
HAL Id: tel-01199623
https://theses.hal.science/tel-01199623v1

Submitted on 15 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Framework for Process Interoperability in
Dynamic Collaboration Environments

Malik Khalfallah

To cite this version:
Malik Khalfallah. A Formal Framework for Process Interoperability in Dynamic Collaboration Envi-
ronments. Other [cs.OH]. Université Claude Bernard - Lyon I, 2014. English. �NNT : 2014LYO10272�.
�tel-01199623�

https://theses.hal.science/tel-01199623v1
https://hal.archives-ouvertes.fr

Numéro d’ordre 272-2014 Année 2014

Université Claude Bernard Lyon 1

Laboratoire d’InfoRmatique en Image et Systèmes d’information

École Doctorale Informatique et Mathématiques de Lyon

Thèse de Doctorat de l’Université de Lyon

Présentée en vue d’obtenir le grade de Docteur,
spécialité Informatique

par

KHALFALLAH Malik

A Formal Framework for Process
Interoperability in Dynamic Collaboration

Environments

Thèse soutenue publiquement le 03 décembre 2014 devant le jury composé de :

Mme. Corine Cauvet Présidente
M. Khalil Drira Rapporteur
M. Mourad Chabane Oussalah Rapporteur
M. Ricardo Jardim-Goncalves Examinateur
Mme. Genoveva Vargas-Solar Examinatrice
M. Mahmoud Barhamgi Co-encadrant
M. Nicolas Figay Co-encadrant
Mme. Parisa Ghodous Directrice de Thèse

Laboratoire d’InfoRmatique en Image et Systémes d’information
UMR 5205 CNRS - Lyon 1 - Bât. Nautibus

69622 Villeurbanne cedex - France

Abstract
Designing complex products such as aircrafts, helicopters and launchers must rely on
well-founded and standardized processes. These processes should be executed in the
context of dynamic cross-organizational collaboration environments.

In this dissertation, we present a formal framework that ensures sustainable inter-
operability for cross-organizational processes in dynamic environments. We propose
a declarative modeling language to define contracts that capture the objectives of each
partner in the collaboration. Contract models built using this language under-specify
the objectives of the collaboration by limiting the details captured at design-time. This
under-specification decreases the coupling between partners in the collaboration. Never-
theless, less coupling leads to the creation of mismatches when partners’ processes will
exchange messages at run-time. Accordingly, we develop an automatic mediation algo-
rithm that is well adapted for dynamic environments. We conduct a thorough evaluation
of this algorithm in the context of dynamic environments and compare it with existing
mediation approaches which will prove its efficiency. We then extend our framework
with a set of management operations that help realize the modifications on the collab-
oration environment at run-time. We develop an algorithm that assesses the impact of
modifications on the partners in the collaboration environment. Then, this algorithm
decides if the modification can be realized or should be postponed to wait for appro-
priate conditions. In order to figure out how to reach these appropriate conditions, we
use the planning graph algorithm. This algorithm determines the raw set of manage-
ment operations that should be executed in order to realize these conditions. A raw set
of management operations cannot be executed by an engine unless its operations are
encapsulated in the right workflow patterns. Accordingly, we extend this planning al-
gorithm in order to generate an executable workflow from the raw set of operations. We
evaluate our extension against existing approaches regarding the number and the na-
ture of workflow patterns considered when generating the executable workflow. Finally,
we believe that monitoring contributes in decreasing the coupling between partners in
a collaboration environment. Accordingly, we extend our framework to support moni-
toring queries. We define a new execution plan for these queries that is more efficient.
We conduct a thorough evaluation for this plan and compare it with existing industrial
implementation. We implement a prototype for our framework based on standardized
software components and illustrate it through a real world use case from the European
project IMAGINE1.

Keywords: Collaboration, Process Interoperability, Mediation, Dynamic Manufac-
turing Networks, Complex Event Processing.

1http://www.imagine-futurefactory.eu

iii

iv

Résumé
Concevoir les produits complexes tels que les avions, les hélicoptères, et les lanceurs
requière l’utilisation de processus standardisés ayant des fondements robustes. Ces
processus doivent être exécutés dans le contexte d’environnements collaboratifs inter-
organisationnels souvent dynamiques.

Dans ce manuscrit, nous présentons un cadre formel qui assure une interopéra-
bilité continue dans le temps pour les processus inter-organisationnels dans les envi-
ronnements dynamiques. Nous proposons un langage de modélisation déclaratif pour
définir des contrats qui capturent les objectifs de chaque partenaire intervenant dans la
collaboration. Les modèles de contrats construits avec ce langage sous-spécifient les ob-
jectifs de la collaboration en limitant les détails capturés durant la phase de construction
du contrat. Cette sous-spécification réduit le couplage entre les partenaires de la collab-
oration. Néanmoins, moins de couplage implique l’apparition de certaines inadéqua-
tions quand les processus des partenaires vont s’échanger des messages lors de la phase
d’exécution. Par conséquent, nous développons un algorithme de médiation automa-
tique qui est bien adapté pour les environnements dynamiques. Nous conduisons des
évaluations de performance sur cet algorithme qui vont démontrer son efficience par
rapports aux approches de médiation existantes. Ensuite, nous étendons notre cadre
avec un ensemble d’opérations d’administration qui permettent la réalisation de modi-
fications sur l’environnement collaboratif. Nous développons un algorithme qui évalue
l’impact des modifications sur les partenaires. Cet algorithme va ensuite décider si la
modification doit être réalisé à l’instant ou bien retardé en attendant que des condi-
tions appropriées sur la configuration de l’environnement dynamique soient satisfaites.
Pour savoir comment atteindre ces conditions, nous utilisons l’algorithme de planning
à base de graphe. Cet algorithme détermine l’ensemble des opérations qui doivent être
exécutées pour atteindre ces conditions. Un ensemble d’opérations ne peut être exé-
cuté par un moteur d’exécution à moins que ces opérations soient encapsulées dans les
bons workflow patterns. Par conséquent, nous étendons l’algorithme de planning pour
générer un workflow exécutable. Nous évaluons notre extension vis à vis des approches
existantes concernant le nombre et la nature des workflow patterns considérés quand
nous générons le workflow exécutable. Au final, nous considérons que la technique de
suivi de la collaboration peut être un moyen efficace pour réduire encore plus le cou-
plage entre les partenaires. Par conséquent, nous étendons notre cadre pour supporter
les requêtes de suivi de collaboration. Nous définissons un nouveau plan d’exécution
pour ces requêtes qui est plus efficient. Nous évaluons ce plan et nous le comparons
avec les solutions industrielles existantes. Nous réalisons une implémentation d’un pro-
totype pour ce cadre en se basant sur des composant logiciels standardisés et illustrons
son utilisation via une étude de cas réelle tirée du projet Européen IMAGINE.

Mots Clés: Collaboration, Interopérabilité des Processus, Médiation, Réseaux de
Manufacturing Dynamiques, Gestion des évènements complexes.

v

vi

Contents

Abstract iii

Résumé iii

Contents vi

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Context and Motivation . 2

1.1.1 Business Process Modeling . 2
1.1.2 Mediators . 3
1.1.3 Monitoring . 4
1.1.4 Airbus Group Innovations Strategy 5

1.2 Scientific Problems and Contributions . 6
1.2.1 Challenges . 6
1.2.2 Contributions . 8

1.3 Dissertation Organization . 10

2 Thesis Context and Problematic 13
2.1 Introduction . 15
2.2 Engineering Design . 15

2.2.1 Breakdown structures . 15
2.2.2 Conceptual System Design . 17
2.2.3 Preliminary System Design . 17
2.2.4 Detail System Design . 17
2.2.5 Changing the Specification of Problem Statements 19
2.2.6 Monitoring the Unfolding of other Problem Statements 19
2.2.7 Summary . 20

2.3 Engineering Change Management . 20
2.4 Specification and Decision on Change . 22

2.4.1 Basic Concepts . 22
2.4.2 Engineering Change Request Generation 22
2.4.3 Cascading Processing of Change Requests 23
2.4.4 Summary . 24

vii

2.5 Practical Scenario: Operator Broussard Design 25
2.5.1 The Storyboard of the Collaboration between the Involved Actors 26
2.5.2 Conclusion: The Need for a PLM Hub 27

2.6 Background for a PLM Hub . 28
2.6.1 Business Processes and Workflows 28
2.6.2 Interoperability and Interoperability Levels 29
2.6.3 Mediation and Mediation Levels . 29
2.6.4 Dynamic Manufacturing Network 30

2.7 Features of a PLM Hub . 30
2.7.1 Feature 1: Access to the Product Structure Breakdown 30
2.7.2 Feature 2: Defining the Cross-organizational process 30
2.7.3 Feature 3: Defining the Mediator to Run the Cross-Organizational

Process . 31
2.7.4 Feature 4: Managing the changes in the context of a DMN 31
2.7.5 Feature 5: Monitoring the Collaboration 31
2.7.6 Summary . 32

2.8 Existing Frameworks to Ensure PLM Hub Features 32
2.8.1 The Aeronautic Interoperability Framework 33
2.8.2 IMAGINE Platform . 35
2.8.3 Business Process Management Platforms 35
2.8.4 PHUSION Global Collaboration Project[FTG+14] 35
2.8.5 Summary . 36

2.9 Challenges for a Collaborative Software Environment 36
2.9.1 Challenge 1: High-level Modeling Language 37
2.9.2 Challenge 2: Mediation on-the-fly 38
2.9.3 Challenge 3: Managing the changes 38
2.9.4 Challenge 4: Advanced Monitoring Capability 38

2.10 Thesis Contributions . 38
2.11 Conclusion . 41

3 State of the Art 43
3.1 Introduction . 44
3.2 Collaboration in Dynamic Environments 44
3.3 Business Process Modeling and Management 45

3.3.1 High-level Languages for Business Modeling 45
3.3.2 Product-based Process Design . 45
3.3.3 Declarative Modeling . 46
3.3.4 Commitments Framework . 47
3.3.5 Business Entities with Lifecycle . 48
3.3.6 Business Contracts . 49
3.3.7 Summary . 49

3.4 Mediators . 50
3.5 Management of Changes in Business Processes 53

3.5.1 Ensuring Processes Flexibility . 54
3.5.2 Generating Recovery Workflows Using AI Planning 58
3.5.3 Summary . 63

3.6 Monitoring Cross-Organizational Processes 64
3.6.1 Preliminaries on Publish/Subscribe Systems 64
3.6.2 Complex Event Processing . 65

viii

3.6.3 Monitoring Approaches Using CEP 67
3.6.4 Summary . 68

3.7 Conclusion . 68

4 A Declarative Framework for Product Level Agreements 71
4.1 Introduction . 73
4.2 Running Example . 74
4.3 Challenges . 74

4.3.1 Manual creation of processes . 76
4.3.2 Finding and applying the right rules 76
4.3.3 Defining mediators . 76
4.3.4 Managing the dynamicity in the context of a DMN 77
4.3.5 Overview of the Proposed Approach 77

4.4 High-level Concepts for Contract Design 78
4.4.1 Stakeholders . 79
4.4.2 Product Breakdown Model . 79
4.4.3 Product Component Configuration 80
4.4.4 Agreements . 80
4.4.5 Complex Agreements . 81
4.4.6 Agreements Relationships . 82
4.4.7 Contract on the final product . 83
4.4.8 Exception Handling . 83
4.4.9 Example . 84
4.4.10 Summary . 85

4.5 Contract Enactment . 85
4.5.1 Motivations on Using Business Rules 85
4.5.2 Operations on Business Rules . 86
4.5.3 Example . 92
4.5.4 Summary . 93

4.6 On-the-fly Mediation . 93
4.6.1 Automaton Formal Definition . 94
4.6.2 Application Example . 97
4.6.3 Messages Computed Using a Composition of Mapping Functions 98
4.6.4 Ensuring Correct Correlation of Exchanged Messages 100
4.6.5 General Properties of the Mediation Approach 102

4.7 Evaluation . 103
4.7.1 Evaluation of the Modeling Language Abstraction 104
4.7.2 Evaluation of the on-the-fly Mediation 105
4.7.3 Evaluation of the on-the-fly mediation against aspect-oriented me-

diation . 107
4.7.4 User Interface Design . 109
4.7.5 Workflow Generation Algorithm Performance 109

4.8 Conclusion . 110

5 Managing Evolutions for Product Level Agreements 111
5.1 Introduction . 113
5.2 Motivating Example . 114
5.3 Challenges . 115

5.3.1 Applying High-level Management Operation 115

ix

5.3.2 Maintaining the COP executable . 115
5.3.3 Ensuring Semi-automatic Recovery of Modified Contracts 115
5.3.4 Overview of the Proposed Approach 116

5.4 Checking Heterogeneity of Generated Processes 117
5.5 Operations for DMN Management . 121

5.5.1 Primitive Operations . 121
5.5.2 Basic Operations . 123
5.5.3 Composite Operations . 124
5.5.4 Committing Changes . 125

5.6 From Solution Plans To Executable Workflows 127
5.6.1 Approach Overview . 127
5.6.2 Problem Position . 128
5.6.3 Step 1: Workflow Tree Generation 130
5.6.4 Step 2: Refinement of Blocks in the WT 131
5.6.5 Step 3: Pattern Specialization by Progressive Agent Interaction . . 136

5.7 Application Example . 139
5.7.1 Execution of the determinePattern Algorithm 11 to Replace

Blocks . 141
5.7.2 Generation of the Workflow Model 142

5.8 Evaluation . 146
5.8.1 Evaluation of the Number of Input activities 146
5.8.2 Comparison with Existing Work Regarding the Size of the Gener-

ated Workflow . 146
5.9 Conclusion . 148

6 Patterns for Monitoring Product Level Agreements 151
6.1 Introduction . 153
6.2 Running Example . 153
6.3 Challenges . 155

6.3.1 Providing an Efficient Execution Plan 155
6.3.2 Overview of the Proposed Approach 155

6.4 Preliminaries on Colored Petri Nets . 156
6.4.1 Global Declaration . 157
6.4.2 Types on Places . 157
6.4.3 Token Element . 158
6.4.4 Arc Expressions . 158
6.4.5 Guards on Transitions . 159

6.5 CPN Patterns for Decomposing a Service Composition 159
6.5.1 Adaptation of CPN Definition . 160
6.5.2 Patterns for Splitting Service Compositions 161

6.6 CPN Generation and Execution . 168
6.6.1 CPN generation . 168
6.6.2 CPN Execution . 171

6.7 Managing the Number of Running Threads 171
6.7.1 Event Condition Actions for Threads Management 172
6.7.2 ECA Rule for Starting a Two-Operator Pattern Thread (TH) 173
6.7.3 ECA Rule for Killing a Two-Operator Pattern Thread 173
6.7.4 ECA Rule for starting a Single-operator Pattern and Precondition

Pattern Threads . 174

x

6.7.5 ECA Rule for Killing a Single-operator Pattern and Precondition
Pattern Threads . 174

6.7.6 ECA Rule for Starting a Duplication Pattern Thread 174
6.7.7 ECA Rule for Killing a Duplication Pattern Thread 175

6.8 Integration of the Monitoring with the Product-based Contract Framework 175
6.9 Evaluation . 176

6.9.1 Evaluation Approach . 176
6.9.2 Discussion . 178

6.10 Conclusion . 180

7 Prototype Implementation 181
7.1 Introduction . 182
7.2 Platform Architecture . 182

7.2.1 Contract Modeler . 184
7.2.2 Workflow Generator . 185
7.2.3 On-the-fly Mediation . 187
7.2.4 Contract Manager . 188
7.2.5 Change Planner . 189
7.2.6 Contract Monitor . 193

7.3 Selecting the most Conformant Software to a Standard 194
7.3.1 Semantic Difference . 195
7.3.2 Syntactic Difference . 196
7.3.3 Functional Difference . 197
7.3.4 Conformance Testing Approach . 201
7.3.5 Compliance of TWS with the WfMC 202
7.3.6 Discussion . 204

7.4 Conclusion . 204

8 Conclusion and Perspectives 205
8.1 Conclusion . 206

8.1.1 Reminder of the Thesis Context . 206
8.1.2 Summary of Contributions . 206
8.1.3 Directions for Future Research . 208

Bibliography 211

Publications 231

xi

xii

List of Figures

1.1 Difference between the OEM process and the Subcontractor process . . . 3
1.2 Cross-organizational process to handle change requests 5

2.1 System breakdown structure [Sad12] . 16
2.2 Work breakdown structure . 16
2.3 Relationship among four major design activities [Sad12] 16
2.4 ECM Process overview [SAS10] . 21
2.5 Mapping between the ECR process and private processes [SAS10] 23
2.6 Integration between the processes of two partners [SAS10] 23
2.7 Layered structure of the collaborative environment 24
2.8 Cascading ECR processing [SAS10] . 25
2.9 F7X breakdown excerpt . 25
2.10 Current industrial collaboration . 26
2.11 PLM Hub . 28
2.12 Hyper-model concepts . 34
2.13 Hyper-model operation . 34
2.14 PHUSION Platform Objective . 36

3.1 Business Entity with Lifecycle . 48
3.2 GSM specification of an entity lifecycle . 49
3.3 Inserting an activity . 55
3.4 Inserting a pattern [WRR13] . 57
3.5 Change propagation to views . 58
3.6 The hierarchy of Workflow patterns as established by [B0̈7] 61
3.7 The Pub/Sub system (from [Tar12]) . 65
3.8 Examples of different matching strategies (from [Tar12]) 65
3.9 Difference between a DBMS and a CEP System (adapted from [Bao13]) . 66

4.1 ECRs on FusGeo and FusAero . 76
4.2 An overview of the proposed approach for ECRs in a collaborative envi-

ronment . 78
4.3 Graphical representation of atomic and complex agreements 82
4.4 Contract on ECRs on the geometry and the aerodynamic of the Fuselage 85
4.5 Equivalence between the generated COP fragments 89
4.6 LeadsTo constraint mapping to XPDL . 90
4.7 Response constraint mapping to XPDL . 90
4.8 Includes constraint mapping to XPDL . 90

xiii

4.9 Generated process of the contract . 92
4.10 Generated fragments . 94
4.11 Automaton of the relationship between y1 and x1...xn 96
4.12 Example of composition of functions . 99
4.13 Processes Complementarity Illustration . 102
4.14 variating N . 107
4.15 variating m . 108
4.16 variating |D| . 108
4.17 Comparison between XSLT+JS and XML DOM 109
4.18 Repository reduction impact . 109

5.1 Example of modifying an agreement specification 114
5.2 Overview of change management modules and their interactions 116
5.3 Original FusGeo Agreement Process . 117
5.4 The new FusGeo Agreement Process after a commit 118
5.5 DMN management operations overview 121
5.6 Overview of the recovery approach . 128
5.7 Overview of the extension of solution plans 129
5.8 Workflow Tree Example . 131
5.9 Workflow Tree after refinement . 131
5.10 Substraction of Signatures . 137
5.11 New version of the WT . 142
5.12 Action to obtain the value of the parameter to follow the most appropriate

pattern at run-time . 143
5.13 Add Co Block . 144
5.14 Add Cb Block . 144
5.15 Add Supplier Block . 144
5.16 Merge patterns and their interconnections 146
5.17 The generated recovery workflow . 147
5.18 Step 2 evaluation . 148
5.19 Evolution of the number of XPDL constructs in the final workflow model 148

6.1 A tree representation of services composition 154
6.2 Places and their types . 158
6.3 CPN before transition triggering . 158
6.4 CPN after transition triggering that upheld the arcs expressions 158
6.5 Guard associated to a transition . 159
6.6 Input pattern . 162
6.7 Single service input pattern . 162
6.8 Duplication pattern . 163
6.9 Pre/postcondition pattern . 163
6.10 Two-operator pattern . 165
6.11 N-operator pattern . 167
6.12 pre/postcondition effect on N-operator pattern 167
6.13 Service tree representation . 168
6.14 Restricted combination of token elements 169
6.15 Services tree . 170
6.16 CPN pattern of services . 170
6.17 CPN generated for the service tree . 171
6.18 Specifying the monitoring query in the collaboration contract 176

xiv

6.19 . Output of the CPN generation Algorithm for the running example . . . 177
6.20 Process composing services for the monitor 179
6.21 memory consumption . 179
6.22 number of threads . 179

7.1 Platform Architecture . 183
7.2 Contract Modeling Interface . 185
7.3 The generated workflow corresponding to the contract in Figure 7.2 . . . 186
7.4 The place of the mediator between two communicating lanes 187
7.5 An excerpt of the hierarchy of the workflow patterns (in Protege) 190
7.6 Calculation of the semantic delta . 196
7.7 Calculation of the syntactic delta . 197
7.8 Calculation of the functional delta . 199
7.9 An example of difference between the standard specification and software

implementation . 199
7.10 A software environment to capture the standard and the software opera-

tions in Archimate . 202
7.11 Compliance of TWS implementation with the WfMC standard for some

operations . 203

xv

xvi

List of Tables

2.1 Summary of business needs coverage by software features 32
2.2 Summary of PLM Hub features coverage by current frameworks in Airbus

Group Innovations . 37

3.1 The distinctive features of some related approaches 53
3.2 Comparison of process flexibility frameworks 59
3.3 Comparison of the workflow patterns coverage by previous work when

generating workflows . 64
3.4 Comparison between our approach and the existing ones 68

4.1 Exchanged Fuselage Geo properties between coordinator and participants 75
4.2 Exchanged FuseAero properties between coordinator and participants 75
4.3 Some Mapping Functions in the context of Fuselage design 75
4.4 Patterns of agreements relationships . 83
4.5 Rule types on the order of messages . 87
4.6 Axioms related to rules on the order of messages 87
4.7 Comparison of model semantic richness for XPDL versus our framework 105

5.1 DMN management mperations . 122
5.2 DMN management mperations . 122
5.3 Inheritance Modes: p inheritsFrom P . 137

6.1 Axioms of Threads Management . 173
6.2 Comparison between the CPN approach and the naive approach 178

7.1 Deviation introduced by cross-aspect operations 198
7.2 All possible cases to compute Δtotal . 200

xvii

xviii

Chapter 1
Introduction

Contents

1.1 Context and Motivation . 2

1.1.1 Business Process Modeling . 2

1.1.2 Mediators . 3

1.1.3 Monitoring . 4

1.1.4 Airbus Group Innovations Strategy 5

1.2 Scientific Problems and Contributions 6

1.2.1 Challenges . 6

1.2.2 Contributions . 8

1.3 Dissertation Organization . 10

1

2 Chapter 1. Introduction

1.1 Context and Motivation

Today considerable effort is expended in the aerospace development value chain to re-

duce throughput times in the development processes and to enhance the quality of

digital products. Indeed, during the design phase of products many disciplines and

partners could be involved. One of the key challenges to be surmounted is to success-

fully implement concurrent changes which could be requested during the design phase.

More specifically, every change of the product properties should be validated by all in-

volved partners working in different disciplines in order to allow the requested change

to take place. To address this key challenge, a standardized process was developed

that ensures that a change request has followed the whole validation process prior to

its implementation. This standardized process is the Engineering Change Management

(ECM) [OMG11].

For a product that is designed within a single enterprise, implementing the ECM pro-

cess within this enterprise is straightforward. The reason is that the person who requests

a change and the person who evaluates the impact of this change are supposed to use

the same software applications as well as the same work methodologies. Nevertheless,

we have observed a shift from mass production systems where a single enterprise per-

forms all design activities to a more open model. This model is the extended enterprise

where the Original Equipment Manufacturers (OEMs) keep the core design activities

locally while outsourcing the remaining activities to external partners [EME00]. In this

case, implementing the ECM process becomes more challenging. For example suppose

that for an aircraft design scenario, three engineers belonging to the OEM (e.g. Airbus)

simultaneously ask the subcontractor’s engineer that is in charge of the design of the

Fuselage of the aircraft to change three properties of this Fuselage. Concretely, these en-

gineers will simultaneously send three messages with the values of the properties that

they want to modify as it is prescribed by their internal process. Suppose also that the

subcontractor engineer should follow the subcontractor existing process. This process

handles all change requests on the Fuselage properties in sequence. In this case the pro-

cesses of both partners do not match and thus they have an interoperability issue as

depicted in Figure 1.11.

1.1.1 Business Process Modeling

The current practice is to define (from scratch) a cross-organizational process that en-

sures that the way change requests’ messages are sent corresponds to the way that these

1NpaxFront: Number of pax in the front. Nailes: Number of ailes within the fuselage

1.1. Context and Motivation 3

Send
NpaxFront Send Nasiles Send Fuselage

Length
Send Send Fus

OEM

Receive
NpaxFront

Receive
Nasiles

Receive
Fuselage
Length

Subcontractor

eceiv

eceiv

Figure 1.1: Difference between the OEM process and the Subcontractor process

messages are expected. When relying on the existing standards to define such a cross-

organizational process, engineers who define change requests on the Fuselage would use

languages such as BPMN2 , WS-CDL3. Nevertheless, these languages use many low-

level concepts (activity, message, choice split etc.) and thus they increase the mental

effort of engineers when defining the process [TS09]. Worse, when defining the cross-

organizational process using these languages, engineers completely shift their focus.

Hence, instead of focusing on how to reach the desired configuration of the Fuselage,

they will focus on how to exchange messages correctly to achieve that desired configu-

ration of the Fuselage.

1.1.2 Mediators

Another possible approach consists in connecting existing partners’ processes. In this

case, engineers will be asked to define mediators [Wie92] that ensure the reordering

and transformation of exchanged messages while allowing each partner to keep his

own process unchanged. Such an approach is more practical because it is no longer

acceptable that an organization imposes to another organization to modify its internal

processes to join the collaboration [VO11]. Nevertheless, engineers will still be asked to

acquire new skills in order to implement this approach. These skills include analyzing

existing processes and developing mediators.

Although the mediation approach seems to be acceptable to resolve the interoper-

ability issue between partners’ processes, the proposed approaches in the literature are

still too rigid when considering the dynamicity of collaboration environments. Indeed,

we have seen recently the emergence of Dynamic Manufacturing Networks (DMNs)

[IMA11]. In these environments, unexpected events could occur during the run-time

2www.bpmn.org
3www.w3.org/TR/ws-cdl-10/

4 Chapter 1. Introduction

phase of the collaboration. These unexpected events could lead to the replacement of

partners or the modification of the messages being exchanged between partners. Ac-

cordingly, in DMNs defining mediators will become a repetitive task. Indeed, a media-

tor developed at instant t will no longer be effective at instant t + ε if the subcontractor

has been replaced and the new subcontractor has a different configuration of his pro-

cess. In this case engineers should develop a new mediator and repeat this task many

times during the collaboration life cycle.

Furthermore the decoupling between the partners’ processes that mediators are sup-

posed to accomplish remains unsatisfactory especially in DMNs. Indeed, extending our

previous example by including the design of the Nacelle. Although, change requests

on the Fuselage properties are independent from change requests on the Nacelle prop-

erties, the model of the cross-organizational process supporting the execution of these

change requests is common to both components as depicted in Figure 1.2. This cross-

organizational process model interconnects (i) the model of the sub-process supporting

change requests on the Fuselage and (ii) the model of the sub-process supporting change

requests on the Nacelle while allowing a parallel execution of both sub-processes since

they are independent. If the sub-contractor responsible of handling change requests

on the Fuselage has to be replaced, then several actions have to be performed. Among

these actions there is the removal of this sub-contractor from the cross-organizational

process model and its replacement by a new one. During the time interval between the

removal of the sub-contractor from the process model and its replacement, the partners

working on the Nacelle will no longer be able to collaborate because the whole cross-

organizational process model is impacted.

The removal of the sub-contractor from the cross-organizational process introduces

syntactic errors in the model of this cross-organizational process and thus this model

can no longer be executable by an engine until the new sub-contractor is added.

From this example we can observe that even though handling change requests for

the Fuselage is (from an engineering point of view) independent from handling change

requests on the Nacelle, a coupling still exists between their sub-processes. Accordingly,

mediators as developed currently could not achieve a satisfactory decoupling level.

1.1.3 Monitoring

Another important aspect of the ECM process in a cross-organizational environment

is monitoring. Indeed, when conducting parallel change requests as presented in the

previous example, a chief engineer belonging to the OEM might need to monitor the

1.1. Context and Motivation 5

Cross-organizational Process Model

Sub-process for handling Change
Requests on the Nacelle properties

Sub-process for handling Change
Requests on the Fuselage properties

Parallel Handling of
Change Requests

Figure 1.2: Cross-organizational process to handle change requests

unfolding of parallel changes. His aim could be to ensure the coherency of the properties

of the final product that is the aircraft. To realize this monitoring, the chief engineer

needs to obtain copies of the exchanged messages in the cross-organizational process

and then to perform further processing on these messages. To achieve this processing he

may call a service or a composition of services in order to obtain higher level information

that he can use to take decisions.

1.1.4 Airbus Group Innovations Strategy

To address the mentioned issues, Airbus Group Innovations has been involved in several

European projects where the aim was to develop a collaborative platform that supports

the execution of the cross-organizational process of the Engineering Change Manage-

ment. An industrial implementation of such a platform has already been realized but

the capabilities of this platform are being enhanced continuously. However, enhancing

such a platform is particularly difficult due to the following reasons:

First, existing cross-organizational process modeling standards do not provide the

right constructs at the right level of abstraction in order to facilitate the work of business

actors who need to build the process model. Thus the difficulty consists in providing

these actors with a language that has two properties: (i) it has the right constructs at the

right level of abstraction so that business actors do not need to acquire new skills to use

it. (ii) The modeling language should allow the business actors to focus on specifying

the objectives of their collaboration (i.e. to change the properties of product component)

and not on specifying how to achieve these objectives.

Second, business actors should not be considered as the platform administrators.

Indeed, using a mediator deployed within the platform is necessary to ensure interop-

erability [BCG+05]. Nevertheless, business actors should be shielded from defining and

6 Chapter 1. Introduction

managing mediators in the platform.

Third, in the context of DMNs, changing the configuration of the collaboration en-

vironment should be allowed and facilitated. However, due to the coupling that could

exist between partners’ processes, implementing this capability is especially difficult.

The reason of this difficulty is how to make these changes transparent to other partners.

Fourth, there is a plenty of software applications that can be used to provide the

chief engineer with a monitoring capability so that he can watch the unfolding of the

collaboration between partners. However these software applications and their underly-

ing monitoring mechanism are not always efficient and in some cases they fail to provide

the right information at the right time. Thus, there is a need for a monitoring approach

that efficiently informs the chief engineer.

In the next section, we detail these challenges and then we survey the thesis contri-

butions that address them.

1.2 Scientific Problems and Contributions

1.2.1 Challenges

The issues encountered by engineers involved in the ECM process as presented in the

previous section are instances of more general problems in the domains of Business

Process Management (BPM) and Service Oriented Computing (SOC).

Modeling Language : providing a modeling language that uses high-level concepts

understandable by business actors is a problem that has been addressed by several

works. Indeed, numerous frameworks have been developed to allow business actors

to focus on the business value of a process rather than on the steps and activities of that

process. The Commitment Framework [TS09] and the language Let’s Dance [ZBDtH06]

are examples of such frameworks.

Specifying the objective of the collaboration rather than how this collaboration has

to be conducted is a typical problem of using declarative languages rather than imper-

ative languages when modeling the collaboration. On one hand, imperative languages

specify the steps to be followed in order to reach an objective but they make abstraction

on the specification of that objective. On the other hand declarative languages specify

the objective to be reached and make abstraction on the steps to reach this objective.

Each paradigm has its advantages and drawbacks depending on the addressed prob-

lem. Declarative languages are more appropriate when more flexibility in reaching the

objective is required. This flexibility facilitates the modifications on the process to reach

1.2. Scientific Problems and Contributions 7

that objective. Imperative languages are more rigid, inappropriate when changes are

frequent but are easier to automate.

Mediation : developing mediators to ensure interoperability between two communi-

cating processes is a problem addressed by several works since decades [Wie92, YS97].

Nevertheless, assuming that the involved processes can evolve at run-time which is the

case in DMNs, implies that mediators should evolve at run-time as well. Thus, a poten-

tial solution to mediators’ evolution in DMNs would be to create a unique mediation

approach that could be used for the different cases of mismatches. In this case, the

problem is how to develop the algorithm of this approach that runs efficiently?

Management System : managing the modifications that can occur on a process

model at run-time is a problem of adaptability of business processes. Many standardized

process modeling languages are of imperative nature and thus they are still considered

to be rigid [vdAP06]. However, efforts have been conducted in order to incorporate

flexibility in processes modeled using these languages for example using the change

patterns [WRR13]. Although, existing works address the adaptability problem for a

process involving one partner, adaptability of cross-organizational processes involving

several partners has received less attention. Indeed, modifying a cross-organizational

process generates new issues that have not been considered for a single partner process.

One of these issues is: when a modification concerns a single partner process, how can

this modification be realized without impacting other partners not concerned by it but

participate to the same cross-organizational process?

Changing the configuration of a collaboration environment by replacing partners

in the cross-organizational process requires removing these partners and then adding

the new ones. When many removals are performed it would be better to generate a

set of actions that will semi-automatically guide the process designer in adding the

missing partners. To achieve this, planning algorithms can be used. Indeed, a planning

algorithm will analyze the current state of the process model and finds out that there

are partners who are missing. Then it generates a solution plan that defines the actions

to be executed in order to add the missing partners. Nevertheless, existing planning

algorithms generate a raw set of actions. If one wants to semi-automate the execution of

this set of actions, it will be challenging because the sequencing of these actions should

be determined before an engine can execute them. Accordingly a problem that is still

pending is how to generate an executable workflow of actions from a solution plan?

Monitoring System : monitoring the exchanged messages in a cross-organizational

process provides valuable information for the monitor. To realize this monitoring, it is

possible to use a Complex Event Processing approach. Indeed, the exchanged messages

8 Chapter 1. Introduction

can be seen as events and a CEP software application can be used to capture these

events, process them and provide the final result to the monitor. The processing of

the received events involves that the CEP invokes a composition of services that will

generate the required information. Existing CEP frameworks provide the possibility

to express processing on the received events but the problem is whether the required

execution time and space for this processing is optimal or not. If not how they can be

optimized?

Implementation : realizing a software platform that answers the mentioned prob-

lems should use standardized implementation of the underlying software modules as

much as possible. This makes our platform vendor-independent. Nevertheless, ensur-

ing that a software module is compliant with a standard specification is currently done

either manually or by relying on the software documentation. These verification ap-

proaches are not well-founded since the assessment results are only qualitative and not

quantitative. Accordingly, a problem that needs to be addressed in order to use only

standardized software modules is how to compute quantitative evaluation criteria and

report them so that the most conformant software module to a standard can be selected?

1.2.2 Contributions

To address the identified scientific challenges we have made the following key contribu-

tions:

High-level Modeling and Automatic Mediation : we define a formal model of the

framework to specify the objective of the collaboration between two partners regarding

the design of a product component. This specification allows involved partners to fo-

cus exclusively on the objective of their collaboration without specifying how it will be

achieved. Of course this under-specification will leave room for heterogeneous inter-

pretations on how to realize the objective. To overcome this heterogeneity we propose

an efficient mediation solution that uses a single mediation algorithm applicable for the

possible situations. Thus it prevents partners from replacing it when changes occur on

the configuration of the collaboration [KFBG13b, KFB+13, KBFG14].

Example 1. Following the example of Figure 1.2, the proposed modeling approach will allow

the engineers to specify that the collaboration will be on the Fuselage involving the properties

: {Npax f ront, Naisles, Fuselage_Length} without requiring additional details. The cross-

organizational process supporting the delivery of the exchanged messages will be generated auto-

matically while upholding each partner internal rules in organizing message exchange activities.

In addition, the mediation on the fly will efficiently deliver the right message at the right moment

1.2. Scientific Problems and Contributions 9

without asking the involved engineers to intervene.

Management System : we enrich our framework with a set of management opera-

tions that help partners realize modifications on their interactions at run-time. In order

to shield partners that are not concerned by the modifications, we developed an algo-

rithm that checks whether a modification will not impact other partners. If this is the

case it realizes the modification otherwise it postpones it until other modifications are

requested. Hopefully all these modifications assembled together can be realized and

allow the carrying of the collaboration between the involved partners [KFBG13a].

Example 2. In the context of dynamic collaborative environment that we will detail in the next

section, when the OEM engineer in Figure 1.2 wants to replace the subcontractor designing the

Fuselage, our management system will ensure that other parallel design processes belonging to

the same cross-organizational process (for example the one related to the design of the Nacelle)

will not be impacted since the design of the Nacelle is independent from the design of the Fuselage.

In order to fasten the resuming of the collaboration between partners impacted by

multiple change operations, we use AI planning to generate a plan (a succession of sets

of actions) that should be executed in order to resume the collaboration. We extend

the planning-graph algorithm [NGT04] in order to semi-automate the execution of the

generated plan. This extension generates an executable workflow that guides partners

through the actions that should be executed in order to realize the recovery and resume

the collaboration.

Example 3. Following the scenario of replacing the subcontractor in Figure 1.2. If we assume

that the OEM engineer decided to replace the subcontractors involved in the design of many

other aircraft components (Engine, Nacelle, etc.). When trying to replace all these partners, it is

better to guide him by using a semi-automated workflow. As we will see, the set of actions of this

workflow can be generated by the planning-graph algorithm, but this unordered set of actions

cannot be executed by an engine. Our extension of the planning-graph algorithm will add enough

details to this unordered set so that it can be executed by an engine.

Efficient Monitoring : as monitoring can be realized by using monitoring queries in

CEP software applications, we define a new execution plan for monitoring queries. This

execution plan is more efficient in comparison to an existing industrial implementation

since it consumes less time and less memory [KFBG14b].

Example 4. If the OEM engineer wants to study the interaction between the Engine and the

Nacelle during their design, he asks to obtain copies of the exchanged messages in their corre-

sponding design processes. He may also want to perform some computations on the received

10 Chapter 1. Introduction

copies to generate the desired information. Our plan, that runs this computation, will reduce the

time and the memory space required to deliver the desired information in comparison to existing

CEP software.

Conformance to Standards Implementation : to implement a software platform

that provides the desired features and that has software modules compliant with their

respective standards, we developed a formal approach. This approach assesses the con-

formance of a software module with a standard specification. It uses vector calculus

to generate quantitative measures that help us decide what module to choose among

several ones claiming to be standard compliant [KFBG14a].

Example 5. In our prototype, we will use a workflow engine that will execute the cross-organizational

process. This engine cannot be selected randomly. We need to check its conformance to the work-

flow community standard. Our approach provides us quantitative metrics that allow us to choose

the most conformant software to that standard.

1.3 Dissertation Organization

The reminder of this dissertation is organized as follows:

In Chapter 2 we detail the engineering design process for products and show how

this process is implemented in the industry through the ECM process. We give a real

application case of the ECM process and then we derive the required features of the

platform that supports the execution of this process in cross-organizational context. In

addition, we review the closest works inside the Airbus Group that cover the identified

features and show their limits. From these limits we review the challenges and the key

contributions of the thesis.

In Chapter 3 we review the related work regarding high-level frameworks to model

cross-organizational processes and identify their limits, we also review change manage-

ment frameworks for business processes and identify their limits as well. We explore the

work on complex event processing and how existing frameworks execute the processing

of monitoring queries. This chapter also introduces the main concepts of the theoretical

frameworks used in subsequent chapters.

In Chapter 4 we propose a conceptual framework to model the objectives of the

collaboration between two partners; we extend this framework to model the objectives

of the collaboration in the whole collaborative environment and their temporal rela-

tionships as well. From this specification, we elaborate on the approach to generate

the cross-organizational process. Key inputs for this generation are the business rules

1.3. Dissertation Organization 11

of each partner that define how the partner process activities are organized. Then we

elaborate on the mediation solution and show how it resolves heterogeneity between

processes in DMNs.

In Chapter 5 we extend our conceptual framework with a set of management op-

erations that can be used to change partners, objectives, and the relationships between

objectives. We define the precondition and post-condition of these operations and also

the underlying mechanism to support the concurrent call of a management operation.

After that, we show how these operations can be used by a planning algorithm to gen-

erate a solution plan that aims at recovering several removals and then we extend this

solution plan to make it executable by an engine.

In Chapter 6 we extend the conceptual framework so that it supports defining mon-

itoring queries on the cross-organizational process. We identify a set of monitoring

patterns and show how they can be used to generate the query execution plan that

performs better in comparison to those of existing works.

In Chapter 7 we present the implementation of our collaboration platform. We

present the implementation techniques that we have used to realize the different func-

tionalities. In addition we elaborate on the methodology used to test the conformance

of software modules with standards specifications and show how it helped us select the

most compliant workflow engine software.

In Chapter 8 we summarize our contributions and discuss future directions of our

research.

12 Chapter 1. Introduction

Chapter 2
Thesis Context and Problematic

Contents

2.1 Introduction . 15

2.2 Engineering Design . 15

2.2.1 Breakdown structures . 15

2.2.2 Conceptual System Design . 17

2.2.3 Preliminary System Design . 17

2.2.4 Detail System Design . 17

2.2.5 Changing the Specification of Problem Statements 19

2.2.6 Monitoring the Unfolding of other Problem Statements 19

2.2.7 Summary . 20

2.3 Engineering Change Management . 20

2.4 Specification and Decision on Change 22

2.4.1 Basic Concepts . 22

2.4.2 Engineering Change Request Generation 22

2.4.3 Cascading Processing of Change Requests 23

2.4.4 Summary . 24

2.5 Practical Scenario: Operator Broussard Design 25

2.5.1 The Storyboard of the Collaboration between the Involved Actors 26

2.5.2 Conclusion: The Need for a PLM Hub 27

2.6 Background for a PLM Hub . 28

2.6.1 Business Processes and Workflows 28

2.6.2 Interoperability and Interoperability Levels 29

2.6.3 Mediation and Mediation Levels 29

2.6.4 Dynamic Manufacturing Network 30

13

14 Chapter 2. Thesis Context and Problematic

2.7 Features of a PLM Hub . 30

2.7.1 Feature 1: Access to the Product Structure Breakdown 30

2.7.2 Feature 2: Defining the Cross-organizational process 30

2.7.3 Feature 3: Defining the Mediator to Run the Cross-Organizational

Process . 31

2.7.4 Feature 4: Managing the changes in the context of a DMN 31

2.7.5 Feature 5: Monitoring the Collaboration 31

2.7.6 Summary . 32

2.8 Existing Frameworks to Ensure PLM Hub Features 32

2.8.1 The Aeronautic Interoperability Framework 33

2.8.2 IMAGINE Platform . 35

2.8.3 Business Process Management Platforms 35

2.8.4 PHUSION Global Collaboration Project[FTG+14] 35

2.8.5 Summary . 36

2.9 Challenges for a Collaborative Software Environment 36

2.9.1 Challenge 1: High-level Modeling Language 37

2.9.2 Challenge 2: Mediation on-the-fly 38

2.9.3 Challenge 3: Managing the changes 38

2.9.4 Challenge 4: Advanced Monitoring Capability 38

2.10 Thesis Contributions . 38

2.11 Conclusion . 41

2.1. Introduction 15

2.1 Introduction

This thesis takes place in an industrial context at the AIRBUS Group Innovations (AGI)

and more specifically in the context of the European project IMAGINE1. AIRBUS Group

is a leading aircraft designer and manufacturer with products ranging from airplanes

and helicopters to space launchers and satellite systems. To design and manufacture

these products, several frameworks were developed to support the products’ develop-

ment. In this chapter we present the engineering design process in a collaboration

environment and its realization through the ECM process. Then we derive a set of chal-

lenges that are still not addressed neither by frameworks available inside AGI nor by

frameworks from the research community. First we start by presenting the engineering

design process from a conceptual point of view. We detail the main activities of this

process in order to achieve a desired design of the final product. Second we elaborate

on the industrial and standardized implementation of the design process in a collabora-

tion environment and we analyze the main activities of this standardized process. We

present a practical scenario that illustrates this process and from that scenario we iden-

tify the need for a collaboration platform that supports the different parties in achieving

the design. We sketch the features that this platform should provide and then we assess

the available frameworks inside AGI regarding the coverage of these features. From this

assessment, we derive a set of scientific challenges that still need to be addressed and

we conclude with the thesis contributions that address the identified challenges.

2.2 Engineering Design

An engineering project often starts by capturing the customer requirements. From these

requirements, the project planning takes place and its outcome consists in two structures:

the system breakdown structure and the work breakdown structure. Using these two

structures, the design process is performed in order to design a system that responds to

the customer requirements.

2.2.1 Breakdown structures

During the design process, different groups of engineers work on different systems.

Thus, in order to allocate the appropriate team to design the appropriate subsystem,

the system breakdown structure as well as the work breakdown structure needs to be

defined at the early phases of the project. Figure 2.1 gives a generic example of a system

1http://www.imagine-futurefactory.eu/

16 Chapter 2. Thesis Context and Problematic

breakdown structure and Figure 2.2 gives an example of a work breakdown structure

for an aircraft.

System X

Subsystem A Subsystem B Subsystem C Subsystem D

Subsystem C Subsystem C Subsystem C

Unit I Unit III Unit II Unit IV Unit V

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Figure 2.1: System breakdown structure [Sad12]

Chief Designer

Wing design
team

Tail design
team

Fuselage
design team

Landing gear
design team

Propulsion
system design

team

Aerodynamic
design team

Structural
design team

Figure 2.2: Work breakdown structure

When both breakdown structures are ready, three major activities are executed in

order to design the system that meets customer requirements [Ray06] as depicted in

Figure 2.3.

Conceptual
Design

Preliminary
Design Detail Design

Test and Evaluation

Detail DesignDesign

Design
Requirements

Designed
System

Figure 2.3: Relationship among four major design activities [Sad12]

2.2. Engineering Design 17

2.2.2 Conceptual System Design

Conceptual Design usually begins with either a specific set of design requirements es-

tablished by the prospective customer or a company-generated guess as to what future

customers may need. The aim of this activity is to define the optimum configuration

of the whole system without going into detail on its subsystems. Thus, in this activity,

the main question to be answered is ”Can an affordable system be built to meet the

customer requirements?” [Ray06].

2.2.3 Preliminary System Design

In the preliminary design, the aim is to determine features of the basic components.

More specifically, it consists in preparing the design requirements for the detail design at

subsystems level as depicted in Figure 2.1. This phase also aims to prepare the different

software packages, design tools, and technologies that will be used during the detail

design of subsystems [Sad12]. The ultimate objective of the preliminary design is to

pave the road for the detail design phase.

These two first phases are characterized by the involvement of a few highly qualified

individuals with broad technical knowledge. As noticed by [Sad12] for aircraft design,

most of engineers who go to work for an aerospace company will work in detail design.

Thus as the design progresses, the number of engineers involved increases and the need

for an organized collaboration is more required.

2.2.4 Detail System Design

The detail design is the most extensive phase in the whole design process [Sad12]. Its

purpose is to produce the data necessary for the manufacture of hardware. In the case

of a sophisticated system (e.g. an aircraft) many tens of thousands of Computer Aided

Design (CAD) files are needed to define the aircraft adequately [Ray06].

Prior to starting the detail design process, chief designers (depicted in Figure 2) need

to plan the goals of the detail design from the design requirements. Then at run-time,

they need to manage the design process by introducing some changes. Finally they need

to monitor the detail design process [Sad12].

2.2.4.1 Converting design requirements into problem statements

In order to fulfill the design requirements determined in earlier phases for a particu-

lar component, the chief designer needs to translate the design requirements for that

18 Chapter 2. Thesis Context and Problematic

component into problem statements and then submit these problem statements to the

component design team. Problem statements tell the design team what constraints they

should take into account while designing the component and what results are expected

by the chief engineer to evaluate their design.

[Sad12] formulated a problem statement as a triple: 〈Goal, Objectives, Constraints〉.

• Goal is a brief, general and ideal response to the need statement. The need de-

scribes the current, unsatisfactory situation, while the goal describes the ideal

future condition to which the chief engineer aspires in order to improve on the

situation described by the need.

• Objectives are quantifiable expectations of performance which identify those per-

formance characteristics of a design that are of most interest to the chief engineer

of the subsystem. In addition, the objectives must include a description of condi-

tions under which a design must perform. In other terms objectives aim to specify

the whats and not the hows.

• Constraints are restrictions on performance measures. They limit the freedom of

design. Constraints define the permissible conditions of design features and the

permissible range of the design and performance parameters.

Problem statements support the chief engineer in specifying what needs to be achieved

by collaborative design with the subsystem design team. It lets the chief engineer focus

on the final result of the design by specifying the what while making abstraction on how

the design process will be conducted.

2.2.4.2 Temporal constraints between subsystems designs

Specifying problem statements for subsystems design is necessary but not sufficient.

The chief engineer should uphold a certain order when defining problem statements

for sub-systems because temporal design constraints could exist between the different

subsystems. Indeed, for a wide range of systems the associated subsystems and com-

ponents can be classified into two groups: (i) primary or dominant subsystems, and (ii)

secondary or servant subsystems.

Example 6. In an aircraft, the wing, fuselage, tail and engine are assumed to be dominant

components, but the electric system, air conditioning system, cabin, cockpit and landing gear are

categorized as servant components.

2.2. Engineering Design 19

This categorization of subsystems has a direct impact on the design process. Indeed,

the dominant systems need to be designed first and their characteristics need to be

determined, then the design or the choice of the servant systems can be validated.

