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Résumé

Ces dernières années ont vu naître un intérêt grandissant pour les décodeurs correcteurs d'erreurs opérant sur des circuits non fiables. En effet, l'inévitable augmentation de la densité d'intégration des circuits électroniques et les exigences croissantes en termes de consommation d'énergie, ne peuvent être soutenus que par l'utilisation de composants basseconsommation, dont la fiabilitéi n t r i n s èque sera considérablement réduite. Sachant que les codes correcteurs d'erreurs sont indispensables à la transmission et au stockage fiables de l'information numérique, il devient primordial d'étudier leur robustesse en présence d'erreurs introduites par le circuit.

Dans cette thèse nous nous intéressons aux décodeurs itératifs par passage de messages (MP) des codes LDPC. Plus particulièrement, nous nous intéressons aux décodeurs à précision finie Min-Sum (MS), Self-Corrected Min-Sum (SCMS) et Stochastique. Les principaux objectifs de cete thèse sont : (1) de développer un cadre théorique afin de comprendre les limites du décodage itératif sur des circuits bruités, (2) d'évaluer la capacité de correction des décodeurs susmentionnés lorsqu'ils opèrent sur des circuits bruités, et (3) d'identifier des solutions pratiques capables d'améliorer la robustesse des décodeurs LDPC aux erreurs introduites par le circuit.

Nous commençons par effectuer une analyse théorique des décodeurs bruités en utilisant la technique d'évolution de densité. Cette étude ne sera appliquée qu'au décodeur MS car l'évolution de densitén epe u ts ef a i r eq u epo u rd e sd écodeurs sans mémoire. Le principal résultat de cette analyse est que le décodeur MS est capable de corriger des erreurs lorsque plusieurs unités de calcul sont bruitées. Nous déterminons également les valeurs maximales des paramètres d'erreurs des composants bruités pour lesquels le décodeur MS est capable d'atteindre une probabilité d'erreur cible.

Des simulations Monte-Carlo ont ensuite été effectuées afin de déterminer les performances des décodeurs LDPC en longueur finie. Les résultats montrent que les décodeurs SCMS et stochatisques sont très robustes aux erreurs transitoires pour un large panel de paramètres de bruit du circuit. Nous évaluons en outre l'impact de différentes implémentations matérielles sur les performances des décodeurs. Nous étudions aussi les décodeurs en présence de composants arithmétiques imprécis, obtenus en élaguant le circuit idéal. 
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Context and Motivations

In traditional models of communication or storage systems with error correction coding, it is assumed that the operations of an error correction encoder and decoder are deterministic and that the randomness exists only in the transmission or storage channel. However, with the advent of nanoelectronics, the reliability of the forthcoming circuits and computation devices is becoming questionable. Indeed, due to huge increases in density integration, lower supply voltages, and variations in the technological process, MOS and emerging nanoelectronic devices will be inherently unreliable. Besides, a significant challenge to current CMOS design is to lower the energy consumption by several factors of magnitude, with the obvious goal of energy preservation. Diminishing the energy consumption can be addressed by aggressive supply voltage scaling, with the drawback that bringing the signal level closer to the noise level reduces noise immunity and leads to unreliable computing. If the digital logic in the decoder is built from faulty components, the errors occurring at the gate level affect the operations performed by the decoder, and then reduce the reliability of the whole system. It is then becoming crucial to design and analyze error correcting decoders able to provide reliable error correction even if they are built out of unreliable components.

Faults experienced by semiconductor devices fall into three main categories: permanent, intermittent, and transient. Permanent faults are irreversible faults caused by manufacturing defects, device wear-out, or heavy ion radiation. Such defects can be handled using testing and reconfiguration [46], though this presents increasing challenges as technology scales. Intermittent faults occur because of unstable or marginal hardware. Many times, intermittent faults precede the occurrence of permanent faults. Transient faults, also known as soft errors, may be caused to different physical reasons (e.g. neutrons and alpha particles striking the silicon, electromagnetic interference, thermal fluctuations, timing jitter) [3-6, 25, 45, 48], but their common characteristic is that they manifest themselves at particular time steps, and do not necessarily persist for later times. Throughout this thesis, by unreliable or noisy circuit, we mean a circuit that that is subject to transient faults, and therefore behaves in a probabilistic way. However, the characterization of the probabilistic behavior of the circuit (e.g. deriving statistical error models) is out of the scope of this thesis. We will rely instead on theoretical error models, known as von N e u m a n nt y p eo fe r r o r s . Such a model assumes that errors are independent of the history of the circuit (i.e. previously processed data), and they occur by corrupting the correct result with some error pattern that follows a predetermined distribution.

Taylor [61,62] was the first to investigate error correction decoders made of unreliable components, in the context of fault-tolerant storage system architectures. His results were refined by Kuznetsov [36]. In the Taylor and Kuznetsov (TK) model, the information is stored in coded form. The registers in which the bits are stored are assumed to be unreliable. These registers are connected to a correcting circuit, which periodically updates the values in the registers according to some decoding scheme. The correcting circuit is also assumed to be built from faulty components. Taylor and Kuznetsov showed that such faulty memory systems have non-zero storage capacity. Roughly, the storage capacity is the ratio between the amount of data stored in the memory and the number of faulty components of the memory (consisting of both noisy registers and the correcting circuit). Taylor also argued that no decoding scheme other than iterative Low-Density Parity-Check (LDPC) decoding [22] can achieve non-zero capacity.

Except the pioneered works by Taylor and Kuznetsov on reliable memories, later generalized in [12,64] to the case of hard-decision decoders, this new paradigm of noisy decoders has merely not been addressed until recently in the coding literature. However, over the last years, the study of error correcting decoders running on noisy hardware has attracted more and more interest in the coding community. Most of the recent works focus on LDPC and Turbo decoders, widely used in modern communication systems. In [67] and [59] hardware redundancy is used to develop fault-compensation techniques, able to protect the decoder against the errors induced by the noisy components of the circuit. In [30], a class of modified Turbo and LDPC decoders has been proposed, able to deal with the noise induced by the failures of a low-power buffering memory that stores the input soft bits of the decoder. Very recently, the effect of noisy processing on messagepassing iterative LDPC decoders has been characterized. In [63], the concentration and convergence properties were proved for the asymptotic performance of noisy messagepassing decoders, and density evolution equations were derived for the noisy Gallager-A and Belief-Propagation decoders. In [28,[68][69][70], the authors investigated the asymptotic behavior of the noisy Gallager-B decoder defined over binary and non-binary alphabets. The Min-Sum decoding under unreliable message storage has also been investigated in [2].

The main goal of this thesis is to investigate practical LDPC decoders operating on error prone devices. Unlike previous works, which emulate the noisy implementation of the iterative decoder by passing each of the exchanged messages through a noisy channel, we consider von Neumann type of errors that occur within the arithmetic or logic units of the decoder. The question to answer is whether or not iterative message-passing decoders can cope with errors occurring at the circuit-level, thus deciding which of the following two conflicting intuitions is correct: Yes, they can! Decoders have the ability to correct errors due to transmission noise; therefore it is expected that they would also be able to cope with errors induced by the probabilistic behavior of the circuit, at the price of some loss in error correction efficiency. No, they can't! Unlike noisy channels that generate transmission errors, faulty circuits generates "computational errors", which may propagate and accumulate in a catastrophic way through the iterative decoding process.

Main Contributions and Thesis Outline

This thesis focuses on the class of LDPC codes decoded with iterative message-passing (MP) decoders running on faulty hardware. Although the two intuitions mentioned in the previous section are conflicting, both can be true! Whether the first of the second intuition holds true depends on the number of errors induced by the faulty circuit. While this might seem commonplace at first glance, it is nonetheless a remarkable fact that iterative decoders can cope with faulty circuits. This may only happen if the number of errors corrected at each decoding iteration (run on the faulty circuit) is greater than the number of errors induced by the faulty circuit itself. This prevents the accumulation of hardware-induced errors and allows preserving the error rate level within certain limits, even if infinitely many error-prone decoding iterations are run.

To make the above intuition rigorous, the main objectives of this thesis are (1) to develop a theoretical framework that allows understanding the limits of iterative MP decoding with faulty hardware, (2) to assess the error correction performance of practical LDPC codes under noisy MP decoding, and (3) to identify practical solutions capable of increasing the decoder robustness to hardware noise.

Three main MP decoders are considered in this thesis, as follows:

• The Min-Sum (MS) decoder -widely implemented in real communication systems to overcome the computational complexity issue of the Belief Propagation (BP) decoder,

• The Self-Corrected Min-Sum (SCMS) decoder -an improved version of the MS decoder, which makes use of a memory mechanism in order to detect and discard unreliable messages during the iterative decoding process,

• The Stochastic decoder -a stochastic computing based implementation of the BP decoder.

In order to address the aforementioned objectives (1)-(3), we proceed as follows.

(1) We first focus on the theoretical analysis and understanding of noisy decoders, by using a noisy density evolution (DE) approach. Since it is very difficult to apply DE to decoding functions with memory, this analysis is restricted to the noisy version of the MS decoder. The main conclusion of this analysis is that the MS decoder is able to operate when the different computational units are noisy. We show that the MS decoder can achieve a target error probability assuming that the hardware noise parameters are below a non-zero maximum tolerable value, which can be precisely determined by DE.

(2) Additionally, the practical performance of the considered decoders is also verified through Monte-Carlo simulation in the non-asymptotic case, and for more practical error configurations. Our results show that both SCMS and Stochastic decoders are very robust to transient errors, providing nearly the same performance as their noiseless counterparts for a wide range of values of the hardware noise parameters. We also investigate the impact of specific hardware implementations -exploiting different scheduling strategieson the error correction performance of noisy MS and SCMS decoders, and conduct a study on a complementary error scenario, consisting of the imprecise arithmetic framework.

(3) Our investigations on noisy SCMS and Stochastic decoders reveal the significant role that memory mechanisms play in increasing the robustness to hardware noise. Although such memory mechanisms (e.g. the self correction rule within SCMS, or edge-memories within Stochastic decoder) are themselves faulty, they allow detecting or correcting a number of errors that largely surpass the number of errors induced by their implementing circuits. Moreover, we also focus on means to improve the MS and SCMS reliability, by protecting critical bits within the decoding process. The benefits of this approach are assessed through both asymptotic DE analysis and finite-length Monte-Carlo simulation.

Chapter 2: LDPC Codes and Iterative Decoding

Chapter 2 provides a brief introduction to LDPC codes and iterative MP decoders. We first introduce the bipartite graph representation and the message-passing formalism, and then focus on some specific decoders that will be used in this thesis, namely the Belief Propagation (BP), as well as the Min-Sum (MS) and several MS-based decoders. The asymptotic analysis of MP decoders, based on the density evolution method, is also discussed. This chapter also introduces most of the notation used throughout the thesis.

Chapter 3: Asymptotic Analysis of the Noisy Min-Sum Decoder

Chapter 3 investigates the asymptotic performance of the Min-Sum (MS) decoder under noisy hardware settings. The goal is to develop a density evolution (DE)-based analytic framework that allows evaluating the robustness of the MS decoder in the presence of an additional source of noise at the circuit level. To this end, we introduce a new transient error model approach and carry out the "noisy" DE analysis of the finite-precision MS decoder. In order to guarantee the independence of the DE dynamical system with respect to the transmitted codeword, the transient error model has to be symmetric. While this represents an important limitation of the DE approach -since symmetric error models may be far from the real noise present in the low-powered circuits -it allows understanding the limits of iterative MS decoding with faulty hardware. The robustness of the MS decoder can then be characterized in terms of useful region or target bit error rate region. Hence, for different parameters of the noisy components of the decoder, we determine the range of the signal-to-noise ratio values for which the decoder is able to achieve a target bit error rate performance. We further reveal the existence of a different threshold phenomenon, referred to as functional threshold: it corresponds to a sharp change in the decoder's behavior, similar to the change that occurs around the threshold of the noiseless decoder.

Our study also focuses on means to improve the decoder reliability, by protecting critical bits of the finite-precision computation flow within the decoding process. To this end, we investigate sign-preserving error models for arithmetic operations (e.g. adders), or for larger processing units of the decoder (e.g. variable-node or check-node processing units). For such models, the sign of the operation (or processing unit) result is always computed accurately. The benefits of sign-preserving computational models are assessed through the DE analysis. Finally, we also highlight some peculiar and very intriguing behaviors of the MS decoder under noisy hardware: in some particular cases, the noise introduced by the device can help the MS decoder to escape from fixed points attractors, and may actually result into an increased correction capacity with respect to the noiseless decoder.

Chapter 4: Statistical Analysis of Finite-Length Min-Sum-Based Decoders

Chapter 4 aims at evaluating the finite-length performance of MS-based decoders. The first goal is to corroborate, through Monte-Carlo simulation, the asymptotic analysis conducted in Chapter 3. To do so, we verify that the conclusions of the DE analysis still hold true in the finite length case. In particular, we confirm that in some particular cases the noisy MS decoder performs very close or even surpasses its noiseless counterpart. We also assess the benefits of the sign preserving noise models, and show that the level of noise that can be tolerated with only negligible degradation in the error correction performance is far superior than in the full-depth noise case.

Another goal of this chapter is to identify practical solutions capable to increase the robustness of the Min-Sum decoder to hardware noise. To this end, we investigate the finite-length performance of the Self-Corrected Min-Sum (SCMS) decoder, and show that the noisy SCMS decoder largely outperforms the MS decoder, providing nearly the same performance as its noiseless counterpart for a wide range of values of the hardware noise parameters.

Additionally, we also investigate the impact of specific hardware implementationsexploiting different scheduling strategies -on the error correction performance of noisy MS and SCMS decoders. Hardware implementations using flooding, serial, and layered scheduling strategies are discussed, and we show that the flooding scheduling based implementation is the most robust to hardware noise.

Finally, we conduct a study on a complementary error scenario, consisting of the imprecise arithmetic framework. In this case, the source of errors comes from the fact that arithmetic units in the decoders are implemented with a smaller number of logic gates than what is actually needed, which may result in significant savings in energy. Under this error model, we show in particular that the SCMS can reach the same error correction performance as the full-precision decoder.

Chapter 5: Faulty Stochastic Decoder

Chapter 5 is aimed at evaluating the finite-length performance of the Stochastic decoder. Unlike MS-based decoders, for which the exchanged messages are represented by a number of bits with different significance, for the Stochastic decoder the information is represented by stochastic bit streams, consisting of bits with similar significance. Stochastic computing is by its very nature random, since it represents continuous values by streams of random bits. Consequently, if errors occur on a small number of bits of the stochastic stream, the resulting continuous value (corresponding to the frequency of 1's in the stochastic stream) will be close to the correct value, thus errors are expected to have a limited impact on the decoder performance. This chapter presents an overview of the Stochastic decoder and methods to improve its decoding performance, through the use of edge-memories and noise-dependent scaling, and proposes error models for its processing units. The error correction performance of the noisy Stochastic decoder is evaluated, and compared to that of its noiseless counterpart. We further compare the performance of the Stochastic and MS decoders under faulty hardware setting, and show that the Stochastic decoder presents an increased robustness to hardware errors compared to the MS decoder.

Chapter 6: Conclusion and Perspectives

Chapter 6 summarizes the results obtained in this thesis, and provides directions for future works.

Chapter 2

LDPC Codes and Iterative Decoding

"Unfortunately, the decoding of parity-check codes is not inherently simple to implement, and thus we must look for special classes of parity-check codes, such as described below, for which reasonable decoding procedures exist. [...] Lowdensity parity-check codes are codes specified by a matrix containing mostly 0's and only a small number of 1's."

(Gallager [22])

LDPC codes have been introduced by Gallager in his doctoral thesis [22,23], as a class of linear codes defined by sparse parity-check matrices, which can be advantageously decoded by iterative message-passing (MP) decoders. Despite their properties, LDPC codes were largely ignored for several decades, mainly because -due to technological limitations -iterative decoders were considered "impractical to implement" at that time. They have been "rediscovered" in the late 90's by MacKay [41], after the power of iterative decoding techniques had also been confirmed by the discovery of Turbo-codes [7]. Since the late 90's, a large body of knowledge has been acquired, especially techniques for the analysis of iterative decoding algorithms [15-17, 38, 52, 53], as well as techniques developed for code construction and optimization [21,27,34]. Nowadays, LDPC codes are known to be capacity approaching codes for a wide range of channel models [52], which has motivated the increased interest of the scientific community over the last 15 years and has supported the rapid transfer of this technology to the industrial sector.

