu’en raison de la longueur de la cavité il

pourrait y avoir des problèmes d’encombrement pour les applications aux systèmes IDN. Ainsi,

j’ai ensuite étudié une cavité optique plus courte permettant de garder toutes les conditions

mentionnées ci-dessus pour les applications aux systèmes IDN. La cavité proposée est une cavité

à trois miroirs où deux des miroirs forment un télescope ayant pour but de contrôler la taille du

faisceau intra-cavité et d’assurer la stabilité de la cavité sur une plus petite longueur. Le schéma

de la cavité proposée est donné dans l’image (1). Puisque la cavité devra être construite dans

notre laboratoire, la longueur L2 est fixée à 1 m et aussi les rayons de courbure des miroirs sont

fixes. Par conséquent la distance L1 doit être déterminée, de sorte que la conception de la cavité

accueille l’ensemble des exigences nécessaires. Dans ce but, les propriétés de la cavité optique

en fonction de L1 ont été théoriquement étudiées avec un programme en Mathematica élaboré à

l’aide du formalisme des matrices et loi ABCD, pour la propagation d’un faisceau gaussien au

travers des systèmes optiques, dans l’approximation paraxiale. Il est possible de démontrer que

la cavité déterminée est équivalente à une cavité optique avec la même conception géométrique

où L2 est denviron 31 m et la taille du faisceau sur la même longueur est de 1 cm. Cette dernière

conception peut éventuellement accueillir toutes les exigences pour une cavité optique pour les

applications aux systèmes IDN. Par conséquent, après la détermination de la valeur optimale

pour L1, la cavité optique a été construite dans notre laboratoire et testée expérimentalement.

La réflectivité de la cavité a été mesurée à partir du miroir M1 à la fréquence de résonance et

aux autres fréquences. Le résultat optimal mesuré est de 23 % de la puissance réfléchie par

la cavité à la fréquence de résonance. Cependant cette valeur diminue à 15 % lorsque l’on

considère la puissance dans les modes d’ordres supérieurs de la cavité, dus à des désalignements

résiduels. En raison des caractéristiques des optiques utilisées, la valeur attendue est de 9.2 %,

assez proche de la valeur obtenue. En ce qui concerne les dimensions des faisceaux intra-cavité,

leurs diamètres sont mesurés avec une caméra et un logiciel dédié, à une distance de 10 cm

du miroir M2. La valeur mesurée est de 4398 µm pour le faisceau le long de L1 et de 3665

µm pour celui le long de L2. Une erreur de 5 % peut être associée à ces mesures. En ce qui

concerne les valeurs théoriques, elles sont obtenues en utilisant la méthode des matrices ABCD
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et il en résulte: 4400µm pour le faisceau le long de L1 et 3686 µm pour celui le long de L2. Par

conséquent, les résultats théoriques et expérimentaux indiquent des valeurs analogues pour les

tailles de faisceau intra-cavité. Finalement, la phase de Gouy, ΦG, accumulée par le faisceau

laser lors d’un aller-retour dans la cavité a été mesurée afin de vérifier la stabilité de la cavité. En

effet, pour une cavité stable, on doit satisfaire 0 < (cosΦG + 1)/2 < 1. La valeur expérimentale

de ΦG est d’obtenue par la relation: ΦG = (2π∆νL)/c, où L est deux fois la longueur de la

cavité, et ∆ν est l’espacement en fréquence entre le mode fondamental de la cavité et le premier

mode d’ordre supérieur. La dernière quantité a été mesurée expérimentalement afin d’obtenir la

valeur ΦG. Le résultat est ΦG = 3.6±0.2 rad, pour la valeur théorique, et de ΦG = 3.535±0.021

rad, pour la valeur expérimentale.

Figure 1: Conception d’une cavité optique avec un télescope - Les miroirs M1 et M2 sont
utilisés pour composer un télescope permettant d’agrandir la taille du faisceaux et permettent de
fixer la phase de Gouy lors d’un trajet aller-retour du faisceau afin de stabiliser la cavité.

Étude des effets thermiques sur les miroirs de la cavité et des systèmes de

compensation.

L’étude des effets thermiques sur les miroirs de la cavité et des systèmes de compensation ont

été réalisés d’une manière analytique et les résultats ont été vérifiés avec ANSYS et COMSOL,

logiciels de simulations numériques basés sur la méthode des éléments finis. Seul le cas des

miroirs fins est considéré (5 mm d’épaisseur), de sorte que l’absorption par l’intérieur du miroir

peut être négligée par rapport à celle du revêtement. Le formalisme mathématique utilisé
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pour calculer analytiquement les effets thermiques sur les miroirs, (en raison de l’absorption

du revêtement), et aussi les effets des systèmes de compensation thermique (SCT) est basé

sur les fonctions harmoniques pour le champ de température et les fonctions bi-harmoniques

pour le champ de déformation. Ce formalisme implique l’utilisation de fonctions de Bessel. En

particulier, le champ de température est déterminé par la résolution de l’équation de Fourier, en

régime stationnaire, sans source de chaleur interne. Cette solution est utilisée afin d’ écrire les

équations pour les composantes du vecteur de déplacement décrivent la déformation du miroir. Il

est intéressant de remarquer que, comparativement aux simulations aux éléments finis, les calculs

analytiques présentent l’avantage d’être plus légers en termes de temps de calcul (jusqu’à 20 fois

plus rapides). Cependant, ils montrent aussi des limitations dues aux approximations introduites

dans le but de résoudre les équations concernées. Les systèmes de compensation analysés afin de

corriger les distorsions de la surface réfléchissante des miroirs, en raison de la puissance optique

absorbée par le revêtement, sont de deux types:

• compenser les distorsions des miroirs en appliquant des contraintes mécaniques ;

• compenser la distorsion des miroirs en appliquant des champs de température sur la face

arrière du miroir ;

Les solutions mathématiques décrivant la surface réfléchissante des miroirs pour chaque SCT

considéré ont été utilisés pour réaliser des programmes MATLAB. Les simulations sont faites

pour un miroir de rayon 4 cm, de largeur 5mm et éclairé avec un faisceau de taille 1.0 cm, qui est

absorbé à un taux de 0,3 ppm. Une puissance intra-cavité de 3 MW est considérée. Les résultats

des simulations montrent que les SCT basés sur l’application de champs de température sont

les plus appropriés. En particulier, le meilleur résultat est obtenu lorsqu’une température fixe

de Tc = 690 K est appliquée sur la partie centrale de la face arrière du miroir, à travers un

dispositif de chauffage à disque de rayon 5 mm. Pour donner une idée du facteur de gain en

termes de réduction des pertes des miroirs, sans appliquer le SCT mentionné, les pertes d’un

miroir, en raison de l’absorption de la puissance optique, par le revêtement des miroirs sont de

2500 ppm et le changement de courbure est de 2.9× 10−4 m−1, lors du démarrage à partir d’un

miroir initialement plat. Si le STC décrit est appliqué, les pertes du miroir sont réduites à 5

ppm et le changement de courbure est maintenant de 8.7× 10−5 m−1.
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Tests expérimentaux sur des fibres optiques LMA Leaky

Un faisceau laser avec une puissance d’environ 1 kW doit être injecté à l’intérieur de la cavité

optique pour des applications de système IDN [35]. Un faisceau laser de cette puissance n’est

pas facile à réaliser. À cet égard, l’amplification d’un faisceau laser à travers des amplificateurs

à fibre optique a été examinée. Dans ce contexte, j’ai testé expérimentalement un nouveau

concept de fibres LMA (Large Mode Area), appelées fibres LMA Leaky, qui a été développé

pour permettre un fonctionnement monomode sans augmentation d’effets non linéaires. Par

conséquent, elles devraient être particulièrement indiquées comme amplificateurs laser. Leur

fonctionnement monomode est garanti par un profil d’indice de réfraction approprié qui devrait

permettre des pertes de puissance élevées pour les modes supérieurs de la fibre et des pertes

beaucoup plus bases pour le mode fondamental. Les tests expérimentaux ont démontré que

ces fibres sont très sensibles aux flexions : lorsque la fibre est pliée, le mode sortant voit sa

forme changer. Les fibres analysées peuvent alors difficilement être utilisées pour l’amplification

monomode du faisceau laser.
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Introduction

Depuis ces dernières décennies, la demande énergétique a crucialement augmenté à travers le

monde et elle devrait s’intensifier dans un proche avenir. En conséquence, notre besoin de

moyens plus sûrs pour produire de l’ énergie à grande échelle est de plus en plus pressant. Dans

ce contexte, plusieurs projets ont été développés afin de réaliser la fusion nucléaire contrôlée sur

Terre. En effet, la chaleur produite par les réactions de fusion nucléaire peut être utilisée pour

alimenter les centrales électriques. La raison pour l’utilisation de ces réactions comme source

d’énergie pour générer de électricité est basée sur le fait que ces réactions peuvent produire un

haut niveau d’énergie en toute sécurité. En particulier, dans les mêmes conditions de poids

du carburant, les réactions de fusion fourniraient plus d’énergie que toutes les autres sources

d’énergie consommantes de carburant utilisé dans les centrales électriques. Par exemple, la

consommation annuelle de carburant pour produire 1000 MW d’électricité, en une seule centrale

électrique de taille typique, est d’environ 2.7 ×106 tonnes de charbon, 1.9×106 tonnes de pétrole,

28 tonnes de UO2 pour fission, et 100 kg de deutérium et de 150 kg de tritium pour la fusion

[1]. En outre, le combustible des réactions de fusion nucléaire, sur la Terre, peut être facilement

obtenu, étant composé de deutérium et de tritium. Le deutérium est largement présent dans

l’eau de mer, et le tritium, en dépit de ne pas être présent dans nature, peut être produit à partir

des réactions entre lithium et neutrons. Comme il a été mentionné, les centrales qui exploitent

les réactions de fusion nucléaire comme source d’énergie seraient sûres pour l’environnement. En

effet, elles n’émettraient aucun gaz à effet de serre, et les éléments radioactifs produits auraient

une durée de vie plus courte par rapport à celle des déchets de fission, ce qui rend le processus

de fusion très attrayant. De plus, les réactions de fusion ne continuent pas une fois que les

dispositifs utilisés pour obtenir les conditions de réactions de fusion nucléaire sont éteints, à la

différence des centrales à fission , où des réactions en châıne peuvent avoir lieu. Actuellement, le

principal programme de recherche sur la fusion nucléaire est ITER (International Thermonuclear

Experimental Reactor), un projet international lancé en novembre 1985. Le réacteur de fusion
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nucléaire ITER est en cours de construction à Cadarache, dans le sud de la France. Les réacteurs

de fusion nucléaire sont des machines où les conditions de la matière pour obtenir des réactions de

fusion nucléaire sont atteintes. En particulier, dans un réacteur de fusion, la matière est présente

à l’état de plasma, et elle doit avoir une température élevée (1,5×108 K). Par conséquent, afin

de la fusion, une question cruciale concerne les mécanismes de chauffage du plasma. À cet

égard, notons que, dans la chambre à plasma d’un réacteur de fusion, appelée Tokamak, le

plasma est chauffé par la puissance de chauffage ohmique, P = I2R, qui est la combinaison

du courant circulant dans le plasma et de sa résistance électrique. Puisque ce processus n’

est pas efficace pour des températures de plasma supérieures à T> 2keV, deux mécanismes

de chauffage supplémentaires sont présents: chauffage par Radio-fréquence (RF) et injection de

neutres (IDN). Le premier système implique des micro-ondes de haute puissance injectées dans le

plasma, qui transfèrent leur énergie aux particules du plasma par des interactions de résonance.

Le système IDN concerne l’injection d’un faisceau à haute énergie d’atomes neutres (par exemple

deutérium) dans le coeur du plasma de fusion, dont l’énergie est finalement transférée aux

particules du plasma, par le biais de collisions.

Le système IDN est le seul mécanisme de chauffage placé loin de l’environnement du plasma.

Cela le rend particulièrement attrayant pour l’amélioration de son efficacité globale, η , définie

comme le rapport entre la puissance neutre à l’entrée du Tokamak et la puissance électrique

totale consommée pour la produire. Dans le cas général, les composants d’un système IDN

sont les suivants: une source d’ions qui génère un plasma froid de deutérium (T ∼ 2eV, n ∼
1018 m3) un accélérateur électrostatique pour accélérer les ions extraits à haute énergie (1 MeV

pour ITER); un système pour neutraliser les ions de haute énergie; un système pour retirer

les ions restants. La construction du réacteur expérimental de fusion nucléaire ITER a soulevé

la question de la prochaine étape vers une centrale réelle de fusion, DEMO, qui devrait être le

premier réacteur de fusion avec production d’électricité. L’un des principaux objectifs de DEMO

est la démonstration de la production d’électricité avec l’approvisionnement auto-suffisant de

combustibile à un coût modéré. À cet égard, une amélioration du rendement global du réacteur

à fusion nucléaire DEMO est nécessaire par rapport à celui du réacteur ITER. Des études

de Recherche et développement (R & D) sur DEMO ont déjà commencé. Le travail présenté

dans cette thèse fait partie d’un projet plus large appelé Siphore (SIngle gap PHOtoneutralizer

energy RE-covery injector), qui a commencé par des collaborations entre le CEA (Commissariat

à l’énergie atomique) et plusieurs universités françaises. Le but de Siphore est de démontrer la

faisabilité d’un système IDN basé sur l’application de cavités de Fabry-Pérot (3MW de puissance
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lumineuse par cavité) pour la photo-neutralisation du faisceau très énergétique de D−, qui est

ensuite envoyé dans le plasma. Le photo-détachement, qui remplace le système neutralisant

à cellule de gaz de ITER, devrait permettre la mise en œuvre d’un système de récupération

d’énergie et d’atteindre une efficacité globale pour DEMO de η > 60%, nettement plus élevée

que celle d’ITER, qui est inférieure à 25%.

En particulier, la première partie du travail que nous avons réalisé porte sur la détermination

d’une cavité optique avec des propriétés appropriées pour les applications dans les systèmes IDN

pour la prochaine génération de réacteurs à fusion nucléaire et la construction de la cavité dans

notre laboratoire pour la tester expérimentalement. Jusqu’à présent, le problème principal pour

la mise en œuvre du principe de la photo-neutralisation de Siphore semble être l’absorption

de la puissance optique intra-cavité par les revêtements de miroir. En effet, cela provoque

un gradient de température important, avec des déformations conséquentes des surfaces des

miroirs. D’une part, les rayons de courbure des miroirs peuvent changer (par exemple, un

miroir plat peut prendre un rayon de courbure de plusieurs milliers de mètres) conduisant à des

modifications du mode résonant à l’intérieur de la cavité et à des problèmes de stabilité; d’autre

part, les écarts de la surface des miroirs d’un profil exactement sphérique génèrent des pertes de

diffusion (quelques milliers de ppm). En conséquence, la puissance intra-cavité accessible pour

une puissance d’entrée donnée est réduite. À cet égard, dans la deuxième partie de la thèse,

nous avons considéré les problèmes des effets thermiques sur les miroirs et nous avons analysé

plusieurs systèmes de compensation, afin de corriger les déformations des surfaces réfléchissantes

des miroirs de la cavité.

En outre, des études de faisabilité du processus de la photo-neutralisation pour les systèmes

IDN montrent que la cavité optique utilisée pour la neutralisation du faisceau de D− doit être

alimentée par un faisceau laser d’entrée de haute puissance (environ 1kW). En ce qui concerne

cet aspect, la dernière partie de la thèse est dédiée à la description des tests expérimentaux que

nous avons effectués sur un nouveau concept des fibres optiques LMA (Large Mode Area), ap-

pelées fibres Leaky LMA, qui ont été développés pour permettre le fonctionnement monomode,

sans augmentation des effets non linéaires. En effet, ces fibres doivent être particulièrement ap-

propriées comme amplificateurs laser. Par conséquence, elles pourraient, en principe, permettre

la réalisation des faisceaux laser à haute puissance, tel que celui nécessaire à l’entrée de la cavité

optique appliqué pour les systèmes IDN.

Aperçu de la thèse
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• Le chapitre 1 est un chapitre d’introduction où les conditions pour réaliser des réactions

de fusions nucléaires sur la Terre sont décrits, pour la technique basée sur le confine-

ment magnétique du plasma. En outre, une introduction concernant l’application du

photodétachement dans les systèmes IDN est donnée. Les principaux résultats obtenus, à

ce jour sur le domaine de la fusion nucléaire sont également signalés, ainsi qu’une descrip-

tion des principaux projets de recherche actuels et futurs sur la fusion nucléaire (comme

ITER et DEMO).

• Le chapitre 2 développe, en détail, une proposition pour un résonateur optique avec des

propriétés appropriées pour l’application dans les systèmes IDN de future génération de

réacteurs de fusion nucléaire, comme DEMO, qui permettrait aussi de résoudre les possibles

problèmes d’encombrement. En particulier, une cavité optique avec télescope sera étudiée

et la détermination de sa conception géométrique sera décrite d’un point de vue théorique.

Les résultats des tests expérimentaux, réalisés après la construction de la cavité optique

dans notre laboratoire, seront également rapportés.

• Le chapitre 3 est dédié à l’étude analytique des effets thermiques sur les miroirs de la

cavité et des systèmes de compensation adoptés. La description mathématique de chaque

système de compensation est ensuite utilisée pour réaliser un programme MATLAB pour

simuler la déformation de la surface réfléchissante des miroirs.

• Le Chapitre 4 vise à valider les calculs mathématiques sur lesquels les simulations MAT-

LAB sont fondées, en comparant les résultats analytiques avec ceux obtenus par les sim-

ulations numériques faites avec ANSYS et COMSOL, deux logiciels basés sur la méthode

des éléments finis.

• Le chapitre 5 décrit les résultats des pertes des miroirs de la cavité et leurs changements de

courbures obtenus pour chaque système de compensation des effets thermiques considéré.

Le but est la détermination d’une technique de compensation optimale pour les distorsions

des surfaces réfléchissantes des miroirs de la cavité.

• Le chapitre 6 décrit les tests expérimentaux effectués sur un nouveau concept de fibres

optiques LMA (Large Mode Area), appelées fibres Leaky LMA, qui a été développé pour

permettre le fonctionnement monomode, sans augmentation des effets non linéaires. Ces fi-

bres doivent être particulièrement appropriées comme amplificateurs laser. Par conséquent,

elles peuvent représenter une possibilité pour l’obtention dun faisceau laser de puissance
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élevée nécessaire pour alimenter la cavité optique pour les applications dans des systèmes

IDN.
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In the last decades, the energetic request is crucially increased across the world and it is expected

to intensify in the near future. As a consequence, our need for clearer ways of energy production

on a large scale is getting more and more pressing. Within this context, several projects have

been developed at the purpose of realizing controlled nuclear fusion on Earth. Indeed, the heat

produced by nuclear fusion reactions can be used to supply power plants for the production

of electric power. The reason for using nuclear fusion reactions as energy source to generate

electricity is based on the fact that these reactions can safely produce high level of energy.

Particularly, at the same conditions of weight of fuel, fusion reactions would provide more energy

than any other fuel consuming energy source currently in use in power plants. For instance, the

annual fuel consumption for producing 1000MW of electricity, in a single electric power plant

of typical size, is of about 2.7×106 tonnes of coal, 1.9×106 tonnes of oil, 28 tonnes of UO2 for

fission, and 100 kg of Deuterium and 150 kg of Tritium for fusion [1]. Furthermore, the nuclear

fusion reaction fuel can be easily obtained, on Earth, being compounded of deuterium and

tritium. Deuterium is largely present in seawater, while tritium, in spite of not being present in

nature, can be produced from reactions between Lithium and neutrons. As it has be mentioned,

power stations harnessing nuclear fusion reactions as energy source would be secure and safe for

the environment. Indeed, they would emit no greenhouse gases, while the produced radioactive

elements would have a shorter life time, compared to the one of the fission wastes, which make

the fusion process very attractive. In addition, fusion reactions do not continue, once the devices

used to get to nuclear fusion reaction conditions are switched off, differently from power plant

based on nuclear fission, where chain reactions can take place.

Currently, the main research program on nuclear fusion is ITER (International Thermonu-

clear Experimental Reactor), an international project, which started in November 1985. The

building of the ITER nuclear fusion reactor is under way in Cadarache, in the south of France.

Nuclear fusion reactors are machines where material conditions for nuclear fusion reactions to
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take place are reached. In particular, in a fusion reactor, matter is present in its plasma state,

and it must have high temperature (∼1.5 ×108 K). Therefore, for fusion purpose, a crucial

issue concerns the plasma heating mechanisms. In this respect, it is pointed out that, in the

plasma chamber of a fusion reactor, called Tokamak, plasma is heated by Ohmic heating power,

P = I2R, which is the combination of the current flowing in the plasma and of the plasma elec-

trical resistance. As this process is not efficient for plasma temperatures higher than T > 2keV,

two classes of additional heating mechanisms are present: Radio-Frequency (RF) heating and

Neutral Beam Injection (NBI). The former system implies high power microwaves injected into

the plasma which transfer energy by resonant interactions with plasma particles, whilst the NBI

system concerns the injection of a high-energy beam of neutral atoms (e.g. deuterium) into

the core of the fusion plasma, whose energy is eventually transferred to the plasma particles,

through collisions.

The NBI system is the only heating mechanism placed far away from the plasma environment.

This makes it particularly attractive for the improvement of its global efficiency, η, defined as the

ratio of the neutral power at the entrance of the Tokamak to the total electric power consumed

to produce it. In the general case, the NBI system components are: an ion source generating

cold deuterium plasma (T ∼ 2eV, n ∼ 1018 m3); an electrostatic accelerator to accelerate the

extracted ions to high energy (1Mev for ITER); a neutralizer to neutralize the high energetic

ions; a system to get rid of the remaining ions, leaving the neutral beam to continue towards

the Tokamak.

The construction of the experimental nuclear fusion reactor ITER has raised the question of

the next step toward a real Fusion power plant, DEMO, which should be the first fusion reactor

with electricity production. One of the main targets of DEMO is the demonstration of electricity

generation with self-sufficient fuel supply at a moderate cost. In this respect, an enhancement of

the DEMO overall nuclear fusion reactor efficiency is required with respect to the one of ITER.

Research and development (R&D) studies on DEMO have been already started.

The work presented in this thesis is part of a larger project called Siphore (SIngle gap PHO-

toneutralizer energy RE-covery injector), which has been started by collaborations between CEA

(Commissariat à l’énergie atomique) and several French universities. The aim of Siphore is to

demonstrate the feasibility of a NBI system based on the implementation of Fabry-Perot cavities

(∼ 3MW of light power per cavity) to photo-neutralize the high energetic beam of D− which is

then sent to the plasma. The photo-detachment, which substitutes the ITER gas cell neutralizer,

should allow the implementation of an energy recovery system and reach a DEMO relevant NBI
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global efficiency of η > 60%, significantly higher than the one of ITER, which is less than 25%.

Particularly, the first part of the work we carried on concerns the determination of an optical

cavity with suitable properties for applications in NBI systems of future generations of nuclear

fusion reactors and the building of the cavity in our laboratory for experimentally testing it. So

far, the main issue for the implementation of the Siphore photo-neutralization principle appears

to be the absorption of the intracavity optical power by the mirror coatings. Indeed, this causes

important temperature gradient, with consequent deformations of the mirror surfaces. On one

hand, the mirror curvature radii can change (e.g. a flat mirror can assume a curvature radius

of few thousands meters) leading to modifications of the mode resonating inside the cavity and

to stability issues; on the other hand, mirror surface deviations from a spherical profile generate

scattering losses (few thousand of ppm). As a consequence, the reachable intracavity power for

a given input power is reduced. In this respect, in the second part of the thesis, we faced the

problems of the thermal effects on the cavity mirrors and we analyzed several thermal com-

pensation systems, in order to correct the deformations of the cavity mirror reflecting surfaces.

Furthermore, feasibility studies of the photo-neutralization process application for NBI systems

show that the optical cavity used for the neutralization of the D− beam has to be fed by a high

power input laser beam (∼ 1kW). In regard to this aspect, the last part of the thesis is dedicated

to the description of the experimental tests we performed on a new concept of Large Mode Area

(LMA) optical fibers, called Leaky LMA fibers, which have been developed for allowing single

mode operation without enhancement of nonlinear effects. Indeed, these fibers should be par-

ticularly appropriated as laser amplifiers, hence they could, in principle, allow the realization of

high power laser beams, such as the one required at the input of the optical cavity applied in

NBI systems.

Outline of the thesis

• Chapter 1 is an introductory chapter where the requirements for realizing nuclear fu-

sions reactions on Earth are described together with the technique based on the magnetic

confinement of plasma for obtaining nuclear fusion reaction conditions. In addition, an in-

troduction concerning the photo-detachment application in NBI systems is provided. The

main results reached, so far, on the field of nuclear fusion are also reported as well as a

description of the principle current and future nuclear fusion research projects (i.e. ITER

and DEMO).
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• Chapter 2 concerns, in detail, a proposal for an optical resonator with suitable properties

for application in NBI systems of future generation of nuclear fusion reactors, such as

DEMO, which also would solve possible encumbrance issues. In particular, an optical

cavity with telescope will be addressed and its geometrical design determination will be

described from a theoretical point of view. The results of the experimental tests, performed

after building the modeled optical cavity in our laboratory, will be also reported.

• Chapter 3 is dedicated to the analytical study of the thermal effects on the cavity mirrors

and of the considered compensation systems. The mathematical description of each com-

pensation system is then used to realize a MATLAB program for simulating the mirror

surface deformations.

• Chapter 4 aims to validate the mathematical calculations on which the MATLAB simula-

tions are based, by comparing the analytical results with the ones obtained by numerical

simulations carried on with ANSYS and COMSOL, softwares based on the finite elements

method.

• Chapter 5 describes the results obtained for each considered thermal effect compensation

systems, as far as cavity mirror losses and curvature changes are concerned. The aim is the

determination of an optimum compensation technique for the distortion of the reflecting

surface of the cavity mirrors.

• Chapter 6 describes the experimental tests performed on a new concept of Large Mode Area

(LMA) optical fibers, called Leaky LMA fibers, which have been developed for allowing

single mode operation without enhancement of nonlinear effects. These fibers should

be particularly appropriated as laser amplifiers. Hence, they might be a possibility for

obtaining the high power laser beam required for feeding the optical cavity for applications

in NBI systems.
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Chapter 1

Nuclear Fusion on Earth

In this chapter, the problem of obtaining nuclear fusion reactions on Earth will be addressed. It

is known that nuclear fusion reactions take place in the core of the stars, where gravity provide

the suitable physical conditions of matter which guarantee the production of these reactions. On

Earth, there are not similar gravity conditions as in the core of the stars, but it is still possible

to obtain appropriate matter characteristics to allow nuclear fusion reactions. The suitable

conditions are realized in dedicated machines indicated as nuclear fusion reactors. In this work,

only the case of nuclear fusion reactors based on the principles of the magnetic confinement of

the plasma involved in the nuclear fusion reactions will be presented [2]-[7]. It is worth noticing

that, in these reactors, the role of gravity, as far the plasma confinement is concerned, is played

by the magnetic field which constrains the plasma in a delimited space within the reactor, which

is called tokamak.

In particular, in the following sections, the constrains to obtain nuclear fusion reactions on

Earth will be presented as well as the main working principles of a nuclear fusion reactor. The

attention will be focused on the possibility of improving the ratio between the nuclear fusion

power produced by a reactor and the power required to make the reactor to work. A high level of

this ratio makes interesting to connect the reactor to the electric grid, in order to use it as power

supplier. The last part of the chapter is dedicated to the presentation of the main achievements

in the field of nuclear fusion reactions on Earth and to the introduction of the principal projects

currently under realization and design, i.e. ITER and DEMO.
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Chapter 1. Nuclear Fusion on Earth

1.1 Nuclear fusion and Nuclear fusion reactors

Nuclear fusion reactions consist in fusioning two light nuclei to form a heavier nucleus, the mass

of which is smaller than the sum of the interacting nucleus masses. Indeed, together with the new

nucleus also energy is produced, in agreement with the Einstein law E = mc2. In particular,

the produced energy, Ef , depends on the mass difference, ∆m, before and after the fusion

reaction, i.e. Ef = ∆mc2. In order to obtain a fusion reaction the nuclei involved in the process

need to have enough energy to overcome the coulomb potential barrier due to their positive

charge. As a consequence, the interacting nuclei can get close enough to allow the nuclear

strong force to become important. The realization of nuclear fusion on Earth requires then

specific characteristics for the state of the material involved in the reaction, as it happens in the

stellar fusion as well. Particularly, a nuclear fusion reactor based on the magnetic confinement

principle, which is the category of nuclear fusion reactors addressed in this work, requires high

temperatures, of order of 108 K (∼ 10 keV), to increase the reaction rate. At this temperature

levels, matter is in the plasma state [8]. It is observed that the temperature required by fusion

reactor on Earth is higher than the one of the Sun’s core [9]. This is due to the fact that

the nuclear fusion conditions of the matter are maintained, in the stars, by the gravitational

force, solution which is not possible on the Earth, where higher temperatures become then

necessary. Currently, the reaction considered for realizing nuclear fusion on Earth is the one

between deuterium and tritium:

2
1D + 3

1T → 4
2He+ 1

0n+ 17.6MeV, (1.1)

indeed, this reaction presents the largest cross section, hence the highest probability to happen,

and the atomic number of the species interacting is Z = 1, which minimizes the losses for

Bremsstrahlung [10]. Furthermore, as it has been already pointed out, the fusion of less than

one kilo per day of deuterium and tritium produces the required heat to generate 1000 MW

of continuous electricity. In a thermal power plant, this result is obtained by consuming about

5000 tons of fossil fuel. In addition, even if there are not natural sources of tritium, this can be

obtained from the interaction of lithium (63Li) with a neutron, while deuterium is largely present

on Earth. It is worth recalling the lithium reaction used to produce the tritium involved in

nuclear fusion reactor [10], i.e.:

6
3Li+

1
0n → 3

1T + 4
2He+ ...4.8MeV. (1.2)

38



1.1

The neutron appearing in the previous relation comes from the fusion reactions produced within

the reactor, while the lithium is applied to realize the internal reactor walls. As neutron are

not confined by the strong magnetic fields, they can reach the first internal reactor wall by

generating the required amount of tritium, through interactions with the Lithium of the reactor

walls. With reference to the nuclear fusion reactor design, it is important to know how the

energy produced in the fusion reaction is divided between the α particle and the neutron. To

this aim, it is possible to assume that the momentum is equally divided between the α particle

and the neutron:

mαvα = mnvn, (1.3)

with mα and vα the mass and the velocity of the α particle and mn, vn the mass and the velocity

of the neutron. This equation can then be combined together with the one for the energy:

1

2
mαv

2
α +

1

2
mnv

2
n = W = Wα +Wn, (1.4)

where W indicates the energy released by the fusion of the reacting nuclei, and Wα and Wn are

the kinetic energies of the α particle and of the neutron respectively. By solving the system of

the two equations, it is found:

Wα =
W

mα

mn
+ 1

, (1.5)

Wn =
W

mn

mα
+ 1

. (1.6)

As mα = 3727MeV and mn = 939.4MeV , the produced neutron carries the 80% of the energy

released, i.e. 14 MeV, and the α particle the 20%, i.e. 3.5 MeV. The high temperature condition

is not the only constraint required for realizing convenient nuclear fusion reactors producing

an amount of fusion energy which is higher than the energy used to produce it. The nuclear

fusion reactors under consideration utilize magnetic fields to contain the plasma involved in

the reaction. As the neutrons have no charge, they cannot be trapped by the magnetic fields,

then only the energy of the α particles is used to maintain the plasma. Because of the loss

mechanisms, this energy could be not sufficient to keep the conditions for a plasma status

of matter and external heating techniques have to be applied to warm up the plasma. It is

then introduced the ratio between the fusion power, Pfusion, produced by the nuclear fusion

reactor and the external power, Pexternal required to maintain the plasma, which is called, the
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amplification factor [11]:

Q = Pfusion/Pexternal. (1.7)

In order to be convenient, a nuclear fusion reactor must have a Q factor well above 1. Another

important parameter is the characteristic time for the plasma to loss its energy, once its energy

sources are turned off, τe. If Plosses is the power lost by the plasma and W its total energy, it

is:

Plosses = W/τe. (1.8)

In a steady state, the plasma energy does not vary, hence the power given to the plasma has to

be equivalent to the power it looses [11]:

Pα + Pexternal = Plosses = W/τe, (1.9)

with Pα the power supplied by the α particles to the plasma, through collisions. Because of the

amplification factor definition, it is possible to write:

Pexternal = Pfusion/Q, (1.10)

thus, the power balance equation reads:

Pfusion

�
Pα

Pfusion
+

1

Q

�
= Plosses = W/τe. (1.11)

The plasma thermal energy can be expressed as [11]:

W =

�

V

3

2
k (neTe + (nD + nT )Ti) dV, (1.12)

where ne, nD, nT are the numerical density of electron, deuterium ions and tritium ions respec-

tively, and k is the Boltzmann constant. By assuming that nD = nT = n/2 and remembering

the plasma property of being nearly neutral, for a uniform temperature Te = Ti = T , it results:

W = 3nkTV. (1.13)
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As far as the fusion power is concerned, this is obtained by multiplying the energy of one fusion

reaction, Efusion, for the number of fusion reaction in the unit of time, N , [11] i.e.:

N =

�

V
nDnTσν(T )dV, (1.14)

with σν(T ) the mean reaction rate. For 10 keV≤ T ≤ 20 keV, it turns out σν(T ) = 1.18×10−24

T2 m3 s−1 (T expressed in keV) [12]. Hence:

N =
n2

4
σν(T )V, (1.15)

and:

Pfusion =
n2

4
σν(T )V Efusion. (1.16)

By considering the balance equation, as given by equation (1.11), and replacing W with its

expression (1.13) and Pfusion with relation (1.16), it is found:

nτe =
12k

Efusion

�
Eα

Efusion
+ 1

Q

� ×
T

σν(T )
. (1.17)

For the considered range of temperature, i.e. 10 keV≤ T ≤ 20 keV, the previous equation can

be written as:

nτeT =
12

Efusion

�
Eα

Efusion
+ 1

Q

� ×
1

1.18× 10−24
, (1.18)

where it has been set k equal to 1, by assuming that the temperatures are expressed in keV. It

is then possible to check that, in order to have a nuclear fusion reactor which produces more

fusion energy than the energy it uses to produce it, i.e. for Q to be well above 1, it must be:

nτeT > 1021 keV m−3s. (1.19)

The previous relation is known as criterion of the triple product, which derives from the Lawson

criterion [13] for obtaining productive nuclear fusion reactor. The realization of condition (1.19)

is not trivial. To this aim, dedicated machine have been thought, since late 1960, which can allow

both to reach the plasma high temperature required to obtain fusion reactions and to confine

the plasma itself [14]. These machines are called tokamak (Toroidalnaya Kamera Magnitnymi

Katushkami). In a tokamak the plasma particles are confined through the application of different

magnetic fields, whose resultant is a magnetic field of helix shape. Thus the plasma, which

41



Chapter 1. Nuclear Fusion on Earth

follows the magnetic field lines, is modeled to form a ring or a torus. In picture (1.1), the

different magnetic coil systems are illustrated. Particularly, the magnetic fields are [15], [16]:

• a toroidal magnetic field produced by toroidal magnetic coils, whose intensity is about 10T

(∼ 100000 times the one of the Earth);

• a poloidal magnetic field generated by means of the central magnetic coil which induces a

current of several millions of ampere passing through the plasma;

• A set of horizontal magnets which controls the balance, the shape and the position of the

plasma together with the current which passes through it.

Figure 1.1: Magnetic fields in a tokamak - Description of the magnetic field configurations in
a tokamak [15].

Plasma heating mechanisms in a tokamak

As it has been already pointed out, one of the main requirement to realize nuclear fusion reactions

on Earth is to warm up the plasma particles at high temperature (∼ 100000000 K). This is done

by using several heating mechanisms. One of them is the plasma heating through the Ohmic

heating power, POH . This power is due to the high intensity poloidal current, Ip, which circulates

through the plasma, whose resistance, R, is different from zero, because of the collisions between

high energetic electrons and ions. Hence, POH = I2pR, and it results POH ∼1 MW. Nevertheless,

for temperature of order of T > 2 keV, the plasma resistance decreases so that the Ohmic power

as well decreases. As a consequence, additional heating methods have to be applied to reach
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temperature of the order of 10 − 20keV. Two further mechanisms are customary used: the

neutral beam injection (NBI) system and the radio frequency (RF) heating. As far as the last

technique is concerned, this process is based on the injection into the plasma of high power

microwaves which transfer their energy to the plasma particles, by resonant interactions with

them. Particularly, the ion RF heating system operates customary at the frequency range 35-55

MHz, while the electron RF heating system operate usually at frequency 170 GHz. The neutral

beam injection system will be illustrated in more details in the following section. Briefly, it

consists in injecting a high energetic beam of neutral particles, usually a hydrogen isotope such

as deuterium, into the plasma. As neutral particles are not affected by the strong magnetic

fields present in a tokamak, they can penetrate the plasma and transfer their energy to it by

means of collisions. The described heating mechanisms are schematically represented in picture

(1.2).

Figure 1.2: Heating systems in a tokamak, inspired by [17] - Schematic representation of
the heating mechanisms used in nuclear fusion reactors based on magnetic confinement to warm up
the plasma to the required temperatures for realizing nuclear fusion reactions.

1.2 NBI system generalities

In the previous section, the neutral beam injection system has been introduced as one of the

mechanism applied for reaching the high temperatures required in nuclear fusion reactors based
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on magnetic confinement. As it is possible to realize by looking to picture (1.2), this mechanism,

unlike the other two, is developed far from the area of the plasma confinement. For this reason,

it turns out to be easier to work on its amelioration than on the betterment of the other two

mechanisms, for which the closeness to the region where high energetic neutrons are produced

can be a significant problem. Thus, NBI system is of primary importance to improve the

amplification factor, Q, of the nuclear fusion reactor. Indeed, if the efficiency of the NBI system,

defined as the ratio between the NBI system power at the entrance of the tokamak and the

power required to produce it, is increased, the overall efficiency of the nuclear fusion reactor will

be enhanced. In this respect, it is worth pointing out that the work presented in the following

chapters concerns feasibility studies for an enhancement of the NBI system, which should allow

significant higher efficiencies with respect to the ones currently realizable.

As it is shown in figure (1.3), the principal components of typical NBI systems are [18], [19]:

• an ion source which generates a cold hydrogen plasma (or deuterium plasma), with tem-

perature and density of order of T ∼ 2− 20 eV, n ∼ 1018 − 1019 m−3 respectively;

• an accelerator which significantly makes to increase the energy of the ions exacted from

the source (up to about 1 MeV in current nuclear fusion reactors, such as ITER) ;

• a neutralizer which is a gas cell, in conventional NBI system, where the ion beam is partially

neutralized by inelastic collisions with the gas injected into the cell (e.g. D2);

• a residual ion dump, where the residual ions, which escape the neutralization, are mag-

netically or electrically deflected, to be separated by the neutral beam, which continues

towards the tokamak torus at the end of the NBI system duct.

At energies higher than 100 keV, negative ions only can be efficiently neutralized, they are then

considered for applications in nowadays NBI systems. It is worth noticing that, for negative

ions the neutralization efficiency is about 55% for a gas target at 1 MeV. The inconvenient in

using negative ions is that the low binding energy of the extra electron also makes higher the ion

destruction rate along the beam line. Indeed, in the case of usual NBI systems, about 30% of the

negative ions are lost during acceleration, because of stripping reactions with the gas injected

in the ion source and, above all, with the gas injected in the neutralizer which diffuses toward

the accelerator. Hence, the overall efficiency of the NBI system is sensibly reduced, being less

than 25%. In conventional NBI systems, the amount of gas injected into the neutralizer cannot

be reduced, with the aim of improving the performances of the injector. For this reason, it has
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Figure 1.3: NBI system components [19] - Schematic representation of the components of a
NBI system.

been proposed to substitute the gas cell neutralizer with a photo-neutralizer, which does not

requires any gas injection and which could then significantly enhance the overall NBI system

efficiency. In the next sections, the work principles of a photo-neutralizer are presented.

1.3 Photo-Neutralization principles

The photo-neutralization or photo-detachment process is the mechanism through which the extra

electron of a negative ion is detached by electromagnetic waves. It is a precess happening only

if the photon involved in the interaction with the ion has sufficiently high energy, i.e. higher

than the electron affinity (EA) of the neutral atom. In the present contest, the deuterium

negative ions are the most interesting ones, because they can eventually supply the deuterium

directly involved in the tokamak nuclear fusion reactions. As far as the EA of the hydrogen

is concerned, this has been experimentally found to be equal to 0.754 eV and, with respect

to this value, the deuterium EA turns out to be about 0.4 meV higher [20]. Several studies

have been also carried on to determine the behavior of the photo-neutralization cross section

as function of the photon energy, both for the deuterium and for the hydrogen. It was then

possible to point out that the photo-detachment cross section has a similar trend for both the

considered species [21]. Particularly, the results presented in Ref. [22] and Ref. [23] show

that the maximum of the photo-neutralization cross section is substantially flat for the photon

energy range between 1.2 eV and 2 eV, that is between the photon wavelengths 1100 nm and

650 nm [24]. In order to stress this important feature, picture (1.4) is reported, which illustrates

the photo-detachment cross section as function of the photon energy, for the hydrogen. The
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consequence of this experimental result is that the choice of laser wavelengths which could be

applied for the photo-neutralization process is quite large. Furthermore, it is possible to assume

the deuterium ion photo-detachment cross section at its maximum equal to about 4× 10−21m2

[22]. It is also worth noticing that recent studies have been carried on to measure the photo-

neutralization cross section concerning hydrogen, as it is shown in Ref. [25] and Ref. [26]. With

Figure 1.4: Relative photo-detachment cross section measurements for hydrogen - The
shape of the cross section is determined relative to the value at 5280 A with an accuracy of about 2
%, as it is described in Ref. [22].

the aim of applying photo-neutralization for neutral beam injection systems of future generation

nuclear fusion reactors, it is important to estimate the laser power required to reach a suitable

neutralization efficiency. It is assumed that both the ion beam and the laser beam have a

rectangular shape and the laser beam completely overlaps the ion beam on a surface S = d× l,

see picture (1.5). Moreover, if the deuterium ions are accelerated at 1 MeV, they have a mean

velocity of about 107 m/s. Consequently, as the velocity of the photons is c = 3 × 108 m/s,

deuterium ions can be considered static, with respect to the laser beam photons. Let σ be the

cross section of the photo-detachment process, then, from Ref. [24], the following relation holds:

dn

dt
= − σ

dl

PL

hν
× n, (1.20)

where n is the negative ion population, PL/hν is the number of photons per unit of time, PL

being the laser power, while d and l are introduced in picture (1.5). Equation (1.20) describes an
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Figure 1.5: Overlap between laser beam and ion beam - Schematic illustration of the
overlap between laser beam and ion beam, as described in Ref. [19]. It is worth noticing that the
time necessary to the ions to cross the laser beam is t = l/v, where v is the ion velocity.

exponential decrease of the ion population, so that, if at the beginning, t=0, the ion population

is n0, at any following time, it becomes:

n(t) = n0e
− σPt

dlhν . (1.21)

Hence, if t is the time needed for the ion beam to cross the laser beam, i.e. t = l/v, with v the

ion velocity, it results:

n(t) = n0e
− σP

dhvν , (1.22)

and the neutralization rate is:

τ = 1− e−
σP

dhvν . (1.23)

Of particular interest is the laser power at which the photo-detachment process will enter the

saturation regime, that is the saturation power, Ps, beyond which the photo-neutralization rate

does not increase anymore significantly, so that it is not convenient to augment further the laser

power (see picucture 1.6). In particular, Ps is defined by the laser power which produces a

photo-detachment rate of 1− 1/e ∼ 63%, i.e., by considering equation (1.23), it is:
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Figure 1.6: Rate of photo-neutralization, τ . - Photo-neutralization rate as function of the
ration between laser beam power, P , and saturation power, Ps.

Ps =
h c v d

σ λ
, (1.24)

with λ the laser wavelength. From the mathematical definition of the saturation power, it is

possible to point out that, on one hand the high velocity of the negative ions are responsible

for the high laser power required to get to a suitable level of photo-neutralization rate; on

the other hand, equation (1.24) makes clear that it is possible to decrease the saturation laser

power by choosing the highest possible value of the laser wavelength and the smallest possible

ion beam width. To have an idea of the order of magnitude of the required laser power for

obtaining the saturation regime of photo-detachment, it is possible to fix typical numerical

values for experimental nuclear fusion reactor, such as ITER. Particularly, in this case, an ion

beam at 40 A 1 MeV exits the NBI system accelerator and it is then divided in 4 independent

columns 7 cm width and 1.5 m high. For the laser frequency corresponding to λ = 1064 nm, by

considering equation (1.24), it is possible to verify that a laser power of about 30 MW, for each

ion segments, is necessary to reach the saturation region of photo-neutralization, when assuming

σ = 4.×10−21m2 [24], [19]. It is well known that there are no laser so powerful. Nevertheless the

laser technology is quite developed on the wavelength 1064 nm, so that it is possible to assume

that laser of few hundred of Watts can be realized. This power is still significantly below the

required one for getting to suitable values of photo-detachment, but there is still the possibility

to apply an optical cavity where the input laser power can be stored in order to reach higher
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laser beam power within the cavity. It is remarked that, in this design, the photo-neutralization

of the negative ion beam takes place inside the cavity. Hence, it is worth estimate the laser

power lost because of the photo-detachment process. By assuming that the laser beam power is

less than or equal to the laser saturation power, the fraction of photons which interact with the

ions in a photo-detachment process, within the time interval t = l/v, is given by:

η =
I σ

e v d
, (1.25)

with I the ion current, e the charge of the deuterium ion and σ/(v∆td) the probability for a

photon to photo-neutralize an ion on a length l = v∆t. Hence, for the values introduced above,

i.e. I=40 A, v = 107 m/s, d = 7 cm, σ = 4.× 10−21m2, and |e| = 1.6× 10−19 C, it is found:

η � 1.4× 10−6. (1.26)

The previous results states that only one photon on about one million takes part on the photo-

detachment process. If the saturation power is Ps = 30MW, this means that the laser power

lost by the photo-detachment process is:

Plost = η × Ps � 42W. (1.27)

The last value is quite lower than the saturation power, so the laser beam power can be considered

unchanged after the interaction with deuterium ions.

Another important point to consider is that the coatings of the mirrors used to realize the

optical cavity have an electromagnetic wave intensity damage threshold Ith. If the laser beam

is gaussian, the power it carries reads:

P =
1

2
πILw

2, (1.28)

where IL is its intensity and w its radius. In terms of the dimension d, introduced above, the

following approximation is possible:

P � IL × d2. (1.29)

At the threshold, it is:

Pth � Ith × d2th, (1.30)
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hence, from equation (1.24), it results:

dth =
h c v

σλIth
. (1.31)

By assuming Ith ∼ 10 MW/cm2 at λ = 1.06µm, it turns out that the minimum value for d is

dth=4.7 mm, and the corresponding value for the power indicates that the minimum power for

saturation of photo-detachment has to be higher than or equal to 2 MW, indeed Pth=2 MW.

Furthermore, the mirrors have to be protected from the environment where the high energetic

ions propagate. Indeed, mechanical vibrations, radiations and sputtering processes [19] can

reduce the optic lifetime. Consequently, the mirrors have to be kept far from the ion beam

line, so that the cavity should be a multi-metric optical resonator and vacuum chambers should

be used to maintain clean the environment where the optics are placed. Another important

aspect to evaluate is the change of the cavity length, which leads to changes of the laser beam

characteristics resonating within the cavity. A treatment of this issue can be found in Ref. [19].

The optical length of the cavity, for unperturbed conditions, is L = nL0, where n here represents

the index of refraction of the medium within the cavity and L0 is the geometrical length of the

cavity. A variation of the optical length of the resonator can then be:

δ(nL)

nL
=

δn

n
+

δL

L
, (1.32)

with δL/L the seismic noise, which is about 10−8, and δn/n is the variation of the refractive

index within the cavity due to the presence of the ion beam, which amounts to about 3 ×

10−8. The value obtained for the total variation of the optical path of the photons inside the

resonator is within a range commonly considered in laser stabilization issues, thus the cavity

length fluctuations should not represent a problem for the application of an optical resonator in

the design of the photo-neutralization for NBI systems.

Another important observation concerns the fact that by refolding the cavity it is possible to

completely overlap the ion beam width, with the application of a thiner laser beam, as it is

showed in picture (1.7). Hence, from equation (1.24), it is easy to see that the laser power

for the saturation regime of the photo-detachment is reduced. The lowering of the minimum

laser power required for suitable levels of phot-neutralization efficiency means that a lower laser

power injected into the cavity is necessary. Furthermore, the thermal load on each mirrors

compounding the resonator is reduced, when the intracavity laser power decreases. This is an

important feature as high thermal loads on the cavity mirrors lead to mirror deformations. In
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turn, the cavity mirror distortions can cause diffusions of the impinging laser beam, which can

result in losses of the intracavity laser beam power, i.e. a reduced capability of the cavity to

store optical power. However, it has to be kept in mind that the increase of the cavity mirror

number will enhance the cavity losses due to the mirror manufacturing defects, which are not

erasable. As a consequence, a suitable optical cavity for application in NBI systems can be a

refolded cavity where the refolding number is the most convenient in terms of total cavity losses.