Accordingly, besides specifying problem statements for the different subsystems,

the chief engineer needs to be able to specify temporal constraints between problem

statements of subsystems in order to uphold the categorization that separates between

dominant and servant subsystems.

Example 7. In an aircraft design project, the aircraft aerodynamic design leads the aircraft

structural design, since the structure is a servant subsystem.

2.2.4.3 Iterative detail design

Once the detail design phase is achieved for a particular component, an additional step is

required that is the test and evaluation step as depicted in Figure 2.3. The outcome of this

step is an answer to the question whether the design is satisfactory for the chief designer

and an agreement has been reached with the team responsible for this component. In

this case the process can carry on for the manufacturing or for the detail design of the

servant components of this particular component. When an agreement has not been

reached, a new iteration of the detail design process for this component is required.

2.2.5 Changing the Specification of Problem Statements

During the detail design of a component, modifications can be initiated on the problem

statement specification of this particular component for example by adding new objec-

tives/constraints or removing some objectives/constraints for different reasons, e.g., to

correct a design deficiency, improve the component, incorporate a new technology, re-

spond to a change in operational requirements, compensate for an obsolete section etc.

Modifications may be initiated from within the design process, or as a result of some

new externally imposed requirements [Sad12].

2.2.6 Monitoring the Unfolding of other Problem Statements

An important task of the chief designer is to monitor the unfolding of the design of the

components. This monitoring could be performed on each component separately, but it

can also be performed collectively by monitoring the unfolding of the design of a subset

of interacting component together.

20 Chapter 2. Thesis Context and Problematic

2.2.7 Summary

In this section, we gave a high-level and conceptual view on how the design process

is conducted. We saw that a chief designer submits problem statements specifications

to design teams and expects to receive characteristics of the components in order to

analyze whether it is possible to carry on to the manufacturing phase or to redo another

iteration of the design. Nevertheless in an industrial project it is recommended to rely

on a standardized process when designing a system and its components. This process

is the Engineering Change Management.

2.3 Engineering Change Management

In the previous section we described the conceptual framework of engineering design

based on sharing problem statements between the chief designer and the teams respon-

sible for designing the components. Nevertheless, with the extensive use of software

applications during the engineering design, Product Lifecycle Management (PLM) has

emerged as a strategic business approach. This approach consistently manages all life-

cycle stages of a product including the design stage [TLM06]. Thus, the chief designer

and the different teams should follow the PLM strategy when carrying the design pro-

cess.

When sharing problem statements, the chief designer and the design teams should

use their Product Data Management Systems (PDM) that implement the PLM strategy[MR09].

More specifically, PDMs implement a standardized process to support the engineering

design of a product that is the Engineering Change Management process (ECM).

The ECM is executed when a partner (e.g. chief designer) identifies the potential

need for an engineering change on the configuration of a product component [OMG11].

Hence requesting an engineering change is equivalent to submitting a problem state-

ment. The ECM standardized process can be internal when the component to be modi-

fied is designed internally within the enterprise or external when the change concerns a

component designed by an external organization that is known as a Configuration Item

(CI).

There are several reasons that can lead to changing a product and its components

properties. For example a change can be required due to a possible optimization de-

tected during the lifecycle of the product. When realizing the change following the

ECM process, this change will be evaluated, implemented and released in the detail

design process. It is also possible that the idea of a change will be rejected because it

2.3. Engineering Change Management 21

appears unpromising [SAS10].

Figure 2.4 depicts a phase diagram of the ECM process. It starts by the need to

perform change on a certain component.

The second phase Development of Alternative Solutions consists in determining the

technical possibilities that can meet the change need. For example, if a change request

is on the engine of an aircraft, there could be three different alternative solutions, an

engine from Snecma, an engine from Rolls Roys, or an engine from General Electric, since

these are the main engine providers for Airbus.

Once the potential technical solution is identified, it will be analyzed with respect to

technical considerations in the phase Specification and Decision on Change. This phase is

the core of the ECM process. During this phase, the chief designer exchanges messages

that correspond to the problem statement specification with the component design team

until reaching an agreement on the change to implement on the product component.

The Engineering Change Request (ECR) object is generated at the end of this phase.

If the ECR is approved, the change is implemented in the fourth phase Engineering

Implementation of Change, for example by making changes to relevant documents such as

CAD models, drawings, Bill of Materials or product structures. The ECR object forms

the basis of these activities and provides the necessary authorization.

Finally, when a change is implemented by engineering and released, the phase Man-

ufacturing Implementation of Change begins. It consists in producing the changed compo-

nent with the new configuration.

Identification of
Potential for Change

Development of
Alternative Solutions

Specification of and
Decision on Change

Engineering
Implementation of

Change

Manifacturing
Implementation of

Change

M1:
Change

Idea

M3:
Potential
Solution
defined

M2:
Change

Potential
Identified

M4:
ECR

decided

M5:
EC

released

M6:
Manufact

uring
change

released

Figure 2.4: ECM Process overview [SAS10]

In the subsequent sections, we detail the second phase that is the Specification and

Decision on Change since it is during this phase where interesting collaboration between

partners takes place.

22 Chapter 2. Thesis Context and Problematic

2.4 Specification and Decision on Change

2.4.1 Basic Concepts

2.4.1.1 Engineering Change Request (ECR)

Initiating an ECR consists in requesting an evaluation on a change on a particular com-

ponent of the product [SAS10]. It includes changing the component dimensions or other

properties [OMG11].

Elaborating the ECR involves two standardized types of partners: coordinators and

participants. Coordinators are those that issue the ECRs, they generally represent the chief

designer and participants are those that process the ECRs and they represent the teams

responsible for different components [SAS10]. Partners refer to both, coordinators and

participants.

2.4.1.2 Interaction

To realize an ECR there is a need of message exchange between involved partners. An

interaction is generally bidirectional where a message of type request and a message

of type response are exchanged. A unidirectional interaction comprises a send action

from the sender and a receive action from the recipient. A bidirectional interaction is

comprised of send and receive actions with sender and receiver swapped [SAS10].

2.4.1.3 Interaction Scenario

It is a description of the sequences used and the conditions under which data is ex-

changed between partners to address an ECR [SAS10]. Each partner in an interaction

scenario has a process that supports him in processing the ECR. This process is decom-

posed into [SAS10]:

• private process that describes the partner-specific process used internally

• public process (protocol) that defines the permitted message sequence per inter-

action scenario from a coordinator’s and from a participant’s point of view.

2.4.2 Engineering Change Request Generation

When a change has been identified, the coordinator creates an ECR on the associated

component (ECR created in Figure 2.5). Then the coordinator in association with the

participant define the messages to be exchanged and their sequence in order to detail

2.4. Specification and Decision on Change 23

(iteratively) the ECR created. Since coordinators and participants could already have exist-

ing processes to address ECRs on specific components, they need to map their existing

processes with the messages that have been defined in order to create the interaction

scenario associated to this particular ECR as depicted in Figure 2.5.

Creation of
ECR

Technical Analysis
of ECR

Commenting on
ECR Approval of ECR

M3.2:
ECR

Created

M3.3:
ECR

Detailed

M4:
ECR

Approved

Private ECR Process Partner 1

Process
Mapping Coordinator

Inquiry of ECR

M3.4:
ECR

Commented

Private ECR Process Partner 2

Participant Process
Mapping

M3:
Potential
Solution
Defined

M3.1:
ECR

Initiated

ECR Reference
Process

Figure 2.5: Mapping between the ECR process and private processes [SAS10]

Once the interaction scenario is created, the collaboration between the ECR coordinator

and the ECR participant begins. In this case, the ECR coordinator instantiate a problem

statement and submit it to the ECR participant following the interaction scenario specifi-

cation. The ECR participant executes his private process in order to analyze the problem

statement and submits the response to the coordinator. This process iterates until the

coordinator takes a decision and notifies the participant to stop, as depicted in Figure 2.6.

activity 2

activity 3 ti it

activity …

activity x ti it

i it

activity 1

ti it …

…

…

…

…

Request

Response

Notify

Partner A Partner B

Private ECM process of
Coordinator

Private ECM process of
Participant

ECM Interaction

Figure 2.6: Integration between the processes of two partners [SAS10]

2.4.3 Cascading Processing of Change Requests

The collaborative environment is organized into layers. Partners located in layer 1 are

those that handle the change requests expressed by the OEM on a particular compo-

24 Chapter 2. Thesis Context and Problematic

nent. Partners located at layer 2 are those that handle the change requests on the

sub-components of the previous component and so on. Figure 2.7 depicts the layered

structure of the collaborative environment.

OEM
environment

OEM

Tier 1

Tier 1
Tier 2

Tier 2

Tier n

Tier n

OEM
environment

OEM

Tier 1

Tier 1
Tier 2

Tier 2

Tier n

Figure 2.7: Layered structure of the collaborative environment

Each partner within a collaborative environment may have the role of coordinator or

participant depending on the specific cooperation [SAS10]. Indeed, during the processing

of an ECR on a particular component A requested by a coordinator α, the partner β play-

ing the role of participant may also need to create ECRs on sub-components of A. These

ECRs aim at analyzing the impact of the change desired by α on the sub-components

of A. In this case, the partner β will play the role of coordinator in the new interaction

scenario and the same standardized ECM process will be followed.

Nevertheless, there could be some synchronization constraints between the different

ECM processes related to the component and its sub-components. For example a lead

to constraint that indicates that a change on a component cannot be validated until the

change on its sub-component is validated. Hence, it is necessary to be able to specify

this kind of constraints between the change requests on components and their sub-

components in order to maintain the constraints between changes explicit. Figure 2.8

shows an example of a cascading processing of an ECR.

2.4.4 Summary

In this section we detailed the specification of an ECR by focusing on interaction scenar-

ios and how they are mapped to private processes of partners. We also discussed the

cascading nature of the processing of ECRs and that an explicit temporal link between

ECRs should be expressed.

In the next section we provide an industrial scenario that shows how the ECR process

is used and then we motivate the need for a PLM Hub to enhance the collaboration.

2.5. Practical Scenario: Operator Broussard Design 25

OEM

Tier 2

Tier 1

Tier 3

Tier 4 Tier 5

Coordinator

Tier 1

Participant

…... …... … ….. …...

… ….. … ….. … ….. … ….. …. …
…
…
..

….
.

….

…. …… ….. …. …… ….. …. …… ….. …. …… ….. …. …… …..
……
….. ….. ……

….. …. .. … …..

…. …
…. …

…. …… ….. …. …… …..

OEM

..

ECR Reference
Process

… …

…… …..

…..

T

.

…..

er 5

. .. Coordinator

Participant

Private ECM
process

….

M

Private ECM
process

Figure 2.8: Cascading ECR processing [SAS10]

F7X

Operator Brousar

Regulator

Computation Unit

PDM Dassault Aviation Content

PDM Thales Content

Processor

PDM Motorola

Figure 2.9: F7X breakdown excerpt

2.5 Practical Scenario: Operator Broussard Design

The Broussard operator is a telecommunication system designed by Thales (TH) and used

by Dassault Aviation (DA) for the F7X whose breakdown is depicted in Figure 2.9. This

equipment constitutes a component in the whole breakdown of the F7X aircraft. In order

to achieve a desired configuration of this component so that it becomes well adapted for

the F7X, the coordinator (pertaining to DA) creates an ECR on the Broussard Operator

and then in collaboration with the participant (pertaining to TH) iteratively detail this

ECR until both partners reach an agreement. Figure 2.10. depicts how currently the

collaboration between these partners is performed.

26 Chapter 2. Thesis Context and Problematic

Dassault Aviation Thales

PDM application
(based on Enovia)

F7X Product
Date

PDM application
(based on Product
Manager)

Interaction scenario
Broussard
Operator

Data

PDM application
(based on Product
Manager)

Computation
Unit Data

Nokia

Figure 2.10: Current industrial collaboration

2.5.1 The Storyboard of the Collaboration between the Involved Actors

• The coordinator in (DA) creates an ECR on the Broussard operator using his internal

PDM system Enovia2.

• The coordinator defines an interaction scenario (messages and their sequence) with

the participant from TH in order to prepare the ECR. In this case, the coordinator

would oblige the participant to adapt his existing process that handles ECRs on the

Broussard Operator in order to iteratively detail the ECR. This is necessary because

the coordinator and the participant processes should be fully compatible to detail

the ECR.

• The participant in TH receives a problem statement and notices that if this change

is implemented, it will have an impact on the configuration on the computation

unit of the Broussard Operator

• The participant in TH creates a new ECR on the computation unit for which he is

the coordinator and starts collaboration with the participant from Motorola. Nev-

ertheless, he has no formal way to specify that the ECR on the Broussard Operator

2http://www.3ds.com/products-services/enovia/

2.5. Practical Scenario: Operator Broussard Design 27

cannot be validated until the ECR on the computation unit is validated. He is the

one who has this information and it remains implicit

• Once the participant in Motorola has validated the ECR coming from TH, the par-

ticipant in TH can validate the ECR of the coordinator in DA.

• Finally, both ECRs are released to be implemented during the manufacturing phase

2.5.2 Conclusion: The Need for a PLM Hub

After this analysis of the industrial implementation of the engineering design process

through the standardized ECM process, we conclude that there is a need for a collabo-

rative PLM platform (PLM Hub) shared among all partners located at all layers in the

collaborative environment. The purpose of a PLM Hub is to support the execution of

ECM processes involving multiple couples of partners as depicted in Figure 2.11. The

following points summarize the reasons of behind this need:

• Specification of interaction scenarios: we have seen that the coordinator needs to

collaboratively define the messages that should be exchanged with the participant

[SAS10] in order to detail an ECR. Thus they need a shared software environment

that allows them to specify the interaction scenario.

• Interoperability of processes: we have seen that the coordinator as well as the

participant will map their existing private processes with the specification of the

interaction scenario (Figure 2.5). Nevertheless, it is no longer acceptable that a

partner imposes to another partner the way he should define and run his private

process [MR09]. Accordingly, the interaction scenario specification should be ab-

stract enough so that each partner keeps his private process unchanged and this

possibly creates mismatches between the coordinator process and the participant

process that must be resolved so that the collaboration could take place. A PLM

Hub will help in resolving these mismatches

• Cascading ECM: we have seen that some constraints could exist between an ECM

process on a component and ECM processes on its sub-components or other com-

ponents as well. Thus, there is a need to maintain an explicit relationship between

these ECMs in order to ensure that no ECR will be validated without the realiza-

tion of all its preceding ECRs. A PLM Hub will help in defining these constraints

and watching that they are upheld.

28 Chapter 2. Thesis Context and Problematic

Dassault Aviation Thales

PDM application
(based on Enovia)

F7X Product
Date

PDM application
(based on Product
Manager)

Broussard
Operator

Data

PDM application
(based on Product
Manager)

Computation
Unit Data

Nokia

PLM Hub

Figure 2.11: PLM Hub

2.6 Background for a PLM Hub

In this section, we define the main technical concepts that will be used in this thesis.

2.6.1 Business Processes and Workflows

A business process consists of a set of activities that are performed in coordination in

an organizational and technical environment. These activities jointly realize a business

goal. Each business process is enacted by a single organization, but it may interact with

business processes performed by other organizations [Wes10].

A cross-organizational process is a business process involving more than one partner.

A cross-organizational process can be divided into two categories of processes. The

public processes that contain only the data send/receive activities and that allow the

communication between the participants. The private processes that cover the activities

that will achieve the goal and each private process is specific to one partner.

A workflow is the automation of a cross-organizational process, in whole or part, dur-

ing which documents, information or tasks are passed from one participant to another

for action action, according to a set of procedural rules [DvdAtH05].

2.6. Background for a PLM Hub 29

2.6.2 Interoperability and Interoperability Levels

Interoperability is the ability of a collection of communicating entities to (a) share speci-

fied information and (b) operate on that information according to an agreed operational

semantics [LMSW08].

Sustainable interoperability focuses on novel strategies, methods and tools to maintain

and sustain the interoperability of enterprise systems in networked environments as

they inevitably evolve with their environments [JGPG12].

Interoperability can be classified into four levels [CD10]:

1. Data interoperability refers to operate together different data models.

2. Service interoperability is concerned with identifying, composing and operating to-

gether independent software.

3. Process Interoperability aims to make various processes work together in a cross-

organizational process.

4. Business Interoperability refers to work in a harmonized way at the levels of or-

ganization despite the difference of decision-making methods, methods of work

etc.

In this thesis the focus will be on Process Interoperability.

2.6.3 Mediation and Mediation Levels

Fensel et al. [FB02] described mediation as a process for settling a dispute between two

parties where a third one is employed whose task is to find common ground that will

resolve inconsistencies between their respective conceptualizations of a given domain.

There are three levels of mediation that have emerged, namely:

1. Data mediation [NVSM07, SCMF06] that addresses signature of messages exchanged

in a cross-organizational process.

2. Process mediation [KMSF09, SCMF06] that addresses protocol level mismatches.

3. Functional mediation [KMSF09, CMS06] which refers to concepts level mismatches.

To resolve the interoperability issues of each level, transformation functions should

be defined and activities executing these transformation functions should be im-

plemented. This ensemble defines a software component called the mediator.

30 Chapter 2. Thesis Context and Problematic

2.6.4 Dynamic Manufacturing Network

A Dynamic Manufacturing Network (DMN) is a coalition, either permanent or tem-

poral, comprising production systems of geographically dispersed small and medium

enterprises. These partners collaborate in a shared value-chain to conduct joint man-

ufacturing [IMA11]. A particular characteristic of a DMN is the possibility to conduct

changes on the DMN configuration at run-time for example by modifying the problem

statements, or by replacing the partners.

2.7 Features of a PLM Hub

This thesis aims at providing the coordinator of an ECM process with a software envi-

ronment to support him in planning, managing and monitoring the collaboration be-

tween different teams (participants). In their work, coordinators use the product break-

down structure and the work breakdown structure in order to assign the appropriate

participant to the appropriate component prior to starting the ECM process. Ideally, a

cross-organizational process will support the data exchanges of the interaction scenario

involving coordinators and participants. In this section, we present the main features that

a software environment should provide so that the coordinator could specify problem

statements and enact the collaboration with participants.

2.7.1 Feature 1: Access to the Product Structure Breakdown

During detail design, the product structure is a working tool for thousands of engineers

[GD07]. Coordinators need to access the product breakdown structure as depicted in

Figure 2.1 in order to assign the right participant to a component and then create an

ECR on this component. The source from which this product breakdown structure is

obtained is the PDM System of the coordinator.

In the context of a cascading ECM, the partner that is a participant for an ECR while

being a coordinator for another ECR should be able to define the constraint between the

two ECRs interaction scenarios.

2.7.2 Feature 2: Defining the Cross-organizational process

The coordinator needs to define the cross-organizational process that will support the

exchange of messages with the participant and map the activities of this process with

his private process and the private process of the participant. Nevertheless, business

2.7. Features of a PLM Hub 31

processes cannot be defined or changed without considering their compliance with im-

posed business rules [KRM+12]. Accordingly, the PLM Hub should assist the coordinator

in defining this cross-organizational process and perform an automatic mapping with

the private processes using the business rules of each partner.

2.7.3 Feature 3: Defining the Mediator to Run the Cross-Organizational Pro-

cess

Mediators are required even though the collaboration is based on standards [BCG+05].

The reason is that it is no longer practical to consider that the coordinator will impose

a cross-organizational process model to all participants [VO11]. Thus, the coordinator

should expect heterogeneity when chaining the participants existing processes to support

the data exchanges. Accordingly, the coordinator needs to resolve this heterogeneity prior

to starting the collaboration. The coordinator will define a mediator that will intercept

the exchanged messages and eventually perform transformation operation on them in

order to deliver the exact expected data to the participant. Consequently, a fundamental

element of the collaboration is the presence of mediators within the PLM Hub to resolve

process interoperability issues.

2.7.4 Feature 4: Managing the changes in the context of a DMN

The coordinator and the participant carry out their tasks in a DMN. Thus, at run-time,

the coordinator should be able to perform modifications on the current and future con-

figurations of the collaboration environment. These modifications must be applied in

a controlled fashion. The aim of this feature is to minimize inconsistencies and dis-

ruptions by guaranteeing seamless interoperation of the cross-organizational business

process [ABP09a]. The PLM Hub should provide capabilities to partners to modify

the configuration of the collaboration environment. In addition it should minimize the

impacts of these modifications on the whole collaborative environment.

2.7.5 Feature 5: Monitoring the Collaboration

During the collaboration, a coordinator might need to monitor parallel design activities

of components that are performed by participants. This is an important feature for co-

ordinators since it helps them detect possible dysfunctions much earlier. Coordinators

should be able to specify what they want to monitor and also, they should be able to

perform processing on the received messages in order to obtain high-level information

transparently.

32 Chapter 2. Thesis Context and Problematic

Business Re-
quirements for
a PLM Hub and
Features

Planning the
processing of an
ECR

Running the in-
teraction scenario
of an ECR

Managing the
processing of an
ECR

Monitoring the
processing of
parallel ECRs

F1: Access to
product features

Yes Yes

F2: Definition
of the cross-
organizational
process

Yes Yes Yes

F3: Mediator Depends on the
mediation strat-
egy

Yes Depends on the
mediation strat-
egy

F4: Management
of changes

Yes

F5: Monitoring Yes

Table 2.1: Summary of business needs coverage by software features

2.7.6 Summary

We presented the main features that a PLM Hub should implement in order to respond

to coordinators needs. Table 2.1 summarizes what business needs each feature will cover.

In the next section, we analyze how much functionality the current available frameworks

at Airbus Group Innovations are providing to respond to the identified features.

2.8 Existing Frameworks to Ensure PLM Hub Features

Extensive work is being carried out inside the Airbus Group Innovations to address col-

laboration issues at detail design phase and to support the collaborative execution of

the ECM process. Indeed, Airbus Group Innovations has participated to multiple Euro-

pean projects that address interoperability issues at detail design phase (Seine project3,

Crescendo project4, Athena project5). The main results of these projects are: (i) a frame-

work for interoperability developed in [Fig09]. This framework has partially led to the

development of an operational collaborative platform of industrial level called PHU-

SION. In this section we review the AGI frameworks.

3http://www.eads-iw.net/web/plminterop/demonstrators
4www.crescendo-fp7.eu/
5athena.modelbased.net

2.8. Existing Frameworks to Ensure PLM Hub Features 33

2.8.1 The Aeronautic Interoperability Framework

The main contribution of this framework consists in defining an innovative concept to

ensure data interoperability of the messages exchanged during an interaction scenario

of an ECM process. Indeed, [Fig09] defined the extended hyper-model that ensures the

preservation of the semantic of messages when they are exchanged between different

partners. It formalizes the syntactic operations that should be performed on the ex-

changed messages so that the receiving partners could operate on the received message

using their own representation.

2.8.1.1 Building Blocks of the Extended Hyper-model

The extended hyper-model is defined as a tuple 〈datamodel, ground, landscape, hyper −
graph〉 where:

• The data model serializes the information being exchanged between two partners

in the collaboration environment.

• The ground is the software environment that has produced the data model. This

data model is assumed to be compliant with a versioned standard.

• The landscape of a standard is the set of available grounds that serialize their data

models using this specific standard.

• The hyper-graph formalizes the multi-representation of a data model using the

accepted standards in its community. The vertices of this hyper-graph capture

the landscapes and the edges capture the operations that should be performed to

travel from one vertex to another.

Figure 2.12 depicts the basic concepts of the extended hyper-model and Figure 2.13

depicts an operation on the data model.

2.8.1.2 Advantages of the Extended Hyper-model

The noticeable advantage of the extended hyper-model is that it ensures data interop-

erability between the partners’ processes. Thus, it helps decrease the coupling between

these partners. Indeed, this framework allows partners to keep their own representation

of data models. Then, during the collaboration it is up to the extended hyper-model

to perform the required transformations in order to deliver the data model in the right

standard and in the right format.

34 Chapter 2. Thesis Context and Problematic

A Property

A Class

An individual

Real World Computer Aided World

Described reality
(by means of generic
Descriptive business

concepts)

Formalism used for software

Formalism associated to
standardized language A

myClass (hyperedge
linking several

representations based on
formalisms A, B, C and D

Formalism associated to
standardized language B

Formalism associated to
standardized language C

Formalism associated to
standardized language D

myClass (hyperedge
linking several

representations based on
formalisms A, B, C and D

myClass (hyperedge
linking several

representations based on
formalisms A, B, C and D

Figure 2.12: Hyper-model concepts

Ground for D

Hypermodel
Traveling from D to B

Ground for B

Formal asso to
standardizied language C

Formal asso to
standardizied language A

Formal asso to
standardizied language B

Formal asso to
standardizied language D

Figure 2.13: Hyper-model operation

2.8.1.3 Limitations of the Extended Hyper-model

Although the extended hyper-models plays a major role in ensuring data interoperabil-

ity during the collaboration, it lacks capabilities in ensuring processes interoperability.

Indeed, whether using the extended-hyper model or using a totally conformant stan-

dardized data models, process interoperability issues still persist [BCG+05]. The reason

is that on one hand, the data model standards that will be used within a collaborative

environment can be forecasted in a certain extension prior to the run-time phase. How-

ever if a non-expected standard is introduced at run-time, the extended hyper-model

needs to be modified extensively. On the other hand the sequence of activities in the

cross-organizational process supporting the collaboration is not always predictable. For

example a participant joining the collaboration has an already implemented process dif-

ferent from the implementation expected by the coordinator. Thus, attaching this partic-

ipant process to the existing cross-organizational process would create mismatches and

the extended hyper model does not address this type of mismatches.

2.8. Existing Frameworks to Ensure PLM Hub Features 35

2.8.2 IMAGINE Platform

In the European project IMAGINE (2011-2014) a major concept has been developed that

is the Dynamic Manufacturing Network (DMN)6. The platform developed in this project

supports the dynamicity of the collaboration environment during the manufacturing

phase of the product. Our contribution is to address interoperability issues at the design

phase of the product. Indeed, the dynamic nature of DMNs introduces new challenges

regarding the problem of interoperability especially at the process level.

2.8.3 Business Process Management Platforms

Business process management (BPM) is a software environment that supports the de-

sign, administration (management), configuration, enactment of business process [Wes10].

BPMs provide the necessary features to coordinators to plan, manage and monitor the

collaboration. However, they have major lacks that we can summarize in the following

points:

• Although the concepts used to define the cross-organizational process are stan-

dardized7, it is known that they are low-level concepts [TS09]. Thus, they are not

well-adapted with coordinators/participants’ way of thinking and the way they want

to specify their goals.

• When tailoring the cross-organizational process definition at run-time, this mod-

ification will not only impact the partners associated to this change (e.g. when

redefining the sequence of his activities). Instead, all partners of the collaboration

environment will be impacted since there is a single running workflow that should

be stopped and restarted to realize the modifications.

• To allow a coordinator to monitor the messages exchanged between participants, new

activities need to be added to the workflow. This will impact other participants in

the same cross-organizational process and will create a strong coupling between

the participants.

2.8.4 PHUSION Global Collaboration Project[FTG+14]

The last motivation that led the development of the framework presented in this thesis

is the shift from OEM centric model where the OEM imposes proprietary processes,

methods and tools to a network based model where all participants are supported by a

6http://www.imagine-futurefactory.eu/uploads/banner/imagine_animation_3_v6-presentation.swf
7WfMC Glossary: http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/DOCS/glossary/glossary.html

36 Chapter 2. Thesis Context and Problematic

hub in their collaboration as depicted in Figure 2.14. In this environment, heterogeneity

between participants processes should be tolerated but should be resolved with the least

cost possible.

OEM

Tier 2

Tier 2

Tier n

PHUSION

Tier 2

Tier n

Tier 1

Tier n Tier n

OEM

T

Tier 2

er n

Tier 1

Tier

T

i

OONNNNNOOOOOOOOONNNNNNNNOOOOOOOOIIOOIOOIOOOIOIOOOIOISISIIIPPPPPHUPHUPHUPHPHUPHUPHUPHUUUUUUUUUPHUSSSSSSSSSSSSSSISISISISSSSISISIISIIISIOO

OEM centric model Network based model

OEM
environment

OEM

Tier 1

Tier 1
Tier 2

Tier 2

Tier n

Tier n

OEM
environment

OEM

Tier 1

Tier 1
Tier 2

Tier 2

r n

T

Tier 1

Figure 2.14: PHUSION Platform Objective

This shift is demonstrated by the development of the operational PHUSION plat-

form. Airbus Group has launched the project PHUSION in order to develop a collab-

orative platform that supports engineers in exchanging data models during the detail

design phase and it is currently being used for operational projects.

2.8.5 Summary

Table 2.2 summarizes to what extent the previously developed frameworks implement

the features expected from a PLM Hub that supports partners during their collaboration.

This section presented the main industrial frameworks that had impacted the pro-

posals in this thesis. Nevertheless, rigorous and formal models had also impacted the

choices made in this thesis in order to develop verifiable and valid solutions. In addition

using formal models has facilitated the implementation of the developed algorithms.

2.9 Challenges for a Collaborative Software Environment

In the previous sections, we have analyzed the needs of coordinators when defining ECRs

in a collaboration environment. Furthermore, we have identified the main features of a

PLM hub that a coordinator would like to have access to in order to perform his work

with participants.

In this section, we summarize the main scientific challenges that should be addressed

by a PLM Hub framework.

2.9. Challenges for a Collaborative Software Environment 37

Features and In-
dustrial Frame-
work

Aeronautic In-
teroperability
Framework

IMAGINE Plat-
form

BPM Platforms PHUSION

F1: Product
Breakdown

� � � �

F2: Cross-
organizational
Process

� � (predefined
process)

� (low level con-
cepts)

�

F3: Mediator �(only for data) � � (compatible
processes)

�

F4: Management � �(for manufac-
turing only)

� (impact all par-
ticipants)

�

F5: Monitoring � �(for manufac-
turing only)

� (for the un-
folding of the
process only)

�

Table 2.2: Summary of PLM Hub features coverage by current frameworks in Airbus
Group Innovations

2.9.1 Challenge 1: High-level Modeling Language

When creating a new ECR, the coordinators should access their PDM Systems and select

the component on which they want to perform a modification. Then they define the

interaction scenarios with the participant in terms of problem statements. The defini-

tion of the interaction scenarios could be achieved by Business Process Modeling (BPM)

languages by modeling a cross-organizational process. However, BPM languages are

known to use low level concepts and in general do not have the adequate business con-

cepts [TS09, vdAP06]. Moreover, these languages are of imperative nature and thus

participants could be obliged to tailor their private business processes in order to be able

to exchange messages with the coordinator. Nevertheless, modeling interaction scenarios

using these languages provide well-founded models that ensure a correct interoperation

from design-time. Since coordinators and participants are bound through a contractual

link, the first challenge consists in developing a contract modeling language that bal-

ances between the following two conflicting requirements. On the one hand, we need

a modeling language that should be close to the coordinator vocabulary and can capture

problem statements related to interaction scenarios. On the other hand, this language

should consider that participants are autonomous and have the freedom to define inter-

nal business rules of their business processes to which contracts with coordinators will

be mapped as depicted in Figure 2.5.

38 Chapter 2. Thesis Context and Problematic

2.9.2 Challenge 2: Mediation on-the-fly

Considering the hypothesis that coordinators can no longer impose a cross-organizational

process to participants, in this case coordinators when mapping contracts’ terms to private

processes should define mediators by themselves to resolve the interoperability issues that

could occur. Since this work could be tedious for coordinators and out of their expertise,

the second challenge consists in discharging coordinators of this work by automating the

mediation mechanism inside the PLM Hub.

2.9.3 Challenge 3: Managing the changes

In the context of a DMN, coordinators may need to perform modifications on an ECM

process for example by replacing the participant responsible of a particular component.

Since all ECM processes are interconnected to constitute a unique cross-organizational

process, the previous replacement of a participant could have a global impact. Indeed,

other participants collaborating with the coordinator could be impacted even though they

are not concerned by the replacement. Thus, the third challenge consists in developing

capabilities for the PLM Hub so that it minimizes or avoids that a modification in the

DMN impacts other participants.

2.9.4 Challenge 4: Advanced Monitoring Capability

When multiple Engineering Change Requests are triggered in parallel on different com-

ponents, a particular coordinator may need to monitor the unfolding of the processing

of ECRs on the different components. This feature can be fulfilled using existing mon-

itoring tools (e.g. Esper8). Nevertheless, the time that the monitoring tool generates

the expected information by the coordinator can be significant. Thus the fourth chal-

lenge consists in developing an efficient monitoring mechanism that delivers the right

information on the unfolding of different ECRs to the coordinator as fast as possible.

2.10 Thesis Contributions

In order to address the previously identified challenges, we develop a formal framework

that supports coordinators in specifying ECR interaction scenarios with participants. This

framework allows coordinators to focus on what they want to achieve through the ECR

collaboration. It gives them the right constructs to define their goals while discharg-

8esper.codehaus.org/

2.10. Thesis Contributions 39

ing them from tedious tasks related to the collaborative platform management. More

specifically, the framework developed in this thesis discharges coordinators from:

1. Modeling the cross-organizational process corresponding to the interaction sce-

nario by defining the right sequence of message exchanges. Instead, coordinators

will only specify the obligations that participants should uphold when processing

the ECRs on components and what characteristics the participants will give back to

coordinators once a processing attempt has been terminated.

2. Looking after ensuring sustainable interoperability in a continuously evolving col-

laboration environment (DMN). Instead, the framework proposes an on-the-fly

mediation approach that is independent from the communicating processes. In-

deed, it gives coordinators the freedom to make changes on the configuration of

the collaboration (e.g. replacing a participant) without caring about how their pro-

cesses and the participant’s process will interoperate. All the adaptations will be

performed automatically.

3. Caring about the impact of changes on other participants’ processes. Instead, coordi-

nators are allowed to perform modifications that they deem useful for the product

design. All the impacts on the cross-organizational process in terms of interoper-

ability or executability are managed by our framework.

4. Struggling to watch the design evolution of other components that they may be

interested in. Instead the framework gives coordinators the capability to specify

declaratively what exchanges they want to monitor and what processing they want

to perform on these data. Then, the framework executes optimally the monitoring

query.

The first contribution of this thesis aims at combining declarative specifications with

on-the-fly mediation [KFBG13b, KFB+13, KBFG14]. Indeed, declarative specifications

give coordinators the necessary expressiveness to specify the goal that they want to

achieve through the collaboration with participants. However, it does not give them

the expressiveness to specify how the activities that lead to this goal will be organized

in the cross-organizational process. Here the on-the-fly mediation enters into action.

Indeed, since the organization of activities is not known, there is a high probability that

a process interoperability issue will occur between coordinators’ processes and partici-

pants’ processes. The on-the-fly mediation has the advantage to ensure interoperability

between the possible configurations of processes derived from the goal specified by the

coordinator.

40 Chapter 2. Thesis Context and Problematic

The second contribution consists in proposing a mechanism that maintains the col-

laboration running for a maximum number of couples of coordinator/participant when

a modification occurs in the collaboration environment [KFBG13a]. We developed a

verification algorithm that aims at deferring the impact of modifications on the cross-

organizational process until the algorithm ensures the soundness of this cross-organizational

process after the realization of the modification.

Furthermore, a coordinator could perform many modifications for example by remov-

ing many participants in the perspective of replacing them by other participants having

equivalent capabilities (i.e. making a recovery). Accordingly, we developed a mechanism

that analyzes the state of the configuration of the collaboration environment. Then, it

proposes a semi-automated solution to the coordinator so that he can recover the modi-

fications he performed as fast as possible. The objective is to resume the collaboration

with the new participants. This mechanism extends the planning-graph algorithm to

generate an executable solution plan.

The third contribution of this thesis consists in providing coordinators with an efficient

monitoring mechanism to observe what is happening during the design of a particular

set of components while performing processing on the received data. We found that

current (industrial) tools that could be used to implement the monitoring mechanism

do not execute the processing on the continuously incoming data in an optimal fashion.

Thus, we proposed an algorithm that optimizes the processing time of the incoming

data [KFBG14b].

In order to prove the feasibility of our theoretical contributions, we developed a

comprehensive prototype of a collaborative platform that implements the contributions.

We used a use case to evaluate the performance of our algorithms. Nevertheless, prior

to realizing our platform prototype, the industrial context of the thesis constrained us to

select exclusively the software components that uphold the community standards (e.g.

the workflow engine that will run the cross-organizational process should be compliant

with the WfMC standard). Accordingly, in order not to make our choices arbitrary or

just by counting on the software provider ’word’, we developed a formal framework

that allowed us to assess how much a software implementation is compliant with the

standard specification using quantitative metrics [KFBG14a]. Thus at the end we could

say that we made our best to develop standards-based collaborative platform.

2.11. Conclusion 41

2.11 Conclusion

Developing PLM Hubs to support the processing of multiple Engineering Change Re-

quests (ECRs) on product components involving multiples participants in the collabo-

ration environment is challenging. Until the present time, there is a lack of formal

frameworks that address issues related to process interoperability while considering the

network dynamicity. In this chapter we have presented the context of this thesis. We

started by presenting the generic engineering design process and how it is implemented

in the industry through the Engineering Change Management (ECM) process. We have

detailed the Engineering Change Request (ECR) subprocesses and from an industrial

use case, we have identified the need for a PLM Hub. We have derived the set of fea-

tures that a PLM Hub should provide for coordinators to support them in performing

their work related to ECRs. From this set of features, we have analyzed the most impor-

tant existing frameworks inside Airbus Group Innovations that could cover them. From

this analysis, we have identified the limits of these frameworks, and we have derived

the scientific challenges from the non-covered features. Finally we have summarized the

contributions of this thesis that aim at addressing the identified scientific challenges.

In the next chapter we will survey the related works in the literature that can address

the identified challenges and we will show their shortcomings.

42 Chapter 2. Thesis Context and Problematic

Chapter 3
State of the Art

Contents

3.1 Introduction . 44

3.2 Collaboration in Dynamic Environments 44

3.3 Business Process Modeling and Management 45

3.3.1 High-level Languages for Business Modeling 45

3.3.2 Product-based Process Design . 45

3.3.3 Declarative Modeling . 46

3.3.4 Commitments Framework . 47

3.3.5 Business Entities with Lifecycle . 48

3.3.6 Business Contracts . 49

3.3.7 Summary . 49

3.4 Mediators . 50

3.5 Management of Changes in Business Processes 53

3.5.1 Ensuring Processes Flexibility . 54

3.5.2 Generating Recovery Workflows Using AI Planning 58

3.5.3 Summary . 63

3.6 Monitoring Cross-Organizational Processes 64

3.6.1 Preliminaries on Publish/Subscribe Systems 64

3.6.2 Complex Event Processing . 65

3.6.3 Monitoring Approaches Using CEP 67

3.6.4 Summary . 68

3.7 Conclusion . 68

43

44 Chapter 3. State of the Art

3.1 Introduction

In Chapter 2, we presented the industrial context of the thesis. More specifically, we

presented the Engineering Change Management Process and how this process supports

coordinators and participants in designing product components in a collaboration envi-

ronment. From the presentation of this process, we derived a set of challenges that we

can summarize in the following points:

1. The need for a high-level modeling language to model obligations of the contract

that binds partners.

2. The need for an adequate mediation approach that supports modifications that

could occur in the DMN.

3. The need for managing modifications at run-time in the DMN.

4. The need for an advanced monitoring capability.

We analyzed how these challenges are covered by the existing frameworks devel-

oped inside Airbus Group Innovations. In this chapter we deepen our state of the art

analysis by identifying the frameworks that could be used to address the challenges

identified previously. We show the limitations of these frameworks and we derive a set

of enhancement requirements that will shape our framework.

3.2 Collaboration in Dynamic Environments

Since decades, several works were performed to address challenges that could appear

in collaboration environments for product design. Some of these challenges concern the

resolution of data heterogeneity during product design [SMG+06, AGS+14]. Other chal-

lenges concern the management of conflicting situations during product design [Lim09].

The main part of existing works addresses collaboration problem in the context of

static environments. Nevertheless, we have seen recently several works that consider

the dynamicity of the collaboration environment (e.g. a specific track was organized in

the IEEE WETICE conference since 2012 to address the new challenges of dynamic en-

vironments1). These works generally aim at increasing the autonomy of the underlying

software platforms that support the collaboration [MHD14, DME+13]. While consider-

ing the dynamicity aspect, in the subsequent sections we determine the limits of existing

frameworks that address issues in collaboration environments for product design.

1http://conf.laas.fr/MADYNE/

3.3. Business Process Modeling and Management 45

3.3 Business Process Modeling and Management

3.3.1 High-level Languages for Business Modeling

There are many languages that can be used to model interaction scenarios of ECM pro-

cesses. In this section we make a survey of these languages and we show their limits

regarding the challenges expressed previously.

3.3.2 Product-based Process Design

Although the ECM process is the de jure standard for product design, there are two

other fields where products and processes are tightly coupled. (i) The Bill of Material

(BOM) that is used in the manufacturing process of products. [vdA99] (ii) Workflows

to generate administrative products (e.g. credit, savings, mortgages). For this kind of

products several works have been conducted to derive workflows based on administra-

tive products specifications [RLvdA03, VRvdA08, CV11, vdARL01].

[RLvdA03, vdARL01] have split workflow design methods into (i) participative de-

sign approach that consists in developing the process design within the setting of a

workshop where small groups of consultants, managers, specialist work together, and

(ii) analytical design approach that consists in using formal theory and techniques to

model and derive the process design.

More specifically, [RLvdA03] have performed a total shift from current practices

in process design [AG99] by using the analytical design approach exclusively. They

developed a framework (Product Based Workflow Design PBWD) to derive an optimal

workflow with a minimum number of tasks given a set of criteria.

Enhancement Req. 1 For our framework, we shall combine both design ap-

proaches (participative design and analytical design). In the participative design,

partners work together to develop a contract specification by relying on concepts

close to their mind. In the analytical design, a set of algorithms are used to derive

the workflow that will support them in achieving the contract. These algorithms

should take into account the existing processes and rules of each partner and avoid

the clean sheet approach which is rarely feasible in real life.

[VRvdA08] extend PBWD in order to add support capabilities. They consider that

there is no need for a process to guide the design of a product. The proposed approach

starts from the product model and based on the data elements readily available for a

46 Chapter 3. State of the Art

specific component on one hand and the selected strategy for product design (least cost,

shortest processing time) on the other hand, the approach determines the next step to

be executed.

3.3.3 Declarative Modeling

Imperative models such as BPMN, petri nets, UML activity diagrams are only good

in describing the operational way to fulfill the constraints, leaving the constraints them-

selves implicit. Accordingly, alternative approaches studied by different research groups

are based on the use of declarative process models [BJ94, DKRR98, SKT02, SMTA95,

vdAPS09, PvdA06].

[vdAP06] pointed out the limits of imperative languages (e.g. BPMN, BPEL, WS-

CDL) including their lack to support changes. They have proposed a declarative frame-

work (DecSerflow) to model processes. They used the temporal logic patterns defined

by Dwyer et al. [DAC98] to define constraints between the execution of activities in

a process as well as constraints on activities themselves (e.g. the number of times an

activity can be executed). Despite the advantages that they bring with this framework,

there are mainly two drawbacks:

• They still use low level concepts (activity, message flow etc.) to model the process.

Using this language in our case obliges coordinators to use these concepts that are

far from their mind.

• They do not treat interactions as first class concepts but rather as extensions to a

core language centered around the notion of activities and dependencies between

activities.

• Since the process specification will end up being a temporal logic formula, the val-

uation of this formula into an executable process (BPMN for example) will induce

ambiguity. Indeed, when relying on Dwyer et al. [DAC98] patterns, authors spec-

ify LeadsTo(A, B) (where A, B are activities) and interpret it as B can start only

when A has finished. However, Knolmayer et al. [KEP00] claim that an activity is

time consuming. Thus, the interpretation made by the authors is only one among

two possible interpretations (we make the analogy with the intended model and

the unintended model for propositional formulas [NGT04]). The second possible

interpretation is B can start only when A has started. The reason is that all instants

that precede the end of the execution of activity A are considered as a future of the

3.3. Business Process Modeling and Management 47

instant when A has started. Thus, in all these instants B can start while upholding

the specification.

Enhancement Req.2 We shall formally define the mapping between the declar-

ative specifications that use temporal logic patterns and the execution language to

prevent ambiguity.

[HMS11a, HMS11b] introduce a new approach to model cross-organization processes.

They rely on a declarative approach to avoid using imperative languages like BPMN.

Basically, they model the cross-organizational process by:

• Defining events

• Defining relationships between these events. The kinds of relationships are: an

event cannot occur if another event occurs (exclusion). An event should be pre-

ceded by another event etc. They have formalized the Dwyer et al. [DAC98]

patterns not in temporal logic but using a special class of graphs that is Dynamic

Condition Response Graphs.

In their prototype architecture, they developed a new workflow engine to run their

cross-organizational process model. This language suffers from the same drawbacks of

DecSerflow. Moreover, the engine that executes the workflow models is proprietary and

is not standardized.

3.3.4 Commitments Framework

Business protocols can be specified in different ways. Some representations, like propos-

als based on Petri nets, finite state machines or on Pi calculus have an algorithmic (proce-

dural) nature that is suitable to capture the desired interaction flows. However, this kind

of specification is deemed to be too rigid [CS03, Sin00, WLH04, TKS14]. To address this

rigidity, Singh et al. created a framework based on Commitments [TKS14, TS12a, MTS13].

Commitments aim at putting forth the business relationships between interacting parties

instead of the operational details supporting this relationship. Commitments support a

set of business scenario patterns that were defined in [TS12b, TS09].

A worth mentioning commitment scenario is the Commercial Transaction. The Com-

mercial Transaction expresses a value exchange between two trading partners. However,

the value exchange of this pattern does not capture the possible iterative nature of the

relationship which significantly limits its usage.

48 Chapter 3. State of the Art

Created Draft

Failed

Offered

Expired Lost Early end

Signed Actived Completed

Credit Evaluation, Pricing, Terms & conditions Ordering , Accounting, Billing

Lifecycle Model

Information Model

… … …

Default
info

Customer
info

Asset
info

Credit rating
etc.

Draft. Final Acquisition
info

Payment
history

Figure 3.1: Business Entity with Lifecycle

Enhancement Req.3 We shall follow the trend that consists in providing high-

level concepts to model interactions between partners. This enhancement can be

seen as an additional pattern to the predefined set of patterns established for Com-

mitments framework. More specifically, this enhancement shall enrich the Commercial

Transaction pattern by making it iterative. In addition it shall address interoperability

issues that could occur in an efficient manner.

3.3.5 Business Entities with Lifecycle

Nigam et al. [NC03], Bhattacharya et al. [BGH+07] claim that a business process model-

ing framework should integrate two fundamental aspects control flow and data. However,

from their point of view, typical process modeling approaches emphasis the sequenc-

ing of activities, but ignore the informational perspective. To address this shortcoming,

they developed the basis of a framework that considers data manipulated by activities

(business artifacts) as first class citizens when modeling business processes.

This framework aims at determining all business artifacts that will be manipulated

in a business process, additionally; it determines the lifecycle of each artifact by creating

an association between the artifact entity and an automaton representing its lifecycles

[CH09]. An example of this model is given in Figure 3.1. Subsequent research has

been conducted to enhance this framework. Indeed, [HDF+11, VHH+11, HDDM+11,

DHV11] found that expressing a life-cycle of an artifact using a finite state machine

has limitations. They provided a more elaborated approach to specify the lifecycle of

a Business Artifact (BA) that is the Guard-Stage-Milestone (GSM). In the GSM, stages

3.3. Business Process Modeling and Management 49

Drafting
Ready for

buyer Review

???
abandoned

 Requester

Reviewing

Submitted
To Suppliers

rejected

 Buyer

Tracking of
Evaluations

Winner
established
Evaluations
Suspended

 Requester
 Buyer

Requisitioning

Completed

???
Cancelled

 Requester
 Buyer

Data Attributes

Derived
Event Attributes Millestone &

stage info

… … … … …

Figure 3.2: GSM specification of an entity lifecycle

provide a mechanism for structuring activities related to a BA instance. Each stage has

one or more Milestones representing a goal of the stage (true if it has been achieved,

false otherwise). Guards are rules that control the triggering of the stage. Milestones and

guards are represented as rules of the form (on triggering event if condition). Figure 3.2

gives an example of a BA lifecycle expressed in terms of GSM.

3.3.6 Business Contracts

Guido et al. [Gov05, GMS06] and Le et al. [LG12] make the link between contracts,

business rules and workflows. They developed a language for the specification and im-

plementation of contracts. They defined contracts as mutual agreements between two

or more parties engaging in various types of economic exchanges. They also noticed

that it is crucial to model contracts in terms of workflows, such that all relevant tasks

to achieve contracts can be described as elements of business processes. They defined a

logic framework based on Defeasible Logic to specify contracts. The advantage of De-

feasible Logic is that it detects any inconsistencies in the contract specification. However,

it does not capture the temporal dimension that constrains the contract achievement.

3.3.7 Summary

In this sub-section, we have seen the main frameworks that aim at modeling cross-

organizational processes and contracts between partners using high-level specification

languages. We have noted that our framework follows the same strategy. We have

seen that even though these frameworks provide high-level concepts to model the cross-

organizational collaboration, they cannot cover all situations (the case of the commit-

ment framework) and the mapping of the high-level concepts to executable low-level

50 Chapter 3. State of the Art

concepts could be ambiguous.

