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Titre : Une approche 3D pour comprendre la taphonomie 
des hominines du site plio-pleistocene de Malapa, 
Province du Gauteng, Afrique du Sud 

Résumé : 

Le site de Malapa a livré les restes de deux homininés, associés aux restes d’autres 
animaux et datés à 1,98 Ma. Le degré de conservation restes osseux est remarquable dans 
le contexte des ensembles fossiles plio-pléistocènes retrouvés en grotte. Cela indique une 
combinaison de processus taphonomiques unique et non-observée dans les sites 
contemporains de la région. Une approche combinant analyses paléontologique, physique 
et spatiale des homininés et de la faune associée a été choisie afin d’interpréter la 
taphonomie de l’ensemble fossile, avec une attention toute particulière portée aux 
homininés. Des techniques de tomographie et micro-tomographie assistées par 
ordinateur, combinées à un logiciel de reconstruction virtuelle ont été appliquées afin de 
créer un modèle en 3 dimensions de la grotte et des deux squelettes d’Au. sediba. La 
position initiale dans laquelle les homininés ont été enfouis a été reconstruite. Les 
résultats indiquent que la majorité du matériel osseux a été accumulée par l’intermédiaire 
d’un aven-piège. Les carcasses se sont accumulées sous la forme d’un cône de débris, 
dans une partie profonde du système karstique présentant un accès très limité voire 
inexistant pour les charognards. Les deux individus ne sont peut-être pas entrés dans la 
grotte au même moment. Lorsque l’enfouissement a eu lieu, leur décomposition était 
achevée (disparition et/ou dessiccation des parties molles). Leurs os présentent des 
indices d’intempérisation, suggérant une période d’exposition avant l’enfouissement d’au 
moins plusieurs mois. Les insectes sont les principaux agents ayant modifié les restes. Les 
indices de momification naturelle avant l’enfouissement pour MH1 et MH2 suggèrent la 
préservation possible de matière organique (peau). 

Mots clés : 

Taphonomie osseuse 

Premiers homininés 

Technologies 3D 

Afrique du Sud 
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Title : A 3D approach to understand the taphonomy of the 
early hominins from the plio-pleistocene cave site of 
Malapa. 

Abstract : 

The cave deposits at Malapa have yielded the remains of two extremely well-
preserved hominins (Australopithecus sediba) and associated fauna, dated to 1.977-1.8 
Ma. The state of preservation of the hominins and some of the non-hominin material is 
remarkable in the context of Plio-Pleistocene fossil assemblages accumulated in caves, 
and indicates a unique combination of taphonomic processes, not yet observed in 
contemporaneous cave deposits in the region. A comprehensive approach, including 
palaeontological, physical, and spatial analyses of the hominins and associated fauna was 
undertaken to determine, describe and interpret the taphonomy of the faunal material, 
with particular reference to hominins. An innovative combination of Computed-
Tomography (CT), micro-CT scanning and virtual reconstruction techniques was applied to 
create a 3D model of a selected area of the Malapa cave, with renderings of the two near-
complete Au. sediba skeletons. The original burial position of the hominins was 
reconstructed. The results indicate that the majority of the faunal material recovered was 
most likely accumulated via a natural death trap. Their bodies came to rest in a deep area 
of the cave system with restricted access to scavengers. Results show that both individuals 
did probably not enter the cave system at the same time. They reached skeletonization 
and were slightly weathered before final burial, indicating several years of exposure 
before burial. Insects proved to be the primary modifiers of the hominin remains. 
Evidence of natural mummification before burial for MH1 and MH2 suggests the possible 
preservation of soft tissue. 

Keywords : 

Bone taphonomy 

Early hominins 

3D techniques 

South Africa 
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Abstract 

The cave deposits at Malapa, on the Malapa Nature Reserve, Cradle of Humankind 

World Heritage Site, Gauteng Province, South Africa, have yielded the remains of two 

extremely well-preserved hominins (Australopithecus sediba) and associated fauna, dated 

by U/Pb methods and palaeomagnetism to 1.977-1.8 Ma. The state of preservation of the 

hominins and some of the non-hominin material, characterised by complete and near 

complete elements, antimeric sets of bones, specimens in articulation, and well-preserved 

bone surfaces, is remarkable in the context of Plio-Pleistocene fossil assemblages 

accumulated in caves, and indicates a unique combination of taphonomic processes, not 

yet observed in contemporaneous cave deposits in the region. A comprehensive 

approach, including palaeontological, physical, and spatial analyses of the hominins and 

associated fauna was undertaken to determine, describe and interpret the taphonomy of 

the faunal material, with particular reference to the holotype and paratype of Au. sediba, 

Malapa Hominin 1 (MH1) and Malapa Hominin 2 (MH2). An innovative combination of 

Computed-Tomography (CT), micro-CT scanning and virtual reconstruction techniques was 

applied to create a 3D model of a selected area of the Malapa cave, with renderings of the 

two near-complete Au. sediba skeletons. The original burial position of the hominins was 

reconstructed, which necessitated the refitting of ex situ fossils into in situ deposits. The 

spatial distribution and orientation of the hominin remains illustrate a very low degree of 

dispersal of the bones, indicative of very little disruption between death and burial, due to 

an absence of damage by scavengers and possible natural mummification. The very few 

carnivore-damaged bones and relative abundance of complete and/or articulated 

specimens, the presence of antimeric sets of bones in the faunal assemblage, as well as 

the diversity of the faunal spectrum, and the significant percentage of animals with 

climbing proclivities (such as carnivores and hominins) indicate that the majority of the 

faunal material recovered was most likely accumulated via a natural death trap. Their 

bodies came to rest in a deep area of the cave system with restricted access to 
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scavengers. Skeletons and bones accumulated in a talus cone below a vertical shaft. 

There, they decomposed, and became buried without major disruption by biotic or abiotic 

agents. A new forensic approach, referred to as palaeoforensic taphonomy, was followed 

in each step of the taphonomic analysis of the two hominins in order to reconstruct the 

processes of decay, disarticulation, burial and preservation. Results show that both 

individuals did probably not enter the cave system at the same time. They reached 

skeletonization and were slightly weathered before final burial, indicating several years of 

exposure before burial. Insects proved to be the primary modifiers of the hominin 

remains, pre- and post-depositional with hide beetles (Omorgus squalidus) providing the 

closest match for some of the fossil modifications observed. Based on the high number of 

articulated remains, the absence of preferential orientation for the elongated bones and 

of significant movement of the hominin remains inside the deposit, the debris flow 

hypothesis that was previously proposed as the principal agent to explain the burial of the 

hominins and other well-preserved animals is challenged. Evidence of natural 

mummification before burial for MH1 and MH2 suggests the possible preservation of soft 

tissue. The innovative 3D techniques applied in this research to conduct the spatial 

analysis of the fossils proved useful to address taphonomic questions, and will serve as a 

guide for future excavations of the Malapa in situ deposits, especially for locating the 

missing skeletal elements of MH1 and MH2. 
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Résumé 

Le gisement fossile de Malapa, situé à l’intérieur de la réserve naturelle de Malapa, 

dans le Cradle of Humankind (Province du Gauteng, Afrique du Sud), une région reconnue 

au patrimoine mondial de l’UNESCO, a été découvert en 2008 suite à une campagne 

d’exploration dirigée par L. Berger et mêlant l’utilisation de Google Earth avec des 

prospections pédestres classiques. Ce site a livré les restes extrêmement bien préservés 

de deux homininés, associés aux restes d’autres animaux et datés par U/Pb et 

paléomagnétisme à 1,98 Ma. Les fossiles d’homininés ont été attribués à un nouveau 

taxon, Australopithecus sediba (du mot sotho signifiant « source, fontaine ») sur la base 

d’une mosaïque de caractères morphologiques primitifs et dérivés inédite. 

Le degré de conservation des homininés et d’une partie de l’ensemble faunique se 

caractérise par la présence d’os complets et quasi-complets, de sets d’ossements 

symétriques, de restes articulés et de surfaces osseuses bien préservées, ce qui est 

remarquable dans le contexte des ensembles fossiles retrouvés en grotte datant du plio-

pléistocène. Cela indique une combinaison de processus taphonomiques unique et non-

observée dans les sites contemporains de la région. Une approche combinant analyses 

paléontologique, physique et spatiale des homininés et de la faune associée a été choisie 

afin de déterminer et d’interpréter la taphonomie de l’ensemble fossile, avec une 

attention toute particulière portée à l’holotype et au paratype d’Au. sediba, Malapa 

Hominin (MH1), un individu jeune et de sexe masculin, et Malapa Hominin 2 (MH2), un 

individu adulte et de sexe féminin, respectivement. Des techniques innovantes de 

tomographie et micro-tomographie assistées par ordinateur, combinées à un logiciel de 

reconstruction virtuelle ont été appliquées afin de créer un modèle en 3 dimensions de la 

grotte et des deux squelettes d’Au. sediba. Une partie importante des restes fossiles ont 

été retrouvés prisonniers dans de blocs de brèche ou sédiments clastiques calcifiés, eux-

mêmes déplacés par les mineurs lors de l’exploitation du site pour le calcaire au début du 

vingtième siècle. La position initiale dans laquelle les homininés ont été enfouis a due être 
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reconstruite, ce qui a nécessité de déterminer la position dans les dépôts des restes 

retrouvés ex situ. 

La distribution spatiale et l’orientation des restes d’homininés illustre un très faible 

degré de dispersion des os, indiquant très peu de perturbation entre le moment de la 

chute dans la grotte et le moment de l’enfouissement des restes, ce qui s’explique 

notamment par l’absence de dommage causé par les charognards et par une possible 

momification des squelettes. La présence, dans l’ensemble faunique, d’un très petit 

nombre d’ossements affectés par les carnivores, de nombreux restes complets et/ou 

articulés, de plusieurs sets d’os symétriques ainsi que la diversité du spectre faunique et le 

pourcentage important d’animaux doués pour l’escalade, comme les homininés et les 

carnivores, indiquent que la majorité du matériel osseux a été accumulée par 

l’intermédiaire d’un aven-piège. Les carcasses se sont accumulées sous la forme d’un cône 

de débris, en bas d’une faille verticale, dans une partie profonde du système karstique 

présentant un accès très limité voire inexistant pour les charognards. Après et/ou pendant 

leur décomposition, les carcasses ont été enfouies sans avoir subi de perturbations 

majeures causées par des agents biotiques ou abiotiques. Une approche s’inspirant de la « 

forensic taphonomy » a été suivie à chaque étape de l’analyse taphonomique des 

homininés afin d’identifier et de décrire l’ensemble des procédés de décomposition, 

désarticulation, enfouissement et conservation des restes. 

Les résultats montrent que les deux individus ne sont peut-être pas entrés dans la 

grotte au même moment. Lorsque l’enfouissement a eu lieu, leur décomposition était 

achevée (disparition et/ou dessiccation des parties molles). Leurs os présentent des 

indices d’intempérisation, ce qui indique une période d’exposition avant l’enfouissement 

d’au moins plusieurs mois. L’analyse systématique des surfaces osseuses à l’aide d’un 

microscope optique démontre que les insectes sont les principaux agents ayant modifié 

les restes, pré- et post-dépositionnellement, comme en attestent les modifications 

observées sur la surface de certains restes. L’espèce produisant les traces ressemblant le 

plus à celles observées sur le matériel fossile est Omorgus squalidus, un coléoptère 
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appartenant à la famille des Trogidae. Les indices de momification naturelle avant 

l’enfouissement pour MH1 et MH2 suggèrent la préservation possible de matière 

organique (peau). Les techniques 3D appliquées à l’analyse spatiale des fossiles se sont 

révélées utiles pour adresser des questions d’ordre taphonomique et serviront de guide 

lors les prochaines fouilles des dépôts en place, particulièrement afin de localiser les 

restes d’homininés manquants. 
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Chapter 1. General introduction 

“Our evidence for the past, whether recent or distant, is 

constantly being diminished by the unremitting processes 

of decay and destruction. The forces of destruction and 

deterioration range in scale from the wholesale 

obliteration of landscapes [...] to the more subtle agencies 

of transformation and disintegration that steadily erode 

man’s remains in the buried environment. Often the loss is 

so great that it seems impossible to reconstruct with 

confidence man’s activities in the past. Despair is, 

however, unwarranted. [...] When the mechanisms of 

reduction and the decayed fragments of evidence are 

examined systematically a wealth of information is 

revealed...” 

Preface of Death, Decay, and Reconstruction: Approaches 

to Archaeology and Forensic Sciences by Boddington et 

al. (1987). 

1. HOMININ FOSSILS FROM SOUTH AFRICAN CAVE DEPOSITS 

 Fossil-bearing cave deposits of South Africa have produced one of the most 

abundant collections of early hominins and associated fauna for the Plio-Pleistocene. The 

caves have accumulated and preserved the bones of several different genera and species 

of early hominins (Australopithecus africanus, Australopithecus “second species”, 

Australopithecus sediba, Paranthropus robustus, early Homo, and Homo ergaster) and 

modern humans (Homo sapiens sapiens), contributing to enrich our general 

understanding of hominin evolution (Dart, 1925; Broom, 1938; Robinson, 1953, 1961; 

Clarke, 1985; Berger et al., 2010). South African cave deposits cover a period that begins in 

the early Pliocene (Way Point 160 at Bolt’s Farm; Sénégas and Avery, 1998) to the present 

(de Ruiter and Berger, 2000). To date, 17 Plio-Pleistocene fossil-bearing localities from 
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cave deposits have undergone excavations (Bolt’s Farm, Buffalo Cave, Cooper’s, Drimolen, 

Gladysvale, Gondolin, Haasgat, Kromdraai, Luleche, Makapansgat, Malapa, Minnaars, 

Motsetse, Plovers Lake, Sterkfontein, Swartkrans and Taung) (Eitzman, 1958; Brain, 1981, 

1993; Hendey, 1981; Keyser and Martini, 1990; Keyser, 1991; Berger et al., 1993; McKee 

and Tobias, 1994; Keyser et al., 2000; Berger and Lacruz, 2003; Berger et al., 2003; Brophy, 

2004; Hilton-Barber and Berger, 2004; Adams, 2006; Adams et al., 2007a, 2007b; 

Thackeray et al., 2008; de Ruiter et al., 2009; Dirks et al., 2010; Gommery et al., 2012). 

Most of these cave sites are composed of several distinct layers or deposits with different 

genesis and ages, such as Sterkfontein (13 deposits: Members 1, 2, 3, 4, 5 “StW 53”, 5 

“East Infill”, 5 “West Infill”, 5 “Oldowan Infill”, 6, Lincoln Cave North and Lincoln Cave 

South, Name Chamber, Silberberg Grotto and Jacovec Cavern; Brain, 1981; Kuman and 

Clarke, 2000; Kibii, 2004; Reynolds and Kibii, 2011), Swartkrans (six deposits: Member 1 

“Lower Bank”, Member 1 “Hanging Remnant”, Members 2 to 5; Brain, 1981, 1993), 

Cooper’s (three deposits: A, B and D; de Ruiter et al., 2009), Kromdraai (two deposits: A 

and B; Brain, 1981), Gondolin (three deposits: 1, 2 and A; Adams, 2006), Gladysvale (two 

deposits: the internal roofed section, GVID, Gladysvale Internal Deposits; and the external 

de-roofed section , GVED, Gladysvale External Deposits; Lacruz, 2002; Lacruz et al., 2002; 

Pickering, 2005; Pickering et al., 2007), Bolt’s Farm (23 deposits; Thackeray et al., 2008), 

Taung (ten deposits, including five located in the “Dart deposits”, D-A to D-E; and five in 

the “Hrdlička deposits”, H-A to H-E; Peabody, 1954; McKee, 1993; McKee and Tobias, 

1994), and Makapansgat (five Plio-Pleistocene deposits from the Limeworks 

Australopithecine site, namely Members 1A, 1B, 2, 3 and 4; and the archaeological 

deposits from the Cave of Hearths, Historic Cave, and Rainbow Cave; Latham et al., 1999; 

Latham and Herries, 2004). A recent campaign of prospecting in the Cradle of Humankind 

has revealed the presence of 96 other fossil-bearing sites yet to be excavated, including 15 

sites containing hominin or archaeological remains (Dirks and Berger, 2012). The 

abundance of fossil hominins and associated fauna (ungulates, carnivores, rodents, 

microfauna, reptiles and birds) has allowed an extremely rich and diverse field of 
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palaeontological studies to develop. Numerous aspects of past life and landscapes can be 

explored (e.g. environment, habitat, ecology, behaviour, diet, biomechanics and 

locomotion) and numerous questions regarding the evolutionary pattern of our ancestors, 

such as understanding the mechanisms of speciation and extinction events, as well as 

their adaptation skills and responses to their changing environment, may be addressed. 

2. TAPHONOMIC ISSUES 

 The preservation of such an important fossil record can be explained by the way 

bones accumulated in the deposits, promoted by the existence of complex sub-surface 

and underground dolomitic cave systems, which collected skeletons of hominins and 

other animals, as well as the geochemical processes associated with the dissolution and 

precipitation of limestone, which enhanced the preservation of the fossils. Hence, the 

fossil assemblages recovered in cave deposits offer snapshots of the environment and 

living fauna through time. However, they may literally represent snapshots of single 

events, or they may be the result of long term accumulation processes, which took place 

over hundreds or thousands of years. Because of the nature of bone accumulation within 

caves, the question of the representativeness of these fossil assemblages as indicative of 

once living ecosystems needs to be addressed. Different biological and physical agents 

participate in the formation of fossil deposits in caves, such as carnivores, birds of prey, 

rodents, hominins, flooding, collapse, and rainfall. Each of these agents accumulates and 

modifies bones in a selective way. Furthermore, they occur alternatively and/or in 

combination with one another (in other words, it is extremely seldom to find an 

assemblage exclusively accumulated by leopards for instance, or an assemblage exclusively 

accumulated by the action of water transporting bones inside a cave). Timing of bone 

accumulation in caves is also difficult to estimate, since these processes tend to be gradual 

and can take place for years rather than as a single quick event. Consequently, 

understanding the taphonomy of a fossil assemblage, or, as first defined by the 

palaeontologist Efremov, understanding the study of the transition of once living elements 



4 
 

from the biosphere to the lithosphere (Efremov, 1940), is a necessary prerequisite to any 

palaeontological analysis. Taphonomic agents have various effects on a bone assemblage 

and condition a lot of aspects of the assemblage itself, such as the composition of the 

faunal spectrum, frequencies of different body parts, type of mortality profile, spatial 

distribution of the remains within the deposit and modifications observed on the bones. 

All these elements constitute the bases of palaeoenvironment and palaeohabitat 

reconstructions; they also contribute to ongoing debates on past ecology and behaviour of 

early hominins and other taxa. 

 For these reasons, important research on taphonomy in South African cave 

deposits has been conducted and a reasonably abundant literature on the question is 

available (Hughes, 1954; Brain, 1973, 1975, 1976, 1981, 1993; Maguire et al., 1980; 

Pickering, 1999; de Ruiter and Berger, 2000; Pickering et al., 2000, 2004a, 2004b, 2004c; 

Kibii, 2004, 2007; Adams, 2006, Adams et al., 2007a, 2007b; de Ruiter et al., 2009; Val et 

al., submitted). Most of the existing studies follow in the footsteps of the pioneering work 

of C.K. Brain, who was the first to conduct detailed and complete taphonomic analyses of 

some of the most renowned fossil deposits from South Africa (Sterkfontein, Swartkrans 

and Kromdraai), all presented in his book The Hunters or the Hunted? An Introduction to 

South African Cave Taphonomy, and in previous studies (Brain, 1958, 1973, 1975, 1976). 

Various hypotheses have been put forward to explain the presence of early 

hominin remains within cave deposits, especially for deposits containing a high proportion 

of hominins and other large-bodied primates. The most widely accepted explanation 

mentioned in the literature is based on the “carnivore-collecting hypothesis”, which was 

first proposed by C.K. Brain (1981) and later tested and confirmed by others (de Ruiter, 

2001; Carlson and Pickering, 2003; Kibii, 2004, 2007; Pickering et al., 2004a, 2004b, 2004c; 

Clarke, 2007). According to this hypothesis, a predator occupying caves, or areas near cave 

entrances, and specialized in preying upon primates would have been responsible for the 

presence of, at least, some of the primate remains in cave deposits. Extant large 
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carnivores, such as leopards and hyaenids, and, to a lesser degree, extinct large 

carnivores, such as sabre tooth cats and hunting hyaenas, would have been primary 

accumulators of primate bones in caves. The carnivores would either bring back their 

complete or partial carcasses to the cave or, especially in the case of leopards, consume 

them in trees overhanging cave openings (the remaining bones would then fall inside the 

cave) (Brain, 1981). This could, in some cases, be combined with a “sleeping site scenario”, 

whereby hominins and other primates using cave entrances as a sleeping refuge would be 

preyed upon by carnivores directly inside the cave, as has been mentioned by some 

authors (Brain, 1981, 1993; Pickering et al., 2004a; Val et al., submitted). The involvement 

of large carnivores in the accumulation of hominin and non-hominin primate bones has 

been proposed for most of the cave deposits containing abundant primate remains. 

Leopards are considered the primary accumulators of the primate remains at Swartkrans 

Member 1 “Hanging Remnant”, Swartkrans Members 2 and 3, Sterkfontein Member 4 and 

Kromdraai B (Brain, 1981, 1993; de Ruiter, 2001; Carlson and Pickering, 2003; Pickering et 

al., 2004a, 2004c), while spotted hyaenas have contributed to accumulate some primate 

bones at Swartkrans Member 1 “Hanging Remnant”, Sterkfontein Member 4, Swartkrans 

Member 3 and Kromdraai A (Brain, 1973, 1981; Carlson and Pickering, 2003; Pickering et 

al., 2004a, 2004c). These assemblages are characterised by fragmentary and carnivore-

damaged primate remains (i.e. presence of carnivore tooth marks and digested bones, 

and breakage patterns associated with carnivore action) and, in some cases, by specific 

skeletal part representation amongst the primate remains, consistent with carnivore 

accumulation (Carlson and Pickering, 2003; Pickering and Carlson, 2004). 

 A natural death trap scenario is another taphonomic hypothesis mentioned in the 

literature. In this case, animals, including primates, would have fallen or climbed inside 

the cave without been able to exit. However, concerning hominin-bearing deposits, this 

scenario has been proposed as the main accumulation process in one case only: at 

Sterkfontein Member 2, to explain the origin of the fossil assemblage associated with StW 

573, a near-complete skeleton of an australopithecine (“Little Foot”) (Clarke, 1998, 1999; 
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2007; Pickering et al., 2004a). This assemblage has specific characteristics such as the 

abundance in the faunal spectrum of animals with good climbing proclivities (primates 

and carnivores), the presence of antimeric sets of bones and partial skeletons, and the 

very low impact of carnivore damage on the bones (Pickering et al., 2004a; Clarke, 2007). 

3. RESEARCH QUESTIONS FOR THE MALAPA ASSEMBLAGE AND OBJECTIVES OF THIS 

STUDY 

 The Malapa hominin assemblage represents a very peculiar case within the context 

of Plio-Pleistocene South African cave deposits, and therefore offers challenging new 

questions regarding early hominin taphonomy. The hominins recovered at Malapa not 

only represent a completely new species, Australopithecus sediba (Berger et al., 2010), 

combining primitive and derived characters, which places the species in a crucial position 

for the understanding of the emergence of the genus Homo (Berger et al., 2010; Carlson 

et al., 2011; Kibii et al., 2010; Zipfel et al., 2011; Berger, 2012), but the taphonomy of the 

fossils is also remarkable. The exceptional quality and abundance of bone preserved for 

the Malapa hominins has never been observed in any of the fossil sites in South Africa, 

and as such places the Malapa assemblage in a class of its own relative to the other fossil 

assemblages from the Cradle of Humankind. The assemblage is composed of a high 

number of hominin bones (n. >256), belonging to a minimum of six individuals, amongst 

which two are nearly complete (Malapa Hominin 1 - MH1 -, a juvenile male and Malapa 

Hominin 2 - MH2 -, an adult female). These two individuals are represented by many 

complete and near complete bones, in an excellent state of preservation (i.e. bone surface 

perfectly preserved). Some elements are still in articulation and most of the body parts 

have been recovered, including very small elements, such as hand and foot bones. 

Furthermore, the sedimentary unit (Facies D) containing the hominins has been dated 

accurately to 1.977-1.8 Ma (Pickering et al., 2011), offering one of the most precise ages 

for a cave deposit yielding early hominins in the Cradle of Humankind. In terms of 

preservation, the hominin assemblage at Malapa does not resemble any of other cave 
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deposits with early hominin assemblages, with the possible exception of Member 2 at 

Sterkfontein. It therefore challenges previous interpretations of hominin accumulation, 

such as the “carnivore-collecting hypothesis” and the natural death trap scenario. The 

specific taphonomic signatures observed at Malapa motivate for the need to question the 

origin of at least some hominin bones in caves and suggest that a different taphonomic 

scenario or, rather, a different combination of taphonomic processes, unobserved to date, 

may be present at Malapa. Based on preliminary observations and study of geological 

features of the deposit, a first hypothesis was proposed to explain the accumulation of the 

hominin remains at Malapa (Dirks et al., 2010). This hypothesis (Figure 1.1) focuses on the 

taphonomy of the two near-complete skeletons (MH1 and MH2): 

“As a taphonomic hypothesis, we suggest that at the time of burial of the hominins, 

the complex cave system near Malapa had opened along deep vertical shafts that 

operated as death traps to animals on the surface. In addition to being inconspicuous 

drops into which animals accidentally wandered, the cave openings may have been loci of 

animal activity, enhancing their operation as natural traps. Animals might have been 

attracted to the smell of water coming from the shaft, and carnivores might have been 

attracted to the smell of decomposing bodies. These factors could have operated to 

accumulate a diverse assemblage of carcasses in the chamber below, away from carnivore 

activity. The sediments imply that subsequent high-volume water inflow, perhaps the 

result of a large storm, caused a debris flow that carried the still partially articulated 

bodies deeper into the cave, to deposit them along a subterranean stream” (Dirks et al., 

2010, p.207; Figure 1.1). 
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Figure 1.1. Cartoon illustrating the proposed hypothesis for the mode of accumulation of MH1 and MH2 
(after Dirks et al., 2010). 

Different elements, essential for the accumulation of the hominins, are proposed 

in this hypothesis, notably the absence of post-mortem carnivore modification and the 

effect of a debris flow happening shortly after the death of the hominins inside the cave. 

The hypothesis of a single event, or catastrophic accumulation, happening in a short 

period of time, rather than a slow attritional process, has been mentioned elsewhere to 

explain the high degree of preservation of the fossils (Berger, 2012). These hypotheses 

were proposed at an early stage of study. Since then, more hominin remains belonging to 

MH1 and MH2 have been prepared and recovered, together with fossils belonging to 

other hominin (MH3, MH4, MH5 and MH6) and non-hominin individuals. A complete, 

detailed analysis of the fossil assemblage is required to test and verify certain aspects of 

the preliminary hypothesis, such as the near absence of carnivore damage, and the role 

played by the debris flow. The question of the homogeneity of the hominin assemblage, 

as well as of the whole faunal assemblage, also needs to be addressed. 

The Malapa faunal assemblage contains a high number of hominin fossils that 

would, a priori, suggest that one of the most commonly occuring scenarios (natural death 

trap or carnivore-collected assemblage) could be proposed as a logical explanation for 



9 
 

their presence in the deposit. On the one hand, the relatively good state of preservation 

observed for the Malapa hominins (e.g. partially articulated skeletons, antimeric sets of 

bones, presence of complete bones and extremely well-preserved bone surfaces), seems 

to be in favour of a natural death trap hypothesis. The remarkable state of preservation of 

the hominins is combined with the near (or perhaps even total) absence of carnivore 

damage, which is consistent with the very limited or non-participation by carnivores in the 

formation of the assemblage. Hence, the carnivore collecting hypothesis does not seem to 

be pertinent to Malapa. However, several observations are in contradiction with a 

straightforward application of the natural death trap hypothesis: (1) such a high number 

of hominin individuals has not been previously recorded in an assemblage that is known 

to have accumulated through a natural death trap; (2), in the case of a proven natural 

death trap scenario, all primates, including hominins and non-hominins are abundant, 

while at Malapa the ratio hominin to non-hominin primates is completely 

disproportionate (256 hominin specimens have been recovered and only one non-hominin 

primate specimen). 

The aim of this PhD is to test the validity of the preliminary taphonomic hypothesis 

(i.e. natural death trap followed by a debris flow leading to a rapid burial of the hominins) 

and provide further insights into the different taphonomic processes that have 

contributed to the accumulation of the Malapa hominin bones. This requires a more 

detailed understanding of the formation of the faunal assemblage that has been 

recovered to date. 

 Testing taphonomic hypotheses is not always easy because it relies on the 

methods employed and information recorded during the excavation, preparation and 

analysis of the fossil remains. The majority of South African fossil-bearing caves have been 

discovered through mining, leading to the destruction of some fossils and to the loss of 

spatial and stratigraphic information. Hence, fossils from many sites were recovered from 

ex situ blocks of calcified clastic sediment. In the case of fossils recovered in situ during 
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earlier excavations, the record of the coordinates was not always systematic and in most 

cases the provenance, position, and orientation of the remains in the deposit are not 

known. A complete taphonomic analysis of a fossil faunal assemblage should ideally be 

based on the combination of three different approaches in order to collect as much 

evidence as possible to understand the full depositional history. The two classical ones 

commonly used in taphonomy are: a palaeontological approach (study of the faunal 

spectrum composition, estimation and interpretation of skeletal part representation and 

mortality profiles) and a physical approach (analysis of bone surface modifications and 

identification of the modifying agents) (see Domínguez-Rodrigo et al., 2007). A third 

approach, the spatial approach, has been underused in the field of taphonomy of cave 

deposits given the lack of useful information, as mentioned above, (i.e. no record of the 

coordinates, no data about the position and orientation of the fossils when found in situ, 

and fossils recovered from ex situ blocks). In more recently excavated cave sites, the use 

of a laser theodolite allows for the systematic and accurate recording of the coordinates 

and, in the future, more spatial studies should be conducted. So far, only one spatial study 

of a Plio-Pleistocene cave deposit in South Africa has been published (Nigro et al., 2003), 

which developed and applied a Geographical Information System (GIS) for mapping and 

analysing the distribution pattern of the fossils at Swartkrans. 

At Malapa, while some remains were recovered from ex situ blocks, others have 

been recovered in situ. All the specimens have been given coordinates, and in some cases, 

the position and orientation of the fossils in the deposit is known, preventing the loss of 

any spatial information. In this research project, I employed virtual techniques, namely 

Computed Tomography (CT) and micro-CT scanning facilities as well as 3D rendering 

software (Avizo 6.3) to conduct a spatial analysis of the in situ fossils inside the cave. 

Scanning and 3D reconstruction techniques are nowadays frequently used in different 

fields of palaeoanthropology, such as morphometry, biomechanics, study of bone density, 

reconstruction of distorted fossils and virtual exploration of fragile fossils and/or 

inaccessible parts of the fossils (Conroy and Vannier, 1984; Wind, 1984; Luo and Ketten, 
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1991; Zollikofer et al., 1998, 2002, 2005; Maisey, 2001; Carlson and Pickering, 2003; 

Novecosky and Popkin, 2005; Zollikofer and Marcia Ponce de León, 2005; Lordkipanidze et 

al., 2006; Carlson et al., 2011; Val et al., 2011; Guyomarc’h et al., 2012; Colombo et al., 

2012). However, these techniques have never been applied to address taphonomic 

questions. 

At Malapa, the spatial analysis of the hominin remains aims to reconstruct the 

burial position of MH1 and MH2 inside the deposit, in three dimensions. Until now, there 

has been no attempt to reconstruct and analyse the burial posture of an early hominin. 

Analysing burial posture for early hominin fossils is exceedingly difficult, given their typical 

preservation in cave deposits or open air contexts, where they are vulnerable to a 

plethora of destructive taphonomic agents and processes. These processes commonly 

transform the skeletons into fragmented, parautochtonous remains. 

On the other hand, in palaeontological (e.g. Smith, 1987, 1993, 1995; Weigelt, 

1989; Ochev, 1995; Smith and Evans, 1996; Smith and Ward, 2001; Damiani et al., 2003; 

Adbala et al., 2006; Botha-Brink and Modesto, 2007; Faux and Padian, 2007; Stanford et 

al., 2011; Fordyce et al., 2012), archaeological (e.g. Binford, 1968; Harrold, 1980; Gargett, 

1989, 1999; Koojmans et al., 1989; Smirnov, 1989; Belfer-Cohen and Hovers, 2002; Kimbel 

et al., 1995; Duday, 2009) and modern historical sites (e.g. Mastrolorenzo et al., 2001, 

2010; Roksandic, 2002; Luongo et al., 2003; Duday, 2009), the burial posture of vertebrate 

skeletons, including humans, when complete or near complete and found in situ, is 

generally described and studied. It can provide a wealth of information about the timing 

and the conditions of burial, and, in the case of modern funeral contexts, about the 

mortuary behaviours of past populations. When complete burial happens simultaneously 

or soon after death, the death pose can be preserved, and provides direct information 

about the site of death, the factors that influenced death, as well as factors that have an 

impact on preservation. At Malapa, the high level of preservation of the hominins and the 

existence of accurate information regarding the origin of the fossils in the deposit, 
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combined with the application of virtual reconstruction techniques, allow for the first time 

the reconstruction and analysis of the burial position of the two hominins (MH1 and 

MH2). This research will (1) provide information about the mode and timing of burial of 

the hominins, and the conditions under which it took place, (2) allow an estimation of the 

state of decay and disarticuation of the hominins when burial occurred, and therefore 

permit an evaluation of the chances of survival of soft tissue, and (3) open the possibility 

to put forward hypotheses regarding the location of missing elements inside the deposit. 

To summarize, this project is the first of its kind to combine three research 

approaches: palaeontological, physical and spatial, and to apply modern investigation 

methods, such as CT-scanning and 3D modelling techniques to address taphonomic 

questions about early hominins. The taphonomy of the hominins is approached and 

analysed as a forensic case, combining all available types of evidence to precisely 

reconstruct the conditions and timing of burial of MH1 and MH2. The Malapa hominin 

assemblage is used as a case study, remarkable for its various characteristics in terms of 

bone preservation. Ultimately, this research aims specifically to increase our 

understanding of the formation of the fossil assemblage at Malapa, and more generally to 

expand our knowledge of the processes of bone accumulation, modification and 

preservation in caves. From a research perspective it seeks to develop a new 

multidisciplinary approach to better understand the taphonomy of hominin remains, 

combining classical taphonomical methods with virtual techniques and modern forensic 

methods of investigation. 

4. THESIS OUTLINE 

A general literature review of the state of knowledge regarding hominin taphonomy in 

South African caves and fluvial contexts (palaeoriverine and palaeolake deposits from 

Central and Eastern Africa) is presented in Chapter 2. The fossil material analysed for this 

research project (hominin as well as non-hominin faunal specimens) is described in 

Chapter 3. The different methods employed to investigate the taphonomy of the 
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assemblage are explained in Chapter 4. The three types of approaches followed, namely 

palaeontological, physical and spatial, together with the corresponding methods used, 

especially the CT scanning and virtual reconstruction techniques are described. The 

concept of “palaeoforensic taphonomy” is proposed as research practice. The Malapa 

fossil locality is presented in Chapter 5, including geographical, geomorphological and 

geological aspects of the site, as well as preliminary hypotheses for the taphonomy history 

of the hominins. A general description of the available faunal assemblage associated with 

the hominins is included in this chapter and comprises information regarding the 

composition of the faunal spectrum in terms of species and body parts, the state of 

preservation and articulation of the faunal remains, as well as the types of bone surface 

modifications observed. Chapter 6 presents the results of a detailed taphonomic analysis 

of the hominin remains, and the results of the palaeontological and physical approaches. 

The skeletal part survival, state of articulation of MH1 and MH2, the level of 

completeness, breakage patterns and bone surface modifications, together with the 

identification of the agents responsible, are assembled in this chapter. Chapter 7 presents 

the results of the spatial approach, including the origin of the hominin remains in the 

deposit, estimation of the transport and movement affecting the fossil remains, refitting 

hypotheses for the ex situ hominin specimens in the deposit, and creation of the 3D 

reconstruction model presenting the hominins in their burial posture in the deposit. 

Chapter 8 integrates the results into a comprehensive reconstruction of the taphonomic 

history of the hominins. A step-by-step account of the sequence of events that affected 

the hominins is described, including the mode of entry into the site, configuration of the 

site at the time of death, nature and timing of decay and disarticulation, conditions of 

transportation, context and modalities of burial. Various questions are addressed, such as 

the possibility of natural mummification, the role played by insects, and the occurrence 

and effects of a debris flow. The implications of the results and the research perspectives 

offered by this thesis are presented in Chapter 9. Different hypotheses concerning the 

location of some missing hominin remains and the reassignement of some hominin 
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specimens are proposed. There is discussion about the advantages offered by the virtual 

reconstruction techniques and the forensic approach. In conclusion, reflections on this 

research are made and advice about future excavations is offered. 
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Chapter 2. Early hominin taphonomy from African deposits 

A unifying feature of modern humans is their fascination with their ancient past. While 

societies all over the globe have developed creation myths to explain the origination of 

our species, the scientific evidence points to Africa as the origin site for early hominins. 

Only three small regions in Africa preserve the remains of early humans and their 

ancestors, namely hominins: Eastern, Central and Southern Africa, with a slim corridor of 

remains in between. Eastern and Central African fossils are typically in sediments 

deposited along ancient lake margins or river floodplains, while South African hominin 

remains are typically preserved in dolomitic cave systems. This chapter explores how and 

why early hominins are recorded in a handful of caves in an area of South Africa known as 

the Cradle of Humankind, as well as in the palaeolake and palaeoriver deposits of Central 

Africa and along the Rift Valley in East Africa. 

1. HOMININ TAPHONOMY IN CAVE DEPOSITS OF SOUTH AFRICA 

1.1. Presentation of the region 

1.1.1. Fossil-bearing sites in the Cradle of Humankind 

The Cradle of Humankind World Heritage Site is composed of 15 excavated fossil 

localities (Bolt’s Farm, Buffalo Cave, Cooper’s, Drimolen, Gladysvale, Gondolin, Haasgat, 

Kromdraai, Luleche , Malapa, Minnaars, Motsetse, Plovers Lake, Sterkfontein, and 

Swartkrans; Figure 2.1), distributed in two provinces. The majority of them are located in 

the Gauteng Province (Bolt’s Farm, Buffalo Cave, Cooper’s, Drimolen, Gladysvale, 

Kromdraai, Malapa, Minnaars, Motsetse, Plovers Lake, Sterkfontein and Swartkrans) and 

three of them are north of this region, in the Northwest Province (Gondolin, Haasgat, and 

Luleche). The oldest deposit in the Cradle is probably Way Point 160 at Bolt’s Farm, where 

biochronological dating based on the microfauna provided an age between 4.0 to 4.5 Ma 

years (Sénégas and Avery, 1998). The cave sites of the Cradle occur in the dolomitic rocks 
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of the Transvaal Supergroup, which formed 2.6 to 2.8 billion years ago (Eriksson and 

Truswell, 1974; Martin et al., 1998). 

 

Figure 2.1. Location of important fossil deposits in South Africa, including localities in the Cradle of 
Humankind (CoH): Bolt’s Farm (BF), Cooper’s (C), Drimolen (D), Gladysvale (Gl), Gondolin (Go), Haasgat (H), 
Luleche (L), Kromdraai (K), Minnaars (M), Malapa (Mal), Motsetse (Mo), Plovers Lake (PL), Sterkfontein (S), 
Swartkrans (Sw); and outsite of it: Buffalo Cave (B), Makapansgat (Ma), and Taung (T) (modified after Kuman 
and Clarke, 2000; Berger and Lacruz, 2003; Adams et al., 2007b; Dirks and Berger, 2012). 
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The majority of the sites were subjected to limestone mining from the late 19th 

century to the middle of the 20th century, which exposed the fossil-rich breccias (Brain, 

1981; Wilkinson, 1983; Hilton Barber and Berger, 2002; Pickering, 2005; Adams, 2006). 

1.1.2. Hominin discoveries 

Amongst the different fossil localities known in the Cradle of Humankind, eight of 

them (i.e. Sterkfontein, Swartkrans, Kromdraai B, Cooper’s D, Gladysvale, Gondolin A, 

Drimolen, and Malapa) have yielded hominin remains in Gauteng Province, attributed to 

at least seven species (Table 2.1). Outside of the Cradle of Humankind, hominin remains 

have also been recovered in Taung in the Northwest Province and in Makapansgat in 

Limpopo Province (Dart, 1925, 1948a). The first early hominin was identified by Dart in 

1925 at Taung. The skull of a child discovered in the deposit was described as the holotype 

of a new species, namely Australopithecus africanus (Dart, 1925). In 1936, Broom 

identified the first hominin specimen at Sterkfontein, from Member 4. The adult hominin 

specimen (a fragmentary skull) was first named Plesianthropus transvaalensis, and was 

later subsumed into the species africanus (Broom, 1936, 1947; Brain, 1981). Another 

species, Australopithecus prometheus, was identified at Makapansgat (Dart, 1948a, 1948b, 

1949) and later subsumed into africanus as well (Clarke, 2008). Clarke (1985, 1986, 1988) 

has argued in favour of the attribution of some hominin remains found in Sterkfontein to 

a different australopithecine species. This other species has to date not been given a 

taxonomic name and is referred as Australopithecus “second species” (Clarke, 1985, 1986, 

1988). The near-complete skeleton of StW 573 (nicknamed “Little Foot”) discovered in the 

Silberberg Grotto (Sterkfontein Member 2) has been attributed to this “second species” 

(Clarke, 2008). The remains of two nearly complete skeletons belonging to a gracile 

australopithecine species were discovered at Malapa in 2008 by Berger and attributed to a 

new species, Australopithecus sediba (Berger et al., 2010; Table 2.1). 
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Table 2.1. Age ranges of the different hominin taxa identified in the Cradle of Humankind and Taung, 
together with the localities where they were found. 

Taxon First appearance Last appearance Fossil sites References 

Au. africanus 2.8/2.6 Ma 0.6 Ma Taung, Sterkfontein 
Member 4; Gladysvale 

Dart, 1925; Broom, 
1936, 1947; Berger 
et al., 1993; Berger 
and Tobias, 1994; 
Lacruz et al., 2002 

A. “second 
species” 

3.3 Ma 2.0 Ma Sterkfontein Member 4  
and Member 2 of the 
Silberberg Grotto (“Little 
Foot”) 

Clarke, 1988, 1998, 
1999, 2008 

P. robustus 2.0 Ma 1.0-0.6 Ma Kromdraai B; Swartkrans 
Members 1-3, Drimolen, 
Sterkfontein Member 5 
(East infill); Coopers’ D; 
Gondolin A 

Broom, 1938 ; 
Brain, 1981, 1993; 
Grine, 1993; Berger 
and Tobias, 1994; 
Menter et al., 
1999 ; Keyser, 
2000 ; Keyser et al., 
2000 ; Kuman and 
Clarke, 2000; 
Berger et al., 2003; 
de Ruiter et al., 
2009 ; Herries et 
al., 2009 

Au. sediba 1.977 Ma 1.977 Ma Malapa Berger et al., 2010 ; 
Dirks et al., 2010 ; 
Pickering et al., 
2011 

early Homo ~2.0 Ma 1.0-0.6 Ma Sterkfontein StW 53 infill, 
Swartkrans Members 1-2, 
Drimolen, Kromdraai B 

Hughes and Tobias, 
1977; Brain, 1981, 
1993; Grine, 1989, 
1993, 2005; Keyser, 
2000; Keyser et al., 
2000; Braga and 
Thackeray, 2003; 
Herries et al., 2009 

H. ergaster 1.7-1.4 Ma 253-115 ky Sterkfontein (Member 5 
West infill and Lincoln 
Cave South) 

Kuman and Clarke, 
2000; Reynolds et 
al., 2003, 2007 

H. sapiens 0.5-0.3 Ma - Sterkfontein Post-
Member 6; Swartkrans 
Member 5 

Watson, 1993; 
Kuman and Clarke, 
2000; Herries and 
Shaw, 2011 
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A more robust taxon, Paranthropus/Australopithecus robustus, was identified for 

the first time by Broom at Kromdraai B in 1938 (Broom, 1938) and the remains of this 

species were subsequently recovered in various other sites of the Sterkfontein Valley 

(Table 2.1).In 1953, Robinson identified, for the first time, remains of early Homo at 

Swartkrans (firstly classified as Telanthropus capensis and then attributed to the genus 

Homo; Robinson, 1953, 1961). Shortly thereafter, in 1976, the remains of Homo habilis 

were recovered at Sterkfontein Member 5 by Hughes (specimen StW 53) and described by 

various authors (Hughes and Tobias, 1977; Brain, 1981; Robinson, 1953, 1961; Clarke, 

2012). The assignement of these remains to the genus Homo is not accepted by some 

workers and is currently under discussion (see for instance Curnoe and Tobias, 2006; 

Curnoe, 2010; Pickering et al., 2011; Berger, 2012). Specimens of Homo ergaster have 

been found during the course of excavations in the Sterkfontein Member 5 East infill and 

Lincoln Cave (Reynolds et al., 2003; Reynolds and Kibii, 2011; Clarke, 2012). Finally, 

remains of modern humans were recovered at Sterkfontein Post Member 6 (Kuman and 

Clarke, 2000; Reynolds and Kibii, 2011) and Swartkrans Member 5 (Watson, 1993). 

1.2. Hominin taphonomy 

1.2.1. Introduction 

 More than a thousand early hominin specimens have been recovered in the 

different cave deposits of the Cradle of Humankind (Hilton Barber and Berger, 2002). The 

state of preservation of these remains is highly variable, from near complete skeletons 

such as “Little Foot” at Sterkfontein and the two individuals from Malapa, to bone and 

tooth fragments. Some sites have yielded hundreds of specimens whereas others have 

produced only a handful. The extreme variability between deposits from the same period 

and the same region can partly find an explanation in the variability of bone accumulating 

agents, taphonomic and site formation processes active in the dolomitic caves as well as 

patterns of exploration and excavation. 
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1.2.2. Geomorphology and formation of the fossil deposits in dolomitic caves 

Brain (1958, 1981) has defined a 6-stage process to explain the formation of the 

fossil-bearing cave deposits in the dolomitic region of the Cradle of Humankind. In the first 

stage, a cavity forms in the dolomite due to the action of underground water in the 

phreatic zone dissolving the rock. As the watertable drop this cavity enlarges and is then 

filled with air (stage 2). Some speleothems can appear and avens start forming in the 

dolomite roof above the cavern (stage 3) until the cavern eventually opens to the surface 

to form a cave, which is then progressively filled with sediments, rocks and bones (stage 4) 

that accumulate on a talus cone. This talus cone is commonly calcified due to lime-bearing 

solutions dripping from the roof and becomes “calcified clastic sediment” or so-called 

“breccias” (stage 5). In stage 6, the roof is eroded and the calcified clastic sediment is 

exposed to surface weathering (Brain, 1981). 

The first type of taphonomic agents leading to bone accumulation in caves are 

abiotic, such as gravity, flood, wind/rain washing carcasses, bones and bone fragments 

from the surface into the cave (Maguire et al., 1980; Brain, 1981; Texier, 2000). Included 

in this category is animal death, whether naturally occurring by inhabitants of caves, or 

unintentionally, from falling into death trap situations. The second category of 

taphonomic agents leading to bone accumulation are biotic agents that occupy the caves 

and their surroundings (e.g. overhanging trees, roofs) and accumulate bones. Predators 

and scavengers introduce animal bones to their lairs in caves while feeding, defecating, 

and/or regurgitating (Sutcliffe, 1970; Mills and Mills, 1977; Maguire et al., 1980; Binford, 

1981; Brain, 1981; Skinner and van Aarde, 1991; Berger and Tobias, 1994; de Ruiter and 

Berger, 2000, Lacruz and Maude, 2005; Berger, 2006; Kuhn, 2006). Rodents, such as 

porcupines, collect bones in their cave dens in order to gnaw on them to wear down their 

incisors (Maguire et al., 1980; Binford, 1981; Brain, 1981; Kibii, 2009). 

Early hominins and other large-bodied primates are accumulated in cave deposits 

by similar agents, whether by predators or through a natural death scenario. Hominin and 
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non-hominin primate taphonomy will be discussed together below, before considering the 

case of cave occupation and use by hominins, which differs from other primates. A brief 

review is given of which, and how, different taphonomic agents have contributed to the 

accumulation of early hominin bones in southern African dolomitic caves. 

1.2.3. Primate bones in cave deposits: causes of accumulation 

Abiotic agents: debris flow, rain and gravity 

 The action of rain, wind and gravity contributes to the formation of a talus cone 

below cave roof openings (Brain, 1981; Texier, 2000; Adams et al., 2007a), containing not 

only bones and bone fragments but also anything that is on the surface near the opening 

(e.g. rocks, artefacts, leaves, tree trunks, and fine sediments). This process has contributed 

to a greater or lesser degree to bone accumulation in all the cave deposits from the Cradle 

of Humankind, including fragmentary hominin bones (Brain, 1981). The state of 

fragmentation and the stage of weathering of bone fragments can be a good indicator of 

the time of exposure on the surface before the bones were finally and completely buried 

in the cave deposit (Miller, 1975; Behrensmeyer, 1978). 

Falling accidents 

 Natural openings in the rooftop of caves are usually surrounded by clusters of 

trees, since trees thrive in the presence of underground water. This would make their 

visibility poor and it is therefore not surprising that larger animals walking on the surface 

could easily fall into them by accident (Brain, 1981). Some of these shafts or “natural 

death traps” were several tens of metres high during the Plio-Pleistocene (Brain, 1975, 

1981; de Ruiter et al., 2009; Dirks et al., 2010; Pickering et al., 2011). Some species with 

good climbing proclivities such as primates and carnivores could also have deliberately 

entered the caves along these steep openings and in some cases found it impossible to 

return to the surface. A natural death trap scenario has been invoked to explain the bone 

accumulation process in Sterkfontein Member 2, including the remains of StW 573 or 
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“Little Foot” (Pickering et al., 2004a; Clarke, 2007), as well as to explain the presence of 

numerous articulated elements in the Kromdraai A faunal assemblage (Brain, 1973, 1981). 

The preservation of articulated elements and antimeric sets of bones, good 

representation of the different skeletal parts, and the absence of carnivore and rodent 

damage, are considered as good indicators of a natural death trap scenario (Costamagno, 

1999; Pickering et al., 2004a; Clarke, 2007; Coumont, 2009). 

Biotic agents: mammalian carnivores 

Primate bone assemblages and the “carnivore-collecting hypothesis” 

Large carnivores, and especially leopards and hyaenas, have contributed to the 

accumulation of faunal assemblages in the different fossil sites from the Cradle of 

Humankind (Table 2.2). 

Table 2.2. Accumulating carnivore agents proposed for the primate remains in some cave sites from the 
Cradle of Humankind. 

Cave deposit Member Origin of the primate remains References 

Sterkfontein    4 leopard & hyaena Brain, 1981; Pickering et al., 
2004b 

Swartkrans    1 (Hanging Remnant) leopard & hyaena Brain, 1981, 1993; de Ruiter, 
2001; Carlson and Pickering, 
2003 

   2 leopard Brain, 1981, 1993; Carlson and 
Pickering, 2003 

   3 leopard & hyaena Brain, 1981, 1993; Pickering et 
al., 2004c 

Kromdraai    A hyaena Brain, 1973, 1981 
   B leopard Brain, 1981 

To explain the abundance of primate remains in some of the assemblages, Brain 

has elaborated the “carnivore-collecting hypothesis” (Brain, 1981), whereby a predator 

specialized in preying upon primates, such as leopards and to a lesser degree hyaenas, 

would have contributed greatly to the accumulation of primate bones. Several 

taphonomic studies of fossil localities in the Cradle of Humankind have confirmed the 

preponderant role of felids and hyaenids in the formation of primate assemblages. Hence, 

their impact has been identified in the accumulation of the primate remains at Swartkrans 
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Member 1 Hanging Remnant, Members 2 and 3, Sterkfontein Member 4, and Kromdraai A 

and B (de Ruiter, 2001; Carlson and Pickering, 2003; Pickering et al., 2004b, 2004c; Clarke, 

2007; Kibii, 2007) (Table 2.2). 

Processes of bone accumulation/modification by large carnivores in cave deposits 

Two types of accumulation of carnivore-damaged bones in caves are recognised. The 

first type is consistent with primary deposition of bones within the cave as a consequence 

of carnivores bringing carcasses inside. Some species of carnivores occupy caves for 

various purposes such as breeding dens, places to store food and retreat for shelter 

(Kruuk, 1972; Brain, 1981; de Ruiter and Berger, 2000; Skinner and Chimimba, 2005; Kuhn, 

2006). They can consequently introduce carcasses or elements of carcasses to feed on 

and/or feed their offspring inside the cave. The second type is a secondary accumulation, 

whereby the bones remaining after a carnivore has fed on them, are brought inside the 

cave through another biotic or abiotic process (e.g. collected by porcupines, washed inside 

the cave, accumulated by natural gravity). This happens in the case of leopards in 

particular, when bones fall from the tree where the predator stores a carcass. To avoid 

competition with other carnivores, leopards stash and eat their prey in trees, and since 

trees commonly grow above cave openings, the remainder of the carcass commonly falls 

down into the cave and contributes to the formation of the talus cone (Simons, 1966; 

Sutcliffe, 1973; Brain, 1981; de Ruiter and Berger, 2000; Skinner and Chimimba, 2005). 

It is important to distinguish between these two modes of accumulation since they 

correspond to two clearly different patterns, especially when we need to distinguish 

between carnivore and human occupation of a site. In other words, the occurrence of 

carnivore chewing marks on bone specimens does not necessarily mean that carnivores 

have occupied the site. It could simply reflect bone fragments bearing tooth marks coming 

from the surface and brought into the caves by another process. Therefore, the 

consideration of different lines of evidence is required to distinguish between carnivore 

occupation of the site and falling in or washing in of carnivore-modified bones. This 
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evidence concerns not only carnivore tooth-mark abundance, but also the faunal 

composition, skeletal part representation, mortality profiles, breakage pattern of long 

bones and the occurrence of other indicators, such as digested bones, carnivore 

deciduous teeth, and coprolites (Brain, 1981; Pickering, 1999, 2002; Kuhn et al. 2010). 

Felids 

Extant leopards (Panthera pardus) are considered the primary accumulators of 

primates in caves of Southern African regions (Brain, 1968, 1969, 1981, 1993). The 

arguments for this theory are the following: (1) modern leopards include primates in their 

diet, (2) they frequently use caves in the southern African regions, (3) they have the habit 

of eating their prey in trees overhanging the dolomitic cave openings (Simons, 1966; 

Sutcliffe, 1973; Brain, 1981, 1993; de Ruiter and Berger, 2000; Skinner and Chimimba, 

2005), and (4) fossil bones of leopards are recovered in the faunal assemblages (Brain, 

1968, 1969, 1981; Watson, 1993; Reynolds, 2010). There is no record in the literature of 

other extant medium or large-sized felid species (i.e. Acinonyx jubatus and Panthera leo) 

transporting skeletal elements far from the kill site (Shaller, 1972). These species are also 

not known to occupy nor accumulate bones within caves (Skinner and Chimimba, 2005). 

Extinct large felids such as the false sabre-tooth cats (Dinofelis barlowi and Dinofelis 

piveteaui) and the true sabre-tooth cats (Megantereon barlowi, Megantereon cultridens 

and Homotherium latidens) are present in the Plio-Pleistocene fossil assemblages of the 

Sterkfontein Valley (Brain, 1981; Turner, 1987a, 1987b, 1997, 2004; Cooke, 1991; Watson, 

1993; de Ruiter, 2003; Kibii, 2004; Pickering et al., 2004a; Lacruz et al., 2006; Hartstone-

Rose et al., 2007; Gommery et al., 2008, 2012; de Ruiter et al., 2009; Reynolds, 2010; Kuhn 

et al., 2011) (Table 2.3). These extinct felid species would have competed with leopards 

and hyaenids for the same prey (O’Regan and Reynolds, 2009). Using as the main 

argument the abundance of extinct sabre-tooth cat remains in the Plio-Pleistocene cave 

deposits of the Sterkfontein Valley, Brain (1981) has suggested that these taxa could have 

frequently occupied caves and would have therefore been important bone collecting 
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agents. However, there is to date no mention in the literature concerning bone-collecting 

behaviour by Megantereon or Dinofelis (Pickering, 1999; Pickering et al., 2004b; Lacruz et 

al., 2006; Hartstone-Rose et al., 2007; Reynolds, 2010). There is only one published 

example of cave occupation by an extinct species of large felid: the late Pleistocene 

Friesenhahn Cave (Texas, USA), where the American subspecies Homotherium serum is 

regarded as the main agent in the accumulation of the juvenile mammoth bones within 

the deposit (Marean and Ehrhardt, 1995). Different arguments have been proposed to 

defend the theory of cave use by this carnivore as a breeding den and feeding retreat: the 

abundance of Homotherium remains within the assemblage (most abundant carnivore 

and second most abundant large mammal), the occurrence of articulated juvenile 

Homotherium individuals, the catastrophic mortality profile amongst Homotheriums and 

the abundance of juvenile mammoth remains, interpreted as an evidence of specialized-

hunting by Homotherium (Marean and Ehrhardt, 1995). 

Hyaenids 

The two southern African extant hyaenid species (Crocuta crocuta, the spotted hyaena 

and Parahyaena brunnea, the brown hyaena) occupy caves and collect bones (Kruuk, 

1972; Mills and Mills, 1977; Maguire et al., 1980; Binford, 1981; Brain, 1981; Hill, 1989; 

Skinner and van Aarde, 1991; Lam, 1992; Lacruz and Maude, 2005; Kuhn, 2006). By 

extension, it has been proposed that the extinct long legged hunting hyaenas 

(Chasmaporthetes nitidula and Chasmaporthetes silberbergi), together with the short-

faced hyaena (Pachycrocuta brevirostris) present in the Cradle of Humankind caves (Brain, 

1981; Keyser, 1991; Keyser and Martini, 1991; Watson, 1993; Turner, 1997; Pickering, 

1999; Mutter et al., 2001; de Ruiter, 2003; Kibii, 2004; Pickering et al., 2004a; Gommery et 

al., 2008, 2012; Reynolds, 2010) (Table 2.3) were also occupying caves and collecting 

bones. 

Hyaenas use caves as resting places, retreats, breeding dens and lairs. They also 

occasionally hide their food in water, and since the dolomitic caves of the Cradle 
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sometimes have small water pools, those might be used by the spotted hyaena as a cache. 

In the lairs, the adult hyaenas will bring carcasses or parts of carcasses to feed the cubs. 

The uneaten parts and the leftover bony parts of the prey will therefore accumulate in 

caves, together with regurgitated bone fragments and their faeces, which can fossilize 

(Backwell et al., 2009; Berger et al., 2009). Hyaenas have jaws powerful enough to carry 

heavy carcasses or skeletal parts inside caves. As scavengers (and effective hunters in the 

case of C. crocuta) their prey spectrum is very diverse, from small antelopes with a live 

weight of 0-23 kg, where the upper limit is represented by a large female duiker 

(Silvicapra sp.), to Class III antelopes in the range 84-296 kg, where the upper limit is 

represented by a blue wildebeest (Connochaetes gnou), and even Class IV, reflecting 

animals weighing more than 296 kg, including eland (Taurotragus oryx) or buffalo 

(Syncerus caffer) (following Brain, 1974). They are also able to carry parts of very large 

animals, such as elephants (Kuhn, 2006). Therefore, the range of their diet is broad and 

results in abundant bone remains in the lair (Brain, 1981; Skinner and van Aarde, 1981, 

1991; Lacruz and Maude, 2005; Skinner and Chimimba, 2005; Kuhn, 2006). 

For hyaenids, Pickering (2002) maintains that the following criteria, when found 

together, are indisputable evidence of a hyaena-generated assemblage in a cave: bone 

modification (tooth pits and punctures), occurrence of cylindrical shafts (either whole 

cylinders or splintered shaft fragments) and high carnivore/ungulate ratio. Kuhn et al. 

(2010) argue that none of these criteria, when taken alone, can constitute direct evidence 

of a hyaena-generated assemblage; it is rather the combination of several lines of 

evidence, which can prove that hyaenids have accumulated the bones. The presence of 

juvenile hyaenids (Cruz-Uribe, 1991; Klein et al., 1991; Brugal et al., 1997; Pickering, 1999; 

Kuhn et al., 2010), coprolites and digested remains (Pickering, 2002) constitute direct 

evidence of cave occupation by hyaenas. 
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Table 2.3. Extinct species of large carnivores present in Plio-Pleistocene sites from the Cradle of Humankind. 

