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Abstract

Eukaryotic cells use a multitude of protein machines to regulate their own structure. In this thesis, we
study how the geometrical arrangement of these interacting microscopic active elements sculpt the cell’s
own internal microstructure and its membrane enclosure.

We first focus on the mechanisms generating actomyosin contractility, a crucial driver of cell motion and
organization. We question the current position of highly organized, sarcomeric contractility as the only
possible mechanism to drive contractility. We propose an alternative mechanism, and show that only it can
account for the observed contractility of disordered actomyosin assemblies. It moreover yields qualitatively
new effects in intracellular force transmission, including stress reversal and amplification, consistent with
experimentally observations in fiber networks.

We next elucidate some of the mechanisms through which the cell deforms and cuts its own membrane, thus
enabling exchanges with the extracellular medium as well as between its internal compartments. We find
that the function of the proteins responsible for this remodeling is strongly influenced by the mechanics of
the membrane, and use these effects to elucidate the modes of operation of proteins clathrin and dynamin,
as well as of protein complex ESCRT-III.
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Chapter 1

Foreword

This thesis summarizes my contributions to my two main research interests over the period 2010-2014,
namely active stress generation in the cytoskeleton and protein-membrane interactions. In both cases, my
approach has focused on a mesoscopic scale that can be described without a perfect knowledge of molecular
details, but at which the geometrical structure of subcellular constructs still yields crucial insights into
biological processes.

My interest in the first topic, described in Chapter 2, has revolved around understanding how the large-
scale behavior of actomyosin emerges from its microscopic dynamics. While this behavior has been well
characterized experimentally, we demonstrate that in some systems the microscopic and macroscopic be-
haviors of actomyosin are seemingly incompatible for symmetry reasons. New mechanisms thus need to be
invoked to connect them, and we make significant progress towards characterizing them theoretically. In
Chapter 3, we turn to the nanometer-scale physical mechanisms through which specialized proteins deform
and remodel the cell membrane. Unlike in the actomyosin case, the microscopic underpinnings of these
processes are not well understood. In this setting, theory is a powerful way to connect the dots between
disparate experimental results, validating hypothetical mechanisms by quantitatively predicting the results
of an experiment from data acquired in unrelated ones. Chapter 4 then presents my research plans, to be
carried out in my two-year-old research group in Orsay.

The theoretical work presented here is deeply rooted in experimental observations, and I have been ex-
tremely fortunate to work with the groups of Margaret Gardel (University of Chicago) and Aurélien Roux
(University of Geneva), with whom I have had a very fruitful back-and-forth between theory and experi-
ments. The presentation of this thesis reflects the format of these exchanges, and blends general theoretical
results, more involved modeling and experimental tests. While I believe that this presentation is the most
efficient to convey our ideas, it might be to the detriment of identifying contributions—to clarify this point,
I performed none of the experiments, while virtually all theoretical work was conducted either by me or
by students under my direct supervision. This thesis is selective in its presentation, focusing on simple
theoretical ideas and scaling reasonings, and covers only two of my research interests. The reader interested
in more rigorous theoretical, experimental or bibliographical discussions as well as in other projects will
find a list of original articles as well as hyperlinks in Appendix A.
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Chapter 2

Contractility in disordered actomyosin

The structure and motion of living cells is largely controlled by the continuous remodeling of their cy-
toskeleton, which crucially involves the contractility of networks of actin filaments (F-actin) and myosin
molecular motors. How macroscopic motion emerges from the protein-scale interactions between these
components was first understood in the context of striated muscle [1]. There, individual myosins are as-
sembled into so-called “thick filaments”, bottlebrush-shaped clusters of myosin capable of binding several
actin filaments and of sliding along them for long distances. The motion of these assemblies of motors is
powered by the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP); for brevity,
we refer to them simply as “motors” in the following. In striated muscle, F-actin and motors are strongly
organized into a periodic array of so-called sarcomeres, contractile units where the sliding action of the
motors is harnessed to produce contraction through F-actin’s geometrical arrangement [Fig. 2.1(a)].

However, in many biological situations contractile F-actin and myosin assemblies—be they one-dimensional
bundles or two- or three-dimensional networks—lack the organization found in sarcomeres [2, 3, 4, 5, 6, 7, 8]
(Fig. 2.2). While the biochemical processes inducing the relative motion of the motors and filaments are
similar to the ones involved in striated muscle, here the geometrical mechanisms used to convert this relative
motion into contraction in the absence of organization are less clear. Indeed, the filaments and motors
do not have an intrinsic propensity towards contraction, and can a priori yield extension just as easily.
Figure 2.1(b) illustrates this property in a simple one-dimensional example. Most theoretical models of
disordered actomyosin contractility circumvent this question by assuming from the onset that motors either
induce an average contractile stress in the actomyosin medium [9] or, in more detailed descriptions, that
they give rise to localized contractile force dipoles [10]. These studies then typically move on to consider
the macroscopic consequences of such mesoscopic behaviors. In the work presented in this chapter, we
adopt a different focus and ask how the contractility emerges from the networks’ microscopic components
in the first place.

We first discuss this question in one-dimensional actomyosin assemblies, i.e., actomyosin bundles. In these
systems, we present in vitro experiments demonstrating that sarcomere-like organization is not necessary

contractile unit

contract

(a)

contract

extend

(b)

motor

passive
crosslink

filament
pointed end
barbed end

Figure 2.1: Geometrical foundations of contractility. Motors bound to filaments slide towards their “barbed
ends”, as for myosin II thick filaments. (a) In striated muscle, motors are localized close to the filaments’
pointed ends. When activated, every motor pulls in the neighboring filaments and thus induces local
contraction. (b) If filament polarities are not carefully selected, striated muscle-like locally contractile
configurations (top) are just as likely as extensile ones (bottom), and the overall behavior of the actomyosin
assembly is unclear.
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Figure 2.2: Four examples of in vivo contractile actomyosin, showing the contrast between the very orga-
nized striated muscle and more disordered structures in one, two and three dimensions. Images respectively
taken from the Lappalainen lab website, and Refs. [11, 12, 13].

for contraction (Sec. 2.1), and thus that the symmetry between contraction and extension illustrated in
Fig. 2.1(b) is spontaneously broken. Because geometry in one dimension is very simple, there are strong
geometrical constraints on the type of mechanisms that can lead to such symmetry-breaking, which we
discuss in Sec. 2.2. Combining these theoretical constraints with further experiments, we then show that
F-actin buckling under longitudinal compression enables contraction by favoring local filament collapse
in the absence of sarcomere-like organization (Sec. 2.3). This mechanism significantly differs from the
canonical sarcomeric contraction, resulting in qualitatively different predictions for the contraction force
and velocity. As discussed in Sec. 2.4, experiments validate our model to the exclusion of the sarcomeric
mechanism, offering decisive evidence for non-sarcomeric contraction in disordered actomyosin bundles.

We next study the contractility of the large range of two- and three-dimensional contractile actomyosin
networks found in vivo. Their physics is more complex than that of bundles, and warrants studying local
and nonlocal effects separately. Accordingly, we first focus on the physics of the immediate surroundings of
a motor in Sec. 2.5. We present the first comprehensive comparison of contractility-inducing mechanisms
in disordered cytoskeletal networks, and find that filament deformation plays a crucial role in most relevant
regimes. We then ask how these local forces propagate to larger scales, and introduce general theorems
about this force transmission in linear viscoelastic networks in Sec. 2.6. Finally, Sec. 2.7 describes on-
going work about force transmission in nonlinear two- and three-dimensional elastic networks, suggesting
a surprisingly strong tendency of filamentous actin networks to generate strong large-scale contraction
from comparatively weak locally contractile and extensile forces, yielding unprecedented insights into the
robustness of actomyosin contractility.

2.1 Ordering is not required for bundle contraction

While many intracellular actomyosin structures generate contraction in the absence of apparent ordering,
our knowledge of their microscopic organization is far from perfect. As a result, we are not able to determine
with certainty whether the local configurations represented in Fig. 2.1(b) are indeed present in equal
quantities in these systems, or if their microscopic structure favors contractile over extensile configurations
as in sarcomeres. In order to establish whether contractility is indeed possible in fully disordered actomyosin
systems, we develop a novel in vitro reconstituted assay, where preformed biotinylated actin filaments and
ADP-associated (i.e., inactive) smooth muscle myosin thick filaments are left to aggregate and associate
with streptavidin-coated polystyrene beads bound to the surface of a deformable hydrogel. This aggregation
process, illustrated in Fig. 2.3, results in a two-dimensional network of long actomyosin bundles. In the
absence of motor activity, the motors are not expected to preferentially associate with either the barbed
or pointed end of the actin filaments, and therefore we do not expect the bundles to display any polarity
ordering. In other words, filaments within the bundle do not preferentially choose one polarity over the
other. No crosslinks are introduced in the system.

To determine whether such disordered actomyosin bundles are able to contract, we next flow ATP into the
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neutravidin-coated beads

surface
soft hydrogel

biotinilated

biotinilated, stabilized actin filaments motors bundle formation

Figure 2.3: Assembly of polarity-disordered actomyosin bundles on a polyacrylamide gel substrate per-
formed in the following four steps. 1) Neutravidin beads are bound to a biotinylated-BSA-coated poly-
acrylamide gel surface. 2) Biotinylated F-actin binds to the beads, forming F-actin asters. 3) Myosin thick
filaments are introduced in the absence of ATP. 4) After ' 30 min incubation, actomyosin bundles form
near the surface and span between beads. Free myosin filaments in solution are washed out, followed by
perfusion of 1 mM ATP, which induces motor activity and allows bundles to contract

experimental chamber, which activates the sliding motion of individual motors. As a result, the initially
floppy bundles all quickly become taut, evidencing contraction. In many cases, contractile stresses induce
the rupture of the bundles, which is followed by a retraction to ' 60-80% of their initial length over
a few tens of seconds. The contraction speed is found to be proportional to the length of the bundles,
a phenomenon known as “telescopic contraction”. Its occurrence demonstrates that contraction occurs
throughout the bundles, as opposed to constituting an end-effect possibly induced by the specifics of
their attachment to the beads. We take advantage of cases where rupture does not occur to measure the
contractile force exerted by a single bundle. To this end, we analyze the deformation of the soft substrate
onto which the beads are grafted and find that it amounts to several hundreds of picoNewtons. As a
single myosin head may generate forces of the order of a picoNewton, this is evidence that despite their
lack of polarity ordering these bundles are able to make hundreds of myosin heads work in concert to
systematically generate contractile force. This is in apparent contradiction with the expected symmetry
between contraction and extension illustrated in Fig. 2.1(b).

Reference: Reconstitution of Contractile Actomyosin Bundles.
Todd Thoresen, Martin Lenz, Margaret L. Gardel, Biophys. J. 100, 2698 (2011)

2.2 Disordered bundle contraction requires actin nonlinearity

To understand under which condition the contraction/extension symmetry can be broken, we develop a
semi-microscopic model of contractile actomyosin networks. In the model, polar filaments aligned along a
single direction are linked together by undeformable (but not necessarily point-like) motors at discrete at-
tachment points. Filament “sections” comprised between two attachment point may deform longitudinally
according to an unprescribed force-extension relation, which may be a function of their resting length.
The attachment points are able to slide along the filaments according to an also unprescribed, motor-
dependent, possibly nonlinear force-velocity relationship. This very general mathematical description can
accommodate the presence of actin crosslinkers, which may simply be described as motors whose velocity
is zero irrespective of the force applied on them. We assume force balance throughout the system, although
the addition of viscous drag forces (which are negligible in practice) does not modify our conclusions. No
specific assumption is made about either the geometry or the topology of the bundle.

In a first approach to our question, we investigate whether such a bundle may display telescopic contraction
in a situation where all its motors are identical, as appears to be the case in the above-described experiments.
More precisely, we investigate a bundle where all motors have the same unloaded velocity. Denoting this
velocity by v0, we prove that in such bundles all motors are motionless with respect to one another.
Filaments whose pointed end is directed to the right on the diagram of Fig. 2.4(a) move to the right
with velocity +v0, while left-pointing filaments move to the left with −v0. In such a pattern of motion,
all motors slide at their preferred (unloaded) velocity, and there is no filament tension build-up within
the network, implying that the filament force-extension relationships are irrelevant. Moreover, we note
that the velocities of the bundle extremities must lie in the interval [−v0, v0], and therefore telescopic
contraction cannot take place in such a setting. As telescopic contraction is indeed observed in the above-
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bundle contracts with V

polarity

reversal

no contraction on average

symmetric bundle extends with -V

(b) (c)

velocity +v0

velocity -v0

velocity 0

(a)

Figure 2.4: Theoretical investigations into the requirements for actomyosin bundle contraction though
general symmetry arguments. (a) Identical motors generate a pattern of motion whereby filaments are
transported at a constant velocity according to their polarity. Such a motion is incompatible with tele-
scopic contraction. (b) A bundle with nonidentical motors (shades of grey) may display some amount of
contractility, denoted here by V . (c) If the filaments are stiff, the polarity-reversed image of such a motor
has an equal and opposite contraction velocity −V . In cases where the two configurations are equally likely,
no contractility can occur on average.

described experiments, we conclude that even though the filaments of Sec. 2.1 are all bound by thick
filaments of smooth muscle myosin prepared under identical experimental conditions, there must exist
some variability in their unloaded velocities. This is not unreasonable from an experimental standpoint,
as electron microscopy reveals that the fluctuations in the number of myosin head per thick filament are
comparable to its mean. Moreover, despite experimental efforts to the contrary, it is likely that some of
the myosin heads my be inactive or that their phosphorylation state might fluctuate.

Now considering a situation where motors do not have identical unloaded velocities, as is the case for
in vivo bundles comprising crosslinks, we find that individual bundles may display telescopic contractility
depending on their specific geometry and motor attachment topology. The contractile sarcomeric structure
shown in Fig. 2.1 is one such example, which relies on a strong form of polarity organization. Indeed, in
this structure crosslinks (“immobile motors”) are localized at the filament barbed ends, while functional
motors are systematically located at their pointed ends. Were the polarities of the filaments to be reversed,
as might happen in some regions of a polarity disordered bundle, these structures would become extensile.

More generally, we show that the two tendencies compensate on average for a collection of polarity-
disordered bundles where filaments behave as rigid rods, reflecting the symmetry of Fig. 2.1(b). To prove
this statement, we consider a generic filament-motor bundle as illustrated in Fig. 2.4(b). As the motors
slide along the filaments, locally ordered regions of this bundle may either contract or extend. Moreover,
the stresses resulting from the conflict between the velocities prescribed by different motors might de-
form the filaments and induce local compression or stretching in the bundle. As a result, the bundle of
Fig. 2.4(b) has a non-vanishing contraction velocity, which we denote by V . We next consider the bundle
of Fig. 2.4(c), which is rigorously identical to the previous one, except for the fact that the polarities of its
filaments are reversed. If the filaments within this bundle behave as rigid rods, they can be described using
linear elasticity. In such a situation, reversing the polarity of the filaments is equivalent to reversing all
filament tensions and all velocities in the system. As a result, the polarity-reversed bundle contracts with
velocity −V , implying extension in cases where V > 0. Since in a polarity reversal-invariant ensemble of
bundles the two configurations of Figs. 2.4(b) and (c) are equally likely, we conclude that linearly elastic,
polarity reversal-invariant bundles do not contract on average.

In summary, actomyosin contractility requires:

1. Nonidentical motors

and

2. Either

(a) Polarity organization in the initial condition
or

(b) Nonlinear filament elasticity

10



Interestingly, this statement is valid irrespective of the bundle’s internal geometry and topology, as well as of
the (possibly nonlinear) form of the motor force-velocity relationships. Moreover, we note that assumption
2(a) only regards the bundle’s initial state. Indeed, our detailed proof shows that a polarity organization
emerging from an initially disordered ensemble of bundles as a result of their internal dynamics is not
sufficient to generate contraction. In conclusion, our reasoning allows for two possible modes of actomyosin
contractility:

• 1+2(a): This is the well-known sarcomeric contraction mode, where nonidentical motors (in practice,
a combination of crosslinks and active motors) generate contraction.

• 1+2(b): This constitutes a new hypothetical mode of contraction, where nonidentical motors induce
stresses within the filaments. While compressive and extensile stresses are present in equivalent
amounts, individual filaments respond nonlinearly to these stresses, for instance collapsing under
compression more than they stretch under extension. In such an example, the overall response of
the bundle is dominated by filament collapse, leading to an overall shortening of the bundle, i.e.,
contractile behavior.

Thus within the general set of assumptions used in our model, disordered bundles can only contract
according to mechanism 1+2(b). Note that the model considered here does not consider the possibility for
motors to detach from the filaments and then reattach elsewhere. While such events are negligibly rare in
the experiments described in Sec. 2.1, they might play an important role in other systems, and are further
discussed in the research project of chapter 4.