3.4 Mediators

Mediation (or adaptation) can be derived into two types: interface level mediation that

addresses transformation issues related to types of messages [BSBM04]. Such a static

compatibility is essential to check, protocol level mediation is more challenging however.

Mismatches between protocols [BCG+05, ZGS+13, DSW06] can be classified into the

following three categories:

• Attribute granularity difference in message that requires splitting or merging mes-

sages to reconcile the mismatch

• Reordering and remembering of messages

• Deadlock

Several works have been carried out in order to resolve the main protocol mismatch

patterns that can occur when two processes interact.

Benatallah et al. [BCG+05] developed a set of patterns that capture the possible

mismatches that can occur between two communicating business processes.

• Signatures Mismatch Pattern

• Parameter Constraints Pattern

• Ordering Constraint Pattern

• Extra Message Pattern

• Missing Message Pattern

• One to Many message Pattern

• Many to One message Pattern

They assume that analysts will analyze the two processes that will communicate and

then they identify the mismatches and the corresponding patterns to resolve them. They

also proposed that in the future it will be possible that an automated tool can achieve

the identification of what patterns to apply to resolve mismatches. However, as we will

see later, the underlying algorithm of such a tool could generate states space explosion

especially when it should address the many-to-one pattern.

3.4. Mediators 51

Taher et al. [TABFB09, TPPvdH11] developed a language based on Labeled Transi-

tion Systems to formalize the mismatch patterns. The patterns are the same as those

that have been defined by Benatallah et al. [BCG+05].

Dumas et al. [DSW06] developed an algebra that defines a set of operators that can

be applied on the exchanged messages to reconcile the possible mismatches. Then they

defined the visual language associated to these operators that can be used by designers

when developing adapters. Authors proposed that in the future they will automate the

application of the defined operators. However as we mentioned before, automatically

discovering the applicability of the GATHER operator (that corresponds to the many-

to-one pattern of [KMNB+09]) is challenging because it could lead to the state space

explosion.

Bracciali et al. [BBC05] developed a language to define the possible mismatch pat-

terns between two communicating software components. For a particular couple of

software components aiming at establishing a communication, an analyst can use the

predefined patterns to specify the adapter behavior for each situation. Later on, an

algorithm uses these specifications to derive the adapter. We can notice that the pro-

cess of specifying the patterns is manual and only the generation of the final adapter is

automatic. The mismatch patterns between two software components are classified as

follows:

• One-to-one correspondence

• Multiple action correspondence

• Actions without a correspondence

• Non-deterministic action correspondence

Eslamichalandar et al. [EBMN13] identified a set of evolution patterns for two com-

municating processes. They address the problem of adapters’ adaptation when the com-

municating protocols evolve at run-time. Their approach remains limited because it only

covers the case where the sender and receiver are compatible, i.e. they send and expect

exactly the same messages but in different orders. The case of the evolution of the

many-to-one pattern as defined in [BCG+05] that is more challenging is not addressed.

When two processes communicate, an important mismatch that they might face is the

deadlock. Several researches have been conducted to address the problem of deadlock

generally by removing the paths in the processes that lead to the deadlock [BBC05].

Motahari Nezhad et al. [MNBM+07] developed an approach that does not remove the

52 Chapter 3. State of the Art

paths that lead to deadlocks which could have an added value for the business but the

approach aims at proposing a solution to resolve the deadlock.

Brogi et al. [BP06] aim at building a BPEL process adapter. Given two communi-

cating BPEL processes whose interaction may lock, builds (if possible) a BPEL process

that allow the two processes to successfully interoperate. The authors proposed to trans-

form BPEL process models into YAWL workflow. The proposed solution has as inputs

two processes C and S whose interaction may lock and it builds (if possible) adapter A,

which allows the two processes to successfully interoperate:

• C and S are translated into YAWL

• Build the YAWL workflow of A from the workflows of C and S. It generates the

workflow of the adapter that ensures interoperability between C and S.

Even though the proposed solution can resolve processes interoperability issues be-

tween several partners (> 2) , it generates for each two partners’ processes a mediator,

and not a global mediator for all partners. This configuration could lead to maintenance

issues since a large number of mediators need to be maintained.

Seguel et al. [SEG09, SEG10] presented a method to construct a minimal adapter

for two business protocols containing parallelism and loops. They analyze two BPEL

protocols and transform these protocols into trees to automatically identify the minimal

set of interactions needing adaptation. Although, the identification method is effective,

there is a risk of state space explosion that has not been addressed by the proposed

approach when a many-to-one adaptation is required.

Kashlev et al. [KLC13] propose a mediation approach to resolve interoperability

issues in scientific workflows. They developed what is called Shims.

The common issue of these approaches is that they focus on defining mediation pat-

terns of the exchanged messages between two processes. However they do not address

the problem within a multi-process and dynamic context. In this context, the unique

strategy consists in deploying for each couple of processes a mediator. In our case, we

follow a different strategy; we deploy a single mediator and create multiple instances

of the mediator for each couple. Hence, all mediators will share the same database of

mapping functions which fosters reusability.

Table 3.1 concludes this section by summarizing the distinctive features of previ-

ous works and comparing them to our work. The main criteria that we relied are (1)

whether the framework aims at addressing collaboration issues. (2) whether the frame-

work is flexible enough to support changes at run-time. (3) whether the framework has

3.5. Management of Changes in Business Processes 53

Is the
work
aimed to
address
collab-
oration
issues

Flexibility
at run-
time

Formal
Model

Partners
Auton-
omy

Addresses
Protocol
mis-
matches

Automatic
and ef-
ficient
media-
tion

Conformance
with
standards

Our
Work
[KFBG13b,
KFB+13,
KBFG14]

Yes Yes Temporal
Logic+
Au-
tomata

Yes Yes Yes Yes to a
certain
extent

Kondengha
et al.
[KNBSP14,
KMNB+09]

Yes No for
Many-
to-one
mapping

Aspect
Orienta-
tion

No for
Many-to-
one

Yes No for
Many-to-
one

Yes to a
certain
extent

Let’s
Dance
[ZBDtH06]

Yes No Semi-
formal

Yes No No No

Van der
aaslt
et al.
[vdALM+10]

Yes No Petri
nets+ Au-
tomata

Yes No No No

Benatallah
et al.
[BCG+05]

Yes No Templates Yes Yes No No

Business
Entities
with
Lifecycle
[HDDM+11]

Yes Yes but
limited

ECA
rules

Yes No No No

Table 3.1: The distinctive features of some related approaches

formal basis and (4) maintains the partners’ autonomy when realizing the collaboration

specification. We also considered (5) whether the framework can resolve protocol level

mismatches and possibly (6) using automated mediation. Finally, due to the industrial

constraints related to the use of standards, we considered (7) whether the framework

implementation is compliant to standards.

3.5 Management of Changes in Business Processes

One of the challenges that we should address during the execution of interaction sce-

narios of ECM processes are the modifications that could occur at run-time on a cross-

organizational process supporting these interaction scenarios. These changes involve

54 Chapter 3. State of the Art

adding/removing activities, lanes in processes etc. To facilitate and rationalize these

modifications, multiple works have been conducted that we detail in the next subsec-

tions.

3.5.1 Ensuring Processes Flexibility

Process flexibility has been identified as a major challenge in process management re-

search for more than a decade [CCPP98, RRD04a, RW12]. In order to discuss process

flexibility, we first introduce some basic terminology.

For each business process to be supported corresponding to interaction scenarios a pro-

cess type represented by a process schema has to be defined (or in our case generated). For

one particular process type several process schemes may exist, representing the different

versions and the evolution of this process type over time. A process schema comprises a

set of nodes representing process activities or control connectors (e.g. XOR-Split, AND-Join)

and a set of control edges (i.e. precedence relations) between them. Activities belong

to a lane that represents the actor that will execute these activities. Based on the pro-

cess schema, at run-time new process instances can be created and executed. Completion

events related to the activities of a process instance are recorded in a trace.

[RRD03, RRKD05, RD98] developed the ADEPT and its evolution ADEPT2 frame-

work that offers a set of advanced features to model workflows and more importantly

to realize ad-hoc changes on running workflows (e.g. omit activities, change activity

sequences, insert activities). Authors claim that such dynamic changes must not lead

to an unstable system behavior. ADEPT ensures the correctness by introducing formal

pre- and post-conditions for change operations. In particular, a consistent state must be

preserved when a workflow instance is going to be adapted. For example if we con-

sider the ADEPT task insertion operation in a running workflow, in this case ADEPT

limits its verification of the workflow correctness to two conditions: (1) Ensuring that

the task preceding the task to be inserted has not finished yet and (2) Ensuring that the

task following the task to be inserted has not started. When these two conditions are

satisfied ADEPT will insert the task as depicted in Figure 3.3 However in the context

of a workflow implementing a cross-organizational process, after the insertion of a new

task, limiting the verification of the workflow correctness only to the two mentioned

conditions is necessary but not sufficient. Indeed, if the inserted task is a send task and

if it has no corresponding receive task, then this will create an interoperability issue for

the workflow. The latest version of ADEPT does not support this verification.

3.5. Management of Changes in Business Processes 55

A B

C

Insert OK

Figure 3.3: Inserting an activity

Enhancement Req.4 We shall perform the verifications related to the cross-

organizational nature of the workflow prior to validating the correctness of that

workflow after a modification.

Another shortcoming of the adaptation approach proposed by ADEPT is that it ver-

ifies the consistency of the workflow after each execution of an adaptation operation. If

the operation executed does not generate a correct workflow, it does not accept it (pes-

simistic approach). Nevertheless, it could be possible that this adaptation operation will

be followed by another operation and together, they will lead to a correct workflow.

Enhancement Req5. We shall provide an (optimistic) approach. In other terms,

even though an operation leads to an incorrect workflow model we shall keep it and

we assume that the designer will run other operations that will make the incorrect

workflow correct.

A choreography is a global overview on the inter-connection between partners commu-

nication imperatives [TBSR06]. [FRMR12] developed an approach to propagate changes

on a choreography model involving several partners. It determines all partners affected

by a change; it propagates the change to these partners and negotiates with them in

order to keep the choreography processes compatible. Authors define the semantics of

4 change operations INSERT, DELETE, REPLACE and UPDATE. Although the authors

have detailed the impact of each operation, they have not elaborated on the negotiation

process and what would happen if a partner rejects a change proposal. Indeed, if a part-

ner impacted by the change refuses the proposed change, the change requester would no

longer be able to collaborate and thus all the choreography is impacted. Moreover, the

negotiation could time. During all this period the whole choreography is stopped even

though there are partners that should not be concerned by the change. Furthermore, the

proposed approach obliges partners to change their processes in order to maintain the

56 Chapter 3. State of the Art

processes of the choreography compatible in case they accept the modification. The ap-

proach does not consider mediation solutions and it is not clear how existing mediation

solution could be used in this case.

Enhancement Req.6 We shall consider choreography as a contract, as

[vdALM+10] did, and we shall provide high-level management operations that keep

the changes local and shield all partners not associated to these changes from their

effect. Then, if a change is not satisfactory and requires some negotiation, this nego-

tiation remains transparent for all other partners not associated with it.

[WRR13, WPTR13] have worked on the process of process modeling. Following

the workflow patterns initiative2, much of their contributions is on the definition and

formalization of change patterns on process models. Indeed, instead of considering the

process model as a simple graph with primitive change operations (add/remove node,

add/remove edge) which can be error-prone. They defined a set of 18 high-level change

patterns that modify a process model in a controllable way. Figure 3.4 compares between

using a change pattern and using change primitives. The original process schema on

the left side consists of a single activity A. Assume now that a process change shall be

accomplished by inserting activity B in parallel to A. On the one hand this change can

be accomplished by using one high-level change operation parallel Insert(S, B, A) which

adds activity B parallel to A. To apply this change pattern the user has just to specify

a couple of parameters. On the other hand, change primitives can be used to realize

the desired adaptation. In the given example, the transformation of the original process

schema into the new schema version requires nine change primitives. Using the high-

level operation parallel Insert instead, from the perspective of the user eight operations

can be saved.

[BOAT13a, BOAT13b] developed a set of patterns to manage adaptations for cross-

organizational processes. These patterns are similar to those defined by [WRR13]. Nev-

ertheless, they add a set of patterns that consider adaptation of interactions which is

not supported by [WRR13]. This research is limited to the identification of the adap-

tation patterns, it does not detail and does not address the impact of applying these

adaptations on the collaboration.

[ARCR14] presented the adaptation in healthcare processes. They identified a spe-

cific set of constraints on adaptation in healthcare processes such as legal constraints,

environmental constraints and technical constraints. They developed a methodology

2http://www.workflowpatterns.com/

3.5. Management of Changes in Business Processes 57

Figure 3.4: Inserting a pattern [WRR13]

to describe flexible processes for healthcare processes called V-BPMI. V-BPMN creates

multiples variants of the same process template and at run-time, it instantiates the right

variant.

Enhcancement Req.7 We shall go further by providing higher-level management

operations to manage contracts between coordinators and participants in a DMN. In

addition, we shall address their impacts on the whole collaboration.

[RWR06] address issues related to the evolution of choreographies. Indeed, if one

party changes its process in an uncontrolled manner, inconsistencies on interactions

might occur. The approach developed by the authors consists in propagating changes

that occur in a process to all related processes of the choreography. Since a process of a

partner cannot be modified without his consent, they propose an approach to assist him

in driving the modifications that should be performed. Although this approach resolves

the inconsistencies that would appear after the changes, it remains functionally limited.

The reason is that if the person responsible of the second process refuses to accept the

change, then the processes of the choreography will no longer be executable. Using a

mediation solution could resolve this problem.

[KR13, KKR12] define the notion of Process View (ProView). They consider that

different user groups need customized views on the process models relevant to them

and thus there is a need to change process models based on respective views. The aim

of their work consists in propagating user changes on a process view to all other views

having the same process model as depicted in Figure 3.5.

58 Chapter 3. State of the Art

Process Model
View Creation

Change Propagation
Mechanism

change

1 2

3
4

Impact of change
on process model

Impact on other views

Figure 3.5: Change propagation to views

The propagation mechanism consists in resolving ambiguities that could occur when

adding or deleting process blocks. It uses parameterizable view update operations.

These parameters allow the resolution of ambiguity when propagating changes.

Table 3.2 compares between our approach that handles the identified enhancement

requirements and the existing frameworks.

3.5.2 Generating Recovery Workflows Using AI Planning

Defining the operations of managing cross-organizational processes supporting con-

tracts is necessary but from a functional point of view we can go further. Indeed, if

one observes the fourth column of Table 3.2, it shows that existing frameworks just ig-

nore the operation that makes the process syntactically incorrect. They do not consider

that in the future other operations might be invoked that will resolve this incorrectness

(i.e. they adopt a pessimistic attitude).

We aim at developing an optimistic attitude for our framework. Indeed, it should

assume that after the execution of an operation that creates syntactic errors in the process

schema, other operations might follow that will resolve these errors. In order to support

this optimistic attitude, we should guide users that execute the management operations

through a workflow that we call a recovery workflow. Nevertheless, the recovery workflow

needs to be generated automatically thus we need to identify the mechanism that is able

to generate this workflow of management operations.

In the next subsections we give some preliminaries on techniques used to generate

the recovery workflow (c.f., AI Planning, Workflow patterns, Abstract State Machines).

Then, we will survey the state of the art of the works related to the generation of work-

flows using the technique identified.

3.5. Management of Changes in Business Processes 59

Considers
Syntactic
Correct-
ness

Considers
Cross-
Org
Aspects

Ignore a
change if
it leads
to incon-
sistencies

Limit the
impact of
changes

Considers
partners’
auton-
omy

Considers
using a
medi-
ation
to con-
tinue the
collabo-
ration

Our
approach

Yes Yes No Yes Yes Yes

ADEPT
and
ADEPT2
[RRKD05]

Yes No Yes Yes Not for
cross-org
aspects

No

Fadhila
et
al.[FRMR12]

Yes Yes Yes No No No

Change
Patterns

Yes No Yes No Not for
cross-org
aspects

Not for
cross-org
aspects

[RWR06] Yes Yes No No No No

Table 3.2: Comparison of process flexibility frameworks

3.5.2.1 The Planning-graph Algorithm[NGT04]

Planning is the reasoning side of acting. It is an abstract explicit deliberation process that

chooses and organizes actions by anticipating their expected outcomes. This deliberation

aims at achieving as best as possible some pre-stated objectives.

Given a state transition system Σ, the purpose of planning is to find which actions to

apply to which states in order to achieve some objective when starting from some given

situation. A plan is a structure that gives the appropriate actions. The objective can be

specified as a goal state sg. The objective is achieved by any sequence of state transition

that ends at one of the goal states.

A planning problem for a state transition system Σ = (S, A, γ) where:

• S is a finite set of states

• A is a finite set of actions

• γ : S× A → S is a transition function

is defined as a tuple P = (Σ, s0, g), where s0 is an initial state and g corresponds to a

set of goal states. A solution to P is a sequence of actions (a1, a2, ..., ak) corresponding

60 Chapter 3. State of the Art

to a sequence of state transitions (s1, s2, ..., sk) such that s1 = γ(sk−1, ak), and sk is a goal

state.

The Planning-graph algorithm is a technique that can generate a solution plan for a

given planning problem. This algorithm as output a sequence of sets of actions e.g.

〈{a1, a2}, {a3, a4}, {a5, a6, a7}〉 which represents all sequences starting with a1 and a2 in

any order, followed by a3 and a4 in any order, followed by a5, a6, a7 in any order. Hence, a

solution plan Π associated to a planning graph is defined as a sequence of sets of actions:

Π = 〈π1, π2, ..., πk〉. The set π1 is a subset of independent actions that can be applied in

any order to the initial state s0 and can lead to a state that is a subset of the first level

of the planning-graph. From this state, actions in π2 ⊆ A would proceed and produce a

state that is a subset of the second level of the planning-graph and so on until a set πk

whose actions lead to a state meeting the goal g.

3.5.2.2 Workflow Patterns

Workflow patterns is an initiative that aims at providing well founded constructs to

realize the assessment of the functionality provided by workflow engines in the market.

The development of workflow patterns was accompanied by the development of an

extension of Petri nets that is the YAWL language3. This language models the workflow

patterns and shows how they can be used practically.

Recently, other languages have been used to formalize the workflow patterns de-

pending on the intended usage. There exists formalization of workflow patterns in

terms of process algebra, and formalization in terms of abstract state machines exists as

well.

Regardless of the language used to formalize the workflow patterns, 43 control work-

flow patterns have been discovered. They enumerate all possible situations a designer

could face when modeling a business process, and also provide a well-founded specifi-

cation for the development of workflow engines.

These patterns can be classified hierarchically as depicted in Figure 3.6.

3.5.2.3 Abstract State Machines

YAWL was originally used to model the workflow patterns. Other modeling languages

have been used to model workflow patterns including Abstract State Machines (ASM)

[B0̈7]. ASMs are a means of formalizing systems in a state based way [Spi00]. Accord-

ingly workflow patterns can be seen as ASMs that have well-defined states and well-

3www.yawlfoundation.org/

3.5. Management of Changes in Business Processes 61

Block

Activity

Parallel Control
Flow

Parallel Split Merge

Sequence
Control Flow

Sequence

Arbitrary Cycle

l

y

Flowwlow Control Flowrol

… …
…

Action

Structured Loop
Pre-Test

y y

d

y

Structured Loop
Post-Test

Iterate

Discriminator

Structured N-out-
of-M Join

Generalized AND-Join

of M JooinM Jo

Figure 3.6: The hierarchy of Workflow patterns as established by [B0̈7]

defined transitions. For example [B0̈7] formalized the Parallel Split pattern in terms of

ASM as follows:

ParallelSplit(Activity, Thread, TriggerExec) = forall a ∈ Activity let t =

new(Thread) in TriggerExec(t, a)

This pattern formalization means that each activity a of the set Activity will be exe-

cuted by a thread (or partner) t in the set Thread.

In this sub-section we give the formal definition of an ASM as defined by [Spi00] that

we will use in Chapter 5. Further details on ASM can be found in [BS03].

Definition 1. (Signature)[DvdAtH05] A signature Σ is given as a pair (S, Ω), where S = {Si}i

denotes a set of sorts and Ω is a finite collection of function symbols, each with a fixed arity, i.e.:

f : S1 × S2 × ...× Sk → Sn

Definition 2. (State)[DvdAtH05] A state in ASMs is a many sorted algebra. For a signature

Σ = 〈S, Ω〉, a many sorted algebra is given by:

• (carrier) sets SA
i for each sort Si ∈ S

• an interpretation for each function symbol f : S1 × S2, ...,×Sk → Sn in Ω is given by a

total function: f A : SA
1 × ...× SA

k → SA
n

Definition 3. (Expanded State)[DvdAtH05, LMSW08] Given a variable assignment ζ over state

A, we denote the pair B = (A, ζ) as the expanded state. If ζ assigns the values a ∈ SA to the

variables v in a state A, we denote the partially expanded state as: B(v �→ a) = (A, ζ(v �→ a))

62 Chapter 3. State of the Art

Definition 4. (Fully Expanded State) A fully expanded state is a partially expanded state where

every variable is assigned to a value.

Definition 5. (State-Term Appropriateness)[DvdAtH05, LMSW08] A state A and a term t are

appropriate for each other if the signature of A (Σ) contains all function symbols occurring in

t and Var(t) is included in the set of variables of A.

Definition 6. (Term evaluation) Let B = (A, ζ) be a fully expanded state and t ranging over

terms appropriate for state A. The value ValB(t) of t at state A is defined as follows:

• If the term is a variable t = v, then ValB(t) = ζ(v)

• If t = f (s1, ..., sk) then its value is given by induction over term structure: ValB(t) =

f A(ValB(s1), ..., ValB(sk))

• If t is a ground term, then ValB(t) = Val(t)

Definition 7. (ASM Precondition) Each ASM can be associated to a precondition expressed

using the key word where.

When generating a workflow (semi-)automatically we need to apply patterns to in-

terconnect the workflow activities. The choice of the pattern to apply when interconnect-

ing two or more activities is important because it captures the behavior of the workflow

as desired by the designer. Nevertheless, existing approaches of generating workflow

models or service compositions do not consider all patterns depicted in Figure 3.6 but

they are generally limited to the patterns at the high-level of the hierarchy. Indeed, a

pattern in the hierarchy captures the behavioral of all its children. Thus, when a pattern

is appropriate for a certain case, choosing its parent can be risky because the parent will

allow certain behaviors not allowed by its child which could lead to inconsistency in the

whole workflow. For example, the Generalized-AND join pattern can be used to merge

multiple flows into one flow. Its specificity is that it waits that all input flows arrive to

trigger the output flow. If its parent, Merge, is used instead, it is generic enough such

that it can trigger the merge even though not all input flows have arrived.

Wang et al. [WHR11] proposed extensions of the Partial Order Planning algorithm

[NGT04]. They post-process the output solution plan in order to generate a workflow

representation. They identify a subset of workflow patterns from the solution plan to

create a workflow diagram. Although they were able to generate the workflow corre-

sponding to a plan, their approach is restricted to use only 7 patterns from 43.

Hatzi et al. [HVN+12] transform a generated plan into an executable composite

process specified in OWL-S4. Their algorithm uses OWL-S constructs to build composite
4http://www.w3.org/Submission/OWL-S/

3.5. Management of Changes in Business Processes 63

processes from atomic ones, namely: Sequence, Split and Split+Join. These constructs

are too limited in comparison to the number of possible patterns that have been defined

in workflow patterns initiative.

Zheng et al. [ZY08] have developed a simplified version of the planning-graph algo-

rithm. They assumed that in the planning graph there is no mutex relationship between

actions of the same level of the graph. Nevertheless, redundant services could exist at

the same level. Therefore, their effort consists in removing the redundant services in

order to produce the service composition that achieves the goal. This composition, how-

ever, considers only two patterns among the existing 43 patterns: the Sequence and the

Parallel split patterns.

Marrella et al. [ML13, MMR11] used the partial planning algorithm for automatic

adaptivity of workflows. This adaptivity is triggered whenever there is a difference

between the expected state and the state reached. The adaptivity consists in generating

a workflow (in YAWL) that will reach the expected state from the current incomplete

state. Here, the unique pattern in the plan workflow is the Sequence pattern.

Moreno et al. [MMK02, RMBCO07] developed a framework to help automate the

definition of business processes using AI planning techniques. They defined a set of

points of correspondence between plans and workflows meta-models. Nevertheless,

these correspondence points remain very limited since they just map plan actions, their

preconditions/postconditions to workflow activities preconditions/postconditions re-

spectively. It is straightforward to observe that control flows are not supported.

Beest et al. [VBKB+14] developed a software component called AI Planner that gen-

erates a process model from a planning problem. The generated process is a finite

partially ordered set of activities. From this definition, it is possible to notice that ad-

vanced branching patterns are not considered by the generation algorithm. In fact the

AI Planner algorithm considers only two patterns (Sequence, Decision).

3.5.3 Summary

Table 3.3 concludes this section by summarizing the distinctive features of previous

works and comparing them to our work. The main comparison criteria is whether all

workflow patterns are taken into account when generating the workflow. The compar-

ison also considers the underlying formal model since we want formal basis for our

conceptual framework. Finally, due to industrial constraints, we also consider the com-

pliance to standards for the frameworks’ implementation.

64 Chapter 3. State of the Art

all control flow
patterns when
generating the
process are
considered

Formal model Compliance to
standards

Our approach Yes Yes (ASM) Yes (XPDL)
Wang et al.
[WHR11]

No Yes (Graphs) No(Directed
Acyclic Graphs)

Hatzi et al.
[HVN+12]

No Yes (Logic For-
mula)

Yes (OWL-S)

Zheng et al.
[ZY08]

No Yes (Graphs) No (Plain XML)

Marrella et al.
[ML13, MMR11]

No Yes (Petri nets) No (YAWL)

Table 3.3: Comparison of the workflow patterns coverage by previous work when gen-
erating workflows

3.6 Monitoring Cross-Organizational Processes

3.6.1 Preliminaries on Publish/Subscribe Systems

Publish/Subscribe technology encompasses a wide number of solutions that aim at solv-

ing a vital problem pertaining to timely information dissemination and event delivery

from publishers to subscribers.

Figure 3.7 depicts the architecture of a Pub/Sub system. (i) The Pub/Sub Service

stores and manages the subscriptions for one or more publishers. (ii) Publishers push

notifications to the Pub/Sub Services. The latter receives these notifications, stores them

and then notifies the subscribers that subscribed to this kind of notifications. To no-

tify the right subscribers, it uses a mechanism to match published information and ex-

pected information. Basically, there are four approaches to realize the matching between

the published information and the expected one namely: content-based, header-based,

topic-based and type-based (Figure 3.8):

• Content-based matching compares the whole information in the payload of the

published event with the content of the expected information

• Header-based matching compares the header of the event and not its payload

with meta-information of the expected information. This matching mechanism is

limited in comparison to the content-based matching

• Topic-based matching consists in associating each incoming event to a channel.

Then the matching between expected events and the incoming ones relies on the

3.6. Monitoring Cross-Organizational Processes 65

Figure 3.7: The Pub/Sub system (from [Tar12])

Figure 3.8: Examples of different matching strategies (from [Tar12])

channel identifier

• Type-based matching compares the types of the expected events with the type of

the incoming ones. Since types can be organized hierarchically, subscribing to a

node in the hierarchy leads to the reception of all events of the type of this node

as well as event of type of children nodes in the hierarchy.

3.6.2 Complex Event Processing

Complex Event Processing (CEP) is an approach to implement Pub/sub systems. It

refers to any running operations on complex events such as the creation, the reading, the

transformation and the abstraction of data carried by these events. In other terms, CEP

processes events carrying information that are produced by multiples sources [Bao13].

66 Chapter 3. State of the Art

Figure 3.9: Difference between a DBMS and a CEP System (adapted from [Bao13])

The objective of CEP is to satisfy event processing needs in terms of traceability, re-

activity, availability and decision making. The complexity of implementing CEP resides

in defining efficient algorithms which process and correlate events [Bao13].

The basic terminology used in CEP domain can be summarized in the following

concepts:

Event: An event is the recording of a fact. In its simplest form, it indicates the

instant and the spot of the fact associated to other data [Bao13]. For example changing

the property of a component in the product can be considered as an event that would

carry the new value of the property.

Derived Event, or Complex Event: Although simple events are useful by themselves,

in many scenarios, some interesting events are inferred only from a combination of

simple events occurrence. These are complex events. A complex event is the abstraction

of several atomic events. For example the event “Aircraft Structure Airflow Simulation

Result” could have as members the events: “Fuselage Airflow Simulation Result”, “Wing

Airflow Simulation Result”, “Empennage Airflow Simulation Result”. The relationship

between a complex event and its members is called aggregation. The occurrence of

a complex event involves the occurrence of all its members. In additions, deriving the

complex event from its members could involve performing some processing on its events

that could be more or less long.

Continuous Query Processing: A CEP system is able to manage a large number of

complex queries. Event processing queries could be written in a SQL-like (e.g. Event

Processing Language (EPL)). Using these languages one can define rules for how to

process in the inbound streams of events. Processing queries on events in a CEP system

follows an inverse logic of processing queries on a database by a Database Management

System (DBMS). Figure 3.9 compares between both techniques.

3.6. Monitoring Cross-Organizational Processes 67

3.6.3 Monitoring Approaches Using CEP

There are many works on CEP frameworks that can be used to monitor cross-organizational

processes. [EFGK03, HSS+14] provide a thorough survey on these frameworks. We elab-

orate on some of them.

Comuzzi et al. [CAV12] developed a monitoring system that allows customers to

customize what they want to monitor in a running business process. They identified

multiple monitoring dimensions and their associated options. For each dimension, a

customer can select the option that fits its requirements and then the monitoring in-

frastructure will be in charge to deliver the appropriate information. The limit of this

framework is that they do not address the issue of data aggregation. They gave an ex-

ample where a company provides an advertisement process and customers would like

to monitor the unfolding of a single piece of information that is the number of clicks on

their ad.

Baouab et al. [BFPG12] proposed a decentralized system to monitor the exchanged

messages in a process choreography. Their proposal consists in deploying on each part-

ner a software component called the EFM (External Flow Monitor) that manages the

incoming messages and generates notifications for other partners. They also proposed a

hierarchical organization of partners in order to reduce the flow of notifications and the

network overhead that they may generate. Despite that in collaboration environments,

partners usually need to filter the notifications they receive [EFGK03], when using this

approach, partners cannot select what message instances they want to monitor and thus

they will receive all messages. Moreover, if a customer wants to monitor parallel incom-

ing messages and the combine them, this is not specified in the proposed approach. In

fact, a customer will receive messages as they are exchanged.

Aurora [ACc+03] is a system for processing data streams. It uses boxes and arrows

as constructs to specify the processing to be performed on data flows. Aurora’s query

algebra (SQuAl) contains built-in support for seven primitive operations for expressing

processing requirements. However there is no mention that SQuAl provides the feature

to call external services. Thus our conceptual framework can be used to extend the

functionality provided by Aurora.

Borealis [AAB+05] is system that succeeds to Aurora. Queries in this system are

similar to Aurora queries but they support revision messages. Indeed, in many real-

world streams, corrections or updates to previously processed data could be required.

The objective of Borealis is to process revisions intelligently, correcting query results that

have been emitted in a manner that is consistent with the corrected data. However, since

68 Chapter 3. State of the Art

Addresses Data Pro-
cessing

Maintains Partners
Autonomy

Our Approach
[KFBG14b]

Yes Yes

Comuzzi et al.
[CAV12]

No Yes

Baouab et al. [BFPG12] No No
Aurora, Borealis
[AAB+05]

Yes but limited to sim-
ple operators

Yes

Esper Yes but inefficient pro-
cessing

Yes

Composed Service Yes but inefficient pro-
cessing

Yes

Table 3.4: Comparison between our approach and the existing ones

Borealis relies on the querying system of Aurora, Borealis system queries are limited to

use the Aurora seven primitive operations.

Recently, monitoring has received a particular attention in cloud-based systems.

[GKMW11] proposed an approach for monitoring and adapting multi-layered service

based systems for cloud platforms. In the monitoring phase, they used EcoWare [BCGG10]

that is based on Esper to correlate events. As we will see in Chapter 6, Esper has perfor-

mance issues when processing incoming events.

3.6.4 Summary

Table 3.4 concludes this section by summarizing the distinctive features of previous

works and comparing them to our work.

3.7 Conclusion

In this chapter we reviewed the state of the art on Business Process Modeling, Man-

agement and Monitoring. For Business Process Modeling, we argued that the current

declarative frameworks have some shortcomings when modeling interactions and we

also observed that the available mediation approaches require an important interven-

tion from the side of users. This prevents average users (e.g. engineers) from defining

mediators at large. For Business Process Management, we argued that current frame-

works address changes for a single actor processes but are limited when it comes to

perform changes on cross-organizational processes. We also observed that they gen-

erally follow a pessimistic policy regarding changes that impact the correctness of the

process schema. Finally, we reviewed some works in the complex event processing area.

3.7. Conclusion 69

We identified a set of enhancement criteria that will guide the design of our frame-

work. This framework aims at meeting these requirements while realizing the function-

alities expected for our industrial context.

In the rest of this dissertation we will detail our contributions that address the short-

comings of the related works.

70 Chapter 3. State of the Art

Chapter 4
A Declarative Framework for Product

Level Agreements

Contents

4.1 Introduction . 73

4.2 Running Example . 74

4.3 Challenges . 74

4.3.1 Manual creation of processes . 76

4.3.2 Finding and applying the right rules 76

4.3.3 Defining mediators . 76

4.3.4 Managing the dynamicity in the context of a DMN 77

4.3.5 Overview of the Proposed Approach 77

4.4 High-level Concepts for Contract Design 78

4.4.1 Stakeholders . 79

4.4.2 Product Breakdown Model . 79

4.4.3 Product Component Configuration 80

4.4.4 Agreements . 80

4.4.5 Complex Agreements . 81

4.4.6 Agreements Relationships . 82

4.4.7 Contract on the final product . 83

4.4.8 Exception Handling . 83

4.4.9 Example . 84

4.4.10 Summary . 85

4.5 Contract Enactment . 85

71

72 Chapter 4. A Declarative Framework for Product Level Agreements

4.5.1 Motivations on Using Business Rules 85

4.5.2 Operations on Business Rules . 86

4.5.3 Example . 92

4.5.4 Summary . 93

4.6 On-the-fly Mediation . 93

4.6.1 Automaton Formal Definition . 94

4.6.2 Application Example . 97

4.6.3 Messages Computed Using a Composition of Mapping Functions 98

4.6.4 Ensuring Correct Correlation of Exchanged Messages 100

4.6.5 General Properties of the Mediation Approach 102

4.7 Evaluation . 103

4.7.1 Evaluation of the Modeling Language Abstraction 104

4.7.2 Evaluation of the on-the-fly Mediation 105

4.7.3 Evaluation of the on-the-fly mediation against aspect-oriented

mediation . 107

4.7.4 User Interface Design . 109

4.7.5 Workflow Generation Algorithm Performance 109

4.8 Conclusion . 110

4.1. Introduction 73

4.1 Introduction

Forces of globalization and the ever growing need for differentiation and innovation

are moving work from a co-located to a distributed environment. Organizations form

collaborations to achieve a goal that none could achieve individually [OBRC10]. This

inter-organizational cooperation between enterprises is realized by specifying an ab-

stract description of the overall inter-organizational process that is the choreography.

The choreography serves as a common contract between the parties involved in the

overall process [vdALM+10]. Examples of choreography languages are WS-CDL1, Let’s

dance [ZBDtH06], BPEL4Chor[DKLW07]. Nevertheless, those specific modeling lan-

guages do not provide a sufficient level of abstraction to capture the intention behind

the interactions [TS09]. Moreover, contracts built with these modeling languages in-

crease the coupling of stakeholders’ processes because they capture many details and

thus, they over-specify contracts [vdAP06]. For example in a certain choreography the

sender of messages has concurrent engineering capabilities and thus can run multiple

send activities in parallel. On the other hand, the receiver of these messages does not

have concurrent engineering capabilities and thus can run the corresponding receive ac-

tivities only in sequence. A contract modeled with the mentioned languages constrains

the sender to drop his concurrent engineering capabilities and to send messages sequen-

tially. This demonstrates the tight coupling between the sender and the receiver which

makes dynamicity in the context of a DMN difficult to achieve.

In this chapter we are interested in developing modeling constructs that facilitate

the work of coordinators involved in ECM processes. These coordinators will define and

run contracts supporting Engineering Change Requests with participants. The proposed

modeling approach under-specifies the collaboration contract by avoiding the inclusion

of too much detail. Accordingly, our modeling approach decreases the coupling between

partners and facilitates the dynamicity in the context of a DMN. Indeed, this under-

specification of the contract leaves the door open for partners to implement internally

the processes that support their collaboration in order to achieve the contract terms. This

is a positive point, because partners will uphold their internal (business) rules when

defining their processes [CM04]. However, mismatches between the communicating

processes will definitely appear and thus a mediation solution is mandatory to resolve

these mismatches.

Throughout this chapter, we lay down the foundations of a product-based contract

modeling approach. We aim at offering coordinators of ECM processes constructs at

1www.w3.org/TR/ws-cdl-10

74 Chapter 4. A Declarative Framework for Product Level Agreements

the right level of abstraction to model the contract with participants. Furthermore, we

develop a novel mediation approach that resolves the possible mismatches and that is

well adapted to handle the dynamicity of DMNs by limiting the impact of changes on

the overall collaboration environment.

4.2 Running Example

Consider that in a collaboration environment for an aircraft design, the coordinator wants

to issue an Engineering Change Request (ECR) on the Geometry of the Fuselage (Fus-

Geo) and the Aerodynamic of the Fuselage (FusAero) by changing a set of their attributes

as depicted in Figure 4.1. Since the FusGeo and the FusAero are managed by two differ-

ent participants belonging to an external organization, the coordinator needs to create a

contract with this organization involving both participants to perform the changes on the

Fuselage (=FusGeo + FusAero). In this contract the coordinator specifies the attributes that

he wants to modify and the characteristics of the FusGeo and FusAero that he wants to

obtain after the modifications in order to analyze them.

Tables 4.1, 4.2 summarize the Fuselage attributes that the coordinator sends to FusGeo

and FusAero participants respectively and the characteristics that he expects from them.

To design the process supporting the ECRs on the FusGeo and the FusAero, the coor-

dinator can use Business Process Management (BPM) languages. He defines activities to

send FusGeo attributes to be modified to the first participant and activities to receive the

characteristics of the FusGeo when those modifications have taken place.

The coordinator defines another independent process model to support the ECR on

the FusAero as well. Nevertheless, since there is a temporal constraint between changes

on the FusGeo and changes on the FusAero, as we have seen in the previous chapter, the

coordinator needs to keep this constraint in his mind. In other words, prior to validate

the changes made on the FusAero, he knows that he should first validate the changes on

the FusGeo.

In addition, there is a set of existing mapping functions between the Fuselage at-

tributes that are summarized in Table 4.3.

4.3 Challenges

When the coordinator defines and manages the previous ECRs, he will face the following

key challenges:

4.3. Challenges 75

Properties of the FusGeo to be changed FusGeo Characteristics desired by the
coordinator after changes

• Number of paxes in the front
(NPaxFront)

• Fuselage Height (HFus)

• Number of Aisles (Naisles)

• Fuselage Length (LFus)

• Wetted Area

• Fuselage Mass

Table 4.1: Exchanged Fuselage Geo properties between coordinator and participants

Properties of the FusAero to be changed FusAero Characteristics desired by the
coordinator after changes

• Re

• Are f

• LFus

• Fuselage Width (WFus)

• Fuselage Fric Drag

Table 4.2: Exchanged FuseAero properties between coordinator and participants

Mapping Functions

• W f us = f (NpaxFront, Naisle)

• WettedArea = f (W f use, H f us, L f us)

Table 4.3: Some Mapping Functions in the context of Fuselage design

76 Chapter 4. A Declarative Framework for Product Level Agreements

Coordinator

Participant (FusGeo) Participant (FusAero)

Interaction
Scenario

Interaction
Scenario

Figure 4.1: ECRs on FusGeo and FusAero

4.3.1 Manual creation of processes

Our example shows that the coordinator needs to model the processes that will support

the interaction scenarios corresponding to ECRs on FusGeo and FusAero as depicted in

Figure 4.1. This task can be difficult and painstaking in particular for a coordinator who

typically has no experience with process modeling and the underlying concepts. The

coordinator needs to learn a new vocabulary and he needs to change his focus from

achieving the required configuration of the FusGeo and FusAero to how to define and de-

ploy the processes that will help him in achieving these objectives. (i.e. when modeling

the processes, the coordinator changes his focus from what he wants to achieve to how to

achieve it).

4.3.2 Finding and applying the right rules

Yellin et al. [YS97] noticed that process activities are organized following a prestablished

set of rules. Hence, the second task that the coordinator should perform consists in going

through all enterprise rules of each participant in order to find out the right way in which

he should organize the processes’ activities of sending and receiving messages. When

the coordinator finds the right rules, he needs to read and interpret their semantics. Al-

though the (activity ordering) business rules are generally written in an understandable

language[KEP00], their large number, however, could make this task error-prone.

4.3.3 Defining mediators

When the public process of each partner is designed by considering exclusively the part-

ner’s business rules, in this case the partners’ processes could face mismatches when

they are interconnected to create the cross-organizational process. For this reason, the

coordinator needs to develop and deploy mediators that aim to resolve the possible mis-

matches and that avoid participants tailoring their processes. The task of developing

mediators can be difficult to achieve since it requires some skills in programming.

4.3. Challenges 77

4.3.4 Managing the dynamicity in the context of a DMN

All previous challenges that need to be handled by the coordinator are repetitive. Indeed,

in the context of a DMN the coordinator needs to address and readdress them during the

whole life-cycle of the collaboration because of the possible modifications that can occur

on the collaboration configuration (for example the replacement of partners). More

specifically, the coordinator needs to maintain processes when participants are replaced

and redefine mediators when the order of activities is changed.

The aforementioned challenges put in evidence the need for a high-level modeling

language to model contracts between coordinators and participants where the coordinator

does not need to use low-level concepts to model the interaction scenarios. In addition

it shows the need for an automatic mediation mechanism that resolves the possible mis-

matches that could appear when coordinators’ and participants’ processes communicate.

Furthermore, it shows the need for a collaborative platform that interconnects all part-

ners’ processes so that the coordinator can specify temporal constraints between different

ECRs. We elaborate on this example when detailing the contributions regarding each

challenge.

4.3.5 Overview of the Proposed Approach

We adopt the creation of a high-level modeling framework approach [vdAP06, TKS14,

HMS11a]. Specifically, as Figure 4.2 shows, the coordinator uses this framework to define

a contract with participants that will participate in conducting change requests on the

selected components of the product. This framework has the advantage to offer the

coordinator a vocabulary that is close to his mindset. In addition, it has the advantage

to be declarative and thus focuses on the objective to be achieved. Once the contract is

defined, a procedure that generates a cross-organizational process that will support the

partners in performing their collaborative work is executed. This procedure generates

for each partner the public process that fits with his business rules stored in business

rules repositories. It uses a set of operations (Projection, Reduction) in order to optimize

the cross-organizational process generation time.

At run-time, the mediation on-the-fly is invoked when mismatches occur between the

communicating processes and it aims at resolving these mismatches in an optimal time.

The reminder of this chapter is organized into five sections. Section 4.4 defines

the main high-level concepts that are used by coordinators and participants to build

collaboration contracts. Section 4.5 elaborates on the approach to generate the cross-

organizational process from a contract specification to support coordinators and partici-

78 Chapter 4. A Declarative Framework for Product Level Agreements

Collaboration contract
of ECRs on different

parts

Coordinator business
rules

Participants’ business rules Business rules
axioms

Projection
Operation

Reduction
Operation

Process
Generation
Algorithm

oce

Mediation on-
the-fly

Mapping functions
Cross-
organizational
process

Participants

Coordinator

Temporal constraints
to processes

Figure 4.2: An overview of the proposed approach for ECRs in a collaborative environ-
ment

pants in fulfilling the contract obligations. Since mismatches could appear in the cross-

organizational process, Section 4.6 elaborates on a novel mediation strategy to resolve

the mismatches. Section 4.7 evaluates the framework. Finally, Section 4.8 concludes the

chapter.

4.4 High-level Concepts for Contract Design

Contracts can be considered as a means to leverage the decoupling between stakehold-

ers in a collaborative environment [ABP09b]. They record the benefits expected by each

party from their interaction and the obligations that each party must be prepared to

carry out in order to obtain these promised benefits. We define collaboration contracts

between partners that formally specify what are the obligations and benefits of each

partner. These contracts ensure that all sent data will be received, and dually, all ex-

pected data will be sent.

In this section we define the constructs to build contracts. (i) we classify partners

depending on the role that they play in the ECM process in the context of a DMN.

(ii) we formally define the product model that captures the end product breakdown

structure and that is used by all partners in their work. (iii) Partners collaborate in order

to reach agreements on the configuration of product components [LFB+12]. Accordingly,

4.4. High-level Concepts for Contract Design 79

we formally define these configurations and assign them to partners. This assignment

determines each partner obligations and benefits regarding the collaboration.

4.4.1 Stakeholders

Stakeholders in a DMN can play two exclusive roles. Namely, requester and supplier. The

requester asks the supplier to design a product component that should fulfill certain

conditions. The supplier must consider these conditions when designing the compo-

nent. Moreover he should provide the requester with a means to evaluate the designed

component.

4.4.2 Product Breakdown Model

The product breakdown model is a tree-like structure with the end product as root and

product components as nodes [vdARL01]. Standards exist that represent the product

breakdown model, for example the product breakdown for support2. Nevertheless, in

order to keep our approach abstract and independent from any implementation model,

we give an abstract definition of the product model adapted from the definition given

by [vdA99]. A product breakdown model is defined as a tuple 〈root, O, N〉 where:

• root represents the end product.

• O is a set of objects representing the components of the end product. Each element

oi ∈ O ∪ {root} has a set of attributes {att1, att2, ...attn}.

• N ⊆ O×O defines the composition relationships between objects.

In the context of DMNs, the product breakdown model has two interesting properties:

• Its decomposition is sustainable. The product’s components are determined dur-

ing early phases of product design. The objective of the collaboration is to find the

right properties of each component;

• The vocabulary used to build the product model constitutes a shared ontology

upon which all partners agree. Consequently it provides an interesting starting

point to define obligations and benefits regarding the collaboration in order to

assign them to stakeholders.

2http://www.plcs-resources.org/plcs/dexlib/data/dex/

80 Chapter 4. A Declarative Framework for Product Level Agreements

4.4.3 Product Component Configuration

The requester defines a set of constraints on the properties of the end product compo-

nents. These constraints specify the expected configuration of each component. Given a

product component oi, there are two types of constraints associated to it:

• Obligations are parameterized constraints that the component supplier should

consider before designing the component.

• Characteristics are parameterized constraints that the component requester should

consider when evaluating the delivered component model.

Constraints associate variables to components’ attributes. During the collaboration, con-

straints are instantiated by assigning values to their variables. The collaboration aims

to determine the appropriate values of these variables. The combination of the sup-

plier obligations and the requester benefits regarding a component defines the product

component configuration.

Definition 8. A product component configuration (PCC) of a component oi is the couple

〈Obligations, Characteristics〉. It is defined by the grammar:

• PCC → 〈A, A〉

• A → A ∧ A | ¬A | constraint

• constraint → R(oi.attj, xij)

Where R is an algebraic relationship (<, =, > etc.) between the attribute oi.attj and the

variable xij.

This grammar specifies that both obligations and characteristics are conjunctions of

constraints on component oq attributes.

4.4.4 Agreements

The objective of the collaboration between a requester and a supplier is to reach an

agreement on the configuration of a product component oq (this is the reason that we

call our framework Product Level Agreement in analogy with Service Level Agreement

[OVC14]). The requester and the supplier will exchange data until reaching this agree-

ment.

Agreements are constructs that capture the product components configurations (i.e.

〈Obligations, Characteristics〉) as well as the partners that collaborate to find the appro-

priate configuration instance.

4.4. High-level Concepts for Contract Design 81

Definition 9. Formally, an agreement on the component oq is the tuple 〈Requester, Supplierq, oq, PCCq〉.
The agreement declaratively binds the requester and the supplier through the PCC of the compo-

nent oq.

Agreements under-specify the relationship between the requester and the suppli-

ers. Such a specification defines the minimal coupling between stakeholders without

additional constraints.

An agreement on a particular component oq is achieved if and only if an array V

of values exists whose assignment to constraints’ variables xij specified in the PCCq

make the requester satisfied (i.e., V is a model of the logic formula PCCq). Formally:

∃V = [vi1, vi2..., viN],
N∧

j=1
xij = vij |= Obligations ∧ Characteristics

4.4.5 Complex Agreements

Agreements are atomic because they concern a single component of the end product.

Atomic agreements constitute the building blocks of the contract. Nevertheless, we

wanted to control the dynamicity of the DMN by increasing the flexibility of the con-

tract in a DMN. We thus introduced complex agreements. Complex agreements are spec-

ifications on components composed of lower level components. More specifically, for

a given atomic agreement, when the supplier quits the network he can be replaced by

several suppliers. In this situation, each new supplier will design a sub-component of

the component designed by the supplier who left. Using complex agreements, we can

split a component agreement into agreements of its sub-components.