It might be worth noticing here that, as it has been already showed above, the laser power lost

because of the deuterium ion photo-neutralization is quite low, so that, if the laser beam is made

to cross the ion beam several times, like in the case of a refolded cavity, the intracavity laser

power would not change appreciably.

Figure 1.7: deuterium ion beam and laser beam overlap in a refolded cavity [19] - The
picture show the overlap between the negative deuterium ion beam and the laser beam. The quantity
d is the ion beam width, while the yellow arrow represent the propagation direction of the negative
ion beam. The drawn cavity has three refoldings, as it is possible to see from the fact the beam cross
three times the ion beam

1.4 Nuclear fusion reactor results and projects

So far, the main results concerning nuclear fusion have been reached with the JET (Joint Euro-

pean Torus) experimental reactor [27], [28]. The tokamak of JET presents a plasma volume of

100 m3, its magnetic system is compounded of 32 coils producing a magnetic field of 3.4 T at

the plasma center. The JET tokamak has also been a test for the technologies concerning the

tritium treatment (mainly storage and injection within the plasma). In 1997, the JET reactor

achieved the world record for the production of 16 MW of nuclear fusion, with a corresponding

amplification factor of Q = 0.65. Another important experiment to improve the technology

used in the fusion reactors is the French tokamak Tore Supra [11], [14]. Its principal aim is to
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demonstrate the possibility of realizing a plasma of long duration. The plasma volume in Tore

Supra is about five times less than the one of the JET experiment and its magnetic field is 4.2

T. The optimum results was obtained in 2003, when a plasma discharge lasted 6.5 minutes, by

fixing the world record for the plasma duration. After these first encouraging results an interna-

tional collaboration begun in 1980 for demonstrating the possibility of using the power produced

through fusion as energy source. Hence, the ITER ( International Thermonuclear Experimen-

tal Reactor) project was started with cooperation of USA, Europe, Canada, Japan and Soviet

Union [29]. The ITER tokamak will have a plasma volume of about 800 m3 and the magnetic

field will be around 5.3 T. The main task is the production of 500 MW of nuclear fusion power

for about 500 seconds, with an amplification factor of Q ∼ 10. This value for the Q factor is still

too low to allow the connection of the reactor to the electric grid, as it is not advantageous. For

this reason, another project is already under study, which concerns the realization of the first

reactor for a demonstrative power plant based on the production of nuclear fusion energy. This

is the next step to ITER and it is know as DEMO (DEMOnstration Power Plant) [30], [31]. The

DEMO nuclear fusion power production should be of about 2.4 GW, on a continual basis, with

an amplification factor of Q = 25. With this values, the electrical power generated by DEMO

is expected to be around 1 GW. The power lost in the conversion of the produced fusion power

in electrical power does not add, in principle, further costs; this explains why it is important

to increase the Q factor. The enhancement of the amplification factor in DEMO rests mainly

on the possibility of improving the technique concerning the plasma heating systems. As it has

been already pointed out in the previous section, in this respect, the NBI system, which is the

only heating mechanism placed far from the plasma confinement region, appears to be the most

interesting for operating convenient ameliorations. In particular, in order to pass from the ITER

amplification factor to a suitable Q factor for DEMO, the overall NBI system efficiency must

become higher than at least 25%. The most promising idea to improve the NBI system efficiency

seems to be the replacement of the neutralizer gas cell, which is used in the case of the ITER

NBI system [32], [19], [33], with a neutralizer based on the photo detachment, as it has been

illustrated previously. Indeed, feasibility study have demonstrated that the application of the

photo-neutralization can allow to reach overall NBI system efficiency up to 80%. In this respect,

a project called SIPHORE (SIngle gap PHOtoneutralizer energy RE-covery injector) has been

elaborated, which appears to be an appropriate model for the NBI system of the DEMO reactor

[19], [34]. In the SIPHORE scheme, the negative deuterium ions extracted from the source are

pre-accelerated in a multi-aperture system which brings the ions to the energy of 100 keV. Hence,
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the ion beams which exit the pre-accelerator are collected in a single beam which is accelerated

to the energy of 1 MeV, by applying a single stage electrostatic accelerator. This is why the

expression single gap is present in the name of the project, it is referred to the characteristics of

the ion accelerator. In this respect, it is noticed that this kind of accelerators cannot be applied

in the ITER NBI system, due to the large amount of stripping reactions caused mainly by the

gas injected into the neutralization cell. After the acceleration, the resulting high energetic

negative deuterium ions are neutralized by using the photo-detachment principles, realized with

the implementation of a suitable optical cavity, that is why the name of the project also contains

the term photoneutralizer. Eventually, the energy of the ions which are not neutralized, after

passing through the photo-neutralizer, is recovered by applying a dedicated system, this is the

reason for the expression energy re-covery to be present in the project name. It is observed that

such a recovery system could not be used in the ITER NBI system, because of the presence of a

secondary plasma, generated by the interaction of the high energetic deuterium ion beam with

the gas of the neutralizer, which diffuse within and outside the neutralization cell. A possible

design for the SIPHORE NBI system [19], proposed for the DEMO reactor, is illustrated in

figure (1.8).

The work presented in the following chapters is part of the SIPHORE project. In particular, its

aim is to demonstrate the possibility of realizing an optical cavity with suitable properties for

applications in the neutralizer of SIPHORE and, more generally, for the photo-neutralization of

negative deuterium ion beams within the context of the NBI systems of the future generation

of nuclear fusion reactors, such as DEMO. The issue of the optical cavity losses due to the high

thermal load on the cavity mirror will be also addressed, in order to find an effective solution to

the problem.
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Figure 1.8: Scheme of the SIPHORE NBI system [19] - The explication of the different
parts of the injector can be found within the text.

54



Chapter 2

Optical Cavity Design Proposal

In this chapter, it is reported on the design of an optical cavity with properties suitable for

applications in NBI systems of the next generation of nuclear fusion reactors. In particular, it

has been found that the requirements for NBI system applications would be accommodated by a

two mirror cavity, with length of 100m [19], [35]. However, an optical cavity with this dimensions

could lead to deal with encumbrance problems, if there is not enough space availability. Hence,

a proposal for an optical resonator, which satisfies all the requisites for the photo-neutralization

applications on a smaller length, will be presented, with respect to the theoretical determination

of its design, its realization in our laboratory and the experimental tests on it.

It is worth noticing that the first section of the current chapter is dedicated to the recall

of the main aspects of an optical resonator. Furthermore, in appendix (A) the mathematical

description of laser beams is reported, where definitions useful to the comprehension of the

chapter are introduced.

2.1 Optical cavities

An optical cavity is a system of optical components, such as mirrors, allowing the formation

of a light standing wave in a path defined through the optical components. In the simplest

configuration, an optical cavity is compounded of two mirrors, M1 and M2, with reflection

coefficients r1 and r2, respectively, facing each others and separated by a distance L. The

balance equation for M1 and M2 can then be written as [48]:

r21 + t21 = 1− p1, (2.1)
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r22 + t22 = 1− p2. (2.2)

where t1, p1 and t2, p2 are the transmission coefficient and the losses forM1 andM2, respectively.

It is assumed that a steady state optical signal, Einc, is incident onM1, while the electromagnetic

wave amplitude circulating within the resonator, as taken inside M1, is denoted as Ecir, see

picture (2.1). The latter quantity is obtained by the sum of the transmitted signal through M1,

it1Einc, and the circulating signal which has left the point just after M1, one round trip earlier,

multiplied for the gain factor of the cavity, for each round trip, g(ω) = r2r1e
−i 2ωL

c [49], i.e.:

Ecir = it1Einc + r2r1e
−i 2ωL

c Ecir. (2.3)

It is worth noticing that, in the assumed convention, the reflection and transmission coefficients

are purely real, and the transmission coefficients have an additional factor i associated with

them. From equation (2.3), it is obtained:

Figure 2.1: Two mirror optical cavity scheme, from [49] - Scheme of the two mirror cavity,
where r1 is the reflection coefficient of the mirror M1 and r2 is the reflection coefficient of the mirror
M2. The incident beam is indicated as Einc, Er represents the reflected field, Et is the transmitted
field and the circulating wave amplitude is labeled as Ecir, while g(ω) is the cavity gain factor for

each round trip, i.e. g(ω) = r2r1e
−i 2ωL

c .

Ecir =
it1Einc

1− r2r1e
−i 2ωL

c

, (2.4)

where the ratio Ecir/Einc is the enhancement factor, S, which describes the power gain of the

optical cavity, namely:

|S|2 =
|Ecir|

2

|Einc|2
=

t21
1 + (r2r1)2 − 2r2r1 cos

�
2ωL
c

� , (2.5)

hence:

|S|2 =
|Ecir|

2

|Einc|2
=

t21
(1− r2r1)2 + 4r2r1 sin

2
�
2ωL
2c

� . (2.6)
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Equation (2.6) shows that the maximum cavity gain is obtain when ω ≡ ωres, where ωres =

[c/(2L)]2nπ is the resonance frequency, with n an integer number, so that:

|Smax|
2 =

t21
(1− r2r1)2

, (2.7)

with |Smax|
2 the power gain of the optical cavity at the resonance. Furthermore, from equation

(2.6):

|S|2 =
|Ecir|

2

|Einc|2
=

t21
(1− r2r1)2

1

1 + 4 r2r1
(1−r2r1)2

sin2
�
2ωL
2c

� = |Smax|
2

1 +
�
2F

π
sin
�
2ωL
2c

��2 , (2.8)

where the quantity F is the Finesse of the cavity, i.e.:

F =
π
√
r2r1

1− r2r1
. (2.9)

The finesse of an optical cavity can be interpreted as the number of round-trips of a photon

before escaping from the cavity. To make clear this point, it is observed that the frequency

separation between two consecutive cavity resonances, i.e. the free spectral range, is:

∆νFSR =
c

2L
, (2.10)

while equation (2.8) defines the following full width of the resonance at half maximum (FWHM),

δνFWHM :

δνFWHM =
∆νFSR

F
. (2.11)

The lifetime of the photon within the cavity, τp, is defined through the relation below [50], [51],

[52] [53]:

δνFWHM =
1

2πτp
, (2.12)

hence:

τp =

√
r2r1

1− r2r1

L

c
(2.13)

and the number of round trips a photon can do within the cavity is [54]:

τp

2L/c
=

F

2π
, (2.14)

which is proportional to the cavity finesse.
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In what follow, the expressions for the power circulating within the cavity at resonance, the

transmitted and reflected power by the cavity are evaluated.

As far as the power circulating within the cavity at the resonance is concerned, from equation

(2.7), it is:

Pres = Pinc|Smax|
2 = Pinc

t21
(1− r2r1)2

. (2.15)

The field transmitted by the cavity is:

Et = it2e
−iωL

c Ecir = −e−iωL
c

t1t2Einc

1− r2r1e
−i 2ωL

c

, (2.16)

therefore, the transmitted power is:

Pt = Pinc

����
Et

Einc

����
2

= Pinc
(t1t2)

2

(1− r2r1)2
1

1 + 4 r2r1
(1−r2r1)2

sin2
�
ωL
c

� . (2.17)

For the field reflected by the cavity, one has:

Er = r1Einc + it1r2e
−i 2ωL

c Ecir = r1Einc − e−i 2ωL
c

r2t
2
1Einc

1− r2r1e
−i 2ωL

c

. (2.18)

Analogously to the transmitted power, the reflected power expression is:

Pr = Pinc

����
Er

Einc

����
2

= Pinc
r21 + r22(1− p1)

2 − 2r1r2(1− p1) cos
�
2Lω
c

�

(1− r2r1)2 + 4r2r1 sin
2
�
2ωL
2c

� , (2.19)

with |Er/Einc|
2 obtained from equation (2.18).

An optical cavity is said stable if the intracavity laser beam is periodically refocused, so that

it can be trapped inside the cavity. For a two mirror resonator, the stability condition is defined

through the introduction of the so called mirror g-factors. Particularly, if R1 is the curvature

radius of M1, R2 is the curvature radius of M2 and L, as usual, is the distance between the two

mirrors, the g-factor for M1 is:

g1 = 1− L

R1
, (2.20)

while, for M2:

g2 = 1− L

R2
. (2.21)
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The stability criterion reads then:

0 < g1g2 < 1. (2.22)

The trapped gaussian beam has a unique waist, which can be expressed by using g1 and g2,

namely:

w2
0 =

Lλ

π

�
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
, (2.23)

with λ the laser wavelength.

Furthermore, the w0 distance from M1, d1, can also be calculated through g1, g2, indeed:

d1 =
g2(1− g1)

g1 + g2 − 2g1g2
L, (2.24)

analogously, for the distance of w0 from M2, d2, it is:

d2 =
g1(1− g2)

g1 + g2 − 2g1g2
L. (2.25)

The stability criterion (2.22) can also be written in terms of the Gouy phase. Indeed, the Gouy

phase accumulated in one round trip within the cavity by the laser beam can be written as [49]:

ΦG = 2arccos(±
√
g1g2), (2.26)

hence:

cosΦG = cos (2 arccos (±
√
g1g2)) = 2 cos2 (arccos (±

√
g1g2))− 1 = 2g1g2 − 1. (2.27)

Relation (2.22) gives then constraints on the Gouy phase values for stable optical cavities,

namely:

0 <
cosΦG + 1

2
< 1. (2.28)

To conclude this section, it is observed that the total round trip on-axis longitudinal phase shift

of the laser beam is:

Ψ = 2kL− (N + 1)× ΦG, (2.29)

where k = 2π/λ, with λ the laser wavelength, N is the order of the mode taken into account,

i.e. N = n+m for Hermite-Gaussian beam and N = 2p+ |m| for Laguerre-Gaussian beam, and

ΦG is the total Gouy phase shift in one round trip. A laser beam resonating within the cavity
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if its total on axis phase shift after one round trip is 2πq, with q integer, hence [52]:

ν = ∆νFSR

�
q +

(N + 1)

2π
× ΦG,

�
, (2.30)

where ν is the resonance frequency of the mode N and ∆νFSR has been introduced above. The

previous relation illustrates that the resonance frequency depends on the order of the considered

propagation mode. Modes with the same value of N and different q are known as longitudinal

modes and they have identical intensity distributions. Modes with different N values have

different transverse intensity profiles. In particular, through equation (2.30), it is possible to

check that the resonance frequencies of two transverse modes N , N � with same longitudinal

mode, namely with the same value of q, are spaced by:

νN − νN � = [N −N �]
ΦG

2π
∆νFSR. (2.31)

The previous relation makes clear that in order to have a unique transverse mode resonating

within the cavity, the Gouy phase accumulated in one round trip within the resonator must

have appropriate values. Indeed, if ΦG is too small, all the transverse modes can in principle

resonate inside the cavity, at the same time, as it can be checked from equation (2.31), by setting

ΦG ∼ 0. Analogously, if ΦG ∼ 2nπ, with n=±1,±2..., all the modes have resonance frequencies

spaced by about a multiple of ∆νFSR, and they have then resonance frequencies close to the ones

of the fundamental mode, with the same effect described above that all the transverse modes

could resonate at the same time. A cavity where all the transverse modes resonate is referred

to as degenerate optical cavity. It is worth noticing that a degenerate cavity is not stable, as

it can be easily checked by imposing ΦG = 0 or ΦG = 2nπ, with n=±1,±2..., in equation

(2.28). Nevertheless, if ΦG ∼ 0 or ΦG ∼ 2nπ, with n=±1,±2..., the cavity can allows the

contemporaneous resonance of several transverse modes and it is said marginally stable optical

cavity.

2.2 Optical cavity design for NBI system applications

As it has been pointed out in chapter (1), an optical cavity dedicated to the photo-neutralization

of negative deuterium ion beams, in the context of NBI systems, must be able to store a high

level of intracavity power. Therefore, the cavity mirrors will undergo thermal effects, such as

distortions of their reflecting surface. It has been showed, (see Ref. [55], [56]), that a degenerate
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cavity would enhance thermal effect issues, indeed, perturbations of the cavity geometry can

easily lead to power transfer from the fundamental mode to higher-order modes. In turns, the

contamination of higher-order modes on one hand reduces the coupling of the field resonating

within the cavity, with the consequence of decreasing its optical gain, on the other hand it

changes its spatial distribution. A suitable optical cavity for application in NBI system must

then be a non-degenerated optical cavity, which allows an efficient suppression of the higher

order mode resonance [55]. As it has been shown in the previous section, this means that the

Gouy phase accumulated in one round trip within the resonator, ΦG, must have a suitable

value, neither too small nor too large, so that the cavity will be stable. Further properties for

an optical cavity for applications in NBI systems have been discussed in section (1.3). They are

synthesized in the following:

• constant intracavity laser beam section, within a percent error of about 5%, to guarantee

the complete overlap of the ion beam;

• cavity refoldings to decrease the thermal load on the cavity mirrors, by reducing the intra-

cavity beam section, and to allows the complete overlap of the ion beam;

• high quality optics with low loss level to allow of reaching the required intracavity power;

• multi-metric cavity in order to keep the optics well outside the polluted (because of radia-

tions, gas, vibrations...) region, which could reduces their lifetime, and for the stabilization

of the cavity.

The appropriate number of cavity refoldings is obtained by a compromise, indeed, on one hand

the higher the number of the refoldings the lower can be the thermal load on the mirrors, hence

the thermal effects, on the other hand, the higher the refolding number the larger is the number of

cavity mirrors, hence the total cavity losses. For the SIPHORE injector a possible configuration

(Ref.[35]) corresponds to a four times refolded cavity with a total length of 100 m. In this respect,

picture (2.2) is reported, where the overlap between laser beam and ion beam is also showed.

The mirrors are all flat, but the end mirror, which is curve, with curvature radius Rf = 1000m.

The cavity is then equivalent to a stable two mirror cavity, whose g-factors are g1 = 1 and

g2 = 0.9, with waist on the flat mirror equal to 1cm. It is possible to check (see Ref.[49]) that

the maximum variation of the beam size inside the cavity is of about 5%. With a laser input

power of 1kW, this optical resonator can allow to reach an intracavity power of 3 MW, when

choosing opportunely the mirror optical properties (reflection and transmission coefficients, as
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it is showed in equations (2.15)) and by assuming to be able of correcting the mirror thermal

effects. It is important to point out that the saturation power, introduced in section (1.3)

through equation (1.24), is of ∼ 12 MW, when assuming v = 107ms−1, λ = 1064nm, d = 3cm

and σ = 4.5× 10−21m2. In this respect, it is observed that, because of the four cavity refoldings

and of the laser beam diameter of 2 cm, the laser power experimented by the ion beam is about

3 MW × 4= 12 MW. However, it might be possible that there will be encumbrance problems to

implement such a long cavity in NBI systems. Hence, in the following sections, a design for an

optical cavity of reduced size whose properties allow to maintain all the requirements mentioned

in this section, will be presented. In particular, the addressed optical resonator is compounded

of three mirrors, where two of them are used to form a telescope which has the aim of stabilizing

the cavity, through the definition of an appropriate value for the Gouy phase accumulated in

one cavity round trip, and to control the intracavity beam size (see Ref. [57], [58], [59]).

2.3 Optical resonator with telescope

An optical resonator incorporating a telescope is taken into account, in the current section, to

the aim of demonstrating the possibility of realizing an optical cavity with suitable properties for

application in NBI systems and with reduced size with respect to the 100m long optical cavity

described in the previous section. Indeed, the telescope, on one hand, consents to control the

beam size, on the other hand, allows to accumulate an appropriate value for the Gouy phase shift

on one complete round trip, so that the cavity results stable. In particular, the optical resonator

of picture (2.3) is addressed, where mirrors M1 and M2 are used to form the telescope, and one

flat mirror, M3, constitutes the end mirror of the cavity. Nevertheless, the considered optical

system would have analogous properties, if more flat mirrors are added, after the telescope, to

refold the cavity. With reference to picture (2.3), it is assumed that M1 has curvature radius

R1 = 15cm, while for M2 it is R2 = 100 cm and M3 has infinitive curvature radius. In addition,

it is possible to set the distance between M2 and M3, L2, equal to 100cm. It is worth noticing

that the chosen value for L2 is based on the consideration that the determined cavity must

be reproduced in our laboratory to test it, hence its dimensions must fit the space availability.

Analogously, quite common values for R1 and R2 have been chosen, in order to ensure their

availability at the moment of the cavity building in our laboratory. The design determined for

the considered optical cavity can then be scaled in order to find a resonator length suitable

for NBI system applications. The length L1 is the quantity we have to determine so that the
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Figure 2.2: Optimum geometry of the cavity for the Siphore injector - The intracavity
beam is refolded four times to cover the whole ion beam width of 3 cm.
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optical cavity has appropriate characteristics for applications in NBI systems. In this respect,

relation (2.27) can be used to write the stability condition for a multi-mirror resonator. Indeed,

in analogy with the two mirror cavity theory, it is possible to write:

cosΦG = 2g − 1, (2.32)

where ΦG is the Gouy phase cumulated within the considered resonator, on one complete round

trip, and g can be considered as the generalized g-factor of the multi-mirror cavity. In order

to be well inside the stability region, it is imposed: 0.02 ≤ g ≤ 0.98, therefore, from equation

(2.32), it results:

Figure 2.3: Design of an optical cavity with telescope - The mirror M1 and M2 are used to
compound a telescope which magnifies the beam size and allow to fix a round trip Gouy phase shift
appropriate to stabilize the cavity.

−0.96 ≤ cosΦG ≤ 0.96. (2.33)

In addition to the stability requirement, along the length L2 the laser beam size must be constant,

as this part of the cavity should be involved in the photo-detachment process. This condition

can be translated in a mathematical form by imposing:

| w3 − w�
3 |

w3
< 5%, (2.34)
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where w3 and w�
3 correspond to the beam spot on M3 and on M2, respectively. Another

condition to impose concerns the beam size on the length between M2 and M3. It is set:

w3 ∼ 2 mm. (2.35)

Indeed, the Gouy phase is defined through equation (A.17) and, as it has been already showed,

it expresses the cavity stability. As a consequence, if the beam waist of the cavity, along L2,

w3, is scaled of a factor ρ, because of the Rayleigh length dependence on the beam waist (see

appendix (A)), the length L2 must be changed of a factor ρ2 to maintain the same stability

conditions, for the scaled resonator. In this respect, if a beam waist of 1 cm is required, as for

the case of the cavity for applications in NBI systems, condition (2.35) leads to cavity lengths

significantly smaller than 100 m. Particularly, if a solution for L1 is found so that w3 ≡ 2mm,

the scale factor to obtain a waist of 1 cm is 5, then L2 for the scaled cavity would be 52 × 1m

=25 m. The properties of the telescope compounded by M1 and M2 can be adapted in order to

match the scaled cavity beam mode, along L2, as it is showed in section (2.3.14). Furthermore,

because of the chosen values for the mirror curvature radii and for the beam size along L2, the

waist between M1 and M2 is of about few hundred µm. Indeed, in the condition of small focal

length of M2, f = R2/2, with respect to the Raleigh length associated with the w3 size, as given

in relation (2.35), the expression for the waist between M1 and M2 can be approximated as:

w01 =
λR2

2πw3
∼ 85µm. (2.36)

In order to verify that the region of the cavity delimited by M1 and M2 magnifies the beam size,

the ratio w3/w1, with w1 the beam radius on M1, is evaluated, to check if it is:

w3

w1
> few units. (2.37)

To determine the appropriate value of L1, which satisfies all the introduced conditions (2.33),

(2.34), (2.35), (2.37), the ABCD matrix formalism is used. In addition, it is observed that the

design of the cavity shows the presence of astigmatism issues due to the presence of the θ angle

[60]. However, it is assumed θ << 1. Hence, the L1 distance is determined when assuming

θ ≡ 0, then the results obtained for the case without astigmatism are corrected, for a particular

value of the θ angle.
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2.3.1 ABCD Matrix formalism

In the paraxial approximation, the propagation of Gaussian beams through an optical system

can be described by the ABCD matrix formalism or ray transfer matrix formalism, where the

effect of each optical element on the laser beam is given by a 2 × 2 matrix. Particularly, the

matrices for the propagation through a lens, with focal length f is:

L =

�
1 0

− 1
f 1

�
, (2.38)

which also give the propagation through a mirror of curvature radius R, by substituting the

focal length f , with R, knowing that f = R/2. It is assumed f positive for converging lenses

and R positive for concave mirror. As far as the ABCD matrix for the propagation in the free

space is concerned, for a length d, this is:

D =

�
1 d

0 1

�
. (2.39)

The passage of a laser beam through a system of optical elements is described by the ABCD

matrix product. For example, for a beam which passes through a lens of focal length f and then

propagates over a distance d, the complete ABCD matrix for the system, M , is obtained by:

M =

�
1− d

f d

− 1
f 1

�
= DL =

�
1 d

0 1

��
1 0

− 1
f 1

�
. (2.40)

The so called ABCD law links the q-parameter of a Gaussian beam before passing through an

optical system described by an ABCD matrix, and its q-parameter after passing through the

optical system, q�. If q0 is the initial q-parameter of the Gaussian beam, the ABCD law reads:

q� =
Aq0 +B

Cq0 +D
. (2.41)

It is worth observing that if M is the ABCD matrix, with all real elements, which describes a

complete round trip within an optical resonator, the existence of a confined and stable Gaussian

mode solution of the cavity is guaranteed by the following condition [49], [61]:

����
A+D

2

���� < 1. (2.42)

66



2.3

An optical resonator for which the previous condition holds is stable both in the sense that it

is a focusing system and in the sense that small perturbations of the mode injected into the

resonator, with respect to the cavity mode, and of the mirror alignment are suppressed (see

Ref.[49]).

2.3.2 Optical cavity analysis through ABCD matrix formalism

In order to analyze the properties of the cavity under study, in the current section, the ABCD

matrix method introduced above is applied. With reference to figure (2.3), by fixing as initial

point the one just before the reflection on M1, the matrix elements for a complete round trip

within the resonator are given by the matrix product:

Mrt =

�
Art Brt

Crt Drt

�
=

�
1 L1

0 1

��
1 0

− 2
R2

1

��
1 L2

0 1

��
1 0

0 1

��
1 L2

0 1

�
×

×

�
1 0

− 2
R2

1

��
1 L1

0 1

��
1 0

− 2
R1

1

�
,

(2.43)

therefore:

Art =
L2
1(8R2−16L2)

R1R2
2

+
L1(16L2R2+8L2R1−4R2

2−4R1R2)
R1R2

2
+

−4L2R2
2−4L2R1R2+R1R2

2

R1R2
2

,

Brt = L2
1

�
8L2

R2
2
− 4

R2

�
+ L1

�
2− 8L2

R2

�
+ 2L2,

Crt =
8L1(R2−2L2)

R1R2
2

+ 8L2(R1+R2)−2R2(2R1+R2)
R1R2

2
,

Drt = 1− 4L2
R2

+ L1

�
8L2

R2
2
− 4

R2

�
.

(2.44)

For the chosen values of R1, R2 and L2, it is found:

Mrt =



Art = −89

3 + 21L1
25 −2L2

1
375 Brt = 200− 6L1 +

L2
1

25

Crt =
11
25 − 2L1

375 Drt = −3 + L1
25


 (2.45)

It is possible to obtain the q parameter on the mirror M1, q1 = z1 + iz1R, through the Mrt
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matrix by using the ABCD law:

q� =
Artq0 +Brt

Crtq0 +Drt
. (2.46)

Indeed, for a complete round trip of the laser beam within the resonator, the consistency con-

dition for the q parameter must be verified, i.e. it has to be q� = q0 = q. Hence, q1 can be

determined by solving the following equation:

q1 =
Artq1 +Brt

Crtq1 +Drt
. (2.47)

Onces q1 is obtained, the value of the q parameter in any other position of the optical cavity

can be calculated. The solutions of equation (2.47) are given by:

1

q1a,1b
=

Art −Drt

2Brt
∓ 1

Brt

��
Art +Drt

2

�2

− 1. (2.48)

Only one between the previous two results represents a physical solution carrying finite power.

Between 1
q1a

and 1
q1b

, the one which has a negative imaginary part has to be chosen [49]. Hence

the solution can be written as:

1

q1
=

Art −Drt

2Brt
− i

|Brt|

�

1−
�
Art +Drt

2

�2

, (2.49)

where it must be:

1−
�
Art +Drt

2

�2

> 0, (2.50)

indeed, if, in the last relation, the opposite inequality holds, no confined modes exist for the

considered resonator. It is observed that relation (2.50) implies the stability of the resonator,

in agreement with equation (2.42), and it gives an additional condition to determine L1. From

equation (2.49), it results:

q1 =
2Brt(Drt −Art)

(Drt −Art)2 + 4
�
1−
�
Art+Drt

2

�2� +
i4|Brt|

�
1−
�
Art+Drt

2

�2

(Drt −Art)2 + 4
�
1−
�
Art+Drt

2

�2� , (2.51)

so:

z1 =
2Brt(Drt −Art)

(Drt −Art)2 + 4
�
1−
�
Art+Drt

2

�2� , (2.52)
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and:

z1R =
4|Brt|

�
1−
�
Art+Drt

2

�2

(Drt −Art)2 + 4
�
1−
�
Art+Drt

2

�2� . (2.53)

It is worth noticing that z1 gives the distance of M1 from the beam waist which is between M1

and M2. As far as the Gouy phase in the M1 position is concerned, it reads:

φ1 = arctan

�
z1
z1R

�
. (2.54)

As q1 can now be calculated, the q-parameter in any other position inside the cavity can be

evaluated, by using the correct ABCD matrix elements and relation (2.46). As a consequence,

if q� = z� + iz�R is the q-parameter in a generic position inside the cavity, and A�B�C �D� is the

matrix of the appropriated optical system, the following relations are obtained:

z� =
A�C �(z21 + z21R) + (A�D� +B�C �)z1 +B�D�

(C �z1 +D�)2 + z21RC
�2

, (2.55)

z�R =
z21R

(C �z1 +D�)2 + z21RC
�2

(2.56)

In order to calculate the Gouy phase accumulated within the resonator, the knowledge of the

q-parameter in the M3 position, q3 = z�3+ iz�3R, is required. So, the appropriate matrix elements

have to be evaluated and they are obtained through the following matrix product:

M3 =

�
1 L2

0 1

��
1 0

− 2
R2

1

��
1 L1

0 1

��
1 0

− 2
R1

1

�
,

hence, for the values introduced before for R1, R2, L2, it results:

M3 =



A3 = −43

3 + 2L1
15 B3 = 100− L1

C3 = − 23
150 + L1

375 D3 = 1− L1
50


 . (2.57)

It is observed that, by using the last matrix elements together with equation (2.55) and equation

(2.56), the quantities z�3 and z�3R, entering the definition of the q-parameter on M3, that is
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q3 = z�3 + iz�3R, can be written as function of L1.

2.3.3 Determination of L1

As it has been already pointed out, the case without astigmatism is firstly taken into account.

Therefore, once the distance between M1 and M2, L1, is determined, the design of the optical

cavity in figure (2.3) is completely known. To obtain possible values of L1, firstly condition

(2.50) is solved, by considering the Art and Drt matrix elements reported in equation (2.45).

Then, it results:

50 < L1 < 65 ∪ 100 < L1 < 115. (2.58)

To restrict L1 inside a smaller range, the other conditions introduced at the beginning of section

(2.3) are taken into account to verify for which L1 values they are better satisfied.

2.3.4 Gouy phase calculation

The Gouy phase accumulated inside the optical cavity has to be calculated in order to verify if

condition (2.33) is satisfied. In what follows, figure (2.4) will be addressed. When the ABCD

Figure 2.4: Optical system equivalent to the cavity in figure (2.3). - Equivalent optical
system compounded of lenses for the optical cavity of picture (2.3).

law is applied to calculate the q-parameter in a generic position, the obtained z value is the

considered generic position in a reference frame with origin on the beam waist position. The

presence of the lens T1 changes the reference point along the z axis, as a second waist in the

position indicated as z� = 0 is present. Therefore, for the Gouy phase shift, it is possible to
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write: 



φ(z) = arctan
�

z
z1R

�
if −z1 < z < L1 − z1

φ(z�) = const+ arctan
�

z�

z�3R

�
if −L2 < z� < 0

(2.59)

where z1 and z1R are given by equations (2.52), (2.53) respectively, and z�3R is obtained by using

equations (2.56), (2.57). The constant in relation (2.59) is due to the fact that the Gouy phase

must be continuum.

As:

z = (L1 − z1) + z�0 + z�, (2.60)

it is possible to write the second of relations (2.59) as a function of z, i.e.:

const+ arctan

�
z − (L1 − z1)− z�0

z�3R

�
, (2.61)

so that, in order to have the continuity of the Gouy phase in the position z = L1 − z1, the

following equation must hold:

arctan

�
L1 − z1
z1R

�
= const+ arctan

�
−L2

z�3R

�
, (2.62)

then:

const = arctan

�
L1 − z1
z1R

�
+ arctan

�
L2

z�3R

�
, (2.63)

where it has been considered that z�0 = L2. The Gouy phase accumulated inside the cavity is:

ΦG = 2[φ(L1 − z1 + L2)− φ(−z1)]. (2.64)

By using the formulas obtained above, it is possible to check the last relation reads:

ΦG = 2

�
arctan

�
L1 − z1
z1R

�
+ arctan

�
L2

z�3R

�
+ arctan

�
z1
z1R

��
. (2.65)

Hence, equation (2.65) has to be calculated as function of L1 to obtain the range of L1 values

for which condition (2.33) is satisfied. For the sake of completeness, it is observed that the Gouy

phase shift for one complete round trip in a multi-mirror optical resonator can also be obtained
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from the following relation (see Ref. [49]):

cosΦG =
A+D

2
=⇒ ΦG = arctan


±

�
1−
�
A+D
2

�2

A+D
2


, (2.66)

where A and D are the ABCD matrix elements for one round trip within the optical cavity. It

is possible to check that the last equation and relation (2.65) give the same results. However,

for the presented theoretical determination of the cavity design, equation (2.65) is used.

2.3.5 Calculations of the intracavity beam conditions

In addition to the constraint (2.33), the range of possible L1 values is determined by requiring

the validity of conditions (2.34), (2.35), (2.37). In order to verify for which values of L1 condition

(2.34) is satisfied, w3 and w�
3 are expressed as function of L1 by using the results for z�3R and

z�3, as obtained from the application of equations (2.55), (2.56), (2.57), and by applying the

following law for the free propagation:

w(z) = w0

�

1 +

�
z

zR

�2

, (2.67)

which is written for the more general case. As the beam waist position along L2 is on M3, it is:

w3 = w03

�

1 +

�
z�3
z�3R

�2

≡ w03, (2.68)

where:

w03 =

��
z�3R λ

π

�
, (2.69)

λ = 1.064× 10−4 cm, (2.70)

and:

w�
3 = w03

�

1 +

�
−L2

z�3R

�2

. (2.71)

To check for which values of L1 the condition given in equation (2.37) is satisfied, w1 as well has

to be expressed as a function of L1. This can be done, by using equations (2.52), (2.53), (2.67),
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hence:

w1 = w01

�

1 +

�
z1
z1R

�2

, (2.72)

where:

w01 =

��
z1R λ

π

�
, (2.73)

with the same value assumed above for λ. As it has been already clarified how to express w3 as

function of L1, condition (2.35) can now be written in terms of L1 as well.

2.3.6 Results for 100 cm < L1 < 115 cm

As it is shown in figure (2.5), there are no values of L1 between 100 cm and 115 cm, for which

all the conditions (2.33), (2.34), (2.35), (2.37) can be satisfied at the same time. So the range

50 cm < L1 < 65 cm has to be taken into account.

2.3.7 Results for 50 cm < L1 < 65 cm

In the case 50 cm < L1 < 65 cm, it is possible to find values of L1 which satisfy all the properties

required for the cavity in figure (2.3). This can be seen in figure (2.6).

2.3.8 Results for L1= 50.7 cm

With reference to the results reported in picture (2.6), it is decided to set L1 = 50.7 cm. Indeed,

in this case, on one hand w3 is quite close to 2 mm; on the other hand, conditions (2.33), (2.34),

(2.37) are properly satisfied. Nevertheless, it is worth noticing that other values for L1 might

be possible. In what follows, the results for the specific case of L1 = 50.7 cm are reported:

ΦG = 3.637 rad; (2.74)

w3 = 1.74 mm; (2.75)

w3

w1
= 17.5; (2.76)
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Figure 2.5: Results for the conditions required for the optical cavity for the case 100
cm < L1 < 115 cm. - Left-hand side of the picture: on the top, plot of cosine of the Gouy
phase, as obtained by applying equation (2.65), vs. L1; on the bottom, condition (2.35) vs. L1.
Right-hand side of the picture: on the top, plot of condition (2.34) vs. L1; on the bottom, plot
of condition (2.37) vs. L1.
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Figure 2.6: Results for the conditions required for the optical cavity for the case 50
cm < L1 < 65 cm. - Left-hand side of the picture: on the top, plot of cosine of the Gouy
phase, as obtained by applying equation (2.65), vs. L1; on the bottom, condition (2.35) vs. L1.
Right-hand side of the picture: on the top, plot of condition (2.34) vs. L1; on the bottom, plot
of condition (2.37) vs. L1.
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|w3 − w�
3|

w3
= 0.006. (2.77)

For this specific value of L1, it is possible to plot the behavior of the Gouy phase along the

optical cavity. If it is set (see equations (2.59), (2.60), (2.61), (2.63)):





φ(z) = arctan
�

z
z1R

�
−z1 < z < L1 − z1

φ(z) = const+ arctan
�
z−(L1−z1)−L2

z�3R

�
L1 − z1 < z < L2 + L1 − z1

(2.78)

where:

const = arctan

�
L1 − z1
z1R

�
+ arctan

�
L2

z�3R

�
, (2.79)

the behavior showed in figure (2.7) is obtained for relations (2.78).

Figure 2.7: Gouy phase shift from one end to the other of the cavity - Behaviour of the
Gouy phase as given by relation (2.78) vs. the z-coordinate.

2.3.9 Astigmatism

The astigmatism issue for the cavity in figure (2.3) is now taken into account. In this respect, it

is observed that an angle, θ, is present between the incident beam on M2 and the beam reflected

by the same mirror. As a consequence, the ABCD matrix for the curved mirror, M2, changes.

Particularly, it is:

Mt =

�
1 0

− 2
R2 cos θ

1

�
, (2.80)
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and:

Ms =

�
1 0

−2 cos θ
R2

1

�
, (2.81)

where t and s refer to the tangential and sagittal planes, with respect to the incidence one,

respectively, and θ is shown in figure (2.3).

The beam mode is different in the tangential and sagittal plane, indeed, for instance, equation

(2.43) divides in two relations, one for the tangential and one for the sagittal plane (Ref. [60]):

Mrtt =

�
1 L1

0 1

��
1 0

− 2
R2 cos θ

1

��
1 L2

0 1

��
1 0

0 1

��
1 L2

0 1

�
×

×

�
1 0

− 2
R2 cos θ

1

��
1 L1

0 1

��
1 0

− 2
R1

1

�
,

(2.82)

Mrts =

�
1 L1

0 1

��
1 0

−2 cos θ
R2

1

��
1 L2

0 1

��
1 0

0 1

��
1 L2

0 1

�
×

×

�
1 0

−2 cos θ
R2

1

��
1 L1

0 1

��
1 0

− 2
R1

1

�
.

(2.83)

2.3.10 Estimate of the minimum angle on M2

An estimate of the minimum angle θ, illustrated in picture (2.3), is now carried on. To this aim,

the case of L1 = 50.7 cm is considered and the diameter of the mirror M1 is fixed to 1.27 cm.

Figure (2.8) is now addressed, where the quantity R is introduced. As θ is small, the following

relation holds:

R cos θ = w3 → R ∼ w3, (2.84)

as a consequence, the smallest distance, d, between the center of the mirror M1 and the center

of the beam along L2 can be defined in the following way:

d = 0.635cm + 2.63w3, (2.85)

where 2.63 is the parameter corresponding to 1 ppm of clipping losses [55]. Particularly, in

this case, 2.63 corresponds to the ratio between the distance from the end of the mirror M1 to

the center of the beam and the Gaussian beam radius. Eventually, by setting w3 ∼ 0.17cm, it
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Figure 2.8: Estimate of the minimum angle on M2. - Estimate of minimum angle θ between
the incident beam on M2 and the reflected beam, for L1 = 50.7cm.

results:

L1 tan θ = d → θ = arctan
d

L1
≈ 0.02 rad. (2.86)

2.3.11 Results for L1 = 50.7 cm with astigmatism

In order to calculate conditions (2.33), (2.34), (2.37), (2.35), when considering astigmatism,

the same procedure introduced in the previous sections is applied. However, in this case, two

different results are obtained: one for the sagittal plane and one for the tangential one. It is

stressed that the formulas to calculate the Gouy phase accumulated inside the cavity and the

other conditions are the same. It is also observed that the experimental value of θ will be larger

than the one reported in equation (2.86). Particularly, it will be set θ � 0.05 rad, therefore the

calculation results presented below take into account this θ value and L1 = 50.7cm. In addition,

the reported value for the Gouy phase is the average between the tangential one and the sagittal

one.

ΦG = 3.636 rad; (2.87)

w3t = 1.70 mm; (2.88)

w3s = 1.78 mm; (2.89)
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�
w3

w1

�

t

= 16.7; (2.90)

�
w3

w1

�

s

= 18.4; (2.91)

�
|w3 − w�

3|

w3

�

t

= 0.007, (2.92)

�
|w3 − w�

3|

w3

�

s

= 0.006. (2.93)

2.3.12 Analysis of the ellipticity

As it has been already pointed out in section (2.3.2), ones q1 is known, it is possible to find

the q-parameter in any other position. Therefore, the ellipticity of the beam, due to the cavity

astigmatism, can be evaluated, for different positions inside the resonator. To this aim, it is

always assumed θ � 0.05 rad and L1 = 50.7cm. In particular, on mirror M1, it is :

w1t

w1s
= 1.047; (2.94)

the position of the beam waist from the mirror M1, as described by the matrix for the tangential

plane, is:

zw1t = 0.59 cm; (2.95)

the same quantity calculated with the matrix for the sagittal plane reads:

zw1s = 0.49 cm (2.96)

Just before the reflection on the mirror M2, it results:

w2pt

w2ps
= 0.956; (2.97)

the position of the beam waist from the mirrorM2, when considering the matrix for the tangential

plane, is:

zw2pt = 50.1 cm; (2.98)
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and, when using the matrix for the sagittal plane, is:

zw2ps = 50.2 cm. (2.99)

Just after the reflection on the mirror M2, it is again:

w2dt

w2ds
= 0.956; (2.100)

the distance of the second beam waist from the mirror M2, as described by the matrix for the

tangential plane and by the one of the sagittal plane is:

zw2dt
= zw2ds

= 100 cm. (2.101)

As far as the ellipticity on the mirror M3 is concerned, it is obtained:

w3t

w3s
= 0.956. (2.102)

The second beam waist is on the mirror M3 itself. In conclusion, the ellipticity of the beam

inside the cavity can be considered of about 4.5%. Because of this, it might be possible to see

higher order modes within the cavity.

2.3.13 Experimental Results for the determined optical cavity with telescope

In order to experimentally verify the results of the theoretical calculations carried on in the

previous sections, the described optical cavity has been built in our laboratory (see picture

(2.9)). For this purpose, we considered the intermediate values between the sagittal ones and

the tangential ones. The theoretical cavity waist along the length L1 is then assumed to be

97.3 µm. We worked with a fiber laser [62] whose wavelength is λ= 1064 nm and the waist,

measured with the Beam Scan and the dedicated software, after the collimator, is of 650 µm,

with an associated error equal to ±5% of its measured value. So, to inject the laser beam inside

the resonator, we realized an optical system before the first mirror of the cavity, M1, in order to

fit the laser beam waist to the cavity waist along L1. It is worth noticing that the fine alignment

of the cavity mirrors and the correct injection of the laser beam into the cavity have represented

the main difficulties in the optical cavity realization.

After building the cavity, experimental tests have been carried on in order to verify that the
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determined cavity was working as expected. In this respect, the cavity contrast for the funda-

mental mode, assumed to be resonating within the cavity, has been measured, as well as the

intracavity beam dimensions and the Gouy phase.

Figure 2.9: Scheme of the optical cavity - The complete scheme of the optical system before
the resonator and of the optical cavity is showed. It is pointed out that the label λ/2 stands for
half-wave plate; the index M indicates mirrors and L denotes lenses.

Measurement of the cavity contrast

The cavity contrast, C, has been evaluated by measuring the power reflected by the cavity from

mirror M1, (see picture 2.3), through the following formula:

C =
Vin − V00

Vin
, (2.103)

where V00 is the reflected power at the fundamental mode frequency and Vin is the one reflected

at different frequencies, as it is shown in picture (2.10). The optimum observed result is:

C =
Vin − V00

Vin
= 77%. (2.104)

When considering the power in the higher-order modes of the cavity due to residual misalignment

issues, which, in principle, could be eliminated with a consequent increase of the power in the
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fundamental mode of the cavity, the previous results rises to 85%. In order to interpret the last

Figure 2.10: Optical cavity reflection - Reflection of the determined optical cavity, as measured
from mirrorM1 (see picture 2.3). The power reflected by the cavity is measured through a photodiode
connected to the oscilloscope, so that the quantity measured is actually the voltage associated to the
power reflected by the cavity at the resonance frequency and at any other frequency.

result, a theoretical calculation of the cavity contrast is now carried on, by taking into account

picture (2.3) and by evaluating the cavity reflectivity from M1. In the following analysis the

mirror losses are neglected, the reflection coefficients for mirrors M1 and mirror M2 are r1,

r2, respectively, while for M3 it is assumed r3 ≡ 1. The field circulating within the cavity is

indicated as Ecir, while the incident optical signal is Einc. By considering section (2.1), it is

possible to verify that Ecir is obtained by the sum:

Ecir = it1Einc + r1r
2
2e

i2k(L1+L2)Ecir, (2.105)

hence:

Ecir =
it1Einc

1− r1r22e
i2k(L1+L2)

. (2.106)

The last result is used to determine the reflected power from mirror M1, Er. Indeed, this

quantity reads:

Er = r1Einc + it1r
2
2e

i2k(L1+L2)Ecir, (2.107)

therefore:

Er = r1Einc −
t21r

2
2e

i2k(L1+L2)Einc

1− r1r22e
i2k(L1+L2)

. (2.108)
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The cavity reflectivity, R, is then:

R =

����
Er

Einc

����
2

=
(r1 − r22)

2

(1− r1r22)
2
×



1 +

4r1r22 sin2(k(L1+L2))

(r1−r22)
2

1 +
4r1r22 sin2(k(L1+L2))

(1−r1r22)
2


 , (2.109)

hence:

R =

����
Er

Einc

����
2

= R0 ×

�
1 + 4F2

π2R0
sin2 (k(L1 + L2))

1 + 4F2

π2 sin2 (k(L1 + L2))

�
, (2.110)

with:

R0 =
(r1 − r22)

2

(1− r1r22)
2
, (2.111)

while the cavity finesse, F is:

F =
πr2

√
r1

(1− r1r22)
. (2.112)

At the cavity resonance, equation (2.110) reads:

R =

����
Er

Einc

����
2

= R0 =
(r1 − r22)

2

(1− r1r22)
2
. (2.113)

The mirror specifications, given by the constructor [63], which concern the reflection coefficients

are:

r1 = r2 = 99%± 0.5%. (2.114)

However, r1 and r2 have been also measured in our laboratory and it results:

r1 � 0.9938, r2 � 0.9942. (2.115)

By using the last values for the reflection coefficients, the cavity finesse, expressed in equation

(2.112), results of about 176 and the cavity reflectivity at the resonance frequency, given in

relation (2.111), is R0 = 9.197% . The contrast between the reflected power at the frequency of

the cavity fundamental mode, which is assumed as the resonating mode, and the reflected power

at different frequencies, can then be theoretically calculated as: C = 1− R0, thus: C = 90.8%.

The difference between the experimental and the theoretical cavity contrast is of about 6%,

with the theoretical value higher than the experimental one. Nevertheless, the obtained result

is quite common, when a laser beam coming out from an optical fiber and passing through a

collimator is injected into an optical cavity. Indeed, because of the beam propagation within

the fiber and the aberrations introduced by the passage through the small focal length of the
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collimator, the injected beam presents departures from a perfect Gaussian beam. This can lead

to a lower coupling between the cavity fundamental mode and the injected beam.

Measurements of the intracavity beam dimensions

In order to compare the actual intracavity beam dimensions with the theoretical values, we have

measured the beam diameters, by using the transmission part of the cavity. With reference to

figure (2.11), we took the measurements of the widths for Beam 1 and Beam 2, in a position 10

cm away from M2, and we confronted them with their theoretical values, in the same position.