Reference: Requirements for contractility in disordered cytoskeletal bundles.
Martin Lenz, Margaret L. Gardel, Aaron R. Dinner, New J. Phys. 14, 033037 (2012)

2.3 Actin buckling acts as a contractility-inducing nonlinearity

Using the reasonings of the previous section as a guide to understand disordered bundle contraction as
observed in Sec. 2.1, we hypothesize that the nonlinear actin response in these experiments stems from the
well-characterized phenomenon of actin buckling. As a consequence of buckling, an inextensible filament
resists extension, while it collapses under sufficient longitudinal compression, much like a piece of rope.
The resulting contractility mechanism is schematized in a simple setting in Fig. 2.5(a), which suggests that
buckling typically occurs over distances of the order of the spacing between two motors.

As the experiments of Sec. 2.1 use motors that are too closely packed for the resulting buckles to be visible
under our imaging conditions, we reason that buckles should be observable under conditions where motors
are less dense. By measuring the actin and myosin densities inside the bundle, we establish experimentally
that varying the myosin concentration between 1µM and 0.1µM allows us to tune the average distance `0
between myosin thick filaments along individual F-actin between 390 nm to 5.3µm. For `0 equal to 540 nm
or larger, we observe visible actin buckles, whose appearance is moreover very well synchronized with both
ATP injection and bundle contraction [Fig. 2.5(b)]. Lowering the myosin concentration further, however,
abrogates contraction as shown in Fig. 2.5(c), even though the myosin concentration is still well above the
minimal concentration required to maintain bundle integrity. This observation is somewhat surprising, as
we would expect that for low myosin concentration the filament sections separating two motors are long
and therefore easy to buckle, implying strong contraction. Conversely, this reasoning suggests that for
high myosin concentrations, bundle crosslinking by myosin becomes so extensive that buckling should be
suppressed.

To account for this discrepancy regarding the qualitative effect of motor spacing on concentration, we add
one important element to our bundle contraction picture, namely that motors intermittently detach from
the filaments, thus allowing local stress relaxation. Our two other main assumptions are that motors have
a dispersion in their unloaded velocities as required by the reasoning of Sec. 2.2, and that a section of
filament between two motors buckles above a certain threshold force FB. We thus consider a bundle of
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Figure 2.5: Buckling in nonsarcomeric contractile actomyosin bundles. (a) In our hypothesized mecha-
nism, the simultaneous presence of motors and crosslinks (or fast and slow motors) generically induces
compressive (light blue) and extensile (hatched dark blue) stresses in filaments. Buckling of the compressed
filaments leads to an overall shortening of the bundle. (b) Time-lapse images of fluorescent actin (inverted
contrast) showing F-actin buckling (arrowheads) following the addition of 1 mM ATP at t = 0 s. (c) Bundle
contraction as a function of the inter-motor distance `0, estimated from quantitative myosin fluorescence.
Bars indicate standard deviation (n > 25).

weakly deformed filaments and ask whether the forces developing within it are sufficient to induce buckling
[Fig. 2.6(a)].

We focus on a single filament of length `f and approximate its surroundings by an effective medium
composed of evenly spaced point-like motors separated by a distance `0 � `f [Fig. 2.6(b)]. This divides
the filament into discrete sections, which we label by i = 0, . . . , `f/`0. We take into account the possibility
that the filaments are not straight, but bend away from the x-axis, implying that the contour length Li
of filament section i can be larger than `0. Defining fi as the tension of filament section i (fi < 0 for a
compressed filament section), we expand its force-extension relationship for small deformations:

Li = Li(fi = 0)− cfi, (2.1)

where c > 0 is the filament compliance. We refer to the motor flanked by filament sections i− 1 and i as
“motor i”, and describe its operation by the simplified force-velocity relationship

fi−1 − fi = Fi − χvi. (2.2)

Here vi denotes the local velocity of the filament at the location of motor i and χ > 0 is the motor
susceptibility. Eqs. (2.1) and (2.2) yield a local relaxation time scale τr = χc/2. The time-independent
stall force of motor i is denoted by Fi in Eq. (2.2), and is drawn from a random distribution satisfying

Fi = FS and FiFj − Fi Fj = δF 2
Sδij , (2.3)

where bars denote averages over the motor distribution. As a result, different motors have different unloaded
velocities Fi/χ, as required for contraction (Sec. 2.2). Owing to the conservation of filament mass:

dLi
dt

= vi − vi+1. (2.4)

Finally, a motor bound to several filaments as in Fig. 2.6(a) can transiently detach from one while still
holding onto the others. We thus let each motor i randomly detach from the filament with a constant rate
1/τd. Following detachment, local filament stresses relax instantaneously, yielding fi = fi−1 = (fi+fi−1)/2.
The motor then reattaches after a time much shorter than τr and τd. Since a motor in a dense bundle
is typically close to several filaments, the probability that it detaches from all filaments at the same time
and leaves the bundle is negligible. We denote by 〈. . .〉 the average over the Poisson process of motor
detachment.

12



Figure 2.6: Stress build-up in bundles with non-identical motors. (a) In a bundle with motors having
non-identical velocities (shades of grey), filaments of length `f � `0 are subjected to random motor forces
at points ≈ `0 apart distributed throughout their length. (b) Prior to contraction, the environment of a
filament of interest (blue) can be approximated by a collection of evenly spaced motors.

We obtain the space and time evolution of the filament tension f(x, t) in the continuum limit i→ x/`0 by
combining Eqs. (2.1-2.4) and averaging over motor detachment:

∂t〈f〉 −D∂2
x〈f〉 = (`0/2τr)∂xF, (2.5)

where D = `20(τ−1
r + τ−1

d )/2. The right-hand-side of Eq. (2.5) involves the spatial gradient of the stall force
F (x), reflecting the fact that non-identical motors lead to force build-up. This effect competes with the
relaxation of filament forces through motor detachment, which enters through the diffusion term D∂2

x〈f〉.
An initially relaxed filament [f(x, t = 0) = 0] experiences a vanishing average force 〈f〉(x, t) = 0 throughout
its dynamics. To quantify the magnitude of the motor-induced stress, we use Eqs. (2.1-2.4) and average
over motor detachment to calculate the rms filament force in the continuum limit:

(
〈f2〉

)1/2
= f∞

∑
n∈Z∗

 3

n2π2

(
1− e

− n2Dt
(2π`f )

2

)2


1/2

. (2.6)

This force increases monotonically from zero at t = 0 to f∞ = (`f/12`0)1/2 × δFS/(1 + τr/τd) at t = ∞
[Fig. 2.7(a-b)]. We next estimate the dependence of the ratio τr/τd on the experimentally accessible
parameter `0. A Worm-Like Chain model for filament elasticity yields c ≈ `40/kBT`

2
p, where `p is the

filament persistence length, and we approximate χ ≈ FS/v, where v is a characteristic motor velocity. This
implies τr/τd ≈ (`0/`

∗
0)4, with `∗0 = (kBT`

2
pvτd/FS)1/4. We can thus distinguish two regimes for the steady-

state force f∞ [Fig. 2.7(a)]. For `0 � `∗0, detachment events are rare compared to the time τr needed for
the force to recover from such an event, and f∞ is not affected by them. For `0 � `∗0, f∞ quickly decreases
with increasing `0 as detachment becomes much faster than recovery.

Up to a prefactor of order one, contraction proceeds as in Fig. 2.5(a) if f∞ > FB ≈ kBT`p/`
2
0 [14].

Comparing f∞ to FB as in Fig. 2.7(a), we find a threshold stiffness above which buckling cannot occur (as
exampled by the blue line). Reasonable values for our actomyosin system are `p ' 10µm, v ' 200 nm · s−1,
δFS ≈ FS ' 1 pN and τd ' 200 ms based on the typical time scales involved in the myosin mechanochemical
cycle. Since τr & τd in our experiments and detached motors reattach in ≈ 1 ms [15], our previous
assumption of fast motor reattachment is justified. These values put us in the soft filament regime defined

by `p � δF 4
SL

2
f (vτd)

3/2/kBT
5/2F

3/2
S ' 20 cm (red line). In this regime, the lines representing FB and f∞

intersect at

`−0 = (kBT`p/δFS`
1/2
f )2/3 ' 70 nm, (2.7a)

`+0 = (`
1/2
f vτd`pδFS/FS)2/5 ' 1µm, (2.7b)
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Figure 2.7: Model predictions for filament force build-up. (a) Black line: Steady-state filament force f∞

as a function of motor spacing `0 [Eq. (2.6)]. For `0 � `∗0 and `0 � `∗0, f∞ ∝ `−1/2
0 and `

−9/2
0 , respectively.

Colored lines: buckling force FB ∝ `−2
0 . (b) Typical filament force (〈f2〉)1/2 as a function of time [Eq. (2.6)].

(c) Contractile unit size `B as a function of `0 as in Eq. (2.8) (`f ' 5µm).

meaning that buckling and contraction occur for `−0 < `0 < `+0 . This range reflects the fact that strong
cross-linking (`0 < `−0 ) suppresses buckling while sparse motors (`0 > `+0 ) are undermined by stochastic
detachment. While the regime `0 ' `−0 is not accessible experimentally, the predicted value for `+0 is
strikingly similar to the motor spacing at which the breakdown of contraction is observed in Fig. 2.5(c)
(1.3µm), suggesting that the proposed mechanism is a good description of our experiments.

To characterize the contractile units resulting from this mechanism when `−0 < `0 < `+0 , we turn to the
transient regime leading up to filament buckling. The filament force profile as a function of x is initially
flat, and subsequently coarsens into a random walk for t = +∞. According to Eq. (2.5), this coarsening
occurs diffusively with diffusion coefficient D. The typical filament forces at time t � `2f/D are thus

of order f∞(
√
Dt/`f )1/2. We denote the time that this force reaches the buckling threshold FB by tB,

following which contraction proceeds as in Fig. 2.5(a) and the coarsening dynamics is interrupted. The
distance between buckles at tB thus yields the contractile unit size

`B ≈
√
DtB ≈

`2p
`30

(
kBT

δFS

)2(
1 +

τr
τd

)2

. (2.8)

As illustrated in Fig. 2.7(c), `B is typically in the micrometer range, in agreement with the observations
of Fig. 2.5(c).

The order-of-magnitude agreement between theory and experiments with respect to the size of contractile
units and the critical myosin concentration required for contraction suggests that our current analysis
offers a good description of the onset of bundle contractility. Our conclusions are robust to inclusion of
features such as inhomogeneous motor spacings `0 and force dependence of the motor detachment rate. Our
mechanism is a general one and applies to any one-dimensional system of polar filaments and motors. It is
also generalizable to any situation where filaments respond asymmetrically to compression and extension,
even if buckling is not present. Addition of passive cross-linkers, which are formally equivalent to immobile
motors, would reinforce a dispersion of motor velocities and promote contraction.

Reference: Contractile units in disordered actomyosin bundles arise from F-actin buckling.
Martin Lenz, Todd Thoresen, Margaret L. Gardel, Aaron R. Dinner, Phys. Rev. Lett. 108, 238107
(2012)

2.4 Data show buckling-induced, not sarcomeric, contractility

To decisively discriminate between buckling-induced and sarcomeric contraction in disordered bundles, we
next investigate the dependence of the maximum bundle contraction force and speed on the size of the
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Figure 2.8: Contrasting predictions of the sarcomeric and buckling-induced contraction models regarding
the bundle contraction rate.

number of myosin heads per motor. Here we report our result on the speed, which is most significant. In
both sarcomeric and buckling-induced contraction, the rate of contraction is governed by the number of
contractile units per length and the rate of contraction of each unit (Fig. 2.8). In sarcomeres, these two
parameters are determined by the sarcomere size and the force-velocity relationship of skeletal myosin II
motors. In disordered bundles, we expect more loosely defined contractile units of length `B to self-organize
as described in Sec. 2.3.

To illustrate the contrasting regulation of sarcomere-like and buckling-induced contractility, consider two
biochemically identical bundles consisting of the same number of myosin II motors and actin filaments with
identical lengths and orientations (Fig. 2.8). The only distinguishing feature between the two bundles is
that the myosin II motors are constructed into filaments of different sizes. In the first bundle (bundle α),
the myosin filaments are small, but numerous, whereas bundle β has large, but sparse myosin filaments.
Which of these bundles contracts at a faster rate? In a sarcomeric organization, the spacing of myosin II
filaments determines the sarcomere size. As there are more contractile units per bundle length in bundle
α, it will contract faster according to this mechanism. However, in the buckling-induced contractility
model, internal stresses are needed to drive filament deformation, favoring the large motors of bundle β.
Moreover, motor-mediated dense crosslinking prevents filament deformation in bundle α. Thus, according
to the buckling-induced contractility model, the stronger internal forces but weaker crosslinking of bundle
β promote contractile unit formation and thus faster contraction. Performing this experiment on the
disordered actomyosin bundles described in Fig. 2.1, we find that the bundle contraction velocity increases
with thick filament size, consistent with the buckling-induced contractility model and not with sarcomeric
contraction (Fig. 2.8).

Reference: Thick filament length and isoform composition determine properties of self-organized contrac-
tile units in actomyosin bundles.
Todd Thoresen, Martin Lenz, Margaret L. Gardel, Biophys. J. 104, 655 (2013)
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2.5 Comparing local network contraction mechanisms

While disordered actomyosin contractility in one-dimensional bundles appears to be well described by our
buckling mechanism, the situation in two- and three-dimensional actomyosin networks is more complex.
There too, contraction arises in random-polarity, disordered in vitro networks [16, 17, 18]. From a theo-
retical standpoint, however, geometry in two or three dimensions is considerably richer than in one. As a
result, several mechanisms can a priori give rise to contraction, and symmetry considerations are less easily
exploited than in bundles. Accordingly, a range of mechanisms for the emergence of actomyosin contraction
have previously been invoked in different levels of detail, ranging from cartoon pictures [10, 19] to more
quantitative numerical [20] and analytical [21] approaches. However, there is no consensus regarding their
relative roles in either in vivo or in vitro actomyosin contractility. Here we present the first comprehensive
comparison of contractility-inducing mechanisms in disordered cytoskeletal networks.

The first part of this work consists in applying similar symmetry considerations to those of Sec. 2.2 in a
two- or three-dimensional geometry. Similar to the one-dimensional situation studied there, each motor-
filament configuration exerts either contractile or extensile forces on its surroundings. However, these
opposing tendencies compensate and they are neither contractile nor extensile on average if the following
assumptions are all realized simultaneously:

1. The motor stall force does not depend on its position

2. The motor is point-like

3. The motor is undeformable

4. Filaments behave as rigid rods.

Thus a model respecting these assumptions cannot reproduce the contractility observed in disordered
actomyosin networks [16, 17, 22, 23], implying that it represents an oversimplification. As a result, one or
several of the assumptions listed above must be violated in actual actomyosin systems. We successively
relax each of these assumptions to systematically review all essential contraction mechanisms. We then
predict and compare the magnitude of the associated contractile forces. Specifically, for each mechanism we
consider a motor attached to two filaments crosslinked to a rigid external medium through four crosslinks
[Fig. 2.9(a)], and compute the average local force dipole

D =
∑
i

ri · fi. (2.9)

Here i indexes the four crosslinks. The position vector of a crosslink is denoted as ri and fi is the force
exerted on it by filament i. A negative (positive) D denotes a contractile (extensile) system.

The first mechanism considered here consists in the violation of condition 1. above, and is reminiscent of
early models of non-sarcomeric actomyosin bundles [24, 25] and networks [21]. These models propose that
motors stop upon reaching the filament barbed ends, staying there for some time before eventually detach-
ing. Although experimental evidence for this behavior in actomyosin is lacking, the resulting accumulation
of immobile motors at the filament barbed ends would generate sarcomere-like crosslinking [Fig. 2.1(a)]
and thus favor contraction. We compute the corresponding force dipole, but find it to be small compared
to those studied below. Thus here we do not discuss this mechanism further.

The remaining three mechanisms are associated with violations of conditions 2., 3. and 4., respectively.
They generate non-negligible local contractile forces through a common principle, which we illustrate for
a simple symmetrical two-filament system in Fig. 2.9(b-c). This picture assumes that the motor is able
to move away from the center of this system by a distance x—we defer the discussion of the specific
mechanisms behind this motion for now. To understand how this leads to contraction, we draw an analogy
between the motor and the slider of a zipper [Fig. 2.9(b)]. Assimilating the motor’s propensity to slide
along the filaments to a closing force applied on the zipper tab, we see that the motor pulls the filament
barbed ends together as it progresses, just like the two sides of the zipper chain are pulled together as the
zipper closes. This induces a predominantly contractile force dipole.
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Figure 2.9: Principles of local force transmission in actomyosin networks. (a) Simplified one-motor, two-
filament model. In this figure and the next, filament extremities may or may not be crosslinked to the
surrounding medium. Even though this is not represented here, crosslinked filaments extend beyond the
crosslinks and further into this medium and thus cannot freely rotate around these crosslinks. Thus, the
barbed and pointed arrow ends on this schematic merely indicate filament polarity; the actual barbed and
pointed ends of cross-linked filaments are typically further away inside the surrounding medium. (b) The
contractility induced by a motor that is closer to the barbed than the pointed ends is analogous to the
closing force (thin gray arrows) of a zipper when its slider is being slid shut (thick cyan arrow). (c) In
practice, the zipperlike pulling forces exerted at the barbed end cross-links are partially compensated by
pointed end pushing forces.