Definition 10. A complex agreement on a component ok is a tuple

〈Requester, Suppliersk, ok, Ck, PCCk〉, where:

• Suppliersk is the set of suppliers of the sub-components of the component ok

• Ck is the set of components composing ok. It ensures: Ck ⊆ O and ∀oi ∈ Ck, (ok, oi) ∈ N

• To express that this agreement is composed of other atomic or complex agreements: ∀oi ∈
Ck, ∃suppliersi ⊂ Suppliersk:

– ∃oj ∈ O : (oi, oj) ∈ N∧ |suppliersi| > 1 ⇒ 〈Requester, suppliersi, oi, Ci, PCCi〉
is a complex agreement

– ∀oj ∈ O : (oi, oj) /∈ N∧ |suppliersi| = 1 ⇒ 〈Requester, suppliersi, oi, PCCi〉 is

an atomic agreement

• PCCk =
|Ck |∧
i=1

PCCi when no relationship between sub-agreements is specified.

82 Chapter 4. A Declarative Framework for Product Level Agreements

• PCCk = T R (PCCi, PCCj) when a temporal relationship is specified between sub-agreements

of sub-components oi and oj. T R are defined in Table 4.4.

For instance we wanted to provide requesters and suppliers with a visual language.

We thus modeled agreements with boxes as depicted in Figure 4.3. Complex agreements

are represented as containers of other agreements.

Atomic
Agreement 1

Atomic
Agreement N

Complex
Agreement

Figure 4.3: Graphical representation of atomic and complex agreements

4.4.6 Agreements Relationships

Modeling a contract by a set of agreements for each product component without in-

terlinking them is possible. The agreements of this contract can be sought in parallel.

However, sometimes there are constraints on the order in which agreements have to be

achieved. For example in the design process of an aircraft [EME00], it is recommended

that the design of the wing should take place before the design of the engine, and the

design of the engine should take place before the design of the nacelle and so on. In the

context of a collaborative design of these components, the previous constraints can be

formulated as follows: (i) the agreement on the nacelle configuration between the coordi-

nator and the nacelle designer can be achieved if the coordinator and the engine designer

have already achieved an agreement on the engine configuration. (ii) Additionally, the

agreement on the engine can only be achieved if the coordinator and the wing designer

have already achieved an agreement on the wing.

In order to specify declaratively these temporal constraints, we enrich the framework

to support temporal logic formulas [Fis11]. This is possible thanks to the logic-based for-

mulation of product component constraints (PCCs). Although the need for formal mod-

els, including temporal logic, is clearly shown by several studies [TEvdHP11, SGN07],

the knowledge required for their use remains a significant obstacle for their adoption

particularly in an industrial context [EKK10]. Using patterns of temporal logic operators

hides the complexity of the formalisms [YMH+06].

4.4. High-level Concepts for Contract Design 83

Pattern Description
A LeadsTo B B can be achieved only after that A has been

achieved
A Response B Whenever A is achieved, B has to be achieved
A Include B A cannot be achieved without achieving B

A Mutual Exclusion B If A is achieved B cannot be achieved and vice
versa

N A A cannot be achieved after N iterations

Table 4.4: Patterns of agreements relationships

To express the relationship between agreements, we use a set of meaningful patterns

of temporal logic relationships formalized in [DAC98]. Table 4.4 summarizes these pat-

terns. In this table A and B are two atomic or complex agreements. We believe that these

patterns are sufficient to capture a large spectrum of situations that a contract modeler

could face. Nevertheless, this set of patterns can be extended to capture other patterns

of temporal constraints.

4.4.7 Contract on the final product

A contract is a (complex) agreement between the requester and all suppliers in the

collaborative environment on the end product configuration.

Definition 11. Formally, a contract is the tuple 〈Requester, Suppliers, root, O,End product

configuration〉.

The contract is designed following a bottom-up approach. The requester (that cor-

responds to the coordinator in the ECM standardized process), starts by defining agree-

ments on the lowest level components. These agreements are then aggregated following

the tree structure of the product breakdown until reaching the root that represents the

end product.

4.4.8 Exception Handling

Using agreement-based contracts can lead to exceptions. These exceptions can arise

during run-time and have to be addressed. One of the advantages of using agreement-

based contracts is its natural way in handling exceptions. Indeed, in a contract, an

exception occurs when a certain agreement cannot be reached. To handle exceptions, the

requester specifies what should happen when an agreement for a particular component

cannot be reached.

84 Chapter 4. A Declarative Framework for Product Level Agreements

An agreement cannot be reached if its PCC formula is logically unsatisfiable (i.e.,

it has no model). That is, all value assignments to variables associated to component

constraints do not satisfy the requester. This implies that its negation is valid.

Formally: ∀V = [vi1, vi2..., viN],
N∧

j=1
xij = vij �|= Obligations ∧ Characteristics ⇒ ∀V =

[vi1, vi2..., viN],
N∧

j=1
xij = vij |= ¬(Obligations ∧ Characteristics)

We use this property to define a new construct called non-agreement that is the con-

trary of an agreement. A non-agreement allows the requester to specify what should

happen when its corresponding agreement cannot be reached.

Definition 12. A non-agreement of an agreement α is a tuple of one attribute 〈¬α.PCC〉. Graph-

ically, it is represented by a red box.

4.4.9 Example

We apply the agreement based contract to a change request created by coordinator1 on

FusGeo under the responsibility of participant1 and a change request on FusAero under

the responsibility of participant2. Notice that we intentionally made a simplification by

choosing only two product components to demonstrate the framework. Indeed, while it

is not intended to portray a realistic ECR process, it is desirable not to camouflage the

subject of this chapter by using a more complex example with too much technical detail.

To realize these changes an informal communication between the involved partners

is no longer effective [OVC14]. Thus coordinator1 creates an Agreement on the FusGeo.

Then with the consent of participant1, coordinator1 selects the properties of FusGeo that

he will tailor during the collaboration and also selects the properties that he wants to

receive from participant1 when changes take place. Coordinator1 does the same for the

FusAero with the consent of participant2. Then he defines the temporal constraint of type

LeadTo between FusGeo and FusAero as specified by [Sad12].

Figure 4.4 depicts a visual representation of the contract between coordinator1 and

participant1 responsible of the FuseGeo and also with participant2 responsible of the Fuse-

Aero. The Agreements defined in this contract are the following ones:

• Ag1 = 〈Coordiantor1, Participant1, FusGeo, PCC1 = (R(NpaxFront, x1)∧R(HFus, x2)∧
R(Naisles, x3) ∧ R(L f us, x4), R(WettedArea, x5)) ∧ R(FusMass, x6)〉

• Ag2 = 〈Coordiantor1, Participant2, FusAero, PCC2 = (R(NpaxFront, y1)∧R(HFus, y2)∧
R(Naisles, y3) ∧ R(L f us, y4)), (R(WettedArea, y5) ∧ R(FusMass, y6))〉

• Ag3 = 〈Coordiantor1, {Participant1, Participant2}, Fuselage, PCC1LeadsToPCC2〉

4.5. Contract Enactment 85

Fuselage

Fuselage Geometry Fuselage Aerodynamic y g

Leads to

• Number pax front
• Fuselage height
• Number aisles
• Fuselage length

• Fuselage mass
• Wetted area

Obligations (Expected) Characteristics

• Re
• Aref
• Fuselage width

• Fuselage fric drag

Obligations (Expected) Characteristics

Figure 4.4: Contract on ECRs on the geometry and the aerodynamic of the Fuselage

At this stage, the contract between coordiantor1 and participant1, participant2 is built.

The next step consists in generating the cross-organizational process that will support

the data exchange between these partners in order to achieve the agreements defined in

this contract while upholding their temporal constraints.

4.4.10 Summary

In this section we presented the formal framework that defines the concepts to help

coordinators in an ECM process build contracts with participants in order to achieve an

ECR. We also presented an example that shows that with this framework, coordinators

focus on the objective that they want to achieve through the ECR rather than on how to

achieve it by modeling the processes.

In the next section we detail how to automatically generate the underlying processes

that will support coordinators and participants in detailing the ECR and satisfy what has

been specified in the contract.

4.5 Contract Enactment

4.5.1 Motivations on Using Business Rules

Agreements are high-level constructs understandable by coordinators/participants involved

in the DMN. When the contract design is completed, thanks to the actionable nature

86 Chapter 4. A Declarative Framework for Product Level Agreements

of agreements and their formalization, the contract can be projected into the execution

platform by generating automatically the cross-organizational process (COP) model. In-

deed, when analyzing how the collaboration is conducted to handle a change request

on a particular component, we can notice that the (COP) follows the same steps: (i)

the requester sends an obligation instance to the supplier, (ii) the supplier receives the

instance, (iii) the supplier carries out an internal process to study the feasibility of the

design, (iv) the supplier replies the requester with a characteristic instance, (v) the re-

quester analyzes the results, if he is satisfied then the agreement is reached, otherwise he

assigns a new instance to the obligation and repeats the process. In systems engineering,

this process is called the agreement process [HFoSE11].

A stakeholder could have concurrent engineering capabilities. These capabilities

allow him to perform data exchange activities in parallel, while another stakeholder

might be in lack of these capabilities and thus is obliged to run his activities in sequence.

This difference is confirmed by the fact that often there exist rules constraining the order in

which messages may be sent [YS97]. Indeed, each stakeholder has his own rules to which

his process should be compliant [KRM+12]. Generally these rules are captured in terms

of business rules. Business rules are statements that define or constrain some aspects

of the business [Gro00]. If business rules are defined to their full extent, they will

govern the entire execution of the processes [CM04]. In addition, business rules have

the advantage to be very close to how designers think and talk [EP98].

From these observations, it is better to rely on business rules and to ask coordinators

to model the collaboration contract using our framework and then generate the COP,

rather than asking them to model the COP using a low level language such as BPM

languages.

Since the contract model with the complete set of business rules constitute a com-

prehensive base of all information related to the collaboration, it is possible to use them

to automatically generate the executable COP model.

4.5.2 Operations on Business Rules

Collaborative product design is concerned with a subset of business rules. Indeed, from

the classification of the workflow patterns defined by [vdAtHKB03], we could deter-

mine what are the possible rules a stakeholder can define regarding the organization of

data exchange activities in a collaborative environment. A subset of these constraints.

summarized in Table 4.5.

These constraints have an associated set of axioms given in Table 4.6, where x1, x2, x3

4.5. Contract Enactment 87

Constraint Type Description
x1 Should Follow x2 SF(x1,x2) Messages x1 and x2 should be sent/received in

sequence, starting by x2

x1 Should Precede x2 SP(x1,x2) Messages x1 and x2 should be sent/received in
sequence, starting by x1

x1 Independent x2 I(x1,x2) Messages x1 and x2 could be in sent/received
in parallel

x1 Packaged With x2 P(x1,x2) Message x1 should be delivered with x2

Table 4.5: Rule types on the order of messages

Axiom Formalization
A1 (Transitivity of SP) SP(x1, x2)∧SP(x2, x3)→ SP(x1, x3)
A2 (Transitivity of SF) SF(x1, x2)∧SF(x2, x3)→ SF(x1, x3)
A3 (Transitivity of I) I(x1, x2)∧I(x2, x3)→ I(x1, x3)
A4 (Transitivity of P) P(x1, x2)∧P(x2, x3)→ P(x1, x3)
A5 (SP(x1, x2)∨ SF(x1, x2)∨P(x1, x2))∧ I(x2, x3)→

I(x1, x3)
A6 SP(x1, x2) ∧ P(x2, x3)→SP(x1, x3)
A7 SF(x1, x2) ∧ P(x2, x3)→SF(x1, x3)

Table 4.6: Axioms related to rules on the order of messages

being messages.

An informal example of a data exchange activities rule that specifies that all send

activities should be in sequence is: "Since there is only one license of the simulation software,

we can deliver one instance of a message per time". Formally for the design of a given product

component oq: ∀xi, xj ∈ Att(oq) : SF(xi, xj) ∨ SF(xj, xi). This rule captures the fact that

the partner can only send one message instance per time and thus all messages will be

delivered in sequence.

Partners’ business rules reside in repositories {R1, ..., Rn}. Although we could di-

rectly use the rules in these Ri to generate the COP model as depicted in Figure 4.2, it

is better to reduce each Ri and then generate the COP model. In the following, we detail

the steps for generating the COP model.

Each Ri could contain a large number of rules and thus traversing and analyzing

all rules to generate the COP model could be time consuming because the generation

algorithm should evaluate each rule. To avoid this, we can reduce the search space by

performing two actions:

1. (Projection) Projecting Ri rules on a subset of attributes belonging to the obliga-

tions and the characteristics defined in the agreement. Accordingly, we keep only

the rules involving these attributes. For this reason we define the Π operator on

business rules repositories.

88 Chapter 4. A Declarative Framework for Product Level Agreements

Definition 13. The projection operator on the repository Ri gives the repository R
′
i:

ΠAtt⊆2{a1,...,an}(Ri) = R
′
i such that the rules in R

′
are defined by the predicates contain-

ing exclusively the attributes in Att.

Lemma 1. The workflow model involving messages ∈ Att generated using the rules be-

longing to the repository R is equivalent to the workflow model generated using the rules

belonging to the repository R
′
.

Proof. Suppose that there is no such equivalence. Then, there is at least a rule

r ∈ R − R′ that impacts the order of attributes in Att. However, since any rule

constrains only the attributes involved in its definition, then r cannot affect the

order of attributes in Att. Thus, the first assumption leads to a contradiction.

2. (Reduction) Eliminating rules that can be inferred from other rules in the repos-

itory using the axioms formalized in Table 4.6. The reason is that these inferable

rules do not add any detail to the COP to be generated. Algorithm 1 performs

projection and the reduction actions.

Algorithm 1 Repository Reduction

Require: Repository R, the set of Axioms AX, a set of involved attributes Att ⊆ 2{a1,...,an}

Ensure: A reduced Business rules repository
1: ΠAtt(R)
2: while ∃r ∈ R such that ¬Marked(r) do
3: r ← Pick a non-marked rule from the R
4: if ∃Σ ⊆ R− {r} ∧ ∃ax ∈ AX such that ax, Σ |= r then
5: Remove r from R
6: else
7: Mark r as has been visited
8: end if
9: end while

The algorithm visits rules residing in the repository R. Each time it finds that a rule

can be inferred from a subset of rules following the axioms defined in Table 4.6 (line 4

of the algorithm), it removes it (line 5).

Once the repository has been reduced, the workflow generation algorithm uses the

remaining rules to decide in which order the send/receive activities should be organized

in the COP model.

Lemma 2. The COP model generated by the original repository of rules R is equivalent to the

COP model generated by the reduced repository R
′
.

4.5. Contract Enactment 89

Proof. The proof is conducted on each axiom of Table 4.6.

For axiom A1 in Table 4.6, the COP fragment generated using the rules {SP(x1, x2),

SP(x2, x3), SP(x1, x3)} is equivalent to the COP fragment generated using the rules

{SP(x1, x2), SP(x2, x3)} as depicted in Figure 4.5.

Send x1

Send x2

Send x3

Figure 4.5: Equivalence between the generated COP fragments

The proof continues by making the same observation on the remaining axioms in

Table 4.6.

Theorem 1. The COP model generated using the rules of the repository R is equivalent to the

COP generated from R
′
after applying the projection and the reduction operators on the repository

R.

Proof. From Lemma 1 and Lemma 2.

Definition 14. A repository R of business rules is defined to its full extent, if and only if every

situation in the business process has a rule associated to it in R [EP98].

Formally: ∀xi ∈ COP : |Π{xi}(R)| > 0.

Lemma 3. If a repository of rules R is defined to its full extent, then the reduced repository of

R, that is R
′
, is also defined to its full extent.

Formally: ∀xi ∈ COP, |Π{xi}(R)| > 0 ⇒ |Π{xi}(R
′
)| > 0

Proof. The proof is conducted on the type of axioms.

For the axiom A1 in Table 4.6, we consider that {SP(x1, x2),SP(x2, x3), SP(x1, x3)} ⊆
R ⇒ {SP(x1, x2),SP(x2, x3)} ⊆ R

′ ∧SP(x1, x3) /∈ R
′
. Accordingly, |Π{x1}(R)|, |Π{x2}(R)|, |Π{x3}(R)| >

0 ⇒ |Π{x1}(R
′
)|, |Π{x2}(R

′
)|, |Π{x3}(R

′
)| > 0

The proof is the same for the remaining axioms in Table 4.6.

Definition 15. A process model is well formed iff each lane of the COP model has the three

properties:

1. There is at least one start event

2. There is at least one end event

3. Every object is on a path from a start event to an end event.

90 Chapter 4. A Declarative Framework for Product Level Agreements

The corresponding formal definition of a well formed process diagram can be found in Definition

2 of [ODtHvdA06].

The workflow generation algorithm (Algorithm 2) generates for each agreement

specified in the contract the corresponding process fragment that supports data ex-

changes for achieving agreement on the associated component. This algorithm uses

the mapping rules associated to the agreement relationships patterns. We give the map-

ping rules to the three main patterns Leads To, Response and Includes. These mapping

rules are depicted in Figures 4.6 4.7 4.8 respectively.

Agreement 1
Process Block

Agreement 2
Process Block

End event End event

Figure 4.6: LeadsTo constraint map-
ping to XPDL

Agreement 1
Process Block

Agreement 2
Process Block

End event

Start event

Figure 4.7: Response constraint map-
ping to XPDL

Agreement 1
Process Block

Agreement 2
Process Block

End event End event

Figure 4.8: Includes constraint mapping to XPDL

The following theorem shows that a collaboration contract associated with a full

extent repository of business rules generates a well-defined COP model:

Theorem 2. In a collaboration contract C, if each rules repository Ri associated to partners is

defined to its full extent, then the generated COP will be well-structured.

Proof. From Theorem 1, we can reduce the repositories Ri to produce R
′
i. The proof is

performed by induction on the well-structuredness of each lane corresponding to every

partner:

4.5. Contract Enactment 91

Algorithm 2 Workflow Generation
Require: The Contract C
Require: Stakeholders business rules repositoriesR1, ..., Rn
Require: Product Model PM
Ensure: The cross-organizational process

1: Call Reduction Algorithm for BR1,..., BRn
2: Traverse the contract in a top-down way
3: for all Agreement Ag ∈ C do
4: Use mappings in Figures 4.6, 4.7, 4.8 to generate the interconnections between Ag

and other agreements
5: if Ag is atomic then
6: For the obligations specified in Ag, generate the send/receive activities for the

requester and the supplier respectively
7: Use RAg.supplier to define the order of activities for the supplier and the

RAg.requester for the requester
8: Repeat steps 6-7 for the agreement Ag characteristics
9: end if

10: end for

• If a partner Pi is involved in a single agreement, then the corresponding lane will

have a start event and an end event and since its Ri is defined to its full extent then

every object is on a path from the start event to the end event.

• If a partner Pi is involved in more than one agreement, then if there is a tempo-

ral constraint between agreements, the generation algorithm will interconnect the

generated processes corresponding to each agreement. Otherwise the generation

algorithm will ensure the well structuredness by generating parallel splits between

processes corresponding to each agreement.

Theorem 3. A collaboration contract C is honored (all obligations have been fulfilled) iff the

COP has reached an end event corresponding to each agreement.

Proof. We use equivalence proof method:

• → Suppose that there is a process fragment in the COP that has not reached its

end event. This implies that at least an agreement has not been reached between

two partners. This implies that the contract is not honored yet.

• ← Suppose that the contract is not honored yet. This implies that there is at least

one agreement which has not been reached yet and it is in progress. This implies

that its end event has not been triggered yet.

92 Chapter 4. A Declarative Framework for Product Level Agreements

Once the different process fragments corresponding to the atomic and complex

agreements in the collaboration contract have been generated, the COP model can be

deployed into the workflow engine. The workflow engine will run the workflow model

to distribute the exchanged messages to the partners. Nevertheless, since a partner could

have a different view on the component being designed [Ray06], we need to allow him to

keep this view (and thus his process) and ensure the data mediation and transformation

transparently.

4.5.3 Example

We continue with the example of section 4.4.9. Once the contract has been specified

in terms of Agreements, the workflow generation module (see Figure 4.2) generates the

workflow that supports the achievement of the specified agreements. We made the

assumption that all partners have a business rules repository and to simplify the example

the rules specify that all activities are sequential.

With the mapping rule between the temporal logic pattern LeadsTo and workflow

constructs depicted in Figure 4.6, the generation module will generate the workflow

depicted in Figure 4.9 for the contract in Figure 4.4.

Figure 4.9: Generated process of the contract

Once this workflow is generated, it will be deployed into a workflow engine and will

dispatch the messages for partners. Nevertheless, there is a mismatch in this workflow.

For instance participant1 expects to receive the WFus while coordinator1 does not send this

information. Hence a mediation solution should be used to resolve this heterogeneity.

4.6. On-the-fly Mediation 93

4.5.4 Summary

In this section we presented the approach to generate the cross-organizational process

that will support coordinators and participants in achieving an ECR from a contract spec-

ification while upholding the constraints set by business rules of each partner. To in-

crease the efficiency of our process generation algorithm we defined a set of operations

on business rules that help in reducing the number of business rules that the workflow

generation algorithm should analyze. We formally proved that applying these opera-

tions on business rules will not impact the order of the activities of the process to be

generated; it will just reduce the number of rules to be traversed.

When interconnecting the processes generated some mismatches could appear due

to the difference of public process activities between partners. In the next section, we

propose a novel mediation approach that efficiently resolves mismatches when the gen-

erated coordinators’ and participants’ processes will exchange data.

4.6 On-the-fly Mediation

The generated COP will support the interaction scenario between the coordinator and the

participant working on an ECR. Since there is a possibility that some heterogeneity could

exist between their processes, a mediation solution is required to resolve the possible

mismatches. This mediation relies on a set of mapping functions as given in Table 4.3 so

that when all messages required to compute an expected message are sent, the mediator

applies the appropriate mapping function to generate the expected message. The medi-

ation approach focuses only on behavioral aspects. Thus it considers that the names of

the messages exchanged are standardized and the semantic compatibility is guaranteed.

[BSBM04] has made the same assumption. This assumption is possible since much re-

search has been done on adaptation where messages are enriched semantically through

ontologies [BSBM04].

Previous works focused on defining the adaptation patterns of the possible mis-

matches that can occur when two processes communicate together. These patterns aim

at helping the designer at design time [KNBSP14, BCG+05]. It is also possible to auto-

mate the discovery of the right pattern to apply when the mediator is to be generated

automatically [EBMN13].

In our approach, we follow another path. We consider that for a particular domain,

we can identify the messages that can be exchanged and the mapping functions between

these messages if they exist. Then we formalize these mapping functions as marked au-

94 Chapter 4. A Declarative Framework for Product Level Agreements

tomata so that we can develop an efficient on the fly mediation algorithm. The assump-

tion of the identification of the messages for a particular domain and their relationship

is feasible by making the analogy with the identification of the concepts used within a

particular domain known to be an island of users [PTDL07]. This acceptable assump-

tion makes our approach independent from the mismatch patterns identified previously

since we are not sure of their completeness. Furthermore it helps us in develop a more

efficient mediation algorithm adaptable for DMNs.

In the remaining of this section, in addition to specifying the generated public pro-

cesses in a formal language, we introduce a new way to formalize the mapping functions

in terms of marked automata so that we can find the right mapping function to apply to

generate the expected message in a polynomial time.

4.6.1 Automaton Formal Definition

Conventional mediation approaches define mapping functions at design-time either (i)

semi-automatically by involving a human in the loop or (ii) automatically by relying on

the domain ontology and the mappings between its concepts [BCG+05].

During the run-time phase, automating conventional mediation algorithms so that

they can find the right mapping rule to apply will lead to state space explosion. Indeed,

consider that the workflow generator has generated a COP for the requester and the

supplier as depicted in Figure 4.10. In this case, the conventional mediator algorithm

should perform at most α iterations in order to determine what mapping function to use

to generate the message y1 from the sent messages {x1..., xn} where:

α =
N

∑
k=1

⎛
⎝ N

k

⎞
⎠ =

N

∑
k=1

N!
k!(N − k)!

(4.1)

This worst case is reached when the data required to deliver the message y1 is dis-

patched in all messages sent: {x1, ..., xn}, thus to determine the mapping function to

use to generate y1, the mediator should verify if there is a mapping function between

(x1, y1), then (x2, y1), then ({x1, x2}, y1) etc. until ({x1, x2...xn}, y1). In this case a map-

ping function is found and y1 can be generated.

Send x1 Send x2 Send xn end x1 Send e x2 Send xx …
Receive y1 ceive

…

Sender process fragment Receiver process fragment

…

…

Figure 4.10: Generated fragments

4.6. On-the-fly Mediation 95

Conventional mediation algorithms cause state space explosion because they search

for the mapping function each time a message xi arrives. The search consists in checking

all combinations of messages that arrived to test whether a mapping function exists

between a certain combination and the expected message y1. This procedure requires α

iterations. The algorithm is obliged to check all possible combinations of messages in

order to ensure the safety of the mediation strategy.

To overcome the issue of state space explosion, instead of verifying whether the

expected message y1 could be derived from messages that already arrived {x1, ...xl}
(l < N), we split this verification into two steps (we call it a two-step approach):

1. determine whether the newly arrived message (xl) can trigger the computation of

the expected message y1

2. if yes, then determine the mapping function. Otherwise wait for the next messages

{xl+1, ...xn}

To implement the first step, we use an automaton structure (marked automaton)

to represent the fact that there exists a mapping function between {x1, ...xn} and y1 as

depicted in Figure 4.11.

Definition 16 (Marked Automaton). AΦ = [Q, C, δ, q0, Φ] is a marked automaton iff Q is

a non-empty finite set of states, apart from q0 all states are ending state. C is a set of labels,

δ ⊆ Q × C × Q is a transition relation such that every ending state is reachable from q0 and

from any other finite state via a direct transition ∈ δ.

This automaton has a starting state s0 and the remaining states are specified to be

ending states to show that messages can arrive in a random order. Additionally, the

states of this automaton can be marked in order to differentiate between the messages

that already arrived and the messages that have not arrived yet. In the example of

Figure 4.10 and the marked automaton corresponding to the mapping function in Fig-

ure 4.11, when the message x1 arrives:

1. the automaton performs a transition from the state s0 to the state s1

2. the state s1 is marked to indicate that x1 has arrived

3. since there is at least one ending state that has not been marked (in this case:

{s2, ..., sn}) we need to wait for the next message because at this stage, we are sure

that there is no mapping function between x1 only and y1

96 Chapter 4. A Declarative Framework for Product Level Agreements

4. when all states have been marked, which indicates that all required messages to

compute y1 have arrived, we execute the step 2 that determines the derivation rule

between {x1, ...xn} and y1.

When relying on the two-step approach, our mediation algorithm no longer needs to

verify all combinations of available messages to determine the mapping function each

time a new message arrives. In this case, the automaton progresses until all final states

have been marked. When all final states have been marked, our algorithm can start

searching for the mapping function (step 2) because this time we are sure that it will

find it.

Numerically, we decrease the complexity of the mediation algorithm from α (see

equation 1) to N + 1 operations of automaton progression.

Figure 4.11: Automaton of the relationship between y1 and x1...xn

Algorithm 3 details the main steps of our mediation approach.

Algorithm 3 Mediation on the Fly
Require: PM: Product Model, RPP:Receiver Public Process.
Ensure: the correct message required by the receiver.

1: Buffer ← ∅
2: while (SentMessage �= ACK) ∧ (SentMessage �= Exception) do
3: SentMessage ← capture the message sent by the sender
4: Buffer.insert(SentMessage)
5: Make the automata progress using the SentMessage
6: Mark the state
7: if all states have been marked then
8: i ← determine the function to calculate the expected object data from the re-

ceived messages
9: MessageForReceiver ← fi(Bu f f er)

10: Send(MessageForReceiver)
11: Buffer ← Buffer - RPP.ExpectedMessage
12: end if
13: end while

Basically, this algorithm starts by verifying that the received message is neither an

Acknowledgment to indicate that the requester is satisfied and the agreement has been

reached, nor an exception. In this case the message received makes the automaton

4.6. On-the-fly Mediation 97

closer to its ending and marks the associated state (lines 5 and 6). Then if all states

have been marked (line 7: the end of step 1 of the two-steps approach), the algorithm

determines the mapping function (line 8: step 2 of the two-steps approach).

Algorithms 4, 5 detail the behavior of the marked automaton when a message ar-

rives. More specifically, the automaton is continously listening to messages that arrive.

When a message arrives corresponds to its active state (line 1 of Algorithm 4) it noti-

fies the observer. The observer can be another state or the mediator to notify it that all

messages required to apply a mapping function are available.

Algorithm 4 Automaton State Transition: processBufferEventReception
Require: Buffer.lastInsertedEntry, Automaton A
Ensure: Mark the corresponding state

1: if listening(A.listeningState,lastInsertedEntry) then
2: si ← notifyAppropriateObserver(s0.observers,lastInsertedEntry)
3: si.processStateEventReception(lastInsertedEntry)
4: end if

Algorithm 5 Automaton State Event Reception: processStateEventReception
Require: notification, si ∈ A
Ensure: Mark the corresponding state

1: mark(si)
2: if A.completed then
3: notifyMediator()
4: else
5: A.listeningState ← si
6: for all sj ∈ A ∧ ¬sj.marked do
7: sj.setObservable(si)
8: end for
9: end if

4.6.2 Application Example

We carry on with the example of section 4.5.3. Since coordinator1 sends messages not ex-

pected by participant1, the mediation on-the-fly should intervene in order to resolve this

mismatch. The mediation on-the-fly counts on the predefined mapping function between

WFus and NpaxFront, Naisles defined in Table 4.3. Following our mediation approach,

this mapping function will be formalized using a marked automaton as depicted in

Figure 4.12.

1. Following the process of Figure 4.9, when coordinator1 sends the message NpaxFront,

this message will move the automaton of Figure 4.12 (a) from state s0 to state s1

98 Chapter 4. A Declarative Framework for Product Level Agreements

and marks the state s1. Since s2 has not been marked yet, the mediator will not be

notified.

2. When coordinator1 sends the message HFus it will have no impact on the automa-

ton and thus the mediator remains idle for this message. Here is where our op-

timization on searching mapping function occurs. Other approaches take into ac-

count this message and search for the mapping function even though this message

is not involved in the computation the expected message.

3. When coordinator1 sends the message Naisles, this message will move the automa-

ton of Figure 4.12 (a) from state s1 to state s2 and marks the state s2. Since all final

states have been marked (instruction 7 of Algorithm 3, the expected message by

the receiver (WFus) can be computed by the mediator.

For this example the on-the-fly mediation has performed only 4 iterations on the

mapping functions base to find the right mapping function to apply, instead of 7 iter-

ations in the case for the naive approach. When the mediator finds the right mapping

function, it performs the computation of WFus, and forwards the result to participant1

process. The latter receives the data and can carry on its execution.

4.6.3 Messages Computed Using a Composition of Mapping Functions

The automaton introduced previously allows the automatic detection of the possibility

to compute the expected message from the messages that already arrived. However this

is practical only when the messages that arrive are directly involved in the computation

of the expected message (i.e. there exists a function that has as input the messages that

arrived and as output the expected message). There are cases where the messages that

arrive are involved in the computation of the expected message but only by using inter-

mediate parameters as illustrated by the mapping functions that compute respectively

WFus and WettedArea depicted in Figure 4.12 (b). In this figure, the expected message

WettedArea in the workflow of Figure 4.9 cannot be computed directly from the mes-

sages that will be received. We first need to compute the intermediate parameter WFus,

and then use this parameter to compute the expected message WettedArea. In the re-

maining of this section, we extend our mediation algorithm to address this issue for the

general case.

4.6. On-the-fly Mediation 99

s0

s1 s2

NpaxFront Naisles

NpaxFront

Naisles

s0

s1 s2

wfus lfus

wfus

lfus

s3

hfus

hfus

lfus

hfus wfus

(a) (b)

Declarative communication

wfus0

Declarative communication

Figure 4.12: Example of composition of functions

4.6.3.1 Declarative Automata Communication

To address the issue of computing expected messages indirectly from the messages that

arrived, we define a declarative communication means between automata in the repos-

itory of automata rules. Using this communication means, our mediation algorithm

can detect that the messages that arrived can be used to compute the expected message

even though they are not directly involved in the function that compute the expected

message.

Definition 17. A communication channel exists between two automata A1 and A2, if the output

message of A1 is involved in A2.

Figure 4.12 illustrates an example of a communication channel using WFus between

both automata. Thus, whenever WFus is computed, the second automaton can perform

the transition.

When the remaining messages arrive, Algorithm 6 performs a recursive traversal of

the involved automata in order to compute the value for each involved parameter and

finally compute the final value of the expected message.

To demonstrate the generality of our approach, we prove the following theorem:

Theorem 4. Whatever the number of functions separating the computation of the expected mes-

sage from the messages that arrive, our algorithm is able to compute the expected message.

Proof. (By induction) First, suppose that the expected message y could be computed

using the function f (x1, x2, ..., xm)m>1 (f could be the function id) and the messages

x1, x2, ...xm have arrived. In this case, the automaton corresponding to f will trigger the

computation of y.

100 Chapter 4. A Declarative Framework for Product Level Agreements

Algorithm 6 Recursive traversal of automata repository to find all transformation func-
tion parameters determineInputs
Require: Automaton A
Ensure: Function f result

1: for all State s ∈ A do
2: if s.associatedParameter ∈ Bu f f er then
3: Add (s.associatedParameter, f .inputs)
4: else
5: Find automaton B : B.output = s.associatedParamter ∧ B.s0.marked
6: Add (determineInputs(B), f .inputs)
7: end if
8: end for
9: Call f

10: return result

Now, suppose that y = f1 ◦ f2 ◦ ... ◦ fn(x1, x2, ..., xm) can be computed by Algorithm 6

and we prove that z = f1 ◦ f2 ◦ ... ◦ fn ◦ fn+1(x1, x2, ..., xm) can be computed by Algo-

rithm 6 as well.

Since y = f1 ◦ f2 ◦ ... ◦ fn(x1, x2, ..., xm), then z = fn+1(y). In this case, Algorithm 6

will trigger the computation of y then the result of this computation will trigger the

automaton corresponding to z = fn+1(y) function through their communication channel

and calls the function fn+1(y) to compute z.

Another important point to consider is that an expected message could be computed

using different automata (i.e., multiple mapping functions exist to compute this mes-

sage). In this case, the notion of declarative communication channel is helpful. The

expected message is computed whenever all necessary data arrive for any mapping

function.

4.6.4 Ensuring Correct Correlation of Exchanged Messages

Our solution to interoperability problem in DMNs was to propose a single mediation

algorithm that is independent from the communicating partners. However, in a col-

laboration environment that involves multiple couples of partners, our algorithm may

face ambiguity when delivering expected messages. Indeed, several partners may send

different values of the same message targeting different other partners. In this case, our

mediation algorithm should be able to differentiate between the incoming messages and

deliver the computed message to the right partner.

To achieve a correct correlation of exchanged messages between partners, we extend

the definition of two concepts: message and rule automaton.

4.6. On-the-fly Mediation 101

Definition 18. A message is identified by a triplet: 〈Name, Supplier, Requester〉.

Definition 19. An extended marked automaton is a marked automaton where:

• A transition is identified by the triplet: 〈Name, Supplier, Requester〉. A transition is

triggered if and only if the identifier of the message that arrives corresponds to the transition

identifier

• A state marking is defined by the couple: 〈Supplier, Requester〉. Thus a state could be

associated to a set of marking where each mark is defined by the previous couple

• A communication channel is also defined by the triplet: 〈Name, Supplier, Requester〉 and

is triggered whenever all equally identified states have been marked.

Each time a new couple of partners is added to the network, all rules automata are extended by

the corresponding transitions, markings and communication channels.

Now the mediation algorithm uses the extended marked automata of mapping func-

tions in order to ensure correct correlation of the exchanged messages. We can assert

that there will be no mediation ambiguity during the collaboration.

Lemma 4. When two messages having the same name arrive to the mediator from two different

partners, their derivation will be delivered to the right partners.

Proof. We conduct the proof by contradiction:

Without loss of generality, suppose that the messages sent by P1, P2 to P3, P4 respec-

tively, will trigger the same automaton to deliver the derived values to the right partners.

When an ambiguity in delivering the right message to P3, P4 occurs, it might cause one

of the following consequences:

1. Neither P3 nor P4 will receive the expected message

2. A partner will receive two message while the other will receive nothing

3. Derived messages will be altered and each partner will receive the wrong one.

Suppose that P1 sends the message 〈M, P1, P3〉 and P2 sends the message 〈M, P2, P4〉.
Suppose also that the extended automaton of the function f is defined as illustrated

in Figure 4.11. In the following, we prove that with the extended marked automaton

definition, none of these 3 cases would occur:

1. When the automaton of the function f receives the message 〈M, P1, P3〉, this will

trigger the transition 〈M, P1, P3〉 and thus the state s1 will be marked. This mark-

ing will trigger the execution of the function and the delivery of the the message

〈 f (M), P1, P3〉 to P3.

102 Chapter 4. A Declarative Framework for Product Level Agreements

2. Since the transition has been triggered, then it cannot be triggered again since

another iteration has not been executed yet

3. Derived message contains the identifier of the receiver, thus it is not possible to

alter the computed messages.

4.6.5 General Properties of the Mediation Approach

In this section we show some properties of our on-the-fly mediation.

Definition 20 (Processes Similarity and Complementarity). 1. Two processes are said to

be equivalent if they execute exactly the same strings of actions [Fok00].

2. Two processes are said to be similar if they execute the same string of actions but without

any specific order.

3. Two processes are said to be semi-similar if they execute strings of actions without any

specific order and all data produced by one string can be derived from the other string.

4. Two processes are said to be complementary if the complement of one string is semi-similar

to another string.

Figure 4.13 illustrates each definition through an example.

Process 1: Send (a) Send (b) Send (c)
Process 2: Send (a) Send (b) Send (c)

Equivalent processes

Process 1: Send (a) Send (b) Send (c)

Send (a) Process 2: Send (b) Send (c)
Similar processes

Process 1: Send (a) Send (b) Send (c)
Process 2: Send (W)

Semi-Similar processes:
W can be derived from a,b,c and vice versa

Process 1: Send (a) Send (b) Send (c)
Process 2: Receive (W)

Complementary processes:
W can be derived from a,b,c and vice versa

Figure 4.13: Processes Complementarity Illustration

Lemma 5. For each agreement specification in the contract, the generated processes of the re-

quester and supplier are complementary.

Proof. From the complementarity definition, the contract formal definition and the work-

flow generation algorithm, we conclude that the processes of the requester and the sup-

plier for the same agreement are complementary.

4.7. Evaluation 103

Lemma 6. A supplier process of an agreement in the contract receives an acknowledgment or an

exception message ⇒ this process has already received all messages of the obligation.

Proof. The requester sends an acknowledgment iff he has performed at least one itera-

tion with the supplier and thus the supplier has received all messages.

Theorem 5 (Safety of the mediation approach). SentMessage = (Acknowledgment ∨
Exception) ⇔ the processes of the supplier and the requester have reached a block that con-

stitutes the end of the current agreement.

Proof. We use equivalence proof method:

• ⇐ by definition of acknowledgment and exception messages

• ⇒ From Lemma 4 and Lemma 5.

Theorem 6 (Liveness of the mediation approach). The condition expressed in line 7 of Al-

gorithm 3 will eventually be satisfied.

Proof. Suppose that this condition cannot be satisfied. This could have two reasons:

1. All received messages cannot be used to compute the expected message. This is

not possible since the models of the processes are complementary (Lemma 4)

2. The received message is either an acknowledgment or an exception. However, the

acknowledgment or the exception messages will be received only when at least one

iteration has been performed (Lemma 5). Since the processes are complementary,

this condition will be satisfied once.

From these two points, we conclude that the condition will eventually be satisfied for all

expected messages.

4.7 Evaluation

To evaluate the developed framework, we start by establishing a set of objective metrics

that allow us to compare our solution with the existing ones. Then we give experimental

evaluations.

104 Chapter 4. A Declarative Framework for Product Level Agreements

4.7.1 Evaluation of the Modeling Language Abstraction

We applied the goal-question-metric technique [BJ06] to define appropriate metrics to

compare the abstraction of our contract specification framework and the run-time lan-

guage that is XPDL. We selected two main issues to conduct the comparison; effort–

how much of the designer’s resources (e.g. time) are required to maintain the contract

specification– and productivity– how productive is a designer who is using our contract

construction concepts for contract specification.

To measure these qualities, we chose two size metrics to compare programs specified

by both languages. The size metrics we utilize are number of concepts NC that are used

in the model in order to express the same information. Size metrics are considered

as relatively good predictors of maintenance effort even though they are not the sole

predictor [LH93]. Considered from this angle NC provides an indicator of effort and

productivity of designers using our framework to model the contract.

The evaluation methodology relies on the weight assigned to a concept:

Definition 21. When a concept c appears in the model one time it receives the weight ω(c) = 1.

When c appears N time without adding new information, it receives the weight ω(c) = 1
N . When

a concept does not appear despite its importance for the model, it receives the weight ω(c) = 0.

For our running example depicted in Figure 4.4, we have two important concepts

for the coordinator that are the Product Components Properties (PCP), and the Product

Components (PC).

In the XPDL model, each PCP could appear two times. One time in a send activity

and one time in a receive activity. This is the case for the property Fuselage_Height in

Figure 4.9. In this case, Fuselage_Height receives the weight 1
2 . The same method is used

to compute the weight for all other PCP. Nevertheless, for the coordinator, it is better to

remove the redundancy of properties. The reason is that if he sees a property, it means

that by default it will be exchanged with the participant. Consequently, in our contract

model, the property Fuselage_Height appears once and thus it is given the weight 1 as

depicted in Figure 4.4. The same method is used to compute the weight of the other

PCP.

For PCs, despite their importance for the coordinator, they do not appear at all in

the XPDL model while they clearly appear in our contract model. Since our framework

is more specialized, much of non-necessary information is hidden and is replaced by

valuable information for the coordinator.

Table 4.7 details the computation of the added value of concepts in the model and

their application to our example.

4.7. Evaluation 105

Concepts Calculation Method XPDL Model Fig-
ure 4.9

Contract Model Fig-
ure 4.4

Product Compo-
nents Properties
(PCP): PCP

∑N
i=0

1
|PCPi |

1
2 ∗ 9 + 3=7.5 (4+2+3+1) = 10

Product compo-
nent: PC

∑N
i=0

1
|PCi | 0 3

Table 4.7: Comparison of model semantic richness for XPDL versus our framework

4.7.2 Evaluation of the on-the-fly Mediation

We define a metric to compare the impact of changes on the mediation strategy. We mea-

sure the impact of changes on the mapping functions established between the messages

that are exchanged through the mediator. Basically, a mediation solution supports three

mapping dimensions that are: (i) syntactic, (ii) structural, and (iii) semantic. Algorithm 3,

addressed the structural mappings between the exchanged messages. In another work

[KFFDSG14] we defined a set of mapping functions regarding syntactic and semantic

mediation.

Using this metric, we will measure the impact of adding new (syntactic or semantic)

mapping functions to the mediator and compare the impact of including these changes

on conventional mediators and on our on-the-fly mediation.

First, consider that for a particular domain D (e.g. aircraft aerodynamics simulation),

a software application A that covers the functionalities required by this domain can be

defined by: A = 〈O, S〉 where:

• O is the ontology of concepts used by the application to exchange information with

its environment

• S is the syntax of files used by the application in order to represent data exchanged

with the application’s environment

A domain is formally defined by: D = {A|A = 〈O, S〉}.

Consider that a partner P1 using an application A1 ∈ D is to be replaced in the

DMN by a partner P2 using an application A2 ∈ D. When this change request arrives,

for a conventional mediator in order not to have a global impact on the DMN, mapping

functions should have been defined between every couple of applications (Ai, Aj) ∈ D×
D that covers this domain functionalities. This is the unique approach to avoid stopping

the collaboration to include new mapping functions to the mediator. Following this

106 Chapter 4. A Declarative Framework for Product Level Agreements

approach, the number of mapping couples that should be defined is equal to

⎛
⎝ |D|

2

⎞
⎠

since in the worst case one should define mapping functions between all possible couples

of applications. It is clear that this number is very high and will require high costs.

For the on-the-fly mediation, we no longer need to define all these mappings, we

only add mapping functions when they are required while keeping local the impact of

changes on the collaboration.

Let us consider that we have

⎛
⎝ |D|

2

⎞
⎠ possible couples of mapping functions that

can be defined to ensure syntactic and semantic interoperability. Let us consider also

that it takes T = (Tde f + Tdep) the time required to formalize the mapping functions and

include them into the mediators database. Where Tde f is the time required to define the

mapping functions and Tdep is the time elapsed from stopping the collaboration until

achieving the deployment of the new mapping functions. Finally let us consider that

we have N components being designed in the collaborative environment (i.e., we have

N atomic agreement in the contract). Formula 4.2 computes the impact of managing the

replacement of partners in the DMN when a conventional mediator (cm) is deployed:

impactcm =

⎛
⎝ |D|

2

⎞
⎠× T × N (4.2)

For conventional mediators, a mediator can only ensure interoperability between a

couple of partners. Thus for our collaborative platform, we will have several media-

tors deployed. This does not foster reusability of mapping functions. If we consider

the dimension of updating the databases of mapping functions of the deployed media-

tors while keeping the partners in the DMN unchanged, the impact of changes on the

conventional mediators is given by formula 4.3:

impactcm =

⎛
⎝ |D|

2

⎞
⎠× T × N + m× (

⎛
⎝ |D|

2

⎞
⎠)× Tdep × N (4.3)

where m is the number of reusable mapping functions to update into each couple of

applications.

For the on-the-fly mediation, there is a single database of all mapping functions.

Thus every mapping function could be reused and does not need to be duplicated.

Accordingly, the on-the-fly mediation is independent from the parameter m. Formula

4.7. Evaluation 107

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

19 20 21 22 23 24 25

Lo
ga

rit
hm

 o
f i

m
pa

ct
 o

f c
ha

ng
es

Number of Partners in the Network (N)

Impact o-t-f M
impact c M

Figure 4.14: variating N

4 computes the mean impact3 of updating the mapping functions database when an

on-the-fly mediator is deployed:

impacto−t− f m =

(

⎛
⎝ |D|

2

⎞
⎠− 0)

2
× T × 1 (4.4)

where the number 1 indicates that only the component being designed is impacted by

this change. The number 0 indicates that there is no impact when the change does

not involve a new partner with a different application. Since formula 4.4 calculates the

mean, we can derive two limit measures:

• The best case is when no change is required impacto−t− f m = 0× T × 1 = 0

• The worst case is when multiple changes are required impacto−t− f m =

⎛
⎝ |D|

2

⎞
⎠×

T × 1 =

⎛
⎝ |D|

2

⎞
⎠× T

By comparing formulas 4.3 and 4.4, we conclude that the on-the-fly mediation is better

in all cases.

Figures 4.14 4.15 4.16 depict the effects of varying N, m, and |D| respectively on the

impact of changes in both configurations. We conclude that our mediation approach is

less impacted by changes that occur at run-time and more approapriate for DMNs

4.7.3 Evaluation of the on-the-fly mediation against aspect-oriented media-

tion

[KSPBC06] developed an aspect-oriented approach to achieve mediation between hetero-

geneous business processes. Our on-the-fly mediation and the aspect-oriented approach

3we calculate the mean since we do not know how many mapping couples should be defined

108 Chapter 4. A Declarative Framework for Product Level Agreements

0

1

2

3

4

5

6

7

0 1 2 3 4 5

Lo
ga

rit
hm

 o
f i

m
pa

ct
 o

f c
ha

ng
es

Number of couples reusing the rules (m)

impact o-t-f M
impact cM

Figure 4.15: variating m

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Lo
ga

rit
hm

 o
f i

m
pa

ct
 o

f c
ha

ng
es

Number of mapping rules couples:

impact o-t-f
impact cM

Figure 4.16: variating |D|

have in commonality their support for changing the communicating processes without

changing the mapping functions in our case or the 〈query, aspect〉 in the aspect-oriented

approach case. Nevertheless our approach outperforms the aspect oriented approach in

an important situation that is the Many-to-One Mismatch.

A many-to-one mismatch occurs when the receiver business process waits for a mes-

sage that can be computed from a set of messages sent by the sender. To resolve this

mismatch using [KMNB+09] approach, one should write a couple 〈query, aspect〉 where

in the aspect one should write successive receive actions in order to capture all sent mes-

sages from the sender. In this case, the aspect writer needs to define a specific order of

the successive receive actions. This order creates a coupling between the sender busi-

ness protocol and the receiver business protocol. Accordingly, in a DMN, each time

the sender tailors the order of his send activities a new couple 〈query, aspect〉 should be

defined to ensure the mediation.

In our approach, thanks to the links between all states of the marked automaton

representing the mapping function, no order is specified at design time for the mapping

function. Thus, when a change in the DMN configuration occurs, there is no need to

adapt the automaton.