This chapter provides a brief introduction to LDPC codes and iterative MP decoders. We first introduce the bipartite graph representation and the message-passing formalism, and then focus on some specific decoders that will be used in this thesis, namely the Belief Propagation (BP), as well as the Min-Sum (MS) and several MS-based decoders. The asymptotic analysis of MP decoders, based on the density evolution method, is also discussed. This chapter also introduces most of the notation used throughout the thesis. Finally, we note that the noisy versions of MS and MS-based decoders will be introduced and investigated in Chapter 3 and Chapter 4, respectively. Moreover, the probability-domain BP decoder presented in this chapter serves as a continuous model for the Stochastic decoder that will be investigated in Chapter 5.

Chapter 2. LDPC Codes and Iterative Decoding

LDPC Codes, Tanner Graphs, and MP Decoders

An LDPC code is a linear block code defined by a (M, N) sparse parity-check matrix denoted H. A vector x =(x 1 ,...,x N ) ∈{0, 1} N is a codeword if and only if:

Hx T =0 (2.1)
Thus, the length of the code is equal to N , and its dimension is given by K = N -rank(H).

Unless otherwise stated, we shall always assume that rank(H)=M ,i nw h i c hc a s eK = N -M . The code is said to be systematic if any codeword x contains the corresponding K information bits. In this case, the remaining M bits of x are referred to as parity bits.

LDPC codes can be advantageously described in terms of sparse bipartite graphs, also referred to as Tanner graphs [60], containing two types of nodes:

• variable-nodes, corresponding to the N columns of H,

• check-nodes, corresponding to the rows of H.

Equivalently, variable-nodes correspond to coded bits (x 1 ,...,x N ), while check-nodes correspond to the M parity check equations defined by H. The edges of the Tanner graph, connecting variable and check nodes, correspond to the non-zero entries of H, as illustrated in Figure 2.1 for a code of length N = 10.

Notation [Tanner graphs] -The following summarizes the notation that will be used throughout the thesis with respect to Tanner graphs:

•H , the Tanner graph of an LDPC code,

• N , the number of variable-nodes,

• M , the number of check-nodes,

• n ∈{1, 2, ..., N }, a variable node of H,

• m ∈{1, 2, ..., M },ac h e c kn o d eo fH,

•H (n), the set of check-nodes connected to the variable-node n,

•H (m), the set of variable-nodes connected to the check-node m,

• d n = |H(n)|, the number of check-nodes connected to n, also referred to as the degree of the variable-node n,

• d m = |H(m)|, the number of variable-nodes connected to m,a l s or e f e r r e dt oa st h e degree of the check-node m,

• r = K N , the coding rate.

If variable-node and check-node degrees are constant, the code is said to be regular. In this case, we simply denote the variable-node degree by d v := d n , ∀n, and check node degree by d c := d m , ∀m, and we further refer to the code as a (d v ,d c )-regular LDPC code.N o t e that for regular codes, the coding rate can also be expressed as r =1-d v d c .

In the following, we consider a codeword x transmitted over a binary-input memoryless channel, and we denote y =( y 1 ,...,y N ) ∈Y N the received sequence, where Y denotes the output alphabet of the channel. Two channel models will be considered in this thesis: BI-AWGN -the Binary-Input Additive White Gaussian Noise channel -in this case Y = R and y is obtained by y n =( 1-2x n )+z n ,w h e r e1-2x n ∈{ +1, -1} is the binary phase-shift keying (BPSK) modulation of the bit x n ,a n dz n is the white Gaussian noise.

The graphical representation proposed by Tanner proved to be particularly suitable for message-passing (MP) algorithms. MP decoding algorithms are iterative algorithms that pass messages along the edges of the bipartite Tanner graph (in both directions). Each message can be interpreted as an estimation of the value of the variable-node incident to the edge. At each new iteration, new messages are computed in an extrinsic manner, meaning that a message that is sent on an edge does not depend on the message just received on the same edge. Consequently, variable-nodes collect more and more information with each new decoding iteration, which gradually improves the estimation of the sent codeword.

Notation [MP decoders] -The following summarizes the notation that will be used throughout the thesis with respect to MP decoders:

• γ n ,t h eap r i o r iinformation of the decoder concerning variable-node n.T h ev a l u e of γ n depends only on the observed channel output y n .

• α m,n , the message sent from variable-node n to check-node m. At each iteration, α m,n is computed as a function of the input γ n value and messages β m ′ ,n , received by variable-node n from its neighbor check-nodes m ′ ∈H(n) \{m}. • γn , a posteriori information provided by the decoder, concerning the variable node n.

At each iteration, a new value of γn is computed as a function of the input γ n value and messages β m,n , received by the variable-node n from all its neighbor check-nodes m ∈H(n).

The computation of the exchanged messages and of the a posteriori information is illustrated in Figure 2.2. At each decoding iteration, the a posteriori information (γ 1 ,...,γ N ) is used to provide an estimation of the transmitted codeword, denoted by x =(x 1 ,...,x N ). The iterative process stops if x is a codeword (i.e. H x = 0) or the number of iterations reaches a preset maximum value.

The a priori information of the decoder can take the form of either a probability value, in which case the decoder is said to operate in the probability domain, or a log-likelihood ratio (LLR) value, in which case the decoder is said to operate in the LLR domain. We further denote:

• P n =P r ( x n =1| y n ), the probability of the transmitted bit x n being equal to 1, conditional on the received value y n .

• L n =l o g Pr(x n =0| y n ) Pr(x n =1| y n ) =l o g 1 -P n P n
, the LLR of the transmitted bit x n , conditional on the received value y n .

For the two channel models considered in this thesis, we have:

BSC, with crossover probability ε:

P n = 1 -ε, if y n =1 ε, if y n =0 (2.2) L n =( 1 -2y n )log ε 1 -ε (2.3)
BI-AWGN, with noise variance σ 2 :

P n = 1 1+exp(L n ) (2.4) L n = 2 σ 2 y n (2.5)
Finally, we summarize below the main steps of an MP decoder:

[Initialization] The a priori information γ n is computed for each variable-node n,a n d variable-to-check messages α m,n are initialized accordingly.

[Iteration Loop] Each decoding iteration consists of the following steps: 

[CN-

Belief-Propagation Decoder

The maximum a posteriori (MAP) estimate of the transmitted bit x n is given by:

x(MAP)

n =argmax b∈{0,1} Pr(x n = b | y) (2.6)
If the channel transition probabilities are known, Pr(x n = b | y n ) can usually be readily computed (see for instance Eq. (2.2) and Eq. (2.4)). However, to compute Pr(x n = b | y) would require taking into account all the parity-check constraints defining the code. Since a brute-force algorithm is generally computationally intractable, the probabilistic decoding approach proposed by Gallager [23] was to recursively update this probabilities, by using an iterative MP algorithm. This decoding process amounts to performing Bayesian inference on a probabilistic graphical model representing a set of random variables (variable-nodes) and their conditional dependencies (check-nodes) [35]. The probability of x n is first estimated according to the received value y n only, then Bayes' rule is used to update the probability estimate as additional evidence brought by neighbor check-nodes is learned. In statistical inference, this algorithm is known as Belief Propagation (BP) [49].

The probability-domain BP decoder is described in Algorithm 1. In this algorithm, the a priori information and the exchanged messages represent the probability of variable nodes being equal to 1. Variable-to-check messages are initialized according to the a priori information, which is defined as γ n = P n =Pr(x n =1| y n ). Then each iteration consists in the following steps: CN-processing: the β m,n message is the probability of x n being equal to 1, conditional on the incoming messages α m,n ′ n ′ ∈H(m)\n ,andontheeventx n = ⊕ n ′ x n ′ ,representing the parity-check constraint defined by check-node m (where ⊕ symbol denotes the sum modulo 2 operation):

β m,n =Pr x n =1|{α m,n ′ } n ′ ∈H(m)\n and x n = ⊕ n ′ ∈H(m)\n x n ′ (2.7)
Using Bayes' rule and assuming that incoming α m,n ′ messages are independent, β m,n can be computed by the formula given in Algorithm 1 (see [23]).

VN-processing: the α m,n message is the probability of x n being equal to 1, conditional on the a priori γ n value and the incoming messages

β m ′ ,n m ′ ∈H(n)\m : α m,n =Pr x n =1| γ n , {β m ′ ,n } m ′ ∈H(n)\m (2.8)
Using Bayes' rule and under the independence assumption of incoming β m ′ ,n messages, α m,n can be computed according to the formula given in Algorithm 1.

AP-update: the a posteriori information γn is computed in a similar manner to variableto-check messages, by taking into account all the incoming check-to-variable-messages:

γn =Pr x n =1| γ n , {β m,n } m∈H(n) (2.9)
Finally, x is derived (hard decision step) and H xT is computed to check if x is a valid codeword (syndrome check step). 

β m,n = 1 2 - 1 2 n ′ ∈H(m)\n (1 -2α m,n ′ );
for all n =1,...,N and m ∈H(n) do ⊲ VN-processing

α m,n = γ n m ′ ∈H(n)\m β m ′ ,n γ n m ′ ∈H(n)\m β m ′ ,n +(1-γ n ) m ′ ∈H(n)\m (1 -β m ′ ,n ) ; for all n =1,...,N do ⊲ AP-update γn = γ n m ′ ∈H(n) β m ′ ,n γ n m ′ ∈H(n) β m ′ ,n +(1-γ n ) m ′ ∈H(n) (1 -β m ′ ,n ) ;
for all n =1,...,N do xn = 1, if γn > 0.5 0, otherwise ⊲ hard decision if x is a codeword then exit the iteration loop ⊲ syndrome check End Iteration Loop It is worth noting that for cycle free graphs, the BP decoding outputs the MAP estimates of the transmitted bits [66]. However, BP can also be successfully applied to decode linear codes defined by graphs with cycles, which is actually the case of all practical codes. Due to cycles, conditional dependencies between incoming messages to variable and check-nodes will inevitably occur after some number of decoding iterations, causing a deviation from the MAP. However, BP proves to be remarkably effective in practice, as long as cycles occurring in the bipartite graph are not too short (at least of length greater than or equal to 6).

The goal of the probability-domain BP decoding presented in this section is twofold:

(1) it allows illustrating the original approach proposed by Gallager, and (2) it serves as continuous valued model for the stochastic decoder presented in Section 5. However, for implementation purposes, (e.g. in order to deal with numerical instability issues), it is usually more convenient to consider the LLR-domain version of the BP decoder, which is presented in Algorithm 2.

In Algorithm 2, the a priori information and the exchanged messages represent LLR values of the variable-nodes. The update formulas used in CN-processing, VN-processing, and AP-update steps correspond to the translation of corresponding formulas in Algorithm 1 from probability to LLR domain. It can be noticed that the VN-processing and the AP-update steps require only addition operations. However, the CN-processing step 

β m,n = ⎛ ⎝ n ′ ∈H(m)\n sgn(α m,n ′ ) ⎞ ⎠ .Φ ⎛ ⎝ n ′ ∈H(m)\n Φ(|α m,n ′ |) ⎞ ⎠ ;
for all n =1,...,N and m ∈H(n

) do ⊲ VN-processing α m,n = γ n + m ′ ∈H(n)\m β m ′ ,n ; for all n =1,...,N do ⊲ AP-update γn = γ n + m∈H(n) β m,n ; for all n =1,...,N do xn = 1-sgn(γn) 2 ; ⊲ hard decision if x is a codeword then exit the iteration loop ⊲ syndrome check End Iteration Loop
The function Φ, used to compute the check-to-variable messages, is given by:

Φ(u)=-log tanh u 2 =log 1+e -u 1 -e -u , ∀u>0
requires the use of the computationally expensive hyperbolic tangent function. One way to deal with complexity and numerical instability issues is to use classical max-log approximations of the check-to-variable messages. This results in the Min-Sum (MS) decoder, which will be discussed in the next section, together with several MS-based decoders.

Min-Sum and Min-Sum-Based Decoders

Min-Sum decoder

While BP provides remarkable decoding performance, it also presents some drawbacks that limit its use in practical applications. The first one, already mentioned above, is the use of the computationally expensive Φ function. The second one comes from the fact that the BP decoding performance is highly sensitive to the accuracy of the channel parameter estimate (e.g. error probability for the BSC, or noise variance for the BI-AWGN), used to compute the a priori information of the decoder. In practical systems, the channel parameter has to be estimated at the received end, and an inaccurate estimation may cause a significant degradation of the BP decoding performance.

The Min-Sum (MS) decoding [15,19,20] solves these drawbacks, simply by using a max-log approximation of check-to-variable messages. Indeed, it can be easily seen that Φ is a decreasing function satisfying Φ(Φ(x)) = x, and therefore:

Φ ⎛ ⎝ n ′ ∈H(m)\n Φ(|α m,n ′ |) ⎞ ⎠ ≤ min n ′ ∈H(m)\n |α m,n ′ | (2.10)
Moreover, it actually turns out that the above upper-bound gives a good approximation of the Φ n ′ Φ(|α m,n ′ |) value. The MS decoding described in Algorithm 3 relies on this approximation for the CN-processing step, while the other steps the same as for the BP decoding.

It can easily be seen that if the a priori information γ n is multiplied by a constant value (i.e. independent of n), this value factors out from all the update formulas in Algorithm 3, and therefore does not change the decoder's output. As a consequence, the term containing the channel parameter value may be omitted in the computation of L n values (Eq. (2.3) and Eq. (2.5)), without any impact on the decoding performance.

Although the MS decoding has been introduced as a low (numerical) complexity, approximate version of the BP, it is worth noting that for cycle free graphs it outputs the Maximum-Likelihood (ML) estimate of the sent codeword [66]. Consequently, the MS decoder can be seen as a generalization of the Viterbi Algorithm [65], from trellises to more general graphical models. However, as bipartite graphs associated with practical codes contain cycles, the MS decoder deviates from ML in most practical cases.

Min-Sum-based decoders

For practical codes, the MS decoder is known to be outperformed by BP, in terms of both bit and word error rates. This performance penalty is generally considered to be caused by the approximation used within the CN-processing step, which results in an overestimation of check-to-variable messages. In order to mitigate this performance penalty, several correction methods were proposed in the literature [9-11, 19, 51, 54, 73]. We refer to such decoding algorithms as MS-based decoders: they are improved versions of the MS algorithm, with only a very limited (usually negligible) increase in complexity.

Algorithm 3 Min-Sum (MS) decoding

Input: y =(y 1 ,...,y N ) ∈Y N (Y is the channel output alphabet)

⊲ received word Output:

x =(x 1 ,...,x N ) ∈{0, 1} N ⊲ estimated codeword Initialization for all n =1,...,N do γ n = L n =log Pr(x n =0| y n ) Pr(x n =1| y n ) ;
for all n =1,...,N and m ∈H(n) do α m,n = γ n ;

Iteration Loop for all m =1,...,M and n ∈H(m) do ⊲ CN-processing

β m,n = ⎛ ⎝ n ′ ∈H(m)\n sgn(α m,n ′ ) ⎞ ⎠ min n ′ ∈H(m)\n |α m,n ′ | ; for all n =1,...,N and m ∈H(n) do ⊲ VN-processing α m,n = γ n + m ′ ∈H(n)\m β m ′ ,n ; for all n =1,...,N do ⊲ AP-update γn = γ n + m∈H(n) β m,n ; for all n =1,...,N do xn = 1-sgn(γn) 2 ; ⊲ hard decision if x is a codeword then exit the iteration loop ⊲ syndrome check End Iteration Loop

Normalized and Offset Min-Sum

The Normalized Min-Sum (NMS) and Offset Min-Sum (OMS) decoders [9,10] are slightly modified versions of the MS decoder that rely on the use of either a normalization or an offset factor to compensate the overestimation of check-to-variable messages:

• The NMS decoder (Algorithm 4) compensates this overestimation by introducing a normalization (scaling) factor λ ∈]0, 1[ within the CN-processing step.