Importantly, the zipper effect induces contraction only if the motor is displaced from the intersection of
the filaments. Indeed, while the motor pulls on the filaments’ barbed end crosslinks, it also pushes out on
the pointed end crosslinks as shown on Fig. 2.9(c). These two effects compensate exactly for a centered
motor x = 0, suggesting that for small x, D is generically proportional to x. As D has units of energy,
dimensional analysis suggests that it will also be proportional to f , the typical force exerted by the motor.
We thus expect zipper-like contractility to scale as

D ≈ −fx. (2.10)

Let us now enumerate the three mechanisms allowing the motor to move away from the intersection of the
filaments and towards their barbed ends. These mechanisms are illustrated in Fig. 2.10. above. Here we
present scaling arguments to understand the magnitude of the associated force dipoles.

• A motor that has a finite size Lm moves away from the filament intersection by a quantity of order
Lm, yielding

Dfinite size ≈ −fsLm, (2.11)

where fs is the motor stall force.

• A deformable motor with a finite detachment rate koff can be assimilated to a spring of rigidity km
linking two motor units each moving with a maximal (unloaded) velocity vm. As the motor units
advance on the filaments, the spring becomes more tense and the motor units feel an increasing
restoring force ≈ kmx, with x ≈ vmt the motor displacement. The motor reaches stall when the
opposing forces felt by the motor units become equal to the stall force fs, which happens after a time
τs ≈ fs/(kmv). This occurs if the typical time during which the motor stays bound to the filament
exceeds τs: koffτs > 1. In that case, the motor becomes stalled with a length Lm ≈ fs/km, and the
contractile force dipole is given by Eq. (2.11). Conversely, if koffτs < 1, detachment typically occurs
earlier than τm and f ≈ kmx with x ≈ vm/koff. Inserting these results into Eq. (2.10), we obtain

Dextensible ≈ −kmv2
m/k

2
off. (2.12)
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Figure 2.10: Several effects contribute to the motor being closer to the filament barbed ends than to their
pointed ends on average, thus enabling zipper-like contraction as in Fig. 2.9(b-c): (a) the finite size of
the motor (corresponding to relaxing assumption 2.), (b) the finite elastic compliance of the motor (corre-
sponding to relaxing assumption 3.), and (c) the finite elastic compliance of the filaments (corresponding
to relaxing assumption 4.)

• Deformable filaments bend when subjected to a transverse force, allowing the motor to move to-
wards the filament barbed end. We consider filament sections of length ξ with bending energy∫

(kBT`pc
2/2) ds, where c is the filament curvature and s its arclength. In this case the restoring

force associated with an infinitesimal transverse displacement of magnitude x is of order kBT`px/ξ
3.

Conversely, if the motor exerts a force fs on the filament, its displacement will be of order x ≈
fsξ

3/(kBT`p). While a contribution to the force dipole of the form Eq. (2.10) exists in this case, an
even larger contribution to the force dipole is found by estimating the filament tension needed to
balance the motor force, namely T ≈ fsξ/x. As this tension is applied to the crosslinking points, a
distance ≈ ξ from the motor, the dominant contribution to the force dipole exerted is given through
Eq. (2.9) by

Ddeform ≈ −Tξ ≈
f�kBT`

1/2
p /ξ3/2

f2ξ2

kBT
. (2.13)

While this expression is valid at low forces, for f � kBT`
1/2
p /ξ3/2 the restoring force is dominated

by filament stretching, not bending. Applying a similar reasoning, we find

Ddeform ≈
f�kBT`

1/2
p /ξ3/2

f
√
ξ`p. (2.14)

To determine the dominant contraction mechanism among these three, we derive and compare the full
analytical expressions corresponding to the approximative arguments presented above as a function of two
experimentally controllable parameters: the number of myosin heads per myosin thick filament N [26] and
the inter-crosslink length ξ. We consider actin filaments with persistence length `p = 10µm. The myosin
thick filaments have length Lm = Nlm with lm = 3 nm, unloaded velocity v0 = 200 nm · s−1 and stall force
fs = Nf0. Since motor heads spend only a fraction of their time bound to actin, we estimate f0 = 0.1 pN
on average. We use km = µ/Lm with µ = 45 nN a typical protein filament rigidity [27]. myosin II has
a duty ratio 1 − pd ' 4% and a characteristic attachment-detachment time of τd = 3 ms [28], yielding a
motor detachment rate koff = pNd /τd.

The colored domains in Fig. 2.11 indicate as a function of N and ξ which of the mechanisms enumerated
above yields the largest dipole. The bottom-right half of the diagram is left blank as it involves very large
motors (Lm > ξ) not captured by our current approach. The finite motor size mechanism tends to dominate
in the vicinity of the diagonal where the motor size Lm is largest. The deformable motor mechanism
dominates in the bottom left corner of the diagram. Filament deformability governs contractility in large-ξ
regions where the filament sections are most flexible. As mentioned above, the position-dependent stall
force mechanism is always negligible in front the finite size motor mechanism; thus it never dominates
contractility. Detailed analysis reveals that this picture is remarkably insensitive on precise parameter
values.

We next consider the total force dipole D, defined as the sum of the four force dipoles associated with the
four contraction mechanisms. The magnitude of the total dipole per myosin head D/N is represented by
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Figure 2.11: Contractile forces as a function of experimentally controllable parameters. Colors identify
the dominant contraction mechanism in each parameter regime. Contours indicate the magnitude of the
average contractile force dipole per myosin head 〈D〉/N . Symbols indicate the in vitro experimental regimes
of Ref. [17] (circle), Refs. [18, 29] (square) and Ref. [30] (triangle).

contour lines in Fig. 2.11. In the ξ & 0.3µm region, these forces compare with the force dipole exerted by
a myosin head in striated muscle D/N = (500 pN × 3µm)/300 = 5 pN · µm; filament deformation-based
mechanisms dominate most of this parameter region. Conversely, for ξ . 0.3µm forces are much weaker,
and possibly too small for experimental observation. Consistent with this, the typical network parameters
used in in vitro experimental studies of actomyosin contractility are confined to the strong-contractility
region (Fig. 2.11, symbols1). Interestingly, these symbols lie between the deformable filaments and the finite
motor size contraction domains, suggesting that both mechanisms could play a role in these experiments.

Although we find that filament deformations dominate many significant regimes of actomyosin contraction,
our focus on local actin deformation could still lead to an underestimate of their effect. Indeed, nonlocal
deformations of the network over several mesh sizes could be more favorable than local deformations in
heavily crosslinked networks or regimes where motors are larger than the inter-crosslink length. Collective
effects could also be of importance, as stress propagation through the elastic filament network could lead
to cooperativity between distant motors; we tackle these issues in the next two sections. We note that
our weakly deformed network approach is only relevant for small motor forces or during the very early
stages of larger-scale contraction. Further work is required to analyze strongly deformed or dynamically
reorganizing networks and the corresponding synergies between several of the mechanisms described here
(see Chapter 4). On such longer time scales, the microscopic interactions between filaments and motors
considered here could furthermore shed light onto the self-organization of disordered actomyosin networks
into more organized structures [7].

Reference: Geometrical origins of contractility in disordered actomyosin networks.
Martin Lenz, Phys. Rev. X 4, 041002 (2014)

1The symbols’ coordinates are computed by assimilating ξ to the networks’ entanglement length le = 620 nm/c2/5, with
the actin concentration c in units of mg/mL [31].
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Figure 2.12: Boundary forces (purple arrows) transmitted by a two-dimensional homogeneous linear elastic
medium under the influence of a localized force dipole (black arrowheads) computed using finite elements.
The boundary force distribution is strongly influenced by both the medium’s material properties (ν denotes
the Poisson ratio) and the geometry of the problem. Nevertheless, in all cases the boundary dipole tensor
is equal to the body forces’ dipolar moment.

2.6 Ground rules for nonlocal linear force transmission

The local forces exerted by myosin molecular motors and evaluated in Sec. 2.5 are transmitted by a dis-
ordered elastic scaffold of actin fibers and determine much of the cell’s active mechanics. More generally,
forces in living systems are largely generated at the nanometric protein level, and yet biological function of-
ten requires them to be transmitted to much larger length scales. At the tissue scale for instance, contractile
cells exert forces on their surroundings to participate in muscular contraction, clot stiffening [32] and wound
healing [33]. Due to their physiological relevance, such systems have been extensively studied in vitro, and
direct, dynamical imaging has recently progressed from macroscopic observations [34] to visualizations of
the networks’ microstructure [17, 18] as well as individual components [16] during contraction.

The abundance of different macroscopic behaviors generated by apparently similar microscopic components,
which is particularly spectacular in the cytoskeleton, has attracted significant theoretical attention over
the last decade. Two prominent theoretical strategies have emerged.

On the one hand, so-called “active gels” models emphasize macroscopic flows within the cytoskeleton, and
do not formulate detailed assumptions about the microscopic interactions between motors and filaments [9,
35, 36]. Instead, they rely on symmetry considerations to derive the most general equations compatible with
the problem considered, and successfully predict intricate patterns of motion resembling experimentally
observed dynamical structures. While very general, these approaches involve a large number of unprescribed
parameters enclosing the relevant aspects of the microscopic dynamics; in particular, the most important,
specifically active aspects of the cytoskeletal dynamics are typically described by a phenomenological “active
stress tensor”.

On the other hand, length scales too small to be accurately captured by an active gel formalism have
typically been modeled using both continuum [37] and discrete [38] elastic models. Such models yield
insights into specific cellular processes such as mitotic spindle organization [39], lamellipodium growth [40]
or intracellular propulsion [41], as well as into the propagation of dipolar forces generated by cells embedded
in an elastic matrix [42]. However, although the bulk elastic properties of such models have been thoroughly
investigated [42, 43] on a general basis, force transmission from the microscopic to the macroscopic level
was only considered in numerical simulations of specific geometries [20, 38, 44, 45, 46, 47], and a general
theoretical framework to understand this process is lacking.

Here we introduce such a formalism under the form of a direct relation—termed “dipole conservation”—
between the macroscopic active stress and the force dipole tensor, a local quantity describing the individual
force-exerting elements and whose trace D is identical to the “force dipole” discussed in the previous section
and defined in Eq. (2.9). In this section we derive dipole conservation only for the elementary case of a
homogeneous, continuum elastic medium and briefly discuss more technically involved generalizations to
discrete and disordered networks [48].
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Let us consider a general d-dimensional piece of elastic material at mechanical equilibrium, filling a domain
Ω of space with boundary ∂Ω and volume V . We model the active elements embedded in the elastic body
as a distribution of body forces Fµ(R). To quantify the macroscopic consequences of these active forces,
we consider the response of the total system composed of the elastic medium and the embedded elements
to an infinitesimal, affine deformation characterized by a strain tensor γµν . Under this transformation, a
point belonging to the boundary ∂Ω of the elastic body with position R in the resting state is displaced
by a quantity δRµ(R) = γµνRν (summation over repeated Greek indices is implied). Denoting the elastic
stress tensor by σλµ(R) and considering a surface element dsλ lying on the boundary ∂Ω, the force exerted
by the outside world on the surface element reads −σλµ(R) dsλ. As the surface element gets displaced by
an infinitesimal δRµ, the work performed by this force is [−σλµ(R) dsλ] × δRµ. The change in energy of
the total system is given by the work performed over the whole boundary:

δE =

∮
∂Ω

[−σλµ(R) dsλ]× δRµ

= −γµν ×
∮
∂Ω
σλµ(R)Rν dsλ. (2.15)

Noting that the integral in the right-hand side of Eq. (2.15) is the dipolar moment of the boundary forces,
we refer to this quantity as the “boundary dipole tensor” and denote it as

∆µν =

∮
∂Ω
σλµ(R)Rν dsλ. (2.16)

The meaning of this new quantity becomes clear if we note that according to Eq. (2.15), ∆µν is the
derivative of the energy of the total system with respect to the boundary strain γµν . This is reminiscent
of the definition of the stress tensor σµν as the derivative of the energy density e with respect to the local
strain tensor γµν(R). Considering a coarse-grained approximation of the total system with a uniform bulk
deformation γµν and uniform stress σ̃µν , we have E = V e with e a uniform elastic energy density and the
boundary dipole tensor is directly related to the coarse-grained stress tensor:

∆µν =
∂(V e)

∂γµν
= −V σ̃µν . (2.17)

Thus −∆µν/V is the medium’s coarse-grained stress tensor and ∆/(V d) = ∆µµ/(V d) is the analog of a
hydrostatic pressure. In an active medium language, ∆ < 0 thus characterizes a contractile medium while
∆ > 0 is associated with extensility.

As a first step towards establishing dipole conservation, here we rederive the so-called mean-stress theo-
rem [45, 49]. We introduce the dipolar moment of the active forces Fµ(R) as

Dµν =

∫
Ω
Fµ(R)Rν dV. (2.18)

Note that Dµν is independent of the origin of the coordinates if the body forces sum to zero as expected for
active elements embedded in an elastic medium, and that the total force dipole exerted by several active
elements is equal to the sum of the individual force dipoles.

Inserting the force balance equation ∂νσµν = −Fµ into Eq. (2.18) and integrating by part yields the mean
stress theorem

Dµν =

∮
∂Ω
σλµ(R)Rν dsλ +

∫
Ω
σµν(R) dV. (2.19)

Defining the integrated stress tensor Σµν =
∫

Ω σµν dV and using the definition of the boundary dipole
Eq. (2.16), Eq. (2.19) can be cast into a compact form:

∆µν = Dµν − Σµν . (2.20)

This result holds irrespective of the medium’s material properties, including homogeneity and linearity.
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Despite its universality, in the general case the result of Eq. (2.20) involves a complicated unknown object
Σµν and is thus of limited practical use. Here we show that this limitation is lifted when considering a
linear homogeneous elastic medium with fixed boundaries (useful generalizations for mobile boundaries are
easily derived).

In a linear homogeneous elastic medium, stress is related to strain through a position-independent stiffness
tensor: σµν(R) = Cµναβγαβ(R). Integrating this relation over space, we get

Σµν = CµναβΓαβ with Γαβ =

∫
Ω
γαβ(R) dV, (2.21)

with Γαβ the integrated strain. Assuming small displacements, we use the linear strain γαβ(R) = [∂αuβ(R)+
∂βuα(R)]/2 with uα(R) the medium’s displacement vector. Integration of Eq. (2.21) then yields a boundary
integral

Γαβ =

∮
∂Ω

[
uβ(R)

2
dsα +

uα(R)

2
dsβ

]
. (2.22)

Equation (2.20) thus provides a decomposition of the boundary stress as a sum of a bulk term Dµν involving
active forces and a boundary term Σµν = CµναβΓαβ related to the system deformation. Note that the latter
depends on the system’s elastic properties through the stiffness tensor Cαβµν , while the former does not.
Now introducing the assumption of fixed boundary conditions, we find that the boundary displacements
in the right-hand side of Eq. (2.22) vanish, implying that the whole integral vanishes. Using Eq. (2.21), we
thus find that Σµν = 0, and thus Eq. (2.20) can be rewritten as the dipole conservation relation:

∆µν = Dµν (2.23)

which relates bulk and boundary forces. To understand the meaning of this equation, we decompose it
into the equality of the traces, symmetric traceless parts and antisymmetric parts of the two tensors. The
equality of the traces, ∆ = Dµµ = D, is of particular interest for biological systems as it relates the
“hydrostatic pressure” ∆/(V d) of the medium to the local force dipole D, a quantity routinely interpreted
as the amount of contractility of the active elements (see Refs. [20, 45, 46] as well as Secs. 2.5 and 2.7
of this thesis). Next, the symmetric traceless part of each of the two dipole tensors [(∆µν + ∆νµ)/2 and
(Dµν+Dνµ)/2] is analogous to a nematic order parameter characterizing the anisotropy of the corresponding
forces, and thus their equality means that the anisotropy of the contractile forces is also conserved across
scales. Finally, the equality ∆µν − ∆νµ = Dµν − Dνµ of the antisymmetric parts is equivalent to torque
balance in the elastic medium; since embedded active elements exert a vanishing total torque on the elastic
medium, it simply reduces to ∆µν −∆νµ = 0, and thus expresses torque balance on the total system.