Family Species Sites References 

HYAENIDAE Chasmaporthetes silberbergi Minnaar’s; Sterkfontein 
Silberberg Grotto and 
Member 4 

Turner, 1997; Pickering et 
al., 2004a; Gommery et al. 
2012 

 Chasmaporthetes nitidula Swartkrans Members 1-3; 
Sterkfontein Member 2, 
Member 4, Member 5 and 
Jacovec Cave; Haasgat; 
Drimolen 

Keyser, 1991; Keyser and 
Martini, 1991; Watson, 
1993; Turner, 1997; 
Pickering, 1999; de Ruiter, 
2003; Kibii, 2004; Pickering 
et al., 2004a; O’Regan and 
Menter, 2009 

 Pachycrocuta brevirostris Kromdraai A, Bolt’s Farm 
Femur Dump, Sterkfontein 
Member 4 and Member 5, 
Gladysvale 

Turner, 1997; Mutter et al., 
2001; Gommery et al., 
2008; Reynolds, 2010 

FELIDAE Dinofelis barlowi Sterkfontein Member 4, 
Member 5 and Silberberg 
Grotto; Minnaar’s, Malapa, 
Bolt’s Farm 

Brain, 1981; Cooke, 1991; 
Turner, 1997; Pickering et 
al., 2004a; Lacruz et al., 
2006; Gommery et al., 
2008, 2012; Kuhn et al., 
2011 

 Dinofelis piveteaui Gladysvale, Motsetse, 
Kromdraai A, Drimolen 

Berger and Lacruz, 2003; 
Lacruz et al., 2006; O’Regan 
and Menter, 2009 

 Megantereon whitei Sterkfontein (Silberberg 
Grotto, Member 4), 
Swartkrans (Member 1 
Hanging Remnant and 
Member 3), Kromdraai A 

Turner, 1987, 2004; de 
Ruiter et al., 2009 

 Megantereon cultridens Swartkrans Member 1 
Hanging Remnant and 
Member 3; Sterkfontein 
Silberberg Grotto, Members 
4 and 5 

Watson, 1993; Turner, 
1997; de Ruiter, 2003; 
Pickering et al., 2004a 

 Homotherium latidens Sterkfontein (Jacovec 
Cavern, Members 4 and 5), 
Swartkrans Member 2 

Kibii, 2004; Turner, 1997; 
Reynolds, 2010 

Avian biotic agents: birds of prey 

Owls accumulate bones in caves and cave entrances but do not prey upon large 

animals. Hominins and other large-bodied primates fall outside of their diet range. On the 

other hand, eagles are known to prey upon animals much larger than themselves, up to 

the size of a bushbuck (Maclean, 1985; Sanders et al., 2003). 
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Eagles do not occupy caves, but they may select trees or rocky outcrops above 

cave openings to build their nest. They bring back animal carcasses to their nest where 

they consume them. Hence, the uneaten and the regurgitated remains can accumulate in 

the cave located below the nest and contribute to the bone accumulation process within 

the cave system (Brain, 1981; Andrews, 1990). Various species of eagle are well-known 

predators of monkeys, such as red-tailed monkeys (Cercopithecus ascanius), L’hoest 

monkeys (Cercopithecus lhoesti), red colobus (Piliocolobus badius), black and white 

colobus (Colobus guereza), grey-cheeked mangabeys (Lophocebus albigena) and olive 

baboons (Papio anubis) (Maclean, 1985; Sanders et al., 2003; McGraw et al., 2006; Trapani 

et al., 2006). The contribution of large-bodied eagles to the accumulation of primate 

remains in fossil assemblages has been proposed by Berger and colleagues (Berger and 

Clarke, 1995; Berger, 2006; Berger and McGraw, 2007) who interpret modifications on the 

Taung child skull as evidence of predation by a large bird of prey, possibly an African 

crowned hawk eagle (Stephanoaetus coronatus). 

Other biotic agents 

Porcupines 

Porcupines collect bones and occupy caves. They have contributed to some extent 

to the accumulation of some faunal remains in most Plio-Pleistocene fossil assemblages, 

but they are not regarded as a major taphonomic agent (Maguire et al., 1980; Brain, 1981, 

1993). 

Small carnivores 

A large variety of small carnivores including canids, small felids, mustelids, viverrids 

and herpestids can occupy or occasionally frequent caves and cave entrances (Skinner and 

Chimimba, 2005; Bountalis, 2011; C. Steininger, pers. comm.). Their remains are found in 

the southern African Plio-Pleistocene assemblages (Brain, 1981; Watson, 1993; Pickering, 

1999; de Ruiter, 2003; de Ruiter et al., 2009; Kuhn et al., 2011; Hartstone-Rose et al., 



29 
 

2013; see Table 2.4), but whether they have contributed to the bone accumulation 

process is difficult to establish. They can definitely not hunt hominins nor carry large 

skeletal elements inside caves (Pickering, 1999), but can probably scavenge on animal 

carcasses and therefore theoretically leave some chewing and breakage marks on bones. 

Nevertheless, the bone collecting behaviour and the taphonomic signature of small 

carnivores is very poorly documented (Andrews, 1990). Their contribution is never 

mentioned in the literature as an important cause of primate bone accumulation in a fossil 

deposit. The only case published where a small-size carnivore has been identified as a 

possible taphonomic agent in cave deposits, is at Cooper’s D where tooth marks observed 

on a fragmentary mandible of Paranthropus robustus have been attributed to a small 

canid such as a jackal (de Ruiter et al., 2009). 

Table 2.4. Small carnivore species whose remains have been recovered in the Plio-Pleistocene cave deposits 
of the Cradle of Humankind. 

Family Species Common name 

CANIDAE Canis mesomelas Black-backed jackal 
Vulpes chacma Cape fox 
Vulpes skinneri extinct fox 

FELIDAE Felis serval Serval 
Felis caracal Caracal 
Felis lybica African wild cat 
Felis nigripes Black-footed cat 

HERPESTIDAE Atilax paludinosus Marsh mongoose 
Suricata suricatta Suricate/Meerkat 
Cynictis penicillata Yellow mongoose 
Paracynictis selousi Selous’ mongoose 
Herpestes ichneumon Large grey mongoose 
Herpestes sanguineus Slender mongoose/Black-tipped mongoose 
Ichneumia albicauda White-tailed mongoose 
Galerella sanguinea Slender mongoose 
Mungos mungo Banded mongoose 

VIVERRIDAE Genetta tigrina South African large-spotted genet 
Civettictis sp. African civet 

MUSTELIDAE Aonyx capensis African clawless otter 
Mellivora sivalensis Extinct badger 
Mellivora capensis Honey badger 
Poecilogale sp. Weasel 
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Suids 

Bushpigs (Potamochoerus larvatus) and warthogs (Phacochoerus africanus) are 

omnivorous, scavenge meat and can even in some cases hunt small prey such as chicken 

(Skinner and Chimimba, 2005). The reasons why African suids occupy caves are not well 

understood, but cases have been reported of warthogs going inside caves (Brain, 1981; 

Bountalis, 2011), most likely for protection and thermoregulation. There are even some 

cases of cohabitation in the same cave between warthogs and spotted hyaenas (Brain, 

1981). Even though there is no published data concerning the taphonomic impact of suids 

in South African cave deposits, their role as potential bone accumulating and modifying 

agents should be taken into account, and warrants further investigation. 

Occupation of caves by hominin and non-hominin primates 

Brain has proposed the idea of a “sleeping-site scenario” for primates, including 

early hominins, which could contribute to explaining the abundance of their remains in 

some of the Plio-Pleistocene sites of the Cradle of Humankind, especially Sterkfontein and 

Swartkrans (Brain, 1975, 1981, 1993). If primates occupy caves, natural death occurring 

inside could lead to the presence of their bones within fossil assemblages. Studies on 

modern baboons (Altmann and Altmann, 1970; Gow, 1973; Busse, 1980; Brain, 1981; 

Hamilton, 1982; Mc Grew et al., 2003) document the selection by these animals of specific 

sleeping sites such as tall trees, cliff edges or narrow cave entrances, inaccessible to 

predators. A recent study (Barrett et al., 2004) on modern chacma baboons (Papio 

hamadryas ursinus) reveals that this species commonly occupies caves because it provides 

access to a source of water. They also use caves to regulate their body temperature as 

well as to obtain some nutrients from the soil of the cave (geophagy) (Barrett et al., 2004). 

Chimpanzees (Pan troglodytes verus) are also known to occasionally frequent caves for 

the same reasons (Pruetz, 2007). It is therefore conceivable that Plio-Pleistocene primates 

were using the cave openings for the same purposes. This has been suggested by Brain 

(1981, 1993) and others (Pickering et al., 2004b; Reynolds et al., 2011; Val et al., 
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submitted) as a possible explanation for the presence of hominins and other primates 

within the South African cave deposits, in particular to explain the high number of non-

hominin primates at Swartkrans Member 1 (Hanging Remnant and Lower Bank; Brain, 

1981, 1993) and to some extant at Cooper’s D (Val et al., submitted). Like hominins, they 

would occupy the entrance of the cave to sleep. The less agile individuals might venture 

inside the cave and fall in a vertical shaft or not find their way out. This would lead to an 

attritional mortality profile. In the case that the cave was already occupied by a carnivore, 

it is also possible that the primates were preyed upon inside the cave. 

The earliest direct evidence of cave occupation by hominins dates back to about 

1.0 to 1.5 Ma. It consists of evidence of butchery practices conducted inside the cave, 

associated with defleshing, cooking or consumption. At Wonderwerk Cave, indications of 

cave use by hominins take the form of burnt bones and ashed plant remains found in situ 

in the deposit, constituting the earliest evidence of the controlled use of fire (Berna et al., 

2012). At Swartkrans, cut marks on bone fragments (Members 2 and 3; Brain, 1981; 

Pickering et al., 2004d), as well as burnt bones (Member 3; Brain and Sillen, 1988) and the 

distribution of Early Stone Age tools (Clark, 1993; Backwell and d’Errico, 2003) have been 

identified and interpreted as indications of hominin presence in the cave. All three 

deposits are contemporaneous and have been dated at about 1.0 Ma. The Wonderwerk 

Cave evidence of fire control is found in the Acheulean deposit, associated with Early 

Stone Age lithic tools (Berna et al., 2012). At Swartkrans Member 2, the cut-marked bones 

are associated with early Homo (possibly H. erectus) and Paranthropus (Brain, 1981; Grine, 

1989, 1993) while at Swartkrans Member 3, cut marks and burnt bones are associated 

with P. robustus remains (Brain, 1981; Grine, 1989, 1993). The occurrence of bone tools 

inside cave deposits (Sterkfontein, Swartkrans Member 1 Lower Bank, Members 2 and 3 

and Drimolen), is always associated with P. robustus remains (Brain and Shipman, 1993; 

Backwell and d’Errico, 2001, 2003, 2008; d’Errico et al., 2001). Backwell and d’Errico 

(2003) concluded that hominins introduced bone tools inside the cave when Swartkrans 

Member 3 was deposited, where a consistent amount of burnt bones, a number of faunal 
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remains with clear cut marks, and evidence suggesting the presence of a flattened area 

were found (Brain, 1993; Brain and Sillen, 1988). 

When these forms of evidence are absent, the occurrence of hominin remains in cave 

deposits is interpreted as the result of carnivore predation, accidental falling inside a 

shaft, or washing in from the surface. The “shift in the balance of power hypothesis” first 

proposed by Brain (1981, 1993) suggests a long evolutionary pattern explaining the 

presence of hominin remains in cave deposits, from prey whose bones were accumulated 

in caves by carnivores to active hunters occupying the caves and conducting inside 

different social and technological activities, including butchery. 

2. HOMININ TAPHONOMY IN PALAEOLAKE AND FLUVIAL CONTEXTS 

2.1. Actualistic data on bone transport in water 

2.1.1. Introduction 

Many studies have approached the question of bone transport in a fluvial context 

(Voorhies, 1966, 1969; Dodson, 1973; Hanson, 1980; Behrensmeyer, 1975, 1982, 1988; 

Boaz and Behrensmeyer, 1976; Smith, 1980, 1993; Boaz, 1994; Coard and Dennell, 1995; 

Coard, 1999), but a review of the literature reveals that no experimental study has been 

conducted on bones in a stagnant pool of water or in a closed space imitating a cave 

environment. However, the available studies offer elements for discussion, such as 

transport potential, and orientation of the bones in water that can be useful to 

understand the behaviour of skeletal remains within a liquid environment. As such, a 

literature review on the transport potential of bones in fluvial contexts is presented. 

2.1.2. The experiments 

Experimental studies conducted on bone transport in water (Voorhies, 1966; Boaz 

and Behrensmeyer, 1976; Hanson, 1980; Coard and Dennell, 1995; Coard, 1999) have used 

both modern human (Boaz and Behrensemeyer, 1976) and other mammal bones: sheep 

(Ovis aries) and coyote (Canis latrans) (Voorhies, 1966), dog (Canis familiaris), mouflon 
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sheep (Ovis musimon) and pig-tailed macaque (Macaca nemestrina) (Coard and Dennell, 

1995; Coard, 1999). All these studies were conducted using modern bones in a 

recirculating flume positioned horizontally, with different dimensions and flow velocity 

(Table 2.5). 

Table 2.5. Dimensions and flow velocity of the recirculating flumes used in the experimental bone transport 
in water studies. 

Experiment Width (m) Length (m) Depth (m) Flow velocity 

Voorhies, 1969 1.21 13.72 ND 1.52 m/s 
Boaz and Behrensmeyer, 1976 0.31 12.2 0.152 0.31 cm/s 
Coard and Dennell, 1995 0.31 7.5 0.26 0.30 m/s 
Coard, 1999 0.31 7.5 ND ND 

ND: not documented. 

Factors influencing bone transport potential 

The results of these studies show that different types of bones have different 

transport potential. The factors that seem to influence the transportability of bones are 

described below. 

Shape 

The shape of the skeletal elements was proposed theoretically as an important factor 

conditioning bone transport potential in water by Hill and Walker (1972), and has been 

experimentally proved to influence the transport potential of bones in water (Boaz and 

Behrensmeyer, 1976; Hanson, 1980; Shipman, 1981). Bones presenting a rounded shape 

and/or some cavities (i.e. cranium, sacrum, vertebrae) have a better transport potential 

than elongated and/or solid bones (i.e. long bones, clavicles, tarsals, patellae, teeth). The 

human crania have the highest transport potential in Boaz and Behrensmeyer’s 

experiment. This is mostly due to the shape of this element, which does not offer any 

resistance to the current and is transported in a rolling motion, as fast as the current 

moves. The variations in shape between the different crania tested in the various studies 

could explain the different results obtained; from the coyote and sheep crania remaining 
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in the lag group in Voorhies’s experiment to the human crania being the fastest element in 

Boaz and Behrensmeyer’s experiment. 

Density 

Density has also been shown to have an impact on the transport potential of bones 

(Voorhies, 1969; Behrensmeyer, 1975; Boaz and Behrensmeyer, 1976; Coard and Dennell, 

1995; Coard, 1999). Elements with a low density (i.e. with spongy bone more 

volumetrically abundant than compact bone, such as the sacrum and vertebrae) present a 

better transport potential (Group I of Voorhies and the cranium) than the more compact 

and dense bones (i.e. long bones, mandibles, tarsals and teeth) (Groups II and III of 

Voorhies minus the cranium). Coard and Dennell (1995) and Coard (1999) show that 

density is an important factor that influences the transport potential (supported by 

statistical analysis of the results), especially of articulated elements. 

Disarticulated versus partially or fully articulated skeletal elements 

The experiments conducted by Coard and Dennell (1995) show that for the three 

species tested (dog, mouflon sheep and pig-tailed macaque), the articulated parts are 

easily transported and even present a higher transport potential than the disarticulated 

skeletal elements. For instance, in the case of the dog, when disarticulated, neither the 

cranium nor the mandible is transported, whereas the articulated cranium-mandible is. 

The same is observed for the scapula. While the scapula alone remains in the lag group, 

the combined scapula-forelimb presents a good transport potential. In Coard’s (1999) 

experiment, the same is observed, with disarticulated bones showing a lesser transport 

potential than the articulated parts. 

Surface area 

The surface area (linked to the higher transport potential of articulated parts) also 

influences the transport potential of bones (Coard and Dennell, 1995; Coard, 1999). The 
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larger the surface, the higher the transport potential; a large surface means more area on 

which the water can exert pressure and therefore move the bones. 

Nature of the substrate 

The different substrates used by Voorhies (fine-grained sand) and Boaz and 

Behrensmeyer (coarse-grained sand) influenced the transport potential of the bones. The 

crania used by Voorhies filled with fine sand and therefore became immobile. Hanson 

(1980) argues that if the cohesion between the substrate and the bone is strong, then the 

bone is less likely to move and vice-and-versa. In other words bones tend to get easily 

embedded in silt and mud, and be more mobile on sand or rock. 

Dry versus wet bones 

Dry bones have a better transport potential than wet ones (Coard, 1999), partly 

because they can be transported by floating and therefore travel as fast as the water 

current, whereas wet bones tend to sink more easily and remain on the bed of the flow. 

Boaz and Behrensmeyer (1976) note that statistically speaking the weight in water and the 

volume of the considered skeletal parts is not significantly linked to the velocity. However, 

Coard (1999) demonstrates that both wet and dry volume have a positive coefficient with 

velocity. 

Review of transport potential per anatomical element 

Tables 2.6, 2.7 and 2.8 summarise literature about the transport potential for each 

disarticulated body part. 
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Table 2.6. Transport potential of skeletal elements considered in the literature. 

Skeletal part Voorhies 
1969 

Boaz & 
Behrensmeyer 

1976 

Coard & 
Dennell 

1995 
(dog) 

Coard & 
Dennell 

1995 
(sheep) 

Coard & 
Dennell 

1995 
(macaque) 

Coard 1999 

Cranium (complete) 0 + 0 + + + 
Skull fragments ND 0 ND ND ND ND 
Mandibles  0 0 0 0 0 0 
Isolated teeth ND 0 ND ND ND ND 
Vertebrae Atlas + 0 + + + 0 

Axis + ND 0 + + 0 
Cervical + ND + + + + 
Thoracic + + + + + + 
Lumbar + ND 0 + + + 

Ribs + 0 0 0 + + or 0 
Sacrum + + + + + + 
Clavicles ND 0 ND ND ND ND 
Sternum + + ND ND ND ND 
Scapulae Complete + or 0/+ ND 0 0 0 + or 0 

Acromion ND 0 ND ND ND ND 
Humeri Complete 0/+ ND 0 + 0 + or 0 

Proximal ND + ND ND ND ND 
Distal ND 0 ND ND ND ND 

Ulnae Complete + or 0/+ ND 0 0 0 + or 0 
Proximal ND + ND ND ND ND 

Radii Complete 0/+ ND 0 ND 0 ND 
Proximal ND + or 0 ND ND ND ND 

Pelvises Complete 0/+ ND 0 + 0 + or 0 
Acetabulum ND + ND ND ND ND 

Patellae ND 0 ND ND ND ND 
Femurs Complete 0/+ ND 0 + 0 0 

Head ND 0 ND ND ND ND 
Tibiae Complete 0/+ ND 0 0 0 0 

Proximal ND + ND ND ND ND 
Fibulae ND ND 0 ND 0 ND 
Calcanei ND + 0 + 0 0 
Astragali ND + 0 + 0 0 
Naviculars ND ND 0 0 + 0 
Cuboids ND + ND ND ND ND 
Metapodials 0/+ + + + + 0 
Phalanges 1

st
 + or 0/+ ND 0 + 0 0 

2
nd

 + or 0/+ ND 0 + 0 0 
3

rd
 + or 0/+ ND + + 0 0 

0: no transport potential; 0/+: low transport potential; +: good transport potential; ND: not documented. 
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Table 2.7. Velocity (cm/s) recorded in the literature for each skeletal element. 

Skeletal part Boaz & 
Behrensmeyer 1976 

Coard & Dennell 
1995 (dog) 

Coard & Dennell 
1995 (sheep) 

Coard & Dennell 1995 
(macaque) 

Cranium complete 19.61 0 15.79 15.41 
Skull fragments 0 ND ND ND 
Mandibles  0 0 0 0 
Isolated teeth 0 ND ND ND 
Vertebrae Atlas 0 11.28 17.51 8.77 

Axis ND 0 16.73 15.68 
Cervical ND 8.59 15.57 13.20 
Thoracic 9.14 10.54 14.80 13.51 
Lumbar ND 0 20.83 12.82 

Ribs 0 0 0 15.15 
Sacrum 14.33 9.89 17.24 14.56 
Clavicles 0 ND ND ND 
Scapulae Complete ND 0 0 0 

Acromion 0 ND ND ND 
Humeri Complete ND 0 7.28 0 

Proximal 8.84 ND ND ND 
Distal 0 ND ND ND 

Ulnae Complete ND 0 0 0 
Proximal 5.18 ND ND ND 

Radii Complete ND 0 ND 0 
Proximal 1.68 ND ND ND 

Pelvises Complete ND 0 16.98 0 
Acetabulum 9.15 ND ND ND 

Patellae 0 ND ND ND 
Femurs Complete ND 0 5.64 0 

Head 0 ND ND ND 
Tibiae Complete ND 0 0 0 

Proximal 2.44 ND ND ND 
Fibulae ND 0 ND 0 
Calcanei 11.59 0 9.87 0 
Astragali 7.32 0 7.41 0 
Naviculars ND 0 0 16.85 
Cuboids 12.50 ND ND ND 
Metapodials 7.01 12.00 6.07 13.98 
Phalanges 1

st
 ND 0 11.98 0 

2
nd

 ND 0 19.32 0 
3

rd
 ND 11.90 11.16 0 

ND: not documented. 
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Table 2.8. Transport potential and mean velocity (cm/s) for each complete, disarticulated skeletal element 
(after Voorhies, 1969; Boaz and Behrensmeyer, 1976; Coard and Dennell, 1995). 

Skeletal element Transport potential Mean velocity 

Sacrum ++ 14.00 
Cervical ++ 12.45 
Thoracic ++ 12.00 
Sternum ++ ND 
Cranium + 16.94 
Lumbar + 16.82 
Atlas + 12.52 
Metapodials + 9.76 
Pelvis 0/+ 16.98 
Axis 0/+ 16.20 
Third phalanges 0/+ 11.53 
Calcaneum 0/+ 10.73 
Astragalus 0/+ 7.36 
Humerus 0/+ 7.28 
Second phalanges 0+ 19.32 
Ribs 0+ 15.15 
First phalanges 0+ 11.98 
Radius 0+ ND 
Ulna 0+ ND 
Femur 0+ 5.64 
Tibia 0+ ND 
Navicular 0+ 0 
Fibula 0 0 
Patella 0 0 
Scapula 0 0 
Clavicle 0 0 
Isolated tooth 0 0 
Mandible 0 0 

++: transportable in all the cases considered; +: transportable in the majority of the cases (one or two 
exceptions); 0/+: low transport potential (half +, half 0); 0+: in the lag group in the majority of the cases (one 
exception); 0: always in the lag group. 

These theoretical results do not explain everything. For instance, metapodials 

present the same characteristics (in terms of density and shape) as long bones and yet 

they belong to the transportable group. Some differences between the same type of 

experiments (same protocol, same fluid used) are difficult to explain based only on the 

criteria of shape and density. For instance, the mouflon sheep, macaque and human 

crania are in the transportable group, whereas the dog cranium is in the lag one (Coard 

and Dennell, 1995). However, as already mentioned by Coard and Dennell (1995), the 

shape of a dog skull, as well as the density, present the same general characteristics as any 
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of the other skulls, especially the sheep. In the experiment conducted by Voorhies (1969), 

the cranium of the sheep is in the lag group, but not in the experiment conducted by 

Coard and Dennell (1995). 

Transport in water and orientation of the bones 

Within flowing water all bones and bone fragments become aligned and come to 

rest in a horizontal plane, even at high current velocities (maximum of 1.52 m/s; Voorhies, 

1966). Only in cases of torrential turbulent currents, the long bones might come to rest in 

a subhorizontal or vertical orientation (Voorhies, 1966), but this has never been tested 

experimentally. The orientation of the elongated bone fragments and long bones parallel 

to the direction of the current is often cited as evidence of a fluvial channel setting for 

fossil assemblages (Behrensmeyer, 1975; Shipman, 1981a). This is also demonstrated by 

experimental studies (Voorhies, 1966, 1969; Boaz and Behrensmeyer, 1976; Coard and 

Dennell, 1995). Regardless of the initial orientation of the bones when arriving in the fluid, 

the elongated bones (complete or partial long bones and ribs) tend to orientate parallel to 

the current (Voorhies, 1969; Boaz and Behrensmeyer, 1976; Coard and Dennell, 1995; 

Coard, 1999), with the largest end pointing downstream (Voorhies, 1966; Boaz and 

Behrensmeyer, 1976). This is especially true when the water is deep enough to completely 

cover the bones. Voorhies (1966) has registered cases when long bones orientate 

perpendicular to the current when the water flow is shallow and the bones are 

consequently partly emerged. The innominate bone is a good indicator of water direction, 

since it invariably orientates parallel to the current with the ilium pointing downstream 

(Voorhies, 1966; Coard and Dennell, 1995). According to Voorhies (1966) this bone tends 

to rest upside down, but this was not noted by Coard and Dennell (1995). The scapula is 

also a good indicator of flow direction and orientates parallel to it (Coard, 1999). Both the 

pelvis and the scapula loose their preferred orientation when still articulated (Coard, 

1999). However articulated vertebrae tend to align with the current. The lower jaw, when 

rotated by the current, can also orientate according to the flow direction (Voorhies, 1966), 
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although with a lesser degree of regularity than long bones, due to the less regular shape 

of mandibles. In deep water, mandibles tend to orientate parallel to the current, whereas 

in shallow water, they orientate transverse to the current. The attitude of the jaw bone is 

influenced by the strength of the current; in medium to fast velocities, jaws become stable 

in a convex-up position (Voorhies, 1966). The crania do not show any downstream 

alignement since they are either in the lag group (Voorhies, 1966) or rolling (Boaz and 

Behrensmeyer, 1976). The small and flat bones remain stable and do not show any 

preferential orientation according to the water flow (Voorhies, 1966; Boaz and 

Behrensmeyer, 1976). 

2.2. Hominin taphonomy in lacustrine and fluvial context 

2.2.1. Introduction 

 The majority of the hominins and associated fauna from Central and East Africa 

were preserved in fluvial and lacustrine environments (Behrensmeyer, 1975, 2008; 

Johanson et al., 1982; Walker, 1993; White et al., 1995; Pickford and Senut, 2001; Vignaud 

et al., 2002; Egeland et al., 2007). A brief literature review of early hominin taphonomy in 

different fossil localities from Central and East Africa is provided below. 

2.2.2. Case studies 

Sahelanthropus tchadensis (Toumaï) and associated fauna 

The remains of the earliest known representative of the hominin lineage, S. 

tchadensis (Brunet et al., 2002), were recovered together with abundant fauna 

(constituting the TM266 assemblage) in the Djurab Desert, northern Chad (Figure 2.2). The 

hominin remains include six specimens (one complete cranium, a fragmentary right 

mandible, a symphyseal fragment and three isolated teeth), representing a minimum 

number of one individual (Brunet et al., 2002). The assemblage is dated between 6 and 7 

Ma, and is composed of numerous aquatic taxa, such as fish, crocodiles, amphibians and 
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hippopotamids (Vignaud et al., 2002), all indicative of the proximity of a lake. On the other 

hand, the occurrence of primates, rodents, elephants, equids and bovids also show the 

existence of gallery forests and savannah in the vicinity (Vignaud et al., 2002). The 

assemblage formed over a short period of time and has an autochthonous origin. There is 

no evidence of water polishing and no sorting, which shows limited (Le Fur et al., 2009) or 

no fluvial transport (Vignaud et al., 2002). The accumulation of the assemblage could 

either be the result of a catastrophic event, as indicated by the presence of some 

specimens still in articulation and the variety in the bone and tooth wear, or an attritional 

process, or a combination of both (Le Fur et al., 2009). The state of preservation of the 

hominin specimens is variable. The skull is near complete but very crushed, while the 

other remains are undistorted and the bone surfaces generally well preserved (Brunet et 

al., 2002). There is no mention of carnivore or other biotic damage on the hominin 

remains. 

Orrorin tugenensis and associated fauna 

The fragmentary remains of O. tugenensis and associated animals were found in 

2001 in the Miocene Lukeino Formation, Tugen Hills, Kenya (Senut et al., 2001) (Figure 

2.2) and have been dated around 6 Ma (Sawada et al., 2002). They were recovered in 

fluvial and shallow lake deposits (Pickford and Senut, 2001). The hominins are represented 

by 13 fossils, belonging to a minimum of five individuals (Senut et al., 2001). The 

palaeoenvironmental reconstructions indicate a landscape composed of open woodland, 

with denser strands of trees in the vicinity, possibly fringing the lake margin and streams 

that drained into the lake (Pickford and Senut, 2001). Concerning the taphonomy of the 

assemblage, it seems that different events led to the preservation of the bones. Some 

fossils show evidence of carnivore damage, including the hominin femurs. Numerous 

fossils are covered with a thin pellicle of bacterial or algal origin, indicating that they fell 

into the water and were covered with algae before being buried in the sediment. On the 
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other hand, some fossils, including some hominin specimens, are highly weathered, 

indicating a long time of exposure before burial (Pickford and Senut, 2001). 

Ardipithecus ramidus and associated fauna 

 Ar. ramidus, whose remains were first identified in 1992 in Aramis, Middle Awash, 

in the Ethiopian Afar rift (White et al., 1994) (Figure 2.2), is now represented by 109 

specimens, belonging to a minimum of 36 individuals, including a near complete female 

individual, ARA-VP-6/500 (White et al., 2009a). The specimens were dated around 4.4 My 

(White et al., 1994) and were recovered in alluvial silty clay of the Lower Aramis Member. 

The palaeoenvironmental reconstruction suggests the presence of woodland environment 

with small patches of forest (Louchart et al., 2009; White et al., 2009b). Taphonomic 

analysis shows the absence of any damage associated with transport or sorting by water. 

The rarity of advanced stages of weathering in the fossil assemblage suggests that the 

time of exposure before burial was short. It also suggests a rapid deposition of the unit. 

The faunal assemblage is composed of small to large mammals, with some bones showing 

evidence of carnivore chewing, rodent gnawing and termite damage, as well as fracture 

and decalcification resulting from exposure to erosion (Louchart et al., 2009; White et al., 

2009a). Based on the tooth marks and body part representation (an overrepresentation of 

teeth, jaws and limb bone shafts on one hand, and underrepresentation of skull and limb 

bone epiphyses on the other), hyaenas and other medium to large size carnivores have 

been identified as important taphonomic agents in the formation of the faunal 

assemblage. The abundance of small mammal and small bird remains, as well as the type 

of damage observed on their bones, is interpreted as the result of owl predation and 

accumulation of regurgitated pellets. The near complete Ar. ramidus female individual 

ARA-VP-6/500 seems to have a slightly different taphonomic history. The remains 

(MNE=86) include numerous complete or near complete bones characterised by an 

absence of carnivore damage and weathering. The degree of preservation of the bone 

surface is very poor, and while the small bones are undistorted, the long bones are 
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variably crushed (White et al., 2009a). The skull is broken into several pieces that were 

found relatively dispersed, which indicates that the “bones of the carcass came to rest in a 

shallow swale on the flood plain” and were trampled, which is also visible in the way some 

larger bones are fragmented and scattered (White et al., 2009a). 

Kenyanthropus platyops and associated fauna 

The remains of K. platyops (a near complete skull and a partial left maxilla) and 

associated fauna were recovered in a mudstone level deposited along the margin of a 

shallow lake, West Lake Turkana, Kenya, 3.5 Mya (Leakey et al., 2001) (Figure 2.2). The 

vault has been heavily distorted by compression and the bone surface is poorly preserved. 

Australopithecus afarensis (Lucy) 

The near complete skeleton of Lucy (AL-288-1) was recovered in 1974 in the Hadar 

Formation, Afar Region, Ethiopia (Figure 2.2), and attributed to what was then a new 

species, namely Australopithecus afarensis (Johanson and Taieb, 1976; Johanson et al., 

1978; Johanson and White, 1979; Johanson and Edey, 1982). The skeleton preserves 

broken, but also complete or near complete bones, with all the body parts represented 

(the minimum number of elements preserved, including the teeth, is 42; Johanson and 

Taieb, 1976). The bone surface is also well preserved and shows no evidence of pre-

fossilisation weathering (Johanson and White, 1979; Johanson et al., 1982). As with the 

other hominins and associated fauna recovered from the Hadar Formation, the remains of 

Lucy were recovered in sediments consistent with lacustrine and lake margin deposits 

(Johanson et al., 1982). It has been proposed that Lucy’s remains were collected from 

secondary deposit, after having been eroded out of a palaeochannel sandstone, and 

transported by a modern stream (Johanson et al., 1982; Radosevich et al., 1992). 
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Australopithecus afarensis individuals from AL-333 locality 

 The locality AL-333 in the Hadar Formation, Afar Region, Ethiopia (4 km northwest 

of the junction of the Kada Hadar and the Awash River; Figure 2.2), is an excavated area of 

33 m2, which has yielded more than 200 fossil bones, including 18 recovered in situ. These 

fossils constitute the remains of a minimum of 13 individuals, including two infants, two 

juveniles, and nine adults (Johanson et al., 1982; Radosevich et al., 1992). They have all 

been attributed to Au. afarensis and dated to 3.2 My (Brown, 1982; Sarna-Wojcicki et al., 

1985). The fossils are preserved in a primary deposit (palaeosols), and do not show any 

evidence of any fluvial transport. For instance, a partial articulated food and hand have 

been recovered, and the body part frequencies show the absence of fluvial sorting of the 

bones. The weathering state of the assemblage is consistent with stage 1 of Behrensmeyer 

(1978), and there is no indication of scavenging or predation by carnivores (Radosevich et 

al., 1992). Furthermore, the faunal assemblage is exclusively composed of hominin 

remains, with the exception of a few fish, reptile and rodent bones (Johanson et al., 1982). 

The taphonomic hypothesis proposed to explain the accumulation of the hominins is a 

catastrophic event, such as a flood, leading to the simultaneous death of a group of 

australopithecines. The death would have been followed by a short period (a couple of 

months) of exposure during which decay and disarticulation took place before the final 

burial of the skeletons occurred (Johanson et al., 1982; Radosevich et al., 1992). 

Selam (DIK 1-1): a juvenile Au. afarensis skull and associated skeleton from Dikika, Ethiopia 

The skull and associated skeleton of a juvenile Au. afarensis (specimen DIK1/1, 

nick-named “Selam”) were recovered between 2000 and 2003 in the fluvial sediments of 

the Sidi Hakoma Member of the Hadar Formation, Ethiopia (Figure 2.2) (Alemseged et al., 

2006), which date to 3.31-3.35 My (Wynn et al., 2006). Based mostly on bone and teeth 

morphology, DIK 1/1 is considered to be a three year old female australopithecine 

(Alemseged et al., 2006). The near complete skull and articulated mandible were 

recovered in a block of sandstone matrix, in articulation with the right and left scapulae, 
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clavicles, cervical, thoracic and first two lumbar vertebrae, many ribs and the first known 

hyoid in early hominin fossil record (Alemseged et al., 2006). The hominin assemblage also 

includes post-cranial material: left scapula fragment and ribs, manual phalanges, left 

proximal tibia, a left articulated foot, including the distal fibula and tibia, the talus, 

calcaneum, tarsals and metatarsals, a right distal femur, associated with patella and 

proximal tibia, a right humerus, a left distal femur and patella, a left tibia fragment, a left 

femur fragment, and many rib fragments. Most bones are complete or near complete 

except for the long bones; they are relatively well preserved, even though they have 

suffered slight distorsion from sediment pressure (Alemseged et al., 2006). The associated 

non-hominin faunal material recovered in sandstone is dominated by ungulates, with a 

few carnivore and primate remains. The faunal spectrum is consistent with a mosaic of 

mesic habitats, including a woody component as well as evidence of open grasslands 

(Wynn et al., 2006). Many non-hominin faunal elements were recovered in articulation 

and show no evidence of pre-burial weathering (Alemseged et al., 2006). The proposed 

taphonomic scenario for the australopithecine is a quick burial shortly after death (i.e. 

corpse still intact), probably during a major flood event (Alemseged et al., 2006). 

Other gracile and robust australopithecines and Homo habilis specimens from East Africa 

 Several hundreds of specimens belonging to gracile (Australopithecus garhi and 

Australopithecus anamensis) and robust (Paranthropus boisei and Paranthropus 

aethiopicus) australopithecines, and Homo habilis have been recovered from various 

localities in the eastern part of the African continent: Hadar Formation, Middle Awash, 

Omo Valley (Ethiopia), Turkana Basin, Koobi Fora (Kenya), and Olduvai Gorge (Tanzania) 

(Figure 2.2). These specimens are represented by fragmentary isolated skull and post-

cranial elements, very rarely by complete bones and never by complete or near-complete 

skeletons. There are only a few cases of articulated bones preserved, such as an 

articulated right hand of a juvenile hominin, namely the holotype of H. habilis (specimen 

OH7; Leakey et al., 1964) and an articulated foot, the paratype of H. Habilis (specimen 
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OH8; Leakey et al., 1964, Susman and Stern, 1982). The majority of these specimens was 

recovered in lacustrine, floodplain or old riverbed environments and have undergone 

different taphonomic destructive processes, such as weathering, trampling, carnivore 

activity and dispersal by water (Behrensmeyer, 1975, 2008; Johanson et al., 1982; Potts, 

1988; Egeland et al., 2007). 

The Nariokotome H. erectus skeleton (KNM-WT 15000) 

KNM-WT 15000 is a near complete skeleton of H. erectus, recovered in the 

Turkana Basin, near the Nariokotome Sand River, northern Kenya (Figure 2.2). Its remains, 

found in an ancient floodplain environment within lowland swamp, have been dated to 

1.5 Ma (Brown and McDougall, 1993; Fiebel and Brown, 1993). Most of the bones are 

broken, possibly due to trampling by large mammals. There is no articulation preserved, 

even though there is some anatomical proximity, such as the left scapula and humerus, 

and the left ilium and femur. The bones appear to have been dispersed by a gentle current 

(several metres wide). The presence of a periodontal lesion on the right side of the 

mandible indicates that the individual could have died because of an infection of the tooth 

and gum. The absence of carnivore damage as well as weathering argues in favour of 

burial of the skeleton soon after death, either because it fell into the swamp or because it 

was washed into it by a minor flood. After disarticulation, trampling by large mammals 

and dispersal by water, the different bones eventually became embedded in the swamp 

mud where they fossilised (Walker, 1993). 
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Figure 2.2. Early hominin fossil localities in Central and East Africa (after Egeland et al., 2007, modified). The 
localities mentioned in the text are highlighted in red. 

2.2.3. Fossil hominins in lacustrine and fluvial contexts: summary 

 A certain number of similarities amongst the different examples mentioned above 

can be highlighted (Table 2.9). 
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Table 2.9. Summary of the preservation of some early hominins recovered in Central and East Africa. 

Species MNI Fragmentation Completeness Elements in 
articulation 

Taphonomy References 

S. tchadensis 1 fragmentary remains, 
except the near 
complete skull 

one skull, 12 teeth, a right hemi-
mandible = (14/183)*100 = 
7.65%  

no no specific 
agent 
identified 

Brunet et al., 
2002; Vignaud 
et al., 2002; Le 
Fur et al., 
2009 

O. tugenensis 5 no complete bone 
preserved 

[(13*5)/(183*5)]*100 =7.10% no carnivores, 
weathering, 

Pickford and 
Senut, 2001 

Ar. ramidus 1 all the bones are 
complete or near 
complete for ARA-VP-
6/500; fragmentary 
isolated bone remains 
for the other individuals 

(ARA-VP-6/500 skeleton):86 
elements  
%survival: (86/183)*100 = 47% 
For the whole hominin 
assemblage: 
[109/(36*183)]*100= 1.65% 

no trampling White et al., 
2009a; 
Louchart et 
al., 2009 

K. platyops 2 skull near complete; 
left maxilla very 
fragmentary 

2 remains 
% survival= (2/183)*100 =1.1% 

no no specific 
agent 
identified 

Leakey et al., 
2001 

Lucy (Au. 
afarensis) 

 all bones are broken 
but the majority are 
complete or near 
complete 

MNE = 48 
% survival = (48/183)*100 = 
26.2% 

no no 
weathering, 
one puncture 
possibly 
produced by 
a carnivore 

Johanson and 
Taieb, 1976; 
Johanson and 
Edey, 1982; 
Johanson et 
al., 1982 

Au. afarensis 
individuals 
from AL-333 
locality 

 majority of fragmentary 
and isolated remains 

MNI=13; MNE = 200 
%survival = 
[200/(13*183)]*100=8.4% 

one partial 
foot and one 
partial hand 

weathering 
stage 1, no 
evidence of 
carnivore 
damage 

Johanson et 
al., 1982; 
Radosevich et 
al., 1992 

Selam (DIK-1/1) 
Au. afarensis 

 all bones are complete 
and near complete, 
except for the long 
bones 

Most elements preserved 
MNI = 1; MNE = 67 
%survival 
[67/(1*171)]*100]=39.2% 

one partial 
foot and 
skull 
articulated 
with 
mandible 
and upper 
body 
(clavicles, 
scapulae, 
vertebrae 
and ribs) 

no 
weathering, 
no evidence 
of carnivore 
damage 

Alemseged et 
al., 2006; 
Wynn et al., 
2006 

KNM-WT 15000 
(H. erectus) 

1 most of the bones are 
broken 

- no trampling Walker, 1993 
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The hominin specimens recovered are almost always disarticulated. Complete 

bones are rare. A common trait is the rapidity of burial, which has protected the hominin 

specimens from being intensively damaged by taphonomic agents. Hence, carnivore, 

rodent and weathering damages are rare on these skeletons (Table 2.9). It is noteworthy 

to remember that the examples mentioned above represent exceptions within the fossil 

record rather than the rule. Amongst the hundreds of specimens recovered in East Africa, 

specimens AL-288-1 (“Lucy”, Au. afarensis), ARA-VP-6/500 (Ar. ramidus), DIK-1/1 (“Selam”, 

Au. afarensis), and KNM-WT 15000 (“Turkana boy”, H. erectus) are the only individuals 

represented by near-complete skeletons. 
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Chapter 3. Materials 

1. HOMININ REMAINS 

1.1. Individuals 

 The hominin specimens used in this study comprise a collection of 256 fossil bones 

and teeth (for a complete list of specimens, see Appendix 1). The minimum number of 

individuals (MNI) is estimated at six. Two individuals (MH1 and MH2) are near complete, 

whereas the other four individuals are each represented by only a few fragments. 

Malapa Hominin 1 (MH1) from Facies E and D was the first individual discovered. It 

is a juvenile male represented by 101 bones, bone fragments and teeth. The specimens 

that have been prepared so far include most of the body parts; the skull and the mandible, 

elements from the upper and the lower limbs, mostly from the right side (scapula and long 

bone fragments, as well as a few metacarpals, metatarsals, and one phalanx), elements 

from the axial skeleton (clavicle, vertebrae, ribs, and sacrum) and parts of the pelvis. A 

block of calcified sediment (UW88-B051) contains hominin bones that are attributed to 

MH1. This block has not been prepared yet (virtual segmentation in progress) and the 

bones have so far only been identified using CT scanning images. The quality of the 

scanning images allows preliminary identification of the bones present inside, which 

include the left hemi-mandible with the three lower molars (the first two ones erupted 

and the third one in crypt), the complete left femur, a fibula shaft, the distal part of the 

right ulna, the left clavicle, at least four complete or near complete ribs, a possible 

fragment of a radius or rib, the shaft of a long bone (possibly the left humerus), another 

near complete long bone (a tibia or the distal right femur), a possible distal part of a 

humerus, and five foot or hand bones. 

Malapa Hominin 2 (MH2) is an adult female, represented by 119 bones, bone 

fragments and teeth. All of the body parts are present, except for the skull. MH2 
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comprises more articulated specimens than MH1, and a large number of the skeletal 

elements are complete. 

Two remains, namely a distal right humerus (UW88-81) and an associated proximal 

right ulna (UW88-82) belong to the same individual, possibly an infant. It referred to as 

MH3. Its remains were recovered from Facies E, just above Facies D, west of it, near to 

where the Dinofelis remains have been recovered. 

Malapa Hominin 4 (MH4) is an adult (sex indeterminate) and is composed of a near 

complete right tibia (UW88-21, the distal tibia fusing with UW88-40, the proximal tibia). 

Malapa Hominin 5 (MH5) is a possible other infant (sex indeterminate) and 

comprises two bones, including a right femur (UW88-175) and an associated 

unidentifiable bone fragment (UW88-176). 

Malapa Hominin 6 (MH6) is an adult represented by a mandible with teeth. These 

remains are still in situ in Pit 2 (Facies F), embedded in the matrix, and have therefore not 

been issued specimen numbers yet. 

Twenty-six other elements do not at present refit with any of the previously 

mentioned individuals. Two of them were recovered in situ in Facies D, while the other 20 

are fragmentary bone remains that were recovered during the manual preparation of ex 

situ breccias blocks. They include long bone fragments, elements from the innominate and 

the mandible, phalanges and metapodials, and rib fragments. For a complete list of the 

hominin specimens recovered so far, see Appendix 1. 

1.2. Taxonomic attribution 

 The remains of the two well-preserved individuals (MH1 and MH2) constitute the 

Holotype and Paratype of a new hominin species, described by Berger et al. (2010). This 

new species was named sediba after the seSotho word for “spring”. It has been placed in 

the genus Australopithecus, but presents a combination of primitive and derived 



52 
 

characters not observed in any of the other australopithecine species (Berger et al., 2010; 

Berger, 2012). The adherence to the genus Australopithecus is based on the persistence of 

primitive characters, such as a small brain-size, long upper arms, gracile morphology of 

the calcaneum and body dimensions in general (Berger et al., 2010; Carlson et al., 2011; 

Kibii et al., 2011; Kivell et al., 2011; Zipfel et al., 2011; Berger, 2012). However, several 

modern features such as the morphology of the pelvis (Berger et al., 2010; Kibii et al., 

2011), the reduced size of the canines (Berger et al., 2010), the development of some 

human-like parts of the brain (Carlson et al., 2011), and the ankle joint (Zipfel et al., 2011) 

show that Au. sediba also shares a number of characters with early Homo. Au. sediba is 

thus potentially a key-species to understanding the ancestry of the genus Homo and the 

transition from australopithecines to early Homo, whether Homo habilis or Homo ergaster 

(Berger et al., 2010; Berger, 2012). 

1.3. Stratigraphic provenance of the hominin remains 

Subsequent to the discovery of the first hominin remains, fieldwork at the site 

between 2008 and 2010 focused on collecting all the ex situ blocks removed by the 

miners, which were lying next to the main opening of the site (Figure 3.1). To date, a few 

in situ blocks of calcified sediment have been extracted from the site, and the in situ 

decalcified sediment has undergone excavation and sieving. The majority of the hominin 

remains (n. 205) were found in the ex situ blocks (see Appendix 1). However, a significant 

number of remains (n. 51) were still embedded in the matrix within the cave deposit. All 

of the MH2 in situ remains come from Facies D, dated to 1.977 Million years (Figure 3.1.; 

Dirks et al. 2010; Pickering et al., 2011), while the in situ MH1 remains come from the 

bottom of Facies E, just above Facies D (P.Dirks, pers. comm.). The MH3 remains were 

recovered in Facies E, just above Facies D (Figure 3.1). The remains of another individual 

(MH6, a mandible together with some teeth) are still embedded in Pit 2 in Facies F. The 

isolated bones of MH4 and MH5 were found in a separate ex situ blocks removed by the 

miners. It is at present difficult to confidently determine their facies of origin. 
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Figure 3.1. 3D reconstruction of Pit 1 at the Malapa site showing the mined area and the provenance of the 
hominin in situ remains (image: courtesy of D. Conforti, Optech company, modified). 

2. NON-HOMININ FAUNAL REMAINS 

To date, the total number of identified non-hominin faunal remains is 1061. 

Preliminary results on the faunal remains have been published (Table 3.1.; Dirks et al., 

2010; Kuhn et al., 2011; Val et al., 2011; Hartstone-Rose et al., 2013), but the analysis of 

the whole assemblage is currently in progress. The majority of the remains (n. 957) come 

from ex situ blocks of clastic calcified sediments, while 104 remains were recovered in situ 

or during sieving of decalcified sediment. 
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Table 3.1. Identifiable fauna from Malapa (after Dirks et al., 2010 ; Kuhn et al., 2011 ; Val et al., 2011 ; 
Hartstone-Rose et al., 2013). 

Order Family Species MNI 

CARNIVORA Felidae Dinofelis sp. 1 
  Dinofelis barlowi 1 
  Panthera pardus 1 
  Panthera cf. P. pardus 1 
  cf. Panthera sp. 2 
  Felis nigripes 1 
  Felidae indet.  
 Hyaenidae Parahyaena brunnea 2 
  cf. Parahyaena brunnea 1 
  Hyaenidae indet.  
 Canidae Large canidae indet. 1 
  Vulpes skinneri 1 
 Herpestidae Atilax cf. A. mesotes 1 
  cf. Herpestidae 1 
 Viverridae cf. Genetta sp.  
PERISSODACTYLA  Equus sp. 1 
ARTIODACTYLA  Suidae indet. 1 
  Oreotragus sp. 1 
  Megalotragus sp. 1 
  Large-sized alcelaphine 1 
  Tragelaphus cf. scriptus 1 
  Tragelaphus cf. strepsiceros 1 
  Lepus sp. 1 
PRIMATES  Papio sp. 1 
TESTUDINES  Chelonia sp. 1 
MICROFAUNA  Elephantulus sp. 1 

3. OTHER TYPES OF REMAINS 

3.1. Coprolites 

 Only one coprolite has been recovered and prepared so far. It was found in an ex 

situ block of calcified sediment (UW88-B020) and tentatively identified as carnivore in 

origin, and has been used for pollen analysis and palaeoecological assessment (Bamford et 

al., 2010). A few other possible coprolites have been identified in blocks through virtual 

exploration using Avizo 6.3 software but the preparation of these blocks is still to be done. 

3.2. Millipedes 

 One almost complete pill millipede was recovered and given a specimen number 

(UW88-763). 
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3.3. Insect pupae 

 Abundant insect pupae were observed outside and inside (i.e. during virtual 

exploration) blocks of calcified sediment. 

3.4. Molluscs 

 One small terrestrial snail is recorded and has been given a specimen number 

(UW88-1117). It was found in an ex situ block (UW88-B999). Two other shells of Gulella 

sp. and one Achatina sp. have been identified during the preparation of breccias blocks. 

They have not been assigned specimen numbers. Numerous other mollusc shells have 

been observed and await a specimen number. 

3.5. Seeds 

 Seeds have been identified in the block that contained the MH2 scapula fragment. 

They have been virtually extracted using Avizo 6.3 and their identification is currently in 

progress (Tea Jashashvili, pers.comm.). 

3.6. Organic residues 

Organic material, possibly related to soft tissues, has been identified on some bone 

remains (Keeling et al., in prep.) and is currently under study, to determine its exact origin. 
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Chapter 4. Methods 

This chapter presents the methods and techniques that were applied during the 

collection, excavation, preparation, and taphonomic analysis of the fossil remains. The 

first half of this chapter concerns the methodology followed prior to the study described, 

which was established by various members of the scientific team responsible for the 

Malapa site and faunal material. If focuses on how the remains were collected at the site, 

how they were prepared, both physically and manually, and how they were catalogued. In 

the second half of the chapter, I describe the methods that I have used for the 

taphonomic study of the hominin remains. I chose a combination of classical taphonomic 

methods and modern CT scanning and 3D reconstruction techniques, in order to 

reconstruct the sequence of events that led to the preservation of MH1 and MH2, from 

death and decay to burial and recovery. This represents a new multidisciplinary approach 

that may be dubbed palaeoforensic taphonomy. It applies modern forensic methods of 

enquiry to the “cold case” of 1.977 million year old hominins in the same way taphonomy 

is applied to modern forensic cases, with the goal of understanding the causes of death 

and conditions surrounding burial. The traditional taphonomic methods used include a 

palaeontological approach, which looks at the context and the general characteristics of 

the faunal assemblage; a physical approach which, through a microscopic anlaysis, 

analyses bone surface modifications and identifies agents causing them; and a spatial 

approach, which for the first time, applies modern CT scanning and virtual technologies to 

reconstruct the original burial posture of the hominins into the deposit. Finally, I propose 

a definition of the new concept of palaeoforensic taphonomy, a discipline drawn from the 

fields of forensic anthropology, archaeology and taphonomy, before considering the 

various implications of burial and death postures in the palaeontological, archaeological 

and historical records, which form the core of this new concept and practice. 
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1. EXCAVATIONS, PREPARATION AND RECORDING 

1.1. Excavation methods 

Because the Malapa site underwent some limestone mining at the beginning of the 

20th century (Dirks et al., 2010; Berger, 2012), the priority of the first field campaigns in 

2008/2009 was to collect ex situ blocks that had been removed by the miners. These 

blocks were located on the surface, a few metres away from the main opening (Pit 1), 

mostly on the northern path that runs along the site. The ex situ blocks were taken to the 

Institute for Human Evolution (University of the Witwatersrand, Johannesburg) in order to 

be manually and/or virtually prepared. 

During the first field season, some in situ remains were also collected from the 

deposit in Pits 1 and 2. These remains were of two types: some were recovered from 

decalcified sediment (Pit 1 and Pit 2) and therefore easily extractable using only a brush; 

others were embedded in the calcified sediment (only from Pit 1). The latter (mainly 

hominin remains) were removed, together with the calcified sediment that contained 

them, using a small axe for the small-sized blocks (J.M. Kibii, pers. comm.). In the case of 

the block containing MH2 bones, wedges, bars, as well as hydraulics were placed along 

natural cracks to free the block (L.R. Berger, pers. comm.). These blocks were later 

prepared in the laboratory. Systematic sieving of the excavated decalcified sediment was 

conducted using a 1 mm mesh-screen sieve (J.M. Kibii, pers. comm.). 

A total station and laser theodolite (Nikon NPR 352) were set up in order to record 

the GPS coordinates of all the in situ remains and blocks containing bone specimens. The 

position of the ex situ blocks was also recorded. The X coordinate corresponds to the 

west-east position, the Y coordinate to the north-south position and the Z coordinate 

indicates the depth of the bones below the datum within the deposit. Figure 4.1 and Table 

4.1 show the location in the site and the coordinates of the four points (Base, A1, B1 and 

C1) used as references during the setting up of the total station. 



58 
 

 

Figure 4.1. Position of the reference points used for the total station. 

Table 4.1. X,Y and Z coordinates of the reference points. 

Point East North Height 

BASE -80312.004 2865453.500 1417.200 
A1 -80320.233 2865464.176 1417.378 
B1 -80321.179 2865442.448 1415.389 
C1 -80295.765 2865446.855 1415.278 

Two important points have to be borne in mind, as they have a great influence on the 

actual composition of the faunal assemblage. Firstly, the major part of the first field 

campaigns consisted of collecting all the blocks of calcified sediment removed by the 

miners and located around the pit, as well as fossils that were visible inside the deposits 

and present in loose decalcified sediment that did not require great investment in terms 

of excavations. The in situ deposits, together with the fossils they contain are therefore to 

date almost untouched. Secondly, priority was given to the recovery and collection of 

hominin remains, which means that the extremely high number of hominin remains 

present in the faunal assemblage might be, at least partly, explained by collectors bias. 
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This was true for both the in situ remains and the remains recovered from ex situ blocks. 

The order of preparation of blocks was organized according to their level of importance; 

with the ones containing potential hominin/primate remains first. CT scanning and virtual 

exploration techniques were applied to pre-identify possible hominin remains inside 

calcified blocks of sediment and prioritize the preparation of these blocks (see Smilg, 2012 

and below). 

1.2. Laboratory preparation methods 

Acid preparation techniques using hydrochloric, acetic, and formic or thioglycollic 

acids to remove vertebrate fossil bones from calcified matrix were established almost a 

century ago and are still in use today (White, 1946; Toombs, 1948; Rixon, 1949; Toombs 

and Rixon, 1959; Rudner, 1972; Howie, 1974; Whybrow, 1985; Adams, 2006). Chemical 

preparation methods are usually preferred to physical methods due to the time 

investment, since manual removal of the matrix requires much more time than chemical 

dissolution. Chemical methods usually consist of solutions containing acid (concentration 

usually between 6 and 10%) dissolving the CaCO3 component of the calcified sediment 

(Adams, 2006). However, acid preparation is a risky technique that, in some cases, can 

damage the fossils, produce cracks and render the bone surface friable (Toombs and 

Rixon, 1959; Rudner, 1972). Some authors recommend using it only on resistant bones 

and as a last resort because “there will always be some weakening of the bone when using 

acid, and the prepared specimen will be very fragile” (Rudner, 1972, p.121). In order to 

avoid any risk, and given the remarkable level of preservation of the bone surfaces of the 

Malapa fossils, it was decided to opt for physical preparation methods rather than 

chemical dissolution. The physical preparation is conducted under a microscope using an 

air-drill tipped with a small diamond head, allowing a high degree of precision during the 

removal of the calcified sediment. The physical preparation was conducted by the 

following people: C. Dube, S. Jirah, M. Kgasi, R. Languza, J. Malaza, G. Mokoma, P. 

Mukanela, T. Nemvhundi, M. Ngcamphalala, S. Tshabalala and C. Yates. In some cases, the 
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matrix was not removed completely, for instance when it was holding the bones together 

and/or because of potential preservation of organic material between the calcified 

sediment and the bones. 

1.3. Virtual exploration of blocks of calcified sediment 

Several hundreds of blocks were brought back from the site to the laboratory 

(Institute for Human Evolution, University of the Witwatersrand, Johannesburg). Given the 

time investment required by physical preparation, L.R. Berger and J.M. Kibii, the permit 

holders of the site, decided to apply Computed-Tomography (CT) scanning coupled with 

3D exploration techniques, in order to conduct a preliminary sorting between blocks 

containing fossils and those with none, as well as to facilitate and guide manual 

preparation (see Smilg, 2012 for more details about the virtual preparation techniques 

applied at Malapa). One hundred and forty-two blocks were scanned at the Charlotte 

Maxeke Hospital of Johannesburg at the Radiography Service (co-supervised by J. Smilg 

and K.J. Carlson) using two CT-scanners, a Philips Brilliance 16 slice CT and a Siemens 40 

slice CT; the protocol applied was a Head routine (Smilg, 2012). 

The images obtained with the scanner were then processed using Avizo 6.2 computer 

software, in order to produce 3D volume renderings of the blocks (see below for more 

details about the virtual imaging techniques). For each block, the CT-scanner produces a 

stack of images or “Digital Imaging and Communication in Medicine” (DICOM) stack (one 

image every centimetre or every two centimetres). This stack of images is used by the 

Avizo software to produce an isosurface of the block, as well as an orthoslice, that allows 

accessing the internal part of the block. A virtual exploration of the blocks for fossil bones 

was subsequently conducted to preliminarily identify any bone, tooth and other fossil 

remains (e.g. coprolites, artifacts, insect pupae). Different variables, such as the size and 

geometry of the block, and the parametres chosen during the scan (e.g. field of view, 

section thickness and algorithms), affected the readability of the scanned images (Smilg, 

2012). Depending on the quality of these data, it was in some cases possible to identify 
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the bones to Order (Primates, Artiodactyla, Perissodactyla or Carnivora). Each block was 

assigned a colour according to the level of priority for further physical preparation: red for 

“high priority” (blocks containing probable primate/hominin remains), white for “medium 

priority” (blocks containing non-primate identifiable faunal remains), and yellow for “low 

priority” (blocks containing non identifiable bone remains) (Smilg, 2012). Feedback was 

provided to the laboratory technicians concerning the location of the fossils within blocks 

and the types of fossil remains (when known) present inside blocks. This technique 

eliminated empty blocks from the physical preparation queue (see Smilg, 2012). 

Identifiable fossils too small and/or fragile to be physically removed from the 

surrounding matrix were virtually extracted using Avizo. This was the case for a small 

mammal hemi-mandible (Val et al., 2011) and some hominin remains (e.g. MH1 skull, 

MH2 first rib, scapula, manubrium, and patella). For the hominin remains, renderings were 

used to generate a 3D printout. 

1.4. Digital record of the excavation and preparation 

Images were taken at each step of the excavation and fossil preparation processes, 

constituting a large database of several thousand digital and printed pictures. The 

preparation of blocks containing the hominin remains forms the large majority of the 

digital record, but pictures were also taken during the preparation of blocks containing 

non-hominin faunal remains. Numerous pictures taken during the collection of the blocks 

from the site are also on file. 

1.5. Taxonomic attribution and cataloguing of the fossil remains 

1.5.1. Taxonomic identification 

Taxonomic attribution and anatomical identification were conducted by different 

members of the Malapa team studying hominin and non-hominin faunal material (L.R. 

Berger, J.M. Kibii, D.J. de Ruiter, B.F. Kuhn and C.M. Steininger). 
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1.5.2. Cataloguing of the faunal remains 

All faunal remains were given a catalogue number (prefix U.W. 88-...) consistent 

with the general indexing that was established by Zipfel and Berger (2009) for all fossils 

belonging or related in any way to the University of the Witwatersrand (housed in the 

collections of Wits and/or under the responsibility of someone linked to Wits). The 

number 88 refers to the Malapa site, which is the 88th site that falls under the 

responsibility of the University of the Witwatersrand (Zipfel and Berger, 2009). 

Information concerning the hominin and non-hominin faunal remains (specimen number, 

taxonomic and anatomical attribution) is entered in a Microsoft Access Database, and two 

separate Microsoft Word catalogues for the hominin and carnivore remains have also 

been established. 