4.7. Evaluation 109

0

5

10

15

20

25

30

35

40

45

50

15 50 74 91 115 143 180 239 293 371 415 437 500 521 537

Ti
m

e
in

 m
s

Number of boxes in the model

XSLT
XML DOM

Figure 4.17: Comparison between XSLT+JS and XML DOM

0

50

100

150

200

250

300

350

400

450

20 40 80 100

Ti
m

e
in

 m
s

Number of business rules in the Rules repository

Time for generation
without reduction

Time for generation
with reduction

Figure 4.18: Repository reduction impact

4.7.4 User Interface Design

The reactivity of the user interface when coordinators and participants design the col-

laboration contracts is important to consider too. Due to the novelty of our technique

of concurrent contract design and the number of involved constructs (a contract of an

aircraft design may involve thousands of constructs) we evaluated the time that the in-

terface takes to load the visual representation of the collaboration contract. We used

two implementation approaches. One that transforms the XMI representation of the

contract model into HTML using XSLT technology as was recommended by [SK03] and

a home-built algorithm that exclusively uses JavaScript to perform the transformations.

The comparison is given in Figure 4.17.

In this figure, the time required for the XSLT technique to display the contract model

increases much more than the time required by our home-built algorithm. When we go

beyond 180 boxes in the contract model, the XSLT algorithm crashes.

4.7.5 Workflow Generation Algorithm Performance

Figure 4.18 depicts the comparison between the two workflow generation techniques.

From this analysis, we conclude that it is better to precede the workflow generation by

applying the business rules repository reduction operator.

110 Chapter 4. A Declarative Framework for Product Level Agreements

4.8 Conclusion

When running an engineering change management process in an inter-organizational

cooperation, the involved parties specify a contract. This contract will serve to generate

the cross-organizational process that will support them in fulfilling the obligations of the

contract. Each party implements its part of the contract following its internal business

rules or by reusing an existing process that could fulfill its obligations.

In this chapter we proposed a formal notion of contracts based on product break-

down structure and the temporal constraints that could exist on the design of the dif-

ferent components of the product. We defined the minimal set of concepts required

by coordinators and participants to build a contract then we gave formal definition for

these concepts. Since this contract needs to be supported by a cross-organizational pro-

cess, we developed an efficient algorithm that uses the contract specification and each

party business rules in order to generate the cross-organizational process. At run-time

mismatches could appear between the fragments composing the cross-organizational

process, we developed a novel mediation approach to resolve the possible mismatches.

The framework was developed while considering the dynamic aspect of the collabo-

ration environment (DMN). We have evaluated how our mediation solution tackles this

problem. In the next chapter, we aim at deepening the analysis on the management of

dynamicity in the collaboration environment. We will define the required operations to

perform the modifications on the contract and how to shield partners not concerned by

the modifications from being impacted. Furthermore, we present an approach to help

the recovery of modifications.

Chapter 5
Managing Evolutions for Product

Level Agreements

Contents

5.1 Introduction . 113

5.2 Motivating Example . 114

5.3 Challenges . 115

5.3.1 Applying High-level Management Operation 115

5.3.2 Maintaining the COP executable 115

5.3.3 Ensuring Semi-automatic Recovery of Modified Contracts 115

5.3.4 Overview of the Proposed Approach 116

5.4 Checking Heterogeneity of Generated Processes 117

5.5 Operations for DMN Management . 121

5.5.1 Primitive Operations . 121

5.5.2 Basic Operations . 123

5.5.3 Composite Operations . 124

5.5.4 Committing Changes . 125

5.6 From Solution Plans To Executable Workflows 127

5.6.1 Approach Overview . 127

5.6.2 Problem Position . 128

5.6.3 Step 1: Workflow Tree Generation 130

5.6.4 Step 2: Refinement of Blocks in the WT 131

5.6.5 Step 3: Pattern Specialization by Progressive Agent Interaction . 136

5.7 Application Example . 139

111

112 Chapter 5. Managing Evolutions for Product Level Agreements

5.7.1 Execution of the determinePattern Algorithm 11 to Replace

Blocks . 141

5.7.2 Generation of the Workflow Model 142

5.8 Evaluation . 146

5.8.1 Evaluation of the Number of Input activities 146

5.8.2 Comparison with Existing Work Regarding the Size of the Gen-

erated Workflow . 146

5.9 Conclusion . 148

5.1. Introduction 113

5.1 Introduction

Product design is a collaborative effort that involves an Original Equipment Manufac-

turer (OEM) and several subcontractors. Detailed processes, methodologies and best

practices guide the collaboration lifecycle. However these plans can only form a com-

mon starting point because unpredictable events always happen. Successful completion

of collaboration projects depends on containing their inherent unpredictability, figuring

out the best responses, and successfully making the necessary changes [OBRC10]. In

product design collaborative environments, stakeholders are bound by a collaboration

contract that determines their obligations with regard to the product being designed.

Nevertheless, the emergence of Dynamic Manufacturing Networks (DMN) that put forth

the evolution aspect in collaborative environments demonstrates the need for managing

the evolution of collaboration contracts as well. Accordingly, to handle this evolution, it

is necessary to include flexibility in collaboration contracts in order to respond to possible

evolutions that could occur at run-time.

In this chapter we are interested in enriching the product based contracts framework

developed in the previous chapter with management operations. These operations can

be used by coordinators and participants in order to modify the specifications of agreements

in contracts while shielding coordinators and participants from concerns related to the

impact of changes on the underlying cross-organizational process. In addition, after

several modifications on a contract, partners performing changes on this contract need to

perform the least mental effort to figure out what is missing in this incomplete contract

specification in order to include the missing information and re-launch the collaboration

as fast as possible.

Throughout this chapter we lay down the foundations of management operations to

be used by coordinators and participants in order to manage the evolution of the DMN.

We define the operational semantics of these operations and we analyze their impacts

on the underlying cross-organizational process. We limit this impact by developing an

algorithm that prevents the execution of management operation from impacting partners

not concerned by the change.

When multiple changes are incorporated in a contract by multiple partners, it can be

challenging for them to keep in their mind or figure out what needs to be included in

the contract to re-launch the collaboration. Accordingly, we enrich the framework with

a feature that analyzes the current state of a contract, and then finds what information

is missing in each agreement to become committable and generates the workflow that will

support the associated partners to complete the agreement specification and makes it

114 Chapter 5. Managing Evolutions for Product Level Agreements

AddSupplier

AddObligation

RemoveSupplier RemoveObligations 1 2

4 5

Figure 5.1: Example of modifying an agreement specification

committable. To achieve this, we extend the graph-planning algorithm to generate an

executable workflow that supports partners in completing agreements following their

own sequencing of actions.

5.2 Motivating Example

We carry on with the example of the Fuselage design involving coordinator1, participant1,

and participant2 that we detailed in the previous chapter. Let us suppose that coordinator1

notices that participant1 has capabilities issues in handling the change requests that he

issues for the Fuselage geometry (FusGeo) (for example due to the time that participant1

takes to perform simulation). In this case, coordinator1 would like to replace paritici-

pant1 by another participant having more capabilities that we call powerful-participant.

Furthermore, when replacing participant1, coordinator1, also, would like to change the

obligations that he submits to powerful-participant. Figure 5.1 depicts the actions to be

executed to realize this change.

To perform this change, coordinator1 should follow these steps:

1. Remove participant1 from the agreement corresponding to FusGeo in the contract

specification

2. Remove the obligations specified in the FusGeo agreement

3. Look for powerful-participant in a repository (for example the partners blueprint

developed within the IMAGINE project)

4. Add powerful-participant as a supplier in the agreement FusGeo in the contract

5. Add the new obligations for powerful-participant

5.3. Challenges 115

6. When coordinator1 is done, the cross-organizational process (COP) generation mod-

ule generates the new COP involving powerful-participant.

To achieve this goal, coordinator1 should be able to perform the following actions on the

contract model:

• Remove the supplier form an agreement specification

• Add a supplier to a an agreement specification

• Remove obligations from an agreement specification

• Add obligations to an agreement specification

5.3 Challenges

When managing the contract, coordinator1 faces the following challenges:

5.3.1 Applying High-level Management Operation

Coordiantor1 should be able to perform the management operations in a straightforward

way. Thus, he needs to have access to the management operations through a user inter-

face. Furthermore, coordiantor1 could have some sequence of operations that he performs

repetitively during the design process. For example the sequence 〈 Remove Supplier,

Add (Supplier), Remove (existing obligations), Add (new obligations) 〉 might be used

by coordinator1 several times. In this case, he shall be able to specify this sequence as a

new operation and use it.

5.3.2 Maintaining the COP executable

When coordiantor1 replaces pariticpant1 by powerful-participant the time interval to achieve

this replacement could be significant. In this case the COP generation module should

have enough intelligence not to generate COPs until it ensures that the COP it will gen-

erate remains executable and the participants not concerned by the changes that occurred

can carry on their collaboration.

5.3.3 Ensuring Semi-automatic Recovery of Modified Contracts

In our example, we have seen that coordiantor1 has tailored only one agreement by

changing the requester and obligations. However, in real life scenarios, coordiantor1

would need to change dozens of agreements specifications at the same time. In this

116 Chapter 5. Managing Evolutions for Product Level Agreements

Management
Operations Interface Contract Model

Checking
Heterogeneity Module Recovery Module

COP Generation
Module

Coordinator

Che
Heterogen

Cross-
organizational
process

commit

Figure 5.2: Overview of change management modules and their interactions

case, keeping in his mind all specifications that he changed (for example by removing

the suppliers) and performing a recovery for each one could be painstaking and error-

prone. Thus, we need to develop an approach that assists and guides coordinator1 in

performing the recovery of removals. This approach relies on a recovery workflow that

will help resume the collaboration as fast as possible with the least mental effort from

coordiantor1’s side.

5.3.4 Overview of the Proposed Approach

Figure 5.2 gives an overview on the on the modules to realize our approach and their

interactions. Indeed, in order to address the identified challenges, we extend the frame-

work developed in chapter 4 by a set of management operations that support coordinators

in performing the desired changes on the contract specification at run-time. Further-

more, to lessen the impact of changes on other participants that are not concerned by the

change, we develop a heterogeneity checking algorithm that answers the following ques-

tion: if the COP generation module generates a new COP model, will it be executable

by a workflow engine? The answer provided by this algorithm helps limit the impact of

changes on other participants since we can determine whether we will deploy the new

process or keep it on hold until other tailoring operations are executed which eventually

will make it executable. Finally, we develop a recovery module that supports coordinators

in recovering modified contracts by guiding them using a recovery workflow.

The reminder of this chapter is organized as follows: in section 5.4 we present the

algorithm that assesses whether a change on an agreement specification in the contract

has to be committed into the cross-organizational process or not. The result returned

by this algorithm is used to limit as much as possible the impact of changes on other

5.4. Checking Heterogeneity of Generated Processes 117

Figure 5.3: Original FusGeo Agreement Process

partners that are not concerned by the change that occurs. In section 5.5, we elaborate

on the set of management operations, classify them and address concurrent calls issues.

We continue the contribution of this chapter by developing an extension of the graph-

planning algorithm in sections 5.6 so that it generates an executable workflow. This (re-

covery) workflow will be used to figure out what information is missing in one or several

agreements and generates the required actions to incorporate the missing information.

Section 5.8 evaluates the extended framework in comparison to existing works and

section 5.9 concludes the chapter.

5.4 Checking Heterogeneity of Generated Processes

Using the framework developed in chapter 4, coordinators and participants can build a

collaboration contract by using the product breakdown model. During the collabora-

tion, coordinators might need to change the contract by adding/removing some of its

building blocks. Nevertheless some of these changes can lead to the generation of a

non-executable cross-organizational process and thus partners involved can no longer

collaborate.

Example 8. Suppose that coordiantor1 has removed participant1 from the agreement associated

to FusGeo (the remove operation will be detailed later). Then, coordinator1 starts looking for

powerful-participant. During this time, if the new contract specification (where the supplier of

the FusGeo agreement is missing) is committed to the running COP (see Figure 5.3 vs Fig-

ure 5.4), then the generated process fragment corresponding to coordinator1 will send messages

that have no recipient specified, because the latter has been removed. This will lead to structural

mismatches in the COP and makes it non-executable by the workflow engine. Consequently,

all other participants will no longer be able to exchange messages even though they are totally

independent from the FusGeo design.

118 Chapter 5. Managing Evolutions for Product Level Agreements

Figure 5.4: The new FusGeo Agreement Process after a commit

In this section we develop an algorithm that returns mismatch assessments between

two communicating processes associated to an Agreement specification. Later on, these

mismatch measurements will be used to decide whether to commit a change at the

contract level into the running cross-organizational process or not.

Definition 22. A cross-organizational process is executable if it can reach its final state.

In addition to the syntactic correctness condition, a cross-organizational process com-

posed of a set of couples 〈PReq, PSupp〉 is executable if and only if for each couple: PReq

and PSupp are interoperable.

Proof. • ⇒ From Definition 1, since an executable process terminates, all expected

messages will arrive. Thus both the sender and the receiver are interoperable.

• ⇐ For each fragment 〈PReq, PSupp〉 of the cross-organizational process, each sent

message will be consumed and reversely, each expected message will be sent.

Thus the cross-organizational process will progress until reaching its final state.

Algorithm 7 assesses whether a couple of Requester and Supplier processes generated

from an Agreement in a DMN contract model are interoperable or not (and thus, from

proposition 1, executable or not). For this purpose it calculates the values of three

parameters:

• αstr indicates if a structural mismatch exists between two communicating process. A

structural mismatch occurs when there is a difference in the structure of messages

exchanged.

• αsyn indicates if a syntactic mismatch exists between two communicating process. A

syntactic mismatch occurs when one stakeholder uses a language (e.g. XML) to

5.4. Checking Heterogeneity of Generated Processes 119

serialize the messages it exchanges, while the other stakeholder uses a different

language (e.g. EXPRESS1).

• αsem indicates if a semantic mismatch exists between two communicating process. A

semantic mismatch occurs when one stakeholder process uses a different ontology

from the other.

Notice that even though a mismatch would have been detected between two processes,

if Algorithm 7 finds out that it is possible to resolve it using a mediation solution, then

it is not considered as a mismatch.

In order to write Algorithm 7 we need a formal representation of stakeholders’ public

processes PReq and PSupp. These processes can be specified using LTS (Labeled Transition

Systems). Basically an LTS is a quadruplet 〈S, Act, �→, I〉 where: (i) S is a set of states;

(ii) Act is a set of actions; (iii) �→⊆ S× Act× S is a transition relation; (iv) I ⊆ S is a set

of initial states.

For our convenience we define an extended LTS as a basic LTS with functions that

specify what language an action of Act uses and what ontology it uses too. Thus an

extended LTS is a tuple 〈S, Act, �→, I, M, O, L, ontology, language〉 where:

• M, O, L are respectively the set of messages exchanged by the LTS; the set of on-

tologies to which a message concepts pertain; and the set of languages used to

serialize the messages;

• Act ⊂ {send(m), receive(m)}+ such that m ∈ M;

• ontology : M → O maps a message to the ontology it uses to describe its concepts;

• language : M → L maps a message to the language it uses in its serialization.

Basically, when an Agreement is tailored, it is passed to Algorithm 7. This algorithm

analyzes both Requester and Supplier processes. It returns the values of αstr (line 43), αsyn

(line 15) and αsem (line 36). If for a particular Agreement, the algorithm returns true for

one of the three mismatches, the changes on this Agreement will not be committed to

the COP model.

Using this algorithm, we can control the commit of changes introduced by the man-

agement operations. We detail this feature in the next section.

1http://deslab.mit.edu/DesignLab/dicpm/step.html

120 Chapter 5. Managing Evolutions for Product Level Agreements

Algorithm 7 Check Heterogeneities
Require: Agreement tuple Ag
Ensure: αstr, αsyn, αsem ∈ {true, f alse}

1: αstr, αsyn, αsem ← f alse
2: if Ag.Requester �= and Ag.Supplier �= and Ag.PCC �= and Ag.o �= then
3: LTSr ← Generate Requester LTS from Ag.PCC
4: LTSs ← Generate Supplier LTS from Ag.PCC
5: i ← 0
6: while LTSr.si �= Final_State do
7: m

′
1 ← LTSr.expected message structure

8: while m
′
1 is not complete do

9: m1 ← sent message
10: if ontology(m

′
1) = ontology(m1) then

11: if concept(m1) ∩ concept(m
′
1) �= then

12: if language(m1) �= language(m
′
1) then

13: if mapping(language(m1), language(m
′
1)) = ø then

14: Display in the dashboard the reason for non-commit
15: return αsyn ← true
16: else
17: transform_language(m1,m

′
1)

18: end if
19: end if
20: if concept(m1) = concept(m

′
1) then

21: m
′
1 ← m1

22: else
23: if concept(m1) ⊂ concept(m

′
1) then

24: value(m
′
1) ← value(m1)

25: complete m
′
1 with buffer content if possible

26: else
27: value(m

′
1) ← value(concept (m1) ∩ concept(m

′
1))

28: Buffer.add(concept(m1) - concept(m
′
1))

29: end if
30: end if
31: else
32: Buffer.add(m1)
33: end if
34: else
35: Display in the dashboard the reason for non-commit
36: return αsem ← true
37: end if
38: end while
39: LTSr.si++
40: end while
41: else
42: Display in the dashboard the reason for non-commit
43: return αstr ← true
44: end if

5.5. Operations for DMN Management 121

Collaboration Contract

Primitive operations
(CRUD services) Basic operations Composite operations

Product Model

DMN contract
model

Event
Manager

DMN management
interface

Figure 5.5: DMN management operations overview

5.5 Operations for DMN Management

An added-value of a DMN contract model is the ability to change its configuration in a

controllable way. This is possible thanks, to the verifications performed by Algorithm 7.

In this section we formally describe operations that tailor the DMN contract model fol-

lowing the DMN evolutions. Additionally, we demonstrate how their invocation main-

tains the DMN cross-organizational process executable by the workflow engine.

Basically, we define three types of operations on the top of the contract model as

illustrated in Figure 5.5: (i) Primitive operations that act on the building blocks of the

contract model. They are implemented as services upon this model. They are detailed in

Tables 5.1, 5.2. (ii) Basic operations that have the same granularity as primitive operations.

They can be invoked by partners through a visual interface and they use the primitive

operations. (iii) Composite operations are successive calls to primitive operations. The

objective of composite operations is to provide partners with more complex management

operations.

We provide partners with a visual interface that displays basic and complex opera-

tions to manage the evolutions of the contract specification. The use of visual interfaces

makes easier the perception of knowledge [HIL94, Har88] and thus the management

task will be less complex. In addition, using a visual interface will help us resolve the

problem of concurrent calls to management operations as we will see later.

5.5.1 Primitive Operations

Upon the contract model we define a set of CRUD (Create Read Update Delete) op-

erations that manage its building blocks as detailed in Tables 5.1, 5.2. When invoking

(programmatically) these operations it is necessary to consider their pre/post conditions.

A primitive operation such as RemoveComponent(c) can be described using operational

122 Chapter 5. Managing Evolutions for Product Level Agreements

Operation Precondition Postcondition

AddAgreement(ag) ag /∈ C ag ∈ C
AddComponent(cp, ag) ag ∈ C ∧ cp /∈ ag ag ∈ C ∧ cp ∈ ag
AddOConstraint(cn, Ag) cn is not a subformula of Ag.PCC cn is a subformula of Ag.PCC
AddCConstraint(cn, Ag) cn is not a subformula of Ag.PCC cn is a subformula of Ag.PCC
AddRelationship(Ag1, Ag2, r) r does not link Ag1 and Ag2 r links Ag1 and Ag2

AddException(NonAg) NonAg /∈ C NonAg ∈ C
AddRequester(p, Ag) p ∈ PM.P ∧ Ag ∈ C ∧ Ag.Requester = ∅ Ag.Requester = p
AddSupplier(p, Ag) p ∈ PM.P ∧ Ag ∈ C ∧ Ag.Supplier = ∅ Ag.Supplier = p

Table 5.1: DMN management mperations

Operation PostCondition Precondition

RemoveAgreement(Ag) ag /∈ C ag ∈ C
RemoveComponent(cp, Ag) ag ∈ C ∧ cp /∈ ag ag ∈ C ∧ cp ∈ ag
RemoveOConstraint(cn, Ag) cn is not a subformula of Ag.PCC cn is a subformula of Ag.PCC
RemoveCConstraint(cn, Ag) cn is not a subformula of Ag.PCC cn is a subformula of Ag.PCC
RemoveRelationship(Ag1, Ag2, r)r does not link Ag1 and Ag2 r links Ag1 and Ag2

RemoveException(NonAg) NonAg /∈ C NonAg ∈ C
RemoveRequester(p, Ag) p ∈ PM.P ∧ Ag ∈ C ∧ Ag.Requester = ∅ Ag.Requester = p
RemoveSupplier(p, Ag) p ∈ PM.P ∧ Ag ∈ C ∧ Ag.Supplier = ∅ Ag.Supplier = p

Table 5.2: DMN management mperations

semantic notation as follows (the same applies for remaining operations. Notice that we

use the same notation as [Win93]):

〈exists(c), σ〉 → true
〈RemoveComponent(c), σ〉 → σ′

(5.1)

This statement indicates that to remove the component c from the current state σ of the

contract, this component should exist in the contract model.

Concurrent invocation of primitive operations to manage evolutions of the collabo-

ration contract model could be problematic as illustrated by the following example:

Example 9. Consider that coordinator1 wants to remove a particular agreement in the collabora-

tion contract. In the meantime, suppose that the associated supplier, that is participant1, in this

agreement arrived to the same conclusion and decided to remove the agreement too. When both

partners call the RemoveAgreement operation simultaneously, although the first operation call

will succeed, the second call will generate an exception. The second call no longer complies with

the precondition of the operation RemoveAgreement that requires the presence of the agreement

in the contract model.

5.5. Operations for DMN Management 123

5.5.2 Basic Operations

In order to resolve the concurrent calls issue of primitive operations, we take advantage

of the visual management interface and use an event-based approach to invoke primi-

tive operations. Basic operations are duplications of primitive operations that partners

invoke through the visual interface as depicted in Figure 5.5. When coordinators/partici-

pants invoke a basic operation (by pressing the corresponding button in the management

interface), instead of calling the corresponding primitive operation, this call generates

an event. This event is an intermediate means to call the corresponding primitive opera-

tion. Events have the advantage to be discrete in the sense that they can be organized in

a queue structure. An event contains the information to be incorporated in the contract

model, it is defined as a tuple with a single field 〈tailoring_element〉. A module of the

contract management called the event manager manages the calls to primitive operations.

A primitive operation is executed when the payload of the event residing in the head of

the queue satisfies its precondition. In this case the event manager invokes the primitive

operation. Although the event manager eliminates the concurrent calls failures, it does

not resolve all issues:

Example 10. Suppose that coordinator1 and participant1 simultaneously call the operation Re-

moveAgreement. These calls will generate two events containing the same payload. When ana-

lyzing the incoming events, the event manager will call the RemoveAgreement operation. After

this call, the agreement ag will not exist in the contract anymore. Accordingly, the second

event payload will not match with the RemoveAgreement premises but, this time it matches with

AddAgreement premises as given in statement 5.2:

〈exists(ag), σ〉 → f alse
〈AddAgreement(ag), σ〉 → σ′

(5.2)

In this situation, the event manager will call the AddAgreement primitive operation, which was

not the aim of coordinator1!

The problem faced by the event manager is due to the non-exclusiveness when match-

ing the event content against the operations’ premises.

Since coordinators and participants call the contract management operation through

a visual interface, it is possible to incorporate the toggled button information in the

event in order to eliminate the non-exclusiveness for the event manager. Thus, an event

payload becomes the couple 〈tailoring_element, toggled_button〉. The new operational

124 Chapter 5. Managing Evolutions for Product Level Agreements

semantics of the basic operation RemoveAgreement(ag) is given in statement 5.3:

〈exists(ag), σ〉 → true
〈i f RemoveAgreementToggled → RemoveAgreement(ag) f i, σ〉 → σ′

(5.3)

Based on statement 5.3, the RemoveAgreement(ag) primitive operation is called if and

only if its premise is evaluated to true and the Remove Agreement button in the visual

interface has been pressed.

Using this formalization of operational semantics, the event manager will no longer

face non-exclusiveness situations.

Example 11. Consider the RemoveAgreement(ag) scenario again. Coordinator1 presses the

Remove Agreement button in the visual interface which will generate the event to remove the

agreement ag. In the meantime participant1 playing the role of supplier in the agreement ag

presses the same button in his interface which will generate an equivalent event. Although the

second event payload matches the premises of the AddAgreement operation (since the agreement

does not exist anymore) this operation will not be invoked because the AddAgreementToggled

condition is not satisfied as illustrated in statement 5.4.

〈exists(ag), σ〉 → f alse
〈i f AddAgreementToggled → AddAgreement(ag) f i, σ〉 → σ′

(5.4)

5.5.3 Composite Operations

Basic operations aim to provide partners with satisfactory flexibility to manage con-

tracts. Sometimes coordinators could have redundant needs for specific sequences of

management operations. Hence, instead of calling each basic operation separately, it is

better to provide coordinators a single high level operation, i.e. a composite operation.

This composite operation is constituted of successive calls to primitive operation. The

question that raises: when building composite operations should we directly make invocations

to primitive operations (without using the event manager) or invoking basic operations instead?

Building composite operations by making direct invocations to primitive operations

would lead to the same concurrent issue discussed previously. Hence we should use the

second alternative.

Composing basic operations to generate more high level operations needs to ensure

the exclusiveness condition for the basic operations invoked. In other terms, the buttons

corresponding to basic operations should be pressed. This is a challenging issue since

the aim of composite operations is to prevent partners from calling basic operations by

themselves. It is possible to resolve this issue by automatically generating the events

5.5. Operations for DMN Management 125

corresponding to basic operations each time a complex operation is invoked. To create

a complex operation a partner can simulate its execution by invoking basic operations

that compose it. In the meantime an event recorder records the generated events. At

the end of the simulation, the result is an automaton that saves the generated events

and their sequence. Later on, when this composite operation is invoked, the previously

generated automaton is executed by sending the events to the event manager which is

equivalent to make calls to basic operations. Thus, we no longer face concurrent issues

for composite operations.

5.5.4 Committing Changes

In the previous subsections we defined three types of operations to manage contracts

in the context of a DMN. In this subsection, we determine which basic operations calls

shall be followed by a commit through a set of lemmas. Then Algorithm 8 uses these

lemmas to automate the commit operation.

Lemma 7. Suppose that the cross-organizational process corresponding to a contract C is exe-

cutable and suppose for the agreement Ag1 : Ag1.Requester �= ∅ and Ag1.Supplier �= ∅ and

Ag1.object �= ∅. In this case a call to AddOConstraint(cn1, Ag1) from Table 5.1 on C will

commit the changes to the underlying cross-organizational process.

Proof. Referring to Algorithm 7, we prove that the Ag1.Requester process and Ag1.Supplier

process remain interoperable after executing this operation. (i) The condition of syntac-

tic interoperability is satisfied since adding a constraint to an existing agreement will

generate new message exchange activities in the underlying processes. These activities

will use the same language to serialize the exchanged messages. (ii) The condition of

semantic interoperability is satisfied since the generated messages belong to existing

ontologies (no new mapping needed). (iii) The condition of structural interoperabil-

ity is satisfied since the process generation algorithm by default generates structurally

interoperable processes as we have seen in the previous chapter.

Thus Algorithm 7 returns the value false for αstr, αsyn, αsem. Accordingly the gen-

erated processes are interoperable, therefore the cross-organizational process remains

executable.

Lemma 8. Suppose that for an agreement Ag1, Ag1.Supplier = ∅ ∧ Ag1.Requester = ∅.

Committing AddRequester(q1, Ag1) does not maintain the interoperability of the cross-organizational

process.

126 Chapter 5. Managing Evolutions for Product Level Agreements

Proof. Referring to Algorithm 7, we prove that if a commit is performed, the process

that results will not be executable. Indeed, if a commit is realized, the Requester q1

will send messages while there will be no receiver. Thus the structural interoperability

is not ensured (αstr = true). Thus the cross-organizational process fragments are not

interoperable and not executable (proposition 1).

Theorem 7 states that even though a change in the contract does not commit, it exists

a finite sequence of operations that can be executed and will lead to a commit.

Theorem 7. Let op0 be a basic operation and σ0 the current state of the DMN contract. If

〈op0, σ0〉 → σ1 then ∃op1, op2...opn such that 〈op1, σ1〉 → σ2, 〈op2, σ2〉 → σ3... 〈opn, σn〉 →
σn+1∧σn+1 is a state of the DMN contract model that generates an executable cross-organizational

process.

Proof. The proof proceeds by induction on the type of operation. We show by cases

on the type of non-committable operations (proved in lemmas) the existence of a finite

sequence of operations that ends up by an executable cross-organizational process. For

example for the operation AddRequester(q1, Ag1) presented in Lemma 8, after adding

the requester, adding the supplier using the operation AddSupplier(r1, Ag1) will lead to

a commit because the processes of q1 and r1 will be interoperable.

For each operation we use the same proof approach to determine whether its execu-

tion will commit the change or not. Algorithm 8 maintains the cross-organizational pro-

cess executable each time a basic operation (or composite operation) is called. Basically,

if an operation is proved to maintain the DMN cross-organizational process executable

then it commits the change otherwise it does not.

Algorithm 8 Maintaining DMN cross-organizational process executable
Require: An invoked operation op to tailor the DMN
Ensure: no output

if op has been proved to maintain the DMN cross-organizational process executable
then

Commit
end if

When the commit operation is invoked, it performs four basic actions:

1. Stop the running process instance while keeping the trace of this instance

2. Modify the schema of the cross-organizational process by incorporating the re-

quested change and create a new version of the schema

5.6. From Solution Plans To Executable Workflows 127

3. Deploy the new process schema into the workflow engine by creating a new in-

stance

4. At this stage, do not restart the instance from the beginning but resume it from the

trace of the previous instance execution.

We give a formal definition to the commit operation:

Definition 23. The precondition of the commit operation regarding a particular agreement is:

Requester �= ∅ ∧ Supplier �= ∅ ∧ Component �= ∅.

The postcondition of the commit operation on a particular agreement is the execution of the

algorithm of workflow generation presented in the previous chapter.

5.6 From Solution Plans To Executable Workflows

5.6.1 Approach Overview

In the previous sections we developed the formal foundations for a management frame-

work that handles changes that could occur in the DMN at run-time. More specifically,

we defined the operations that allow coordinators and participants to perform changes on

the configuration of the contract.

In a DMN, a coordinator may decide to change multiple agreements in the contract.

For example he may remove the suppliers in different agreements; he may also remove

obligations and characteristics in other agreement with the perspective to replace them.

To recover all these removals and resume the collaboration for the modified agreements,

the coordinator needs to keep track of what has been removed and needs to be replaced.

This mental effort could be painstaking and error-prone since it is possible that the

coordinator forgets to add a supplier for a given agreement which could delay the commit

of that agreement.

In order to assist coordinators in recovering what they have removed, we develop an

approach that analyzes the current state of the contract and finds out what is missing

for each agreement to become committable. Then, from this contract snapshot, the

approach generates the operations that will guide coordinators in recovering the contract

and resume the collaboration. Figure 5.6 gives an overview of the proposed approach.

The contract analysis module in Figure 5.6 is the core module of the recovery ap-

proach. To implement the functionality of this module, we use the planning-graph

algorithm[NGT04]. Indeed, we have already defined the preconditions and post-conditions

of management operations. The planning-graph algorithm will analyze the contract

128 Chapter 5. Managing Evolutions for Product Level Agreements

Collaboration
Contract

Contract Analysis
Module

Specification of
Management

Operations

Requesters and Suppliers in Agreements

Succession of
management Operations
to recover the contract

Recovery Module

Figure 5.6: Overview of the recovery approach

specification and then from the definitions of operations, it can deduce what operations

should be executed to make the contract committable. Nevertheless, the solution plan

generated by the planning-graph algorithm is constituted of a sequence of sets of op-

erations: Π = 〈π1, π2, ..., πn〉. The operations in each πi can be executed in any order.

Hence, if we want to automate the execution of this sequence of sets of operations, we

need to load them in a workflow engine. Nevertheless, a workflow engine cannot exe-

cute a raw set of operation. Each set of operations should be embedded into a construct

(a workflow pattern WP) that interconnects the operations in this set. In this case, the

workflow engine can parse this workflow pattern and then automate the flow of execu-

tion of the operations in the set.

Several WPs exist that can ensure a random execution of operations in a specific

set πi. For example: the ParallelSplit or the SyncParSplit [B0̈7]. Thus to make a so-

lution plan Π executable by a workflow engine, there is a need to automatically or

semi-automatically decide on what pattern to use to encapsulate a particular set πi. Our

approach supports the semi-automatic selection of the appropriate WP.

5.6.2 Problem Position

The execution of the sets of operations generated by the planning-graph algorithm will

resolve the problem but their sequencing is not executable by an engine. The engine

needs more information on the parallelism, the sequencing or the randomness of oper-

ations in each set. The extension that we will bring to the planning-graph algorithm in

the remaining of this chapter aims to enrich a solution plan Π with information related

to the ordering of operations. This information can be deduced from the position of

5.6. From Solution Plans To Executable Workflows 129

Contract with agreements Pre/Postconditions of
management operations

1. Solution Plan generator based
on Graph-planning Algorithm

2. Generating the workflow
implementing

2.1. Build the Workflow Tree
corresponding to

2.2. Static raffinement of the
Workflow Tree

2.3. Interaction with agents to
specialize the workflow

Workflow Patterns Hierarchy

Figure 5.7: Overview of the extension of solution plans

the operations in the overall set but it may also come from the agents (partners) that

will execute the operations. The result of the proposed approach is a recovery workflow

that is executable by a workflow engine. It will make all agreements in the contract

committable and thus helps resume the collaboration.

For our running example, if we submit the contract having the agreement depicted

in Figure 5.1 (after removals), the planning-graph algorithm will analyze it and will

generate the following two exclusive solution plans to :

1. Π1 = 〈π1 = {AddOConstraint, AddCConstraint, AddSupplier}〉

2. Π2 = 〈π1 = {RemoveAgreement}〉

Indeed, there are two cases for which an agreement can be committed. Either, it should

contain all information (this is whet the solution plan Π1 achieves). The other case is

that the agreement is completely removed from the contract (this is what the solution

plan Pi2 achieves).

We develop a three-step approach to organize the solution plans operations into an

executable workflow. Figure 5.7 gives an overview of the proposed three-step approach.

In the next subsections, we will elaborate on the three steps that generate an exe-

cutable workflow from solution plans.

130 Chapter 5. Managing Evolutions for Product Level Agreements

5.6.3 Step 1: Workflow Tree Generation

In this section, we develop the algorithm that generates the Workflow Tree (WT) from

several solution plans for the same planning problem.

Definition 24. The Workflow Tree (WT) (similar to the process tree defined in [GBn06]) is a

tree structure generated from a set of solution plans {Π1, ...Πm} and recursively defined by:

• Each leaf is an action (a management operation) of the solution plan Πj

• Each action in the WT is defined by the tuple: 〈ID ∈ Activity, thread ∈ Thread, precond ∈
Precondition〉

• Each leaf is a child of the Block node

• Blocks corresponding to leaves of the same πi have a common Block that is πi’s Block

• πi’s Block is connected to πi+1’s Block by a Sequence WP

• Πj sub-tree of a solution plan is connected to another solution plan Πj+1 of the same

planning problem through Block construct

• Each node of the tree is annotated with the disjunction of its children preconditions

To complete the construction of the WT, we need to run Algorithm 9 in order to

organize the actions of each πi to obtain the least number of commits.

Algorithm 9 Organize πi’s actions for the least number of commits
Require: the WT enriched with Blocks’ preconditionsR
Require: the commit action preconditions: precond(commit)
Ensure: a refined WT for commit

1: for all πi ∈ Π do
2: actionsLeadingToCommit = {a : a ∈ πi∧ |= precond(commit)⇒ postcond(a)}
3: Block1 ← insert a common Block node for actions ∈ actionsLeadingToCommit
4: Block2 ← insert a common Block node for actions /∈ actionsLeadingToCommit
5: insert a Sequence node between Block1 and Block2
6: end for

The objective of Algorithm 9 is to better refine the set of actions of a solution plan

generated by the planning-graph algorithm. Indeed, the actions belonging to each set πi

can be executed in any order that will lead to the same final result. Nevertheless, to re-

duce the number of commits to the running workflow, we need to add more constraints

on the order of actions belonging to the same πi. This order should place the actions

that do not lead to a commit in the beginning of the sequence and the actions that will

lead to a commit at the end of the sequence.

5.6. From Solution Plans To Executable Workflows 131

Block Block Block Block

Block

Sequence

Block

Add Obligation
Constraints (AddCo) Add Supplier Remove Agreement Add Characteristic

Constraints (AddCb)

Figure 5.8: Workflow Tree Example

Arbitrary Cycle Arbitrary Cycle Arbitrary Cycle Arbitrary Cycle

SynchParSplit

Sequence

Exclusive Choice

Add Obligation
Constraints (AddCo) Add Supplier Remove Agreement Add Characteristic

Constraints (AddCb)

Figure 5.9: Workflow Tree after refinement

To find the actions that lead to a commit in a solution plan, we can use the fol-

lowing observation: the precondition of an action a that leads to a commit is a sub-

formula of the precondition of the action commit (see Definition 23). Thus, the formula

precond(commit) ⇒ postcond(a) is valid (e.g. |= A ∧ B ⇒ A). Instruction 2 of the

Algorithm 9 relies on this observation.

Figure 5.8 depicts the WT corresponding to the result of applying the WT generation

and the Algorithm 9 on our running example. More specifically, Algorithm 9 creates a

Sequence WP between the nodes α3 and α4 since the AddSupplier operation will lead to

a commit.

5.6.4 Step 2: Refinement of Blocks in the WT

The main algorithm of this Step (Algorithm 10) traverses recursively the WT generated

in Step 1 (Figure 5.8) starting by its root to specialize the Block nodes interlinking the

different actions in each πi and between Πj. It replaces the encountered Blocks with the

appropriate workflow patterns WP. The final result of the application of Algorithm 10

132 Chapter 5. Managing Evolutions for Product Level Agreements

is depicted in Figure 5.9. This Algorithm uses other algorithms that we will detail

subsequently.

Algorithm 10 Replace All Children by WP Patterns:
replaceChildrenBlocksByPatterns
Require: Workflow Tree Root: root
Ensure: WT with instantiable patterns

1: if NbrChildren(root) = 0 then
2: return
3: else
4: SetOfChildren ← obtainChildren(root)
5: for all αi ∈ SetOfChildren do
6: replaceChildrenBlocksByPatterns(αi)
7: determinePattern(αi) //Once all αi’s children have been replaced by appro-

priate WPs, the algorithm determines the pattern of the current node αi
8: end for
9: end if

To determine the pattern that will replace each Block αi in line 7 of Algorithm 10, we

need to rely on a formal representation of WPs that allows the algorithm to automatically

select the adequate WP for each encountered Block. We use the formalization of WPs in

terms of Abstract State Machines (ASM) developed by [B0̈7] to develop the selection

algorithm.

Basically, our approach consists in extracting the ASM signature of a Block and then

try to find the WP that has a signature equivalent to the Block’s signature using a formal

comparison.

In the following subsection we detail the different steps of the algorithm of the pro-

cedure determinePattern .

5.6.4.1 Replacement of Block Nodes in the WT

From term evaluation definition (Definition 6 in Chapter 3), the WT leaves can be seen as

values of terms belonging to the sort Activity. In order to find the pattern that replaces

a given Block in the WT, Algorithm 11 generates the possible signatures that can be

associated with the encountered term evaluation (line 5).

Line 5 of Algorithm 11 expects an array because a term value could be computed

using different ASMs functions and thus it could belong to different ASMs sorts. Al-

gorithm 12 aims to determine the functions that could generate the current term value

as well as the sorts to which the current term value belongs. It also constructs the

preconditions associated to the generated signature.

Example 12. Referring to Figure 5.8, when applying Algorithm 12 on the term value AddCo, it

5.6. From Solution Plans To Executable Workflows 133

Algorithm 11 Determine the right pattern and insert it into the WT:
determinePattern
Require: Block: αi ∈ WT
Ensure: Replacement of a set of patterns in WT corresponding to the combination of

activities children of αi
1: if αi isOfSort Activity then
2: return
3: else
4: for all aj childOf αi do
5: [Σ0, ..., ΣM]← generateSignature(ai)
6: end for
7: Σαi ← merge([Σ0, ..., ΣM])
8: var result : ASM
9: for all asmWP ∈ WP_Tree do

10: appropriateOK ← checkAppropriateness(Σαi , asmWP)
11: if appropriateOK then
12: if result = null∨ inheritsFrom(result, asmWP) then
13: result ← asmWP
14: end if
15: end if
16: end for
17: tailor(result, αi)
18: end if

Algorithm 12 Generate List of Sorts associated to a term value: generateSignature
Require: A term value: ValB(t)
Ensure: The list of possible signatures of terms that could be associated to this value

1: Find all functions { f1, f2..., fN} st: ValB(t) ∈ range(fi)i=1..N
2: if { f1... fN} = ∅ then
3: Find Sa s.t. Value(a) = ValB(t)
4: Σ0 ← (S0 = {Sa}, Ω0 = ∅)
5: generatePrecondition(Σ0)
6: return Σ0
7: end if
8: for all fi(xi1, xi2..., xip) ∈ { f1, f2..., fN} do

9: Determine the values of each relevant xij from ValB(t) using f−1
i

10: for all j = 1..p do
11: 〈Sfij , Ωij〉 ← generateSignature(Val(xij))
12: end for
13: Σi ← (∪p

j=1Sfij , { fi} ∪ ∪p
j=1Ωij)

14: generatePrecondition(Σi)
15: end for
16: Return {Σ0, ..., ΣN}

134 Chapter 5. Managing Evolutions for Product Level Agreements

will generate the signature: ΣAddCo = (S = {Activity = {AddCo}, Thread = {coordiantor1}}, Ω =

∅). And Σα1 .Precondition = (|Activity| = 1∧ |Thread| = 1).�

Determining the signature of a node αi. Once all possible signatures of each child

of a particular node αi are generated, Algorithm 11 merges them to build a signature

associated to αi (line 7). The merge is made by creating a new signature where the col-

lection of sorts Σαi .S is the union of collections of sorts of the generated signatures. The

collection of ASM functions Σαi .Ω is the union of collections Ω of the generated signa-

tures and the precondition of αi is generated using the specificities of the cardinalities of

the new collection Σαi .S sets.

Example 13. 1. The procedure merge generates the signature Σα1 for the Block α1 from the

signature of AddCo, where Σα1 = (S = {Activity = {AddCo}, Thread = {coordiantor1}}, Ω =

∅) and Σα1 .Precondition = (|Activity| = 1 ∧ |Thread| = 1). The same for Σα2 with

AddCb.

2. The procedure merge generates the signature Σα3 for the Block α3 from the signatures of α1

and α2, where Σα3 = (S = {Activity = {α1, α2}, Thread = {coordiantor1}}, Ω = ∅)

and Σα3 .Precondition = (|Activity| > 1∧ |Thread| = 1).�

Replacing the node αi with the appropriate pattern. While traversing the tree of

WP ASMs, Algorithm 11(line 9) uses the property of state-term appropriateness of Def-

inition 5 in Chapter 3 to determine the right WP that can replace a particular Block.

It uses the procedure checkAppropriateness described in Algorithm 13 to check

whether the candidate WP ASM signature has equivalent sorts with the generated sig-

nature (line 3) and whether they have equivalent set of functions (line 4). In addition,

it checks whether the preconditions of executing the WP ASM are satisfied by the pre-

conditions of the generated signature (line 5). Since an ASM could use other ASMs as

functions, checkAppropriateness should also check the appropriateness with these

ASMs (lines 6,7,8). When Algorithm 11 finds the appropriate pattern, it inserts it into

the WT (line 17).

Example 14. 1. The procedure checkAppropriateness returns true when comparing

Σα1 with the signature of the ASM of the pattern Arbitrary Cycle. The reason is that

this is the WP that uses a single activity run by a single thread (i.e. ΣArbitraryCycle =

(S = {Activity, Thread}, Ω = ∅) and ΣArbitraryCycle.Precondition = (|Activity| =
1∧ |Thread| = 1)) [B0̈7].

2. The procedure checkAppropriateness returns true when comparing Σα3 with the

signature of the ASM of the pattern SyncParSplit. This WP splits the process flow be-

5.6. From Solution Plans To Executable Workflows 135

tween multiple activities (|Activity| > 1) while all activities are being executed by the

same agent (|Thread| = 1) [B0̈7].

�

Algorithm 13 Check appropriateness between two signatures:
checkAppropriateness
Require: A term t signature Σt and a WP signature Σwp
Ensure: True if Σt and ΣWP are appropriate. False, otherwise

1: Boolean: b1, b2, b3, b4
2: b4 ← True
3: b1 ← (∀Si ∈ Σt.S, ∃Sj ∈ Σwp.S such that Si ≡ Sj)
4: b2 ← (∀ fi ∈ Σt.Ω, ∃ f j ∈ Σwp.Ω such that fi ≡ f j)
5: b3 ← (Σt.Precondition ∧ Σwp.Precondition)
6: for all asm : hasInput(Σwp, asm) do
7: b4 ← b4∧checkAppropriateness(Σt, Σasm)
8: end for
9: return b1 ∧ b2 ∧ b3 ∧ b4

For performance considerations, Algorithm 11 relies on three heuristics to reduce the

number of patterns to be visited in the WP tree. Indeed, Van der Aalst et al. [ATH12]

claim that nearly 20% of process instances need more advanced patterns in comparison

to the ones that have been identified. Thus the number of overall patterns can increase in

the future. Accordingly, we need to address performance issues earlier. When traversing

the WP signatures:

1. We do not check the Selection patterns sub-tree since there is no selection when

executing the actions in a particular set πi. The reason is that all actions of all sets

of the solution plan Π should be executed to reach the goal.

2. We do not check the Sequence patterns sub-tree since there is no need to constrain

actions of a set πi to be executed in a particular sequence. The arbitrary order of

actions execution can be ensured with the ParallelSplit patterns sub-tree.

3. We do not check the Merge patterns sub-tree. Indeed, by default each ParallelSplit

pattern selected by Algorithm 11 must be associated with a Merge pattern in order

to meet the definition of well-formed workflows (a formal definition of this notion

is given in [ODtHvdA06]). Thus, the Merge patterns will be inserted automatically

during the generation of the workflow model.

At this point, we have replaced all Block nodes in the WT using replaceChildrenBlocks

ByPatterns. Nevertheless, the selected pattern could be not specialized enough to im-

plement the exact control flow behavior required by the agent. In this case, to generate

136 Chapter 5. Managing Evolutions for Product Level Agreements

the workflow, we need further information to select the most specialized pattern. This

information can be provided by the agents who will exectue the actions of the workflow.

Hence, we need to formally determine what information the agents should provide to

achieve the selection. Step 3 computes the formal parameters that an agent (coordinator)

should provide in order to generate the workflow that exactly fits his expectation in term

of control flow.

5.6.5 Step 3: Pattern Specialization by Progressive Agent Interaction

In Step 1, we have generated the Workflow Tree WT from the solution plans Πj. In Step

2, we have traversed the WT and have specialized the Block nodes using the specification

of WP in term of ASM. The objective of Step 3 is to traverse the WT again in order to

generate the executable workflow for the solution plans Πj. When the algorithm of Step

3 encounters a node representing a WP, this pattern could be not specific enough since

in Step 2 we did not have all necessary information to select the most specific pattern

corresponding to the agent preference. Thus, the algorithm of Step 3 should include all

possible children of this pattern in the Workflow model to that it generates. The decision

of what pattern to instantiate will be taken at runtime while executing the workflow. In

order to select the most specific pattern, we should obtain additional information on the

behavior of the workflow model as desired by the agent. For this reason, there are three

challenges that need to be addressed:

5.6.5.1 Challenge 1: Asking the Agent the Information to Select the Right Pattern

The information that the workflow should acquire from the agents to follow the right

execution path consists in the additional parameters that differentiate between specific

and generic patterns in the hierarchy of Figure 3.6. In this case the ASM formalization

is very beneficial. The algorithm of Step 3 can formally compute the parameters that the

workflow should ask from the agent to follow the path that leads the workflow control

to the right WP. This requires: (i) defining the possible inheritance modes between two

ASMs, and (ii) defining the substraction operation between two signatures Σ1 and Σ2 in

order to obtain the required parameters.

Considering the ASM formalization of WP, there are three possibilities through

which a pattern can inherit from another pattern:

1. The child pattern adds a set of sorts or a set of functions to the signature of the

parent pattern

5.6. From Solution Plans To Executable Workflows 137

Inheritance mode identifier Inheritance mode Formalization

1 Additional sorts |ΣP.S| < |Σp.S|
2 Additional functions |ΣP.Ω| < |Σp.Ω|
3 Specialization of sorts ∃ΣP.Si ∧ ∃Σp.Sj : Σp.Sj ⊂ ΣP.Si
4 Specialization of functions ∃ fiΣP.Ω ∧ ∃ f jΣp.Ω : f j < fi

Table 5.3: Inheritance Modes: p inheritsFrom P
f 1 2 y 1 � 2 R f y fi y

ΣR.S =

⎧⎪⎪⎨
⎪⎪⎩

Σ1.S −Σ2.S
∪
{Sk}k∈K s.t. ∃Sm ∈ Σ1.S : Sm =def Sk ∧ ∃Sl ∈ Σ2.S : Sl =

def Sk

∧Sk.univ = Sm.univ ∩ Sl.univ ∧ Sk �= ∅
ΣR.Ω = Σ1.Ω −Σ2.Ω

Definition 10. (Inheritance Value) The inheritance value between two WP sig-

Figure 5.10: Substraction of Signatures

2. The child pattern specializes a set of sorts or a set of functions from the signature

of the parent pattern:

(a) A function f ′ inherits from a function f if f ′ implements the behavior of f

with additional instructions

(b) A sort S′ inherits from a sort S if S′ universes are included in the universes of

S

Table 5.3 formalizes the possible inheritance modes between a pattern and its chil-

dren. Nevertheless, these modes can be combined and we could have a total of 15

inheritance modes.