As shown in Eq. (2.23), the laws governing force transmission from the microscopic to the macroscopic scale
in elastic materials take a simple, geometry-independent form in homogeneous linear elastic media, whereby
the force dipole is an invariant of linear elasticity. More specifically, the macroscopic force dipole tensor
exerted by the medium on its boundaries is equal to the sum of the microscopic force dipoles exerted
on it by embedded active elements. While the derivation of Eq. (2.23) is elementary, a more detailed
analysis allows us to prove that this relation also applies to discrete media with unspecified finite range
interactions, making it relevant for popular biological fiber network models with stretching and bending
energies [43]. We moreover prove that this relationship is conserved on average in the presence of disorder,
but can be violated in nonlinear elastic media, which we discuss in more detail in Sec. 2.7. It also holds
true in linear anisotropic media. Due to its generality, dipole conservation is a powerful tool to relate
widely used macroscopic descriptions of the cytoskeleton, sometimes termed active gel theories, to the
underlying microscopic phenomena. For instance, in a homogeneous linear elastic medium with a density
ρ of embedded elements each exerting a force dipole dµν , the active stress σ̃µν—the central object of active
gel theories—is simply given by σ̃µν = −ρdµν [see Eqs. (2.17) and (2.23)].

As biological media reorganize and flow under force, we expect their long-time behavior to depart from the
elastic framework considered here and behave viscoelastically. Interestingly, for small enough deformation
our results still apply in these cases. Indeed, both force balance and the linear relationship between stress
and strain are still satisfied in viscoelastic systems, the only difference being that the elastic modulus
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relating these two quantities is now frequency-dependent. However, if the material is liquid-like on long
time scales we expect the resulting flows to induce large deformations, resulting in geometrical nonlinearities
and violations of the dipole conservation. Finally, we note that geometrical nonlinearities are also more
prevalent in disordered than homogeneous networks [50], implying that disorder might significantly affect
contractility by lowering the threshold to nonlinear behavior. As a result, a reliable understanding of
contraction in active biological materials requires a good characterization of the viscoelastic and nonlinear
properties of the underlying matrix. We undertake a study of the latter in the next section.

Reference: Connecting local active forces to macroscopic stress in elastic media.
Pierre Ronceray, Martin Lenz, Soft Matter 11, 1597 (2015)

2.7 Amplification of active forces in fiber networks

Going beyond the linear effects investigated in the previous section, we study how large-scale, nonlinear
force transmission in fiber networks can affect the relationship between macroscopic stresses and micro-
scopically imposed forces. To assess this, we numerically simulate force transmission in a lattice-based
fiber network originally introduced in Ref. [51]. While the bulk properties of this and other model fiber
networks have been thoroughly investigated theoretically [43], their in vivo function instead rely on their
ability to transmit localized forces. In the nonlinear regime studied here, this local response cannot be
straightforwardly inferred from the networks’ bulk properties, and gives rise to an unexpected stress am-
plification, collective effects within populations of motors and the rectification of locally extensile forces
into contractile large-scale stresses.

In the model, a crosslinked semiflexible filament network is represented by a regular lattice of bucklable
filament sections. As shown in Fig. 2.13(a), each filament section is constituted of two quasi-inextensible
bonds with length ξ (actually harmonic bonds with a large spring constant µ) hinged together so that
deviations from a straight filament section carries an energy penalty proportional to the square of the
deviation angle θ (for small deviations). In addition, consecutive filament sections through a lattice site
are also hinged in a similar way. The elastic energy of the system thus reads

E =
∑

bonds i

µ

2
(`i − ξ/2)2 +

∑
hinges j

κ

2
θ2
j , (2.24)

with µξ2 � κ. As discussed in Sec. 2.5, motors in two- or three-dimensional fiber networks exert locally
contractile force dipoles on average. However, depending on the local configuration of the neighboring
filaments [in particular the respective length of the filament sections in Fig. 2.9(a)], individual motors can
exert extensile as well as contractile force dipoles. The motor-to-motor fluctuations of this dipole can be
much larger than the average contractile force dipole, implying that differences in the way that they are
transmitted can strongly influence the overall active stress in a medium containing many motors.

We first model a local force dipole by applying two equal and opposite forces on two nodes of a circular
patch of triangular fiber lattice as illustrated in the inset of Fig. 2.13(b). We numerically minimize the
network’s elastic energy through a conjugate gradient method and measure the boundary dipole ∆ defined
in the previous section. For small locally applied force dipoles D, the networks responds linearly, implying
∆ = D as shown in Sec. 2.6. When the local forces exerted on the network exceed the buckling force of a
filament section, however, ∆ departs from the linear prediction. For contractile forces (D < 0), ∆ remains
contractile, but its magnitude is amplified significantly. For extensile forces, the boundary dipole ∆ has an
opposite sign compared to the locally imposed dipole. Thus fiber networks generically convert microscopic
extensility into macroscopic contractility. This surprising effect could play a strong role in breaking the
symmetry between contractility and extensility in actomyosin assemblies. To understand its origin, we
look closely at the deformations in the region surrounding our force dipole [Fig. 2.13(b), inset]. Due to
its anisotropy, the force dipole deforms the surrounding network by locally pushing in the longitudinal
direction (blue-colored bonds), but also induces pulling in the transverse direction (red-colored bonds).
As the network buckles locally under compression, the long-range propagation of compressive forces is
compromised. As a results, only tensile forces propagate and the net boundary dipole is contractile.
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Figure 2.13: Force transmission from the microscopic to the macroscopic level in fiber networks. (a) Dis-
crete elastic model for the filament network, with one deformed filament highlighted in blue. The hinge
angles at one crosslink and one mid-section hinge are indicated; each of them contributes one hinge term
to the right-hand side of the energy of Eq. (2.24). (b) Force transmission in a regular lattice, showing
three distinct regimes as discussed in the main text. Inset: Network stresses in the vicinity of the force
dipole (arrowheads) with the following color code: blue: buckled filament section, green: unstressed bond,
red: extended bond, yellow arrows: forces exerted on the boundaries of the domain represented here.
Due to buckling, these forces are predominantly contractile. (c) stress amplification factors in regular and
depleted networks compared to the linear expectation (dashed line). The amplification and stress-reversal
is much more pronounced in depleted networks, which respond linearly only over a very limited range of
dipoles. Due to its disordered structure, the amplification factor associated with a depleted network is a
random variable. The blue symbols and light blue bars denote its mean± std computed over ≈ 105 samples.
(d) Amplification for the isotropic force dipole. (e) Large-scale force propagation in a high-coordination
lattice (p = 0.8 > pc), displaying a behavior similar to that of the regular lattice. Colors are as in the inset
of (b). Inset: schematic of the nonlinear force transmission mechanism. (f) Large-scale force propagation
in a low-coordination depleted lattice (p = 0.58). (g) Amplification factor in the presence of a finite motor
density. The saturation occurs when the radius R∗ of the buckled region becomes comparable to the inter-
motor distance ρ−1/d. (h) Phase diagram presenting the various force transmission regimes in depleted
networks, with associated typical network configurations in the background.
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In contrast with regular triangular lattices, in crosslinked actin networks connection points between fil-
aments have a coordination of at most four, as individual crosslinks typically link two filaments (each
extending in two directions) and not three as in the regular triangular lattice. This low coordination has
important implications for the elasticity of such networks. Indeed, it implies that unlike triangular lattices,
they can be deformed without changing the length of any filament section. The network can therefore be
deformed without any stretching or buckling. This is easily understood from a simple constraint counting
argument originally due to Maxwell: consider N point-like crosslinks, each with a connectivity of z in a
space of dimension d. There are Nd degrees of freedom associated with the positions of the crosslinks, and
the assumption that the filament sections each retain a constant length imposes ∼ Nz/2 scalar constraints.
If the number of constraints is smaller than the number of degrees of freedom, or equivalently z < 2d,
deformations of the network where every filament section retains its resting length (and thus remains un-
buckled) are possible. In practice, the existence of such modes of deformation results in networks whose
macroscopic rigidity is dramatically smaller than that of a more highly coordinated network. Indeed, they
are dominated by bending and thus have a typical modulus of order κξ−d [43]. Remembering that µξ2 � κ,
we find that this is much smaller than the typical elastic modulus µξ2−d of a high-coordination network
dominated by stretching. Moreover, low-coordination networks tend to display strong nonlinear elastic
behavior at small imposed strain [52].

To understand how these features of realistic fiber networks affect our results on force transmission, we
randomly remove each bond in our two-dimensional triangular lattice with a probability p. As a result, the
average coordination of its crosslinks becomes z = 6p. Placing ourselves in dimension d = 2, the number
of constraints Nz/2 is larger than the number of degrees of freedom dN = 2N if p > pc = 2/3 ' 0.67.
Under these conditions, the network behaves similarly to the full triangular lattice. On the other hand, if
p < pb = (

√
11/3 − 1)/2 ' 0.46 the network is so sparse that it can be deformed without any stretching

of bond or even any bending of hinges. It thus becomes completely floppy, and its macroscopic elastic
modulus vanishes altogether. In this study, we focus on the generic behavior of macroscopically rigid, actin
gel-like fiber networks and thus focus on the range2 pb < p < pc. Noting that a value of p close to either
pb or pc elicits a complex, highly collective response of the network [51], we stay away from these critical
points in the following. Unless otherwise specified, in the following we use p = 0.6 as representative of
the generic behavior of fibrous networks. As shown in Fig. 2.9(c), depleted networks transmit forces in
a qualitatively similar way as our triangular lattice, displaying both amplification and dipole reversal for
large extensile local dipoles. Due to their strong propensity for nonlinear behavior, the amplification in
depleted networks is however much stronger than in regular ones.

To understand the origin of force dipole amplification in the presence of buckling, we study the response of
the network to an isotropic contractile dipole capable of exerting arbitrarily large forces on the surrounding
network. This allows a more thorough exploration of the large-dipole nonlinear regime compared to the
anisotropic dipole discussed above. Indeed, the anisotropic dipole can only pull on the surrounding network
as long as the two nodes on which it exerts forces are not collapsed to a point. We implement our isotropic
dipole by introducing a short-range attraction between a specific node i of the network and any node j
located within a distance 2d of it, where d is a length of order ξ. Specifically, we choose d = 1.95ξ and use
an attractive potential with energy

Eattraction =


E0
2

(
r
d

)2 − E0 if r 6 d

−E0
2

(
2d−r
d

)2
if d < r 6 2d

0 if 2d < r

(2.25)

where r = |rj − ri| and E0 is the trap depth. By increasing E0, we can increase the attractive strength of
node i by an arbitrary amount, implying that an increasing number of network nodes are swallowed into
its region of influence with radius 2d. We compute the local force dipole D through Eq. (2.18), where the
Fi are the attractive forces deriving from the attractive potential of Eq. (2.25). The scaling of the resulting
force dipole amplification factor ∆/D is presented in Fig. 2.13(d). For regular networks, the amplification

2The value given here for pb and pc are in fact derived from a mean-field constraint counting argument and are thus
approximative. More precise values have been extracted from numerical simulations [51]. These corrections are however not
essential for our discussion.
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factor is equal to one, as expected for linear response as long as D < FBξ. Above this threshold, bonds
buckle within the network, leading to ∆/D ∝ D1/(d−1). This dependence is explained by the mode of force
transmission illustrated in the inset of Fig. 2.13(e). In this simplified picture, the network is divided into
a completely buckled region of radius R∗ where only filaments that are under extension matter for force
transmission. As a result, the network behaves as a network of tense, interconnected radial ropes. The
pulling force of the dipole is conserved as it is transmitted in the radial direction, and for any value of the
radial coordinate r it is shared between a number n(r) ≈ (r/ξ)d−1 of outgoing ropes. As the force exerted
by the dipole on each outgoing rope at a radius ξ is of order D/ξ, the force carried by an individual rope
decays as

f(r) ≈ D/ξ

n(r)
≈ Dξd−2

rd−1
. (2.26)

The size of the buckled region is determined by imposing that f(R∗) ≈ FB, implying

R∗ ≈ ξ
(

D

FBξ

)1/(d−1)

. (2.27)

Beyond R∗, forces propagate as in a linear elastic medium (f ∝ r2−d). To this elastic medium, the buckled
region appears as a force dipole exerting n(R∗) forces each of order FB over a region of typical size R∗. As
a result, the force dipole exerted by the buckled region on the linear region reads

D∗ ≈ n(R∗)FBR
∗ ≈ DR

∗

ξ
≈ D

(
D

FBξ

)1/(d−1)

. (2.28)

The linear medium faithfully transmits this force dipole to large distances as in Sec. 2.6, thus

∆

D
≈ D∗

D
≈
(

D

FBξ

)1/(d−1)

, (2.29)

consistent with the scaling observed for regular networks in Fig. 2.13(d). At very large forces, the size of
the buckled region saturates as it becomes comparable to the total size R of the network. This accounts
for the saturation of the amplification factor for R∗ ≈ R, i.e., ∆ ≈ DR/ξ. The size of the buckling zone as
a function of exerted dipole as well as the decay of the network stresses with distance are consistent with
the scenario outlined above (not shown).

We further monitor dipole amplification in depleted networks. The qualitative evolution of the amplifica-
tion factor with local force dipole is similar to that in regular networks, including the saturation of the
amplification as the radius of the buckling zone becomes comparable to that of the network. However,
the amplification factor in the intermediate regime ξ < R∗ < R is much larger than in regular networks.
Moreover, the scaling exponent of ∆/D with D is smaller. Qualitatively, this is due to a different structure
of the buckling region in depleted networks, shown in Fig. 2.13(e-f). Indeed, while buckling is observed in
all directions in isotropic networks, the irregular structure of depleted networks causes it to extend along
finger-like force chains instead. This leads to a larger overall buckling region and stronger dipole ampli-
fication, even though the saturating value of the amplification must be the same in regular and depleted
networks. We do not yet have a convincing argument for the specific value of the force amplification expo-
nents in the depleted case, nor have we yet been able to determine whether their value sensitively depends
on p.

Whether we consider regular or depleted lattices, the above results indicate that an isolated force dipole
may become amplified by an arbitrarily large factor provided that the buckling zone has sufficient space
to grow. By contrast, in biological systems individual force dipoles are often present at a finite density, be
they motors in the cytoskeleton or force-exerting cells embedded in a filamentous extracellular matrix. This
poses the question of whether a finite density of dipoles leads to cooperative or antagonistic interactions.
Simulating a finite density ρ of motors in a large filamentous network with periodic boundary conditions,
we find that the corresponding amplification factor grows as previously, but saturates as the size of the
buckled region becomes comparable to the typical inter-motor distance ρ−1/d [Fig. 2.13(g)]. Indeed, as
within the buckling region a fraction of order one of the filament sections are buckled, the merging of the
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buckling regions regions implies that a fraction of order one of all filament sections become buckled. From
that point, the total number of buckled bonds cannot increase dramatically, yielding a saturation of force
amplification in the network. These results are summarized in the “phase diagram” of Fig. 2.13(h).

Reference: Amplification of active forces in fiber networks.
Pierre Ronceray, Chase Broedersz, Martin Lenz, in preparation (2015)

2.8 Outlook

The current paradigm to understand stress generation by actomyosin networks is strongly based on the
well-characterized sarcomeric contractility found in striated muscle. In this model, myosin motors exert
contractile forces, while the role of the surrounding actin scaffold merely consists in transmitting these forces
to larger scales. In contrast, our results on the contractility of disordered actomyosin networks suggest a
radically different picture, where individual myosin motors exert randomly contractile or extensile forces
depending on the local geometry of their surroundings. Actin filaments then not only transmit forces, but
also rectify them towards contraction and amplify them.

Our predictions on the amplification of localized force dipoles in fiber networks are quantitatively supported
by a range of experiments in d = 2 and d = 3 in tissues as well as actomyosin and covering all the regimes
predicted in Fig. 2.13(h). Indeed, a comparison of the pulling force F = 15 nN exerted by a single platelet
of size d = 2µm and yielding a force dipole D = −Fd = −3 × 10−14 N · m [32] to the active contractile
stress ρ∆ = 150 Pa generated by a blood clot—i.e. fibrous networks rendered contractile by a concentration
ρ = 3× 108 cells ·mL−1 of the same platelets [34]—indicate a dipole amplification factor ∆/D = 17. Using
a persistence length `p = 0.5µm and conservatively assuming that the fibrin mesh size is larger than two
hundred nanometers (ξ > 200 nm) [53], we estimate a buckling zone size R∗ = ξ(F/FB)1/2 > 70µm (with
FB ≈ kBT`

2
p/ξ

3), larger than the inter-cell distance ρ−1/3 = 15µm. The buckling zones of neighboring
cells thus interpenetrate [strongly interacting regime in Fig. 2.13(h)]. In this regime, we predict a dipole
amplification factor ∆/D = ρ−1/3/L ' 8, in order-of-magnitude agreement with the experimental result.

