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Abstract

Nowadays, we see a growing popularity of the use of Unmanned Aerial Vehicles (UAV) of

especially Vertical Take-Off and Landing (VTOL) type. One of the most known VTOL is the

quadrotor or Quadcopter which is probably the most used one as a research platform. This

thesis deal with attitude control and estimation techniques applied to a rigid body moving

in 3D space such as Quadcopter VTOL. The first contribution of this thesis is the design of

a new class of complementary linear-like filters allowing the fusion of inertial vector mea-

surements with angular velocity measurements and combined with algebraic algorithms as

TRIAD, QUEST etc. to give an efficient attitude estimation solution. This class of filters

allows several possibilities of implementation such as the order of the filters which can be

chosen high in order to reduce more the measurement noise and the form of the filters that

can be direct or passive and the ability to take into account the possible gyro bias. Lyapunov

analysis shows the global asymptotic convergence of the estimation errors to zero. The same

principle of data fusion is used for the proposed new attitude control law in which the com-

plementary filters were included to reduce the effect of measurement noise. The obtained

controller ensures almost global stability of the desired equilibrium point; it represents the

second contribution of this thesis. The third contribution takes into consideration an inter-

esting special case, where instantaneous measurements of attitude and angular velocity are

unavailable. A first order linear auxiliary system based directly on vector measurements is

used in an observer-like system to handle the luck of angular velocity. The proposed con-

troller ensures almost global asymptotic stability of the trajectories to the desired equilibrium

point. Detailed sets of experiments were done to validate the obtained results.



Résumé

Les drones ou systèmes de drones aériens jouent un rôle de plus en plus important dans

tous les domaines, spécialement les drones à décollage et atterrissage verticaux. L’un des

plus connus est le Quadrotor et, sans doute, il est la plateforme de recherche la plus util-

isée. Cette thèse traite le problème de l’estimation et de la commande d’attitude appliqué à

un corps rigide se déplaçant dans l’espace 3D tel que le Quadrotor. La première contribution

de cette thèse est la conception et l’implémentation d’une solution d’estimation d’attitude.

Celle-ci est basée sur un ensemble de filtres complémentaires combinés avec un algorithme

algébrique tel que TRIAD, QUEST, etc. avec la possibilité de choisir deux formes différentes

des filtres: la première dénommée forme Directe, et la seconde dénommée forme Passive.

Les filtres proposés ont une flexibilité dans le choix de l’ordre qui peut être pris grand afin

de bien réduire l’effet du bruit de mesure et permettent d’aboutir à un estimateur qui peut

prendre en compte le biais éventuel des gyromètres. L’analyse par la théorie de Lyapunov

prouve que les erreurs d’estimation tendent globalement et asymptotiquement vers zéro. Une

suite logique de cette première contribution est la proposition d’une solution pour la com-

mande d’attitude qui constitue la deuxième contribution de cette thèse. Elle se traduit par le

développement d’une nouvelle loi de commande d’attitude d’un corps rigide dans l’espace

3D, dans laquelle seulement les vecteurs de mesures inertiels avec les mesures des gyromètres

sont utilisés. Elle utilise le principe de fusion des données à travers un filtre complémentaire

permettant l’élimination des bruits des mesures tout en assurant une stabilité presque globale

de l’équilibre désiré. La troisième contribution est une loi de commande pour la stabilisa-

tion d’attitude sans mesure de vitesse angulaire, ni mesure d’attitude. Pour cela, un système

linéaire auxiliaire basé sur les mesures des vecteurs inertiels a été introduit. Ce dernier se

substitue au manque de l’information de la vitesse angulaire. L’analyse de stabilité du con-

trôleur proposé est basée sur la théorie de Lyapunov couplée avec le théorème de LaSalle. Elle

permet de conclure sur la stabilité presque globale de l’équilibre désiré. Les performances des

solutions proposées ont été validées par un ensemble de tests expérimentaux.
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R Rotation matrix of the mobile frame {B} relative to the inertial fixed frame {I }

S(·) Lie algebra isomorphism from R
3 → so(3)

SO(3) Special Orthogonal Group

v(t) Linear velocity belonging to R
3 expressed in {I }

xpq The pure quaternion of x ∈ R
3 such that xpq = (0,x)

Constant Symbols

03n×3 3n by 3 zero matrix

03n 3n by 1 zero vector

03 3 by 3 zero matrix

0 3 by 1 zero vector

Id 3 by 3 identity matrix

Ik k by k identity matrix

Greek Symbols

(φ , θ , ψ) Euler angles (roll, pitch, yaw)

ω(t) The real angular velocity belonging to R
3 expressed in {B}

ωm(t) Rate gyros vector measurements expressed in {B}

τ(t) The torque (N.m) expressed in {B}

ξ (t) The position belonging to R
3 expressed in {I }

Other Symbols

‖·‖ The l2 norm or the Euclidean norm

� The quaternion product

⊗ The Kronecker product



Nomenclature xxi

× The vector cross product

xT y The scalar product of x by y

Acronyms / Abbreviations

AGAS Almost Global Asymptotic Stability

CCW Counter ClockWise

COM Center Of Mass

CW ClockWise

DCM Direction Cosine Matrix

ECEF Earth Centered Earth-Fixed

ECI Earth Centred Inertial

ENU East, North, Up

ESC Electronic System Control

GPS Global Positioning System

IMU Inertial Measurement Unit

LTP Local Tangent Plane

NED North, East, Down

PWM Pulse Width Modulation

RPAS Remotely Piloted Aircraft Systems

VTOL Vertical Take Off and Landing



Introduction

Traditionally, Unmanned Aerial Vehicles (UAV) or Remotely Piloted Aircraft (RPA) or Re-

motely Piloted Aircraft Systems (RPAS) have been developed and used in military applica-

tions. Nowadays, we see a growing popularity of the use of UAV in civilian fields, especially

type Vertical Take-Off and Landing (VTOL) vehicle (for instance, see Figure 0.0.3 for UAVs

Categories [15]). Indeed, their immense potential and the multiplication of applications open

new perspectives in many sectors of industry. Some applications are already being considered

such as Photography and Mapping, parcel delivery services, inspection of railway lines or

power lines, Search and Rescue, observation of the pipeline network, visual support in emer-

gency interventions, etc. (for instance, see the excellent survey paper [51]). The outcome of

these applications will depend on the reliability of the emerging technologies. In this context,

the challenge is to develop systems that offer a higher degree of autonomy and ability for

performing complex tasks.

Generally, the degree of autonomy of an UAV depends on how much systems are em-

bedded onboard vehicle. To execute a given mission, onboard systems can be classified as

illustrated in Figure 0.0.1. The very low level is the “Vehicle” system, where actuators and

sensors are placed. Actuators receive the appropriate control signals from “Vehicle Control”

system in which, the vehicle state and reference trajectories are taken in consideration to gen-

erate controls for both translational and rotational motions. The vehicle state and references

trajectories are generated by “Estimation & Localization” and “Navigation” systems respec-

tively. The outputs generated by these two last systems are based on the behavior of the

vehicle, which can be expressed by sensor measurements. The very high level mission de-

scription is done in “Mission” systems, where the current available technologies do not allow

to limit the degree of human intervention. To guarantee a minimum degree of autonomy two

systems must be embedded. The first one is “vehicle control” system and the second is “Es-

timation & Localization” system. Several techniques ensuring the efficient operation of these

two systems exist in the literature and the three main contributions of this thesis belongs to

these techniques. They constitute solutions to the attitude estimation and control problems.

Attitude estimation is definitely one of the most studies problem in literature. Various
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attitude parametrizations [63, 85, 91] have been used to propose variety of solutions for the at-

titude determination. The widely used techniques are based on Kalman filter (KF) or Extended

Kalman filter (EKF) [24, 25, 49, 88], and his many variants such as Multiplicative Extended

Kalman Filter (MEKF) [37, 83, 84], Robust Extended or Unscented Kalman filter (REKF

or RUKF) [46, 90], Cascaded Kalman–Particle Filter (C-KPF) [80], Cubature Kalman filter

(CKF) [115] or Square-Root Cubature–Quadrature Kalman Filter (SR-CQKF) [52]. The ef-

fectiveness of Kalman based solutions is due to its ability to fuse heterogeneous signals. Some

recent techniques like linear or nonlinear complementary filters [9, 31, 54, 61, 65, 66, 94, 107]

have the same property. A comparison between complementary and Kalman filtering can be

found in [39]. Generally, the above mentioned results are based on the assumption that the

used reference vectors are constant. Other class of techniques take into consideration the time-

varying reference vectors aspect when vehicles equipped with INS/GPS sensors are subjected

to strong accelerations, by using linear velocity measurements from Global Positioning Sys-

tem (GPS) such as in [4, 34, 42, 64, 79] or by using the linear velocity measured in the mobile

frame such as in [41]. Some other results proposed a simultaneous estimation of attitude and

angular velocity, like in [47] where the authors use Lagrange-D’Alembert principle and two or

more non-collinear vector measurements to propose an observer for both attitude and angular

velocity. In [71], only one vector measurement and the angular velocity have been used to

estimate the attitude.

As claimed in [6], there exist two attitude estimation approaches : The first one considers

the existence of attitude measurements determined usually by algebraic methods, after these

noisy measurements will be filtered, see Figure 0.0.2-(a). The drawback of this approach is

the distortion of noise characteristics due to existing nonlinear operations in algebraic meth-

ods. Thus, Batista et al. [6] proposed a reverse strategy, see Figure 0.0.2-(b), where the

noisy measurements are first filtered and after attitude are determined. This solution leads to

a globally asymptotically stable filters, that designed as a Kalman filter using Linear Time

Variant (LTV) representation of the nonlinear kinematic equation. The theoretical drawback

of this solution is the fact that observability analysis was done on the obtained LTV system

and mathematically it doesn’t mean that the initial non linear system is observable. Inspired

by this approach, a new class of linear-like complementary filters are proposed in this thesis.