As far as the beam width experimental measures are concerned, they are performed by using

Figure 2.11: Intracavity beam representation - Schematic representation of the intracavity
beams, Beam 1 and Beam 2, and of the measurement position.

the camera WinCamDTM Series Cameras [64]. An example of the beam diameter measurement

outcome is reported in figure (2.12), together with a picture of the two beams after passing

through a 2.5 cm focal length lens. The theoretical beam widths are calculated through the

ABCD matrices for the beam propagation up to the measurement position. In particular, by

knowing the beam waist position and its dimension both along L1 and L2, the total propagation

matrix up to the observation point has an analogous form for the two beams, i.e.:

Mb1,2 =

�
Ab1,2 Bb1,2

Cb1,2 Db1,2

�
=

�
1 d

0 1

��
1 0

0 1

��
1

wM2
n2

0 1

��
1 0

n2−n1
R2

1

��
1 Lb1,2

0 1

�
, (2.116)

where n1 ∼ 1, n2 ∼ 1.5 are the refractive index of the air and of the mirror M2 material (BK7),

respectively, wM2 = 0.98 ± 0.01cm [65] is the width of M2, d = 10cm±0.5cm is the distance

between M2 and the observation position, while Lb1,2 can be either the distance between the

waist position along L1 and the mirror M2, or the distance between the waist position along

L2 and the mirror M2, depending on which one between Beam 1 and Beam 2 is considered,

respectively. It is worth noticing that the matrix containing the element (n2−n1
R2

) represents the
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Figure 2.12: Intracavity beam picture and diameter measurements. - Upper panel:
Beam 1 and Beam 2 picture after a 2.5 cm focal length lens. It is worth noting that the colors refer
to the Gaussian beam intensity distribution. Lower panel: Beam 1 and Beam 2 size measurements.
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Beam 1 Beam 2

Theoretical diameter= 4400 µm Theoretical diameter= 3685 µm

Measured diameter = 4398 ± 220 µm Measured diameter = 3665 ± 183 µm

Table 2.1: Comparison between theoretical and experimental results for the intracavity
beam diameters. The definition of the quantities Beam 1 and Beam 2 is illustrated in picture
(2.11).

ABCD matrix at the interface between the free space and the curved surface of M2 [62]; the

matrix which involves the element wM2/n2 gives the beam propagation within M2 [62]; while the

identity matrix is the ABCD matrix for the interface between the flat rear-side surface ofM2 and

the free propagation in the air. In table (2.1), both the theoretical values and the experimental

values are reported for both the beams, where an error of ±5% for the beam measurements as

been settled. However, this is an underestimate of the effective errors, indeed the error on the

camera position has been neglected. Furthermore, the measure of one single beam diameter is

complicated by the simultaneous presence of the two beams, in the observation point. Because

of this, there might be possible systematic errors in the Gaussian beam fit performed by the

dedicated software of the camera, which gives the beam diameter dimensions. An accurate study

of the error is then quite tricky, nevertheless, the theoretical and the experimental values for the

diameters of both the beams show a good agreement.

Gouy phase experimental measurement

The last experimental test on the determined optical cavity concerns the measurement of the

Gouy phase shift, ΦG, of the laser beam on a complete round trip within the optical resonator.

As it possible to check from relation (2.31), the lower-order mode and the first higher-order

mode of the cavity are connected by the following relation:

ΦG =
4π∆νL

c
(2.117)

where ∆ν is the frequency spacing between the fundamental mode and the first higher-order

mode, c is the light speed, and L is the length of the cavity from one end to the other,

L = 150.7cm. Relation (2.117) makes clear that a measurement of ∆ν allows to get to the

experimental value of ΦG. Nevertheless, an accurate measurement of ∆ν turned out to be not

trivial. Indeed, we used a piezo-modulation of the laser frequency to follow the cavity resonance

frequency, which changes because of the cavity length fluctuations, but the laser response to the
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modulation is not linear, as it should be. Moreover, we observe that the laser frequency presents

a drift due to noises (temperature changes, mechanical vibrations, air flow) whose frequencies

are usually low, then, if we modulate the laser at high frequencies, we should be able to eliminate

the noise effect from our measurements. So, for increasing values of the modulation frequency,

we took several measurements of the voltages corresponding to the fundamental mode and to the

first higher-order mode, in order to verify that the laser stability increases at higher modulation

frequency. In picture (2.13), an example of the oscilloscope output is reported. Regarding pic-

ture (2.13), it is also observed that the modulation signal is amplified through a 100 V amplifier,

which allows to properly adjust the laser frequency to the resonance frequency of the analyzed

optical cavity, and the voltages are measured by considering the amplified signal.

The measurements of the voltages corresponding to the cavity fundamental mode are used to

Figure 2.13: Cavity fundamental mode and first-higher order mode as seen on the
oscilloscope screen - The cavity fundamental mode (00-mode), the first-higher order mode (10-
mode), the modulation signal (yellow line) and the amplified modulation signal (purple line) are
showed. Modulation frequency of 300 Hz.

carry on a data analysis, involving a χ2 test, at the aim of reconstructing the curve of the

laser frequency response to the modulation signal, for correctly calculating the introduced ∆ν

quantity. In effect, an accurate measure of the Gouy phase is required to be sure of the cavity
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stability. In this respect, it is observed that, when a modulation signal is applied to the laser,

the resonance frequency of order q, for the fundamental mode of the cavity, at a given time t,

can be written as:

ν00,Laser(t) + f(V (t)) =
qc

2L(t)
+

cΦG

4πL(t)
, (2.118)

where ν00,Laser(t) is the proper laser frequency for the fundamental mode, which varies with time;

the function f(V (t)) describes the modulation signal, V (t), contribution to the laser frequency,

as function of time; L(t) is the one trip length of the cavity, which slightly depends on time. Let

us evaluate relation (2.118) at the time t = t0, corresponding to the resonance frequency q, and

at the time t0+∆t, corresponding to the resonance frequency of order q+1, and let us perform

the difference between the two obtained expressions. It is possible to verify that, if the laser is

modulated at high frequency, the mentioned difference reduces to:

f(V (t0 +∆t))− f(V (t0)) =
c

2L(t0)
, (2.119)

where V (t0+∆t) and V (t0) are the voltages associated to the resonance frequencies of the orders

q + 1 and q, respectively, for the fundamental mode of the cavity. Furthermore, as the cavity

length variations are small (about 1µm), it is possible to set: L(t0) = L0 = L = 150.7cm.

To determine the form of the function f(V (t)), an hypotheses is made about it and a χ2 test is

then performed to evaluate the accuracy of the assumption. A polynomial form is considered,

i.e.:

f(V (t)) = A+BV (t) + CV (t)2 +DV (t)3 + ..., (2.120)

where V (t) is the applied voltage to the laser piezoelectric actuator. By taking into account

equation (2.119), the following random variable is introduced:

yi+1,i = f(Vi+1)− f(Vi)− c
2L(t0)

=

= B(Vi+1 − Vi) + C(V 2
i+1 − V 2

i ) +D(V 3
i+1 − V 3

i ) + ...− c
2L(t0)

,

(2.121)

whose average value must be equal to zero, and the index i and i + 1 are used to indicate the

voltages associated with two adjacent resonances. In particular, as far as our data are concerned,

for each measurement, the voltage associated with three or four resonances were taken, at the

same time, hence the index i can assume the values i = 1, 2 or i = 1, 2, 3, depending on the set of

measurement. Picture (2.14) is reported to clarify what has been just said. The variables yi+1,i
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Figure 2.14: Example of one measurement set for a fixed frequency. - Measurements
of the voltages for the cavity fundamental mode (00-mode) and for the first-higher order mode (10-
mode), for the modulation frequency of 100 Hz. Several sets of measures, analogous to the one showed
in the current picture, are taken for this frequency and at higher modulation signal frequencies.

of the same set of measurements present correlations, however they are not correlated with the

yi+1,i belonging to different set of measurements, for the same modulation frequency. In order

to verify the assumption on f(V (t)), a χ2 test is performed for each considered frequency of

the modulation signal. Because of the data correlation, the χ2 has been evaluated through the

following relation:

χ2 = yT
Σ
−1y, (2.122)

where y is the column vector compounded of all the yi+1,i quantities, for a given frequency of the

modulation signal, while yT is its transpose, and Σ is the variance-covariance matrix associated

to the vector y. If, for a given frequency, ν̄, N set of measures are taken and for each of them

two variable yi+1,i can be written, i.e. y2,1 and y3,2, the Σ matrix reads:

Σ =




σ11 0 · · · 0

0 σ22 · · · 0
...

...
. . .

...

0 0 · · · σNN




, (2.123)

with:

σkk =

�
vark covk

covk vark

�
, k = 1, ..., N (2.124)
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hence, Σ is a 2N × 2N matrix, whose elements are the variance and covariance of the y2,1 and

y3,2 quantities, for each data set, that is vark and covk. As fas as the vector y is concerned, this

is then a 2N column vector. In order to find the parameters of the fit, a system of equations is

defined, which is obtained by deriving the χ2 expression with respect to the fit parameters, and

by equating these derivatives to zero. In this respect, it is worth noticing that the Σ matrix is

evaluated by neglecting the terms higher than the linear one in the voltage, i.e. by keeping only

the term B(Vi+1 − Vi), where as a first estimate of the B value is assumed the one reported on

the laser specification book [62], i.e. 0.08 pm/V. This choice is mainly based on the necessity

of writing a system of equations whose solution can be calculated and on the consideration that

the terms C(V 2
i+1−V 2

i )+D(V 3
i+1−V 3

i )+ ... are corrections to the linear behavior, hence they are

smaller than the term involving the parameter B. It has been checked, during the analysis, that

this condition is verified. It is worth noticing that, because of this approximation, the terms

vark and covk, entering the Σ matrix, are the same for each data set, k, of a given frequency,

that is:

vark = var =
c2

4L4
σ2
L + 2B2σ2

V , k = 1, ..., N (2.125)

covk = cov =
c2

4L4
σ2
L −B2σ2

V , k = 1, ..., N (2.126)

with N indicating the number of data sets for the considered frequency. In the previous equa-

tions, σL represents the error on the cavity length, which is assumed equal to
√
2×0.25 cm, being

the error on L1 and on L2 equal to 0.25cm, while σV is the error on the voltage measurements,

which is always the same, for a fixed frequency. The parameter B has been already introduced

above. Once the systems of equations compounded of the χ2 derivatives with respect to the fit

parameters is solved, so that the fit parameters are completely determined, the new value of

B is used to evaluate again the Σ matrix and to obtain new values of the fit parameters. The

procedure is repeated until the variance (calculated through equation (2.125)) does not vary

anymore. Hence, the final result of the χ2, for a given frequency, is evaluated by using the fit

parameter values obtained from the last iterative step.

For starting the analysis, a parabolic form is assumed, i.e.:

yi+1,i = f(Vi+1)− f(Vi)− c
2L(t0)

=

= B(Vi+1 − Vi) + C(V 2
i+1 − V 2

i )− c
2L(t0)

.

(2.127)
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Frequency[Hz] χ̄2

100 4.5 ± 0.4

200 2.1 ± 0.5

300 1.4 ± 0.5

400 1.4 ± 0.5

500 1.02± 0.5

600 1.2± 0.5

700 1.1(5)± 0.5

800 0.99± 0.5

900 1.5± 0.5

1000 2.9± 0.5

Table 2.2: χ̄2 test for a second order polynomial. The normalized χ2, χ̄2, is reported for
each considered frequency.

The χ2 has been evaluated for several modulation frequencies, the results are reported in table

(2.2), where the χ2 has been normalized to the degrees of freedom, i.e. the number of measure-

ments for each frequencies, n, minus the number of the fit parameters, k, (two, in the current

case). As it possible to see, with the exception of the frequencies 100Hz, 200Hz and 1000Hz,

the normalized χ2, indicated as χ̄2, is acceptable, within its associated error, which is estimated

through relation:

σχ̄2 =

�
2

n− k
. (2.128)

However, the same calculations are carried on for a cubic polynomial as well to see if it could

be a suitable description of the laser frequency response to the modulation. So, it is set:

yi+1,i = f(Vi+1)− f(Vi)− c
2L(t0)

=

= B(Vi+1 − Vi) + C(V 2
i+1 − V 2

i ) +D(V 3
i+1 − V 3

i )− c
2L(t0)

,

(2.129)

the results for χ̄2 are reported in table (2.3). With the exception of the frequencies 100Hz and

1000Hz, the model described by function (2.129) turns out to be valid as well. It is noticed

that both table (2.2) and table (2.3) show lower χ̄2 values at high modulation frequencies, up

to 800Hz, as a result of the enhancement of the laser stability. The increase of the χ̄2 at high

modulation frequencies (900Hz, 1000Hz) is instead due to a decrease of the accuracy in the

reading of the voltage values, as it can be seen from picture (2.15), where the fundamental mode

and the first higher order mode of the cavity are showed, for the modulation frequency of 1kHz.

The estimate of the gouy phase experimental value and of its associated error is carried on by
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Figure 2.15: Example of oscilloscope output for the modulation frequency of 1kHz.
- Cavity fundamental mode (00-mode) and first-higher order mode (10-mode), for the modulation
frequency of 1kHz. It is possible to see that the accuracy in reading the voltages associated with the
00-mode and with the 10-mode is quite low, for the considered modulation frequency.

Frequency[Hz] χ̄2

100 6.4 ± 0.4

200 0.57 ± 0.5

300 0.98 ± 0.5

400 0.1 ± 0.5

500 0.16 ± 0.5

600 0.3 ± 0.5

700 0.3(4)± 0.5

800 1.0(1)± 0.5

900 1.17± 0.5

1000 2.6± 0.5

Table 2.3: χ̄2 test for a third order polynomial. The normalized χ2, χ̄2, is reported for each
considered frequency.
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considering the result of the cubic fit, as it seems to describe slightly better the behavior of our

data sets. So, the laser frequency response to the modulation signal is written as:

f(V (t)) = BV (t) + CV 2(t) +DV 3(t), (2.130)

where B, C, D are determined by the fit, as described above, and their values differ at each

considered modulation frequency. Moreover, it is pointed out that, because of the χ2 values,

the data corresponding to the frequencies 100Hz and 1000Hz, are not taken into account in

the following analysis. As a consequence, the index i, introduced in equation (2.121), can only

assume the value 1 or 2, as the measure sets with four resonances visible, at the same time, are

present for the frequency 100 Hz only. For each data set, k, of each frequencies, two values for

the gouy phase are then obtained:

ΦG,ik =
4πL(f(V10,ik)− f(Vik))

c
, i = 1, 2 (2.131)

with k = 1, ..., N , where N indicates the number of measurement sets for each frequency. Par-

ticularly, for the case of 200 Hz, N=6, while for all the other frequencies N = 5. Furthermore, in

equation (2.131), the quantity V10,ik is the measured voltage for the first higher order mode of the

cavity corresponding to the k-th set of measurements, with either i = 1, if it is the first 10-mode

observed on the oscilloscope screen, or i = 2 if it is the second one visible on the oscilloscope. As

far as the quantity Vik is concerned, this is the measured voltage for the fundamental mode of

the cavity, used for the determination of the fit parameters as well, where k and i have the same

meaning introduced above, except for the fact that i is now referred to the 00-mode. It is worth

remarking that L is the length between one end to the other of the cavity, i.e. L = 150.7cm,

and the function f is reported in equation (2.130). To determine an average value of the gouy

phase for each considered frequency, ν̄, the following formulas are applied:

ΦG,ν̄ =

�N
k=1

�2
i=1 pikΦG,ik�N

k=1

�2
i=1 pik

, pik =
1

σ2
ΦG,ik

, (2.132)

σΦG,ν̄
=

�
1

�N
k=1

�2
i=1 pik

, (2.133)

it is then clear that the error, σΦG,ik
, associated with each obtained gouy phase value, ΦG,ik, for

the considered frequency, is necessary to calculate the previous equations. Because of relation
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(2.131) and of the already discussed data correlation, the variance of the Gouy phase, ΦG,ik,

must be calculated from the following expression:

σ2
ΦG,ik

= var(ΦG,ik) =
�
∂ΦG,ik

∂D

�2
var(D) +

�
∂ΦG,ik

∂C

�2
var(C) +

�
∂ΦG,ik

∂B

�2
var(B)+

�
∂ΦG,ik

∂L

�2
σ2
L +
�
∂ΦG,ik

∂V10,ik

�2
σ2
V10,ik

+
�
∂ΦG,ik

∂Vik

�2
σ2
Vik

+ 2
�
∂ΦG,ik

∂D

��
∂ΦG,ik

∂B

�
cov(D,B)+

2
�
∂ΦG,ik

∂D

��
∂ΦG,ik

∂C

�
cov(D,C) + 2

�
∂ΦG,ik

∂C

��
∂ΦG,ik

∂B

�
cov(C,B)+

2
�
∂ΦG,ik

∂D

��
∂ΦG,ik

∂Vik

�
cov(D,Vik) + 2

�
∂ΦG,ik

∂C

��
∂ΦG,ik

∂Vik

�
cov(C, Vik)+

2
�
∂ΦG,ik

∂B

��
∂ΦG,ik

∂Vik

�
cov(B, Vik) + 2

�
∂ΦG,ik

∂D

��
∂ΦG,ik

∂L

�
cov(D,L)+

2
�
∂ΦG,ik

∂C

��
∂ΦG,ik

∂L

�
cov(C,L) + 2

�
∂ΦG,ik

∂B

��
∂ΦG,ik

∂L

�
cov(B,L),

(2.134)

with i = 1, 2. In the previous relation, it is σ2
V10,ik

= σ2
Vik

= σ2
V and it changes from one

frequency to another; the error on the length of the cavity is always equal to
√
2× 0.5cm, so

that σ2
L ∼ (

√
2×0.5)2 cm2, while the variance, var, and covariance, cov, terms are obtained from

the variance-covariance matrix of the coefficient vector �α = (D,C,B) and from its covariance

with Vik and L. In the following it is showed how these quantities have been obtained. Firstly,

the variance-covariance matrix of the vector �α is calculated. By taking into account relation

(2.129), for each frequency, the analytical expression of the χ2, calculated through relation

(2.122), reads:

χ2 =
�N

k=1
var

var2−cov2

��
Dδ

��

1,k + Cδ
�

1,k +Bδ1,k − c
2L

�2
+
�
Dδ

��

2,k + Cδ
�

2,k +Bδ2,k − c
2L

�2�
−

�N
k=1

2cov
var2−cov2

��
Dδ

��

1,k + Cδ
�

1,k +Bδ1,k − c
2L

��
Dδ

��

2,k + C(δ
�

2,k +Bδ2,k)− c
2L

��
=

�N
k=1

var
var2−cov2

��
y2
2,1,k

+ y2
3,2,k

�
− 2cov

var2−cov2

�
y
2,1,k

y
3,2,k

��
.

(2.135)

In the last equation, var and cov are the variances and covariances, respectively, associated to

the quantities yi+1,i, they are given in relations (2.125) and (2.126). As far as the other terms

in equation (2.135) are concerned, these are:

δ
��

1,k = (V 3
2k − V 3

1k), δ
�

1,k = (V 2
2k − V 2

1k), δ1,k = (V2k − V1k), (2.136)

δ
��

2,k = (V 3
3k − V 3

2k), δ
�

2,k = (V 2
3k − V 2

2k), δ2,k = (V3k − V2k), (2.137)

where V1k, V2k, V3k are the voltages corresponding to the fundamental mode of the cavity,

obtained from a single set of measurements, k, of a given frequency, ν̄. For the sake of clearness
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it is pointed out that V1k and V2k enter the calculation of the Gouy phase through equation

(2.131), while all the three values V1k, V2k, V3k are involved in the determination of the fit

parametersD, C, B, for a given modulation frequency. By deriving the χ2 expression of equation

(2.135), with respect to the parameters D, C, B, and equating each derivative to zero, a system

of three equations is obtained, whose solution gives the values of the mentioned parameters, as

it is already described above. However, in this case we are interested in finding the variance-

covariance matrix for the parameter vector, �α = (D,C,B). With this aim, the system of the

three equations is rewritten in a matrix form as follows:

S�α =
c(var− cov)

2L
�∆, (2.138)

where:

S =




s11 s12 s13

s21 s22 s23

s31 s32 s33


 , (2.139)

s11 = var
N�

k=1

(δ��21,k + δ��22,k)− 2cov
N�

k=1

δ��1,kδ
��
2,k, (2.140)

s22 = var

N�

k=1

(δ�21,k + δ�22,k)− 2cov

N�

k=1

δ�1,kδ
�
2,k, (2.141)

s33 = var
N�

k=1

(δ21,k + δ22,k)− 2cov
N�

k=1

δ1,kδ2,k, (2.142)

s12 = var

N�

k=1

(δ��1,kδ
�
1,k + δ��2,kδ

�
2,k)− cov

N�

k=1

(δ��1,kδ
�
2,k + δ��2,kδ

�
1,k) ≡ s21, (2.143)

s13 = var
N�

k=1

(δ��1,kδ1,k + δ��2,kδ2,k)− cov
N�

k=1

(δ��1,kδ2,k + δ��2,kδ1,k) ≡ s31, (2.144)

s23 = var

N�

k=1

(δ�1,kδ1,k + δ�2,kδ2,k)− cov

N�

k=1

(δ�1,kδ2,k + δ�2,kδ1,k) ≡ s32, (2.145)

�∆ =
c(var− cov)

2L




δ��1,k + δ��2,k
δ�1,k + δ�2,k
δ1,k + δ2,k


 . (2.146)
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From equation (2.138), it results:

�α =
c(var− cov)

2L
S−1�∆. (2.147)

It is then possible to verify that the derivatives of �α with respect to the voltages V1k, V2k, V3k,

defined above, have the following form:

∂�α

∂Vjk

����
V̄jk

= −S−1
0

∂S

∂Vjk

����
V̄jk

�α0 +
c(var− cov)

2L
S−1
0

∂�∆

∂Vjk

�����
V̄jk

�α0, j = 1, 2, 3 (2.148)

where S0 indicates the S matrix evaluated by considering the values of the parameters obtained

by the fit, labeled as �α0 in the previous equation, and the measured voltages. Furthermore, it

is:
∂�α

∂L

����
L0

=
c(var− cov)

2L0

∂S−1

∂L

����
L0

�∆− c(var− cov)

2L2
0

S−1�∆, (2.149)

with L0 the length of the cavity from one end to the other one, L0 = 150.7cm. The variance-

covariance matrix for the parameter vector �α, for a given frequency, ν̄, can then be calculated,

by using the following relation:

var(�α) =< (�α− �α0)
T (�α− �α0) >= σ2

V

�N
k=1

�
∂�α
∂V1k

���
V̄1k

× ∂T �α
∂V1k

���
V̄1k

�
+

σ2
V

�N
k=1

�
∂�α
∂V2k

���
V̄2k

× ∂T �α
∂V2k

���
V̄2k

�
+ σ2

V

�N
k=1

�
∂�α
∂V3k

���
V̄3k

× ∂T �α
∂V3k

���
V̄3k

�
+ σ2

L
∂�α
∂L

���
L0

× ∂T �α
∂L

���
L0

,

(2.150)

where the symbol T stands for transverse. As far as the covariances of the vector �α with Vik,

where i=1,2, and L are concerned, these can be evaluated by using the results of equations

(2.148) and (2.149), respectively. Indeed, it is:

cov(�α, Vik) =
∂�α

∂Vik

����
V̄ik

σ2
V , i = 1, 2 (2.151)

and:

cov(�α, L) =
∂�α

∂L

����
L0

σ2
L. (2.152)

With the formulas (2.150), (2.151), (2.152), equation (2.134), for the errors σΦG,ik
, can be

calculated, so that all the quantities entering relations (2.132), (2.133) are known and it is

then possible to evaluate the average value of the Gouy phase and its associated error, for each

considered modulation frequency, i.e. ΦG,ν̄ ± σΦG,ν̄
. The results are reported in table (2.4). In
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Frequency[Hz] Gouy phase [rad]

200 3.49 ± 0.04

300 3.57± 0.05

400 3.54 ± 0.05

500 3.51 ± 0.05

600 3.44 ± 0.07

700 3.53± 0.08

800 3.56± 0.08

900 3.54± 0.09

Table 2.4: Average value of the Gouy phase at different modulation frequencies.

addition, by using formulas analogues to equations (2.132), (2.133), the value of the Gouy phase,

averaged over all the modulation frequencies taken into account, can be obtained, and it results:

ΦG = 3.52± 0.02 rad. (2.153)

For the sake of completeness, a plot of the data in table (2.4) is showed in picture (2.16), where

the average value of the Gouy phase, over all the modulation frequencies, is also underlined. A

χ2 is evaluated as well for verifying the agreement of the Gouy phase average value of equation

(2.153), with the values reported in table (2.4). Particularly, the χ2 is now calculated through

the following formula:

χ2
G =
�

ν̄

(ΦG,ν̄ − ΦG)
2

σ2
ΦG,ν̄

, (2.154)

where the quantities ΦG,ν̄ and σΦG,ν̄
are given in table (2.4), ΦG is the one of relation (2.153),

and the sum is performed over all the modulation frequencies of table (2.4). The χ2
G result has

to be divided for the degrees of freedom, in order to get to the normalized χ2, χ̄2
G. In the present

analysis, the degrees of freedom are eight, equal to the number of modulation frequencies taken

into account. Eventually, the normalized χ2 results:

χ̄2
G = 0.4± 0.5, (2.155)

which confirms the agreement between the average value of the Gouy phase, in equation (2.153),

and the values reported in table (2.4).

It is necessary to correct the the Gouy phase value of equation (2.153) for the effects introduced

by the astigmatism. As this is a systematic error, the correction can be applied directly to the

value showed in relation (2.153). By considering the fact that our measurements concern the
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Figure 2.16: Gouy phase average values vs. the considered modulation frequencies.
- Plot of the values reported in table 2.4. The red line represents the average value of the Gouy
phase, calculated over all the considered modulation frequencies, namely the value given in equation
(2.153).

10-mode and the 00-mode, it can be checked that we have actually measured the following

quantity:

∆νmeasured =
c

4πL
ΦG00 +

c

8πL

�
arctan

��
1−m2

t

mt

�
− arctan

��
1−m2

s

ms

��
, (2.156)

where the indexes t and s stand for tangential and sagittal and it is:

mi =

�
Ai +Di

2

�
, i = t, s, (2.157)

with At, Dt elements of the tangential matrix for one round trip within the resonator, given in

equation (2.82), and As, Ds have the same meaning for the sagittal matrix of equation (2.83). It

is worth noticing that, in order to obtain equation (2.156), the gouy phase definition of relation

(2.66) has been used. The effective gouy phase shift for the fundamental mode of the cavity,

after one round trip, is then:

ΦG00 = ΦG − 1

2

�
arctan

��
1−m2

t

mt

�
− arctan

��
1−m2

s

ms

��
. (2.158)
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For the optical cavity realized in our laboratory, the second term of the right hand side of the

previous equation results:

∆ΦG00 =
1

2

�
arctan

��
1−m2

t

mt

�
− arctan

��
1−m2

s

ms

��
= −0.015rad. (2.159)

As far as the error associated to ∆ΦG00 is concerned, this is calculates through the error prop-

agation formula, by considering that mi = mi(R1, R2, L1, L2, θ), with i = t, s. Correlations

between the error on ΦG, as given in equation (2.153), and the error on ∆ΦG00 are present,

because both the quantities depend on L1 and L2. However, the contributions of the errors on

the lengths to the overall uncertainty on ∆ΦG00 is small, so that the correlation with the error

on ΦG is neglected. It is noticed that for both L1 and L2 we assumed an error of ±0.25 cm,

while for the mirror curvature radii the error is ±0.5% [63]. Furthermore, it is:

����
∂∆ΦG00

∂θ

����σθ = 6× 10−3, (2.160)

where the measured value of θ is 0.05 ± 0.01rad. The overall uncertainty on ∆ΦG00 results to

be of 0.006 rad. Eventually, the experimental value of the Gouy phase shift for the fundamental

mode of the cavity is:

ΦGexp. = ΦG00 = 3.535± 0.021rad. (2.161)

To interpret the last result, we have evaluated the error on the gouy phase shift theoretically

calculated, ΦGtheor.
, by applying the uncertainty propagation formula to the Gouy phase shift

expression (2.65). The errors on L1 and L2 are always equal to 0.25 cm, and, from [63], the error

on R1 and R2 are set again to ±0.5%. Then, the theoretical result for the Gouy phase shift is:

ΦGtheor.
= 3.6± 0.1 rad, (2.162)

so that the experimental value of gouy phase, given in relation (2.161) is well inside the theo-

retical error bar. In conclusion, through relation (2.32) and the Gouy phase experimental value

of equation (2.161), the generalize g-factor of the cavity is:

g = 0.038± 0.004, (2.163)

where the error on g has been evaluated with the error propagation formula.
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2.3.14 Scaled optical cavity with telescope for NBI system applications

It has been already said that the determined optical cavity, with telescope, can be scaled to

get to an optical resonator with the same stability properties and the same geometrical design,

but with beam width between M2 and M3 of 1cm and L2 smaller than 100m. This is showed

in what follows. Indeed, by scaling of a same factor the quantity R1, R2, L1, L2, the matrix

elements Art and Drt, expressed in section (2.3.2), do not change. As a consequence, the Gouy

phase as well does not vary, as it is possible to check, by using its definition given in equation

(2.66). In order to find the scaling factor, the results concerning the cavity we have realized

in our laboratory are considered. Particularly, the measured value of the beam diameter along

L2 is taken into account. For the sake of clearness, it is observed that this value is reported in

table (2.1) and, by rounding the error value to 200µm, it is 2wm = 3665 ± 200µm. The beam

size does not vary significantly along L2 and on the 10 cm of propagation distance between M2

and the observation point. Indeed, it has been checked through simulations that the beam size

variations on the mentioned distances are lower than the error associated to wm. Hence, for the

waist along L2, it is possible to set w3m = wm = 1800± 100µm. As a consequence, in order to

obtain a waist of 1 cm along L2, w3m has to be multiplied for a scale factor of 1/0.18. In turn,

for guaranteeing the same stability condition on L2, this length has to be multiplied for a factor

(1/0.18)2. Hence:

L2,scaled =

�
w3,scaled

w3m

�2

L2 = 31m± 3m, (2.164)

with w3,scaled = 1cm. By scaling for the same factor, (1/0.18)2, the quantities R1, R2 and L1,

a cavity with the same stability conditions of the one we realized in our laboratory, but with a

distance between M2 and M3 of 31m and a waist, on the same length, of 1 cm, is determined.

In conclusion, it is worth observing that, calculations analogous to the ones carried on to get

to the results reported in section (2.3.8) lead to the values presented below, which are obtained

when setting: R1,scaled � 4.65m, R2,scaled � 31m, L1,scaled � 15.65m, L2,scaled � 31m.

ΦG,scaled = 3.637 rad; (2.165)

w3,scaled = 1.0 cm; (2.166)
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w3,scaled

w1,scaled
= 17.8; (2.167)

|w3,scaled − w�
3,scaled|

w3,scaled
= 0.004. (2.168)

Regarding the last results, we remark that the Gouy phase value does not change.
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Chapter 3

Thermal Effect Compensation

Systems

In this chapter, the issue of the optical power absorbed by the cavity mirrors [71]-[76] will

be addressed and several possible compensation systems, which aim to decrease the effects

associated with this phenomenon, will be investigated. It is worth recalling that the mentioned

problem has been already faced in different contexts, such as the ground-based gravitational

wave interferometers [77]- [81]. In the most general case, both effects due to the mirror coating

absorption and the mirror substrate absorption should be taken into account. However, the

mirror coating absorption, on one hand, causes the formation of a temperature gradient which

distorts the mirror surface; on the other hand, it makes the overall temperature of the mirror to

increase, by enhancing the mirror expansion. As the larger the mirror thickness is, the greater

is its expansion, only thin mirror (5 mm) will be considered. As a consequence of this choice

and because of the characteristics of silica, which is the bulk material of the mirror, the power

absorbed by the substrate is very low, so that the effects due to it can be neglected. Only

the absorption by the mirror coating will be then taken into account in the present study. The

performed research of compensation techniques for the effects associated with the mirror coating

absorption grounds on two main concepts: the application of known temperature fields on the

rear side of the cavity mirrors, in order to compensate for the mirror deformation, and the use of

mechanical constrains (e.g. suitable fixations of the mirror edges and/or borders and the setting

up of pressure fields), with the same aim of reducing the mirror distortions. This chapter is thus

separated in two principle sections corresponding to these two main concepts, while the validity

of the analytical calculations exposed in the following sections will be discussed in chapter (4).
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With the aim of making clearer the meaning of the quantities that will be used in the analytic

analysis and for a better comprehension of the mathematical tools applied, the two mirror optical

cavity of figure (3.1) will be addressed. Furthermore, only cylindrical mirrors will be considered

of radius a and thickness h, so that the useful coordinates are the radial one 0 ≤ r ≤ a, the

azimuthal one 0 ≤ φ ≤ 2π and the longitudinal one −h/2 ≤ z ≤ h/2. With reference to figure

(3.1), it is worth noticing that the mirror considered in the following calculations is M1, so that

the surface internal to the optical cavity is the one at z = −h/2.

Figure 3.1: Scheme of the optical cavity mirrors - A two mirror cavity is considered in order
to introduce the quantities defining the mirror geometrical parameters and the conventions on the
coordinate system.

3.1 Mathematical description of the mirror temperature field

The mathematical description of the mirror temperature field will be determined by assuming

equilibrium beween the optical power absorbed by the mirror, which makes it to warm up,

and the exchanges through thermal radiation between the mirror and its environment, whose

temperature is considered constantly equal to T0. The heat equation, or Fourier equation, in

steady state conditions [71], [72], without internal source of heat, and by assuming cylindrical

symmetry, reads: �
∂2
r +

1

r
∂r + ∂2

z

�
T (r, z) = 0, (3.1)

which means that the temperature has to be a harmonic function (see appendix (B) and Ref.[82],

[83], [84]). It is then possible to write it as a constant term, T̄ , plus an harmonic function of r

104



3.2

and z, τ = τ(r, z), giving the excess of temperature with respect to T̄ , i.e.:

T (r, z) = T̄ + τ(r, z). (3.2)

A possible form for the function τ(r, z) is:

FH,ν(r, z) = (Ae−kz +Bekz)Jν(kr), (3.3)

where ν = 0, 1, 2... is an arbitrary integer, Jν are Bessel functions of the first kind and order ν,

and k is an arbitrary constant. As a consequence, the excess of temperature can be expressed

by a development on an appropriate base of Bessel functions, depending on the boundary con-

ditions describing the heat flows on the cavity mirror faces and edges, which in general change

for the different thermal effect compensation systems (TCS) considered. It is worth noticing

that to solve the equations regulating the physical problems faced in this chapter, all the func-

tions entering the calculations will be then expressed through a suitable Bessel function base.

Furthermore, the choice of describing the cavity mirror temperature through equation (3.2) has

the important feature to allow the linearization of the equations that will have to be solved, if

the condition τ(r, z) << T̄ holds. In the calculations presented in this chapter, it is assumed

that this condition is always verified, but when analyzing the results of each TCS, it will be

necessary to check if the condition holds and to quantify the errors introduced in the physical

and mathematical results, when it is not verified.

3.2 TCS based on temperature field application

In this section, the mathematical description of the TCS realized by imposing a suitable field

of temperature on the cavity mirror is exposed. The aim of the applied temperature is to

generate an overall mirror temperature distribution field which compensates for the deformation

associated with the coating absorption of optical power. In this respect, several configurations

for the imposed temperature field have been considered, and for each of them the mathematical

description is reported in the following subsections.

3.2.1 TCS with fixed temperature on the cavity mirror edges

The first method that will be analyzed, among the ones based on a temperature field application,

concerns the fixing of a constant temperature on the mirror edges, as it is shown on figure (3.2).
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The idea of such configuration is supported by two reasons: on one hand, to fix the temperature

on the mirror edges at the same value of the one of the environment could allow to uniform

the mirror overall temperature and then to decrease the mirror deformation due to the optical

power absorbed; on the other hand, for fixed temperature values higher with respect to the one

of the environment, it could be possible to distort the mirror in a way which compensates for the

deformation associated with the absorbed optical power. With reference to figure 3.2, T1 plays

the role of the quantity T̄ , which is defined above, being the constant temperature imposed on

the mirror edges, in order to decrease the thermal effects. So, the mirror temperature field is

T (r, z) = T1 + τ(r, z), where τ(r, z) is the temperature excess, which in terms of the Fourier-

Bessel series reads:

Figure 3.2: Scheme of the TCS treated in section (3.2.1) - The cavity mirrors together with
the applied TCS are shown, for the TCS configuration with fixed temperature on the cavity mirror
edges.

τ =

∞�

n=1

τn(z)J0

�
kn

r

a

�
, τn(z) = Ane

−kn
z
a +Bne

kn
z
a , (3.4)

where kn, n = 1, 2... are the solutions of the equation J0 (kn) = 0, indeed in r = a it has to

be T (a, z) = T1. In order to determine the coefficients An and Bn, the following boundary

conditions are taken into account:

−K

�
∂τ(r, z)

∂z

�

z=−h/2

= −σ
�
(T1 + τ(r, z))4 − T0

4
�
+ �I(r), (3.5)
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−K

�
∂τ(r, z)

∂z

�

z=h/2

= σ
�
(T1 + τ(r, z))4 − T0

4
�
, (3.6)

where T0 is the environment temperature, K the conductivity of the mirror material, σ the Stefan

Boltzmann constant, � the mirror absorption coefficient, and I(r) is the laser beam intensity.

Particularly, in this work, it is assumed a radial intensity variation of a gaussian beam with spot

size w and total carried power, P , i.e.:

I(r) =
2P

πw2
e−

2r2

w2 . (3.7)

Furthermore, in equations (3.5), (3.6), the left side terms represent the power lost by the mirror

bulk through the surfaces in z = −h/2 and in z = h/2 respectively, the terms containing the

Stefan-Boltzmann constant give the power flow of thermal radiation, when setting the emissivity

of the silica equal to 1, and the term �I(r), in equation (3.5), describes the mirror absorption of

laser power. By considering τ � T1, equations (3.5) and 3.6 can be linearized with respect to

the quantity τ(r, z):

−Kτ,z|−h/2 = −4σT1
3τ − σ

�
T1

4 − T0
4
�
Ha(r) + �I(r), (3.8)

−Kτ,z|h/2 = 4σT1
3τ + σ

�
T1

4 − T0
4
�
Ha(r), (3.9)

with:

Ha(r) =

�
0 if r > a

1 if r < a
(3.10)

For solving the system of equations compounded of relation (3.8) and relation (3.9) to find An

and Bn, the function I(r) and Ha(r) are expressed in terms of a Furier-Bessel series analogue

to the one used for the temperature excess, τ , i.e.:

I(r) =

∞�

n=1

InJ0

�
kn

r

a

�
, (3.11)

σ
�
T1

4 − T0
4
�
Ha(r) =

∞�

n=1

CnJ0

�
kn

r

a

�
, (3.12)

where In and Cn are the constant coefficients of the considered developments.

It is worth recalling here that if f is a function of the real variable r, its development in terms

107



Chapter 3. Thermal Effect Compensation Systems

of Fourier Bessel series is [66], [67]:

f(r) =
�∞

n=1DnJν(k
ν
n
r
α
),

Dn = 2
α2J2

ν+1(k
ν
n)

� α
0 rf(r)Jν(k

ν
n
r
α
)dr,

(3.13)

where kνn are positive zeros of Jν , and ν ≥ 0. Indeed, when the last two conditions are verified,

the following orthogonality property holds:

� α

0
rJν

� r
α
al

�
Jν

� r
α
am

�
dr =

α2

2
δlm(Jν+1(am))2. (3.14)

Then, by using equation (3.7) and (3.13) with ν = 0, for In, in (3.11), it results:

In =
2

a2J2
1 (kn)

� a

0
r
2P

πw2
e−

2r2

w2 J0

�
kn

r

a

�
dr. (3.15)

By applying the following relation [69]:

� ∞

0
te−a2t2J0(bt)dt =

1

2a2
e−

b2

4a2 , (3.16)

we get to:

In =
P

πa2J2
1 (kn)

e−
k2nw2

8a2 , (3.17)

so:

I(r) =

∞�

n=1

P

πa2J2
1 (kn)

e−
k2nw2

8a2 J0

�
kn

r

a

�
. (3.18)

As far as equation 3.12 is concerned, by performing the integration in equation 3.13 with ν = 0,

it is found:

Cn =
2σ
�
T1

4 − T0
4
�

a2J2
1 (kn)

� a

0
rJ0(kn

r

a
)dr =

2σ
�
T1

4 − T0
4
�

a2J2
1 (kn)

a2J1(kn)

kn
, (3.19)

hence:

σ
�
T1

4 − T0
4
�
Ha(r) =

∞�

n=1

2σ
�
T1

4 − T0
4
�

J1(kn)kn
J0

�
kn

r

a

�
(3.20)

As it has been already pointed out, the determination of the coefficient An and Bn, which will

allow to complete the description of the mirror temperature field, it is obtained by resolving the

system of the two equations (3.8), (3.9). To this aim, firstly, equations (3.4), (3.18) and (3.20)

are substituted in equation (3.8), while equations (3.4) and 3.20 are substituted in equation
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(3.9). Then, both the sides of equations (3.8) and (3.9), as obtained after the substitutions

mentioned above, are multiplied by:

J0

�
km

r

a

�
r (3.21)

and the integration on r from 0 to a is performed, by using the orthogonality property of the

Bessel functions (3.14), for ν = 0. Hence, equation (3.8) reads:

−K
�
−knAn

a e
knh
2a + knBn

a e−
knh
2a

�
= −4σT 3

1

�
Ane

knh
2a +Bne

− knh
2a

�
−

2σ(T1
4−T0

4)
J1(kn)kn

+ �P e
−

k2nw2

8a2

a2πJ2
1 (kn)

,

(3.22)

and, equation 3.9 becomes:

−K
�
−knAn

a e−
knh
2a + knBn

a e
knh
2a

�
= 4σT 3

1

�
Ane

−knh
2a +Bne

knh
2a

�
+

2σ(T1
4−T0

4)
J1(kn)kn

.

(3.23)

The system compounded of the last two equations gives the following result, for An and Bn:

An =
P � exp

�

kn(8ah−w2kn)
8a2

+hkn
2a

�

(4aσT 3
1+Kkn)

πaJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
�−

2aσ(T 4
1−T 4

0 )e
hkn
2a

�

e
hkn
a (4aσT 3

1+Kkn)−4aσT 3
1+Kkn

�

knJ1(kn)

�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� ,

(3.24)

Bn =
P �e

kn(4ah−w2kn)
8a2 (Kkn−4aσT 3

1 )

πaJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
�−

2aσ(T 4
1−T 4

0 ) exp
�

kn(4ah−w2kn)
8a2

+
w2k2n
8a2

�

�

e
hkn
a (4aσT 3

1+Kkn)−4aσT 3
1+Kkn

�

knJ1(kn)

�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� .

(3.25)

To conclude this section, it is worth stressing that the cavity mirror field of temperature,

T (r, z) = T1 + τ(r, z), is now completely determined, for the case where the described TCS

is applied on the cavity mirrors.
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3.2.2 Fixed temperature on the edges and on the rear side of total reflective

cavity mirrors

In this section, a TCS applicable only on totally reflective mirrors of the optical cavity will be

considered. Indeed, this thermal effect compensation system concerns the edges and the overall

rear side of a mirror, then it cannot be applied on the input cavity mirror (see figure (3.3)). The

Figure 3.3: TCS configuration studied on section (3.2.2) - Scheme of the TCS with fixed
temperature on the mirror edges and on the overall mirror rear face. TCS applicable only on total
reflective cavity mirror

reason motivating the study of this TCS configuration is based on the fact that, by applying a

fixed temperature on the rear side of the mirror and on its edges, it should be possible to reach a

higher level of mirror temperature uniformity with respect to the one obtained by using the TCS

described in section (3.2.1). As far as the mathematical treatment of this TCS is concerned, this

is not so different with respect to the one of the TCS analyzed in the previous section. Indeed,

it is sufficient to substitute equation (3.9) describing the boundary condition of the heat flow on

the external surface of the mirror, with the condition on the excess of temperature, τ(r, z), in

z = h/2, i.e. τ(r, h/2) = 0. In this way, the temperature in z = h/2 is simply equal to T1, for

each value of the mirror radius. So, to determine the coefficients An and Bn, which enter the

τ(r, z) expression given in equation (3.4), it is necessary to solve the system formed by equation

(3.22) and the equation:

τn(h/2) = 0 =⇒ Ane
−kn

h
2a +Bne

kn
h
2a = 0. (3.26)
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The solution of the system above mentioned leads to the following expression for An and Bn:

An =
P � exp

�

kn(8ah−w2kn)
8a2

+hkn
2a

�

(4aσT 3
1+Kkn)

πaJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
�−

2aσ(T 4
1−T 4

0 )e
hkn
2a

�

e
hkn
a (4aσT 3

1+Kkn)−4aσT 3
1+Kkn

�

knJ1(kn)

�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� ,

(3.27)

Bn =
P �e

kn(4ah−w2kn)
8a2 (Kkn−4aσT 3

1 )

πaJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
�−

−
2aσ(T 4

1−T 4
0 ) exp

�

kn(4ah−w2kn)
8a2

+
w2k2n
8a2

�

�

e
hkn
a (4aσT 3

1+Kkn)−4aσT 3
1+Kkn

�

knJ1(kn)

�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� .

(3.28)

T1 is a known quantity, and An and Bn have now an explicit expression, hence the mirror

temperature field T (r, z) = T1 + τ(r, z) is completely determined.

3.2.3 Free cavity mirror

In this section, the mathematical description of a TCS which aims to uniform the mirror tem-

perature by fixing an appropriate temperature of the environment where the mirror cavity is

placed will be presented. It is worth remarking that the mirror is free, in this case, which means

that there are no temperature fields applied on it, its temperature depends on the exchanges

with the environment and on the optical power absorbed in the coating. The mirror temperature

field solutions reported in this section can be found in Ref. [71]. As customary, the cylindrical

symmetry is assumed, hence the heat equation (3.1) still holds. Consequently, the mirror tem-

perature is described with formulas similar to the ones used in section (3.2.1), i.e. T0 + τ(r, z),

where T0 is the fixed environment temperature and τ(r, z) is a harmonic function describing the

excess of temperature with respect to T0. As it has been already said, a possible solution for τ

has the form:

τ(r, z) =
�
Ae−ηz +Beηz

�
J0(ηr). (3.29)
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The heat flows on the mirror surfaces are given by the boundary conditions, which, after the

linearization obtained by considering τ � T0, take the form:

−K

�
∂τ(r, z)

∂z

�

z=−h/2

= −4σT0
3τ(r,−h/2) + �I(r), (3.30)

−K

�
∂τ(r, z)

∂z

�

z=h/2

= 4σT0
3τ(r, h/2), (3.31)

where K is always the conductivity of the mirror material and I(r) the laser beam intensity

distribution, described with formula (3.7). Furthermore, the boundary condition on the mirror

edges has also to be considered, i.e.:

−K

�
∂τ(r, z)

∂r

�

r=a

= 4σT0
3τ. (3.32)

This last equation can be rewritten as :

ζJ �
0(ζ) + χeJ0(ζ) = 0, (3.33)

where ζ = ηa and χe = 4σT0
3a/K. Equation (3.33) has an infinite number of discrete solutions

ζn = ηna, n = 1, 2 3 ..., hence a general solution of the heat equation (3.1) is:

τ(r, z) =
∞�

n=1

τn(z)J0(ζnr), τn(z) = Ane
− ζn

a
z +Bne

ζn
a
z. (3.34)

From the Sturm-Liouville theorem, the family of functions J0(ζnr/a), n = 1, 2, ... is orthogonal

and complete in the interval [0, a] with normalization factor given by:

� 1

0
xJ0(xζn)J0(xζn�)dx =

1

2ζ2n
δnn�(χ2

e + ζ2n)(J0(ζn))
2. (3.35)

By using the previous relation, the intensity function of the laser beam, I(r), can be developed

as follow:

I(r) =
P

πa2

�

n>0

pnJ0(ζnr/a), (3.36)

with P the integrated power, and:

pn =
2πζ2n

P (χ2
e + ζ2n)J

2
0 (ζn)

� a

0
I(r)J0(ζnr/a)rdr. (3.37)
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From equations (3.30), (3.31) and (3.36), the coefficient An and Bn, which are present in equation

(3.34), are found, so that:

τn(z) =
�P

πKa
pne

(−ζnh/2a) (ζn − χe)e
−ζn

h−z
a + (ζn + χe)e

−ζn
z
a

(ζn + χe)2 − (ζn − χe)2e−2ζnh/a
. (3.38)

The total mirror temperature field is then determined, as it is: T0+ τ(r, z), where τ(r, z) is now

a known quantity, indeed:

τ(r, z) =

∞�

n=1

τn(z)J0

�
ζn

r

a

�
(3.39)

with τn(z) given in equation (3.38).

3.2.4 Fixed temperature on the cavity mirror edges and one ring heater

Another method which has been analyzed with the aim of compensating for the mirror distortion

due to the laser power absorption by the mirror coating, concerns the application of a constant

temperature, T1, on the mirror edges, and the heating of the mirror rear face with a chosen

temperature field. In particular, the temperature field imposed on the back side of the mirror

can be described as the sum of the fixed temperature, T1, plus an excess of temperature, θ(r).

With reference to figure 3.4, it can be checked that the quantity θ(r) is known for mirror radii

b < r < a, but it is unknown for r < b. Then, it is useful to define the following function:

θ<(r) = Hb(r)θ(r), (3.40)

where:

Hb(r) =

�
0 if r > b

1 if r < b
(3.41)

while θ>(r) is the excess of temperature, for b < r < a, so that θ(r) = θ<(r) + θ>(r). In terms

of a Bessel function base, for θ(r) it is obtained:

θ(r) =
∞�

n=1

θnJ0(kn
r

a
) =

∞�

n=1

(θ<n + θ>n)J0(kn
r

a
), (3.42)

where θ>n and θ>n are the coefficients of the following developments:

θ<(r) =

∞�

n=1

θ<nJ0(kn
r

a
), θ>(r) =

∞�

n=1

θ>nJ0(kn
r

a
), (3.43)
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and kn, n = 1, 2 ... are the zeros of the equation J0(kn) = 0. It is worth noticing that θ>(a) = 0.