• The OMS decoder (Algorithm 5) compensates this overestimation by introducing an offset factor δ>0 within the CN-processing step.

Apart from the use of a normalization or offset factor for the computation of check-tovariable messages, the other steps of NMS and OMS decoding algorithms are identical to those of the MS decoding.

In general, the same normalization factor λ (resp. offset factor δ) is used for all the check-nodes in the graph, and its value can be find by Monte-Carlo simulation. However, for irregular LDPC codes, this approach may result in high error-floors [75]. To avoid such error-floors, two-dimensional (2-D) NMS and OMS decoding algorithms have been proposed for irregular codes [73]. They rely on normalization (resp. offset) factors used to normalize (resp. offset) both variable-to-check and check-to-variable messages, and whose values depend on variable and check-node degrees. Moreover, density evolution analysis can be used to derive optimal values for 2-D normalization (resp. offset) factors [8]. 

β m,n = λ. ⎛ ⎝ n ′ ∈H(m)\n sgn(α m,n ′ ) ⎞ ⎠ . min n ′ ∈H(m)\n |α m,n ′ | ; ••• ⊲ same as MS decoding End Iteration Loop Normalization (scaling) factor λ ∈]0, 1[. Algorithm 5 Offset Min-Sum (OMS) decoding ••• ⊲ same as MS decoding Iteration Loop
for all m =1,...,M and n ∈H(m) do ⊲ CN-processing

β m,n = ⎛ ⎝ n ′ ∈H(m)\n sgn(α m,n ′ ) ⎞ ⎠ . max min n ′ ∈H(m)\n |α m,n ′ | -δ, 0 ; ••• ⊲ same as MS decoding End Iteration Loop
Offset factor δ>0.

Self-Corrected Min-Sum

The Self-Corrected Min-Sum (SCMS) decoder [54] aims at improving the MS decoding performance, by introducing a memory mechanism, that is able to detect unreliable messages within the iterative decoding process. Here, "memory mechanism" refers to the fact that the value of a new message may also depend on its value at the previous iteration. This only concerns the computation of variable-to-check messages, and is done in a very simple way: a variable-to-check message α m,n is erased (i.e. set to zero) if its sign changes with respect to the previous iteration. This is illustrated in Algorithm 6:

• The value of the current variable-to-check message is first stored as a temporary value α tmp m,n ;s i n c eα m,n has not been overwritten, its value is still equal to the value of the message computed at the previous iteration.

• The sign of α tmp m,n is then compared to the sign of α m,n :

-if a sign change is detected and α m,n = 0 (to make sure that the α m,n message has not been already erased at the previous iteration), then the current variableto-check message is erased;

-otherwise, the value of the current variable-to-check message is updated as usual (that is, α m,n is overwritten by α tmp m,n ).

All the other steps of the SCMS decoding algorithms are identical to those of the MS decoding (in particular, no normalization, nor offset factors are used for the computation of check-to-variable node messages).

Algorithm 6 Self-Corrected Min-Sum (SCMS) decoding

••• ⊲ same as MS decoding Iteration Loop ••• ⊲ same as MS decoding for all n =1,...,N and m ∈H(n) do ⊲ VN-processing α tmp m,n = γ n + m ′ ∈H(n)\m β m ′ ,n α m,n = 0, if sgn(α tmp m,n ) =sgn(α m,n )a n dα m,n =0 α tmp m,n , otherwise ••• ⊲ same as MS decoding End Iteration Loop
Alternatively, from the check-node correction perspective, the SCMS decoder can be seen as a method to address the overestimation issue at the variable-node processing step. The rationale behind is that the overestimation of check-to-variable messages is not critical, unless any given variable-to-check message is updated to map a different bit state. In the LLR domain, this corresponds to a sign change. Moreover, it has been pointed out in [54] that a variable-to-check message changes its sign between two consecutive iterations if and only if its computation tree [66] contains unreliable information. As a consequence, it has been shown that the SCMS decoding behaves as the MS decoding on a computation tree that has been pruned of its unreliable branches.

Asymptotic Analysis of MP Decoders

Unlike the finite-length performance, the asymptotic performance does not refer to the performance of a given code, but to the performance of a given family or ensemble of codes. Such an ensemble contains LDPC codes defined by bipartite graphs that share the same properties in terms of node-degree distributions, as explained below.

For each d>0, let λ d denote the fraction of edges connected to variable-nodes of degree d,a n dρ d denote the fraction of edges connected to check-node of degree d.T h e edge perspective degree-distributions polynomials are defined by:

λ(x)= d>0 λ d x d-1 ,ρ (x)= d>0 ρ d x d-1
(2.11) Note that the above sums are actually finite, since λ d (resp. ρ d ) is equal to 0 for d greater than the maximum variable-node (resp. check-node) degree. We further denote by E N (λ, ρ) the ensemble of LDPC codes with length-N and edge perspective degreedistribution polynomials λ and ρ.

The asymptotic analysis is aimed at determining the average performance of codes from the ensemble E N (λ, ρ), in the asymptotic limit of the code length N . This analysis is supported by the concentration and convergence properties [53], which hold for any memoryless binary-input symmetric-output channel and for any symmetric1 MP decoder:

Concentration: As N goes to infinity, almost all codes in E N (λ, ρ) behave nearly the same and the behavior of individual codes concentrates around the average behavior of the ensemble.

Convergence to the cycle free case: As N goes to infinity, the average behavior of the ensemble E N (λ, ρ) converges to that of the cycle free case.

C y c l ef r e ec a s e : In the cycle-free case, the correction capacity of LDPC codes under MP decoding algorithms can be determined by using a numerical approach, called density evolution (DE), introduced in [53]. This approach is based on the following observations:

• Messages α m,n and β m,n exchanged along the graph edges are independent, due to the cycle-free assumption and to their extrinsic nature.

• The probability distribution function (pdf) of α m,n at iteration ℓ = 0 is known, since the all-zero codeword transmission can be assumed (due to the symmetry of both channel and decoder). This pdf only depends on the channel (i.e. level of noise and transition probabilities).

• For ℓ>0, one can recursively determine the pdf of exchanged messages at iteration ℓ, as a function of their pdf at iteration ℓ-1 (thanks to the fact that exchanged messages are independent). This recursion only depends on the number of connections of variable and check nodes, or put differently, on the degree-distribution polynomials λ and ρ.

• The decoding error probability at iteration ℓ, denoted by

P (ℓ)
e ,c a nt h e nb ed e r i v e d from the pdf of exchanged messages. Taking the limit as ℓ goes to infinity, one obtains the asymptotic error probability:

P (∞) e = lim ℓ→∞ P (ℓ) e .
Hence, according to the concentration and convergence properties, one can get an error probability arbitrarily close to P (∞) e , provided that the code length N and the iteration number ℓ are sufficiently large. In [53], the existence of a threshold value was also revealed, separating the region where reliable transmission is possible (P (∞) e = 0) from that where it is not (P

(∞) e > 0).
Precisely, consider a (memoryless binary-input symmetric-output) channel model that depends on a noise parameter χ, such that the channel conditions worsen when χ increases (e.g. crossover probability for BSC, or noise variance for BI-AWGN). The value of P (∞) e depends on:

• The value of the noise parameter χ, which determines the initial state of the DE dynamical system (pdf of exchanged messages at iteration ℓ =0);

• The MP decoding algorithm and the degree-distribution polynomials λ and ρ,whic h determine the evolution rule of the dynamical system (recursion between pdf at iteration ℓ and pdf at iteration ℓ -1).

The DE threshold of the ensemble E(λ, ρ) -ensemble of arbitrary length codes with edge perspective degree-distribution polynomials λ and ρ -i sd e fi n e db y :

χ th =sup{χ | P (∞) e =0}
(2.12)

It only depends on the MP decoding algorithm and the degree-distribution polynomials λ and ρ, and corresponds to the the worst channel condition that allows transmission with an arbitrary small error probability, assuming that the transmitted data is encoded by an arbitrary code from E(λ, ρ), with sufficiently large code-length.

The table below presents the DE thresholds of the ensemble of (3, 6)-regular LDPC codes (hence λ(x)=x 2 and ρ(x)=x 5 ) under BP and MS decoding, for both the BSC and BI-AWGN channel models. The maximum allowed value (ε max and σ 2 max ), corresponding to the channel capacity limit, is also listed. 

Conclusion

This chapter provided a brief introduction to LDPC codes, iterative MP decoders, and their asymptotic analysis. We focused on some specific decoders that will be used in this thesis, namely the Belief Propagation (BP), as well as the Min-Sum (MS) and several MS-based decoders.

In Chapter 3 and Chapter 4, we will investigate noisy versions of the finite-precision (quantized) MS and MS-based decoders. In Chapter 5, we will investigate the noisy version of the Stochastic decoder -a stochastic computing based implementation of the probability-domain BP decoder.

Chapter 3 Asymptotic Analysis of the Noisy Min-Sum Decoder

This chapter investigates the asymptotic performance of the Min-Sum (MS) decoder under noisy hardware settings. The goal is to develop a density evolution (DE)-based analytic framework that allows evaluating the robustness of the MS decoder in the presence of an additional source of noise at the circuit level.

To this end, we introduce a new transient error model approach and carry out the "noisy" DE analysis of the finite-precision MS decoder. In order to guarantee the independence of the DE dynamical system with respect to the transmitted codeword, the transient error model has to be symmetric. While this represents an important limitation of the DE approach -since symmetric error models may be far from the real noise present in the low-powered circuits -it allows understanding the limits of iterative MS decoding with faulty hardware. The robustness of the MS decoder can then be characterized in terms of useful region or target bit error rate region. Hence, for different parameters of the noisy components of the decoder, we determine the range of the signal-to-noise ratio values for which the decoder is able to achieve a target bit error rate performance. We further reveal the existence of a different threshold phenomenon, referred to as functional threshold: it corresponds to a sharp change in the decoder's behavior, similar to the change that occurs around the threshold of the noiseless decoder.

Our study has also focused on means to improve the decoder reliability, by protecting critical bits of the finite-precision computation flow within the decoding process. To this end, we investigate sign-preserving error models for arithmetic operations (e.g. adders), or for larger processing units of the decoder (e.g. variable-node or check-node processing unit). For such models, the sign of the operation (or processing unit) result is always computed accurately. The benefits of sign-preserving computational models are assessed through the DE analysis. Finally we also highlight some peculiar and very intriguing behaviors of the MS decoder under noisy hardware, showing that in some cases the noisy MS decoder may have better asymptotic performance than its noiseless version.

Error Injection and Probabilistic Error Models

Noisy message-passing decoders

The model for noisy MP decoders proposed in [63] incorporates two different sources of noise: computation noise due to noisy logic in the processing units, and message-passing noise due to noisy wires (or noisy memories) used to exchange messages between neighbor nodes.

• The computation noise is modeled as a random variable, which the variable-node or the check-node processing depends on. Put differently, an outgoing message from a (variable or check) node depends not only on the incoming messages to that node (including the a priori information for the variable-node processing), but also on the realization of a random variable, which is assumed to be independent of the incoming messages.

• The message-passing noise is simply modeled as a noisy channel. Hence, transmitting a message over a noisy wire is emulated by passing that message through the corresponding noisy channel.

However, in [63] it has been noted that "there is no essential loss of generality by combining computation noise and message-passing noise into a single form of noise" (see also [18,Lemma 3.1]). Consequently, the approach adopted has been to merge computation noise into message-passing noise, and to emulate noisy decoders by passing the exchanged messages through different noisy channel models. Thus, the noisy Gallager-A decoder has been emulated by passing the exchanged messages over independent and identical BSC wires, while the noisy BP decoder has been emulated by corrupting the exchanged messages with bounded and symmetrically distributed additive noise (e.g. uniform noise or truncated Gaussian noise).

The approach we follow in this thesis differs from the one in [63] in that the computation noise is modeled at the lower level of arithmetic and logic operations that compose the variable-node and check-node processing units. This finer-grained noise model is aimed at determining the level of noise that can be tolerated in each type of operation. As the main focus of this work is on computation noise, we shall consider that messages are exchanged between neighbor nodes through error-free wires (or memories). However, we note that this work can readily be extended to include different error models for the message-passing noise (as defined in [63]). Alternatively, we may assume that the message-passing noise is merged into the computation noise, in the sense that adding noise in wires would modify the probabilistic model of the noisy logic or arithmetic operations.

Error injection models

We only consider the case of finite-precision operations, meaning that the inputs (operands) and the output of the operator are assumed to be bounded integer numbers. We simulate a noisy operator by injecting errors into the output of the noiseless one. In the following, V⊂Z denotes a finite set consisting of all the possible outputs of the noiseless operator.

Definition 3.1 An error injection model on V, denoted by (E,p E ,ı |V), is given by: • A finite error set E⊂Z together with a probability mass function p E : E→[0, 1],

referred to as the error distribution;

• A function ı : V×E→V, referred to as the error injection function.

For a given set of inputs, the output of the noisy operator is the random variable defined by ı(v, e), where v ∈V is the corresponding output of the noiseless operator, and e is drawn randomly from E according to the probability distribution p E .

The error injection probability is defined by:

p 0 = 1 |V| v e δv ı(v,e) p E (e), (3.1) 
where δv ı(v,e) =0i fv = ı(v, e), and δv ı(v,e) =1i fv = ı(v, e). In other word, p 0 =P r ( v = ı(v, e)), assuming that v is drawn uniformly from V and e is drawn from E according to p E .

The above definition makes some implicit assumptions, which are discussed below.

• The set of possible outputs of the noisy operator is the same as the set of possible outputs of the noiseless operator (V). This is justified by the fact that, in most common cases, V is the set of all (signed or unsigned) integers that can be represented by a given number of bits. Thus, error injection will usually alter the bit values, but not their number.

• The injected error does not depend on the output of the noiseless operator and, consequently, neither on the given set of inputs. Put differently, the injected error is independent on the data processed by the noiseless operator. The validity of this assumption does actually depend on the size of the circuit implementing the operator. Indeed, this assumption tends to hold fairly well for large circuits [1], but becomes more tenuous as the circuit size decreases.

Obviously, it would be possible to define more general error injection models, in which the injected error depends on the data (currently and/or previously) processed by the operator. Such an error injection model would certainly be more realistic, but it would also make very difficult to analytically characterize the behavior on noisy MP decoders. As a side effect, the decoding error probability would be dependent on the transmitted codeword, which would prevent the use of the density evolution technique for the analysis of the asymptotic decoding performance (since the density evolution technique relies on the all-zero codeword assumption).

However, the fact that the error injection model is data independent does not guarantee that the decoding error probability is independent of the transmitted codeword. In order for this to happen, the error injection model must also satisfy a symmetry condition that can be stated as follows.

Definition 3.2 An error injection model (E,p E ,ı |V ) is said to be symmetric if V is symmetric around the origin (meaning that v ∈V⇔-v ∈V,b u t0 does not necessarily belong to V), and the following equality holds:

{e| ı(v,e)=w} p E (e)= {e| ı(-v,e)=-w} p E (e), ∀v, w ∈V (3.2)
The meaning of the symmetry condition is as follows. Let V be a random variable on V.L e tφ (ı)

V and φ (ı) -V denote the probability mass functions of the random variables obtained by injecting errors in the output of V and -V , respectively. Then the above symmetry condition is satisfied if and only if for any V the following equality holds:

φ (ı) V (w)=φ (ı) -V (-w), ∀w ∈V (3.3)
A particular case in which the symmetry condition is fulfilled is when ı(-v, e)= -ı(v, e), for all v ∈V and e ∈E. In this case, the error injection model is said to be highly symmetric.

Messages exchanged within message-passing decoders are generally in belief-format, meaning that the sign of the message indicates the bit estimate and the magnitude of the message the confidence level. As a consequence, errors occurring on the sign of the exchanged messages are expected to be more harmful than those occurring on their magnitude. This motivates the following definition, which will be used in the following section (see also the discussion in Section 3.2.3). Definition 3.3 An error injection model (E,p E ,ı |V) is said to be sign-preserving if for any v ∈V and e ∈E, v and ı(v, e) are either both non-negative (≥ 0) or both non-positive (≤ 0).