The proposed filters can have Direct and Passive form, similarly to the work presented in [61].

Moreover, it is shown using Lyapunov theory that the errors converge globally asymptotically

to the desired equilibrium point for a general n-order filters. In addition, the estimation of

the rate gyro biases are considered. This constitutes the first contribution of this dissertation.

The proposed solution is validated by experimental results using a Quadrotor test-bench. As a

logical sequel, the second contribution of this thesis deals with the problem of attitude control
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of a VTOL

of a rigid body moving in 3D space such as Quadrotor VTOL type.

Many works on attitude control apply their research results on VTOL aircraft type, such as

in [36] where a global asymptotic stabilizing control law with bounded inputs was proposed.

A second order and high-order sliding mode techniques were successfully used to control a

quadcopter in [8, 27]. Others make use of a full state backstepping technique as in [59, 60]

or adaptive fuzzy control technique in [113] for trajectory tracking of a quadcopter. Some

works take into consideration the aerodynamic drag forces, such that in [43], where nonlinear

feedback control laws were proposed to stabilize VTOL reference trajectories. An excellent

review of basic control design and feedback control for underactuated VTOL can be found in

[44]. A quaternion-based feedback was used in [98] to stabilize the attitude of a VTOL and

in [35] a quaternion-based feedback for the attitude stabilization based on nested saturation

approach was experimentally tested on a quadrotor. Also, Vision and rate gyro were used

as information source to stabilize a VTOL to the equilibrium pose, like in [74]. In [77, 78]

authors proposed a control law for attitude stabilization of a flapping wing micro aerial ve-

hicle. A more recent work proposed a full actuation position and attitude control law for an

augmented VTOL with complementary thrust-tilting capabilities [45]. All of these solutions

can be included in “Vehicle control” systems, as depicted in Figure 0.0.1.

Despite the significant existing number of solutions to the attitude control problem, it
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remains an attractive research topic [20, 110]. Many recent work deal with this problem (see

for instance, [11, 45, 55, 101]). Almost all VTOL attitude control laws use measurement

data from an embedded Inertial Measurement Unit (IMU). Most of them first estimate the

attitude and after control it. In this thesis, a new control law that uses only the inertial vector

measurements and angular velocity to track attitude trajectories is proposed. Presented results

show the effectiveness and performances of the proposed solution even if the measurements

are corrupted by noise. This is due to the introduction of a new complementary-like filter in

the control law design. Using Lyapunov theory coupled with LaSalle’s theorem, it is shown

that almost all trajectories of the closed loop dynamics are asymptotically globally stable.

The notion of “almost global asymptotic stability” is used in the sense that a dense and open

set belonging to the Special Orthogonal Group SO(3) exists, where all trajectories are stable.

This notion was used, since it was shown that it is impossible to achieve a global asymptotic

stabilization using continuous time invariant state feedback [14]. Although unit quaternion are

used in stability analysis, the unwinding phenomena is avoided. This constitutes the second

contribution of this thesis.

The third and last contribution of this thesis deals also with the problem of attitude control

of a rigid body moving in 3D space, but with taking into consideration a special interesting

case where no rate gyros measurements are available. Indeed, in [95, 100] authors propose a
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new class of attitude controllers, in which neither the angular velocity nor the instantaneous

measurements of the attitude are used in the feedback control. This solution uses only raw

vector measurements to perform attitude stabilization of a rigid body. In the same context,

a new “velocity-free” control law is proposed, in which a new auxiliary system was intro-

duced to handle the luck of angular velocity. This can be used as main or backup controller in

applications where prone-to-failure and expensive gyroscopes are used. The “almost global
asymptotic stability” of the closed loop system is shown and a comparison with existing work

illustrates the effectiveness and performances of the proposed solution. Also, a detailed proce-

dure for gain tuning is used, where a constrained nonlinear optimization technique is adapted

to evaluate the adequate values of all parameters.

This thesis is organized as follow :

In Chapter 1, some mathematical tools and attitude representations are presented. Espe-

cially, the used attitude parametrization, such as rotation matrix, unit quaternion and Euler

angles. After, the attitude kinematics and dynamics are detailed. Since Quadcopter are used

in experimental results, the different levels of its modeling are presented briefly. The chapter

is ended by stating the different assumptions used in this thesis.

In Chapter 2, simple and efficient algorithms for attitude estimation based on data fusion

using complementary linear-like filters are presented. First of all, a globally asymptotic com-

plementary linear-like filters are proposed and combined with TRIAD algorithm to give an

attitude estimation solution. The solution leads to several possibilities for implementation as

either in direct form or passive form and also by choosing the adequate n-order of the fil-

ter. The adaptive estimation of gyro bias is also considered. Lyapunov analysis results for

the proposed direct and passive complementary filters show global asymptotic convergence of

estimation errors to zero. The chapter is ended by validation and comparison simulations.

In Chapter 3, The same principle of data fusion is used to address the problem of attitude

control and stabilization. Then, instead of using direct raw measurements in the control law

we propose a new solution that includes the principle of complementary filters. The stability

analysis of the tracking error based on Lyapunov theory coupled with LaSalle’s invariance

theorem prove that almost all trajectories converge asymptotically to the equilibrium point.

The effectiveness of the proposed solution is validated by simulation results.

In Chapter 4, we address the problem of attitude stabilization of a rigid body, in which

neither the angular velocity nor the instantaneous measurements of the attitude are used in the

feedback control, only raw vector measurements are needed. The design of the controller is

based on an angular velocity observer-like system, where a first order linear auxiliary system

based directly on vector measurements is introduced. The introduction of gain matrices pro-

vide more tuning flexibility and better results compared with existing works. The proposed
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controller ensures almost global asymptotic stability. The performance and effectiveness of

the proposed solution are illustrated via simulation results where the gains of the controller

are adjusted using non linear optimization.

In Chapter 5, the proposed solutions for attitude estimation and control are validated us-

ing experimental results. The designed test-bench based on open-hardware and open-software

multirotor projects is presented with its components and the different steps needed to turn

on the platform. Thus, some results related to calibration operations and inertia matrix de-

termination are exposed. The obtained experimental results illustrate the effectiveness and

performance of the proposed solutions presented in previous chapters.
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Chapter 1

Mathematical Background and
Quadrotor Modeling

1.1 Introduction

At the beginning of the 21st century, the evolution of aerial robotics has allowed a wide range

of applications fields [51]. One of the most known aerial robot is the Quadrotor or Quadcopter

and probably the most used one as a research platform. Mainly, this is due to its simple

structure and low cost. Many universities have designed their own quadrotor and an interesting

open source projects are growing [51, 57]. The quadrotors are belonging to “VTOL” vehicles

family. They are equipped with a set of sensors allowing the measurements of the position,

linear and angular velocities, and other physical quantities used to estimate crucial information

such as attitude. These data are required to control the motion of the quadrotors and it is clear

that the modeling of the quadrotor is also needed. The quadrotor modeling is well studied in

the literature [13, 26, 62, 76] and different levels of modeling can be considered.

The motion of quadrotor, considered as a rigid body, is decomposed into a translational

and rotational motions. The study of the rotational motion brings us back to the mathematical

parametrization of attitude [85], but also to the study of attitude kinematics and dynamics

[20, 21, 63, 91]. Since the quadrotor is an underactuated system (which mean that the number

of actuators are less then the number of degrees of freedom), the “attitude measurements” is

very important. Unfortunately, it is well known that the attitude is not physical measurable

quantity. Therefore, other information are used to estimate it, such as the acceleration vector

measured by accelerometers, the earth magnetic field vector measured by magnetometers and

the angular velocity vector measured by rate gyros.

Although this chapter contains many well-known concept and available in countable ref-
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Figure 1.2.1: Mobile frame

erences, it constituted a corpus of information that I wanted to find in a single Chapter, in

which mathematical preliminaries that will be used in the present work are presented. Firstly,

reference used systems are recalled. Secondly, all attitude parametrization used in this work

are presented. Finally, attitude kinematics and dynamics are elaborated in the goal to give a

mathematical model to the quadrotor. The presented quadrotor modeling are based on the dis-

tinction between various modeling levels, where rigid body modeling constitutes the highest

level.

1.2 Reference systems

1.2.1 Mobile reference system {B}
This reference is associated to the vehicle (the specific reference to the mobile), with its origin

at the Center Of Mass (COM) of the mobile as illustrated in Figure 1.2.1. The axes of this

frame are :

• (x−axis) : directed along the longitudinal axis oriented from the rear towards the front

• (y−axis) : directed along the transverse axis oriented from left to right

• (z− axis) : completes the Direct Cartesian coordinate following the rule of the right

hand.

1.2.2 The navigation reference system {n}
Defined in the "Local Tangent Plane" (LTP), its origin is always at the current position of the

mobile and the xy plane is tangent to the surface of the earth. Two conventions LTP systems
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are common in navigation:

• NED: North, East, Down (down or to the gravity vector), see Figure 1.2.2

• ENU: East, North, Up (up)

In this work, the NED frame was chosen.

1.2.3 The ECI (Earth Centered Inertial) reference system {I }
This is a system in which Newton’s laws are applicable. It does not follow the rotation of the

earth and therefore do not rotate relative to the stars. The origin of this system is the center of

the Earth. The corresponding coordinate system is a coordinate system with axes marked :

• (x−axis) : to the "Vernal Equinox" (distant star)

• (y−axis) : north pole,

• (z−axis) : to complete the direct reference system.

1.2.4 The ECEF (Earth Centered Earth-Fixed) reference system {e}
It follows the rotation of the earth and the origin of this system is the center of the earth,

therefore this system coincides with the inertial system once a complete revolution of the

earth on itself, see Figure 1.2.2.