Turning to another system, in Ref. [29] a crosslinked actin network with mesh size ξ = 200 nm is populated
by myosin thick filaments of size d = 1µm each comprising ' 300 myosin heads. Due to the end-polar
geometry of the thick filament, no more the 25% of all heads can act on a single actin filament at any
time. Each of these actively exerts a f1 = 4 pN force a fraction 2% of the time [28]. The motor thus
exerts an average force F = 1/4 × 300 × 0.02 × 4 pN ' 6 pN. This force is too small to induce filament
buckling (F � FB = 50 pN). We thus predict linear force transmission in this experiment [linear regime in
Fig. 2.13(h)], and thus σ̃µµ = ρD = ρFd ' 12 Pa, where we used ρ = 2×1018 m−3. While this active stress
is not directly measured in Ref. [29], we are able to infer it from the amount of shear stiffening observed
in the network, yielding σ̃µµ ' 14 Pa, in very good agreement with our prediction.

Finally, an experimental study currently under revision [54] uses a novel surface tension measurement
technique to reveal that an average three thick filaments (F ' 6 pN as above) on giant unilamellar lipid
vesicles with radius r ' 10µm covered by a two-dimensional actin network (ξ = d = 1µm) generates
active stresses on par with the vesicle’s membrane tension ρ∆ ≈ σ ≈ 10−6 N · m−1. Computing the
buckling force as FB = 0.4 pN and assuming a highly coordinated network, we predict a buckling radius
R∗ = ξF/FB = 15µm that is both larger than the mesh size and smaller than the inter-motor spacing
ρ−1/2 ' 20µm, where we used ρ = 3/(4πr2) [isolated nonlinear regime in Fig. 2.13(h)]. This yields an
amplification factor ∆/D = 15, and an overall two-dimensional active stress σ̃µµ = ρFR∗ ' 2×10−7 N·m−1.
While this order-of-magnitude is consistent with our current rough estimate of the experimentally relevant
active stress, it is interesting to note that the agreement improves if we consider a low-coordinated rather
than high-coordinated filament network model, leading to enhanced amplification as in Fig. 2.13(g).

While these calculations offer encouraging estimates covering all our predicted regimes, more detailed
in vitro experimental validations will allow to further refine our understanding of force transmission in
biological fiber networks. We are currently discussing such possible tests with the Gardel, Murrell and
Sykes labs in Chicago, Yale and Institut Curie. The in vivo situation is obviously more complicated, not
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least due to the experimental uncertainty regarding the exact degree of polarity organization of any given
physiological actomyosin structure. While this uncertainty makes it difficult to attribute the contractility
of a given actomyosin structure to either simple sarcomeric contractility or to the mechanisms discussed
here, we believe that an undeniable achievement of our approach is to allow this discussion by offering a
viable alternative to actomyosin contractility.

Further elaborating on the applicability of our ideas to in vivo systems, we note that although this chapter
is entirely phrased in terms of filament buckling, none of its results are specifically tied to this mechanism.
Indeed, the essential characteristic underpinning the behaviors described here is that an individual filament
section should resist under extension while yielding under compression. This property could stem from
a number of different processes, including selective severing of filaments depending on their tension as
observed with severing protein cofilin [55]. Another possible mechanism could be provided by an increased
propensity of the filaments to break when subjected to a torque of a given sign. Indeed, the helical
structure of the filaments implies that the sign of the torque exerted by a myosin motor on a filament
section is correlated to whether it puts that filament section under compression or extension. Finally, the
question of whether inelastic reorganizations of sufficiently fluid actomyosin networks under the influence
of motors could favor contractility remains open.
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Chapter 3

Mechanical regulation of membrane
trafficking

Eukaryotic cells are enclosed by a thin, impermeable lipid bilayer. To allow vital exchanges with the outside
world as well as between cellular compartments, specialized proteins must constantly tubulate, cut, deform,
and fuse this membrane. One crucial such process is clathrin-mediated endocytosis [Fig. 3.1(a)], during
which a coat of the protein clathrin deforms the membrane into a spherical bud containing a molecular
cargo of interest. Protein dynamin is next recruited to the neck of the bud, polymerizes into a helix and
hydrolyzes the cellular fuel guanosine triphosphate (GTP) to detach the bud from the membrane, thus
creating a transport vesicle which is then processed by the cell. While this process pulls a vesicle into the
cell, Cells also perform the topologically opposite operation of pushing a vesicle away from the cytoplasm.
As illustrated in Fig. 3.1(b), this job is performed by the protein complex ESCRT-III in many situations,
including the generation of multivesicular bodies involved in protein and lipid degradation, cytokinesis and
viral budding. All these processes are highly specific, and targeting them to the right cellular locations at
the right time involves a complex and intensively studied interplay of molecular signals.

Beyond these biochemical considerations, significant physical forces are also involved in deforming the
cellular membrane at such small (a few 10 nm) scales. This cost is described by the Helfrich energy
functional, which gives the energy of a piece of membrane (e.g., a forming vesicle) in contact with a
reservoir (e.g., the cell membrane) as a function of its shape [56]:

H =

∫∫ (κ
2
c2 + σ

)
dS, (3.1)

where κ ≈ 10-100kBT is the membrane’s bending modulus, σ the tension of the membrane reservoir, c the
local curvature and where the integral runs over the surface of the membrane.

In a longstanding collaboration with the experimental group of Aurélien Roux at the Biochemistry De-
partment of the University of Geneva, we go beyond the well-studied biochemistry of membrane trafficking
machinery to extract insights from the mechanics and thermodynamics of its constituents. This is a chal-
lenging task due to the small size of these objects, which implies that their dynamics cannot be directly
resolved through optical imaging. As a result, our structural knowledge chiefly stems from static elec-
tron micrographs. To extract crucial dynamical information about these processes, we use mathematical
and physical modeling to integrate the information obtained through indirect experimental techniques in-
cluding force measurements, optical microscopy and atomic force microscopy (AFM). In this chapter we
present three such studies elucidating how clathrin deforms the membrane (Sec. 3.1), how dynamin severs
it (Sec. 3.2) as well as proposing a mechanism for the unknown mode of operation of the membrane-
remodeling ESCRT-III complex (Sec. 3.3). We show that the mechanics of the lipid bilayer has a strong
influence on their function, suggesting that the biological regulation of endocytosis might not only be
biochemical, but also mechanical (see also our review article Ref. [57]).
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Figure 3.1: Two crucial membrane trafficking processes. In both drawings blue denotes the cell cytoplasm.
(a) The successive steps of clathrin-coated endocytosis. The typical diameter of a clathrin-coated bud is 50-
100 nm. (b) The ESCRT complex assembles at the membrane on the cytoplasmic side to generate vesicles
away from the cytoplasm, notably multivesicular bodies (MVBs) involved in protein and lipid degradation.

3.1 Control of clathrin coat formation by membrane mechanics

Budding of spherical vesicles is essential for membrane trafficking. Clathrin has been the first protein found
to be involved in this process [58, 59]. Clathrin polymerizes into truncated icosahedral cages in vitro [60]
and together with various partners [61] deforms the membrane into a spherical bud [62, 63]. Among the
mechanisms involved in bud formation, amphipathic insertions, that act as wedges to create curvature,
and crowding effect [64] of proteins binding asymmetrically to the membrane have been investigated.
In contrast, clathrin has been proposed to act by scaffolding, meaning that a protein coat of a given
shape forces the membrane to curve [61]. The structure of the smallest clathrin cage is known in great
detail [65, 66, 67]. However, clathrin also forms flat hexagonal lattices at the plasma membrane of cells [68]
and spherical coated vesicles of various sizes, ranging from 35 nm to 200 nm in various organisms [69]. This
variability in size and shape has called into question the initially proposed membrane scaffolding mechanism
based on clathrin polymerization (image adapted from Ref. [70]).

To study the mechanism by which clathrin deforms the membrane, we reconstitute clathrin coats onto
giant unilamellar vesicles (GUVs—diameter 5-50µm) whose lipid composition mimics the composition
of the inner plasma membrane leaflet. In the presence of an excess of the membrane adaptor protein
AP180, clathrin in solution binds to the membrane, forming a uniform coat. This coat behaves as a two-
dimensional solid, as demonstrated by the absence of recovery after photobleaching. Electron microscopy
(EM) on large unilamellar vesicles under similar conditions moreover reveals the formation of clathrin cages
at the membrane [Fig. 3.2(e)].

To investigate the role of membrane tension on clathrin assembly, we transfer GUVs made in a 208±1 mOsm
sucrose solution to a clathrin/AP180 solution of varying osmolarity. We examine clathrin polymerization
on GUVs under hypotonic (180 ± 1 mOsm), isotonic (208 ± 1 mOsm) and hypertonic (236 ± 1 mOsm)
external buffer conditions. While this technique does not allow precise control over the membrane tension,
isotonic conditions ensure that its value is moderate, and yield no optically visible deformations of GUVs
[Fig. 3.2(b), (d), (e)]. Hypotonic conditions promote a high (although lower than the lysis tension ≈
10−3 N ·m−1) surface tension, and prevent AP180/clathrin binding in most cases [Fig. 3.2(a), (d)]. In all
case studied here, fluorescent AP180 binds efficiently and with the same density whether or not clathrin is
present. We thus conclude that increased membrane tension can directly impair clathrin polymerization.
Strikingly, under hypertonic (low-tension) conditions result in strong clathrin and membrane fluorescence
signals, and electron microscopy reveals an entirely budded surface, covered with an electron-dense coat
[Fig. 3.2(c), (d), (f)]. In many cases, long, highly coated membrane tubules emanate from the GUVs,
suggesting that under hypertonic conditions, the membrane is heavily deformed by the clathrin coat.

These observations demonstrate that clathrin coat binding is affected by membrane tension. Since a
high tension inhibits clathrin binding, this also suggests that the formation of a clathrin coat is related
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Figure 3.2: The morphology of clathrin coats reconstituted on GUVs is dictated by the osmotic pressure
difference between the inside and the outside of the vesicle. Hypertonic conditions yield a low surface
tension, which results in membrane tubulation and the formation of spherical coats, as seen in transmission
EM (c), fluorescence microscopy (d) and negative stain EM. Isotonic conditions, which result in a moderate
surface tension, induce the formation of a moderate amount of shallow buds (b, d). Finally, hypotonic
conditions imply a high surface tension and prevents clathrin binding (a, d, f).

to the availability of extra membrane area, and thus requires at least some membrane deformation. To
enable quantitative tests of this hypothesis, we develop a theoretical model that describes the competition
between clathrin polymerization (which favors full budding) on the one hand, and membrane tension and
rigidity (which favor planar membranes) on the other to predict transitions between different possible bud
shapes [Fig. 3.3(a)]. In the model, a membrane of tension σ and bending rigidity κ is in contact with
a clathrin/AP180 solution of fixed concentration. We denote by µ the free energy gain associated with
the polymerization of a unit area of coat. As membrane-bound clathrin coats are very rigid (bending
rigidity κc ' 300kBT [71]), we make the assumption that clathrin always polymerizes into spheres of fixed
radius rc = 32.5 nm (estimated from electron microscopy). In our model, tension cannot modify the coat’s
radius, but it can limit clathrin polymerization to partial buds as illustrated in Fig. 3.3(a-b). Accordingly,
our model considers four possible bud states illustrated in Fig. 3.3(a): 1–bare membrane: clathrin cannot
polymerize, and the membrane remains uncoated; 2–shallow partial bud: clathrin polymerizes partially
into buds that are less than a half-sphere; 3–deep partial bud: clathrin polymerizes into a bud that is
more than a half sphere but less than a full sphere, leaving a patch of flat, bare membrane at the base
of the bud; and 4–full bud: a full spherical clathrin coat forms around the membrane bud. This coat is
traversed by a small membrane tether of negligible energy [72] that relates the membrane bud to the main
membrane. This connection is the only difference between our full buds and free clathrin-coated vesicles.
This description is consistent with the partial coats observed by negative stain EM.

In the model, we decompose the polymerization energy of clathrin into two contributions:

µ = µ0 −
κ

2r2
c

, (3.2)

where µ0 is the (positive) clathrin binding free energy and −κ/(2r2
c ), the cost of bending the membrane

into a bud. Additionally, we introduce the coat’s line tension τ , describing the energetic cost of broken
clathrin-clathrin bonds at the boundary of a partial bud. The model thus leads to the following expression
for the free energy of a single bud:

F = σAm − µAc + τL (3.3)
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Figure 3.3: Model and clathrin polymerization energy measurements. (a) The four possible states of a
single bud considered in the model: bare membrane (no clathrin binding), shallow partial budding, deep
partial budding and full budding (yielding a closed bud). Parameterization of the bud is shown on the
deep partial bud as discussed in the text. (b) Our mathematical model predicts the state of a membrane
densely packed with contiguous buds. Our fitting of the model parameters (see main text) predicts a
bud depth ' 2 nm. (c) Phase diagram predicted by our model, showing the predicted budding state as a
function of the scaled tension and polymerization energy (logarithmic plot). (d) Experimental setup for the
measurement of the clathrin polymerization energy: OT, optical tweezers; GUV, giant unilamellar vesicle.
(e) Three-dimensional phase diagram with individual experimental measurements represented as black
circles (linear plot). The clathrin polymerization energy was measured from 15 independent experiments.

where Am and Ac are the membrane and coat areas associated with one bud, and L is the length of its rim
[Fig. 3.3(a)]. In this expression, µ is dimensionally equivalent to a force per unit length, and represents
the net force that a clathrin coat applies on the membrane while polymerizing. The membrane tension
σ and the bending rigidity κ oppose this tendency to polymerize, while the coat’s line tension τ favors
buds with short rims. To make predictions at the liposome level, we apply this theoretical framework to
a densely packed assembly of coated buds [Fig. 3.3(b)]. Depending on the value of the parameters, we
can analytically predict the shape of the clathrin buds (bare membrane, shallow/deep partial buds or full
buds) as shown on the phase diagram [Fig. 3.3(c)]. Qualitatively, high line tensions (µ < 2τ/rc) strongly
penalize partial buds, implying that the membrane is either bare for high tensions (σ > µ) or fully budded
if σ < µ. These two regimes still exist at low line tensions (µ > 2τ/rc), but with the added possibility of
partial buds at moderate membrane tensions. This latter situation reproduces our above observations of
GUVs under various osmotic conditions (Fig. 3.2).

To validate our model, we simultaneously measure the membrane tension σ and clathrin polymerization
energy µ. We use an in vitro micromanipulation assay [Fig. 3.3(d)] [73] to pull a membrane nanotube out
of GUVs by means of a streptavidin bead held in optical tweezers. We modulate the membrane tension
σ by aspirating the GUV in a micropipette. This technique allows us to quantify and control tension, in
a way that cannot be achieved by osmotic shocks. We measure the force f required to maintain the tube
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using optical tweezers. In the absence of clathrin, this force and the radius of the tube are given by the
minimization of Eq. (3.1) for a cylindrical membrane under a longitudinal force [74]:

f = 2π
√

2κσ and rb =

√
κ

2σ
. (3.4)

Direct measurement of f using the optical tweezers allows us to measure the membrane bending modulus
κ = 13 ± 5kBT ; as a result, the model of Eq. (3.3) has only two free parameters µ and τ . Once the
tube is formed, a mix of clathrin and adaptor in isotonic buffer is injected using a second micropipette.
Homogeneous clathrin binding is observed on the membrane tube and on the GUV surface. Following
clathrin polymerization, we observed a reduction δA of the total apparent GUV membrane area, consistent
with the sequestration of the membrane into clathrin-coated pits. During clathrin polymerization on the
GUV and the tube, we also measure a drop δf in the tube force. Relating δA and δf to the values of µ and
τ within the model of Eq. (3.3), we are able to infer values of µ and τ for each individual experiment that we
perform. From these values, our model predicts whether the coat forms on the membrane, and whether the
resulting bud is partial or full. As shown in Fig. 3.3(e), in each case studied we predict a partial bud. On
the other hand, direct observation of the GUVs using fluorescence microscopy reveals thin coats in every
experiment similar in appearance to those observed in Fig. 3.2(d–isotonic). This validates our prediction
and confirms our hypothesis that the continuous staining of clathrin-coated GUVs in isotonic conditions
is associated with contiguous shallow buds. On average, we find that µ = 7.6 ± 5.4 × 10−5 N ·m−1, with
µ0 = 1.0±0.5×10−4 N ·m−1 and τ = 5.2±7.4×10−2 pN, well below values at which line tension is able to
bud membrane domains on its own (typically 1 pN [75]). This supports our interpretation that membrane
bending is primarily driven by clathrin polymerization and not to line tension.