1.5.3. Creation of the database 

I have created a comprehensive Microsoft Excel Database that consists of 70 

different fields for all the faunal material (hominin and non-hominin). In this database, 

information about the stratigraphic origin (in situ/ex situ, block and coordinates), taxon 

(family, genus and species) and anatomy (element, portion and side) is recorded, as well 

as about the type of bone breakage and surface modifications observed. For each field of 

information, I have used abbreviations commonly used by zooarchaeologists (Gifford and 

Crader, 1977; Costamagno, 1999a; see Appendix 3). 

Eight anatomical regions have been defined in order to classify the different types 

of bones, inspired by the classification proposed by Fosse (1994) with some modifications 

(Table 4.2). The following bone categories are considered: 
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Table 4.2. Bone categories used in the database for faunal remains. 

BODY REGION BONES 

CRA (cranium) calvarium, mandible and hyoid 
TTH (teeth) teeth 
LBN (Long bones) humeri, radii, ulnae, femurs, tibiae and fibulae 
FBN (flat bones) scapulae, pelvises 
RACHIS ribs, sternebrae, manubrium and clavicles 
VER (vertebral column) vertebrae and sacrum 
META (metapodials) metacarpals and metatarsals 
SHBN (short bones) carpals, tarsals, phalanges, patellae 

A complete list of abbreviations is provided in the explanation of the different fields of 

the database in Appendix 3. 

2. CLASSICAL VERTEBRATE TAPHONOMY: THE TRIPLE APPROACH 

2.1. Introduction 

The first two approaches, namely palaeontological and physical, have been well 

described and used by researchers in the past decades. The “palaeontological approach”, 

as described by Domínguez-Rodrigo et al. (2007), looks at the general aspects of the 

complete faunal assemblage and proposes interpretations based on the composition of 

the faunal spectrum, skeletal part representation and mortality profiles. The “physical 

approach” concerns the bone surface and “concentrates on changes in the physical 

attributes of bones throughout their taphonomic history” (Domínguez-Rodrigo et al., 

2007, p.23). In other words, the physical approach aims at identifying all types of bone 

damage and the different agents that caused them, whether biotic or abiotic, based on 

modifications of the bone surface, both macro- and microscopically visible. I have chosen 

to use a third approach, the “spatial approach”. Traditionally, the spatial approach is 

limited to the study of bone distribution in a deposit, and proceeds in two dimensions only 

(analysis of the bone distribution in the horizontal and vertical planes). Here, I combine 

new technologies (Computed-Tomography, micro-Computed-Tomography scanning 

methods and 3D rendering software) with more traditional techniques (study of 

orientation and direction of the bones in the deposit) to propose an innovative 3D model 
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of the spatial distribution of the hominin fossils within the deposit, and analyse its 

implications in terms of taphonomy of the assemblage (accumulation, site formation, 

fossilisation processes and original position of the hominin remains in the deposit). 

2.2. Palaeontological approach 

2.2.1. Quantitative units: definitions 

I refer to different quantitative units commonly used in zooarchaeology and 

taphonomy (Lyman, 1994a). These units serve to estimate the abundance of remains and 

identifiable specimens (NR, NISP and MNE), the number of individuals for each taxon 

(MNI) and to analyse the skeletal element representation and the degree of bone 

preservation (NR, NISP, MNE, MAU and percentage survival). A list of these units together 

with their definitions is provided below. 

The total number of bone and tooth fragments recovered in the assemblage, 

including identified, identifiable and unidentifiable ones, is called NR (Number of 

Remains). 

The NISP represents the total Number of Identified Specimens (Payne, 1975). The 

term “specimen” refers to any bone or tooth fragment identified to the anatomical level 

(Lyman, 1984) and/or the taxonomic level (Klein and Cruz-Uribe, 1984; Davis, 1987). The 

latter implies in most cases the former since taxonomic identification cannot be 

conducted without anatomical identification (Lyman, 1994b). Consequently, “identified” 

means a bone that was given either an anatomical and taxonomic attribution or only an 

anatomical attribution. 

The MNE (Minimum Number of Elements; Bunn, 1982) is used to estimate the 

frequency of each skeletal element (Lyman, 1994b). In my estimation of the MNE, I have 

followed a manual overlap method as advocated by Bunn et al. (1986), taking into account 

criteria such as size and morphology. The criterion of age (infant, juvenile, adult, old) is 

also considered. 
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The MNI, or “Minimum Number of Individuals necessary to account for all the 

kinds of skeletal elements found in the skeleton of a taxon” (Lyman, 1994b, p.100), is 

calculated in order to estimate the abundance of different taxa within the assemblage 

(Plug and Plug, 1990). The MNI is estimated using the highest MNE value for each taxon 

and, as for the MNE, combines different criteria, such as age, size and morphology. 

The percentage survival is used to calculate the degree of bone preservation in the 

faunal assemblage and to obtain information about body part frequencies. I refer to 

Brain’s definition (1969, 1976), according to whom the percentage survival is the 

“observed proportion of each anatomical part that survived attritional processes” (Brain, 

1969, 1976 in Lyman, 1994a, p.46). It is calculated as follows: 

(100 x MNEe) / (MNI x number of times e occurs in one skeleton) 

2.2.2. Fragmentation 

The intensity of bone fragmentation is informative in terms of the origin of the 

bone accumulation and diagenetic processes that have affected the bone assemblage 

(Binford, 1981; Brain, 1981; Lyman, 1994b). For instance, different carnivores (felids 

versus hyaenids) tend to produce different fragmentation ratios (Richardson, 1980) and 

several geological processes can lead to bone fragmentation (e.g. rockfalls, sedimentary 

compaction and movement; Brain, 1981; Texier, 2000). In order to estimate the degree of 

fragmentation, I compare two different ratios: the ratio complete/fragmentary bones and 

the ratio NISP/MNE (Richardson, 1980; Klein and Cruz-Uribe, 1984). 

2.2.3. Breakage pattern 

It is possible to estimate whether a bone was broken while dry or fresh. This has 

taphonomic implications and can help the identification of the agent(s) responsible for the 

breakage of the bones (e.g. carnivores, percussion by a hammerstone, trampling or 

sedimentary pressure). Different studies have focused on describing green bone fractures 

(Myers et al., 1980; Binford, 1981; Bunn, 1981b, 1983; Haynes, 1983b; Johnson, 1985; 
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Lyman, 1987; Blumenschine, 1988; Blumenschine and Selvaggio, 1988) and different 

criteria have been proposed to describe the morphology of the breakage (Shipman et al., 

1981; Villa and Mahieu, 1991). Here I refer to the criteria proposed by Villa and Mahieu 

(1991) for human long bones to differentiate between green and dry bone breakage 

patterns. Since these criteria have been established on long bones, I do not attribute a 

type of breakage to any other bone category. The fracture angle, outline and edge are 

considered, as well as the intensity of the fragmentation (i.e. shaft circumference, shaft 

fragmentation, lengths of the shaft fragments and breadth/length ratio). Fractures on dry 

bones are typically characterised by a right angle, a transverse outline and a jagged edge, 

whereas green bone fractures are associated with an oblique angle, curved outline and 

smooth edge (Villa and Mahieu, 1991). 

2.2.4. Joints, articulations and disarticulation sequence 

A few definitions 

The analysis of disarticulation pattern in a fossil assemblage can provide useful 

palaeoecological and taphonomic information, such as the length of time between death 

and burial, the impact and intensity of scavenging activities and the type of transport of 

the bones (Hill and Behrensmeyer, 1984; Smith, 1980, 1993). In forensic context, the 

degree of disarticulation can be influenced by the action of scavengers, such as canids, 

and can be used to estimate the postmortem interval (Haglund et al., 1989). 

The term “articulation” refers to any direct contact in the body between two 

bones. Several articulations can form a “joint” such as the elbow joint, the hip joint or the 

knee joint, only to mention a few, which are themselves composed of several 

articulations. There are three different types of articulation, according to the type of 

movements they allow. The diarthrosis, or synovial articulation, is a mobile articulation 

that permits free movement, such as the articulations between the humerus and the 

scapula and between the femur and the pelvis. The amphiarthrosis is a semi-mobile 

articulation that allows limited movement and is connected with ligaments or elastic 
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cartilage (e.g. articulations between the vertebrae). The synarthrosis is an immobile 

articulation lacking a synovial cavity, which does not allow for any movement (e.g. 

articulations between the skull bones, also called sutures) 

(http://www.thefreedictionary.com). 

In a natural environment, an undisturbed skeleton will normally disarticulate 

following a certain order, starting with the weakest joints and ending with the strongest 

ones (Table 4.3). The type of environment (dry versus wet) might modify slightly the 

sequence of passive disarticulation (see Hill, 1979a) but as a general rule, the resistance 

and strength of joints and articulations are related to the weight they are supporting 

(Duday, 2009). For instance, in humans, which are bipedal, the articulation between the 

skull and the mandible is weak, since it only supports the weight of the mandible, whereas 

the articulation between the sacrum and ilium is very resistant because it corresponds to 

the point where the lower body supports the weight of the upper body (Duday et al., 

1990; Maureille and Sellier, 1996; Duday, 2009). The disarticulation order presents some 

variations between humans and quadruped mammals; they are presented here 

separately. 

Persistent joints and articulations in the human skeleton 

The persistent joints and articulations (Table 4.3) are the ones consistent with 

body parts subjected to high mechanical pressure, such as the atlas/occipital articulation, 

articulations between the lumbar vertebrae, between the sacrum and the last lumbar 

vertebra, the sacrum/ilium articulation, the femur/tibia articulation, and the joints of the 

ankles and tarsals (Duday et al., 1990; Maureille and Sellier, 1996). They mostly concern 

large-sized bones. Under undisturbed conditions, they can stay articulated for several 

months or even several years (Duday et al., 1990) and only disarticulate a long time after 

death and after decomposition (Maureille and Sellier, 1996). The articulations between 

the pelvic bone and the femur, and between the scapula and the humerus are called 

http://www/
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“false persistent” articulations; they are in fact interlocking fragile articulations (see Adam 

et al., 1992 in Maureille and Sellier, 1996). 

Unstable joints and articulations in the human skeleton 

They concern fragile elements of the skeleton and/or small sized-elements (Table 

4.3), such as the joints of the hands and the distal part of the feet (between metatarsals 

and phalanges), the articulations between the cervical vertebrae, the femur and the 

patella, the scapula and the thoracic cage, the ribs and the sternum and the temporal 

bone and the mandible (Duday et al., 1990, Maureille and Sellier, 1996; Duday, 2009). 

Under normal temperate conditions, it takes less than a few weeks for them to 

disarticulate (Duday et al., 1990; Duday, 2009). 

Table 4.3. List of persistent, unstable and interlocking unstable joints and articulations in the human 
skeleton (after Duday et al., 1990; Maureille and Sellier, 1996; Duday, 2009). 

Persistent occipital/atlas 
lumbar vertebrae 
last lumbar vertebra/sacrum 
sacrum/ilium 
femur/tibia 
distal tibia/calcaneum/talus (ankle joint) 
tarsals (calcaneum, talus, navicular) 

Unstable temporal bone/mandible 
cervical vertebrae 
hands (carpals, metacarpals and phalanges) 
distal part of the feet (metatarsals and phalanges) 
scapula/thoracic cage 
patella/femur 
sternum/ribs 
radius/ulna/humerus (elbow joint) 

Interlocking unstable pelvis (acetabulum)/femur 
scapula/humerus 

Disarticulation order in quadruped mammals 

Different studies have been published regarding the disarticulation order in non-

human quadruped mammals in various environmental conditions (Müller, 1951; Schäfer, 

1962, 1972; Toots, 1975; Hill, 1979a, 1979b; Hill and Behrensmeyer, 1984; Andrews and 

Cook, 1985; Weigelt, 1989; Allison et al., 1991). Undisturbed, the disarticulation is 
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complete after about five years (Hill and Behrensmeyer, 1984). The disarticulation pattern 

follows the same general order amongst the various species observed, even though some 

small differences have been noticed (Hill and Behrensmeyer, 1984). As an analogy for 

African conditions, I report here the results of observations conducted by Hill (1979a, 

1979b) on Topi (Damaliscus korrigum) skeletons in the semi-desert region of east of Lake 

Turkana, in northern Kenya. 

The first elements to disarticulate are the same as in humans (i.e. articulations 

consistent with low mechanical pressure and/or articulations not interlocking): scapula/rib 

cage articulation, caudal vertebrae, scapula/humerus articulation and mandible/temporal 

bone articulation (Figure 4.2). The more persistent articulations are the same as in the 

human disarticulation pattern: lumbar vertebrae/sacrum and vertebral column (Figure 

4.2). The major difference concerns the cervical vertebrae that are unstable in the human 

skeleton whereas in herbivore skeletons they belong to the category of more resistant 

articulations. This might partly be due to the difference of mechanical pressure inflicted 

on the neck between biped and quadruped mammals. 

 

Figure 4.2. Disarticulation order observed amongst Topi carcasses, illustrated on a cow skeleton, from 1 
(first elements to disarticulate) to 21 (last elements to disarticulate) (from Hill, 1979a). 
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Some observations conducted on disarticulation order of marine mammals (i.e. 

seals, dolphins and whales) show a similar pattern: again, the disarticulation starts around 

the extremities (mandible and skull, neck area and phalanges), whereas the vertebral 

column takes more time to disarticulate (Shäfer, 1972; Allison et al., 1991). 

The Malapa fossils: “true articulation” and “anatomical proximity” 

I define two levels of articulation for the Malapa fossils: a “true articulation” refers to 

bones that are still directly associated with one another (direct contact, with no sediment 

between the bones), in their original anatomical position. The term “anatomical 

proximity” refers to bones that are articulated in the skeleton and preserved close to one 

another in the calcified sediment, but not fully articulated anymore. In other words, they 

are consistent with bones that are in anatomical position, with little displacement, but 

with some sediment infiltrated between the bones. 

2.3. Physical approach 

2.3.1. Introduction 

The different taphonomic agents that damage bones can be classified in two 

groups: biotic (e.g. mammalian and avian carnivores, hominin and non-hominin primates, 

suids and rodents) and abiotic agents (e.g. weathering, root etching, trampling, fluvial and 

sedimentary abrasion). These agents produce different types of damage on the bone 

surface. In Chapter 2, I have reviewed the different taphonomic agents present in 

southern African caves that could lead to bone accumulation and bone modification. In 

this chapter, I present a literature review on the taphonomic signature (characteristics of 

the bone damage) left by each of these agents. 

2.3.2. Methods used for the analysis of bone surface modification 

The identification and the description of the bone surface modifications on the 

Malapa fossils was conducted using the naked eye as well as a systematic microscopic 
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analysis using an Olympus SZX 16 Multifocus microscope fitted with a digital camera at 

magnifications between 7 and 115 times. The only exception concerns two hominin 

remains (UW88-172, the manubrium of MH2 and UW88-198, the right first rib of MH2) 

considered too fragile to be removed from the matrix. A virtual extraction was conducted 

and the bone surface analysis made directly with 3D reconstruction software (Avizo 6.3) 

on the 3D rendering. A modern reference collection composed of various bones modified 

by a wide range of geological and biological agents, including hyaena, dog, leopard, 

cheetah, rodent, insect, river gravel, flood plain, trampling and stone tools, was also used. 

2.3.3. Hominin damage 

Different stages of the butchery process (sensu Lyman, 1987a) conducted by 

hominins, including skinning, defleshing, bone breakage, marrow/brain extraction, 

cooking and consumption, can produce different types of bone modification, namely cut 

marks, percussion marks, tooth marks and burning. These types of modifications 

constitute clear and indisputable evidence of hominin action on a carcass (Binford, 1981; 

Lyman, 1994c). However, anthropogenic marks can be confused with modifications 

caused by other agents also contributing to the accumulation of the bone assemblage. 

Crocodiles (Njau and Blumenschine, 2006) and mammalian carnivores (Bonnischen 1973; 

Haynes 1980; Potts and Shipman 1981; Shipman and Rose, 1983a, 1983b; Eickhoff and 

Herrman, 1985; Cook, 1986; Blumenschine, 1988, 1995; Capaldo and Blumenschine, 1994; 

Oliver 1994; Selvaggio, 1994a, 1994b, 1998), as well as rodents (Pei, 1938; Binford, 1981; 

Potts and Shipman, 1981; Shipman and Rose, 1983; Cook, 1986), suids (Galdikas, 1978; 

Greenfield, 1988; Domínguez-Solera and Domínguez-Rodrigo, 2008) and chimpanzees 

(Pickering and Wallis, 1997; Tappen and Wanghram, 2000; Pobiner et al., 2007) can in 

some cases produce tooth marks that mimic anthropogenic cut marks, percussion and 

scrape marks. Trampling marks can also be confused with cut marks (Haynes and Stanford, 

1984; Oliver 1984; Andrews, 1985; Behrensmeyer et al., 1986; Olsen and Shipman, 1988; 

Fiorillo, 1989; Nicholson, 1992; Domínguez-Rodrigo et al., 2009). Roots exploiting the 
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bone can leave furrows and grooves on the surface that can resemble anthropogenic 

stone tool marks (Binford, 1981; Shipman and Rose, 1983; Andrews and Cook, 1985; Cook, 

1986). The natural bone surface morphology sometimes presents features that can be 

mistaken for cut marks (Binford, 1981; Morlan, 1984; Fischer, 1995; d’Errico and Villa, 

1997; Mallye and Laroulandie, 2004). Finally, modern anthropogenic marks created during 

excavation, preparation and analysis of the fossils share some of the characteristics of 

ancient butchery marks, such as the V-shape cross section and the straight trajectory 

(Shipman, 1981; White and Toth, 1989). 

Various studies have sought to establish criteria to distinguish between anthropogenic 

marks and other types of marks. These studies were motivated by two of the main 

questions tackled by palaeoanthropologists and zooarchaeologists: the emergence of 

meat acquisition and consumption in early hominin subsistence strategies (Bunn, 1981a; 

Crader, 1983; Bunn et al., 1986; Lupo, 1994; Selvaggio, 1994, 1998; Capaldo, 1995, 1997) 

and the practice of cannibalism by early humans (Trinkaus, 1985; Villa et al., 1986; White, 

1986; Villa, 1992; Defleur et al., 1999; Fernández-Jalvo et al., 1999; Pickering et al., 2000). 

Different criteria have been proposed to describe the exact morphology of cut marks and 

to distinguish them from other types of marks (Potts and Shipman, 1981; Shipman, 1981b; 

Shipman and Rose, 1983a, 1983b; Cook, 1986; Olsen and Shipman, 1988; Fiorillo, 1989). 

They were established using microscopic technology (optical microscope and scanning 

electron microscope). The criteria identifying anthropogenic cut marks are the following: 

- the main groove presents a V-shaped cross section, 

- the main groove has a straight trajectory, 

- numerous micro-striations are present inside the cut mark, parallel to the main 

groove, 

- the edges of the mark are parallel to each other, 

- there is, in some cases, the occurrence of a “shoulder effect” (i.e. micro-striations 

forming on one or the two edges of the main groove), 
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- there is, in some cases, the occurrence of a “barb effect” (i.e. small group of micro-

striations forming at the beginning and/or at the end of the main groove and running 

at a 45 degree angle opposite to the direction of the main groove). 

Humans can also leave tooth marks on the bones during meat consumption (White, 

1992). Recent studies describe human tooth marks produced experimentally (Saladié, 

2009; Fernández-Jalvo and Andrews, 2011). Some ethnoarchaeological observations on 

tooth marks produced by modern hunter-gatherers on bones have also been published 

(Maguire et al., 1980; Andrews and Fernández-Jalvo, 1997; Landt, 2004, 2007; Martínez, 

2009). Like other carnivores, humans can produce pits, punctures, notches, crenulated 

edges as well as shallow scores on the bones while chewing (Landt, 2007; Martínez, 2009; 

Saladié, 2009; Fernández-Jalvo and Andrews, 2011). Peeling, which is a type of fracture 

occurring on fresh bones chewed by human teeth, and characterised by “a roughened 

surface with parallel grooves or fibrous texture” (Fernández-Jalvo and Andrews, 2011), is 

also observed in the experimental (Fernández-Jalvo and Andrews, 2011) and fossil record 

(White, 1992). Based only on their size and morphology, tooth marks produced by humans 

are likely to be confused with those created by small carnivores such as jackals (Landt, 

2007). Consequently, only a combination of contextual information about the deposit and 

occurrence of exclusively human teeth-inflicted types of damage such as “bent ends” 

(fraying), “curved shape at the very end of thin bones” and “double arch punctures on 

broken edges” (Fernández-Jalvo and Andrews, 2011) should allow the distinction between 

human and carnivore tooth marks. 

2.3.4. Carnivore damage 

Carnivores of all sizes can potentially produce tooth marks on bones while feeding on 

animal carcasses, whether small carnivores such as foxes or badgers (Stallibrass, 1984; 

Castel, 1999; Mallye, 2007), medium-sized carnivores such as dogs, wolves, jackals, 

cheetahs and leopards (Haynes, 1980, 1983a; Brain, 1981; Morey and Klippel, 1991; 
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Selvaggio and Wilder, 2001; Domínguez-Rodrigo and Piqueras, 2003; Pickering et al., 

2004c; Campmas and Beauval, 2008) or large carnivores such as lions and spotted hyaenas 

(Sutcliffe, 1970; Shipman and Phillips-Conroy, 1976, 1977; Binford, 1978, 1981; Maguire et 

al., 1980; Brain, 1981; Haynes, 1983a; Blumenschine, 1988, 1995; Blumenschine and 

Selvaggio, 1991; Capaldo and Blumenschine, 1994; Selvaggio, 1994a, 1994b, 1998; 

Capaldo, 1995; Andrews and Fernandez-Jalvo, 1997; Domínguez-Rodrigo, 1999; Selvaggio 

and Wilder, 2001; Domínguez-Rodrigo and Piqueras, 2003; Pickering et al., 2004b, 2004c; 

Pinto and Andrews, 2004; Domínguez-Rodrigo and Pickering, 2010). Different categories 

of bone modification have been observed, according to the location (on spongy versus 

compact bones) and the type of action performed by the carnivores. Table 4.4 provides a 

list of the different modifications produced by carnivores, together with their definitions. 

Table 4.4. Different types of carnivore damage on bone. 

Category Definition References 

Pits Depressions with compact bone on the bottom, 
occurring as discrete, roughly circular markings, which 
scar the bone surface without any inward crushing of 
the bone cortex; they tend to have a localized 
distribution, typically adjacent to end chewing. 

Maguire et al., 1980; 
Binford, 1981; Pickering 
and Wallis, 1997 

Punctures 
(Tooth crushes) 

Depressions with spongy bone on the bottom; they are 
depressed, roughly circular holes produced by a 
carnivore tooth cusp, often a canine, which travels 
through the entire thickness of the bone’s cortex and 
shows inward crushing. 

Binford, 1981; Shipman, 
1981a; Cook, 1986; 
Newman, 1993; Pickering 
and Wallis, 1997 

Crenulated edge Surface of an edge removed by the teeth as an effect 
of intense punctures on very thin bone or ragged edge 
chewing, characterised by irregular jagged edges, 
which result from intense, sustained premolar/molar 
chewing. 

Bonnischen, 1973; Shipman 
and Phillips-Conroy, 1976; 
Binford, 1981; Brain, 1981; 
Newman, 1993; Pickering 
and Wallis, 1997 

Scores Parallel grooves resulting from the bone being turned 
or dragged against the teeth by the carnivore; with a 
length about three times longer than their width. They 
are produced by carnassials pressing on green bone 
and characterised by relatively shallow furrows, with 
smooth internal grooves that vary from V-shaped to U-
shaped in cross-section depending on the morphology 
of the tooth cusp. 

Haynes, 1980; Binford, 
1981; Bunn, 1981; Potts 
and Shipman, 1981; 
Shipman, 1981a, 1989; 
Cook, 1986; Marshall, 
1989; Newman, 1993; 
Selvaggio, 1994a; 
Blumenschine, 1995, 1996 
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Furrows Grooves produced by the cusps of either the canines or 
the carnassials, as an effect of the repeated action of 
the jaw on cancellous bone. 

Haynes, 1980; Binford, 
1981 

Scooping out Extreme result of furrowing. Sutcliffe, 1970; Bonnischen, 
1973; Binford, 1981 

Digestion Polished aspect given to bone fragments that have 
been regurgitated by a carnivore. Attributes include 
widespread etching, erosion, perforation, smoothing, 
polish or thin edge termination and are most typically 
manifested as combinations of the above features on 
pieces less than 60 mm in length. Regurgitate bones 
are generally presented in two forms: the corroded, 
grossly striated form with thin sharp edges and 
perforations; and the rounded, more dense form which 
is smooth, polished and finely pitted. 

Sutcliffe, 1970; Maguire et 
al., 1980; Behrensmeyer et 
al., 1989; Hill, 1989; Fisher, 
1995; Villa and Bartram, 
1996; d’Errico and Villa, 
1997 

2.3.5. Rodent damage 

Rodents were identified early on by zooarchaeologists as potential bone 

accumulation and modification agents. In forensic contexts, rodents such as rats and 

squirrels are known scavengers, which can feed on human cadavers in an advanced state 

of skeletonization, producing gnawing marks on bones and leading to scattering of bone 

remains (Haglund, 1992; Klippel and Synstelien, 2009). Amongst rodents, porcupine 

species (Hystrix africaeaustralis, Hystrix cristata and Atherurus) are well-known agents 

that accumulate and modify bones (Pei, 1938; Maguire et al., 1980; Binford, 1981; Brain, 

1981; Shipman and Rose, 1983a; Cook, 1986). Porcupines tend to gnaw on dry and 

weathered rather than fresh bones, in order to wear down the incisors that grow 

throughout their life and not for nutritional reasons (Brain, 1981; Kibii, 2009). They 

produce parallel, “broad, contiguous shallow scrape marks” caused by the gnawing of the 

lower and upper incisors and “scooping or hollowing out of cancellous bone” (Maguire et 

al., 1980). Other rodents, such as brown rats, attack bones in the search of nutrients and 

preferably chew on the marrow-rich cancellous bone present on long bones extremities 

(Klippel and Synstelien, 2009). All rodents (e.g. squirrels, rats, mice) tend to produce the 

same types of marks in shape and morphology, owing to the fact that they gnaw bones in 

the same way, using their incisors. Only the size of the marks will differ from one species 
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to another (Binford, 1981; Shipman and Rose, 1983a; Cook, 1986). In some cases, rodent 

teeth can produce small parallel striations inside the main grooves (Shipman and Rose, 

1983a). The repetition of the shallow scrape marks occurring next to each other forms 

what Shipman and Rose (1983a) call a “fan-shaped” pattern; this pattern is due to a 

specific way of chewing when the rodent uses its upper incisors as a pivot, and therefore 

scrapes repeatedly the bone surface with its lower incisors (Shipman and Rose, 1983a; 

Klippel and Synstelien, 2009). Another pattern has been described by the same authors 

and called “chaotic”, consistent with a different type of gnawing where both the upper 

and lower incisors are drawn across the bone surface. This results in a “broad, depressed 

area traversed by many intersecting or overlapping marks” (Shipman and Rose, 1983a). 

Rodent tooth marks are “flat bottom U-shaped”, which distinguishes them easily from 

carnivore tooth marks and human cut marks (Cook, 1986). 

2.3.6. Other mammalian species damage 

Even though the literature is very scarce on this matter, a few studies have shown 

that other occasionally carnivorous mammals (e.g. omnivorous species such as primates 

and suids) can inflict damage to bones (Pickering and Wallis, 1997; Tappen and 

Wrangham, 2000; Pobiner et al., 2007, for the chimpanzees; Greenfield, 1988; 

Domínguez-Solera and Domínguez-Rodrigo, 2009, for the suids). 

Chimpanzee damage to bone 

Chimpanzees (Pan troglodytes) consume meat and can hunt small prey, including 

colobus monkeys, bushpigs and antelopes such as blue duikers and bushbucks, even 

though meat consumption represents only a small percentage of their diet (Kawabe, 1966; 

Teleki, 1973a, 1973b; Goodall, 1986; Boesch and Boesch, 1989; Uehara, 1997; Mitani and 

Watts, 1999, 2001; Boesch and Boesch-Achermann, 2000; Newton-Fisher et al., 2002; 

Pobiner et al., 2007). They can therefore accidentally leave chewing marks on the bone 

surface while feeding on carcasses. Experiments on captive chimpanzees feeding on bovid 
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and cervid bones show that they are capable of inflicting the “same range and degree of 

damage to bones as feeding carnivores” (Pickering and Wallis, 1997). These results were 

confirmed by observations on wild chimpanzees from the Kibale Forest in Uganda (Tappen 

and Wrangham, 2000; Pobiner et al., 2007). While chewing, chimpanzees can inflict pits, 

punctures, scores, notches and crenulated edges; they can produce peeling on the surface 

of cortical bone; they can also regurgitate and/or digest and consequently polish bone 

fragments (Pickering and Wallis, 1997; Tappen and Wrangham, 2000; Pobiner et al., 

2007). Chimpanzee mastication damages are similar in shape and morphology to medium 

and large carnivore damage and both types can easily be confused, if based only on the 

analysis of bone surface modification (Pickering and Wallis, 1997; Tappen and Wrangham, 

2000). Differences exist in terms of prey species, distribution of the damage on the 

skeleton, skeletal part frequencies in the scat assemblage, and degree of corrosion of the 

bones. Together with consideration of the context of the bone assemblage, these 

differences may allow researchers to distinguish between mammalian carnivore and 

chimpanzee damage (Pickering and Wallis, 1997; Tappen and Wrangham, 2000; Pobiner et 

al., 2007). 

Suid damage to bone 

 Suids are omnivorous and feed on animal flesh when available, whether by 

scavenging on dead animal carcasses or by opportunistic hunting of weak prey such as 

young, old or ill individuals (Milstein, 1971; Cumming, 1975; Wilson, 1975; Grigson, 1982; 

Jones, 1984; Seydack, 1990; Herrero Cortés, 2001; Rosell et al., 2001). In Borneo, where 

Bornean bearded pigs (Sus barbatus) are well known to be very effective scavengers, a 

case of pigs feeding on ill/old orang-utans carcasses (found dead or killed by the pigs 

themselves) has been reported (Galdikas, 1976). Experimental studies and modern 

observations show that European pigs (domestic pigs, Sus domesticus, wild boars, Sus 

scrofa and hybrid boars) are very capable of producing bone damage similar in intensity to 

those inflicted by canids and hyaenids (Greenfield, 1988; Domínguez-Solera and 
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Domínguez-Rodrigo, 2009). They break long bones and create an assemblage with a high 

degree of fragmentation; they produce tooth marks in a similar fashion to carnivores (pits, 

punctures, scores and furrows). However, pigs tend to use their incisors much more 

prominently than carnivores, leading to the creation of scores and furrows different from 

carnivore-inflicted modifications. Pigs produce “long and flat tooth scores” and furrow the 

bones in a specific way by removing the spongy tissue horizontally. The tooth marks 

created are broad and shallow compared to carnivore tooth marks (Domínguez-Solera and 

Domínguez-Rodrigo, 2009). 

 No study has yet been carried out on the impact of African suids (bushpig, 

Potamochoerus larvatus, and common warthog, Phacocheorus africanus) on bones. 

Nevertheless, given the similarities in diet and behaviour between the different suid 

species, it is reasonable to argue that results obtained on Eurasian pigs can be applied to 

their African cousins, considering that African species are also omnivorous, can feed on 

animal carrion and hunt small prey in some cases (Milstein, 1971; Cumming, 1975; Wilson, 

1975; Jones, 1984; Seydack, 1990; Skinner and Chimimba, 2005). 

2.3.7. Bird of prey damage 

Birds of prey consume at least parts of micro, small and medium-sized mammals 

and can produce different types of damage whether during the capture, consumption or 

digestion of the carcass (Brain, 1981; Andrews, 1990; Sanders et al., 2003; McGraw et al., 

2006; Trapani et al., 2006). Different extant species of birds of prey (see Table 4.5), 

namely owls (Brain, 1981; Andrews, 1990), various species of eagles (Andrews, 1990; 

Berger and Clarke, 1995; Berger, 2006) and vultures (Andrews, 1990; Robert and Vigne, 

2002a, 2002b; Costamagno et al., 2008; Marín Arroyo et al., 2009) have been identified as 

bone accumulation and modification agents in modern and fossil assemblages. Actualistic 

observations (Andrews, 1990 for owls, eagles and vultures; Robert and Vigne, 2002a, 

2002b for the bearded vultures; Sanders et al., 2003; McGraw et al., 2006; Trapani et al., 
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2006 for eagles) have allowed the description of their taphonomic signature on bone 

remains, which can be distinguished from other types of predators. 

Table 4.5. Birds of prey for which information exist in terms of bone accumulation and damage. 

Family Common name Scientific name Geographical location Reference 

STRIGIDAE  Spotted eagle owl Bubo africanus Europe, Africa Brain, 1981; 
Andrews, 1990 

Cape eagle owl Bubo capensis Africa Brain, 1981 
Giant eagle owl or 
Verreaux eagle owl 

Bubo lacteus Africa Brain, 1981; 
Andrews, 1990 

Barn owl Tyto alba Europe, Africa Brain, 1981; 
Andrews, 1990 

Snowy owl Bubo scandiacus Europe, Asia, North 
America 

Andrews, 1990 

Long-eared owl Asio otus Europe, Asia, North 
America 

Andrews, 1990 

European eagle owl Bubo bubo Europe, Asia Andrews, 1990 
Great grey owl Strix nebulosa Asia, North America Andrews, 1990 
Tawny owl Strix aluco Europe, Asia Andrews, 1990 
Little owl Athena noctua Europe Andrews, 1990 
Short-eared owl Asio flammeus Europe Andrews, 1990 

FALCONIDAE Kestrel Falco tinnunculus Europe, Asia, North 
Africa 

Andrews, 1990 

Peregrine Falco peregrinus All continents Andrews, 1990 
Gyrfalcon Falco rusticolus Europe, Asia, North 

America 
Andrews, 1990 

PANDIONIDAE Osprey Pandion haliaetus Europe, Asia, Africa, 
America 

Andrews, 1990 

STERCORARIIDAE Arctic skua Stercorarius 
parasiticus 

Europe, Asia, North 
America 

Andrews, 1990 

ACCIPITRIDAE Crowned hawk-eagle Stephanoaetus 
coronatus 

Africa Andrews, 1990 ; 
Sanders et al., 
2003 ; Berger, 
2006 ; McGraw et 
al., 2006 ; Trapani 
et al., 2006 

Verreaux’s eagle or 
black eagle 

Aquila verreauxii Africa Berger and 
Clarke, 1995 

Bonelli’s eagle Aquila fasciata Europe, Asia, Africa Andrews, 1990 
Martial eagle Polemaetus bellicosus Africa Andrews, 1990 
Hen harrier Circus cyaneus Europe, Asia, North 

America 
Andrews, 1990 

Common buzzard Buteo buteo Europe, Asia Andrews, 1990 
Red kite Milvus milvus Europe Andrews, 1990 
Bearded vulture Gypaetus barbatus Europe Robert and Vigne, 

2002a, 2002b 
White headed vulture Trigonoceps occipitalis Africa Andrews, 1990 

 Griffon vulture Gyps fulvus  Domínguez-Solera 
& Domínguez-
Rodrigo, 2011 

CATHARTIDAE Andean condor Vultur gryphus South America Andrews, 1990 
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In terms of bone surface modification, two categories can be distinguished: 

digestion marks due to gastric acid of the bird stomach and punctures/scores due to the 

action of beak and talons. 

Owls tend to take prey smaller than themselves and consume them without 

dismembering them. They produce less breakage than diurnal birds (e.g. falcons, buzzards, 

eagles) (Andrews, 1990), even though Brain (1981) mentions a particular destruction 

pattern of the nasal and the calvaria of small mammals caused by the Cape eagle owl. The 

main type of damage caused by owls seems to be digestion marks due to the action of the 

gastric acid on bones regurgitated in a pellet (Andrews, 1990). 

Diurnal birds on the other hand can take bigger prey and dismember the carcass 

during consumption (Andrews, 1990), producing marks on the bones. Several studies have 

looked at bone damage caused by the Crowned hawk-eagle (Stephanoaetus coronatus) on 

monkey skeletons (Berger and Clarke, 1995; Sanders et al., 2003; Berger, 2006; McGraw et 

al., 2006; Trapani et al., 2006; Berger and McGraw, 2007). The action of the beak and 

talons during the feeding process produces modifications occurring predominantly on thin 

bones such as skulls and innominates (i.e. “can-opener” perforations producing bony flap, 

punctures and nicks on the pelvis and the cranium, especially around the orbits, maxillae, 

sphenoid and parietals). It also causes the scapulae to be very raked and shattered as a 

result of the bird opening the thoracic cavity to extract the heart and lungs. The long 

bones usually remain intact or show only a few punctures (Sanders et al., 2003; McGraw 

et al., 2006; Trapani et al., 2006). 

The only observations on bone damage inflicted by vultures have been conducted 

on European species (i.e. Gypaetus barbatus and Gyps fulvus) (Robert and Vigne, 2002a, 

2002b; Domínguez-Solera and Domínguez-Rodrigo, 2011). These species modify bones in 

the form of digestion marks due to gastric acid (Robert and Vigne, 2002a, 2002b), shallow 

scores, punctures and “roughly circular to oval pits” produced on all anatomical parts 
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except radio-ulnae, phalanges, metapodials and carpals (Domínguez-Solera and 

Domínguez-Rodrigo, 2011). 

2.3.8. Insect damage 

Introduction 

Though insect damage on fossil bones from Pleistocene assemblages is not 

described as being commonly preserved or recognized and rarely described in the 

literature (Tobien, 1965; Kitching, 1980; Martin and West, 1995; Dominato et al., 2009; 

Huchet et al., 2011; Pomi and Tonni, 2011; Backwell et al., 2012), compared to other biotic 

agents, such as mammalian carnivores, rodents and birds of prey, the impact of insects on 

carcasses is well known by forensic anthropologists (Derry, 1911; Byrd and Castner, 2010; 

Huchet et al., 2011), as well as in museum preparation, where insects and especially 

dermestid beetles are used to clean skeletons (Hefti et al., 1980; Weichbrod, 1987). Insect 

damage on the bones of dinosaurs (Hasiotis et al., 1999; Roberts et al., 2002; Hasiotis, 

2004; Britt et al., 2008; Bader et al., 2009; Saneyoshi et al., 2011), Oligocene (Fejfar and 

Kaiser, 2005), Miocene (Tobien, 1965) and Pliocene mammals (Martin and West, 1995; 

Kaiser, 2000; Kaiser and Katterwe, 2001) has been abundantly described in the literature 

and used for taphonomic inferences. A large variety of insects feed on carrion, from the 

beginning to the end of the decomposition process (Bornemissza, 1957; Payne, 1965; 

Payne and King, 1970, 1972; Thorne and Kimsey, 1983; Smith, 1986; Weigelt, 1989; Byrd 

and Castner, 2010). Forensic entomologists have extensively studied the successive 

colonization by various insect species on a corpse. It follows a specific order and depends 

on environmental and external conditions well described in the literature (Payne et al., 

1968; Payne and King, 1972; Leclerc, 1978; Rodriguez and Bass, 1985; Smith, 1986; 

Weigelt, 1989; Kulshresta and Satpathy, 2001; Marchenko, 2001; Amendt et al., 2004; 

Byrd and Castner, 2010). In forensic anthropology, the identification and analysis of insect 

damage allows the calculation of the postmortem interval (PMI) and provides information 

concerning the conditions of the death and, if it is the case, of the burial (Kulshresta and 
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Satpathy, 2001; Marchenko, 2001; Amendt et al., 2004; Byrd and Castner, 2010; Huchet et 

al., 2011). In archaeology and palaeontology, the identification of insect damage on fossil 

bones, together with the identification of the insect species responsible for the damage, 

can provide interesting ecological, climatic (e.g. temperature and humidity conditions 

during the decomposition process) and taphonomic data (e.g. presence/absence of 

carnivore scavenging, timing of death and burial processes, state of the carcass when the 

insect fed on it, season of death) (Martin and West, 1995; Hasiotis et al., 1999; West and 

Martin, 2002; Britt et al., 2008; Bader et al., 2009; Saneyoshi et al., 2011). 

Species that modify bones 

Several insect families belonging to three distinct groups have been identified as 

modifying agents of bone and horn corn surfaces: termites (Termitidae, Mastotermitidae 

and Rhinotermitidae) (Derry, 1911; Behrensmeyer, 1978; Watson and Abbey, 1986; Kaiser, 

2000; Kaiser and Katterwe, 2001; Huchet et al., 2011; Pomi and Tonni, 2011; Backwell et 

al., 2012), beetles (Dermestidae, Tenebrionidae and Scarabaeoidae) (Tobien, 1965; Hefti 

et al., 1980; Kitching, 1980; Martin and West, 1995; Hasiotis et al., 1999; Hasiotis, 2004; 

Roberts et al., 2007; Britt et al., 2008; Bader et al., 2009; Dominato et al., 2009) and moths 

(Tineidae) (Behrensmeyer, 1978; Hill, 1987). 

Types of damage 

The description of bone damage caused by insects and the attribution of this 

damage to a specific insect group is in most cases based on the observation of fossil and 

modern bones bearing marks interpreted as insect damage (Behrensmeyer, 1978; 

Kitching, 1980; Hill, 1987; Martin and West, 1995; Hasiotis et al., 1999; Kaiser, 2000; 

Hasiotis, 2004; Fejfar and Kaiser, 2005; Britt et al., 2008; Bader et al., 2009; Dominato et 

al., 2009; Pomi and Tonni, 2011), combined with actualistic inferences about the 

behaviour of extant insect species. Experimental studies have permitted a more accurate 
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description of the types of bone damage caused by termites (Watson and Abbey, 1986; 

Backwell et al., 2012) and dermestid beetles (West and Hasiotis, 2007). 

 Two separate causes leading to bone surface modification are distinguished in the 

literature. The first type of modification is due to the habit of some insects to bore their 

pupation chambers into the bone surface. This has only been mentioned for beetles 

(Order Coleoptera) and especially dermestid beetles (Tobien, 1965; Kitching, 1980; 

Hasiotis et al., 1999; Hasiotis, 2004; Roberts et al., 2007; Bader et al., 2009; Dominato et 

al., 2009). The pupating structures (pupation chambers per se and associated borings) are 

excavated by adults using their mandibles (Martin and West, 1995). The dimensions of the 

pupation chambers are consistent with the size of the larvae. Table 4.6 regroups the 

different characteristics of marks observed on fossil bones associated with dermestid 

beetle pupation activities. 

Table 4.6. Description of insect damage associated with pupation chambers of dermestid beetles. 

Description of the modification Reference 

“holes and burrows” penetrating into the shaft of long bones (4-5 mm and 
sometimes even into the marrow cavity) 

Kitching, 1980 

“circular to elliptical-shaped borings” from 0.5 to 5.0 mm in diameter and that 
do not penetrate deeply the bone surface 

Hasiotis et al., 1999 

“hollow, oval chambers with concave flanks bored into inner spongy and outer 
cortical bone surfaces” 

Roberts et al., 2007 

“circular to elliptical borings” Hasiotis, 2004 
shallow pits, rosettes and hemispherical pits Bader et al., 2009 
“hollow oval-shaped structures (without filling) excavated in the spongy bone” Dominato et al., 2009 

Another type of modification is caused by the action of feeding on the 

carcass/bones by insects. It can be insects feeding either on the bone itself or on dry 

matter left on the carcass such as skin, ligaments and tendons. Because the insects are 

using their mandible for this purpose, the shape and morphology of the traces are 

consistent with the shape and morphology of the insect mandibles. Different marks on 

bones produced by insect mandibles have been described. Termites produce scratches 

(Watson and Abbey, 1986; Fejfar and Kaiser, 2005; Pomi and Tonni, 2011), shallow 

grooves with a U-shaped profile (Kaiser, 2000; Kaiser and Katterwe, 2001), star-shaped 
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pits and grooves showing a radial morphology and sometimes present in clusters (Kaiser, 

2000; Fejfar and Kaiser, 2005; Pomi and Tonni, 2011). Huchet et al. (2011) have observed 

sub-cortical cavities, superficial pits, bores, large furrows and sub-circular perforations in 

human bones attacked by termites. In a recent experiment, Backwell and colleagues 

(2012) illustrate eight types of damage produced by termites (Trinervitermes trinervoides) 

on bones: destruction of the bone, bore holes, etched surface texture, surface pits, star-

shaped marks, cluster of sub-parallel striations, parallel striations and the presence of 

surface residue. Beetles produce “shallow, meandering surface trails, composed of 

actuate grooves or scratches, bored into compact bones surfaces” (Roberts et al., 2007, 

p.201) as well as elliptical to round pits occurring in clusters and shallow bores, both 

occurring on cortical bone, opposite sets of parallel grooves, bores penetrating deep into 

the bone (in some cases leading to the destruction of the bone) and sinuous furrows 

located on articular surfaces (Britt et al., 2008). The damage caused by moths is produced 

by the larvae feeding on the organic components of the carcass and have been described 

as grooving marks (Behrensmeyer, 1978). 

Invertebrate damage to bones: experimental approach 

 Research in progress by Backwell and colleagues, including myself, concerns 

controlled experiments with a number of arthropods and molluscs, selected on the basis 

of their mouth parts, and in the case of Achatina land snails and millipedes, because they 

are present in the Malapa fossil assemblage. Table 4.7 lists the various invertebrate taxa 

involved in the laboratory experiment. Each taxon was offered a range of bone types 

(spongy, compact, thick and thin cortical) in different states of preservation (fresh, dry, 

fossil) for the duration of one summer season, when they are all active. 

 

 

 



85 
 

Table 4.7. List of insects and gastropods used in the experiment. 

Common name Parktown prawn (male) Toktokkie Trogidae hide beetle 
Phylum Arthropoda Arthropoda Arthropoda 
Class Insecta Insecta Insecta 
Order Orthoptera Coleoptera Coleoptera 
Family Anostostomatidae Tenebrionidae Trogidae 
Genus Libanasidus - Omorgus 
Species vittatus - squalidus 
Number of animals 2 20 5 

 

Common name Woodlice Millipede large Garden snail Achatina 
Phylum Arthropoda Arthropoda Mollusca Mollusca 
Class Malacostraca Diplopoda Gastropoda Gastropoda 
Order Isopoda - - - 
Family - - Helicidae Achatinidae 
Genus - Archispirostreptus Helix Achatina 
Species - gigas aspersa - 
Number of animals - 10 20 3 

2.3.9. Trampling 

Sedimentary abrasion of bone surface, breakage and dispersion of bones due to 

animal (including human) trampling has been identified and described as a potential biotic 

taphonomic process in palaeontological and archaeological assemblages (Brain, 1967; 

Myers et al., 1980; Agenbroad, 1984; Fiorillo, 1984; Oliver, 1984, 1986; Behrensmeyer et 

al., 1986). The effects of trampling have been well studied experimentally (Andrews and 

Cook, 1985; Behrensmeyer et al., 1986; Domínguez-Rodrigo et al., 2009). Trample marks 

can be defined as “shallow, sub-parallel sets of scratch marks” (Fiorillo, 1984, p.47); they 

present a V-shape or a rounded basal cross-section with the outer edges generally 

rounded, with sometimes an internal grooving in experimentally-produced marks 

(Behrensemeyer et al., 1986). Trample marks can easily be differentiated from rodent and 

carnivore tooth marks (Fiorillo, 1984; Andrews and Cook, 1985), but their distinction from 

anthropogenic butchery marks can be difficult (Andrews and Cook, 1985; Behrensmeyer 

et al., 1986; Olsen and Shipman, 1988; Domínguez-Rodrigo et al., 2009). The consideration 

of other criteria (e.g. frequency of the marks, orientation on the bones, location on the 

skeleton, and general context of the bone assemblage) can permit the differentiation 
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between trample and butchery marks (Andrews and Cook, 1985; Behrensmeyer et al., 

1986; Domínguez-Rodrigo et al., 2009). 

2.3.10. Damage caused by abiotic agents 

Weathering 

Weathering refers to the chemical and mechanical deterioration of animal 

carcasses, due to environmental factors (e.g. temperature, humidity level, sunlight). 

Together with a global understanding of the taphonomic and geological context, the 

evaluation of the degree of weathering affecting a fossil assemblage can provide 

important information concerning the local environmental conditions in which the animals 

have decomposed and, in some cases, the time of exposure of the bones (between death 

and burial) (Behrensmeyer, 1978; Lyman and Fox, 1989). For the analysis of the Malapa 

faunal assemblage, I refer to the last five stages of weathering established by 

Behrensmeyer (1978), from 1 to 5 (stage 0 is consistent with fresh bones and therefore 

never occurring in a fossil assemblage). Table 4.8 summarises the characteristics for each 

weathering stage. 

Table 4.8. Different weathering stages affecting bones (from Behrensmeyer, 1978). 

Stage Characteristics 

0 The bone is fresh and usually greasy with some soft tissue (skin, flesh, marrow) still 
preserved; there is no sign of cracking or flaking. 

1 Cracks start appearing; some soft tissue can still be present. 
2 The flaking begins on the outermost surface of the bone; some tissue can still be present 

(but not always). 
3 The external part of the bone is removed; the presence of rough patches of weathered 

bone can be noticed; there is usually no tissue preserved at this stage. 
4 The bone surface is coarsely fibrous; the cracks are open; occurrence of large and small 

splinters that can fall away from the main bone. 
5 The bone is completely falling apart as a result of the intense flaking. 

Root etching 

 In some cases, roots can attack the bone surface, producing a complex network of 

“thin, curvilinear branched grooves” with a U-shaped cross section and sometimes linear 
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arrangements of pits (Binford, 1981; Bader et al., 2009, p.140). The damage is due to roots 

and rootlets growing on the bone surface and secreting acids that dissolve the bone 

matrix (Shipman, 1981b). The observation of root etching on fossils can provide 

information about the context in which the bones were preserved, namely the presence 

of vegetation in the vicinity (Shipman, 1981b). 

Water abrasion 

In the case of isolated bones transported by flowing water, the abrasion due to 

impacts by sediment load contained in the water promotes rounding and polishing of the 

bone surface (Shipman and Rose, 1988; Fernández-Jalvo and Andrews, 2003) and can 

remove it altogether. Water abrasion can in some cases obliterate the detailed 

morphology of the bone surface, erasing previous modifications such as cut marks 

(Shipman and Rose, 1988). The “abrasion of compact bone may open up vascular channels 

lying just beneath the surface and push fragments of bone into them” (Shipman, 1981b, 

p.381). Experimental study on the effect of water abrasion on bones show that the type of 

sediment (coarse versus fine) present in the water, as well as the weathering stage of 

bones (fresh, dry, weathered or fossil), influence the degree of abrasion. The fossil bones 

(from a Middle Pleistocene cave deposit in Fernández-Jalvo and Andrews’s experiment; no 

precision concerning the stage of fossilization in Shipman and Rose’s experiment) are 

more rapidly and more intensively damaged than the other types of bones; and the 

coarser the sediment is, the more intensive the degree of abrasion (Shipman and Rose, 

1988; Fernández-Jalvo and Andrews, 2003). 

2.4. Spatial approach 

2.4.1. Introduction: background 

Analysing the distribution of bone remains in a palaeontological or archaeological 

site provides useful information in terms of site formation process and taphonomic agents 

that have affected the assemblage (Rigaud and Simek, 1991; Smith, 1993; Lyman, 1994b; 
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Marean and Bertino, 1994; Nigro et al., 2003; Jennings et al., 2006; Mallye, 2007, 2011). In 

palaeontological assemblages, fluvial dispersal can be identified based on the way bones 

are concentrated, distributed and orientated in the deposit (Voorhies, 1966, 1969; 

Behrensmeyer, 1975, 1982; Boaz and Behrensmeyer, 1976; Hanson, 1980; Smith, 1980, 

1993; Boaz, 1994). Spatial data help the identification of perturbations due to biological 

agents such as carnivores, which can cause significant bone dispersal while feeding on 

carcasses (Brain, 1981; Binford et al., 1988; Marean and Spencer, 1991; Stiner, 1991; 

Lyman, 1994; Marean et al., 1992; Marean and Bertino, 1994; Kjorlien et al., 2009), as well 

as burrowing animals, such as badgers and earthworms, which can modify the spatial 

arrangement of bone remains in a deposit (Wood and Johnson, 1978; Armour-Chelu, 

1994; Mallye, 2007, 2011). Conducting a spatial analysis requires that the X-Y-Z 

coordinates of the remains were recorded, which is not always the case with assemblages 

that were excavated a long time ago. Hence, only a few studies (Nigro et al., 2003; 

Jennings and Hasiotis, 2006; Mallye, 2011) have applied spatial analysis, namely 

Geographical Information System (GIS), to a palaeontological/archaeological assemblage 

in order to understand its taphonomic history and the formation process of the site. 

Spatial analyses have mostly been conducted in 2D, but the development of a 3D 

extension to the Arc View GIS software allows researchers to now conduct their spatial 

analysis in three dimensions (Nigro et al., 2003; Jennings and Hasiotis, 2006). 

2.4.2. Medical CT and microfocus CT scanning of hominin bones 

General introduction: principles and applications of the method 

Medical Computed-Tomography (CT) and microfocus CT scanning methods, 

coupled with 3D rendering software (e.g. AMIRA, Avizo, VG Studio Max, Treatment and 

Increased Vision for Medical Imaging or TIVMI) constitute very powerful non-invasive 

tools for the analysis of fossils. They have been increasingly used by palaeontologists and 

palaeoanthropologists in the past two decades for a large range of purposes (Zollikofer et 

al., 1998; Zollikofer and Marcia Ponce de León, 2005). Once original fossils have been 
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scanned, these technologies allow accurate qualitative and quantitative studies on 3D 

replicas without any risk of damaging the originals (Zollikofer et al., 1998; Zollikofer and 

Marcia Ponce de León, 2005). Figure 4.3 presents a flow diagram that illustrates the 

principles and applications of computer-assisted technology to the fossil record. 

 

Figure 4.3. Principles of computer-assisted technology applied to palaeontology and palaeoanthropology 
(from Zollikofer et al., 1998). 

Combining computed tomography and 3D reconstruction techniques offers the 

possibility to virtually restore the original shape and morphology of fossil specimens that 

have been distorted (e.g. because of sedimentary pressure), as well as to reconstruct 

fragmentary fossil specimens (Zollikofer et al., 1998, 2005; Wu and Schepartz, 2009). The 

combined technologies also permit (1) virtual and non-invasive exploration of internal 

parts of a fossil that are invisible on the original specimens and/or (2) virtual preparation 
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of a fossil still embedded within surrounding matrix (Conroy and Vannier, 1984; Wind, 

1984; Luo and Ketten, 1991; Maisey, 2001; Zollikofer et al., 2002; Zollikofer and Marcia 

Ponce de León, 2005; Lordkipanidze et al., 2006; Wu and Schepartz, 2009; Carlson et al., 

2011; Val et al., 2011). Computed Tomography technology has been applied to bone 

density research (Lam et al., 1998; Carlson and Pickering, 2003; Novecosky and Popkin, 

2005), morphometric (Guyomarc’h et al., 2012), biomechanical (Zollikofer and Marcia 

Ponce de León, 2005), and age estimation studies (Colombo et al., 2012). 3D printouts 

produced from 3D renderings can be used as near-identical replicas of the original fossil 

for future studies and/or distributed to museums, universities, and so on. This prevents 

excessive handling of original fossils and also provides a way of producing replicas that 

does not involve, as the classic casting methods do, risking damaging surfaces of original 

specimens. 

Scanning of the Malapa remains 

The MH1 skull, together with most post-cranial elements of the same individual 

(i.e. elements of the pelvis and long bones), were scanned in Grenoble, France, using 

synchrotron technology, at the European Synchrotron Radiation Facilities (ESRF), under 

the direction of L.R. Berger, K.J. Carlson and P. Tafforeau (Carlson et al., 2011). Other 

specimens were scanned at the Charlotte Maxeke Hospital in collaboration with J. Smilg 

using a medical CT-scanner. I have CT-scanned the replicas rather than the original bones. 

The 3D renderings produced from scan data of the casts are not as good as renderings 

produced from scan data obtained from original fossils, but they are sufficient for 

inclusion in illustrations of geospatial results, which do not aim at providing any detailed 

morphological or morphometric description of the bones, but to discuss the spatial 

distribution of the fossils. 
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2.4.3. 3D renderings of hominin remains produced using Avizo software 

Introducing the Avizo software 

The creation of 3D renderings of hominin remains was conducted using Avizo 

(version 6.2 at the beginning of the project, but upgrades permitted use of version 6.3 

later on). Avizo is a commercial visualization software package developed by Visualization 

Sciences Group (www.vsg3D.com). It permits visualizing, processing and analyzing any 

kind of 3D data, for industrial and scientific purposes. 

Creation of 3D renderings 

Both the microfocus CT and medical CT scanners produce a stack of .tiff files for 

each bone or group of bones that is scanned. This stack of images is then processed in 

Avizo, creating an isosurface of the bone, or 3D surface rendering, which is subsequently 

saved as a .surf or .stl formatted file. K.J. Carlson produced 3D renderings of original 

fossils, scanned whether using medical CT or microfocus CT image data. I created 3D 

renderings of the bones for which only the casts were scanned. 

2.4.4. Direction and inclination 

Definitions 

The direction considers the general orientation of the bones as well as the way the 

specimen is aligned (i.e. which cardinal point the proximal part is facing and which cardinal 

point the distal part is facing). For this matter, I only consider bones with a length longer 

than the width (i.e. long bones, some flat bone fragments, phalanges, ribs and mandibles). 

The inclination of the bone refers to the angle of the main axis of a specimen 

relative to the horizontal, inside the deposit. 

Combining these two aspects indicates whether there is a particular orientation 

and distribution of the bones within the different facies. 

http://www.vsg3d.com/
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Estimation of the direction and inclination of the fossils 

Two types of estimation, depending on whether or not the stratigraphic origin of 

the blocks was known, were conducted. 

 For the remains in blocks of known origin or still in situ, I have considered the 

direction of the remains within a geographical plane (north, south, east and west). In the 

lab, for the remains for which the exact position in the deposit is known (i.e. all the bones 

from the MH2 arm block), virtual measurements were taken on the 3D renderings of the 

blocks using the Avizo 6.3 software, which allows measuring distances and angles. 

For ex situ blocks/remains for which the exact position in the site is not known and 

that have been scanned, I have considered the direction of the remains relative to each 

other. This was conducted on the computer using Avizo 6.3, the software allowing the 

exploration of the interior of the blocks. If a general orientation is noticed, one cannot tell 

the geographical direction (north, south, east, and west) but it still provides information 

about general orientation of the remains. This was used for the MH1 “clavicle block” that 

was found ex situ and for which a 3D rendering was produced. 

Estimation of the movement and distances between the bones 

In order to estimate the movement that has affected the hominin remains, 3D 

distances between the in situ hominin remains were calculated. This allows an evaluation 

of the bone dispersion intensity for the MH1 and MH2 individuals. 

The 3D distance between two points i and j that both have X, Y and Z coordinates is 

calculated as follows: 

Distance between i and j= √ [(Xi-Xj)
2 + (Yi-Yj)

2 + (Zi-Zj)
2] 
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2.4.5. Refitting hypotheses 

Distinction between direct and indirect evidence 

During the refitting process of the ex situ hominin remains, I used different types 

of evidence, separated into two categories: direct and indirect evidence. A given 

hypothesis for the refitting of a specimen based on single direct evidence only has a 

degree of probability of 100% (or 1). On the other hand, one or even a combination of 

indirect evidence cannot give a degree of probability of 100% for any proposed 

hypothesis. Obviously, the combination of a maximum number of indirect evidence 

increases the degree of probability for one given hypothesis but never to 100%. Some 

direct evidence can justify both the position and orientation of one or several specimen(s) 

within the deposit, while there is direct evidence for only the orientation. Indirect 

evidence can elucidate either or both the orientation and position of the bones. Future 

excavations and expected recovery of missing remains of MH1 and MH2 from in situ 

deposits will permit to test these hypotheses. 

Direct evidence for the position and the orientation 

One case only allows a degree of probability of 100% for a refitting hypothesis: 

when the refitting is based on a direct link between an in situ specimen and an ex situ one. 

The two elements must match perfectly (no sediment between the bones). This occurs 

when a bone was broken recently by a mining blown, which has detached a part of the 

bone and left the remaining part in the deposit. 

Direct evidence for the orientation only 

Evidence based on sediment contained in a block or a specimen itself, and 

indicating a flow direction and/or a peculiar organisation of the sediments, can be used to 

document the original orientation of a block/specimen within the deposit. The sediment 

contained in the block and/or the specimen can indeed be correlated with the sediment 
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from the deposit. This provides information for the orientation of the remains but not its 

exact position (X, Y, Z coordinates) within the deposit. 

Indirect evidence for the position and/or orientation 

Indirect evidence is based on observations of movement, position and orientation 

of in situ remains on one hand, and of bones present in ex situ blocks on the other. This is 

based on the extrapolation principle: for instance, if the same observation is made for all 

the in situ remains (e.g. low displacement rate of the fossils within the deposit compared 

to their anatomical position), this observation is equally applied to the ex situ remains that 

have to be refitted. When only indirect evidence is used, the degree of probability of the 

retained hypothesis can be increased by combining several lines of evidence. 

Movement/transport rate 

The general movement and transport rate for both MH1 and MH2 is low. It is assumed 

that this is the case for the ex situ remains too. Elements anatomically close to each other 

in the skeleton have been recovered in close proximity (this is true for both MH1 and 

MH2; see the results in Chapter 7). This includes small elements easily movable (e.g. 

elements from the “clavicle block” for MH1 or first ribs for MH2). 