• (x−axis) : to the Greenwich meridian (longitude = O)

• (y−axis) : north pole,

• (z−axis) : to complete the direct reference system.

1.2.5 Geodetic Coordinates system (The WGS-84 standard)

Several problems arise when we wish to get absolute position of an object on the globe.

• The earth is not actually a volume of regular shape. It is usually treated as a geoid or

ellipsoid.

• The geoid is an equipotential surface coinciding with the "mean sea level" and at each

point perpendicular to the direction of the "local vertical" (direction of gravity).
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Figure 1.2.2: ECEF, NED and Geodetic Coordinates systems

• The ellipsoid is a mathematical surface coinciding as well as possible with the "geoid"

and usually characterized by its "semi-major axis" and "flattening". Depending on the

location of the globe where there is some local ellipsoid models that are more accurate

than others.

The "WGS 84" is a three-dimensional terrestrial reference system expressing the position in

terms of latitude, longitude and altitude. These are based on a reference ellipsoid which is an

approximation of the shape of the Earth, see Figure 1.2.2.

The latitude ϕ : is the angle between the equatorial plane and the normal to the surface of

the Earth (ellipsoid) at the point in question. It is zero at the equator and is counted positive

for the northern hemisphere, negative for the southern hemisphere.

The longitude λ : is the angle between the Greenwich meridian and the desired point. It is

counted positively towards the East.

The height h : "ellipsoidal height - not to be confused with altitude", is the difference in

meters between that point and the reference ellipsoid measured normal to the ellipsoid. This

value is set in a geodetic system and may differ from the altitude of several tens of meters. It

should be noted that in general the satellite positioning systems provide ellipsoidal height and

not an altitude.

The altitude of a point M of a topographic surface is an approximation of the distance

between the point and the reference surface known as the geoid.
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Attitude parametrization Globality Uniqueness

Rotation matrices yes yes

Axis-angle yes no

Quaternions yes no

Euler angles no no

Table 1.3.1: Global and unique properties of attitude parametrization

Figure 1.3.1: Rotation Matrix and Euler Angles

1.3 Attitude Representation

The orientation of a rigid body in space is often crucial, especially in aerospace applications.

In this section, we provide a description of various attitude parametrizations [85]. Especially,

four type of attitude representations are detailed, as described in Table 1.3.1. The natural

parametrization of rigid body attitude is the set of orthogonal matrices whose determinant is

one [20], named rotation matrix or Direction Cosine Matrix (DCM). It is a unique and global

mathematical parametrization. All others are either only global, such as the Axis-Angle and

unit quaternion representations, or singular and not unique, such as Euler angles. Axis-Angle

and unit quaternions use four parameters to represent the attitude. Usually, the singularity is

due to the fact that only three parameters are used, which is the case of Euler angles. Two other

singular minimal parametrization are derived from unit quaternions, Rodrigues Parameters and

Modified Rodrigues Parameters [63].

1.3.1 Rotation Matrices and Axis-angle representations

We call a rotation matrix or Direction Cosine Matrix (DCM) [91], denoted R every rotation of

the mobile frame {B} relative to the inertial fixed frame {I } (see Figure 1.3.1). Let ebi
1 , ebi

2 ,



14 Mathematical Background and Quadrotor Modeling

ebi
3 ∈ R

3 be the principal axis of {B} expressed in {I }, then

R = [ ebi
1 ebi

2 ebi
3 ], (1.3.1)

where ebi
1 , ebi

2 , ebi
3 are column vectors forming the columns of R.

Remark 1.1. Another definition of the rotation matrix is used where ebi
1 , ebi

2 , ebi
3 are column

vectors forming the rows of R.

The correspondence between a vector b ∈ R
3 expressed in {B} and a vector r ∈ R

3 ex-

pressed in {I } can be written as

r = Rb (1.3.2)

Rotation matrices form a group under the operation of matrix multiplication called the

Special Orthogonal Group SO(3) ⊂ R
3×3. The abbreviation SO refers to the properties of

rotation matrices :

SO(3) = {R ∈ R
3×3 | RT R = RRT = Id, det(R) = 1} (1.3.3)

Properties of the rotation matrix R

According to Euler’s theorem, for every rotation matrix R, there exist an invariant vector a
such that Ra = a. Which mean that the vector a is an eigenvector of R corresponding to the

eigenvalue λ = 1. In this case a line βa is called rotation axis of R and the eigenvalues of

R are {1, eiβ , e−iβ}= {1, cos(β )+ isin(β ), cos(β )− isin(β )}, where β is the angle of Euler

axis βa and i is the standard imaginary unit (i2 =−1). Then,

1. The sum of eigenvalues of R define it’s trace :

trace(R) = 1+2cos(β ) (1.3.4)

2. Since for every β ∈ R we have −1≤ cos(β )≤ 1. Therefore :

−1≤ trace(R)≤ 3 (1.3.5)

3. The product of eigenvalues of R define it’s determinant :

det(R) = 1, (1.3.6)

due to this property, the group of rotation matrices is called ′Special′.



1.3 Attitude Representation 15

4. Since ebi
1 , ebi

2 , ebi
3 form an orthonormal basis, then the matrix R is real and orthogonal

matrix. This means that

RT R = RRT = Id, (1.3.7)

due to this property, the group of rotation matrices is called ′Orthogonal′.

Lie algebra of SO(3)

It will be shown that the study of the rotation of a rigid body around a given unit vector a ∈ R
3

with a given angle θ ∈R conducts directly to the notion of the Lie algebra of SO(3). Consider

a point p(t) ∈ R
3 of a rigid body rotating around the axis a with an initial condition denoted

p(0) ∈ R
3, the time derivative of p(t) can be written as

d
dt

(p(t)) = a× p(t) = A p(t), (1.3.8)

where × stands for the vector cross product and A ∈ R
3×3. Note that the cross product

a× p(t) can be written as a product of a matrix A and a vector p(t). The properties of the

matrix A will be detailed later.

The unique solution of differential equation (1.3.8) is well known to be p(t) = p(0)eA t ,

which means that the matrix exponential eA t is nothing rather than a rotation of the point p
from the initial position p(0) to a new position p(t). Therefore, the rotation matrix R can be

given by

R = eA θ (1.3.9)

Remark 1.2. The uniqueness of the existence of the matrix R can be derived from the fact

that p(t) = p(0)eA t is a unique solution of (1.3.8). Also, this equation is verified for every

physical point p(t) which means that R is global.

The matrix A if formed by the elements of the vector a. In general, for any two vectors

x, y ∈ R
3, we can denote x× y = S(x)y, where S(x) is a skew-symmetric matrix given by

S(x) =

⎡⎢⎣ 0 −xz xy

xz 0 −xx

−xy xx 0

⎤⎥⎦ and x =

⎡⎢⎣ xx

xy

xz

⎤⎥⎦ (1.3.10)

With this notation, the relation between the unit vector a (which specify the direction of

the rotation), the angle of rotation θ and the rotation matrix R can be given by

R(a,θ) = eS(a)θ (1.3.11)
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The set of skew symmetric matrices S(x), x ∈ R
3 is called the Lie algebra of SO(3) and

denoted so(3), defined by

so(3) = {A ∈ R
3×3 | AT =−A}

and S is the Lie algebra isomorphism from R
3 → so(3) which associates to x ∈ R

3 the skew-

symmetric matrix S(x).

For every x,y ∈ R
3 and a given R ∈ SO(3), the following identities can be verified

S(x)y = −S(y)x (1.3.12)

S(x)x = 0 (1.3.13)

S(x)S(y) = yxT − xT yId (1.3.14)

S2(x) = xxT − xT xId (1.3.15)

S3(x) = −xT xS(x) (1.3.16)

S(S(x)y) = S(x)S(y)−S(y)S(x) (1.3.17)

S(Rx) = RS(x)RT (1.3.18)

S(x)T = −S(x) (1.3.19)

For every x,y ∈ R
3 and any constant matrix A ∈ R

3×3, the following partial derivative can

be verified

∂ [S(x)y]
∂x

= S(y) (1.3.20)

∂
[
xT Ax

]
∂x

=
(
A+AT)x (1.3.21)

∂ [S(x)Ax]
∂x

= S(x)A+S(Ax) (1.3.22)

∂
[
S2(x)y

]
∂x

= S(y)S(x)−2S(x)S(y) = xT yI + xyT −2yxT (1.3.23)

∂
[
S(x)2Ax

]
∂x

= S(x)2A+ x(Ax)T −2(Ax)xT + xT (Ax)I (1.3.24)

Rotation matrix R from Axis-Angle (a, θ ) : Exponential map so(3) −→SO(3)

Let a be a unit vector representing the direction of a rotation with an angle of rotation θ ,

corresponding to a rotation matrix R. Therefore, the matrix R can be expressed in function of
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(a, θ ) by equation (1.3.11). Using Taylor expansion, one can get

R(a,θ) = eS(a)θ = Id +S(a)θ +
S2(a)
2!

θ 2+
S3(a)
3!

θ 3+ · · · , (1.3.25)

At first time, equation (1.3.25) seem to be unusable since it is an infinite series. In what

follows, we show that it is possible to get a closed form of (1.3.25). Before, let us state the

following lemma.

Lemma 1.1. Let x ∈ (R3
)∗ and S(x) ∈ so(3). Then, for any integer n ≥ 3, the following

identities can be verified

Note.

Sn(x) =

⎧⎨⎩
1
‖x‖(−1)k ‖x‖2k+1 S(x) i f n = 2k+1 | k ≥ 1

−1

‖x‖2 (−1)k ‖x‖2k S2(x) i f n = 2k | k ≥ 2
(1.3.26)

Proof. The proof is very simple and the n power of S(x) can be calculated recursively using

property (1.3.15) and (1.3.16).