Bitwise-XOR error injection

We focus now on the two main symmetric error injection models that will be used in this work. Both models are based on a bitwise xor operation between the noiseless output v and the error e. The two models differ in the definition of the error set E, which is chosen such that the bitwise xor operation may or may not affect the sign of the noiseless output. In the first case the bitwise xor error injection model is said to be full-depth, while in the second it is said to be sign-preserving. These error injection models are rigorously defined below.

In the following, we fix θ ≥ 2a n ds e t :

V = {-Θ,...,-1, 0, +1,...,+Θ},whereΘ=2 θ-1 -1 ≥ 1
We also fix a signed number binary representation,whic hcanbean yofthesign-magnitude, one's complement,o rtwo's complement representation. There are exactly 2 θ signed numbers that can be represented by θ bits in any of the above formats, one of which does not belong to V (note that V contains only 2Θ + 1 = 2 θ -1 elements for symmetry reasons!). We denote this element by ζ. Hence: For this error model the error set is E = V. The error injection probability is denoted by p 0 , and all errors e = 0 are assumed to occur with the same probability (for symmetry reasons). It follows that the error distribution function is given by p E (0) = 1 -p 0 and p E (e)= p 0 2Θ , ∀e = 0. Finally, the error injection function is defined by:

•
ı(v, e)= v ∧ e, if v ∧ e ∈V e, if v ∧ e = ζ (3.4)

Sign-preserving error injection

For this error model the error set is E = {0, +1,...,+Θ}. The error injection probability is denoted by p 0 , and all errors e = 0 are assumed to occur with the same probability (for symmetry reasons). It follows that the error distribution function is given by p E (0) = 1-p 0 and p E (e)= p 0 Θ , ∀e = 0. Finally, the error injection function is defined by:

ı(v, e)= ⎧ ⎨ ⎩ v ∧ e, if v =0andv ∧ e ∈V ±e, if v =0 0, if v ∧ e = ζ (3.5)
In the above definition, ı(0,e) is randomly set to either -e or +e, with equal probability (this is due once again to symmetry reasons). Note also that the last two conditions, namely v =0andv ∧ e = ζ, cannot hold simultaneously (since e = ζ).

Finally, we note that both of the above models are highly symmetric, if one of the sign-magnitude or the one's complement representation is used. In case that the two's complement representation is used, they are both symmetric, but not highly symmetric.

An example of sign-preserving bitwise-xor error injection is given in Table 3.1. The number of bits is θ = 5 and two's complement binary representation is used. The sign bit of the error is not displayed, as it is equal to zero for any e ∈E.T h ep o s i t i o n so f1 ' s in the binary representation of e correspond to the positions of the erroneous bits in the noisy output.

Remark: It is also possible to define a variable depth error injection model, in which errors are injected in only the λ least significant bits, with λ ≤ θ. Hence, λ = θ corresponds to the above full-depth model, while λ = θ -1 corresponds to the sign-preserving model. However, for λ<θ-1s u c ham o d e lw i l lnot be symmetric, if the the two's complement representation is used.

Output-switching error injection

A particular case is represented by error injection on binary output. Assuming that V = {0, 1},t h ebit-flipping error injection model is defined as follows. The error set is E = {0, 1}, with error distribution function given by p E (0) = 1 -p 0 and p E (1) = p 0 , where p 0 is the error injection probability, and the error injection function is given by ı(v, e)=v ∧ e. Put differently, the error injection model flips the value of a bit in V with probability p 0 .

Clearly, the above error injection model can be applied on any set V with two elements, by switching one value to another with probability p 0 . In this case, we shall refer to this error injection model as output-switching, rather than bit-flipping.

Moreover, if one takes V = {-1, +1} (with the usual 0,1t o±1 conversion), it can be easily verified that this error injection model is highly symmetric.

Probabilistic models for noisy adders, comparators and XOR-gates

In this section we describe the probabilistic models for noisy adders, comparators and xor-gates, built upon the above error injection models. These probabilistic models will be used in the next section, in order to emulate the noisy implementation of the quantized (finite-precision) MS decoder.

Noisy adder model

We consider a θ-bit adder, with θ ≥ 2. The inputs and the output of the adder are assumed to be in V = {-Θ,...,-1, 0, +1,...,+Θ},whereΘ=2 θ-1 -1.

We denote by s V : Z →V,t h eθ-bit saturation map, defined by:

s V (v)= ⎧ ⎨ ⎩ -Θ, if v<-Θ v, if v ∈V +Θ, if v>+Θ (3.6)
For inputs (x, y) ∈V, the output of the noiseless adder is defined as s V (x + y). Hence, for a given error injection model (E,p E ,ı |V), the output of the noisy adder is given by:

a pr (x, y)=ı (s V (x + y),e) , (3.7) 
where e is drawn randomly from E according to the probability distribution p E .T h eerror probability of the noisy adder, assuming uniformly distributed inputs, is equal to the error injection probability (parameter p 0 defined in (3.1)), and will denoted in the sequel by p a .

Noisy comparator model

Let lt denote the noiseless less than operator, defined by lt(x, y)=1i fx<y ,a n d lt(x, y)=0o t h e r w i s e . T h enoisy less than operator, denoted by lt pr , is defined by injecting errors on the output of the noiseless one, according to the bit-flipping model defined in Section 3.1.4. In other words, the output of the noiseless lt operator is flipped with some probability value, which will be denoted in the sequel by p c . Finally, the noisy minimum operator is defined by:

m pr (x, y)= x, if lt pr (x, y)=1 y, if lt pr (x, y)=0 (3.8)

Noisy XOR model

The noisy xor operator, denoted by x pr is defined by flipping the output of the noiseless operator with some probability value, which will be denoted in the sequel by p x (according to the bit-flipping error injection model in Section 3.1.4). It follows that:

x pr (x, y)= x ∧ y, with probability 1 -p x x ∧ y, with probability p x (3.9)

Assumption: We further assume that the inputs and the output of the xor operator may take values in either {0, 1} or {-1, +1} (using the usual 0,1t o±1 conversion). This assumption will be implicitly made throughout the paper.

Remark: As a general rule, we shall refer to a noisy operator according to its underlying error injection model. For instance, a sign-preserving (resp. full-depth or sign-preserving bitwise-xored) noisy adder, is a noisy adder whose underlying error injection model is signpreserving (resp. one of the bitwise-xor error injection models defined in Section 3.1.3).

We shall also say that a noisy operator is (highly) symmetric if its underlying error injection model is so.

Nested operators

As it can be observed from Algorithm 3, several arithmetic/logic operations must be nested1 in order to compute the exchanged messages. Since all these operations (additions, comparisons, xor) are commutative, the order in which they are nested does not have any impact on the infinite-precision MS decoding. However, this is no longer true for finite-precision decoding, especially in case of noisy operations. Therefore, one needs an assumption about how operators extend from two to more inputs.

Our assumption is the following. For n ≥ 2 inputs, we randomly pick any two inputs and apply the operator on this pair. Then we replace the pair by the obtained output, and repeat the above procedure until there is only one output (and no more inputs) left.

The formal definition goes as follows. Let Ω ⊂ Z and ω :Ω× Ω → Ω be a noiseless or noisy operator with two operands. Let {x i } i=1:n ⊂ Ω be an unordered set of n operands. We define:

ω ({x i } i=1:n )=ω(•••(ω(x π(1) ,x π(2) ), •••),x π(n) ),
where π is a random permutation of 1,...,n.

Noisy Min-Sum Decoding

Assumption: Throughout this section we consider transmission over a binary-input memoryless noisy channel with input alphabet {+1, -1}, with the usual convention that +1 corresponds to the 0-bit, and -1 corresponds to the 1-bit. The channel output alphabet is denoted by Y.F o rt h eB S C ,Y = {+1, -1}, while for the BI-AWGN channel Y = R.

The transmitted codeword is denoted by x =(x 1 ,...,x N ) ∈{+1, -1} N , and the received signal by y =(y 1 ,...,y N ) ∈Y N .

The LLR of the transmitted bit x n , conditional on the received value y n , denoted by L n ,i sg i v e nb y : BSC, with crossover probability ε :

L n =log ε 1 -ε y n (3.10) BI-AWGN, with noise variance σ 2 : L n = 2 σ 2 y n (3.11)
Remark: According to the discussion in Section 2.3.1, for the infinite precision MS decoder the term containing the channel parameter value may be omitted in the computation of L n values, without any impact on the decoding performance. It follows that for both the BSC and BI-AWGN channel models, one can simply define the a priori information of the decoder by γ n = y n , ∀n =1,...,N.

Finite-precision Min-Sum decoder

We consider a finite-precision MS decoder, in which the a priori information (γ n )a n dt h e exchanged messages (α m,n and β m,n ) are quantized on q bits. The a posteriori information (γ n ) is quantized on q bits, with q>q(usually q = q +1, or q = q + 2). We further denote:

•M= {-Q,...,-1, 0, +1,...,Q},w h e r eQ =2 q-1 -1, the alphabet of both the a priori information and the exchanged messages;

• M = {-Q,...,-1, 0, +1,..., Q},w h e r e Q =2 q-1 -1, the alphabet of the a posteriori information;

• q : Y→M , a quantization map, where Y denotes the channel output alphabet;

• s M : Z →M,t h eq-b i ts a t u r a t i o nm a p( d e fi n e di nas i m i l a rm a n n e ra si n( 3 . 6 ) ) ;

• s M : Z → M,t h eq-bit saturation map Remark: The quantization map q determines the q-bit quantization of the decoder soft input. Since q is defined on the channel output (i.e. y n values), it must also encompass the computation of the corresponding LLR values, whenever is necessary. Saturation maps s M and s M define the finite-precision saturation of the exchanged messages and of the a posteriori information, respectively.

Noisy Min-Sum decoder

The noisy (finite-precision) MS decoding is presented in Algorithm 7. We assume that q-bit adders are used to compute both α m,n messages in the VN-processing step, and γn values Algorithm 7 Noisy Min-Sum (Noisy-MS) decoding Input: y =(y 1 ,...,y N ) ∈Y N (Y is the channel output alphabet)

⊲ received word Output: x =(x 1 ,...,x N ) ∈{-1, +1} N ⊲ estimated codeword Initialization for all n =1,...,N do γ n = q(y n ); for all n =1,...,N and m ∈H(n) do α m,n = γ n ;

Iteration Loop for all m =1,...,M and n ∈H(m) do ⊲ CN-processing

β m,n = x pr {sgn(α m,n ′ )} n ′ ∈H(m)\n m pr {|α m,n ′ |} n ′ ∈H(m)\n ; for all n =1,...,N and m ∈H(n) do ⊲ VN-processing α m,n = a pr {γ n }∪{β m ′ ,n } m ′ ∈H(n)\m ; α m,n = s M (α m,n ); for all n =1,...,N do ⊲ AP-update γn = a pr {γ n }∪{β m,n } m∈H(n) ;
for all {v n } n=1,...,N do xn =sgn(γ n );

⊲ hard decision if x is a codeword then exit the iteration loop ⊲ syndrome check End Iteration Loop in the AP-update processing step. This is usually the case in practical implementations2 , and allows us to use the same type of adder in both processing steps. This assumption explains as well the q-bit saturation of α m,n messages in the VN-processing step. Note also that the saturation of γn values is actually done within the adder (see Equation (3.7)).

Finally, we note that the hard decision and the syndrome check steps in Algorithm 7 are assumed to be noiseless. We note however that the syndrome check step is optional, and if missing, the decoder stops when the maximum number of iterations is reached.

Sign-preserving properties

Let U denote any of the VN-processing or CN-processing units of the noiseless MS decoder. We denote by U pr the corresponding unit of the noisy MS decoder. We say that U pr is signpreserving if for any incoming messages and any noise realization, the outgoing message is of the same sign as the message obtained when the same incoming messages are supplied to U.

Clearly, CN pr is sign-preserving if and only if the xor-operator is noiseless (p x = 0). In case that the noisy xor-operator severely degrades the decoder performance, it is possible to increase its reliability by using classical fault-tolerant techniques (as for instance modular redundancy, or multi-voltage design by increasing the supply voltage of the corresponding xor-gate). The price to pay, when compared to the size or the energy consumption of the whole circuit, would be reasonable.

Concerning the VN-processing, it is worth noting that the VN pr is not sign-preserving, even if the noisy adder is. This is due to the fact that multiple adders must be "nested" in order to complete the VN-processing. However, a sign-preserving adder might have several benefits. First, the error probability of the sign of variable-node messages would be lowered, which would certainly help the decoder. Second, if the noisy adder is signpreserving and all the variable-node incoming messages have the same sign, then the VN pr does preserve the sign of the outgoing message. Put differently, in case that all the incoming messages agree on the same hard decision, the noisy VN-processing may change the confidence level, but cannot change the decision. This may be particularly useful, especially during the last decoding iterations.

Finally, the motivation behind the sign-preserving noisy adder model is to investigate its possible benefits on the decoder performance. If the benefits are worth it (e.g. one can ensure a target performance of the decoder), the sign-bit of the adder could be protected by using classical fault-tolerant solutions.

Density Evolution

Concentration and convergence properties

First, we note that our definition of symmetry is slightly more general than the one used in [63]. Indeed, even if all the error injection models used within the noisy MS decoder are symmetric, the noisy MS decoder does not necessarily verify the symmetry property from [63]. However, this property is verified in case of highly symmetric fault injection3 . Nevertheless, the concentration and convergence properties proved in [63] for symmetric noisy message-passing decoders, can easily be generalized to our definition of symmetry.

We summarize below the most important results; the proof relies essentially on the same arguments as in [63]. We consider an ensemble of LDPC codes, with length N and fixed degree distribution polynomials [53]. We choose a random code C from this ensemble and assume that a random codeword x ∈{-1, +1} N is sent over a binary-input memoryless symmetric channel. We fix some number of decoding iterations ℓ>0, and denote by E C does not depend on the code C or the code-length N , but only on the degree distribution polynomials; in this case, it will be further denoted by E (ℓ) ∞ (x).

3. [Concentration Around the Cycle-Free Case] For any δ>0, the probability that

E (ℓ) C lies outside the interval E (ℓ) ∞ (x) -δ, E (ℓ) 
∞ (x)+δ converges to zero exponentially fast in N .

Density evolution equations

In this section we derive density evolution equations for the noisy finite-precision MS decoding for a regular (d v ,d c ) LDPC code. The study can be easily generalized to irregular LDPC codes, simply by averaging according to the degree distribution polynomials.

The objective of the density evolution technique is to recursively compute the probability mass functions of exchanged messages, through the iterative decoding process. This is done under the independence assumption of exchanged messages, holding in the asymptotic limit of the code length, in which case the decoding performance converges to the cycle-free case. Due to the symmetry of the decoder, the analysis can be further simplified by assuming that the all-zero codeword is transmitted through the channel. We note that our analysis applies to any memoryless symmetric channel.

Let ℓ>0 denote the decoding iteration. Superscript (ℓ) will be used to indicate the messages and the a posteriori information computed at iteration ℓ. To indicate the value of a message on a randomly selected edge, we drop the variable and check node indexes from the notation (and we proceed in a similar manner for the a priori and a posteriori information). The corresponding probability mass functions are denoted as follows.

C(z)=P r ( γ = z), ∀z ∈M C (ℓ) (z)=P r (γ (ℓ) =z), ∀z ∈ M A (ℓ) (z)=P r α (ℓ) = z , ∀z ∈M B (ℓ) (z)=P r β (ℓ) = z , ∀z ∈M 3.3.2.

Expression of the input probability mass function C

The probability mass function C depends only on the channel and the quantization map q : Y→M ,w h e r eY denotes the channel output alphabet (Section 3.2.1). We also note that for ℓ =0,w eha v eA (0) = C.

We give below the expression of C for the BSC and the BI-AWGN channel models. For the BSC, the channel output alphabet 5 is Y = {-1, +1}, while for the BI-AWGN channel, Y = R.