In particular, in what follows it is assumed θ>(r) ≡ 0, so that the applied field of temperature,

on the back side of the mirror, corresponds to the fixing of the mirror temperature at T1, on

a ring of internal radius b and external radius a. As far as the mirror surface in z = −h/2 is

concerned, the flux balance is yet:

Figure 3.4: Scheme of the TCS described in section (3.2.4). - Mirror rear face heating
through a given temperature field, T1 + θ(r), where T1 is a chosen constant temperature and θ(r)
is the excess of temperature compounds of θ>(r) and θ<(r), with θ>(r) known function and θ<(r)
unknown.

−K

�
∂τ(r, z)

∂z

�

z=−h/2

= −4σT1
3τ − σ

�
T1

4 − T0
4
�
Ha(r) + �I(r). (3.44)

For obtaining the previous equation, the total temperature of the mirror has to be described as

T1+τ(r, z), where τ is the excess of temperature with respect to the constant temperature T1, and

T1 >> τ . The function Ha(r) is the same as given in equation (3.10) and the mirror absorption

of optical power is described, as usual, by the term �I(r), with I(r) as in equation(3.7). By

assuming for the excess of temperature, τ , the same developement as given in equation (3.4)

and by expressing Ha(r) and I(r) in terms of Fourier-Bessel series, equation (3.44) becomes:

−K
�
−knAn

a e
knh
2a + knBn

a e−
knh
2a

�
= −4σT 3

1

�
Ane

knh
2a +Bne

− knh
2a

�
+

−2σ(T1
4−T0

4)
J1(kn)kn

+ �P e
−

k2nw2

8a2

a2πJ2
1 (kn)

.

(3.45)
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Another condition is determined by the requirement of the equality between the mirror tem-

perature and the imposed field of temperature, in z = h/2, i.e: τ(r, h/2) = θ(r). In the Bessel

function base, it is:

Ane
(−knh

2a
) +Bne

( knh
2a

) = θn = θ>n + θ<n ≡ θ>n, (3.46)

where the coefficients θ<n are unknown. The flux in z = h/2 can be written as:

φ(r, h/2) = φ(r)Hb(r) + φ(r)(1−Hb(r)) = φ<(r) + φ>(r), (3.47)

with Hb(r) as given in equation (3.41). φ(r, h/2) can be expressed as function of θ<(r), for r < b,

indeed:
φ<(r) =

�
4σT1

3τ(r, h/2) + σ(T1
4 − T0

4)
�
Hb(r) =

= 4σT1
3θ<(r) +

�
σ(T1

4 − T0
4)
�
Hb(r).

(3.48)

However φ(r, h/2) is unknown for r > b. Hence, for the boundary condition on the mirror surface

at z = h/2, it is:

−K

�
∂τ(r, z)

∂z

�

z=h/2

= 4σT1
3θ<(r) + σ

�
T1

4 − T0
4
�
Hb(r) + φ>(r). (3.49)

In terms of the Bessel series, the previous equation becomes:

−K

�
−knAn

a
e−

knh
2a +

knBn

a
e

knh
2a

�
= 4σT 3

1 θ<n + σ
�
T1

4 − T0
4
�
c<n + φ>n. (3.50)

In equation (3.50), the quantities φ>n indicate the coefficients for the development of φ>(r) in

terms of Bessel function base, while the coefficients c<n can be obtained from relation (3.13),

where f(r) = Hb(r):

c<n =
2

J2
1 (kn)a

2

� b

0
rJ0(kn

r

a
)dr =

2

J2
1 (kn)a

2

abJ1
�
knb
a

�

kn
. (3.51)

So far, three equations in four unknowns are present. The four unknowns are: An, Bn, θ<n, φ>n

and the equations are: (3.45), (3.46), (3.50). It is observed that, by using equations (3.45), (3.46),

(3.50), the coefficients An, Bn, θ<n can be written as functions of φ>n, by solving the system of

the three equations, where φ>n has the role of a parameter. As the function φ>(r) is not known,

an assumption about it is required in order to solve the problem. The following approximation
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is established:

φ>(r) =
M−1�

m=0

φmHm(r), (3.52)

where M can be arbitrary chosen and:

Hm(r) =





1 if b+ (a−b)(m)
M ≤ r ≤ b+

�
(a−b)(m+1)

M

�

0 if r /∈
�
b+ (a−b)(m)

M , b+ (a−b)(m+1)
M

� . (3.53)

Hm(r), on a Bessel function base, becomes:

Hm(r) =

∞�

n=1

Hn
mJ0

�
knr

a

�
, (3.54)

where Hn
m are the coefficients of the expansion in terms of Bessel function base, which are found

by using relation (3.13), with f(r) = Hm(r). Then:

φ>(r) =

M−1�

m=0

φm

∞�

n=1

Hn
mJ0

�
knr

a

�
=

∞�

n=1

φ>nJ0

�
knr

a

�
, (3.55)

so that:

φ>n =

M−1�

m=0

φmHn
m. (3.56)

As it is possible to calculate Hn
m, once the quantities φm are determined as well, the problem of

three equations and four unknowns is reduced to a problem with three equations, three unknowns

and one parameter, which is φ>n. By assuming the possibility of obtaining φm, the system of

three equations and three unknowns is solved through Mathematica and the result is reported

in the following:

An =

e

kn(4ah−w2kn)
8a2

+hkn
a (4aσT 3

1+Kkn)



2πa2σ(T 4
0−T 4

1 )J1(kn)e
w2k2n
8a2 +P �kn





πaknJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� +

e
hkn
2a (4aσT 3

1−Kkn)(2bσ(−T 4
0+T 4

1 )J1(
bkn
a ))

knJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
�+

e
hkn
2a (4aσT 3

1−Kkn)(aknJ1(kn)2)

knJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
�φ>n,

(3.57)
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Bn =
P �e

kn(4ah−w2kn)
8a2 (Kkn−4aT3

1σ)

πaJ1(kn)2
�

e
2hkn

a (4aT3
1σ+Kkn)2−(Kkn−4aT3

1σ)2
�+

2σ(T 4
0−T 4

1 )e
hkn
2a

�

bJ1(bkn
a )e

hkn
a (4aT3

1σ+Kkn)+aJ1(kn)(Kkn−4aT3
1σ)

�

knJ1(kn)2
�

e
2hkn

a (4aT3
1σ+Kkn)2−(Kkn−4aT3

1σ)2
� −

e
3hkn
2a (4aT3

1σ+Kkn)(aknJ1(kn)2)

knJ1(kn)2
�

e
2hkn

a (4aT3
1σ+Kkn)2−(Kkn−4aT3

1σ)2
�φ>n,

(3.58)

θ<n =

2e
hkn
a −

w2k2n
8a2



2πa2Kσ(T 4
0−T 4

1 )knJ1(kn)e
w2k2n
8a2 +KP �k2n





πaknJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� +

4bσ(T 4
0−T 4

1 )e
hkn
a J1( bkn

a )(Kkn cosh(hkn
a )+4aσT 3

1 sinh(hkn
a ))

knJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� −

−
2ae

hkn
a

�

e
2hkn

a (4aσT 3
1+Kkn)−4aσT 3

1+Kkn

�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
φ>n.

(3.59)

However, the problem will be really solved only when an expression for φm will be found. With

this aim in mind, it is observed that the obtained results for An and Bn show a linear behavior

with φ>n, so that it is possible to write them as:

An = αn + βnφ>n, Bn = γn + δnφ>n, (3.60)

where αn, γn are intercepts and βn, δn are the angular coefficients of the linear dependence.

Then, for τ(r, h/2), it is:

τ(r, h/2) =

∞�

n=1

�
(αn + βnφ>n) e

(−knh
2a ) + (γn + δnφ>n) e

( knh
2a )
�
J0

�
kn

r

a

�
, (3.61)

and, by remembering that φ>n �
�M−1

m=0 φmHn
m:

τ(r, h/2) =
�∞

n=1

�
αne

−knh
2a + γne

knh
2a

�
J0
�
kn

r
a

�
+

+
�M−1

m=0 φm
�∞

n=1

�
βne

−knh
2a + δne

knh
2a

�
Hn

mJ0
�
knr
a

�
(3.62)
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For obtaining a relation to determine the quantity φm, the average of the function τ(r, z), in the

interval b ≤ r ≤ a, is defined as follow:

Tp =
1

a−b
M

� b+
(a−b)(p+1)

M

b+
(a−b)p

M

τ(r, h/2)dr (3.63)

where [p = 0, 1, ...,M − 1]. Furthermore, it is set:

Jp
n =

1
a−b
M

� b+
(a−b)(p+1)

M

p+
(a−b)p

M

J0(kn
r

a
)dr, (3.64)

so that:
Tp =

�∞
n=1

�
αne

−knh
2a + γne

knh
2a

�
Jp
n+

+
�M−1

m=0 φm
�∞

n=1

�
βne

−knh
2a + δne

knh
2a

�
Hn

mJp
n.

(3.65)

Two further quantities are then introduced:

Dp =
∞�

n=0

�
αne

−knh
2a + γne

knh
2a

�
Jp
n; (3.66)

Ep,m =
∞�

n=1

�
βne

−knh
2a + δne

knh
2a

�
Hn

mJp
n, (3.67)

hence:

Tp = Dp +
M−1�

m=0

Ep,mφm. (3.68)

It is possible to write the previous equation in terms of matrices. To this purpose, Jp
n is considered

as a M×nmax matrix and the quantity Hn
m is treated as a nmax×M matrix. Here nmax indicates

the last zero of J0 which enters the sum of the Bessel function development. Moreover, theM×M

matrix is defined :

E = Ep,m =
∞�

n=1

Jp
n

�
βne

−knh
2a + δne

knh
2a

�
Hn

m (3.69)

together with the two column vectors, φm and:

Vp = Tp −Dp. (3.70)
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As a consequence, the inversion of the relation Eφ = V gives the quantities φm, as:

φ = E−1V. (3.71)

To show how Ep,m is calculated, it is useful to introduce the coefficients:

coef(n) =
�
βne

−knh
2a + δne

knh
2a

�
, (3.72)

indeed they are present in equation (3.69) and they enter the evaluation of the following matrix:

�Hn
m =




coef(1)H1
0 coef(1)H1

1 · · · coef(1)H1
M−1

coef(2)H2
0 coef(2)H2

1 · · · coef(2)H2
M−1

...
...

. . .
...

coef(n)Hnmax
0 coef(n)Hnmax

1 · · · coef(n)Hnmax

M−1




(3.73)

Hence, Ep,m is determined, by the simple application of the matrix multiplication formula
�nmax

n=1 Jp
n × �Hn

m. As far as equation (3.73) is concerned, it is worth stressing that the m index

range is m = 0, ...M −1, while the n index range is n = 1, ...nmax. To find the quantity V , given

in (3.70), the vectors Tp and Dp are separately calculated and after the vector subtraction is

made. For b ≤ r ≤ a, it is:

τ(r, h/2) = θ>(r) ≡ 0, (3.74)

and it results:

Tp =
1

a−b
M

� b+
(a−b)(p+1)

M

b+
(a−b)p

M

θ>(r)dr = 0, (3.75)

so that, the quantities Tp compounds a column vector with M rows and all the components

equal to zero. As far as Dp is concerned, firstly, the following coefficients are introduced:

Inter(n) =
�
αne

− knh
2a + γne

knh
2a

�
, (3.76)

as they enter the definition of Dp, given in equation (3.66). A column vector with nmax rows is

then generated, by using relation (3.76):

Icoe =




Inter(1)

Inter(2)
...

Inter(nmax)




(3.77)
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The quantity introduced above, Icoe, together with the matrix Jp
n are applied to calculate Dp,

through the following matrix-vector multiplication:

Dp =

nmax�

n=1

Jp
n Icoe(n). (3.78)

It is worth pointing out that the inversion of the matrix M is made by using the MATLAB

formula M−1 = inv(M). Then, from relation φ = M−1V , the components of the column

vector φ, i.e. φm, are found and the coefficients φ>n are calculated with the vector-matrix

multiplication:

φ>n =
M−1�

m=0

Hn
m φm, (3.79)

where Hn
m are introduced in equation (3.54). The φ>n coefficients are then used to evaluate An

andBn, which will allow to determine the temperature field, through the formula T = T1+τ(r, z),

with:

τ =

nmax�

n=1

τn(z)J0(kn
r

a
), τn(z) = Ane

−kn
z
a +Bne

kn
z
a . (3.80)

For the sake of completeness, it is shown here how the matrix Jp
n and Hn

m are calculated. As

far as the matrix Hn
m is concerned, by considering equations (3.53) and (3.13), the following

relation is obtained:

Hn
m =

2

a2J2
1 (kn)

� b+
(a−b)(m+1)

M

b+
(a−b)m

M

rJ0(kn
r

a
)dr. (3.81)

The result of the integration is:

Hn
m =

2(a(m+1)+b(−m+M−1))J1
�

(a(m+1)+b(−m+M−1))kn
aM

�

aMknJ1(kn)2
−

−
2(am+b(M−m))J1

�

(am+b(M−m))kn
aM

�

aMknJ1(kn)2

(3.82)

and it is used within the MATLAB program calculating the mirror temperature field. As far as

the matrix Jp
n is concerned, it is required to calculate:

Jp
n =

1
a−b
M

� b+
(a−b)(p+1)

M

b+
(a−b)p

M

J0(kn
r

a
)dr, (3.83)

which is an integration not analytically calculable. So, two different methods are used to obtain

the elements of the Jp
n matrix. One method is based on the application of the MATLAB function
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quad1, to estimate:
� b+

(a−b)(p+1)
M

b+
(a−b)p

M

J0(kn
r

a
)dr. (3.85)

The other method grounds on the following approximation:

Jp
n = 1

a−b
M

� b+ (a−b)(p+1)
M

b+
(a−b)p

M

J0(kn
r
a)dr ∼

1
�

b+
(a−b)p

M

�

a−b
M

� b+ (a−b)(p+1)
M

b+
(a−b)p

M

rJ0(kn
r
a)dr.

(3.86)

The last integration in equation (3.86) can be analytically calculated and the result for the Jp
n

matrix elements is:

Jp
n �

�

− p(a−b)
M

−b
�

J1
��

1
a2

�

b+
(a−b)p

M

�

kn
�

�

1
a2

kn
�

p(a−b)2

M2 +
b(a−b)

M

� +

+

�

(p+1)(a−b)
M

+b
�

J1
��

1
a2

�

b+
(a−b)(p+1)

M

�

kn
�

�

1
a2

kn
�

p(a−b)2

M2 +
b(a−b)

M

� .

(3.87)

It is found out that the application of the two different methods, for the calculation of Jp
n, does

not give results significantly different in term of the mirror temperature field. Particularly, the

maximum difference between the temperature values calculated through the analytical formula

for Jp
n, and the ones calculated with the numerical formula for Jp

n, amount at 0.02 K. As the

temperature considered are bigger than 300 K, an error of 0.02 K is not significant. Then, both

the methods could be applied within the MATLAB program, without appreciable modifications

of the results. For the sake of completeness, it is noticed that the results that will be presented,

about the TCS currently analyzed, are obtained by using formula (3.87).

1quad is a method to numerically evaluate a finite integral, i.e.:

q =

� b

a

f(x)dx. (3.84)

Its syntax is q=quad(fun,a,b) [70], where fun is the function which has to be integrated and a and b are the
extremes of the integration interval. The quad method approximates the integral of fun from a to b within an
error of 10−6 using recursive adaptive Simpson quadrature. It is stressed that the quantities a and b have to be
finite.
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3.2.5 Fixed temperature on the mirror edges, one external ring heater and

a separated central disk heater

In order to compensating for the mirror distortion due to the absorption of the optical power

in the mirror coating, another TCS configuration is analyzed, which consists in applying, in the

rear side of the mirror, a temperature field as described in figure 3.5: fixed temperature T3 in a

central circular section of radius b1; fixed temperature T1 in an external ring of internal radius

b; and fixed temperature, equal to T1, on the mirror edges.

As already done in sections (3.2.1), (3.2.2) and (3.2.4), the total mirror temperature is described

Figure 3.5: TCS with one ring heater, one disk heater and space to freely exchange
heat with the environment at temperature T0 = 300K - fixed temperature T3 in a central
circular section of radius b1, fixed temperature T1 in an external ring of internal radius b and fixed
temperature, equal to T1, on the mirror edges.

as T1 + τ(r, z), where τ(r, z) is the excess of temperature with respect to the known constant

temperature T1, as expressed in equation (3.4). By assuming that the linearization condition,

T1 >> τ , is satisfied, the boundary condition for the heat flow, through the mirror surface in

z = −h/2, is again:

−Kτ,z|−h/2 = −4σT1
3τ(r,−h/2)− σ

�
T1

4 − T0
4
�
Ha(r) + �I(r). (3.88)
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It is worth stressing that all the quantities in the previous equation have been already introduced,

in the previous sections, and they keep the same meaning. The mathematical analysis of the

considered TCS is carried on, as customary, by expressing the functions in equation (3.88) in

terms of a Bessel function base, it is then obtained:

−K
�
−knAn

a e
knh
2a + knBn

a e−
knh
2a

�
= −4σT 3

1

�
Ane

knh
2a +Bne

− knh
2a

�
+

−2σ(T1
4−T0

4)
J1(kn)kn

+ �P e
−

k2nw2

8a2

a2πJ2
1 (kn)

(3.89)

In the rear side of the mirror, the temperature is given by T1+ τ(r, h/2). The following relation

must hold:

T1 + τ(r, h/2) = T1 + θ1H1(r) + θ2(r) + θ3H3(r), (3.90)

where:

H1(r) =

�
0 if r < b

1 if b ≤ r ≤ a
, (3.91)

H3(r) =

�
0 if r > b1

1 if 0 ≤ r ≤ b1
, (3.92)

θ2(r) =

�
0 if r /∈ [b1, b]

θ2(r) if b1 ≤ r ≤ b
. (3.93)

θ1 and θ3 are constant quantities depending on the temperatures imposed on the rear side of the

cavity mirror, in the two regions b ≤ r ≤ a and 0 ≤ r ≤ b1 respectively. In particular, as it is

shown in figure 3.5, by considering T1 as reference temperature, it is: θ1 ≡ 0, while θ3 = T3−T1,

hence, because of the linearization condition T1 >> τ , it must be |θ3| << T1. As far as θ2(r) is

concerned, this is an unknown function of r, giving the difference between the temperature on

the mirror back side, in the region b1 ≤ r ≤ b, and the reference mirror temperature T1 (figure

3.5). By developing the functions in equation (3.90) in terms of a Bessel function base, for the

coefficients of the excess of temperature in the back side of the cavity mirror, it is found:

Ane
(−knh

2a
) +Bne

( knh
2a

) = θ2,n + θ3H3,n, (3.94)
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In agreement with equation (3.13), H3,n is defined by the following relations:

H3(r) =
�∞

n=1H3,nJ0(kn
r
a),

H3,n =
2b1J1

�

kn
b1
a

�

aknJ2
1 (kn)

;

(3.95)

while θ2,n are the unknown coefficients of the following development:

θ2(r) =
∞�

n=1

θ2,nJ0(kn
r

a
). (3.96)

For the sake of completeness, it is also worth pointing out that, as far as the function H1(r) is

concerned, in terms of Fourier-Bessel series, it is:

H1(r) =
�∞

n=1H1,nJ0(kn
r
a),

H1,n =
2(aJ1(kn)−bJ1( bkn

a ))
aknJ2

1 (kn)
.

(3.97)

By using the development on a Bessel function base, the boundary condition in z = h/2 has the

form:

−K

�
−knAn

a
e−

knh
2a +

knBn

a
e

knh
2a

�
= φ1,n + φ2,n + φ3,n, (3.98)

where the coefficients φ1,n, φ3,n are unknown quantities, as they describe the heat flows, in the

regions of the mirror b ≤ r ≤ a and 0 ≤ r ≤ b1, which are unknown. As far as the coefficients

φ2,n are concerned, they are known as function of θ2,n, because the heat flow, in the mirror

region b1 ≤ r ≤ b, is:

φ2,n = 4σT 3
1 θ2,n + σ

�
T1

4 − T0
4
�
H2,n, (3.99)

with:

H2(r) =

�
0 if r < b1 ∪ r > b

1 if b1 ≤ r ≤ b
(3.100)

so that:
H2(r) =

�∞
n=1H2,nJ0(kn

r
a),

H2,n =
2
�

bJ1(kn b
a)−b1J1

�

kn
b1
a

��

aknJ2
1 (kn)

.

(3.101)

124



3.2

There are three equations (3.89), (3.94), (3.98) in five unknown quantities: An, Bn, θ2,n, φ1,n,

φ3,n and the coefficients An and Bn are required in order to describe the temperature field on

the mirrors. To determine them, the solutions of the three equations is obtained for An, Bn, θ2,n

as functions of φ1,n, φ3,n and these quantities become parameters that can be evaluated with a

similar procedure adopted in section (3.2.4). In particular, for An, Bn and θ2,n, it is:

An =

e
3hkn
2a (4aσT 3

1+Kkn)







P �e
−

w2k2n
8a2

π
+

2a2σ(T4
0−T4

1 )J1(kn)

kn







aJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� +

2σe
hkn
2a

�

b(T 4
1−T 4

0 )J1(
bkn
a )+b1(T 4

0+T 3
1 (3T1−4T3))J1

�

b1kn
a

��

(4aσT 3
1−Kkn)

knJ1(kn)2
�

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
� +

ae
hkn
2a (4aσT 3

1−Kkn)

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
φ3,n +

ae
hkn
2a (4aσT 3

1−Kkn)

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
φ1,n,

(3.102)

Bn =

ae
hkn
2a



















−

e
2hkn

a (Kkn
a +4σT3

1 )(4aσT3
1 +Kkn)











P �e
−

w2k2n
8a2

π +
2a2σ(T4

0−T4
1 )J1(kn)

kn











aJ1(kn)2

�

e
2hkn

a (4aσT3
1 +Kkn)2−(Kkn−4aσT3
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1 )
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






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


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a
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1 )
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a (4aσT 3
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1 )2
φ3,n − a2e
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2a (Kkn

a
+4σT 3

1 )

e
2hkn

a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3

1 )2
φ1,n−

−
2aσe

3hkn
2a

�

b(T 4
1−T 4

0 )J1(
bkn
a )+b1(T 4

0+T 3
1 (3T1−4T3))J1

�
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a

��
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+4σT 3
1 )

knJ1(kn)2
�

e
2hkn

a (4aσT 3
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� ,

(3.103)
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θ2,n =

e
hkn
a



P �kne
−

w2k2n
8a2 +2πa2σ(T 4

0−T 4
1 )J1(kn)
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
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


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Kkn−4aσT3
1

+1











P �e
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π
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2a2σ(T4
0−T4
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
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
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�

e
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a (4aσT 3
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1−T 4
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0+T 3
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a
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(4aσT 3
1−Kkn)




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


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e
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2b1(T1−T3)J1
�

b1kn
a

�

aknJ1(kn)2
+

a(4aσT 3
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



e
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a (4aσT3
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+1
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

e
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a (4aσT 3
1+Kkn)2−(Kkn−4aσT 3
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a(4aσT 3
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



e
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a (4aσT3
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
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2hkn
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(3.104)

As it is possible to see from equations (3.102) and (3.103), the functional form of An and Bn

with respect to φ1,n and φ3,n is:

An = αn + β1,nφ1,n + β3,nφ3,n ,

Bn = γn + δ1,nφ1,n + δ3,nφ3,n ,
(3.105)

with β1,n = β3,n and δ1,n = δ3,n, which are known coefficients. To the purpose of finding the

value of φ1,n and φ3,n, which will allow to determine An and Bn, i.e. the mirror temperature field,

a mathematical procedure analogous to the one adopted in section (3.2.4) will be considered.

In the following paragraphs, the implemented method to continue the analysis of the currently

studied TCS will be presented.

Firstly, both of the two mirror regions delimited by the radii b ≤ r ≤ a and 0 ≤ r ≤ b1, in the

mirror rear side, are mathematically divided in M equal parts and in each part it is imposed

that the average of the excess of temperature is equal to θ1 and θ3, respectively; i.e. :

θ1,p =
M

a− b

� b+a−b
M

(p+1)

b+a−b
M

(p)
τ(r, h/2)dr, (3.106)
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θ3,p =
M

b1

� b1
M

(p+1)

b1
M

p
τ(r, h/2)dr, (3.107)

where p = 0, ...,M − 1, whilst θ1,p and θ3,p are two column vectors of M rows with constant

elements equal to θ1 and θ3, respectively. If An and Bn are written in terms of equations 3.105,

it is obtained:

θ1,p =
M
a−b

� b+a−b
M

(p+1)

b+a−b
M

(p)
τ(r, h/2)dr =

M
a−b

� b+a−b
M

(p+1)

b+a−b
M

(p)

�∞
n=1

�
Ane

−hkn
2a +Bne

hkn
2a

�
J0(kn

r
a)dr =

M
a−b

� b+a−b
M

(p+1)

b+a−b
M

(p)

�∞
n=1

�
αne

−hkn
2a + γne

hkn
2a

�
J0(kn

r
a)dr+

M
a−b

� b+a−b
M

(p+1)

b+a−b
M

(p)

�∞
n=1

�
β1,ne

−hkn
2a + δ1,ne

hkn
2a

�
φ1,nJ0(kn

r
a)dr+

M
a−b

� b+a−b
M

(p+1)

b+a−b
M

(p)

�∞
n=1

�
β3,ne

−hkn
2a + δ3,ne

hkn
2a

�
φ3,nJ0(kn

r
a)dr,

(3.108)

it is possible to define:

Jp,1
0,n =

M

a− b

� b+a−b
M

(p+1)

b+a−b
M

(p)
J0

�
kn

r

a

�
dr, (3.109)

then:

θ1,p =
�∞

n=1

�
αne

−hkn
2a + γne

hkn
2a

�
Jp,1
0,n+

+
�
β1,ne

−hkn
2a + δ1,ne

hkn
2a

�
φ1,nJ

p,1
0,n +

�
β3,ne

−hkn
2a + δ3,ne

hkn
2a

�
φ3,nJ

p,1
0,n.

(3.110)

With analogy to what has been done in section (3.2.4), φ1,n φ3,n have the same form of φ>n,

i.e.:

φ1,n =
M−1�

m=0

φ1,mHn
1,m, (3.111)

φ3,n =
M−1�

m=0

φ3,mHn
3,m, (3.112)

where:

H1,m(r) =





1 if b+ (a−b)(m)
M < r < b+

�
(a−b)(m+1)

M

�

0 if r is outside
�
b+ (a−b)(m)

M , b+ (a−b)(m+1)
M

� (3.113)

H3,m(r) =





1 if b1m
M ≤ r ≤

�
b1(m+1)

M

�

0 if r is outside
�
b1m
M , b1(m+1)

M

� (3.114)
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m = 0, ...M − 1. In terms of Fourier-Bessel series, H1,m(r) and H3,m(r) become:

H1,m(r) =
∞�

n=1

Hn
1,mJ0

�
knr

a

�
, (3.115)

H3,m(r) =
∞�

n=1

Hn
3,mJ0

�
knr

a

�
, (3.116)

with Hn
1,m and Hn

3,m the coefficients of the series, which are found by using relation (3.13).

Hence, equation (3.110) becomes:

θ1,p =
�∞

n=1

�
αne

−hkn
2a + γne

hkn
2a

�
Jp,1
0,n+

�m=M−1
m=0

�∞
n=1

�
β1,ne

−hkn
2a + δ1,ne

hkn
2a

�
φ1,mHn

1,mJp,1
0,n+

�m=M−1
m=0

�∞
n=1

�
β3,ne

−hkn
2a + δ3,ne

hkn
2a

�
φ3,mHn

3,mJp,1
0,n =

D1,p +
�m=M−1

m=0 φ1,mE1
1m,p +

�m=M−1
m=0 φ3,mE1

3m,p,

(3.117)

where it has been set:

D1,p =
∞�

n=1

�
αne

−hkn
2a + γne

hkn
2a

�
Jp,1
0,n, (3.118)

E1
1m,p =

∞�

n=1

�
β1,ne

−hkn
2a + δ1,ne

hkn
2a

�
Hn

1,mJp,1
0,n, (3.119)

E1
3m,p =

∞�

n=1

�
β3,ne

−hkn
2a + δ3,ne

hkn
2a

�
φ3,mHn

3,mJp,1
0,n. (3.120)

The last equality, in equation (3.117), can be written in term of matrix as follows:

M1,1
m,pφ1,m +M1,3

m,pφ3,m = θ1,p −D1,p, (3.121)

with:

M1,1
m,p = E1

1m,p, M1,3
m,p = E1

3m,p. (3.122)

If the same procedure is applied also for equation (3.107), another matrix equation is obtained,

with the same shape of equation (3.121). In particular:

θ3,p = D3,p +

m=M−1�

m=0

φ1,mE3
1m,p +

m=M−1�

m=0

φ3,mE3
3m,p (3.123)
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with:

D3,p =

∞�

n=1

�
αne

−hkn
2a + γne

hkn
2a

�
Jp,3
0,n, (3.124)

E3
1m,p =

∞�

n=1

�
β1,ne

−hkn
2a + δ1,ne

hkn
2a

�
Hn

1,mJp,3
0,n, (3.125)

E3
3m,p =

∞�

n=1

�
β3,ne

−hkn
2a + δ3,ne

hkn
2a

�
φ3,mHn

3,mJp,3
0,n. (3.126)

and:

Jp,3
0,n =

M

b1

� b1
M

(p+1)

b1
M

p
J0

�
kn

r

a

�
dr. (3.127)

Eventually:

M3,1
m,pφ1,m +M3,3

m,pφ3,m = θ3,p −D3,p, (3.128)

M3,1
m,p = E3

1m,p, M1,3
m,p = E3

3m,p. (3.129)

By using equation (3.121) and equation ( 3.128), the coefficients φ1,m and φ3,m can be found.

Indeed, in analogy to section (3.2.4), the following system can be written:

Mφ = V, (3.130)

where now it is:

M =

�
M1,1

m,p M1,3
m,p

M3,1
m,p M3,3

m,p

�
, (3.131)

φ =

�
φ1,m

φ3,m

�
, (3.132)

V =

�
θ1,p −D1,p

θ3,p −D3,p

�
. (3.133)

By inverting matrix M , φ1,m and φ3,m are determined from the relation: φ = M−1V . After

applying (3.111) and (3.112), φ1,n and φ3,n are also calculated. So, An and Bn result to be
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determined, and the mirror temperature field is now known. It is worth remarking that the

quantity Jp,1
0,n and Jp,3

0,n can be calculated both with an approximation analogue to the one in

equation (3.86), and in a numerical way, by using the MATLAB function quad, as it is shown in

section (3.2.4). As the application of the two different methods does not give significant result

differences, in what follows it is chosen to report only the results concerning the application of

the formulas similar to equation (3.86), for Jp,1
0,n and Jp,3

0,n.

3.2.6 Fixed temperature on the mirror edges, one external ring heater and

central disk heater

Figure 3.6: TCS with one ring heater and one disk heater - fixed temperature T2 on a
central circular section of radius b; fixed temperature T1 in an external ring of internal radius b and
external radius a; fixed temperature, equal to T1, on the mirror edges. Environment at temperature
T0 = 300K.

The TCS configuration analyzed in this section aims to correct for the mirror distortions due

to the coating absorption of optical power. It consists in warming up at a constant temperature

T2 the central part of the mirror, with a disk heater in its rear side, and the adjacent part with

a ring heater fixing the mirror temperature at T1. Furthermore the temperature is kept fixed at

T1 on the mirror edges as well. The TCS discussed here is illustrated in figure (3.6) to better

clarify its principle. The mirror temperature field is again described as T1 + τ(r, z), where T1 is

the fixed temperature, mentioned above, while τ(r, z) is the excess of temperature with respect
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to T1. In order to have the linearization condition verified, it has always to be τ << T1. In the

mathematical formalism adopted in this work, as usual, it is:

τ(r, z) =
∞�

n=1

�
Ane

−kn
z
a +Bne

kn
z
a

�
J0(kn

r

a
). (3.134)

with kn, n = 1, 2 ... zeros of equation J0(kn) = 0. The coefficients An and Bn are determined,

by using the equation of the boundary condition for the heat flow at the thermal equilibrium

on the mirror face internal to the optical cavity (the face at z = −h/2) and the equation of the

excess of temperature on the rear side of the mirror (the face at z = h/2). As far as the former

equation is concerned, this is written as equation (3.22), where the linearization with respect to

the temperature excess, τ , is considered. The latter equation is instead:

τ(r, h/2) = θ1Hab(r) + θ2Hb(r), (3.135)

where θ1 and θ2 describe the temperature imposed on the rear side of the mirror. By considering

T1 as reference temperature, it is: θ1 = T1 − T1 = 0, θ2 = T2 − T1 and:

Hab(r) =

�
1 if b ≤ r ≤ a

0 if r < b ∪ r > a,
(3.136)

Hb(r) =

�
1 if 0 ≤ r ≤ b

0 if r > b
. (3.137)

In terms of Bessel function base, it is:

Hab(r) =
�nmax

n=1 Hab,nJ0(kn
r
a),

Hab,n =
2(aJ1(kn)−bJ1( bkn

a ))
aknJ1(kn)2

,

(3.138)

Hb(r) =
�nmax

n=1 Hb,nJ0(kn
r
a),

Hb,n =
2bJ1( bkn

a )
aknJ1(kn)2

,

(3.139)

and from equation (3.135), it is obtained:

Ane
−kn

h
2a +Bne

kn
h
2a = θ1Hab,n + θ2Hb,n. (3.140)
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By solving the system compounded of equation (3.22) and equation (3.140), the solutions for the

coefficients An and Bn are found, and the mirror temperature field is now known. In particular:

An = −
e

hkn
2a

�
2σ(T 4

1−T 4
0 )

knJ1(kn)
− �Pe

−
w2k2n
8a2

πa2J1(kn)2

�
+

2b(T2−T1)e
−

hkn
2a J1( bkn

a )(4σT 3
1−

Kkn
a )

aknJ1(kn)2

e
hkn
a

�
Kkn
a + 4σT 3

1

�
− e−

hkn
a

�
4σT 3

1 − Kkn
a

� (3.141)

Bn =

e−
hkn
a






e
hkn
2a







2σ(T4
1−T04)

knJ1(kn)
−P �e

−
w2k2n
8a2

πa2J1(kn)2






+

2b(T2−T1)e
−

hkn
2a J1( bkn

a )(4σT3
1−

Kkn
a )

aknJ1(kn)2







e
hkn
a (Kkn

a
+4σT 3

1 )−e−
hkn
a (4σT 3

1−
Kkn
a )

−

2e−
hkn
2a (bT1J1( bkn

a )−bT2J1( bkn
a ))

aknJ1(kn)2

(3.142)

3.2.7 Fixed temperature on the mirror edges, three external ring heaters and

central disk heater

Figure 3.7: TCS with three ring heaters and one disk heater in the mirror rear side -
Applied temperature field in the rear side of the mirror: fixed temperature T4 in a central circular
section of radius b1; fixed temperature T3 in the adjacent ring of internal radius b1 and external radius
b2; fixed temperature T2 an a ring of internal radius b2 and external radius b3; fixed temperature T1

an a ring of internal radius b3 and external radius a. Fixed temperature, equal to T1, on the mirror
edges. Environment at temperature T0 = 300K.

The TCS studied in this section, similarly to the ones already considered, has the purpose
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to correct for the cavity mirrors distortions due to the coating absorption of optical power. Its

configuration is described in figure (3.7). From a mathematical point of view, this system is

not so different with respect to the one considered in the previous section. Indeed, the mirror

temperature field is always written as T1 + τ(r, z), where τ(r, z) is the excess of temperature

described as follows:

τ =
∞�

n=1

τn(z)J0(kn
r

a
), τn(z) = Ane

−kn
z
a +Bne

kn
z
a (3.143)

with kn, n = 1, 2 ... zeros of equation J0(kn) = 0. In order to determine the coefficients An

and Bn, a system of two equations is required. One of these is equation (3.22), which gives the

boundary condition for the heat flow on the mirror face at z = −h/2. The second equation is

obtaining by imposing that the mirror temperature in z = h/2 is equal to the temperature field

set up in the rear side of the mirror, i.e.:

T1 + τ(r, h/2) = T1 + θ1H1(r) + θ2H2(r) + θ3H3(r) + θ4H4(r), (3.144)

where:

H1(r) =

�
1 if 0 ≤ r ≤ b1

0 if r > b1
, (3.145)

H2(r) =

�
1 if b1 ≤ r ≤ b2

0 if r < b1 ∪ r > b2
, (3.146)

H3(r) =

�
1 if b2 ≤ r ≤ b3

0 if r < b2 ∪ r > b3
, (3.147)

H4(r) =

�
1 if b3 ≤ r ≤ a

0 if r < b3 ∪ r > a
, (3.148)

and: θ1 = T4 − T1, θ2 = T3 − T1, θ3 = T2 − T1, θ4 = T1 − T1 = 0. After the development on

Bessel function base, for the coefficients of the excess of temperature, in z = h/2, it is:

Ane
−kn

h
2a +Bne

kn
h
2a = θ1H1,n + θ2H2,n + θ3H3,n, (3.149)

where H1,n, H2,n and H3,n are the coefficients of the expansion on the Bessel function base for

133



Chapter 3. Thermal Effect Compensation Systems

the function: H1(r), H2(r) and H3(r). Hence, by using formulas (3.13):

H1,n =
2b1J1

�
b1kn
a

�

aknJ1 (kn) 2
, (3.150)

H2,n =
2
�
ab2J1

�
b2kn
a

�
− ab1J1

�
b1kn
a

��

a2knJ1 (kn) 2
, (3.151)

H3,n =
2
�
ab3J1

�
b3kn
a

�
− ab2J1

�
b2kn
a

��

a2knJ1 (kn) 2
. (3.152)

The expression for the coefficients An and Bn are then obtained by solving the system made up

of equation (3.22) and equation (3.149). It is found:

An = −
2(T2−T1)e

−
hkn
2a

�

ab3J1
�

b3kn
a

�

−ab2J1
�

b2kn
a

��

(4σT 3
1−

Kkn
a )

a2knJ1(kn)2
�

e
hkn
a (Kkn

a
+4σT 3

1 )−e−
hkn
a (4σT3

1−
Kkn
a )

� +

e−
hkn
2a



−
2(T3−T1)

�

ab2J1

�

b2kn
a

�

−ab1J1

�

b1kn
a

��

a2knJ1(kn)2
−

2b1(T4−T1)J1

�

b1kn
a

�

aknJ1(kn)2



(4σT 3
1−

Kkn
a )

e
hkn
a (Kkn

a
+4σT 3

1 )−e−
hkn
a (4σT 3

1−
Kkn
a )

−

e
hkn
2a







2σ(T4
1−T4

0 )
knJ1(kn)

−P �e
−

w2k2n
8a2

πa2J1(kn)2







e
hkn
a (Kkn

a
+4σT3

1)−e−
hkn
a (4σT 3

1−
Kkn
a )

,

(3.153)

Bn = −
2(T2−T1)e

−
3hkn
2a

�

ab3J1
�

b3kn
a

�

−ab2J1
�

b2kn
a

��

(4σT 3
1−

Kkn
a )

a2knJ1(kn)2
�

e
hkn
a (Kkn

a
+4σT 3

1 )−e−
hkn
a (4σT 3

1−
Kkn
a )

� −

e−
3hkn
2a



−
2(T3−T1)

�

ab2J1

�

b2kn
a

�

−ab1J1

�

b1kn
a

��

a2knJ1(kn)2
−

2b1(T4−T1)J1

�

b1kn
a

�

aknJ1(kn)2



(4σT 3
1−

Kkn
a )

e
hkn
a (Kkn

a
+4σT 3

1 )−e−
hkn
a (4σT 3

1−
Kkn
a )

+

e−
hkn
2a







2σ(T4
1−T4

0 )
knJ1(kn)

− �Pe
−

w2k2n
8a2

πa2J1(kn)2







e
hkn
a (Kkn

a
+4σT 3

1 )−e−
hkn
a (4σT 3

1−
Kkn
a )

−

2e−
hkn
2a

�

b3T1J1
�

b3kn
a

�

+b2T2J1
�

b2kn
a

�

−b3T2J1
�

b3kn
a

�

+b1T3J1
�

b1kn
a

�

−b2T3J1
�

b2kn
a

�

−b1T4J1
�

b1kn
a

��

aknJ1(kn)2
.

(3.154)
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3.3 Mathematical description of the mirror thermal deforma-

tions for the considered TCS

This section aims to present the mathematical description of the mirror surface distortions

caused by the presence of a temperature field. To this purpose, the displacement vector, �u, is

defined to describe the difference between the coordinates of a given mirror atom before and

after the heating process [85]. It is observed that, as a cylindrical symmetry is assumed for the

mirror, in cylindrical coordinates, the displacement vector has only two components uz(r, z) and

ur(r, z). Once �u is found, the mirror deformation is determined. The behavior of an isotropic

material under given configurations of stress is predicted by the generalized Hooke law [85], [86],

which, in the presence of a temperature field, T = T (r, z), reads:

Θi,j = δi,j(λE − νT ) + 2µEi,j , (3.155)

where Θi,j and Ei,j are the stress tensor and the strain tensor, respectively, ν is the stress

temperature modulus, E the trace of the strain tensor, δi,j is the Kronecher tensor and λ,

µ are the Lamé coefficients. As far as Θi,j and Ei,j are concerned, they are connected to the

displacement vector, �u(r, z). Particularly, in cylindrical symmetry and in cylindrical coordinates,

the strain tensor has the following four components:

Err(r, z) =
∂ur
∂r

(r, z), Ezz(r, z) =
∂uz
∂z

(r, z), (3.156)

Eφφ(r, z) =
ur(r, z)

r
, Erz(r, z) =

1

2

�
∂ur
∂z

(r, z) +
∂uz(r, z)

∂r

�
, (3.157)

and the stress tensor components are:





Θrr = −νT + λE + 2µErr

Θφφ = −νT + λE + 2µEφφ

Θzz = −νT + λE + 2µEzz

Θrz = +2µErz

, (3.158)

It is worth stressing that the temperature field, T (r, z), entering the Hooke law is the varia-

tion of the mirror temperature with respect to a reference temperature, for which there is no

deformation. Furthermore, in absence of external applied forces, the stress tensor must obey a
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particular case of Navier-Cauchy equations, i.e. :

�
∂rΘrr + (Θrr −Θφφ)/r + ∂zΘrz = 0

(∂r + 1/r)Θrz + ∂zΘzz = 0
. (3.159)

If there is not external application of pressures, the following boundary conditions have to be

verified as well:

Θrr(a, z) = 0, Θrz(a, z) = 0, Θrz(r,±h/2) = 0, Θzz(r,±h/2) = 0. (3.160)

The notions introduced in this section are applied to determine the cavity mirror deformations

associated to the TCS considered so far. In this respect, exactly the same mathematical solution

for �u will be used for the TCS described in sections (3.2.1), (3.2.2), (3.2.4), (3.2.5), (3.2.6) and

(3.2.7), but, according to Ref. [71], for the TCS analyzed in section (3.2.3), another solution

for the displacement vector is considered. However, it is possible to check that both the two

solutions for �u can be applied to describe the TCS analyzed in section (3.2.3). To show this

point, a comparison between the results obtained with the two calculations methods is reported

in appendix (C). For the sake of clearness, it is worth saying that the former solution, used for

the TCS of sections (3.2.1), (3.2.2), (3.2.4), (3.2.5), (3.2.6) and (3.2.7), is addressed in what

follows as Displacement vector solution with zeros of the Bessel function of the first kind and

first order ; while the latter solution, applied for the TCS of section (3.2.3), is indicated as

Displacement vector solution involving Dini equation (3.33).

3.3.1 Displacement vector solution with zeros of the Bessel function of the

first kind and first order

In this section, the displacement vector, �u, solution is reported, for the TCS studied in sections

(3.2.1), (3.2.2), (3.2.4), (3.2.5), (3.2.6) and (3.2.7). In these cases, the cavity mirror temperature

is written as T1 + τ(r, z), where T1 is a constant temperature imposed on the mirror and τ(r, z)

is the excess of temperature with respect to T1, with the same form as given in equation (3.4).

If the environment temperature is T0, it is possible to define it as the reference temperature

for which the mirror does not present distortion. Then, for the TCS currently considered, the

temperature field entering the generalized Hooke law, can be described as:

T̃ (r, z) =

nmax�

n=1

(Ane
−kn

z
a +Bne

kn
z
a )J0

�
kn

r

a

�
+ (T1 − T0), (3.161)
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where the coefficients An and Bn depends on the particular TCS taken into account among the

ones concerned. As it is possible to look for solutions of �u which involve the zeros of the Bessel

function J1, it is convenient to decompose the field T̃ (r, z) in terms of a Dini series [66], [67],

[68]:

T (r, z) =
�

m≥1

Tm(z)J0

�
lm

r

a

�
+ Tm=0, (3.162)

where lm are the zeros of the Dini equation:

lmJ
�

0(lm) + cJ0(lm) = 0; (3.163)

with c = 0, so that lm are actually the zeros of the function J1. For a function, f(y), the

following development in terms of Dini series holds [66], [67]:

f(y) =
∞�

m=0

bmJ0

�
lmy

a

�
, (3.164)

with coefficients:

bm =
2l2m

a2(c2 + l2m)J2
0 (lm)

� a

0
J0

�
lmy

a

�
f(y)ydy. (3.165)

Hence, for equation (3.162), it is obtained:

Tm(z) =
2

a2J2
0 (lm)

� a

0
T̃ (r, z)J0

�
lm

r

a

�
rdr, (3.166)

Tm(z) =

∞�

n=1

(Ane
−kn

z
a +Bne

kn
z
a )Dm,n + (T1 − T0)Cm, (3.167)

Dm,n =
2

a2J2
0 (lm)

� a

0
J0

�
lm

r

a

�
J0

�
kn

r

a

�
rdr, (3.168)

Cm =
2

a2

� a

0
J0

�
lm

r

a

�
rdr, (3.169)

Tm=0 =
2

a2J2
0 (lm)

� a
0 T̃ (r, z)rdr =

= (T1 − T0) + 2
�∞

n=1(Ane
−kn

z
a +Bne

kn
z
a )J1(kn)kn

.

(3.170)

It must be observed that Cm ≡ 0, as it is m ≥ 1. It is possible to look for a solution of equations
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(3.159), in terms of displacement vector components, with the following form:

ur(r, z) =

∞�

m=1

U r
m(z)J1(lmr/a), (3.171)

uz(r, z) =

∞�

m=0

U z
m(z)J0(lmr/a). (3.172)

Then, the first of equations (3.159) reads:

−µa2U r
m

��(z) + alm(λ+ µ)U z
m

�(z) + (λ+ 2µ)l2mU r
m(z) = almνTm(z), (3.173)

and the second one:

a2(λ+ 2µ)U z
m

��(z) + alm(λ+ µ)U r
m

�(z)− µl2mU z
m(z) = a2νT �

m(z). (3.174)

For m ≥ 1 the previous two equations are solved by functions with the following form:

U r
m(z) = (c1,m + c3,mz)e(lmz/a) + (c2,m + c4,mz)e−(lmz/a) + F r

m(z) +Hm, (3.175)

U z
m(z) =

�
−c1,m − c3,mz + c3,m

a(µ+λ)
lm(λ+µ)

�
e(lmz/a)+

+
�
c2,m + c4,mz + c4,m

a(µ+λ)
lm(λ+µ)

�
e−(lmz/a) + F z

m(z)
(3.176)

where:

F r
m(z) =

νalm
λ+ 2µ

nmax�

n=1

Ane
−knz/a +Bne

knz/a

l2m − k2n
Dm,n, (3.177)

F z
m(z) =

−νa

λ+ 2µ

nmax�

n=1

kn(−Ane
−knz/a +Bne

knz/a)

l2m − k2n
Dm,n, (3.178)

Hm =
νa

lm(λ+ 2µ)
(T1 − T0)Cm ≡ 0. (3.179)

For m = 0, i.e. l0 = 0 (see Ref. [69]), the Navier-Cauchy equations give:

U r
0
��(z) = 0, (3.180)

(λ+ 2µ)U z
0
��(z) = νT �

m=0(z). (3.181)
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As J1(0) ≡ 0, a possible solution of equation (3.180) is:

U r
0 = 0, (3.182)

while a solution of equation (3.181) is:

U z
0 = c5 + c6z + 2

nmax�

n=1

�
−aAne

−knz/a + aBne
knz/a
�

kn

J1(kn)

kn

ν

(λ+ 2µ)
. (3.183)

In order to determine the coefficients entering the expressions of Uz
m(z), U r

m(z), U z
0 (z), condi-

tions (3.160) are considered. In particular, c1,m, c2,m c3,m, c4,m, c6 are obtained by fixing the

constrains Θzz(r,±h/2) = 0 and Θrz(r,±h/2) = 0, as follows:





Θzz,m(h/2) = 0

Θzz,m(−h/2) = 0

Θrz,m(−h/2) = 0

Θrz,m(h/2) = 0

(3.184)

where:

Θzz,m(r, z) =
J0(lmr/a)

a

�
lmλU r

m(z)− aνTm(z) + a(λ+ 2µ)U z
m

�(z)
�
, (3.185)

Θrz,m(r, z) = µ
J1(lmr/a)

a

�
−lmU z

m(z) + aU r
m

�(z)
�
. (3.186)

Moreover, from the expressions of U z
m and U r

m, for m ≥ 1, it is:

Θrz,m(z) = 2µ

��nmax
n=1

νAnDmnknlme−
zkn
a

(λ+2µ)(k2n−l2m)
+ νBnDmnknlme

zkn
a

(λ+2µ)(l2m−k2n)

�
+

2µ




e−
zlm
a

�

lm(zc3,m+c1,m)e
2zlm

a −lm(zc4,m+c2,m)

�

a −
µe−

zlm
a

�

c3,me
2zlm

a +c4,m

�

λ+µ


 ,

(3.187)
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Θzz,m(z) =

�nmax
n=1





νAnDmne
−

zkn
a (λk2n+2µk2n−λl2m)
k2n−l2m

+
νBnDmne

zkn
a (λk2n+2µk2n−λl2m)
k2n−l2m





λ+2µ +

2µ(λ+2µ)c3,me
zlm
a

λ+µ − 2µ(λ+2µ)c4,me−
zlm
a

λ+µ +

+
e−

zlm
a

�

−2µlm(zc3,m+c1,m)e
2zlm

a −2µlm(zc4,m+c2,m)

�

a − νTm.