Using (1.3.26), the Taylor expansion (1.3.25) can be rewritten as

R(a,θ) = Id +
S(a)
‖a‖

(
∞

∑
n=0

(−1)n

(2n+1)!
(‖a‖θ)2n+1

)
+

S2(a)

‖a‖2
(
1−

∞

∑
n=0

(−1)n

(2n)!
(‖a‖θ)2n

)
,

using expansion Taylor theorem for sin and cosine functions, one can get

R(a,θ) = Id +
S(a)
‖a‖ sin(‖a‖θ)+

S2(a)

‖a‖2 (1− cos(‖a‖θ)), (1.3.27)

finally, using the fact that a is a unit vector, one can obtain Rodrigues formula given by

R(a,θ) = Id +S(a)sin(θ)+S2(a)(1− cos(θ)), (1.3.28)

Angle-Axis (a, θ ) from Rotation Matrix R

Asmentioned before, angle-axis representation is global but not unique. To show these proper-

ties, it suffices to express the angle-axis parametrization in function of rotation matrix. Given

a rotation matrix R ∈ SO(3) as follow

R =

⎡⎢⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎥⎦ , (1.3.29)
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and using the properties of rotation matrices detailed before, one can verify that for every

matrix R(a,θ) = eS(a)θ we have

θ = arccos
(
1

2
(trace(R))−1

)
, (1.3.30)

and

a =
1

2sin(θ)

⎡⎢⎣ r32− r23
r13− r31
r21− r12

⎤⎥⎦ , i f θ �= 0 (1.3.31)

where arccos= cos−1. Note that if θ = 0 and using (1.3.28) one can get that R(a,0) = Id and a
can be chosen arbitrary. Observing (1.3.30) one can conclude that for one value of R there are

two corresponding values of θ {θ +2kπ,−θ +2kπ} which give us two directions of rotations

{a,−a}. This means that the couple (a, θ) can represent R globally, but not uniquely. The

proof of (1.3.30) and (1.3.31) can be found in chapter 2 of [91].

1.3.2 Quaternion parametrization

Generally, the Euler axis-angle attitude representation is not trivial for the mathematical ma-

nipulation point of view. For this and to give another global parametrization using only four

parameters [63, 85, 91] (against nine in rotation matrix parametrization), Euler extend his the-

orem of angle-axis representation by introducing a rotation around a unit vector a considered

as imaginary complex part with an angle θ considered as scalar part, which gives

Q = e
θ
2 (axi+ay j+azk) = cos

(
θ
2

)
+ sin

(
θ
2

)
(axi+ay j+azk) , (1.3.32)

where i2 = j2 = k2 = −1. This is a generalization of complex numbers. Using 1, i, j, k as a

basis, we can note Q = (q0,q), thus

Q =

[
q0

q

]
=

[
cos
(θ
2

)
sin
(θ
2

)
a

]
, (1.3.33)

where q0 ∈ R and q ∈ R
3. This notation conducts us to the fact that in general Q ∈ R

4, but

since a is a unit vector, therefore

‖Q‖= QT Q = q2
0+q2

1+q2
2+q2

3 = 1, (1.3.34)
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where q =

⎡⎢⎣ q1

q2

q3

⎤⎥⎦.
Which means that the set of unit quaternions define the unit sphere S3 such that :

S
3 = {Q ∈ R

4 | QT Q = 1} (1.3.35)

.

Using (1.3.32), one can conclude that the multiplication of two quaternions P = (p0, p)
and Q = (q0,q) is a quaternion and if we denoted it by “�”, then

P�Q =

[
p0q0− pT q

p0q+q0p+ p×q

]
, (1.3.36)

and the inverse of a quaternion Q = (q0,q) is also a quaternion defined by Q−1 = (q0,−q).

Angle-Axis (a, θ ) from Unit Quaternion Q

Using (1.3.33) and given a unit quaternion Q ∈ S
3, one can get the angle-axis representation

(a(Q), θ(Q)) corresponding to Q as follow

θ = 2arccos(q0), (1.3.37)

and

a =

⎧⎨⎩
1

sin( θ
2 )

q i f θ �= 0,

0 otherwise,
(1.3.38)

Rotation matrix R from Unit Quaternion Q : The mapping S3 → SO(3)

Denote the mapping from S
3 to SO(3) as R : S3 → SO(3). Given a quaternion Q ∈ S

3, the

goal is to find the corresponding matrix rotation R, such that R = R(Q). Using the fact that

1− cos(θ) = 2
(
sin
(θ
2

))2
and sin(θ) = 2sin

(θ
2

)
cos
(θ
2

)
together with (1.3.37), (1.3.38), one

can get from Rodrigues formula (1.3.28) the Euler-Rodrigues rotation formula as

R = R(Q) = Id +2q0S(q)+2S2(q), (1.3.39)

where Q ∈ S
3. It is easy to verify that R(Q) =R(−Q), where−Q = (−q0,−q), which means

that R defines a double covering map of SO(3) by S
3, i.e., for every R ∈ SO(3) the equation

R(Q) = R admits exactly two solutions QR and −QR. As a consequence, a vector field f of
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S
3 projects onto a vector field of SO(3) if and only if, for every Q ∈ S

3, f (−Q) = − f (Q)

(where we have made the obvious identification between TQS
3 the tangent space of S3 at Q

and T−QS
3 the tangent space of S3 at −Q) (for more details see [38, 70]).

Unit Quaternion Q from Rotation Matrix R : The mapping SO(3)→ S
3

Given a rotation matrix R ∈ SO(3) defined by (1.3.29) and using the Euler-Rodrigues rotation

formula (1.3.39) one can have

R =

⎡⎢⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎥⎦=

⎡⎢⎣ 2(q2
0+q2

1)−1 2(q1q2−q0q3) 2(q0q2+q1q3)

2(q0q3+q1q2) 2(q2
0+q2

2)−1 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q0q1+q2q3) 2(q2
0+q2

3)−1

⎤⎥⎦ , (1.3.40)

where Q = (q0,q) =

⎡⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎦.
Note that from (1.3.40) one can get Q from R in different way, depending on which element

of R we want to use. The easiest one is to use only the diagonal of R. Let us first determine the

value of q0. Using the first property of R (1.3.4) and the fact that cos(θ) = 2
(
cos
(θ
2

))2−1, it

is straightforward to obtain

q0 =±1

2

√
1+ trace(R), (1.3.41)

Thus, using (1.3.40), (1.3.41) and (1.3.34), one can get

q1 = ±
√

1

2
(r11+1)−q2

0 =±1

2

√
2r11+1− trace(R),

q2 = ±
√

1

2
(r22+1)−q2

0 =±1

2

√
2r22+1− trace(R),

q3 = ±
√

1

2
(r33+1)−q2

0 =±1

2

√
2r33+1− trace(R),

note that if R = Id , then Q = (±1,0).
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Vector Rotation using Unit Quaternions

Let b ∈ R
3, r ∈ R

3 be vectors expressed in {B} and {I } respectively. The rotation of a

vector b needs two quaternions Q and it’s inverse Q−1 as follow

rpq = Q�bpq �Q−1, (1.3.42)

where rpq and bpq are the pure quaternions of r and b such that rpq = (0,r) and bpq = (0,b).
Let us proof that (1.3.42) is equivalent to (1.3.2). Using (1.3.42) and (1.3.36) the vector part

of rpq can be written as

r = qqT b+q2
0b+2q0S(q)b−S(S(q)b)q,

= qqT b+q2
0b+2q0S(q)b−S2(q)b,

where the property (1.3.17) was used. Now, using (1.3.15) and (1.3.34), one can get qqT =

S2(q)+(1−q2
0)I. Replacing this last expression in the above equality and after some manip-

ulations, it is straightforward to obtain

r = (Id +2q0S(q)+2S2(q))b,

which is equivalent to (1.3.2).

1.3.3 Euler Angles parametrization

In Euler angles representation, the rotation from frame {I } to frame {B} is formed by three

successive rotations using the right hand rule. A rotation around the axis ei
3 (see Figure 1.3.1)

with an angle ψ called “yaw angle”, which transforms the basis {ei
1, ei

2, ei
3} to {ei′

1, ei′
2, ei

3}.
The corresponding rotation matrix is

Rz =

⎡⎢⎣ cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤⎥⎦ (1.3.43)

A rotation around the axis ei′
2 with an angle θ called “pitch angle”, which transforms the
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basis {ei′
1, ei′

2, ei
3} to {ei′′

1 , ei′
2, ei′′

3 }. The corresponding rotation matrix is

Ry =

⎡⎢⎣ cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

⎤⎥⎦ (1.3.44)

A rotation around the axis ei′′
1 with an angle φ called “roll angle”, which transforms the

basis {ei′′
1 , ei′

2, ei′′
3 } to {eb

1, eb
2, eb

3}. The corresponding rotation matrix is

Rx =

⎡⎢⎣ 1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

⎤⎥⎦ (1.3.45)

The total rotation R(ψ,θ ,φ), which transforms {I } (defined by {ei
1, ei

2, ei
3}) to{B} (de-

fined by {eb
1, eb

2, eb
3}) is given by

R(ψ,θ ,φ)=RxRyRz =

⎡⎢⎣ c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ)+ s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)

⎤⎥⎦ ,
(1.3.46)

where c(·) = cos(·) and s(·) = sin(·). The angles (φ , θ , ψ) are called Euler angles.