Let μ be a positive number, such that μ ≤ Q. The quantization map q μ is defined as follows:

q μ : Y→M , q μ (y)=s M ([μ•y]), (3.12) 
where [μ•y] denotes the nearest integer to μ•y,ands M is the saturation map (Section 3.2.1).

For the BSC, we will further assume that μ is an integer. It follows that q μ (y)=μ•y, ∀y ∈Y= {-1, +1}.

Considering the all-zero (+1) codeword assumption, the probability mass function C can be computed as follows.

• For the BSC with crossover probability ε:

C(z)= ⎧ ⎨ ⎩ 1 -ε, if z = μ ε, if z = -μ 0, otherwise (3.13)
• For the BI-AWGN channel with noise variance σ 2 :

C(z)= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 -q -Q+0.5-μ μσ , if z = -Q q z-0.5-μ μσ -q z+0.5-μ μσ , if -Q<z<+Q q Q-0.5-μ μσ , if z =+Q (3.14) where q(x)= 1 √ 2π +∞ x exp - u 2 2
du is the tail probability of the standard normal distribution (also known as the Q-function).

5 See the assumption about the input/output channel alphabets, made at the beginning of Section 3.2. (ℓ) as a function of A (ℓ-1)

Expression of B

In the sequel, we make the convention that Pr(sgn(0) = 1) = Pr(sgn(0) = -1) = 1/2. The following notation will be used:

• A [x,y] = y z=x A(z), for x ≤ y ∈M • A [0 + ,y] = 1 2 A(0) + y z=1 A(z), for y ∈M,y>0 • A [x,0 -] = 1 2 A(0) + -1 z=x A(z), for x ∈M,x<0
For the sake of simplicity, we drop the iteration index, thus B := B (ℓ) and A := A (ℓ-1) . We proceed by recursion on i =2,...,d c -1, where d c denotes the check-node degree. Let β 1 := α 1 ,a n df o ri =2,...,d c -1 define:

β i = x pr (sgn(β i-1 ), sgn(α i ))m pr (|β i-1 |, |α i |)
Let also B i-1 and B i denote the probability mass functions of β i-1 and β i , respectively (hence, B 1 = A).

First of all, for z =0,w eha v e:

B i (0) = Pr(β i =0)=A(0)B i-1 (0) + [B i-1 (0)(1 -A(0)) + A(0)(1 -B i-1 (0))] (1 -p c ).
For z = 0, we proceed in several steps as follows: For z>0:

When p x =0, F ′ i (z) def =P r ( β i ≥ z) = B i-1 [0 + ,z-1] A [z,Q-1] + A [0 + ,z-1] B i-1 [z,Q-1] p c + B i-1 [1-z,0 -] A [-Q,-z] + A [1-z,0 -] B i-1 [-Q,-z] p c + B i-1 [z,Q-1] A [z,Q-1] + B i-1 [-Q,-z] A [-Q,-z] When p x > 0, F i (z) def =P r ( β i ≥ z) =( 1-p x ).F ′ i (z)+p x .G ′ i (-z) B i (z)=P r ( β i = z)=F i (z) -F i (z +1)
For z<0:

When p x =0, G ′ i (z) def =P r ( β i ≤ z) = B i-1[0+,-z-1] A [-Q,z] + A [0 + ,-z-1] B i-1[-Q,z] p c + B i-1[-z,Q-1] A [z+1,0 -] + A [-z,Q-1] B i-1[z+1,0-] p c + B i-1[-z,Q-1] A [-Q,z] + A [-z,Q-1] B i-1[-Q,z] When p x > 0, G i (z) def =P r ( β i ≥ z) =( 1-p x ).G ′ i (z)+p x .F ′ i (-z) B i (z)=P r ( β i = z)=G i (z) -G i (z +1)
F i n a l l y ,w eh a v et h a tB = B dc-1 . (ℓ) as a function of B (ℓ) and C We derive at the same time the expression of C (ℓ) as a function of B (ℓ) and C.

Expression of A

For simplicity, we drop the iteration index, so A := A (ℓ) , B := B (ℓ) ,a n d C := C (ℓ) . We denote by E,p E ,ı | M the error injection model used to define the noisy adder. We decompose each noisy addition into three steps (noiseless infinite-precision addition, saturation, and error injection), and proceed by recursion on i =0 , 1,...,d v ,w h e r ed v denotes the variable-node degree:

• For i =0: Ω 0 def = γ ∈M⊆ M, C 0 (z) def =P r ( Ω 0 =z)= C(z), if z ∈M 0, if z ∈ M\M • For i =1,...,d v : ω i def =Ω i-1 + β m i ,n ∈ Z,c i (w) def =P r ( ω i = w)= u C i-1 (u)B(w -u), ∀w ∈ Z ωi def = s M (ω i ) ∈ M, ci (w) def =P r ( ωi =w)= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ c i (w), if w ∈ M\{± Q} w≤-Q c i (w), if w = -Q w≥+ Q c i (w), if w =+ Q Ω i def = ı(ω i ,e) ∈ M, C i (z) def =P r ( Ω i =z)= ω e δ z ı(ω,e
) p E (e)c i (ω), ∀z ∈ M where δ y x =1ifx = y, and δ y x =0ifx = y.

Note that in the definition of Ω i above, e denotes an error drown from the error set E according to the error probability distribution p E .

Finally, we have:

• A = s M C dv -1 • C = C dv
In the first equation above, applying the saturation operator s M on the probability mass function C dv-1 means that all the probability weights corresponding to values w outside M must be accumulated to the probability of the corresponding boundary value of M (that is, either -Q or +Q, according to whether w<-Q or w<+Q).

Remark: If the noisy adder is defined by one of the bitwise-xor error injection models (Section 3.1.3), then the third equation from the above recursion (expression of C i as a function of ci ) may be rewritten as follows:

• Sign-preserving bitwise-xored noisy adder

C i (z)= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1 -p a )c i (z)+ 1 Q p a ci [≤ 0 -] -ci (z) , if z<0 (1 -p a )c i (0) + 1 Q p a (1 -ci (0)) , if z =0 (1 -p a )c i (z)+ 1 Q p a ci [≥ 0 + ] -ci (z) , if z>0 (3.15)
where ci [≤ 0 -] = ω<0 ci (ω)+ 1 2 ci (0), and ci

[≥ 0 + ] = 1 2 ci (0) + ω>0 ci (ω). • Full-depth bitwise-xored noisy adder C i (z)=(1-p a )c i (z)+ 1 2 Q p a (1 -ci (z)) (3.16)
Finally, we note that the density evolution equations for the noiseless finite-precision MS decoder can be obtained by setting p a = p c = p x =0.

Decoding error probability

The error probability at decoding iteration ℓ, is defined by:

P (ℓ) e = -1 z=-Q C (ℓ) (z)+ C (ℓ) (0) 2 (3.17)
Proposition 3.1 The error probability at decoding iteration ℓ is lower-bounded as follows:

(a) For the sign-preserving bitwise-xored noisy adder:

P (ℓ) e ≥ 1 2 Q p a .
(b) For the full-depth bitwise-xored noisy adder:

P (ℓ) e ≥ 1 2 p a + 1 4 Q p a .
Proof.

(a) Using C = C dv and equations (3.17) and (3.15), it follows that:

P (ℓ) e =( 1 -p a )c dv [≤ 0 -] + 1 2 Q p a 1 -2c dv [≤ 0 -] + p a cdv [≤ 0 -] -1 2 cdv (0) ≥ (1 -p a )c dv [≤ 0 -] + 1 2 Q p a 1 -2c dv [≤ 0 -] ≥ 1 2 Q p a ,
where the last inequality follows from the fact that the function (1

-p a )x + 1 2 Q p a (1 -2x) is an increasing function of x ∈ [0, 1].
(b) Equations (3.17) and (3.16) imply that:

P (ℓ) e = 1 2 p a +(1-p a )c dv [≤ 0 -] + 1 4 Q p a 1 -2c dv [≤ 0 -] ≥ 1 2 p a + 1 4 Q p a
Note that the above lower bounds are actually inferred from the error injection in the last (the d v -th) addition performed when computing the a posteriori information value. Therefore, these lower bounds are not expected to be tight. However, if the channel error probability is small enough, the sign-preserving lower bound proves to be tight in the asymptotic limit of ℓ (this will be discussed in more details in Section 3.4). Note also that by protecting the sign of the noisy adder, the bound is lowered by a factor of roughly Q, which represents an exponential improvement with respect to the number of bits of the adder.

In the asymptotic limit of the code-length, P (ℓ) e gives the probability of the hard bit estimates being in error at decoding iteration ℓ. For the (noiseless, infinite-precision) BP decoder, the error probability is usually a decreasing function of ℓ. This is no longer true for the noiseless, infinite-precision MS decoder, for which the error probability may increase with ℓ. However, both decoders exhibit a threshold phenomenon, separating the region where error probability goes to zero (as the number of decoding iterations goes to infinity), from that where it is bounded above zero [53].

Things get more complicated for the noisy (finite-precision) MS decoder. First, the error probability have a more unpredictable behavior. It does not always converge and it may become periodic 6 when the number of iterations goes to infinity. Second, the error probability is always bounded above zero (Proposition 3.1), since there is a nonzero probability of fault injection at any decoding iteration. Hence, a decoding threshold, similar to the noiseless case, cannot longer be defined. A new threshold definition must then be defined for noisy decoders.

Useful region, target error rate and functional thresholds

The notions of useful region and target error rate threshold have been introduced in [63]. Consider a channel model depending on a channel parameter χ, such that the channel is degraded by increasing χ (for example, the crossover probability for the BSC, or the noise variance for the BI-AWGN channel). In order to account for the fact that P (ℓ) e depends also on the value of the channel parameter, it will be denoted in the following by P (ℓ) e (χ). Furthermore, if exists, we denote:

P (∞) e (χ) = lim ℓ→∞ P (ℓ)
e (χ), (3.18)

which will be referred to as the asymptotic error probability of the decoder.

Useful region

Following [63], the useful region is defined as the set of channel and hardware parameters yielding a asymptotic probability of error less than the input error probability. The latter probability is given by:

P (0) e (χ)= -1 z=-Q C(z)+ 1 2 C(0) (3.19)
where C is the probability mass function of the quantized a priori information of the decoder (γ = q(y), see Algorithm 7). Then the decoder is said to be useful if P (∞) e (χ) exists, and if:

P (∞) e (χ) <P (0) e (χ) (3.20)
The ensemble of parameters that satisfy this condition constitutes the useful region of the decoder. The useful region indicates what are the faulty hardware conditions and the maximum channel noise that the noisy decoder can tolerate to reduce the level of noise. However, for a given χ, it does not indicate if the noisy decoder can correct most of the errors from the channel.

Target error rate threshold

From [63], for a target bit-error rate η,t h eη-threshold is defined by:

χ * (η)=sup χ | P (∞)
e (χ)e x i s t sa n dP (∞) e (χ) <η .

(3.21)

Hence, the η-threshold allows determining the maximum channel noise for which the bit error probability can be reduced below a target value. However, the choice of η is arbitrary and is not related to any particular behavior of the decoder.

6 In fact, for both BSC and BI-AWGN channels, the only cases we observed, in which the sequence

P ( ) e >0
does not converge, are those cases in which this sequence becomes periodic for ℓ large enough.

Functional threshold

Although the η-threshold definition allows determining the maximum channel noise for which the bit error probability can be reduced below a target value, there is not significant change in the behavior of the decoder when the channel noise parameter χ increases beyond the value of χ * (η). In this section, a new threshold definition is introduced in order to identify the channel and hardware parameters yielding to a sharp change in the decoder behavior, similar to the change that occurs around the threshold of the noiseless decoder. This threshold will be referred to as the functional threshold. The aim is to detect a sharp increase (e.g. discontinuity) in the error probability of the noisy decoder, when χ goes beyond this functional threshold value. The threshold definition we propose make use of the Lipschitz constant of the function χ → P 

L(f, I)= sup x =y∈I |f (x) -f (y)| |x -y| ∈ R + ∪{+∞} (3.22)
For a ∈ I and δ>0,l e tI a (δ)=I ∩ (a -δ, a + δ).T h e(local) Lipschitz constant of f in a ∈ I is defined by:

L(f, a)=inf δ>0 L(f, I a (δ)) ∈ R + ∪{+∞} (3.23)
Note that if a is a discontinuity point of f ,t h e nL(f, a)=+ ∞.O nt h eo p p o s i t e ,i f f is differentiable in a, then the Lipschitz constant in a corresponds to the absolute value of the derivative. Furthermore, if L(f, I) < +∞,t h e nf is uniformly continuous on I and almost everywhere differentiable. In this case, f is said to be Lipschitz continuous on I.

The functional threshold is then defined as follows.

Definition 3.5 For given hardware parameters and a channel parameter χ, the decoder is said to be functional if The use of the Lipschitz constant allows a rigorous definition of the functional threshold, while avoiding the use of the derivative (which would require P (∞) e (χ) to be a piecewise differentiable function of χ). As it will be further illustrated in Section 3.4, the functional threshold corresponds to a transition between two modes. The first mode corresponds to the channel parameters leading to a low level of error probability, i.e.,f o rw h i c ht h e decoder can correct most of the errors from the channel. In the second mode, the channel parameters lead to a much higher error probability level. If L P (∞) e , χ =+ ∞,t h e n χ is a discontinuity point of P (∞) e and the transition between the two levels is sharp. If L P (∞) e , χ < +∞,t h e n χ is an inflection point of P (∞) e and the transition is smooth. With the Lipschitz constant, one can characterize the transition in both cases. However, the second case corresponds to a degenerated one, in which the hardware noise is too high and leads to a non-standard asymptotic behavior of the decoder. That is why a set of admissible hardware noise parameters is defined as follows.

Definition 3.6 The set of admissible hardware parameters is the set of hardware noise parameters (p a ,p c ,p x ) for which L P (∞) e , χ =+∞.

In the following, as each threshold definition helps at illustrating different effects, one or the other definition will be used, depending on the context.

Asymptotic Analysis of the Noisy Min-Sum Decoder

In this section, the density evolution equations derived previously are used to analyze the asymptotic performance (i.e. in the asymptotic limit of both the code length and number of iterations) of the noisy MS decoder.

Unless specified otherwise, the following parameters are used throughout this section:

Code parameters:

• We consider the ensemble of regular LDPC codes with variable-node degree d v =3 and check-node degree d c =6

Quantization parameters:

• The a priori information and exchanged messages are quantized on q = 4 bits; hence, Q =7andM = {-7,...,+7}.

• The a posteriori information is quantized on q = 5 bits; hence, Q =1 5a n d M = {-15,...,+15}.

We analyze the decoding performance depending on:

• The quantization map q μ : Y→M , defined in Equation (3.12). The factor μ will be referred to as the channel-output scale factor, or simply the channel scale factor.

• The parameters of the noisy adder, comparator, and xor-operator, defined respectively in Equations (3.7), (3.8), and (3.9).

Numerical results for the BSC

For the BSC, the channel output alphabet is Y = {-1, +1} and the quantization map is defined by q μ (-1) = -μ and q μ (+1) = +μ,w i t hμ ∈{1,...,Q}.

The infinite-precision MS decoder (Algorithm 3), is known to be independent of the scale factor μ. T h i si sbe c a u s eμ factors out from all the processing steps in Algorithm 3, and therefore does not affect in any way the decoding process. This is no longer true for the finite precision decoder (due to saturation effects), and we will show in this section that, even in the noiseless case, the scale factor μ can significantly impact the performance of the finite precision MS decoder.

We start by analyzing the performance of the MS decoder with quantization map q 1 , and then we will analyze its performance with an optimized quantization map q μ .

Min-Sum decoder with quantization map q 1

The case μ = 1 leads to an "unconventional" behavior, as in some particular cases the noise introduced by the device can help the MS decoder to escape from fixed points attractors, and may actually result in an increased correction capacity with respect to the noiseless decoder. This behavior will be discussed in more details in this section.