(3.188)

For m = 0 =⇒ l0 = 0 and by using the definitions of U z
0 and U r

0 , it is found:

Θzz,0 = constant = c6(λ+ 2µ) + (T0 − T1)ν, (3.189)

Θrz,0 = 0. (3.190)

The complete expressions of Θrz(r, z) and Θzz(r, z) are:

Θzz(r, z) =

mmax�

m=0

J0(lmr/a)Θzz,m(z), (3.191)

Θrz(r, z) =

mmax�

m=1

J1(lmr/a)Θrz,m(z). (3.192)

Hence, it is possible to check that all the boundary conditions (3.160) are satisfied, butΘrr(a, z) =

0. According to the Saint Venant principle (see Ref. [86]-[94]), a suitable term is then added to

the displacement vector, in order to verify it. Indeed, the Saint Venant principle states that if a

system of forces with null resultant and moment acts on a portion of a homogeneous, isotropic

and elastic body, the effects of the system of forces are negligible, when considering points

sufficiently distant from the region of application of the system of forces. The Saint-Venant

correction added to the displacement vector reads:

δur(r, z) =
λ+ 2µ

2µ(3λ+ 2µ)
(ω0r + ω1rz), (3.193)

δuz(r, z) = − λ

µ(3λ+ 2µ)
(ω0z + ω1z

2/2)− λ+ 2µ

4µ(3λ+ 2µ)
ω1r

2, (3.194)
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where ω0 and ω1 are arbitrary constants, while λ and µ are the Lamè coefficients. These extra

components of the displacement vector firstly satisfy the equilibrium equations, secondly have

null stress components Θrz and Θzz, thirdly produce a radial edge stress:

δΘrr(az) = ω0 + ω1z. (3.195)

The constants ω1 and ω0 are chosen in order to minimize the quadratic error:

Error(ω0,ω1) =

� h/2

−h/2
[Θrr(a, z) + ω0 + ω1z]

2 dz, (3.196)

through the application of the classical mean-squares formulas, which allow to set to zero the

mean force and the mean moment. It is then found:

ω0 = −1

h

� h/2

h/2
Θrr(a, z)dz (3.197)

ω1 = −12

h3

� h/2

h/2
Θrr(a, z)dz. (3.198)

The expression of the Θrr,m components, for m ≥ 1 and m = 0, which are used for the determi-

nation of ω0 and ω1, are:

Θrr,m =
J0(lm)

�

−aν
�nmax

n=1

�

AnDm,ne
−

zkn
a +BnDm,ne

zkn
a

�

+aλF �

z,m(z)

�

a +

J0(lm)





2µe
zlm
a (aλc3,m+(λ+µ)lm(zc3,m+c1,m))+2µe

−
zlm
a ((λ+µ)lm(zc4,m+c2,m)−aλc4,m)

λ+µ
+(λ+2µ)lmFr,m(z)





a ,

(3.199)

Θrr,0 = −4µν
�nmax

n=1

J1(kn)

�

Ane
−

zkn
a +Bne

zkn
a

�

(λ+2µ)kn
+ c6λ+ ν (T0 − T1) .

(3.200)

The displacement vector components, by considering the Saint - Venant correction, will have the

same form as given through equations (3.171), (3.172), (3.175), (3.176), (3.177), (3.178), (3.179),

(3.182), (3.183), plus δur and δuz, for the components along r and z, respectively. To determine

c5 and c6, a system of two equations is applied. One equation is (3.189), which contains c6,

the second equation is obtained by imposing that the barycenter of the mirror does not moves
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because of the deformation, indeed there are not external forces applied on the system, i.e. :

2π

� h/2

−h/2
dz

� a

0
uz(r, z)rdr = 0. (3.201)

The previous equation together with equation (3.189) allows to determine the values of c5 and

c6, which are required to write the z component of the displacement vector for m = 0. It is

interesting to notice that, as: � a

0
J0 (lmr/a) rdr ≡ 0, (3.202)

condition (3.201) becomes:

2π

� h/2

−h/2
dz

� a

0
(U z

0 (z) + δuz)rdr = 0. (3.203)

In conclusion, the application of conditions (3.184), (3.203) and (3.189) allows to determine all

the coefficients entering the definition of the displacement vector components, hence the mirror

distortion turns out to be completely described. In this respect, it is worth observing that the

displacement vector is in general defined up to a constant value. In the previous calculations,

this degree of freedom has been used to introduce condition (3.201).

3.3.2 Displacement vector solution involving the Dini equation (3.33)

The displacement vector solution for the TCS analyzed in section (3.2.3) will be now presented.

As it has been already remarked, for this configuration, the calculations both for the temperature

field and for the displacement vector have been completely accomplished in Ref. [71], hence here

the main results will be reported. Firstly, it is observed that the temperature of the mirror is now

T0+τ(r, z), with T0 the environment temperature and τ the excess of temperature with respect to

it. There are no temperature fields applied on the mirror, hence the field of temperature entering

the generalized Hooke law is exactly τ(r, z). It is worth recalling that, in this configuration, the

coefficients of the temperature excess are described by equation (3.38) were ζn are solutions of

equation (3.33), so that the complete expression for τ(r, z) is:

τ(r, z) =

nmax�

n=1

τn(z)J0(ζnr/a). (3.204)
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A solution of the Navier-Cauchy equations (3.159) which satisfies all the boundary conditions

(3.160), but Θrr(a, z) = 0, can be written as follows:

ur(r, z) =
ν

2(λ+ µ)

1

r

� r

0
τ(r�, z)r�dr�, (3.205)

uz(r, z) =
ν

2(λ+ µ)

1

r

�� z

−h/2
τ(r, z�)z�dz� + Φ(r)

�
, (3.206)

with Φ(r) a function to be determined. Because of the expression of ur and uz, it results Θzz = 0,

and:

∂rΘrr + (Θrr −Θφφ)/r ≡ 0, (3.207)

then equations (3.159) reads: �
∂zΘrz = 0

(∂r + 1/r)Θrz = 0
. (3.208)

The function Φ(r) is determined, by demanding the validity of the second of the previous

equations, hence:

Φ(r) = −
� r

0

dr�

r�

� r�

0

∂τ

∂z
(r��,−h/2)r��dr�� + C, (3.209)

with C an arbitrary constant. It is now possible to verify that all the conditions (3.160) are

satisfied, but Θrr(a, z) = 0, as it has been already stressed. In order to make valid also this

last condition, the Saint -Venant correction is added, which is defined by equations (3.193),

(3.194), (3.195), (3.196), (3.197), (3.198), with the expression of Θrr(a, z) as calculated by using

equations (3.205) and (3.206). Eventually, a complete displacement vector solution, for the

currently considered TCS, is written as:

ur(r, z) = α(1 + σp)a

nmax�

n=1

τn(z)

ζn
J1(ζnr/a), (3.210)

δur(r, z) =
1− σp

Y
(ω0 + ω1z)r, (3.211)

uz(r, z) =
α(1+σp)�P

2πK

�nmax

n=1
pn
ζn
×

×
�

1
d2,n

+
�
sinh(ζnz/a)

d1,n
− cosh(ζnz/a)

d2,n

�
J0(ζnr/a)

�
,

(3.212)
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δuz(r, z) = −2σp
Y

�
ω0 +

1

2
ω1z

�
z − 1− σp

2Y
ω1r

2, (3.213)

where σp is the Poisson ratio, Y the Young modulus, α the expansion coefficient, and the

following relations with the Lamè coefficients and the stress temperature modulus, ν, hold:

λ =
Y σp

(1 + σp)(1− 2σp)
, µ =

Y

2(1 + σp)
,

ν

2(λ+ µ)
= α(1 + σp). (3.214)

As far as the other quantities entering equations (3.210) and (3.212) are concerned, d1,n, d2,n

are:
d1,n = ζn sinh γn + χe cosh γn,

d2,n = ζn cosh γn + χe sinh γn,

γn = ζnh/2a,

(3.215)

τn(z) are the same as given in equation (3.38), moreover the coefficient pn, in equation (3.212),

are calculated through relation (3.37), in section (3.2.3), then:

pn =
ζ2n

(χ2
e + ζ2n)J

2
0 (ζn)

exp

�
ζ2nw

2

8a2

�
(3.216)

w being the spot size of the laser beam. The remaining terms in equations (3.210) and (3.212)

have been already introduced in section (3.2.3). In conclusion, it is worth to explicit the expres-

sions for ω0 and ω1 as well, which are:

ω0 =
αY χe�P

πKh

nmax�

n=1

pn
J0(ζn)

ζ3n

sinh γn
d1,n

, (3.217)

ω1 = −12αY χe�aP

πKh3

nmax�

n=1

pn
J0(ζn)

ζ4n

γn cosh γn − sinh γn
d2,n

. (3.218)

The cavity mirror deformation can now be completely described, by using the components of

the displacement vector given in equations (3.210) - (3.213). However, how it has been pointed

out in the previous section, the displacement vector is defined up to a constant value. For the �u

solution, which is given above, this constant value has been chosen in order to have the zero of

the displacement vector on the mirror point z = 0 and r = 0, in analogy to the solution reported

in Ref. [71].
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3.4 TCS with mechanical constraints and temperature field

In this section, the possibility to correct for the mirror distortion through the application of

suitable stresses on the mirror surfaces will be considered. The mathematical tools applied on

the following calculations have already been introduced at the beginning of section (3.3), then

they will be recalled, when it is necessary. For the sake of clearness, it is worth saying that the

procedure adopted in the TCS descriptions below aims to obtain the components of the dis-

placement vector, which solve the Navier-Cauchy equations (3.159) together with appropriated

boundary conditions, in general different from equations (3.160), when a known temperature

field is present on the mirror.

3.4.1 Thermal Compensation system through mechanical constraints and

temperature field application on the cavity mirrors

The TCS presented in this section has the aim to analyze the possibility to correct the mirror

distortion due to the coating absorption of optical power, by fixing the mirror borders and

edges, as it is showed in picture (3.8). To the aim of writing the equations for determining

the displacement vector, �u, of this TCS, firstly, a mirror temperature field has to be fixed. In

what follows, it is assumed a mirror temperature field, T̃ , as given in (3.161). It is worth to

recall that, in this case, the environment temperature, T0, is assumed as reference temperature,

corresponding to the situation without mirror deformation. The next step consists in writing

T̃ in terms of Dini series, as it has been done in section (3.3.1). Hence, all the relations from

(3.162) to (3.170) are valid, for the current treatment. As it has been already seen, to describe

the mirror distortion, the determination of the displacement vector components is required. To

this purpose, the equations involved in the calculations are the Navier-Cauchy equation (3.159),

with the boundary conditions appropriated to the TCS under study. The solution given in

section (3.3.1), through equations (3.171), (3.172), (3.175)-(3.179), (3.182), (3.183) can be used

also for the considered TCS. Hence:

ur(r, z) =

∞�

m=1

U r
m(z)J1(lmr/a), (3.219)

uz(r, z) =

∞�

m=0

U z
m(z)J0(lmr/a). (3.220)
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where, for m ≥ 1, it is:

U r
m(z) = (c1,m + c3,mz)e(lmz/a) + (c2,m + c4,mz)e−(lmz/a) + F r

m(z) +Hm, (3.221)

U z
m(z) =

�
−c1,m − c3,mz + c3,m

a(µ+λ)
lm(λ+µ)

�
e(lmz/a)+

+
�
c2,m + c4,mz + c4,m

a(µ+λ)
lm(λ+µ)

�
e−(lmz/a) + F z

m(z)
(3.222)

with:

F r
m(z) =

νalm
λ+ 2µ

∞�

n=1

Ane
−knz/a +Bne

knz/a

l2m − k2n
Dm,n, (3.223)

F z
m(z) =

−νa

λ+ 2µ

∞�

n=1

kn(−Ane
−knz/a +Bne

knz/a)

l2m − k2n
Dm,n, (3.224)

Hm =
νa

lm(λ+ 2µ)
(T1 − T0)Cm ≡ 0; (3.225)

and, for m = 0:

U r
0 = 0, (3.226)

U z
0 = c5 + c6z + 2

∞�

n=1

�
−aAne

−knz/a + aBne
knz/a
�

kn

J1(kn)

kn

ν

(λ+ 2µ)
(3.227)

Nevertheless, the boundary conditions associated with the Navier-Cauchy equations are different

with respect to the ones given in equation (3.160), as mechanical constrains are imposed on the

mirror edges and borders. The configuration of the considered mechanical constrains is showed

in figure (3.8). To describe it from a mathematical point of view, the following function of r is

introduced:

f(r) =

�
0 r < a− d

1 r ≥ a− d
(3.228)

where d is defined as in figure (3.8) and a is the mirror radius, as customary. In terms of Dini

series, the function f(r) becomes:

f(r) =

mmax�

m=0

fmJ0(lmr/a), (3.229)

with :

f0 =
2

a2

� a

a−d
rdr, (3.230)
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Figure 3.8: Description of the TCS analyzed in section (3.4.1). - Application of mechanical
constraints on the mirror edges.

and for m ≥ 1:

fm =
2

a2J2
0 (lm)

� a

a−d
J0(lmr/a)rdr. (3.231)

The boundary conditions on the stress tensor Θij are now written as:





Θzz,m(h/2) = p+fm

Θzz,m(−h/2) = p−fm

Θrz,m(−h/2) = 0

Θrz,m(h/2) = 0

, (3.232)

where p+ and p− describe uniform stresses and Θzz,m and Θrz,m are completely defined through

equations (3.185)-(3.192). It is worth recalling that, for m = 0 =⇒ l0 = 0 and from the

expressions of U z
0 and U r

0 , it is found:

Θzz,0 = constant = c6(λ+ 2µ) + (T0 − T1)ν; (3.233)

Θrr,0 = 0. (3.234)

To determine the components of the displacement vector, the expressions of the unknown quan-

tities c1,m, c2,m, c3,m, c4,m, c6, c5, p+ and p− have to be found. With this aim, firstly, it is
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observed that, because of the constance of Θzz,0, the following relation has to be verified:

Θzz,0(h/2) = Θzz,0(−h/2) =⇒ p+ = p− = p. (3.235)

The number of unknowns decreases, but still two equations are missing in order to solve the

problem. However, it is possible to describe the constraints present for a−d ≤ r ≤ a, represented

in picture (3.8), by introducing the following conditions:

1

d(a− d)

� a

a−d
uz(r,−h/2)rdr = 0, (3.236)

1

d(a− d)

� a

a−d
uz(r, h/2)rdr = 0. (3.237)

The previous two relations are equivalent to demand the cancellation of the average of the uz

component of the displacement vector, on both the mirror surfaces and on the region indicated

by the integration in equations (3.236), (3.237). They approximate the condition of null dis-

placement vector for a− d ≤ r ≤ a, on the surfaces internal and external to the optical cavity,

showed in picture (3.8). Hence, equations (3.236) and (3.237) are used together with the bound-

ary conditions (3.232) for determining the constants c1,m, c2,m, c3,m, c4,m, c5, c6. Indeed, by

considering the conditions on Θrz,m and Θzz,m for m ≥ 1, as given in (3.232), the coefficients

c1,m c2,m c3,m c4,m are written as functions of p. Once this is done, conditions (3.236), (3.237)

and the relation:

c6(λ+ 2µ) + (T0 − T1)ν = pf0, (3.238)

are utilized as a system of equations for obtaining the values of c5, c6 and p. As p is now known,

it is possible to calculate c1,m c2,m c3,m c4,m and, from the numerical values of c5 and c6, also

U z
0 can be evaluated. In conclusion, the displacement vector results to be completely known.

3.4.2 TCS with fixation of the cavity mirror edges and temperature field

application

The TCS analyzed in this section concerns the application of fixation on the mirror edges, as it

is showed in figure (3.9), when an external temperature field is also applied on the mirror. In

particular, it is assumed a mirror temperature field, T̃ , as given in equation (3.161).

From a mathematical and conceptual point of view, this compensation system is similar to the
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Figure 3.9: Scheme of the TCS studied in section (3.4.2). - A fixation is applied on the
edges of the mirror, i.e. on its cylindrical surface, so that the displacement vector component along
r is null. A temperature field is also applied on the mirror, hence its temperature is T1 + τ(r, z)

one analyzed in section (3.4.1), indeed, relations (3.171)-(3.183) are still valid. However, the co-

efficients c1,m, c2,m, c3,m, c4,m, c5 and c6, entering the displacement vector components, defined

through equations (3.175), (3.176), (3.182) and (3.183), are different, because the conditions to

impose in order to determine them are not the same as the ones in section (3.4.1). For the TCS

currently under analysis, the boundary conditions on the components Θzz and Θrr of the stress

tensor, after the development in terms of Dini series, are:





Θzz,m(h/2) = 0

Θzz,m(−h/2) = 0

Θrz,m(−h/2) = 0

Θrz,m(h/2) = 0

(3.239)

Equations (3.239), for m ≥ 1, are used to find c1,m, c2,m, c3,m, c4,m. As far as c6 and c5 are

concerned, their determination is obtained, by defining a system of two further equations. One

of theses equations is given by the boundary condition Θzz,0, which reads:

c6(λ+ 2µ) + (T0 − T1)ν = 0. (3.240)

Another equation is obtained by using the fact that the displacement vector is defined up to a

constant vector. Indeed, it is chosen to set to zero the displacement vector �u = (ur(r, z), uz(r, z))

at the mirror point z = −h/2, r = 0, i.e. on the center of the reflecting surface. Mathematically,
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from the equation for the z component of �u, it is obtained:

U z
0 (−h/2) +

∞�

m=0

U z
m(−h/2) = 0. (3.241)

It is pointed out that the same equation for the radial component of �u gives the identity 0 = 0.

As equation (3.241) contains c5 and c6, the solution of a system compounded of both equation

(3.240) and equation (3.241) allows to determine U z
0 , so that the displacement vector is now

completely known.

3.4.3 TCS based on pressure applications on the mirror

The possibility of correcting the mirror deformation by opportunely applying a field of pressure

on the mirror surfaces is now considered. With this aim, firstly, the mirror thermal condition will

be defined. In particular, it is assumed that no external temperature field are implemented on the

cavity mirror, so that its temperature is the one already considered in section (3.2.3). However,

the results found in section (3.2.3) will be developed on the zeros of the first order Bessel function,

J1, to describe the mirror deformation and temperature with the same formalism. Indeed, the

solution for �u reported in section (3.3.2) cannot be used, when considering stress applications

on the mirror surfaces, as it can be checked that the form of the displacement vector, given

in section (3.3.2), leads to Θzz ≡ 0. Consequently, as it has been already pointed out in the

previous sections, solutions of the Navier-Cauchy equations (3.159) with the following form can

be considered:

Ur(r, z) =
∞�

m≥1

Ur,m(z)J1

�
lmr

a

�
, (3.242)

Uz(r, z) =

∞�

m≥0

Uz,m(z)J0

�
lmr

a

�
, (3.243)

where a is the mirror radius, while lm is the mth zero of the Dini equation:

yJ �
0(y) + cJ0(y) = 0, (3.244)

with c equal to zero. Then, as it has been already seen in section (3.3.1), lm are, actually, the

zeros of the Bessel function, J1. Furthermore, the development described by equations (3.164),

(3.165) holds, so that the temperature field solution given in equation (3.39) can be rewritten,
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by using the zeros of J1, as:

T (r, z) = T0 + τ̃(r, z), (3.245)

with T0 the constant environment temperature and τ(r, z) the excess of temperature, which now

reads:

τ̃ =
∞�

m≥0

τ̃m(z)J0

�
lm

r

a

�
(3.246)

τ̃m(z) =
2

a2J2
0 (lm)

� a

0
J0(lmr/a)τ(r, z)rdr. (3.247)

It is stressed that τ(r, z) has the same form as given in equation (3.39), so that, it is possible to

write equation (3.247) as:

τ̃m(z) = 2
a2J2

0 (lm)

� a
0 J0(lmr/a)

�∞
n=1 J0(knr/a)

�
Ane

−kn
z
a +Bne

kn
z
a

�
rdr =

=
�∞

n=1

�
Ane

−kn
z
a +Bne

kn
z
a

�
Dm,n

(3.248)

with kn zeros of the equation (3.33), and Dm,n the same integration as given in (3.168).

The Navier et Cauchy equations to solve in order to get to the Uz and Ur components of the

displacements vector are similar to (3.173) and (3.174), for m ≥ 1, and to (3.180) and (3.181),

for m = 0, so that the solutions are equivalent, even if it has to be considered that the quantities

describing the temperature are different, as the temperature field is different. So, for m ≥ 1, it

is:

U r
m(z) = (c1,m + c3,mz)e(lmz/a) + (c2,m + c4,mz)e−(lmz/a) + F r

m(z), (3.249)

U z
m(z) =

�
−c1,m − c3,mz + c3,m

a(µ+λ)
lm(λ+µ)

�
e(lmz/a)+

+
�
c2,m + c4,mz + c4,m

a(µ+λ)
lm(λ+µ)

�
e−(lmz/a) + F z

m(z)
(3.250)

where the function F z
m(z) and F r

m(z) have the same form as the one introduced in the previous

section. For m = 0, the solutions are equal to the one given in equation (3.182) and (3.183).

The field of pressure can be applied by using the boundary conditions on the stress tensor

components Θzz and Θrz. Then, by solving the resulting equations for Θzz and Θrz, with the

applied field of pressure, the coefficients c1,m c2,m, c3,m , c4,m, c5, c6 are determined.

For m ≥ 1, on the mirror reflecting surface, i.e. on z = −h/2, the Dini series coefficients of
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stress tensor components, Θzz and Θrz, have the following expression, respectively:

Θzz,m(−h/2) =
µ(λ+µ)e−

hlm
2a

�

2a(λ+2µ)

�

c3,m−c4,me
hlm
a

�

+(λ+µ)lm

�

−(2c2,m−hc4,m)e
hlm
a +hc3,m−2c1,m

��

a +

+
(λ+µ)2(a(λ+2µ)F �

z[−h
2 ]−aντ̃m[−h

2 ]+λlmFr[−h
2 ])

a ,

(3.251)

Θrz,m(−h/2) =
µe−

hlm
2a

�

e
hlm
a (c4,m(h(λ+µ)lm−2aµ)−2(λ+µ)lmc2,m)−(λ+µ)e

hlm
2a (lmFz[−h

2 ]−aF �

r[−h
2 ])

�

a(λ+µ) +

+
µe−

hlm
2a (2(λ+µ)lmc1,m−c3,m(2aµ+h(λ+µ)lm))

a(λ+µ) .

(3.252)

On the rear side of the mirror, i.e. z = h/2, it is:

Θzz,m(h/2) =
µ(λ+µ)e−

hlm
2a

�

(λ+µ)lm

�

−(hc3,m+2c1,m)e
hlm
a −hc4,m−2c2,m

�

−2a(λ+2µ)

�

c4,m−c3,me
hlm
a

��

a +

+
(λ+µ)2(a(λ+2µ)F �

z[h2 ]−aντm[h2 ]+λlmFr[h2 ])
a ,

(3.253)

Θrz,m(h/2) =
µ(λ+µ)e−

hlm
2a

�

e
hlm
a (c3,m(h(λ+µ)lm−2aµ)+2(λ+µ)lmc1,m)−(λ+µ)e

hlm
2a (lmFz[h2 ]−aF �

r[h2 ])
�

a +

+
µ(λ+µ)e−

hlm
2a (−c4,m(2aµ+h(λ+µ)lm)−2(λ+µ)lmc2,m)

a .

(3.254)

In order to determine c1,m c2,m c3,m c4,m, when a pressure field is applied on the mirror, the

following equations can be written:





Θzz,m(h/2) = P+,m

Θzz,m(−h/2) = P−,m

Θrz,m(−h/2) = 0

Θrz,m(h/2) = 0

(3.255)

where P+,m and P−,m are the coefficients of the development on the Bessel function base of the
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field of pressure applied on the mirror. In the easier case:

P+(r) =

�
0 r < dout

P+ r ≥ dout
(3.256)

P−(r) =

�
0 r < din

P− r ≥ din
(3.257)

where P+ and P− are the constant pressure values applied on the mirror outside and inside the

optical cavity respectively, as it is shown in figure (3.10).

It is also possible to have a configuration with different pressures applied on the back side of the

Figure 3.10: Mirror scheme with TCS based on pressure application - Application of
pressure P+ on a ring of internal radius dout and external radius a, on the rear side of the mirror,
and of pressure P

−
on a ring of internal radius din and external radius a, on the mirror surface

internal to the optical cavity.

mirror. An example of this case is:

P+(r) =





0 dout,1 < r < dout,2

g+ 0 ≤ r ≤ dout,1

p+ r ≥ dout,2

(3.258)

where a pressure, g+, is applied on a central disk of radius dout,1 and a second pressure, p+, is

set up on a ring of internal radius dout,2. The rear side of the mirror surface can also be divided

in one central disk and several adjacent rings. In each of these mirror regions, a different value

of pressure can be applied. It is worth noticing that a MATLAB program with seven different

pressures applicable in the back side of the mirror has been realized, in this work. The cases

with one, two, three, four, five and six fixed values of the pressure can be analyzed, by using

the program with seven different fixed values of pressure, indeed it is enough to set to zeros the

appropriate number of fixed external pressure to recover the desired case.
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For the sake of simplicity, the configuration with one fixed value of the pressure in the rear side

of the mirror is now considered, in order to show the mathematical procedure used to obtain the

complete solution for the displacement vector components, in the case of the TCS under study.

However, what will be explain holds even for the case with seven pressure values applied on the

mirror.

In terms of Dini series, the functions P+(r), P−(r), described in figure (3.10), become:

P+(r) =

∞�

m=0

P+,mJ0(lmr/a), (3.259)

P−(r) =
∞�

m=0

P−,mJ0(lmr/a), (3.260)

with :

P+,0 =
2P+

a2

� a

dout1

rdr, (3.261)

P−,0 =
2P−
a2

� a

din

rdr, (3.262)

and, for m ≥ 1:

P+,m =
2P+

a2J2
0 (lm)

� a

dout1

J0(lmr/a)rdr, (3.263)

P−,m =
2P−

a2J2
0 (lm)

� a

din

J0(lmr/a)rdr. (3.264)

As far as the Dini series coefficients of the stress tensor components, Θzz and Θrz, for m = 0

are concerned, it is:

Θzz,0(z) = constant = c6(λ+ 2µ), (3.265)

Θrz,0(z) = constant = 0. (3.266)

So that the following condition is found:

P+,0 = P−,0. (3.267)

It is possible to show that this condition is equivalent to say that the magnitude of the total force

applied on the mirror surface internal to the optical cavity has to be equal to the magnitude of
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the total force applied to the rear side of the mirror. Indeed, the magnitude of the total force

applied in the external surface of the mirror is:

F+ = 2π

� a

0

� ∞�

m=0

P+,mJ0(lmr/a),

�
rdr = 2π

� a

0
P+,0rdr = πP+,0a

2, (3.268)

while the magnitude of the total force applied in the internal surface of the mirror is:

F− = 2π

� a

0

� ∞�

m=0

P−,mJ0(lmr/a),

�
rdr = 2π

� a

0
P−,0rdr = πP−,0a

2. (3.269)

By equating equation (3.268) and (3.269), we get to the same condition already given in (3.267),

where the expression of P+,0 and P−,0 are the ones of equations (3.261) and (3.262). As a

consequence, it is possible to fix the pressure to apply on the rear side of the mirror, and the

pressure on the mirror surface internal to the optical cavity turns out to be determined, i.e. the

value of P+ is a program data and P− is found by using the last condition (3.267). In order to

determine c5 and c6, a system of two equations is used. One of the equations compounding the

system is:

Θzz,0 = c6(λ+ 2µ) = P+,0. (3.270)

The other equation can be obtained by imposing that the barycenter of the mirror does not

change its position:

2π

� h/2

−h/2
dz

� a

0
uz(r, z)rdr = 0. (3.271)

It is important to notice that the vector uz(r, z), in equation (3.271), contains also the Saint

Venant correction, which has been already introduced in section (3.3.1), and it is defined by

equations (3.193)-(3.198). For the sake of clearness, the expressions of the coefficients Θrr,m, for

m ≥ 1 and m = 0, entering the calculations of the Saint-Venant terms, are reported below. In
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particular, for m ≥ 1:

Θrr,m(a, z) =
λJ0(lm)

�

�

∞

n=1 νDmn(λ+µ)

�

Ane
−

zkn
a +Bne

zkn
a

�

+2µ(λ+2µ)c3,me
zlm
a −2µ(λ+2µ)c4,me−

zlm
a

�

(λ+µ)(λ+2µ) +

µlm(J0(lm)−J2(lm))







�

∞

n=1

aνDmnlm

�

Ane
−

zkn
a +Bne

zkn
a

�

(λ+2µ)(l2m−k2n)
+(zc3,m+c1,m)e

zlm
a +(zc4,m+c2,m)e−

zlm
a







a −

�∞
n=1 νDmnJ0 (lm)

�
Ane

− zkn
a +Bne

zkn
a

�
,

(3.272)

and for m = 0:

Θrr,0(a, z) = c6λ−
∞�

n=1

4µνJ1 (kn)
�
Ane

− zkn
a +Bne

zkn
a

�

(λ+ 2µ)kn
(3.273)

As, even in this case relation (3.202) holds, the integration in equation 3.271 takes the form:

2π

� h/2

−h/2
dz

� a

0
(U z

0 (z) + δuz)rdr = 0. (3.274)

In conclusion, all the quantities required to determine the mirror displacement vector com-

ponents can be obtained by implementing the calculations performed in this section, with a

MATLAB program.
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TCS Result validation through

numerical simulaitons

This chapter has the aim to report on the verification of the results previously shown on the

thermal effect compensation systems. The check of the analytical results, concerning mirror

temperature field and deformation, is made by comparing the MATLAB solutions, based on

the analytical calculations, with the numerical results given by ANSYS [96] and COMSOL [97],

[98]. These softwares utilize the finite element method (FEM) to obtain approximated solutions

of differential equations with specified boundary conditions, as it is the case of the deferential

equations we analytically solved in the previous sections The implementation of a finite element

method analysis requires, first of all, the geometrical description of the considered object. This

can be done both by using directly the COMSOL and ANSYS software, both by importing the

geometry from another software dedicated to design studio (e.g. CATIA [99] or AUTOCAD

[100]), if the geometry to consider is complicated. However, the mirror geometry taken into

account in this section is quite simple, so that it is better to characterize it within ANSYS and

COMSOL. In particular, it is assumed that the mirror are cylinder of radius 4 cm and thickness

5 mm, as it is supposed to be for the mirrors of the SIPHORE optical cavity. After describing

the geometry of the considered object, its material has to be defined. For the simulations in

the following the fused silica has been chosen whose properties are reported in table (4.1). The

next step for a FEM analysis is the subdivision of the modeled object in a suitable number of

parts with finite dimension and defined shape, the finite element of the simulation. The so called

meshing is the process of the modeled object subdivision in elementary parts and the mesh is

the net resulting from the meshing process. The reliability of a MEF solution depends strongly
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Quantity Value Unit

Coefficient of thermal
expansion

0.54×10−6 1/K

Heat capacity at constant
temperature

745 J/(kg K)

Density 2202 kg/m3

Thermal conductivity 1.38 W/(m K)

Young’s modulus 73×10−9 Pa

Poisson’s ratio 0.17 1

Table 4.1: Fused silica parameters

on an appropriate definition of the mesh. On one hand, the finest the mesh, the higher the

precisions of the solutions, on the other hand the finest the mesh the longer the computational

time. Then, a good mesh results from a compromise between calculation time and precision of

the results. The shape of the mesh elements can also be chosen, in order to better describe the

considered object. The mesh also define the number of knots, i.e. the points, inside the object,

where the physical unknown quantities will be determined by the MEF analysis. A knot belongs

to more than one mesh constituent, but the MEF is thought so that in a given knot the value of

the determined physical quantity has the same value, in each mesh constituent. In the following

sections, the MEF solutions concerning the mirror temperature fields and deformations in the

stationary state will be illustrated, for the TCS considered in the previous chapter. These results

are compared to the ones based on the calculations of chapter 3 in order to have an estimations

of the correctness of the analytical calculation solutions.

4.1 ANSYS COMSOL Software Comparison

It is worth noticing the differences observed between the ANSYS and COMSOL softwares.

Firstly, we point out that as far as the chosen mirror geometry is considered, it turned out to

be easier handled with COMSOL than with ANSYS. This is due to the fact that, thanks to the

assumption of cylindrical symmetry, COMSOL allows to work on a 2D axis-symmetric plan with

respect to the variable z, instead of the 3D space required by ANSYS, which demands a thickness

specification. The importance of working in a 2D plan rises from the fact that this reduces the

computational time and the memory required for the calculations. In spite of this, for the TCSs

where the mirror has no constrains and it is considered free in the space, COMSOL takes long

time to finalize the calculations (from 6h to 24h), while ANSYS takes just few minutes. This
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difference comes from the fact that in the COMSOL case the mirror appears to accelerate in

the space and a stationary solution can be obtained only after a quite long computational time.

Furthermore, the mirror displacement evaluated in this way with COMSOL is the sum of the

mirror spatial displacement and of its deformation. As the deformation is much smaller than the

spatial displacement, it is not possible to distinguish it by a numerical error. The calculations

has then to be performed in the transitory frame, by limiting the computational time at three

hours, as two hours already describe quite properly the stationary state [101]. However, this time

remains much longer than the one required by ANSYS. A further difference in the application of

the two softwares comes from the fact that a function of r has to be applied as boundary condition

on the mirror surface internal to the optical cavity, to describe the fraction of intracavity optical

power absorbed by the mirror coating. In ANSYS, the absorbed optical power with gaussian

dependence on the radius of the mirror can be easily set as boundary condition, by importing

a table of data describing the absorbed optical power as function of r. As far as COMSOL is

concerned, it allows to define any function of r as boundary condition [101].

4.2 TCS with fixed temperature on the cavity mirror edges

This section has the aim to show the agreement between the analytical results for the TCS de-

scribed in section (3.2.1) and the numerical calculations, as far as the mirror temperature field

and distortion are concerned. It is worth recalling that this TCS consists in fixing the temper-

ature of the mirror at a known value T1, on the mirror edges. The validation of the MATLAB

code, based on the analytical results, is made by comparing the curves of the temperature and

deformation on the mirror surface internal and external to the optical cavity with the same

curves, obtained through numerical simulations. Both the COMSOL and ANSYS softwares are

used in the analysis. The results are showed in figures (4.1) and (4.2). By assuming an error for

the numerical calculations equal to 5%, it is possible to check that the numerical and analytical

curves are in good agreement, as their difference is within the software error. To confirm the

last statement, a more quantitative analysis can be carried on to evaluate the departure of the

analytical results from the numerical ones. As far as the mirror surface deformations, inside and

outside the cavity, are concerned, the following quantity can be calculated to have an estimation
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of the error of the analytical method with respect to the numerical one:

Error =

�� a
0 (U

z
N − U z

A)
2rdr

�� a
0 (U

z
N −Min

�
U z
N

�
)2rdr

, (4.1)

where U z
N and U z

A indicate the z component of the mirror surface displacement vector numer-

ically and analytically calculated, respectively, and Min [U z
N ] is the minimum value of U z

N . It

is observed that the same equation (4.1) is applied for evaluating the error of the analytically

calculated mirror displacement vector on the surface internal to the optical cavity and on the

one external to the optical cavity, i.e. both for z = −h/2 and for z = h/2. The value of Error

has to be smaller than the software error (5%). The results for both the mirror surfaces and for

the numerical calculations performed with ANSYS and COMSOL are reported in table (4.2).

It is then possible to state the agreement between analytical and numerical calculations for the

mirror distortions, indeed, the value of the function Error is always below 5%.

In order to evaluate the differences between the temperature field analytically and numerically

calculated, it is convenient to plot the following function:

ErrorT =
|TN − TA|

TN
, (4.2)

where TN and TA are the fields of temperature at the mirror surfaces evaluated by using nu-

merical and analytical calculations, respectively. At each radius value, the function ErrorT is

obtained and the results for both the mirror surfaces (the one internal and the one external

to the optical cavity) are plotted in picture (4.3) and picture (4.4), for the numerical calcula-

tions carried on with ANSYS and COMSOL. These pictures show the substantial agreement

between the analytical calculated temperature field and the one numerically calculated. Indeed

the percent error, ErrorT , is always below the software error of 5%.

4.3 TCS with fixed temperature on the edges and on the rear

side of total reflective cavity mirrors

The validation of the MATLAB code based on the results presented in section (3.2.2) is now

taken into account. The TCS currently considered can be applied only on totally reflective

mirror, as both the edges of the mirror and the integrity of its rear surface are used by the

thermal effect compensation system. Indeed, it is assumed that a temperature T1 is fixed on
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Figure 4.1: Temperature field validation for the TCS in section (4.2) - SIPHORE mir-
ror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. Mirror edge temperature fixed at T1=350K. Left panel: mirror surface temperature
inside the optical cavity. Right panel: mirror surface temperature outside the optical cavity.

Figure 4.2: Mirror distortion validation for the TCS in section (4.2) - SIPHORE mir-
ror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. Mirror edge temperature fixed at T1=350K. Left panel: mirror surface displacement
inside the optical cavity. Right panel: mirror surface displacement outside the optical cavity.
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

5.8×10−3

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

3.2×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

3.7×10−3

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

5.3×10−3

Table 4.2: Error estimation between analytical and numerical calculations for the TCS
of section (4.2) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.2) and they are evaluated by applying equation 4.1.

Figure 4.3: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.2). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the left panel of picture (4.1). Left panel: percent error of the analytical calculations with
respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.
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Figure 4.4: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for TCS in section (4.2). Mirror rear surface. - The
reported errors are obtained through the application of equation (4.2) and they concern the data of
the right panel of picture (4.1). Left panel: percent error of the analytical calculations with respect
to the ones performed with ANSYS, as far as the mirror surface temperature outside the optical
cavity is concerned. Right panel: percent error of the analytical calculations with respect to the
ones performed with COMSOL, as far as the mirror surface temperature outside the optical cavity
is concerned.

the mirror edges and on its rear surface. The analytically calculated curves of the temperature

and deformation on the mirror surface internal and external to the optical cavity are compared

with the same curves obtained through numerical simulations, in order to verify the correctness

of the analytical calculations. Both the COMSOL ans ANSYS softwares are applied. The

results are showed in pictures (4.5), (4.6). By looking to them it is possible to perceive the

agreement between analytical and numerical results. However, a more quantitative estimation

of the differences between the analytical and the numerical solutions can be carried on, as it has

been already done in the previous section. In particular, as far as the mirror surface displacement

vector is concerned, equation (4.1) is calculated and the results are reported in table (4.3). For

the temperature field, equation (4.2) is taken into account and the plots in figure (4.7) and figure

(4.8) are realized. From the error values presented in these last two pictures and in table (4.3),

it is eventually possible to state the agreement between analytical and numerical results.
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Figure 4.5: Temperature field validation for TCS in section (4.3) - SIPHORE mirror geom-
etry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature T0=300K.
Mirror edge temperature fixed at T1=400K. Temperature fixed on the rear side of the mirror at
T1=400K Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.

Figure 4.6: Mirror distortion validation for TCS in section (4.3) - SIPHORE mirror geom-
etry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature T0=300K.
Mirror edge temperature fixed at T1=400K. Temperature fixed on the rear side of the mirror at
T1=400K Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

4.0×10−3

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

1.4×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

3.3×10−3

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

1.2×10−3

Table 4.3: Error estimation between analytical and numerical calculations for the TCS
of section (4.3) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.6) and they are evaluated by applying equation 4.1.

Figure 4.7: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.3). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern

the data of the left panel of picture (4.5). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.
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Figure 4.8: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for TCS in section (4.3). Mirror rear surface. - The
reported errors are obtained through the application of equation (4.2) and they concern the data of
the right panel of picture (4.6). Left panel: percent error of the analytical calculations with respect
to the ones performed with ANSYS, as far as the mirror surface temperature outside the optical
cavity is concerned. Right panel: percent error of the analytical calculations with respect to the
ones performed with COMSOL, as far as the mirror surface temperature outside the optical cavity
is concerned.

4.4 Free Mirror

As it is shown in section 3.2.3, this case corresponds to the configuration where no temperature

fields are applied on the mirror, but the complete environment where the mirror is set is warmed

up. To validate the MATLAB code based on the analytical calculations previously discussed

for this configuration, the curves relative to the mirror surface deformation and to the mirror

surface temperature are plotted for both the analytical and the numerical calculations, obtained

by ANSYS and COMSOL. Picture (4.9) and picture (4.10) show a good agreement between

the analytical and numerical results. However, for this TCS as well a more accurate analysis

is performed, to quantify the differences between the numerical method and analytical one.

As far as the mirror surface displacement vectors are concerned, the errors are evaluated, as

customary, through equation (4.1). The results are reported in table (4.4). For the comparison

of the analytically calculated temperature field with the numerically calculated one, equation

(4.2) is applied and the corresponding plots of pictures (4.11), (4.12) are realized. Both the

table and the pictures state the agreement between numerical and analytical calculations, as the

reported errors are always smaller than the COMSOL and ANSYS softwares error (5%).
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Figure 4.9: Temperature field validation for the TCS of section (4.4) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=900K. Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.

Figure 4.10: Mirror distortion validation for the TCS of section (4.4) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=900K. Left panel: mirror surface displacement inside the optical cavity. Right panel: mirror
surface displacement outside the optical cavity.
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

5.8×10−3

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

5.5×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

3.8×10−3

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

2.6×10−3

Table 4.4: Error estimation between analytical and numerical calculations for the TCS
of section (4.4) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.10) and they are evaluated by applying equation 4.1.

Figure 4.11: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.4). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern

the data of the left panel of picture (4.9). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.
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Figure 4.12: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for TCS in section (4.4). Mirror rear surface. - The
reported errors are obtained through the application of equation (4.2) and they concern the data of
the right panel of picture (4.9). Left panel: percent error of the analytical calculations with respect
to the ones performed with ANSYS, as far as the mirror surface temperature outside the optical
cavity is concerned. Right panel: percent error of the analytical calculations with respect to the
ones performed with COMSOL, as far as the mirror surface temperature outside the optical cavity
is concerned.

4.5 Edge temperature fixed and one ring heater

This case correspond to the configuration illustrated by figure (3.4), and it has being already

described in section (3.2.4). Here, it is reported on the verification of the analytical calculations

for this TCS. In figures (4.13), (4.14), it is shown how the curves relative to the mirror defor-

mation and to the mirror temperature, obtained through ANSYS and COMSOL, reproduce the

ones analytically calculated for T1 = 480K. For a more quantitative valuation of the differences

between analytical and numerical solutions, equation (4.1) is applied for calculating the errors

associated with the analytically calculated mirror surface displacement vectors, which are re-

ported in table (4.5), and equation (4.2) is used to realize the plots of pictures (4.15), (4.16),

for the percent errors on the analytically calculated temperature fields. The mentioned table

together with the pictures state the agreement between the numerical and analytical method

results. Nevertheless, for this configuration it is possible to verify that the linearization of the

equations, discussed in section (3.2), which allows to write equation (3.44), introduces an error

in the analytical calculations, which is not negligible when the excess of temperature τ is not

enough smaller than the fixed temperature on the mirror, T1. To make clear this point, in figures
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

2.0×10−2

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

2.0×10−2

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

2.0×10−2

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

1.0×10−2

Table 4.5: Error estimation between analytical and numerical calculations for the TCS
of section (4.5) and T1 = 480 K - The values of the reported errors concern the mirror surface
displacement vectors of picture (4.14) and they are evaluated by applying equation 4.1.

(4.17), (4.18), the results for both the analytical and the numerical simulations are reported,

when assuming T1 = 600K. Indeed, as it possible to see from table 4.6, with the increase of the

temperature T1 the effective power radiate by the mirror becomes the more and more different

with respect to the one calculated by using the linearization. In particular, for T1=600K, the

error on the mirror radiated power becomes more consistent than the absorbed optical power.

Then the effect of the linearization is not anymore negligible and the analytical results show

differences with respect to the numerical ones (figures (4.17), (4.18)).

Figure 4.13: Temperature field validation for the TCS of section (4.5) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=480K, ring heater fixing the temperature of the
mirror back surface between r = 0.02 m and r = 0.04 m at T1=480K. Left panel: mirror surface
temperature inside the optical cavity. Right panel: mirror surface temperature outside the optical
cavity.
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Figure 4.14: Mirror surface distortion validation for the TCS in section (4.5) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=480K, ring heater fixing the temperature of the
mirror back surface between r = 0.02 m and r = 0.04 m at T1=480K. Left panel: mirror surface
displacement inside the optical cavity. Right panel: mirror surface displacement outside the optical
cavity.

Figure 4.15: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.5), with T1 = 480K. Mirror
front surface. - The reported errors are obtained through the application of equation (4.2) and
they concern the data of the left panel of picture (4.13). Left panel: percent error of the analytical
calculations with respect to the ones performed with ANSYS, as far as the mirror surface temperature
inside the optical cavity is concerned. Right panel: percent error of the analytical calculations with
respect to the ones performed with COMSOL, as far as the mirror surface temperature inside the
optical cavity is concerned.
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Figure 4.16: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.5), with T1 = 480K. Mirror
rear surface. - The reported errors are obtained through the application of equation (4.2) and
they concern the data of the right panel of picture (4.13). Left panel: percent error of the analytical
calculations with respect to the ones performed with ANSYS, as far as the mirror surface temperature
outside the optical cavity is concerned. Right panel: percent error of the analytical calculations
with respect to the ones performed with COMSOL, as far as the mirror surface temperature outside
the optical cavity is concerned.

T1 [K] τmax. [K] RPL [W] RP [W] Err [W] Pabs [W] Err/ Pabs

300 33 0.16 0.17 0.01 0.9 1%

400 11 9.489 9.502 0.013 0.9 1.4 %

500 50 27.5 27.8 0.3 0.9 33%

600 100 57.3 58.9 1.6 0.9 170%

Table 4.6: Linearization effect - In the table above, τmax is the maximum excess of temperature
with respect to the fixed temperature T1; RPL is the mirror radiated power, calculated with the
approximation of the linearization; RP is the effective mirror radiated power; Err is the difference
between RPL and RP; Pabd is the optical power absorbed by the mirror.
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

3.0×10−2

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

4.6×10−2

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

1.3×10−2

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

1.4×10−2

Table 4.7: Error estimation between analytical and numerical calculations for the TCS
of section (4.5) and T1 = 600 K - The values of the reported errors concern the mirror surface
displacement vectors of picture (4.18) and they are evaluated by applying equation 4.1.

The quantitative analysis of the analytical solution departure from the numerical ones is per-

formed, as usual, through the application of equation (4.1), for the mirror surface displacement

vectors, and of equation (4.2), for the percent error on the analytically calculated temperature

field. The results are reported in table (4.7) and in pictures (4.19), (4.20). As it is possible to

see from figures (4.15), (4.16), (4.19), (4.20), the higher the fixed temperature T1, the larger the

percent error on the analytically calculated temperature field. This is due to the effect associated

with the linerarization of the equations, which has been already discussed.

Figure 4.17: Mirror surface temperatures for the TCS of section (4.5), with T1 = 600 K
- SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=300K, mirror edge temperature fixed at T1=600K, ring heater fixing the temperature
of the mirror back surface between r = 0.02 m and r = 0.04 m at T1=600K. Left panel: mirror
surface temperature inside the optical cavity. Right panel: mirror surface temperature outside the
optical cavity.
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Figure 4.18: Displacements for the TCS of section (4.5), with T1 = 600 K - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=600K, ring heater fixing the temperature of the
mirror back surface between r = 0.02 m and r = 0.04 m at T1=600K. Left panel: mirror surface
displacement inside the optical cavity. Right panel: mirror surface displacement outside the optical
cavity.