Euler angles(φ ,θ ,ψ) from Rotation Matrix R

Given a rotation matrix R ∈ SO(3) defined by (1.3.29) and using (1.3.46) one can have

θ = arcsin(−r31), (1.3.47)

φ = atan2(r21,r11), (1.3.48)

ψ = atan2(r32,r33), (1.3.49)

where “atan2(y,x) computes tan−1( y
x) but uses the sign of both x and y to determine the

quadrant in which the resulting angle lies” [91].
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1.4 Attitude kinematics and dynamics

1.4.1 Attitude kinematics

The study of attitude kinematics [13, 63, 91] is based on the time derivative of a vector in a

rotating coordinate system. Let us rewrite (1.3.8) for a derivative of the principal axis ebi
1 (t),

ebi
2 (t), ebi

3 (t) ∈ R
3 of {B} expressed in {I }

d
dt

(
ebi
1 (t)
)

= S(ωI(t))ebi
1 (t), (1.4.1)

d
dt

(
ebi
2 (t)
)

= S(ωI(t))ebi
2 (t), (1.4.2)

d
dt

(
ebi
3 (t)
)

= S(ωI(t))ebi
3 (t), (1.4.3)

where ωI is the vector of angular velocity of {B} expressed in {I } and S(ωI(t)) is the skew

symmetric matrix defined by (1.3.10).

Attitude Kinematics on SO(3)

To get attitude kinematics using rotation matrix as parametrization of attitude it suffices to

calculate the expression of the derivative of R using the elementary definition (1.3.1). Thus,

the derivative of (1.3.1) in view of (1.4.1), (1.4.2) and (1.4.3) gives

Ṙ(t) =
[

ėbi
1 (t) ėbi

2 (t) ėbi
3 (t)

]
,

= S(ωI(t))
[

ebi
1 (t) ebi

2 (t) ebi
3 (t)

]
, (1.4.4)

using the fact that the corresponding angular velocity vector ωI(t) to ω(t) (where ω(t) is

expressed in {B} and ωI(t) is expressed in {I }) can be written using (1.3.2) as ωI(t) =
R(t)ω(t). Therefore, one can get from (1.4.4)

Ṙ(t) = R(t)S(ω(t)), (1.4.5)

where property (1.3.18) was used.
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Reduced Attitude Kinematics on S
2

Consider a vector bi(t) ∈ R
3 expressed in {B} and a fixed vector ri ∈ R

3 expressed in {I },
i = 1, ...,m, then from (1.3.2) one can write

bi(t) = RT (t)ri, (1.4.6)

where R is the rotation matrix of the mobile frame {B} relative to the inertial fixed frame

{I }. Since R preserves distances, therefore if ri is a unit vector, then bi is also a unit vector.

In this case, bi(t) ∈ S
2 such that

S
2 = {x ∈ R

3 | xT x = 1} (1.4.7)

Using the fact that ri is constant, differentiating (1.4.6) with respect to time in view of

(1.4.5) gives

ḃi(t) =−S(ω(t))bi(t), (1.4.8)

It is clear from (1.4.8) that the reduced attitude vector evolves in S
2, which can be verified

by the evaluation of the time derivative of bT
i (t)bi(t), see [20].

Attitude Kinematics on S
3

The evaluation of the equivalent attitude kinematics (1.4.5) using unit quaternions, can be

done by using the basic definition of a function derivative as described in page 71 of [63]. The

unit quaternion kinematics is given by

Q̇(t) =

[
q̇0(t)
q̇(t)

]
=

1

2
Q(t)�ω(t) =

1

2

[
−qT (t)

q0(t)Id +S(q(t))

]
ω(t), (1.4.9)

where ω is the pure quaternion of ω , such that ω = (0,ω). It is possible to write the quaternion

kinematics (1.4.9) as a product of a matrix and the quaternion. Consider a matrix M(ω(t))
defined by

M(ω(t)) =

[
0 −ωT (t)

ω(t) −S(ω(t))

]
, (1.4.10)

then,

Q̇(t) =
1

2
M(ω(t))Q(t) (1.4.11)
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Euler angles kinematics on R
3

Consider a rotation matrix R(t) ∈ SO(3) defined by (1.3.29) and using (1.4.5), one can get

Ṙ(t) =

⎡⎢⎣ ṙ11 ṙ12 ṙ13
ṙ21 ṙ22 ṙ23
ṙ31 ṙ32 ṙ33

⎤⎥⎦=

⎡⎢⎣ (r12ωz − r13ωy) (r13ωx − r11ωz) (r11ωy − r12ωx)

(r22ωz − r23ωy) (r23ωx − r21ωz) (r21ωy − r22ωx)

(r32ωz − r33ωy) (r33ωx − r31ωz) (r31ωy − r32ωx)

⎤⎥⎦ ,
(1.4.12)

where ω(t) =
[

ωx ωy ωz

]T ∈ R
3 is the angular velocity vector expressed in {B}.

Now, using (1.3.46), (1.4.12), (1.3.47), (1.3.48) and (1.3.49), together with the fact that
d
dt (arcsin(x)) = ẋ√

1−x2
and d

dt (arctan(x)) = ẋ
1+x2 , and after some manipulations, one can

have

θ̇(t) = cos(φ)ωy − sin(φ)ωz,

φ̇(t) = ωx + sin(φ)tan(θ)ωy + cos(φ)tan(θ)ωz,

ψ̇(t) =
sin(φ)
cos(θ)

ωy +
cos(φ)
cos(θ)

ωz,

which means that the attitude kinematics using the minimal Euler angles parametrization is

not always defined, as can be verified when θ =±π
2 +2kπ .

The discrete-time unit quaternion propagation

For implementation purpose and to avoid the integration of the continuous quaternion kine-

matics (1.4.9) or (1.4.11), the discrete-time quaternion propagation [63] will be used in this

work and it is given by

Qk+1 = exp
(

Ts

2
M(ωk)

)
Qk, (1.4.13)

where M(ωk) is defined by (1.4.10), Ts is the sample time and

exp
(

Ts

2
M(ωk)

)
= cos

(
Ts

2
‖ωk‖

)
I4+

sin
(Ts

2 ‖ωk‖
)

‖ωk‖ M(ωk),

where I4 ∈ R
4×4 is the identity matrix.
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1.4.2 Attitude dynamics

Consider a rigid-body moving in 3D space with orthonormal body-frame {B} fixed to its

COM and denote by {I } the inertial fixed reference, as illustrated in Figure 1.3.1. The

angular momentum [63] can be expressed in {I } as

L(t) = R(t)Jω(t), (1.4.14)

where R(t) is the matrix of rotation defined by (1.3.1), J is the moment of inertia or inertia

matrix of the rigid body expressed in {B} and ω(t) is the vector of angular velocity expressed

in {B}. Using the Newton’s law of motion, one can get

d
dt

(L(t)) = R(t)(τ(t)+ τext(t)), (1.4.15)

where τ(t) is the torque generated by actuators and τext(t) all others external torques applied

about the center of mass of the rigid body expressed in {B}. Using (1.4.14) and (1.4.15), the

simplified attitude dynamics [62] can be expressed as

Jω̇(t) =−S(ω(t))Jω(t)+ τ(t), (1.4.16)

where external torque τext(t) was neglected.

1.5 Quadrotor Modeling

The quadrotor modeling is well studied in the literature [18, 21, 50, 62, 76]. In this section,

a brief resume of the different quadrotor modeling levels are given. As described in [13],

modeling of quadrotor can be divided into four levels with a fifth level dedicated to sensors

modeling. The quadrotor modeling levels are depicted in Figure 1.5.1.

1.5.1 Rigid body modeling level

The quadrotor motion consists of translation and rotation. The rotation kinematics and dynam-

ics were detailed in Section 1.4. In this subsection, we detail the modeling of the translational

motion of a rigid body and a simplified model of quadrotor considered as a rigid body is

presented.

First, let us consider that the translation motion of quadrotor is described by its position

ξ (t), its linear velocity v(t) = ξ̇ (t) and its linear acceleration a(t) = v̇(t), all expressed in the

inertial reference {I }. We assume that the total thrust generated by the quadrotor in {B} at
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his COM is in the inverse direction of eb
3 (see Figure 1.3.1). Therefore,

FT =−T Rei
3

is the total thrust expressed in {I }, where R is the rotation matrix defined by (1.3.1) and T is

the magnitude of the total thrust.

Using the fundamental principle of dynamics, one can get

mv̇(t) =−T (t)R(t)ei
3+mgei

3+ fext(t), (1.5.1)

where fext(t) are the sum of all external forces acting on the rigid body and m denotes it’s

mass.

Finally, neglecting all external forces and all external torques and using (1.4.5), (1.4.16)

and (1.5.1), the general simplified model of quadrotor [62] considered as rigid body is given

by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξ̇ (t) = v(t),

mv̇(t) =−T (t)R(t)ei
3+mgei

3,

Ṙ(t) = R(t)S(ω(t)),

Jω̇(t) =−S(ω(t))Jω(t)+ τ(t)

(1.5.2)

1.5.2 Thrust and Torque generation, Propeller aerodynamics and Actu-
ator dynamics modeling levels

Consider a quadrotor equipped with four actuator with propellers, each propeller generates a

Thrust Ti and a torque τi, and rotates at an angular velocity ωi. Propellers attached to actuators

M1 and M2 are rotating in Counter Clockwise direction (CCW), while those attached to actu-

ators M3 and M4 are rotating in Clockwise direction (CW). The mobile reference attached to

the quadrotor is chosen to be in “X” configuration as depicted in Figure 1.5.2. The total thrust

T (t) is the sum of all thrusts generated by each propeller [62] and given by

T (t) = |T1(t)|+ |T2(t)|+ |T3(t)|+ |T4(t)|= cT

4

∑
i=1

ω2
i (t), (1.5.3)

where cT > 0 is the thrust constant and the assumption of the proportionality of propeller

thrust and the square of rotor angular velocity ωi is considered. The reaction torque generated
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by each propeller [62] can be modeled by

τi(t) = cτω2
i (t), (1.5.4)

where cτ > 0 is the torque constant. More details about propeller aerodynamics can be found

in [50, 62]. Denote the distance

d =

√
2

2
l, (1.5.5)

which represents the vertical distance from the principal axis eb
1 to the point of application of

thrusts Ti, where l is the length of the quadrotor legs. Using (1.5.3), (1.5.4) and (1.5.5), one

can write the total thrust T (t) and torque τ(t) =
[

τx τy τz

]T
as

⎡⎢⎢⎢⎣
T (t)
τx(t)
τy(t)
τz(t)

⎤⎥⎥⎥⎦=

P︷ ︸︸ ︷⎡⎢⎢⎢⎣
cT cT cT cT

−dcT dcT dcT −dcT

dcT −dcT dcT −dcT

−cτ −cτ cτ cτ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ω2
1 (t)

ω2
2 (t)

ω2
3 (t)

ω2
4 (t)

⎤⎥⎥⎥⎦ ,
where the constant matrix P can be determined experimentally, as detailed in [26].