Disarticulation order and anatomical logic 

MH2 shows a low level of disarticulation (some joints are still preserved, including 

fragile joints, such as the right hand and knee). This seems to indicate that the whole 

skeleton was buried before an advanced state of disarticulation. Therefore, the criteria of 

low degree of disarticulation is also applied as a proxy for refitting the ex situ MH2 bones. 

In other words, the low degree of disarticulation is used as an argument to place the ex 

situ bones close to their normal anatomical position. 
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General orientation and position of the bones 

The position of the whole body suggested by in situ bones is used as a proxy to refit ex 

situ bones. This argument is applied in combination with the two previous ones (low 

transport rate and negligible disarticulation and dispersion). For instance, the position of 

the bones inside the “arm block” indicates that the upper part of MH2 was facing south 

and positioned slightly obliquely to the horizontal, while the position of the femur inside 

the block is consistent with the right leg flexed with the knee pointing east. 

Figures illustrating all the hypotheses for the refitting of the different ex situ hominin 

remains are compiled in Appendix 7. The process followed is an application of all these 

criteria. I proceed first with MH1 remains and then with MH2 remains. 

2.4.6. Creation of a 3D hypothetical model for refitting the hominin remains in the deposit 

The creation of a 3D model of the cave, including 3D renderings of the hominin 

remains in their original in situ burial position, is based on a probabilistic and hypothetical 

approach. The final 3D model represents what is considered to be the most likely scenario, 

for which several lines of evidence exist. The process followed is divided into several 

steps. 

Firstly, 3D renderings (saved as .stl files) of all the hominin remains were created using 

Avizo 6.3 software. Secondly, using these 3D renderings and based on the digital record of 

the preparation process, 3D models of the different blocks were produced. Hence, 3D 

models of the “arm block” (MH2), the “skull block” (MH1), the “ilium block” (MH1) and 

the “clavicle block” (MH1) were created. In order to do so, all the 3D renderings of the 

bones found together in the same block were opened in Avizo 6.3 and then positioned 

one by one according to their original position within the block from which they were 

recovered. Once all positioned, the files were merged together in order to create a single 

.stl file that contains all the bones and can be exported. Thirdly, the in situ hominin 

remains for which the exact coordinates are known (MH2 “arm block” and fibula shaft, 
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MH1 vault fragments, incisor and metatarsals) were placed in a 3D grid. The “arm block” 

was used as a reference point. The other in situ remains were automatically positioned by 

the software, by entering the coordinates. Then, all ex situ remains or groups of remains 

(i.e. MH1 “skull block” and “clavicle block”) were positioned relative to the in situ ones. All 

the different possible positions for each block were successively considered and the most 

likely retained. To decide, in each case, which position was the most appropriate, I based 

my decision on field information, geological and geomorphological evidence, as well as 

the digital record of the general orientation and position of bones found in situ and bones 

found in blocks. Finally, when the 3D model was completed, with each bone and group of 

bones in their most likely position, all the files were merged into one single .stl file. A 3D 

rendering (.obj file) of the site (Pit 1) was produced using Photoscan software, which can 

produce a 3D rendering of any object using only 2D pictures. The two files (i.e. hominin 

remains and deposit) were opened together and combined to produce the final 3D model. 

3. FORENSIC SCIENCES 

3.1. Definition 

The adjective forensic (from Latin forensis, meaning “in open court, public”) relates to 

or denotes “the application of scientific methods and techniques to the investigation of 

crime” (Oxford English Dictionary). In other words, all forensic disciplines - and they are 

legion – contribute to the understanding and interpretation of the events surrounding a 

crime and of the causes and conditions of death of the victim. The results of a forensic 

investigation help with the identification of the person(s) and/or factors responsible for 

the death of the victim, in order to provide evidence in the context of a court case. 

Forensic sciences, or “forensics”, are subdivided into numerous disciplines, including 

forensic botany, forensic seismology, forensic geology, forensic astronomy, forensic 

chemistry, forensic accounting, forensic entomology, only to mention a few. The following 

sections provide a brief description of the sub-categories of forensic sciences of interest to 

the present research, namely forensic anthropology, forensic archaeology and forensic 
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taphonomy, together with their field of applications and their methodology. This 

constitutes the contextual background in which the new concept of palaeoforensic 

taphonomy will be introduced at the end of this chapter. 

3.2. Forensic anthropology 

3.2.1. Creation of the discipline and definition 

Forensic anthropology is a subsection of forensic sciences that applies methods and 

techniques of physical anthropology and human osteology in the investigation of criminal 

cases. It was officially recognised as a new section of forensics in 1971, during a meeting 

of the American Academy of Forensic Sciences, under the influence of Ellis Kerley, Clyde 

Snow and William Bass, who created the Physical Anthropology section of that Academy 

(Snow, 1982; Ubelaker and Hunt, 1995; Beary and Lyman, 2012). The field of forensic 

anthropology has since undergone many developments and is now a well established and 

recognised discipline (e.g. Ubelaker and Hunt, 1995; Beary and Lyman, 2012). 

3.2.2. Applications and objectives 

In some legal cases, the bodies are so badly preserved (e.g. mutilated or burnt) or in 

such an advanced state of decay that the help of a specialist in human anatomy and 

osteology is required. Physical anthropologists working on a forensic case will address the 

following questions: identification of the remains (are they humans, and how many 

individuals are present); description of the physical characteristics of the victim(s), which 

can serve in their identification (estimation of the sex, age, race, stature, and body 

weight); detection of anatomical anomalies, such as pathologies, signs of disease or injury, 

which can also contribute to the identification of the victim; evaluation of the time of 

death; and determination of the causes (e.g. strangulation, gunshot, drowning) and 

manner (natural, homicide, suicide, accident, unknown) of death (Snow, 1982). 
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3.3. Forensic archaeology 

3.3.1. Creation of the discipline and definition 

Forensic archaeology is the application of archaeological methods and techniques to 

the investigation of criminal and death cases (Morse et al., 1976). It was recognised as a 

subsection of forensics, and specifically of forensic anthrolopology during the seventies 

and has since undergone significant developments (e.g. Dupras et al., 2011). 

3.3.2. Applications and objectives 

The application of archaeological methods is required in the case of buried individuals. 

Archaeological skills, in terms of excavations and collection of human remains and all 

available contextual information, can prove very useful in understanding the context of a 

crime/burial scene (Morse et al., 1976; Dupras et al., 2011). The role of forensic 

archaeologists is to locate possible areas where the victims might have been buried, to 

interpret the context of the crime scene, and to understand the role played by 

postdepositional processes with regard to the crime scene transformation. This includes a 

detailed description of the crime scene, using methods traditionally used in archaeology, 

such as mapping and drawing of sections and plans, in order to show the exact position of 

the human remains and associated objects. It also includes careful excavation of the 

remains, using classical archaeological techniques, characterised by a great degree of 

precision. Thus, all human remains and evidence (any elements and objects associated 

with the human remains) are collected, and all relevant information destroyed by the 

excavations are recorded (e.g. nature of the soil and stratigraphy of the burial context, 

orientation and exact position of the remains) (Dupras et al., 2011). 
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3.4. Forensic taphonomy 

3.4.1. Creation of the discipline and definition 

Forensic taphonomy is the application of taphonomic methods and techniques to the 

investigation of a criminal case. It has developed dramatically in the past two decades, as 

attested by the increased number of publications (e.g. Dirkmaat et al., 2008; Beary and 

Lyman, 2012). Taphonomy plays an important role in forensic cases as it permits 

investigators to distinguish postmortem modifications that are a consequence of natural 

processes, unconnected to the crime, from those that are a crucial part of it (Ubelaker, 

1997; Dirkmaat et al., 2008; Beary and Lyman, 2012). 

3.4.2. Applications and objectives 

As a forensic discipline, forensic taphonomy determines the identity of the victim and 

to understand the proceedings of a crime. In a recently published paper, Beary and Lyman 

(2012) review five goals of the forensic taphonomists, which are to (1) determine whether 

or not the remains recovered belong to a crime case and are therefore of forensic 

significance; (2) estimate the postmortem interval (PMI), which is the time between death 

and recovery; (3) explain how the remains arrived at the place where they were 

discovered; (4) identify which actions have been conducted to hide the identity of the 

victim or of the whole crime; and (5) determine which taphonomic factors have had an 

impact on the remains and how they can “affect (positively or negatively) the 

investigator’s ability to glean information about the victim or the crime” (Beary and 

Lyman, 2012). Most of the studies in forensic taphonomy available in the literature have 

addressed questions relating to decomposition of cadavers (e.g. rate, modalities, effects, 

estimation of PMI, and influence of environmental factors) (e.g. Haglund and Sorg, 2002; 

Beary and Lyman, 2012). 
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4. DEFINITION OF A NEW CONCEPT: PALAEOFORENSIC TAPHONOMY 

4.1. Definition and objectives 

4.1.1. General definition 

Here, I propose and define a new field of research, which finds its inspiration in the 

previously described disciplines, namely vertebrate taphonomy and forensic 

anthropology, archaeology and taphonomy. This new exploratory field of research, which I 

do not yet consider as a new discipline, since it only applies to the case of two hominin 

skeletons, is investigated in this research project, and will undoubtedly be further 

developed in the future, as new discoveries of well preserved hominin fossils take place. I 

name this concept “palaeoforensic taphonomy”. As a research area, its aim is to follow a 

forensic approach to conduct taphonomic investigations on fossil skeletons that are well 

preserved and complete enough to reconstruct their burial posture. Using taphonomic 

methods, it seeks to understand the conditions, timing and processes of burial for fossil 

vertebrate remains that were recovered in a palaeontological context, where each 

individual skeleton is considered as a unique case. The ultimate goal, as in a forensic case, 

is to understand the cause and context surrounding the death and burial of the individual 

skeleton. 

4.1.2. Differences with traditional vertebrate taphonomy and with biostratinomy 

I refer to this new concept as “taphonomy” because it uses methods and 

techniques traditionally used in vertebrate taphonomy, namely palaeontological, physical 

and spatial studies of the fossils. I also refer to it as taphonomy because it aims at 

understanding some of the processes that are involved in the transformation of organisms 

from the biosphere to the lithosphere. Vertebrate taphonomy is the study of the changes 

affecting one or several organism(s) from the moment of death to the time of recovery 

and curation; it serves to identify which elements have been lost and which have been 

modified between these two stages (e.g. Efremov, 1940; Lyman, 1994; Beary and Lyman, 
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2012). Palaeoforensic taphonomy differs from traditional vertebrate taphonomy because 

it focuses mainly on events surrounding the period between death and burial and during 

burial, rather than between burial and recovery. Vertebrate taphonomy has “little need to 

consider the immediate postmortem changes to a deceased organism due in part to the 

long temporal span separating the investigator from the specimen under study” (Beary 

and Lyman, 2012); rather, vertebrate taphonomists focus more on understanding the 

events and changes taking place after burial (Lyman, 1994; Beary and Lyman, 2012). With 

palaeoforensic taphonomy, attention is given primarily to perimortem and immediate 

postmortem processes, which have affected an individual recovered in a fossil 

assemblage. 

Biostratinomy, a concept first defined by Weigelt (1927), presents similarities with 

palaeoforensic taphonomy. It is also a sub-discipline of taphonomy, which focuses on the 

processes that affect animal remains between the moment of death and the moment of 

burial (e.g. Behrensmeyer et al., 1992; Fernández-López and Fernández-Jalvo, 2002). 

However, the main goals of biostratinomy concern palaeoecological, 

palaeobiogeographical and evolutionary questions, which is not the case of palaeoforensic 

taphonomy (see below 4.1.5. Objectives and implications). Palaeoforensic taphonomy is 

primarily interested in reconstructing and understanding the moment of the burial itself 

and uses contextual information about the deposit from which the fossils were recovered, 

such as sedimentological, geological and palaeontological data (e.g. about the associated 

faunal material) to achieve this goal, while biostratinomy tends to consider information 

about the processes that have modified the fossils, from the death of the animal to its 

burial, in order to reconstruct the physical context (i.e. type of environment, climatic 

conditions, geology of the locus of burial) in which they took place (see for instance 

Behrensmeyer et al., 1992). 
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4.1.3. Why “palaeo-forensic”? 

I refer to this new field of research as “forensic” because the main goal is to 

understand the conditions and context of the burial and ultimately the causes of death; in 

other words to determine the biotic and abiotic agents and factors that led to the death 

and the burial of the individuals. As in a forensic case, the identification of the “victim” 

and the reconstruction of the “crime” and the “crime scene” are the crucial points of the 

investigation. Obviously, in the context of fossil hominins that died almost 2 million years 

ago, the notions of a legal case, court and trial have no significance. This explains the 

addition of the prefix “palaeo-”, which means ancient, and implies that it only applies to 

cases from the fossil record and therefore loses any judicial meaning. 

4.1.4. In which case can it be applied? 

The concept of palaeoforensic taphonomy is developed as an answer to tackle the 

very specific case of the well-preserved hominins from Malapa; MH1 and MH2. Its field of 

application is limited so far to these two individuals. However, more individuals from the 

Malapa site should be recovered as excavations progress, and some near complete 

skeletons of non-hominin animals have already been recovered. Other deposits, such as 

the Silberberg Grotto at Sterkfontein, have provided well preserved hominin remains, 

namely StW 573, “Little Foot” (Clarke, 1988, 1998, 1999, 2008). It is reasonable to expect 

that discoveries of new fossil localities containing in situ and well preserved hominins will 

be made in the future. Together with an accurate collection of contextual information and 

spatial data, a palaeoforensic taphonomic approach could be applied. Some conditions are 

required in order to maximize the chances of getting informative results when applying 

this new approach. Three conditions need to be met: (1) the individual has to be 

represented by a complete or near complete skeleton, (2) it must be recovered in situ (or, 

alternatively its exact provenance inside the deposit must be known), and (3) any spatial 
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information about the position, orientation, angle and direction of the remains inside the 

deposit must be recorded. 

4.1.5. Objectives and implications 

As mentioned previously, the primary goal of palaeoforensic vertebrate 

taphonomy is to reconstruct the burial of a given fossil, which could potentially lead to 

understanding its death. This primary goal is subdivided into various questions that need 

to be addressed: 

 Is the posture in which the fossil was recovered consistent with a death posture or 

with a burial posture? This requires determining whether the deposit, from where the 

fossil comes, is consistent with the location of death or with the location of burial, if 

the two differ. 

 If the fossil is recovered in a secondary deposit (parautochthonous or reworked), 

which agents have displaced it from the primary deposit? In other words, what kind of 

transportation occurred between death and burial (e.g. water, scavengers, gravity)? 

 If transportation has occurred, what was the degree of decay and disarticulation of the 

skeleton when it happened? 

 What is the rate of burial and how much time went by between death and final burial? 

This is similar to the estimation of post mortem interval (PMI) in forensic cases. 

 What was the degree of decay when the skeleton was completely buried? 

 What was the stage of disarticulation when the skeleton was buried? 

 What was the context of the burial in terms of environmental conditions (including 

location, for instance in water, in a cave chamber, in mud; temperature; humidity; 

level of light)? 

 Which factors have affected the skeleton pre- and post burial (e.g. contribution by 

scavengers, insects, bats, action of water, gravity)? The effect of each agent must be 

chronologically ordered. 
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Understanding why and how a fossil was buried provides direct information about the 

events that preceded the burial. Similar to a time machine going back step by step, it 

brings us closer to the moment of death. The results of palaeoforensic taphonomic 

investigations also provide information about the exact state of decay and disarticulation 

when the body was finally buried. This can help in the evaluation of the possibilities of 

recovering missing elements and predicting where to look for them. This can also prove 

useful in predicting where evidence of soft tissues or amino acids may be present. 

4.1.6. Methodology 

Palaeoforensic taphonomy follows a forensic approach, which consists of collecting 

as much evidence as possible. The main aim is the reconstruction and study of the burial 

posture, in the context of a faunal assemblage, in a specific deposit, at a given fossil site. 

The three dimensional approach is therefore crucial and seeks to reconstruct the exact 

position of the bones inside the deposit, in their original place, orientation and angle. The 

geomorphology of the site and the geology of the deposits must also be considered, as 

they document the context of the “crime scene”. Classical taphonomic methods of inquiry 

are required, such as description of the associated fauna, in terms of composition, general 

preservation, estimation of the body part survival patterns (i.e. palaeontological 

approach), as well as a detailed microscopic analysis of the bone surfaces and study of the 

breakage patterns (i.e. physical approach). 

4.2. Death and burial postures of fossil vertebrates 

4.2.1. Introduction 

When vertebrate skeletons are preserved well enough to describe their burial 

position, relevant information regarding the causes and conditions of burial can be 

discussed. The causes of death, conditions in which a corpse is buried (e.g. on land, in 

mud, in water, in a confined space or on an open surface), and preservation processes all 

condition the position of the skeleton at the time of recovery. In the fields of vertebrate 
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palaeontology, funerary archaeology, and forensic anthropology, the position of a 

corpse/skeleton is used to document some aspects of death and burial, which in return 

can prove useful to document past behaviour, ecology, and in the case of humans, cultural 

traditions or crime scenes. 

4.2.2. Palaeontological contexts 

Occasionally, the fossil record yields articulated or near-articulated and well preserved 

vertebrate skeletons, which present a combination of all or some of the following 

characteristics: very little or no weathering, absence of carnivore damage, presence of 

complete and/or near complete elements, and bones in anatomical position. These cases 

are rare and occur only when specific conditions, associated with the modes of burial and 

preservation of the skeletons, are met. The preservation of articulated specimens in the 

fossil record is consistent with individuals that were buried rapidly, before complete 

decomposition of soft tissues (e.g. skin, muscles, tendons, ligaments), which were still 

holding the bones together (Gradziński, 1969; Schäfer, 1972; Maureille and Sellier, 1996; 

Gargett, 1999; Duday, 2009). It is also consistent with carcasses that remained 

undisturbed in their primary deposit until their recovery. In other words, they represent 

animals that were preserved in their burial and sometimes in their death positions. They 

have not been subjected to a long period of subaerial exposure; they have not undergone 

significant water transport, they have not been scattered or significantly chewed on by 

scavengers, damaged by erosion, wind or sun. Such cases of quick burial followed by little 

or no perturbation usually happen during catastrophic events such as floods (Smith, 1980, 

1987, 1993; Weigelt, 1989; Smith and Evans, 1996; Rogers et al., 2007). They can also be 

associated with climatic changes, such as an increase of arid conditions causing droughts 

(Shipman, 1975; Rogers, 1990; Smith, 1995; Smith and Ward, 2001; Rogers et al., 2007). 

Animals drowned in waterlogged sand and mud tend to preserve well (e.g. Weigelt, 1989 

and Ochev, 1995; Rogers et al., 2007). The combination of catastrophic events or rapid 

climate change with specific animal behaviour, such as living in an underground burrow, 
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can increase the chances of good preservation, by preventing access to the skeleton by 

scavengers and other destructive taphonomic agents (Smith, 1987, 1995; Smith and Evans, 

1996; Adbala et al., 2006; Botha-Brink and Modesto, 2007). 

In the following sections I describe burial positions observed among well preserved 

vertebrate fossil skeletons and frequently mentioned in the palaeontological literature. 

The analysis of the burial posture serves to interpret causes, conditions and timing of 

burial, which lead to understanding causes and conditions of death. In some cases, 

studying the burial position also provides information about the behaviour and ecology of 

extinct species. An exhaustive review of all cases described in the literature is beyond the 

scope of this project. Rather, a sample of examples is provided here of the most 

commonly described types of burial positions, together with their taphonomic 

interpretations. Six types of fossil postures are regularly mentioned in the literature: 

“curled-up” (Smith, 1987, 1993, 1995; Smith and Ward, 2001; Damiani et al., 2003), 

straight or reflexed spinal curvature (Smith, 1993), opisthotonic posture (head, neck and 

spinal column in an arched position) (Faux and Padian, 2007; Reisdorf and Wuttke, 2012), 

“dorsal up” (Ochev, 1995; Smith and Evans, 1996; Abdala et al., 2006; Botha-Brink and 

Modesto, 2007), “belly up” (Ochev, 1995; Stanford et al., 2011; Fordyce et al., 2012) and 

“head up” positions (Smith, 1980; Fordyce et al., 2012). A distinction has to be made 

between passive and rigid positions (Gradziński, 1969; Dodson, 1973; Weigelt, 1989). The 

former, namely ventral (“dorsal up”) and dorsal (“belly up”) positions are passive 

positions, which are consistent with animals that were buried quickly after death, but 

after rigor mortis set in. In other words, muscles and ligaments were relaxed and the 

conditions of burial (e.g. in water) lead to the placement of the corpse in an unbent 

position with the limbs spread. Consequently, passive positions document the conditions 

of burial rather than the causes of death. On the other hand, a rigid position is consistent 

with animals that were buried in a constrained position caused by rigor mortis, 

desiccation, drowning or failure of the nervous system (Dodson, 1973; Weigelt, 1989; Faux 

and Padian, 2007), as in the case of animals found in “curled-up”, “head up”, or 
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opisthotonic postures. The animals were buried (e.g. trapped in mud, covered by 

sediments) while rigor mortis was still active (in the case of opisthotonic posture), or while 

they were still alive and died unexpectedly (e.g. flood or accidental drowning, as can be 

the case with skeletons showing a “head up” or a “curled-up” posture). The analysis of 

rigid positions constitutes therefore a direct access to the causes and conditions of death. 

The following paragraphs provide more detailed information about each of the most 

commonly observed postures in the fossil record for articulated vertebrate skeletons. 

“Curled-up” posture 

The curled-up posture, consistent with taphonomic class “A” described by Smith 

(1980, 1993), is generally associated with animals that died in their burrows, under various 

circumstances, especially drowning by flooding (Smith, 1980, 1987, 1993, 1995; Damiani 

et al., 2003). This posture can indicate preservation during aestivation or hibernation 

(Smith, 1980) and is usually used as an argument to demonstrate burrowing behaviour, 

especially when the burrows are not preserved (Smith, 1995). Abundant mammal-like 

reptiles from the Permian, namely dicynodonts, such as Diictodon (Smith, 1980, 1987, 

1993) and cynodonts, such as Thrinaxodon (Smith, 1995; Damiani et al., 2003) have been 

recovered in a curled-up posture. They are found in floodplain deposits, usually associated 

with channel-bank deposits (Smith, 1980, 1987) and are interpreted as individuals that 

either died during a catastrophic flood or were dead and already decomposing when the 

flood happened. When preserved, the skeletons are usually found in the terminal 

chambers of their burrows (Smith, 1987, 1993; Damiani et al., 2003). Since the curled-up 

posture is consistent with individuals already dead in their burrow or that have drowned 

during a flood event, it is associated with a burial position and a primary deposit (site of 

death). There is no transportation, no scattering and the duration of the post-mortem pre-

burial period is very short (Smith, 1993). Curled-up skeletons of Lystrosaurus are found in 

the Permian-Triassic boundary sedimentary units of the Karoo Basin. The posture of these 

skeletons is used as an argument to defend the hypothesis of their burrowing habits 
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(Smith, 1995). It can indicate desiccation and is interpreted as evidence of rapid and 

drastic climatic changes taking place at the end of the Permian, in the form of drying 

causing droughts and decrease of vegetation (Smith, 1995; Smith and Ward, 2001). 

Straight or reflexed spinal curvature 

Complete skeletons recovered with straight or reflexed spinal curvature (taphonomic 

class “B”, in Smith, 1993) are described for some Permian fossil therapsids recovered in 

the Karoo Basin. They are considered as animals that died in their burrow and mummified; 

they are associated with a rapid burial and no transportation (Smith, 1993). 

Opisthotonic posture 

Articulated skeletons of animals with a long neck and tail, such as fossil birds, 

dinosaurs, pterosaurs and some placental mammals are sometimes recovered in an 

opisthotonic (from the Greek opistho, behind and tonos, tightening) posture (e.g. Moodie, 

1923; Weigelt, 1989; Faux and Padian, 2007; Reisdorf and Wuttke, 2012), which can be 

described as an “extreme, dorsally hyper extended posture of the spine, characterised by 

the skull and neck recurved over the back, and with strong extension of the tail” and is 

consistent with a stiffening of the vertebral column (Faux and Padian, 2007, p.1). In clinical 

cases, the opisthotonic posture is explained as the direct result of opisthotonus, which, in 

the medical literature, refers to both the opisthotonic posture and the symptoms causing 

them. Causes of death associated with opisthotonus include asphyxiation, lack of 

nourishment or essential nutrients, environmental toxins or viral infections (see Faux and 

Padian, 2007), which all afflict the central nervous system, causing the body to contract in 

an opisthotonic posture. A multitude of hypotheses have been proposed to explain this 

posture among fossil skeletons, and its exact origin is still debated (see for instance Faux 

and Padian, 2007; Reisdorf and Wuttke, 2012). Possible explanations include mostly 

postmortem factors, such as the result of rigor mortis (Gillette, 1994; Laws, 1996 in Faux 

and Padian, 2007), a natural sleeping position in which the animal died (Heinroth, 1923), 
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the relaxation of the muscles after death (Wellnhofer, 1991 in Faux and Padian, 2007), the 

consequence of death and dive of animals stuck in mud (Deecke, 1915 in Faux and Padian, 

2007), the effect of current flow operating on a carcass that has sunk (de Buisonjé, 1985; 

Frey and Martill, 1994 in Faux and Padian, 2007), the effect of postmortem subaerial 

desiccation followed by the contraction of the tendons of the back of the neck (Weigelt, 

1989), and hyper saline dehydration of tissues, which causes a contraction of the tendons 

from the neck (Schäfer, 1972; Seilacher et al., 1985; Wellnhofer, 1991: in Faux and Padian, 

2007; ). Contrary to these explanations, a recent study by Faux and Padian (2007) 

proposes that the opisthotonic posture is not the consequence of a postmortem process 

but the result of a perimortem process, namely death throes, as already suggested by 

Moodie (1918, 1923 in Faux and Padian, 2007). Rigor mortis would preserve the position 

of an animal that died in opisthotonus and this posture would be maintained in the case 

of burial quickly after death (Faux and Padian, 2007). Their study is, however, not 

supported by experimental data. They do not prove that an opisthotonic posture is caused 

by a perimortem process; the data presented serve only to invalidate previous 

hypotheses, such as drying of soft tissues or hypersaline dehydration of tissues. Their 

hypothesis, even though generally accepted (e.g. Eberth et al., 2010 in Reisdorf and 

Wuttke, 2012; Georgi and Krause, 2010; Elgin et al., 2011; Lingham-Soliar, 2011), has been 

challenged by others. For instance, Reisdorf and Wuttke (2012) maintain that opisthotonic 

posture observed in the fossil record is the result of a postmortem process, occurring in an 

aquatic environment, and has therefore nothing to do with the cause of death being 

related to opisthotonus. A recent experiment on plucked chickens demonstrated that 

immersion in water cause directly lead to opisthotonic posture (Cutler et al., 2011). 

“Dorsal up” posture 

A dorsal up posture is consistent with burial in life position (Ochev, 1995; Smith, 1995; 

Smith and Evans, 1996; Botha-Brink and Modesto, 2007), whereby the body has been 

deposited in a vertical manner, with the limbs going straight down on one or two sides 
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(Ochev, 1995). This posture has been described for abundant pareiasaur skeletons from 

the Late Permian locality of Kotel’nich in Russia (see Ochev, 1995). Various hypotheses 

have been proposed to explain the origin of the posture. The animals could have been 

mired in the mud and, unable to move, died there. They could also, if one accepts aquatic 

habits for this species, have died inside the lake because of drying up of the water. 

Alternatively, they could have lived and died inside the lake from natural causes, sunk and 

eventually became trapped in the mud present at the bottom of the lake (see Ochev, 

1995). The hypothesis considered as the more plausible is the existence of muddy plains 

and animals, especially weak and young individuals, being bogged down, dying there and 

becoming preserved in a vertical position, back up and legs down. In a different context, 

dorsal and dorsal-side up positions have been described for taxa of Permian reptiles 

(Smith and Evans, 1996), cynodonts (Adbala et al., 2006) and pelycosaurs (Botha-Brink and 

Modesto, 2007) are interpreted as evidence of group denning behaviours, as illustrated by 

the way the skeletons are aggregated (Smith and Evans, 1996; Abdala et al., 2006; Botha-

Brink and Modesto, 2007). 

“Belly up” posture 

Skeletons found in a belly up posture are interpreted as animals that have drowned or 

died close to water. Once in the water, gasses associated with the decomposition of the 

abdomen and its content cause the body to float, belly up. The carcass then sinks and gets 

buried in that position (Ochev, 1995; Stanford et al., 2011; Fordyce et al., 2012). Belly up 

positions are associated with catastrophic flood events, either causing animals to drown 

(Ochev, 1995) or collecting dead animals decomposing on the surface (Fordyce et al., 

2012). It can also be associated with accidental drowning, as in the case of an immature 

dinosaur (nodosaurid, Propanoplosaurus marylandicus) that was recovered in the form of 

natural impressions in the sediments of the Lower Cretaceous of Maryland, USA, in a belly 

up posture (Stanford et al., 2011). To explain the burial position, the following scenario 

has been proposed: the postnatal individual drowned near its nest, in shallow water, 
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floated for a while with bloated belly up due to the decomposition of the internal 

contents, producing gasses. The carcass consequently sank after the abdomen burst and 

came to rest on the bed, in the same posture, belly up (Stanford et al., 2011). 

“Head up” posture 

The head up posture is generally described in association with a belly up posture 

(Fordyce et al., 2012), as it is also considered as evidence for animals that were buried 

while in water (Smith, 1980). The head up attitude observed among pareiasaurians 

recovered in the Permian sediments of the Karoo Basin was interpreted by Haughton 

(1919) and Von Huene (1925) as “evidence of back swamp conditions where the semi-

aquatic pareiasaurians were often mired and overwhelmed whilst gasping for air” (in 

Smith, 1980). 

4.2.3. In archaeological sites 

The position in which human skeletons are recovered from archaeological contexts 

can be of two types: the death posture, extremely rare since it requires the burial of the 

body just after death, before any modification can take place; and the burial posture, 

consistent with the position in which the body was protected after death, either naturally, 

or through intentional burial. When bodies are recovered in their death attitude, it is 

possible to determine causes and conditions of death (e.g. Mastrolorenzo et al., 2001, 

2010; Luongo et al., 2003; Bedford and Tsokos, 2012). When bodies are recovered in their 

burial attitude, information regarding the nature of burial (natural or intentional) can be 

gathered. In the case of intentional burial, mortuary behaviours of past populations can be 

documented (e.g. Harrold, 1980; Pearson, 1999; Knusel et al., 1996; Roksandic, 2002; 

Duday, 2009; Pettitt, 2011). 
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Burial position 

The recovery of complete or near complete human skeletons in archaeological sites 

provokes questions regarding how they came to be there, whether through natural or 

anthropogenic causes. The identification of the position of the skeleton can be crucial in 

deciding whether the individuals were preserved accidentally, or if they reflect intentional 

burial, associated with funeral rituals. This question is especially true in Middle 

Palaeolithic contexts, where the existence of mortuary behaviours among Neanderthals is 

a topic of great interest and debate (e.g. Gargett, 1989a, 1999; Koojmans et al., 1989; 

Langley et al., 2008; Pettitt, 2011; Sandgathe et al., 2011). Together with other elements 

(e.g. good state of articulation; evidence for intentional protection of the body, clear 

difference in the sediments), a certain arrangement of the body is considered as evidence 

for intentional burial (Binford, 1968; Harrold, 1980; Smirnov, 1989; Villa, 1989; Belfer-

Cohen and Hovers, 1992; Kimbel et al., 1995). Hence, a strongly flexed position of the 

body or of some body parts, namely the legs and/or the arms, is interpreted by some 

authors as clear indication of handling of the corpse and intentional burial (Bouyssonie, 

1954 in Smirnov, 1989; Binford, 1968; Harrold, 1980; Villa, 1989; Kimbel et al., 1995). 

Burials are generally, but not exclusively, associated with bodies positioned on their backs 

or placed on one side, whether fully extended or loosely or tightly flexed; the absence of 

such arrangement (i.e. haphazard arrangement of the body) can be used to demonstrate 

natural preservation rather than intentional burial (Sandgathe et al., 2011). However, the 

criterion of a specific arrangement of the body to justify intentional burial has been 

challenged, notably by Gargett (1989a, 1989b, 1999), who, based on the concept of 

equifinality, argues that unintentional factors and natural causes can also lead to a specific 

body arrangement. For instance, individuals who died during their sleep have been found 

in a flexed position (Gargett, 1999). 

In more recent contexts, when there is clear contextual evidence of intentional burial 

(e.g. skeletons found in a funerary complex such as cemetery, presence of grave goods 
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and elements of ornament, evidence of a void dug to accommodate the corpse, presence 

of a coffin), the position of the body documents traditional cultural funeral practices 

around the treatment of the dead, which is why the need of recording such information 

during excavations has been stressed by some (Duday et al., 1990; Roksandic, 2002; 

Duday, 2009). For instance, the nature of the deposit (primary or secondary) from which 

the skeleton is recovered can be assessed based on the position of the body (Maureille 

and Sellier, 1996; Roksandic, 2002; Duday, 2009). Human skeletons in funerary contexts 

are recovered in a variety of postures (e.g. lying on the back, on one side, sitting down, 

orientated in a certain direction, extended or flexed), which represent intentional gestures 

and specific treatment of the dead by the people who buried them (e.g. Harrold, 1980; 

Pearson, 1999; Roksandic, 2002; Duday, 2009; Pettitt, 2011). Two examples are given here 

to illustrate how the analysis of body position in a funeral context can provide information 

about mortuary behaviours. The first example dates from the Late Preclassic period 

(ca.100 B.C. to A.D. 100) of Mesoamerica (Fowler, 1984). The structure E-7 at Chalchuapa, 

El Salvador, is a burial mound that has yielded the remains of at least 33 individuals. These 

individuals are buried in a homogeneous way; face down, arms semi flexed, and right and 

left carpals and/or right and left tarsals touching. This specific arrangement of the 

skeletons suggests that the individuals were bound. Together with other contextual 

evidence, such as the age pattern and the lack of grave goods, this indicates that the 

skeletons represent victims of ritual sacrifices (Fowler, 1984). The second example 

concerns prone position in a burial, which is interpreted – again with the contribution of 

other contextual data - either as a live burial or as a mark of disrespect for the dead from 

the community, which buried them (Handler, 1996; Bedford and Tsokos, 2012). For 

instance, the skeleton of a young woman was recovered in the late 16th/early 17th century 

slave cemetery in Barbados, West Indies, in a prone position (Handler, 1996). The author 

(Handler, 1996) suggests that it could be an indication that this individual was viewed 

negatively by the community and was therefore “feared or socially ostracised”. This is 
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confirmed by the absence of a coffin and of grave goods, and by the fact that she is the 

only individual buried in a prone position in the whole cemetery (Handler, 1996). 

Death position 

Death position can be preserved in the archaeological record in the case of a 

catastrophic event, such as volcanic eruption, the most famous example being the 

eruption of the Mount Vesuvius in AD 79, in Italy. The eruption, of explosive nature, led to 

the destruction of the Roman towns of Pompeii and Herculanum, together with most of 

their inhabitants (Mastrolorenzo et al., 2001; Luongo et al., 2003). The victims and the 

buildings were covered by a significant layer of ashes and pyroclastic flows, which 

preserved them perfectly, to the present. To date, a total of 1150 individuals have been 

excavated, 1044 of which are complete and identifiable (Luongo et al., 2003). The 

individuals have been preserved in the position in which they died. The analysis of body 

posture among Pompeii and Herculanum victims has allowed a detailed reconstruction of 

the last moments of life and conditions of death of the victims of the eruption. Various 

causes of death have been identified (Mastrolorenzo et al., 2001, 2010; Luongo et al., 

2003): suffocation due to ash; collapse of roofs and walls due to the weight of pumice 

lapilli, which is material projected by the volcano during the eruption and composed of 

molten or semi-molten lava; trapped by pyroclastic density currents (PDCs), which are 

“turbulent hot mixtures of fine ash and gas flowing down volcano slopes at high speeds” 

(Mastrolorenzo et al., 2010); and thermally induced shock due to the heat of the PDCs. To 

each type of death corresponds a certain position of the body, consistent with self 

protection, agony contortions, or natural postures (“life-like” and “sleep-like” stances) 

(Mastrolorenzo et al., 2001, 2010; Luongo et al., 2003). Some bodies have been recovered 

supporting their head and sometimes their chest with their arms, in an attempt to keep 

their head above the pyroclastic flow (Luongo et al., 2003). Others bodies display a 

characteristic hyper flexion, or flexor reflex, of the hands and feet interpreted as a 

consequence of a thermally induced contraction of the muscles. This is explained by the 
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very sudden death caused by the surge of pyroclastic flow, instantaneously followed by 

the contraction of muscles and tendons. An ash fall occurring just after and causing a 

sudden drop in temperature fixed the bodies in that position (Mastrolorenzo et al., 2001). 

Some bodies show an extreme state of contraction, or “pugilistic attitude”, with the limbs 

flexed and the spine extended (Mastrolorenzo et al., 2001), which is characteristic of 

people exposed to very high heat (minimum 200-250°C) leading to an instantaneous 

death, such as fire victims and deaths in pyroclastic flows (Baxter, 1990; Knüsel et al., 

1996). 

4.3. The early hominin fossil record and Malapa 

The scarcity of well-preserved, complete or near complete, articulated skeletons in 

the early hominin fossil record, together with other factors, such as a lack of information 

concerning the provenience of the fossils (e.g. in the case of early excavations, or when 

the material is recovered ex situ), has led to an absence of information regarding the 

posture of the skeletons. Hence, until now, it has been impossible to accurately 

reconstruct causes of death, and conditions and timing of burial for early hominins. The 

Malapa hominins are well preserved and comprise complete and near complete bones, 

sometimes still in articulation. Some remains were recovered in situ, and there are enough 

sources of information to reconstruct their burial posture inside the deposit (see Chapter 

7). Together with a detailed microscopic analysis of the bone surfaces, gathering of 

contextual information, namely geomorphological, geological and stratigraphic, as well as 

observations on the associated faunal material, it is possible to document the context of 

the burial, its timing and modalities, and to propose hypotheses concerning the cause(s) 

and conditions of their deaths. 
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Chapter 5. Contextual information about the site and the fauna. 

This chapter introduces the context in which the hominins were recovered. It presents 

the general environment of the site (geographical location, geology and ecology of the 

area) and close-up description of the cave (geomorphology of the cave, stratigraphy and 

dating of the deposits), followed by a taphonomic analysis of the non-hominin faunal 

material that has been recovered and prepared to date (composition of the faunal 

spectrum and presentation of the general degree of preservation). 

1. GENERAL SETTING OF THE MALAPA SITE 

1.1. Geographical location 

The site of Malapa is located on the Malapa Nature Reserve in the Cradle of 

Humankind World Heritage Site (Gauteng Province, north of Johannesburg, South Africa). 

Geographically, it belongs to the Cradle of Humankind and is located approximately 15 km 

NNE of the Sterkfontein Caves, on the side of a low hill. Figures 5.1 and 5.2 illustrate the 

fossil deposits from the Malapa site. 

 

Figure 5.1. The Malapa fossil deposits (north view). 
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Figure 5.2. The Malapa fossil deposits (view from the west). 

1.2. Discovery of the site 

The site of Malapa was identified during the course of a geospatial survey in the 

Cradle of Humankind. This survey was conducted by Lee R. Berger and aimed at locating 

new fossil-bearing cave deposits in the dolomitic region of the Cradle of Humankind. This 

involved surveying using satellite Google Earth imagery, and classical pedestrian 

prospecting. As with other sites in the Cradle, the site of Malapa has undergone some 

minor mining work at or before the beginning of the 20th century (Dirks et al., 2010; 

Berger, 2012), at a time when the limestone present in these caves was sought after by 

the gold mining industry, as well as for fertilizer and manufacturing toothpaste (Brain, 

1981; Pickering, 2004). Matthew Berger, Lee Berger’s son, found the first hominin bone 

(UW88-1, a juvenile clavicle) on the 8th of August 2008, in one of the blocks of calcified 

clastic sediment removed by the miners and left at the site. Subsequent to this discovery, 

miners debris and blocks were collected and prepared, leading to the discovery of more 

hominins (Australopithecus sediba) and associated faunal remains (Berger, 2012). 
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1.3. Geology of the area 

Together with other sites in the Cradle of Humankind, Malapa cave is located in 

the Malmani Subgroup, a stromatolite-rich dolomite formation that formed between 2.64 

to 2.50 billion years ago (Martin et al., 1998; Eriksson et al., 2006 in Dirks et al., 2010). The 

Malmani Subgroup is subdivided into five formations (Oaktree, Monte Christo, Lyttelton, 

Eccles and Frisco Formations; Eriksson and Truswell, 1974; Eriksson et al., 2006). While the 

majority of the caves in the area are located in the Monte Christo Formation (Partridge, 

2000; Herries, 2003), with the exception of Gondolin and Luleche, which occur in the 

Eccles Formation (Adams, 2006; Adams et al., 2007b), the Malapa cave is situated 

stratigraphically higher, at the top of the Lyttelton Formation (Dirks et al., 2010; Dirks and 

Berger, 2012). It occurs to the north of a fault line that trends north-south, at the 

intersection of a north-northeast and a north-northwest fracture (Dirks et al., 2010). The 

floor of the old cave system to which Malapa cave belongs is estimated to have been at 

least 50 metres below the land surface around 2 My ago (Dirks and Berger, 2012). This 

cave system has, however, undergone severe erosion since then that has led to the 

current state, in which only the lower portions of the cave are preserved. Malapa cave is 

now less than 5 metres deep (Dirks et al., 2010). 

1.4. Ecology of the area 

 Today, the Malapa site belongs to the grassland biome (Carleton Dolomite 

Grassland; Figure 5.3), close to the transition to the savannah biome, and is characterised 

by an abundance of Poaceae and shrubs (Bamford et al., 2010). Precipitation, occurring 

mostly during the summer months, is about 600 mm per year (Mucina and Rutherford, 

2006). 
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Figure 5.3. Surrounding landscape (north of the site). 

2. PRESENTATION OF THE SITE 

2.1. Geomorphology 

The site consists of two localities. The main part (Pit 1) is a cavity 3.3 to 4.4 metres 

in diametre and about 4 metres deep (Dirks et al., 2010), with no roof and a generally 

square-shape. This is where most of the hominin specimens recovered to date come from. 

On the east of Pit 1 is another area that has also yielded a few fossil hominins and other 

animals. This eastern part (Pit 2) is less than 1 metre deep and covers a surface area of 

about 3 x 5 metres. Pit 2 has also been blasted by the miners, but to a much lesser extent 

than the main opening, since it is on the surface and very shallow. Pit 1 and Pit 2 are 

separated from one another by only four metres and consequently share the same 

geological features. They are considered to be part of the same cave system and to have 

the same age (Pickering et al., 2011). 

2.2. Geology 

Five geological facies, named Facies A to E (from the bottom to the top of the 

deposit), were identified in the main opening (Pit 1) and described soon after the 

discovery of the site (Dirks et al., 2010). A more recent study provides a geological 

description of the eastern part (Pit 2) and includes the description of a sixth facies, Facies 

F (Figures 5.4-5.6; Pickering et al., 2011). The six facies are all composed of brownish 



120 
 

calcified clastic sediment or so-called “breccia”, in which fossils are embedded. A 

flowstone (Flowstone 1) separates the older Facies A and B from the younger Facies C, D 

and E. A second flowstone (Flowstone 2) has been observed in Pit 2, and is considered to 

have been deposited after the fossil-bearing sediments of Facies D and E (Pickering et al., 

2011). Facies F is the youngest; it has been identified in both pits and occurs above Facies 

E in Pit 1 and above Flowstone 2 in Pit 2. 

Some elements of cave walls separate Pit 1 from Pit 2 and consist of two blocks 

(Figures 5.4-5.6), one of dolomite (block 1) and a second of dolomite and cave sediment 

(block 2). The composition of the sediments found in block 2 (peloidal grainstone with 

abundant calcite fenestrae) indicates that it comes from an upper chamber in the cave 

system that collapsed into the chamber where the hominins were found (Pickering et al., 

2011).

 

Figure 5.4. NE-SW cross-section of the site showing the different sedimentary facies together with the two 
flowstones (from Pickering et al., 2011). 

Facies A is present at the bottom of Pit 1 and is the oldest level (Figures 5.5 and 

5.6). It consists of dark-brown, moderately sorted, coarse-grained breccia. It is filled with 

blocks of sparite in which abundant rounded grains (0.5 to 6 mm) of different minerals 

(chert, quartz, dolomite, iron oxide-coated grains, feldspar and mica schist) are found. The 
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matrix also contains some ooids, bone fragments and peloids. Bedding is defined by 

normal and inverse grading. A slightly preferred orientation of rock and bone fragments is 

observed. 

Facies B is mostly preserved on the south and southwestern parts of Pit 1, above 

Facies A. It consists of grainstone alternating with clastic sandstone. The grainstone 

contains small rounded peloids (0.4 to 1 mm) composed of fine-grained (0.02 to 0.10 mm) 

angular quartz grains in a micaceous mud and sparite matrix, as well as a few bone 

fragments and small pebbles (mostly quartz). Fenestrae lined with sparry calcite are 

common along horizontal bedding planes. The sandstone grains are rounded and coated 

with iron oxide. Normal size grading can be observed among the bone fragments in this 

unit. Finally, there are some small stalagmitic structures that have grown on the 

grainstone as substrate. A few isolated limestone blocks (<40 cm) are also incorporated in 

the facies. 

 

Figure 5.5. Five facies identified within the deposit in Pit 1 (from Dirks et al., 2010, modified). Most hominin 

remains come from Facies D (in yellow with green cross-lines on the figure). 
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Facies C is preserved in the southwest of Pit 1, in the form of a 5-30 cm thick layer 

above Facies B. This facies is similar to Facies B and occurs after a stage of erosion of 

Facies A and B, and after the deposition of Flowstone 1. It is characterised by grainstone 

mainly composed of angular peloids, and contains sub-rounded fragments of quartz, 

limestone and shale, many of which are iron oxide-coated, as well as bone fragments. 

Facies D is on the southern side of Pit 1, extending from east to west (Figures 5.5 

and 5.6). On the east side and in the middle, it is located on top of Flowstone 1, whereas 

on the west side, it occurs directly above Facies C (Figures 3.5 and 3.6). Facies D is a thick 

(~1.5 metre) and light-brown layer of poorly sorted coarse-grained sandstone cemented 

by blocky sparite. The framework grains are mostly 0.5 to 2.5 mm in size and consist of 

quartz, chert, dolomite, peloids and, to a lesser degree, iron oxide-coated grains, ooids, 

shale and feldspar. There are also some limestone blocks and flowstone fragments. It is 

the richest facies in term of fossils and contains in particular the remains of the two most 

complete australopithecine individuals (MH1 and MH2), together with bovids, articulated 

equid remains and a few carnivore remains. 

Facies E occurs on the top of Facies D, in the northern part of Pit 1, from west to 

east. The majority of the carnivore remains were recovered in Facies E. It consists of 

calcareous sandstone, similar to Facies D, but with a darker brown colour, finer grained 

texture, and with a higher degree of sorting displaying horizontal bedding 4 to 15 cm thick. 

The bottom of Facies E consists of well-sorted, coarse-grained sandstone dominated by 

0.6 to 1.5 mm large iron oxide-coated chert, quartz grains and aggregates of peloids. The 

layer preserves northwest dipping laminations, indicating directional water flow (Dirks et 

al., 2010) and horizontal bedding defined by grain-size variations (coarsening downward), 

mud stone partings, thin (<1 mm) flowstone drapes and imbricated bone fragments. 

Facies F is at the top of the deposit and overlies Facies E in both Pit 1 and Pit 2. It 

consists of a massive grainstone composed mainly of small peloids. It is horizontally 

layered and shows graded bedding. 
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Figure 5.6. Geological facies and organisation of the deposit in both Pits 1 and 2 (from Pickering et al., 2011). 

2.3. Formation of the cave and sedimentary deposits 

2.3.1. Opening of the cave and bone accumulation 

The six-stage cave formation process defined by Brain (1958; 1981; see Chapter 2) 

may be applied to the Malapa cave system. The main cavity at Malapa (Pit 1) was probably 

already open to the surface by the time the first sediments (Facies A) were deposited, as 

indicated by the occurrence of bone fragments as well as peloids interpreted as possible 

faecal remains (Dirks et al., 2010) possibly produced by bats (Paul Dirks, pers. comm.). This 

was followed by the accumulation of another level of sediment (Facies B). A phase of 

erosion then affected the deposit, and a flowstone (flowstone 1) formed on top of it, 

followed by a new stage of sedimentation that led to the formation of three consecutive 

levels, Facies C, D and E. Another flowstone (flowstone 2) formed and capped the deposit. 
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A final accumulation of sediment (Facies F) occurred before the cave underwent a severe 

phase of erosion. 

The Malapa cave system was opened along fractures that served as natural traps 

(Dirks et al., 2010; Dirks and Berger, 2012). They would have constituted death traps into 

which animals, possibly attracted by water present in the cave, would have fallen and 

died. It is proposed that the hominins fell into an upper chamber and were subsequently 

carried deeper into the cave by a debris flow, perhaps caused by a storm (Dirks et al., 

2010). There is geological evidence of a strong water inflow preserved in the sediments of 

Facies D, such as the presence of isopachous sparite cement, which is an indicator of 

cementation soon after deposition in a phreatic environment (Blatt et al., 2006, in Dirks et 

al., 2010), and the occurrence of allochthonous material mixed with autochthonous cave-

derived sediment. The state of articulation and preservation of the hominins is consistent 

with little transport and rapid burial that took place soon after death. A preliminary 

observation of the faunal remains shows the absence of carnivore damage and suggests 

that predators did not access the cave (Dirks et al., 2010). 

2.3.2. Geological evidence for a debris flow 

Several characteristics of the fossil-bearing geological Facies D, E and F have been 

interpreted as evidence for the action of a debris flow, as well as the deposition of 

sediments in an aqueous environment (Dirks et al., 2010). Facies D and E are composed of 

water-laid sediments made of sandstone, and contain abundant peloids, which show 

evidence of mechanical reworking in a water-logged context. Facies E, which overlies 

Facies D, the geological unit containing the well-preserved hominin remains (MH1 and 

MH2 specimens), shows a fining upward and preserves northwest dipping laminations 

indicative of directional water flow (Dirks et al., 2010). The presence of isopachous sparite 

in these two facies is indicative of rapid cementation taking place soon after the 

deposition of the sediments, in a phreatic environment. Facies D contains allochtonous 

material, mixed with autochtonous cave sediment, suggesting that this unit deposited 
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through the action of a debris flow carrying elements from outside the cave and mixing 

them with elements from inside (Dirks et al., 2010). Facies E, on the other hand, is mostly 

composed of autochtonous sediment. This implies that after the debris flow occurred, the 

cave filled horizontally with sediments. Facies F, which is a grainstone deposit, also shows 

horizontal layering and graded bedding (Pickering et al., 2011). 

2.4. Dating methods and age of the deposits 

Three dating methods (biochronology, U-Pb and palaeomagnetism) were used and 

have produced an age of 1.98-1.75 million years for Facies D, the unit containing most of 

the hominin remains (Dirks et al., 2010). The occurrence of extant faunal species that only 

occur in Africa from 2.36 Ma (i.e. Felis silvestris, Parahyaena brunnea, Lycaon sp., 

Tragelaphus cf. Strepsiceros and Equus sp.) and of the extinct sabre tooth cat 

Megantereon whitei, which disappeared at 1.5 Ma, provided a first age bracket between 

2.36 and 1.5 Ma years for Facies D (Dirks et al., 2010). 

Flowstone 1, which underlies Facies D, E and F, was sampled and dated using U-Pb 

methods. This provided an age between 2.024 and 2.026 Ma. 

Finally, several samples of the deposit, from below, inside and above Facies D, were 

analysed for palaeomagnetism. Flowstone 1 preserves a reverse polarity while Facies D 

shows on its base a normal polarity followed by an intermediate polarity. The normal 

polarity is interpreted as the beginning of the Olduvai Subchron, dated at 1.98-1.75 Ma 

(Dirks et al., 2010). 

Subsequent analyses (U-Pb and palaeomagnetism) of Flowstone 2, capping the deposit 

with the exception of Facies F, allowed a refinement of the age of the fossil-bearing 

sediments in Facies D and E (Pickering et al., 2011). The U-Pb technique provides an age of 

2.048 +/- 0.140 Ma (age rank between 2.19 and 1.91 Ma). The palaeomagnetism reveals 

that Flowstone 2 has a reverse polarity, which, together with the U-Pb dates, indicates 

that it formed before the beginning of the Olduvai normal polarity subchron at 1.95 Ma. 
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Flowstone 1 was dated at 2.026 +/- 0.021 Ma and shows a reverse polarity. Consequently, 

the hypothesis proposed (Pickering et al., 2011) to explain the normal polarity of Facies D 

and E is that they were deposited during the Pre-Olduvai excursion, at 1.977 Ma (Pickering 

et al., 2011). The duration of the Pre-Olduvai event has been estimated at 3000 years 

(Channell et al., 2002), which provides an age range for the deposit of the fossil-bearing 

sediments at 1.977 +/-0.003 Ma. 

3. NON-HOMININ FAUNAL MATERIAL: GENERAL PRESERVATION 

The faunal assemblage studied here is mainly composed of fossils that come from ex 

situ blocks of calcified sediment. Their attribution to a particular fossil-bearing 

stratigraphic unit has not yet been established. As mentioned earlier (see Chapter 4), the 

priority was given, during excavation and block preparation, to the collection of 

hominin/primate remains. It is therefore premature to publish a detailed taphonomic 

study of the faunal assemblage, as it currently represents a small and biased percentage 

of the complete faunal assemblage, which will be revealed by future excavations. It is also 

likely that the taphonomy of the faunal material will vary from one facies to the next, 

which might be of different age, and possibly characterised by different modes of 

accumulation. Future excavations will increase the size of the faunal assemblage and 

provide in situ material that will be studied in order to provide a comprehensive and 

complete taphonomic analysis of the whole faunal assemblage. This is not the aim of the 

following section. Here, the objective is to describe the general state of preservation of 

the available faunal material in order to determine whether or not other non-hominin 

individuals record a similar state of preservation as MH1 and MH2. In other words, if there 

is an occurrence in the faunal material of complete and near complete bones, articulated 

specimens, antimeric sets of bones, and fossils showing a well-preserved bone surface. 

This section serves to provide a context for the fossil hominins. 
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3.1. Composition of the faunal spectrum 

At Malapa, 27 species have been identified so far (Dirks et al., 2010; Kuhn et al., 

2011; Val et al., 2011; Hartstone-Rose et al., 2013), including the hominins (for a complete 

list of species, see Chapter 3). Even though the number of species is lower than in larger 

deposits from the Cradle of Humankind (i.e. Gladysvale, Cooper’s D, Swartkrans Members 

1-3, Sterkfontein Member 4; Brain, 1981; Berger et al., 1993; Watson, 1993; Lacruz et al., 

2002; de Ruiter, 2003; Kibii, 2004; de Ruiter et al., 2009) (Table 5.1), the faunal diversity at 

Malapa is high given the small size of the sample and the small amount of excavated in 

situ and ex situ sediment. 

Table 5.1. Faunal diversity in different cave deposits from the Cradle of Humankind (microfauna not 
included). 

Site Deposit Species References 

GLADYSVALE External Deposits (GVED) and chambers 74 Berger et al., 1993 ; Lacruz et al., 

2002 COOPER’S D 64 de Ruiter et al., 2009; Steininger 

(unpublished data) SWARTKRANS Member 1 (Lower Bank) 41 Watson, 1993; de Ruiter, 2003 

 Member 1 (Hanging Remnant) 42 

 Member 2 44 

 Member 3 57 

STERKFONTEIN Member 4 50 Brain, 1981; Kibii, 2004 

 Jacovec Cave 29 Kibii, 2004; Kibii, 2009 

 Member 2 13 Pickering et al., 2004a 

 Silberberg Grotto 8 

KROMDRAAI A 45 Brain, 1981 

 B 25 

MALAPA - 27 Dirks et al., 2010 ; Kuhn et al., 2011 ; 

Hartstone-Rose et al., 2013 GONDOLIN GDA 23 Adams, 2006 

 GD2 20 

 GD1 9 

DRIMOLEN - 20 Keyser et al., 2000; O’Regan and 

Menter, 2009 MOTSETSE - 15 Berger and Lacruz, 2003 

LULECHE - 6 Adams et al., 2007b 

MINNAAR’S - 7 Gommery et al., 2012 

The assemblage is diverse in terms of orders and families present: it contains 14 

families of mammals (Table 5.2), representing bovids, suids, equids, carnivores, as well as 

primates, rodents, microfauna and birds. Hominins make up a large proportion, 

comprising nearly a quarter of the assemblage in terms of NISP and MNE (Table 5.2). Only 
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one specimen of non-hominin primate has been recovered so far (i.e. Papio sp.). The 

carnivore family presents the highest diversity in terms of number of different species 

identified: nine different species, representing all carnivore families (i.e. felids, hyaenids, 

canids, viverrids and herpestids), have been identified (Kuhn et al., 2011; Hartstone-Rose 

et al., 2013). All class-sizes (small, medium-sized and large mammals) are present in the 

faunal assemblage, representing a minimum number of 41 individuals. The smallest 

species identified is a microfaunal species (Elephantulus sp.; Val et al., 2011), while the 

largest species identified is a bovid (Connochaetes sp.). Only the very large mammals 

(elephantids, hippopotamids and giraffids) are almost absent (i.e. one specimen only is 

attributed to an unidentified Class V ungulate, UW88-794). The total number of faunal 

specimens recorded so far is 1324 (including bones, bone fragments, horn core fragments, 

carapace fragments, teeth and tooth fragments). Amongst these remains, 993 have been 

assigned to an order or a family and 331 are unidentifiable (Table 5.2). The overall 

fragmentation ratio is: total NISP/total MNE = 1324/767 = 1.7. 

Table 5.2. Quantitative data on the faunal material from Malapa to date, with estimates of the NISP, the 
MNE and the MNI for each order. Molluscs and invertebrates are not considered. 

Order Family NISP MNE MNI 

UNGULATES Bovidae 362 276 9 
 Suidae 4 4 2 

 Equidae 4 4 1 

 Large size ungulate (giraffid?) 2 2 1 

 Ungulates indet. 63 21 - 

 Total Ungulates 435 307 13 

CARNIVORES Viverridae/Herpestidae 64 64 4 

 Felidae 52 50 5 

 Hyaenidae 30 30 3 

 Canidae 10 10 2 

 Carnivores indet. 20 19 - 

 Total Carnivores 173 171 14 

PRIMATES Homininae 263 188 6 

 Cercopithecidae 3 3 1 

 Total Primates 267 191 7 

RODENTS Leporidae and rodents indet. 52 51 3 

MICROFAUNA Elephantidae and microfauna indet. 27 27 2 

TESTUDINES Chelonidae 16 16 1 

BIRDS Indet. 11 8 2 

Unidentified remains - 331 - - 

TOTAL  1324 767 41 
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3.2. General preservation 

3.2.1. Articulations 

Both persistent (e.g. sacrum-pelvis, sacrum-lumbar vertebrae, ankle, femur-tibia 

and humerus-radius) and unstable joints (e.g. knee, tarsals and carpals) are preserved in 

the non-hominin faunal assemblage, either in the form of true articulations or as 

anatomical proximities. Some interlocking joints, such as the joint humerus-scapula, are 

preserved in the form of anatomical proximity. 

True articulations 

Several elements still in articulation have been recovered (Figures 5.7 and 5.8), 

including two carnivore ankles (UW88-539: a hyaena ankle and UW88-747: a large felid 

ankle), two bovid feet (UW88-650: two articulated proximal phalanges, two intermediate 

phalanges, two distal phalanges and two sesamoids; UW88-751 to 756: a metatarsal 

articulated with a proximal phalanx and four sesamoids), medium-sized bovid phalanges 

and sesamoid (UW88-528: a intermediate phalanx, a distal phalanx and one sesamoid), 

other medium-sized bovid phalanges (intermediate phalanx articulated with distal 

phalanx, no specimen number), equid carpals (UW88-548: an unciform, UW88-549: an 

accessory metacarpal, and UW88-550: a magnum), a leporid sacrum in articulation with 

the last three lumbar vertebrae (specimen UW88-769), nine bovid thoracic vertebrae (two 

from block UW88-B081, seen using Avizo, and seven on the surface of block UW88-B375), 

several bovid limb bones (specimen UW88: a femur articulated with a tibia in block UW88-

B848, and a humerus articulated with a radio-ulna in block UW88-B051), a near complete 

bovid foetus, in articulation (preserved in block) and some articulated limb bones 

(specimen UW88-687: taxon indeterminate) (Figures 5.7 and 5.8). 
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Figure 5.7. Examples of articulated non-hominin faunal remains. A: specimen UW88-747, Dinofelis sp. 
articulated right ankle; B: specimen UW88-739, P. brunnea articulated ankle; C: UW88-650, bovid articulated 
foot; D: specimen UW88-769, rabbit pelvis articulated with the sacrum and the last lumbar vertebrae; E: 
specimen UW88-528, bovid articulated intermediate and distal phalanges and one sesamoid; F: no specimen 
number, bovid intermediate and distal phalanges; G: specimens UW88-751-756, bovid metatarsal, first 
phalanx and sesamoids. 
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Figure 5.8. Examples of articulated non-hominin faunal remains in blocks. A: one bovid femur, two tibiae, 
and one talus in block UW88-B848; B: bovid thoracic vertebrae associated with bovid ribs, one humerus and 
an ungulate mandible with teeth, in block UW88-B375; C: bovid humerus articulated with a radio-ulna, in 
block UW88-B051. 