Figure 4.19: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.5), with T1 = 600K. Mirror
front surface. - The reported errors are obtained through the application of equation (4.2) and
they concern the data of the left panel of picture (4.17). Left panel: percent error of the analytical
calculations with respect to the ones performed with ANSYS, as far as the mirror surface temperature
inside the optical cavity is concerned. Right panel: percent error of the analytical calculations with
respect to the ones performed with COMSOL, as far as the mirror surface temperature inside the
optical cavity is concerned.
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Figure 4.20: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.5), with T1 = 600K. Mirror
rear surface. - The reported errors are obtained through the application of equation (4.2) and
they concern the data of the right panel of picture (4.17). Left panel: percent error of the analytical
calculations with respect to the ones performed with ANSYS, as far as the mirror surface temperature
outside the optical cavity is concerned. Right panel: percent error of the analytical calculations
with respect to the ones performed with COMSOL, as far as the mirror surface temperature outside
the optical cavity is concerned.

4.6 Fixed temperature on the mirror edges, one external ring

heater and a separated central disk heater

In this section, the good agreement between the analytical calculations for the TCS described in

section 3.2.5 and the numerical simulations is illustrated. In this respect, in figures 4.21, 4.22,

the results are showed for the configuration where a central disk heater fixes the temperature

of the mirror at T2 =320K, between r = 0cm and r = 0.01cm, an external ring heater sets the

temperature of the mirror at T1 = 350K, between r = 0.03m and r = 0.04m, and the edges

of the mirror are kept at T1 = 350K. From the pictures, it is already possible to perceive the

concordance of the analytical solutions with the numerical ones. However, a more quantitative

analysis is carried on with the application of equation (4.1), for evaluating the error associated

with the analytical values of the mirror surface displacement vectors, and of equation (4.2), to

obtain the percent errors associated with the analytically determined mirror surface temperature

fields. The results are reported in table (4.8) and in pictures (4.23), (4.24). As the errors between

the numerical and the analytical solutions are smaller than the software error, the MATLAB

program, based on analytical calculations, is validated.
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Figure 4.21: Temperature field validation for the TCS of section (4.6) - SIPHORE mir-
ror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. Mirror edge temperature fixed at T1=350K. Ring heater fixing the temperature of the
mirror back surface, between r = 0.03 m and r = 0.04 m, at T1=350K. Central disk heater fixing the
temperature of the mirror back surface at T2=320K, between r = 0 m and r = 0.01m, at T3=320K.
Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror surface
temperature outside the optical cavity.

Figure 4.22: Mirror deformation validation for the TCS of section (4.6) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. Mirror edge temperature fixed at T1=350K. Ring heater fixing the temperature of the
mirror back surface, between r = 0.03 m and r = 0.04 m, at T1=350K. Central disk heater fixing the
temperature of the mirror back surface, between r = 0 m and r = 0.01m, at T3=320K. Left panel:
mirror surface displacement inside the optical cavity. Right panel: mirror surface displacement
outside the optical cavity.
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

2.0×10−2

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

2.0×10−2

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

1.0×10−2

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

1.0×10−2

Table 4.8: Error estimation between analytical and numerical calculations for the TCS
of section (4.6) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.22) and they are evaluated by applying equation 4.1.

Figure 4.23: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.6). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the left panel of picture (4.21). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.
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Figure 4.24: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.6). Mirror rear surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the right panel of picture (4.21).Left panel: percent error of the analytical calculations with
respect to the ones performed with ANSYS, as far as the mirror surface temperature outside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature outside the optical
cavity is concerned.

4.7 Fixed temperature on the mirror edges, one external ring

heater and a central disk heater

The TCS analytically analyzed in section (3.2.6) will be validate in the following. With this

aim, in figures 4.25, 4.26, the results are reported for the configuration where a central disk fixes

the temperature of the mirror at T2 =540K, between r = 0m and r = 0.01m, an external ring

heater sets the temperature of the mirror at T1 = 500K, between r = 0.01m and r = 0.04m, and

the edges of the mirror are kept at T1 = 500K. By checking the figures, it is possible to perceive

the concordance between analytical and numerical results. For a more quantitative study of the

error associated with the analytically calculated mirror surface displacement vectors, equation

(4.1) is used and the outcomes are given in table (4.9). As far as the percent errors on the

mirror surface temperature field are concerned, they are evaluated through equation (4.2) and

the results are showed in pictures (4.27), (4.28). The presented analysis allows to state the

concordance between the analytical solutions and the numerical ones, for the TCS considered

in this section. It is worth noticing that picture (4.28) shows a peak for the percent error

on the analytically calculated mirror temperature field, in correspondence to the change of
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temperature, i.e. at r = 0.01 m, for the considered example. This is due to the mathematical

formalism used to describe the temperature field. Indeed, on the rear side of the mirror, the

imposed temperature is a step function of the mirror radius and it appears that the description

of such a function on a Bessel function base presents larger errors in correspondence to the step

of the function. It is possible to decrease this effect, by increasing the number of terms entering

the function development summation (see chapter (3)). In conclusion, for the case of the TCS

taken into account in this section, the percent error on the analytically calculated temperature

field is always smaller than the one of the software (COMSOL and ANSYS), hence, the error

due to the function development on a Bessel function base is acceptable. It is observed that,

the same feature remarked for picture (4.28) is present in pictures (4.16), (4.20) and (4.24).

Figure 4.25: Temperature field validation for the TCS of section (4.7) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. Mirror edge temperature fixed at T1=500K. Ring heater fixing the temperature of the
mirror back surface, between r = 0.01m and r = 0.04m, at T1=500K. Central disk heater fixing the
temperature of the mirror back surface at T2=540K, between r = 0 m and r = 0.01m. Left panel:
mirror surface temperature inside the optical cavity. Right panel: mirror surface temperature
outside the optical cavity.

4.8 Fixed temperature on the mirror edges, three external ring

heaters and a central disk heater

This section will verify the results concerning the TCS described in section (3.2.7). To do this,

the following configuration will be addressed: edge mirror temperature fixed at T1 =400K; one

ring heater fixing the mirror temperature at T1 =400K, between r = 0.02m and r = 0.04m; one
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Figure 4.26: Displacement validation for the TCS of section (4.7) - SIPHORE mirror geom-
etry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature T0=300K.
Mirror edge temperature fixed at T1=500K. Ring heater fixing the temperature of the mirror back
surface, between r = 0.01m and r = 0.04m, at T1=500K. Central disk heater fixing the temperature
of the mirror back surface at T2=540K, between r = 0m and r = 0.01m. Left panel: mirror surface
displacement inside the optical cavity. Right panel: mirror surface displacement outside the optical
cavity.

Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

7.2×10−3

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

5.7×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

7.3×10−3

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

6.2×10−3

Table 4.9: Error estimation between analytical and numerical calculations for the TCS
of section (4.7) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.26) and they are evaluated by applying equation 4.1.
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Figure 4.27: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.7). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the left panel of picture (4.25). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.

Figure 4.28: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.7). Mirror rear surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the right panel of picture (4.25). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature outside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature outside the optical
cavity is concerned.
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ring heater fixing the mirror temperature at T2 =410K between r = 0.01m and r = 0.02m; one

ring heater fixing the mirror temperature at T3 =430K, between r =0.005m and r = 0.01m; a

disk heater fixing the mirror temperature at T4 = 450K, between r =0m and r =0.005m. In

figures 4.29, 4.30, the curves for both the analytical calculations and the numerical calculations

are reported, as far as mirror surface temperature fields and mirror surface displacement vectors

are concerned. For a quantitative analysis of the departure of the analytical solutions from

the numerical ones, equation (4.1) and equation (4.2) are applied to evaluate the errors on the

mirror surface displacement vectors and on the mirror surface temperature fields, respectively.

The results are reported in table (4.10) and in pictures (4.31), (4.32). The obtained error values

allow to state the validity of the analytical calculation for the TCS considered considered in this

section.

Figure 4.29: Temperature field validation for the TCS in section (4.8) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, edge mirror temperature fixed at T1 =400K; one ring heater fixing the mirror temperature
at T1 =400K, between r = 0.02m and r = 0.04m; one ring heater fixing the mirror temperature at
T2 =410K between r = 0.01m and r = 0.02m; one ring heater fixing the mirror temperature at
T3 =430K, between r =0.005m and r = 0.01m; a disk heater fixing the mirror temperature at
T4 = 450K, between r =0 m and r =0.005m. Left panel: mirror surface temperature inside the
optical cavity. Right panel: mirror surface temperature outside the optical cavity.
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Figure 4.30: Mirror displacement validation for the TCS in section (4.8) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, edge mirror temperature fixed at T1 =400K; one ring heater fixing the mirror temperature
at T1 =400K, between r = 0.02m and r = 0.04m; one ring heater fixing the mirror temperature at
T2 =410K between r = 0.01m and r = 0.02m; one ring heater fixing the mirror temperature at
T3 =430K, between r =0.005m and r = 0.01m; a disk heater fixing the mirror temperature at
T4 = 450K, between r =0 m and r =0.005m. Left panel: mirror surface displacement inside the
optical cavity. Right panel: mirror surface displacement outside the optical cavity.

Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

1.0×10−2

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

2.0×10−2

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

1.0×10−2

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

2.0×10−2

Table 4.10: Error estimation between analytical and numerical calculations for the TCS
of section (4.8) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.30) and they are evaluated by applying equation 4.1.
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Figure 4.31: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.8). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the left panel of picture (4.29). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.

4.9 Fixed temperature on the mirror edges, one ring heaters,

mechanical fixation on the mirror edges and on the mirror

surface

The TCS illustrated in section (3.4.1) will be now considered, in order to validate the analytical

calculations on which the results are based. In particular, the considered configuration for

the analytical case is the following: mirror edge temperature fixed at T1=330K, ring heater

fixing the temperature of the mirror on the back surface at T1=330K, between r=0.02 m and

r =0.04 m, null displacement on the mirror edge, in r=0.04 cm, and null displacement vector

average on the mirror surface between, r=0.039 m and r=0.04 m, both for the internal and

the external face. As far as the numerical results are concerned, they are obtained by keeping

exactly the same conditions of the analytical case, but the one related to the cancellation of

the displacement vector average on the mirror surfaces. Indeed, for the numerical case it is

assumed that the displacement vector itself is null in the same region where, in the analytical

calculations, the average of the displacement vector is set to zero. The results for the numerical
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Figure 4.32: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.8). Mirror rear surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the right panel of picture (4.29). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature outside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature outside the optical
cavity is concerned.

and the analytical calculations are illustrated in figures (4.33), (4.34). The behavior of the curves

analytically and numerically calculated is reasonably similar, then the differences presented by

the pictures should be attributed to the different condition holding on the borders of the mirror

surfaces. Indeed, it is possible to check that the disagreement between numerical and analytical

results becomes more consistent when the condition of null displacement vector, for the numerical

case, and the condition of null displacement vector average, for the analytical case, is imposed

on a larger portion of the mirror surfaces, so that the numerical calculations become unable

to validate the analytical results, see figures (4.35), (4.36). It is important to stress that the

simulations performed with ANSYS pose a problem for this TCS, as their results for the mirror

deformation do not agree with the COMSOL ones. For the sake of completeness, the same

curves of figures (4.33), (4.34), (4.35), (4.36) are reported in figures (4.37), (4.38), (4.39), (4.40)

together with the ANSYS curves. It is observed that the results concerning the temperature

fields agree for ANSYS, COMSOL and the analytical method. Nevertheless, it is not necessary

to quantitatively study the departure of the analytically calculated temperature fields from the

numerically calculated ones. Indeed, the applied MATLAB code for the analytical calculation of
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the temperature is the one which has been already validated in section (4.5). It is also noticed

that the difference between numerical and analytical results for the mirror distortion increase

both for ANSYS and COMSOL, when the mirror region interested by the mechanical fixation is

larger. However, the validation of the analytical results through which the mirror deformation

is calculated is uncertain, because of the differences between ANSYS and COMSOL solutions.

In conclusion, the departure of the analytically calculated mirror surface displacement vectors

from the ones numerically calculated is estimated through the application of formula (4.1), for

the data concerning pictures (4.38), (4.40). The results are reported in tables (4.11), (4.12),

respectively.

Figure 4.33: Temperature field validation for the TCS in section (4.9) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=330K, ring heater fixing the temperature of the
mirror back surface between r = 0.02 m and r = 0.04 m at T1=330K. Fixed mirror edge. Null
surface displacement for both the internal and the external surface, between r = 0.039 m and
r = 0.04 m. Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.

4.10 Fixed temperature on the mirror edges, one ring heaters

and mechanical fixation on the mirror edges

In this section, the comparison between the analytical calculation results for TCS introduced

in section (3.4.2) and the numerical solutions will be analyzed. In particular, the considered

configuration is the following: mirror edge temperature fixed at T1=400K, ring heater fixing

the temperature of the mirror on the back surface at T1=400K, between r=0.02 m and r =0.04
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Figure 4.34: Mirror displacement validation for the TCS in section (4.9) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=330K, ring heater fixing the temperature of the mirror
back surface between r = 0.02 cm and r = 0.04 m at T1=330K. Fixed mirror edge. Null surface
displacement for both the internal and the external surface, between r = 0.039 cm and r = 0.04 cm.
Left panel: mirror surface displacement inside the optical cavity. Right panel: mirror surface
displacement outside the optical cavity.

Figure 4.35: Temperature field for the TCS in section (4.9) - SIPHORE mirror geometry.
Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature T0=300K, mirror
edge temperature fixed at T1=330K, ring heater fixing the temperature of the mirror back surface
between r = 0.02 cm and r = 0.04 m at T1=330K. Fixed mirror edge. Null surface displacement for
both the internal and the external surface, between r = 0.03 m and r = 0.04 m. Left panel: mirror
surface temperature inside the optical cavity. Right panel: mirror surface temperature outside the
optical cavity.
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Figure 4.36: Mirror displacement for the TCS in section (4.9) - SIPHORE mirror geometry.
Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature T0=300K, mirror
edge temperature fixed at T1=330K, ring heater fixing the temperature of the mirror back surface
between r = 0.02 m and r = 0.04 m at T1=330K. Fixed mirror edge. Null surface displacement for
both the internal and the external surface, between r = 0.03 m and r = 0.04 m. Left panel: mirror
surface displacement inside the optical cavity. Right panel: mirror surface displacement outside
the optical cavity.

Figure 4.37: ANSYS results for the temperature field of the TCS in section (4.9) -
SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=300K, mirror edge temperature fixed at T1=330K, ring heater fixing the temperature
of the mirror back surface between r = 0.02 m and r = 0.04 m at T1=330K. Fixed mirror edge.
Null surface displacement for both the internal and the external surface, between r = 0.039 m and
r = 0.04 m. Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.
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Figure 4.38: ANSYS results for the mirror displacement of the TCS in section (4.9) -
SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=300K, mirror edge temperature fixed at T1=330K, ring heater fixing the temperature
of the mirror back surface between r = 0.02 cm and r = 0.04 m at T1=330K. Fixed mirror edge.
Null surface displacement for both the internal and the external surface, between r = 0.039 cm and
r = 0.04 cm. Left panel: mirror surface displacement inside the optical cavity. Right panel:
mirror surface displacement outside the optical cavity.

Figure 4.39: ANSYS results for the temperature field of the TCS in section (4.9) -
SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=300K, mirror edge temperature fixed at T1=330K, ring heater fixing the temperature
of the mirror back surface between r = 0.02 cm and r = 0.04 m at T1=330K. Fixed mirror edge.
Null surface displacement for both the internal and the external surface, between r = 0.03 m and
r = 0.04 m. Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.
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Figure 4.40: ANSYS results for the mirror displacement of the TCS in section (4.9) -
SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=300K, mirror edge temperature fixed at T1=330K, ring heater fixing the temperature
of the mirror back surface between r = 0.02 m and r = 0.04 m at T1=330K. Fixed mirror edge. Null
surface displacement for both the internal and the external surface, between r = 0.03 m and r = 0.04
m. Left panel: mirror surface displacement inside the optical cavity. Right panel: mirror surface
displacement outside the optical cavity.

Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

7.0×10−2

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

3.3×10−2

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

9.6×10−2

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

5.0×10−2

Table 4.11: Error estimation between analytical and numerical calculations for the TCS
of section (4.9), and the data of picture (4.38) - The values of the reported errors concern the
mirror surface displacement vectors and they are evaluated by applying equation (4.1).
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

5.0×10−2

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

5.5×10−2

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

2.7×10−1

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

2.0×10−1

Table 4.12: Error estimation between analytical and numerical calculations for the TCS
of section (4.9), and the data of picture (4.40) - The values of the reported errors concern the
mirror surface displacement vectors and they are evaluated by applying equation 4.1.

Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

9.1×10−3

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

7.1×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

2.0×10−2

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

1.0×10−2

Table 4.13: Error estimation between analytical and numerical calculations for the TCS
of section (4.10) - The values of the reported errors concern the mirror surface displacement vectors
of picture (4.42) and they are evaluated by applying equation 4.1.

m, null displacement of the mirror edge in r=0.04 m. The curves for both the mirror surface

displacement vectors and the mirror surface temperatures, for the numerical as well as the an-

alytical calculations, are illustrated in figures (4.41), (4.42). From these pictures, it is already

possible to understand the agreement between the numerical and the analytical solutions. Nev-

ertheless, as customary, in order to quantify the differences between the two methods, equation

(4.1) and equation (4.2) are applied and their results are reported in table (4.13) and in pic-

tures (4.43), (4.44). By considering these last outcomes, it is possible to state the concordance

between the analytical and the numerical calculations.
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Figure 4.41: Temperature field validation for the TCS in section (4.10) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=400K, ring heater fixing the temperature of the mirror
back surface between r = 0.02 m and r = 0.04 m at T1=400K. Fixed mirror edge. Left panel: mirror
surface temperature inside the optical cavity. Right panel: mirror surface temperature outside the
optical cavity.

Figure 4.42: Mirror displacement validation for the TCS of section (4.10) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K, mirror edge temperature fixed at T1=400K, ring heater fixing the temperature of the mirror
back surface between r = 0.02 m and r = 0.04 m at T1=400K. Fixed mirror edge. Left panel: mirror
surface displacement inside the optical cavity. Right panel: mirror surface displacement outside
the optical cavity.
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Figure 4.43: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.10). Mirror front surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the left panel of picture (4.41). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature inside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature inside the optical
cavity is concerned.

4.11 Seven external pressures applicable on the mirror rear side

The TCS considered in section (3.4.3) will now be addressed to show the good agreement of the

analytical calculations with the numerical solutions. To do this, the following configuration will

be fixed: mirror temperature configuration equal to the case analyzed in section (3.2.3), with

the environment temperature T0=300K, optical power absorbed by the mirror equal to 0.9W;

pressure of 5000 Pa applied on the back side of the mirror on a ring between r =0.03m and

r =0.04m and pressure of 1000 Pa applied on the same side of the mirror on a ring between

r = 0.006m and r =0.016m. Inside the cavity, a pressure is present on a ring between r =0.038m

and r =0.04m, so that the total force applied on the rear surface of the mirror has the same

intensity of the one applied on the mirror surface internal to the cavity. For the other five

pressures applicable on the rear side of the mirror, it has been chosen a null value. The curves

obtained for both the numerical and the analytical calculations for the mirror displacements,

inside and outside the optical cavity, are reported in figure (4.45). As far as the pressures

applied on the mirror surfaces are concerned, the relative plots are reported in picture (4.46). It

is observed that the analytical calculations for these mirror constraints are well in agreement with
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Figure 4.44: Percent error for the analytically calculated temperature field with respect
to the numerically calculated one, for the TCS in section (4.10). Mirror rear surface.
- The reported errors are obtained through the application of equation (4.2) and they concern the
data of the right panel of picture (4.41). Left panel: percent error of the analytical calculations
with respect to the ones performed with ANSYS, as far as the mirror surface temperature outside the
optical cavity is concerned. Right panel: percent error of the analytical calculations with respect
to the ones performed with COMSOL, as far as the mirror surface temperature outside the optical
cavity is concerned.

the ANSYS ones, while the COMSOL calculations present differences both from the analytical

ones and from the ANSYS ones. A quantitative estimation of the differences between the

analytical and the numerical solutions for the mirror surface displacement vectors is carried on

with the application of equation (4.1). The results are reported in table (4.14). As the calculated

errors between analytical and numerical solutions are smaller then the numerical software error,

both for ANSYS and COMSOL, it is possible to state the agreement between the analytical

method and the numerical one. Nevertheless, it is observed that the errors estimated with

respect to the COMSOL data are higher than the ones calculated with the ANSYS data. It

is worth noticing that the analytical description of the mirror temperature field assumed for

this TCS, as given in section (3.2.3), has been already verified in section (4.4). However, for

the calculations of the TCS currently under study, the considered field of temperature has been

written by using the zeros of the Bessel functions J1, instead of the zeros of equation (3.33), as

it is illustrated in section (3.4.3) and in appendix (C). Then, figures (4.47) is reported to show

the concordance between the two analytical descriptions of the same temperature field. For a

more quantitative analysis of the differences between the two calculation methods, at each value
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of the mirror radius the following quantity is evaluated:

PET =
|TzerosJ1 − T |

T
, (4.3)

where PET indicate the percent error of the solution obtained by using the zeros of the Bessel

function J1 with respect to the solution obtained by using the zeros of equation (3.33), TzerosJ1

is the temperature value as given by the calculations involving the zeros of the Bessel function

J1 and T is the temperature value as given by the calculations involving the zeros of equation

(3.33). The results are reported in picture (4.48) and they confirme the agreement between the

two methods to calculate the same temperature fields. As a consequence, the validation of the

code presented in section (4.4) allows as well to validate the code based on the mathematical

description of the temperature field in terms of the zeros of the Bessel function J1.

Figure 4.45: Mirror displacement validation for the TCS of section (4.11) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. Explanation within the text, in section (4.11) Left panel: mirror surface displacement
inside the optical cavity. Right panel: mirror surface displacement outside the optical cavity.
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Figure 4.46: Description of the pressure applied on the mirror, for the TCS of section
(4.11) - SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW.
Environment temperature T0=300K. Explanation within the text, in section (4.11) Left panel:
pressure on the mirror surface inside the optical cavity. Right panel: pressure on the mirror
surface outside the optical cavity.

Figure 4.47: Temperature field validation for the TCS of section (4.11) - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=300K. The two panels represent the results for the surface temperatures of the mirror, as obtained
when applying the method described in section (3.2.3), red line, and when applying the method
described in section (3.4.3) and in appendix (C), black line. Left panel: mirror surface temperature
inside the optical cavity. Right panel: mirror surface temperature outside the optical cavity.
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Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

1.8×10−4

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

7.0×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

1.0×10−3

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

5.3×10−3

Table 4.14: Error estimation between analytical and numerical calculations for the TCS
of section (4.11) - The values of the reported errors concern the mirror surface displacement vectors
for the data of picture (4.45) and they are evaluated by applying equation 4.1.

Figure 4.48: Quantitative comparison of the data of picture (4.47) - Percent error for
the temperature field calculated by using the analytical method described in section (3.4.3) and in
appendix (C) with respect to the one obtained through the method presented in section (3.2.3).
SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=300K. Left panel: percent error of the solution obtained by using the zeros of the
Bessel function J1 with respect to the solution obtained by using the zeros of equation (3.33), as far
as the mirror surface temperature field inside the optical cavity is concerned. Right panel: percent
error of the solution obtained by using the zeros of the Bessel function J1 with respect to the solution
obtained by using the zeros of equation (3.33, as far as the mirror surface temperature field outside
the optical cavity is concerned.
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Chapter 5

Optimum TCS Determination

The efficiency in correcting the cavity mirror distortions due to thermal effects, for each TCS

previously described, will be evaluated in this chapter. The aim of the present analysis is the

determination of an optimum system to compensate the deformations of the reflecting mirror

surface, due to the optical power absorbed by the coating. Because of the thermal distortion, the

effective mirror radius of curvature will be different with respect to the initial one. Furthermore,

the deformed mirror will not be exactly spheric. As a consequence, part of the incident laser

beam power will be diffused by the mirror reflecting surface, and this gives rise to scattering

losses of the optical power. Within the context of an optical cavity, a significant change of

the mirror curvature radius can lead to stability issues and with reduction of the optical power

coupled on the fundamental mode of the cavity. As far as the scattering losses are concerned,

they limit the total amount of power which can be stored inside an optical resonator.

The first part of this chapter is dedicated to the determination of the mathematical expression

for both the thermally deformed mirror curvature and losses. Hence the implications for a simple

two mirror optical cavity will be quantitatively treated. The second part of the chapter concerns

the evaluation of the capability in correcting the deformed mirror curvature and losses, for each

TCS introduced in chapter (3). In conclusion, the TCS which shows the optimum behavior in

terms of compensations of the mirror thermal effects will be presented.

5.1 Deformed mirror curvatures and losses

The mathematical expression for the curvature of the thermally distorted mirror reflecting sur-

face is presented in this section, together with the analytical description of the scattering losses
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associated with the mirror surface departure from a perfectly parabolic profile.

The most general equation of the paraboloid which approximates better the deformed mirror

surface is:

Z̃ = cr2 + d, (5.1)

where c and d are found by minimizing the quantity [48]:

Q =

�

R2

�
uz(r)− Z̃(r)

�2
|ψ(r)|2rdrdφ, (5.2)

with |ψ(r)|2 the normalized beam intensity:

|ψ(r)|2 =
2

πw2
e

−2r2

w2 , (5.3)

and uz(r) the displacement vector, which has been introduced in chapter 3, describing the mirror

surface distortion. The least-squares formulas for c and d read:

c =
< uzr

2 > − < r2 >< uz >

< r4 > − < r2 >2
, (5.4)

d =< uz > −c < r2 >, (5.5)

where the notation <> indicates the weighted average performed with the normalized beam

intensity of equation (5.3). It is worth noticing that the weighted average of any function f(r),

< f >, is then written as:

< f >=

�

R2

f(r)|ψ(r)|2rdrdφ. (5.6)

By considering equation (5.6), it is possible to verify that:

< r4 >=
w4

2
, (5.7)

< r2 >=
w2

2
, < r2 >2=

w4

4
, (5.8)

then:

< r4 > − < r2 >2=
w4

4
. (5.9)

Moreover, with reference to chapter (3), if, on the reflecting mirror surface, the following dis-
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placement vector form is assumed:

uz(r) =

∞�

m≥1

U z
m(−h/2)J0(lmr/a) + U z

0 (−h/2), (5.10)

the relations reported below hold as well:

< uz >=< uz(r,−h/2) >=
∞�

m≥1

U z
m(−h/2)e−

l2mw2

8a2 + U z
0 (−h/2), (5.11)

< uzr
2 >=

w2

16a2

∞�

m≥1

U z
m(−h/2)(8a2 − l2mw2)e−

l2mw2

8a2 +
w2

2
U z
0 . (5.12)

As far as the Saint Venant correction (3.194) is concerned, when evaluating it in z = −h/2, it

results:

δuz(r,−h/2) = − λ

µ(3λ+ 2µ)
(ω0(−h/2) + ω1(−h/2)2/2)− λ+ 2µ

4µ(3λ+ 2µ)
ω1r

2, (5.13)

hence, if this term is taken into account to describe the mirror distortion, the following quantities

have to be added to < uz > and < uzr
2 > respectively:

< δuz >= −2σ

Y

�
ω0 −

h

4
ω1

��
−h

2

�
− (1− σ)

2Y
ω1

w2

2
, (5.14)

< δuzr
2 >= −2σ

Y

�
ω0 −

h

4
ω1

��
−h

2

�
w2

2
− (1− σ)

2Y
ω1

w4

2
. (5.15)

As it is possible to see from equations (5.4) and (5.5), the best parabolic fit is now completely

determined. The parameter c gives the change of the mirror radius of curvature due to the

absorption of optical power by the coating, indeed c = 1/2Rc. The quantity d is called piston

and it corresponds to a displacement of the mirror surface of the same amount for each value of

the mirror radius.

As it has been already pointed out at the beginning of this section, the mirror thermal

distortion is not perfectly parabolic. The consequence is that part of the laser power will be

scattered, when the fundamental gaussian beam impinges on the distorted mirror. The power

lost in this way defines the mirror scattering losses due to the considered thermal effects [48].

The mathematical expression for these losses can be derived by taking into account the coupling

coefficient between an incoming fundamental gaussian beam, φ0, reflected by the thermally
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distorted mirror and matched to it, and the counter propagating gaussian beam, φc, which is

the phase conjugate of φ0. By considering an initially flat mirror, because of the thermal effects

its operator becomes:

M(r) = 2ik

�
r2

2Rc
+ d+ �(r)

�
, (5.16)

where Rc and d have the same meaning introduced above, while the function �(r) describes the

departure of the thermally distorted mirror surface from the perfect paraboloid, defined through

the quantities Rc and d. As far as φ0 is concerned, this can be written as:

φ0 =

�
2

π

1

w
e−

r2

w2 e−ik r2

2R . (5.17)

Hence, the beam reflected by the distorted mirror is:

φR = M(r)× φ0, (5.18)

and φc is:

φc =

�
2

π

1

w
e−

r2

w2 eik
r2

2R . (5.19)

The coupling coefficient between the reflected beam, φR, and the counter propagating beam is:

γ =< φc,φR >=

� ∞

0

�
2

πw2
e−

2r2

w2 e
i2kr2

�

M(r)− r2

2R

��
2πrdr. (5.20)

The matching condition gives:

1

Rc
=

1

R
, (5.21)

therefore equation (5.20) reads:

γ =< φc,φR >=

� ∞

0

�
2

πw2
e−

2r2

w2 ei2kr
2(d+�(r))

�
2πrdr. (5.22)

The contribution of the piston d can be ignored since it can be compensated by changing the

frequency of the laser, so that:

γ =< φc,φR >=

� ∞

0

�
2

πw2
e−

2r2

w2 ei2kr
2�(r)

�
2πrdr. (5.23)
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Furthermore, if � << λ, where λ is the laser wavelength, the following development is possible:

γ =

� ∞

0

�
2

πw2
e−

2r2

w2
�
1 + i2k�(r)− 2k2�2(r)

��
2πrdr. (5.24)

It has to be observed that �(r) is the residual function describing the difference between the

actual deformed mirror surface and the best paraboloid fit, defined through equations (5.1),

(5.4) and (5.5), i.e.:

�(r) = uz(r,−h/2)− r2

2Rc
, (5.25)

where the piston d has been set to zero and uz(r,−h/2) is the z component of the displacement

vector, calculated in z = −h/2, which gives the effective distorted mirror surface. It can be

checked that < �(r) > is zero, so that:

i2k

� ∞

0

�
2

πw2
e−

2r2

w2 �(r)

�
2πrdr ≡ 0. (5.26)

As a consequence, the coupling coefficient, γ, becomes:

γ =< φout(r),φ
�
2(r) >= 1−

� ∞

0

�
2

πw2
e−

2r2

w2
�
2k2�2(r)

��
2πrdr. (5.27)

When �(r) ≡ 0, only the first term in the previous equation remains and it expresses the perfect

matching between the reflected beam, φR, and the phase conjugate one, φc. Hence, for � �= 0, it

is possible to define the efficiency of the coupling as:

|γ|2 = 1− 4k2
� ∞

0

�
2

πw2
e−

2r2

w2 �2(r)

�
2πrdr. (5.28)

Eventually, the scattering losses are given by:

L = 1− |γ|2 = 4k2
� ∞

0

�
2

πw2
e−

2r2

w2 �2(r)

�
2πrdr. (5.29)

In conclusion to this section, it is worth stressing how the curvature radius of a mirror which

has an initial finite radius of curvature, R1, is modified because of the thermal effects. With this

purpose, it is observed that the mirror operator for the reflection of an impinging beam, after

203



Chapter 5. Optimum TCS Determination

the thermal deformation described through a function f(r), can be written as:

M̃(r) = 2ik

�
r2

2R1
+ f(r)

�
, (5.30)

with:

f(r) =
r2

2Rc
+ d+ �(r), (5.31)

where Rc, d and �(r) have the same meaning introduced above. Hence, the radius of curvature

of the thermally distorted mirror is obtained from the following relation:

1

R̃1

=
1

R1
+

1

Rc
. (5.32)

5.2 Thermal effect implications for an optical cavity

In order to analyze the implications of the mirror thermal distortion with respect to the prop-

erties of an optical resonator, a two mirror cavity is now considered. Firstly, the issues due to

the scattering losses, as described in the previous section, will be addressed. In particular, it is

assumed that the input mirror, M1, has transmission coefficient t1, reflection coefficient r1 and

losses p, while the end mirror, M2, has not losses and r2 = 1. The balance equation for M1 can

then be written as [48]:

r21 + t21 = 1− p. (5.33)

Analogously to section (2.1), it is assumed that a steady state optical signal, Einc, is incident on

Figure 5.1: Two mirror optical cavity scheme, inspired from [49] - Scheme of the two mirror
cavity, where M1 is the mirror with reflection coefficient r1 and M2 is the mirror with reflection
coefficient r2 ≡ 1. The incident beam is indicated as Einc, Eref represents the reflected field, the
circulating wave amplitude is labeled as Ecir, while g(ω) is the cavity gain factor for each round trip.

M1, while the electromagnetic wave amplitude circulating within the resonator, as taken inside

M1, is denoted as Ecir, see picture (5.1). The latter quantity can be obtained through formula
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(2.4), by imposing r2 ≡ 1, hence:

Ecir =
it1Einc

1− r1e
−i 2ωL

c

, (5.34)

and it can be checked that the power gain of the optical cavity at its resonance frequency is

now:

|Smax|
2 =

t21
(1− r1)2

. (5.35)

As far as the finesse of the cavity is concerned, equation (2.9), with r2 = 1, gives:

F =
π
√
r1

1− r1
. (5.36)

From equation (5.33), if F >> 1, r2 = 1, p << 1, it is possible to verify that the following

relation holds [48]:

|Smax|
2 =

t21
(1− r1)2

=
2F

π

�
1− pF

2π

�
. (5.37)

The previous expression of |Smax|
2 shows a maximum for F = π/p. In this case, the optical

power gain of the cavity is 1/p. It is then clear that the value of the losses determines the

amount of optical power that can be stored within the resonator. In particular, to reach high

levels of intracavity power, very low losses are required. However, it has to be observed that the

exact value of p is not easy to determine, therefore, it is not possible to choose F = π/p.

As it has been already shown, another thermal effect, in addition to the scattering losses,

is the change of the cavity mirror curvature radius. This issue on one hand leads to deal with

cavity stability problems, on the other hand can limit the power in the fundamental mode of

the cavity because of coupling defects. In order to highlight the cavity stability issue, a simple

two mirror cavity is taken into account. In the initial situation, it is assumed that the cavity is

compounded of a mirror, M2, with curvature radius R2 and of a flat mirror, M1. Moreover, the

curved mirror is not affected by thermal effects, while the flat mirror takes a curvature radius,

R1, which depends on the thermal effects. In chapter (2), it has been introduced the stability

criterion for a two mirror optical cavity, which is here reported:

0 < g1g2 < 1, (5.38)
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where g1 and g2 are the g-factors of the mirrors, so that, if L is the cavity length :

g1 = 1− L

R1
, (5.39)

g2 = 1− L

R2
. (5.40)

If it is set g2 = 0.9, L = 100 m, it is clear from criterion (5.38) that a significant change of the

mirror radius of curvature for M1 can lead the cavity outside the stability region. Indeed, if

R1 ∼ −1000, g1g2 ∼ 1, then the resonator becomes marginally stable.

In order to illustrate the decrease of the cavity fundamental mode power, due to the change

of the cavity mirror curvature, the optical resonator described above is considered. For the

sake of clearness, its properties are recalled here: one mirror, M2, is spherical with curvature

radius R2, the second mirror, M1, is flat, in the unperturbed conditions, and the cavity length is

L = 100m. The curvature radius of M1 changes due to thermal effects, and it is denoted as R1

in the following, while the g-factor of M2 is fixed to g2 ≡ 0.9. The unperturbed mode resonating

inside the cavity can then be written as follow [49]:

φ0(z) =

�
2

π

e−ikz+iψ(z)

w(z)
e

−r2

w2 −ik r2

2R(z) , (5.41)

where:

w(z) = w0

�
1 +
�

z
zR

�2
, zR =

πw2
0

λ
,

R(z) = z +
z2R
z , ψ(z) = arctan

�
z
zR

�
.

(5.42)

It is worth noticing that, in the previous equations, the quantity z is the coordinate aligned with

the propagation direction of the beam and it describes the position within the resonator. λ is,

as usual, the laser beam wavelength. For the calculations of this chapter, it is always assumed

λ = 1064 nm. Moreover, the quantity w0 is the beam waist within the cavity, in the unperturbed

condition, i.e. for g2 = 0.9, g1 = 1, so that:

w0 =

�
Lλ

π

�
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2

� 1
2

= 1.0 cm. (5.43)

As it has been already pointed out, because of the thermal effects, the curvature of the mirror

M1 changes, then even the mode resonating inside the cavity is different. In particular, the
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beam waist position changes, with respect to M1, of a quantity ∆z [49]:

∆z =
g2(1− g1)

g2 + g1 − 2g1g2
L, (5.44)

where g1 is now the g-factor of the thermally distorted mirror, while g2 keeps its usual value:

g2 = 0.9. It is observed that, in the unperturbed configuration, the beam waist is on M1, so

that ∆z ≡ 0. The effective mode resonating inside the cavity, because of the thermal effects, is

then:

φ0p(z) =

�
2

π

e−ik(z−∆z)+iψp(z−∆z)

wp(z)
e

−r2

w2
p
−ik r2

2Rp(z) , (5.45)

with:

wp(z) = w0p

�
1 +
�
z−∆z
zRp

�2
, zRp =

πw2
0p

λ
,

Rp(z) = z −∆z +
z2Rp

z−∆z , ψ(z) = arctan
�

z
zRp

�
,

w0p =
Lλ
π

�
g1g2(1−g1g2)
(g1+g2−g1g2)2

.

(5.46)

The coupling between the unperturbed cavity mode with the mode affected by thermal effects

is given by the following integration:

C(z) = |2π
�∞
0 φ0(r, z)φ

∗
0p(r, z)rdr|

2 =

= 4

w2(z)w2
p(z)

�

�

1
w2(z)

+ 1

w2
p(z)

�2

+
�

k
2

�

1
R(z)

− 1
Rp(z)

��2
� .

(5.47)

The coupling defects are defined as the quantity 1−C(z). Since the coupling for the fundamental

mode of the cavity is not perfect, a higher level of input laser power is required, in order to reach

the desired value of the intracavity power, Pint. For example, if it is required Pint = 3 MW, the

laser input power required to reach it, in the presence of coupling defects, is:

Pinput =
3× 106W

|Smax|2C(z)
, (5.48)

where the quantity |Smax|
2 has been defined, in the current section, as the maximum optical

power gain of the cavity. It is important to stress that it is always C(z) ≤ 1. Hence, if the

coupling is not perfect, the factor C(z), in equation (5.48), makes to increase the laser input

power required to reach the desired 3MW of intracavity power.
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5.3 TCS analytical results

In this section, the TCS described in the previous chapters are analyzed relatively to their

efficiency in correcting mirror curvature radius changes and losses produced by thermal effects.

The results in the following are obtained through the application of the analytical calculations in

chapter (3), hence of the MATLAB programs based on them, to evaluate the mirror displacement

vector. The values of the mirror curvature changes and of its losses, for each considered TCS, are

then obtained with formulas (5.4), (5.29). It is observed that the results presented in this section

and in the next ones, have been obtained by assuming the mirror geometrical characteristics

already used in chapter (3). Furthermore, except for the case of the TCS in section (3.2.3), the

environment temperature is always equal to 300 K. As far as the beam size is concerned, it is

assumed a waist of 1 cm on the mirror reflecting surface. The absorption coefficient of the mirror

is always set to 0.3 ppm. Moreover, the optical power load on the mirror reflecting surface, that

can be seen as the intracavity optical power, in the context of on optical resonator, is of 3 MW.

For the sake of simplicity, it is also assumed that the initial mirror, in the unperturbed condition,

is flat.

It is worth giving as a reference for the results illustrated in the following, the mirror reflecting

surface distortion when no TCS are applied. To this aim, in figure (5.2), the results of the

MATLAB program for the TCS of section (3.2.3), with environment temperature T0 = 300K,

are reported. In particular, the plot shows the deformed mirror reflecting surface together with

the best parabolic fit. The associated value for the change of the curvature is c = 3.1×10−4 m−1

and the losses are of 2518 ppm. It is worth observing the mirror reflecting surface departure

from a perfect paraboloid profile, which gives rise to the scattering losses.

5.3.1 Results for the TCS with fixed temperature on the cavity mirror edges

The TCS currently under analysis is the one treated in section (3.2.1), (4.2). It is based on the

application of a fixed temperature T1, on the mirror edges, as showed in picture (3.2), in order

to compensate for the mirror distortion due to the laser power absorption. As there is only

one parameter that can vary, i.e. T1, it is possible to carry on a systematic study to determine

losses and curvatures of the mirror as functions of this quantity. Figure (5.3) illustrates that the

losses decreases when T1 increases. In this respect, it is observed that the highest temperature

value, T1 = 900K, is fixed to guarantee the feasibility of the TCS. Since the manufacturing

geometrical defects of the mirror give diffusion losses of about 30 ppm [95], the losses obtained
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Figure 5.2: Mirror reflecting surface distortion without TCS - Distortion of the mirror
reflecting surface, when there is not a TCS acting on it and the environment temperature is T0 = 300
K. The red line illustrates the parabolic fit which approximates better the mirror distorted surface
and the blue line is the mirror reflecting surface displacement vector. The departure of the mirror
surface from the best parabolic fit gives rise to the scattering losses expressed by formula (5.29),
while the parameter c, on the plot, is the change of the mirror curvature due to the thermal effects.

Figure 5.3: Loss and Curvature results for the TCS in section (5.3.1) - Left panel:
the mirror curvature resulting from the combination of the thermal effect and of the application of
the considered TCS is showed, when the temperature fixed at the mirror edge, T1, changes. Right
panel: the loss value for the mirror deformed by the combination of the thermal effect and of the
application of the considered TCS is showed, when the temperature fixed at the mirror edge, T1,
changes.
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through this TCS are too high. Indeed, it would be appropriated to reduce the loss value due to

the thermal effects below the one due to the mirror manufacturing. Furthermore, the coupling

defects, defined in section (5.2) within the context of on optical resonator, are not adequately

corrected. To have an idea of this statement, it is possible to take into account the optical

cavity considered in section (5.2). It is worth recalling that the g-factors of the mirrors, in the

unperturbed condition, are g2 = 0.9, g1 = 1, and the cavity length is L = 100. The plot of the

coupling defects as function of T1 is reported in picture (5.4), therefore it is possible to observe

that even for the value of T1 for which the TCS works better, i.e. T1 = 900K, the coupling

defects, calculated by applying the formula (5.47), are of about 10%. This value is not negligible

with respect to the experimental errors, which are of order of 5%. However, it must be observed

that, it is always possible to adapt the properties of the input laser beam, in order to decrease

the coupling defects. In conclusion, the results obtained with this TCS, for the corrections of

losses and curvature radii of the distorted mirror, are not satisfactory.

Figure 5.4: Coupling defects for the TCS in section (5.3.1) - The plot shows the coupling
defects calculated through relation (5.47) for the TCS in section (5.3.1 as function of the temperature
fixed at the mirror edge, T1.

5.3.2 Results for the free cavity mirror TCS

The considered TCS is described in sections (3.2.3), (4.4). It consists in warming up the com-

plete environment where the mirror is placed, which can freely exchanges heat with it. The

temperature of the environment is fixed at T0, and this is the only parameter that can be varied,

in this configuration. Hence, a systematic study of the TCS behavior in correcting the thermal

effects can be carried on. In figure (5.3.3), the results obtained for the losses of the mirror

and its changes of curvature are reported, when T0 is made to vary. As it is possible to verify

from these plots both the mirror curvature changes and the losses are comparable to the ones

obtained in section (5.3.1). As far as the coupling defects are concerned, their value as function
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Figure 5.5: Loss and Curvature results for the TCS in section (5.3.2) - Left panel:
the mirror curvature resulting from the combination of the thermal effects and of the application
of the considered TCS is showed, when the environment temperature, T0, is made to vary. Right
panel: the loss value for the mirror deformed by the combination of the thermal effects and of the
application of the considered TCS is showed, when the environment temperature, T0, is made to
vary.

of the temperature T0 is reported in picture (5.6), which show that they are of the same order

of greatness of the ones found in the previous section. As the mirror losses are still significantly

higher than the ones due to the mirror manufacturing, even for the environment temperature

value which minimizes both the curvature change and the losses, i.e. T0 = 900K, this TCS could

hardly be applied for correcting the mirror thermal effects.

Figure 5.6: Coupling defects for the TCS in section (5.3.2) - The plot shows the coupling
defects calculated through relation (5.47) for the TCS in section (5.3.2 as function of the environment
temperature where the mirror is placed, T0.

211



Chapter 5. Optimum TCS Determination

Figure 5.7: Loss and Curvature results for the TCS in section (5.3.3) - Left panel: the
mirror curvature resulting from the combination of the thermal effects and of the application of the
considered TCS is showed, when the temperature, T1, fixed on the mirror is made to vary. Right
panel: the loss value for the mirror deformed by the combination of the thermal effects and of the
application of the considered TCS is showed, when the temperature, T1, fixed on the mirror is made
to vary.

5.3.3 Results for the TCS with fixed temperature on the cavity mirror edges

and on one ring heater

The TCS discussed in secions (3.2.4) (4.5) is now studied. It is worth recalling that, in this

case, the TCS consists in applying a fixed temperature, T1, both on the mirror edges and on

a circular section of the back side of the mirror, as it is shown in figure (3.4). In order to

fix the internal radius of the ring heater, b, it has been observed that, as the TCS should be

applied also to the input cavity mirror, it has to be b ≥ 0.02m, not to enhance clipping losses.

Moreover, by performing several simulations it has been checked that the TCS get to better

results when b is smaller, and the ring occupies a larger area of the mirror back side. Hence, for

the performed simulations it has been set b = 2 cm. The behavior of the analyzed configuration,

as far as corrections of mirror losses and curvature changes are concerned, can be understood

by evaluating these two quantities, when the temperature T1 is made to vary. The plot in figure

(5.7) shows the presence of an optimum T1 value for the correction of the mirror curvature

change. This value is T1 = 480K, and the corresponding curvature change is 6, 3× 10−6 m−1 .

With the application of relation (5.47), it is possible to realize the plot for the coupling defects

as function of the temperature T1. The results are reported in picture (5.8). It is observed that

the coupling defects are reduced to 1−C(z) = 1, 2×10−4, when T1 = 480K. However, by taking

into account the plot for the losses as function of T1, it is easy to realize that this TCS is not

able to solve the thermal effect problems. Indeed, the losses are comparable or even larger than
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the ones obtained with the previously analyzed TCS. It is also worth to point out that, for the

value of T1 giving the lowest change of the mirror curvature, there are no problems due to the

approximation for the linearization of the equations (see sections (3.4), (4.5)). Indeed, as it has

been showed in section (4.5), this issue starts to be relevant for T1 ≥ 600K. So, it is possible to

confirm the tendency showed in figure (5.7), for both the losses and the curvature changes of

the mirror as functions of T1.

Figure 5.8: Coupling defects for the TCS in section (5.3.3) - The plot shows the coupling
defects calculated through relation (5.47) for the TCS in section (5.3.3, as function of the fixed
temperature, T1.

5.3.4 Results for the TCS configurations with several temperatures fixed on

the back side of the mirrors

The TCS described in sections (3.2.5), (3.2.6), (3.2.7) are now analyzed as far as the corrections of

the mirror losses and curvature changes are concerned. These configurations are characterized

by the presence of several parameters that can be fixed to perform the simulations. As a

consequence, it is quite tricky to find the optimum parameter choice that lead to the lowest

loss value and to the lowest change of the mirror curvature. For these reason, for all the TCS

considered in this section, several simulations have been done. It is worth stressing that, in

performing the simulations, it has to be taken into account that the linearization approximation,

already discussed in sections (3.1), (3.2), can introduce errors in the results obtained through

analytical calculations, when the choice of the fixed temperatures, in the rear side of the mirror,

leads to deal with an excess of temperature, τ , which does not verifies the condition τ << T1.

Nevertheless, there is at least one configurations, that can be seen as a limit case of the TCS of

sections (3.2.6), (3.2.7), for which a systematic study for the mirror losses and curvature changes

can be carried on, i.e. the configuration where a fixed temperature T1 is set on the complete

back side of the mirror and on the mirror edges. Indeed, this is also equivalent to the TCS
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of section (3.2.2). The results are reported in figure (5.9). As it is possible to check from

Figure 5.9: Loss and Curvature results for a particular case of the TCS configurations in
section (5.3.4) - Left panel: the mirror curvature resulting from the combination of the thermal
effects and of the application of the considered TCS is showed, when the temperature, T1, fixed on
the mirror is made to vary. Right panel: the loss value for the mirror deformed by the combination
of the thermal effects and of the application of the considered TCS is showed, when the temperature,
T1, fixed on the mirror is made to vary.

the plots, in the particular considered case, the behavior with respect to the correction of the

mirror curvature changes presents an optimum situation when T1 = 450K, indeed in this case

c = 2.0 × 10−6 m−1 and the coupling defects obtained, by considering formulas (5.47) and the

same argumentation made in section (5.3.1), turn out to be 1−C(z) = 1×10−5. The last result

is quite good, however the loss correction associated to this value of T1 is not adequate, indeed

the losses are of 2500 ppm. On the contrary, if the optimum value of the temperature with

respect to the loss correction is taken into account, i.e. T1 = 900 K, it is easy to see that the

coupling defects become large, while the losses are not sufficiently reduced. As a consequence,

this configuration as well is not completely satisfactory.