The clathrin polymerization energy µ0 is the sum of two contributions: clathrin-clathrin interactions and
clathrin-membrane interactions mediated by the adaptors, which we express as µ0 = µc-c + µc-m. In the
scaffolding model, clathrin polymerization is the main driver of membrane deformation, implying that µc-c

is much larger than µc-m. To test this model, we estimate the relative importance of µc-c and µc-m by
measuring the force required to rupture the clathrin coat. We aspirate a clathrin-coated GUV using a
micropipette of radius Rp ' 1µm (Fig. 3.4) in isotonic conditions. For moderate pressures, the vesicle
retains its spherical shape as the coat prevents membrane deformation. We then gradually increase the
aspiration pressure by an amount ∆P . While no change is observed initially, above ∆Pc = 231± 26 Pa the
coat suddenly ruptures along the rim of the pipette, following which the membrane tongue (portion of the
membrane lined with the walls of the pipette) elongates dramatically (Fig. 3.4, bottom row). We reason
that rupturing the coat in this way disrupts the clathrin-clathrin bonds while leaving the clathrin-membrane
interactions essentially unaffected, thus allowing us to estimate µc-c = 1.1± 0.1× 10−4 N ·m−1. This value
is indistinguishable from the previously measured value µ0 = 1.0 ± 0.5 × 10−4 N · m−1, confirming that
clathrin-clathrin interactions are predominant in driving clathrin assembly, consistent with the scaffolding
model. Multiplying µc-c by the specific area a ' 800 nm2 occupied by a triskelion yields the binding
energy per triskelion aµc-c = 23 ± 3kBT , consistent with a previous theoretical estimate based on the
critical concentration of clathrin polymerization [76], aµc-c = 42kBT , and with estimates coming from
computational assembly statistics [77], where aµc-c = 23kBT . Also, it is too large to allow for internal
rearrangements of the clathrin lattice once polymerized, implying that clathrin buds directly polymerize
into curved structures rather than going through a hexagonal flat coat intermediate.

A final prediction of our model is that a higher membrane budding rigidity should inhibit budding. Indeed,
we predict that an increase in κ results in a lowering of µ = µ0 − κ/(2r2

c ), favoring a flat membrane as
indicated in the phase diagram of Fig. 3.3(c), (e). We use GUVs of higher bending rigidity obtained by
adding sphingolipids and cholesterol, resulting in a bending rigidity κ = 51 ± 20kBT . This decreases the
average value of µ by more than an order of magnitude (µstiff = 3.7× 10−6 N ·m−1), implying a dramatic
decrease of the maximum tension allowing clathrin assembly to 3.5 × 10−6 N · m−1. Consistent with our
expectation, clathrin fails to bind to a vast majority of liposomes under all osmotic conditions investigated
above, despite significant binding of AP180.

In summary, here we show that clathrin polymerization is counteracted by membrane tension, which
hinders the closure of the clathrin-coated pits. The clathrin polymerization energy is found to be in the
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Figure 3.4: Clathrin coat rupture experiments. Schematic and confocal images of GUVs coated with
fluorescent clathrin before and after being aspirated using a pipette. Arrows show the clathrin-uncoated
part of the membrane tongue.

range of in vivo membrane tension values (10−5-10−4 N ·m−1), supporting a possible physiological control
of clathrin budding through membrane tension. Consistent with this, clathrin-mediated endocytosis is
delayed in cells that have higher membrane tension, and requires actin for completion [78, 79]. At the
structural level, we propose that membrane tension may not allow for the correct binding angle between
arms of the triskelia, impairing their correct association. We also find that increased membrane rigidity
opposes clathrin budding. This is consistent with the fact that clathrin-mediated endocytosis is slower at
the apical pole of epithelia, where the membrane is more rigid than at the basal pole [80]. We also find (not
shown here) that if the membrane adaptor epsin is used instead of AP180, its known membrane deforming
ability stemming from the insertion of its amphipathic helix favors clathrin-mediated budding, even when
the membrane’s elastic parameters (namely tension and rigidity) are not favorable. This indicates that the
different actors that can generate membrane curvature (wedge insertion, crowding or local forces exerted
by the cytoskeleton) can act synergistically to deform the membrane. Our results support a modulatory
role of each adaptor and actin depending on the difficulty of deforming the membrane [79]: in extreme
cases where membrane is very stiff and tension is high, all partners are required, whereas they become
dispensable in intermediate conditions.

Reference: A balance between membrane elasticity and polymerization energy sets the shape of clathrin
coats.
Mohammed Saleem, Sandrine Morlot, Annika Hohendahl, John Manzi, Martin Lenz*, Aurélien Roux*
(*equal contributions) Nat. Commun. 6, 6249 (2015)

3.2 Mechanism for membrane severing by dynamin

Dynamin is part of a protein superfamily that has been proposed as one of universal membrane tubulation
and fission molecules. Its representatives are involved in many processes including budding of transport
vesicles, division of organelles, cytokinesis and pathogen resistance [81]. As discussed above (see Fig. 3.1),
dynamin is a GTPase that polymerizes into helical collars at the neck of clathrin-coated pits. While a
variety of mechanisms have been proposed for the membrane-severing action of dynamin over the years [82],
a consensus has emerged that fission is likely driven by a constriction of its helical structure. Nevertheless,
the specific mechanism for this fission is unknown.

When assembled in absence of GTP, the unconstricted dynamin helix surrounds a membrane tube with a
radius ru = 10 nm [83, 84]. Upon GTP hydrolysis, a conformational change of dynamin at the dimer and
the polymer levels [85, 86, 87] constricts the membrane [84, 88]. Constriction correlates with a reduction
of the helix radius, itself reflected by a reduction of the number of dimers per helix turn from 14 to 13 [85]
and torsion. This torsion of the entire helical polymer can be monitored by live imaging [89]. Early
models [90, 91] have proposed that the dynamin helix would constrict down to such a small radius that
the two sides of the membrane tube would come in contact with each other and locally fuse into a single
bilayer structure. The resulting “hemifusion” intermediate would then spontaneously evolve towards full
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Figure 3.5: Experimental characterization of dynamin fission. (a) Images from dual-color spinning disk
confocal microscopy of an experimental setup similar to that of Fig. 3.3(c), showing the retraction of
the membrane tube following dynamin-induced fission. After fission, the extremity of the left stump is
covered with green dynamin, whereas the right stump is uncoated, showing that fission occurred at the
edge between a seed of dynamin (white arrows) and the dynamin-free membrane tube. (b) Dependence of
fission time on membrane tension and bending modulus κ. Squares and bars: experimental average± sem.

membrane rupture [92].

More recent data have however modified our understanding of the possible role of constriction in dynamin-
mediated membrane fission: (1) dynamin cryoelectron microscopy images and 3D reconstruction show that
the polymer can constrict down to radius rc = 4-5 nm [84], filled with a tubular membrane (2 nm thick)
that surrounds a water lumen (2-3 nm) [85]. These structural data support the idea that dynamin does not
reach the hemifission state by constriction alone. (2) GTP-mediated constriction and torsion do not lead
to fission unless the tube is both attached to the substrate [84] and subjected to longitudinal tension [89].
These results show that membrane constriction is not sufficient for fission and also suggest that mechanical
parameters of the membrane (tension, bending rigidity) could play role in controlling fission.

As the dynamin helix constricts, it imposes a strong curvature on the membrane tube that it covers. This
strong curvature has a high energetic cost, suggesting that the mechanism of dynamin constriction could
be significantly constrained by membrane elasticity. We thus study how membrane mechanics influences
the dynamin-mediated fission reaction. Using a similar micromanipulation setup as that of Fig. 3.3(d),
we form a membrane tube of controlled radius [Fig. 3.5(a)] partially covered by relatively short (a few
hundreds of nm) dynamin helices. GTP is required for fission, and we find that the membrane ruptures
only after tens of seconds. This is much longer time than required for the conformational change of our
short dynamin helices, as determined in our previous work [93, 94]. Therefore, the forces associated with the
conformational change do not directly tear or fuse the membrane, but merely facilitate its later breakage.
We next observe that GTP-induced fission occurs preferentially at the boundary between the helix-covered
and the bare membrane, as shown in Fig. 3.5(a). These fission events are moreover more frequent when
the helix is in contact with the vesicle or the bead than when it was in the middle of the tube. We then
consider the influence of membrane tension and bending rigidity (controlled through its lipid composition
as in Sec. 3.1), and find that fission proceeds more quickly for high tension and low bending modulus
[Fig. 3.5(b)].

To rationalize these observations, we develop a model where membrane breakage is eventually induced by
a thermal fluctuation that brings the two walls of the membrane tube in close enough proximity to induce
their hemifusion, from which full fission follows [Fig. 3.6(a)]. We thus assimilate membrane breakage
to a barrier crossing problem under thermal agitation, predicting that its duration is (1) exponentially
distributed and (2) has a mean satisfying an Arrhenius law

〈τ〉 ∝ e−(E∗−Ec)/kBT , (3.5)
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Figure 3.6: Proposed model and tests of its predictions. (a) Hypothesized dynamin fission sequence.
(b) Cumulative probability distributions for fission of a subjected to different concentration of hydrolyz-
able GTP and its non-hydrolyzable analog GTPγS. Circles: experimental points. Lines: exponential fit.
(c) Test of the expected dependence of fission time on the membrane’s mechanical parameters (line) a in
Eq. (3.7). Squares and bars: experimental average ± sem. The data is the same as in Fig. 3.5(b) (d) De-
pendence of fission time on GTP concentration (experimental average± sem) and theoretical expectation
from Eq. (3.11).

where E∗ is the energy of the intermediate state and Ec is that of the initial, constricted state. Prediction (1)
is well verified experimentally, as shown in Fig. 3.6(b). To quantitatively assess the validity of Eq. (3.5),
we numerically compute the energy E∗ of the membrane in the intermediate state. The scaling of the
result can be understood from a simple argument where the energy of the membrane is dominated by that
of its narrowest portion. Denoting by r∗ its smallest radius and by rb the radius of the bare tube, we
note that the characteristic length for the elastic screening of a perturbation of the tube radius is rb. This
suggests that the lateral extent of the narrow region is of order rb, implying a characteristic area r∗ × rb.
Its curvature is dominated by r∗, and the membrane energy per unit surface is thus dominated by the
bending energy density κ/[2(r∗)2] [see Eq. (3.1)]. Using Eq. (3.4), we thus find

E∗ ≈
[

κ

2(r∗)2

]
× r∗rb ≈

κ3/2

r∗σ1/2
. (3.6)

Combining this prediction with Eq. (3.5), we find

log(〈τ〉) ∝ κ3/2/σ1/2. (3.7)

Fig. 3.6(c) shows that this dependence is well verified experimentally, validating our prediction (2). Nu-
merically minimizing the membrane energy, we validate the scaling arguments presented above as well as
compute the numerical prefactor in Eq. (3.6) for both a dynamin helix located in the vicinity of the vesicle
and one far away from it. This allows us to estimate the corresponding fission times, and the resulting
estimates quantitatively account for the experimentally measured differences.

Our simple model also allows us to predict the dependence of the dynamin fission time on the GTP concen-
tration. As demonstrated in our previous work from very general symmetry arguments, GTP hydrolysis
affects the structure of the dynamin much as an external torque Γ would [93, 94]. If the system is weakly
out-of-equilibrium1, this torque depends linearly on the chemical potential difference between GTP and its

1While the validity of this specific assumption is not completely clear in our experimental conditions, in practice a perhaps
more plausible Michaelis-Menten prediction yields as good an agreement with the data as Eq. (3.8). In any case, distinguishing
between these two dependences is not important for our main point.
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hydrolysis products, yielding

Γ(cGTP) = Γ0 ln

(
cGTP

c0

)
, (3.8)

with cGTP the GTP concentration and where Γ0 and c0 are constants. Through the use of magnetic
tweezers, we are able to measure Γ0 = 1.1 ± 0.3 nN · nm at c0 = 1µM, comparable to our previous
theoretical estimates [93, 94]. A simple estimate of the competition between this dynamin torque and the
bending energy of the membrane allows us to determine the helix’ constricted radius as a function of the
GTP concentration as well as the mechanical parameters of the membrane:

rc =
rb

1 + Γ/(2πp
√

2σκ)
, (3.9)

where p ' 13 nm is the pitch of the dynamin helix. In the realistic case where rc � rb, we develop an
estimate for the constricted energy Ec similar to that of Eq. (3.6):

Ec ≈
κ3/2

rcσ1/2
≈ Γ0rb

p
ln

(
cGTP

c0

)
, (3.10)

where we substituted rc using Eq. (3.9) and Γ using Eq. (3.8). Inserting Eq. (3.10) into Eq. (3.5), we
predict the dependence of the fission time on GTP concentration:

log(〈τ〉) ≈ Γ0rb
kBTp

ln

(
cGTP

c0

)
, (3.11)

again finding excellent experimental agreement [Fig. 3.6(d)]. Finally we perform experiments on live cells
showing that the effect of membrane tension on dynamin localization at the base of clathrin-coated pits
and rate of endocytosis is qualitatively consistent with our model.

Overall, our study proposes a solution to the longstanding puzzle of dynamin-mediated tube fission and
validates it with unprecedented quantitative accuracy. Our results support a mechanism by which dynamin
constricts within a few hundred milliseconds, forcing the membrane to reach a high elastic energy state
at the edge of the dynamin coat. This state then spontaneously fissions over a few seconds. However,
whether this mechanism applies in vivo without any differences is not completely clear. Indeed, the fission
times observed in our experiments remain much longer than the ones observed in cells. The key to this
discrepancy might reside in the numerous partners involved in the formation of dynamin helices in vivo,
such as proteins amphiphysin and endophilin, and whose exact role remains to be clarified. More broadly, it
will be interesting to investigate whether dynamin-independent fission reactions relying on different energy
source may rely on similar mechanisms.

Reference: Membrane shape at the edge of the dynamin helix sets location and duration of fission.
Sandrine Morlot, Valentina Galli, Markus Klein, Nicolas Chiaruttini, John Manzi, Frédéric Humbert, Lùıs
Dińıs, Martin Lenz, Giovanni Cappello, Aurélien Roux, Cell 151, 619 (2012)

3.3 Membrane deformation by the ESCRT-III complex

Membrane trafficking is essential to many crucial processes in the life of eukaryotic cells. Accordingly, they
have developed many different tools to remodel their membrane depending on biological context. Thus,
while the clathrin-dynamin system is used in situations where the cell needs to import cargo, a different
machinery is used in cases where cellular material is to be exported. Here we explore this topologically
opposite situation where a membrane bud needs to be generated away from the cytoplasm, and the resulting
membrane neck severed from the inside. Interestingly, while a protein scaffold deforms the membrane in
this context, the detailed mechanism is quite different from the rigid coating developed by clathrin and
investigated in Sec. 3.1.

Here we focus on processes involving the Endosomal Sorting Complex Required for Transport III (ESCRT-
III). The ESCRT-III complex is composed of a several proteins known as Vps20, Snf7, Vps2, Vps24 which
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Figure 3.7: Illustration of the proposed buckling mechanism. Overbent filaments are represented in blue,
underbent filaments in red, and the membrane in yellow. Wedges of the membrane were removed for
visualization. (a) Curved filaments with an affinity for each other and the membrane form membrane-
bound circular arrays. The tension and bending modulus of the membrane tend to stabilize flat arrays.
(b) Buckling, on the other hand, allows the binding of more filaments and the relaxation of those already
bound to their preferred (yellow) radius. These stabilizing and destabilizing effects balance at the buckling
threshold. (c) The formation of long tubes allows the binding of an arbitrarily large number of filaments
close to their preferred radius. (d) Phase diagram for the composite membrane, showing parameter regions
where a flat membrane is stable, metastable or unstable with respect to tube formation. Black circle:
Estimate of experimentally relevant parameters. (discussed in Sec.3.3.4)

polymerize into filamentous structures that lie in contact with the membrane. The most abundant protein
within these filaments is Snf7, with the others mainly regulating the initiation and the termination of the
filaments. The three ESCRT complexes, ESCRT-I, -II and -III, were initially identified for their involvement
in protein sorting at the surface of vacuoles, a yeast organelle devoted to the degradation of the cell’s waste
and the functional equivalent of the mammalian lysosomes. Among all ESCRTs, only ESCRT-III is believed
to take part into the mechanical deformation of the vacuolar membrane, a function that we focus on in the
present study [95].

Here we first present our theoretical proposal for the mode of action of ESCRT-III, which hypothesizes
that Snf7 filaments store a significant amount of energy during their growth that can then be liberated to
deform the membrane (Sec. 3.3.1). We then test this hypothesis in a dual theoretical-experimental work,
where we first analyze the growth dynamics of ESCRT-III filaments in vitro (Sec. 3.3.2) and use these
results to directly investigate the central assumptions of our model (Sec. 3.3.3). Finally, in Sec. 3.3.4 we
reflect on the insights gained on the in vivo membrane deformation process.