Anatomical proximities 

Other remains have been recovered in close proximity to one another (Figures 5.9 

and 5.10), for instance a near articulated bovid left ankle (UW88-1156 to 1160: talus, 

calcaneum, lateral malleolus, cuneiform and cubo-navicular), large bovid carpals (UW88-

1259a, b and c: fragmentary scaphoid, hamate and possible magnum), a rodent skull and 

associated mandible (specimen UW88-781), two hyaenid phalanges (UW88-782: a 
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proximal phalanx, and UW88-783: an intermediate phalanx), some small mammal lumbar 

vertebrae (no specimen number), a bovid humerus and scapula (still embedded in block 

UW88-B243), some bovid ribs (in blocks UW88-B375 and UW88-B152), two bovid cervical 

vertebrae (UW88-720 and UW88-721), three bovid cervical vertebrae still embedded in a 

block of calcified sediment (UW88-B199: an atlas, axis and third cervical), two ribs and a 

thoracic vertebra of a bovid (no specimen number), elements of a left lower limb of a 

bovid (left tibia, metatarsal, talus and cubo-navicual, in block UW88-848) and unidentified 

mammal ribs (still embedded in block UW88-1043), a partial bovid foetus, in near 

articulation (preserved in block and currently under preparation), and a complete upper 

body of a small carnivore , of similar size and morphology of a small spotted genet 

(Genetta genetta), still under preparation (no specimen number, including a hemi-

mandible, a left zygomatic and associated teeth, the right and left humeri, a right scapula, 

radius and ulna, four right metacarpals, from rank II to V, two carpals, ten ribs, ten 

thoracic vertebrae, six lumbar vertebrae and a sacrum) (Figures 5.9 and 5.10). 
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Figure 5.9. Examples of non-hominin faunal remains in anatomical proximity. A: specimens UW88-1156 to 
1160, bovid left ankle; B: specimens UW88-1259a to 1259c, large bovid carpals; C: specimens UW88-720-
722, bovid atlas, axis and third cervical vertebra; D: specimens UW88-782 and 783, hyaenid phalanges; E: no 
specimen number, bovid ribs articulated with a thoracic vertebra; F: specimen UW88-781, rodent skull and 
associated mandible. 
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Figure 5.10. Examples of non-hominin faunal remains in near articulation, still embedded in calcified 
sediment. A: mammal ribs in block UW88-B1043; B: bovid humerus and associated scapula in block UW88-
B243; C: bovid ribs in block UW88-B152; D: small mammal lumbar vertebrae, no specimen number; E: 
superior and inferior views of the same block containing the bones of a small carnivore skeleton, no 
specimen number. 
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3.2.2. Complete and near complete bones 

Abundant complete and near complete bones occur in the assemblage. For the bovids, 

the number (NISP) of complete bones is 103; the number of near complete bones is 20 

and the number of fragmented bones is 213. The complete elements are mostly carpals, 

tarsals, phalanges and vertebrae. For the carnivores, the number of complete bones is 83, 

the number of near complete bones is five and the number of fragmented bones is 83. 

The complete elements are mostly carpals, tarsals, phalanges, teeth and vertebrae. It is 

worth noting that the presence in the carnivore assemblage of an extremely well 

preserved skeleton of a small carnivore (Figure 5.10) contributes greatly to increase the 

number of complete bones. Other species that are also preserved as complete bones 

include two complete equid carpals (out of four bones); a complete phalanx and a 

complete metapodial of suid (out of four bones); four complete and three near complete 

leporid bones (out of 31), including a femur, an innominate, a sacrum, a tibia, two hemi-

mandibles and a lumbar vertebra, most likely belonging to the same individual. 

3.2.3. Antimeric sets of bones 

At least twelve antimeric sets of bones (long bones and mandibles) are present (see 

Appendix 4 for the complete list). They represent a minimum of five animals, including 

one leporid, one felid, and three bovids. 

3.2.4. Representation of skeletal elements 

All parts of the skeleton are present in the non-hominin faunal assemblage, in 

different proportions: long bones and flat bones, phalanges, metapodials and 

carpals/tarsals, ribs and vertebrae, crania and teeth. The pattern of survival seems to be 

generally consistent with a density-mediated preservation pattern, whereby all elements 

are present in various proportions related to differential conservation. Hence, dense and 

compact bones, such as long bone shafts, mandibles and metapodials (Lyman, 1984; 
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Binford and Bertram, 1977; Kreutzer, 1992; Lam et al., 1998, 1999; Novecosky and Popkin, 

2005), dominate the assemblage, followed by elements with a lesser density, such as 

phalanges, scapulae and pelvises. Fragile elements with a low density, such as vertebrae 

and ribs (Lyman, 1984; Binford and Bertram, 1977; Kreutzer, 1992; Lam et al., 1998, 1999; 

Novecosky and Popkin, 2005) are underrepresented (Figure 5.11 and Appendix 5). 

However, biases due to selection and preparation can also explain the higher 

representation of denser elements. The more compact the bones are, the more they have 

a chance to be preserved complete or near complete, and therefore to be more easily 

identified and prioritized for preparation. Since the provenance of most fossils is 

unknown, the body part representation may also vary from one facies to the other. Thus, 

the density-mediated pattern of bone survival does not necessarily apply to all fossil-

bearing units. 

 

Figure 5.11. Percentages of survival for each body part for the non-hominin faunal assemblage (ungulates 
and carnivores). 
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3.3. Modifications of the bone 

3.3.1. Modifications by abiotic agents 

Weathering 

The non-hominin assemblage is extremely heterogeneous in terms of bone 

weathering: bones showing all stages are present, from non-weathered (stage 1) to 

highly-weathered (stage 5; Table 5.3). Stages 2 to 4 are present in fairly similar 

proportions; the less weathered remains represent the majority of the assemblage, and 

the most weathered remains only a small percentage (5.4%) (Table 5.3). The majority of 

the fossils available shows little weathering (Table 5.3), with only superficial cracks on the 

bone surface. 

Table 5.3. Weathering stages observed in the non-hominin faunal assemblage. 

Stage No. of specimens % 

1 243 34.4 

2 170 24.0 

3 127 18.0 

4 129 18.2 

5 38 5.4 

Manganese precipitation 

Six stages in the extent of precipitated manganese dioxide on the bone surface are 

observed: none, slight (only a few spots), slight to moderate (abundant spots), moderate 

(half the surface of the specimen is covered), moderate to heavy (the majority of the bone 

surface is covered with small patches visible), and heavy (the whole surface of the 

specimen is covered) (Figure 5.12). 
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Figure 5.12. Different degrees of manganese covering observed on the bones (from left to right: slight, slight 
to moderate, moderate, moderate to heavy, and heavy). 

The majority of the bones analysed (n. 657, or 77.8%) show manganese precipitate 

on their surface, and most of the remains exhibit a layer of manganese falling in categories 

“slightly” and “moderate” (Table 5.4). 

Table 5.4. Extent of the manganese dioxide perimineralization on the non-hominin bone surfaces. 

Degree No. of specimens 

absent 59 

slight 327 

slight to moderate 37 

moderate 175 

moderate to heavy 83 

heavy 35 

There is a clear difference between fossil bones found in calcified sediment and 

those found in decalcified sediment in terms of manganese covering. The bones from 

decalcified deposits are commonly heavily coated with manganese crust, whereas remains 

from calcified sediment have much less manganese on their surface (Table 5.5 and Figure 

5.13). 

Table 5.5. Comparison of degree of manganese dioxide coating according to the provenance of the remains 
(decalcified versus calcified sediment). 

Degree Bones found in decalcified sediment Bones found in calcified sediment 

absent 7 46 

slight 82 171 

slight to moderate 17 17 

moderate 126 48 

moderate to heavy 79 2 

heavy 29 4 
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Figure 5.13. Comparison of degree of manganese dioxide perimineralization according to the provenance of 
the remains (decalcified sediment, in orange, versus calcified sediment, in light pink). 

Calcite crystal growth 

Crystals of calcite are very abundant; they have been recorded on 29.7% (n. 315) of 

the non-hominin assemblage, and occur in three forms: inside spongy bone, in cracks on 

compact bone and in the medullary cavity of long bones and ribs (Figure 5.14). Calcite 

crystals are mostly present on remains recovered in calcified sediment (n. 278 from 

calcified sediment and n. 37 from decalcified sediment). 
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Figure 5.14. Different types of calcite crystal growth in non-hominin bones. Top: inside spongy bone; middle: 
inside the medullary cavity, and bottom: inside cracks in cortical bone. 

Red colour staining 

Red (colour varying between orangey and dark red) traces are visible on numerous 

remains (n. 392, representing 36.9% of the analysed non-hominin faunal assemblage) and 

consist of very thin reddish patches covering parts of the bones (Figure 5.15). The origin of 
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these traces is currently under study (Keeling, unpublished MSc dissertation), testing the 

hypothesis that they could be organic in nature. 

 

Figure 5.15. Examples of red traces at macro- and microscopic level on different bones. 
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Sedimentary compaction 

The pressure exerted on buried bones by the continual built-up of sediments has 

led to the flattening and, in some cases, the distortion of the fossils (Figure 5.16). 

Compressional effect of sediments can be observed on 44 remains, representing 5.4% of 

the analysed non-hominin assemblage. 

 

Figure 5.16. Examples of specimens distorted by overburden pressure. A: bovid scapula (UW88-1266); B: 
unidentified rib fragment from block UW88-B808 (no specimen number). 

Decalcification 

Some remains (n. 149, or 18.9% of the analysed non-hominin faunal assemblage) have 

undergone a partial or complete decalcification process (i.e. the calcium originally present 

in the bone has disappeared), which leads to a loss of colour and the bones becoming very 

white. Decalcification is equally common amongst specimens recovered in decalcified 

sediment (n. 69), and in calcified sediment (n. 72). 
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3.3.2. Modifications by biotic agents 

Trampling 

Trampling has had a minor impact as only 22 bones show definitive trample marks, 

representing 2.7% of the analysed non-hominin faunal assemblage. Trample marks are 

isolated and of microscopic dimensions (i.e. visible using low magnification). They are 

observed in relatively equal proportions on remains recovered from calcified (n. 14) and 

decalcified sediment (n. 8), which indicates that it took place prior to burial and 

fossilisation, either outside the cave or in an area of the cave system accessible to the 

large hoofed animals. 

Root growth 

Damage produced by roots and/or rootlets is almost non-existent in the non-

hominin faunal assemblage. Only four bovid remains, including one tooth fragment 

recovered in situ and three bone fragments recovered in ex situ calcified sediment, show 

microscopic modifications in the form of branched network of small grooves, which may 

be attributed to vegetal action. 

Carnivore damage 

Only two specimens (UW88-878, a bovid rib fragment, and UW88-1017, an 

unidentified long bone shaft fragment) exhibit some evidence of pitting produced by a 

mammalian carnivore (Figure 5.17). The pits on specimen UW88-878 are between 0.9 and 

3.5 mm in length and between 0.4 and 0.8 mm in breadth, with an average length of 1.4 

mm and an average breadth of 0.6 mm. They fall therefore in the range of pits produced 

by small carnivores (e.g. wild cat, mongoose, jackal) and middle size felids (e.g. leopard 

and cheetah) (Selvaggio and Wilder, 2001; Domínguez-Rodrigo and Piqueras, 2003). 

Nevertheless, on average, they are smaller than pits produced by leopards, which have an 

average length and breadth of 2 mm and 1 mm respectively (Domínguez-Rodrigo and 
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Piqueras, 2003). The pit observed on the long bone fragment is larger (4 mm in length and 

3.5 mm in breadth) and fall in the range of pits produced by large carnivores (lions and 

spotted hyaenas; Selvaggio and Wilder, 2001; Domínguez-Rodrigo and Piqueras, 2003). 

Twenty-three long bones and metapodials of medium and large size mammals are 

preserved in the form of cylindrical shafts (i.e. the complete circumference of the shaft is 

preserved with or without one extremity). However, the breakage pattern is in most cases 

consistent with a fracture happening once the bones had already weathered. 

Furthermore, fresh breakage is never associated with any evidence of carnivore tooth 

damage and cannot be directly attributed to carnivore action. There is no evidence of 

digested bone. 

 

Figure 5.17. Carnivore pitting on a bovid rib shaft fragment (specimen UW88-878). 

Rodent damage 

There is no evidence for rodent chewing or gnawing damage; no rodent tooth 

marks have been recorded. 

Bird of prey damage 

None of the bones show evidence of damage by a bird of prey (no digested bone, 

no impact of beak or talons). The presence of some microfauna in the deposit could 

indicate a possible but minor contribution to the assemblage by owls. 



145 
 

Invertebrate damage 

Two types of invertebrate modifications, of different size and morphology, 

consistent with two different arthropod agents, are recorded. Type 1 is only present on 

two remains and consists of a large boring (i.e. large hole associated with an elongate 

furrow; Figure 5.18). Similar features have been observed in the faunal assemblage from 

nearby Cooper’s D cave (C. Steininger, pers. comm.). The identity of the species causing 

this type of damage is unknown. 

 

Figure 5.18. Invertebrate modification type 1 (boring and associated furrow) on a bovid calcaneum. 

Type 2 (Figure 5.19) modifications have been recorded on 115 remains, or 13% of 

the analysed non-hominin faunal material. Preliminary comparisons with experimentally 

produced invertebrate damage and data from the literature (see Chapter 4) suggest that 

the type 2 modifications observed on the Malapa non-hominin faunal material may have 

been produced by invertebrates belonging to the Order Coleoptera (hide beetles, 

Omorgus squalidus) or to the Order Isoptera (termites). However, it is uncertain at this 

stage whether the traces were made by one or more agents, as they take variable forms: 

intersecting striations, parallel striations, pits containing intersecting striations on the 

bottom, star pits (i.e. pits with scratches arranged around the pit in a star-shape manner) 

and furrows associated with boring (Figure 5.19). 
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Figure 5.19. Different types of invertebrate damage of type 2 observed on the non-hominin faunal remains. 
A: deep intersecting striations; B: similar, more parallel striations; C: intersecting striations associated with 
pits; D: same as C, close-up; E: star-shaped pits; and F: small boreholes. 
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The majority of modifications of type 2 are located on bone and tooth fragments 

recovered from decalcified sediment (Table 5.6 and Figure 5.20). They are concentrated 

on compact bone and commonly occur on the edge of the fragments. The most common 

features exhibited on the bones are the intersecting traces, which are sometimes 

associated with a pit (Figures 5.19, 5.20 and Table 5.6). Most of the type 2 traces occur 

beneath the manganese crust, indicating that they were made prior to the precipitation of 

manganese on the bones. 

Table 5.6. Invertebrate modifications of type 2 observed on the fossil remains, according to the provenance 
of the remains (decalcified versus calcified sediment). 

Modifications Bones from decalcified sediment Bones from calcified sediment 

Intersecting striations 80 4 

Parallel striations 12 1 

Pits with intersecting striations 54 3 

Star-shaped pits 3 1 

Small borings 23 9 

Total remains  99 13 

 

 

Figure 5.20. Distribution of the invertebrate modifications (type 2) according to the provenance of the 
remains (decalcified versus calcified sediment) (str. = striations). 
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The invertebrate modifications are mostly present on weathered remains, 

between stages 2 and 5 (Table 5.7 and Figure 5.21). The high number of weathered bones 

with insect damage indicates that invertebrate action on the bones took place after all or 

most of the soft tissue (e.g. meat, ligaments, tendons, and marrow) had shrivelled or 

disappeared. Together with the fact that most modifications occur on bones recovered 

from decalcified sediment, it seems that the insect modifications were made after the 

bones were already fossils. 

Table.5.7. Invertebrate damage, according to the weathering stage of the fossils. 

 

 

 

 

 

 

Figure 5.21. Distribution of the remains bearing invertebrate damage according to weathering stage. 
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Ancient anthropogenic damage 

No unequivocal cut mark produced by a stone-tool has been observed and no 

burnt bone has been identified in the assemblage. 

3.4. Non-hominin faunal material: summary about the state of preservation 

The degree of preservation of the faunal material is heterogeneous, ranging from 

fossils that are very well-preserved, complete, articulated, with little weathering and 

manganese coating, to fossils that are extremely poorly preserved, fragmentary, highly 

weathered and covered with manganese dioxide (Figure 5.22). 

The different host rocks of the specimens (e.g. calcified versus decalcified 

sediment; various facies) can partly explain this heterogeneity. The hominins are not the 

only individuals at Malapa to be very well preserved, since other animals present an 

excellent state of preservation, as illustrated by the abundance of elements that are 

articulated or in near articulation, of complete and near complete bones, and by the 

presence of antimeric sets of bones. These well-preserved specimens are also 

characterised by a bone surface showing slight weathering, little manganese coating and 

no carnivore or rodent damage. Based on the number of antimeric sets of bones, 

articulated elements, complete and near complete bones, it is possible to propose an 

estimation of a minimum number of five individuals preserved as complete or near 

complete skeletons in the deposit, including three bovids, one rabbit, and one small 

carnivore (see Appendix 6 for a detailed list). 
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Figure 5.22. Heterogeneity of the faunal material; A: highly weathered and decalcified bovid femur; B: non-
weathered, well-preserved bovid sacrum; C: articulated bovid ribs and thoracic vertebrae; D: extremely 
fragmentary unidentifiable bones covered with manganese. 
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Chapter 6. State of preservation of the hominins 

This chapter presents the results of the palaeontological and physical taphonomic 

analyses of the MH1 and MH2 skeletons. Firstly, information about the general state of 

preservation is provided, including degree of survival of body parts, level of completeness, 

intensity of fragmentation and types of articulations preserved. Secondly, results of the 

macro- and microscopic study of the bone surfaces are presented, together with the 

identification of the biotic and abiotic agents that have caused modifications. Finally, a 

comparison between both individuals allows a discussion of the similarities and 

differences between them, in terms of their taphonomic characteristics. 

1. DEGREE OF COMPLETENESS 

1.1. Percentage survival 

The MH2 and MH1 skeletons preserve most body parts. Table 6.1 and Figure 6.1 

illustrate which skeletal elements of both MH1 and MH2 have been recovered. For MH1, 

the total number of bones includes all the bones coming from the yet unprepared block of 

calcified sediment. The ones for which a definitive identification is required only appear in 

the total and not in the previous lines (this applies to the five hand or foot bones, the 

possible tibia/distal femur and the possible humeral shaft elements). 

The overall percentage survival is 34% for MH1 and 45.6% for MH2. It is interesting 

to notice that excluding the very small elements (phalanges, metapodials and 

carpals/tarsals), the percentage survival for MH1 and MH2 is exactly the same: 59.6%. 
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Table 6.1. Percentage survival of each element per individual. 

Element N MH1 MH2 

NISP MNE % survival NISP MNE % survival 

Skull 1 3 1 100 0 0 0 

Hemi-mandible 2 3 2 100 5 2 100 

Teeth 32 19 16 50 12 12 37.5 

Clavicle 2 4 2 100 3 2 100 

Sternum 1 1 1 100 1 1 100 

Ribs 26 14 10 38.5 24 13 50 

Cervical vertebrae 6 5 5 83.3 2 2 33.3 

Thoracic vertebrae 12 5 4 41.7 7 7 58.3 

Lumbar vertebrae 7 2 2 28.6 4 2 28.6 

Total vertebrae 25 12 12 48 14 11 44 

Sacrum 1 0 0 0 2 1 100 

Pelvic bone 2 4 2 100 6 2 100 

Humerus 2 4 2 100 2 2 100 

Radius 2 4 2 100 1 1 50 

Ulna 2 3 1 50 1 1 50 

Carpals 14 0 0 0 8 8 57.1 

Metacarpals 10 1 1 10 6 6 60 

Femur 2 5 2 100 4 2 100 

Patella 2 0 0 0 2 1 50 

Tibia 2 0 0 50 4 2 100 

Fibula 2 1 1 50 5 ½? 50/100? 

Tarsals 12 0 0 41.7 2 2 16.7 

Metatarsals 10 2 2 20 0 0 0 

Phalanges 42 0 0 0 11 11 26.2 

TOTAL 182 101 62 34 128 83 45.6 

N: number of elements in a complete skeleton, NISP: Number of Identified Specimens, MNE: Minimum 
Number of Elements. 
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Figure 6.1. Remains of MH2 (left) and MH1 (right). The bones in blue are the ones identified in an 
unprepared block (UW88-B051) and attributed to MH1 (dark blue: anatomical identification certain; bones 
in light blue: anatomical identification uncertain). Modified from Berger, 2012. 
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1.1.1. MH1 

MH1 has an overall percentage survival (see p.66, Chapter 4, section 2.2.1 for the 

definition of percentage survival) of: 100 x MNE/182 (where 182 is the total number of 

elements in an australopithecine skeleton) = (100 x62)/182 = 35.2%. All the major 

segments of the skeleton are present: skull and teeth, mandible, forelimbs and hind limbs, 

elements of the hands and the feet, axial skeleton and pelvis (Table 6.1; Figure 6.1). Both 

sides of the skeleton are well represented, with elements from the right side being slightly 

more numerous (24 for the right side, against 19 for the left side, in MNE). The main 

elements missing are the small bones from both feet and both hands. The distal parts of 

the limbs are represented by only two metatarsals and one metacarpal. However, the 

identification of five hand or foot bones inside block UW88-B051 suggests that there 

might be at least one partially articulated foot/hand preserved inside. 

1.1.2. MH2 

The overall percentage survival of MH2 is: 100 x 83/182 = 45.6% (Table 6.1; Figure 

6.1). Except for the skull, all the major segments of the skeleton are present: mandible 

and teeth, forelimbs and hindlimbs, hands and feet, axial skeleton and pelvis. As for MH1, 

the right side of the skeleton is better represented than the left side (55 elements for the 

right side, 23 for the left). The distal limbs are well represented by the complete right 

hand, the partial left hand, the complete right ankle and one metatarsal. 

1.2. Fragmentation 

For both individuals, there are more partial bones than complete bones (59/42 for 

MH1 and 65/54 for MH2; Figure 6.2); however, the percentage of complete and near 

complete bones is still very significant (41.6% or almost half of the specimens for MH1 and 

45.5% or almost half of the specimens for MH2; Figure 6.2). 

The fragmentation ratios for MH1 and MH2 are: 
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 Fragmentation ratio for MH1 = NISP/MNE = 101/62 = 1.63 

 Fragmentation ratio for MH2 = NISP/MNE = 128/83 = 1.54 

Fragmentation ratios are slightly different, with MH1 showing a more significant 

degree of fragmentation than MH2 (Figure 6.2). 

 

Figure 6.2. Percentages of complete (dark blue) and fragmentary bones (light blue) for MH1 and MH2. 

1.3. Breakage pattern 

1.3.1. MH1 

The long bone edges for which an assessment of the breakage pattern was 

possible (n. 15) show breakage of weathered bones (n. 6) and the green fractures of fresh 

bone breaks (n. 8). Green fractures are observed on the edges of the four fragments of the 

right femur, while other long bones were already dry when the breakage took place. 

1.3.2. MH2 

An overwhelming majority (n. 17) of long bone edges for which a description of the 

breakage pattern was possible (n. 18) is characterised by fractures on weathered bones, 

while one green fracture, on a right femoral shaft fragment (UW88-53), was recorded. 
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2. DEGREE OF ARTICULATION 

2.1. True articulations 

MH1 does not have any elements still in articulation. Four anatomical parts of MH2 

are still perfectly articulated (Figure 6.3; Table 6.2): the right ankle, composed of the distal 

tibia (UW88-97), the complete talus (UW88-98) and calcaneum (UW88-99); the right knee 

composed of the proximal tibia (UW88-78) and the right patella (UW88-79 and UW88-

100); a part of the vertebral column composed of the two last thoracic vertebrae (UW88-

43 and UW88-44); and the end of the vertebral column composed of the antepenultimate 

lumbar (UW88-127), the last lumbar vertebra (UW88-126 and UW88-138) and the sacrum 

(UW88-125 and UW88-137). In humans, the ankle, the lumbar vertebrae and the 

articulation sacrum/last lumbar vertebrae are all persistent articulations. The knee is an 

unstable or fragile articulation. 
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Figure 6.3. Hominin (MH2) articulations preserved. A: antepenultimate, last lumbar vertebrae and piece of 
the sacrum, B: right ankle, C: thoracic vertebrae, D: sacrum and last lumbar vertebrae, E: patella and 
proximal tibia. 



158 
 

2.2. Anatomical proximities 

There are no bones in close anatomical proximity for MH1. For MH2, all the 

carpals, metacarpals and phalanges of the right hand are in close contact with each other, 

but not directly articulated (Table 6.2; Figure 6.4). Four thoracic vertebrae (UW88-188, 

189, 190 and 191) from the “thoracic vertebrae block 2” (UW88-B742) are very close to 

each other, and in their anatomical position, but not in direct articulation (there is some 

sediment between them). Elements of the right side of the upper thoracic cage (first rib, 

clavicle and manubrium), the right scapula and humerus, and the right radius and ulna 

have undergone some minor displacement and are separated by a few centimetres of 

sediment, but the original anatomical position is generally respected. The same applies to 

the sacrum and the right pelvis that were found close to each other. All the preserved 

anatomical proximities of the MH2 skeleton (Table 6.2) correspond to unstable joints 

(hand, manubrium/clavicle) or interlocking unstable joints (scapula/humerus) in the 

human skeleton, except the sacrum/pelvis joint, which is a persistent articulation. 

Table 6.2. Articulations preserved in MH2. 

Elements Type of articulation State of articulation 

right hand (carpals, metacarpals, phalanges) unstable near articulation 
manubrium and clavicle unstable anatomical proximity 
sapula/humerus interlocking unstable anatomical proximity 
Humerus/radius and ulna unstable anatomical proximity 
four thoracic vertebrae intermediate anatomical proximity 
sacrum and right pelvis persistent anatomical proximity 
right ankle persistent articulated 
right knee unstable articulated 
two last thoracic vertebrae intermediate articulated 
two last lumbar vertebrae persistent articulated 
sacrum+last lumbar vertebra persistent articulated 
elbow joint (humerus, radius and ulna) unstable disarticulated, close proximity 
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Figure 6.4. MH2 anatomical proximities. A: right hand bones, B: thoracic vertebrae, C: fragment of the right 
scapula associated with the right clavicle, and D: arm block containing the right scapula, right humerus and 
right first rib (below the scapula). 
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3. PRE- AND POST-DEPOSITIONAL DAMAGE 

3.1. MH1 skeleton 

3.1.1. Modifications by abiotic agents 

Manganese precipitation 

Manganese coating on bones can be an issue for the taphonomist as it obscures 

details of the surface, for instance cut marks, tooth marks, or insect damage. Manganese 

is frequently observed on fossils recovered from the dolomitic caves of the Cradle of 

Humankind (Cukrowska et al., 2005). The dolomite surrounding the breccias in which 

fossils are found is rich in manganese that is released when the dolomite dissolves and 

generally oxidizes to insoluble manganese dioxide. This results in the formation of small 

patches of microcrystalline manganese, which is precipitated in the contact between bone 

material and the surrounding matrix (Cukrowska et al., 2005). In order to assess how 

accurately a report on surface modifications reflects the true taphonomic history of a 

given assemblage, it is important to know how much of the material, and to what extent, 

is covered with manganese dioxide. When fossils are completely covered with manganese, 

fine modifications of the bone surface such as butchery marks, carnivore pits or insect 

damage, can be hidden by the manganese encrustation and invisible to the eye of the 

analyst, even when a microscope is used (Cukrowska et al., 2005). 

As the majority of the MH1 bones were recovered from blocks of calcified 

sediment, the manganese coating is negligible. On 26.2% of the fossils the manganese is 

absent and 60.7% of the fossils display only small patches (category “slight”) (Table 6.3). 

Only one specimen exhibits significant manganese covering (category “moderate to 

heavy”). There is no specimen completely covered with manganese. 
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Table. 6.3. Manganese coating on MH1 bones. 

Category absent slight moderate moderate to heavy 

No. of specimens 16 37 7 1 
Percentage 26.2% 60.7% 11.5% 1.6% 

Bone weathering 

All MH1 remains for which an estimation of the weathering stage was possible (n. 

45) are weathered and exhibit superficial or moderately deep cracks, indicative of a period 

of subaerial exposure of the bones before burial. A little more than half of the specimens 

(n. 29) are slightly weathered (stage 1, with superficial cracks), while the remainder (n. 16) 

are more heavily weathered (stage 2, with deeper cracks and the beginning of surface 

flaking). No specimens show more extreme weathering (stages 3-5). The elements 

commonly displaying weathering stage 2 include right and left elements, from the upper 

and the lower body, and from both calcified and decalcified sediments (the innominate 

bone, the right clavicle, the right femur and humerus, three fragmentary ribs and the vault 

fragments). 

Calcite crystal growth 

Crystals of calcite are relatively common within MH1 bones; they occur in 28 

specimens (45.9% of the total number of bones), inside either the medullary cavity of long 

bones, spongy parts or cracks on the surface of compact bones. 

Red colour staining 

36 bones (59% of MH1 remains) exhibit red traces. They consist of small dots and 

patches of a thin reddish layer, present on top of compact bones, including all types of 

skeletal elements, ribs, vertebrae, flat and long bones, skull and mandible. The origin of 

these red traces is the object of a study that will be published in the near future (Keeling 

et al., in prep.). 
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Sedimentary compaction 

Seven specimens, including the right mandible and the skull, a fragmentary radial 

shaft, the distal part of the right femur, a fragment of the left ilium, a rib and a small 

fragment of scapula have been affected by compressive forces during sediment 

compaction, resulting in depressions, cracks and slight distortion of the bone surface. 

Decalcification 

There is no completely decalcified specimen, but 17 bones show the beginning of 

decalcification, with a small percentage of their surface presenting the white and chalky 

aspect consistent with the loss of calcium that was originally present in the bone. Most 

regions of the skeleton (long bones, metapodials, skull, vertebrae, and ribs) present 

decalcification. 

3.1.2. Modifications by biotic agents 

Trampling 

No definitive trample mark has been recorded on the MH1 fossils. 

Root growth 

Recent and modern damage caused by the action of roots and rootlets is only 

observed on the right clavicle of MH1 (specimen UW88-1). It is most certainly consistent 

with recent vegetal damage, as the clavicle was exposed on the surface of the block of 

calcified sediment from which it was recovered. 

Carnivore, bird of prey, rodent and anthropogenic damage 

There is no evidence of carnivore, rodent, bird of prey or anthropogenic damage 

on any of the MH1 remains. No chewed, digested or burnt bone was recorded and no 

tooth, butchery, beak or talon mark was observed. 
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Invertebrate damage 

Four remains of MH1 exhibit invertebrate damage, namely the upper right incisor 

and canine (UW88-29 and UW88-30), the left ischium and ilium (UW88-14 and UW88-

102). The teeth were recovered during sieving of in situ decalcified sediments, while the 

other elements come from ex situ calcified sediment. The modifications consist of 

intersecting striations, pits and surface gnawing (Figures 6.7 and 6.8). Some of the 

features closely resemble the damage produced by hide beetles during experimental 

study but the exact identity of the species at the origin of the modifications is still 

investigated (Backwell et al., in prep.). 
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Figure 6.5. Invertebrate modifications on MH1 upper right incisor (specimen UW88-29). 
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On the teeth, the traces are located on the tooth roots, below the manganese 

coating (Figure 6.5), implying that they were produced after the teeth had fallen out of 

their sockets and detached from the skull, but before decalcification of the sediment and 

manganese precipitation. On the pelvis fragments they are located on the periosteum, 

either below (ilium) and on top (ischium) of the manganese coating (Figure 6.6), possibly 

indicating two waves of insect action on the bones, taking place at two different times. 

 

Figure 6.6. Invertebrate modifications on MH1 left ilium (specimen UW88-102) and left ischium (specimen 
UW88-14). 
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3.2. MH2 skeleton 

3.2.1. Modifications by abiotic agents 

Manganese precipitation 

The manganese coating is negligible on MH2 remains (Table 6.4). Most of them 

present either no manganese or only small patches covering less than half the bone 

surface (categories “slight” and “slight to moderate”). Six bones have manganese on half 

of their surface (category “moderate”). There is no specimen with significant coating 

(categories “moderate to heavy” and “heavy”) (Table 6.4). 

Table 6.4. Manganese coating on MH2 bones. 

Category absent slight slight to moderate moderate 

No. of specimens 36 54 9 6 
Percentage 34.3% 51.4% 8.6% 5.7% 

As for MH1, the limited impact of manganese coating on MH2 fossils permits the 

identification of microscopic modifications of the bone surface, if any, as they would not 

be masked by a deposit of manganese. 

Bone weathering 

All MH2 bones for which an estimation of the weathering stage was possible (n. 

70) exhibit superficial or moderately deep cracks, indicative of a period of exposure of the 

bones before burial. The majority of the specimens (n. 59) are slightly weathered (stage 1, 

with superficial cracks), while the rest (n. 11) are more weathered (stage 2, with deeper 

cracks and beginning of surface flaking). There is no specimen showing extreme 

weathering (stages 3-5). The elements characterised by weathering stage 2 include bones 

from the right and the left side, only from the upper body, and only from calcified 

sediment (fragments of the right and left hemi-mandibles, six ribs, and the pollical 

proximal right phalanx). 
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Calcite crystal growth 

Calcite crystals are present on 77 specimens (73.3%), inside the medullar cavity of 

long bones, inside spongy bones or in cracks on top of compact bones. 

Red colour staining 

Thin patches or dots of reddish colour are observed on 18 specimens (17.4%), 

including long bones (the right femur, humerus and tibia), tarsals (the right talus and 

calcaneum), a fragment of the innominate, the sacrum, the left mandible and various ribs. 

Sedimentary compaction 

Eleven specimens (10.5%), including ribs, the right scapula, humerus and ulna, the 

left clavicle, the right distal tibia and the right ilium, have been affected by sedimentary 

compression, resulting in impacts, cracks and slight distortion of the original bone surface. 

Decalcification 

44 bones (41.9%) show the beginning of decalcification, with only a small 

percentage of the bone surface presenting the white chalky aspect due to the loss of 

calcium initially present in the bone. The process of decalcification affects almost all types 

of skeletal elements, namely long bones, flat bones, metapodials, carpals and tarsals, ribs 

and vertebrae. 

3.2.2. Modifications by biotic agents 

Trampling 

None of the MH2 bones presents any definitive trample mark. 

Root growth 

There is no damage associated with the action of roots or rootlets on MH2. 
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Carnivore damage 

Observations on the fossils 

The first right rib of MH2 (specimen UW88-198) exhibits two pits evoking possible 

chewing damage caused by a mammalian carnivore (Figure 6.7). The rib is currently 

embedded in calcified sediment, below the scapula. It is therefore only possible to 

examine the pits on the 3D rendering of the bone, produced from micro-CT scanning data 

(Figure 6.7). There is one pit on the cranial side of the rib and one on the caudal side. The 

dimensions of the pits (Table 6.5) have been obtained from the 3D rendering, using the 

Avizo 6.3 software. They are consistent in size with pits produced by large carnivores (e.g. 

spotted hyaenas, lions) (Selvaggio and Wilder, 2001; Domínguez-Rodrigo and Piqueras, 

2003; Table 6.5). 

Table 6.5. Dimensions (respectively: mean and range) of the possible tooth pits observed on MH2 right first 
rib (in mm), and dimensions of tooth pits experimentally produced by different class-sized carnivores (data 
from Selvaggio and Wilder, 2001, and Domínguez-Rodrigo and Piqueras, 2003). 

Pits Length Breadth 

MH2 first rib 4.00 [3.5-4.5] 2.30 [1.7-2.9] 
Spotted hyaenas 3.27 [1-5.5] 2.24 [0.9-3.5] 
Lions 3.45 [3-4] 2.20 [1.8-2.5] 
Leopards 2.00 [1.5-2.5] 1.00 [0.2-1.8] 
Cheetahs 1.75 [1.5-2] 1.00 [0.8-1.2] 
Jackals 1.45 [0.5-2] 0.85 [0.3-1.2] 

Definitive attribution of the pits to carnivore damage: discussion 

The attribution of the two pits described above to chewing modification caused by 

a large carnivore is subject to discussion. Several arguments are considered here that 

dismiss the definitive attribution of the pits to carnivore damage. Firstly, the pits 

constitute a very isolated evidence of carnivore action in the hominin assemblage, and are 

not confirmed by any other evidence of carnivore activity (no other chewing damage 

recorded on the hominin remains, no digested bone in the assemblage, no fresh breakage 

associated with carnivore tooth marks, no selective body part representation associated 

with carnivores). The presence of carnivore tooth pits on the MH2 specimen is not 
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consistent with the general state of preservation of that individual, which is characterised 

by complete bones, almost all skeletal parts preserved, and elements still in articulation. 

The first rib was recovered in an anatomically predictable position (i.e. close to the 

manubrium, the right clavicle and scapula), which indicates it has not suffered any major 

displacement. Furthermore, a large carnivore would most likely have destroyed the rib, 

which is a fragile and thin bone. 
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Figure 6.7. MH2 first right rib showing possible carnivore tooth pits. A: provenance of the rib, below the 
scapula in the “arm block”; B and C: pits 1 and 2 observed on the caudal (B) and cranial (C) surfaces of the rib 
and illustrated here on the printout. 
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The pits observed on the rib are associated with cracks on the bone surface (Figure 

6.6) and their morphology is consistent with indentations caused by falling rocks. 

Consequently, carnivore chewing is regarded as a very unlikely explanation. 

Bird of prey, rodent and anthropogenic damage 

 On MH2 skeleton, there is no indication of any type of damage inflicted by a 

rodent or a bird of prey (no chewed or digested bone, no beak or talon impact). There is 

also no evidence for modifications produced by hominins, in the form of butchery marks, 

percussion impacts or burnt bones. 

Invertebrate damage 

A fibula shaft fragment (UW88-84), recovered from ex situ sediment, shows 

invertebrate damage. The modifications consist of intersecting striations and surface 

gnawing, located below the manganese, which imply they are most certainly pre-burial, or 

at least ancient (Figure 6.8). They are similar to the insect marks observed on MH1 fossils. 

 

Figure 6.8. Invertebrate modification observed on a fibula shaft fragment (specimen UW88-84) belonging to 

MH2. 
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4. COMPARISON BETWEEN THE TWO INDIVIDUALS IN TERMS OF PRESERVATION 

4.1. General preservation 

4.1.1. Similarities 

MH1 and MH2 present an excellent degree of preservation, in terms of percentage 

survival of body parts, abundance of complete and near complete bones, and presence of 

articulated and near-articulated elements for MH2. For both individuals, the skeletal part 

representation is not consistent with a density-mediated pattern, where the denser parts 

are more abundant than the fragile bones. Very fragile elements such as the blade of the 

scapula are preserved (i.e. complete right scapula of MH2) and very spongy bones are also 

well-represented (the vertebrae for instance have a percentage survival of 48% for MH1 

and 44% for MH2). Based on the high level of completeness and the fact that all 

anatomical sections and elements from both sides are present for the two individuals, I 

argue that the skeletons were complete and probably alive when they arrived in the cave 

deposit. Consequently, the missing elements are either still in situ in the deposit at the 

site, or in the laboratory, in blocks of matrix that have not yet been prepared. 

4.1.2. Differences 

The major difference in terms of general preservation concerns the degree of 

articulation of recovered remains. While articulated and near articulated skeletal 

elements have been preserved for MH2, there is none for MH1. The difference in 

preservation may be explained by a difference in age between the two individuals or more 

likely a difference in the length of post-mortem pre-burial exposure. 

Another notable difference concerns the number of recovered remains, which is 

higher for MH2 than for MH1. However, as proved by the recent identification of new 

fossils belonging to MH1 in a block of calcified sediment, it seems that this difference is 

purely due to recovery bias. The lesser degree of articulation for MH1 implies a potential 
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for higher dispersal inside the deposits, and consequently a smaller number of MH1 

elements than MH2 that have been recovered. It is highly likely that all of the remains of 

MH1 and MH2 will eventually be found (see above), rendering the difference in MNE 

between the two individuals negligible. 

4.2. Bone surface damage 

 MH1 and MH2 present a generally very similar state of preservation of their bones 

and bone surfaces. The pre- and post-depositional agents that have affected their bones 

are the same. The differences noticed between the two individuals concern the intensity 

of the damage rather than the nature of it (Figure 6.9). 

 

Figure 6.9. Modifications of the surface of MH1 and MH2 fossils, caused by biotic and abiotic agents (the 
data are presented as a percentage of remains affected by each type of modification). 
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4.2.1. Similarities 

Numerous similarities between MH1 and MH2 can be highlighted. The degree of 

manganese coating (Tables 6.3 and 6.4), the intensity of sedimentary pressure, the root 

damage, as well as the absence of anthropogenic, rodent, bird of prey, and carnivore-

induced modifications are the same for the two individuals. 

Pre-burial processes: near-absence of biotic damage 

Modifications caused by biotic agents, which are absent from both individuals, 

with the exception of invertebrate damage, are consistent with peri- and post-mortem but 

pre-burial processes. The absence of such modifications indicates that avian or 

mammalian carnivores whether hunters or scavengers, and rodents, played no role in the 

death of the hominins and had no access to the carcasses when decomposition took place. 

On that matter, MH1 and MH2 seem to share a similar scenario. The absence of trample 

marks for both MH1 and MH2 confirms the absence of physical disturbance of the corpses 

as the bones were becoming exposed. This can either mean that the bodies were buried 

before their bones were exposed, or that animals, including hominins, had no access to 

the carcass during decomposition and could not have trampled them. 

Post-depositional processes: manganese and sedimentary pressure 

Manganese dioxide encrustation of the bones and sedimentary pressure causing 

compaction are post-durial processes. The deposition of manganese on bones usually 

takes place during decalcification of the breccia (Cukrowska et al., 2005), possibly 

relatively recently in terms of the taphonomic history of the hominins. The impact of 

sediment compaction on the fossils occurs after burial of the skeletons by sediment and 

collapsed blocks from the roof deeply enough to actually cause the bones to collapse 

(Brain, 1981). The similarities observed between MH1 and MH2 in terms of intensity of 

manganese coating and sediment compaction can be explained by the close proximity in 

which MH1 and MH2 were recovered inside the deposit. They are likely to have 
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undergone the same pressure from the sediments above them and the same process of 

manganese deposition. 

4.2.2. Differences 

Pre-burial processes: weathering and invertebrate damage 

MH1 is generally more weathered than MH2, with a higher percentage of specimens 

having reached weathering stage 2 than for the female (Table 6.6; Figure 6.10). 

Table 6.6. Weathering stages of MH1 and MH2 remains (in percentage). 

Weathering MH1 MH2 

Stage 1 39% 47.1% 
Stage 2 32.8% 11.8% 

 

 

Figure 6.10. Comparison of MH1 and MH2 specimens according to the weathering stages (dark green: stage 
1; light green: stage 2, following Behrensmeyer, 1978). 

The implications of this difference will be discussed in further detail in Chapter 8. 

The variability between MH1 and MH2 in terms of weathering could be explained by 

temporal and micro-environmental factors, such as a difference in the time of subaerial 

exposure, a difference in the time of entry inside the cave, and a difference in the rate of 

burial. It could also be linked to a slight difference in process of decomposition inside the 

cave, associated with different conditions of temperature and humidity. 
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With regard to invertebrate damage, more specimens of MH1 are affected than 

MH2 (four remains for MH1 contra only one for MH2). Because the female preserves 

more remains than MH1 (MNE: 119 for MH2 contra MNE: 64 for MH1), one would expect 

to observe more insect damage on her bones. However, the difference is too small and 

applies to a sample too limited in size to be statistically significant. Furthermore, not all 

invertebrates actively select bones for consumption, so marks left by them, whether 

during feeding or pupating on the carcass, are accidental. It follows that the abundance of 

marks on the bones does not necessarily correlate with the intensity of insect action on 

the skeleton. 

Post-depositional processes: red traces, decalcification and crystals of calcite 

Percentages of remains showing red traces, the beginning of decalcification, and 

crystals of calcite vary between MH1 and MH2. There is a higher percentage of remains 

with calcite crystals and decalcification for MH2 than for MH1, while there is a higher 

percentage of remains with red traces for MH1 than for MH2 (Figure 6.9). 

The origin of red traces is currently under study (Keeling et al., in prep.), so will not 

be discussed further here. Explaining the difference observed between the two individuals 

in terms of abundance of these marks remains difficult. 

The decalcification of the bones and the formation of calcite crystals inside them 

are directly linked to chemical processes affecting the breccia in which the fossils are 

preserved and the surrounding dolomite. These chemical processes (dissolution of the 

dolomite, decalcification of the breccia, precipitation of calcite) can be extremely variable 

inside the same deposit and depend upon numerous factors (e.g. climatic and 

environmental conditions outside and inside the cave; microbial activity inside the cave; 

depth and degree of opening of the cave; see for example Brain, 1981; Jones, 2001; 

Chalmin et al., 2007). For instance, infiltration of water can cause localised dissolution of a 

pocket of breccia, leading to the decalcification of the bones it contains, while the 
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surrounding sediment will remain calcified. A difference in terms of percentage of bones 

affected by decalcification and crystals of calcite inform about chemical micro-variations 

inside the deposit, but do not reflect major differences between MH1 and MH2 in terms 

of post-depositional taphonomic history. 
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Chapter 7. Reconstruction of the burial posture of the hominins 

This chapter presents the results of the spatial approach and proposes a 

reconstruction of the original burial position of MH1 and MH2 inside the deposit. It 

includes firstly a description of the origin of the hominin fossils, whether from in situ 

calcified or decalcified sediment, or ex situ blocks removed during mining, together with 

their exact position and orientation, when known. Secondly, the results of the analysis of 

movement, direction and transportation of the hominin fossils inside the deposit are 

offered and discussed. This section also considers geological information regarding the 

stratigraphy and the general orientation of the sediments of Facies D, which contains the 

hominins. Finally, hypotheses regarding 3D refitting in the deposit of ex situ hominin 

fossils are proposed. Combined with a virtual reconstruction of the cave, this information 

permits a visualization of the position in which the hominins where buried, prior to mining 

of the deposit. 

1. STRATIGRAPHIC ORIGIN OF THE HOMININ REMAINS 

The following section provides a more detailed description of the MH1 and MH2 

hominin remains, together with their exact stratigraphic provenance. Two categories are 

considered: (1) the remains found in situ and which were assigned coordinates, and (2) 

those found ex situ in blocks removed by the miners (for a complete list of the hominin 

specimens with their provenance, see Appendix 1; for the coordinates of the in situ 

hominin remains, see Appendix 2). 

1.1. MH1 in situ remains 

Two fragments of the right cranial vault (UW88-31, the right parietal and UW88-32, a 

fragment of the right temporal) were recovered in situ at the very bottom of Facies D, just 

above Facies D (Figure 7.1). They are part of the MH1 skull, which now lacks only the right 

part of the calvaria. The right upper first incisor (UW88-29) and canine (UW88-30) were 

found during water sieving of in situ sediment for which 3D coordinates were recorded. 
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Two right near-complete metatarsals (UW88-16 and UW88-22) were found in situ in the 

western part of Facies D (Figure 7.1) and assigned to MH1. 

 

Figure 7.1. Position of the in situ MH1 remains in Facies D and E (image: courtesy of D. Conforti, Optech 
Company, modified). 

1.2. MH1 ex situ remains 

1.2.1. “Clavicle block” 

The first breccia block recovered from the site was found 15 m from the main pit and 

contained an exposed clavicle (UW88-1; Figure 7.2). This block, now referred to as the 

“clavicle block” (Figures 7.2 and 7.3), has exposed on its surface a fragment of the left 

hemi-mandible preserving the lower canine (UW88-2) (Figure 7.2). The right hemi-

mandible (UW88-8) was found in the same block during preparation. The block also 

contains an ulna (UW88-3), several fragments of the pelvic bone (UW88-6, the anterior 
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portion of the right ilium; UW88-7, the posterior portion of the right ilium; UW88-14, the 

near complete left ischium), a complete cervical vertebra (UW88-9), a near complete 

thoracic vertebra (UW88-11), a right radius (UW88-12), a distal right rib fragment (UW88-

13), a proximal left rib fragment (UW88-15), a fragment of a rib shaft, side indeterminate 

(UW88-17) and a fragment of the right acromion process (UW88-113). 

   

Figure 7.2. “Clavicle block” on the day of discovery showing the right clavicle UW88-1 on one side (left) and 
a fragment of the right mandible UW88-2 (right) on the other (image: courtesy of L.R. Berger). 
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Figure 7.3. Partially prepared upper part of the “clavicle block” showing the mandible (UW88-8) next to the 
ulna (UW88-3) and the cervical vertebra (UW88-9). 

1.2.2. Right femur 

The proximal right femur (UW88-4) was found at the site in an ex situ block (Figure 

7.4). Together with three other loose fragments (UW88-5, a proximal shaft fragment; 

UW88-39, part of the proximal head; and UW88-89, a medial shaft fragment) it 

constitutes the near-complete right femur. 
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Figure 7.4. Lee Berger at Malapa holding the block containing the proximal femur UW88-4 and a modern 
femur for comparison (image: courtesy of L.R. Berger). 

1.2.3. “Skull block” 

The “skull block” was found ex situ. It contains the complete right humeral shaft 

(UW88-42), the proximal head of the left humerus (UW88-36) and the near-complete skull 

(UW88-50) (Figure 7.5). 

 

Figure 7.5. Superior view of the “skull block” showing the partially prepared skull (UW88-50) and the right 
humeral shaft (UW88-42). Scale bar = 10 cm. 
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1.2.4. “Ilium block” 

The “ilium block” contains the right distal humerus (UW88-88) and the left ilium 

(UW88-102) (Figure 7.6). The distal humerus fits perfectly with the humeral shaft present 

in the “skull block”. The breakage is due to mining. 

 

Figure 7.6. View of the “ilium block” showing the distal right humerus (UW88-88) on the left and the left 
ilium (UW88-102) on the right. 

1.2.5. Block UW88-B051 

A block (UW88-B051) of calcified sediment recovered ex situ and containing on its 

surface an articulated humerus and ulna of a bovid was CT-scanned at the Charlotte 

Maxeke hospital. It has not been physically prepared yet and the virtual preparation is in 

progress. Observations of the scanning data have revealed the presence inside the block 

of numerous bones that are attributed to MH1 (Figures 7.7 and 7.8). 
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Figure 7.7. Bones preserved inside the block of calcified sediment UW88-B051 attributed to MH1, from the 
top (A) to the middle of the block (D), shown as snapshots of the CT-scanner data realized with Avizo. 

The block contains the left clavicle, femur and mandible, the distal right ulna, at 

least four ribs, five hand or foot bones, a fibula, two possible fragments of humerus (a 

shaft and a distal fragment), and a possible tibia or distal femur (Figures 7.7 and 7.8).The 

distal right ulna from this block refits with the proximal right ulna from the “clavicle 
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block”, while the left mandible refits with the left fragment of mandible bearing the lower 

canine, also from the “clavicle block”. This means that a direct refitting between the 

“clavicle block” and the block B051 is possible. 

 

Figure 7.8. Bones preserved inside the block of calcified sediment UW88-B051 attributed to MH1, from the 
middle (A) to the lower part of the block (D), shown as snapshots of the CT-scanner data realized with Avizo. 
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1.2.6. Other remains 

The first lumbar vertebra (UW88-152) and the intermediate shaft of a rib (UW88-155) 

were found together in the same ex situ block (UW88-B245). Two intermediate right ribs 

(UW88-41 and UW88-86) were found together in the same ex situ block. The other 

specimens were found in various ex situ blocks, during preparation. A list of those remains 

is given below: 

- Parts of the pelvic bone: two iliac fragments, side indeterminate (UW88-67 and UW88-

206), and one pelvic fragment, side indeterminate (UW88-27). 

- Fragments of scapula (UW88-35, a possible scapula fragment; UW88-68, a scapula 

fragment, and a left scapula fragment, UW88-197, from block UW88-B057) come from ex 

situ blocks and do not refit with one another. 

- A right metacarpal (UW88-112). 

- Long bones: a right humeral head (UW88-34), a left distal ulna (UW88-130), some radial 

shaft fragments (side indeterminate: UW88-18 and UW88-75) and two long bone shaft 

fragments, side indeterminate (UW88-26 and UW88-77). 

- Ribs: the first right rib (UW88-148); one distal rib fragment, side indeterminate (UW88-

74); one fragment of a central rib shaft, side indeterminate (UW88-211); a possible right 

rib fragment (UW88-141) and a fragment from the sternal end of a rib, side indeterminate 

(UW88-76). 

- Vertebrae: a fragment of a cervical vertebra (UW88-71), a complete lumbar vertebra 

(UW88-92), four near complete thoracic vertebrae (UW88-37, UW88-69, UW88-70, 

UW88-90), two cervical vertebrae (UW88-72 and UW88-93) and an unidentified vertebra 

(UW88-73). 
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1.3. MH2 in situ remains 

The “arm block” (UW88-B043) contains most of the remains that belong to the adult 

individual (Figures 7.9 and 7.10). It was found in situ in Facies D (Figure 7.9). 

 

Figure 7.9. Position of the MH2 “arm block” in situ in Facies D (image: courtesy of D. Conforti, Optech 
Company, modified). 

It contains the complete right humerus (UW88-57), the complete right radius 

(UW88-85), the complete right ulna (UW88-62), the near-complete right scapula (UW88-

28), the right distal femur broken into two pieces (UW88-63 and UW88-53), five right 

carpals (capitate, UW88-156; scaphoid, UW88-158; lunate, UW88-159; triquetral, UW88-

163; hamate, UW88-95), five complete metacarpals (first, UW88-119; second, UW88-115; 

third, UW88-116; fourth, UW88-117; fifth, UW88-118), five complete right proximal 

manual phalanges (thumb, UW88-160; second, UW88-164, third, UW88-120; fourth, 

UW88-108; fifth, UW88-121), four complete intermediate right manual phalanges 
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(second, UW88-123; third, UW88-161, fourth, UW88-122; fifth, UW88-162), the right 

pollical distal phalanx (UW88-124), a complete right intermediate rib (UW88-61), the 

near-complete right second rib (UW88-58), the third right rib (UW88-166), some right rib 

fragments (UW88-59, UW88-60, UW88-143, UW88-144, UW88-145, UW88-165, UW88-

175), a vertebral fragment (UW88-66) and the sternal end of the right clavicle (upper part 

of the arm block, UW88-142) (Figure 7.10). The manubrium (UW88-172), together with a 

near complete intermediate rib (UW88-154) and the near-complete right first rib (UW88-

198), are located just below the scapula (Figure 7.11). 

 

Figure 7.10. Superior view of the “arm block” (UW88-B043) showing the right scapula, first and second ribs, 
humerus, and distal radius and ulna. 

The right knee was found on top of the arm block and broke during the removal of 

this block. It was located on the north-western corner of the arm block, near the distal 
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femur (UW88-63). It is partly preserved and consists of a fragment of the proximal right 

tibia epiphysis (UW88-64), which fits directly with another proximal right tibia epiphysis 

fragment (UW88-78), the latter of which is in articulation with the right patella (UW88-79 

and UW88-100). The breakage of the patella into two pieces happened during the 

excavation process. 

 

Figure 7.11. Left: scapula on top of the first rib (UW88-198), manubrium (UW88-172) and rib UW88-154. 
Right: exposed rib (UW88-154) and manubrium (UW88-172) after preparation. 

 Two fragmentary left teeth (UW88-19, a fragmentary upper second molar and 

UW88-20, a fragmentary upper third molar) were recovered in situ, to the right side of the 

“arm block”. A fibula shaft fragment (UW88-202) was recovered in Facies D and attributed 

to MH2. 

1.4. MH2 ex situ remains joining in situ specimens 

1.4.1. “Scapula fragment block” 

The “scapula fragment block” (Figures 7.12 and 7.13) was found on the path used by 

the miners. It refits perfectly with the “arm block”, through direct contact with the scapula 

blade (UW88-28). On the anterior face, the “scapula fragment block” contains the 

superior part of the right scapula (UW88-56) and the right clavicle (UW88-38) (Figure 

7.12). On the posterior face it contains the right hemi-mandible fragment (UW88-54) 

bearing the three lower molars and a cervical vertebra (UW88-83) (Figure 7.13). 
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Figure 7.12. Upper part of the “scapula fragment block” showing the incomplete scapula fragment (bottom; 
UW88-56) and the right clavicle (top right; UW88-38). 

 

Figure 7.13. Bottom part of the scapula fragment block showing the right hemi-mandible (UW88-54) and the 
cervical vertebra (UW88-83; top left corner of the block). 
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1.4.2. Mandible fragments 

Two other ex situ mandibular fragments join the right hemi-mandible (UW88-54): 

UW88-128 that bears the P4 and a fragment of the M1 and UW88-129, which includes P3, 

C, I1 and I2. Together with the specimen UW88-54, they form the complete right mandible. 

1.5. MH2 ex situ remains (provenance in the deposit unknown) 

1.5.1. “Pelvis block” 

The “pelvis block” (UW88-B079) was identified at the site. However, it was found ex 

situ, in a mining dump, lying on the road towards the eastern part of the site. Coordinates 

of the location where it was recovered have been taken. The pelvis block contains the 

right pelvis (UW88-133), two fragments of the left pelvis (UW88-134 and UW88-135), the 

near complete sacrum (UW88-137), and two pieces of the last lumbar vertebra (UW88-

138 and UW88-153). 

1.5.2. “Ankle block” 

The “ankle block” (UW88-B032) is composed of the distal right tibia (UW88-97), the 

right calcaneus (UW88-99) and the right talus (UW88-98) on the anterior face of the block, 

with the pubis (UW88-52) and the femoral head (UW88-51) on the posterior face. A pelvic 

bone fragment (UW88-136), found in a separate block, joins the pubis (UW88-52) from 

the “ankle block” with the right ilium (UW88-133) from the “pelvis block” (UW88-B079). 

1.5.3. “Thoracic vertebrae block 1” 

The “thoracic vertebrae block 1” contains two near complete thoracic vertebrae 

(UW88-43 and UW88-44), a thoracic vertebral fragment (UW88-114) and four rib 

fragments, side indeterminate (UW88-45, UW88-46, UW88-47, and UW88-48) (Figure 

7.14). UW88-44 is the last thoracic vertebra and UW88-43 is the penultimate thoracic 

(Scott Williams, pers.comm.). 



192 
 

 

Figure 7.14. “Thoracic vertebrae block 1”. 

1.5.4. “Thoracic vertebrae block 2” 

The “thoracic vertebrae block 2” (UW88-B742) contains four near complete thoracic 

vertebrae (UW88-188, UW88-189, UW88-190 and UW88-191), from rank ¾ (UW88-188) 

to rank 6/7 (UW88-191) (Scott Williams, pers.comm.); a first metatarsal, side 

indeterminate (UW88-181); a possible sesamoid (UW88-180); a distal pedal phalanx, side 

indeterminate (UW88-179); the distal part of the left second rib (UW88-187); the left 

proximal end of the second rib (UW88-178); and two unidentified bone fragments (UW88-

183 and UW88-185). 

1.5.5. “Lumbar vertebrae block” 

The “lumbar vertebrae block” is composed of a sacral fragment (UW88-125), the last 

lumbar vertebral body (UW88-126), and the antepenultimate lumbar vertebral body 

(UW88-127). This group joins to the “thoracic vertebra block 1” (UW88-43, UW88-44, and 

UW88-114). 

1.5.6. Other remains 

The left hemi-mandible is in two pieces, in direct contact with each other (UW88-55, a 

left fragment including M3 and UW88-55b, a left fragment with a tooth root fragment). 
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The left fibula is in two pieces found separately, but which refit perfectly, these being the 

proximal shaft (UW88-23) and the medial shaft (UW88-84). The following specimens were 

recovered in different ex situ blocks and are separated from one another: 

- The glenoid part of the left scapula (UW88-104) and the left acromion process (UW88-

103). 

- The left humeral head (UW88-101). 

- The left distal femur (UW88-87). 

- The left lateral end of the clavicle (UW88-94). 

- Two pelvic bone fragments, including the left ischiopubic ramus with partial pubic 

symphysis (UW88-10) and a pelvic fragment (UW88-136). 

- Elements of long bones including a right fibula shaft fragment (UW88-146), the distal end 

of a right fibula (UW88-65) and a proximal left tibia epiphysis (UW88-24). 

- Rib fragments, which amount to two intermediate rib fragments (UW88-192 and UW88-

193) found in the same block (UW88-B1003), side indeterminate and two intermediate rib 

fragments, side indeterminate (UW88-209 and UW88-210) found in two different blocks. 

- A fragment of a cervical vertebra (UW88-96). 

- A left metacarpal (UW88-182) from block UW88-B894. 

- An unidentified hand bone (UW88-157). 

- A proximal pedal left phalanx (UW88-91). 

- Three carpals: the left capitate (UW88-150), hamate (UW88-106) and triquetral (UW88-

107). 

- A molar crown fragment (UW88-201). 
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2. POSITION, DIRECTION AND INCLINATION OF IN SITU HOMININ BONES 

2.1. MH1: cranial remains and metatarsals 

The MH1 in situ cranial specimens are not very informative in terms of direction 

and angle: the teeth were recovered during sieving, and even though their location within 

the deposit is known, their orientation is not. The orientation of the two vault fragments 

and the two metatarsals was not recorded when they were collected from the deposit. 