In the most general situation, as it has been already pointed out, several parameters have to be

fixed, in order to start the simulations and shed light on the behavior of the TCS configurations

of sections (3.2.5), (3.2.6), (3.2.7) as far as the corrections of the mirror losses and curvature

changes are concerned. With reference to the obtained simulation results, it is possible to

state that, for the choices of the temperatures fixed on the rear side of the mirror, for which

the linearization approximation is well verified, it is not possible to obtain loss values below

8× 102ppm. Furthermore, it is worth noticing here that the outcomes of the simulations show

a reduction of the mirror losses, when the central part of the mirror rear side is kept at a higher

temperature value with respect to the temperature of the other regions of the mirror. Indeed, if

for the TCS of section (3.2.6), by considering picture (3.6), it is assumed: T1 = 350 K, T2 = 380
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K, b = 0.02m, the losses turn out to be 2320ppm with curvature change of 2.4× 10−4 m−1. By

inverting the previous temperatures, i.e. T1 = 380 K, T2 = 350 K, the losses become 2720ppm,

while the curvature change is 2.3×10−4 m−1. The tendency stressed here is confirmed by the TCS

of section (3.2.5). Indeed, with reference to picture (3.5), by setting: T1 = 350K, T3 = 380K,

b = 0.03m, b1 = 0.01m, the loss value is 2400ppm, while the curvature change is 2.3×10−4 m−1.

By inverting the temperatures, i.e. T1 = 380K, T3 = 350K, with the same values of b and b1,

it turns out that the losses rise to 3000ppm and the curvature change rises to 2.5× 10−4 m−1.

Results of order of few hundred of ppm for the mirror losses can be reach when considering higher

level of the fixed temperature on the back side of the cavity mirror. In these cases, however, the

linearization condition is not appropriately verified and the outcomes of the simulations based

on the analytical calculations present departures with respect to the ones obtained through

numerical simulations. This can be seen, for example, in figure (5.10), which concerns the TCS

of section (3.2.5), for T1 = 700K, T3 = 750K, b1 = 0.005m and b2 = 0.02m. The plots represent

the temperatures and the displacement vectors for both the mirror reflecting surface and the

mirror rear side surface. Both the numerical and analytical results are shown, in order to make

clear that the differences between the two calculation methods become significant, when the

error introduced by the linearization is not negligible. For the particular case of figure (5.10),

the ratio between the difference of the mirror radiated power calculated with the linearization

formula and without linearization approximation to the mirror absorbed power is of 281%. A

quantitative analysis of the departure of the analytical results from the numerical ones, for both

the mirror surface displacement vector inside the optical cavity and the one outside the cavity,

is obtained by evaluating the following expression at each radius value:

PEuz =
|Uz,A − Uz,N |

|Uz,N |
. (5.49)

The outcomes of these calculations are reported in picture (5.11), for r ≤ 0.02 m, indeed, the

central part of the mirror is the one involved in the laser beam reflection. As it is possible to

check from these plots, even if, for the surface internal to the optical cavity, equation (5.49) gives

acceptable percent errors of the analytical results with respect to the numerical ones, the same

thing does not hold for the rear side of the mirror. The analytical results give a loss value of

103 ppm and a curvature change of 1.4×10−3 m−1. The corresponding values for the numerical

calculations are 122 ppm and 1.4 × 10−3 m−1 respectively. However, it is possible to observe

that these TCS can reduce the mirror losses, when considering higher values of the temperatures
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fixed on the mirror rear side, but they also enhance the curvature changes, which is quite large

for the example taken into account. In order to avoid problems connected with the linearization

condition, discussed above, the analysis of the TCS taken into account in this section has been

carried on by using only numerical simulations, but no solutions which could efficiently correct,

at the same time, mirror losses and mirror curvature changes due to the thermal effects could

be determined.

Figure 5.10: Mirror surface temperatures and distortions for a particular case of the
TCS configurations in section (3.2.5) - Comparison between numerical and analytical simula-
tions. Top panels: on the left, the mirror reflecting surface temperature is reported; on the right,
the mirror rear side surface temperature is reported. The TCS parameter choice is described in
section (5.3.4). Bottom panels: on the left, the displacement vector of the mirror reflection surface
is reported; on the right, the displacement vector of the mirror rear side surface is reported. The
TCS parameter choice is described in section (5.3.4)
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Figure 5.11: Percent errors on the mirror surface displacement vectors for a particular
case of the TCS configurations in section (3.2.5) - Percent errors on the analytical calculations
of the mirror surface displacement vectors with respect to the COMSOL numerical calculations,
evaluated through formula (5.49). Left panel: percent error of the analytical calculations with
respect to the ones performed with COMSOL, as far as the mirror surface displacement vector
inside the optical cavity is concerned. The TCS parameter choice is described in section (5.3.4) .
Right panels: percent error of the analytical calculations with respect to the ones performed with
COMSOL, as far as the mirror surface displacement vector outside the optical cavity is concerned.
The TCS parameter choice is described in section (5.3.4).

5.3.5 Results for the TCS with mechanical fixation and temperature field

application on the cavity mirror

The TCS described in sections (3.4.1), (4.9) is now taken into account, in order to analyze the

results concerning mirror losses and curvature changes. As it is shown is section (4.9), a good

agreement between the numerical calculations performed with COMSOL and the analytical ones

can be obtained only if the parameter d, illustrated in figure (3.8), is small enough. Hence, in

the simulations used to determine the plots of figure (5.12), it is set d = 1mm. As far as the

mirror temperature field is concerned, the configuration described by the TCS in section (3.2.4)

is assumed, with internal radius of the ring heater fixed at b = 0.02 m, as it has been already

done in section (5.3.3). The analysis of the TCS behavior, in correcting the cavity mirror losses

and curvature changes, is then carried on by making to vary the temperature T1. It is easy

to check, from picture (5.12), that the results obtained for the corrections of both the mirror

losses and curvature changes are not enough satisfactory. Indeed, on one hand, the change of

the mirror curvature is quite significant for all the temperature values, on the other hand, the

losses keep being sensibly larger than the ones due to the mirror manufacturing. As far as
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Figure 5.12: Loss and Curvature results for the TCS in section (5.3.5) - Left panel: the
mirror curvature resulting from the combination of the thermal effects and of the application of the
considered TCS is showed, when the temperature, T1, fixed on the mirror is made to vary. Right
panel: the loss value for the mirror deformed by the combination of the thermal effects and of the
application of the considered TCS is showed, when the temperature, T1, fixed on the mirror is made
to vary.

the coupling defects are concerned, they are evaluated through formula (5.47) and the result is

illustrated in picture (5.13). As it is possible to verify from this plot, the coupling defects are

quite large. Indeed, for the value of the temperature which minimizes the losses, i.e. T1 = 300

K corresponding to the loss value of 2510 ppm, the coupling defects turn out to be of about

20%, which is a high value with respect to the experimental errors. It is observed that, for the

range of temperatures 300K ≤ T1 ≤ 450K, the values of the coupling defects are similar to each

other and they are the lowest possible. Hence, the optimum value for the coupling defects is

close to 20%. In conclusion, because of the analysis carried on for this TCS, it appears that the

considered configuration is not appropriate to compensate the defects introduced by the thermal

effects on the mirror, indeed, the losses are larger than the ones obtained for the configurations

in sections (5.3.2), (5.3.3).

5.3.6 Results for the TCS with fixation of the cavity mirror edges and tem-

perature field application

The TCS currently under analysis is the one introduced in section (3.4.2) and it consists in fixing

the edges of the mirror, so that they cannot move, while applying the temperature field described

in section (3.4). The idea of studying this configuration rises from the results obtained for the

TCS treated in section (5.3.5), indeed, it has been introduced for checking if the mirror central

deformation showed in picture (5.2) could be decreased, by leaving the mirror free to expand

on its borders, while its edges are blocked. The study of this TCS behavior as far as mirror
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Figure 5.13: Coupling defects for the TCS in section (5.3.5) - The plot shows the coupling
defects calculated through relation (5.47), for the TCS in section (5.3.5), as function of the fixed
temperature, T1, when setting d = 1 mm.

Figure 5.14: Loss and Curvature results for the TCS in section (5.3.6) - Left pannel:
the mirror curvature resulting from the combination of the thermal effects and of the application
of the considered TCS is showed, when the temperature, T1, fixed on the mirror is made to vary.
Right pannel: the loss value for the mirror deformed by the combination of the thermal effects and
of the application of the considered TCS is showed, when the temperature, T1, fixed on the mirror
is made to vary.
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losses and curvature changes are concerned, is carried on by evaluating these quantities, when

the temperature T1, fixed on the mirror rear side and on its edges, is made to vary. The obtained

results are showed in figure (5.14). From the plot for the mirror losses, it is possible to see that

the minimum loss value is obtained for T1 = 400K. In this case, the losses are of 2460 ppm and

the curvature change is of 2.9× 10−4 m−1. Additionally, the value of the curvature change does

not vary significantly within the temperature range 300K ≤ T1 ≤ 450K. Thus, the optimum

value for the mirror curvature is close to the one given for T1 = 400K, indeed, it is 2.88× 10−4

m−1. As far as the coupling defects are concerned, they are evaluated through equation (5.47)

and the results are reported in picture (5.15). The values for the coupling defects appear to

be quite large. In conclusion, it is observed that, on one hand, this TCS allows to reduce the

loss values below the ones obtained with the configuration of section (5.3.5), on the other hand,

the curvature and loss corrections are not significantly improved. The obtained results for both

losses and curvature changes are not satisfactory. In this respect, it is worth pointing out that

the losses are quite high with respect to the ones due to the mirror manufacturing. Hence, this

TCS cannot be applied to solve the problems introduced by the thermal effects on the mirrors.

Figure 5.15: Coupling defects for the TCS in section (5.3.6) - The plot shows the coupling
defects calculated through relation (5.47) for the TCS in section (5.3.6), as function of the fixed
temperature, T1.

5.3.7 Results for the TCS configurations with pressure application on the

mirror

The behavior of the TCS described in section 3.4.3, in correcting the thermal effects, is now

analyzed. In particular, the MATLAB program tested in section (4.11) is taken into account,

hence seven different values of the pressure could be applied on the mirror rear side, at the same
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time. However, the number of the parameters that have to be chosen to start the simulations is

quite high. This is true even if only the application of one ring of pressure or only the central

disk of pressure is considered. Indeed, there is not just the value of the pressure that has to be

chosen, but the geometry of the region where it has to be applied as well. Hence, a systematic

study of this TCS turns out to be quite tricky. With the aim of reducing mirror losses and

curvature changes, several simulations were made, by changing the parameters of the MATLAB

program. No solutions were found that could significantly lower the mirror losses and curvature

changes. To give an idea of the mirror deformation dependence on the configuration of the

applied pressure, it is possible to fix a value of the pressure, e.g. 5000 Pa, and to apply it on one

ring, which is made to displace, on the rear side of the mirror. For each position of the pressure

ring, it is possible to see how the mirror reflecting surface is deformed. It is worth noticing

that, when the central part of the mirror back side is considered, a pressure disk is applied,

instead of a ring. Furthermore, it is reminded that, on the mirror surface internal to the optical

cavity, a ring of pressure is also present, as it is explained in section (3.4.3). For the particular

case of the simulation results presented below, it has been chosen to fix the ring of pressure, on

the mirror surface internal to the optical cavity, between r = 0.038 m and r = 0.04 m, while

the pressure value is determined as described in section 3.4.3. In figures (5.17), (5.18), (5.19),

(5.20),(5.21), (5.22), the results for the displacement vector of the mirror reflecting surface are

showed together with the description of the applied pressure, on the rear side of the mirror. In

the figure captions, the loss value and the curvature change are also given. The mirror reflecting

surface distortion, for each considered position of the applied pressure, has to be compared with

the one obtained when no pressures are applied, which is reported in figure (5.16). This last case

has to be equivalent to the case of section (5.3.2), for T0 = 300K. It has been checked that this

is verified, indeed the losses and the curvature change for both the programs are 2518 ppm and

3.1 × 10−4 m−1 respectively. As it is possible to see from figures (5.16), (5.17), (5.18), (5.19),

(5.20),(5.21), (5.22), for the considered value of the pressure, i.e. 5 kPa, there is not a solution

that allows to invert the direction of the mirror deformation in its center, or to uniform the

central deformation by enhancing the distortion of the mirror borders. However, in principle,

it may be possible to find values of the pressure which allow to compensate the mirror change

of curvature, when applied on appropriate regions of the mirror back side. Nevertheless, it

is observed that, from the simulation results concerning different configurations of the applied

pressure and of the pressure values, it seems hard to compensate both the mirror losses and the

mirror changes of curvature, by applying this TCS.
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Figure 5.16: Analysis of the TCS of section (5.3.7). Configuration 1. - Mirror losses:
2518 ppm. Mirror curvature change: 3.1 × 10−4 m−1. Left panel: Displacement vector of the
mirror reflecting surface when no pressure are applied on the rear side of the mirror. Right panel:
pressure applied on the mirror rear side as function of the mirror radius.

Figure 5.17: Analysis of the TCS of section (5.3.7). Configuration 2. - Mirror losses:
2518.6 ppm. Mirror curvature change: 4.0 × 10−4 m−1. Left panel: Displacement vector of the
mirror reflecting surface when a pressure of 5000 Pa is applied on the mirror back side, in the region
0.03 m≤ r ≤ 0.04 m. Right panel: pressure applied on the mirror rear side as function of the
mirror radius.
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Figure 5.18: Analysis of the TCS of section (5.3.7). Configuration 3. - Mirror losses:
2518.7 ppm. Mirror curvature change: 4.9 × 10−4 m−1. Left panel: Displacement vector of the
mirror reflecting surface when a pressure of 5000 Pa is applied on the mirror back side, in the region
0.025 m ≤ r ≤ 0.035 m. Right panel: pressure applied on the mirror rear side as function of the
mirror radius.

Figure 5.19: Analysis of the TCS of section (5.3.7). Configuration 4. - Mirror losses:
2518.2 ppm. Mirror curvature change: 5.6 × 10−4 m−1. Left panel: Displacement vector of the
mirror reflecting surface when a pressure of 5000 Pa is applied on the mirror back side, in the region
0.02 m ≤ r ≤ 0.03 m. Right panel: pressure applied on the mirror rear side as function of the
mirror radius.
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Figure 5.20: Analysis of the TCS of section (5.3.7). Configuration 5. - Mirror losses:
2511 ppm. Mirror curvature change: 5.99 × 10−4 m−1. Left panel: Displacement vector of the
mirror reflecting surface when a pressure of 5000 Pa is applied on the mirror back side, in the region
0.015m ≤ r ≤ 0.025 m. Right panel: pressure applied on the mirror rear side as function of the
mirror radius.

Figure 5.21: Analysis of the TCS of section (5.3.7). Configuration 6. - Mirror losses:
2784 ppm. Mirror curvature change: 5.7×10−4 m−1. Left panel: Displacement vector of the mirror
reflecting surface when a pressure of 5000 Pa is applied on the mirror back side, in the region 0.005
m ≤ r ≤ 0.015 m. Right panel: pressure applied on the mirror rear side as function of the mirror
radius.
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Figure 5.22: Analysis of the TCS of section (5.3.7). Configuration 7. - Mirror losses:
2836 ppm. Mirror curvature change: 3.58 × 10−4 m−1. Left panel: Displacement vector of the
mirror reflecting surface when a pressure of 5000 Pa is applied on the mirror back side, in the region
0 m ≤ r ≤ 0.005 m. Right panel: pressure applied on the mirror rear side as function of the mirror
radius.

5.4 Optimum TCS determination and results

The results presented in the previous sections of the current chapter show that it has been not

possible to find a configuration concerning the TCS analyzed so far that could simultaneously

correct the change of the mirror curvature and the mirror losses. Nevertheless, the analysis

carried on in section (5.3.4) gives an important clue for a further possible TCS, based again on

the application of a temperature field on the mirror rear side. Indeed, as it has been pointed out,

in section (5.3.4), the mirror losses decrease when warming up the central part of the mirror.

Therefore, the TCS treated in this section lies on the application of a central disk heater, on the

back side of the mirror, in order to fix the temperature of the mirror region interested by the

disk at the chosen value T1. The other parts of the mirror are free to exchange heat with the

environment, which is always kept at constant temperature Tenv = 300 K. In section (5.3.4), it

has been also noticed that, if the linearization condition is not appropriately respected, there

can be significant differences between the analytical and numerical results, meaning that the

errors introduced by the linearization approximation are not negligible. Therefore, in order to

have the possibility of investigating this TCS on a large range of the fixed temperature, T1,

the analysis will be carried on by using the numerical calculations. Actually there is a further

reason for treating this TCS through numerical simulation only. Indeed, as the mirror edges
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can now exchange freely heat with the environment, the boundary equation for the heat flow on

the mirror edges has to be considered, for finding the arguments of the Bessel function, entering

the description of the mirror temperature field. In particular, this last quantity is written as

T1 + τ(r, z), where τ(r, z) is the excess of temperature with respect to T1, and it has the usual

form:

τ(r, z) =
∞�

n=1

τn(z)J0(kn
r

a
), τn(z) = Ane

−kn
z
a +Bne

kn
z
a , (5.50)

where J0 is the first kind zero order Bessel function, a solution of the Fourier equation in

cylindric symmetry, with no internal source of heat [71]. As far as the coefficients An and Bn

are concerned, they are normally obtained by solving the equations describing the boundary

conditions for the heat flows on the mirror reflecting surfaces and on its rear side. Instead, the

quantities kn are found as solutions of the boundary condition equation for the heat flow on

the mirror edges, and they give the arguments of the function J0. if a is the mirror radius, the

equation for the kn reads:

−Kτ,r|r=a = σ
�
(T1 + τ)4 − Tenv

4
�
, (5.51)

with K the conductivity of the mirror material and σ the Stefan-Boltzmann constant. Thus,

the left-hand side of equation (5.51) can be identified as the power lost by the substrate and

its right-hand side as the power flow of thermal radiation. After the linearization of equation

(5.51), assuming T1 >> τ , it results:

−Kτ,r|r=a = 4σT1
3τ + σ

�
T1

4 − Tenv
4
�
. (5.52)

The solutions of the previous equation, giving the kn values, are not trivially found. Hence,

as it has been already noticed, it is preferable to investigate this TCS with numerical analysis.

Furthermore, it is assumed that the mirror is held up by a support, which prevents its edges

together with a circular border 2 mm thick to expand. Therefore, the schematic illustration of

the complete analyzed TCS is reported in figure (5.23). By performing simulations both with

ANSYS and COMSOL, it has been observed that, when the mirror is held by a support, so

that it is not free to move in the space, the simulations are faster, when they are made with

COMSOL [101]. Hence, in the following, the considered TCS is analyzed, by taken into account

the results obtained through the application of the software COMSOL. The validation of the

TCS behavior, in correcting mirror losses and curvature change, is made by using the DarkF
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Figure 5.23: Optimum TCS schematic illustration. - Disk heater of radius b=5 mm, applied
on the central part of the mirror rear side (z=h/2) to fix the temperature at the constant value T1.
Mirror radius equal to a = 0.04m, mirror width equal to h = 0.005m. Environment temperature
Tenv = 300K. Maintaining system which prevents the mirror edges and a circular border region, 2
mm thick, to expand.

code, which is a software based on the numerical calculation of optical field propagation, through

Fourier transform application [102], [103], [104]. It is worth remarking that the COMSOL values

for the losses and for the curvature change are obtained by using the COMSOL data for the

displacement vector of the mirror surface internal to the optical cavity and the formulas given

in section (5.1), i.e. equations (5.4), (5.5) and 5.29. Particularly, as far as the loss value is

concerned, the function �(r), entering equation (5.29), in the most general case, has the following

expression:

� = uz(r)− cr2 − d, (5.53)

with uz the displacement vector of the mirror reflecting surface and cr2+d the function describing

the paraboloid which fits better the deformed reflecting mirror surface. The parameter c gives

the change of the mirror curvature and its value is calculated through equation (5.4). As far as

the DarkF results are concerned, they are obtained by applying the mirror deformation maps,

calculated by COMSOL simulations, on an initially flat mirror. The resulting mirror profile

is used in the DarkF simulations, which compute the properties of the reflected beam, when

the impinging beam is the fundamental gaussian beam, of waist 1 cm, on the reflecting mirror

surface. Hence, the DarkF software is able to derive the curvature of the mirror, which is
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distorted by the deformation map, and its associated losses due to the mirror surface departure

from a perfect paraboloid profile (see appendix (D)). It is important to observe that the radius

of the disk heater applied on the rear side of the mirror, it is always assumed equal to 5 mm, in

the following treatment. In figure (5.24), the mirror curvature changes and losses, as functions

of T1, are reported both for the results obtained with COMSOL and for the ones obtained with

DarkF. The tables (5.1), (5.2) show the values used for realizing the plots of figure (5.24). The

first thing that can be observed, when looking to the plots, is that for the curvature change

as well as for the losses there is an optimum value of the fixed temperature, T1, for which the

two quantities have a minimum. Nevertheless, the T1 value giving the lowest mirror curvature

change is not equal to the T1 value giving the lowest losses. In spite of this, when T1 is such

that it minimizes the losses, i.e. T1 = 690K, the value of the curvature change is not too high.

The same consideration holds for the coupling defects, as calculated by applying formula (5.47),

which are of the order of 2%. The main feature of this TCS is that it can reduce the mirror

losses below the ones due to the mirror manufacturing defects. Indeed, for T1 = 690 K, the loss

value is of about 5 ppm.

Figure 5.24: Optimum TCS results - Left panel: curvature change as a funtion of the tem-
perature T1 fixed on a central disk of radius 0.005 m, on the rear side of the mirror. Calculations
performed by using the deformed mirror map numerically calculated with COMSOL and the analyt-
ical formula (5.4), blue line, and the same mirror map together with the DarkF calculation for the
curvature changes, red line. Right panel: mirror losses as a funtion of the temperature T1 fixed on
a central disk of radius 0.005 m, on the rear side of the mirror. Calculations performed by using the
deformed mirror map numerically calculated with COMSOL and the analytical formula 5.29, blue
line, and the same mirror map together with the DarkF calculation for the losses, red line.

For a deeper comprehension of the TCS under study, it is worth comparing it with the case

where no temperature field is applied on the mirror, even if the same maintaining system is
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COMSOL plus DarkF

T1 [K] Losses [ppm]

500 1585

580 684

630 230

690 4

760 545

COMSOL plus analytic formulas

T1 [K] Losses [ppm]

500 1353

580 624

630 237

690 5

760 358

Table 5.1: Mirror loss results for the TCS in section (5.4). Comparison of the mirror losses
as calculated with the application of the formulas in section (5.1) and with the DarkF method, by
using the numerical data for the mirror deformation computed by COMSOL.

COMSOL plus DarkF

T1 [K] Curvature [m−1]

500 1.7 ×10−4

580 8.3 ×10−5

630 1.2 ×10−5

690 8.7 ×10−5

760 2.2 ×10−4

COMSOL plus analytic formulas

T1 [K] Curvature [m−1]

500 1.8 ×10−4

580 8.7 ×10−5

630 1.6 ×10−5

690 8.4 ×10−5

760 2.2 ×10−4

Table 5.2: Absolute values of the mirror curvature change for the TCS in section (5.4).
Comparison of the mirror curvature changes as calculated with the application of the formulas in
section (5.1) and with the DarkF method, by using the numerical data for the mirror deformation
computed by COMSOL.
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used. In particular, in figure (5.25), the results concerning the mirror temperature field, its

distortion and the best parabolic fit are given both for the mirror without TCS, and for the

mirror with the considered TCS, when T1 = 690K. It is worth stressing that the environment

temperature is always considered equal to 300K. The main feature to be highlighted, on figure

(5.25), is that the warming up of the central part of the mirror rear side leads to invert the

longitudinal temperature gradient. Furthermore, by paying attention on the deformation of

the mirror for the case with the application of the TCS and for the case without TCS, it is

evident that the inversion of the longitudinal temperature gradient also pushes the deformation

to invert its direction. Thus, the mirror central bulging, for the case with TCS, turns out to

be inverted with respect to the one present in the case without TCS. The consequence of this

effect is the compensation of the mirror reflecting surface deformation showed when no TCS is

applied. Indeed, as it is possible to check from the plot of the best paraboloid fit on the bottom

of figure (5.25), the parabolic fit approximates quite well the surface of the mirror, and it is

for this reason that the mirror losses result so low. In order to clarify this point, picture (5.26)

is reported, where the difference between the best paraboloid fit and the real deformed mirror

surface is plotted, for both the case with TCS and for the one without TCS, for the mirror

region involved in the beam reflection, i.e. r � 0.01 m. With reference to figure (5.26), by

approximating the integration in equation (5.29) with the difference pick-to-valley, σ, for each

of the plotted curves, a mirror loss estimation, for both the configurations, can be expressed as

follows:

L̃ = 4

�
2π

λ

�2

σ2, (5.54)

where λ is the laser wavelength. In picture (5.26), the difference pick-to-valley for the case

without TCS is indicated as σFree and the one for the case with TCS is labeled as σTCS , the

ratio between the two is:
σFree

σTCS
≈ 20, (5.55)

therefore, from equation (5.54), the loss reduction factor, when the TCS considered in this

section is applied, with respect to the case without TCS is:

L̃Free

L̃TCS

≈ 400. (5.56)

In conclusion, the TCS considered in this section is a possible solution for the control of the

mirror thermal effects.
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Figure 5.25: Mirror thermal effects correction by the Optimum TCS. - comparison
between the case where the best configuration for the optimum TCS is applied on the mirror and
the case without TCS. The environment temperature is 300 K top panels: on the left side, the
temperature fields and the volumetric deformation of the mirror is showed, when the TCS is not
applied. The plot on the right illustrates the paraboloid which fits better the distorted reflecting
surface of the mirror without TCS. bottom panels: on the left side, the temperature field and the
volumetric deformation of the mirror is showed, when the optimum TCS for T1 = 690K is applied.
The plot on the right illustrates the paraboloid which fits better the distorted reflecting surface of
the mirror when the optimum TCS, for t1 = 690K is applied.
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Figure 5.26: Difference between the best paraboloid fit and the real deformed mirror
surface, for the mirror region involved in the beam reflection. - The blue line describes
the difference between the best paraboloid fit and the real deformed mirror surface, when assuming
to apply the best configuration for the considered TCS, on the mirror, i.e. a temperature T1 = 690K
is fixed on the rear side of the mirror, on a central disk of radius 0.005 m. The red line describes the
difference between the best paraboloid fit and the real deformed mirror surface, for the case without
TCS detailed in section (5.4). Furthermore, σTCS and σFree indicate the difference pick-to-valley
for the curve concerning the case with TCS and the one without TCS, respectively.
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Chapter 6

Test on Large Mode Area (LMA)

Leaky 0ptical Fiber

It has been already pointed out that a laser source of about 1 kW should feeds the optical

cavity used for NBI system applications, in order to reach an intracavity power of few MW,

which is required for a suitable neutralization efficiency of the negative ion beam. Currently, it

is not a trivial issue to realize so powerful laser sources. In this respect, several methods are

under study, such as the coherent superposition of laser beam [105], [106] and their amplification

through fiber amplifiers. Particularly, in the present chapter, it is reported on the experimental

tests concerning a new concept of optical fibers, which have been carried on, in order to verify

the possibility of applying this new fiber design for realizing fiber amplifiers. Indeed, by starting

from a feasible laser source, laser beam amplifiers could then be used to get to the optical

power required for NBI system applications. The fibers under analysis are known as Large

Mode Area (LMA) Leaky fibers, a modification of the LMA fibers which have been developed

for allowing single mode operation without enhancements of nonlinear effects, either due to the

optical intensity dependence of refractive index of the medium or due to inelastic-scattering

phenomenon [107] [108]. Indeed, the mentioned nonlinear effects are usually present in ordinary

single mode fiber, as the light beam is confined in a smaller transverse region with respect to the

one of the LMA fibers, hence a lower optical power is required for reaching high optical intensity

and, as a consequence, for the nonlinear effect to show up [109]. The main issue concerning the

ordinary LMA fibers is that the techniques used to obtain their single mode operation lead often

to significant power losses of the transmitted beam [110]. This is the reason to look for new

single mode fiber design. In the first part of the chapter, general notions about optical fibers
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will be presented, which are useful for the comprehension of the following sections. The second

part of the chapter aims to describe the working principles on which the LMA Leaky optical

fibers are based, their difference with respect to the ordinary LMA fiber and the particular

structure of the LMA Leaky fiber which have been analyzed in this work. In the last section,

the experimental tests on the considered optical fiber are described and the relative results are

reported.

6.1 Generalities on optical fibers

Optical fibers are waveguide for electromagnetic wave transmission realized with low-loss ma-

terial, such as silica glass. Their working principles can be examined both from the point of

view of the electromagnetic theory and from the one of the geometric optics. In the former

case, the electric and magnetic fields of the guided waves, which solve the Maxwell equations

together with the boundary conditions defined by the fiber optical and geometric properties, are

determined. In the latter case, the light guiding is explained through the total internal reflection

phenomenon that can take place when a light ray impinges a boundary surface to a medium

with lower refractive index, at an appropriate incidence angle. [52], [111].

Within the context of the geometric optics treatment, it is worth reminding the mathematical

expression for the critical angle. To this aim, we consider a light ray passing from a medium

with higher refractive index, nB, to another with lower refractive index, nA, and we label with

α the incidence angle and with β the refractive angle. The Snell’s law of refraction reads:

sinα

sinβ
=

nA

nB
, (6.1)

if β = 90◦, no light is transmitted in the medium characterized by nA. The incidence angle for

which this happens is called critical angle:

sinαcritic =
nA

nB
< 1. (6.2)

For incidence angles larger than αcritic, the total internal reflection phenomenon takes place and

the light ray is reflected back into the medium with higher refractive index.

The first fibers were realized in 1920s and they were simple one-layer structure of glass.

However, the fiber optics was born only in 1950s, after the introduction of a cladding layer of

slightly lower refractive index. Indeed, because of the two-layer structure, the region outside
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the fiber and the electromagnetic wave guiding region are not anymore in contact. Hence, the

fiber function of light transmission is not compromised by contacts with other glass structures

or because of the presence of impurities on the fiber surface, which would lead to high loss

levels. These two-layer structure fibers are known as step index fiber. The internal structure

has a circular cross-section and is known as fiber core. The external structure has a ring shape

and it is called fiber cladding. Hence, from the point of view of the geometric optics, light rays

incident on the core-cladding boundary at greater angle with respect to the critic one experience

total internal reflection and are guided within the core. Rays incident on the core-cladding

boundary at smaller angle than the critical one lose part of their power in the cladding, at each

reflection, hence they are not guided. It is now appropriate to introduce three parameters which

characterize the fibers, i.e. the core cladding index difference, ∆, the numerical aperture, NA,

and the so called V parameter. The former quantity is defined as:

∆ =
n2
1 − n2

2

2n2
1

, (6.3)

where n1 and n2 are the refractive indexes of the two media used for the core and the cladding

respectively, hence n1 > n2. However, usually n1 ∼ n2, with ∆ of few tenths of 1%, hence:

∆ ∼ n1 − n2

n1
. (6.4)

The numerical aperture is:

NA =
�
n2
1 − n2

2, (6.5)

in terms of ∆, it becomes:

NA = n1

√
2∆. (6.6)

The V -parameter is:

V = ka(n2
1 − n2

2)
1/2, (6.7)

where a is the core radius, k = 2π/λ and λ is the wavelength of light. It is worth noticing that

this quantity is introduced within the context of the electromagnetic theory treatment for the

wave propagation within an optical fiber. It is possible to express V in terms of the numerical

aperture, so that:

V = kaNA. (6.8)

The V parameter determines the number of modes supported by an optical fiber. Furthermore,
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from relation 6.8, it appears that the number of modes guided by a fiber also depends on the

numerical aperture. It is observed that a step index fiber supports only one mode if V < 2.405.

Optical fibers with this characteristic are addressed as single-mode fibers. The main difference

between single-mode and multimode fibers concerns the core size. Particularly, for multimode

fibers the core radius is customary of 25-30 µm, instead fibers with ∆ ∼ 0.003, core refractive

index, n1 = 1.46, λ = 1.55µm, need a core radius smaller than 5 µm to operate as a single-mode

fiber.

Another step ahead in the improvement of fiber capability in transmitting electromagnetic waves

has been made in 1970s, when methods were determined to decrease the fiber losses from the

original value of about 1000 dB/km to the value of 20 dB/km in silica fibers, see [112], [113].

This has led to deal with the issues of nonlinear effects in optical fibers, due to the increased

level of electromagnetic field intensity within the fibers, e.g. stimulated Raman scattering and

stimulated Brillouin scattering, which are briefly discussed in the next section. In particular,

stimulated Raman scattering is efficient when considering pulsed operation laser, while stimu-

lated Brillouin scattering is mainly due to the small effective area of the mode supported by

a given mono-mode fiber and to the long propagation distance. In the present context, only

Brillouin scattering could be involved. It is relevant to observe that nonlinear effects are mostly

present in single mode fibers due to their smaller core diameter which leads to higher levels of

electromagnetic field intensities inside the fiber. To conclude this section, it is worth mentioning

that in 1990s the doping of optical fiber core with rare earth elements has opened the field of

fiber amplifiers and fiber lasers [108].

6.2 Fiber Nonlinearities

In the optical fiber context, nonlinearities indicate the non linear response of the fiber medium

to the light, which becomes important for electromagnetic fields of high intensity. Indeed, in this

condition, the total polarization,
−→
P , of the fiber medium responds nonlinearly to the electric

field of the electromagnetic wave propagating inside the fiber, i.e.:

Pi = �0



�

j

χ
(1)
ij Ej +

�

j,k

χ
(2)
i,j,kEjEk +

�

j,k,l

χ
(3)
i,j,k,lEjEkEl + ...


 , (6.9)

where i is the i-th Cartesian coordinate of the polarization, �0 is the free space permittivity and

χ(n) is the n-th order susceptibility of the considered medium. In particular, χ(n) is a tensor
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of rank n + 1. The linear susceptibility χ(1) gives rise to effects included in the definition of

the refractive index and attenuation coefficient of the medium. As far as χ(2) is concerned, it is

normally zero for media compounded by symmetric molecules, such as the silica glasses. It has

to be noticed that second-order nonlinear effects could be introduced by the electric quadrupole

and magnetic-dipole moments, but they are weak, so that, customary, optical fibers do not

show second order non linear effects. In optical fiber, the nonlinear effects associated to χ(3) are

represented by the dependence of the refractive index on the intensity of the electromagnetic field

and by stimulated inelastic scattering, i.e. the stimulated Raman scattering and the stimulated

Brillouin scattering [114].

As far as the effects associated with the refractive index dependence on the electric field intensity,

it is worth noticing that the following relation holds:

n(ω, |E|2) = nN (ω) + nNL|E|2 (6.10)

where |E|2 is the electric field intensity, nN (ω) is the linear part of the refractive index depending

on the light frequency, ω, and nNL is the nonlinear part depending on χ(3). Indeed:

nNL =
3

8nN
Re(χ(3)), (6.11)

with Re indicating the real part. The dependence of the refractive index on the electric field

intensity leads to several nonlinear effects the main ones are the self-phase modulation (SPM)

and the cross-phase modulation (XPM), described in reference [108]. Shortly, SPM is the phase

shift induced by the optical field itself while propagating within a fiber, instead, XPM is the

phase shift of an optical field introduced by another optical field with different wavelength,

propagation direction or polarization.

As far as the Raman and Brillouin inelastic scatterings are concerned, in both the cases the

electromagnetic field transfer part of its energy to the medium where it is propagating. The main

difference between the two scatterings is that optical phonon, i.e. out of phase movements of the

atom in the lattice of the considered medium, participate to the first one and acoustic phonon,

i.e. coherent movements of the atom in the lattice of the considered medium, participate to the

second. For a simplified description of both the inelastic scatterings, it is possible to imagine

that a photon of the incident field is annihilated by generating a photon of lower energy, with

respect to the initial one, and a phonon (optical or acoustic depending on the considered process)

with the suitable energy and momentum required by the conservation laws of momentum and
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energy. It is worth noticing that the presence of optical phonon, for the Raman scattering, and

of acoustic phonon, for the Brillouin scattering, implies different dispersion relations which in

turn lead to differences between the two scattering. For example, stimulated Brillouin scattering

in fiber occurs only in the backward direction, with scattered photons of lower frequency with

respect to the one of the incident field, because of the energy conservation requirement, while the

stimulated Raman scattering can occurs in both the directions. The initial growth of the Stoke

wave, which is the wave produced by the photons resulting from both the scattering processes,

can be described with an analogue formula for both the Raman and Brillouin case [108], i.e.:

dIs
dz

= gR/BIpIS , (6.12)

where Is is the intensity of the Stokes wave, Ip is the intensity of the incident optical field and

gR, gB indicate the gain coefficient for the Raman scattering and for the Brillouin scattering

respectively. It is important to note that both gR, gB depend linearly on the third order

susceptibility χ(3) [108]. Another important characteristic of both the Raman and Brillouin

scattering is that they are threshold process. Indeed a significant conversion of the incident

optical intensity is converted into the Stokes wave intensity only if the incident intensity exceeds

a given threshold level. It is also observed that, as the Brillouin gain coefficient is larger than

the Raman gain coefficient, the threshold for the incident intensity is lower in the case of the

Brillouin scattering [108].

6.3 Large Mode Area (LMA) Fiber and LMA Leaky Fiber

As it has been already pointed out in section (6.1), nonlinear effects are mostly present in single

mode fiber, where light is confined in a small transverse region, so that its intensity can reach

high level. Nevertheless, single mode guidance has many important applications, e.g. in fiber

lasers and in fiber amplifiers for obtaining high beam quality at output of the fiber and in optical

communications, for an appropriate transmission of the input signals at the receiver [110]. In

this respect, it is noticed, that single mode optical fiber present a high beam quality, which is the

fundamental properties for the applications mentioned above. Hence, the issue of determining a

single mode fiber structure, which does not enhance nonlinear effects, had to be faced. Indeed,

nonlinear effects, on one hand, can limit the optical power transmitted by the fibers, on the

other hand, they can spoil the beam quality. A first step ahead toward the problem solution,

has been done with the introduction of Large Mode Area fibers, i.e. optical fibers which support
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only one mode, while having a quite large core radius (few tens of µm). Due to the larger area

where light is confined, the intensity of the light in such fibers is reduced with respect to the one

in ordinary single mode fibers, hence they present lower nonlinearities and a damage threshold

at higher optical powers. There are several techniques for realizing LMA fiber. A possibility is

the fiber bending which leads to important power losses for higher order modes. The problem

concerning this method is that the losses are large even for the fundamental mode.

With the aim of finding an optimal solution for limiting nonlinearities in single mode fibers, a

new concept of LMA fiber has been introduced, i.e. the LMA Leaky fiber. This kind of optical

fiber is based on the concept of large differential leakage losses between the fiber higher order

modes and the fundamental one. The consequence is a substantial single mode (SM) operation

of the fibers, which then result to guide the fundamental mode only. It is stressed that these

fibers still present a large core radius, but they structure is studied for allowing significant higher

leakage losses for the fiber higher order modes with respect to the ones of the lowest order mode

[115], [116], [117], [118]. Several methods have been determined to get to this fiber behavior:

• fiber structure with uniform refractive index in the core and segmented cladding through

alternate regions at high and low refractive index on the cladding angular direction, e.g.

[119];

• fiber structure consisting in a cladding refractive index which increases monotonically in

the radial direction, e.g. [116];

• fiber structure with uniform core refractive index and a cladding made up of trenches at

low refractive index, with different values, alternated to high refractive index trenches,

with same value of the core refractive index, e.g. [120].

Particularly, the fibers taken into account in this analysis have the structure based on the third

technique described above. A core of high refractive index is surrounded by a cladding made

up of periodical trenches at low refractive index, while the other cladding regions have the same

refractive index value of the core. An appropriate choice of the parameters, for this kind of fiber

structure, leads to the resonant coupling of the higher order mode power from the core to the

external fiber region with the same refractive index of the core. The complete structure is then

made highly leaky, by adding a last layer with the same core refractive index. In this way, the

differential leakage loss between the fundamental mode and the higher order modes increases

considerably, so that, after a suitable propagation length, the fiber results in an effective single
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mode operation. It is worth noticing that the suppression of the fiber higher order modes, with

respect to the fundamental one, has to be effective within a propagation length inside the fiber,

which is suitable for the foreseen applications of the fiber itself.

6.4 Analysis of LMA Leaky fiber properties

The study presented in this chapter has the aim of validating the working principles of LMA

leaky fiber whose structure is based on the presence of a core with uniform refractive index and

a cladding configuration where regions at lower refractive index values are alternated to regions

with the same core refractive index value. As already said, this cladding design acts as modal

filter, which allows the single mode operation of the fiber, by suppressing all the higher order

modes, after a certain propagation length within the fiber. The presented fiber description is

based on the previous work of Ref. [109]. For the sake of simplicity, a cladding structure with

only two trenches at lower refractive index values, with respect to the one of the core, is taken

into account. The considered fiber refractive index profile structure is reported in figure (6.1).

The core fiber and the other regions with the same refractive index value, n1, are made with pure

Figure 6.1: Theoretical refractive index profile - Theoretical refractive index profile as
function of the fiber radius, for the analyzed LMA leaky fiber. In the picture, the refractive indexes
of the different regions are indicated as n1, n2 and n3.

silica. The region with lowest refractive index value, n2, is obtained by doping the pure silica
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with fluorine (F). By decreasing the quantity of fluorine, the refractive index value increases and

it is possible to realize a region at refractive index value n3, where n3 > n2. Numerical studies

conducted through the transfer matrix method (TMM) [121] show that, for the proposed fiber

structure, the leakage losses of the modes increases with the mode number. As a consequence,

for determining the single mode operation condition for the analyzed fiber, it will be enough

to check the differential leakage losses between the fundamental mode of the fiber and the first

higher order mode. Numerical calculations give a value of 0.35 dB/m for the leakage loss of the

fiber fundamental mode and a value of 8.3 dB/m for the first higher order mode. Furthermore,

simulation results indicate that the fiber should be single mode, after a propagation length

inside the fiber of 2.4 m [109]. The numerical calculations also give a mode field diameter at

the fiber exit of 26 µm. The considered fiber has been realized by starting from a preform of

diameter 11.4± 0.2mm, which has been fabricated with the modified chemical vapor deposition

(MCVD) technique [122]. The preform has then been drawn into a fiber with total diameter

of 110.0± 0.2µm. The refractive index profile of the realized fiber has been measured with the

optical fiber analyzer NetTest S14 and it is reported in picture (6.2). The relative refractive

Figure 6.2: Refractive index profile of the fabricated fiber - Refractive index profile as
function of the fiber radius, for the realized LMA leaky fiber

index difference concerning the core and its adjacent region is ∆ ∼ n1 − n2/n1 = 0.28%, the

numerical aperture, calculated for the same two regions, is NA = 0.11± 6%, and the diameter

of the core is 25.4 ± 0.3µm. It is worth noticing that the numerical aperture of the fiber is
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quite large for a single mode fiber. Indeed, with these properties and for λ = 1.55µm, a V

parameter of about 5.6 results, so that several modes would be guided by a conventional fiber.

The second low refractive index trench is 25 µm far from the fiber center and it has a width of

3 µm. Moreover, the associated relative refractive index difference is ∆ ∼ n1 − n3/n1 = 0.1%.

By considering the real refractive index profile, the TMM method gives a fundamental mode

diameter, at 1/e2 of maximum intensity, of 26µm. Furthermore, as the fiber structure presents

a certain ellipticity, the calculated propagation losses on both the axes for the fundamental

mode and for the first higher order mode are 3.25 dB/m and 1.63 dB/m, for the lowest order

mode, and 56 dB/m and 37 dB/m, for the first higher order mode. Hence, the first higher order

mode, as well as the other higher order modes, should be suppressed after a short propagation

length within the fiber. Experimental studies for the fiber characterization were conducted by

injecting into the fiber a laser of wavelength λ = 1.55µm. The measured 1/e2-mode diameter

after 4 m propagation turned out to be 22±2µm, in a quite good agreement with the numerical

simulations. Hence, this last result will be taken into account to start the experimental tests on

the considered fibers.

6.5 Experimental tests on LMA Leaky fibers

In this section, the experimental results concerning the optical fiber previously described are

presented. In particular, a laser beam of wavelength λ = 1064 nm is injected inside the fiber and

the output beam is analyzed as far as its shape and power are concerned, for different lengths of

the optical fiber. To efficiently inject the laser beam inside the fiber, the fiber itself and the laser

beam have to be correctly aligned. With this purpose, a dedicated stage with three degrees of

freedom (vertical translation, horizontal translation and translation along the direction of the

fiber optical axis) is used to fine position the fiber with respect to the laser beam, and the beam

direction is also controlled by using the pitch and yaw degrees of freedom guaranteed by the

mirrors used to inject the laser beam into the fiber. Furthermore, the waist of the laser beam

has to be on the starting point of the fiber and it has to be equal to the radius of the fiber

output mode, hence the three degrees of freedom stage is placed on a translation plate which

allows larger displacements along the direction of the fiber optical axis with respect to the one

permitted, along the same direction, by the three degrees of freedom stage. As it has already

been said, theoretical studies carried on with the TMM method indicate, for the fiber output

mode, a diameter, at 1/e2 of maximum intensity, of 26 µm. Nevertheless, experimental analyses
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to characterize the fiber show a 1/e2 mode diameter of 22±2 µm, after 4 m propagation [109].

For the experimental tests, whose results are reported in this section, it is firstly assumed a fiber

output mode radius of 11 µm. Hence, the waist of the laser beam has to be adapted in order

to be of 11µm, at the starting point of the fiber. To this aim, an optical system compounded

of three lenses is applied. Indeed, as it has been already pointed out in precedent chapters,

measurements performed with the Beam Scan and the dedicated software indicate a waist of

650 µm ± 5 %, for the laser beam produced by the fiber laser utilized, after passing through

the collimator. Through the software GaussianBeam, a three lens optical system to reduce the

laser beam waist to 11 µm, at a suitable distance for the fiber positioning, has been found. In

order to verify experimentally the results concerning the described optical system, the value of

the laser beam diameter was measured at several distances from a mirror placed at 12.5 cm from

the last lens of the system, through the Beam Scan and a dedicated software. It turned out that

the laser beam waist was actually of 15 µm at 137.5 cm from the collimator, hence it has been

necessary to change the position of the lenses until finding a configuration giving the required

beam width. To verify that the laser beam waist, after passing through the new optical system,

was of 11 µm, the laser beam diameter has been measured again at several distances from a

mirror placed at 127.5 cm from the laser collimator, by using the Beam Scan and the dedicated

software. The obtained values have been used to make fits, with the software GaussianBeam,

in order to determine the waist and its position, after the optical system. In picture (6.3),

it is reported on the fit results concerning the measurements of the beam horizontal diameter.

Regarding to picture (6.3), it is worth noticing that the distance values are referred to the mirror

placed at 127.5cm from the laser collimator, and that an error of 5% can be associated with

the beam diameter measures. The accuracy of the fit results is not high, as the errors on the

measurements are large and the fit does not take into account them. Nevertheless, the outcomes

of the fit both for the beam horizontal diameter, presented in picture (6.3), and for the vertical

one indicate the same values for the beam waist and its position, thus it is assumed that the

determined optical system gives the required beam waist and the fiber experimental analysis is

begun.

The fiber behavior, with respect to the electromagnetic wave transmission, can be analyzed for

different lengths of the fiber itself. In particular, the test is started by taking into account the

1 m long optical fiber. Once the optical system to adapt the laser beam waist is determined,

it is necessary to properly set the beginning of the optical fiber at the waist position of the

laser beam and to align the laser beam with the fiber. Firstly, the initial part of the fiber is
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Figure 6.3: Fit performed with the software GaussianBeam, giving the beam waist
and its position. - Right panels: on the top, the values of the beam diameter as measured
with the Beam Scan and the dedicated software, at different distance from a mirror at 127.5 cm from
the laser beam collimator, are reported; on the bottom, the fit results for the beam waist and its
position are showed. Left panel: fit performed with the software GaussianBeam.

set close to the laser beam waist position. Then, the fine alignment between fiber and beam is

obtained, by using the mirror mounts, which allow to control the laser beam direction, and the

three degrees of freedom of the fiber stage. The latter one, in turn, is placed on a mobile support

which allows the fiber translation to put its starting point exactly on the waist of the laser beam.

The optimum match between fiber and laser beam has to maximizes the fiber output power.