3.3.1 A theoretical proposal

Our first foray into the mode of action of ESCRT-III consists in a theoretical proposal based on a study of
COS-7 cells overexpressing Snf7 [96]. In this work, deep-etch electron micrographs reveal circular arrays
of curved Snf7 polymers under the plasma membrane [Fig. 3.7(a)]. This is evidence of the strong affinity
of these filaments for the membrane [97] and for each other [98], as well as of their intrinsic curvature.
When an ATP-hydrolysis deficient mutant of Vps4—an ATPase involved in the disassembly of ESCRT-III
filaments [98, 99]—is present, long membrane-covered tubes of Snf-7 filaments are observed [Fig. 3.7(c)].
Similar structures appear in in vitro systems using purified proteins [100]. This suggests that tubes always
form in vivo but that in the presence of normal Vps4 alone they are immediately cut off the membrane to
form vesicles. In our model, we propose that this flat-to-tubular transition is a general feature of systems
where curved filaments with attractive interactions bind to a membrane and study this physical effect akin
to the buckling of a rod (Fig. 3.7).

We consider an infinite, initially flat lipid bilayer parametrized by its radial coordinate r. A subdomain
ri < r < re of this surface is bound to an array of filaments. The present simplified discussion assumes
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ri = 0 and re = +∞. The dressed membrane is then put into contact with the cytoplasm, which acts
as a reservoir of filaments. We consider only axisymmetric configurations and assume that the dressed
membrane is very thin. We write the free energy of the dressed membrane as

F =

∫
r∈R+

(κ
2
c2 + σ

)
dA+

∫
r∈R+

[
kBT`p

2b

(
1

r
− 1

rs

)2

− µ

]
dA. (3.12)

The first term is the Helfrich free energy of the membrane as in Eq. (3.1). The second term represents the
free energy of a filament array with inter-filament spacing b. The filaments have a spontaneous curvature
r−1
s , and due to the cylindrical symmetry their actual curvature is r−1. A Taylor expansion about r−1

s

to second order yields the filament stiffness kBT`p, where `p denotes the persistence length. We denote
by µ the chemical potential difference between Snf7 in the cytoplasm and bound to the membrane. We
assume that µ is uniform throughout the filament array. Eq. (3.12) also ignores the up-down asymmetry
of the dressed membrane, which a detailed analysis shows is small enough to not significantly affect our
conclusions.

We minimize the free energy F over tube shape as a function of total tube height, revealing three regions of
stability as shown in Fig. 3.7(d). If the membrane tension σ is significantly larger than the binding chemical
potential per unit surface µ, the flat membrane is globally stable. Conversely, a significantly negative σ−µ
implies that the flat membrane is linearly unstable, yielding unbounded tube growth. Finally, for moderate
σ − µ, the flat membrane is metastable, with the Snf7 array packing significant lateral compression. If
sufficiently disturbed, the array is destabilized and tubes are formed. We propose that this regime accounts
for the observed coexistence of flat arrays and long tubes, the latter being assumed to later mature into
vesicles through an as yet unknown mechanism. The energy barrier associated with this metastable state
amounts to several tens of kBT , suggesting that in vivo ESCRT-III- mediated budding may be assisted
by some unknown active process (e.g., actin polymerization, which is regulated by the ESCRT-associated
protein Alix [101], or the action of the Vps4 ATPase).

Reference: Membrane Buckling Induced by Curved Filaments.
Martin Lenz, Daniel J. G. Crow, Jean-François Joanny, Phys. Rev. Lett. 103, 038101 (2009)

3.3.2 ESCRT-III assembly process

The mechanism proposed above requires growth-induced stress accumulation in Snf7 arrays to be suffi-
ciently large to deform the membrane. To investigate the existence and magnitude of these stresses, we
conduct experiments where a lipid bilayer is deposited on a planar mica or glass surface and then put in
contact with a solution containing the proteins constituting the ESCRT-III complex. High-speed atomic
force microscopy (AFM) is used to monitor the growth dynamics of the Snf7 spirals, demonstrating that
small 25 nm radius Snf7 ring form on the surface, which subsequently grow radially by addition of further
Snf7 monomers [Fig. 3.8(a)]. The growth of the radius is sublinear with time, consistent with a growth of
the disk area πr2 at a constant speed w:

πr2 = πr2
0 + wt. (3.13)

Such a law is expected if Snf7 monomers are added at a constant rate to one filament growing end within
the spiral, and we fit w = 80 ± 36 nm2 · s−1 to the data of Fig. 3.8(b). The formation of new Snf7 rings
on the bare membrane is very rare (“homogeneous nucleation”), and most new spirals are initiated from
the side of existing ones as shown in Fig. 3.8(c) (“heterogeneous nucleation”). Unfortunately these events
are too rare for us to directly infer a nucleation rate from AFM imaging. Both nucleation and growth stop
when the membrane is completely covered with disks, and we measure the final distribution of disk sizes
with an average final disk radius 〈r〉 = 123 nm as shown in Fig. 3.8(d).

To understand the growth process through which internal stresses are generated in ESCRT-III and deter-
mine the physiologically important Snf7 spiral nucleation rate, we develop a mathematical description of the
dynamics of the process by which Snf7 spirals cover the surface. In the model, Snf7 spirals are represented
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Figure 3.8: ESCRT-III assembly process. (a) High-speed AFM time-lapse sequence of an isolated Snf7
spiral with equatorial kymograph (yellow rectangle) of the same growing spiral shown below. Note that
the radius of the innermost filament shrinks from 22 nm to 14 nm as indicated. This is consistent with
the model of Sec. 3.3.1, according to which the spiral’s inner filaments acquire an increasing strain during
spiral growth. (b) Outer radius as a function of time of five growing Snf7 spirals followed by high-speed
AFM (thin lines) and average (thick line). (c) High-speed AFM time-lapse sequence showing the stages
of the heterogeneous nucleation of a new Snf7 spiral from pre-existing ones as indicated by arrowheads:
a filament protrudes from a spiral (t = 8.5 s), curls from its tip (t = 17.0 s), and forms a small spiral
(t = 37.4 s). Also indicated are the growth of a second turn in the new spiral (t = 152.2 s) and internal
filament rearrangements during the growth again consistent with the model of Sec. 3.3.1 (t = 164.9 s).
(d) Cumulative distribution of spiral sizes (blue) fitted with our theoretical model (black) for r0 = 25 nm.
(e) Large-scale growth of fluorescent Snf7 patches on supported membranes. The color of the fluorescent
Snf7 is changed from green to red halfway through the experiment, highlighting the fact that the Snf7
patches grow from the rim. Inset: kymograph of the region encased in the yellow box, showing the constant
radial growth velocity of the patch. (f) Illustration of our simplified one-dimensional patch growth model.
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by impenetrable hard disks deposited on a two-dimensional surface representing a small (micron-sized)
piece of membrane. A few disks with radius r0 are initially present, corresponding to initial homoge-
neous nucleation event. Homogeneous nucleation is then neglected during the rest of the dynamics (an
assumption justified by a more complete analysis). New disks are thus generated only by heterogeneous
nucleation, following which their area grows with a speed w as described by Eq. (3.13). As the mean
spacing between filaments within a spiral is b = 17 nm, this corresponds to a filament growth speed of
v = w/b = 2.1 nm · s−1. As the Snf7 spiral grows, its perimeter increases, offering an increasing number
of potential spiral nucleation sites. We model this by stochastic nucleation of new disks with radius r0 at
a rate λP, where P denotes the total perimeter of the existing disks, and λ a constant spiral nucleation
rate per unit length. Nucleation is prevented if the new disk location is already occupied by an exist-
ing disk, implying a decreasing total nucleation rate as the membrane becomes more and more crowded.
For computational simplicity, we tackle the model in a mean-field approximation where these excluded
volume interactions are computed while ignoring positional correlations between disks. Solving through
numerical methods, we find a final distribution of disk sizes with only one adjustable parameter λ. Fitting
λ = 8.2× 103 m · s−1 yields excellent agreement with the observed distribution as shown in Fig. 3.8(d).

To further assess the validity of our model, we monitor the assembly of Snf7 spirals on much larger, 10µm
length scales through fluorescence microscopy. As shown in Fig. 3.8(e), an initial homogeneous nucleation
event gives birth to a radially expanding patch of Snf7 composed of many spirals with expansion velocity
ranging from V = 1 nm · s−1 to 6 nm · s−1 experimentally. This value is consistent with the nucleation-and-
growth model described above, which becomes clear when considering the approximate one-dimensional
model illustrated in Fig. 3.8(f). In the model, Snf7 disks are arranged in a line and are in contact with their
nearest neighbors. Disks are added sequentially from left to right. Due to crowding, only the rightmost disk
is able to grow and nucleate new disks. The rightmost disk grows according to Eq. (3.13) and stochastically
nucleates a new disk with radius r0 to its right with a rate 2πrλ proportional to its perimeter. Following this
nucleation event, the growth of the old disk stops and the new disk starts growing according to Eq. (3.13).
As a result, the position of the edge of the disk-covered region of space moves with an average velocity

V =
2w

3πr0

3eλ̃ + E2/3(λ̃)

E1/3(λ̃)
∼
λ̃�1

Γ(1/6)

31/3π5/6
w2/3λ1/3 ' 0.6 nm · s−1, (3.14)

where λ̃ = 4π2r3
0λ/3w ' 0.021, En(z) is the exponential integral function and Γ(z) the gamma func-

tion [102]. The numerical value in Eq. (3.14) stems from the parameter values determined in the previous
paragraphs. Despite the obvious geometrical inaccuracies of the one-dimensional model, this value is
in order-of-magnitude agreement with the measured value, and thus further validates our model of the
ESCRT-III assembly kinetics.

3.3.3 Stress build-up in the Snf7 spiral and membrane deformation

Beyond the simple rigid-disk growth process described above, the experiments of Sec. 3.3.2 allow us to
investigate the elastic deformation of ESCRT-III spirals and are thus crucial to assess the mechanism
of Sec. 3.3.1. Indeed, in practice the process described above leaves small gaps between the disks that
are too small to be filled by newly nucleated disks. As the existing disks continue to grow, they fill the
voids by deforming into a more polygonal profile, as shown in Fig. 3.9(a). In this deformed state, elastic
energy is stored in the (deformed) disks as determined by the competition between filament elasticity and
the two-dimensional pressure associated with Snf7 polymerization. This pressure is equal to the chemical
potential per unit surface µ defined in Eq. (3.12), and we independently measure µ = 3.1 × 10−4 N ·m−1

using a pipette setup similar to that of Fig. 3.3(d). We also quantity filament elasticity by measuring the
persistence length of individual fluctuating Snf7 filaments by AFM, finding `p = 260 nm. In the following,
we use these values to estimate the amount of elastic energy accumulated in the Snf7 disks.

To investigate the deformation of a spiral, we model the Snf7-covered membrane as a triangular lattice of
identical deformed disks as shown in Fig. 3.9(b). As Snf7 polymerization progresses, the resting area A′

of the protein coat becomes larger than its actual area A, which cannot increase due to the inextensibility
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Figure 3.9: Snf7 filament compression drives membrane deformation. (a) AFM topographic image of a
Snf7 coat, showing deformed spirals with an overall polygonal shape. (b) Model of these deformed spirals.
(c) Allowing the Snf7 coat to expand laterally restores the circular shape of the spirals, and induces an
overall curvature r−1

c of the membrane-protein sandwich (right). (d) Confocal sections of burst Snf7-coated
vesicles. Fluorescence is more intense at the rim of the pore. (e) Electron microscopy thin section image
of a Snf7-coated vesicle displaying visible curling of the membrane rim.

of the underlying membrane. This mismatch between the resting areas of the membrane and the protein
coat implies that the resulting assembly has a non-vanishing spontaneous curvature, which we quantify
thanks to an elastic model of the Snf7 filament deformations. Approximating the shape of the filaments
pictured in Fig. 3.9(b) as a succession of straight and constant-curvature sections and imposing mechanical
equilibrium, we predict a typical radius of curvature of the bent sections of the filaments in agreement with
experimental observations:

r′ ∼
µ�µ∗, r�b

r
√
µ∗/µ = 47 nm, (3.15)

where

µ∗ =
1

2− π/
√

3

kBT`p
r2b

ln(r/b) ' 4.1× 10−5 N ·m−1 (3.16)

is the typical surface pressure needed to induce substantial compression of the disks. Here b ' 16 nm is
the spacing between concentric filaments as illustrated in Fig. 3.9(b). Note that the expression Eq. (3.15)
is valid in the experimentally relevant limits µ � µ∗, r � b. Combining this equation with geometrical
considerations, we find

A′/A =

[
π

2
√

3
+

(
1− π

2
√

3

)
r′

r

]2

. (3.17)

A spectacular proof of the accumulation of elastic energy in the Snf7 disks is obtained when the vesicle
ruptures spontaneously over hours. Instead of bursting, the membrane shrinks from the rim of the pore
towards the opposite side of the vesicle as shown in Fig. 3.9(d). This process is known as curling, and
is generically observed when a vesicle with spontaneous curvature is ruptured. Examples include poly-
mersomes [103] and the bursting of red blood cells [104]. In these cases, the innermost radius of the
curled membrane seen in Fig. 3.9(e) reflects the spontaneous curvature of the membrane due to this area

42



difference. Our model predicts that this difference reads

rc =
d

2
× 1 +A′/A

1−A′/A
' 37 nm, (3.18)

where the numerical value was obtained using Eqs. (3.15) and (3.17). This prediction is in very good
agreement with the experimentally observed value 39 ± 6 nm, thus validating our model of elastic stress
accumulation in ESCRT-III spirals.

3.3.4 Outlook

Understanding the mechanics of ESCRT-III deformation requires a grasp of three processes: its assembly
at the membrane, its membrane-deforming action, and the separation of the resulting vesicle from the
main membrane. Here we offer theoretical models for the first (Sec. 3.3.2) and second (Sec. 3.3.1) steps,
and use further modeling and experiments to verify their fundamental assumptions (Secs. 3.3.2 and 3.3.3,
respectively). We moreover independently determine all of our models’ parameters. Further combining our
determination of the Snf7 persistence length with information about the diameter of ESCRT-III-dressed
tubes in vivo (see Ref. [105]), we also predict where the in vivo ESCRT-III assemblies of Ref. [96] lie in
the phase diagram of Fig. 3.7(d). We find that our data is compatible with metastable ESCRT-III disks,
accounting for the observation of both flat and tubulated structures in this study.

These numerical values moreover allow us to compute the amount of elastic energy accumulated as the
Snf7 filaments become compressed in Fig. 3.9(b). We find ∆E ' 170kBT , larger than the 4πκ ' 160kBT
bending energy cost of creating a spherical vesicle. This order of magnitude as well as our successful
prediction of the ESCRT-III-induced vesicle curvature without any adjustable parameters suggest that
the lateral compression of Snf7 filaments due to their own polymerization energy is indeed sufficient to
induce membrane deformation, as hypothesized in the model presented in Sec. 3.3.1. Note that our tests
involve a slightly different geometry that the model: in the former, Snf7 compression arises from lateral
contact between independent spirals whereas the latter deals with interactions within a single spiral, a
more physiologically relevant situation. Nevertheless, we do expect the energies involved in both cases to
be of the same order, providing support for our “spring-release” membrane deformation mechanism.

Beyond membrane deformation, a quantitatively validated, predictive model of how ESCRT-III severs the
membrane to produce vesicles is currently lacking despite the existence of several competing qualitative
models [106, 107, 108]. Several pieces of evidence point to a fairly different mechanism than the one at
work in dynamin. First, membrane fission appears to require the intervention of ATPase Vps4 [97], which
is associated with the disassembly of ESCRT-III filament rather then with a conformational change [99].
Second, the resulting vesicles appear clear of ESCRT-III associated proteins [108], in contrast with the
continued association of clathrin coats with endocytosed vesicles. We believe that a more thorough un-
derstanding of this process will be brought about through continued interactions between modeling and
quantitative experiments.

Reference: Relaxation of loaded ESCRT-III spiral springs drives membrane deformation.
Nicolas Chiaruttini, Lorena Redondo-Morata, Adai Colom, Frédéric Humbert, Martin Lenz*, Simon
Scheuring*, Aurélien Roux* (*equal contributions), submitted (2015)
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Chapter 4

Research project: Dissecting active matter

Summary

Biological motion and forces originate from mechanically active proteins operating at the nanometer scale.
These individual active elements interact through the surrounding cellular medium, collectively generating
structures spanning tens of micrometers whose mechanical properties are perfectly tuned to their funda-
mentally out-of-equilibrium biological function. While both individual proteins and the resulting cellular
behaviors are well characterized, understanding the relationship between these two scales remains a major
challenge in both physics and cell biology.

We will bridge this gap through multiscale models of the emergence of active material properties
in the experimentally well-characterized actin cytoskeleton. We will thus investigate unexplored,
strongly interacting nonequilibrium regimes. We will develop a complete framework for cytoskeletal
activity by separately studying all three fundamental processes driving it out of equilibrium: actin filament
assembly and disassembly, force exertion by branched actin networks, and the action of molecular motors.
We will then recombine these approaches into a unified understanding of complex cell motility processes.

To tackle the cytoskeleton’s disordered geometry and many-body interactions, we will design new nonequi-
librium self-consistent methods in statistical mechanics and elasticity theory. Our findings will be validated
through simulations and close experimental collaborations.