Example 15. The ASM SyncParSplit inherits from ParallelSplit because it specializes the

sort Thread such that we always have: ThreadSyncParSplit ⊂ ThreadParallelSplit (inheritanceMode

= 3).�

Definition 25. (Substraction of Signatures) Let Σ1, Σ2 be two signatures. The substraction of

Σ1 and Σ2 denoted by Σ1 � Σ2 = ΣR is formally defined by the specification in Figure 5.10. The

next example illustrates this operation.

Definition 26. (Inheritance Value) The inheritance value between two WP signatures ΣP and

Σp s.t. p inherits from P consists of the universe of sorts (Σp � ΣP).S and the functions of the

set (Σp � ΣP).Ω.

Example 16. Consider that:

138 Chapter 5. Managing Evolutions for Product Level Agreements

• ΣIterate = 〈S = {Activity}, Ω = ∅〉

• ΣArbitraryCycle = 〈S = {Activity}, Ω = {StopCriterion}〉

In this case, ΣR = ΣArbitraryCycle � ΣIterate = 〈∅, Ω = {StopCriterion}〉.

The Substraction operation helps us find what information the agent should provide

in order to be able to instantiate the right pattern. Algorithm 14 uses the substraction

operation to generate a more specific pattern during the traversal of the WT and the

generation of the workflow.

Algorithm 14 Generate Specific Pattern: generateSpecificPattern
Require: An abstract pattern in the WT: P
Ensure: A workflow fragment to instantiate the pattern

1: if |child(P)| = 0 then
2: return; // the pattern has no children in the pattern hierarchy
3: end if
4: for all p subclassOf P do
5: ΣR = Σp � ΣP
6: Create an Input Activity to ask for ΣR.S.Universes values
7: Create an Input Activity to ask for ΣR.Ω functions
8: Assign the input activities to the right agents
9: generateSpecificPattern(p)

10: end for
11: Attach a XOR pattern After the input followed by the found patterns in addition to

P as a default choice
12: for all transitions ti out of XOR do
13: Attach to ti the inheritance mode and the value of the signature ΣR
14: end for

5.6.5.2 Challenge 2: Associating the XOR output flows with the Right Conditions.

As claimed above, the right pattern to be followed during the execution of the workflow

is decided at run-time. For this reason Algorithm 14 attaches XOR patterns (line 11) in

order to choose the right pattern at run-time. Moreover we need to associate the output

flows of the XORs with the right conditions on the inputs given by the agents:

Definition 27. (Condition Couple) The condition associated to the XOR output flow is a couple

〈inheritanceMode, inheritanceValue〉.

Associating the XOR output transitions to the couple 〈inheritanceMode, inheritanceValue〉
is sufficient to ensure the exclusion between the flows.

5.7. Application Example 139

Proof. (By contradiction) Suppose we have two patterns p1, p2 using the same inheritance

mode and the same inheritance values from a pattern P. Thus Σp1�ΣP = Σp2�ΣP = ΣR

⇒ Σp1 = ΣR ∪ ΣP ∧ Σp2 = ΣR ∪ ΣP

Since ΣR ∪ ΣP = ΣR ∪ ΣP then Σp1 = Σp2. Therefore, p1 and p2 are the same pattern.

5.6.5.3 Challenge 3: Pattern Specialization for Parallel Control Flow Patterns

Algorithm 14 can be directly used for abstract patterns associated to a specific agent (i.e.

Sequence Control Flow Patterns). However there is an entire class of patterns that is not

associated to a particular agent (e.g. the parallel control flow patterns: ParallelSplit,

Merge etc.). In this case, there should be a rule to allow Algorithm 14 to find the right

agent for instruction in line 8.

To select the right agent we first start by formally defining a transition in a workflow:

Definition 28. In a workflow model, a transition between two blocks is a tuple: 〈transitionID, f rom, to〉
where transitionID is an attribute representing the identifier of the transition. f rom is an at-

tribute representing the source block of the transition, and to is an attribute representing the

destination block of the transition.

We rely on the rule defined by [DDDM11]. Indeed, Delias et al. claim that control

flow patterns ParallelSplit2 (and its children patterns) are handled as a form of postac-

tivity processing in the attribute from. Accordingly, the agent who can specify what

pattern to use is the agent that executes the activity in the from attribute of the transition

specification. Additionally, Delias et al. also claim that control flow patterns Merge3 (and

its children patterns) are handled as a form of preactivity processing in the attribute to.

Accordingly, the agent who can specify what pattern to use is the agent that executes

the activity in the to attribute of the transition specification. Algorithm 15 determines

for every Parallel control flow block the agent that could specify the inputs required to

decide on what pattern to use:

5.7 Application Example

In this section we review how the complete workflow corresponding to the running

example is generated. We limit our presentation for the solution plan Π1 having the

following set of actions (see definition of an action in Definition 24):

2they called them AND Split
3they called them AND Join

140 Chapter 5. Managing Evolutions for Product Level Agreements

Algorithm 15 Determine the agent: determineAgent
Require: WT, Hierarchy of patterns, pattern: p
Ensure: Agent

1: if p is a ParallelSplit then
2: if p.InputTransition. f rom is an Action then
3: return p.InputTransition. f rom.Agent
4: else
5: if p.InputTransition. f rom is a Merge then
6: Assign to p.InputTransition. f rom the agent of its corresponding ParallelSplit

7: return p.InputTransition. f rom
8: else
9: return determineAgent(p.InputTransition. f rom)

10: end if
11: end if
12: else {The pattern p is a Merge}
13: if p.InputTransition.to is an Action then
14: return p.InputTransition.to.Agent
15: else
16: if p.InputTransition.to is a PrallelSplit then
17: return the agent of the ParallelSplit corresponding to p
18: else
19: return determineAgent(p.InputTransition.to)
20: end if
21: end if
22: end if

5.7. Application Example 141

• 〈AddCo, coordiantor1, Co /∈ Agreement〉

• 〈AddCb, coordiantor1, Cb /∈ Agreement〉

• 〈AddSupplier, coordiantor1, Supplier /∈ Agreement〉

5.7.1 Execution of the determinePattern Algorithm 11 to Replace Blocks

This algorithm starts by determining the signatures of the ASMs corresponding to the

actions AddCo, AddCb:

• ΣAddCo = (

⎧⎪⎪⎨
⎪⎪⎩

Activity = {AddCo}
Thread = {coordiantor1}

Preconditions = {Co /∈ Agreement}

⎫⎪⎪⎬
⎪⎪⎭

, Ω = ∅)

• ΣAddCb = (

⎧⎪⎪⎨
⎪⎪⎩

Activity = {AddCb}
Thread = {coordiantor1}

Preconditions = {Cb /∈ Agreement}

⎫⎪⎪⎬
⎪⎪⎭

, Ω = ∅)

Once the signature of AddCo (respectively of AddCb) is generated, the determinePattern

can replace the Block α1 (respectively α2). In this case, the determinePattern executes

the instructions starting from line 9. Since |childO f (α1)| = 1 and with the assistance of

the identified heuristics, the resulting signature of α1 is:

Array(Σα1) = (

⎧⎪⎪⎨
⎪⎪⎩

Activity = {AddCo}
Thread = {coordiantor1}

Preconditions = {Co /∈ Agreement}

⎫⎪⎪⎬
⎪⎪⎭

, Ω = ∅) (5.5)

Respectively the signature of α2:

Array(Σα2) = (

⎧⎪⎪⎨
⎪⎪⎩

Activity = {AddCb}
Thread = {coordiantor1}

Preconditions = {Cb /∈ Agreement}

⎫⎪⎪⎬
⎪⎪⎭

, Ω = ∅) (5.6)

Checking the appropriateness of signatures Σα1 , Σα2 with the workflow patterns in

the WP hierarchy, we obtain the ArbitraryCycle pattern. Thus, the new WT is illustrated

in Figure 5.11:

We execute the same algorithm (determinePattern) on α3, we first obtain the

following array of signatures:

Array(Σα3) =

142 Chapter 5. Managing Evolutions for Product Level Agreements

Arbitrary Cycle Arbitrary Cycle Block Block

Block

Sequence

Block

Add Obligation
Constraints (AddCo) Add Supplier Remove Agreement Add Characteristic

Constraints (AddCb)

Figure 5.11: New version of the WT

(Σα31
= (

⎧⎪⎪⎨
⎪⎪⎩

Activity = {α1, α2}
Thread = {coordiantor1}

Preconditions = {Co /∈ Agreement ∨ Cb /∈ Agreement}

⎫⎪⎪⎬
⎪⎪⎭

, Ω = {TriggerExec(t, a)}),

Σα32
= (

⎧⎪⎪⎨
⎪⎪⎩

Activity = {α1, α2}
Thread = {coordiantor1}

Preconditions = {Co /∈ Agreement ∨ Cb /∈ Agreement}

⎫⎪⎪⎬
⎪⎪⎭

, Ω = {TriggerExec(a)}))(5.7)

Again, using the state-term appropriateness relationship between signatures, Σα31

will not be appropriate with the ParallelSplit pattern. The reason is that this pat-

tern requires as many agents as the number of actions. However Σα31
has two ac-

tions that should be executed in parallel by the same agent coordinator1 (the function

TriggerExec(t, a)) which is impossible. Thus, this signature is excluded.

The algorithm selects Σα32
since its signature is appropriate with the signature of Sync-

ParSplit pattern. It replaces the Block of α3 with SyncParSplit pattern in the WT.

Notice that algorithms developed in the literature do not perform such deep analysis,

they would simply have chosen the pattern ParallelSplit since it is the most generic

pattern even though, as we see here, it is not the appropriate one.

The final WT after the completion of Algorithm 11 is depicted in the Figure 5.9.

5.7.2 Generation of the Workflow Model

Once the WT has been generated, Algorithm 14 will generate the workflow model cor-

responding to this WT. For nodes α1, α2 we have replaced them with the ArbitraryCycle

pattern because this was the most specific pattern appropriate with the generated signa-

tures. Since ArbitraryCycle has children, then in order to further specialize the selected

pattern, we generate the corresponding workflow segment and attach it to the XOR

construct in order to select the most appropriate specialized pattern at run-time.

5.7. Application Example 143

Get Continue Criterion

Figure 5.12: Action to obtain the value of the parameter to follow the most appropriate
pattern at run-time

Algorithm 14 calculates the following differences between signatures when travers-

ing the WP hierarchy of Figure 3.6:

ΣR1 = ΣStructuredLoopPostTest � ΣArbitraryCycle = (S = act, Ω = ∅) (5.8)

The inheritance mode of ΣR1 is 3 of Table 5.3. For the mode 3, the reason is that the

ArbitraryCycle can be associated to several actions while the StructuredLoopPostTest

is associated to only 1 action.

ΣR2 = ΣStructuredLoopPreTest � ΣArbitraryCycle = (S = act, Ω = {ContinueCriterion}) (5.9)

The inheritance mode of ΣR2 is 3 and 4. The reason for the mode 4 is that the Struc-

turedLoopPreTest has an additional function: ContinueCriterion in its signature.

From ΣR1 and ΣR2 , we can compute what parameters the agent (coordiantor1) should

provide in order to determine what pattern to follow during the execution of the work-

flow. Accordingly, we generate the input action as depicted in Figure 5.12 in the final

workflow.

At this stage, the workflow has the necessary information to instantiate the right

pattern at run-time. From here we include a XOR pattern in order to select the right

pattern to follow depending on the data entered by the agent. We associate to each flow

the adequate condition. The output for this example is depicted in Figures 5.13 5.14

5.15.

Once the actions are encapsulated in the right patterns, we generate the fragments

for the remaining Blocks using the same algorithm. Considering the pattern SyncPar-

Split. This pattern is a leaf in the hierarchy tree. Thus, there is no need to specialize

it. Nevertheless since we must generate well-defined workflows, we need to associate

to each SyncParSplit a merge. Accordingly we need to insert input activities to ob-

tain information in order to select the Merge pattern that fits the agent needs. In this

example the agent that provides this information is automatically determined by the

144 Chapter 5. Managing Evolutions for Product Level Agreements

Get Continue Criterion

XOR

Add Co Add Co Add Co

Arbitrary Cycle Structured Loop Post-Test Structured Loop Pre-test

Figure 5.13: Add Co Block

Get Continue Criterion

XOR

Add Cb Add Cb Add Cb

Arbitrary Cycle Structured Loop Post-Test Structured Loop Pre-test

Figure 5.14: Add Cb Block

Get Continue Criterion

XOR

Add
Supplier

Add
Supplier

Add
Supplier

Arbitrary Cycle Structured Loop Post-Test Structured Loop Pre-test

Figure 5.15: Add Supplier Block

5.7. Application Example 145

determineAgent algorithm that is coordiantor1.

Without loss of generality we focus on a specific Merge sub-tree namely the Struc-

tured N-out-of-M in order to generate the possible merges corresponding to the agent

needs.

There are four possible merges that can be used to merge the flows of the SyncPar-

Split. The Merge, Structured-N-out-of-M, Generalized AND-Join, and Discriminator.

The signature of these patterns is a follows [B0̈7]:

• ΣMerge = (S = {Activity}, Ω = {exec, MergeEv0, PROCEED, RESET})

• ΣStructured−N−out−o f−M = (S = {Activity}, Ω = {exec, MergeEv1, PROCEED, RESET})

• ΣGeneralizedAND−Join = (S = {Activity}, Ω = {exec, MergeEv2, PROCEED, RESET})

• ΣDiscriminator = (S = {Activity}, Ω = {exec, MergeEv3, PROCEED, RESET})

Since Structured-N-out-of-M inherits from Merge, the workflow needs to exclude

between these two patterns at run-time. Thus the algorithm calculates the substraction

of their signatures:

ΣStructured−N−out−o f−M � ΣMerge = (S = ∅, Ω = {MergeEv1}) (5.10)

Algorithm 14 inserts input activities in the workflow in order to obtain the values of

MergeEv1 from coordinator1. Nevertheless, ΣStructured−N−out−o f−M has other inheriting

patterns. The algorithm considers them too by calculating the following substractions

and inserting the corresponding input activities in the workflow:

ΣGeneralizedAND−Join � ΣStructured−N−out−o f−M = (S = ∅, Ω = {MergeEv2}) (5.11)

ΣDiscriminator � ΣStructured−N−out−o f−M = (S = ∅, Ω = {MergeEv3}) (5.12)

Figure 5.16 shows the interconnection between patterns and the input activities in the

workflow.

The previous examples explain how each fragment of the process can be generated.

Figure 5.17 depicts the model of the complete workflow generated by our algorithms.

146 Chapter 5. Managing Evolutions for Product Level Agreements

Get

XOR

Segment that uses
the pattern

Get Get

Segment that uses the

pattern

Segment that uses the

pattern

Segment that uses the
pattern

Segment that uses the

pattern

XOR XOR

Figure 5.16: Merge patterns and their interconnections

5.8 Evaluation

5.8.1 Evaluation of the Number of Input activities

We establish a measurement to estimate the benefits of running the step 2. Indeed, if we

start the generation of the workflow from WT without replacing abstract Block nodes,

we should ask the agent to enter the inputs of all 43 patterns in order to decide what

pattern to use. The step 2 of our algorithm reduces the number of required inputs from

the agent. Figure 5.18 gives a comparison of the number of inputs required when step 2

is executed, and the number of inputs required when step 2 is not executed. We observe

that step 2 contributes significantly in reducing the number of required inputs from the

agent. This increases the automation level of the workflow generation.

5.8.2 Comparison with Existing Work Regarding the Size of the Generated

Workflow

We have compared on three cases the number of constructs of the executable workflow

generated by our algorithms and the number of constructs that could be generated us-

ing existing algorithms such as the one developed by [HVN+12]. Figure 5.19 depicts

this comparison. Although the number of constructs of our workflow evolves polyno-

mially in comparison to the linear evolution of the number of constructs of [HVN+12]’s

algorithm. This proves that much workflow semantic is not captured when using the

previous work algorithms.

5.8. Evaluation 147

Figure 5.17: The generated recovery workflow

148 Chapter 5. Managing Evolutions for Product Level Agreements

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Lo
ga

rit
hm

ic
 n

um
be

r o
f i

np
ut

s

Value of N/5

Number of inputs
without Step2

Number of inputs with
Step2

Figure 5.18: Step 2 evaluation

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4

N
br

 o
f C

on
st

ru
ct

s i
n

th
e

XP
DL

 m
od

el

Example of Generated Solution Plans

Nbr of Generated
Constructs for our
Approach

Nbr of Generated
Constructs for Existing
Approaches

Figure 5.19: Evolution of the number of XPDL constructs in the final workflow model

5.9 Conclusion

In this chapter we enriched the product-based contract framework with a set of man-

agement operations. These operations allow partners to tailor the configuration of the

collaboration contract at run-time. Furthermore partners can compose existing opera-

tions to create more complex operations.

When a management operation is executed its effect, if committed to the running

cross-organizational process, can create mismatches in this process model. Therefore,

we developed an algorithm that checks the existence of mismatches after the execution

of a management operation. If a mismatch exists, the commit will not be realized until

other management operations are executed which leads eventually to the removal of

the found mismatches. We proved that if a commit of an operation would create a

mismatch in the running cross-organizational process, there is always a suite of finite

operations that make all changes committable. Nevertheless, this suite of operations is

not always easy to find especially if there are multiple agreements in the contract that. To

help partners manage the contract, we developed an approach that generates a recovery

workflow. Basically, this approach analyzes the current (non-committable) state of the

contract and generates a recovery workflow that supports partners in incorporating the

5.9. Conclusion 149

changes that lead to the commit of all agreements in the contract. We extended the

planning-graph algorithm [NGT04] to generate this executable recovery workflow.

Until now we provided coordinators in the DMN with a framework to model the

collaboration by constructing a flexible collaboration contract. We enriched this frame-

work with management operations that shield partners not associated to modifications

in the DMN from their impacts. To complete our framework, we enrich it by providing

coordinators with an efficient monitoring capability that is the subject of the next chapter.

150 Chapter 5. Managing Evolutions for Product Level Agreements

Chapter 6
Patterns for Monitoring Product Level

Agreements

Contents

6.1 Introduction . 153

6.2 Running Example . 153

6.3 Challenges . 155

6.3.1 Providing an Efficient Execution Plan 155

6.3.2 Overview of the Proposed Approach 155

6.4 Preliminaries on Colored Petri Nets . 156

6.4.1 Global Declaration . 157

6.4.2 Types on Places . 157

6.4.3 Token Element . 158

6.4.4 Arc Expressions . 158

6.4.5 Guards on Transitions . 159

6.5 CPN Patterns for Decomposing a Service Composition 159

6.5.1 Adaptation of CPN Definition . 160

6.5.2 Patterns for Splitting Service Compositions 161

6.6 CPN Generation and Execution . 168

6.6.1 CPN generation . 168

6.6.2 CPN Execution . 171

6.7 Managing the Number of Running Threads 171

6.7.1 Event Condition Actions for Threads Management 172

6.7.2 ECA Rule for Starting a Two-Operator Pattern Thread (TH) . . . 173

151

152 Chapter 6. Patterns for Monitoring Product Level Agreements

6.7.3 ECA Rule for Killing a Two-Operator Pattern Thread 173

6.7.4 ECA Rule for starting a Single-operator Pattern and Precondi-

tion Pattern Threads . 174

6.7.5 ECA Rule for Killing a Single-operator Pattern and Precondition

Pattern Threads . 174

6.7.6 ECA Rule for Starting a Duplication Pattern Thread 174

6.7.7 ECA Rule for Killing a Duplication Pattern Thread 175

6.8 Integration of the Monitoring with the Product-based Contract Frame-

work . 175

6.9 Evaluation . 176

6.9.1 Evaluation Approach . 176

6.9.2 Discussion . 178

6.10 Conclusion . 180

6.1. Introduction 153

6.1 Introduction

Continuous monitoring of a business process is defined as the set of methodologies

and tools to collect and disseminate relevant information about the process execution to

interested stakeholders simultaneously with, or within a reasonably short period after

the occurrence of relevant events in the process [CV11].

During collaborative product design, business entities in an extended enterprise need

information about the activities taking place in the business landscape (at internal units,

partner organizations, or third parties) so that they can react and/or adapt to them.

Thus, business entities need mechanisms that ensure the collection of relevant data from

the environment [CAV12].

Monitoring is a well-known strategy that aims to inform business entities (sub-

scribers) interested in watching the unfolding of the collaboration between other busi-

ness entities (publishers). The publish/subscribe interaction paradigm provides sub-

scribers with the ability to express their interest in an event or a pattern of events

[EFGK03]. Several approaches were developed to perform monitoring using the pub-

lish/subscribe paradigm and a thorough survey can be found in [EFGK03] and [Tar12].

More specifically, a number of monitoring systems aim to filter the incoming events

depending on a specification set by the subscriber. They consider that a single event

contains all required attributes by the subscriber and it would be sufficient to efficiently

deliver this event to the subscriber [ASS+99]. Although this approach is practical, it

remains limited since attributes may arrive at different rates and not in a single block.

Other systems consider that events could come at different rates and address the prob-

lem of events correlation by waiting that all event attributes arrive before notifying the

subscriber [BMB+00]. However, these systems consider that there is no processing to

be performed on the incoming events and thus they deliver them to the subscriber as

they arrive. In the next subsection we provide a motivating example that illustrates the

importance of processing events during monitoring and the shortcomings of the current

approaches.

6.2 Running Example

In this example we carry on with the scenario of the Fuselage design and we extend it to

the Aircraft design. We consider that now the coordinator identified by D is the aircraft

architect and he wants to monitor how the aircraft structure will evolve. The collabora-

tive design of the aircraft structure involves the engineer (A) and the (Wing+Empennage)

154 Chapter 6. Patterns for Monitoring Product Level Agreements

designer (B), while the collaborative design of the Fuselage will involve A and the Fuse-

lage designer (C). The aircraft architect (D) may need to analyze how the aerodynamic

property of the whole aircraft structure (Wing + Empennage + Fuselage) evolves at real-

time. In this case D shall be able to subscribe to the exchanged messages between A

and B) and the messages exchanged between (A and C). Additionally, he shall be able to

define on-the-fly processing by combining incoming messages exchanged during the col-

laboration to obtain a high-level characteristic of the whole aircraft aerodynamic property.

For instance, A will iteratively exchange different values of (resistivity (x1) and curva-

ture (x2)) with B and (material (x3) and length (x4)) with C until achieving a satisfactory

configuration of the Wing+Empennage as well as the Fuselage. D would like to run a

composition of simulation services on the exchanged messages as depicted in Figure 6.1

to monitor the whole aircraft aerodynamic property. Using EPL (Event Processing Lan-

guage)1 languages and their associated mechanism to call external services (User De-

fined Functions), D could write the following query:

Insert into Aircraft_Aerodynamic_Evolution

Select s8(s1(x1, x3), s7(s4(s2(x1, x3)), s6(s5(s3(x4, x1), x3)))) as AAE

From xtopic
1 , xtopic

2 , xtopic
3 , xtopic

4

Where AAE > 50

Resistivity material

Service for Airflow
simulation of the
Fuselage Fuselage

Curvature material

Service for Airflow
simulation of the
Empennage Empennagege

Length Resistivity

Service for Airflow
simulation of the
Aileron Aileron

Service for Airflow
simulation of the
Tail

material

Service for Airflow
simulation of the
Spoiler

Service for Airflow
simulation of the
Wing

Service for Airflow
simulation of the
External Part External PartPart

Service for Airflow
simulation of the
Aircraft Aircraft

Figure 6.1: A tree representation of services composition

1http://esper.codehaus.org/

6.3. Challenges 155

6.3 Challenges

6.3.1 Providing an Efficient Execution Plan

The advantage of writing the previous query to monitor the evolution of the aerody-

namic property of the whole aircraft structure is that the query hides composition de-

tails from the aircraft architect D. Nevertheless, if we consider that the rate of occurrence

of x1, x3, x4 >>> x2, the execution plan corresponding to the monitoring query runs

the services s1...s8, specified in the query, only when the first occurrence of x2 occurs

even though some services are totally independent from x2: (s1, s3, s5, s6). This is what

happens when we run this query using monitoring software like Esper.

The shortcoming of the (naive) execution plan of this query is that it waits that all

events that are expected occur to start the processing of the composition. In this case

the execution engine performs a post-order traversal of the tree in Figure 6.1 and calls the

associated services. During the processing of these services for a particular set of values

of x1..x4, other instances may arrive. In this case the execution engine is obliged to block

them and not include them in xtopic
1 ...xtopic

4 until finishing the current execution. Once

it is done, the execution engine is obliged to include and process the new instances of

x1...x4 sequentially one by one. This leads to: (i) the execution of the same service several

times for the same inputs and (ii) sequential processing of messages. Accordingly, the

query processing time increases drastically.

6.3.2 Overview of the Proposed Approach

In the present contribution, we leverage the processing of events by a composition of

services. We use Colored Petri Nets (CPN) [Jen94] to define a set of patterns that will

be used to decompose a service composition specification that processes the incoming

events. The decomposition produces a set of sub-compositions that can be executed in

parallel. Consequently, we maximize the utilization of the monitor resources and deliver

the final result to the subscriber as fast as possible.

The contributions described in this chapter can be summarized as follows:

• We define a set of CPN patterns that will be used to decompose a service compo-

sition specification in order to execute its sub-parts in parallel

• We effectively correlate the instances of the separated messages when aggregating

the decomposition, and we formally prove that this aggregation is correct when

using our model;

156 Chapter 6. Patterns for Monitoring Product Level Agreements

• We formally prove that if a sub-composition is executed once for a set of instances

of messages, it will not be re-executed again for the same instances. This is highly

beneficial since some services could take long time to return results and it would

be better to avoid re-executing them for the same inputs.

• We extend our contract framework developed in the previous chapters in order to

include this monitoring capability

• We compare the performance of our prototype with existing software that is Esper.

This chapter is organized as follows. Section 6.4 gives some preliminaries on Colored

Petri Nets (CPN) since it is the formalism used in this chapter. Section 6.5 details the

patterns used to decompose a service composition into parallel executable threads with

their formalization in CPN. Section 6.6 elaborates on how the CPN is generated from

the service composition tree and proves important properties of the generated CPN.

Section 6.8 presents the integration of the developed monitoring approach with the

product-based contract discussed in the two previous chapters. Section 6.9 conducts

experiments on the monitoring mechanism and gives a quantitative comparison it with

Esper. Finally section 6.10 concludes the chapter.

6.4 Preliminaries on Colored Petri Nets

Petri nets, on one hand, provide the primitives for the description of the synchroniza-

tion of concurrent processes. Programming languages, on the other hand, provide the

primitives for the definition of data types and the manipulation of their data values.

A Colored Petri Net (CPN)[Jen94] aims at combining the capabilities of Petri nets and

programming languages in order to create a more powerful language. This language

takes into account data types and their values when describing the synchronization of

concurrent processes. The idea of CPNs is to extend ordinary Petri nets with:

• Global declarations (Types also called color sets, values, variables and functions)

• Types on places

• Token elements

• Guards on transitions

Formally a CPN is a tuple CPN = (Σ, P, T, A, N, C, G, E, I) where:

1. Σ is a finite set of non-empty types, also called color sets

6.4. Preliminaries on Colored Petri Nets 157

2. P is a finite set of places

3. T is a finite set of transitions

4. A is a finite set of arcs such that : P ∩ T = P ∩ A = ∅

5. N is a node function. It is defined from A into P× T ∪ T × P

6. C is a color function. It is defined from P to Σ

7. G is a guard function. It is defined from T into expression such that:

• ∀t ∈ T : [Type(G(t)) = Boolean ∧ Type(Var(G(t))) ⊆ Σ]

8. E is an arc expression. It is defined from A into expressions such that:

• ∀a ∈ A : [Type(C(p)) ∧ Type(Var(E(a))) ⊆ Σ] where p is the place of N(a)

9. I is an initialization function. It is defined from P into closed expressions such

that:

• ∀p ∈ P : [Type(I(p)) = C(p)]

6.4.1 Global Declaration

A CPN is associated to a global declaration. In the global declaration we define all types

used in the net. In addition we can define variables and operations on the types. The

following listing gives an example of a global declaration for a CPN.

val n = 5;

color D = index d with 1..n declare ms;

color PR = product D * D declare mult;

fun diff(x,y) = (x<>y);

color MES = subset PR by diff declare ms;

var s,r : D;

6.4.2 Types on Places

In a CPN, each place has an associated type that determines the kind of data tokens that

the place may contain. Figure 6.2 shows two places: tokens in the first place are of type

D and tokens in the second place are of type S.

158 Chapter 6. Patterns for Monitoring Product Level Agreements

Figure 6.2: Places and their types

Figure 6.3: CPN before transition triggering

6.4.3 Token Element

A token element is a pair (p, c) where p ∈ P and c ∈ C(p)

6.4.4 Arc Expressions

In a CPN, all arcs are augmented with an arc expression. An arc is always associated

with exactly one place p. The type of an arc must be a multiset of C(p). The arc

expressions determine the number of tokens to remove from the input places and add

to the output places. Complex arc expressions are allowed, e.g. case x o f p ⇒ {e}| q.

Figure 6.3 gives an example of a CPN with arc expressions and Figure 6.4 gives a

snapshot of this CPN when the transition is triggered.

Figure 6.4: CPN after transition triggering that upheld the arcs expressions

6.5. CPN Patterns for Decomposing a Service Composition 159

Figure 6.5: Guard associated to a transition

6.4.5 Guards on Transitions

A transition in a CPN can be associated to a guard that prevents its triggering for certain

token values. Figure 6.5 gives an example of a guard associated to the transition t that

prevents its triggering when the token element in S is bound to the value 1.

In the next section we elaborate on our CPN patterns to decompose a service com-

position.

6.5 CPN Patterns for Decomposing a Service Composition

To develop our monitoring system, we need to detect whether an event contributes to

the processing of the monitoring query even partially. During the collaboration between

(A and B) and (A and C), incoming events x1...x4 are inserted into their corresponding

topics: xtopic
1 ...xtopic

4 . If an incoming event can be used to call some services, then the

system call these services and saves the intermediate results into their own topics (i.e.

stopic
1 ..stopic

7).

To achieve this, we use CPN constructs to represent the decomposition of the services

composition into a set of patterns that can be executed in parallel. CPNs have been

chosen because, as we have seen, they have a graphical representation, they have a

precise semantic that can be translated to or directly implemented in other languages

e.g. Esper EPL queries, or CEA queries [BMB+00].

The principle of our approach consists in considering the incoming events (e.g.

x1..x4) as token elements to be inserted into the CPN places (e.g. xtopic
1 ..xtopic

4). The

CPN arcs can be annotated with service calls that wait for the required events to occur

prior to their invocation.

160 Chapter 6. Patterns for Monitoring Product Level Agreements

6.5.1 Adaptation of CPN Definition

To model our patterns using the CPN formalism, we need to introduce some changes

into the definition of some of its building blocks.

6.5.1.1 Extending the definition of CPN Places

We will adapt the default CPN definition. Indeed, in our case, places will contain the

incoming instances of the arguments x1..x4 used to call services. Places will also contain

intermediate results that are outputs of some services and constitute inputs for other

services. To identify the token elements that contributed in computing the token ele-

ments of a given place p, each place p is associated to a placeType. A placeType[] is

an array of Booleans. In this array, if the token element of type xi has been involved in

deriving the token elements of this place, then p.placeType[i] = true. For example:

• The placeType of the place containing instances of the message x1 is the array:

[true, f alse, f alse, f alse].

• The placeType of the place containing instances of the output of s1 is the array:

[true, f alse, true, f alse] since x1 and x3 instances are the inputs to compute the

outputs of s1 (see Figure 6.1).

6.5.1.2 Extending the definition of Token Elements

We add an identifier to token elements pertaining to places. Indeed, the default defini-

tion of a CPN defines a token element as a couple (p, c). Nevertheless, in a single place

p, we could have multiple token elements with the same color. Thus a place becomes

a multi-set of token elements. To avoid this (because we need to differentiate between

token elements even though they have the same color), we add a third element that is

the token element identifier in order to differentiate between all token elements. Thus a

token element becomes defined by the tuple < p, c, ID >. Since a token element belongs

to its place, then it must either be the input associated to this place (x1..x4) or it must be

derived from the inputs associated to this place. Accordingly, we define the identifier of

a token element ID as an array of integers where:

• placeType[i] = true ⇒ ID[i] ≥ 0

• placeType[i] = f alse ⇒ ID[i] = −1

The reason for this adaptation is that an input xi in a services composition can appear

multiple times in a single tree (e.g. in Figure 6.1, x3 that is an input for s4 and s6).

6.5. CPN Patterns for Decomposing a Service Composition 161

Since services corresponding to sub-trees of the original composition may be invoked in

parallel (e.g. s4 and s6), their results will be combined to run another service (s7). Thus

we must keep track of the token elements that result from running s4 and s6. The token

element identifier allows us to combine exclusively token elements that are calculated

from the same common inputs.

More formally, during the execution of the service s7 for two input places stopic
4 and

stopic
6 , our approach will exclusively combine token elements tei ∈ stopic

4 and tej ∈ stopic
6 if

tei.IDx3 = tej.IDx3 .

6.5.2 Patterns for Splitting Service Compositions

In this section, we define CPN patterns that will be used to decompose a service compo-

sition specification. These patterns aim to parallelize as much as possible the execution

of the composition. Observing the decomposition tree in Figure 6.1, we notice that there

are five types of sub-trees:

• Input leaf (constant or variable input)

• Single operator service (e.g. s4)

• Duplication of an input (e.g. x3 that is the input of s1 and s2)

• Two operator service (e.g. s1)

• N operator service

• The preconditions/postconditions related to services execution.

From these different types of sub-trees we derive their corresponding patterns expressed

in CPN formalism.

6.5.2.1 Input Pattern

A leaf in the composition tree is represented by a place in the CPN. When a new event

occurs, we create a new token element that has as a color this event payload and that

has a single element array id that has not been assigned before. When a token element

is consumed by a service, it should be returned to its initial place. This pattern is

formalized in Figure 6.6. This pattern is used to represent leaves that are required by

one or N operator service (N >= 2).

162 Chapter 6. Patterns for Monitoring Product Level Agreements

6.5.2.2 Single operator Pattern

A sub-tree in the composition tree representing a single operator service is represented

by the CPN formalized in Figure 6.7. The place A contains the instances of the input

parameter of the service s. When a new instance comes, if it upholds the transition

guard that represents the precondition of the service s, then the service s is called and

a new token element is created and inserted into the place B. This token element is

represented by the tuple: 〈B, s(α.color), α.ID〉. Notice that the token element generated

by s keeps the same ID of the input token element since it no longer exists in A.

Removing the input token element has no effect on other services that wait for the

same event, because they have their own copies of the event in other places (c.f. the

duplication pattern).

Variable argument

2
Constant argument

Figure 6.6: Input pattern

Figure 6.7: Single service input pattern

Algorithm 16 details the steps of this pattern.

Algorithm 16 Single Input Pattern Implementation
Ensure: Correct data in the Output Place

1: while TRUE do
2: Inputs ← InputPlace.getPlaceTokens()
3: for all tei ∈ Inputs do
4: if checkPrecondition(tei) then
5: teo.ID ← tei.ID
6: teo.color ← s(tei.color)
7: outputPlace.addToken(teo)
8: end if
9: remove tei from Inputs

10: end for
11: end while

6.5.2.3 Duplication pattern

An input argument can appear in different sub-trees (e.g. x1 is an input in the sub-

tree of s1 and also in the sub-tree of s3). Since services in two separate sub-trees can

6.5. CPN Patterns for Decomposing a Service Composition 163

be run in parallel, we need to give to each sub-tree an instance of the required input.

Nevertheless, we should pay attention to maintaining the coherency of the final result by

combining only the instances having the same IDs in subsequent calculations as we will

see in section 6.6. This pattern, formalized in Figure 6.8, ensures an effective parallelism

in running parallel services. Indeed, even though a service makes a delay in releasing

an input token element, the other services requiring the same token element will not

be impacted since they have their own copies of that token element. Additionally, this

pattern is very helpful to avoid re-invoking a service that appears in different spots of

the tree and that requires the same inputs. In this case, the service will be called once

and the result will be shared by all subsequent services expecting it.

Figure 6.8: Duplication pattern

Figure 6.9: Pre/postcondition pattern

Algorithm 17 details the processing steps of this pattern.

Algorithm 17 Duplication Pattern Implementation
Ensure: Correct data in the Output Place

1: while TRUE do
2: Inputs ← InputPlace.getPlaceTokens()
3: for all outputPlacesi do
4: teo.id ← tei.id
5: teo.color ← tei.color
6: outputPlacei.add(teo)
7: remove tei from Inputs
8: end for
9: end while

6.5.2.4 Two operator pattern

The two operator pattern is formalized in Figure 6.10. The places above the transition

(A1 and A2) have input and output arcs. The input arcs aim to keep all token elements

164 Chapter 6. Patterns for Monitoring Product Level Agreements

in these places and not remove them. Indeed, if a new token element arrives to the place

A1, it must be combined with all token elements that already arrived at the place A2

when calling the service s and vice versa. The transition t is associated with a guard

specifying that if two token elements have been combined before, we no longer need to

combine them again (¬combined(α1, α2)). This guard avoids recalling a service for the

same inputs. Moreover, if there is a precondition associated to the service that concerns

its two inputs, then, it will be specified in the transition checkprecondition(α1, α2). The

output arc from the transition t is augmented with a complex expression2. In addition to

the satisfaction of the service precondition, there are two cases when two token elements

can be combined:

1. When the colors of the token elements α1 ∈ A1, α2 ∈ A2 have been computed from

at least one common input. Formally: ∃I = {i1, .., in} such that the following two

conditions are satisfied:

(a) A1.placeType[i1] = A2.placeType[i1] = true

(b) ...

(c) A1.placeType[in] = A2.placeType[in] = true

AND

(a) α1.ID[i1] = α2.ID[i1]

(b) ...

(c) α1.ID[in] = α2.ID[in]

AND

(a) ∀j /∈ I : A1.placeType[j] �= A2.placeType[j]

2. When the color of the token elements α1 ∈ A1, α2 ∈ A2 have been computed from

two disjoint sets of inputs. Formally: ∀i : A1.placeType[i]∧ A2.placeType[i] = f alse.

These conditions are fundamental to ensure a correct correlation of intermediate

results.

The result of calling the service s is a new token element α in the place B. The

place B.placeType captures that the token elements that reside in B come from the token

elements of A1 and A2.

2The syntax and semantics of such expressions are given in [Jen94]

6.5. CPN Patterns for Decomposing a Service Composition 165

The token element α has the color s(α1.color, α2.color) that is the result of calling

the service s. In addition the identifier of this token element is the identifiers of the

token element α1 associated to the identifier of the token element α2 (see lines 8 to 18 of

Algorithm 18) .

Figure 6.10: Two-operator pattern

6.5.2.5 N operator pattern

It is similar to the pattern 2 but it has N > 2 inputs. It is depicted in Figure 6.11.

This thread runs Algorithm 18

6.5.2.6 Precondition/Postcondition pattern

A N-operator service (N ≥ 2) may have preconditions/postconditions on its inputs.

For example they can be specified in OWL-S3 ontology when providing a semantic

description of the service. When the constraints specified in these pre/postconditions

concern only one input, we should use a particular derivation of the single service

pattern to ensure that an input satisfies the precondition prior to the invocation of the

associated service. This pattern is formalized in Figure 6.9 and detailed in Algorithm 19.

The reason of using an independent pattern and not directly including the precon-

dition into the guard of the transition that precedes the service call is related to per-

formance. Indeed, if we included the constraints associated to the pre/postconditions

3www.w3.org/Submission/OWL-S/âĂŐ

166 Chapter 6. Patterns for Monitoring Product Level Agreements

Algorithm 18 Two Operator Pattern Implementation
Ensure: Correct data in the OutputPlace

1: while TRUE do
2: leftInput ← leftInputPlace.getPlaceTokens()
3: rightInput ← rightInputPlace.getPlaceTokens()
4: for all tel ∈ leftInput do
5: for all ter ∈ rightInput do
6: if ∃I = {i1, .., in} : (

∧
i∈I le f tInputPlace.placeType[i] =

rightInputPlace.placeType[i] = true) ∧ (
∧

i∈I tel.ID[i] = ter.ID[i]) ∧
haveNotBeenCombined(ter, tel) then

7: initialize a new token element: teo such that all teo.ID[] = −1
8: for all i ∈ I do
9: teo.ID[i]← ter.ID[i]

10: end for
11: for all j /∈ I do
12: if ter.ID[j] �= −1 then
13: teo.ID[j]← ter.ID[j]
14: end if
15: if tel.ID[j] �= −1 then
16: teo.ID[j]← tel.ID[j]
17: end if
18: end for
19: Create a color of teo by calling service
20: combinedTokens ← combinedTokens ∪ {〈tel.ID, ter.ID〉}
21: outputPlace.addToken(teo)
22: end if
23: end for
24: end for
25: end while

Algorithm 19 Pre/Postcondition Pattern Implementation
Require: Precondition Pattern
Ensure: Correct data in the OutputPlace

1: while TRUE do
2: Inputs ← InputPlace.getPlaceTokens()
3: for all tei ∈ Inputs do
4: remove tei from Inputs
5: if checkPrecondition(tei) then
6: add tei to OutputPlace
7: end if
8: end for
9: end while

6.5. CPN Patterns for Decomposing a Service Composition 167

…

Figure 6.11: N-operator pattern

in the guard of the transition, we would keep the token elements in the input places

and verify them each time a new token for another input arrives. This involves addi-

tional, non-necessary, processing that can be avoided by initially removing the token

elements prior to starting the processing of the service pattern. This fact is expressed in

the following lemma.

Lemma 9. The behavior of the decomposition using an N-operator pattern (N ≥ 2) of a service

s that associates a guard on a single place to the transition (left part of Figure 6.12) is equivalent

to the N-operator pattern of the service s preceded by a pre/postcondition pattern having the same

guard (right part of Figure 6.12).

Figure 6.12: pre/postcondition effect on N-operator pattern

Equivalence proof. • → In the left part of Figure 6.12, αi instances that do not uphold

the guard associated to the transition will never trigger this transition. This implies

168 Chapter 6. Patterns for Monitoring Product Level Agreements

that removing these instances will have no impact on future executions of the

service s

• ← In the right part of Figure 6.12, αi instances that do not uphold the guard

associated to the first transition will never be checked again. This implies that it

will never trigger the second transition.

Notice that when the pre/postcondition concerns more than one input (e.g. the sum

of all arguments should be > 0), in this case we can attach it to the guard of the transi-

tion. Indeed, we cannot remove any instance in the input places because there could be

future instances that can be combined with this instance and satisfy the precondition.

6.6 CPN Generation and Execution

6.6.1 CPN generation

In this section, we elaborate on the algorithm that builds the CPN corresponding to a

tree representation of a monitoring specification. Indeed, this algorithm (Algorithm 20)

traverses the tree structure recursively in an in-order way. Depending on the node that

it encounters, it calls the appropriate function that builds the CPN pattern correspond-

ing to this node. Thus in our algorithm lines 8− 9 correspond to the case where the

algorithm encounters a leaf node and it calls the function that instantiates the argument

pattern and attaches it to the final CPN. Lines 10− 11 and 12− 13 generate the patterns

corresponding to the cases where the encountered node is respectively a single operator

service (e.g. s4) and an N ≥ 2 operator service (e.g. s1). Lines 6− 7 correspond to gen-

erating the duplication pattern when a node (or a sub-tree) has already been generated.

In the following, we prove two important properties:

Theorem 8. Executing the CPN generated by Algorithm 20, there will be no ambiguity when

calling a service that has common arguments in its left hand side and right hand side.

Proof. Suppose we have a tree representing a monitoring specification with two sub-trees

X and Y as depicted in Figure 6.15.

s

X Y

Figure 6.13: Service tree representation

6.6. CPN Generation and Execution 169

Where X and Y are two sub-trees containing a common argument z: |X ∩ Y| = 1.

Suppose that there have been two occurrences of z: z1, z2. Thus in the CPN, there will

be four token elements: 〈X, z1, id1〉, 〈X, z2, id2〉, 〈Y, z1, id1〉, 〈Y, z2, id2〉. When achieving

the processing of X there will be two token elements having in their id: id1 and id2

respectively. The same for Y. In our CPN, we included in the transitions a guard that

specifies that only tokens having common ids will be combined by s. Accordingly Xid1

will be combined only with Yid1 and Xid2 will be combined only with Yid2.

For two sub-trees, we can have more than one common input. Indeed, we can have

common called services. Thus we use proof by recurrence to prove that there is no

ambiguity in calculating arbitrary complex monitoring formulas.

Suppose that there is no ambiguity when processing a service with two sub-trees

having more than one common input: |X ∩ Y| = n. We prove that there will be no

ambiguity in processing services with two sub-trees such that: |X ∩ Y| = n + 1. From

the hypothesis, Figurefig:restricted illustrates what is valid for this case. Since Xidn+1 ∩
(Yid1 ∪ Yid2 ∪ ... ∪ Yidn) = ∅ and Yidn+1 ∩ (Xid1 ∪ Xid2 ∪ ... ∪ Xidn) = ∅. Then Xidn+1 will

be exclusively combined with Yidn+1. Thus there will be no ambiguity.

X_id1 X_id2 X_idn …

Y_id1 Y_id2 Y_idn …

X_idn+1

Y_idn+1

s s s

Figure 6.14: Restricted combination of token elements

The following corollary is a consequence of Theorem 1:

Corollary 1. Running the CPN generated by Algorithm 20, there will be no ambiguity when

calling a service that has common services expecting the same inputs in its left hand side and

right hand side sub-trees.

Theorem 9. When executing the generated CPN by Algorithm 20, once a service representing

a sub-tree has been called for a set of values of its arguments, it will not be re-called again for the

same values.

Proof. The service s2(X, Y) has given the value v0 of some occurrence of X and Y (Fig-

ures 6.15 6.16). Suppose that several instances of the argument Z came. In this case,

the two operator service pattern will prevent from recalculating s2(X, Y) for the same

values of X and Y and only processes s1(s2(X, Y), Z) for each occurrence of Z.

The same approach is used to prove that other patterns do not imply systematic

service re-invocation.

170 Chapter 6. Patterns for Monitoring Product Level Agreements

s2

X Y

s1

Z

Figure 6.15: Services tree

X Y

W Z

s2(X,Y)

s1(W,Y)

Figure 6.16: CPN pattern of services

Algorithm 20 Recursive construction of the CPN: Postorder
Require: The tree root R
Ensure: The CPN block corresponding to the tree

1: if R == null then
2: return
3: end if
4: Inordre(R.le f t)
5: Switch Pattern(R)
6: Case : Duplication
7: Call : add duplication pattern (R)
8: Case : Argument
9: Call : add an argument pattern (R)

10: Case : Single operator service
11: Call : add a single service pattern (R)
12: Case : N operator service
13: Call : add N operator service pattern(R)
14: Postorder(R.right)

6.7. Managing the Number of Running Threads 171

Figure 6.17: CPN generated for the service tree

Figure 6.17 depicts the CPN generated for the service tree in Figure 6.1.

6.6.2 CPN Execution

Once the patterns have been generated, each pattern will be associated to a thread that

calls its corresponding service whenever its required inputs are available. These threads

are running in parallel and the previous formalization allows keeping the coherence

between the inputs, the intermediate results and the final result. Each thread is contin-

uously listening to its corresponding topic and it reacts whenever this topic has been

updated.

6.7 Managing the Number of Running Threads

Using the framework as it is, we create as many threads as the number of extracted pat-

terns associated to the decomposition of the service composition. Moreover, each thread

has an infinitely running loop (while (true) do) that allows it to capture all incoming

events and process them. Nevertheless, the number of threads can quickly increase and

thus, for scalability purposes, we need a mechanism to optimize the number of running

threads through dynamic wake-up and dynamic sleep of threads. Indeed, depending

on the pattern type, a thread will start if and only if an event or a set of events occur.

172 Chapter 6. Patterns for Monitoring Product Level Agreements

In addition, a thread could be set to a sleep state when certain conditions are satisfied

because there is no longer a need for the service associated to this thread.

Using the Observer design pattern, we were able to remove the threads loops and

therefore, the thread will run if and only if it will produce new results. Otherwise it

remains in the idle state. Nevertheless, the Observer design pattern is specified in terms

of UML class diagram. This specification is not formal enough. We need a more formal

specification for the means of communication between threads.

In this section, we extend our monitoring framework with the capability to dynami-

cally manage the number of running threads. The threads management framework uses

Event Condition Actions (ECA) rules in order to manage the running threads.

6.7.1 Event Condition Actions for Threads Management

An event in ECA rules is something that occurs at a specific instance of time (e.g. up-

dating the property of a product component) and may change the state of a system.