Usually, autopilot of quadrotor generates PWMi(t) signals to drive the motor Electronic

System Control “ESC” which it self generates the desired voltage ui to drive the motor, de-

pending on the duty cycle of the PWMi(t) signals, see Figure 1.5.1. The relation between ui(t)
and PWMi(t) can be given by [50]

ui(t) = k
√

PWMi(t),

where k ∈ R
+.

1.5.3 Sensors modeling level

A large set of sensors are used in aerial robots, Figure 1.5.3 illustrates an existing various

sensors type. Depending on the application, the selection of required sensors is crucial. Some

of them are exclusively used for outdoor application such as GPS. In our case, we used an

Inertial Measurements Unit “IMU” (generally composed of three accelerometers, three rate

gyros and three magnetometers).
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Figure 1.5.2: Thrust and Torque generation modeling level
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Accelerometers

The accelerometer is a sensor which measures the force F which is the result of the action of

acceleration to a mass m. The measured acceleration is the result of all the accelerations to

which is subjected the mass m in the direction of given axis in {B}. This takes into account

the dynamic acceleration (motion) or static (gravity earth field). The accelerometer measures

the following accelerations :

1. The gravitational acceleration: the gravitational force is always directed downward,

and the projection of this force in the mobile frame {B} is written ag(t) = RT (t)gei
3,

where g = 9.81(m/s2).

2. The centripetal acceleration: it is called centripetal force, any force perpendicular to

the trajectory, which changes the rate only in direction. This force causes centripetal

acceleration given by the following equation ac(t) = S(ω(t))RT (t)v(t).

3. The linear acceleration: by definition, it is the first derivative of the linear velocity of a

mobile vehicle, expressed in {B} as RT (t)a(t) = RT (t)v̇(t).

Finally, if we denote the measured acceleration by aB(t), then

aB(t) = RT (v̇(t)+S(ω(t))v(t)−gei
3

)
+ηa +na(t), (1.5.6)

where ηa denote the offset and na(t) denote the additive measurements noise. In the case of

micro aerial robots the centripetal acceleration can be neglected compared to the gravitational

acceleration, therefore two models are considered in literature :

• The case of accelerated motion: In this case, the linear acceleration is non negligible

compared to the gravitational acceleration. Without tacking into consideration the bias

and noise (1.5.6) becomes

aB(t)≈ RT (v̇(t)−gei
3

)
, (1.5.7)

and

aI (t) = R(t)aB(t), (1.5.8)

where aI (t) denotes the apparent acceleration expressed in {I }.

• The case of non accelerated motion: In this case, the linear acceleration is negligible

compared to the gravitational acceleration. Thus, from (1.5.7), one can get

aB(t)≈−RT gei
3 (1.5.9)
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Rate Gyros

The gyros allow the measurement of the angular velocity about a given axis. Generally, they

are based on Coriolis forces effect measurements. The measured angular velocity of {B}
relative to {I } expressed in {B} is modeled by

ωm(t) = ω(t)+ηω +nω(t), (1.5.10)

where ω(t) is the true angular velocity, ηω denotes the rate gyro bias and nω(t) an additive

measurements noise.

Magnetometers

With three magnetometers forming a triad, the vector of the earth magnetic field in the mobile

reference frame{B} is given by

mB(t) = RT (t)mI +ηm(t)+nm(t), (1.5.11)

where ηm(t) all magnetometers disturbances, composed of local hard and soft disturbances

and nm(t) denotes the measurements noise. A special care for the placement of magnetometer

should be taken into consideration because magnetometers disturbances can be very signifi-

cant. The value of mI depends on the geographic location. In Vélizy - FRANCE, the vector

mI is given by

mI =

⎡⎢⎣ 0.2086

0.0004

0.4320

⎤⎥⎦ (Gauss)

Usually, the normalized measurements of mB(t) are used.

1.6 Assumptions

The following assumptions are made and will be used

Assumption 1. We assume that m inertial vector-valued functions of time bi(t) are measured.
Moreover, note that the bi’s actually depend on the rotation R and one could also write them
as bi(R(t)) or bi(Q(t)) if we choose quaternions instead of rotations. In the sequel, we will
write either bi(t) or bi(Q(t)) or just bi.
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Assumption 2. We assume that, if we have m measured inertial vectors bi(t), i = 1, ...,m
expressed in {B}, corresponding to m inertial constant vectors ri, i = 1, ...,m expressed in
{I }, then at least two of them are non-collinear.

Assumption 3. We assume that the real unknown gyro-bias ηω is bounded and constant (or
slowly varying), such that η̇ω = 0. Moreover, we assume that we are dealing with bounded
measured angular velocities ωm(t), in the case of attitude estimation, implying that the real
angular velocity ω(t) is bounded as well.

Assumption 4. For attitude stabilization, the desired rigid body attitude is defined by the
constant rotation matrix Rd, relates an inertial constant vector ri to its corresponding vector in
the desired frame, i.e., bd

i = RT
d ri, with ḃd

i = 0. An equivalent constant desired unit-quaternion
Qd is defined as Rd = R(Qd).

Assumption 5. We assume that the angular velocity vector ω(t) is unavailable in the case of
velocity free attitude controller.

1.7 Conclusion

With the aim to develop a model of the quadrotor, mathematical attitude parametrization was

detailed after the presentation of the different reference frames. A fine quadrotor modeling can

be complicated, therefore only a simplified model has been selected. Several modeling levels

were considered. Each level provided an output used by the next level until arrival at the rigid

body modeling level, which provided position, linear velocity, orientation, angular velocity.

The simple rigid body model was based on the elaboration of translational and rotational

kinematics and dynamics.

As it is well known, the attitude is not measurable. Therefore, a set of sensors combined

with observers are needed to estimate attitude. A sensor level modeling was presented, in

which all sensors needed and used in this work was presented. Sensor selection depend essen-

tially on the chosen application, but some sensors are needed in all aerial robots such as IMU.

IMUs are the most used sensor to estimate the attitude, which is the aim of the next chapter.





Chapter 2

Attitude Estimation Using Linear-Like
Complementary Filters

2.1 Introduction

Attitude determination remains until today an interesting research topic. Indeed, the attitude is

not a measurable quantity, its determination is based on measurements provided by appropriate

sensors. Many sensors are used, depending generally on the application, such that IMU, star

trackers and others, see Figure 2.1.1 for examples of the used sensors to estimate the attitude.

Generally, the problem of attitude estimation involves two process, estimation of the atti-

tude and filtering as mentioned in the survey paper [24]. The widely used techniques are based

on Kalman filter (KF) or Extended Kalman filter (EKF) (see, for instance, [24, 25, 49, 88]) and

its variants (see, for instance, [37, 46, 52, 80, 83, 84, 90, 115]). Other techniques developed

like a nonlinear observer [30], or based on unscented filter [23] or particle filter [24, 109].

Most of these methods are computationally demanding and some of them, depending on used

attitude representation [85], suffer from topological limitations, double covering or singu-

larities. Another class of techniques are based on complementary filters (see, for instance,

[31, 106, 107]) which are not so computationally demanding, see [39] for comparison be-

tween complementary and Kalman filtering.

Due to their simplicity and efficiency, the use of complementary filters to reconstruct the

attitude continues to attract many researchers. A lot of them focus on low-cost IMU and at-

titude heading reference system AHRS [65]. Nonlinear complementary filters designed on

Special Orthogonal Group SO(3) [61] and on the unit 3-sphere S3 [94] were used successfully

to estimate the attitude, but not always achieving global stability. Modified complementary

filters using only accelerometer and gyroscope measurements to estimate the orientation was
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presented in [54]. Another recent work has used the inverse sensor models and complemen-

tary filters to develop a high-fidelity attitude estimator [66]. As mentioned in [6], traditional

attitude solutions use directly raw vector measurements to compute the attitude data after that

the filter is used to obtain the filtered attitude. Batista et al. [6] proposed a reverse strategy

by combining a vector-based filter with an optimal attitude determination algorithm. A new

interesting class of globally asymptotically stable filters for attitude estimation are obtained.

The vector-based filter was designed as a Kalman filter using Linear Time Variant (LTV) rep-

resentation of the nonlinear kinematic equation. Even if experimental results presented in [6]

are very good, the theoretical drawback is the fact that the observability analysis were done

on the LTV reformulation of the original nonlinear system and not explicitly on the non linear

system.

Inspired by approach given in [6], this chapter presents firstly a globally asymptotically sta-

ble filters for attitude estimation based on linear complementary filtering. It has the advantage

to improve the quality of estimation by choosing the adequate order of the filter. The gyro-bias

estimation is also considered. Two filter forms, termed direct and passive, are designed sim-

ilarly as the work presented in [61]. The main difference between these two proposed forms

lies in the direct use of the raw or filtered measurements in the nonlinear part of the filter.