Our work will break new ground in both biology and physics. In the context of biology, it will establish
a new framework to understand how the cell controls its architecture and mechanics through biochemical
regulation. On the physics side, it will set up new paradigms for the emergence of original out-of-equilibrium
collective behaviors in an experimentally well-characterized system, addressing the foundations of existing
macroscopic “active matter” approaches.

Develop fundamental models
of all basic active actin processes

Bring multiscale understanding
of emergent in vivo behaviors 
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4.1 Introduction

Motion and forces are essential characteristics of living systems, present all the way from the level of
the organism to its subcellular constituents. Virtually all of these biological forces are produced at the
nanometer scale, where energy-consuming protein machines self-assemble and exert forces, thus maintaining
biological matter out of equilibrium. This endows living matter with unusual collective properties, including
spontaneous motion, pattern formation and the active generation of forces, through which it performs
biological functions as diverse as cell motility, embryonic morphogenesis or muscle contraction. However,
how the cell controls the emergence of these collective behaviors through the regulation of
its individual constituents is poorly understood.

To the physicist, these out-of-equilibrium materials are part of a new class that has come to be known as
“active matter” [36], and whose best characterized instance is the actin cytoskeleton. The actin cytoskeleton
is a network of the semiflexible biopolymer actin that underlies the mechanical properties of virtually
all animal cells. It performs many of the cell’s mechanical duties, including motility and division. Its
dysfunctions cause cancer, vascular disease and chronic inflammation. In vivo, it assumes a large range of
microscopic organizations, from dense amorphous actin networks to well-organized bundled arrays. These
versatile assemblies are very dynamic, and constantly evolve under the influence of nonequilibrium actin
polymerization and depolymerization as well as of force-exerting molecular motors.

Due to the complexity of their internal interactions, there is no consensus model for active actin
networks. The most widely used framework, termed “active gels” [9], adopts a radically phenomenological
approach, describing the cytoskeleton as a viscoelastic continuum without reference to its microscopic con-
stituents. Despite having yielded valuable insights into cellular behaviors, active gel theories involve many
adjustable parameters and rest on some questionable assumptions, not least the one that the cytoskeleton
is only weakly out of equilibrium. In contrast, at the single-filament level, the worm-like chain model is
regarded as an excellent description of actin’s mechanics. Large-scale fiber network models based on it
have recently made substantial progress, but are still largely limited to equilibrium (passive) situations [43].
Moreover, these models do not describe the effect of the entanglements and internal stresses that arise in
a dynamic, self-renewing cytoskeleton. A new framework to understand the effects of microscopic
interactions within the dense, nonequilibrium cytoskeleton is thus needed to overcome the
limitations of current approaches.

In this project, we will develop rigorous, generic models to bridge the gap between the
microscopic and the macroscopic in the actin cytoskeleton. Our approach crucially relies on
recent experimental findings as well as on close collaborations with leading experimental groups pioneering
novel in vitro techniques. We will focus on the ≈ 10-100 nm length scale where cytoskeletal constituents
interact, and where they can be described as simple geometrical objects. In contrast with many previous
approaches, our models will fully recognize that emergence in the cytoskeleton can only be
understood by simultaneously taking into account its strongly interacting and fundamentally
out-of-equilibrium character. We will approach these systems by developing new nonequilibrium self-
consistent methods in statistical mechanics and elasticity theory supported by numerical simulations.

4.2 Research goals

Rather than focusing on individual cellular processes as in most of the existing literature, we will aim
for a systematic understanding of cytoskeletal activity, with a focus on understanding robust,
universal scaling laws. We will thus separately study all three processes known to drive the cytoskeleton
out of equilibrium: actin’s polymerization-depolymerization dynamics, which shapes the morphology of
crosslinked actin networks (Sec. 4.2.1), the force-exerting growth of branched actin networks against an
obstacle (Sec. 4.2.2), and the exertion of internal forces by myosin molecular motors (Sec. 4.2.3). Finally,
we will demonstrate the power of this systematic approach by applying our new insights to outstanding
problems in cell motility, where the interplay between different types of cytoskeletal activity plays a crucial
role (Sec. 4.2.4).
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4.2.1 Shaping of crosslinked networks by actin polymerization dynamics

Actively polymerizing actin
gets stuck in nonequilib-
rium, entangled states.

Rationale. Networks of actin filaments held together by crosslinking proteins
largely dictate passive and active cytoskeletal mechanics. Their properties are
determined by their microstructure, ranging from isotropic gels of single fila-
ments to networks of thick, crosslinked actin bundles. These are commonly
regarded as equilibrium structures [109] controlled by the crosslinkers’ nature
and concentration [110]. In a recent article, we have however shown through
experiments and theory that this morphology is determined by its assembly
kinetics, demonstrating a nonequilibrium structure [111] displaying slow glassy
relaxation [112]. Based on these results, we will propose a new paradigm
for crosslinked actin structure based on kinetically trapped nonequi-
librium states actively driven by actin’s nonequilibrium polymerization and disassembly. This represents
a fundamental change of perspective on cytoskeletal organization in the absence of molecu-
lar motors. In collaboration with the Gardel lab (U. of Chicago, experiments), we will use the original
properties (see, e.g., Ref. [113]) of the resulting glassy active matter phases to explain cytoskeletal
behaviors.

Approach. Our previous work and preliminary simulations suggest that bundled networks are stabilized
through steric constraints (entanglements) between their filaments. We will thus first describe the network
microstructure through a minimal model of diffusing, entangling impenetrable rods. If two filaments touch,
they align and coalesce into a bundle unless this coalescence is prevented by entanglements. Inspired by in
vitro experiments, rods will grow over time, inducing increasing entanglements and kinetic arrest. We will
predict the amount of bundling in the final state through nonequilibrium kinetic theory and simulations.

In vivo, filaments are actively being severed and depolymerized concomitant with their polymerization. We
will extend our approaches to assess how entanglements are resolved by these nonequilibrium processes, and
will predict the phase behavior of the resulting steady states. We will investigate the influence of filament
flexibility, as well as of varying concentrations of realistic crosslinkers imposing specific relative filament
orientations. Our new concepts will thus allow us to revisit the substantial experimental literature on the
subject, and to characterize the buildup of internal network stresses. We will finally use these results to
investigate the viscoelastic response of bundled networks, focusing on how the cell regulates the filaments’
dynamics to fluidize the network and keep a tight leash on liquid vs. solid behavior in the cytoskeleton.

Goal 1 targets (†indicates experimental verification provided through collaborations)

1.1 Predictions for the microstructure (mesh size...) of irreversibly growing bundled networks†

1.2 Phase diagram for the nonequilibrium steady-states of bundled networks of dynamic filaments†

1.3 Predictions for the influence of filament growth conditions on linear and nonlinear viscoelasticity†

4.2.2 Adaptive mechanics of branched networks

Branched networks grow
and branch against obsta-
cles.

Rationale. When exerting a force against an obstacle, typically the cell mem-
brane, actin filaments polymerize into specialized branched networks. There,
new branches are nucleated off the side of existing filaments in contact with
the obstacle (see illustration) by protein complex Arp2/3. Our current un-
derstanding of the resulting force relies on variants of the celebrated “ratchet
model” [114], which describes how filaments touching the obstacle push it away
as actin monomers are added at their tips. This mechanism requires the un-
derlying branched network to orient its filaments towards the obstacle while resisting a mechanical load.
Internal filament deformations within the network crucially influence these processes [115], inextricably
linking the rigidity of branched network to their force-exerting ability [116]. Unfortunately, current mod-
els [43] dramatically fail at accounting for this rigidity, predicting that branched networks are infinitely
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soft (“isostatic”) due to the small coordination of their branching points. As a result, they predict very
large, uncoordinated (“nonaffine”) bending displacements of the filaments inside these networks.

Branched network bend and
entangle under stress.

To explain this crucial component of cell motility, we will develop a new
approach to fiber network elasticity. Our formalism will be based
on the mechanical constraints induced by entanglement resulting
from large nonaffine internal deformations (see illustration). This will
enable us to elucidate the biochemical regulation of actin force generation in
collaboration with the du Roure/Heuvingh group at ESPCI [117].

Approach. We will first design lattice-based growth models to determine to
what extent neighboring actin “trees” intertwine depending on their growth
parameters (branching rate, etc.)—a crucial factor in determining the density of potential entanglements.
Interestingly, an analogy with branching random walks suggests a possible phase transition causing a
dramatic increase in entanglement density. Using these results, we will model the passive linear and
nonlinear elasticity of branched networks as a prerequisite for our subsequent nonequilibrium investigations.
We will develop a self-consistent (“effective medium”) formalism to determine the number of entanglements
within the network, and verify its results with simulations. The basic notion of our approach is that denser
entanglements yield a stiffer network, hence limiting the amount of internal nonaffine filament deformations
and thus the formation of further entanglements.

As branched networks grow against an obstacle, their internal structure and mechanics are influenced by
the applied stress, which tends to bend growing filaments, thus generating entanglements and internal
network stresses. It is also finely controlled by biochemical regulators, many of which bind to the actin
in a way dependent on its mechanical state. Using our sound mechanical framework, we will model this
interplay between mechanics and biochemistry to predict the networks stiffness, nonlinear elastic behavior
and force-velocity relationship as a function of its history of applied stress and biochemical environment.
Additionally, we will consider viscoelastic and plastic deformations of the branched networks under applied
force due to branch detachment as studied macroscopically by the ESPCI and Théry (Hôpital Saint-Louis)
groups, and at the single-molecule level by the Romet-Lemonne group (Institut Jacques Monod).

Goal 2 targets (†indicates experimental verification provided through collaborations)

2.1 Numerically validated predictions for the entanglement topology of neighboring trees

2.2 Predictions for the linear and nonlinear elasticity of passive branched networks†

2.3 Prediction of the effect of actin growth regulators on viscoelasticity and force-velocity relationship†

4.2.3 Macroscopic stress generation by motors

Actin deformation and
flows enhance force gener-
ation by motors.

Rationale. Perhaps the best-known role of the actin cytoskeleton is to exert con-
tractile forces that make the cell deform and move. These forces are generated by
microscopic myosin molecular motors, which induce a translating motion of actin
filaments. While this simple mechanism straightforwardly generates macroscopic
contraction in our highly organized striated muscle, we have recently shown that
it is not sufficient to describe contraction in disordered one-dimensional acto-
myosin bundles. In these more complex geometries, motors exert both pulling
and pushing forces [118], and we have shown through theory and experiments
that actin’s nonlinear elastic response is required to favor the latter over the
former [119, 22, 26]. By questioning the universality of the muscle-like
contraction paradigm, our novel approach has started to redefine a
cornerstone of our understanding of cell motility. Turning to biologically relevant two- and three-
dimensional actin networks, we have shown in two studies that local violations of the pushing/pulling
symmetry can induce some contraction in linear elastic media [48, 120]. These single-motor effects are

48



however small compared to the forces measured in real networks. We hypothesize that this difference
is due to cooperative, self-organizing effects in realistic nonlinear, viscoelastic networks. We
will investigate these effects with the Murrell group (Yale University), whose micromechanical experiments
allow unprecedented control and resolution over two-dimensional actomyosin contractility.

Approach. We will first investigate the role of nonlinear network elasticity in enhancing microscopic motor
forces in discrete fiber networks, as well as through continuum nonlinear elasticity theory. These highly
localized motor forces will induce localized nonlinear deformations resulting in a strong stress amplification
as studied in our current work. The extent of this amplification will depend on the size of the nonlinearly
deformed region, which increases with increasing motor force. This effect will be particularly dramatic in
recently studied, cytoskeleton-like, strongly nonlinear depleted fiber networks [43]. The preliminary data
presented in Sec. 2.7 demonstrates that much remains to be understood in this ares, including the enhanced
dipole amplification presented in Fig. 2.13(c), (d), (f) and (g). We believe that such effects could account
for cooperative stress generation as observed in experiments [121].

As actin networks reorganize viscoelastically over minutes, we will investigate whether such rearrangements
might generically cause disordered actomyosin assemblies to self-organize into more efficient contractility-
generating structures. We will supplement our model with transient crosslinkers as well as use continuum
hydrodynamic descriptions to describe the possible alignment of actin filaments around discrete motors
into striated-muscle-like structures. We will also investigate to what extent viscous dissipation within
the network might screen the motor forces and yield inefficient force transmission. These findings will be
further validated through detailed numerical models using existing simulation packages. Our analysis will
not only uncover the microscopic origin of cytoskeletal contractility, but will also help identify the optimal
network parameters depending on the intended function, thus shedding light on the raison d’être of the
wide variety of actomyosin contractile structures found in vivo.

Goal 3 targets (†indicates experimental verification provided through collaborations)

3.1 Prediction of the amplitude of contractile strains and stresses depending on network parameters†

3.2 New mechanisms for actomyosin self-organization predicting the time evolution of contractility†

4.2.4 Putting the pieces back together: applications to cell motility

Actin microstructure is dynamically modulated during cell motility (fi-
broblast, adapted from http://www.cellimagelibrary.org/images/24801).

Rationale. As our individual models for
the three fundamental active mechanisms
take shape, we will reach for our most
ambitious objective. After taking the
cytoskeleton apart in goals 1-3, we will
put the pieces back together and ana-
lyze real cellular processes from our well-
established first principles. Beyond the new insights it will yield into crucial in vivo behaviors, this goal
has the potential to validate our approach as the first universal, predictive description of the
actin cytoskeleton.

Approach. We will start our analysis with the well-studied example of the cell front, which combines
crosslinked and branched networks with motor activity and for which ample biochemical information is
available. Going beyond coarse-grained models [9], we will quantitatively account for the dynamic mod-
ulation of the actin microstructure at the cell front (see illustration). We will next investigate whether
our models explain recently observed oscillatory behaviors proposed to play a role in navigating complex
environments [122]. Finally, we will connect the microscopic with the macroscopic to predict the effect of
the plethora of well-characterized biochemical factors affecting motile cell morphology and function [123].

Beyond this well-known type of motility, cells under physiological conditions adapt to their environment,
and recent studies reveal that their whole motile machinery undergoes dramatic reconfigurations in re-
sponse to purely physical stimuli. These include geometrical changes in their adhesive environment (Théry
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lab, Hôpital Saint-Louis) or the mere compression between glass plates, which causes the cell to switch
between three very different, well-defined morphologies [124]. We will investigate the mechanisms through
which physical stresses induce local reconfigurations of the actomyosin cytoskeleton causing these global
transitions, as well as physical reasons for the existence of well-separated, distinct cytoskeletal steady-states.

Goal 4 targets

4.1 Comparisons of our models with published data on cell front morphology, mechanics and dynamics

4.2 Putative models of the transitions between different types of motility under spatial constraints

4.3 Novelty and impact

While the cytoskeleton has attracted much theoretical attention both at the microscopic and the macro-
scopic level, understanding the relationship between the two scales has remained a challenging task. While
strongly interacting [125] and nonequilibrium [21] regimes have previously been modeled separately, recent
experimental advances have revealed that the interplay between these two aspects is crucial in shaping
the collective behaviors of the actin cytoskeleton. To understand these biologically relevant properties, we
will for the first time design and solve generic models combining strong interactions between
cytoskeletal components with their nonequilibrium, self-driven physics.

Our generic models will open new avenues for research in biophysics as a reliable base for descriptions of
a plethora of specific cellular processes in the spirit of goal 4.2.4. Soft matter physics will benefit from
our critical insights into the foundations of active matter theories, as well as from opportunities to better
connect these models to experiments. Our study of entanglements in extremely low-coordinated branched
networks will prompt further investigations of their role in widely studied crosslinked networks, where large
internal filament displacements are also expected in many regimes. Our understanding of active glassy
fiber networks trapped out of equilibrium by entanglements will be applicable beyond living systems, and
nonequilibrium statistical mechanics could draw inspiration from these general concepts and study
them in simplified frameworks. We will enable Fundamental biology to identify situations where cellular
behaviors differ from our simple physical predictions, which would point towards undiscovered biochemical
regulators of cellular function. Finally, the spectacular control achieved over actin by experimentalists has
made it into an engineering tool for biomimetic materials and microfabrication [126]. A better theoretical
understanding of the determinants of its microstructure will help improve our control of these processes.
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Aurélien Roux. Membrane shape at the edge of the
dynamin helix sets location and duration of the fis-
sion reaction. Cell, 151(3):619–629, October 2012.
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[124] Yan-Jun Liu, Maël Le Berre, Franziska Laut-
enschlaeger, Paolo Maiuri, Andrew Callan-Jones,
Melina Heuzé, Tohru Takaki, Raphaël Voituriez,
and Matthieu Piel. Confinement and low adhesion
induce fast amoeboid migration of slow mesenchy-
mal cells. to appear in Cell, 2015.

[125] David C. Morse. Tube diameter in tightly entan-
gled solutions of semiflexible polymers. Phys. Rev.
E, 63(3):031502, February 2001.
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