Conditions are specifications associated to the pattern in order to set a filter and receive

only pertinent information of what is occurring.

ECA rules can be used to manage the running threads for a monitoring query. In-

deed, we need to identify the relevant events for which a particular thread should be

started and the relevant events for which a thread should be killed.

For our framework there are several events that can be captured. Nevertheless just

a subset of these events is relevant for the management of threads corresponding to a

monitoring query.

For a particular agreement in the collaboration contract, there will be as many itera-

tions as necessary until reaching an agreement and terminating the process involving a

supplier and a requester for this agreement. We call an iteration an agreement attempt.

Since an agreement attempt takes time to be achieved, we need to define two predicates

that allow a monitor to specify his conditions on a particular agreement. We will have:

Attempt_started(ag) to specify that an attempt has been started. Attempt_achieved(ag)

to specify that an agreement iteration has been performed. Additionally the predicate

Attempt_positive(ag) specifies whether an agreement has been reached or not yet (i.e.

the process involving requester and a supplier has terminated).

• The event in an ECA specifies when a rule has to be executed. Events are not

time consuming and do not include any activity to be performed by an actor.

Thus Happens(e) is a predicate to indicate that the event e has occurred. Since an

event e is generated due to a message exchange during the process execution for a

6.7. Managing the Number of Running Threads 173

A1 ∃eHappens(e)⇒ Attemp_achieved(ag) ∧ belongs(e, ag) ∧ ¬Attempt_positive(ag)
A2 ∃e, Started_checking(e, c)⇒ Happens(e)
A3 ∀c, Checking_achieved(c)⇒ Started_checking(c)
A4 ∀ag, Attempt_achieved(ag)⇒ Attempt_started(ag) ∧ ¬Attemptpositive(ag)
A5 ∀a, ∃c, Started(a)⇒ Checking_achieved(c) ∧ Precondition(c, a) ∧ Checking_positive(c)
A6 ∀a, Per f ormed(a)⇒ Started(a)

Table 6.1: Axioms of Threads Management

particular agreement ag, we define the predicate belongs(e, ag)

• The condition in an ECA rule indicates a condition to be checked before any action

is triggered (i.e. before any information is transmitted to the monitor). The pred-

icate Started_checking(e, c) indicates that the occurrence of the event e starts the

checking of the condition c. The predicate Checking_achieved(c) indicates that the

condition c has been achieved. The predicate Checking_positive(c) indicates that

the checking of the condition c is true.

• Once the required events have occurred and the conditions on the values that they

carry have been verified. The action component states what has to be done depend-

ing on the result of the evaluation of the condition component. In analogy with the

condition verification of an ECA, the action is time consuming too, but its termina-

tion is characterized by raising one or more process relevant events. To characterize

these actions, we define the following predicates: Started(a), Per f ormed(a).

The specification of requirements in the condition expression should be compliant

with the standard axioms of ECA rules. These axioms are shown in table 6.1.

6.7.2 ECA Rule for Starting a Two-Operator Pattern Thread (TH)

• Event: e1, e2, {e1, e2}

• Condition: Happen(e1) ∧ Happens(e2) ∧ ¬Started(TH)

• Action: Start(TH)

Informally, this rule specifies that the thread Th associated to a Two-operator pattern

can start if and only if both events expected in the input places have happened (not

necessarily at the same time) and the thread has not been started before.

6.7.3 ECA Rule for Killing a Two-Operator Pattern Thread

• Event: e1, e2, {e1, e2}

174 Chapter 6. Patterns for Monitoring Product Level Agreements

• Condition: Attempt_positive(e1)∧Attempt_positive(e2)∧Started(TH)∧∀α1 ∈ A1, ∀α2 ∈
A2 : combined(α1, α2) ∧ check_precond(α1, α2)

• Action: Kill(TH)

Informally, this rule specifies that the thread TH associated to a Two-operator pattern

is killed when expected events will no longer be produced by their respective processes

because agreements have been achieved and there is no need to continue the execution

of this thread. Nevertheless, notice that all data produced by this thread is available for

the subsequent services in the composition.

6.7.4 ECA Rule for starting a Single-operator Pattern and Precondition Pat-

tern Threads

• Event: e1

• Condition: Happen(e1) ∧ ¬Started(TH)

• Action: Start(TH)

Informally, this rule specifies that the thread TH associated to a single-operator pattern

can start if and only if the input event required by this thread has occurred.

6.7.5 ECA Rule for Killing a Single-operator Pattern and Precondition Pat-

tern Threads

• Event: e1

• Condition: Attempt_positive(e1)(TH)

• Action: Kill(TH)

Informally, this rule specifies that the thread TH associated to a Single-operator pattern

is killed when the expected event will no longer be produced by the process associated

to the agreement.

6.7.6 ECA Rule for Starting a Duplication Pattern Thread

• Event: e1

• Condition: Happen(e1) ∧ ¬Started(TH)

• Action: Start(TH)

6.8. Integration of the Monitoring with the Product-based Contract Framework 175

6.7.7 ECA Rule for Killing a Duplication Pattern Thread

• Event: e1

• Condition: Attempt_positive(e1)(TH)

• Action: Kill(TH)

The management of the running threads is performed by a rule engine that executes

the ECA rules.

6.8 Integration of the Monitoring with the Product-based Con-

tract Framework

At this stage we have developed the formal framework of the optimized monitoring

capability to be used by coordinators in order to monitor the unfolding of the design of

different product components. In this section, we extend the Contract framework in

order to incorporate this monitoring capability and give the coordinator the means to

specify what they want to monitor in the agreements specifications.

In chapter 4 we have defined an agreement as a tuple: 〈Requester, Supplier, Component,

Obligations ∧ Characteristics〉. We extend this tuple by adding the Monitors attribute.

Hence, a monitorable agreement becomes: 〈Requester, Supplier, Component, Obligation∧
Characteristics, Monitors〉 where:

Monitors is a set of couples 〈Subscriber, Messages〉 such that each Subscriber is a part-

ner in the DMN that is interested in obtaining copies of messages exchanged between

the Requester and the Supplier such that this partner can specify to obtain copies of at-

tributes belonging to Obligations and/or Characteristics. Formally:

∀m Messages, ∃m′ ∈ Obligations ∪ Characteristics : equivalent(m, m′)

Once all messages to be monitored are selected, a query is associated to the minimal

complex agreement common to all agreements to which the monitor has been specified.

Figure 6.18 depicts an example of the agreements corresponding to our example. Once

the queries have been specified, the COP is generated. The monitoring queries have

no impact on the generated workflow. Thus they can be also specified during run-time

without impacting the running workflow. Nevertheless, we need to use the adminis-

tration layer of the workflow engine in order to capture the exchanged messages and

deliver copies of these messages to the monitoring query processor. The latter executes

the service composition and then provides the final result to D.

176 Chapter 6. Patterns for Monitoring Product Level Agreements

Figure 6.18: Specifying the monitoring query in the collaboration contract

6.9 Evaluation

6.9.1 Evaluation Approach

In this section, we present the prototype that implements our framework. This proto-

type leverages our collaborative platform for dynamic collaborative networks [IMA11]

with monitoring capabilities. It constitutes the continuation of a comprehensive frame-

work [KFB+13] that we are developing in the context of the European project IMAGINE

[IMA11]. Basically, this prototype provides the engineer of D a user interface that he

uses to declaratively specify the monitoring query while calling User Defined Func-

tions (UDF) implemented as external services. Our system uses the messages that will

be exchanged between the participants A, B, C. Once D has submitted the query, the

messages will be watched by the monitoring component deployed in the collaborative

platform. The monitor generates an execution plan corresponding to the monitoring

specification. The execution plan uses our algorithm (based on CPN patterns) to route

the combination of messages that satisfy the engineer specification. The execution plan

uses our algorithm (based on CPN patterns) to route the combination of messages that

satisfy the engineer specification. Figure 6.19 illustrates the queries corresponding to the

decomposition.

Table 6.9.1 shows a comparison between the execution of our algorithm that uses the

CPN patterns and the naive approach as implemented by Esper. In this comparison we

6.9. Evaluation 177

Duplicate Patterns

Two-operator Patterns

Single-operator Patterns

Figure 6.19: . Output of the CPN generation Algorithm for the running example

assumed that an instance of x2 arrives after 30 seconds and the average time of a service

execution is 10 seconds. Moreover, we assumed that a second instance of x1 arrives at

time 40s:

Notice that at time slot 70s, the service s7 runs for the second time without re-running

s2 and s4 since there are no new instances of x2.

Our approach takes much less time to send the results to the monitor. At time slots

60 and 80, we have already sent two notification, while the naive approach sends the

same notifications at time slots 100 and 200 respectively. Another possible approach

to process the received data consists in creating an XPDL model (or any other model

that composes web services: BPEL etc.) of the service composition and then run it to

handle the incoming messages in parallel. Figure 6.20 depicts a model of this process.

Although this approach runs independent services in parallel, it is inefficient regarding

the number of running instances of the process composing the services. Indeed, in

this approach, for each new instance of any argument, we should create an instance

of the XPDL model and deploy it into the process execution engine in order to ensure

correct correlation of incoming messages and intermediate results. Moreover an arriving

argument instance should be submitted to all other process instances so that they can

carry on their execution. This involves the creation of multiple copies of this argument

178 Chapter 6. Patterns for Monitoring Product Level Agreements

Time slot Instances of arguments Executed threads for
CPN approach

Executed threads for
the naive approach

0 x1, x3, x4 ∅ ∅
10 ∅ s3, s1 ∅
20 ∅ s5 ∅
30 x2 s2, s6 s1
40 x1 s4, s3, s1 s2, ∅
50 ∅ s7, s5 s4 ∅
60 ∅ s8, s6 s4, ∅
70 ∅ ∅, s7 s5, ∅
80 ∅

s8
s6

90 ∅ ∅ s7

100 ∅ ∅ s8
200 ∅ ∅ s8

Table 6.2: Comparison between the CPN approach and the naive approach

instance which increases the memory consumption of the approach. Accordingly, our

approach performs well regarding memory consumption thanks to the patterns that can

be combined together. We also have a constant number of threads running in parallel.

Our approach performs well regarding memory consumption thanks to the patterns that

can be combined together.

Figure 6.21 makes a logarithmic comparison between the XPDL approach and our

framework regarding the number of created copies of each incoming event. Figure 6.22

makes a logarithmic comparison between the number of running threads in our ap-

proach and the number of process instances that are running in the XPDL approach.

6.9.2 Discussion

From these preliminary results, we can conclude that our approach provides better per-

formance in case where two conditions are satisfied:

1. There is a difference between the rates of the arrival of messages. This is the

case in workflows where actors that generate messages are software applications

and humans. Indeed humans, generally provide data in a low throughput in

comparison to software applications that could generate messages at a very high

rate.

2. The services take time to accomplish their processing and give results. Thus run-

ning them in parallel is more advantageous. This is the case of simulation services.

6.9. Evaluation 179

Figure 6.20: Process composing services for the monitor

0

1

2

3

4

5

6

7

8

9

1 2 3 4

N
um

be
r o

f a
rg

um
en

ts
 k

ep
t i

n
m

em
or

y
(ln

)

snapshots at time slots/10

XPDL approach

CPN approach

Figure 6.21: memory consumption

0

1

2

3

4

5

6

7

8

9

1 2 3 4

N
um

be
r o

f r
un

ni
ng

 th
re

ad
s (

ln
)

snapshots at time slots/10

XPDL approach

CPN approach

Figure 6.22: number of threads

180 Chapter 6. Patterns for Monitoring Product Level Agreements

Existing approaches provide better performance when the messages come at the same

rate (e.g. a single event containing all data like CEA) and the set of services take less

time to execute in comparison to the rate of messages. In this case our approach is less

efficient due to the additional processing introduced by the CPN constructs. Neverthe-

less, this case is less likely to occur in our domain.

6.10 Conclusion

In this chapter we enriched the product-based contract framework with an efficient

monitoring capability. Unlike existing (academic or industrial) monitoring tools, our

approach aims to decouple the invocation of services involved in the processing of in-

coming data. To achieve this we defined a set of patterns of service composition in mon-

itoring queries. We backed these patterns with formal foundations using an adapted

version of Colored Petri Nets.

The advantages of using the monitoring approach proposed are (i) the non re-

invocation of the same service for the same inputs and (ii) the correct correlation of in-

coming messages as well as intermediate results. We formally proved these two claims.

To further increase the performance of our approach, we defined a wake-up/killing

mechanism that manages the threads calling the services of the query. Basically, if a

thread does not expect data anymore, it no longer needs to be in a wake state. In addi-

tion, if data useful for a particular thread arrive, this thread is started. We formalized

and implemented this thread management mechanism using Event Condition Action

(ECA) rules.

We made a preliminary evaluation of our monitoring approach and we compared

it with ESPER tool. The first results are positive since our approach showed better

performance. Additionally we compared our approach to another way to specify the

composition of services in the query by creating a more complex service involving all

primitive services. The results show that our approach performs better regarding mem-

ory consumption as well as the number of running threads.

The work presented in this chapter can also be put in the context of the workflow

patterns initiative. Indeed, much research is being conducted on the workflow patterns.

Other researchers are contributing to the workflow change patterns. The work presented

in this chapter can be an initiator to addressing new challenges related to patterns to

monitor workflows.

Chapter 7
Prototype Implementation

Contents

7.1 Introduction . 182

7.2 Platform Architecture . 182

7.2.1 Contract Modeler . 184

7.2.2 Workflow Generator . 185

7.2.3 On-the-fly Mediation . 187

7.2.4 Contract Manager . 188

7.2.5 Change Planner . 189

7.2.6 Contract Monitor . 193

7.3 Selecting the most Conformant Software to a Standard 194

7.3.1 Semantic Difference . 195

7.3.2 Syntactic Difference . 196

7.3.3 Functional Difference . 197

7.3.4 Conformance Testing Approach 201

7.3.5 Compliance of TWS with the WfMC 202

7.3.6 Discussion . 204

7.4 Conclusion . 204

181

182 Chapter 7. Prototype Implementation

7.1 Introduction

This chapter presents details regarding the implementation of the product-based con-

tracts framework developed in the previous chapters. Since we have already presented

the performance evaluation of the mediation, change planning, and monitoring tech-

niques, in this chapter we will focus on the way we concretely realized these techniques

in our working prototype.

Our prototype relies on several existing software modules that provide generic func-

tionality (e.g. workflow engine, PLM System). These software modules are generally

backed by standardized interfaces. Since

Thus, in the second part of this chapter we provide a formal approach that tests

and reports on the compliance between software modules and their corresponding stan-

dards. The objective of this report is to help developers select the most compliant soft-

ware to a particular standard.

This chapter is organized as follows. Section 7.2 provides the architecture of the

prototype of the PLM Hub and highlights the different modules that implement our

framework. In its subsections we detail each software module and the techniques used

for its implementation. Section 7.3 presents our conformance testing approach. More

specifically, it presents its formal foundations and then gives an example by testing and

reporting the conformance of the workflow engine of our prototype with the WfMC1

standard. Finally section 7.4 concludes this chapter.

7.2 Platform Architecture

We have implemented a collaborative platform (PLM Hub) that allows coordinators and

participants to log in and create a collaboration contract model using an intuitive user

interface. Then, they can start the collaboration while being supported by a cross-

organizational process that guides their dialog. The overall architecture of our platform

is depicted in Figure 7.1.

The architecture is organized into three layers. The first layer contains the systems

pertaining to the partners in the collaboration environment. More specifically it contains

the PLM system of partners. A PLM System through its standardized interface called

PLM Services2 allows the coordinator to access his Product breakdown and selects the

product component on which he wants to change properties. This layer also contains

1www.wfmc.org/
2http://www.omg.org/spec/PLM/

7.2. Platform Architecture 183

Monitor

Workflow Patterns
Hierarchy

Workflow engine

Standardized
 interface

Workflow Generator

Contract
Manager

Contract
Modeler

Contract
Monitor

Change planner

Contract model

Partners’ business rules repositories

Monitoring Service
Patterns

On-the-fly
mediator

Partners’ PLM Systems

Contract Management
System for DMNs

PLM Hub Platform

Partners’ Internal
Systems

Enterprise portal

Enterprise Service Bus

Figure 7.1: Platform Architecture

the business rules repository of each partner where all enterprise rules are stored. In

particular, it contains rules related to the organization of data exchange activities.

The second layer contains the generic software modules of the collaborative platform.

It contains the workflow engine: Together Workflow Server TWS3, the enterprise portal

Liferay4 along with other modules developed in the context of the IMAGINE project.

IMAGINE modules provide functionality specific to the manufacturing phase of the

product which is not covered in this thesis. All modules of this layer are interconnected

through an enterprise service bus OpenESB5.

The workflow engine executes the cross-organizational process in order to distribute

the data submitted by partners to other partners. The language of the process model

accepted by this workflow engine is XPDL 2.0 that is visually rendered into BPMN 2.06.

The enterprise portal allows partners to access the contract design and management

interface. In addition, it allows each partner to access his tasks list that displays him

the data received and that have to be processed to carry the execution of the cross-

organizational process. We used Liferay since it is a reference in implementing enter-

prise portals7.

3http://www.together.at/prod/workflow/tws
4https://www.liferay.com
5http://www.open-esb.net/
6www.omg.org/bpmn/Documents/XPDLBPMN.pd f
7https://www.liferay.com/about-us/awards/gartnermq-portals

184 Chapter 7. Prototype Implementation

The software modules at this layer expose a web service management interface.

These interfaces are connected to an enterprise service bus to make their access uni-

form by the software modules of the upper layer.

The upper layer includes a Contract Management System for DMNs (CMSD) and

a Graphical User Interface. Coordinators and participants access the system via a GUI

developed using the Vaadin8 framework. We used Vaadin to develop the graphical

modeling interface for contracts because it has libraries that facilitate this work. In

addition GUIs developed using Vaadin can be easily integrated with Liferay. Through

this interface, coordinators model contracts and assign participants to the right agreements

and then the workflow of the cross-organizational process is generated.

The CMSD is composed of several user interface modules: Contract Modeler, Contract

Manager, and Contract Monitor as well as applicative modules: Workflow Generator, On-

the-fly Mediator, Change Planner and Monitor.

7.2.1 Contract Modeler

The Contract Modeler helps coordinators specify agreements on components of the prod-

uct. For this purpose we have constructed a meta-model using Eclipse EMF9 that

captures the concepts of our product-based contract framework. Coordinators use this

meta-model in order to build instances (models) of collaboration contracts. Figure 7.2

illustrates a snapshot of the Contract Modeler interface. In this figure, we can see the

contract between the coordinator and the Fuselage components participants.

Basically there are two portlets: The Contract Modeler and Management on the left

(used at design-time) and the worklist handler that lists to each partner the message that

arrived or to be submitted (used at running-time). In the Contract modeler there is the

product breakdown structure (e.g. the aircraft breakdown). This structure is extracted

from the coordinator’s PLM system. To perform this extraction, we call the PLM Services.

In our running example, the coordinator who wants to perform changes on the Fuse-

lage will use this interface to define the models that will be changed Fuselage Geometry

and Fuselage Aerodynamic). Then in the bottom panel, he defines the attributes on which

the constraints will be defined at run-time. In addition, he defines the requester of this

study and who will perform it (the supplier).

Once all details of the contract have been specified a file that captures the agree-

ments of the contract as well as their temporal constraints is generated after pushing the

Export button.

8https://vaadin.com
9www.eclipse.org/emf/

7.2. Platform Architecture 185

Contract model
With temporal

constraints

Spec. of Obl. & Char.

Product Breakdown Run-time interface for message exchange

Monitoring query

Figure 7.2: Contract Modeling Interface

To specify temporal constraints, since we used Eclipse (EMF10) to build the meta-

model of our contract framework, we can use Object Constraint Language (OCL11) to

specify the temporal constraints between agreements. Originally, OCL does not sup-

port temporal constraints; nevertheless several extensions have been performed on this

language to include capabilities to express temporal constraints. We have used the ex-

tension made by [KT13] since they have implemented the temporal constraint patterns

that we used to express temporal constraints between agreements.

Once the contract model is ready, the coordinator clicks on Deploy. This action will

generate the workflow model of the cross-organizational process and deploys it into the

workflow engine as depicted in Figure 7.3.

7.2.2 Workflow Generator

The Workflow Generator consumes the serialized contract model in order to generate the

model of the cross-organizational process in XPDL. It also accesses the business rules

repositories belonging to the partners of the collaboration to find how the activities

of this process should be organized. Once the XPDL model is generated it deploys it

into TWS. To achieve this deployment the Workflow Generator uses the management

interface provided by TWS. This interface provides services to deploy, instantiate, abort,

10http://www.eclipse.org/modeling/emf/
11www.omg.org/spec/OCL/

186 Chapter 7. Prototype Implementation

7.2. Platform Architecture 187

On-the-fly
Mediator

Mapping
Functions

Mapping
Function
Checker

s0

s1 s2 s1s1 s2s2

Npaxfront

Naisle Notification

Figure 7.4: The place of the mediator between two communicating lanes

resume and terminate the execution of processes. Other management services exist as

well.

7.2.3 On-the-fly Mediation

In our prototype, when data exchange activities of the cross-organizational process are

generated, by default they make calls to the on-the-fly mediation module as depicted in

Figure 7.4. The on-the-fly mediation is deployed in the CMSD as a Java application. Data

exchange activities call this application by submitting the message name, its value and

eventually a file associated to the message. To realize this call, each activity is configured

to use the tool agent Runtime Application. A tool agent specifies what kind of application

a particular activity in a workflow will call (e.g. standalone application, web service).

The on-the-fly mediator always knows what messages are expected by a process.

The reason is that the expected message’s receive activity is in the state opened while all

other activities of the same process are in the state not_opened. To identify this activity,

the on-the-fly mediator uses the service listActivityInstances.

When the on-the-fly mediator is called by a send activity, it informs the automaton

of the mapping function expecting this message. This will lead to a state transition in

that automaton. When all states of the automaton are marked by the arriving messages,

the mediator is notified of the applicability of the mapping function that generates the

expected message.

When the on-the-fly mediator is notified of the applicability of a mapping func-

tion, it starts the receive activity of the expected message and submits the result to

188 Chapter 7. Prototype Implementation

that activity. To realize this starting, the on-the-fly mediator calls the TWS service

changeActivityInstanceState.

7.2.4 Contract Manager

Workflow management systems are used to configure and control structured business

processes from which well-defined workflow models and instances can be derived [vdAW05,

Joe99]. However, the existing process definition frameworks make it difficult to support

(i) dynamic evolution (i.e. modifying process definitions during execution) following

unexpected or developmental change in the business process being modeled [MB00];

and (ii) deviations from the prescribed process model at run-time [RRD04b, EKR95].

The Contract Manager helps coordinators and participants implement changes on con-

tracts that are already in the run-time phase. It modifies the contract model and sub-

mits it to the Workflow Generator. In this case, the Workflow Generator has another

important task that is checking whether a contract can be committed to the running

cross-organizational process or not.

7.2.4.1 Changing the contract

When agreements of a contract are modified and these modifications cannot be com-

mitted then, the involved partners in these agreements must not carry the execution

of their processes. In other terms, the corresponding lanes in the cross-organizational

process should be inhibited until other modifications arrive that trigger the commit of

all changes.

To realize this inhibiting of process lanes at run-time while letting other lanes of the

same process active, we followed this procedure:

1. Remove the mapping between the role associated to the lane and the actor playing

this role

2. The remaining activities in this lane will be automatically assigned to a default

actor of the workflow engine (admin). Of course this actor cannot execute these

activities. Thus these activities will remain pending until the lane will be associ-

ated to a new partner (i.e. activated)

3. Once the lane becomes active again, we traverse all pending activities and assign

them to the newly added partner. To realize this assignment, we use the method

WAPI.reassignWorkItem(session, admin, newActor, processId)

4. At this stage the newly added partner can execute the pending activities.

7.2. Platform Architecture 189

7.2.4.2 Resuming the collaboration

When a contract becomes committable after one or more changes, the process that will

be generated and deployed should not start its execution from scratch. Instead, we need

to recover the state of activities that have already been terminated and start the new

deployed process from where the previous version has been stopped. The following

steps allow us to implement this switching:

1. Get the state of the currently running process using the operation getProcessInstance

of the WAPI service

2. Get the activities instantiated in this process instance using the operation

listActivityInstances of the WAPI service

3. Terminate the current process instance using the operation terminateProcessInstance

of WAPI. Then remove this process from the workflow engine cache

4. Using the new version of the process, copy the state of the activities that have been

saved in step 2 into their equivalent activities in the new process instance using

the operation assignActivityInstanceProperty. Then resume the instance

of the new process to continue the execution.

7.2.5 Change Planner

Partners could tailor multiple agreements in a contract model; this could make these

agreements not committable and thus delay their fulfillment. In order to help partners

recover the modified agreement and incorporate the missing information, they can ask

the Change Planner module. The Change Planner implements our extension of the

planning graph algorithm. It generates the recovery workflow and deploys it into the

workflow engine. Partners will receive the tasks to perform on their task list in order to

recover the agreements and make the contract committable.

7.2.5.1 Generation of the solution plan

To generate the solution plan for our example presented in Chapter 5, we have used

the implementation of the planning-graph algorithm: PL-Plan12. PL-Plan generates the

solution plan when given a set of actions, their preconditions, their post-conditions and

a goal. Then, in order to implement our approach that extends the planning graph

12http://www.philippe-fournier-viger.com/plplan/

190 Chapter 7. Prototype Implementation

Figure 7.5: An excerpt of the hierarchy of the workflow patterns (in Protege)

algorithm and generates the executable workflow, we formalized the workflow patterns

using OWL-S13 and we implemented the discovery algorithms.

7.2.5.2 Formalization and Discovery of the Workflow Patterns

Formally, workflow patterns can be represented using Abstract State Machines (ASM)

[B0̈7]. In order to implement the ASM formalization of workflow patterns, existing

ASM tools can be used. Nevertheless, these tools are not widely used and suffer from

maintainability issues. In order to make our implementation maintainable, we have

decided to implement the ASM formalization of workflow patterns using the Profile

ontology of OWL-S. Indeed, this ontology can capture the signature and preconditions

of each workflow pattern. Figure 7.5 depicts the ontology that formalizes a subset of

workflow patterns as classified in [B0̈7]. For example the Profile ontology of the Iterate

pattern is given in Listing 7.1 (IterateProfile). It shows that the Iterate has two inputs of

types Activity and Thread respectively. Listing 7.2 shows the precondition of this pattern

that we formalized in Jena14. Indeed, we used Jena rules to capture the precondition of

each pattern. In our example, the precondition specifies that the Iterate pattern can have

only one activity as input and this activity is executed by one agent (thread).

Listing 7.1: A portion of the profile ontology of the Iterator pattern

13http://www.w3.org/Submission/OWL-S/
14https://jena.apache.org

7.2. Platform Architecture 191

1 < !−− h t t p : //www. airbus . com/45520709/ o n t o l o g i e s /2014/2/ workflowpatterns2 #

i t e r a t e p r o f i l e −−>

2

3 <NamedIndividual r d f : a b o u t ="&workflowpatterns2 ; # I t e r a t e P r o f i l e ">

4 < r d f : t y p e r d f : r e s o u r c e ="&workflowpatterns2 ; # I t e r a t e P r o f i l e "/>

5 < w o r k f l o w p a t t e r n s 2 : h a s A c t i v i t y p r o f i l e r d f : r e s o u r c e ="&

workflowpatterns2 ; # defaul tAct ion "/>

6 <workf lowpat terns2 :hasThreadprof i le r d f : r e s o u r c e ="&

workflowpatterns2 ; # defaultThread "/>

7 < p r o f i l e : h a s I n p u t r d f : r e s o u r c e ="&workflowpatterns2 ; # input1−d"/>

8 < p r o f i l e : h a s I n p u t r d f : r e s o u r c e ="&workflowpatterns2 ; # input2−s "/>

9 </NamedIndividual>

10

11 < !−− h t t p : //www. airbus . com/45520709/ o n t o l o g i e s /2014/2/ workflowpatterns2 #

input1−d −−>

12

13 <NamedIndividual r d f : a b o u t ="&workflowpatterns2 ; # input1−d">

14 < r d f : t y p e r d f : r e s o u r c e ="&process ; # Input "/>

15 <process:parameterType r d f : r e s o u r c e ="&workflowpatterns2 ; # A c t i v i t y "/

>

16 </NamedIndividual>

17

18 < !−− h t t p : //www. airbus . com/45520709/ o n t o l o g i e s /2014/2/ workflowpatterns2

input2−s −−>

19

20 <NamedIndividual r d f : a b o u t ="&workflowpatterns2 ; # input2−s ">

21 < r d f : t y p e r d f : r e s o u r c e ="&process ; # Input "/>

22 <process:parameterType r d f : r e s o u r c e ="&workflowpatterns2 ; # Thread "/>

23 </NamedIndividual>

Listing 7.2: The precondition of the Iterator pattern

1 @prefix r d f : < h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#>

2 @prefix owl: < h t t p : //www. w3 . org /2002/07/owl#>

3 @prefix xsd : < h t t p : //www. w3 . org /2001/XMLSchema#>

4 @prefix r d f s : < h t t p : //www. w3 . org /2000/01/ rdf−schema#>

5 @prefix wp: < h t t p : //www. airbus . com/45520709/ o n t o l o g i e s /2014/2/

workflowpatterns2 #>

6 [i t e r a t o r P r o f i l e P r e c o n d : (w p : i t e r a t e P r o f i l e w p : h a s A c t i v i t y P r o f i l e ? x1)

7 (w p : i t e r a t e P r o f i l e w p : h a s A c t i v i t y P r o f i l e ? x2)

8 equal (? x1 , ? x2)

9 (w p : i t e r a t e P r o f i l e wp:hasThreadProfi le ? y1)

10 (w p : i t e r a t e P r o f i l e wp:hasThreadProfi le ? y2)

11 equal (? y1 , ? y2)

12 −>

192 Chapter 7. Prototype Implementation

13 (w p : i t e r a t e P r o f i l e w p : p r e c o n d i t i o n P r o f i l e S a t i s f i e d true)

14

15]

For a specific Block node in the workflow tree that needs to be replaced by a workflow

pattern, we need to compare its ASM signature (i.e. its Profile ontology generated dur-

ing the workflow tree traversal) to the ASM signatures of the workflow patterns in the

hierarchy of Figure 7.5. To implement the corresponding algorithm of this feature that

is checkAppropriateness algorithm, we used a match making approach. Indeed, to

compare two Profile ontologies, we need to make the following comparisons:

1. Check that both Profiles use the same ontologies

2. Check that the number of inputs of the candidate Block is equal to the number of

inputs of the pattern

3. Check that the classes of the input parameters of the candidate Block and the work-

flow patterns are equivalent

4. Check that the conjunction of the precondition of the candidate Block and the pre-

condition of the workflow pattern is valid as depicted in Listing 7.3. To make this

checking, we used the Reasoner class of Jena.

This mechanism allows us to find the appropriate pattern for each Block in the workflow

tree.

Listing 7.3: The conjunction of the Block precondition and the Iterator Pattern precon-

dition

1 @prefix r d f : < h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#>

2 @prefix owl: < h t t p : //www. w3 . org /2002/07/owl#>

3 @prefix xsd : < h t t p : //www. w3 . org /2001/XMLSchema#>

4 @prefix r d f s : < h t t p : //www. w3 . org /2000/01/ rdf−schema#>

5 @prefix wp: < h t t p : //www. airbus . com/45520709/ o n t o l o g i e s /2014/2/

workflowpatterns2 #>

6 [checkAppropriatenessRuleAlpha2 i terateProfi leAddCbPrecond:

7 (wp:AddCb r d f : t y p e ? a)

8 (wp:OEM r d f : t y p e ? t)

9 (wp: i terateProf i leAddCb w p : h a s A c t i v i t y P r o f i l e ? x1)

10 (wp: i terateProf i leAddCb w p : h a s A c t i v i t y P r o f i l e ? x2)

11 equal (? x1 , wp:AddCb)

12 equal (? x2 , wp:AddCb)

13 equal (? x1 , ? x2)

14 (wp: i terateProf i leAddCb wp:hasThreadProfi le ? y1)

7.2. Platform Architecture 193

15 (wp: i terateProf i leAddCb wp:hasThreadProfi le ? y2)

16 equal (? y1 ,wp:OEM)

17 equal (? y2 ,wp:OEM)

18 equal (? y1 , ? y2)

19 −>

20 (wp: i terateProf i leAddCb w p : p r e c o n d i t i o n P r o f i l e S a t i s f i e d true

)

21

22]

7.2.6 Contract Monitor

The Contract Monitor gives coordinators the interface to write their monitoring queries

in Event Processing Language EPL as depicted Figure 7.2. It analyzes this query and asks

the Monitor module to execute it. Using the monitoring patterns identified previously,

the Monitor creates a structure that supports an efficient execution of the monitoring

query.

We have realized a preliminary implementation of the mechanism of generating a

Colored Petri Net (CPN) from a tree of services expressed in a monitoring query. We

have implemented a simple model of CPNs in Java and we created the CPN correspond-

ing to our example as an instance of this model.

Places of the CPN have an independent class. This class extends the Observable

class of the Java Development Kit JDK. This means that other classes can subscribe and

be notified of what is happening in this class. In addition, the class uses a locking

mechanism since a single Place can be updated by multiple threads at the same time. To

realize this locking we used the ReentrantLock class.

We implemented classes for the monitoring patterns identified in chapter 6. These

classes implement two interfaces:

• Observer so that the pattern can be notified when the input places associated to

it are updated by new token elements

• Runnable because each pattern will be executed as an independent thread

The current implementation status does not generate the parallel EPL queries that

optimize the execution of a monitoring query by Esper. Nevertheless, the remaining

task consists in transforming the CPN instance to EPL queries which normally should

be straightforward to realize.

194 Chapter 7. Prototype Implementation

7.3 Selecting the most Conformant Software to a Standard

Until now, we have seen the main software modules developed for the CMSD sys-

tem. Nevertheless, developing collaborative platforms requires integrating other soft-

ware components. One of our tasks in the European project IMAGINE as part of this

thesis consists in realizing this integration. Among these software components are those

located at the first and second layer of the PLM Hub in Figure 4.2, (e.g. the workflow

engine, the PLM systems).

Although, the development of the CMSD system components is made for proto-

typing purposes and not for immediate industrial use, the components of the PLM

Hub should have enough robustness and be conformant to their respective standards.

Accordingly, these components cannot be selected arbitrarily. Indeed, the ASD SSG

(Aerospace and Defense Strategic Standardization Group15) is a consortium between

European manufacturers including the Airbus Group that aim to support effective gov-

ernance at European level of International and European standards. Thus, in our con-

text, we should follow the recommendations of this organism in terms of conformance

to standards prior to selecting the components of the PLM Hub.

Ideally, every implementation of a standard should be identical and thus completely

interoperable with any other implementation. However, this is far from reality. Stan-

dards, when incorporated into products, tools, and services undergo customizations

and extensions because every vendor wants to create a unique selling point as a compet-

itive advantage [LMSW08]. Accordingly, we need formal metrics that allow us to assess

whether a software implementation is compliant with a standard specification or not.

Up until the present time, several compliance checking approaches have been pro-

posed. In the software engineering domain, formal approaches were developed that

consist in testing whether a software component implements a particular function spec-

ified in the standard. This is what is called function coverage [FHP02]. Other approaches

perform syntactic coverage in order to test whether an implementation upholds the de-

fined syntax in the standard specification [S.96].

The common shortcoming to all these approaches is that they focus only on one

dimension when checking the conformance of a software application with the standard

specification.

In the remaining of this chapter we give details on a formal approach that allows us

to select the most conformant software application regarding a standard. Indeed shift-

ing from a standard specification could be done on several dimensions (e.g. syntactic,

15http://www.asd-ssg.org/

7.3. Selecting the most Conformant Software to a Standard 195

semantic, and functional). Accordingly we consider that there are three dimensions on

which the conformance could be initially calculated. Namely: the syntactic difference

Δsyn between standard operations and software operations. The semantic difference

Δsem between standard operations parameters and software operations parameters. The

functional difference Δ f un between standard operations functionality and software oper-

ations functionality. When we determine the value of the difference for each dimension,

then we can compute the total conformance of software implementation regarding a

standard specification and upon this total conformance decide what software to use.

Since these dimensions are independent from each other, we can use vector calculus to

compute the total conformance value.

7.3.1 Semantic Difference

Calculating the semantic difference of two operations consists in measuring the semantic

difference between the inputs/outputs of an operation specified in the standard and an

operation implemented in the software having the same purpose.

To measure the semantic difference, we enriched semantically the parameters of these

operations such that we can compute the semantic value of each parameter. To achieve

this we associated inputs and outputs to an ontology formalized in OWL. Once the

semantic values are obtained, we calculate their difference. For two input parameters pt

and ps associated respectively to two operations ot and os, we compute the their semantic

difference as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

•class(pt) < class(ps)⇒
Δsem−input(pt, ps) = 1 + (NbrProp(pt)− NbrProp(ps))

•class(pt) > class(ps)⇒
Δsem−input(pt, ps) = −1 + (NbrProp(pt)− NbrProp(ps))

•class(pt) ≡ class(ps)⇒
Δsem−input(pt, ps) = NbrProp(pt)− NbrProp(ps) = 0

(7.1)

where class(pt) < class(ps) means that the class class(pt) subsumes the class class(ps),

and class(pt) ≡ class(ps) means that both classes are equivalent. The same computing

method is applicable for the output parameters.

The overall Δsem−input between two operations ot and os is computed from the Δsem−input(pt, ps)

of all couples of parameters (pt, ps) where each couple belongs to a separate dimension.

Thus: Δsem−input =
√

∑ Δsem−input(pt, ps)2.

Since the semantic value of the inputs and the semantic of the outputs are indepen-

196 Chapter 7. Prototype Implementation

Figure 7.6: Calculation of the semantic delta

dent, then they constitute two orthogonal vectors as depicted in Figure 7.6. Thus the

total semantic value is given by: Δsem =
√

Δ2
sem−input + Δ2

sem−output

7.3.2 Syntactic Difference

The syntactic difference between a standard operation and its counterpart in the soft-

ware implementation measures the distance between the naming of the operation in

the standard and its naming in the software implementation. The syntactic difference

concerns the naming of the input parameters of the operation, the naming of output

parameters of the operation and the naming of the operation itself. Obviously, the di-

mensions remain extensible for example to include the naming of the package to which

the operation belongs.

The syntactic difference is measured by comparing the similarity of two strings

(s1, s2): Δsyn(s1, s2) = 1− |s1∩s2|
|s1|

Since the syntactic differences of the inputs, outputs and operation names are in-

dependent, then they constitute orthogonal vectors as depicted in Figure 7.7. The

total value of the syntactic difference between two operations is given by: Δsyn =√
Δ2

syn−input + Δ2
syn−output + Δ2

syn−name + Δ2
path. We can derive the following syntactic dif-

ferences between two operations:

• Δsyn = 0 when a function and the associated parameters have exactly the same

notation as specified in the standard

• Δsyn �= 0 when a function or its parameters have differences in their notation in

comparison to the standard specification.

7.3. Selecting the most Conformant Software to a Standard 197

Figure 7.7: Calculation of the syntactic delta

7.3.3 Functional Difference

The functionality provided by an operation depends on the assessment of the post-

condition that results upon terminating the execution of this operation. We assume

that the post-conditions of operations are captured by the outputs of their execution.

Accordingly, we can make the following remarks regarding the functional difference

measurement:

• Δ f un < 0 ⇒ Δsem−output < 0: if an operation has less functionality in comparison

to another operation, then it provides less information after its execution

• Δ f un < 0 ⇒ Δsem−output > 0: if an operation has more functionality in comparison

to another operation, then it provides more information after its execution

• Δ f un < 0 ⇒ Δsem−output = 0: if two operations have equivalent functionality then

they will provide the same information

Although the Δsem−output is involved in calculating the Δ f un, it is not the unique

parameter. Indeed, when looking up a standard specification and a software implemen-

tation, we can find three types of operations:

1. Core operations (CO): are the operations that have an added business value. For

example in a workflow engine an operation to obtain a process instance has an

added business value;

2. Repetitive Core operations (RCO): they extend core operations by providing a

collection of data that is provided by the core operation. For example in a workflow

engine an operation to obtain all running instances of a process;

198 Chapter 7. Prototype Implementation

The cross-aspect operation is
required to execute the core
operation

• implement(ot, cao) ∧ speci f y(os, cao)⇒ deviation = 0

• implement(ot, cao) ∧ ¬speci f y(os, cao)⇒ deviation = 0

• ¬implement(ot, cao) ∧ speci f y(os, cao)⇒ deviation = 0

• ¬implement(ot, cao) ∧ ¬speci f y(os, cao)⇒ deviation = 0

The cross-aspect operation is
not required to execute the
core operation

• implement(ot, cao) ∧ speci f y(os, cao)⇒ deviation = 0

• implement(ot, cao) ∧ ¬speci f y(os, cao)⇒ deviation = 1

• ¬implement(ot, cao) ∧ speci f y(os, cao)⇒ deviation = −1

• ¬implement(ot, cao) ∧ ¬speci f y(os, cao)⇒ deviation = 0

Table 7.1: Deviation introduced by cross-aspect operations

3. Cross-aspect operation: are the operations that do not have an added business

value but sometimes they are required to run core operations. For example in a

workflow engine, one needs to connect to the workflow engine by providing his

credentials prior to obtaining the right to obtain the process instance.

This classification of operations implies that:

1. We should include a new parameter called deviation induced by cross-aspect op-

erations when calculating the difference between the software implementation of a

core operation and its counterpart in the standard specification. Table 7.1 summa-

rizes the possible situations. In this table two predicates are used to characterize

each situation:

• implement(ot, cao): means that the software operation implements internally

the cross-aspect operation. For example the operation getProcessInstance

implements internally the connect operation. In this case the predicate

implement(getProcessInstance, Connect) = TRUE

• speci f y(os, cao): means that the standard operation specifies that it uses the

cross-aspect operation internally. For example in WfMC, it is specified that

WMFetchProcessInstance does not use internally the WMConnect opera-

tion. Thus speci f y(WMFetchProcessInstance, WMConnect) = FALSE

In this case, the deviation induced by the cross-aspect operation is independent

from the information provided by the core operation. Thus they constitute two in-

dependent vectors as depicted in Figure 7.8. The value of the functional difference

7.3. Selecting the most Conformant Software to a Standard 199

Figure 7.8: Calculation of the functional delta

WMFetchProcessInstance

WMFetchProcessInstances

Obtain Process Instance

getProcessInstance WMFetchProcessInstance

WMFetchProcessInstances

Obtain Process Instance

getProcessInstances

(a) (b)

Figure 7.9: An example of difference between the standard specification and software
implementation

is given by the equation:

Δ f un(st, s f) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
Δ2

sem−output + deviation2 for

Δsem−output > 0

−
√

Δ2
sem−output + deviation2 for

Δsem−output < 0

(7.2)

2. We should include the cases when there are differences in implementing or spec-

ifying the core operations and the repetitive core operations. For example for the

functionality obtain process instance, we could have the following cases depicted

in Figure 7.9.

In Figure 7.9 on the left hand side, the software implements the core operation but

not the repetitive core operation and vice versa for (b). Since the core operation and

the repetitive core operation cover each other. In other terms the result obtained

by the core operation can be computed from the result obtained by the repetitive

core operation with further processing. Accordingly, we need to take into account

200 Chapter 7. Prototype Implementation

The Standard
specifies:

The Software
implements:

Δtotal

CO CO f0

CO RCO f1
∅ CO f2

∅ RCO f3

CO f4
RCO ∅ f5

RCO RCO f0

RCO CO f6

CO, RCO CO −
√

f 2
0 + (| f4| − f6|)2

CO, RCO RCO
√

f 2
0 + (| f4| − f1|)2

CO CO, RCO
√

f 2
0 + f 2

3

RCO CO, RCO
√

f 2
0 + f 2

2

CO, RCO ∅ −
√

f 2
4 + f 2

5

∅ CO, RCO
√

f 2
2 + f 2

3

CO, RCO CO, RCO
√

2 ∗ f0

Table 7.2: All possible cases to compute Δtotal

this coverage when calculating the Δtotal for all possible cases. There are totally 15

cases summarized in Table 7.2:

In Table 7.2 the Δtotal is equal to Δ f un in some cases because the operations have

the same core operation but belong to different categories (CO or RCO). Thus

their functional difference is measured from the difference of the outputs that

they provide. In the other cases we include the other dimensions when comput-

ing Δtotal because the two operations belong to the same category. In these cases

Δtotal = f0 =
√

Δ2
f un + Δsem−input2 + Δsyn2. Since from a functional point of view

the functions are equivalent, then we need to include deviations induced by the

semantics of the inputs and the syntax. For the other cases, since the standard is

functionally different from the implementation then there is no need to include the

semantic of the inputs and the syntax.

In the remaining cases (lines 8 to 14 of Table 7.2) both categories are mixed and

thus we compute the difference between operations of each categories and then we

combine them to obtain the final result.

7.3. Selecting the most Conformant Software to a Standard 201

7.3.4 Conformance Testing Approach

We have implemented a software environment that is used to compute the conformance

between the standard operations and the software operations and to report the results.

To illustrate our approach, we will assess the conformance of the administration

interface of the workflow engine TWS to the workflow systems standard that is the

WfMC. Since the WfMC specification is paper based (informal), we should construct a

model of these interfaces as well as for the interfaces of TWS Workflow engine. Then

the conformance assessor will consume these models and then generate a graphic that

depicts the conformance for each service.

To construct these models, we used Archimate16 as a modeling language to capture

the operations implemented by a software application and the operations specified in

the standard. There are three reasons of using Archimate:

1. Archimate is a modeling language that offers a set of concepts dedicated to cap-

turing standard specifications as well as software modules and their operations;

2. Archimate was already in use within the Airbus Group Innovations, for example

to formalize the specification the systems engineering standard ISO 15288, SCORE,

ISA-95;

3. Archimate offers a set of roles that we can use to separate between the task of

capturing the standard specification that should be done by the standard expert

in the organization and the task of capturing the software implementation that

should be performed by the software engineer. Thus we used Archimate in the

perspective to follow the methodology already in place.

In the Archimate models of the standard specification and the software implemen-

tation, the inputs and outputs of their operations are captured through Archimate data

objects. The standard and the software application functions are then enriched with se-

mantics using OWL-S to calculate their Δsem. OWL-S library provides us with the capa-

bility to check the relationship between two classes (hasSuperClass, hasSubClass,

hasEquivalentClass) as well as the capability to calculate the number of properties

of each class (listProperties).

To build the Archimate model, on one hand, the software expert should take the

role of Application Architect. As its designation indicates, this role is appropriate for

the software expert since it allows him to interlink the software functionalities with the

domain functionality ontology. Moreover, this role restricts the software expert from

16www.opengroup.org/subjectareas/enterprise/archimate

202 Chapter 7. Prototype Implementation

Appropriate roles and viewpoints for the same view l

Figure 7.10: A software environment to capture the standard and the software operations
in Archimate

accessing the mapping of functionalities between the standard specification and the do-

main functionalities.

On the other hand, the standard expert takes the role Enterprise Architect. This role

is appropriate for the standard expert since it allows him to interconnect the standard

functionalities with the domain identified functionalities. Moreover, this role restricts

the standard expert from accessing the mapping of functionalities between the software

interface and the domain functionalities while sharing the same Archimate model.

Figure 7.10 illustrates the interfaces displayed to the standard expert and to the soft-

ware expert after they have logged in and received their corresponding roles.

7.3.5 Compliance of TWS with the WfMC

We tested the current implementation of the workflow engine TWS through the web ser-

vices interface provided by the software. Although TWS claims that it is fully compliant

7.3. Selecting the most Conformant Software to a Standard 203

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

Obtain
Process

Definition

Close
Process

Definition
List

Obtain
Process

Definition
State

Close
Process

Definition
States List

Change
Process

Definition
State

Create
Process
Instance

Delta between the Software and the
standard for different functionalities

Figure 7.11: Compliance of TWS implementation with the WfMC standard for some
operations

with the standard17 we have found some gaps in its implementation and our measure-

ments give an overview on how much each function of TWS is far from the WfMC

specification by considering all dimensions as depicted in Figure 7.11.

From Figure 7.11, we notice that there is a difference between what is specified in the

WfMC standard and what is implemented in the workflow engine TWS (other differ-

ences exist but we left them due to space limitation). Indeed, since each process should

provide the capability to Obtain Process Definition, the WfMC has specified two func-

tions: WMOpenProcessDefinitionList and WMFetchProcessDefinition, while

TWS has implemented listProcessDefinition and getProcessDefinition (fol-

lowing the Java naming convention18). For this functionality the difference between TWS

and the standard is of syntactic nature. For the functionality Close Process Definition

List, the difference between the implementation and the standard specification equals -1

(calculated using f4 of Table 7.2) because TWS does not implement this functionality at

all while it is specified in the WfMC standard. The functionality Obtain Process Defini-

tion State is specified in the standard through a RCO WMOpenProcessDefinitionStatesList

and a CO WMFetchProcessDefinitionState. This functionality is implemented in

TWS through a single RCO function listProcessDefinitionState. Hence, this

case corresponds to CO,RCO|RCO of Table 7.2.