We start with the noiseless decoder case. Figure 3.1 shows the asymptotic error probability P (∞) e as a function of p 0 (used throughout this section to denote the BSC crossover probability). It can be seen that P drops to zero. This is the classical threshold phenomenon mentioned in Section 3.3.3: for p 0 >p th , the decoding error probability is bounded far above zero (P (∞) e > 0.31), while for p 0 <p th , one has P (∞) e =0. Now, we consider a p 0 value slightly greater than the threshold of the noiseless decoder, and investigate the effect of the noisy adder on the decoder performance. Let us fix p 0 =0 .06. Figure 3.2(a) shows the decoding error probability at iteration ℓ,f o rd i ff e r e n t parameters p a ∈{ 10 -30 , 10 -15 , 10 -5 } of the noisy adder. For each p a value, there are two superimposed curves, corresponding to the full-depth ("fd", solid curve) and signpreserving ("sp", dashed curve) error models of the noisy adder.

The error probability of the noiseless decoder is also plotted (solid black curve): it can be seen that it increases rapidly from the initial value P 3.333 × 10 -32 3.333 × 10 -17 3.333 × 10 -7 preserving lower-bound 3.333 × 10 -32 3.333 × 10 -17 3.333 × 10 -7 as in the noiseless case. It may approach the limit value from the noiseless case, but starts decreasing after some number of decoding iterations. However, it remains bounded above zero, according to the lower bounds from Proposition 3.1. This can be seen in Figure 3.2(b), where P 3.2. It can be seen that these bounds are tight, especially in the sign-preserving case.

The above behavior of the MS decoder is explained by the fact that the noise present in the adder helps the MS decoder to escape from fixed points attractors.

Figure 3.3 illustrates the evolution of the probability mass function C (ℓ) for the noiseless decoder. At iteration ℓ =0, C (0) is supported in ±1, with C (0) (-1) = p 0 and C (0) (+1) = 1 -p 0 . It evolves during the iterative decoding, and reaches a fixed point of the density evolution for ℓ = 20. Note that since all variable-nodes are of degree d v =3 ,i tc a nb e easily seen that, for ℓ ≥ 1, C (ℓ) is supported only on even values. These "gaps" in the probability mass function seem lead to favorable conditions for the occurrence of densityevolution fixed-points.

Figure 3.4 illustrates the evolution of the probability mass function C (ℓ) when the fulldepth noisy adder with p a =1 0 -15 is used within the MS decoder. At iteration ℓ = 20, C (ℓ) is virtually the same as in the noiseless case. However, the noisy adder allows the decoder to escape from this fixed-point, as it can be seen for iterations ℓ =23andℓ = 30. For ℓ>30, the C (ℓ) moves further on the right, until the corresponding error probability P (ℓ) e reaches the limit value P (∞) e =8.5 × 10 -16 . It is worth noting that neither the noisy comparator nor the xor-operator can help the decoder to escape from fixed-point distributions, as they do not allow "filling the gaps" in the support of C (ℓ) . We focus now on the useful region of the noisy MS decoder. We assume that only the adder is noisy, while the comparator and the xor-operator are noiseless. The useful region for the sign-preserving noisy adder model is shown in Figure 3.5. The useful region is shaded in gray and delimited by either a solid black curve or a dashed red curve. Although one would expect that P (∞) e = p 0 on the border of the useful region, this equality only holds on the solid black border. On the dashed red border, one has P (∞) e <p 0 . The reason why the useful region does not extend beyond the dashed red border is that for points located on the other side of this border the sequence (P (ℓ) e ) ℓ>0 is periodic, and hence it does not converge! The region shaded in brown in Figure 3.5 is the non-convergence region of the decoder. Note that the non-convergence region gradually narrows in the upper part, and there is a small portion of the useful region delimited by the non-convergence region on the left and the black border on the right. Finally, we note that points with p a =0 (noiseless decoder) and p 0 > 0.039 (threshold of the noiseless decoder) -represented by the solid red line superimposed on the vertical axis in Figure 3.5 -are excluded from the useful region. Indeed, for such points P (∞) e >p 0 ; however, for p a greater than but close to zero, we have P We exemplify the decoder behavior on four points located on one side and the other of the left and right boundaries of the non-convergence region. These points are indicated in Figure 3.5 by A, B, C,a n dD. For all the four points p 0 =0 .03, while p a =0 .027, 0.03, 0.039, and 0.042, respectively. The error probability (P (ℓ) e ) ℓ>0 is plotted for each one of these points in Figure 3.6. The point A belongs to the useful region, and it can be seen from Figure 3.6(a) that (P (ℓ) e ) ℓ>0 converges to P (∞) e =9.11× 10 -4 <p 0 . For the p oint B, located just on the other side of the dashed red border of the useful region, (P (ℓ) e ) ℓ>0 exhibits a periodic behavior (although we only plotted the first 500 iterations, we verified the periodic behavior on the first 5×10 4 iterations). Crossing the non-convergence region from left to the right, the amplitude between the inferior and superior limits of (P >p 0 . Moreover, we note that the bottom border of the useful region (solid black curve) is virtually identical to, but slightly above, the line defined by p 0 = pa 2 Q .

Optimization of the quantization map

In this section we show that the decoder performance can be significantly improved by using an appropriate choice of the channel scale factor μ. Figure 3.7 shows the threshold values for the noiseless and several noisy decoders with channel scale factors μ ∈{1, 2,...,7}. For the noisy decoders, the threshold values are computed for a target error probability η =10 -5 (see Equation (3.21)). The solid black curve in Figure 3.7 correspond to the noiseless decoder. The solid red curve and the dotted blue curve correspond to the MS decoder with sign-preserving noisy adder and full-depth noisy adder, respectively. The adder error probability is p a =10 -4 for the sign-preserving noisy adder, and p a =10 -5 for the full-depth adder 7 . The two curves are superimposed for 1 ≤ μ ≤ 6, and differ only for μ = 7. The corresponding threshold values are equal to those obtained in the noiseless case for μ ∈{2, 4, 6}.F o rμ ∈{1, 3, 5}, the MS decoders with noisy-adders exhibit better thresholds than the noiseless decoder. This is due to the fact that the messages alphabet M is underused by the noiseless decoder, since all the exchanged messages are necessarily odd (recall that all variable-nodes are of degree d v = 3). For the MS decoders with noisy adders, the noise present in the adders leads to a more efficient use of the messages alphabet, which allows the decoder to escape from fixed-point attractors and hence results in better thresholds (Section 3.4.1.1).

Figure 3.7 also shows a curve corresponding to the MS decoder with a noisy comparator having p c =0 .005, and two curves for the MS decoder with noisy xor-operators, having respectively p x =2× 10 -4 and p x =3× 10 -4 .

7 Note that according to Proposition 3.1, a necessary condition to achieve a target error probability P (∞) e ≤ η =1 0 -5 is pa ≤ 2 Qη =3× 10 -4 for the sign-preserving adder, and pa ≤ 2η 2 Q+1 2 Q =2 .07 × 10 -5 for the full-depth adder.

Concerning the noisy xor-operator, it can be seen that the threshold values corresponding to p x =2× 10 -4 are very close to those obtained in the noiseless case, except for μ = 7 (the same holds for values p x < 2 × 10 -4 ). However, a significant degradation of the threshold can be observed when slightly increasing the xor error probability to p x =3× 10 -4 . Moreover, although not shown in the figure, it is worth mentioning that for p x ≥ 5 × 10 -4 , the target error probability η =1 0 -5 can no longer be reached (thus, all threshold values are equal to zero).

Finally, we note that except for the noisy xor-operator with p x =3× 10 -4 ,t h eb e s t choice of the channel scale factor is μ = 6. For the noisy xor-operator with p x =3× 10 -4 , the best choice of the channel scale factor is μ = 3. This is rather surprising, as in this case the messages alphabet is underused by the decoder: all the exchanged messages are odd, and the fact that the xor-operator is noisy does not change their parity.

Assumption: In the following sections, we will investigate the impact of the noisy adder, comparator and xor-operator on the MS decoder performance, assuming that the channel scale factor is μ =6.

Study of the impact of the noisy adder (quantization map q 6 )

In order to evaluate the impact of the noisy adder on the MS decoder performance, the useful region and the η-threshold regions have been computed, assuming that only the adders within the VN-processing step are noisy (p a > 0), while the CN-processing step is noiseless (p x = p c = 0). This regions are represented in Figure 3.8, for both sign-preserving and full-depth noisy adder models.

The useful region is delimited by the solid black curve. The vertical lines delimit the η-threshold regions, for η =10 -3 , 10 -4 , 10 -5 , 10 -6 (from right to the left).

Note that unlike the case μ = 1 (Section 3.4.1.1), there is no non-convergence region when the channel scale factor is set to μ = 6. Hence, the border of the useful region corresponds to points (p a ,p 0 )forwhichP (∞) e = p 0 . However, it can be observed that there is still a discontinuity line (dashed red curve) inside the useful region. This discontinuity line does actually correspond to the functional threshold defined in Section 3.3.4.3. Thus, it does not hide a periodic (non-convergent) behavior, but it is due to the occurrence of an early plateau phenomenon in the convergence of (P

(ℓ) e ) ℓ .
This phenomenon is illustrated in Figure 3.9, where the error probability (P (ℓ) e ) ℓ is plotted as a function of the iteration number ℓ, for the two points A and B from Figure 3.8(a). For point A, it can be observed that the error probability P (ℓ) e reaches a first plateau for ℓ ≈ 50, then drops to 3.33 × 10 -6 for ℓ ≥ 250. For point B, P

e behaves in a similar manner during the first iterations, but it does not decrease below the plateau value as ℓ goes to infinity. Although we have no analytic proof of this fact, it was numerically verified for ℓ ≤ 5 × 10 5 .

In Figure 3.10, we plotted the asymptotic error probability P (∞) e as a function of p 0 ,for the noiseless decoder (p a = 0), and for the sign-preserving noisy adder with error probability values p a =10 -4 and p a =0.05. In each plot we have also represented two points p as a function of p 0 ; noiseless and noisy MS decoders with sign-preserving noisy adder noiseless case, and it can be seen as an appropriate generalization of the classical threshold to the case of noisy decoders.

In the following, the region located below the discontinuity line will be referred to as the functional region. Within this region, if the adder error probability is small enough, it can be observed that: ≈ 1.17p a ,f o rp a 10 -3 , which is about twice higher than the value given by the lower-bound (

1 2 p a + 1 4 Q p a =0.52p a ) from Proposition 3.1.
Finally, we note that by protecting the sign of the noisy adder, the useful region is expanded by a factor of roughly 2 Q, representing an exponential improvement with respect to the number of bits of the adder (see also the discussion following the proof of Prop. 3.1).

Study of the impact of the noisy XOR-operator (quantization map q 6 )

The useful region and the η-threshold regions of the decoder, assuming that only the xoroperator used within the CN-processing step is noisy, are plotted in Figure 3.11. Similar to the noisy-adder case, a discontinuity line can be observed inside the useful region, which delimits the functional region of the decoder. Comparing the η-threshold regions from Figure 3.8 and Figure 3.11, it can be observed that in order to achieve a target error probability P (∞) e ≤ 10 -6 , the error probability parameters of the noisy adder and of the noisy xor-operator must satisfy:

• p a < 1.17 × 10 -6 , for the full-depth noisy-adder;

• p a < 3 × 10 -5 , for the sign-preserving noisy-adder;

• p x < 7 × 10 -5 , for the noisy xor-operator.

(moreover, values of p x up to 1.4 × 10 -4 are tolerable if p 0 is sufficiently small)

The most stringent requirement concerns the error probability of the full-depth noisyadder, thus we may consider that it has the most negative impact on the decoder performance. On the other hand, the less stringent requirement concerns the error probability of the noisy xor-operator.

Finally, it is worth noting that in practical cases the value of p x should be significantly lower than the value of p a (given the high number of elementary gates contained in the adder). Moreover, since the xor-operators used to compute the signs of CN messages represent only a small part of the decoder, this part of the circuit could be made reliable by using classical fault-tolerant methods, with a limited impact on the overall decoder design.

3.4.1.5 Study of the impact of the noisy comparator (quantization map q 6 ) This section investigates the case when comparators used within the CN-processing step are noisy (p c > 0), but p a = p x = 0. Contrary to the previous cases, this case exhibits a "classical" threshold phenomenon, similar to the noiseless case: for a given p c > 0, the exists a p 0 -threshold value, denoted by p is plotted as a function of p c in Figure 3.12. The functional region of the decoder is located below the threshold curve, and P (∞) e =0f o ra n yp o i n t within this region. In particular, it can be seen that P (∞) e =0f o ra n yp 0 0.039 and any p c > 0. Although such a threshold phenomenon might seem surprising for a noisy decoder, it can be easily explained. The idea behind is that in this case the crossover probability of the channel is small enough, so that in the CN-processing step only the sign of check-to-variable messages is important, but not their amplitudes. In other words a decoder that only computes (reliably) the signs of check-node messages and randomly chooses their amplitudes, would be able to perfectly decode the received word.

Finally, we note that the useful region of the decoder extends slightly above the threshold curve: for p c close to 0, there exists a small region above the threshold curve, within which 0 <P (∞) e <p 0 .

Comparison of the impact of the different noisy components

To compare the impact of the different noisy components on the decoder performance, the useful region and the η-threshold regions have been plotted for a channel parameter value close to, but slightly below the functional threshold: p 0 =0 .07. Sign-preserving adders are considered in Figure 3.13 and full-depth adders in Figure 3.14.

In Figure 3.13(a) comparators are assumed to be noiseless and the regions are plotted with respect to p a and p x . It can be seen that the maximum tolerable value of p x is slightly less than the maximum tolerable value of p a , hence we conclude that noisy xor operators have slightly more negative impact on the decoder performance than sign-preserving noisy adders. However when the target η value decreases, the maximum tolerable values of p a and p x become close, hence the noisy adders and XOR operator have similar impact on the MS decoder performance.

In Figure 3.13(b) XOR operators are assumed to be noiseless and the regions are plotted with respect to p a and p c . It can be seen that the maximum tolerable value of p c is significantly above the the maximum tolerable value of p a , especially for low η-values, which conforms that the MS decoder performance is much more sensitive to adder noise than to comparator noise. Figure 3.14 presents a similar analysis, when considering the full-depth noisy-adder model. It can be seen that the the maximum tolerable value of p a is less than the maximum tolerable values of both p c or p x , which shows that the full-depth noisy-adder is the most critical component of the noisy MS decoder.

Numerical results for the BI-AWGN channel

For the BI-AWGN, the channel output is given by y = x + z,w h e r ex ∈{ +1, -1} is the channel input and z is the additive white Gaussian noise with variance σ 2 . Threshold values and useful regions of the decoder will be described in terms of Signal to Noise Ratio (SNR), defined by SNR = -10 log 10 (σ 2 ).

We recall that for a given channel scale factor μ, the quantization map q μ is defined by q μ (y)=s M ([μ•y]), where [μ•y] denotes the nearest integer to μ•y,ands M is the saturation map (see also Equation (3.12)).

Similar to the BSC case, the choice of the channel scale factor μ may significantly impact the decoder performance. Hence, we start first by optimizing the channel scale factor value, and then we investigate the impact of the different noisy components on the decoder performance.

Remark: For the BI-AWGN channel we denote by p 0 def = P (0) e the error probability at iteration 0, which is, by definition, the probability of the a priori information γ = q μ (y) being in error. Hence, p 0 = -1 z=-Q C(z)+ 1 2 C(0). Using Equation (3.14) it follows that: p 0 =1-1 2 q -0.5 -μ μσ + q 0.5 -μ μσ (3.25)

Optimization of the quantization map

The goal of this section is to provide an optimal choice of the channel scale factor μ.F i gure 3.15 shows the threshold SNR values for the noiseless and several noisy decoders for channel scale factors μ varying within the interval [1,7]. For the noisy decoders, the threshold values are computed for a target error probability η =10 -5 (see Equation (3.21)).

The solid black curve in Figure 3.15 correspond to the noiseless decoder. The dashed red curve and the dotted blue curve correspond to the MS decoder with sign-preserving noisy adder and full-depth noisy adder, respectively. The adder error probability is p a = 2 × 10 -4 for the sign-preserving noisy adder, and p a =1 0 -5 for the full-depth adder8 . These three curves are virtually indistinguishable.