The passive form is less sensitive to noise as claimed in [61]. In fact, the attitude estimation

proposed in [6] can be regarded as Kalman filter representation of the first order passive pro-

posed form used to filter the vector measurements followed by an optimal method to calculate

the attitude. Moreover, the approach proposed here is completely deterministic as it is based

on linear complementary filters followed by TRIAD algorithm for the attitude estimation. As

a matter of fact, the TRIAD is the deterministic attitude estimation algorithm par excellence
as claimed by [86]. Although it was proved that TRIAD is less accurate than other optimal

approaches [86], we show throughout this work that it is possible to obtain higher quality of

the attitude estimation when this approach is used. The new proposed observers for attitude

estimation can be qualified as linear-like complementary filters. By doing so, the distortion of

noise characteristics is avoided [6] and a globally asymptotic convergence of the filter can be

ensured.

This chapter is organized as follow. In Section 2.2, Complementary linear-like filter-based

attitude estimation approach is detailed. The design of linear complementary filters for attitude

estimation along with stability analysis of the direct and passive filters are given in Section 2.3.

Depending on the placement of a compensation term, four filter variants are presented. A first

validation of the proposed solutions by simulations are presented in Section 2.4. A second

validation by experiments will be presented in Chapter 5. The Chapter is ended by conclusion

in Section 2.5. Note that, partial results in this Chapter were published in [12].
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(a) Horizon sensor (www.love2 f ly.co.uk) (b) Horizon sensor (www.spino f f .nasa.gov) (c) Horizon sensor (www.ssbv.com)

(d) Solar sensor (www.ssbv.com) (e) Star Tracker (www.spacedaily.com) (f) Star Tracker (www.ballaerospace.com)

(g) AHRS (www.xsens.com) (h) Zrazor (www.spark f un.com)

Figure 2.1.1: Classical used sensors for attitude estimation
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2.2 Complementary linear-like filter-based attitude estima-
tion approach

The sensor-based attitude estimation approach, mentioned in [6], is consisting of two process:

i) filter sensor measurements, and ii) determine attitude. Inspired by this approach, we pro-

pose a structure based on complementary linear filter rather than sensor-based filter method.

Indeed, complementary filters give us a mean to fuse multiple heterogeneous independent

noisy measurements of the same signal that have complementary spectral characteristics [61].

Taking care of developing a high-fidelity and simple algorithm for attitude estimation, the

proposed structure must allow the possibility of using high order filter which leads to better

performance.

Note that, in all what follows the indices i = 1, ...,m denote the number of the used vectors.

Using the reduced attitude kinematics (1.4.8), the complementary filter model for fusing

the measured inertial vector bi(t), i= 1, ...,m and angular velocity ω(t) in order to get estimate

b̂i(t), i= 1, ...,m is shown in Figure 2.2.1, where the notion of complementary filter is achieved

if the following condition is satisfied

H1i(s)+ sH2i(s) = 1, i = 1, . . . ,m, (2.2.1)

where H1i(s) is a low-pass filter and sH2i(s) is a high-pass filter.

i

i

1i d

2i di
i

Figure 2.2.1: Classical form of complementary filter

From the structure of the complementary filter given in Figure 2.2.1, the estimate b̂i of the

state bi by fusing measurements of i th inertial direction vector and gyro measurements can be

written as

b̂i = H1i(s)bi +H2i(s)ḃi, i = 1, · · · ,m. (2.2.2)
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Now, for the determination of the attitude, the complementary filter can be followed by

any algebraic algorithm such that TRIAD algorithm [87] as depicted in Figure 2.2.2 which can

be considered as overall structure of the AHRS. Despite the fact that TRIAD is known less

accurate than other statistical algorithms based on minimizing Wahba’s loss function [86], we

will show that we can obtain good results by using fused data. The choice of TRIAD algorithm

is justified by the fact that statistical algorithms are usually much slower than deterministic

algorithms [86, 87].

1

21 m

2

m

Figure 2.2.2: Proposed AHRS structure

For attitude estimation by TRIAD algorithm, we suppose that we are given two filtered

measurements b̂1, b̂2 ∈R
3 expressed in {B} corresponding to their known inertial non-collinear

vectors r1,r2 ∈ R
3 expressed in {I }, respectively. Then, we write b̂1 = R̂T r1 and b̂2 = R̂T r2.

The determination of R̂ is based on the use of the normalized filtered vector measurements

b̂u
1, b̂

u
2 rather than b̂1, b̂2 and their normalized known inertial vector ru

1,r
u
2, which gives

R̂ =
3

∑
κ=1

vκ ûT
κ (2.2.3)

where

v1 = ru
1; v2 =

ru
1×ru

2‖ru
1×ru

2‖ ; v3 = v1× v2; ru
1 =

r1
‖r1‖ ; ru

2 =
r2
‖r2‖ ;

û1 = b̂u
1; û2 =

b̂u
1×b̂u

2‖b̂u
1×b̂u

2‖ ; û3 = û1× û2; b̂u
1 =

b̂1‖b̂1‖ ; b̂u
2 =

b̂2‖b̂2‖
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i d

i

i ii
i

i i

Figure 2.3.1: Direct linear-like complementary filter

2.3 Design of High Order Direct and Passive Filters

The principle of the “classical form” of complementary filters is based on the data fusion of

measurements of inertial direction vectors and gyro measurements as depicted by the scheme

in Figure 2.2.1. This scheme can be reformulated in “feedback form” as shown in Figure

2.3.1. Furthermore, according to the manner of offsetting the nonlinear term, we can obtain

two structures of the complementary filter. The first one is termed “direct linear-like comple-
mentary filter” and the second one termed “passive linear-like complementary filter”. Indeed,
in the first one, the offsetting of nonlinear term uses direct raw measurements as shown in Fig-

ure 2.3.1, while in the second one, the filtered measurements are used as depicted in block

diagram given in Figure 2.3.2.

i d

i

i ii i i

Figure 2.3.2: Passive linear-like complementary filter

From the equivalence between the “classical form” and the “feedback form”, one can get

H1i (s) =
Ci (s)

s+Ci (s)
, H2i (s) =

1

s+Ci (s)
(2.3.1)
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where Ci(s) represents the compensator term in the feedback form, s is Laplace variable and

i = 1, ...,m. From (2.3.1), we can write the compensator term as

Ci(s) =
sH1i(s)

1−H1i(s)
, i = 1, ...,m (2.3.2)

The design of the compensator Ci(s) can be achieved by choosing the adequate order of the

filter for improving the quality of the estimation. Now, we need to prove that for some se-

lected low pass filter H1i (s) with Hurwitz polynomial denominator, Ci(s) has also Hurwitz

polynomial denominator.

First, if n is a positive integer, set en = (0, · · · ,0,1)T and for every ϒi = (γi1, . . . ,γin) ∈ R
n,

we associate the polynomial

Pϒi(s) = sn +
n

∑
k=1

γiksn−k, (2.3.3)

and define the companion matrix Aϒi

Aϒi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0

0 0 1
. . .

...
...

... 0 0
. . .

. . .
...

...
...

. . .
. . . 1 0

0 0 · · · 0 0 1

−γin −γi(n−1) · · · −γi2 −γi1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.3.4)

whose characteristic polynomial is Pϒi . Use π :Rn →R
n−1 to denote the projection onto Rn−1

i.e., π(ϒi) = (γi1, · · · ,γi(n−1)). Define the following subsets of Rn,

Hn = {ϒi ∈ R
n | Pϒi Hurwitz} , H n = {ϒi ∈ Hn | π(ϒi) ∈ Hn−1} .

Now, consider the general n−order transfer function H1i(s) as

H1i(s) =
γin

Pϒi(s)
, (2.3.5)

where Pϒi(s) and γin is a component of ϒi ∈ Hn, then using (2.3.2) one can get

Ci(s) =
γin

Pπ(ϒi)(s)
, (2.3.6)

To find at least one Pπ(ϒi)(s) Hurwitz, it suffices to prove that H n is not empty.
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Lemma 2.1. If n is a positive integer, then H n is not empty.

Proof. Showing the thesis amounts to exhibit an example. For that purpose, consider γ =

(Cl
nα l)1≤l≤n ∈ R

n, where n is a positive integer, α a positive real number and the Cl
n are the

binomial coefficients. Then Pϒi(s) = (s+α)n implying that ϒi ∈ Hn. It remains to show that

ϒi ∈ H n. One clearly has that Pπ(ϒi) =
Pϒi(s)−Pϒi(0)

s and thus the roots of Pπ(ϒi) are the non zero

roots of (s+α)n −αn. Every root z of the previous polynomial verifies that ( z
α +1)n = 1 and

then z
α +1= e j(2kπ/n), where j2 =−1 and k = 0, . . . ,n−1. It yields that Re(z) =α(cos(2kπ

n )−
1), which is negative only if k �= 0 and in the latter case z = 0. One deduces that all the roots

of Pπ(ϒi) have negative real part, i.e., Pπ(ϒi) is Hurwitz and thus ϒi ∈ H n.

Remark 2.1. Let Aγi ∈R
(n×n) and σ(Aγi) = {λ1, . . . ,λn} its spectrum, where λl, l = 1, . . . ,n are

the eigenvalues of Aγi . Let Ik ∈R
(k×k), k integer, be the identity matrix. Then, the spectrum of

the Kronecker product of Aγi by Ik, Aγi ⊗Ik ∈R
(kn×kn), is equal to σ(Aγi) according to Theorem

in page 245 of ‘[40]’. In particular, Aγi ⊗ Ik is Hurwitz if and only Aγi is.

2.3.1 High-Order Direct Linear Complementary Filters : First form

Using the reduced attitude kinematics (1.4.8) and the model of the rate-gyro (1.5.10), under

Assumption 3, one can write the following system⎧⎨⎩ ḃi = −S(ωm −η)bi

η̇ = 0
, (2.3.7)

where i = 1, ...,m and the rate gyro model is considered without noise.