The overall difference between a software application and the standard that it claims

it implements is the sum of differences regarding all operations: TotalDi f f erence =

∑N
i=0 |Δi|. This overall measure provides us a formal basis to select the closest imple-

mentation to the standard.
17https://sourceforge.net/projects/sharkwf/files/shark/6.0-1/tws-6.0-1.doc.pdf pp.14
18http://www.oracle.com/technetwork/java/codeconv-138413.html

204 Chapter 7. Prototype Implementation

7.3.6 Discussion

From this preliminary evaluation of the conformance of TWS with the WfMC standard,

we can conclude that the difference is mainly syntactic. Nevertheless, we should not

neglect this difference. The reason is that vendor-specific terminology for workflow

constructs led to an inconsistent vocabulary of workflow terms [S.96]. In order to counter

this trend, the first goal of the WfMC was to establish a common terminology and

glossary and naming convention [zM04]19

In addition to the compliance to a standard, we can consider other dimensions for

our evaluation. For example, we can include the dimension of support of workflow pat-

terns when assessing TWS. Van der aalst et al. have already performed this assessment.

We can use their evaluation by including a new dimension in addition to the standard

dimensions.

7.4 Conclusion

In this chapter, we gave an overview of the system that we have implemented to pro-

totype our conceptual framework. We presented the software modules that we have

developed for our prototype. Since our prototype is a part of a larger platform (that

covers the design phase as well as the manufacturing phase of the product) we devel-

oped standards conformance testing approach. This approach assesses the conformance

of software modules of this platform regarding their respective standards. This assess-

ment helped us choose the most conformant software components as a backbone for our

prototype but also to realize a better integration with the remaining modules.

Our implementation is part of the Airbus Group Innovations deliverable in the

project IMAGINE [IMA14]. Furthermore, we are working to enhance it by perform-

ing further evaluations to produce an industrial platform in the future. This work is

being conducted in the project SIP at SystemX20.

19WfMC Terminology and Glossary: http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/DOCS/glossary/glossary.html
20http://www.irt-systemx.fr/systemx-lance-le-projet-sip-standards-interoperabilite-plm/?lang=fr

Chapter 8
Conclusion and Perspectives

Contents

8.1 Conclusion . 206

8.1.1 Reminder of the Thesis Context 206

8.1.2 Summary of Contributions . 206

8.1.3 Directions for Future Research . 208

205

206 Chapter 8. Conclusion and Perspectives

8.1 Conclusion

In this chapter, we summarize the results of our dissertation and discuss future research

directions for on-the-fly mediation, modifications during run-time and monitoring for

cross-organizational processes.

8.1.1 Reminder of the Thesis Context

Engineering Change Management (ECM) is a standardized process that manages change

requests on components of a certain product designed within an enterprise or in the

context of a cross-organizational collaboration. In a cross-organizational collaboration,

an important phase of the ECM process is the Specification and the Decision on Change.

During this phase the coordinator and the participant who are working on a particu-

lar component of the product. They define the interaction scenario that specifies what

messages they should exchange iteratively in order to reach an agreement on the config-

uration of this component. Thus, they need an adequate modeling language to model

this interaction scenario. In addition, when considering the dynamicity of the collabora-

tion environment that we referred to as Dynamic Manufacturing Networks (DMN), they

need to manage the modifications that could occur at run-time. Finally, the product ar-

chitect would need to monitor the unfolding of this interaction scenario and eventually

in conjunction with other interaction scenarios in order to take the right decision at the

right-time.

8.1.2 Summary of Contributions

In this dissertation, we noticed the need for a high-level language that helps coordina-

tors focus on the objectives of the collaboration when specifying contracts representing

interaction scenarios with participants for a set of product components. This language

prevents coordinators from addressing technical problems related to the deployment of

the cross-organizational process and the development of mediation solutions that are

tasks out of their skills. We gave formal foundations to this language using temporal

logic and demonstrated how a contract specification can be coupled with the partners’

business rules to generate the cross-organizational process.

On-the-fly Mediation. We have proposed a new mediation approach called on-the-

fly mediation. The on-the-fly mediation consists in considering that there is one generic

mediation algorithm. This algorithm is embedded in a software module that captures

the messages sent in a cross-organizational process and generates the expected message

using one or more mapping functions. These mapping functions are formalized in terms

8.1. Conclusion 207

of marked automata so that the mediation algorithm finds the right mapping function to

apply in a linear time. In comparison with existing approaches, our algorithm outper-

forms them since the time that existing approach would take (in the worst case) to find

the right mapping function can be exponential.

Management Operations for DMNs. We have provided coordinators and participants

a management framework to perform modifications on the collaboration contract at

run-time while shielding all other partners not concerned by a modification from being

impacted. To achieve this, we have developed an algorithm that keeps modifications on

the contract on hold until this algorithm formally ensures that these modifications will

lead to a DMN state where all partners can collaborate correctly.

Furthermore, when multiple modifications (removals) are performed on a contract,

we have used the planning-graph algorithm to generate a set of actions that will in-

corporate missing elements in the contract. Once these elements are incorporated, the

underlying cross-organizational process can be generated. We have extended this algo-

rithm in order to embed the generated raw set of actions into an executable recovery

workflow. This recovery workflow will guide the right partners to recover the contract

and re-launch the collaboration.

Efficient Monitoring. We have provided coordinators a means to specify monitor-

ing queries. These queries capture and perform processing on the exchanged messages

and then deliver the resultant high-level information to the coordinator. The processing

consists in calling external services (e.g. aerodynamic simulation services). We have

formalized a set of patterns that generate an efficient execution plan for the monitor-

ing query involving a service composition. We proved that using our execution plan, a

service is never executed twice for the same inputs. Furthermore, we proved that inde-

pendent services can be executed in parallel. We compared the efficiency of our plan

with industrial monitoring software (Esper) and we obtained positive results.

Implementation and Conformance Testing. We have implemented the proposed

collaboration contract framework and integrated it into a comprehensive collabora-

tive platform that is the implementation of the Aeronautic Interoperability Framework

[Fig09]. While performing this integration, we noticed that it was necessary that all

generic software modules (e.g. the workflow engine) should be compliant with their

standards specifications. To ensure that we select the most appropriate one we devel-

oped a set of quantitative metrics that test this conformance and report a diagram that

allowed us to take the right decision.

208 Chapter 8. Conclusion and Perspectives

8.1.3 Directions for Future Research

Our work on declarative modeling of collaboration using agreements, on-the-fly medi-

ation, generating executable solution plans and patterns for monitoring have generated

several questions on their extensibility:

Arguments and Design Process Analysis. Fulfilling each agreement of the contract

involving partners needs one or more iterations of the underlying process. The deci-

sion of performing a new iteration can be recorded. At the end of the collaboration,

there might be a need to analyze all decisions as well as their relationships. The final

report is called a debate report of arguments [PC11]. Our framework can be used to

capture the argument of terminating an agreement process as well as their relationships.

Since it is a report, those relationships should be past temporal relationships. We can

construct new Past Temporal Logic patterns to capture these relationships which will

enrich the framework developed by [PC11] since they have used simple relationships

between arguments.

Re-Extension of the Graph-Plan Algorithm. Our extension of the Planning Graph

algorithm can be further extended to take into account other workflow patterns. Indeed,

in chapter 5 we only considered the control flow patterns. Nevertheless, other pattern

categories exist: Workflow Data Patterns, Workflow Resource Patterns. Including these

patterns makes our extension more comprehensive and generates workflows that better

cover agents’ needs.

Considering other Service Composition Patterns. When defining the monitoring

patterns to generate more efficient execution plans for a monitoring query we consid-

ered that the service composition in the query has a tree structure. Nevertheless, the

composition can be more complex especially when using declarative service composi-

tion languages [vdAP06]. A future work regarding this contribution consists in extract-

ing further patterns when the service composition is more complex than a service tree.

Moreover, we need to make further performance evaluation of our approach using more

services with different message rates in a cloud platform.

Interaction of Standards. In the last chapter we proposed a formal approach that de-

fines quantitative metrics to assess the conformance of a software application regarding

a standard specification. This approach allowed us to test and decide on what software

to use for our integration with the European project IMAGINE platform. The resultant

platform will thus be constituted of several software applications where each software

application is conformant to its respective standard. Our framework can be extended to

evaluate the compliance of a set of interacting software applications that each claims that

8.1. Conclusion 209

it implements a standard and assess whether these interactions do not lead to coherency

issues due to emergent behavior.

210 Chapter 8. Conclusion and Perspectives

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag

Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan-

ley B. Zdonik. The design of the borealis stream processing engine. In

CIDR, pages 277–289, 2005. 67, 68

[ABP09a] Vasilios Andrikopoulos, Salima Benbernou, and Mike P. Papazoglou.

Evolving services from a contractual perspective. In CAiSE, pages 290–

304, 2009. 31

[ABP09b] Vasilios Andrikopoulos, Salima Benbernou, and Mike P. Papazoglou.

Evolving services from a contractual perspective. In CAiSE, pages 290–

304, 2009. 78

[ACc+03] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-

tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan

Zdonik. Aurora: A new model and architecture for data stream manage-

ment. The VLDB Journal, 12(2):120–139, August 2003. 67

[AG99] Tariq A. Aldowaisan and Lotfi K. Gaafar. Business process reengineering:

an approach for process mapping. Omega, 27(5):515 – 524, 1999. 45

[AGS+14] SAMER ABDUL GHAFUR, Parisa Ghodous, Behzad Shariat, Eliane

Perna, and Farzad Khosrowshahi. Semantic Interoperability of Knowl-

edge in Feature-based CAD Models. Computer Aided Design, 56:45–57,

November 2014. 44

[ARCR14] Renaud Angles, Philippe Ramadour, Corine Cauvet, and Sophie Rodier.

Adaptation dynamique de processus métier. application au circuit du

211

212 BIBLIOGRAPHY

médicament à l’ap-hm. Ingénierie des Systèmes d’Information, 19(2):35–60,

2014. 56

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,

and Tushar D. Chandra. Matching events in a content-based subscription

system. In Proceedings of the Eighteenth Annual ACM Symposium on Prin-

ciples of Distributed Computing, PODC ’99, pages 53–61, New York, NY,

USA, 1999. ACM. 153

[ATH12] W. M. Aalst and A. H. Ter Hofstede. Workflow patterns put into context.

Softw. Syst. Model., 11(3):319–323, July 2012. 135

[B0̈7] Egon Börger. Modeling workflow patterns from first principles. In Pro-

ceedings of the 26th International Conference on Conceptual Modeling, ER’07,

pages 1–20, Berlin, Heidelberg, 2007. Springer-Verlag. xiii, 60, 61, 128,

132, 134, 135, 145, 190

[Bao13] Aymen Baouab. Gouvernance et supervision décentralisée des chorégraphies

inter-organisationnelles. These, Université de Lorraine, June 2013. xiii, 65,

66

[BBC05] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach

to component adaptation. J. Syst. Softw., 74(1):45–54, January 2005. 51

[BCG+05] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Motahari

Nezhad, and Farouk Toumani. Developing adapters for web services

integration. In CAiSE, pages 415–429, 2005. 5, 31, 34, 50, 51, 53, 93, 94

[BCGG10] L. Baresi, M. Caporuscio, C. Ghezzi, and S. Guinea. Model-driven man-

agement of services. In Web Services (ECOWS), 2010 IEEE 8th European

Conference on, pages 147–154, Dec 2010. 68

[BFPG12] Aymen Baouab, Walid Fdhila, Olivier Perrin, and Claude Godart. To-

wards decentralized monitoring of supply chains. In Web Services (ICWS),

2012 IEEE 19th International Conference on, pages 600–607, June 2012. 67,

68

[BGH+07] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jian-

wen Su. Towards formal analysis of artifact-centric business process

models. In Proceedings of the 5th International Conference on Business Process

BIBLIOGRAPHY 213

Management, BPM’07, pages 288–304, Berlin, Heidelberg, 2007. Springer-

Verlag. 48

[BJ94] C. Bussler and S. Jablonski. Implementing agent coordination for work-

flow management systems using active database systems. In Research Is-

sues in Data Engineering, 1994. Active Database Systems. Proceedings Fourth

International Workshop on, pages 53–59, Feb 1994. 46

[BJ06] Patrik Berander and Per Jönsson. A goal question metric based approach

for efficient measurement framework definition. In Proceedings of the 2006

ACM/IEEE International Symposium on Empirical Software Engineering, IS-

ESE ’06, pages 316–325, New York, NY, USA, 2006. ACM. 104

[BMB+00] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, An-

drew McNeil, Oliver Seidel, and Mark Spiteri. Generic support for dis-

tributed applications. Computer, 33(3):68–76, March 2000. 153, 159

[BOAT13a] Saïda Boukhedouma, Mourad Oussalah, Zaia Alimazighi, and Dalila

Tamzalit. Adaptation patterns for service based inter-organizational

workflows. In IEEE 7th International Conference on Research Challenges in

Information Science, RCIS 2013, Paris, France, May 29-31, 2013, pages 1–10,

2013. 56

[BOAT13b] Saïda Boukhedouma, Mourad Oussalah, Zaia Alimazighi, and Dalila

Tamzalit. Flexible loosely coupled inter-organizational workflows using

SOA. In ACS International Conference on Computer Systems and Applica-

tions, AICCSA 2013, Ifrane, Morocco, May 27-30, 2013, pages 1–8, 2013.

56

[BP06] Antonio Brogi and Razvan Popescu. Automated generation of bpel

adapters. In Proceedings of the 4th International Conference on Service-

Oriented Computing, ICSOC’06, pages 27–39, Berlin, Heidelberg, 2006.

Springer-Verlag. 52

[BS03] E. Borger and Robert F. Stark. Abstract State Machines: A Method for High-

Level System Design and Analysis. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 2003. 61

[BSBM04] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella.

When are two web services compatible? In TES, pages 15–28, 2004. 50,

93

214 BIBLIOGRAPHY

[CAV12] Marco Comuzzi, Samuil Angelov, and Jochem Vonk. Patterns to en-

able mass-customized business process monitoring. In Proceedings of the

24th International Conference on Advanced Information Systems Engineering,

CAiSE’12, pages 445–459, Berlin, Heidelberg, 2012. Springer-Verlag. 67,

68, 153

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data

Knowl. Eng., 24(3):211–238, January 1998. 54

[CD10] David Chen and Nicolas Daclin. Framework for Enterprise Interoperability,

pages 77–88. ISTE, 2010. 29

[CH09] David Cohn and Richard Hull. Business artifacts: A data-centric ap-

proach to modeling business operations and processes. IEEE Data Eng.

Bull., 32(3):3–9, 2009. 48

[CM04] Anis Charfi and Mira Mezini. Hybrid web service composition: business

processes meet business rules. In ICSOC, pages 30–38, 2004. 73, 86

[CMS06] Emilia Cimpian, Adrian Mocan, and Michael Stollberg. Mediation en-

abled semantic web services usage. In ASWC, pages 459–473, 2006. 29

[CS03] Amit K. Chopra and Munindar P. Singh. Nonmonotonic commitment

machines. In Workshop on Agent Communication Languages, pages 183–

200, 2003. 47

[CV11] Marco Comuzzi and Irene T. P. Vanderfeesten. Product-based workflow

design for monitoring of collaborative business processes. In Proceed-

ings of the 23rd International Conference on Advanced Information Systems

Engineering, CAiSE’11, pages 154–168, Berlin, Heidelberg, 2011. Springer-

Verlag. 45, 153

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Prop-

erty specification patterns for finite-state verification. In Proceedings of the

Second Workshop on Formal Methods in Software Practice, FMSP ’98, pages

7–15, New York, NY, USA, 1998. ACM. 46, 47, 83

[DDDM11] P. Delias, A Doulamis, N. Doulamis, and N. Matsatsinis. Optimizing

resource conflicts in workflow management systems. Knowledge and Data

Engineering, IEEE Transactions on, 23(3):417–432, March 2011. 139

BIBLIOGRAPHY 215

[DHV11] Elio Damaggio, Richard Hull, and Roman Vaculín. On the equivalence

of incremental and fixpoint semantics for business artifacts with guard-

stage-milestone lifecycles. In Proceedings of the 9th International Conference

on Business Process Management, BPM’11, pages 396–412, Berlin, Heidel-

berg, 2011. Springer-Verlag. 48

[DKLW07] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske.

Bpel4chor: Extending bpel for modeling choreographies. In ICWS, pages

296–303, 2007. 73

[DKRR98] Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V. Ramakrish-

nan. Logic based modeling and analysis of workflows. In Proceedings of

the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, PODS ’98, pages 25–33, New York, NY, USA, 1998.

ACM. 46

[DME+13] Codé Diop, Emna Mezghani, Ernesto Exposito, Christophe Chassot, and

Khalil Drira. Qos-driven autonomic abilities through a multi-homed

transport protocol. In 27th IEEE International Conference on Advanced In-

formation Networking and Applications, AINA 2013, Barcelona, Spain, March

25-28, 2013, pages 645–652, 2013. 44

[DSW06] Marlon Dumas, Murray Spork, and Kenneth Wang. Adapt or perish:

Algebra and visual notation for service interface adaptation. In Business

Process Management, pages 65–80, 2006. 50, 51

[DvdAtH05] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede.

Process-aware Information Systems: Bridging People and Software Through

Process Technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

28, 61, 62

[EBMN13] Maryam Eslamichalandar, Kamel Barkaoui, and Hamid Reza Motahari-

Nezhad. Dynamic adapter reconfiguration in the context of business

protocol evolution. In CSE, pages 301–308, 2013. 51, 93

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,

35(2):114–131, June 2003. 67, 153

[EKK10] Marwane El Kharbili and Tobias Keil. Bringing agility to business pro-

cess management: Rules deployment in an soa. In Walter Binder and

216 BIBLIOGRAPHY

Schahram Dustdar, editors, Emerging Web Services Technology Volume III,

Whitestein Series in Software Agent Technologies and Autonomic Com-

puting, pages 157–170. Birkhauser Basel, 2010. 82

[EKR95] Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic

change within workflow systems. In Proceedings of Conference on Organi-

zational Computing Systems, COCS ’95, pages 10–21, New York, NY, USA,

1995. ACM. 188

[EME00] Murman E., Walton M., and Rebentisch E. Challenges in the better,

faster, cheaper era of aeronautical design, engineering and manufactur-

ing. Aeronautical Journal, 104(3):481–489, 2000. 2, 82

[EP98] Hans-Erik Eriksson and Magnus Penker. Business Modeling With UML:

Business Patterns at Work. John Wiley & Sons, Inc., New York, NY, USA,

1st edition, 1998. 86, 89

[FB02] Dieter Fensel and Christoph Bussler. The web service modeling frame-

work wsmf. Electronic Commerce Research and Applications, 1(2):113–137,

2002. 29

[FHP02] E. Farchi, A Hartman, and S.S. Pinter. Using a model-based test generator

to test for standard conformance. IBM Systems Journal, 41(1):89–110, 2002.

194

[Fig09] Nicolas Figay. Interoperability of Technical Enterprise Application. These de

doctorat en informatique, Universite Lyon 1, December 2009. 32, 33, 207

[Fis11] Michael Fisher. An Introduction to Practical Formal Methods Using Temporal

Logic. Wiley, 2011. 82

[Fok00] Wan Fokkink. Introduction to Process Algebra. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1st edition, 2000. 102

[FRMR12] W. Fdhila, S. Rinderle-Ma, and M. Reichert. Change propagation in col-

laborative processes scenarios. In Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom), 2012 8th International Con-

ference on, pages 452–461, Oct 2012. 55, 59

[FTG+14] Nicolas Figay, David Tchoffa, Parisa Ghodous, Ernesto Exposito, and Ab-

derrahman El Mhamedi. Dynamic manufacturing network, plm hub and

BIBLIOGRAPHY 217

business standards testbed. In Kai Mertins, Frederick BÃl’naben, Raul

Poler, and Jean-Paul Bourrieres, editors, Enterprise Interoperability VI, vol-

ume 7 of Proceedings of the I-ESA Conferences, pages 453–463. Springer

International Publishing, 2014. viii, 14, 35

[GBn06] Luciano García-Bañuelos. An asml executable model for ws-bpel with or-

thogonal transactional behavior. In Proceedings of the 4th International Con-

ference on Business Process Management, BPM’06, pages 401–406, Berlin,

Heidelberg, 2006. Springer-Verlag. 130

[GD07] R. Garbade and W.R. Dolezal. Dmuatairbus evolution of the digital

mock-up (dmu) at airbus to the centre of aircraft development. In Frank-

Lothar Krause, editor, The Future of Product Development, pages 3–12.

Springer Berlin Heidelberg, 2007. 30

[GKMW11] Sam Guinea, Gabor Kecskemeti, Annapaola Marconi, and Branimir Wet-

zstein. Multi-layered monitoring and adaptation. In Proceedings of the 9th

International Conference on Service-Oriented Computing, ICSOC’11, pages

359–373, Berlin, Heidelberg, 2011. Springer-Verlag. 68

[GMS06] Guido Governatori, Zoran Milosevic, and Shazia Wasim Sadiq. Com-

pliance checking between business processes and business contracts. In

EDOC, pages 221–232, 2006. 49

[Gov05] Guido Governatori. Representing business contracts in ruleml. Int. J.

Cooperative Inf. Syst., 14(2-3):181–216, 2005. 49

[Gro00] Business R. Group. Defining Business Rules ˜ What Are They Really?

Technical report, 2000. 86

[Har88] David Harel. On visual formalisms. Commun. ACM, 31(5):514–530, May

1988. 121

[HDDM+11] Richard Hull, Elio Damaggio, Riccardo De Masellis, Fabiana Fournier,

Manmohan Gupta, Fenno Terry Heath, III, Stacy Hobson, Mark Linehan,

Sridhar Maradugu, Anil Nigam, Piwadee Noi Sukaviriya, and Roman

Vaculin. Business artifacts with guard-stage-milestone lifecycles: Manag-

ing artifact interactions with conditions and events. In Proceedings of the

5th ACM International Conference on Distributed Event-based System, DEBS

’11, pages 51–62, New York, NY, USA, 2011. ACM. 48, 53

218 BIBLIOGRAPHY

[HDF+11] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta,

Fenno Terry Heath, III, Stacy Hobson, Mark Linehan, Sridhar Maradugu,

Anil Nigam, Piyawadee Sukaviriya, and Roman Vaculin. Introducing the

guard-stage-milestone approach for specifying business entity lifecycles.

In Proceedings of the 7th International Conference on Web Services and For-

mal Methods, WS-FM’10, pages 1–24, Berlin, Heidelberg, 2011. Springer-

Verlag. 48

[HFoSE11] C. Haskins, K. Forsberg, and International Council on Systems Engineer-

ing. Systems Engineering Handbook: A Guide for System Life Cycle Processes

and Activities; INCOSE-TP-2003-002-03.2.1. INCOSE, 2011. 86

[HIL94] Eben M. Haber, Yannis E. Ioannidis, and Miron Livny. Foundations of

visual metaphors for schema display. J. Intell. Inf. Syst., 3(3-4):263–298,

July 1994. 121

[HMS11a] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. De-

signing a cross-organizational case management system using dynamic

condition response graphs. In EDOC, pages 161–170, 2011. 47, 77

[HMS11b] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.

Nested dynamic condition response graphs. In FSEN, pages 343–350,

2011. 47

[HSS+14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert

Grimm. A catalog of stream processing optimizations. ACM Comput.

Surv., 46(4):46:1–46:34, March 2014. 67

[HVN+12] Ourania Hatzi, D. Vrakas, Mara Nikolaidou, N. Bassiliades, Dimosthe-

nis Anagnostopoulos, and L. Vlahavas. An integrated approach to au-

tomated semantic web service composition through planning. Services

Computing, IEEE Transactions on, 5(3):319–332, Third 2012. 62, 64, 146

[IMA11] IMAGINE. Innovative end-to-end Management of Dynamic Manufac-

turing Networks (IMAGINE Project). Technical report, 2011. [Online;

http://www.imagine-futurefactory.eu/]. 3, 30, 176

[IMA14] IMAGINE. Imagine deliverable 4.1 - aerospace living lab. Technical

report, 2014. [Online; http://www.imagine-futurefactory.eu/]. 204

BIBLIOGRAPHY 219

[Jen94] Kurt Jensen. An introduction to the theoretical aspects of coloured

petri nets. In A Decade of Concurrency, Reflections and Perspectives, REX

School/Symposium, pages 230–272, London, UK, UK, 1994. Springer-

Verlag. 155, 156, 164

[JGPG12] Ricardo Jardim-Goncalves, Keith Popplewell, and Antonio Grilo. Sus-

tainable interoperability: The future of internet based industrial enter-

prises. Comput. Ind., 63(8):731–738, October 2012. 29

[Joe99] Gregor Joeris. Defining flexible workflow execution behaviors. In Uni-

versity of Ulm, pages 49–55, 1999. 188

[KBFG14] Malik Khalfallah, Mahmoud Barhamgi, Nicolas Figay, and Parisa

Ghodous. An Architecture for a Centralized Mediation In Dynamic Net-

works. In 21th IEEE International Conference on Web Services ICWS 2014,

July 2014. 8, 39, 53

[KEP00] Gerhard Knolmayer, Rainer Endl, and Marcel Pfahrer. Modeling pro-

cesses and workflows by business rules. In Business Process Management,

Models, Techniques, and Empirical Studies, pages 16–29, London, UK, UK,

2000. Springer-Verlag. 46, 76

[KFB+13] Malik Khalfallah, Nicolas Figay, Mahmoud Barhamgi, Catarina Fer-

reira Da Silva, and Parisa Ghodous. Towards combining declarative spec-

ification with on-the-fly mediation. In IEEE SCC, pages 691–698, 2013. 8,

39, 53, 176

[KFBG13a] Malik Khalfallah, Nicolas Figay, Mahmoud Barhamgi, and Parisa

Ghodous. Controlling the evolution of product-based collaboration con-

tracts. In IEEE SCC, pages 713–720, 2013. 9, 40

[KFBG13b] Malik Khalfallah, Nicolas Figay, Mahmoud Barhamgi, and Parisa

Ghodous. Product-based business processes interoperability. In SAC,

pages 1472–1473, 2013. 8, 39, 53

[KFBG14a] Malik Khalfallah, Nicolas Figay, Mahmoud Barhamgi, and Parisa

Ghodous. Model Driven Conformance Testing for Standardized Ser-

vices. In 11th IEEE International Conference on Services Computing (SCC

2014), July 2014. 10, 40

220 BIBLIOGRAPHY

[KFBG14b] Malik Khalfallah, Nicolas Figay, Mahmoud Barhamgi, and Parisa

Ghodous. Patterns for Monitoring Parallel Processes. In 11th IEEE In-

ternational Conference on Services Computing (SCC 2014), July 2014. 9, 40,

68

[KFFDSG14] Malik Khalfallah, Nicolas Figay, Catarina Ferreira Da Silva, and Parisa

Ghodous. A cloud-based platform to ensure interoperability in aerospace

industry. Journal of Intelligent Manufacturing, pages 1–11, 2014. 105

[KKR12] Jens Kolb, Klaus Kammerer, and Manfred Reichert. Updatable process

views for user-centered adaption of large process models. In Proceed-

ings of the 10th International Conference on Service-Oriented Computing, IC-

SOC’12, pages 484–498, Berlin, Heidelberg, 2012. Springer-Verlag. 57

[KLC13] A Kashlev, Shiyong Lu, and A Chebotko. Coercion approach to the shim-

ming problem in scientific workflows. In Services Computing (SCC), 2013

IEEE International Conference on, pages 416–423, June 2013. 52

[KMNB+09] W. Kongdenfha, H.R. Motahari-Nezhad, B. Benatallah, F. Casati, and

R. Saint-Paul. Mismatch patterns and adaptation aspects: A founda-

tion for rapid development of web service adapters. Services Computing,

IEEE Transactions on, 2(2):94–107, April 2009. 51, 53, 108

[KMSF09] Mick Kerrigan, Adrian Mocan, Elena Paslaru Bontas Simperl, and Dieter

Fensel. Modeling semantic web services with the web service modeling

toolkit. J. Network Syst. Manage., 17(3):326–342, 2009. 29

[KNBSP14] Woralak Kongdenfha, Hamid R. Motahari Nezhad, Boualem Benatallah,

and Regis Saint-Paul. Web service adaptation: Mismatch patterns and

semi-automated approach to mismatch identification and adapter devel-

opment. In Web Services Foundations, pages 245–272. 2014. 53, 93

[KR13] Jens Kolb and Manfred Reichert. Data flow abstractions and adaptations

through updatable process views. In Proceedings of the 28th Annual ACM

Symposium on Applied Computing, SAC ’13, pages 1447–1453, New York,

NY, USA, 2013. ACM. 57

[KRM+12] David Knuplesch, Manfred Reichert, Jürgen Mangler, Stefanie Rinderle-

Ma, and Walid Fdhila. Towards compliance of cross-organizational pro-

cesses and their changes - research challenges and state of research. In

Business Process Management Workshops, pages 649–661, 2012. 31, 86

BIBLIOGRAPHY 221

[KSPBC06] Woralak Kongdenfha, RÃl’gis Saint-Paul, Boualem Benatallah, and Fabio

Casati. An aspect-oriented framework for service adaptation. In Asit

Dan and Winfried Lamersdorf, editors, Service-Oriented Computing âĂŞ

ICSOC 2006, volume 4294 of Lecture Notes in Computer Science, pages 15–

26. Springer Berlin Heidelberg, 2006. 107

[KT13] Bilal Kanso and Safouan Taha. Temporal constraint support for ocl. In

Krzysztof Czarnecki and Gorel Hedin, editors, Software Language Engi-

neering, volume 7745 of Lecture Notes in Computer Science, pages 83–103.

Springer Berlin Heidelberg, 2013. 185

[LFB+12] Jae-Hyun Lee, Steven J. Fenves, Conrad Bock, Hyo-Won Suh, Rachuri

Sudarsan, Xenia Fiorentini, and Ram D. Sriram. A semantic product

modeling framework and its application to behavior evaluation. IEEE T.

Automation Science and Engineering, 9(1):110–123, 2012. 78

[LG12] Lam-Son Lê and Aditya Ghose. Contracts and goals = roles? In Pro-

ceedings of the 31st International Conference on Conceptual Modeling, ER’12,

pages 252–266, Berlin, Heidelberg, 2012. Springer-Verlag. 49

[LH93] Wei Li and Sallie Henry. Object-oriented metrics that predict maintain-

ability. J. Syst. Softw., 23(2):111–122, November 1993. 104

[Lim09] Moises Lima Dutra. An Ontology-Based Approach to Manage Conflicts in

Collaborative Design. ThÃĺse de doctorat en informatique, UniversitÃl’

Claude Bernard Lyon 1, November 2009. 44

[LMSW08] Grace A. Lewis, Edwin J. Morris, Soumya Simanta, and Lutz Wrage.

Why standards are not enough to guarantee end-to-end interoperability.

In ICCBSS, pages 164–173, 2008. 29, 61, 62, 194

[MB00] T. Murata and A Borgida. Handling of irregularities in human centered

systems: a unified framework for data and processes. Software Engineer-

ing, IEEE Transactions on, 26(10):959–977, Oct 2000. 188

[MHD14] Emna Mezghani, Riadh Ben Halima, and Khalil Drira. DRAAS: dynam-

ically reconfigurable architecture for autonomic services. In Web Services

Foundations, pages 483–505. 2014. 44

[ML13] Andrea Marrella and Yves Lesperance. Synthesizing a library of process

templates through partial-order planning algorithms. In 14th International

222 BIBLIOGRAPHY

Working Conference on Business Process Modeling, Development and Support

(BPMDS 2013), in conjunction with CAiSE 2013, 2013. 63, 64

[MMK02] M.D.R.-Moreno and P. Kearney. Integrating {AI} planning techniques

with workflow management system. Knowledge-Based Systems, 15(5):285

– 291, 2002. 63

[MMR11] A Marrella, M. Mecella, and A Russo. Featuring automatic adaptivity

through workflow enactment and planning. In Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom), 2011 7th Inter-

national Conference on, pages 372–381, Oct 2011. 63, 64

[MNBM+07] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Fran-

cisco Curbera, and Fabio Casati. Semi-automated adaptation of service

interactions. In Proceedings of the 16th International Conference on World

Wide Web, WWW ’07, pages 993–1002, New York, NY, USA, 2007. ACM.

51

[MR09] Christophe Merlo and Mickael Romain. Towards PLM interoperability

between aeronautical partners. In Chris McMahon Bath University, edi-

tor, Product Lifecycle Management PLM’09 Supporting the extended enterprise,

pages 163–172, ISBN 0–907776–49–3, Bath, Royaume-Uni, July 2009. 20,

27

[MTS13] Felipe Meneguzzi, Pankaj R. Telang, and Munindar P. Singh. A first-

order formalization of commitments and goals for planning. In Marie

desJardins and Michael L. Littman, editors, AAAI. AAAI Press, 2013. 47

[NC03] A Nigam and N.S. Caswell. Business artifacts: An approach to opera-

tional specification. IBM Systems Journal, 42(3):428–445, 2003. 48

[NGT04] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: The-

ory & Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2004. 9, 46, 59, 62, 127, 149

[NVSM07] Meenakshi Nagarajan, Kunal Verma, Amit P. Sheth, and John A. Miller.

Ontology driven data mediation in web services. Int. J. Web Service Res.,

4(4):104–126, 2007. 29

BIBLIOGRAPHY 223

[OBRC10] Daniel V. Oppenheim, Saeed Bagheri, Krishna Ratakonda, and Yi-Min

Chee. Coordinating distributed operations. In ICSOC Workshops, pages

213–224, 2010. 73, 113

[ODtHvdA06] Chun Ouyang, Marlon Dumas, Arthur H. M. ter Hofstede, and Wil M. P.

van der Aalst. From bpmn process models to bpel web services. In

Proceedings of the IEEE International Conference on Web Services, ICWS ’06,

pages 285–292, Washington, DC, USA, 2006. IEEE Computer Society. 90,

135

[OMG11] OMG. Product lifecycle management services. Technical report, mai

2011. [Online; http://www.omg.org/spec/PLM/]. 2, 20, 22

[OVC14] Daniel V. Oppenheim, Lav R. Varshney, and Yi-Min Chee. Work as a

service. In Advanced Web Services, pages 409–430. 2014. 80, 84

[PC11] T. Polacsek and L. Cholvy. A framework to report and to analyse a

debate. In Computer Supported Cooperative Work in Design (CSCWD), 2011

15th International Conference on, pages 84–90, June 2011. 208

[PTDL07] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank

Leymann. Service-oriented computing: State of the art and research chal-

lenges. Computer, 40(11):38–45, November 2007. 94

[PvdA06] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible

business processes management. In Proceedings of the 2006 International

Conference on Business Process Management Workshops, BPM’06, pages 169–

180, Berlin, Heidelberg, 2006. Springer-Verlag. 46

[Ray06] Daniel P Raymer. Aircraft design: A conceptual approach. AIAA education

series. American Institute of Aeronautics and Astronautics, Reston, Va.,

4. ed. edition, 2006. 16, 17, 92

[RD98] Manfred Reichert and Peter Dadam. Adept flex - supporting dynamic

changes of workflows without loosing control. Journal of Intelligent Infor-

mation Systems, 10:93–129, 1998. 54

[RLvdA03] Hajo A. Reijers, Selma Limam, and Wil M. P. van der Aalst. Product-

based workflow design. J. of Management Information Systems, 20(1):229–

262, 2003. 45

224 BIBLIOGRAPHY

[RMBCO07] Maria Dolores R-Moreno, Daniel Borrajo, Amedeo Cesta, and Angelo

Oddi. Integrating planning and scheduling in workflow domains. Expert

Systems with Applications, 33(2):389 – 406, 2007. 63

[RRD03] Manfred Reichert, Stefanie Rinderle, and Peter Dadam. Adept work-

flow management system: Flexible support for enterprise-wide business

processes. In Proceedings of the 2003 International Conference on Business

Process Management, BPM’03, pages 370–379, Berlin, Heidelberg, 2003.

Springer-Verlag. 54

[RRD04a] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness cri-

teria for dynamic changes in workflow systems: A survey. Data Knowl.

Eng., 50(1):9–34, July 2004. 54

[RRD04b] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness cri-

teria for dynamic changes in workflow systems: A survey. Data Knowl.

Eng., 50(1):9–34, July 2004. 188

[RRKD05] Manfred Reichert, Stefanie Rinderle, Ulrich Kreher, and Peter Dadam.

Adaptive process management with adept2. In Proceedings of the 21st

International Conference on Data Engineering, ICDE ’05, pages 1113–1114,

Washington, DC, USA, 2005. IEEE Computer Society. 54, 59

[RW12] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-Aware

Information Systems - Challenges, Methods, Technologies. Springer, 2012. 54

[RWR06] Stefanie Rinderle, Andreas Wombacher, and Manfred Reichert. Evolution

of process choreographies in dychor. In Proceedings of the 2006 Confeder-

ated International Conference on On the Move to Meaningful Internet Systems:

CoopIS, DOA, GADA, and ODBASE - Volume Part I, ODBASE’06/OTM’06,

pages 273–290, Berlin, Heidelberg, 2006. Springer-Verlag. 57, 59

[S.96] Joosten S. Workpad: a conceptual framework for process analysis and

design. ACM Transactions of Office Information Systems, 1996. 194, 204

[Sad12] M H Sadraey. Aircraft Design: A Systems Engineering Approach. Aerospace

Series. Wiley, 2012. xiii, 16, 17, 18, 19, 84

[SAS10] SASIG. Vda engineering change management document. Technical re-

port, september 2010. xiii, 21, 22, 23, 24, 25, 27

BIBLIOGRAPHY 225

[SCMF06] Michael Stollberg, Emilia Cimpian, Adrian Mocan, and Dieter Fensel. A

semantic web mediation architecture. In CSWWS, pages 3–22, 2006. 29

[SEG09] R. Seguel, R. Eshuis, and P. Grefen. Constructing minimal protocol adap-

tors for service composition. In Proceedings of the 4th Workshop on Emerg-

ing Web Services Technology, WEWST ’09, pages 29–38, New York, NY,

USA, 2009. ACM. 52

[SEG10] R. Seguel, R. Eshuis, and P. Grefen. Generating minimal protocol adap-

tors for loosely coupled services. In Web Services (ICWS), 2010 IEEE In-

ternational Conference on, pages 417–424, July 2010. 52

[SGN07] Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Mod-

eling control objectives for business process compliance. In BPM, pages

149–164, 2007. 82

[Sin00] Munindar P. Singh. A social semantics for agent communication lan-

guages. In Issues in Agent Communication, pages 31–45, 2000. 47

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart

and soul of model-driven software development. IEEE Softw., 20(5):42–

45, September 2003. 109

[SKT02] Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework

for scheduling workflows under resource allocation constraints. In Pro-

ceedings of the 28th International Conference on Very Large Data Bases, VLDB

’02, pages 694–705. VLDB Endowment, 2002. 46

[SMG+06] Catarina Ferreira Da Silva, Lionel Médini, Samer Abdul Ghafour, Patrick

Hoffmann, Parisa Ghodous, and Celson Lima. Semantic interoperability

of heterogeneous semantic resources. Electr. Notes Theor. Comput. Sci.,

150(2):71–85, 2006. 44

[SMTA95] Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C.

Attie. An event algebra for specifying and scheduling workflows. In

Workflows,âĂİ Proceedings 4th International Conference on Database System

for Advance Application, pages 53–60, 1995. 46

[Spi00] Marc Spielmann. Model checking abstract state machines and beyond.

In Proceedings of the International Workshop on Abstract State Machines, The-

226 BIBLIOGRAPHY

ory and Applications, ASM ’00, pages 323–340, London, UK, UK, 2000.

Springer-Verlag. 60, 61

[TABFB09] Y. Taher, A Ait-Bachir, M.-C. Fauvet, and D. Benslimane. Diagnosing

incompatibilities in web service interactions for automatic generation of

adapters. In Advanced Information Networking and Applications, 2009. AINA

’09. International Conference on, pages 652–659, May 2009. 51

[Tar12] Sasu Tarkoma. Publish / Subscribe Systems: Design and Principles. Wiley

Publishing, 1st edition, 2012. xiii, 65, 153

[TBSR06] M. Tarek, C. Boutrous-Saab, and S. Rampacek. Verifying correctness of

web services choreography. In Web Services, 2006. ECOWS ’06. 4th Euro-

pean Conference on, pages 306–318, Dec 2006. 55

[TEvdHP11] Oktay Türetken, Amal Elgammal, Willem-Jan van den Heuvel, and

Mike P. Papazoglou. Enforcing compliance on business processes

through the use of patterns. In ECIS, 2011. 82

[TKS14] Pankaj R. Telang, Anup K. Kalia, and Munindar P. Singh. Engineer-

ing service engagements via commitments. IEEE Internet Computing,

18(3):46–54, 2014. 47, 77

[TLM06] G. Thimm, S. G. Lee, and Y.-S. Ma. Towards unified modelling of product

life-cycles. Comput. Ind., 57(4):331–341, May 2006. 20

[TPPvdH11] Yéhia Taher, Michael Parkin, Mike P. Papazoglou, and Willem-Jan

van den Heuvel. Adaptation of web service interactions using complex

event processing patterns. In Proceedings of the 9th International Conference

on Service-Oriented Computing, ICSOC’11, pages 601–609, Berlin, Heidel-

berg, 2011. Springer-Verlag. 51

[TS09] Pankaj R. Telang and Munindar P. Singh. Business modeling via com-

mitments. In SOCASE, pages 111–125, 2009. 3, 6, 35, 37, 47, 73

[TS12a] Pankaj R. Telang and Munindar P. Singh. Comma: A commitment-based

business modeling methodology and its empirical evaluation. In Proceed-

ings of the 11th International Conference on Autonomous Agents and Multi-

agent Systems - Volume 2, AAMAS ’12, pages 1073–1080, Richland, SC,

2012. International Foundation for Autonomous Agents and Multiagent

Systems. 47

BIBLIOGRAPHY 227

[TS12b] P.R. Telang and M.P. Singh. Specifying and verifying cross-organizational

business models: An agent-oriented approach. Services Computing, IEEE

Transactions on, 5(3):305–318, Third 2012. 47

[VBKB+14] N. R. T. P. Van Beest, E. Kaldeli, P. Bulanov, J. C. Wortmann, and A. La-

zovik. Automated runtime repair of business processes. Inf. Syst., 39:45–

79, January 2014. 63

[vdA99] W.M.P van der Aalst. On the automatic generation of workflow processes

based on product structures. Computers in Industry, 39(2):97 – 111, 1999.

45, 79

[vdALM+10] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl,

and Karsten Wolf. Multiparty contracts: Agreeing and implementing

interorganizational processes. Comput. J., 53(1):90–106, 2010. 53, 56, 73

[vdAP06] Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly

declarative service flow language. In The Role of Business Processes in

Service Oriented Architectures, 2006. 7, 37, 46, 73, 77, 208

[vdAPS09] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative

workflows: Balancing between flexibility and support. Computer Science

- R&D, 23(2):99–113, 2009. 46

[vdARL01] Wil M. P. van der Aalst, Hajo A. Reijers, and Selma Limam. Product-

driven workflow design. In CSCWD, pages 397–402, 2001. 45, 79

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski,

and Alistair P. Barros. Workflow patterns. Distributed and Parallel

Databases, 14(1):5–51, 2003. 86

[vdAW05] Wil M. P. van der Aalst and Mathias Weske. Case handling: A new

paradigm for business process support. Data Knowl. Eng., 53(2):129–162,

May 2005. 188

[VHH+11] R. Vaculin, R. Hull, T. Heath, C. Cochran, A Nigam, and P. Sukaviriya.

Declarative business artifact centric modeling of decision and knowledge

intensive business processes. In Enterprise Distributed Object Computing

Conference (EDOC), 2011 15th IEEE International, pages 151–160, Aug 2011.

48

228 BIBLIOGRAPHY

[VO11] Lav R. Varshney and Daniel V. Oppenheim. On cross-enterprise collabo-

ration. In BPM, pages 29–37, 2011. 3, 31

[VRvdA08] Irene T. P. Vanderfeesten, Hajo A. Reijers, and Wil M. P. van der Aalst.

Product based workflow support: Dynamic workflow execution. In

CAiSE, pages 571–574, 2008. 45

[Wes10] Mathias Weske. Business Process Management: Concepts, Languages, Archi-

tectures. Springer Publishing Company, Incorporated, 1st edition, 2010.

28, 35

[WHR11] Bochao Wang, A Haller, and F. Rosenberg. Generating workflow models

from owl-s service descriptions with a partial-order plan construction. In

Web Services (ICWS), 2011 IEEE International Conference on, pages 714–715,

July 2011. 62, 64

[Wie92] Gio Wiederhold. Mediators in the architecture of future information sys-

tems. IEEE Computer, 25(3):38–49, 1992. 3, 7

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-

duction. MIT Press, Cambridge, MA, USA, 1993. 122

[WLH04] Michael Winikoff, Wei Liu, and James Harland. Enhancing commitment

machines. In DALT, pages 198–220, 2004. 47

[WPTR13] Barbara Weber, Jakob Pinggera, Victoria Torres, and Manfred Reichert.

Change patterns in use: A critical evaluation. In BMMDS/EMMSAD,

pages 261–276, 2013. 56

[WRR13] Barbara Weber, Stefanie Rinderle, and Manfred Reichert. Change pat-

terns and change support features in process-aware information systems.

In Seminal Contributions to Information Systems Engineering, pages 381–395.

2013. xiii, 7, 56, 57

[YMH+06] Jian Yu, Tan Phan Manh, Jun Han, Yan Jin, Yanbo Han, and Jianwu

Wang. Pattern based property specification and verification for service

composition. In WISE, pages 156–168, 2006. 82

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol specifications and com-

ponent adaptors. ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997. 7,

76, 86

BIBLIOGRAPHY 229

[ZBDtH06] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur

H. M. ter Hofstede. Let’s dance: A language for service behavior model-

ing. In OTM Conferences (1), pages 145–162, 2006. 6, 53, 73

[ZGS+13] Zhangbing Zhou, Walid Gaaloul, Lei Shu, Samir Tata, and Sami Bhiri.

Assessing the replaceability of service protocols in mediated service in-

teractions. Future Gener. Comput. Syst., 29(1):287–299, January 2013. 50

[zM04] M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design,

and Implementation of Workflow-driven Process Information Systems., vol-

ume 6 of Advances in Information Systems and Management Science. Logos,

Berlin, 2004. 204

[ZY08] Xianrong Zheng and Yuhong Yan. An efficient syntactic web service

composition algorithm based on the planning graph model. In Web Ser-

vices, 2008. ICWS ’08. IEEE International Conference on, pages 691–699, Sept

2008. 63, 64

230 BIBLIOGRAPHY

Publications

International journals with reviewing committee

1. A cloud-based platform to ensure interoperability in aerospace industry. M. Khal-

fallah, NFI Figay, C Ferreira Da Silva, P Ghodous. Journal of Intelligent Manufac-

turing ():1-11, Springer US, ISSN 1572-8145. 2014.

2. Provenance-aware Monitoring System. M. Khalfallah, NFI Figay, M. Barhamgi, P

Ghodous. To be submitted

International conferences with reviewing committee

3. Patterns for Monitoring Parallel Processes. M. Khalfallah, NFI Figay, M. Barhamgi,

P Ghodous. In 11th IEEE International Conference on Services Computing (SCC

2014), Alaska. 2014.

4. Model Driven Conformance Testing for Standardized Services. M. Khalfallah, NFI

Figay, M. Barhamgi, P Ghodous. In 11th IEEE International Conference on Services

Computing (SCC 2014), Alaska. 2014.

5. An Architecture for a Centralized Mediation In Dynamic Networks. M. Khalfal-

lah, M. Barhamgi, NFI Figay, P Ghodous. In 21th IEEE International Conference

on Web Services ICWS 2014, Alaska. 2014.

6. Controlling the Evolution of Product-based Collaboration Contracts. M. Khalfal-

lah, NFI Figay, M. Barhamgi, P Ghodous. In IEEE 10th International Conference

on Services Computing (SCC), Santa Clara Marriott, California, USA (Center of

Silicon Valley) . pp. 713-720. 2013.

7. Towards Combining Declarative Specification with On-the-fly Mediation. M. Khal-

fallah, M. Barhamgi, NFI Figay, C Ferreira Da Silva, P Ghodous. In IEEE 10th

231

232 Author’s publications

International Conference on Services Computing (SCC), Santa Clara Marriott, Cal-

ifornia, USA . pp. 691-698. 2013.

8. Product-Based Business Processes Interoperability. M. Khalfallah, M. Barhamgi,

NFI Figay, P Ghodous. In Symposium On Applied Computing, Coimbra, Portugal.

2013.

9. Cross-organizational Business Processes Modeling Using Design-by-Contract Ap-

proach. M. Khalfallah, NFI Figay, P Ghodous, C Ferreira Da Silva. In International

IFIP Working Conference on Enterprise Interoperability , Enschede, The Nether-

lands. 2013.

10. A Novel Approach to Ensure Interoperability Based on a Cloud Infrastructure .

M. Khalfallah, M. Barhamgi, NFI Figay, P Ghodous. In 19th ISPE International

Conference on Concurrent Engineering CE2012, Springer ed. Trier (Germany). pp.

1143-1154. 2012.

Author’s publications 233