Figure 3.15 also shows two curves corresponding respectively to the MS decoder with an o i s yxor-operator (p x =2× 10 -4 ) and to the MS decoder with a noisy comparator (p c =0.005). Finally, we note that in all cases the best choice of the channel scale factor is μ ≈ 5.5.

Assumption: In the following sections, we will investigate the impact of the noisy adder, comparator and xor-operator on the MS decoder performance, assuming that the channel scale factor is μ =5.5.

P (∞) e

≤ η =1 0 -5 is pa ≤ 2 Qη =3× 10 -4 for the signed-preserving adder, and pa ≤ 2η 2 Q+1 2 Q =2.07 × 10 -5 for the full-depth adder. 

Study of the impact of the noisy adder

Useful and η-threshold regions of the MS decoder with noisy adders are represented in Figure 3.16, for both sign-preserving and full-depth noisy adder models. The useful region is delimited by the solid black curve, while vertical lines delimit the η-threshold regions, for η =1 0 -3 , 10 -4 , 10 -5 , 10 -6 (from right to the left). The functional threshold of the decoder is also displayed by a red dashed curve. ) as functions of the SNR value, for the sign-preserving and full-depth noisy adder models with p a =1 0 -4 . The two intersection points between the two curves correspond to the points on the lower and upper borders of the useful region in Figure 3.16, for p a =1 0 -4 . The discontinuity point of the P (∞) e curve corresponds to the functional threshold value in Figure 3.16, for p a =10 -4 . The useful region and the η-threshold regions of the MS decoder, assuming that only the xor-operator used within the CN-processing step is noisy, are plotted in Fig. 3.18. The functional threshold of the decoder is also displayed by a red dashed curve.

The case of a noisy comparator is illustrated in Figure 3.19. Similar to the BSC channel, this case exhibits a "classical" threshold phenomenon: for any SNR value above the functional threshold curve, one has P (∞) e =0. The results are similar to the BSC case. The sign-preserving noisy adder has similar impact on the decoder performance as the noisy xor-operator, but is significantly more harmful than the noisy comparator. The full-depth noisy adder is significantly more harmful than both the noisy xor-operator and noisy comparator, thus confirming its position of most critical component of the noisy MS decoder. 

Conclusion

In this chapter we investigated the asymptotic performance of MS-based decoders on noisy hardware. We derived density evolution equations for the noisy MS decoder, and analyzed the decoder performance in terms of useful regions and target-BER thresholds. We also revealed the existence of a different threshold phenomenon, which was referred to as functional threshold. Along the lines of this study, we have also identified some peculiar and very interesting behaviors of the MS decoder under noisy hardware: in some cases, the noisy version of a decoder can have better asymptotic performance (namely can correct a larger fraction of errors) than its noiseless version.

The main conclusion of this study is that the MS decoder is robust to transient errors, as it is able to operate when the different computing units are noisy. Here, "robust" means that the decoder is able to achieve a target error probability, assuming that the hardware noise parameters are below a non-zero maximum tolerable value. Our study has also focused on means to improve the decoder reliability, by protecting critical bits of the finite-precision computation flow within the decoding process. To this end, we defined and investigated sign-preserving error models for arithmetic operations (e.g. adders), or for larger processing units of the decoder (e.g. variable-node or check-node processing unit). For such models, the sign of the operation (or processing unit) result is always computed accurately. The benefits of sign-preserving computational models have been demonstrated asymptotically through the DE analysis developed in this chapter.

Chapter 4 Statistical Analysis of Finite-Length Min-Sum-Based Decoders

This chapter is aimed at evaluating the finite-length performance of MS-based decoders. The first goal is to corroborate through Monte-Carlo simulation the asymptotic analysis conducted in Chapter 3. To do so, we verify that the conclusions of the DE analysis still hold true in the finite length case. In particular, we confirm that in some particular cases the noisy MS decoder perform very close or even surpass its noiseless counterpart. We also assess the benefits of the sign preserving noise models, and show that the level of noise that can be tolerated with only negligible degradation in the error correction performance is far superior than in the full-depth noise case.

Another goal of this chapter is to identify practical solutions capable of increasing the robustness of the Min-Sum decoder to hardware noise. To this end, we investigate the finite-length performance of the Self-Corrected Min-Sum (SCMS) decoder: an improved version of the MS decoder, which makes use of a memory mechanism in order to detect and discard unreliable messages during the iterative decoding process. We show that the noisy SCMS decoder largely outperforms the MS decoder, providing nearly the same performance as its noiseless counterpart for a wide range of values of the noise parameters.

Additionally, we also investigate the impact of specific hardware implementationsexploiting different scheduling strategies -on the error correction performance of noisy MS and SCMS decoders. Hardware implementations using flooding, serial, and layered scheduling strategies are discussed, and we show that the flooding scheduling based implementation is the most robust to hardware noise.

Finally, we conduct a study on a complementary error scenario, consisting of the imprecise arithmetic framework. In this case, the source of errors comes from the fact that arithmetic units in the decoders are implemented with a smaller number of logic gates than what is actually needed, which may result in significant savings in energy. Under this error model, we show in particular that the SCMS can reach the same error correction performance as the full-precision decoder.

Practical Implementation and Early Stopping Criterion

Practical implementation

In order to reduce the decoder computational cost, the practical implementation of the MS decoder differs slightly from the one presented in Algorithm 7, as follows:

• The order of the VN-processing and AP-update s t e p si si n v e r t e d .

• Variable-to-check messages are computed by subtracting the incoming check-tovariable message from the corresponding a posteriori information value.

The practical implementation of the MS decoder is detailed in Algorithm 8. For floating-point noiseless decoders, the two ways of computing the variable-to-check messages are completely equivalent. However, this equivalence does not hold any more for finite-precision (noisy or noiseless) decoders, because of saturation effects and, in case of noisy decoders, of probabilistic computations. We note that the practical implementation might result in a degradation of the decoder performance compared to the "Density-Evolution like" implementation (Algorithm 7), since each variable-to-check node message encompasses d v + 1 additions (d v additions to compute γn and one subtraction).

Finally, it is worth noting that the density-evolution analysis cannot be applied to the practical implementation, due to the fact that in the VN-processing step, the computation of variable-to-check messages α m,n = a pr ({γ n }, -β m,n ) involves two correlated variables, namely γ n and β m,n .

Early stopping criterion (syndrome check)

As described in Algorithm 7, each decoding iteration also comprises a hard decision step, in which each transmitted bit is estimated according to the sign of the a posteriori information, and a syndrome check step, in which the syndrome of the estimated word is computed.

Both steps are assumed to be noiseless, and the syndrome check step acts as an early stopping criterion: the decoder stops when whether the estimated word is a codeword or a maximum number of iterations is reached.

We note however that the syndrome check step is optional and, if missing, the decoder stops when the maximum number of iterations is reached.

Remark:

The reason why we stress the difference between the MS decoder with and without the syndrome check step is because, as we will see shortly, the noiseless early stopping criterion may significantly improve the bit error rate performance of the noisy decoder in the error floor region.

Assumptions: Unless otherwise stated, the following assumptions hold in this section:

• The MS decoder implements the noiseless stopping criterion (syndrome check step).

• The maximum number of decoding iterations is fixed to 100.

• Monte-Carlo simulations are run for the (3, 6)-regular LDPC code with length N = 1008 bits, available online at [40].

• The a priori information and exchanged messages are quantized on q = 4 bits, while the a posteriori information is quantized on q =5bits.

Corroboration of the asymptotic analysis through finitelength simulations

We start by analyzing the finite-length decoder performance over the BSC and BI-AWGN channels. Figure 4.1 shows the bit error rate (BER) performance of the noiseless and noisy finite-precision MS decoders with various channel scale factors. For comparison purposes, we also include the BER performance of the Belief-Propagation decoder (solid black curve, no markers) and of the infinite-precision MS decoder (dashed blue curve, no markers).

For the BSC channel, it can be observed in Figure 4.1(a) that the worst performance is achieved by the infinite-precision MS decoder (!) and the finite-precision noiseless MS decoder with channel scale factor μ = 1 (both curves are virtually indistinguishable). The BER performance of the latter improves significantly when using a sign-preserving noisy adder with error probability p a =0.001 (dashed red curve with empty circles). For a channel scale factor μ = 6, both noiseless and noisy decoders have almost the same performance (solid and dashed green curves, with triangular markers). Remarkably, the achieved BER is very close to the one achieved by the Belief-Propagation decoder! Results obtained for the BI-AWGN channel are shown in Figure 4.1(b). The best performance is achieved by the Belief-Propagation decoder, followed by three MS decoders with virtually the same performance: the infinite-precision MS decoder, the noiseless finiteprecision MS decoder with μ =5 .5, and the noisy version of the later corresponding to the sign-preserving noisy-adder with p a =0 .001. For a channel scale factor μ =1 ,t h e performance of both noiseless and noisy MS decoders is significantly degraded, by more than 1 dB with respect to the case μ =5.5. These results corroborate the asymptotic analysis from Section 3.4.1 concerning the channel scale factor optimization. The fact that the observed decoding error probability may decrease below the above lower-bound is due to the early stopping criterion (syndrome check step) implemented within the MS decoder. Indeed, as we observed in the previous section, the above lowerbound is tight, when ℓ (the iteration number) is sufficiently large. Therefore, as the iteration number increases, the expected number of erroneous bits gets closer and closer to 1 2 Q p a N =0.034, and the probability of not having any erroneous bit within one iteration approaches 1 -1 2 Q p a N =0 .967. As the decoder performs more and more iterations, it will eventually reach an error free iteration. The absence of errors is at once detected by the noiseless syndrome check step, and the decoder stops.

To illustrate this behavior, we plotted in Figure 4.2 the BER performance of the noisy MS decoder over the BSC, with and without early stopping criterion. The noisy MS decoder comprises a sign-preserving noisy adder with p a =0 .001, while the comparator and the xor-operator are assumed to be noiseless (p c = p x = 0). Two codes are simulated, the first with length N = 1008 bits, and the second with length N = 10000 bits. In case that the noiseless early stopping criterion is implemented (solid curves), it can be seen that none of the BER curves show any error floor down to 10 -8 . However, if the early stopping criterion is not implemented (dashed curves), corresponding BER curves exhibit a ne r r o rfl o o ra t≈ 3.33 × 10 -5 , as predicted by Proposition 3.1.

In Figure 4.3 we plotted the average number of decoding iterations in case that the early stopping criterion is implemented. It can be seen that the average number of decoding iterations decreases with the channel crossover probability p 0 , or equivalently, with the achieved bit error rate. However, for a fixed BER -say BER = 10 -6 , achieved either at p 0 ≈ 0.04 for the code with N = 1008, or at p 0 ≈ 0.063 for the code with N = 10000the average number of iterations is about 8 for the first code and about 21 for the second. Note that in case the early stopping criterion is not implemented, both codes have nearly the same performance for the above p 0 values. Thus, when the early stopping criterion is implemented, the decoder needs to perform more iterations to eventually reach an error free iteration when N = 10000, which explains the increased average number of decoding iterations.

Further results on the finite-length performance

In this section we further investigate the finite-length performance of the noisy MS decoder. We first consider that only one of the three components (adder, comparator, and xoroperator) is noisy. Simulation results for the BSC and BI-AWGN channel are shown in These simulation results show that the noisy MS decoder performs virtually the same as the noiseless MS decoder in the following cases:

• sign-preserving noisy adders with p a =0.001, (p x = p c =0);

• full-depth noisy adders with p a =0.0001, (p x = p c =0);

• noisy XOR-operators with p x =0.0001, (p a = p c =0);

• noisy comparators with p c =0.01, (p a = p x =0).

For comparison purposes, sub-figures (a) and (b) also display the performance of the MS decoder with all the three components noisy: (p a =0 .001,p x =0 .0001,p c =0 .01) if sign-preserving adders, and (p a =0.0001,p x =0.0001,p c =0.01) if full-depth adders. We now investigate the case when the three arithmetic/logic components of the MS decoder are noisy. In order to emulate various noise parameters, while reducing the number of simulations, we assume that p a = p c ≥ p x and we consider the MS decoder performance over the BSC channel. Concerning the noisy adder, we evaluate the BER performance for both the sign-preserving and the full-depth error models. Simulation results are presented in When noisy-adders are sign-preserving, it can be seen that the MS decoder can provide reliable error protection for all the noise parameters that have been simulated. Of course, depending on the error probability parameters of the noisy components, there is a more or less important degradation of the achieved BER with respect to the noiseless case. But in all cases the noisy decoder can achieve a BER less than 10 -7 . This is no longer true for full-depth noisy adders: it can be seen that for p c = p a ≥ 0.005, the noisy decoder cannot achieve bit error rates below 10 -2 . 

Noisy Self-Corrected Min-Sum Decoder

In this section we investigate the finite-length performance of the Self-Corrected Min-Sum (SCMS) decoder [54]. The objective is to determine if a correction circuit "plugged into" the noisy MS decoder can improve the robustness of the decoder to hardware noise.

Noisy SCMS algorithm

The specificity of the SCMS decoder is to erase (i.e. set to zero) any variable-to-check message that changes its sign between two consecutive iterations. However, in order to avoid erasures propagation, a message cannot be erased if it has already been erased at the previous iteration. Hence, the SCMS decoder performs the same computations as the noisy MS, except that the VN-processing step further includes a correction step, as follows (the practical MS implementation from Algorithm 8 is considered here, with superscript (ℓ) used to denote messages exchanges at iteration ℓ): The body enclosed between the if condition and the matching end is referred to as the correction step. It requires storing the signs of the variable-to-check node messages, and keeping a record of messages that have been erased by the self-correction step. We use the following notation:

• s m,n = 1 if and only if the corresponding variable-to-check node message has been erased at iteration ℓ;f o rℓ = 0, these values are all initialized as zero.

• scu(s 1 ,s 2 ,e) def =( s 1 ⊕ s 2 ) ⊗ (1 ⊕ e), for any s 1 ,s 2 ,e ∈{ 0, 1},w h e r e⊕ denotes the xor operation (sum modulo 2) and ⊗ denotes the and operation (product). Clearly scu(s 1 ,s 2 ,e) = 1 if and only if s 1 = s 2 and e =0.

Therefore, the VN-processing step of the SCMS decoder can be rewritten as follows: to the noisy MS decoder, in order to improve its robustness to hardware noise. The robustness of the SCMS decoder to hardware noise is explained by the fact it has an intrinsic capability to detect unreliable messages, and discard them from the iterative decoding process.

With the objective of having a better understanding of the impact of hardware noise on MS-based decoders, additional simulations have been carried out for noisy MS, OMS, and SCMS decoders, with various noise parameters, over both BSC and BI-AWGN channels. 4.8(a) shows the required (minimum) SNR value in order to achieve a target BER = 10 -5 , for various (p a ,p c ) parameters. The results show that the MS and MS decoders are more sensitive to hardware noise, as the value of the SNR increases drastically with p a and p c . Moreover, none of these decoders can achieve a target BER = 10 -5 for p a =0 .04 (this is illustrated in the figure by an infinite SNR value). Fig. 4.8(a) also confirms the excellence performance of the SCMS under noisy hardware, since it exhibits performance similar to the noiseless SCMS decoder when p a ≤ 0.01. It can also achieve the target BER value when p a =0 .04, with a performance penalty less than 0.065 dB for p c ≤ 0.01. The performance penalty increases however to about 2 dB, for parameters (p a =0.04,p c =0.03).

Similar results are shown in Figure 4.8(b) for the BSC channel. The histograms show the maximum allowed p 0 value for a target BER = 10 -5 , for various decoders and noise parameters (values on the vertical axis decrease from bottom to top). None of the MS or OMS decoders can achieve the target BER for p a =0 .04 (this is illustrated in the figure by an null p 0 value). The SCMS decoder does achieve the target BER for p a =0.04, with a performance penalty -with respect to the noiseless case -that varies between 0.003, for p c =0,and0.028, for p c =0.03. 