In this condition, the ration between the power at the fiber exit and the power injected into

the fiber is 0.41, i.e. the 41 % of the input power can be found at the fiber exit. This result

is not satisfactory with respect to the applications foreseen for this kind of fibers. Hence, it is

checked if the radius of the mode supported by the fiber is different from 11 µm. To do this, the

diameter of the beam at the exit of the fiber is measured, for several distances from the ending

point of the fiber. The measured values of the beam diameter are used to make a fit and to find

the waist of the beam, at the exit of the fiber. It is worth noticing that the procedure utilized is

analogue to the one applied to experimentally verified that the realized optical system was giving

an output beam with waist 11 µm. Thus, the Beam Scan and the dedicated software are used

to measure the laser beam diameter at the exit of the fiber for different positions. The results

are reported in table (6.1). The fit performed with the GaussianBeam software, by considering
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Distance [ cm ] Widthx [ µm ] Widthy [ µm ] Errorx [ µm ] Errory [ µm ]

1.7 578.9 658 29 33
3.4 1127.3 1302.2 56 65
4.4 1717.1 2010 86 100
5.6 2223 2604 111 130
6 2467 2914.4 123 146
7.3 3073 3544 154 177

Table 6.1: Measurements of the laser beam diameter at several distances from the end
point of the optical fiber 1 m long. It is observed that the distances are taken from the fiber
end point, which is set to zero. Furthermore, the coordinate x indicates the horizontal diameter and
the coordinate y indicate the vertical diameter. The errors are assumed equal to the 5 % of the
measured diameter value, i.e. the effective accuracy possible for laser beam diameter measurements.

Position [ cm ] Focal length [ mm ]

L1 10.5 50
L2 21.5 750
L3 115.1 200

Table 6.2: Optical system for getting to a waist of 8 µm. It is observed that the distance
are taken from the starting point of the laser beam, i.e. from the laser beam collimator.

the measured values of the laser beam horizontal diameter, reported in table (6.1), gives a waist

dimension of 8.8 µm at distance 6.3 mm from the end of the fiber. Moreover, the fit concerning

the measured values of the vertical laser beam diameter of table (6.1) gives a laser beam waist

of 7.5 µm at distance 6.4 mm, from the end point of the fiber. Hence, the mode diameter that

can be supported by the fiber should be of about 16 µm. It is then worth changing the position

of the three lenses compounding the optical system used to reduce the laser beam waist to 11

µm, in order to get to a laser beam with waist 8 µm at the beginning of the fiber. In this way,

it is possible to check if the ratio between the fiber output power and the fiber input power

increases. By using the software GaussianBeam, several lens configurations were determined to

get to a waist of 8 µm. The adopted setup is reported in table (6.2). Indeed, for this case,

the values of the laser beam diameter were measured, with the Beam Scan and the dedicated

software, at different distances from the mirror placed at 11.5 cm from the last lens (L3, in table

(6.2)). The measures concerning the laser beam diameter and the corresponding positions are

showed in table (6.3). The fits realized with the software GaussianBeam and made by taking

into account these data, for both the horizontal and vertical beam diameter, give the results of

a waist of 8 µm at distance 24.2 cm and 24.3 cm, respectively, from the mirror at distance 11.5
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Distance [ cm ] Widthx [ µm ] Widthy [ µm ] Errorx [ µm ] Errory [ µm ]

16.5 3854 4055 193 203
18.9 2620 2701 131 135
29.5 2601 2484 130 124
31.1 3416 3341 171 167

Table 6.3: Measurement of the laser beam diameters at several distances from the
mirror at distance 11.5 cm from the last lens, L3, of table (6.2). The coordinate x indicates
the horizontal diameter and the coordinate y indicate the vertical diameter. The errors are assumed
equal to the 5 % of the measured diameter value, i.e. the effective accuracy possible for laser beam
diameter measurements

cm from the last lens. Hence, the optical system described in table (6.2) is chosen. The analysis

of the optical fiber behavior in transporting the electromagnetic waves, when the injected laser

beam has a waist of 8 µm at the starting point of the fiber, is carried on by measuring the fiber

output power and by comparing it with the fiber input power. For the configuration of optimum

alignment between fiber and laser beam, it is observed a ratio between fiber output and input

power of 27%. It is worth noticing that the optimum alignment configuration corresponds also

to the configuration for which the ratio between fiber output and input power is higher. Hence,

from the obtained result, it is clear that the reduction of the laser beam waist to 8 µm does

not allow to reach an improvement of the fiber capability in transmitting the input power. The

departure of the obtained results with respect to the expected behavior can be explained by the

fact that, as the wavelength of the laser beam and the waist of the mode supported by the fiber

are comparable, the paraxial approximation, on which the Gaussian optics is based, is at its

margin of validity. Hence the laser beam behavior might present differences with respect to the

description given in the context of the Gaussian optics.

By remembering the physical principles on which the tested fibers are based, when the fiber

length increases, the higher order modes should be better suppressed. Hence, the 6 m long

fiber is considered in order to obtain the waist value of the beam coming out from this fiber,

as a further estimation of the waist of the beam supported by these fibers. Measurements of

the ratio between the fiber output and input power are then performed, when the waist of the

injected laser beam is adjusted to the value determined at the exit of the 6 m long fiber. The

measurements are made by initially keeping the waist of the input beam equal to 8 µm. For

the optimum alignment between fiber and input laser beam, which is found by maximizing the

output power, the beam diameter is measured at several distance from the end point of the fiber,
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Distance [ mm ] Widthx [ µm ] Widthy [ µm ] Errorx [ µm ] Errory [ µm ]

32.5 4277.8 3306.2 214 165
32.5 4695.6 3402.1 235 170
27.5 4400 2907 220 145
22.5 3453 2311 173 116
6 1875 1819 94 91

Table 6.4: Measurement of the laser beam diameter at several distances from the ending
point of the fiber 6 m long. The coordinate x indicates the horizontal diameter and the coordinate
y indicates the vertical diameter. The errors are assumed equal to the 5 % of the measured diameter
value. Furthermore, it is noticed that two sets of measurements are taken for the distance 32.5 mm

with the camera (WinCamDTM Series Cameras [64]). The results are given in table (6.4). As it

is possible to check from the reported data, two measurements are taken for the distance 32.5

mm. Hence, two different fits are made, with the software GaussianBeam, for each diameter

direction (horizontal and vertical). The fit for the horizontal diameter measurements, obtained

by considering the first row of table (6.4), together with the third one, the fourth one and the

fifth one, gives a waist of 6.9 µm. Instead, if the fit is made by considering the data from the

second to the fifth row of table (6.4), a waist of 6.2 µm is found. As far as the fits for the

measures of the laser beam vertical diameter are concerned, when considering the first row of

table (6.4), together with the third row, the fourth one and the fifth one, a waist of 12.5 µm is

found, instead, when the data from the second to the fifth row are taken into account, a waist

of 12 µm results. Thus, there is not a clear definition of the fiber output beam radius. The

difficulty in determining this quantity could still be due to the fact that the Gaussian optics is

at its margin of validity, as it has been already pointed out. However, the fiber 1 m long is again

taken into account to verify if the ratio between the fiber output and input power increases, when

a laser beam with waist 12 µm is injected into the fiber. Indeed, the results for the beam waist

at the exit of the 6 m long fiber give a clue of the fact that the considered fibers could actually

support a mode of radius 12 µm. To carry on the analysis of the optical fiber behavior, the three

lenses compounding the optical system applied to reduce the laser beam waist are displaced in

order to get to a waist of 12 µm at the starting point of the 1 m long fiber. The determined setup

of the three lenses is reported in table (6.5). The laser beam diameter, after the optical system,

has been measured with the Beam Scan and the dedicated software at different distances from

the reference point, i.e. the mirror at 11.5 cm from the last lens, L3, of table (6.5). The aim

was to verify if the laser beam waist was 12 µm and to obtain its position. The measures are
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Position [ cm ] Focal length [ mm ]

L1 10.5 50
L2 21.7 750
L3 88.3 200

Table 6.5: Optical system for getting to a laser beam waist of 12 µm. It is observed that
the distance are taken from the starting point of the laser beam, i.e. from the laser beam collimator.

Distance [ mm ] Widthx [ µm ] Widthy [ µm ] Errorx [ µm ] Errory [ µm ]

105 5340 5409 276 165
140 4195 4276 210 170
410 4793 4554 240 145
429 5336.8 5095.6 267 255

Table 6.6: Measurement of the laser beam diameter at several distances from the mirror
at 11.5 cm from the last lens of the optical system described in table (6.5). The coordinate
x indicates the horizontal diameter and the coordinate y indicate the vertical diameter. The errors
are assumed equal to the 5 % of the measured diameter value.

given in table (6.6). From the fits performed with GaussianBeam, when considering the vertical

beam diameter measurements, the waist turns out to be of 12 µm, at a distance of 27.1 cm from

the reference point, while, when considering the horizontal beam diameter measurements, the

beam waist keeps the same value, but its position results at 26.6 cm. To perform the next test,

the starting point of the 1 m long fiber is firstly set at distance 26.6 from the reference point

(the mirror at 11.5 cm of distance from L3). Hence, the position of the fiber beginning and its

alignment with respect to the injected laser beam are optimized, by maximizing the fiber output

power. It is observed that fiber movements are allowed thanks to its mobile supports. In the

position corresponding to the optimum alignment, the ratio between the fiber output power and

the fiber input power is evaluated and it turns out to be of 18 %. This value is even lower than

the one found when a laser beam with a waist of 8 µm was injected inside the fiber 1 meter long.

The same procedure described for this fiber length has been carried on also for a fiber 3 meters

long and for a fiber 6 meters long. The maximum value for the ratio between the power coming

out from the fiber and the power injected inside the fiber is of 13 % for the 3 meters long fiber

and of 29 % for the 6 meters long fiber.
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Analysis of the mode profile at the output of the tested fibers

The analysis of the shape of the mode at the output of the optical fiber is now carried on, in

order to verify if there is the possibility of coupling among the different fiber modes, which

would indicate that the fibers do not work as monomode fiber and also could partially account

for the low transmission of power, because of mode coupling losses. This analysis is conducted

for all the considered fiber lengths, i.e. 1 meter, 3 meters and 6 meters. In particular, for each

fiber of different length, its disposition on the optical table is made to vary and pictures of the

output mode are taken, by using the camera ( WinCamDTM Series Cameras [64]), for each fiber

configuration on the table. In figure (6.4), the pictures for the output modes, concerning three

different bending configurations on the table for the 1 meter long fiber, are reported. Picture

(6.5) and picture (6.6) represent the output modes for three different fiber bending dispositions

on the table, for the 3 meter long fiber and the 6 meter long fiber, respectively. As it is easy

to verify from the pictures, these fibers are highly sensitive to bending conditions, indeed, the

shape of the fiber output mode strongly depends on the fiber bending. This is due to the

coupling between the modes supported by the analyzed fibers, which then do not result suitable

for laser signal amplification. It is also interesting to compare the mode shapes of figures (6.4),

(6.5), (6.6) with the mode profiles of picture (6.7), which are obtained when no extra bending

configurations are applied. This means that, the fiber 1 m long completely lead down on the

optical table, while the fiber 3 meters long and the one 6 meters long are disposed on the table

with the configurations used to make the analysis discussed previously in this section. As it is

possible to check from the images, the fiber output modes present departures from a perfect

Gaussian profile even when no bending configurations are introduced, e.g. this is particularly

evident for the fiber three meters long.

In conclusion, it is important to note that the studied fibers were realized for applications

concerning laser beam with wavelength λ = 1.55µm. We have been told by the fiber constructor

that they should work for the laser wavelength λ = 1064 nm as well, however the numerical

simulations have been carried on for λ = 1.55µm, it is not possible then to exclude that the

analyzed fiber structure does not allow a single mode operation for λ = 1064 nm. Nevertheless,

it has to be pointed out that the laser beam wavelength used in the experimental tests presented

in this section has been chosen in order to be suitable for NBI system applications. Hence, it

may be confirmed that this fiber structure can hardly be a solution for obtaining the high power

laser source required by NBI systems.
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Figure 6.4: Output modes for 1 meter long fiber for different bending conditions - The
pictures show that the fiber output mode is sensitive to the disposition of the fiber on the optical
table. Indeed, for different fiber bending configurations the fiber output mode present different
shapes. It is worth noticing that the color bar, on the right side of the picture, represents the
intensity scale of the beam, the white for the beam regions with higher intensity and the blue for
the beam regions with lower intensity.

Figure 6.5: Output modes for 3 meter long fiber for different bending conditions - The
pictures show that the fiber output mode is sensitive to the disposition of the fiber on the optical table.
Indeed, for different fiber bending configurations the fiber output mode present different shapes. It
is worth noticing that the color bar, on the right side of the picture, represent the intensity scale of
the beam, the white for the beam regions with higher intensity and the blue for the beam regions
with lower intensity.

Figure 6.6: Output modes for 6 meter long fiber for different bending conditions - The
pictures show that the fiber output mode is sensitive to the disposition of the fiber on the optical table.
Indeed, for different fiber bending configurations the fiber output mode present different shapes. It
is worth noticing that the color bar, on the right side of the picture, represent the intensity scale of
the beam, the white for the beam regions with higher intensity and the blue for the beam regions
with lower intensity.
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Figure 6.7: Output modes for no applied bending configurations for the three fiber
lengths - The pictures show the fiber output mode for each considered fiber length. Departure of
the output mode from a perfect Gaussian beam are observable. This is particularly evident for the
fiber 3 meter long. It is worth noticing that the color bar, on the right side of the picture, represent
the intensity scale of the beam, white for the beam regions with higher intensity and blue for the
beam regions with lower intensity.
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The work I have carried on during the PhD thesis has the aim of analyzing the feasibility of

an optical cavity whose properties would allow the application of the photo-detachment process

in NBI systems of nuclear fusion reactors of the next generation (such as DEMO). In this

respect, different issues connected to the implementation of an optical resonator in a NBI system

environment, at the purpose of reaching high neutralization efficiency of the high energetic D−

beam, have been taken into account. Particularly, the following aspects have been explored:

• Determination of an optical cavity design which, on one hand, accommodates all the

requirements for applications in NBI systems, e.g. stability, constance of the intracavity

laser beam radius (percent variations up to 5% are allowed), beam waist of 1 cm; and, on

the other hand, consents to solve possible encumbrance problems;

• Study of the thermal effects on the cavity mirrors due to the mirror coating absorption of

the intracavity power (∼ 3 MW), at the rate of � 0.3 ppm, and analysis of compensation

systems to correct the cavity mirror reflecting surface deformations;

• Research for techniques which can allow to obtain high powerful laser beam, as a laser beam

of ∼ 1kW must feed the optical cavity, for the requirements of NBI system applications.

As far as the first point of the list reported above is considered, in chapter (2), it has been

showed that an easy solution for the design of an optical cavity for NBI systems applications is

possible, if there is enough space, within the environment of a nuclear fusion reactor, so that

a resonator length of 100 m is allowed. In this case, indeed, the cavity would be effectively

equivalent to a simple two mirror resonator compounded of a flat mirror and of a curved mirror

with a curvature radius R = 1km, separated by a distance of 100 m. Nevertheless, the resonator

would have four refoldings, obtained through the application of other three flat mirrors, at the

aim of guaranteeing the complete overlap between the laser beam and the D− ion beam. On
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the contrary, if a smaller space is available for the optical cavity, it has been demonstrated, in

chapter (2), that a three mirror optical cavity, with the geometrical design reported in picture

(2.3), where two of the mirrors compound a telescope, would accommodate all the NBI system

application requirements on a L2 length equal to 31 m.

As far as the study of the thermal effects on the cavity mirrors and of the compensation

systems to correct the mirror reflecting surface distortions are concerned, it is recalled that this

has been carried on in an analytical way, and the results have been verified with ANSYS and

COMSOL, softwares which allow numerical simulations based on the finite elements method.

Mostly, analytical and numerical results show to be in agreement, but when slightly differ-

ent boundary conditions are considered and for choices of analytical calculation parameters for

which the approximations imposed to simplify the equations to solve are not anymore valid or

hold only marginally. In our analysis, only thin mirrors are considered (5mm of thickness), so

that the mirror bulk absorption can be neglected with respect to the one of the coating. The

mathematical framework settled to analytically calculate the thermal effects on the mirrors, due

to the coating absorption, and also the effects of thermal compensation systems (TCS) is based

on harmonic functions for the temperature field and bi-harmonic functions for the displacement

vector, involving Bessel functions. In particular, the temperature field is determined by solving

the steady state Fourier equation with no internal source of heat, and this solution is used to

write the equations for the displacement vector components, which describe the mirror defor-

mation. It is worth noticing that compared to finite elements simulations, analytic calculations

have the advantages to be computationally lighter (up to 20 times faster). However, they also

show limitations due to approximation introduced in order to solve the involved equations. The

simulation results show that among the considered TCS methods, the ones based on the appli-

cations of temperature fields are the most appropriate. Particularly, the best result is obtained

when a fixed temperature of Tc=690K is applied on the central part of the back side of the

mirror, through a disk heater with radius 5 mm. To give an idea of the gain factor in term of

mirror losses reduction, without applying the mentioned TCS, the mirror losses due to the coat-

ing absorption of optical power are of 2500 ppm and the mirror curvature change is of 2.9×10−4

m−1, when starting from an initially flat mirror. If the described TCS is applied, the mirror

losses are reduced to 5 ppm and the mirror curvature change is now of 8.7× 10−5 m−1. It must

be observed that the presented solution is only valid for totally reflective mirrors since the TCS

acts on the central part of the mirror rear side. Further investigations have to be conducted for

the case of the input mirror for which the central part of its back side must be kept free (CO2
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laser heating is an interesting alternative) and on the cavity mode behavior when all effective

mirror curvatures are taken into account. Finally, one has to notice that the scattering losses

we have estimated represent an upper limit to the losses within the cavity. Indeed, scattered

light from one mirror can be re-coupled to the cavity mode, when reflected on another mirror.

The last point to be considered concerns the research for techniques which could allow the

realization of high power laser beam. Indeed, as it as been pointed out in chapter (2), an input

laser beam of ∼1kW must feed the optical cavity for applications in NBI systems. Within

this context, we have experimentally tested a new concept of Large Mode Area (LMA) fiber,

said LMA Leaky optical fiber, which has been developed for allowing single mode operation

without enhancements of nonlinear effects. Hence they should be particularly indicated as laser

amplifiers. Their single mode operation is guaranteed by an appropriate refractive index profile

which should allow high power losses for higher order modes of the fiber and significantly lower

losses for the fundamental mode. The experimental tests have demonstrated that these fibers

are quite sensitive to fiber bending: as the fiber is bent, the outcoming mode sees his shape

changing. The analyzed fibers can then hardly be used for monomode amplification of laser

beam. Further researches aiming to find appropriate optical fiber amplifiers could be conduced,

however, the possibility of the coherent superposition of laser beams must be explored, as, from

the results obtained so far, it seems to be the more interesting solution for getting to high

powerful laser beam.
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Le travail que j’ai réalisé au cours de la thèse de doctorat a pour but d’analyser la faisabilité d’une

cavité optique dont les propriétés permettrait l’application du processus du photo-détachement

aux systèmes d’injection de neutres des réacteurs de fusion nucléaire de la prochaine génération

(tel que DEMO). À cet égard, différentes questions liées à la mise en œuvre d’un résonateur

optique dans lenvironnement de systèmes d’injection de neutres ont été prises en compte, ceci

afin d’atteindre une grande efficacité de neutralisation du faisceau dions D− très énergétiques,

ont été prises en compte. En particulier, les aspects suivants ont été éxaminés :

• Détermination d’une cavité optique qui, d’une part, accueille toutes les exigences pour les

applications aux systèmes d’injection de neutres, on peut citer la stabilité et la constance

du rayon du faisceau laser dans la cavité (pourcentage des variations allant jusqu’à 5% sont

autorisées), la taille de faisceau de 1 cm; et, d’autre part, consent à résoudre les possibles

problèmes d’encombrement;

• Étude des effets thermiques sur les miroirs de la cavité en raison de l’absorption de puis-

sance intra-cavité (∼ 3 MW) du revêtement des miroirs, au taux de � 0.3 ppm. Analyse

des systèmes de compensation pour corriger les déformations de la surface réfléchissante

des miroirs de la cavité;

• Recherche de techniques permettant d’obtenir des faisceaux laser à haute puissance, car

nécessité d’un faisceau laser de 1kW pour alimenter la cavité optique, pour les besoins des

applications aux systèmes IDN.

Concernant le premier aspect, dans le chapitre (2), nous avons montré dans le chapitre (2)

qu’une solution simple pour concevoir une cavité optique pour les systèmes IDN est possible s’il

y a suffisamment d’espace dans le réacteur de fusion nucléaire, de sorte qu’un résonateur dune

longueur de 100 m puisse rentrer. Dans ce cas, la cavité serait effectivement équivalente à un
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simple résonateur de deux miroirs, composé d’un miroir plat et d’un miroir courbe avec un rayon

de courbure R = 1 km, séparés par une distance de 100 m. Néanmoins, le résonateur aurait

quatre repliements, obtenus par l’application de trois autres miroirs plats, en vue de garantir

le chevauchement complet entre le faisceau laser et le faisceau d’ions D−. Au contraire, si un

plus petit espace est disponible pour la cavité optique, il a été démontré, dans le chapitre (2),

qu’une cavité optique à trois miroirs, avec la conception géométrique de la figure (2.3) où deux

des miroirs forment un télescope, accueillerait tous les besoins pour l’application aux systèmes

IDN sur une longueur L2 égale à 31 m.

En ce qui concerne l’étude des effets thermiques sur les miroirs et des systèmes de compen-

sation pour corriger les distorsions de la surface réfléchissante des miroirs, nous rappelons que

cette analyse a été réalisée de manière analytique, et les résultats ont été vérifiés avec ANSYS et

COMSOL, logiciels permettant des simulations numériques basées sur la méthode des éléments

finis. Les résultats analytiques et numériques sont en accord, sauf quand les conditions aux

bords sont légèrement différentes et pour les choix des paramètres des calculs analytiques pour

lesquels les approximations imposées pour simplifier les équations à résoudre ne sont plus val-

ables ou que marginalement. Dans notre analyse, seulement des miroirs fins (5 mm d’épaisseur)

sont considérés, de sorte que l’absorption de l’intérieur du miroir peut être négligée par rap-

port à celle de son revêtement. Le cadre mathématique utilisé pour calculer analytiquement les

effets thermiques sur les miroirs à cause de l’absorption due au revêtement, ansi que les effets

des Systèmes de Compensation Thermique (SCT) est basée sur des fonctions harmoniques pour

le champ de température et sur des fonctions bi-harmoniques pour le vecteur de déplacement,

impliquant les fonctions de Bessel. En particulier, le champ de température est déterminé par

la résolution de l’équation de Fourier, en régime stationnaire, avec aucune source de chaleur

interne. Cette solution est utilisée afin d’ écrire les équations pour les composantes du vecteur

de déplacement décrivant la déformation du miroir. Il est intéressant de remarquer que, com-

parativement aux simulations aux éléments finis, les calculs analytiques présentent l’avantage

d’être plus légers en termes de temps de calcul (jusqu’ à 20 fois plus rapides). Cependant, ils

montrent aussi des limitations dues aux approximations introduites dans le but de résoudre les

équations concernées. Les résultats des simulations montrent que, parmi les méthodes SCT

considérées, celles basées sur lapplication des champs de température sont les plus appropriées.

En particulier, le meilleur résultat est obtenu lorsqu’une température fixe Tc = 690 K est ap-

pliquée sur la partie centrale de la face arrière du miroir, avec un dispositif de chauffage à forme

de disque, avec un rayon de 5 mm. Pour donner une idée du facteur de gain en termes de
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réduction des pertes des miroirs, sans appliquer le SCT mentionné, les pertes des miroirs en

raison de l’absorption de puissance optique par le revêtement des miroirs sont de 2500 ppm et

le changement de courbure est de 2.9 10−4 m−1, avec un miroir initialement plat. Si le SCT

décrit est appliquée, les pertes du miroir sont réduites à 5 ppm et le changement de courbure est

maintenant de 8.7 10−5 m−1. Il faut observer que la solution présentée est uniquement valable

pour les miroirs totalement réfléchissants, étant donné que le SCT agit sur la partie centrale.

D’autres investigations doivent être conduites pour le cas du miroir d’entrée pour laquelle la

partie centrale doit être libre (le chauffage par un laser CO2 est une possibilité intéressante) et

sur le comportement du mode de la cavité lorsque toutes les courbures effectives des miroirs sont

prises en compte. Enfin, il faut remarquer que les pertes de diffusion que nous avons estimées

représentent une limite supérieure des pertes au sein de la cavité. En effet, la lumière diffusée

par un miroir peut être couplée à nouveau au mode de la cavité, , lorsqu’elle est réfléchie sur

un autre miroir. Le dernier point à considérer concerne la recherche de techniques qui pour-

raient permettre la réalisation d’un faisceau laser à haute puissance. En effet, comme il a été

souligné dans le chapitre (2), un faisceau laser d’entrée de ∼ 1kW doit alimenter la cavité op-

tique pour les applications aux systèmes d’injection de neutres. Dans ce contexte, nous avons

testé expérimentalement un nouveau concept des fibres LMA (Large Mode Area), appelées fibres

LMA Leaky, développé pour permettre un fonctionnement monomode sans augmentation des

effets effets non-linéaires. Par conséquent, ces fibres devraient être particulièrement indiquées

comme amplificateurs laser. Leur fonctionnement monomode est garanti par un profil d’indice

de réfraction approprié qui devrait permettre des pertes de puissance élevées pour les modes

supérieurs de la fibre et des pertes beaucoup plus basses pour le mode fondamental. Les tests

expérimentaux ont démontré que ces fibres sont très sensibles aux flexions : lorsque la fibre est

pliée, le mode sortant voit sa forme changer. Les fibres analysées peuvent alors difficilement

être utilisées pour l’amplification monomode d’un faisceau laser. Des analyses complémentaires

visant à trouver des amplificateurs à fibre optique appropriés pourraient être conduites. Toute-

fois, au regard des résultats obtenus jusqu’ici, la superposition cohérente des faisceaux laser

semble être la solution la plus intéressante pour obtenir un faisceau à haute puissance, et doit

donc ètre explorée.
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Appendix A

Mathematical description of Laser beams

The free space propagation of an electromagnetic field, E(�r, t), is governed by the wave equation:

�
∇2 − 1

c2
∂2

∂t2

�
E(�r, t) = 0, (A.1)

with c the speed of the light and:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (A.2)

in rectangular coordinates. As the purpose of this section is to find a mathematical description

of laser beams, assumed monochromatic, it is possible to look for a solution of the previous

equation of the kind:

E(�r, t) = u(�r)eiωt, ω =
2πc

λ
, (A.3)

with λ the wavelength of the laser. By substituting this solution in equation (A.1), it is found

that u(�r) must satisfies the Helmholtz equation:

�
∇2 + k2

�
u(�r) = 0, (A.4)

where k = 2π/λ = ω/c is the propagation constant. It is observed that a laser beam, analogously

to a plane wave, propagate primarily along one direction, which is chosen as the z coordinate

direction in what follows. Furthermore, the amplitude and phase of a laser beam has a depen-

dence on the x and y coordinate directions which defines the transverse profile of the beam. Due

to the propagations effects, the transverse profile of the beam also shows dependences on the z
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coordinate. It is then possible to look for a solution of the Helmholtz equation of the form:

u(x, y, z) ≡ ũ(x, y, z)e−ikz, (A.5)

where ũ is a complex scalar wave amplitude describing the transverse profile of the beam,

namely its nonuniform intensity distribution, the expansion with the propagation distance and

its wavefront curvature. By inserting solution A.5 in equation (A.4), it is found:

∂2ũ

∂x2
+

∂2ũ

∂y2
+

∂2ũ

∂z2
− 2ik

∂ũ

∂z
= 0. (A.6)

As the term e−ikz has been factored out from the previous equation, the only remaining depen-

dence on z is the one given by the function ũ. In this respect, it is observed that the laser beam

expansion with the propagation distance, which is described by ũ, is slow on a wavelength scale,

along the z direction, and laser beams are in general well collimated, with finite beam width.

Hence, it is possible to solve equation (A.6) in the context of the paraxial approximation, which

indeed states that the laser beam propagates at small angle with respect to the z direction [36].

Mathematically, the paraxial approximation reads:

����
∂2ũ

∂z2

���� <<

����
2k∂ũ

∂z

���� ,
����
∂2ũ

∂z2

���� <<

����
∂2ũ

∂x2

���� ,
����
∂2ũ

∂z2

���� <<

����
∂2ũ

∂y2

���� . (A.7)

Consequently, the second derivative ∂2ũ
∂z2

can be neglected in equation (A.6) which then reduces

to the paraxial wave equation:

∂2ũ

∂x2
+

∂2ũ

∂y2
− 2ik

∂ũ

∂z
= 0. (A.8)

A possible solution of the previous equation is a gaussian beam with the following form:

ũ(x, y, z) =

�
2

π

� 1
2 exp [−ikz + iφ( z)]

w(z)
exp

�
−x2 + y2

w2(z)
− ik

x2 + y2

2R(z)

�
, (A.9)

which satisfies: � ∞

−∞

� ∞

−∞
|ũ|2dxdy = 1. (A.10)

As far as the parameters appearing in equation (A.9) are concerned, it is observed that R(z)

is the curvature of the beam wavefront, while w(z) is known as spot radius or beam half width,

and it gives the distance from the z axis at which the beam amplitude decreases to 1/e of its
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maximum [37]. The beam diameter at a given z coordinate is 2w(z). The minimum value

assumed by w(z) is denominated beam waist, and it is indicated as w0. At the z value, z0, for

which w(z0) ≡ w0, the phase front is plane. For the sake of simplicity, it is assumed z0 = 0, and

z is measured from the waist position. The R(z) dependence on z is:

R(z) = z

�
1 +

�
πw2

0

λz

�2
�
, (A.11)

while for w(z), it is:

w(z) = w0

�

1 +

�
zλ

πw2
0

�2

. (A.12)

The spot size and the wavefront curvature enter the definition of the q-parameter, a quantity

characterizing the beam and its propagation, which reads:

1

q
=

1

R(z)
− i

λ

πw2(z)
, (A.13)

with λ the laser wavelength. By using equations (A.11), (A.12) and (A.13), it is also:

q(z) = z + i
πw2

0

λ
, (A.14)

where z is the distance from the beam waist. Furthermore, as it is already pointed out, at the

beam waist R(z = 0) = ∞ and the q-parameter is purely imaginary:

q(z = 0) = q0 = i
πw2

0

λ
. (A.15)

The quantity πw2
0/λ is know as Rayleigh length, zR, and it defines the propagation distance

from the waist position after which the beam radius increases of a factor
√
2. Therefore, it can

be seen as an approximate separation line between the so called near-field, i.e. z << zR, and the

far-field, i.e. z >> zR, for a gaussian beam propagating from its waist. In the far-field regime,

w(z) increases linearly with z and it is possible to define the beam divergence angle as:

θ = lim
z→∞

w(z)
z =

λ

πw0
. (A.16)

It is worth noticing that θ has a constant value. In picture (A.1), R(z), w(z), w0 and θ(z) are

schematically represented. The quantity φ(z) in equation (A.9) is referred to as Gouy phase

and it represents an additional longitudinal phase shift a gaussian beam goes through when
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Figure A.1: Scheme of the gaussian beam parameters. - Gaussian beam parameters
representation, from Ref. [37].

propagating, with respect to the term e−ikz which is present for plane waves as well. It gives

then the difference between the gaussian beam axial phase shift with respect to the one of a

plane wave during the propagation. By assuming to measure the Gouy phase from the beam

waist, its dependence on the z coordinate is:

φ(z) = arctan

�
z

zR

�
. (A.17)

The effect of this additional term, for a beam described by equation (A.9), is a phase shift of 180◦

when the beam propagate from z = −∞ to z = +∞, with most of the phase shift accumulated

within one or two zR on both sides of the waist, see picture (A.2). It is then the phase shift due

to the passing of the gaussian beam through its focal region, accordingly to the Gouy effect

(see Ref [38]-[42]).

Higher-order gaussian modes

So far, only a particular solution of equation (A.8) have been discussed, namely beams whose

transverse profile is described by a gaussian. However, there are other solutions of equation

(A.8) with similar properties. These solutions are referred to as propagation modes and they

form a complete and orthonormal family of functions, so that any monochromatic light beam

can be expressed in terms of these modes. In rectangular coordinates (x,y,z), these solutions
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Figure A.2: Gouy phase. - Dependences of the Gouy phase on the quantity z/zR.

take the following form:

ũm,n(x, y, z) =
�
2
π

� 1
2

�
exp[i(m+n+1)φ(z)]

2n+mn!m!

� 1
2
×Hm

�√
2x

w(z)

�
×Hn

�√
2y

w(z)

�
×

exp
�
−ikz − ik x2+y2

2R(z) − x2+y2

w(z)2

� (A.18)

where Hm and Hn are Hermite polynomials of degree m and n, respectively. Furthermore, the

quantity N = m+ n is the order of the mode, while m and n are the transverse mode numbers.

The parameters R(z), w(z) and φ(z) are still defined through equations (A.11), (A.12), (A.17)

and they are the same for all the mode. However, as the term φ(z) appears in solution (A.18)

with an additional factor (m+n+1), the gouy phase shift depends on the order of the considered

mode. It is observed that the solution (A.9) is obtained form = n = N ≡ 0, and this is the reason

why it is called the fundamental propagation mode or the lowest order mode, with reference to

the other modes, for which N > 0, and which are then denominated as higher order propagation

modes. The solutions described by relation (A.18) are known as Hermite-Gauss modes, whose

transverse intensity profile, for the first order modes, is reported in picture (A.3).

An alternative family of solutions of the paraxial wave equation (A.8) is the one obtained when

using cylindrical coordinates instead of the rectangular ones. In this respect, the coordinate
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Figure A.3: Lowest order Hermite-Gaussian modes. - Illustration of the Hermite-Gauss
transverse electromagnetic modes of propagation (TEM) for the first higher order modes, from [43].

transformation is:
r =
�

x2 + y2

θ = tan−1
� y
x

�

z = z

(A.19)

and solutions of equation (A.8) read:

ũp,m(r, θ, z) =
�

4p!
π(1+δm,0)(m+p)!

exp i(2p+m+1)φ(z)
w(z)

×
�√

2r
w(z)

�m
Lm
p

�
2r2

w(z)2

� �cos(mθ)
sin(mθ)

�
exp
�
−ik r2

2

�
1

R(z) − i λ
πw2(z)

��
.

(A.20)

In the previous expression, the integers p ≥ 0 and m are the radial and the azimuthal mode

indexes, respectively; the order of the mode isN = 2p+|m| (Ref. [44], [45], [46]) and the quantity

Lm
p indicates the generalized Laguerre polynomials. As solution (A.20) includes generalized

Laguerre polynomials, the modes it describes are said Laguerre-Gaussmodes and their transverse

intensity distributions, for the first modes, is reported in picture (A.4). Analogously to the case

of solution (A.18), the parameters R(z) and w(z) which enter equation (A.20) are the same

for all the modes and they are expressed through equation (A.11), (A.12), hence spot size and
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beam curvature radius also vary in the same way for all the orders. As far as the Gouy phase is

concerned, φ(z) is still given by equation (A.17), nevertheless it enters solution (A.20) together

with the additional factor 2p+m+ 1 which indicates that the gouy phase shift depends on the

order of the considered mode. In conclusion, it is stressed that the fundamental gaussian mode

of equation (A.9) is obtained for p = m = 0.

Figure A.4: Lowest order Laguerre-Gaussian modes. - Illustration of the axisymmetric
Laguerre-Gauss transverse electromagnetic modes of propagation for the first higher order modes,
from [47].
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Any real function f(x, y, z) with continuous second partial derivatives which satisfies the follow-

ing equation in rectangular coordinates:

∂2f(x, y, z)

∂x2
+

∂2f(x, y, z)

∂y2
+

∂2f(x, y, z)

∂z2
= 0, (B.1)

is called harmonic function [82], [83], [84]. The operator:

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (B.2)

is known as Laplace operator. When passing to a cylindrical coordinate system, ∆ takes the

following form:

∆ =
1

r

∂

∂r

�
r
∂

∂r

�
+

1

r2
∂2

∂φ2
+

∂2

∂z2
, (B.3)

with (see picture (B.1)):

r =
�

x2 + y2,

φ = tan−1
� y
x

�
,

z = z.

(B.4)

If the considered function has cylindrical symmetry, its values will not depend on the coordinate

φ. As a consequence, equation (B.1), in a cylindrical coordinate system, reads:

1

r

∂

∂r

�
r
∂f(r, z)

∂r

�
+

∂2f(r, z)

∂z2
= 0. (B.5)

The solution of the previous equation is then a harmonic function with cylindrical symmetry.
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Figure B.1: Scheme of the cylindrical coordinate system with respect to the rectangular
one - Representation of the relation between cylindrical and rectangular coordinate system.
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in what follows the agreement between the two analytical methods of sections (3.3.1) and (3.3.2)

for the calculation of the displacement vector for the TCS described in section (3.2.3) is pre-

sented. In particular, in order to use the displacement vector, �u, solutions reported in sections

(3.3.1), it is necessary to develop the field of temperature introduced in section (3.2.3) in terms

of zeros of the Bessel functions J1. This has been already done in section (3.4.3), where it has

been showed that the excess of temperature of equation (3.39), which is the quantity entering

the Navier-Cauchy equations (3.159), in terms of zeros of the Bessel functions J1, lm, becomes:

τ̃ =
∞�

m≥0

τ̃m(z)J0

�
lm

r

a

�
(C.1)

τ̃m(z) =
2

a2J2
0 (lm)

� a

0
J0(lmr/a)τ(r, z)rdr. (C.2)

It is stressed that τ(r, z) has the form given in equation (3.39). Hence, it is possible to write

equation (C.2) as:

τ̃m(z) = 2
a2J2

0 (lm)

� a
0 J0(lmr/a)

�∞
n=1 J0(knr/a)

�
Ane

−kn
z
a +Bne

kn
z
a

�
rdr =

=
�∞

n=1

�
Ane

−kn
z
a +Bne

kn
z
a

�
Dm,n

(C.3)

with kn zeros of the equation (3.33), and Dm,n the same integration as given in (3.168). Partic-

ularly, it is interesting noticing that, for m = 0, it is:

τ̃m=0 =
2

a2J2
0 (l0)

� a

0
τ(r, z)rdr = 2

∞�

n=1

(Ane
−kn

z
a +Bne

kn
z
a )

J1(kn)

kn
. (C.4)
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The two expressions for the temperature excess, i.e. equation (3.39) and equation (C.1), lead to

the same total mirror temperature field. In this respect, picture (C.1) is reported, which show the

mirror surface temperature fields, inside and outside the optical cavity, when the temperature of

the environment where the mirror is placed is set to T0 = 900K. Hence, the field of temperature

reported on the picture is given by the sum of the constant environment temperature T0 and

of the temperature excess. It is worth remarking that, in picture (C.1), the label J1 Method

and Method 2 refer to the solutions given in equation (C.1) and in section (3.2.3), respectively.

As it is possible to perceive, there is agreement between the results. In order to quantitatively

illustrate this last statement, at each radius value, and for both the mirror surface internal to

the optical cavity and for the one outside the cavity, the following function is evaluated:

PET =
|TzerosJ1 − T |

T
, (C.5)

where PET indicate the percent error of the solution obtained by using the zeros of the Bessel

function J1 with respect to the solution obtained by using the zeros of equation (3.33), TzerosJ1

is the temperature value as given by the calculations involving the zeros of the Bessel function

J1 and T is the temperature value as given by the calculations involving the zeros of equation

(3.33). The results are reported in picture (C.2) and they confirm the agreement between the

two methods to calculate the same temperature fields. It is also interesting to point out that the

temperature field data obtained with formula (C.1) give the same percent errors than the ones

obtained in section (4.4), when comparing them to the ANSYS and COMSOL data, through

the application of equation (4.2). To illustrate this last assertion, pictures (C.3) and (C.4) are

reported.

As far as the mirror surface distortion for the TCS described in section (3.2.3) is concerned,

the comparison of the results obtained by applying the �u solution given in section (3.3.1) and

the one given in section (3.3.2) is reported in picture (C.5). The presented plots show the

displacement vector for the mirror surface internal to the optical cavity as well as for the one

outside the cavity, for both the solution in section (3.3.1) and the one in section (3.3.2). The

reported curves let us perceive the agreement between the two analytical calculation methods.

For a more quantitative analysis of the differences between the two methods, the following

quantity is evaluated:

Error =

�� a
0 (U

z − U z
J1
)2rdr

�� a
0 (U

z −Min [U z])2rdr
, (C.6)
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Figure C.1: Concordance between two analytical descriptions of the temperature field
for the TCS in section (3.2.3) - SIPHORE mirror geometry. Absorption coefficient 0.3ppm.
Intracavity power 3MW. Environment temperature T0=900K. The two panels represent the results
for the surface temperatures of the mirror, as obtained while applying the method described in section
(3.2.3), Method 2, and when applying the development involving the zeros of the Bessel function J1,
J1 Method. Left panel: mirror surface temperature inside the optical cavity. Right panel: mirror
surface temperature outside the optical cavity.

where U z and U z
J1

indicate the z component of the mirror surface displacement vector calculated

by applying the solution in section (3.3.2) and the one in section (3.3.1), respectively, and

Min [U z] is the minimum value of U z. The result of equation (C.6), for the mirror surface

internal to the optical cavity, is 2.6 × 10−6, the one for the rear mirror surface is 5.6 × 10−6.

Furthermore, it is possible to use the ANSYS and COMSOL data of section (4.4), to compare

them to the corresponding �u solution obtained by applying the formulas of section (3.3.1). The

results are reported in table (7). As it is possible to see, the obtained values are equal to the

ones of table (4.4).
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Figure C.2: Percent error for the temperature field of the TCS introduced in section
(3.2.3), when calculated by using the analytical method involving the zeros of the Bessel
function J1 with respect to the one obtained when using the zeros of equation (3.33) -
SIPHORE mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment
temperature T0=900K. Left panel: percent error of the solution obtained by using the zeros of the
Bessel function J1 with respect to the solution obtained by using the zeros of equation (3.33), as
far as the mirror surface temperature field inside the optical cavity is concerned . Right panel:
percent error of the solution obtained by using the zeros of the Bessel function J1 with respect to
the solution obtained by using the zeros of equation (3.33, as far as the mirror surface temperature
field outside the optical cavity is concerned

Error

Mirror surface distortion inside the cavity
ANSYS-analytic result comparison

5.8×10−3

Mirror surface distortion inside the cavity
COMSOL-analytic result comparison

5.5×10−3

Mirror surface distortion outside the cavity
ANSYS-analytic result comparison

3.8×10−3

Mirror surface distortion outside the cavity
COMSOL-analytic result comparison

2.6×10−3

Table 7: error on the analytical calculations performed by using the formulas of section
(3.3.1), for TCS described in section (4.4), by considering the ANSYS and COMSOL
data applied in table (4.4) - The values of the reported errors concern the mirror surface dis-
placement vectors, inside and outside the optical cavity, and they are evaluated by applying equation
4.1.
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Figure C.3: Percent errors for the temperature field calculated through the analytical
method involving the zeros of the bessel function J1 with respect to the numerically
calculated one, for the TCS in section (3.2.3). Mirror front surface. - SIPHORE
mirror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=900K. The reported errors are obtained through the application of equation (4.2) and they
concern the numerical data of picture (4.11) and the corresponding analytical data obtained with
the calculation method involving the zeros of the Bessel function J1. Left panel: percent error of
the analytical calculations with respect to the ones performed with ANSYS, as far as the mirror
surface temperature inside the optical cavity is concerned. Right panel: percent error of the
analytical calculations with respect to the ones performed with COMSOL, as far as the mirror
surface temperature inside the optical cavity is concerned.
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Figure C.4: Percent errors for the temperature field calculated through the analytical
method involving the zeros of the bessel function J1 with respect to the numerically
calculated one, for the TCS in section (3.2.3). Mirror rear surface. - SIPHORE mir-
ror geometry. Absorption coefficient 0.3ppm. Intracavity power 3MW. Environment temperature
T0=900K. The reported errors are obtained through the application of equation (4.2) and they con-
cern the numerical data of picture (4.12) and the corresponding analytical data obtained with the
calculation method involving the zeros of the Bessel function J1. Left panel: percent error of the
analytical calculations with respect to the ones performed with ANSYS, as far as the mirror surface
temperature outside the optical cavity is concerned. Right panel: percent error of the analyt-
ical calculations with respect to the ones performed with COMSOL, as far as the mirror surface
temperature outside the optical cavity is concerned.
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Figure C.5: Concordance between two analytical descriptions of the mirror surface
distortion, for the TCS in section (3.2.3) - SIPHORE mirror geometry. Absorption coefficient
0.3ppm. Intracavity power 3MW. Environment temperature T0=900K. The two panels represent the
results for the mirror surface displacement vectors, as obtained when applying the method described
in section (3.3.2), Method 2, and when applying the development involving the zeros of the Bessel
function J1, J1 Method. Left panel: mirror surface displacement inside the optical cavity. Right
panel: mirror surface displacement outside the optical cavity.
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More details on the calculations performed by the DarkF software to obtain mirror curvature

changes and losses, for the TCS analyzed in section (5.4), will be given in the following. As

it has been already pointed out in section 5.4, the DarkF simulations are made by applying

the mirror deformation maps, numerically calculated by COMSOL, on an initially flat mirror.

The resulting mirror profile is used in the DarkF simulations, which compute the properties

of the reflected beam, when the impinging beam is the fundamental gaussian beam, of waist

1 cm, on the reflecting mirror surface. In particular, a map of the reflected electromagnetic

field is calculated at the level of the mirror reflecting surface. The curvature change of the

mirror is determined by using the map of the reflected field phase, indeed, a fit for calculating

the paraboloid which approximates better the curvature of the beam can be performed and

through it the value of the mirror curvature radius is obtained [123]. In order to verify if the

curvature radius given by DarkF was exactly the curvature radius of the distorted mirror, the

ABCD matix law has been applied. Indeed, DarkF provides the waist and the waist position

of the beam after the reflexion on the mirror, by performing a gaussian fit, so that, knowing the

q-parameter of the impinging beam, the following relation can be used to calculate the mirror

curvature radius:

q1 =
Aq +B

Cq +D
, (D.1)

where the coefficients of the previous relation A, B, C, D are the components of the ABCD

matrix for the mirror, i.e: �
1 0

− 2
Rc

1

�
, (D.2)

with Rc the mirror curvature radius and q1 and q are the q-parameter of the reflected and of

the incident beam, respectively. It is observed that:

q = 0 + zR zR =
kw2

0

2
, (D.3)
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where w0 is the waist of the laser beam impinging on the mirror and k = 2π/λ, with λ the laser

wavelength. Furthermore:

q1 = z1 + zR,1 zR,1 =
kw2

1

2
, (D.4)

is the q-parameter of the beam reflected by the mirror, where w1 is beam waist and z1 is the

position along the beam propagation direction. From relations (D.1), (D.2), (D.3), (D.4), by

equating the imaginary parts of the right-hand side and of the left-hand side of equation (D.1),

it is possible to obtain the expression for the curvature radius of the deformed mirror:

Rc =
2zR

√
zR,1√

zR − zR,1
. (D.5)

The previous relation is applied together with the value of the reflected beam waist, given by

DarkF, for a given mirror map obtained through COMSOL, in order to obtain the curvature

radius of the deformed mirror. In this way, it is possible to verify the concordance of this result

with the one obtained by DarkF, when using the calculation method involving the map of the

reflected beam phase. To show this point, the TCS of section (5.4) for T1 = 760 K is considered.

The map of the displacement vector for the reflecting mirror surface calculated by COMSOL is

applied on a flat mirror and the resulting mirror map is used in the DarkF simulation, whose

result for the reflected beam waist is:

w1 = 9.67× 10−3m. (D.6)

By remembering that for the incident beam it is w0 = 0.01 m, relation (D.5) gives Rc =

2.2413 × 103 m. The value determined with the DarkF algorithm involving the map of the

reflected beam phase is Rc = 2.2408 × 103 m. The last result shows that the DarkF formula,

which uses the map of the reflected beam phase, gives exactly the curvature radius of the

deformed mirror and it is applied to determine the values reported in the first column of table

(5.2).

As far as the DarkF calculation of the losses for a fundamental gaussian beam, L, is con-

cerned, this is performed by using a formula which involves the coupling between the electro-

magnetic field of the incident beam on the deformed mirror, �E0, and the electromagnetic field

of the beam reflected by the mirror, �E. Therefore, the expression of the losses is written as
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follows:

L = coupling( �E0, �E)× P ( �E), (D.7)

where P ( �E) is the power of the electromagnetic field �E and the coupling between �E0 and �E is

defined through the following scalar product:

SP =
�

( �E0, �E)dxdy, (D.8)

with dxdy the dimension of one element of the grid which the electromagnetic fields and mirrors

are sampled on (see Ref. [102], [103], [104]). In terms of the scalar product SP , the coupling is

evaluates as follow:

coupling( �E0, �E) =
Re[SP ]2 + Im[SP ]2

P ( �E0)× P ( �E)
, (D.9)

with P ( �E0) the power of the electromagnetic field �E0.
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sion par confinement magnetique CLEFS CEA, N.49. 2004. 37

[8] K. Nishikawa and M. Wakatani. Plasma Physics. Third Edition Springer-Verlag.

2000. 38

[9] S. Glasstone and R. H. Loveberg. Controlled Thermonuclear Reactions. Robert

E. Krieger Publishing Company, Huntington, NY. 1975. 38

[10] A. Vieira Da Rosa. Fundamentals of Renewable Energy Processes. Third edition,

Elsevier Inc. 2013. 38

[11] European Atomic Energy Community(EURATOM)-Commissariat à l’nergie
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