2.2. MH2: “arm block” 

2.2.1. Position in the deposit 

The original position of the block within the deposit is known. It was found with 

the proximal humerus and scapula sticking out of the matrix toward the south. The corner 

of the block facing north contains the hand bones and the distal femur. All the bones 

found in the arm block are on the top of the block, which is facing toward the opening of 

the cave. 

2.2.2. Direction 

Inside the block, there is a general tendency for the long bones to be orientated 

along the same south-north axis (proximal part of the bone facing south and distal part 

facing north) (Figure 7.15). This is the case for the right scapula, humerus, radius, ulna and 

femur, for the metacarpals II, III, IV and V, and for the complete intermediate rib (UW88-

61). The other ribs have different orientations: SE-NW for the first rib, NW-SE for the 

second rib and W-E for the partial ribs UW88-59 and UW88-60. The thumb phalanx is 

orientated E-W, the first metacarpal is orientated upside down with its proximal extremity 

facing north and the distal extremity facing south, the third phalanx is orientated SW-NE 

and the fourth and fifth phalanges are orientated N-S. It is noteworthy that only the 

smallest bones (phalanges) and the curved bones (ribs) do not follow the general north-

south direction. 
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2.2.3. Inclination 

The general inclination of by the bones inside the arm block is between 20 and 30° 

relative to the horizontal plane (Figure 7.15). This is true for the following bones, which 

are all in the same plane: the scapula and humerus (orientated with their distal side 

inclined toward the top of the deposit and their proximal side toward the bottom of the 

cave), other long bones (i.e. femur, radius and ulna) and ribs. 

Table 7.1. Direction and inclination of the MH2 skeletal elements present in the arm block. 

SPECIMEN ELEMENT DIRECTION INCLINATION 

UW88-28 right scapula S-N 30° 

UW88-57 right humerus S-N 30° 

UW88-63 right femur S-N 30° 

UW88-85 right radius S-N 25° 

UW88-62 right ulna S-N 20° 

UW88-61 intermediate rib S-N 30° 

UW88-198 first right rib SE-NW 30° 

UW88-58 second right rib NW-NE 30° 

UW88-59 intermediate rib W-E 30° 

UW88-60 rib fragment W-E 30° 

UW88-119 first right metacarpal N-S 100° 

UW88-118 second right metacarpal S-N 55° 

UW88-117 third right metacarpal S-N 60° 

UW88-116 fourth right metacarpal S-N 60° 

UW88-115 fifth right metacarpal N-S 120° 

UW88-160 first right phalanx E-W 120° 

UW88-164 second proximal right phalanx - - 

UW88-120 third proximal right phalanx SW-NE 30° 

UW88-108 fourth proximal right phalanx N-S 110° 

UW88-121 fifth proximal right phalanx N-S 70° 

UW88-123 second intermediate right phalanx E-W 110° 

UW88-161 third intermediate right phalanx - - 

UW88-122 Right fourth intermediate phalanx N-S 50° 

UW88-162 fifth intermediate right phalanx - - 

UW88-124 first distal right phalanx N-S 50° 

UW88-198 first right rib SE-NW 30° 

UW88-58 second right rib SE-NW 30° 

UW88-61 intermediate rib SE-NW 30° 

UW88-59 intermediate rib W-E 30° 

UW88-60 rib fragment W-E 30° 
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The metacarpals and phalanges have various inclinations: the second, third and 

fourth metacarpals have an inclination relative to the horizontal of 55°, 60° and 60° 

respectively and the first metacarpal has an inclination of 100° relative to the horizontal 

plane. The fifth metacarpal is in a different plane and has an inclination of 120°. The 

phalanges have various inclinations, from 30° to 120° (Table 7.1). Only the smallest bones 

(phalanges and metacarpals) are not in the same 20°-30° inclination plane. 

 

Figure 7.15. Orientation and inclination of the bones from the arm block. 
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3. POSITION, DIRECTION AND INCLINATION OF HOMININ REMAINS INSIDE EX SITU 

BLOCKS 

 Except for the MH1 skull, which contains sediments providing stratigraphic 

information, it is impossible to assess the orientation, position and angle within the site of 

the specimens recovered in ex situ blocks, since the position of the blocks within the 

deposit is unknown. Therefore, only the position, direction and inclination of the 

specimens relative to other within the same block are discussed here. 

3.1. MH1: skull 

The CT-scanning and 3D rendering of the MH1 skull provides a mean by which to 

explore inside the vault. The skull is filled with sediments arranged in parallel bedded 

layers, which are aligned obliquely inside the calvarium (Figure 7.16). It is possible to 

identify two different types of sediments. On the left side of the skull, the sediment is 

slightly lighter in colour and present more coarse grains, while on the right side it is more 

homogenous, darker in colour and composed of finer grains. There is a slight 

unconformity between these two types of sediments in the form of cavities (black holes in 

Figure 7.16). The layering on the left occurs at an angle to the layering on the right and the 

layering on the right appears to truncate the layering on the left above the initial deposit. 

Observations of the sediments filling the calvarium (Figure 7.16) suggest that MH1 skull 

was lying on its left side and partly filled with sediment at the time of the initial 

deposition, whilst its other half (the right side, now broken) was still sticking out above the 

initial deposit. This initial infill must have occurred at an angle to the horizontal, as 

indicated by the sediment lapping on the skull wall. The skull was subsequently filled by 

sediments that deposited inside the cave in a horizontal fashion, which is also visible 

inside Pit 1 (P. Dirks, pers. comm.). The unconformity visible inside the skull was also 

observed during the preparation of the “skull block” and is present on top of the block 

B051. It is interpreted as a bedding surface, possibly the top of Facies D. It suggests that 
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MH1 was lying in a horizontal fashion, and following an east-west orientation along the 

north wall of the pit (P. Dirks, pers. comm.). 

 

Figure 7.16. Cross-section (view from the top, see image of the top illustrating where the orthoslice is taken 
from) of the skull showing the sediments inside the vault (the white line indicates the limit between the two 
types of sediments, and the white arrows indicate the inclination of the sedimentary laminae) (images: 
courtesy of K. Carlson, modified). 
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3.2. MH1: bones from the “skull block” 

The position of the skull relative to the right humerus in the same block is known. 

They are both positioned in the same plane, with the proximal humerus facing the same 

direction as the anterior part of the skull. The left humeral head, also recovered in the 

“skull block”, is orientated perpendicular to the right humeral shaft. 

3.3. MH1: bones from the “clavicle block” 

The relative position of the mandible and ulna is known. They are orientated in the 

same plane and are parallel to each other; the long axis of both bones follows the same 

direction with the distal part of the ulna and the anterior part of the mandible facing in 

the same direction. The other remains have a shape that does not allow the attribution of 

a direction or inclination (i.e. cervical and thoracic vertebrae, distal radius fragment, pelvic 

fragments and calcaneum). 

3.4. MH1: bones from block B051 

Twelve elongated hominin bones have been identified inside block UW88-B051, 

including a complete femur, a complete clavicle, four ribs, a fibula shaft, two shafts of long 

bones (possible humerus and tibia or distal femur), a distal ulna, the shaft of a possible 

radius or rib, and the left mandible. They are all in the same plane. The general same 

orientation can be noticed for the femur, the fibula, the tibia/distal femur, the possible 

humerus, the right ulna, the ribs, and the mandible. Only the clavicle and the shaft of the 

rib/radius are perpendicular to the other bones (see Figures 7.7 and 7.8). 

3.5. MH2: ex situ remains 

MH2 remains present in the various ex situ blocks (“ankle block”, “pelvis block”, 

“thoracic vertebrae blocks” 1 and 2) cannot be assigned a direction or inclination. In each 

case, there is only one bone or no bone for which the shape allows an estimation of 

direction and inclination. 
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4. GENERAL ORIENTATION OF THE GEOLOGICAL UNIT (FACIES D) 

Flowstone 1, which underlies Facies D, dips towards the north. Therefore, it is 

proposed that the sediments making up Facies D were accreted from south to north. 

Immediately below the position of the MH1 in situ vault fragments, there is a horizontal 

layer with many rounded fragments showing internal laminations reminiscent of cross 

bedding (Figure 7.17). This also indicates a flow from the south to the north or north-west 

(P. Dirks, pers.comm.). 

 

Figure 7.17. Layer overlying Facies D, below where the MH1 vault fragments were recovered. Note the 
horizontal lamination of the sediments, reminiscent of cross-bedding (image: courtesy of P. Dirks). 

5. TRANSPORT AND MOVEMENT OF THE HOMININ REMAINS 

5.1. Distances between MH1 remains 

5.1.1. 3D distance between the vault fragments and the incisor and canine 

The vault fragments were found together and consequently given the same 

coordinates. The incisor and canine were found nearby. All the remains are almost at the 

same height (the teeth are only 4 cm above the vault fragments) and are 21 cm apart in 

the horizontal plane, which indicate a slightly oblique displacement of the cranial remains 

compared to the teeth. The 3D distance between the teeth and the vault fragments is: 
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= √ [(80313.0035 – 80313.2021)2 + (2865448.2352 – 2865448.4410)2 + (1442.9496 – 

1442.9990)2] = √ [(-0.1986)2 + (-0.2058)2 + (-0.0494)2] = √ (0.0394 + 0.0423 + 0.0024)  

= √0.0841 = 29 cm 

5.1.2. 3D distance between the metatarsals and the vault fragments 

= √ [(80313.0035 – 80311.7103)2 + (2865448.2352 – 2865448.738)2 + (1442.9496 – 

1443.293)2] = √ [(1.2932)2 + (-0.5028)2 + (-0.3434)2] = √ (1.6724 + 0.2528 + 0.1179) = 

√2.0431 = 142 cm 

 MH1 is considered to have almost reached its adult size (Berger et al., 2010). Au. 

africanus has a stature estimated at 138 cm for the males (McHenry, 1991). Au. sediba is 

considered to fall within this range (Berger et al., 2010). This implies that the top of the 

skull and the feet should be about 138 cm apart in the anatomical position. The distance 

observed in the site between the vault fragments and the metatarsals is 142 cm, which is 

consistent with the normal distance expected between these elements in the case of a 

body lying with the legs fully extended. 

5.1.3. Movement affecting specimens found in ex situ blocks 

In ex situ blocks, there is little displacement of the bones from their anatomical 

position. The “clavicle block” is composed of elements of the upper right body that are 

anatomically close to each other: the right clavicle, mandible, acromion, ulna and distal 

radius, along with some fragments of the right pelvis. The only exceptions are a piece of 

the left pelvis. The two vertebrae (one cervical and one thoracic) present in the “clavicle 

block” belong to the upper body. In the “skull block”, there are also elements from the 

right side: the skull, humerus and femur. The ilium and proximal left humerus head are 

the only elements from the left side. Inside the “clavicle” and “skull blocks”, the remains 

are very close to each other, or even in direct contact with one another in some cases (e.g. 

the mandible is in contact with the ulna). The maximum distance observed inside a block 
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containing MH1 remains is between the ilium and the distal humerus (only 20 cm). The 

presence of numerous elements of MH1 on the same plane inside block B051 confirms 

that little movement has affected the skeleton. This block preserves bones from both the 

upper (clavicle, ribs, mandible, ulna, possible radius and humerus) and the lower body 

(femur and fibula) and from the right (ulna) and the left (femur, clavicle and mandible) 

side. Furthermore, the possibility of refitting between the “clavicle block” and the block 

B051 proves that most elements of MH1 are constrained in a small volume of sediment, 

and were preserved close to each other, even though no direct articulation is present. 

5.2. Distances and direction of transport between the MH2 remains 

5.2.1. Estimation of distances 

All the in situ MH2 remains have been found in the same clastic calcified sediment 

block (the “arm block”) and show little evidence of transport. Bones of the upper part of 

the body (i.e. scapula, manubrium, first rib and humerus) are preserved in anatomical 

position, and some of them are still in contact with one another (the scapula is touching 

the manubrium and first rib). The radius and ulna have been displaced and moved 

towards the south and slightly toward the west. This movement has placed them next to 

the humerus, parallel to this bone on its left side. The same has happened to the femur, 

which is at the same level as the distal part of the radius and ulna, on the western part of 

the arm block, together with the knee. The movement that has affected the radius, ulna 

and femur occurs along a double axis (north-south and east-west). The right femur has 

been slightly displaced toward the west (left part of the “arm block”), but this would be 

valid only if the right leg was straight and aligned with the rest of the body. If the right leg 

was flexed with the knee pointing west, then there is no lateral displacement of the 

femur. The position of the right leg will be discussed further on (see paragraph 7. Hominin 

remains refitting). One rib shows evidence of a lateral movement in the western part of 

the block: the second right rib (UW88-58), which has been displaced to the left of the 

scapula. This rib has also been rotated from its original position since the vertebral end is 
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now facing left (opposite to the anatomical position). The intermediate complete right rib 

UW88-161 is in a position that is anatomically correct, on top of the humerus. Concerning 

the rib fragments UW88-59 and 60, it is difficult to assess whether or not they have been 

displaced, since they have not been attributed a side. If they are fragments of right ribs, 

then they would have been displaced toward the west of the block, together with the 

second right rib. On the other hand, if they are fragments of left ribs, then they are in a 

normal anatomical position. The first rib and manubrium are located on the dorsal side of 

the scapula, whereas anatomically speaking they should be on top of it (on the ventral 

side of the scapula). Moreover, the vertebral part of the first rib is situated near the lateral 

side of the scapula, whereas it should be near the medial side. The same applies to the 

manubrium, which is upside down compared to its anatomical position. This is consistent 

with a rotational movement of the first rib and the manubrium, which have turned over. 

There is no lateral or horizontal movement involved, but there is definitively a vertical 

movement as well as a twist of the bones themselves around their anatomical centre of 

gravity. 

The fibula shaft that was attributed to MH2 is the only other in situ bone that was 

found elsewhere than in the “arm block”. The coordinates of the centre of the “arm block” 

are the following: 

X= [X(west corner) + X(east corner)]/2 = [(-80312.8364) + (-80313.3912)]/2 = -160626.2276/2  

X= -80313.1138 

Y= [Y(south corner) + Y(north corner)]/2 = (2865449.2029 + 2865448.6870)/2 = 5730897.8899/2 

Y= 2865448.9449 

For the Z coordinate, we choose the mean between the highest (east corner) and 

the lowest (south corner) parts of the “arm block”: 

Z= [Z(south corner) + Z(east corner)]/2 = (1442.1930 + 1442.5105)/2 = 2884.7035/2 
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Z= 1442.3517 

The distance between the fibula shaft fragment and the centre of the “arm block” 

is: 

= √ [(80313.1138 – 80316.5110)2 + (2865448.9449 – 2865448.5060)2 + (1442.3517 – 

1444.0560)2] = √ [(-3.3972)2 + (0.439)2 + (1.704)2] = √ (11.5409 + 0.1927 + 2.9036) = √ 

14.6372 = 3.8259 m 

5.2.2. Estimation of the movement inside MH2 “arm block” 

Anatomically, the proximal radius and ulna are just below the distal humerus. In 

the “arm block”, the proximal radius has been pushed toward the proximal humerus and 

is 16 cm away from the distal humerus. The same applies to the ulna, which, in the “arm 

block”, is 21 cm away from the distal humerus. 

The distance between the distal femur and the distal humerus in their anatomical 

position (all limbs fully extended) is the equivalent of the length of the complete femur 

plus more or less ¾ of the length of the radius. This is estimated based on the 3D 

reconstruction of MH2 in her anatomical, standing upright, position (Figure 7.18). The 

anatomical distance between the distal humerus and the distal femur is 47.5 cm (Figure 

7.18). 
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Figure 7.18. Distance distal humerus to distal femur (reconstruction of MH2 skeleton in upright posture. 

The distance between the distal femur and the distal humerus inside the “arm 

block” is 14 cm. This means that the femur has been displaced by: 47.5 – 14 = 33.5 cm. 

Whether the leg was flexed or straight, the distal femur is still orientated in the same 

direction as the humerus, which means that the femur itself was in its straight position 

(distal part facing the lower body). 

The hand bones (carpals, metacarpals and phalanges) are all located right below 

the radius and ulna and therefore respect their normal anatomical position. 

The second right rib has been displaced from its original anatomical position. 

Anatomically, the distance between the vertebral end of the second rib and the medial 

side of the scapula should be very low, since they occupy a very small space. If a natural 

flattening of the rib cage was the only process that had happened, the second rib should 

be lying on top of the scapula. Here, the lateral distance between the vertebral end of the 
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second rib (medial side) and the scapula is 10.1 cm (Figure 7.19), which means that 

another type of movement has affected the second rib. 

 

Figure 7.19. Distance between the medial side of the scapula and the vertebral end of the second right rib. 

In the other ex situ blocks, there is also evidence for little movement: the ilium is 

associated with the pelvis (block UW88-B079) and the right ankle was found associated 

with the right femoral head and pubis. 

5.3. Distance MH1-MH2 remains 

5.3.1. 3D distance between MH1 vault fragments and north corner of the “arm block” 

= √ [(80313.0035 – 80312.9041)2 + (2865448.2352 – 2865448.6870)2 + (1442.9496 – 

1442.4860)2] = √ (0.09942 + 0.45182 + 0.46362) = √ (0.0098 + 0.2041 + 0.2149) = √ 0.4288 = 

65.5 cm 

5.3.2. 3D distance between MH1 vault fragments and south corner of the “arm block” 

= √ [(80313.0035 – 80313.1473)2 + (2865448.2352 – 2865449.2029)2 + (1442.9496 – 

1442.1930)2] = √ [(-0.1438)2 + (-0.9677)2 + (0.7566)2] = √ (0.0207 + 0.9364 + 0.5724) = √ 

1.5295 = 123.7 cm 
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5.3.3. 3D distance between MH1 vault fragments and west corner of the “arm block” 

= √ [(80313.0035 – 80312.8364)2 + (2865448.2352 – 2865449.0068)2 + (1442.9496 – 

1442.3037)2] = √ [(0.1671)2 + (-0.7716)2 + (0.6459)2] = √ (0.0279 + 0.5953 + 0.4171) = √ 

1.040 = 102.0 cm 

5.3.4. 3D distance between MH1 vault fragments and east corner of the “arm block” 

= √ [(80313.0035 – 80313.3912)2 + (2865448.2352 – 2865449.0019)2 + (1442.9496 – 

1442.5105)2] = √ [(-0.3877)2 + (-0.7667)2 + (0.4391)2] = √ (0.1500 + 0.5878 + 0.1928) = √ 

0.9308 = 96.5 cm 

5.3.5. 3D distance between MH1 metatarsals and north corner of the “arm block” 

= √ [(80311.7109– 80312.9041)2 + (2865448.738– 2865448.6870)2 + (1443.293– 

1442.4860)2] = √ [(-1.1938)2 + (0.051)2 + (0.807)2] = √ (1.4251 + 0.0026 + 0.6512) = √2.0790 

= 144.2 cm 

5.3.6. 3D distance between MH1 metatarsals and south corner of the “arm block” 

= √ [(80311.7103 – 80313.1473)2 + (2865448.738 – 2865449.2029)2 + (1443.293 – 

1442.1930)2] = √ [(-1.437)2 + (-0.4649)2 + (1.1)2] = √ (2.0650 + 0.2161 + 1.21) = √3.4911 = 

186.8 cm 

5.3.7. 3D distance between MH1 metatarsals and west corner of the “arm block” 

= √ [(80311.7103 – 80312.8364)2 + (2865448.738 – 2865449.0068)2 + (1443.293 – 

1442.3037)2] = √ [(-1.1261)2 + (-0.2688)2 + (0.9893)2] = √ (1.268 +0.0723 + 0.9787) = 

√2.3191= 152.3 cm 
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5.3.8. 3D distance between MH1 metatarsals and east corner of the “arm block” 

= √ [(80311.7103 – 80313.3912)2 + (2865448.738 – 2865449.0019)2 + (1443.293 – 

1442.5105)2] = √ [(-1.6809)2 + (-0.2639)2 + (0.7825)2] = √ (2.8254 + 0.0631 + 0.6123) = 

√3.5008 = 187.1 cm 

5.4. Distance with other in situ hominin remains 

All the in situ hominin specimens occur inside a 110 cm high vertical plane (i.e. 

distance from the lowest point, which is the east corner of the arm block, to the highest 

point, which is the position of MH1 metatarsals). The only exception is the fibula which is 

outside of this area, at a distance of 186 cm away from the eastern corner of the arm 

block, in the Z plane. Horizontally, the hominin specimens are more spread out. Along the 

X axis (west-east direction), there is 589 cm between the MH2 fibula shaft fragment, 

which is the most western specimen and the MH6 mandible which is the most eastern 

specimen recovered to date. Along the Y axis (north-south direction), the most northern 

specimen (the MH6 mandible) and the most southern one (corner of the arm block) are 

725 cm apart from one another. The MH1 and MH2 specimens are all very close to each 

other, if one excludes the fibula shaft attributed to MH2. They are included in a very small 

volume of 0.85 cubic metres (excluding the fibula shaft fragment), calculated as follows: 

Volume of sediment containing the in situ hominin remains = side x side x side, or: 

X (longest distance between MH2 “arm block” and MH1 metatarsals) x Y (longest distance 

between MH2 “arm block” and MH1 metatarsals) x Z (longest distance between MH2 

“arm block” and MH1 metatarsals) = (80313-3912 – 80311.7103) x (2865449.2029 – 

2865448.738) x (1443.293-1442.1930) = 1.68 x 0.46 x 1.1 = 0.85 cubic metres. 

The following table (Table 7.2) summarizes the different distances between MH2 

and MH1 remains, between the “arm block” and the MH1 vault fragments and between 

the “arm block” and the MH1 metatarsals. 
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Table 7.2. Distances between in situ MH1 and MH2 remains. 

Element Distance (cm) 

Distance MH1 vault fragments and incisor 29 

Distance MH1 vault fragments and metatarsals 142 

Distance “arm block”-fibula shaft (UW88-202) 383 

Distance “arm block” north corner-MH1 cranial remains 65 

Distance “arm block” south corner-MH1 cranial remains 124 

Distance “arm block” west corner-MH1 cranial remains 102 

Distance “arm block” east corner-MH1 cranial remains 96 

Distance “arm block” north corner-MH1 metatarsals 144 

Distance “arm block” south corner-MH1 metatarsals 187 

Distance “arm block” west corner-MH1 metatarsals 152 

Distance “arm block” east corner-MH1 metatarsals 187 

6. POSITION, DIRECTION, ORIENTATION AND MOVEMENT OF THE IN SITU HOMININ 

REMAINS: SUMMARY 

 A few important conclusions can be drawn from the analysis of spatial organisation 

of the hominin bones found in situ. The general inclination of MH2 remains is slightly 

oblique (inclination of 20-30°) going from the top to the bottom of the deposit (Figure 

7.20). The upper part of the body is facing south. There is no evidence for major horizontal 

displacement, only for slight movement from south to north and for slight lateral 

movement to the west as shown by a few remains in the “arm block”. There are also some 

movements of rotation observed for the first and second right ribs and the manubrium. 

The in situ MH1 and MH2 remains are very close to each other in the three planes (XZ, YZ 

and XY) (Figure 7.20). The transport rate is low for both MH1 and MH2, meaning either 

that the bones have not been displaced very much or that the skeletons were transported 

and deposited while still more or less fully articulated. The case of the MH2 fibula, which 

is almost 4 metres away from the “arm block”, seems to be an exception rather than the 

rule. It is suspected that this specimen might belong to another individual (see Chapter 9. 

Reattribution of some remains). The MH1 metatarsals are also far from the other MH1 

and MH2 remains. If they do belong to MH1, they are 142 cm away from the in situ vault 

fragments, which is anatomically logical only if the body is aligned with the legs and feet 
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towards the west of the deposit. Their attribution to MH1 will be discussed later (see 

Chapter 9). The geology shows a general south to north dip direction for Facies D, 

interpreted as the general direction of the debris flow. This seems to be also visible in the 

organisation of the sediments present inside the MH1 skull, which shows inclined laminae 

indicative of south to north accretion. Consequently, the skull should be repositioned lying 

left lateral down and facing north. 

 

Figure 7.20. Inclination of the “arm block” inside the deposit and distance between the MH1 and MH2 in situ 
remains. 

These different conclusions serve as guidelines and clues to propose refitting 

hypotheses for the ex situ hominin remains (see Chapter 4 for more details about the 

refitting methods). 
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7. REFITTING OF HOMININ REMAINS 

7.1. Positioning the reference points and other in situ remains 

 The exact coordinates and orientation of the arm block are known, it is therefore 

used as the reference point for the 3D model. The Avizo software positioned automatically 

the vault fragments, the teeth and the metatarsals, using their coordinates. The vault 

fragments and the incisor and canine are positioned just above the arm block, slightly to 

the east. The metatarsals are on the western side and higher up in the deposit (Figure 

7.21). 

 

Figure 7.21. All in situ remains in the grid (XZ view). MH1 remains are represented in blue, MH2 remains in 
orange. 
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7.2. Refitting MH1 remains 

7.2.1. Step 1: joining the “skull block” and the “ilium block” 

The distal right humerus was sticking out of the ilium block and was most probably 

broken by a mining blast. This implies that it was still attached to the correspondent 

humeral shaft (from the “skull block”) when the fossilisation and sedimentation processes 

took place. The two pieces, once manually removed from the sediment, connect perfectly. 

It is therefore possible to refit them, together with the different elements found in the 

two blocks (in other words, the distal humerus and ilium in one hand with the skull and 

humeral shaft on the other hand). The “skull block” and the “ilium block” can therefore be 

refitted back into the deposit as a single unit (Figure 7.22). 

 

Figure 7.22. Refitting of the “skull block” and the “ilium block”. 
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7.2.2. Step 2: refitting the “skull” and “ilium blocks” into the deposit 

The morphology of the deposit and of Facies D imposes limitations in terms of the 

position of the ex situ remains, both on the horizontal and vertical planes. In the vertical 

plane, the position of the remains is constrained on top by the upper limit of Facies D (just 

above the in situ MH1 vault fragments and teeth) and by the presence of the MH2 “arm 

block” below. In the horizontal plane, the position of the remains is constrained by the 

wall of the cavity for the Y coordinate and by the edges of Facies D for the X coordinates. 

All the bones (skull, humerus and ilium) have to be positioned in a volume removed by the 

miners. Moreover, I have demonstrated previously the low movement rate for both MH1 

and MH2 skeletons and between the two individuals themselves. It is therefore likely that 

the MH1 skull and associated remains come from an area near the vault fragments and 

the teeth. 

The skull is lying on its left side and with a slight inclination of 15° as shown by the 

sediments located against the left wall of the skull (see the synchrotron images, showing 

the layering of the sediments in the skull, Figure 7.16). The geology indicates that the 

general direction of the flow that is associated with the washing of Facies D goes from 

south to north, which is also visible in the way the sediments in the calvarium are sloping 

down away from the face. This implies that the skull should be facing north. This 

information (orientation of the sediment inside the calvarium) is considered as direct 

evidence for the orientation of the skull, with consequently a maximum probability for the 

skull to be orientated with its face towards north. Hence, the most likely position for the 

group skull-humerus-ilium is consistent with the skull lying on its left side, facing north, 

below where the vault fragments and teeth were found (Figure 7.23). It is located above 

the “arm block”. The humerus is therefore orientated with its proximal part toward the 

north-east and its distal part toward the south-west. The ilium is on the western part, at 

the same height as the “arm block” (Figure 7.23 and Appendix 7). The position of the 

group skull-humerus-ilium in the deposit is based on an indirect argument for the position 
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(i.e. the proximity with the vault fragments and constraints of the limits of Facies D) and 

has therefore a probability lower than one. In other words, the exact position of these 

bones could be modified toward the west and/or higher or lower in the deposit, within 

the limits of the geological unit. 

 
Figure 7.23. Refitting of the group skull-right humerus-left ilium (MH1) in the deposit (view from the south). 

7.2.3. Step 3: refitting the “clavicle block” 

From there, it is possible to propose a hypothetical position for the bones 

recovered inside the “clavicle block”. The position of the mandible (two fragments, UW88-

2 and UW88-8), cervical (UW88-9) and thoracic vertebrae (UW88-11), ulna (UW88-3), 



215 
 

right acromion (UW88-113), distal radius (UW88-12) and rib fragment (UW88-13) in 

relation to each other is known (Figure 7.24). The position of the clavicle (UW88-1) is 

estimated based on the photographs of both sides of the block. There is no record of the 

position and orientation of the pelvis fragments; their exact placement inside the clavicle 

block is therefore hypothetical. 

 

Figure 7.24. MH1 clavicle and associated bones in their original position in the “clavicle block” (left: lateral 
view; right: superior view). 

The complete right hemi-mandible and near complete ulna are used as clues to 

refit the “clavicle block” with the group skull-humerus-ilium. The other remains (i.e. 

vertebrae, acromion and distal radius) are too small and/or very fragmentary, and they do 

not have an elongated shape that could be used as an indicator of movement direction or 

angle. 

There is no evidence for an important vertical movement in the deposit and the 

position of the “clavicle block” is constrained by the limit of Facies D at the top and the 

presence of the “arm block” at the bottom. It is reasonable to conclude that the “clavicle 

block” has to be at the same level or above the skull. Given the inclination of the MH1 

humerus, it seems that the remains of that individual are positioned in a horizontal plane. 

It is suggested that the ulna, clavicle and mandible should therefore also be positioned 

horizontally. Three possible variations for the position of the “clavicle block” are 

considered: 
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- upper arm straight or flexed 

- no movement compared to the anatomical position versus displacement 

- rotation of the ulna (and associated bones) on itself 

The combination of these three variations leads to a maximum of 16 possible 

hypotheses (Table 7.3). 

Table 7.3. List of possibilities concerning the position of the “clavicle block”. 

Hypothesis Position upper arm Movement Rotation ulna 

1 straight no no 

2 straight no yes 

3 straight yes, to the east no 

4 straight yes, to the east yes 

5 straight yes, to the west no 

6 straight yes, to the west yes 

7 straight yes, to the south no 

8 straight yes, to the south yes 

9 flexed no no 

10 flexed no yes 

11 flexed yes, to the east no 

12 flexed yes, to the east yes 

13 flexed yes, to the west no 

14 flexed yes, to the west yes 

15 flexed yes, to the south no 

16 flexed yes, to the south yes 

Hypothetical cases with the arm straight and no rotation of the ulna (i.e. hypotheses 1, 

3, 5 and 7) have a low probability, because of the position of the mandible, which is 

orientated in the opposite direction to the skull. Whether the “clavicle block” has been 

displaced (as in hypotheses 3, 5 and 7) or is near the “skull block” (as in hypothesis 1), it is 

difficult to explain how the mandible would have moved from its anatomical position, 

attached to the skull and therefore with its anterior side facing north, as the skull is, to a 

position completely opposite, with the anterior side facing south and the lingual side 

facing the top of the deposit. This would imply a strong movement that would have 

detached the mandible from the skull, completely flipped it over and rotated it 180°. 
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The hypotheses consistent with the arm flexed, rotation of the ulna, some movement 

(12, 14 and 16) or no movement (10) are also not very likely, because, as in hypotheses 

mentioned above, they imply that the mandible has flipped over and rotated 180° and is 

now facing in the opposite direction to the skull. 

Hypotheses with the arm extended and rotation of the ulna, with movement 

(hypotheses 4, 6 and 8) or without movement (hypothesis 2), are considered as possible. 

The mandible has not flipped over as in cases mentioned above, but only rotated 180°. 

The hypotheses consistent with the arm flexed, no rotation of the ulna and some 

movement (11, 13 and 15) are also considered as possible; they do not imply any rotation 

of the mandible. 

Finally, when considering all the different data and by applying an elimination process, 

hypothesis 9 (arm flexed, no movement, no rotation) is the one that has the highest 

probability to be the correct one. All the hypotheses with the arm straight and no rotation 

of the ulna (1, 3, 5 and 7) and with the arm flexed and rotation (10, 12, 14 and 16) have 

been ruled out because of the position of the mandible with its lingual side facing the 

opening of the cave. The other in situ remains indicate very little evidence for movement. 

I therefore retain a case scenario with no movement, over other possible cases scenarios 

with movement such as hypotheses 4, 6, 9, 11, 13 and 15. I also assume that little 

movement would have affected the mandible, which should still be in its anatomical 

position (in other words, hypothesis 2 can be ruled out). Finally, the “skull block”, where 

the humerus was found, is very narrow (Figures 7.25 and 7.26), which allows the 

placement of the “clavicle block” really close to the “skull block” in the z axis. 
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Figure 7.25. MH1 skull and right humerus embedded in the block. Note the narrowness of the calcified 
sediment below the humerus. Scale = 10 cm. 

Consequently, I suggest that scenario 9 has the highest probability, and so the 

“clavicle block” was located just below the “skull block”, with the proximal ulna facing 

south in a position consistent with the arm flexed. The position of the different pelvis 

fragments (UW88-6, 7 and 14) in the block has not been recorded. Given the overall small 

size of the “clavicle block”, I propose that the pelvis elements must be in very close 

association with the group ulna-clavicle, whether below or above, to the left or to the 

right. 
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Figure 7.26. MH1 right humerus, in block. Note the thinness of the block below the humerus. Scale bar = 5 
cm. 

7.2.4. Step 4: refitting the right femur 

The femoral shaft fragments come from an isolated ex situ block. Given the general 

movement observed for the refitted elements of MH1 (skull, humerus, ulna, clavicle), it is 

proposed that the femur is lying horizontally. In order to be consistent with the position of 

the right metatarsals and given the low movement rates of his remains, it seems more 

likely that the femur should be orientated with its distal part towards the metatarsals, in 

other words facing west. Both horizontal and vertical displacement from an anatomical 

position are considered as possible: to the east (no further east than the ilium given the 

morphology of the deposit; if it was the case, the femur would still be in a non-excavated 

part of the deposit), the west or the south in the horizontal plane and to the bottom of 

the deposit in the vertical plane. Movement to the north and to the top of the deposit are 

not possible, they would place the femur out of the facies and/or out of the excavated 

area. 

Consequently, the position of the femur is conditioned by the following variables: 
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- Anatomical position of the leg: straight versus flexed 

- Rotation: femur in anatomical position versus flipped (the femur can have any side –

anterior, posterior, medial or lateral- facing the top of the deposit) 

- Horizontal displacement: no movement versus movement (to the east, the west, the 

south) 

- Vertical displacement: no movement versus movement down the bottom of the 

deposit 

This leads a total of 2 (leg straight or leg flexed) x 4 (anterior, lateral, posterior or 

medial side facing the top of the deposit) x 4 (no horizontal movement, movement to the 

west, the east or the south) x 2 (no vertical movement or vertical movement toward the 

bottom) = 64 combinations. 

Any of these hypotheses present the same level of probability. If there is some 

movement, the femur should not be too far from the group skull-humerus-ilium. The 

general position retained for the upper body (group skull-humerus-ilium and “clavicle 

block”) seems to indicate an orientation toward the SSW. In that case, the femur should 

be on the eastern side of the deposit, close to the ilium. However, the metatarsals are on 

the opposite side and they argue in favour of the leg orientated toward the east, in which 

case the femur should be on the east of the upper body, facing east. It seems difficult to 

decide which of these hypotheses is more likely. For the femur, I propose to define a 

hypothetical area in which that specimen comes from. This area goes from the top of 

Facies D to above the arm block for the z coordinate, from the ilium to the metatarsals for 

the x coordinate and from the vault fragments to the southern part of the “arm block” for 

the y coordinate. 

7.2.5. Refitting the bones from block UW88-B051 

Since the bones present inside this block have not been prepared yet, it is for the 

moment not possible to include them in the 3D reconstruction. It is, however, possible to 
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propose how they would refit with the other specimens. The distal right ulna and the left 

mandible preserved inside the block B051 refit directly with the proximal right ulna and 

the left canine from the “clavicle block”. From there, it is possible to propose the following 

refitting hypothesis for the block B051 and the bones it contains. The most likely refitting 

hypothesis for the “clavicle block” (see above) is consistent with the arm flexed, no 

rotation and no movement. If one positions the broken distal ulna and the left mandible 

from block B051 accordingly, then the left femur is orientated along the body, on the 

south of the skull, with the proximal part facing southwest, and the distal part facing 

northeast. The ribs are between the skull and left femur; the left clavicle is next to the 

distal part of the left femur and therefore close to the right ulna and the right mandible, 

and presents the same orientation as the right clavicle, northwest-southeast. The left 

mandible is below the right humerus and close to the right mandible, with the anterior 

part pointing northeast (see Figure 8.4 in the following chapter). 

7.3. Refitting MH2 remains 

7.3.1. Step 1: refitting the “scapula fragment block” 

The scapula fragment (i.e. acromial part) refits perfectly with the rest of the scapula 

(i.e. blade) present in the “arm block”. This fragment was found in a block that also 

contains a part of the right mandible (UW88-54), two teeth (UW88-19 and UW88-20), the 

right clavicle (UW88-38) and a cervical vertebra (UW88-83). The block was very probably 

detached from the main “arm block” due to a mining blast at the site. The mandible is 

located below the scapula fragment and orientated with its lingual side facing the bottom 

of the cave. The refitting of the scapula fragment and associated bones is based on a 

direct match with an in situ specimen. This constitutes direct evidence for both the 

position and orientation (probability of 1 or 100% for the refitting of these bones, for both 

their position and orientation). 

7.3.2. Step 2: refitting the loose remains (ankle, pelvis, sacrum, vertebrae, left carpals) 
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The position of the loose remains is conditioned by the position of the “arm block” 

in the deposit and its surroundings. Below the “arm block” and almost touching the 

proximal part of the scapula is the bottom flowstone. At the right of the “arm block” is a 

dolomitic block. Both the dolomitic block and the flowstone do not contain fossils. 

Therefore, the possibilities for the location of the loose remains are restricted to either 

the left of the “arm block” or above it. 

Moreover, I have shown a low movement rate for the in situ and in blocks MH2 

remains. This implies that the entire skeleton was in a position close to its anatomical 

position when it was fossilized, with all the parts either still attached or very close to each 

other. Consequently, the position of the loose remains should be consistent with an 

original anatomical relationship. 

Cervical vertebra (UW88-96) 

Given the close proximity of the elements of the upper axial skeleton and upper 

right side (manubrium, clavicle, scapula, first two ribs), it is very likely that the cervical 

vertebra was located in the same area, somewhere between the mandible and the 

scapula, likely on top of it or at the south of it, in a section that has been removed by the 

miners. 

Position of the legs and implications for the refitting of the right ankle, sacrum and right 

ilium 

The position of the distal right femur and right knee can be used as a clue to 

reconstruct the initial position of the legs. The femur is orientated with its proximal part 

facing SSW and its anterior part facing NNE. It was found at the north corner of the “arm 

block” (Figure 7.27). 
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Figure 7.27. Position and orientation of the right femur in the “arm block”. 

In other words, if the leg was fully extended, the lower part (knee, tibia, ankle and 

foot) would still be in the deposit. However, they have all have been recovered, which 

seems to indicate that the leg was not straight but flexed. This is also supported by the 

fact that the femur is orientated with its anterior side facing east. Moreover, the right 

femoral head was found associated with the right ankle. If the leg was straight, these two 

parts should be far away from each other. On the other hand, if the right left was flexed, 

then the ankle should be close to the proximal femur. It is therefore assumed that the legs 

were flexed, with both knees pointing east and both ankles towards the west. 

If the right tibia and ankle are positioned as if the right leg is flexed on its lateral 

side, then the ankle should be on the left of the femur (toward the west) for the x 

coordinate, slightly above it since it was removed by the miners for the z coordinate, and 
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not further north than the distal femur for the y coordinate. It should be orientated with 

the distal tibia toward the distal femur (facing north) and the tarsals (calcaneum and talus) 

facing south-southwest. 

It is possible that some movement has affected the position of the ankle from its 

anatomical position. Two hypotheses are retained, one without movement and one with 

some movement. 

There is a direct join between the “ankle block” and the “sacrum block” 

(hypothetical orientation). According to the position of the femur and in order to be 

consistent with the hypothesis of the right leg being flexed, with the right knee pointing 

east, I suggest that the sacrum and the right ilium are lying on top of the “arm block”, 

somewhere between the upper limb and the distal right femur. The sacrum should be in 

its anatomical position (cranial part facing the top), as are the rest of the bones present in 

the “arm block” (except the phalanges). The ilium was found in the same block as the 

sacrum, on the other side of this block, it should therefore be below of it, in an anatomical 

position consistent with the right leg flexed toward the right. 

The position of the distal femur in block shows a movement of the lower limb 

toward the upper part of body. Two possibilities can then be proposed regarding the 

position of the sacrum and right ilium: 

- Hypothesis 1: a disarticulation occurred between the acetabulum and the femoral 

head and the lower limb was carried toward the upper body, but the sacrum and the 

ilium remained in their original anatomical position. 

- Hypothesis 2: a disarticulation occurred between the acetabulum and the femoral 

head and another one occurred somewhere in the vertebral column, and both the 

lower right limb and the sacrum and right ilium were carried toward the upper body. 

Consequently, there are two possibilities for the position of the sacrum and the ilium. 

They can either be in anatomical distance of the upper body (below the humerus) or, if 
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they have been displaced, they can be closer to the scapula. In case they have been 

displaced, it would make more sense to apply the same movement rate as for the femur 

(33.5 cm; see section 8.2.2). 

“Thoracic vertebrae blocks” 1 and 2 

The “thoracic vertebrae block” 1 joins the “sacrum block” (no precise information 

on the way it refits to it). Again, the same logic can be applied. Either the “thoracic 

vertebrae block” 1 is in anatomical position regarding the upper body (humerus and 

scapula) or it was displaced after disarticulation of the vertebral column. In this case, it 

should be somewhere above the humerus. The same applies to the “thoracic vertebrae 

block” 2. In order to be consistent with the refitting of the other loose remains, it seems 

more likely that the blocks 1 and 2 should be positioned according to an anatomical logic. 

This implies that, in the deposit, the block 1, which contains the upper thoracic vertebrae, 

should be closer to the upper body (scapula, first rib and manubrium) than the block 2, 

which contains the lower thoracic vertebrae. 

Left carpals 

Some elements of the right hand (distal phalanges) and the left hand are still in situ 

in the same area where the “arm block” was found, on the left (west) side of it. Therefore, 

the three left carpals (capitate, UW88-105, hamate, UW88-106 and lunate, UW88-107) 

and the left metacarpal (UW88-182) found during the preparation of ex situ blocks must 

come from this same area. 

The refitting of MH2 loose remains (i.e. ankle, sacrum-ilium, two thoracic blocks 

and left carpals) are based on indirect arguments, namely anatomical and disarticulation 

logic and the observation of low movement rate for the in situ MH2 remains. The degree 

of probability of accurately refitting both their position and orientation is therefore less 

than 1. 
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7.4. Areas of probability for the remains 

 I distinguish different levels of confidence in the proposed refitting hypotheses. 

We can positively assess the position and orientation of MH2 scapula fragment and 

associated bones, since there is a direct link between them and the in situ remains via the 

broken scapula. The orientation of the group skull-humerus-ilium for MH1 can also be 

assessed with certainty (skull facing south and lying on its left side) since it is based on 

direct sedimentary data preserved in the skull itself. Its exact position in the deposit 

cannot be completely ascertained, although it has to be limited by the constraints of the 

limits of Facies D. The orientation and position of MH1 “clavicle block” as well as the 

position of MH2 ankle, sacrum, ilium, thoracic vertebrae have been determined based 

only on indirect evidence and assumptions, such as a low transport rate and an anatomical 

logic compared to the in situ bones. The hypotheses that I have retained for these remains 

are therefore the most likely ones but do not have a degree of probability of one. The 

position and orientation of the femur is the most difficult to determine. 

 In order to represent the different possibilities for position of the ex situ remains, I 

have summarized the different hypotheses in a diagram (Figure 7.28). Each area shows 

the volume in which it is possible to place them. 
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Figure 7.28. Different possible areas in which MH1 and MH2 remains can be refitted (green: MH1 skull-
humerus-ilium; purple: MH1 clavicle block; blue: MH1 femur; pink: MH2 loose remains). 

Figures 7.29 and 7.30 combine the hypothetical refitting of the hominin remains 

(dark golden for MH1 remains and light golden for MH2 remains) back into the deposits 

with stratigraphic information about the sedimentary units. 
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Figure 7.29. Hypothetical refitting of MH1 and MH2 remains within the deposit. 
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Figure 7.30. Simplified schematic cross-section of the position of the hominin remains inside the deposit. 

7.5. Completion of the 3D model 

 Finally, the hominin remains were refitted into the 3D reconstruction of the cave 

deposit. The 3D model of the cave was produced by Jean Dumoncel using photographs 

taken after the fossils were removed from the site. The software used to reconstruct a 3D 

rendering of the site produces an .obj file that was then opened in Avizo 6.3 and 

converted into a .stl file. This .stl file was then opened in the Avizo 6.3 network containing 

the hominin remains and placed accordingly (Figures 7.31 to 7.34). 
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Figure 7.31. Final 3D reconstruction (planimetric view of the site together with the 3D renderings of MH1 
and MH2 remains). 
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Figure 7.32. Close up of the hominin remains inside the deposit; plan view (dark gold on the right: MH1 
remains; light gold on the left: MH2 remains). 
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Figure 7.33. Close up of the hominin remains inside the deposit; north-western view (dark gold on the right: 
MH1 remains; light gold on the left: MH2 remains).  
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Figure 7.34. Close up of the hominin remains inside the deposit; western view (dark gold on top: MH1 
remains; light gold at the bottom: MH2 remains). 

 

 

 

 

 



234 
 

Chapter 8. Detailed description of the taphonomy of the hominins. 

1. GENERAL TAPHONOMY OF THE FAUNAL ASSEMBLAGE 

1.1. A multi-stage scenario: introduction 

The Malapa fossil deposits (Pit 1 and Pit 2), in their current state, represent the 

lowest most strata of a cave filling, which has eroded away in the past 2 million years. That 

cave system was “tens of metres deep when the hominin fossils were deposited”, possibly 

50 to 60 metres deep (Dirks et al., 2010), which implies the existence at Malapa of a cave 

complex with deep chamber(s) 1.977 Ma years ago. Considering the extreme 

heterogeneity of the faunal assemblage recovered at the site in terms of bone 

preservation, an intricate and multi-stage taphonomic scenario has to be invoked. It is 

proposed that the bones of different animals, coming from different parts of the cave 

system (including the surface) accumulated by different biotic and abiotic agents, and 

were then mixed at the bottom of the cave system. The different processes likely to have 

contributed to the formation of the Malapa faunal assemblage are presented in detail in 

the following sections. The strength of the debris flow hypothesis as the main agent 

responsible for mixing up the bones is also discussed. 

1.2. Primary deposit: bone accumulation in various parts of the cave system 

1.2.1. Contribution by carnivores 

Carnivore-collected assemblage and cave use by carnivores: theoretical model 

 Several diagnostic features inside a faunal assemblage indicate the participation by 

carnivores in the bone accumulation process. Hyaenid-collected assemblages are 

characterised by a high carnivore/ungulate ratio (>20%, in NISP: Klein and Cruz-Uribe, 

1984, or in MNI: Cruz-Uribe, 1991; Pickering, 2002; Lacruz and Maude, 2005), and a 

significant fragmentation ratio (NISP/MNE, 4.9: Richardson, 1980). Carnivore-inflicted 

damage (e.g. tooth pits, scores, furrows, digested bones: Sutcliffe, 1970; Binford, 1981; 
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Brain, 1981; Haynes, 1983a; Binford, 1987; Cruz-Uribe, 1991) and the presence of bone 

cylinders, in the case of hyaenas (Binford, 1981; Brain, 1981; Bunn, 1983; Hill, 1989; Cruz-

Uribe, 1991; Pickering, 2002; Kuhn et al., 2010) constitute direct evidence for carnivore 

involvement in the bone assemblage. Based on their hunting strategies, ways of 

consuming their prey and diet, leopards and hyaenids tend to produce specific and 

distinguishable skeletal element preservation patterns (Simons, 1966; Pickering, 2001a, 

2001b; Carlson and Pickering, 2003; Pickering and Carlson, 2004; Pickering et al., 2004b), 

as well as different mortality profiles. Hence, leopards, practising an ambush type of 

predation, tend to be less selective in their prey and produce a catastrophic profile, with 

individuals of all age categories present. On the other hand, hyaenas tend to select the 

weakest individuals (the young and old) (Kruuk, 1972; Stiner, 1990; Cruz-Uribe, 1991; 

Pickering, 2002; Kuhn et al. 2010), and accordingly produce an attritional mortality profile 

(Domínguez-Rodrigo and Pickering, 2010). The abundance of small carnivores in the faunal 

spectrum (e.g. viverrids, herpestids and small canids) is often associated with bone 

accumulation by the brown hyaena, Parahyaena brunnea (Brain, 1980, 1981; Cruz-Uribe, 

1991; Skinner and van Aarde, 1991; de Ruiter et al., 2009), reflecting the wide range in 

diet of this species (Skinner and Chimimba, 2005). 

 Finally, the occurrence of coprolites and digested bones constitute good evidence 

of cave occupation by hyaenids (Sutcliffe, 1970; Klein and Cruz-Uribe, 1984; Cruz-Uribe, 

1991; Pickering, 2002; Berger et al., 2003; Lacruz and Maude, 2005; Kuhn et al., 2010), 

while the presence of juvenile carnivore remains, such as deciduous teeth, can indicate 

the use of the cave as a breeding lair (Lacruz and Maude, 2005; Kuhn et al., 2010). 

Carnivore-collected assemblages and cave use by carnivores: the fossil evidence 

Several extant and extinct species of carnivores to be known or suspected as 

potential bone accumulating agents in caves, namely Parahyaena brunnea, the brown 

hyaena, Panthera pardus, the leopard, and Dinofelis barlowi, an extinct species of false 

sabre-tooth cat, are present in the fossil assemblage (Dirks et al., 2010; Kuhn et al., 2011). 
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Various characteristics observed in the faunal assemblage are consistent with the 

occupation of a part of the cave by the brown hyaena, as well as some participation by 

this carnivore in the bone accumulation process. Only one carnivore coprolite has been 

prepared so far (Bamford et al., 2011), but another two potential coprolites have been 

identified during virtual exploration of blocks of calcified sediment. At Malapa, 23 bone 

cylinders have been recorded in the assemblage, suggesting the potential participation by 

hyaenids in the bone accumulation process. Small carnivores are well represented in the 

faunal spectrum (MNI of 5, including two herpestids, two viverrids and one small canid). 

Furthermore, the presence in the assemblage of two deciduous teeth attributed to P. 

brunnea (Kuhn et al., 2011) seems to favour the hypothesis of the Malapa cave having 

been used as a den by this carnivore. 

 On the other hand, definite carnivore tooth marks are very rare in the assemblage 

and no digested bone has been recorded. The body part representation for hominins and 

bovids do not show any evidence of selection due to carnivore consumption (i.e. different 

from hyaenid and leopard refuse and scat assemblages; Carlson and Pickering, 2003; 

Pickering and Carlson, 2004). The significant number of partial skeletons, articulated 

elements and near complete individuals in the assemblage, such as MH1, MH2, and 

others, are not in accordance with an exclusively carnivore-accumulated scenario. 

Consequently, two alternative hypotheses need to be considered. Firstly, based on 

the lines of evidence mentioned above, brown hyaenas could have occupied and used the 

cave as a breeding lair, and contributed to the accumulation of some bones, but only in 

the upper part of the cave system, which was accessible from the surface. Alternatively, 

the brown hyaenas were themselves victims of a fall into a vertical shaft, where they 

defecated and died. The deciduous brown hyaena teeth in the assemblage are not 

associated with any other juvenile skeletal remains, indicating that this individual lost its 

milk teeth in the cave, but did not die there, a scenario consistent with the breeding lair 

hypothesis. 
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1.2.2. Natural death trap scenario 

Bone accumulation through a pit-fall: theoretical model 

The characteristics of a faunal assemblage, in terms of taxonomic composition, 

mortality profile, body part representation, and bone damage, are conditioned by the 

agent(s) and mode(s) of bone accumulation. Hence, several palaeontological and 

taphonomic features of a fossil assemblage can indicate it was accumulated through a 

natural pitfall, or death trap. Here, I propose the natural death trap scenario in its wider 

sense (sensu Pickering et al., 2004a), whereby animals either fall directly from the surface 

through a natural opening into a vertical shaft, or die accidentally inside the cave because 

they climbed down but are unable to exit. The latter applies especially to species with 

good climbing proclivities, such as carnivores and primates, which can venture inside 

caves, lose their way, and fall into vertical shafts because of a lack of light, or are unable to 

climb out, and eventually die inside the cave. This should be reflected in a fossil faunal 

assemblage dominated by primates and carnivores, as well as by the abundance of 

juveniles, which are more likely to be trapped (Cooke, 1991; Pickering et al., 2004a; Val et 

al., submitted). 

Other indicators, such as the presence of antimeric sets of bones, complete or near 

complete bones, partial skeletons and/or articulated specimens, and a good 

representation of all skeletal parts, are classically associated with faunal assemblages 

accumulated via a natural death trap scenario (Costamagno, 1999b; Kos, 2003a, 2003b; 

Pickering et al., 2004a; Clarke, 2007; Coumont, 2009). 

Bone accumulation through a pit-fall: the fossil evidence 

The Malapa faunal assemblage exhibits several features that are characteristic of 

bone accumulation via a natural death trap scenario. A significant number of articulated 

elements and partial skeletons, including two hominins (MH1 and MH2) and other animals 

(bovids, carnivores and rodents), have been recovered. At least twelve antimeric sets of 
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bones of bovids, leporids and felids are present (see Appendix 6 for the complete list). 

Complete and near complete bones represent an important percentage of the 

assemblage. Carnivore bitemarks are very rare, with only 0.2% of the faunal assemblage 

exhibiting definitive chewing damage caused by a mammalian carnivore. 

The skeletal part representation for the whole assemblage shows general good 

preservation of most of the elements, and a direct correlation between survivorship and 

bone density. There is no indication of a particular selection of elements by a factor other 

than differential conservation associated with bone density (e.g. no fluvial sorting, no 

selection by a carnivore). The hominins preserve most bones. Even when only considering 

the fragmentary individuals (MH3, MH4, MH5 and MH6) and the remains not attributed to 

any specific individual (MH), most skeletal parts are represented, such as elements of the 

cranium, long bones, pelvis, metapodials and phalanges. Only very fragile elements, such 

as the vertebrae and the ribs are absent. The non-hominin assemblage shows a density-

mediated preservation pattern, where compact and dense elements are better preserved 

than spongy and fragile bones. 

In summary, a natural death trap scenario is proposed, for at least some of the 

animals comprising the faunal assemblage, based on the presence of articulated and/or 

partial skeletons, antimeric sets of bones, density-mediated skeletal part preservation 

pattern, and low impact of carnivore damage on the bones. Based on the number of 

partial skeletons, antimeric sets of bones and articulated elements, it is possible to 

estimate that a minimum number of seven individuals, including the Au. sediba individuals 

MH1 and MH2, three bovids, one rabbit, and one small carnivore (see Appendix 6) were 

victims of the death trap. 
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Description of the type of death trap 

The overrepresentation of carnivores and hominins, in other words of animals with 

good climbing abilities, could indicate the following death trap scenario: carnivores and 

primates enter the cave for various reasons (e.g. attraction to water or carrion, and in the 

case of primates, protection from carnivores). Some less agile individuals cannot find their 

way out, venture too far and/or fall down a vertical shaft deeper in the cave system, 

where there is little or no light. The complete absence of small monkeys, such as the 

extinct Colobine Cercopithecoides williamsi, whose remains are usually recovered in cave 

deposits in the Cradle of Humankind (Sterkfontein Member 2, Member 4, Member 5 StW 

53 Breccia, Jacovec Cavern; Swartkrans Member 1 Lower Bank and Member 2, Kromdraai 

B, Cooper’s D: Brain, 1981; Watson, 1993; Pickering, 1999; de Ruiter, 2003; Pickering et 

al., 2004a; Kibii, 2007), could suggest the existence of a way out of the cave for small 

animals skilled in climbing. The presence of large bovids (Tragelaphus sp.) amongst the 

animals considered as having accumulated through the death trap scenario implies the 

existence of a large shaft opening to the surface. I propose a combination of these two 

scenarios, whereby one or several opening(s) led to a vertical shaft collecting animals, 

skeletons, bones, stones and surface debris at the bottom in the form of a talus cone 

(primary deposit). This represents a gradual accumulation process, which can span long 

periods of time. 

1.2.3. Contribution to the fossil assemblage by other biotic and abiotic agents 

Hominins 

There is no evidence of hominin occupation of the cave, or hominin contribution to 

the accumulation of bones inside, in the form of burnt bones or butchery-marked pieces. 

A few stone tools have been recovered ex situ at the site and are currently being studied. 

Their contemporaneity with the faunal assemblage and/or their association with the Au. 

sediba fossils are the subject of ongoing investigations. 



240 
 

Other biotic agents 

No other biotic agents, apart from carnivores and invertebrates, have played a 

major role in the formation of the faunal assemblage. Indications of porcupine presence 

are extremely scarce, in the form of two quills (Backwell et al., in prep.), suggesting that 

they did not make regular use of the cave. There is no direct evidence for any contribution 

by a bird of prey. The occurrence of microfaunal remains in the assemblage could be an 

indication of regurgitation pellets of owls nesting at the entrance of the cave. However, no 

digested microfaunal remains have been observed. The microfaunal assemblage could 

also represent individuals that died inside the cave from natural causes. 

Gravity and rainfall 

In the context of bone accumulation through a death trap, it is likely that some 

remains would have been brought inside the cave by abiotic agents, such as flowing rain 

water and gravity. This could, for instance, explain the presence of some highly weathered 

and fragmentary specimens, which were likely washed in from the surface, including the 

remains of large ungulates (giraffid/elephantid), unlikely to have entered the cave as 

complete animals/skeletons, given their fragmentary nature, poor preservation and lack 

of articulation. Large body size may also have prevented them from entering the cave 

through the shaft opening. Finally, some of the specimens showing trample marks could 

also have been introduced inside the cave by gravity; the trampling could have taken place 

outside the cave, on the surface. 

1.3. Resedimentation to a lower part of the cave system by a debris flow: what is the 

evidence? 

1.3.1. Geological evidence 

Several characteristics of the fossil-bearing geological Facies D, E and F indicate the 

action of a debris flow, as well as the deposition of sediments in an aqueous environment. 
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Facies D and E are composed of water-laid sediments made of sandstone, and contain 

abundant peloids, which show evidence of mechanical reworking in a water-logged 

context (Dirks et al., 2010). Facies E, which overlies Facies D, the geological unit containing 

the well-preserved hominin remains (MH1 and MH2 bones), shows a fining upward and 

preserves northwest dipping laminations indicative of directional water flow (Dirks et al., 

2010). The presence of isopachous sparite in these two facies is indicative of rapid 

cementation taking place soon after the deposition of the sediments, in a phreatic 

environment. Facies D contains allochtonous material, mixed with autochtonous cave 

sediment, suggesting that this unit deposited through the action of a debris flow carrying 

elements from outside the cave and mixing them with elements from inside (Dirks et al., 

2010). Facies E, on the other hand, is mostly composed of autochtonous sediment. This 

implies that after the debris flow occurred, the cave filled horizontally with sediments. 

Facies F, which is a grainstone deposit, also shows horizontal layering and graded bedding 

(Pickering et al., 2011). 

1.3.2. Taphonomic evidence 

Bone surface modification 

The experiment conducted by Hanson (1980) on cow bones transported in water, 

in a natural setting (East Fork River, Wyoming, USA), illustrates that long distance and/or 

long duration transport in water is required to produce visible abrasion and other 

transport-related damage on bones. For instance, some elements were transported in the 

river for nearly 2 kms without showing any trace of abrasion (Hanson, 1980). Shipman and 

Rose (1988) similarly concluded that grossly visible abrasion damage occurred extremely 

slowly on the mammal bones used in their experiment. The majority of the bones started 

showing macroscopic signs of abrasion after 35 hours inside the tumbling barrel, which 

according to the formula they propose, is consistent with transport in a river for about 

25.2 km. Microscopic signs of abrasion occur more rapidly after a few hours (Shipman and 

Rose, 1988). At Malapa, clear abrasion damage (e.g. polish, abrasion, rounding) on bone 
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surfaces is very rare, whether at a gross or microscopic level, which excludes the 

possibility of transport in water over long distance and/or for a long period of time. 

Skeletal element representation 

The survivorship observed for the faunal assemblage is consistent with a density-

mediated conservation pattern, where the denser bones are better represented than the 

more fragile ones. Comparisons with experimental results (Voorhies, 1969; Boaz and 

Behrensmeyer, 1976; Coard and Dennell, 1995; Coard, 1999) and studies of fossil 

assemblages (Behrensmeyer, 1975, 1988; Smith, 1980, 1993) concerning bone transport 

potential show no evidence of any kind of sorting by fluvial transport in the Malapa faunal 

assemblage. Elements from the lag group (e.g. mandible, isolated teeth, scapulae) are as 

well, if not better, represented as easily transportable elements (e.g. vertebrae, sacrum). 

However, there is no experimental data on bone transport in the context of a vertical 

water flow, all information comes from experiments conducted in horizontal recirculating 

flumes (Voorhies, 1969; Boaz and Behrensmeyer, 1976; Coard and Dennell, 1995; Coard, 

1999; see Chapter 2). 