Decoder Scheduling

The goal of this section is to give insight on the impact that practical hardware architectures may have on the MP decoders' performance. We start by briefly discussing different scheduling strategies, indicating the order in which variable and check nodes are processed during the MP iterative decoding.

For the MP decoders described so far in this thesis (Algorithms 1-9), we followed the classical convention: in each iteration, all check-nodes and subsequently all variablenodes pass new messages to their neighbors. This message-passing schedule is usually referred to as paral lel or flooding scheduling [35]. A different approach, known as serial scheduling [57,58,71], is to process check-nodes in a serial manner, with an immediate propagation of their messages to the neighbor variable-nodes. The decoder updates the neighbor variable-nodes, so as to profit from the propagated messages, and then proceed to the next check-node. The main advantage of the serial schedule is that it propagates information faster and converges in about half the number of iterations compared to the flooding schedule. If the number of decoding iterations is sufficiently high, both serial and flooding schedules provide similar decoding performance. For applications requiring a small number of decoding iterations, the serial schedule provides superior decoding performance, thanks to its faster convergence.

Besides the decoding performance, the choice of the decoding scheduling is usually imposed by specific requirements relating to the hardware implementation of the decoder: the flooding scheduling is suitable for a fully parallel implementation, enabling high throughput at the cost of an increased area, while the serial scheduling is suitable for a cost-effective implementation, enabling area reduction at the cost of a limited throughput. However, the serial scheduling can be partly parallelized, by processing sequentially groups of check-nodes, while processing in parallel check-nodes within the same group. This scheduling technique is known as layered scheduling [26], and allows a flexible tradeoff between throughput and hardware resources. The layered scheduling also preserves the faster convergence by a factor of about 2 of the serial scheduling over the flooding scheduling [72,74].

In order to avoid memory conflicts, the layered scheduling requires a specific structure of the parity check matrix: it must be split into horizontal layers (a layer is a group of consecutive rows), such that each column has at most one non-zero entry in each layer. Put differently, any variable-node is connected to at most one check-node in each layer. For instance, this property is satisfied for Quasi-Cyclic (QC) LDPC codes [21]. If this property is satisfied, it can easily be seen that both serial and layered scheduling yield the same decoding performance and convergence speed. Moreover, the message sent on a given edge at a given iteration under serial scheduling, has exactly the same value as the corresponding message (same edge, same iteration number) under layered scheduling. This is due to the fact that check-nodes in the same layer do not share any common variable-node: therefore, under serial scheduling, the information propagated by a given check-node to its neighbor variable-nodes cannot be used by a check-node in the same layer, but only by check-nodes in subsequent layers.

Serial or layered scheduling can be implemented by different hardware architectures. Yet, one of their main advantages, which is exploited by almost any practical implementation [26,37,[42][43][44]47], consists in the possibility to implement MP decoders with a
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 2 Figure 2.1: Example of parity check matrix and its Tanner graph representation
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 22 Figure 2.2: Computation of extrinsic messages and of the a posteriori information

Algorithm 4

 4 Normalized Min-Sum (NMS) decoding ••• ⊲ same as MS decoding Iteration Loop for all m =1,...,M and n ∈H(m) do ⊲ CN-processing

  In sign-magnitude format, ζ = -0, with binary representation 10 •••0; • In one's complement format, ζ = -0, with binary representation 11 •••1; • In two's complement format, ζ = -(Θ + 1), with binary representation 10 •••0.For any u, v ∈V,w ed e n o t eb yu ∧ v the bitwise xor operation between u and v.F r o m the above discussion, it follows that u ∧ v ∈V∪{ζ}.

C

  (x) the expected fraction of incorrect messages 4 at iteration ℓ.Theorem 3.1 Assume that all the error injection models used within the MS decoder are symmetric. Then, the following properties hold:1. [Conditional Independence of Error] For any decoding iteration ℓ>0, the expected fraction of incorrect messages E (ℓ) C (x) does not depend on x. Therefore, we may define E Cycle-Free Case] If the graph of C contains no cycles of length 2ℓ or less, the expected fraction of incorrect messages E (ℓ)

  with respect to χ. The definition of the Lipschitz constant is first restated below for the sake of clarity.Definition 3.4 Let f : I → R be a function defined on an interval I ⊆ R.T h eLipschitz constant of f in I is defined as

  an increasing function of x ∈ [0,χ] Then the functional threshold χ is defined as χ =sup{χ | conditions (a), (b) and (c) are satisfied}.(3.24)
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 3 Figure 3.1: Asymptotic error probability P (∞) e of noiseless MS decoder as function of p 0

  after a few number of iterations. When the adder is noisy, the error probability increases during the first decoding iterations, and behaves similarly
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 3 Figure 3.2: Effect of the noisy adder on the asymptotic performance of the MS decoder (p 0 =0.06)

  lower-bounds values from Proposition 3.1 are shown in Table
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 35 Figure 3.3: PMF of the a posteriori information C (ℓ) (noiseless MS decoder)

  3.2 and related discussion).

  Figure 3.6: Decoding error probability P (ℓ) e of the noisy MS decoder, for p 0 =0 .03 and sign-preserving noisy adder with various p a values

  decreases (point C), until it reaches again a convergent behavior (point D). Note that D is outside the useful region, as (P (ℓ) e ) ℓ>0 converges to P (∞) e =0.0605 >p 0 . The non-convergence region gradually narrows in the upper part, and for 0 ≤ p a < 0.01 it takes the form of a discontinuity line: P (∞) e takes values close to 10 -4 just below this line, and values greater than 0.05 above this line. Note that points (p a ,p 0 )w i t hp 0 < pa 2 Q = pa 30 cannot belong to the useful region, since from Proposition 3.1 we have P (∞) e ≥ pa 2 Q
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 37 Figure 3.7: Threshold values of noiseless and noisy MS decoders with various channel scale factors (for noisy decoders, threshold values correspond to a target error probability η =10 -5 )
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 3 Figure 3.8: Useful and η-threshold regions of the MS decoder with noisy adder

  (a) For the sign-preserving adder: P (∞) e ≈ pa 30 ,f o rp a 3 × 10 -2 , which corresponds to the value given by the lower-bound (
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 3 Figure 3.11: Useful and η-t h r e s h o l dr e g i o n so ft h eM Sd e c o d e rw i t hn o i s yxor-operator
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 3 Figure 3.12: Useful region and threshold curve of the MS decoder with noisy comparator

  Figure 3.13: Useful and η-threshold regions for p 0 =0.07 with sign-preserving noisy adder
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 3 Figure 3.15: Threshold SNR values of noiseless and noisy decoders with various channel scale factors (for noisy decoders, threshold values correspond to η =10 -5 )
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 3 Figure 3.16: Useful and η-threshold regions of the MS decoder with noisy adder (bi-awgn)

  Figure 3.17: Asymptotic error probability P (∞) e of the MS decoder with noisy-adder as a function of the SNR
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 3 Figure 3.18: Useful and η-threshold regions of the MS decoder with noisy xor-operator (bi-awgn)

  Figure 3.20: Useful and η-threshold regions for SNR = 2 dB with sign-preserving noisy adder

(

  6)-regular LDPC, N = 1008; (4,5)-quantization BP, float-point (noiseless) MS, float-point (noiseless) MS, noiseless, µ = 1 MS, add['sp', p a = 0.001], µ = 1 MS, noiseless, µ = 6 MS, add['sp', p a = 0.001], µ = 6 6)-regular LDPC, (4,5)-quantization BP, float-point (noiseless) MS, float-point (noiseless) MS, noiseless, ∞ = 1 MS, add['sp',p a =0.001], ∞ = 1 MS, noiseless, ∞ = 5.5 MS, add['sp',p a =0.001], ∞ = 5.5 (b) BI-AWGN channel
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 4 Figure 4.1: BER performance of noiseless and noisy MS decoders with various channel scale factors

N

  6)-regular LDPC, (4,5)-quantization, sign-protected noisy adder, p a = 0.001 , with syndrome check N = 1008, wout syndrome check N = 10000, with syndrome check N = 10000, wout syndrome check

Figure 4

 4 Figure 4.2: BER performance with and without early stopping criterion (MS decoder with sign-preserving noisy adder, p a = 0.001)

  Figure 4.4 and Figure 4.5, respectively: • Sub-figures (a) and (b) show the performance show the performance of the noisy MS decoder with sign-preserving noisy adder and full-depth noisy adder, respectively (p c = p x =0) • Sub-figure (c) shows the performance of the noisy MS decoder with either noisy comparator (p a = p x =0)ornoisyxor-operator (p a = p c =0).

  full-depth noisy adder, pc = px =0 (c) noisy comparator or noisy xor-operator, pa =0-o nn e x tp a g e

Figure 4

 4 Figure 4.4: BER performance of the MS decoder with one noisy component over the BSC
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 4 Figure 4.4: BER performance of the MS decoder with one noisy component over the BSC
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 4 Figure 4.5: BER performance of the MS decoder with one noisy component over the BI-AWGN channel

  Figure 4.6. The error probability of the xor-operator is p x =0.0001 in sub-figures 4.6(a) and 4.6(b), and p x =0 .001 in sub-figures 4.6(c) and 4.6(d). The noisy adder is signpreserving in sub-figures 4.6(a) and 4.6(c), and full-depth in sub-figures 4.6(b) and 4.6(d).

  6)-regular LDPC, (4,5)-quantization, add[sign-protected], p c = p a , p x = 0.0001 Noiseless Min-Sum p a = p c = 0.0001, p x = 0.0001 p a = p c = 0.001, p x = 0.0001 p a = p c = 0.005, p x = 0.0001 p a = p c = 0.01, p x = 0.0001 (a) sign-preserving noisy adder, pc = pa, px =0.0001 6)-regular LDPC, (4,5)-quantization, add[full-depth], p c = p a , p x = 0.0001 Noiseless Min-Sum p a = p c = 0.0001, p x = 0.0001 p a = p c = 0.001, p x = 0.0001 p a = p c = 0.005, p x = 0.0001 p a = p c = 0.01, p x = 0.0001 (b) full-depth noisy adder, pc = pa, px =0.0001 6)-regular LDPC, (4,5)-quantization, add[sign-protected], p c = p a , p x = 0.001 Noiseless Min-Sum p a = p c = 0.001, p x = 0.001 p a = p c = 0.005, p x = 0.001 p a = p c = 0.01, p x = 0.001 (c) sign-preserving noisy adder, pc = pa, px =0.001 6)-regular LDPC, (4,5)-quantization, add[full-depth], p c = p a , p x = 0.001 Noiseless Min-Sum p a = p c = 0.001, p x = 0.001 p a = p c = 0.005, p x = 0.001 p a = p c = 0.01, p x = 0.001 (d) full-depth noisy adder, pc = pa, px =0.001
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 4 Figure 4.6: BER performance of the noisy MS over the BSC channel decoder with various noise parameters

  for all n =1,...,N and m ∈H(n) do VN-processingα (ℓ) m,n = s M a pr γ(ℓ) n ,

  Figure 4.7: BER performance comparison between noisy MS and noisy SCMS decoders
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  Figure4.8(a) shows the required (minimum) SNR value in order to achieve a target BER = 10 -5 , for various (p a ,p c ) parameters. The results show that the MS and MS decoders are more sensitive to hardware noise, as the value of the SNR increases drastically with p a and p c . Moreover, none of these decoders can achieve a target BER = 10 -5 for p a =0 .04 (this is illustrated in the figure by an infinite SNR value). Fig.4.8(a) also confirms the excellence performance of the SCMS under noisy hardware, since it exhibits performance similar to the noiseless SCMS decoder when p a ≤ 0.01. It can also achieve the target BER value when p a =0 .04, with a performance penalty less than 0.065 dB for p c ≤ 0.01. The performance penalty increases however to about 2 dB, for parameters (p a =0.04,p c =0.03).

  (a) BI-AWGN channel (μ =5.5) (b) BSC channel (μ =6)
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 4 Figure 4.8: Minimum SNR / Maximum p 0 required in order to achieve target BER = 10 -5

  Algorithm 2 LLR-domain Belief Propagation (BP) decoding Input: y =(y 1 ,...,y N ) ∈Y N (Y is the channel output alphabet)

				⊲ received word
	Output: x =(x 1 ,...,x N ) ∈{0, 1} N Initialization for all n =1,...,N do γ n = L n =log	Pr(x n =0| y n ) Pr(x n =1| y n )	;	⊲ estimated codeword
	for all n =1,...,N and m ∈H(n) do α m,n = γ n ; Iteration Loop		
	for all m =1,...,M and n ∈H(m) do		⊲ CN-processing

Table 2

 2 

	.1: DE thresholds of (3, 6)-regular LDPC codes
		BSC	BI-AWGN
	capacity	ε max =0.11	σ 2 max =0.18 (dB)
	DE thresholds	ε th	σ 2 th (dB)
	BP	0.084	1.11 (dB)
	MS	0.04	1.71 (dB)

Table 3

 3 

	.1: Example of sign-preserving bitwise-xor error injection
	integer 2's complement binary representation
	noiseless output: v -11 error: e 6	1	0 0	1 1	0 1	1 0
	1 bit position θ =5 noisy output: ı(v, e) -13	0 4	0 3	1 2	1 1
	3.1.3.1 Full-depth error injection					

Table 3 .

 3 2: Asymptotic error probability of the MS decoder with noisy adder (p 0 =0.06)

		p a	10 -30	10 -15	10 -5
	full depth sign	P e (∞) lower-bound 5.167 × 10 -31 5.167 × 10 -16 5.167 × 10 -6 8.500 × 10 -31 8.500 × 10 -16 8.507 × 10 -6 P (∞) e

1.2. Main Contributions and Thesis Outline

The symmetry of the decoder amounts to the fact that the error correction performance is independent of the transmitted codeword.

For instance, (dn -1) additions -where dn denotes the degree of the variable-node n -are required in order to compute each αm,n message. Similarly, each βm,n message requires (dm -2) xor operations and (dm -2) comparisons.

In practical implementation, the γn is computed first, and then αm,n is obtained from γn by subtracting the incoming βm,n message.

According to the probabilistic models introduced in Section 3.1.5, the noisy comparator and the noisy xor-operator are highly symmetric, but the noisy adder is necessarily so!

Here, "messages" may have any one of the three following meanings: "variable-node messages", or "check-node messages", or "a posteriori information values".

Note that according to Proposition 3.1, a necessary condition to achieve a target error probability

Chapter 4. Statistical Analysis of Finite-Length Min-Sum-Based Decoders

Remerciements

Algorithm 8 Practical Implementation of the Min-Sum (MS) decoding Input: y =(y 1 ,...,y N ) ∈Y N (Y is the channel output alphabet)

⊲ received word Output: x =(x 1 ,...,x N ) ∈{-1, +1} N ⊲ estimated codeword Initialization for all n =1,...,N do γ n = q(y n ); for all n =1,...,N and m ∈H(n) do α m,n = γ n ;

Iteration Loop for all m =1,...,M and n ∈H(m) do ⊲ CN-processing

for all {v n } n=1,...,N do xn =sgn(γ n ); ⊲ hard decision if x is a codeword then exit the iteration loop ⊲ syndrome check End Iteration Loop Algorithm 9 Noisy Self-Corrected Min-Sum (Noisy-SCMS) decoding 

Finite-length performance of the noisy SCMS

The finite length performance of the noisy SCMS decoder is presented in Figure 4.7, for both BSC and BI-AWGN channels. For comparison purposes, Figure 4.7 also shows the performance of the noisy MS decoder. The parameters of the different noisy components are as follows:

[P1] sign-preserving adder with p a =0 .01, p c =0 .01, p x = p scu =0 .001 (red curves, diamond markers);

[P2] full-depth adder with p a =0 .001, p c =0 .001, p x = p scu =0 .001 (blue curves, circle markers).

Solid and dashed curves correspond respectively to the MS and SCMS performance. While the hardware noise alters the performance of the MS decoder, it can be seen that the noisy SCMS decoder exhibits very good performance, very close to that of the noiseless decoder. Therefore, one can think of the self-correction circuit as a noisy patch applied