Spatial distribution of the bones 

Data about bone orientation, derived from experimentally created water current, 

show that the long bones tend to orientate themselves parallel to the flow, especially 

when the bones are submerged (Voorhies, 1966; Boaz and Behrensmeyer, 1976; Coard 

and Dennell, 1995; Coard, 1999). On the other hand, in the case of bones floating in 

shallow water, it has been observed that they tend to orientate perpendicular to the 

current. Finally, experimental data show that articulated elements always travel faster 

than disarticulated elements, and have a higher transport potential (Coard and Dennell, 

1995). At Malapa, there is no definitive pattern of orientation for the long bones. The long 

bones of MH2, recovered in the “arm block”, follow a south-north direction, while the 

hypothetical 3D reconstruction indicates that MH1 is lying horizontally, with a general 
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northeast-southwest orientation for the long bones (right ulna, humerus and clavicle, and 

left femur). Movement from multiple directions has affected the remains of MH2 and MH; 

from north to south and from east to west for MH2, and from east to west and west to 

east for MH1. Marked displacement is observed in the rotation and reversed position of 

some of MH2 elements, such as in the displaced the manubrium and the first two right 

ribs. 

1.3.3. Single chamber versus several chambers? 

Input from different parts of the cave system 

There is taphonomic evidence for multiple origins for the fossils comprising the faunal 

assemblage (see above). The bones, bone fragments, skeletons, rocks, and sediments 

accumulated in the final deposit at the bottom of the cave system come from different 

chambers and parts of the cave. A mixing of faunal assemblages is the most logical 

explanation for the two very different modes of accumulation occurring in one deposit: 

through a natural death trap, in a part of the cave system without access to scavengers on 

one hand, and through the contribution of brown hyaenas using the Malapa cave as a 

breeding den on the other. The porcupine quills could also come from the hyaena den as 

these two taxa commonly alternate occupation. Carcasses decomposing on the talus cone 

beneath the death trap would attract scavengers. At Malapa, there is no evidence of 

carnivore damage on the skeletons, which have accumulated via the death trap, indicating 

that this part of the cave offered no access by mammalian scavengers to the carcasses. It 

does not make sense that this same part of the cave would at times be accessed by the 

brown hyaenas and used as a den. It is rather an indication of the existence of two 

different cave chambers, whose bone assemblages were mixed, possibly through the 

action of a debris flow and/or other agent(s), and buried at the bottom of the cave. 
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Were MH1 and MH2 moved from where they fell? 

Dirks and colleagues (2010) proposed that the hominins and other animals fell through 

a vertical shaft into an upper chamber of the cave. They accumulated as part of a talus 

cone before being transported en masse by a debris flow to a lower chamber, where 

burial, decomposition and fossilisation took place. I propose an alternative interpretation, 

with only one chamber, located at the bottom of the death trap, in a lower part of the 

cave system. Hominins and associated animals died and decomposed where they fell on 

the talus cone. A debris flow did not transport them any great distance, it only caused 

some dispersion and movement inside the lower chamber; floatation could also have 

occurred. I refer to “primary” and “secondary” deposits, which does not imply any 

difference in space, but only a difference in time, rather than to “upper” and “lower” 

chambers. The primary deposit refers to the bottom of the talus cone, underneath the 

vertical shaft, where the hominins and other animals fell and started to decompose, 

before they were buried. The secondary deposit refers to the bottom of the cave, possibly 

to a pool, and where the carcasses were buried and fossilized. 

1.3.4. Discussion: problems encountered with the debris flow hypothesis 

Several elements indicate that the faunal assemblage underwent some mixing. 

Firstly, there are contradictory taphonomic signals, such as evidence for cave occupation 

by brown hyaena on the one hand, and accumulation via natural death trap scenario with 

no contribution by carnivores on the other. Secondly, the assemblage is characterised by 

an extreme heterogeneity of the fossils in terms of preservation, especially visible when 

comparing material recovered from calcified sediment with material from decalcified 

sediment. Finally, Facies D is composed of mixed allocthonous and autochthonous 

sediments. However, whether a debris flow is the agent responsible for the mixing is 

difficult to determine, as the results of bone surface modifications and spatial analyses are 

not in accordance with a debris flow scenario. The absence of polished and abraded bones 

in the assemblage, as well as the state of articulation of numerous faunal remains indicate 
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that, if some transport of material occurred, it was only for a very short distance. There is 

no clear orientation pattern or preferential direction for the elongated bones inside the 

deposit. For instance, MH1 and MH2 skeletons do not follow the same orientation, as 

illustrated by the virtual reconstruction; they are almost perpendicular to each other. The 

movement that affected MH1 and MH2 was from various directions (east to west and 

west to east for MH1; south to north, east to west and rotation for MH2). If the hominin 

skeletons, together with other faunal remains, were already in a lower chamber when the 

debris flow occurred, an absence of specific orientation pattern could be possible. The 

action of the debris flow would cause movement of the bones and skeletons but not 

necessarily transportation. Depending upon the density and content of the debris flow, 

floatation and dispersion inside the pool of water could be expected. If a debris flow 

occurred and created a pool of water at the bottom of the cave system, the pool would 

have been of relatively small size, as shown by the very limited dispersion of the hominin 

remains (MH1 and MH2) in the deposit. If MH1, which is disarticulated, was affected by 

debris flow, even only through floatation, his remains should be more scattered across the 

deposit, which is not the case (see for instance the position of the in situ teeth just above 

the skull). Finally, the burial position of MH1 and MH2 is not consistent with the position 

of bodies floating on the surface of a pool of water (see below 2.4 and 3.3. Final burial 

position). This suggests that they did not decompose in a pool of water, either because 

they decomposed in a dry cave chamber before being transported by debris flow, while 

already skeletonised and partially mummified, or because there was no debris flow and no 

pool of water. 

To conclude, whether the debris flow has played a major contribution to the mixing of 

the faunal assemblage remains to be confirmed. It is worth considering the possibility that 

other post-depositional agent(s) have caused the displacement of the bones in the 

deposit, for instance insects reworking the sediments, as suggested by the presence of 

abundant insect damage mostly on the decalcified material. This will be further 

investigated in the future. 
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Figures 8.1 to 8.3 illustrate the taphonomic scenarios proposed previously and here for 

the Malapa faunal assemblage, including the entry of the bodies, bones and other remains 

inside the cave system (Figure 8.1), the hypothetical “debris-flow event” (Figure 8.2) and 

the current morphology of the deposits, after erosion (Figure 8.3). The two possible 

hypotheses concerning the location of the primary deposit inside the cave (in the upper 

versus lower chamber) are represented. 

 

Figure 8.1. Stage 1: bone accumulation in the primary deposits (den occupied by the brown hyaena, and 

talus cone at the bottom of the vertical death trap). View from the south. 
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Figure 8.2. Stage 2: primary bone accumulations are transported by the debris flow to the secondary 

deposit. View from the south. 
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Figure 8.3. Stage 3: present state of the deposits, after erosion of the upper part of the cave system. View 
from the south (the lighter brown layer, on top of the sequence, is consistent with Facies F, which deposited 
after the debris flow event). 

The following section presents a hypothetical reconstruction of the different steps that 

have led to the preservation of the hominin remains, from their entry into the cave system 

until their burial and fossilisation inside the deposit. The case of MH2, which is the best 

preserved individual, is described first, followed by MH1 and the other individuals. 

2. TAPHONOMY OF THE ADULT FEMALE MH2 

2.1. Mode of accumulation in the deposit 

It has already been demonstrated (see above) that MH2 exhibits features 

associated with an accumulation via a vertical shaft that opened to surface and became a 

natural death trap (near-complete skeleton, numerous complete bones and elements in 

articulation, absence of carnivore damage), which had a connection to a part of the cave 

inaccessible to carnivores and rodents. The MH2 carcass remained for some time where it 

landed after falling onto the talus cone, in the primary deposit before being buried inside 

sediments in the secondary deposit (Facies D), either after mass flow transportation at the 

bottom of the cave by a debris/mud flow, or after normal continual accumulation of talus 

cone sediments. 
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2.2. Time of exposure and state of decomposition before burial 

One of the main questions to be answered concerns the duration of exposure of 

the carcass before burial – and consequently the state of decay when burial occurred. 

Understanding the duration of exposure of MH2 has various implications, in terms of 

explaining the general preservation of the remains, as well as indicating whether or not 

soft tissue, such as skin, was still present at the time of the burial. Different aspects of the 

bones can help estimating the time of exposure in the primary deposit, namely the 

weathering stage(s) of the bones, the pattern of disarticulation of the skeleton, and insect 

damage present on the bone surface. 

2.2.1. Decomposition rate: the theory 

Under temperate conditions, the decomposition processes (see Table 8.1), 

including autolysis, putrefaction, and adipocere formation (also called saponification) or 

natural mummification (e.g. Weigelt, 1989; Clark et al., 1997; Vass, 2001; Duday, 2009; 

Gennard, 2012), take place in a matter of days or months for bodies exposed on the 

surface (Clark et al., 1997) and up to 15 to 25 years for bodies that are buried in soil (e.g. 

in graveyards or peat bogs; Fiedler and Graw, 2003). To calculate the time required for a 

body placed on the surface to be completely decomposed, in other words to reach the dry 

stage, Vass et al. (1992) proposed a simple formula, whereby the duration of 

decomposition of soft tissue is related to the temperature in which the body is decaying. 

Hence, the number of days needed for the body to become skeletonised (y) equals 1285 

divided by the average temperature (x) or y = 1285/x. 
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Table 8.1. Decomposition stages for human cadavers (from Vass, 2001 and Duday, 2009). 

STAGE DESCRIPTION 

FRESH Beginning of decay: autolysis of the cells; rigor mortis; body temperature 

acclimating with the ambient temperature, and discolouration of the skin. 

BLOATED Active putrefaction due to the action of microorganisms, such as fungi and 

bacteria, which cause the destruction of soft tissues, turning them into gases, 

liquids and molecules. The putrefaction is associated with anaerobic 

fermentation and results in the distension of tissues (the abdomen can burst if 

the temperature is high enough) and a greenish coloration of the skin. 

ACTIVE DECAY Saponification or adipocere formation (hydrolysis of fat which can lead to the 

formation of soap) resulting in the formation of creamy, yellowish and wax-like 

substance on the body. 

ADVANCED DECAY Drying out of the soft tissue; the cadaver is flat. 

DRY Desiccation: only hair, dried out skin, tendons and bones remain; the bones are 

exposed and undergo diagenesis, whereby the organic components are replaced 

by inorganic components. 

Various factors have a combined influence on the decomposition rate, such as 

climatic and environmental conditions (e.g. level of humidity, temperature, and season), 

location of the body (in the shade versus directly exposed to sunlight or on the surface 

versus buried or in water), impact of scavengers, and state of the corpse (e.g. diseased 

versus healthy person, presence or absence of wounds). Hence, the decay of bodies 

placed in the shade tends to be slower than for bodies exposed to the sun light and heat 

(Shean et al., 1993; Dillon, 1997; MacGregor, 1999a, 1999b: in Anderson, 2010; 

Sharanowski et al., 2008; Prado e Castro et al., 2011). Different seasons are associated 

with variations in temperature, sunlight and insect abundance, which have an impact on 

the rate of carrion decomposition. The decay tends to be quicker during the warmer 

months of the year, which are consistent with maximum heat and sunlight (MacGregor, 

1999a, 1999b: in Anderson, 2010), as high temperatures are usually conducive to fast 

decomposition (Feidler and Graw, 2003). The composition and abundance of the insect 

assemblage found on a corpse vary from one season to the next, also influencing the rate 

of decomposition, with the colder months usually being characterised by less abundant 
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insects (Sharanowski et al., 2008; Kelly et al., 2009). Disruption and feeding off the carcass 

by scavengers, such as mammalian carnivores and rodents, greatly speed the decay 

process (Ellison, 1990; Mann et al., 1990; Dillon, 1997). Scavengers remove large 

quantities of flesh, skin, and viscera from the body, accelerating the putrefaction process. 

By exposing large areas of decaying tissues, they also create favourable conditions for 

insects that colonise the carcass in early stages, for instance by creating wounds where 

blow flies can lay their eggs (Ellison, 1990; Dillon, 1997; Turner and Wiltshire, 1999). 

Buried bodies, protected from elements that hasten the decomposition process, such as 

exposition to scavengers, insects, and temperature variations, take longer to decay than 

bodies exposed on the surface (Mann et al., 1990; Fiedler and Graw, 2003; Simmons et al., 

2010a, 2010b). Complete decomposition of a body in earth can take between 15 and 25 

years, contra the few months necessary for a body on the surface to reach skeletonization 

(Clark et al., 1997; Fiedler and Graw, 2003). Bodies placed in water also take longer to 

decompose, especially due to the limited (but existing) action of insects (Payne and King, 

1972; Haefner et al., 2004; O’Brien and Kuehner, 2007). A generally accepted postulate 

(i.e. the Casper’s dictum) is that one week of decomposition for a body on the surface 

equals 2 weeks for a body in water and 6 to 8 weeks for a body buried in the soil (Fiedler 

and Graw, 2003). The post-mortem changes take place faster on individuals with wounds 

or that died because of bacterial or viral infections; on the other hand, individuals whose 

death is connected to the ingestion of antibiotics, poisons and drugs, undergo slower 

decomposition (Janaway, 1987; Willey and Heilmann, 1987: in Fiedler and Graw, 2003; 

Mann et al., 1990). 

2.2.2. Indications from the fossils 

Weathering stage 

All MH2 remains show weathering stage 1 or 2 (sensu Behrensmeyer, 1978), with 

superficial or slightly deeper cracks on their surfaces. This is indicative of some time of 
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exposure before burial. Experimental data about weathering in an open environment 

demonstrate that it takes between 0 and 3 years for the bones to reach stage 1 

(Behrensmeyer, 1978), while in a tropical rain forest, it can take up to 10-15 years 

(Tappen, 1994). Miller (1975) observed that small superficial cracks can start appearing 

shortly after the bones become exposed and, in some cases, even before the periosteum 

has been completely removed. In any case, cracks on bones only appear once the soft 

tissue has been removed and the bone surface is exposed (Miller, 1975; Behrensmeyer, 

1978). The fact that the MH2 skeleton was located in a cave means that is was protected 

from elements responsible for weathering, such as direct sun, extreme temperature 

variations and moisture fluctuations (Behrensmeyer, 1978; Lyman and Fox, 1989). In sub-

aerial context, weathering does not stop, but is inhibited (Miller, 1975; Behrensmeyer, 

1978; Potts, 1986; Shipman, 1981a; Todd and Frison, 1986). This confirms that the body of 

MH2 remained for at least several months and possibly a few years before being buried. 

State of articulation 

In human skeletons exposed on a dry surface, only a few weeks are necessary for 

the unstable joints to disarticulate, while several years are required for the persistent 

joints to disarticulate (Duday et al., 1990; Maureille and Sellier, 1996; Duday, 2009). 

Observations on desiccated carcasses of East African mammals exposed on the surface 

show that disarticulation is almost always complete after five years (Hill and 

Behrensmeyer, 1984). MH2 preserves most elements in articulation or anatomical 

proximities, including persistent and fragile articulations. Weathering stages 1 and 2 on 

the MH2 bones suggest that the body remained exposed for at least a couple of years, in 

the primary deposit, which is longer than the time required for all fragile articulations to 

dislocate. The fossil evidence shows the preservation of articulated elements and 

anatomical proximities, including unstable articulations, in the secondary deposit. This 

suggests that another taphonomic process, namely desiccation, must have affected the 

carcass in the primary deposit, preserving the articulation of the skeleton prior to burial, 
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especially during short distance transportation by a debris flow (see below 2.3. Evidence 

for natural mummification). 

Insect damage 

The decay of a body is accompanied by colonisation of the carrion by insects. 

Various species of insects, mostly from the Orders Diptera and Coleoptera, are found 

successively on the carcass as it decomposes. Some are necrophagous, feeding directly off 

the fresh organic matter (e.g. Calliphoridae, Sarcophagidae and Silphidae), while others 

are predatory, feeding on the former (e.g. Staphylinidae and Histeridae). Usually, the first 

wave of insects is composed of blow flies and carrion flies (Calliphoridae and 

Sarcophagidae), attracted by the odour of the carcass, which arrive during the first stage 

of decomposition, the fresh stage. The adults lay eggs on the carcass, which become 

larvae or maggots. Significant masses of maggots are found on the carrion during the 

following stages of decomposition, the bloated and active decay stages. During these 

stages, the fly maggots attract other insects, especially predatory beetles (Staphylinidae 

and Histeridae, followed by Dermestidae). The last two stages of decomposition, 

advanced decay and dry stages, see a last wave of insects colonising the carcass, attracted 

by the remaining dry matter, such as hair, skin and tendons (e.g. Cleridae, Dermestidae, 

Scarabaeidae, and Trogidae) (Mégnin, 1984; Smith, 1986; Weigelt, 1989; Ellison, 1990; 

Byrd and Castner, 2010). Table 8.2 provides a list of species of insects mentioned in the 

text, with their common name. 
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Table 8.2. Species of insects found on carcasses and mentioned in the text. 

ORDER FAMILIES 

DIPTERA Calliphoridae (blow flies/carrion flies) 

Sarcophagidae (flesh flies) 

COLEOPTERA Scarabaeidae (scarab/scarab beetles) 

Histeridae (Clown beetles/Hister beetles) 

 Staphylinidae (rove beetles) 

 Cleridae (checkered beetles) 

 Dermestidae (dermestid beetles) 

 Silphidae (large carrion beetles/carrion beetles) 

 Trogidae (hide beetles) 

The only MH2 fossil showing insect damage is a fragment of fibula shaft (specimen 

UW88-84), which was recovered from ex situ calcified sediment. The traces are located 

below the manganese, which indicates that they are ancient, most likely pre-burial, made 

during decomposition of the carcass. The presence of the marks on the bone surface 

suggests that the bones were exposed and accessible to the insects that produce them. 

This means that these insects must have accessed the carcass at a late stage of 

decomposition, most likely during the advanced decay stage or the dry stage, and were 

feeding on the remaining dry matter (skin, hair, tendons, and possibly even bones). The 

best match for some of the marks with the actualistic data is with damage produced by 

hide beetles (Trogidae, Omorgus squalidus). Adult hide beetles are late colonisers, and 

usually arrive on a carcass at the end of the bloating stage; they mate and feed on moist 

tissues, while the larvae, which feed on dry matter, complete their development during 

the dry stage, when only dried out skin, tendons, hair, and bones remain (Smith, 1986; 

Archer and Edgar, 1998; von Hoermann et al., 2012). Hide beetles are not known to feed 

on bones, which suggests that the necrophagous larvae incidentally produced the traces 

on the Malapa hominin remains, while feeding on the dry skin covering the skeleton. The 

morphology of the damage is consistent with feeding rather than pupating activities. 

Ongoing research on the mouth parts of various invertebrates, including hide beetles and 

their larvae, will help identify the modifier of the bones. Only one fragment of MH2 was 

affected, which seems to support that the insects were feeding on the dry matter rather 
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than on the bones. If the insects were feeding on the bones, they would have left far more 

abundant marks, especially if one considers that the modifications are pre-burial, at a 

stage where the skeleton of MH2 was still articulated. The impact of scavengers on a 

carcass is said to be directly linked with the impact of insects; when scavengers feed on a 

carcass they can remove large quantities of organic matter (muscles, viscera, skin), which 

means that there is not much left for the insects that colonise later (Ellison, 1990; Dillon, 

1993). It seems likely that the opposite is true: if the carcass is not disturbed by 

scavengers, as it is the case for MH2, significant amount of skin and other soft tissue 

should remain at the end of the decay process, during the dry stage, making the carcass 

attractive to the late colonisers, such as hide beetles. 

Summary 

The presence of cracks due to weathering on all specimens, as well as the 

occurrence of insect damage, some of which may have been produced by a species of late 

coloniser, indicate that MH2 had reached skeletonisation when burial took place. The 

bones were exposed to weathering, and insects could feed on the remaining dry matter, 

leaving traces on the bones. An estimation of the exact length of time taken for the 

decomposition process of MH2 is difficult. However, an estimation of the minimum length 

of time required for the carcass to reach the dry stage is conceivable, by using the formula 

proposed by Vass et al. (1992; see above), based on the ambient temperature and by 

taking into account the external and internal conditions surrounding the decomposition 

that have an impact on the timing of decay. Today, the temperature inside dolomitic caves 

in southern Africa is constant (between 17.1 to 18.6 C°: Barrett et al., 2004). If the 

temperature was the same 2 million years ago, it would have taken at least between 71.4 

(1285/17.1 C°) and 69.1 (1285/18.6 C°) days, just over two months, for the body of MH2 

to decay and become skeletonized. The average temperate in the Sterkfontein Valley 

between 2 and 1.5 Ma is thought to have been higher than today by a few degrees (Brain, 

1995; Avery, 2001). Even with an increase of temperature of 5 degrees inside caves 
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around 2 Million years ago, the decomposition would have taken a minimum of 1285/23 

C° = 55.8 days, or just under two months. At that stage, only bones and dry matter (skin, 

tendons and hair) would remain. The type of environment in which the decay of MH2 took 

place in a deep underground cave chamber is associated with external conditions that 

tend to slow down the decomposition process, where the carcass is away from sunlight 

and heat, there are negligible fluctuation in temperature inside the cave, no disruption of 

the carcass by scavengers, and limited attraction from insects. These factors would have 

possibly added some days, weeks or even months to the minimum number of 55.8 days 

calculated, based on temperature only. 

2.3. Evidence for natural mummification 

2.3.1. Mummification process: definition and required conditions 

Natural mummification is the survival of soft tissue, such as skin and ligaments, on 

a skeleton, taking place during the decomposition process; it is associated with the 

dehydration or desiccation of soft tissue (Vass, 2001). Various external (e.g. temperature, 

humidity, aerobic versus anaerobic environment: Vass, 2001; Murphy et al., 2003; Duday, 

2009) and internal conditions (e.g. conditions of the body at the time of death: Amendt et 

al., 2004) can lead to mummification. Hence, a very low humidity level, combined with 

windy conditions, observed in dry environments such as deserts and arctic regions 

(Weigelt, 1989; Maureille and Sellier, 1996; Vass, 2001), or in closed rooms kept hot, dry 

and windy (Jit et al., 2001; Campobasso et al., 2009; Introna et al., 2009), can be 

conducive to natural mummification. Underground and enclosed contexts, such as caves, 

with combined stable conditions of temperature and humidity, can also lead to natural 

mummification (Esterhuysen et al., 2009). The nature of the soil on which the body is lying 

has an influence on potential mummification. Clay-rich soils have been shown to slow 

down the decomposition process (Turner and Wiltshire, 1999; Introna et al., 2009), quickly 

absorbing the fluids liberated by the body during decomposition, and halting the 

putrefaction process, enabling mummification to take place (Introna et al., 2009). The 
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presence of lime in the ground can also stop the decomposition process and permit 

mummification. This has for instance been observed in medieval Korean bodies preserved 

in coffins surrounded by a lime-soil mixture, which is considered to be one of the main 

factors leading to natural mummification and preservation of these bodies (Shin et al., 

2003, 2008; Kim et al., 2008). Observations conducted by Mann et al. (1990) on 

decomposition showed that human bodies placed on concrete decompose slower and 

mummify faster than bodies placed directly on natural ground. Finally, a recent 

experiment on the decomposition rate of pig carrion in different types of soil illustrates 

the role of quicklime CaO and hydrated lime Ca(OH)2 in dramatically slowing down the 

decay of the carcasses (Schotsmans et al., 2012). 

2.3.2. Evidence of natural mummification in the fossil record 

In the fossil record, when the skin has disappeared, some characteristics can 

indicate that mummification took place prior to fossilisation. In particular, the 

preservation of fragile articulations, combined with the non-preservation of persistent 

articulations, or so-called “dislocation en ordre paradoxal”, dislocation in paradoxical 

order (Maureille and Sellier, 1996), is a good indication of mummification (Arbogast, 1995; 

Maureille and Sellier, 1996). It suggests that, while the persistent joints have 

disarticulated, the unstable joints, which generally consist of elements covered mostly by 

skin, such as the hands and feet, which are less subject to the putrefaction process 

(Arbogast, 1995), remain intact, and due to the desiccation of the skin that keeps the 

bones articulated. 

2.3.3. Favourable conditions for natural mummification at Malapa 

 The conditions of temperature, ventilation and humidity inside dolomitic caves can 

be conducive to mummification (Esterhuysen et al., 2009); the temperature is stable, 

while the humidity is relatively low (Barrett et al., 2004). Furthermore, the chamber at 

Malapa, where MH2 would have fallen through the death trap, most likely presented an 
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extremely difficult access, thus preventing carnivores, porcupines and others to disturb 

the decomposition and mummification processes. The presence of an opening to the 

surface, at the top of that cave chamber, would have allowed some ventilation, which is 

an important condition for desiccation. Finally, the dolomitic cave system, in which the 

Malapa hominins have been recovered, is characterised by the presence of limestone (i.e. 

calcium carbonate CaCO3) in the rock (Dirks et al., 2010), which would have retarded 

decay and contributed to the mummification process. In situ remains of MH2 (inside the 

“arm block”) were recovered directly in contact with the limestone-rich flowstone 

underlying Facies D. 

2.3.4. The case of MH2: what is the evidence? 

 The order of disarticulation observed for MH2 follows a logical order, where all the 

elements preserved in articulation are those with persistent joints, while the elements 

disarticulated and preserved in anatomical proximity are those with unstable joints (see 

Chapter 6, Table 6.2). Therefore, no dislocation in paradoxical order, associated with 

mummification, is observed. However, based on the evidence of a long time of exposure 

in the primary deposit (weathering stages 1 and 2), which is much longer than the time 

required for unstable articulations to dislocate (only a few weeks, Duday et al., 1990, 

Duday, 2009), I argue that if these bones were disarticulated, with no tissue to hold them 

together, they would have dispersed when disturbed by the debris flow or through other 

post-depositional processes. On the contrary, in the case of mummification, dry skin and 

ligaments around unstable joints, such as the thorax, hands and knees, would have held 

the bones together during movement, burial and diagenesis. 

2.4. Final burial position 

A hypothetical reconstruction of the burial position of the MH2 skeleton (e.g. 

position of the bones inside the deposit, displacement of skeletal elements from their 

anatomical position) is proposed here. Although all aspects of the following reconstruction 
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cannot be demonstrated with certainty, they are consistent with the fossil evidence 

observed, such as the position and orientation of the bones inside the “arm block”. 

Whether burial was caused by a debris flow or normal sedimentation process is unclear. 

The MH2 skeleton was still maintained in articulation by mummified skin when 

burial occurred. MH2 would have come to rest at the bottom of the lower chamber, on 

top of the flowstone, head first toward south, lying on her back, with the rest of the body 

following and pointing north, the upper limbs extended (as illustrated by the position of 

the arm and hand inside the arm block), and the lower limbs slightly flexed with the knees 

pointing east (Figure 8.4). The hypothetical reconstruction for MH2 position in the deposit 

indicates that she was lying horizontally, with the body generally oriented from south to 

north. One possibility is that the skull detached when the body hit the flowstone. In 

mummified bodies, the areas around the neck, the armpits and the groin are very fragile 

and can break easily because of significant shrinkage (Spitz and Fisher, 1980). This would 

mean that the skull either rolled below the body, in which case it is still embedded in the 

“arm block”, or detached and floated to the surface, in case the burial took place in an 

aquatic environment. In this case, it would be in an isolated block of ex situ sediment 

removed from the upper part of Facies D and not yet prepared (see Chapter 9, Where are 

the missing remains?). The displacement of some bones in relation to their anatomical 

position occurred during and/or possibly after burial in a fluid environment (e.g. soft 

sandy sediments) still allowing for some movement. The legs were bent toward the left 

(i.e. western part of the deposit), with the left leg on top of the right leg, the knees 

pointing east and the ankles facing west. The arms were extended and not crossed, with 

the right arm orientated south-north, on the right side of the body, and the left arm 

orientated south-north as well, on the left side of the body (see Chapter 9, Where are the 

missing remains?). Some fragile parts might have disarticulated inside the unconsolidated 

sand, such as the articulation between the right femur and acetabulum, around the right 

elbow, and in the cervical and upper part of the thoracic cage. The lower limbs were 

displaced toward the upper limbs (i.e. towards the south of the deposit), the radius and 
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ulna towards the humerus, scapula and mandible and the right ribs towards the left. A 

north-south displacement – or upward movement of some bones towards the upper part 

of the body – has been observed for the radius and ulna for instance, which have been 

pushed toward the humerus and scapula, and for the clavicle, which has been pushed 

towards the mandible. 

 

Figure 8.4. Burial position of MH2, viewed from the top (left: hypothetical burial position, before 
displacement and including the missing bones; right: burial position as recovered from the deposit, including 
only the bones that have been found). 

The position of some bones is difficult to explain. This is especially the case for the 

first rib, the medium rib UW88-154, and the manubrium, which have rotated from their 

anatomical position and are located below the scapula. The decomposition of the organs 
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and tissues present in the thoracic cage creates a void inside the body. Whether the 

cadaver is buried in a void later filled by sediments or in an volume filled with sediments, 

the space created by the decomposition of the organs and the tissues present inside the 

thoracic cage usually lead to a flattening of the ribs, a dislocation of the sternum and 

sometimes the rotation of vertebral segments (Duday, 1990, 2009). It only very seldom 

happens that the space created is filled by sediments, thus maintaining the original 

thoracic volume (Duday, 1990). The preservation of the initial volume of the thoracic cage 

only happens in two cases: when the sediment gradually replaces the flesh, as it 

decomposes, or when the body is buried inside a gutter-shaped grave, in which case the 

ribs are supported by the sides of the narrow pit (Duday, 2009). All the MH2 ribs 

recovered, and for which a side has been attributed (UW88-58, 61, 143, 144, 145, 165, 

166) are right ribs. They are all on the same level as the scapula, except in the case of the 

first rib. The movement of the ribs observed for MH2 can be partially explained by a 

natural phenomenon of rib cage flattening, and perhaps by floatation in water, if present, 

inside the bottom of the cave. However, floatation does not seem to explain the position 

of the first rib and manubrium located under the scapula. Another factor, yet to be 

identified, must have caused some post-depositional movement. 

The hypothetical burial position of MH2, as reconstructed in Figure 8.4, is 

consistent with a natural posture, most likely close to the position in which the individual 

died, showing no hyper flexion, no rigor mortis and no trace of agony. It is not consistent 

with a belly up, head up or dorsal up position, which are positions usually associated with 

burial in an aquatic environment (e.g. Ochev, 1995; Haefner et al., 2004; O’Brien and 

Kuehner, 2007; Stanford et al., 2011; Fordyce et al., 2012). This suggests that MH2 did not 

decompose in a pool of water. Decomposition in water is associated with various stages of 

floating and sinking (O’Brien and Kuehner, 2007). Floating of the body leads to belly up, 

head up postures and sometimes dorsal up postures, with all the limbs relaxed and placed 

either horizontally or towards the bottom, especially if the body is dorsal up. This floating 

position is well documented in palaeontological (e.g. Ochev, 1995; Stanford et al., 2011; 
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Fordyce et al., 2012) as well as in forensic contexts (e.g. Haefner et al., 2004; O’Brien and 

Kuehner, 2007). Consequently, if there was a debris flow inside the Malapa cave system, it 

must have occurred after MH2 was skeletonised and mummified, and the position in 

which she died was maintained by dry skin and tendons. It could also point toward the 

absence of debris flow and associated pool of water at the bottom of the cave. In that 

case, MH2 would have decomposed on the ground in her death posture, mummified and 

been progressively covered and buried by soft sediments. 

3. TAPHONOMY OF THE JUVENILE MALE MH1 

3.1. Mode of accumulation in the deposit 

Based on the same evidence as MH2 (e.g. near complete skeleton, abundant 

complete and near complete bones, absence of carnivore damage), it is proposed that 

MH1 entered the cave system in the same way as MH2, by accidentally falling through a 

vertical shaft that led to the primary deposit, where it formed part of a talus cone. 

Evidence of insect gnawing on the roots of the upper right incisor and canine of this 

individual suggest that these teeth detached from the skull, probably due post-

depositional process rather than an impact, as is indicated by the absence of fracture of 

the maxilla and the fact that the teeth are complete. The body decayed in the primary 

deposit, possibly mummified, before being buried next to the skeleton of MH2 in the 

secondary deposit (Facies D). 

3.2. Time of exposure and state of decomposition before burial 

As for MH2, the weathering stage of the bones, the degree of articulation, and the 

type and location of insect damage on the skeleton can help estimating the duration of 

exposure of MH1 in the primary deposit. 
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3.2.1. Weathering 

MH1 remains exhibit evidence of weathering (i.e. stages 1 and 2) in the form of 

superficial and deeper cracks, indicative of a time of exposure of several years 

(Behrensmeyer, 1978; Tappen, 1994) in the primary deposit. 

3.2.2. State of articulation 

MH1 does not preserve any element in articulation or anatomical proximity, which 

indicates that his body remained in the primary deposit long enough for his bones to 

disarticulate. This suggests either that MH1 was in a more advanced state of decay than 

MH2, or experienced a faster rate of disarticulation and dispersion due to his young age, 

with long bones still fusing and articulations still ossifying (see below for a discussion 

about the time of entry of MH1 and MH2). However, the 3D reconstruction shows very 

little dispersal for MH1 remains inside the deposit, which suggests that at least some 

elements of the body were still held together, in all likelihood through partial 

mummification, as for MH2. 

3.2.3. Insect damage 

MH1 presents the same type of insect modifications as MH2, on four remains, 

including three with ancient damage below the manganese (a fragment of the left ischium 

and the upper right incisor and canine) and one with recent damage, on top of the 

manganese (left ilium). The same arguments as for MH2 can be proposed for the traces 

observed on the ischium: some of the damage was likely caused by hide beetles, at a stage 

when the carcass was dry, and indicates that MH1 had reached skeletonization when 

burial took place. On the other hand, the marks on the teeth are somewhat problematic; 

some are located on the roots, implying that the teeth had fallen out of the skull when the 

marks were produced. The teeth were recovered close to the vault fragments and, 

according to the 3D reconstruction of the burial position, close to the rest of the skeleton. 

This suggests that the teeth are more likely to have detached from the skull while in the 
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secondary deposit, after burial occurred, due to post-depositional process(es). If they had 

detached before, the chances that they would have been deposited by the debris flow 

close to the skull are extremely low. One hypothesis is that MH1 remained long enough in 

the primary deposit for the teeth to fall out. Only then did the insects leave traces on the 

teeth, which were separated from the skull. Alternatively, the damage was caused much 

more recently, but before the deposition of manganese, in the decalcified sediment, from 

where the teeth come from. In the last case, the insect damage does not provide 

information about the timing of exposure in the primary deposit. In both cases, the 

location of the damage on the roots of the teeth, combined with the total absence of 

insect modification on the rest of the skull, raises the question of what motivated the 

insects to modify the fossils. If the marks are associated with feeding, then the makers 

were not after organic nutrients, but rather minerals. In this regard, the hypothesis of hide 

beetles feeding on remnant dry matter does not hold up. It follows then that either 

another species of insect interested in the mineral content of the fossilized teeth modified 

them, or tunnelling insects, which considered them an obstacle, displaced the teeth. 

Finally, on the left ilium, the insect modifications are on top of the manganese, 

which implies that they were produced after fossilisation. These traces indicate recent 

insect activity at the site, which is significant in terms of understanding the fossil deposit 

in the context of a modern environment, but does not provide any information regarding 

the timing of decomposition and burial of MH1. 

3.2.4. Summary 

The slight to moderate cracks of weathering, the level of disarticulation, as well as 

the possible occurrence of ancient insect damage, indicate that MH1 was in an advanced 

stage of decay when he was buried. The same external conditions as for MH2 must have 

prevailed and contributed to slow down the decomposition process (body placed in the 

shade, no disruption by scavengers, no significant temperature fluctuations, and probably 
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limited access to the carcass for insects). Therefore, the decomposition must have taken 

roughly the same time for MH1 and for MH2 to be completed. 

3.2.5. Did MH1 and MH2 enter the cave at the same time? 

The question of whether MH1 and MH2 entered the cave system at the same time 

is difficult to answer in a definitive manner. However, several aspects of the taphonomy of 

both individuals provide some elements of response. Noticeable variations are observed 

between the juvenile male and the adult female in terms of weathering stage and degree 

of articulation of their bones, which can either indicate a different time of entry (MH1 

entering first and spending more time inside the primary deposit than MH2) or 

microvariations inside the primary deposit, and internal differences, such as the age 

difference, having an impact on the rate of decomposition and disarticulation (MH1 and 

MH2 entering the site together). There is, however, as far as we know, no published study 

having demonstrated a fastest rate of disarticulation for juvenile hominin individuals 

compared to that of adult ones. 

Weathering stage 

A comparison between MH1 and MH2 fossils shows differences in the general 

weathering patterns of the two individuals, with MH1 being slightly more weathered than 

MH2 (see Chapter 6). This could imply a longer time of exposure in the primary deposit for 

MH1 than for MH2, and consequently an earlier entry into the cave system. It could also 

be caused by local variations inside the cave chamber affecting the conditions of decay 

and preservation, leading to differences in the weathering between MH1 and MH2 – 

without necessarily indicating a different time of exposure. Furthermore, both individuals 

show internal variations in terms of weathering of their bones, which are as significant as 

the variations observed between the two. For each individual, elements recovered from 

the same block, in close proximity, show different stages of weathering (e.g. ribs with 

weathering stage 2 and long bones of the right arm with weathering stage 1, from the 
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“arm block” for MH2; cervical vertebrae, right ulna, mandible and fragment of ilium with 

weathering 1 and right clavicle, fragment of right ilium and fragment of left ischium with 

weathering 2, from the “clavicle block” for MH2). Some bones might have been exposed 

more than others given their position (toward the ground or facing the surface), or the 

quantity of soft tissue remaining on them (bones with no skin protecting them versus 

elements covered by dry skin). Consequently, the differences in weathering between MH1 

and MH2 cannot be used as an argument in favour of a different time of entry into the 

cave system for the two individuals. 

Degree of articulation 

There is a clear difference between MH1 and MH2 in terms of degree of 

articulation; while MH2 preserves numerous elements articulated or in anatomical 

proximity, MH1 does not preserve any. However, if MH1 was completely disarticulated 

before the debris flow occurred, his bones would have been scattered inside the 

secondary deposit. On the contrary, very little movement is observed for MH1 remains in 

Facies D. His bones are all found in close proximity, with the exception of the two 

metatarsals, the attribution of which is discussed in Chapter 9. The general anatomical 

position is maintained. This suggests that his bones were still at least loosely held together 

possibly by dry skin (natural mummification) when the debris flow that buried the 

skeleton occurred. Complete disarticulation and slight displacement took place post-

burial, in the secondary coarse sand deposit. Therefore, the differences in the degree of 

articulation between MH1 and MH2 do not seem to reflect a difference in the timing of 

entry inside the cave system. Age could be an important factor influencing the degree of 

disarticulation, with the adult female having stronger articulations that take longer to 

dislocate than the younger male. 
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3.3. Final burial position 

MH1 is buried in a different pose and orientation to MH2 (perpendicular to it), 

head first towards the south-west, and rest of the skeleton lying with the lower limbs 

extended along the body, and the right arm flexed. Based on the hypothetical 3D 

reconstruction of the position of MH1 inside Facies D, it is proposed that the skeleton 

came to rest with the head lying on its left side and facing north (Figure 8.5). The general 

location of the right elements compared to the left elements suggests that the body was 

lying on its belly. The right elements (right humerus, right clavicle, right hemi-mandible 

and fragments of right pelvis) are all positioned to the south of their corresponding left 

elements (left mandible, left clavicle, left humeral head and left ilium) (Figure 8.5). The 

femurs are the only exception to that rule, but considering that the right femur was 

recovered isolated in an ex situ block of sediment, with no direct link to another element 

of the MH1 skeleton, its position in the deposit is purely hypothetical. 
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Figure 8.5. Burial position of MH1 in the deposit, viewed from the top (upper left corner: burial position as 
recovered from the deposit, including only the bones that were found; bottom: hypothetical burial position, 
before displacement and including the missing bones). The bones in blue are the ones identified inside the 
unprepared block UW88-B051. 

The absence of green stick impact fractures, or at least locally depressed bone with 

evidence of trauma, suggests that the breakage of the skull did not happen because of the 

death trap fall. However, the cracks on top of the skull are consistent with breakage that 

happened when the skull bones were still fresh, pre-fossilisation (L. Berger, pers. comm.). 

This suggest compression and distorsion of the buried skull by the weight of sediments in 

the secondary deposit, saturated and drying, and collapse of blocks from the roof, post-

burial, but before an advanced and set stage of diagenetic alteration had taken place. The 

carcass came to rest at the position where the cranial vault fragments were discovered. It 

is likely that at that place, the skull hit a rock during transportation, breaking the right 
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vault. While there is little other evidence of transportation, movement with force seems a 

reasonable explanation in the sequence of events. If one accepts that the skull is in its 

original burial place, then the pelvis, humeri, and right ulna do not seem to have moved 

from their original position. Some slight movement, from southwest to northeast and 

from northeast to southwest, occurred after deposition and can explain the dispersal of 

the bones (e.g. displacement between skull, vault fragments and upper front teeth, 

dislocation of the mandible, movement of the clavicles and displacement of the left 

femur). 

The same argument can be applied to the front teeth (right incisor and canine). 

They are complete and there is no indication of fracture or breakage on the front of the 

maxilla. The teeth probably did not detach due to the fall, but later, after decomposition 

of the periodontal tissue, during the movement caused by the debris flow in the 

secondary deposit, just before burial (this is confirmed by the occurrence of insect 

modifications on the roots of the teeth; see above). This would explain the short distance 

observed between the vault fragments and the teeth, recovered only 29 cm away from 

each other in the deposit. It implies that the insects were active in the burial deposit 

before fossilisation, which also means, for hide beetles anyway, that the deposits were 

not immersed in a pool of water. 

As for MH2, the hypothetical burial position of MH1, shown in Figure 8.5, seems to be 

consistent with a natural death posture, also most likely close to the position in which the 

individual died. There is no indication of hyper flexion, rigor mortis or trace of agony. The 

fact that the right arm of MH1 was flexed suggests that the body was lying on the ground 

and did not decompose in water, in which case, all limbs would have extended, in a 

floating position. The same conclusions as the ones proposed for MH2 can be drawn. In 

other words, if there was a debris flow, it must have occurred after MH1 was skeletonised 

and mummified, and the position in which he died was maintained by dry skin and 

tendons. Alternatively, there was no debris flow and MH1 would have decomposed on the 
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ground in his death posture, mummified and been progressively covered and buried by 

infilling sediments. 

4. TAPHONOMY OF THE FRAGMENTARY HOMININS MH3, MH4, MH5 AND MH6 

4.1. Introduction 

The state of preservation of MH3, MH4, MH5 and MH6, referred to as 

“fragmentary hominins” (to differentiate them from the near complete MH1 and MH2 

individuals), is very different from that of MH1 and MH2, and implies a different 

combination of taphonomic processes for their accumulation mode and fossilisation. 

None of them preserves complete bones or elements in articulation. They are only 

represented by a few elements each, and the bone surface is not well preserved. Here, 

different hypotheses are proposed to explain the taphonomy of MH3, MH4, MH5 and 

MH6. I argue that it is currently not possible to favour any of the following hypotheses 

over another one, given that some in situ deposits as well as ex situ calcified breccias 

remain to be excavated and/or prepared. 

4.2. Excavation bias 

The first hypothesis concerns the limitations of a small sample size and the fact 

that extensive excavations of in situ sediments have not yet been undertaken. Thus, MH3-

MH6 may only be represented by a few elements because their missing bones have not 

yet been recovered, and are still embedded either in ex situ blocks of sediments not yet 

prepared, or in situ. According to this hypothesis, no definite taphonomic hypothesis can 

be proposed for MH3, MH4, MH5 and MH6, until the deposit is fully excavated. 

4.3. Different accumulation processes 

Another hypothesis concerns how the fragmentary bones of the hominins entered 

the cave. Instead of individuals falling inside the cave, through a vertical shaft, as is the 

case for MH1 and MH2, some hominin specimens could have come from the surface, in 
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the forms of fragmentary and weathered bones, collected by rain and gravity, from 

individuals who died and decomposed outside the cave. Alternatively, the poorly 

preserved hominins (MH3-MH6) could have been accumulated by a more damaging 

agent, such as a carnivore, leading to significant destruction of the bones and the recovery 

of fragmentary elements only. There is, however, little evidence supporting this 

hypothesis so far: no definitive carnivore tooth mark has been observed on the hominin 

bones and the sample is too small to discern any general pattern in terms of mortality 

profile or skeletal element survival. 

4.4. Different timing of burial 

The third hypothesis proposes that the hominins MH3-MH6 entered the cave 

through a natural death trap, as MH1 and MH2, but earlier. They would have therefore 

been in a more advanced state of decomposition and disarticulation. Furthermore, as 

explained previously, the desiccation process is extremely dependant on several variables 

that were not necessarily present in all areas of the cave. Therefore, MH3-MH6 might not 

have mummified in the same way as MH1 and MH2. When the debris flow carried them, it 

could have had a more important impact in terms of dispersal of the bones, explaining the 

small number of elements recovered for each of the fragmentary hominins. This, 

combined with the lack of extensive excavation of the in situ deposits, might explain the 

absence of the missing elements for these individuals. 
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Chapter 9. Implications for the past and for the future: discussion of the 

results. 

 Some of the implications of the results described previously are presented in this 

final chapter. The understanding of the taphonomy of the hominins, especially the spatial 

analysis and reconstruction of their burial position inside the deposit, permits a discussion 

of the re-assignment of some of the disarticulated and ex situ hominin remains, as well as 

predictions of the location of missing skeletal elements. A strategy for future excavations 

is offered, including a detailed technical guideline based on the knowledge acquired 

during the course of this research. Finally, consideration is made of some of the research 

questions that remain to be explored. 

1. WHERE ARE THE MISSING REMAINS? 

The taphonomic scenario proposed for MH1 and MH2 (fall inside a vertical shaft, 

decomposition without major disruption by taphonomic agents, and probable natural 

mummification before burial), implies that both skeletons were complete or near 

complete when they were buried. Consequently, all their remains should eventually be 

recovered. This observation, combined with the hypothetical position of the bodies at the 

time of burial, allows for the making of predictions and suggestions regarding the location 

of the missing remains, whether in situ or in blocks of calcified sediment (see below Table 

9.1 for a summary) 

1.1. MH1 missing remains 

The hypothetical position of the missing remains is based on the assumption that 

the MH1 body was lying on its belly, head towards the south at the top of Facies D, with 

the right elements on the northern/north-western side and the left elements on the 

southern/south-eastern side (see Chapter 8, Figure 8.5). 
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1.1.1. Right hand 

All elements of the right hand are missing, except one near-complete metacarpal 

(UW88-112). In the hypothetical 3D reconstruction, the right arm (humerus and ulna) is 

facing towards the north, in other words towards the in situ deposits, on the eastern side 

of Facies D. Therefore, it seems reasonable to propose that the missing right hand is still 

embedded in the deposit, close to where the right ulna comes from. However, the joints 

that hold the hand bones together are amongst the first ones to disarticulate (Duday, 

1990, 2009; Maureille and Sellier, 1996), and MH1 does not preserve any articulated 

elements, so it seems unlikely that the right hand will be recovered as an articulated unit, 

such as the right hand of MH2, but rather more dispersed. 

1.1.2. Left arm 

Only the left humeral head was recovered, inside the skull block. Given the general 

position of left elements towards the south of the deposit (i.e. area that has undergone 

some mining; see Figure 8.5), it is likely that the missing left humeral shaft, radius, ulna 

and hand, are inside one or several blocks of calcified sediment already removed by the 

miners, but not yet prepared. A possible humeral shaft and a possible distal humerus 

identified inside the block UW88-B051 could represent the missing left humerus of MH1. 

Their position, just south of the right humerus, is consistent with where the left arm is 

expected to be found. The preparation of the block will provide a more definitive answer. 

1.1.3. Lower limbs 

Feet 

Elements of the right foot of a hominin have been identified in the in situ 

sediments in the area where the MH1 in situ remains were recovered. Five possible foot 

or hand bones have been identified inside the unprepared block (UW88-B051). Most 

bones from this block belong to the left side (femur, mandible, possibly clavicle and 
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humerus), while most right elements of the skeleton were found towards the north of the 

deposit (see Chapter 8, Figure 8.5). Block B051 refits in the southern part of the volume of 

sediment where MH1 comes from. The left foot is likely to be more south of the right one. 

Therefore, the foot or hand bones from block UW88-B051 could belong to the missing left 

foot of MH1. This remains to be confirmed with further preparation of the block. 

Tibiae 

A possible tibia was identified inside the unprepared block UW88-B051, which 

contains mostly elements for the left side; the possible tibia could be the missing left tibia 

of MH1. If not, and if the legs of MH1 were fully extended, both tibiae should be located 

towards the north-east relative to where the vault fragments were recovered. They might 

still be embedded inside the deposit. If the legs were flexed, then the tibiae should be just 

close to the area where the skull comes from, which corresponds to sediment that was 

removed by the miners. In this case, the tibiae should be looked for inside ex situ blocks. 

1.1.4. Sacrum 

All vertebrae attributed to MH1 were recovered from ex situ blocks, as were 

fragments from the right and left pelvises. It seems likely that the sacrum will therefore 

also be found in a block already removed by mining, but not prepared yet. 

1.2. MH2 missing remains 

The following hypotheses for the location of MH2 missing remains are based on 

the reconstruction of the body position inside the deposit, lying on its back, with the head 

towards the south and the bottom of Facies D, the arms along the body, and the legs 

flexed with the knees pointing east (see Chapter 7, Figures 7.29-35 and Chapter 8, Figure 

8.4). 
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1.2.1. Left leg and pelvis 

The position of the right femur in the arm block and the proposed position of the 

right ankle are consistent with the legs flexed with the knees pointing east and the feet 

towards the west. The right leg is below the left leg. This is consistent with a logical 

anatomical position, and is confirmed by the absence of elements from the left leg in the 

arm block, even after preparation. The missing elements of the left leg (femur, patella and 

foot bones), on the top of the “arm block”, are therefore very likely to have been blown 

away during the mining of the site. These elements should be found in one or several 

blocks of calcified sediment removed by the miners and not yet prepared. Some elements 

from the left side have already been recovered in some of the ex situ blocks, such as the 

left fibula (specimens UW88-23 and 84), tibia (specimen UW88-24), pelvis (specimens 

UW88-10, 135 and 134), and pedal proximal phalanx (specimen UW88-91). 

1.2.2. Skull and first cervical vertebrae (atlas and axis) 

The mandible and three cervical vertebrae were recovered associated with the arm 

block, whereas the skull, the atlas and axis are missing. The mandible/temporal joint in 

human skeletons is unstable and disarticulates early in the decomposition process; the 

articulation between the skull and the atlas on the other hand is a persistent articulation 

(Duday, 1990, 2009; Maureille and Sellier, 1996). The MH2 skeleton in Facies D shows very 

low bone dispersal and movement, the majority of the bones being in association inside 

the arm block. Two hypotheses are proposed regarding the possible location of the 

missing skull and first cervical vertebrae. These hypotheses are related to the moment 

when the skull detached from the rest of the body, whether before transport by the 

debris flow from the upper chamber to the lower one, or during transport. 
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Hypothesis 1: disarticulation of the skull before disturbance by debris flow 

The first hypothesis proposes that the skull and associated atlas and axis disarticulated 

from the rest of the body in an early stage, while the skeleton was still decomposing in the 

primary deposit, before the debris flow. Therefore, when the flow occurred, the body was 

transported separately from the skull. In this case, it is difficult to predict the position of 

the skull inside the deposit. With the exception of Voorhies’s experience (1966), human 

skulls belong to the transportable group and are, within this group, the fastest moving 

elements (Boaz and Behrensmeyer, 1976). Experiments with sheep and macaques indicate 

the same (Coard and Dennell, 1995; Coard, 1999). The skull of MH2 could therefore have 

been transported to the extreme bottom part of the chamber, which is the southern part 

of the actual cave, and also the mined area. Depending upon its condition, and the nature 

of the flow, it could also have sunk to the bottom of a low-density waterlogged sandy 

secondary deposit. In other words, the skull could either still be still inside the deposit, 

anywhere in Facies D, or in one of the blocks removed by the miners. 

Hypothesis 2: disarticulation of the skull due to debris flow 

The second hypothesis suggests that the skull was still partially articulated with the 

rest of the body and moved together with it in the debris flow. It would only have 

detached when the body reached the bottom of the lower chamber and collided with the 

flowstone. The impact would have detached the skull, together with the atlas and axis, 

from the rest of the body. The skull could then have remained in close proximity to the 

body. 

Discussion 

The articulations between the skull and the mandible and between the skull and the 

cervical column are classified as unstable and are amongst the first ones to disarticulate in 

an undisturbed decay process (Duday et al., 1990, 2009; Maureille and Sellier, 1996). The 
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skull could have detached at an early stage, before the body was moved to the bottom of 

the deposit. However, other unstable articulations, such as the right femoral head and the 

acetabulum, the right patella and tibia, the right humerus and scapula, and the 

manubrium close to the clavicle, have been preserved during transport, burial and 

fossilisation. Furthermore, the articulation between the mandible and the temporal is an 

unstable articulation and tends to disarticulate before the skull detaches from the 

vertebral column (Duday, 2009). In other words, if the skull had disarticulated from the 

cervical column in the upper chamber, then the mandible would also have disarticulated. 

Consequently, the transport would have dispersed both the skull and the mandible, but 

the fossil evidence shows the contrary, namely that the right mandible is still very close to 

its anatomical position, since it was recovered associated with the upper body (i.e. it was 

found in the “scapula fragment block”, which refits directly with the scapula and 

associated bones from the “arm block”). This suggests that the skull was still articulated 

with the rest of the body when the debris flow carried it. I propose that the skull was still 

attached to the cervical column when transported and that the mandible was still 

attached to the skull. The skull would only have detached from the mandible when the 

skeleton impacted the flowstone. This implies that the skull should be very close to where 

the mandible was recovered, either inside the “arm block”, in a part that has not been 

prepared yet, or in a block of breccia coming from the same area as the “arm block”. 

1.2.3. Left upper limb 

Some elements from the proximal and distal parts of the left upper limb were 

recovered, namely two fragments of the left scapula (UW88-103 and UW88-104), the 

distal part of the left clavicle (UW88-94), the proximal left humerus (UW88-101), some left 

carpals (UW8-105, 106, 107), and a left metacarpal (UW88-182). Only the left humeral 

shaft, radius and ulna are missing. The missing left carpals are present in situ in the west-

northern part of where the “arm block” was recovered. The right arm was preserved in an 

extended position. Consequently, it seems very likely that the missing left elements (i.e. 
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humeral shaft, radius and ulna) were located to the left of the “arm block”. They should 

be preserved in blocks already removed by mining and still awaiting preparation. 

Table 9.1. Hypothetical location of the missing hominin remains. 

Individual Elements Ex situ block(s) In situ deposits 

MH1 right hand  close to where the vault 

fragments were recovered  right foot 

 tibiae block B051 and/or other block? eastern side of the deposit? 

 left arm block B051 or other block  

 left foot possibly block B051  

 sacrum isolated block  

MH2 left pelvis, leg and foot one or several block(s)  

 skull, atlas and axis “arm block” or separate block  

 left arm isolated block  

2. REATTRIBUTION OF SOME REMAINS 

Three hominin remains attributed to MH1 and MH2 were recovered in situ in Facies D, 

but very far from the others: a fibula shaft fragment (specimen UW88-202) attributed to 

MH2, and two right metatarsals (UW88-16 and UW88-22) attributed to MH1. Their 

preliminary association with MH2 and MH1 is discussed here. 

2.1. MH1 metatarsals 

Two right metatarsals, recovered together in situ, were preliminary attributed to 

MH1, based on their size. UW88-22 is a definite right fourth metatarsal of a hominin 

(Zipfel et al., 2011), with the distal head missing, either because it was unfused, 

consequently belonging to a juvenile individual, or because it is damaged, in which case 

age estimation is not possible (J. DeSilva, pers. comm.). UW88-16 is most likely hominin, 

and most likely a right fifth metatarsal (J. DeSilva, pers. comm.). This specimen is 

fragmentary and misses both distal and proximal epiphyses; it is therefore impossible to 

establish whether or not they were fused. The hypothetical reconstruction for the position 

of MH1 position in the deposit indicates that it was lying horizontally, with the head facing 

south and the rest of the body, including the legs facing east. Both metatarsals were found 
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on the extreme west side of Facies D, 142 cm away from the other MH1 in situ remains, 

and higher up in the deposit (Figure 9.1), which is in contradiction with the general low 

level of dispersal observed amongst all in and ex situ MH1 remains (see Chapter 7), and 

with the position of the body inside the deposit. Based on these elements, I suggest that 

UW88-16 and UW88-22 might belong to another, as yet unidentified, individual. 

2.2. MH2 fibula shaft fragment 

A fibula shaft fragment, side indeterminate, also recovered from Facies D, was 

preliminarily attributed to MH2. It does not refit directly with any other fibula fragment 

attributed to MH2, nor does it overlap with any of them. Since it is a shaft fragment, it is 

not possible to comment on the degree of fusion of the epiphyses and therefore to 

propose an age estimate. The location inside the deposit (380 cm away from the centre of 

the arm block: see Chapter 7 and Figure 9.1) is not consistent with the very low dispersal 

rate observed for all in situ and ex situ MH2 bones (Figure 9.1). Several other incomplete 

and as yet undescribed adult hominins (MH4 and MH6) have been identified at the site. I 

therefore propose that the fibula fragment UW88-202 does not belong to MH2, but to 

another hominin. 
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Figure 9.1. Position in the deposit of the in situ fibula shaft fragment (A: specimen UW88-202, attributed to 

MH2) and metatarsals (B: specimen UW88-22; C: specimen UW88-16; attributed to MH1), in relation to 

MH1 and MH2 remains (viewed from the south). UPDATE 

3. TECHNICAL GUIDELINE FOR FUTURE EXCAVATIONS OF IN SITU DEPOSITS 

Excavations of in situ deposits in Pit 1 and Pit 2 will start in the near future. They will 

help in answering many questions regarding the general taphonomy of the faunal 

assemblage, and provide more information concerning the taphonomy of the hominins. 

Various points of interest, such as similarities and differences between the fossil-bearing 
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facies in terms of preservation and taphonomy, timing and exact mode of deposition of 

these units, and extent of the deposits, will be explored. 

One of the outcomes of this research project is to highlight the importance of 

recording exhaustively and precisely spatial data, for the reconstruction of the burial 

position specifically, and for the understanding of the taphonomy of the fossil assemblage 

more generally. Therefore, all information regarding the exact provenance, position, 

orientation and direction in the deposits of the bones is crucial and must be recorded, 

especially since excavations are a destructive process. If not saved, once the bones are 

removed from the deposit, this information is lost. Some remains belonging to MH1, MH2 

and possibly the fragmentary hominins MH3-MH6 are still embedded inside in situ 

deposits. Their orientation and exact position in the sediments will help complete the 

virtual 3D model, and confirm or refute some of the assumptions made regarding the 

exact burial positions, at least for MH1 and MH2, and the taphonomic history for the 

other hominins. 

The nature of the sediment at the site makes excavation procedures more complex 

than in sites where the units are composed of decalcified material, easy to remove and 

offering a better control of the advance of the dig. This constitutes a supplementary 

reason to ensure that, at Malapa, all field and spatial data are recorded during the 

excavations, for instance by multiplying the methods of recording (coordinates, pictures, 

notes, drawings), even if, and in order that, they overlap. 

The following points would be useful to consider for future excavations: 

First, for every single fossil, all information regarding the provenance and position 

must be recorded, namely whether the specimen comes from in situ or ex situ sediment, 

its facies of origin and coordinates (when found in situ); and for the elongated specimens, 

including elongated stones, its orientation, direction and angle, and the part on which it is 

lying (e.g. medular cavity versus cortical bone, dorsal versus ventral side). The nature of 
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the sediment implies that most specimens will be removed in the laboratory and that only 

blocks will be removed from the in situ deposits. It is therefore even more important to 

make sure that all information allowing the refitting of the blocks back to the deposit is 

preserved. Pictures can be useful, but they need to be standardized and informative, for 

instance they must have a scale, a compass and a legend (with the date, the number of 

the specimen/block, the facies) on the picture. It might sound tedious to have every block 

that is removed sketched, but drawings are extremely useful because all kinds of 

information can be annotated. They can also be easily manipulated, referenced, and 

revised as the excavations proceed. A manual and daily note book recording every event 

of the excavations is also very useful. A record of the progress of the excavations should 

be conducted daily, in order to prevent any mistakes in the coordinates, any omission in 

the data recorded, and any problem. 

One of the difficulties that was encountered during the analysis of the material in this 

study was the impossibility of tracing some specimens back to their exact location. It is 

recommended that the most straightforward possible numbering system be used to avoid 

confusion. Ideally a fossil identified at the site receives a number at the site, together with 

a tag containing the information previously mentioned. The specimens should keep the 

same number from their recovery at the site, all the way to the final database. The same 

goes for the blocks, which will more likely represent the majority of the elements removed 

from the site. 

4. RESEARCH PERSPECTIVES 

4.1. Future applications of the palaeoforensic approach 

The palaeoforensic approach, combining analysis of bone surface modifications, 

general preservation pattern and spatial data, with the aim of reconstructing the burial 

position of a skeleton, was developed in this research project to study the case of the two 

well-preserved hominins (MH1 and MH2). In future, the same approach could be applied 

to other well-preserved and complete skeletons from the Malapa site, either skeletons 
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found ex situ (bovid skeletons for instance) and for which refitting into the deposit is 

possible, or skeletons that will no doubt be recovered from the in situ deposits during 

upcoming excavations (hominins and non-hominins). 

This innovative approach could also be applied to other well-preserved and near 

complete skeletons of early hominins, for which spatial data are available and that have 

not been subjected to destructive post-depositional processes, such as StW 573 “Little 

Foot” from Sterkfontein Member 2. I also suggest that a palaeoforensic approach should 

from now on be systematically followed for any well-preserved skeleton of an early 

hominin discovered, given the amount of information that can be provided. 

4.2. Unsolved research questions about the taphonomy at Malapa 

Several points of interest could only be touched upon during the course of this 

research project, since an in situ and more complete faunal assemblage is required in 

order to address them properly. Four questions of interest for the general understanding 

of the taphonomy of the site and faunal assemblage have been selected. These questions 

have not yet been resolved, and will hopefully find answers as excavations proceed and in 

situ faunal material is recovered. The first three points have already been mentioned in 

Chapter 8. The last point offers a reflection about one aspect that has not been 

considered previously in this thesis. 

4.2.1. What happened to the fragmentary hominins? 

Because some bones belonging to MH3, MH4, MH5 and MH6 might still be embedded 

inside the deposits, it is difficult to compare their taphonomic characteristics with that of 

MH1 and MH2. They could share a common mode of accumulation, burial and 

fossilisation, if it becomes evident that they are also represented by complete bones, 

articulated elements and well-preserved bone surfaces. On the other hand, if no other 

elements belonging to these individuals are revealed through excavations, another 
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sequence of events will have to be considered to explain their different state of 

preservation. 

4.2.2. Was there really a debris flow? 

The preliminary hypothesis of a single debris flow event transporting both the 

hominins and associated material to the bottom of the cave system (Dirks et al., 2010) is 

being challenged by the results of this taphonomic analysis of MH1 and MH2. Several 

elements are not in keeping with the action of a single significant and sudden influx of 

water into the cave. The analysis of the taphonomy of new in situ faunal material, 

especially a spatial study of bone distribution and orientation inside the deposit, 

microscopic observations of the bones to identify evidence for water abrasion, and 

quantitative estimates of skeletal parts preserved to determine whether or not there is 

fluvial sorting, will provide information to determine if water flow played a major role in 

the accumulation process and burial of the faunal assemblage at Malapa. A detailed 

comparison of the taphonomy of the fauna between the different facies, combined with a 

sedimentological fabric analysis of the sediments from these facies, should prove decisive 

in the question of the action of the debris flow. 

4.2.3. What is the exact nature of the role played by insects and who are they? 

Insect damage was identified on numerous bone fragments, including some 

hominin remains. The identity of the species that produced the modifications is not clear 

at the time of writing. There seem to be two distinct categories of insect damage, on fresh 

bones (or at least before the deposition of manganese on the bones) and on fossils (on 

top of the manganese). Interestingly, both categories present the same features 

(intersecting striation marks, pits, star-shape pits, small borings and surface gnawing), 

which seem to indicate that they were produced by the same type of insect, but at two 

distinct moments in time. The very significant difference in the proportions of insect 

damage between bones recovered from calcified sediment and those recovered from 
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decalcified sediment seems to be informative of a biotic process at work. More 

investigations are required to determine why the insects modified the remains in fresh 

and fossilized states of preservation. Understanding the role played by insects, and the 

timing of their involvement will help the identification of their impact on the taphonomy 

of the fossil assemblage and site (e.g. displacement of fossils inside the deposits, 

reworking of sediments, and possible destruction of the original stratigraphy). 

4.2.4. Where are the other primates? 

Comparison with other Plio-Pleistocene cave deposits 

Around two million years ago, five known species of early hominin, namely 

Australopithecus africanus, Australopithecus “second species”, Paranthropus robustus, 

early Homo, and Australopithecus sediba inhabited the Cradle of Humankind. Their 

remains have been recovered from several cave deposits in the region: Sterkfontein, 

Swartkrans, Kromdraai B, Cooper’s D, Gladysvale, Drimolen and Gondolin A (for more 

details and complete references, see Chapter 2, Table 2.1). Most fossil-bearing sites have 

yielded specimens attributed to a single species, but in some cases, the remains of two 

species have been found inside the same deposit. Hence, Swartkrans Member 1 (Lower 

Bank and Hanging Remnant) and Member 2 contain specimens attributed to P. robustus 

and to Homo sp. (Brain, 1981; Grine, 1989, 1993, 2005; de Ruiter, 2003), while at 

Sterkfontein Member 4, the early hominin fossils have been attributed to both Au. 

africanus and Au. “second species” (Dart, 1925; Broom, 1936; Brain, 1981; Pickering, 

1999; Clarke, 1988, 1998, 1999, 2008). 

Large-bodied non-hominin primates are also present in the Sterkfontein Valley around 

2 Ma. In the cave deposits of that region, the remains of various papionins (Family 

Cercopithecidae, Sub-Family Cercopithecinae) have been recovered (Broom and Robinson, 

1949; Freedman, 1957, 1976; Brain, 1981; Watson, 1993; McKee and Keyser, 1994; 

Pickering, 1999; Keyser et al., 2000; de Ruiter, 2001, 2003; Lacruz et al., 2002; Kibii, 2004, 
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2007; Pickering et al., 2004a, 2004b; Adams, 2006; Gilbert, 2008; Gommery et al., 2008; 

de Ruiter et al., 2009) (Table 9.2). These include the extinct giant gelada, Theropithecus 

oswaldi, extinct large baboons Papio (Dinopithecus) ingens, Papio izodi, Papio angusticeps, 

and Gorgopithecus major, the extinct baboon Papio (hamadryas) robinsoni, and the 

extinct Parapapio (i.e. Parapapio jonesi, Parapapio broomi, and Parapapio whitei), related 

to modern mangabeys (Gilbert, 2008) (Table 9.2). 

Table 9.2. Extinct and extant papionins found in deposits from the Cradle of Humankind. 

Species Deposit Reference 

Papio (hamadryas) robinsoni Swartkrans M1 LB, HR, M2, M3; 
Cooper’s D; Drimolen; Bolt’s Farm 
(Femur Dump); Kromdraai A 

Freedman, 1976 ; Brain, 1981 ; 
Keyser et al., 2000 ; de Ruiter, 
2003 ; Gommery et al., 2008 ; de 
Ruiter et al., 2009 

Papio (Dinopithecus) ingens Swartkrans M1 LB, HR, M2 de Ruiter, 2003 

Papio izodi Sterkfontein Member 2; Jacovec 
Cavern 

Pickering et al., 2004a; Kibii, 2007 

Papio angusticeps Minnar’s; Kromdraai A and B; 
Haasgat 

Freedman, 1957, 1976; Brain, 
1981; McKee and Keyser, 1994 

Papio sp. Malapa unpublished 

Parapapio jonesi Swartkrans M1 HR; Sterkfontein 
M2, M4; Jacovec Cavern 

de Ruiter, 2003; Pickering et al., 
2004a ; Kibii, 2007 

Parapapio broomi Sterkfontein M2, M4, Jacovec 
Cavern; Bolt’s Farm 

Brain, 1981; Freedman, 1976; 
Pickering et al., 2004a; Kibii, 2007 

Parapapio whitei Sterkfontein M4 Brain, 1981 

Theropithecus oswaldi Swartkrans M1 LB, HR, M2, M3; 
Cooper’s D; Sterkfontein M5 (StW 
53 Breccia and Oldowan Infill) 

de Ruiter, 2003 ; Pickering, 1999 ; 
Ruiter et al., 2009 

Gorgopithecus major Kromdraai A; Cooper’s D Broom and Robinson, 1949; 
Freedman, 1976 ; Brain, 1981 

HG: Hanging Remnant; LB: Lower Bank, M: Member, StW: Sterkfontein. 

Hominin and non-hominin primates are usually found associated in the deposits, 

with a variable percentage for each group (Table 9.3). In the faunal assemblages 

recovered in deposits from the Cradle of Humankind, non-hominin primates are always 

more abundant than hominins, in terms of NISP. Swartkrans Members 1 (Lower Bank) and 
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2 are the only exceptions, where hominins are more abundant than the papionins in terms 

of MNI (Brain, 1981; Watson, 1993; de Ruiter, 2001) (Table 9.3 and Figure 9.2). The 

abundance of primates (hominins and non-hominins) in the fossil cave deposits is usually 

interpreted as evidence for the “carnivore-collecting hypothesis” (Brain, 1981), and more 

specifically specialized predation upon primates by leopards and hyaenas (de Ruiter, 2001; 

Carlson and Pickering, 2003; Pickering et al., 2004b, 2004c; Clarke, 2007; Kibii, 2007). 

At Malapa, the ratio of hominin to non-hominin primates is extremely high, 

constituting a notable exception within the context of Plio-Pleistocene South African cave 

deposits (Table 9.3 and Figure 9.2). 

Table 9.3. Abundance of hominin and non-hominin primates (NISP/MNI) in Plio-Pleistocene faunal 

assemblages from the Cradle of Humankind. 

Site Deposit Hominins Cercopiths Reference 

SWARTKRANS M1 HR 279/90 423/117 Brain, 1981; Watson, 1993; de Ruiter, 
2001  M1 LB 46/16 240/9 

 M2 52/24 217/12 
 M3 27/11 384/15 
STERKFONTEIN Jacovec Cavern 12/6 314/13 Kibii, 2007 

M4 -/87 -/298 Brain, 1981; Pickering et al., 2004b 
M5 StW 53 Breccia 
M5 Oldowan Infill 

14/2 50/7 Pickering, 1999 
5/2 187/8  

 M5 West Infill 7/4 10/4  
KROMDRAAI A -/- 95/14 Brain, 1981 

B 8/6 495/37 
COOPERS D 7/2 431/15 Val et al., submitted 
GONDOLIN GDA 2/2 3/1 Adams, 2006 
GLADYSVALE GVED 1/1 12/2 Lacruz et al., 2002 
MALAPA - 256/6 1/1 Dirks et al., 2010 ; Kuhn et al., 2011 ; 

currently under study 

GVED: External Deposits, HG: Hanging Remnant, LB: Lower Bank, M: Member, StW: Sterkfontein. 

While 256 hominin remains, representing a minimum number of 6 individuals, 

were recovered, only one cercopith specimen (Papio sp.) is present in the faunal 

assemblage. 
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Figure 9.2. Abundance of hominin and non-hominin primates in Plio-Pleistocene fossil-bearing cave deposits 

from the Cradle of Humankind, in terms of minimum number of individuals (Br: Breccia; HR: Hanging 

Remnant, JC: Jacovec Cavern, LB: Lower Bank, M: Member, Old: Oldowan; StW: Sterkfontein). 

Hypotheses to explain the absence of non-hominin large primates at Malapa 

The different modes of accumulation proposed for the faunal assemblage at 

Malapa (natural death trap and contribution by the brown hyaena) do not, in theory, 

exclude the presence of non-hominin primates and other early hominin taxa in the 

assemblage. Brown hyaenas are mostly scavengers (Lacruz and Maude, 2005; Skinner and 

Chimimba, 2005) and do not habitually include primates in their diet (Skinner and van 

Aarde, 1991; Skinner and Chimimba, 2005). They are, however, reported to become keen 

hunters of baboons and other large mammals when rearing cubs (Brain, 1981; Backwell et 
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al., 2009). I have argued the occupation of a part of the cave system as a breeding den by 

brown hyaenas, which potentially could be associated with the occurrence of some 

remains of cercopiths in the faunal assemblage. The natural death trap scenario, especially 

in the case of access to a cave by means of a vertical shaft, is said to be associated with an 

abundance of animals with good climbing skills, such as carnivores and primates (Pickering 

et al., 2004a; Clarke, 2007). For instance, the faunal assemblage associated with StW 573 

from Sterkfontein Member 2 is composed of both australopithecine and other primate 

remains (Pickering et al., 2004a; see Table 9.2). It has been proposed that this assemblage 

accumulated mostly through a natural death trap, with a minor contribution by carnivores 

(Pickering et al., 2004a). 

Here, different hypotheses are proposed to explain (1) the near-absence of large-

bodied non-hominin primates in the faunal assemblage, and (2) the absence of other 

species of early hominins besides Au. sediba. Such hypotheses have implications regarding 

the ecology and behaviour of extinct primates, including hominins, and allow reflections 

on landscape occupation and interactions between hominin and non-hominin taxa, and 

between Au. sediba and other primates. 

Sample bias 

One possible way to explain the under-representation of papionins and the 

absence of other hominins in the assemblage is to attribute it to the small size of the 

sample or that the excavations to date have not reached areas where there will be higher 

levels of abundance of non-hominin primates. The co-occurrence of two early hominin 

taxa is only present in very large faunal assemblages (i.e. Swartkrans Members 1-2 and 

Sterkfontein Member 4). The absence of another hominin taxon at Malapa could 

therefore be explained by the small sample of the primate sub-assemblage. However, 

concerning the non-hominin primates, the Malapa faunal assemblage is similar to or larger 

than other deposits (e.g. Kromdraai A, Gladysvale, Jacovec Cavern and Member 5 StW 53 
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Breccia at Sterkfontein), where remains of cercopiths have been recovered (Broom and 

Robinson, 1949; Brain, 1981; Pickering, 1999; Kibii, 2007; Lacruz et al., 2002). 

Furthermore, the faunal diversity at Malapa is high, with 27 species identified (see Tables 

6.1 and 6.2 in Chapter 6). It seems very unlikely that the over-representation of hominin 

compared to non-hominin primates can only be a consequence of the relatively small size 

of the sample. Future excavations of in situ sediments and preparation of ex situ blocks 

should reveal whether or not fossil cercopiths are present at the site. 

Finally, only MH1 and MH2 have been fully studied and analyzed from a 

morphological and taxonomic point of view (Berger et al., 2010; Carlson et al., 2011, Kibii 

et al., 2011; Zipfel et al., 2011; Berger, 2012). The other hominins (MH3-MH6) have been 

preliminarily assigned to Au. sediba, but a more definitive taxonomic attribution can only 

be made once the material has been studied. 

Morphology of the cave 

Another possible explanation for the absence of papionins and other hominins in the 

assemblage is that the morphology of the Malapa cave 1.977 Ma years ago was not 

suitable for these taxa. Modern baboons, geladas and chimpanzees have been reported to 

use caves and cliffs at night for various reasons, including protection against predators, 

geophagy (i.e. consumption of nutrients found in the soil of the cave), and 

thermoregulation (Altmann and Altmann, 1970; Gow, 1973; Busse, 1980; Brain, 1981; 

Iwamoto and Dunbar, 1983; Colishaw, 1994; Barrett et al., 2004; Pruetz, 2007). A recent 

study conducted on chacma baboons in the De Hoop Nature Reserve (Western Cape, 

South Africa) by Barrett and colleagues (2004) demonstrates that the primates were 

making regular use of the cave system at night, and of the vicinity of the cave during the 

day. The cave is located in a limestone area and the entrance consists of a narrow, vertical 

shaft opening out to the level ground. That vertical shaft is about 5 metre deep and leads 

to a horizontal tunnel, which opens to an underground cavern (Barrett et al., 2004). In the 
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absence of information regarding the ancient morphology of the cave and cave entry at 

Malapa, it is hard to discuss whether or not it was suitable for extinct baboons and 

geladas. The Malapa cave, located in a dolomitic area, probably offered a similar 

morphology as the cave used by the baboons in Barrett and colleagues’s study. 

Furthermore, if the absence of non-hominin primates was due to the morphology of the 

cave, that would indicate that the Malapa cave was very different from neighbouring 

caves, which have yielded abundant remains of papionins, such as Sterkfontein, 

Swartkrans, Kromdraai, Gladysvale and Cooper’s D (Table 9. 3 and Figure 9.7). Even 

though the primates recovered in these deposits were brought in for some of them by 

carnivores (Brain, 1981, 1993; Pickering and Carlson, 2002; Carlson and Pickering, 2003; 

Pickering et al., 2004b, 2004c; de Ruiter et al., 2009). It has also been suggested that they 

would sometimes occupy the cave (“sleeping-site hypothesis”; Brain, 1981, 1993; 

Pickering et al., 2004a; Val et al., submitted). The same argument applies to other hominin 

taxa, such as A. africanus and P. robustus, whose remains have been recovered in these 

cave deposits and for which the sleeping-site scenario has also been proposed (Brain, 

1981, 1993). 

Having considered the evidence, I do not believe that a specific morphology of the 

cave at Malapa is a sufficient or strong enough argument to explain the absence of other 

hominin taxa, and the under-representation of papionins in the assemblage. 

Palaeoenvironmental factors 

The potential role played by palaeoenvironment and palaeohabitat conditions around 

the Malapa site at 1.977 Ma to explain the absence of non-hominin primates in the 

assemblage is discussed here. The presence of taxa in the faunal spectrum associated with 

woodland savannah (i.e. Tragelaphus strepsiceros and Tragelaphus scriptus; Skinner and 

Chimimba, 2005) suggests a woody, as well as a riverine component (e.g. gallery forest) in 

the vicinity of the cave. Preliminary palaeoenvironmental reconstructions based on pollen 

and wood fragments extracted from a coprolite indicate the presence of moist forest 
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vegetation, composed of conifers, such as Podocarpus/Afrocarpus (Bamford et al., 2010). 

Analysis of plant phytoliths extracted from dental calculus, combined with stable carbon 

isotope and dental microwear texture studies reveal that Au. sediba had an almost 

exclusively C3-based diet, which included tree leaves, bark, wood, fruits, grasses and 

sedges (Henry et al., 2012). 

Modern baboons typically occupy woodland savannahs (Skinner and Chimimba, 2005). 

The extant southern African chacma baboons, Papio hamadryas ursinus, are generally 

associated with woodland savannahs and also found in less typical habitats, such as the 

montane uplands of the Drakensberg, or the riverine belts of the Namib Desert (Skinner 

and Chimimba, 2005). Extant gelada baboons, Theropithecus gelada, live in the high 

grasslands of the Ethiopian plateau in East Africa; these montane grasslands are 

characterised by scattered trees and bushes, and are cooler and less arid than the lowland 

areas (Iwamoto and Dunbar, 1983). Extinct species of cercopiths have been associated 

with different types of habitats, based on the reconstruction of their diets. Papio 

hamadryas robinsoni, Papio (Dinopithecus) ingens and Parapapio are regarded as mix-

feeders to browsers with a C3-based diet (frugivorous) (Lee-Thorp et al., 1989; Codron et 

al., 2005), consistent with a closed and woody environment. Theropithecus oswaldi is 

regarded as a mix-feeder to grazer with a predominant percentage of C4 food 

(graminivorous), combined with some C3-based food, such as fruits (Lee-Thorp et al., 

1989; Codron et al., 2005), consistent with a more open environment. Other hominin taxa 

are associated with various habitats, also based on their diet. Isotopic and Sr/Ca studies 

demonstrated that A. africanus was a mix-feeder, with a C3-based (fruits and leaves) diet, 

but with a significant C4 component, including grasses, sedges and animals eating these 

plants, suggesting opportunistic food habits and the exploitation of relatively open 

environments, such as woodlands and grasslands (Sponheimer and Lee-Thorp, 1999; van 

der Merwe et al., 2003; Sponheimer et al., 2005a, 2005b). Recent studies show that P. 

robustus has an abundance profile similar to woodland adapted species (de Ruiter et al., 

2008). However, isotopic and Sr/Ca analyses demonstrate that the diet of P. robustus is 
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variable, and included both C4 grassland and C3 woodland foods, indicative of a species 

with a non-specialized diet that can include woodland food such as seeds, fruits and 

underground resources, as well as savannah foods such as grasses, sedges or animals that 

consumed these foods (Sillen, 1992; Sillen et al., 1995; Lee-Thorp et al., 1994; Sponheimer 

et al., 2005a, 2005b, 2006). Sr/Ca and dental topography analysis suggest that early Homo 

had a diverse diet, including tough and flexible food, such as meat and other animal soft 

tissues (Ungar, 2004; Teaford et al., 2002; Ungar et al., 2006), as well as vegetal and 

underground resources, such as plants, tubers, bulbs and/or possibly animals eating these 

undergrounds resources (Sillen et al., 1995; Teaford et al., 2002; Ungar et al., 2006). 

The variety of habitats and food requirements of non-hominin primates and other 

early hominin taxa suggests that the type of vegetation present around the Malapa cave 

would have attracted at least some of the primates (e.g. papionins, if the vicinity of the 

cave offered a good tree coverage and fruits and leaves, which are an important 

component of the diet of these this taxon). Furthermore, the palaeoenvironment of 

Malapa does not seem to differ from sites that have yielded significant numbers of non-

hominin primates, gracile and robust australopithecines, and early Homo, such as 

Sterkfontein Member 4, Swartkrans Members 1-3, Kromdraai, Cooper’s D and Gladysvale. 

For these sites, a mosaic of environments has been proposed, including open grasslands, 

woody and riverine components (Vrba, 1975, 1980; Avery, 2001; de Ruiter et al., 2009; 

Steininger, 2010). 

I argue that there is no strong evidence to support the hypothesis that differences in 

palaeoenvironment would explain the absence of non-hominin primates and other 

hominin taxa in the Malapa faunal assemblage. 

Competition with other primates 

Another hypothesis considers the primate sub-assemblage as a representative 

sample, with an extremely high number of hominins, all belonging to Au. sediba, a very 
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low representation of cercopiths, and the absence of other hominin taxa. Behavioural and 

ecological factors are invoked to explain this pattern. A natural death trap scenario, 

combined with a sleeping site scenario, whereby the hominins used the cave as a shelter, 

could imply an exclusive use of the cave by one species of primate taxon, namely, in the 

case of Malapa, Au. sediba. The sleeping site scenario, usually associated with predation 

inside the cave by carnivores, has been mentioned by several authors to explain the 

abundance of primates in some Plio-Pleistocene deposits, for instance at Swartkrans 

Member 1, Lower Bank and Hanging Remnant (Brain, 1981, 1993) and at Cooper’s D (Val 

et al., submitted). 

Modern primates, such as baboons and chimpanzees, frequent caves to access 

water or soil nutrients and to regulate their body temperature (Barrett et al., 2004; 

Pruetz, 2007), or to seek protection against predators at night (Simons, 1966; Altmann and 

Altmann, 1970; Grobler and Wilson, 1972; Gow, 1973; Busse, 1980; Brain, 1981; 

Cowlishaw, 1994; Hart, 2000; Mc Grew et al., 2003). The Malapa cave system could have 

provided such shelter. Studies on modern baboons and geladas show a tendency to 

territoriality, whereby groups naturally tend to avoid contact with each other (Jay, 1965; 

Bates, 1970). Specific areas such as a water hole, a sleeping site, or a food resource, are in 

most cases exclusive to a particular primate group (DeVore, 1963; Jay, 1965; Jewell, 1966; 

Mason, 1968). It is not unreasonable to suggest that the same could apply to 

australopithecines, and therefore that the Malapa cave was exclusively used by a group of 

Au. sediba at one given time, associated with the moment of accumulation of MH1 and 

MH2, and on alternate occasions by other groups of primates. In other words, because of 

territoriality and competition between primates, when one group would occupy the cave, 

the others hominin and non-hominin taxa would avoid the area, and therefore not be 

represented in the deposit. 
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General conclusion 

An innovative palaeoforensic taphonomic approach, combining palaeontological 

and physical analyses with a 3D spatial study and a virtual reconstruction of the original 

burial position of the hominins, was used to address taphonomic questions relating to the 

accumulation, burial and fossilisation processes of the two well-preserved Au. sediba 

individuals (MH1 and MH2), from early Pleistocene deposits at the Malapa cave. The 

taphonomic study of the hominins and associated fauna highlights the presence of several 

characteristics, indicating that the cave served as a death trap. Evidence of carnivore 

activity is low, but the occurrence in the assemblage of a few deciduous teeth of brown 

hyaenas, carnivore coprolites and cylindrical shafts, could suggest the use by P. brunnea of 

an upper part of the cave system as a breeding den, which remains to be confirmed. 

Various lines of evidence in accordance with a natural death trap scenario were provided 

by the palaeontological and physical analyses of the faunal assemblage. The skeletal part 

representation follows a density-mediated pattern and does not show any indication of 

carnivore or water selection, and there is an abundance of complete and near complete 

bones, antimeric sets of fossils, as well as elements preserved in articulation. The physical 

approach highlighted the heterogeneity of the assemblage in terms of bone preservation. 

It illustrated the important role played by the cycles of calcification/decalcification in the 

degree of fossil preservation. Microscopic analysis of the bone surface revealed the very 

low impact of carnivore damage on the assemblage, and the absence of modifications 

caused by rodents, hominins and birds of prey. The only important biotic agents in terms 

of bone surface damage are insects, which seem to have modified the bones pre- and 

post-fossilisation. There is little evidence for sedimentary and water abrasion, challenging 

the idea of transport of bones in water.). The preliminary hypothesis suggesting transport 

of the hominin corpses from an upper part of the cave system to a lower part of the cave 

system by a debris flow (Dirks et al., 2010) is not validated by the results of this study. 

Rather, based on the available evidence, it seems more likely that the two hominins MH1 
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and MH2 have not been transported from their death site to their burial site (i.e. where 

they have been recovered). The little movement observed for some hominin bones most 

likely occurred after the burial, due to taphonomic processes that are yet to be identified 

(the possible role played by termites is the topic ongoing research). 

In reconstructing the formation process for the fossil assemblage (i.e. taphonomic 

pathway), it appears that living animals accidentally fell through a vertical shaft opening, 

which led to a deep chamber in the cave system, one that was inaccessible to scavengers 

and rodents. Surface material from the surrounding landscape would have been 

introduced via the shaft by gravity and by heavy rain, and mixed within the talus cone 

created at the bottom of the vertical shaft with elements from the carnivore den in an 

upper chamber. The action of a debris flow in the transportation, accumulation, mixing 

and burial of the faunal assemblage is still under debate. 

The spatial approach consisted of an innovative 3D analysis of the distribution of 

the remains inside the deposit and reconstruction of the burial position of the hominins. It 

required the creation of a 3D model of the cave, including virtual renderings of the 

hominin remains in their original in situ position. This involved the refitting of ex situ 

hominin material as a necessary preliminary step to the spatial analysis. The study of bone 

distribution and orientation inside the deposit showed very little dispersal, and therefore 

very little movement of the bones across the deposit. It made it possible to reconstruct 

the original position of the hominins at the time of final burial and preservation, with MH1 

lying on his front, with his head on its left side and facing south, and his limbs along his 

body. MH2 was lying on her back, with her head towards the south, her arms along her 

body and her legs flexed, with the knees pointing to the east, and her left leg on top of the 

right one. 

The results of the palaeoforensic taphonomic study of the hominins indicate that 

MH1 most likely entered the site prior to MH2. They both decomposed in a primary 

deposit, at the bottom of the vertical shaft, with no disruption by scavengers and very 
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little by insects. Mummification most likely took place before burial. Some post-burial 

movement took place inside the deposit after burial in coarse sand that slightly displaced 

the bones in various directions, but only for very short distances. 

 The mode of accumulation of most individuals - hominins and others - from the 

Malapa assemblage, via a natural death trap scenario with the limited involvement of 

carnivores and other biotic agents, and followed by a relatively quick burial and 

sedimentation, has important implications for future excavations of the in situ deposits, as 

well as for forthcoming palaeoecological and palaeoenvironmental interpretations. The 

taphonomic scenario proposed for MH1 and MH2 is that they entered the cave system as 

complete bodies and were most likely buried in a mummified state, which argues in 

favour of potential preservation of soft tissues. It also means that all the skeletal remains 

should be preserved in the deposit, either still in situ, in the unexcavated sediments, or in 

ex situ blocks of calcified sediments removed during mining and awaiting physical 

preparation. The reconstruction of the original burial position of the hominins allows the 

prediction of the location of the missing remains, which suggests that the holotype (MH1) 

and the paratype (MH2) of the newly described Au. sediba species will in due course be 

represented by complete skeletons. 
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Appendix 1. Hominin specimens, with a description of their anatomy and provenance in the deposit. 

Specimen Element Individual Origin Ex situ/In situ 

UW88-31 Fragment of the right parietal MH1 Decalcified sediment, Facies D In situ 

UW88-32 Fragment of the right temporal MH1 

UW88-16 Right metatarsal MH1? Decalcified sediment, West of Facies D In situ 

UW88-22 Right metatarsal MH1? 

UW88-29 Upper first right incisor MH1 Decalcified sediment (sieving), Facies D In situ 

UW88-30 Upper right canine MH1 

UW88-1 Right clavicle shaft MH1 Clavicle block Ex situ 

UW88-2 Right mandible with canine MH1 

UW88-3 Proximal right ulna MH1 

UW88-6 Anterior fragment of the right ilium MH1 

UW88-7 Posterior fragment of the right ilium MH1 

UW88-8 Right hemi-mandible MH1 

UW88-14 Left ischium MH1 

UW88-9 Cervical vertebra MH1 

UW88-11 Thoracic vertebra MH1 

UW88-12 Distal epiphysis of the right radius MH1 

UW88-13 Distal fragment of a right rib MH1 

UW88-17 Rib fragment MH1 
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UW88-113 Fragmentary right acromion process MH1 

UW88-4 Proximal right femur MH1 miner’s dump Ex situ 

UW88-5 Proximal right femur MH1 

UW88-39 Proximal right femur MH1 

UW88-89 Right femoral shaft MH1 

UW88-42 Right humeral shaft MH1 Skull block Ex situ 

UW88-35 Left humeral head MH1 

UW88-50 Skull MH1 

UW88-88 Distal right humerus MH1 Ilium block Ex situ 

UW88-102 Left ilium MH1 

no number Left femur MH1 UW88-B051 Ex situ 

no number Left clavicle MH1 

no number Fibula MH1 

no number Left hemi-mandible MH1 

no number Distal right ulna MH1 

no number Intermediate rib MH1 

no number Intermediate rib MH1 

no number Intermediate rib MH1 

no number Possible humeral shaft MH1 

no number Radius/Rib MH1 
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no number Possible distal humerus MH1 

no number Tibia/distal femur MH1 

no number Hand/foot bone MH1 

no number Hand/foot bone MH1 

no number Hand/foot bone MH1 

no number Hand/foot bone MH1 

no number Hand/foot bone MH1 

UW88-152 First lumbar vertebra MH1 UW88-B245 Ex situ 

UW88-155 Intermediate rib MH1 

UW88-41 Intermediate right rib MH1 miner’s dump Ex situ 

UW88-86 Proximal right rib MH1 

UW88-67 Ilium fragment MH1 miner’s dump Ex situ 

UW88-206 Ilium fragment MH1 miner’s dump Ex situ 

UW88-27 Pelvic fragment MH1 miner’s dump Ex situ 

UW88-35 Possible scapula fragment MH1 miner’s dump Ex situ 

UW88-68 Scapula fragment MH1 miner’s dump Ex situ 

UW88-197 Left scapula fragment MH1 UW88-B057 Ex situ 

UW88-112 Right metacarpal MH1 miner’s dump Ex situ 

UW88-34 Right humeral head MH1 miner’s dump Ex situ 

UW88-130 Distal left ulna MH1 miner’s dump Ex situ 
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UW88-18 Radius fragment MH1 miner’s dump Ex situ 

UW88-75 Radius fragment MH1 miner’s dump Ex situ 

UW88-26 Long bone fragment MH1 miner’s dump Ex situ 

UW88-77 Long bone fragment MH1 miner’s dump Ex situ 

UW88-148 First right rib MH1 miner’s dump Ex situ 

UW88-74 Distal rib fragment MH1 miner’s dump Ex situ 

UW88-211 Intermediate rib fragment MH1 miner’s dump Ex situ 

UW88-141 Possible right rib fragment MH1 miner’s dump Ex situ 

UW88-76 Sternal end of a rib MH1 miner’s dump Ex situ 

UW88-71 Fragmentary cervical vertebra MH1 miner’s dump Ex situ 

UW88-92 Lumbar vertebra MH1 miner’s dump Ex situ 

UW88-37 Thoracic vertebra MH1 miner’s dump Ex situ 

UW88-69 Thoracic vertebra MH1 miner’s dump Ex situ 

UW88-70 Thoracic vertebra MH1 miner’s dump Ex situ 

UW88-90 Thoracic vertebra MH1 miner’s dump Ex situ 

UW88-72 Cervical vertebra MH1 miner’s dump Ex situ 

UW88-93 Cervical vertebra MH1 miner’s dump Ex situ 

UW88-73 Vertebra MH1 miner’s dump Ex situ 

UW88-28 Scapula MH2 Arm block (UW88-B043) 

Facies D 

In situ 

 UW88-57 Right humerus MH2 
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UW88-62 Right ulna MH2 

UW88-85 Right radius MH2 

UW88-172 Manubrium MH2 

UW88-63 Distal right femur MH2 

UW88-198 First right rib MH2 

UW88-58 Second right rib MH2 

UW88-61 Intermediate right rib MH2 

UW88-154 Intermediate rib MH2 

UW88-59 Rib fragment MH2 

UW88-60 Rib fragment MH2 

UW88-143 Right rib fragment MH2 

UW88-144 Right rib fragment MH2 

UW88-145 Right rib fragment MH2 

UW88-165 Right rib fragment MH2 

UW88-119 First right metacarpal MH2 

UW88-115 Second right metacarpal MH2 

UW88-116 Third right metacarpal MH2 

UW88-117 Fourth right metacarpal MH2 

UW88-118 Fifth right metacarpal MH2 

UW88-95 Right hamate MH2 
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UW88-156 Right capitate MH2 

UW88-158 Right scaphoid MH2 

UW88-159 Right lunate MH2 

UW88-163 Right triquetral MH2 

UW88-160 First proximal right phalanx MH2 

UW88-164 Second proximal right phalanx MH2 

UW88-120 Third proximal right phalanx MH2 

UW88-108 Fourth proximal right phalanx MH2 

UW88-121 Fifth proximal right phalanx MH2 

UW88-123 Second intermediate right phalanx MH2 

UW88-161 Third intermediate right phalanx MH2 

UW88-122 Fourth intermediate right phalanx MH2 

UW88-162 Fifth intermediate right phalanx MH2 

UW88-124 First distal right phalanx MH2 

UW88-79 Right patella MH2 Knee articulated, top of the arm block 

(UW88-B043) 

Facies D 

In situ 

UW88-100 Right patella MH2 

UW88-64 Proximal right tibia MH2 

UW88-78 Proximal right tibia MH2 

UW88-56 Cranial fragment of the right scapula  MH2 Scapula fragment block Ex situ 

 UW88-54 Right hemi-mandible (fragment) MH2 
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UW88-19 Second upper left molar MH2 

UW88-20 Third upper left molar MH2 

UW88-38 Right clavicle MH2 

UW88-83 Cervical vertebra MH2 

UW88-133 Right pelvis MH2 Pelvis block (UW88-B079) Ex situ 

 UW88-134 Left pelvis (fragment) MH2 

UW88-135 Left pelvis (fragment) MH2 

UW88-137 Sacrum MH2 

UW88-138 Last lumbar (fragment) MH2 

UW88-153 Last lumbar (fragment) MH2 

UW88-97 Distal right tibia MH2 Ankle Ex situ 

 UW88-99 Right calcaneum MH2 

UW88-98 Right talus MH2 

UW88-43 Thoracic vertebra MH2 Thoracic vertebrae block 1 Ex situ 

 UW88-44 Thoracic vertebra MH2 

UW88-45 Rib MH2 

UW88-46 Rib MH2 

UW88-47 Rib MH2 

UW88-48 Rib MH2 

UW88-114 Fragmentary thoracic vertebra MH2 
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UW88-177 Possible metatarsal fragment MH2? Thoracic vertebrae block 2 

(UW88-B742) 

Ex situ 

 UW88-178 Second proximal left rib MH2 

UW88-179 Pedal distal phalanx MH2 

UW88-180 Sesamoid MH2 

UW88-181 Proximal part of the first metatarsal MH2 

UW88-183 Unidentifiable bone fragment MH2 

UW88-185 Unidentifiable bone fragment MH2 

UW88-187 Proximal part of the first left rib MH2 

UW88-188 Thoracic vertebra MH2 

UW88-189 Thoracic vertebra MH2 

UW88-190 Thoracic vertebra MH2 

UW88-191 Thoracic vertebra MH2 

UW88-125 Fragment of the sacrum MH2 Lumbar vertebra block Ex situ 

UW88-126 Lumbar vertebra MH2 

UW88-127 Lumbar vertebra MH2 

UW88-55 Left mandible with third molar MH2 miner’s dump Ex situ 

UW88-55b Fragment of the left mandible MH2 

UW88-23 Proximal left fibula MH2 miner’s dump Ex situ 

UW88-84 Proximal left fibula MH2 

UW88-146 Fragmentary right fibula shaft MH2 miner’s dump Ex situ 
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UW88-202 Fragmentary right fibula shaft MH2? West of Facies D Ex situ 

UW88-103 Left acromion (scapula) MH2 miner’s dump Ex situ 

UW88-104 Left scapula fragment (glenoid) MH2 miner’s dump Ex situ 

UW88-101 Left humeral head MH2 miner’s dump Ex situ 

UW88-87 Distal left femur MH2 miner’s dump Ex situ 

UW88-94 Lateral end of the left clavicle MH2 miner’s dump Ex situ 

UW88-10 Left pubis (fragment) MH2 miner’s dump Ex situ 

UW88-136 Right pelvis (fragment) MH2 miner’s dump Ex situ 

UW88-65 Distal right fibula MH2 miner’s dump Ex situ 

UW88-24 Proximal left tibia MH2 miner’s dump Ex situ 

UW88-192 Rib fragment MH2 UW88-B1003 Ex situ 

UW88-193 Rib fragment MH2 

UW88-209 Rib fragment MH2 miner’s dump Ex situ 

UW88-210 Rib fragment MH2 miner’s dump Ex situ 

UW88-96 Fragmentary cervical vertebra MH2 miner’s dump Ex situ 

UW88-182 Proximal left metacarpal MH2 UW88-B894 Ex situ 

UW88-157 Unidentifiable hand bone MH2 miner’s dump Ex situ 

UW88-91 Proximal part of the pedal left phalanx MH2 miner’s dump Ex situ 

UW88-150 Left capitate MH2 miner’s dump Ex situ 

UW88-106 Left hamate MH2 miner’s dump Ex situ 
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UW88-107 Left triquetral MH2 miner’s dump Ex situ 

UW88-201 Molar crown fragment MH2 miner’s dump Ex situ 

UW88-175 Proximal right femur MH3 miner’s dump Ex situ 

UW88-176 Unidentified bone fragment MH3 

UW88-21 Distal right tibia MH4 miner’s dump Ex situ 

UW88-40 Proximal right tibia MH4 

UW88-81 Distal right humerus MH5 Facies E In situ 

UW88-82 Proximal right ulna MH5 

No number Mandible with teeth MH6 Facies F, Pit 2 In situ 

UW88-33 Fifth proximal metatarsal MH? miner’s dump Ex situ 

UW88-149 Distal radius MH? miner’s dump Ex situ 

UW88-150 Distal fibula MH? miner’s dump Ex situ 

UW88-151 Femoral head fragment MH? miner’s dump Ex situ 

UW88-169 Fragmentary mandible MH? Facies F, Pit 2 In situ 

UW88-208 Fragment ulna shaft MH? Facies D In situ 

UW88-219 Fragment ulna shaft MH? 

UW88-186 Mandible fragment MH? miner’s dump Ex situ 

UW88-213 Intermediate phalanx MH? miner’s dump Ex situ 

UW88-218 Unfused epiphysis MH? miner’s dump Ex situ 

UW88-194 Possible pelvic fragment MH? miner’s dump Ex situ 
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UW88-195 Possible pelvic fragment MH? 

UW88-199 Rib fragment MH? miner’s dump Ex situ 

UW88-205 Rib fragment MH? miner’s dump Ex situ 

UW88-140 Ulna shaft fragment MH? miner’s dump Ex situ 

UW88-204 Fibula shaft fragment MH? miner’s dump Ex situ 

UW88-207 Fibula shaft fragment MH? miner’s dump Ex situ 

UW88-217 Fibula shaft fragment MH? miner’s dump Ex situ 

UW88-220 Fibula shaft fragment MH? miner’s dump Ex situ 

UW88-212 Rib fragment MH? miner’s dump Ex situ 

UW88-214 Rib fragment MH? miner’s dump Ex situ 

UW88-215 Rib fragment MH? miner’s dump Ex situ 

UW88-216 Right clavicle fragment MH? miner’s dump Ex situ 

UW88-139 cuneiform MH? miner’s dump Ex situ 
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Appendix 2. Coordinates of the in situ hominin remains. 

Specimen number Element Individual 
Coordinates 

E (x) N (y) Depth (z) 

UW88-31 Vault fragment (right parietal) MH1 -80313.00 2865448.24 1442.95 

UW88-32 Vault fragment (right temporal) MH1 -80313.00 2865448.24 1442.95 

UW88-29 Upper right incisor MH1 -80313.20 2865448.44 1443.00 

UW88-30 Upper right canine MH1 -80313.20 2865448.44 1443.00 

UW88-16 Right metatarsal MH1? -80311.71 2865448.74 1441.69 

UW88-22 Right metatarsal MH1? -80311.71 2865448.74 1441.69 

UW88-B043 Arm block-north corner MH2 -80312.90 2865448.69 1442.49 

UW88-B043 Arm block-south corner MH2 -80313.15 2865449.20 1442.19 

UW88-B043 Arm block-west corner MH2 -80312.84 2865449.01 1442.30 

UW88-B043 Arm block-east corner MH2 -80311.71 2865449.00 1442.51 

UW88-B043 Arm block-centre MH2 -80312.43 2865448.94 1442.35 

UW88-202 Fibula shaft fragment MH2? -80316.51 2865448.50 1444.06 

UW88-175 Proximal right femur MH3 ND ND ND 

UW88-176 Unidentified bone fragment MH3 ND ND ND 

UW88-81 Distal right humerus MH3 ND ND ND 

UW88-82 Proximal right ulna MH3 ND ND ND 

UW88-169 Mandible MH5 -80310.79 2865441.95 1443.69 
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No number Mandible with teeth MH6 ND ND ND 

UW88-208 Ulna shaft fragment MH? -80316.95 2865448.30 1444.02 

UW88-219 Ulna shaft fragment MH? -80315.11 2865444.98 1443.81 

ND: not documented 
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Appendix 3. Thesaurus for the faunal database. 

List of abbreviations used throughout the database 

 CO: complete 

 NA: not applicable 

 ND: non documented 

 fgmt: fragment 

List of abbreviations used for the taxonomy 

 ARTIO: artiodactyla 

 AVES: bird 

 BOV: bovid 

 CARN: carnivore 

 CHEL: chelonia 

 LAGO: lagomorpha 

 MAM: mammal 

 MIF: microfauna 

 PERISSO: perissodactyla 

 ROD: rodent 

 SMAM: small mammal 

 UNG: ungulate 

List of abbreviations used for the anatomy (body part, portion and segment) 
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 ACET: acetabulum 

 ACRO: acromion 

 ALV: alveolar surface 

 ANT: anterior 

 ART: articular 

 ATL: atlas 

 AX: axis 

 C: canine 

 CALC: calcaneum 

 CALV: calvarium 

 CARP: carpals 

 CAPIT: capitate 

 CAU: caudal vertebra 

 CLAV: clavicle 

 CORAC: coracoid 

 CRA: cranium (skull+mandible) 

 CER: cervical vertebra 

 CO: complete 

 COX: coxal bone 

 CRA: cranium (skull) 

 CUBO: cuboid 

 CUBO-NAVI: cubo-navicular 
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 CUN: cuneiform 

 D: distal 

 DSH: distal part of the shaft 

 EP: epiphysis 

 FBN: flat bone 

 FEM: femur 

 FIB: fibula 

 fgmt: fragment 

 GLEN: glenoid cavity 

 HAM: hamate 

 HOR: horizontal branch (of the mandible) 

 HUM: humerus 

 I: incisor 

 ILI: ilium 

 ISCH: ischium 

 LBN: long bones 

 LAT: lateral 

 LAT MAL: lateral malleolus 

 LC: lower canine 

 LD: lower deciduous tooth 

 LI: lower incisor 

 LM: lower molar 
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 LPM: lower premolar 

 LUN: lunate 

 LUM: lumbar 

 M: molar 

 MAG: magnum 

 MAN: mandible 

 MANT: mandible with teeth 

 MANUB: manubrium 

 MAX: maxillar 

 MAXT: maxillar with teeth 

 M: molar 

 MDP: manual distal phalanx 

 MMP: manual medial (intermediate) phalanx 

 MPP: manual proximal phalanx 

 META: metapodial 

 MTC: metacarpal 

 MTT: metatarsal 

 OCC: occipital 

 P: proximal part 

 PAT: patella 

 PDP: pedal distal phalanx 

 PELV: pelvis 



383 
 

 PHA: phalanx  

 PM: premolar 

 PMP: pedial medial (intermediate) phalanx 

 POST: posterior 

 PPP: pedial proximal phalanx 

 PROC.: process (for the vertebrae) 

 PSH: proximal part of the shaft 

 PUB: pubis (coxal bone) 

 RAD: radius 

 RADIO-ULN: radio-ulna 

 RIB: rib 

 SAC: sacrum 

 SCAP: scapula 

 SCAPH: scaphoid 

 SES: sesamoid 

 SH: shaft 

 SHBN: short bone 

 SP.PROC.: spinous process (for the vertebrae) 

 STERN: sternum/sternal 

 SURF: surface 

 TAL: talus (astragalus) 

 TARS: tarsal 
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 THO: thoracic vertebra 

 TIB: tibia 

 TRANS.PROC: transversal process (for the vertebrae) 

 TRIQU: triquetral 

 TTH: tooth 

 UC: upper canine 

 UD: upper deciduous tooth 

 UI: upper incisor 

 ULN: ulna 

 UM: upper molar 

 UNC: unciform 

 UPM: upper premolar 

 VER: vertebra 

 ZYG: zygomatic 

Fields of the database 

NUMBERING AND PROVENANCE INFORMATION 

 SITE: Malapa UW-88, consistent with the site number (see Zipfel and Berger, 2009) 

 Number of remains: usually, each individual specimen is recorded under a separate number; however, in the case of specimens below 2 cm 

and not analysed for the taphonomy, several fragments are sometimes recorded under the same specimen number. In the case of 

associated bone (s) and teeth (e.g maxillar or mandible bearing teeth), I have discounted separately the bones and the teeth, in order to take 

into account each of them as a separate specimen. 
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 Suitcase/Box number: for the hominin remains (each of the MH1 and MH2 remains are kept in different suitcases in the lab) and the non-

hominin remains (organised in different boxes in the faunal lab, some of them with a number). 

 Facies: stratigraphic unit of origin (e.g. Facies D, Facies E) of the in situ remains. 

 Ex situ/In situ: blocks in place in the place (in situ), usually they have been given coordinates (for the block) or blocks that have been 

removed by the miners (usually found in the road, along the hole). 

 Specimen number: number given by the people that have identified the faunal remains or from the hominin catalogue (written on the bones 

themselves). I have created sub-numbers when several remains were recorded under the same number (for example specimen 1142 is 

composed of 5 bone fragments, which therefore become 1142a, 1142b and so on, always going from the longest fragment to the smallest; 

hence 1142a is the largest fragment and 1142 e is the smallest). 

 Individual: name of the individual (only for the hominins: MH1 for the juvenile and MH2 for the adult) 

 Block number: catalogue number of the block in which the specimen was recovered; it follows the same numbering system UW88-B... 

 Coordinates (east, north and height): georeferenced coordinates recorded by the theolodite laser, given in metres. 

 Pt: point recorded in the theodolithe laser, corresponding to the coordinates 

IDENTIFICATION (ANATOMY) 

 Nature of the remains: bone, tooth, horn corn, shell, snail, carapace, stone, coprolite 

 ORDER: for the faunal remains  

 FAMILY 

 TRIBE: only used for the bovids 

 TAXON: the exact species when identified or the class size, for the mammals, carnivores, bovids and ungulates (following the classification of 

Brain, 1973). 

 ANAT: body region to which the bone belongs to (see above for all abbreviations used in that column) 

 BODY PART: skeleton element (see above for all abbreviations used in that column) 
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 PORTION: portion of the bone that is preserved (e.g. proximal shaft, distal epiphysis, transversal process, etc) (see above for all 

abbreviations used in that column) 

 SEGMENT: landmark observed on the fragment allowing the identification (e.g. articular surface, see above for all abbreviations used in that 

column) 

 AGE: identified for the hominins and other faunal remains, when possible (e.g. in the case of long bones with epiphysis unfused or deciduous 

teeth); A: adult, O: old invididual; J: juvenile and I: infant. 

 SEX: only identified for the hominins (M: male and F: female) 

 FR/CO: fragmentary (FR) or complete (CO) (usually not mentioned in the fauna database) 

 SIDE: right (R), left (L) or midline (/) 

 Conjoins with/Joins to: with ... (number of a specimen) when the specimen refits to it or belongs to the same block/individual;to...(number 

of specimen(s)) when it joins two specimens. 

 COMMENTS: any kind of general comment concerning a specificity of the specimen. 

BREAKAGE PATTERN 

 SPONG/COMP: proportion of spongy and compact bone for each specimen. 

SPONG : exclusively spongy bone 

COMP: exclusively compact bone 

SPONG + COMP: spongy and compact bone, with a greater portion of spongy bone 

COMP + SPONG: spongy and compact bone, with a greater portion of compact bone 
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 BREAK 1 (PROX): breakage pattern of the anatomical proximal part of the specimen when identifiable) or, if non identifiable, on one of the 

end of the longest axis (Figure 1) 

 BREAK 2 (DIST): breakage pattern of the anatomical distal part of the specimen when identifiable) or, if non identifiable, on the other end of 

the longest axis (Figure 1) 

 BREAK 3 (LAT): breakage pattern of the anatomical lateral part of the specimen when identifiable) or, if non identifiable, on one of the 

lateral edges (Figure 1) 

 BREAK 4 (MED): breakage pattern of the anatomical medial part of the specimen when identifiable) or, if non identifiable, on the other 

lateral edge (Figure 1) 

 

Figure 1. Description of the different edges. 
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DIMENSIONS 

All the measurements are given in millimetres. 

 LENGTH 

 WIDTH 

 THICK: thickness 

 CompBoneThick: thickness of the compact bone 

 CONCH.SCAR: conchoidal scar (single; multiple isolated; multiple adjacent). 

TAPHONOMY 

 WEATHERING: stages 1 to 5 (cf. Behrensmeyer, 1975) 

 CARN: carnivore damage (only pits are observed) 

 RODENT: rodent tooth damage (large or small) 

INVERTEBRATE DAMAGE 

 YES/NO: presence or absence of any kind of insect modification 

 Inters.Str.: intersecting striations (YES/NO) 

 Inters.Str. in Pit: pit with intersecting striations at the bottom (YES/NO) 

 Star-pit: pit surrounded by parallel striations (YES/NO) 

 Boring (YES/NO) 

 Paral Str.: parallel striations (YES/NO)  

ABIOTIC DAMAGE 
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 ETCHING: (YES/NO) 

 TRAMPLING: (YES/NO) 

 ROOTS: (YES/NO) 

 Calc Crystals: crystals of calcite formed either on the surface of the bone or inside (in the medullar cavity or in the vessels). 

 Decalcification: the bone presents a white surface, because the calcium contained in the bone has disappeared (YES/NO) 

 Concretion: mineral concretion present on the surface of the bone (YES/NO) 

 Abrasion: any kind of chemical abrasion (due to water for instance but not only). 

 Manganese: NO (absent), slightly (only a few dots), slightly to moderate (abundant dots), moderate (half the surface of the specimen is 

covered), moderate to heavily (the majority of the surface is covered with some parts of the surface still visible), and heavily (the whole 

surface of the specimen is covered) 

 Red traces: reddish (the colour varies from orangey to dark red) dots and patches observed on the surface of some specimens (YES/NO) 

ANTHROPOGENIC MODIFICATIONS 

 BURNING(natural or anthropogenic origin) Different colour stages (from slightly burned to heavily burned: maroon, black, grey, white 

 PREPARATION: any mark produced by the air drillt used during manual preparation, usually associated with the removal of the specimen 

from the calcified sediment; it consists of pits and/or scratches 

 POLISH: the bone or part of it is covered with polish that makes it difficult to see the bone surface 

 PLASTICINE: presence of specific damage due to the use of plasticine (surface of the bone is dissolved; bits of plasticine are usually still 

present) 

 PICTURE: documents whether or not a picture of the specimen exists (either in the Microsoft Access database or in a separate file, also 

available) 

 COMMENT: any kind of comment concerning the taphonomy of the specimen 
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Appendix 4. List of antimeric sets of bones present in the Malapa non-hominin faunal assemblage. 

Specimen number TAXONOMY BONE PORTION SIDE 

UW88-802 Felid (cf.Dinofelis) radius distal right 

UW88-803 Felid (cf.Dinofelis) radius distal left 

UW88-643 Lagomorph (Lepus capensis) femur complete right 

no number Lagomorph (Lepus sp.) femur near complete left 

UW88-673 Lagomorph (Lepus sp.) ilium complete left 

UW88-769 Lagomorph (Lepus sp.) pelvis complete right 

no number Lagomorph (Lepus sp.) mandible with teeth near complete right 

no number Lagomorph (Lepus sp.) mandible with teeth near complete left 

UW88-748 Bovid class II femur complete right 

UW88-1181 Bovid class II femur near complete left 

UW88-1184 Bovid class III humerus complete right 

UW88-1236 Bovid class III humerus proximal left 

UW88-507 Bovid class III humerus proximal right 

no number Bovid class III humerus proximal left 

UW88-1213 Bovid class III radius proximal right 

UW88-714 Bovid class III radius proximal left 

UW88-1223 Bovid class II tibia complete right 
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no number Bovid class II tibia complete left 

UW88-1247 Bovid class III metacarpal complete right 

UW88-535 Bovid class III metacarpal complete left 

UW88-1266 Bovid class II scapula blade near complete right 

UW88-1234 Bovid class II scapula blade near complete left 

UW88-518 and 519 Bovid class III (Tragelaphus sp.) mandible with teeth near complete right 

UW88-929 Bovid class III (Tragelaphus sp.) mandible with teeth near complete left 
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Appendix 5. Quantitative data about the available non-hominin faunal assemblage. 

PERCENTAGE OF SURVIVAL FOR BOVID BONES AND TEETH 

Anatomical element N NISP MNE % survival 

Skulls 1 16 4 44.4 

Hemi-mandibles 2 10 7 38.9 

Teeth 32 64 41 14.2 

Sternum 3 1 1 3.7 

Ribs 26 34 20 8.6 

Cervical vertebrae  7 8 8 12.7 

Thoracic vertebrae 13 20 19 16.2 

Lumbar vertebrae 6 10 7 13 

Caudal vertebrae 19 5 5 2.9 

Total vertebrae 45 32 28 11.1 

Sacrum 1 2 2 22.2 

Coxae 2 11 6 33.3 

Scapulae 2 9 5 27.8 

Humeri 2 8 6 38.9 

Radii 2 10 6 33.3 
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Ulnae 2 5 5 27.8 

Carpals 12 9 9 8.3 

Femurs 2 16 9 50 

Patellae 2 1 1 5.6 

Tibiae 2 7 7 38.9 

Lateral malleolus 2 1 1 5.6 

Tarsals 10 24 24 26.7 

Metapodials 4 25 11 30.6 

Phalanges 24 42 33 15.3 

TOTAL 177 322 231 22.6 

PERCENTAGE OF SURVIVAL FOR CARNIVORE BONES 

Anatomical element N NISP MNE % survival 

Skulls 1 7 5 35.7 

Hemi-mandibles 2 7 5 17.9 

Ribs 26 11 11 3.0 

Cervical vertebrae  7 2 2 2.0 

Thoracic vertebrae 13 11 11 6.0 

Lumbar vertebrae 7 7 7 8.3 
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Caudal vertebrae 21 2 2 3.2 

Total vertebrae 48 21 21 4.2 

Sacrum 1 2 2 14.3 

Scapulae 2 1 1 3.6 

Coxae 2 4 4 14.3 

Humeri 2 2 2 7.1 

Radii 2 5 5 17.8 

Ulnae 2 2 2 7.1 

Carpals 14 5 5 2.6 

Femurs 2 6 5 17.8 

Patellae 2 0 0 0 

Tibiae 2 3 3 10.7 

Fibulae 2 1 1 3.6 

Tarsals 14 10 10 5.1 

Metapodials 18 22 21 8.3 

Phalanges 52 15 15 2.1 

TOTAL 194 123 118 8.9 

PERCENTAGE OF SURVIVAL FOR CARNIVORE TEETH 
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Unit Felids Hyaenids Canids Viverrids/Herpestids TOTAL 

Q 28 34 42 38 142 

NISP 7 11 5 16 36 

MNE 7 11 5 16 36 

% survival 5 10.8 6 10.5 8.2 

 

Appendix 6. Estimation of the Minimum Number of Individuals (MNI) represented by complete or near complete skeletons. 

Species Individuals/Specimens MNI 

Hominins MH1 1 

 MH2 1 

Bovid class II Various elements in articulation, partial skeleton, 3 antimeric 

sets of bones, one near complete foetus in articulation 

2 

Bovid class III (Tragelaphus sp.) Various elements in articulation, partial skeleton, 5 antimeric 

sets of bones 

1 

Small carnivore (possible genet) Complete upper body-part in articulation and near articulation 1 

Lagomorph (Lepus sp.) Articulated bones, 3 antimeric sets of bones 1 

TOTAL - 7 
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Appendix 7. Hypothetical position of the different ex situ remains (snapshots from Avizo 6.3). 

PLACING THE IN SITU REMAINS 

 

XZ view (from the south) 
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YZ view (from the east) 
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XY view (from the top) 
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REFITTING MH1 SKULL AND ILIUM BLOCKS 

 

XZ view (from the south) 
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YZ view (from the east) 
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XY view (from the top) 
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REFITTING MH1 CLAVICLE BLOCK 

Hypothesis 1 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top) 
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Hypothesis 2 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top) 
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Hypothesis 3 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 4 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 5 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 6 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 7 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 8 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 9 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 10 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 11 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 12 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 13 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 14 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 15 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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Hypothesis 16 

 

Top left: XZ view (from the south); top right: zoom of the XZ view; bottom left: zoom of the YZ view (from the east); bottom right: 
zoom of the XY view (from the top). 
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REFITTING MH1 RIGHT FEMUR 

Leg extended 

 

XZ view (from the south): no movement (top left), movement to the east (top right), movement to the west (bottom left) and 
movement to the south (bottom right). 
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YZ view (from the west, images on the left; from the east, images on the right): no movement (top left), movement to the east (top 
right), movement to the west (bottom left) and movement to the south (bottom right). 
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XY view (from the top): no movement (top left), movement to the east (top right), movement to the west (bottom left) and 
movement to the south (bottom right). 
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Leg flexed 

 

XZ view (from the south): no movement (top left), movement to the east (top right), movement to the west (bottom left) and 
movement to the south (bottom right). 
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YZ view (from the west, images on the left; from the east, images on the right): no movement (top left), movement to the east (top 
right), movement to the west (bottom left) and movement to the south (bottom right). 
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XY view (from the top): no movement (top left), movement to the east (top right), movement to the west (bottom left) and 
movement to the south (bottom right). 
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REFITTING MH2 ‘SCAPULA FRAGMENT BLOCK’ 

     

Left: XZ view (from the south); right: YZ view (from the east) 

Remark: the scapula fragment, mandible and clavicle have been lightened in these figures picture to facilitate the understanding of 

the figure. In the final model, they are shown in the same color as the bones from the arm block, since their exact position is known. 
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REFITTING MH2 CERVICAL VERTEBRA (UW88-96) 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom: zoom of the YZ view (from the east). 
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REFITTING MH2 ANKLE 

Hypothesis 1 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom left: YZ view (from the east); bottom: XY 
view (from the top). 
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Hypothesis 2 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom left: YZ view (from the east); bottom: XY 
view (from the top). 
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REFITTING MH2 SACRUM AND ILIUM 

Hypothesis 1 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom left: YZ view (from the east); bottom: XY 
view (from the top). 
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Hypothesis 2 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom left: YZ view (from the east); bottom: XY 
view (from the top). 
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REFITTING MH2 THORACIC BLOCKS 1 and 2 

Hypothesis 1 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom left: YZ view (from the east); bottom: XY 
view (from the top). 
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Hypothesis 2 

 

Top left: XZ view (from the south); top right: zoom of the XZ view (from the north); bottom left: YZ view (from the east); bottom: XY 
view (from the top). 
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Appendix 6. Estimation of the Minimum Number of Individuals (MNI) accumulated through a death trap scenario at Malapa 

Species Individuals/Specimens MNI 

Hominins MH1 1 

 MH2 1 

Bovid class II Various elements in articulation, partial skeleton, 3 antimeric sets of bones, 
one near complete foetus in articulation 

2 

Bovid class III (Tragelaphus sp.) Various elements in articulation, partial skeleton, 5 antimeric sets of bones 1 

Small carnivore (possible genet) Complete upper body-part in articulation and near articulation 1 

Lagomorph (Lepus sp.) Articulated bones, 3 antimeric sets of bones 1 

TOTAL - 7 

 