Consider System (2.3.7) and the block diagram of the direct form in Figure 2.3.1 with the

compensator Ci(s) given by (2.3.6) for i = 1, ...,m. Then, the new n-order direct filter of the
first form with gyro bias estimation is given as⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(n−1)
i = −∑n−1

k=1 γikx(n−k−1)
i + γin(bi − b̂i),

˙̂bi = −S(ωm − η̂)bi + xi,

˙̂η = Γd1 ∑m
i=1 S(bi)υi

, (2.3.8)

where i = 1, ...,m, x( j)
i is the j−th derivative of xi with x(0)i = xi, γik, i = 1, ...,m, k = 1, ...,n

are components of ϒi ∈ Hn, Γd1 is a real positive definite diagonal matrix gain and υi is a
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vector to be defined later. First, define the observation errors

b̃i = bi − b̂i, i = 1, ...,m, (2.3.9)

η̃ = η − η̂ (2.3.10)

Then using (2.3.7), (2.3.8), (2.3.9) and (2.3.10) yield the following error dynamics,⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(n−1)

i = −∑n−1
k=1 γikx(n−k−1)

i + γinb̃i,
˙̃bi = −S(bi)η̃ − xi,

˙̃η = −Γd1 ∑m
i=1 S(bi)υi.

(2.3.11)

By evaluation of the time derivative of the first equation of (2.3.11), one can rewrite

(2.3.11) as ⎧⎨⎩ x(n)i = −∑n
k=1 γikx(n−k)

i − γinS(bi)η̃
˙̃η = −Γd1 ∑m

i=1 S(bi)υi
(2.3.12)

Now, consider the new state vector zi ∈R
3n, i = 1, ...,m such as zT

i =
[
xT

i , ẋ
T
i , · · · ,x(n−1)T

i

]
and define the vectors υi to be

υi = BT
d1iPd1izi, i = 1, ...,m. (2.3.13)

One can rewrite (2.3.12) as⎧⎨⎩ żi(t) = Ad1izi(t)+Bd1iS(η̃)bi,

˙̃η = −Γd1 ∑m
i=1 S(bi)BT

d1iPd1izi,
(2.3.14)

where i = 1, ...,m, the Hurwitz matrices Ad1i = Aϒi ⊗ Id ∈ R
(3n×3n) (Aϒi is defined by (2.3.4)),

Bd1i = γinen ⊗ I3 ∈ R
3n×3 and the matrices Pd1i ∈ R

(3n×3n), i = 1, ...,m, are real symmetric

positive definite solutions of the following Lyapunov equations for given symmetric positive

definite matrices Qd1i :

AT
d1iPd1i +Pd1iAd1i =−Qd1i, i = 1, ...,m (2.3.15)

Now, the first result can be stated

Proposition 2.1. Consider the filter (2.3.8) with (2.3.13), applied for m inertial measurable
vectors bi (i = 1, · · · ,m) expressed in {B}, under Assumption 2 in section 1.6, then the errors
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(2.3.9) and (2.3.10) converge globally asymptotically to zero.

Proof. Consider the following Lyapunov function candidate

V1 =
m

∑
i=1

zT
i Pd1izi + η̃T Γ−1

d1 η̃ (2.3.16)

where Pd1i ∈R
(3n×3n), i = 1, ...,m is given by (2.3.15). The time derivative of (2.3.16) in view

of (2.3.14) is given by

V̇1 = ∑m
i=1

(
zT

i Pd1iżi + żT
i Pd1izi

)
+2η̃T Γ−1

d1
˙̃η ,

= ∑m
i=1

(
zT

i
(
AT

d1iPd1i +Pd1iAd1i
)

zi +2zT
i Pd1iBd1iS(η̃)bi

)−2η̃T ∑m
i=1 S(bi)BT

d1iPd1izi,

using (2.3.15) and the fact that η̃T S(bi)BT
d1iPd1izi = zT

i Pd1iBd1iS(η̃)bi, then

V̇1 =−
m

∑
i=1

zT
i Qd1izi � 0. (2.3.17)

Therefore zi and η̃i are bounded and consequently by using (2.3.14), żi and
˙̃η i are bounded.

The evaluation of the second derivative of (2.3.16) in view of (2.3.14) gives

V̈1 = −
m

∑
i=1

zT
i
(
AT

d1iQd1i +Qd1iAd1i
)

zi +2zT
i Qd1iBd1iS(bi)η̃ , (2.3.18)

which is clearly bounded. By Barbalat’s lemma, lim
t→∞

V̇1(t) = 0 and consequently lim
t→∞

zi(t) = 03n,

which means that lim
t→∞

x( j)
i (t) = 0, i = 1, ...,m, j = 0, ...,(n− 1). Then, according to the first

equation of (2.3.11), one can obtain lim
t→∞

b̃i(t) = 0. The second time derivative of zi is given by

z̈i = Ad1i (Ad1izd1i(t)+Bd1iS(bi)η̃)+Bd1iS(S(bi)ω)η̃ +Bd1iS(bi) ˙̃η , (2.3.19)

where all terms are bounded. Thus using Barbalat’s lemma, lim
t→∞

żi(t) = 03n. Therefore, using

(2.3.14) and lim
t→∞

zi(t) = 03n, one can conclude that Bd1iS(bi)η̃ converges to zero and equiva-

lently lim
t→∞

S(bi(t))η̃(t) = 0, i = 1, ...,m. Under Assumption 2, the unique solution of the last

limit is lim
t→∞

η̃(t) = 0, which ends the proof.

2.3.2 High Order Direct Linear-like Filter : Second form

It is possible to propose a second form for the High order Direct filter. In this form, the vector

ui (the equivalent of υi vector in the first form) is used as a second term in the dynamic of b̃i
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rather than xi. Then, a new n-order direct filter second form is proposed as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(n−1)

i = −∑n−1
k=1 γikx(n−k−1)

i + γin(bi − b̂i)

˙̂bi = −S(ωm − η̂)bi +ui

˙̂η = −Γd2 ∑m
i=1 S(bi)b̂i

, (2.3.20)

where i = 1...m, x( j)
i is the j th order derivative of xi with x(0)i = xi, γik, i = 1, ...,m, k = 1, ...,n

are components of ϒi ∈ H n, Γd2 is a real positive definite diagonal matrix gain and ui is a

vector to be defined later.

Using (2.3.7), (2.3.9), (2.3.10) and (2.3.20) leads to the following error dynamics,⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(n−1)

i = −∑n−1
k=1 γikx(n−k−1)

i + γinb̃i,
˙̃bi = −S(bi)η̃ −ui,

˙̃η = −Γd2 ∑m
i=1 S(bi)b̃i.

(2.3.21)

Now, consider the new state variable Xd2i ∈R
3(n−1), i= 1...m such as XT

d2i =
[
xT , ẋT , · · · ,x(n−2)T

]
and the vector

ui = βiBT
d2iPd2iXd2i (2.3.22)

such that βi ∈ R
∗
+, Pd2i ∈ R

(3(n−1)×3(n−1)) will be defined later and i = 1, ...,m
With the notation above, one can rewrite (2.3.21) as⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ẋd2i(t) = Ad2iXd2i(t)+Bd2ib̃i,
˙̃bi = −S(bi)η̃ −βiBT

d2iPd2iXd2i,

˙̃η = −Γd2 ∑m
i=1 S(bi)b̃i,

(2.3.23)

where the Hurwitz matrices Ad2i = Aπ(ϒi)⊗ Id ∈ R
(3(n−1)×3(n−1)) (Aπ(ϒi) is defined by (2.3.4),

see Note 2.1 for Ad2i Hurwitz) and the matrices Bd2i = γine(n−1) ⊗ Id ∈ R
3(n−1)×3 and the

matrices Pd2i ∈ R
(3(n−1)×3(n−1)), i = 1, ...,m, are real symmetric positive definite solutions of

the following Lyapunov equations for given symmetric positive definite matrices Qd2i

AT
d2iPd2i +Pd2iAd2i =−Qd2i, (2.3.24)

Now, the second result can be stated

Proposition 2.2. Consider the filter (2.3.20) with (2.3.22), applied for m inertial measurable
vectors bi (i = 1, · · · ,m) expressed in {B}, under Assumptions 2 and 3 in section 1.6, then the
errors (2.3.9) and (2.3.10) converge globally asymptotically to zero.
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Proof. The proof is identical to the proof of the proposition 2.1 by using the following Lya-

punov function

V2 =
m

∑
i=1

βiXT
d2iPd2iXd2i +

m

∑
i=1

b̃T
i b̃i + η̃T Γ−1

d2 η̃

.

2.3.3 High-Order Passive Linear-like Filters : First form

In the passive form, the design of the complementary filter is performed by injecting the

filtered measurements for offsetting nonlinear term as shown in block diagram of Figure 2.3.2

with a compensator Ci(s), i = 1, · · · ,m, defined by (2.3.6). Then, a new n-order passive filter
of the first form is proposed as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(n−1)
i = −∑n−1

k=1 γikx(n−k−1)
i + γin(bi − b̂i),

˙̂bi = −S(ωm − η̂)b̂i +wi,

˙̂η = −Γp1 ∑m
i=1 S(bi)b̂i,

, (2.3.25)

where i= 1, ...,m, x( j)
i is the j th order derivative of xi with x(0)i = xi, γik, i= 1, ...,m, k = 1, ...,n

are components ofϒi ∈H n, Γp1 is a real positive definite diagonal matrix gain and wi are given

by

wi = δiBT
p1iPp1iXp1i, (2.3.26)

with δi ∈ R
∗
+, Xp1i ∈ R

3(n−1), i = 1, ...,m such as XT
p1i =

[
xT

i , ẋ
T
i , · · · ,x(n−2)T

i

]
, allowing to

rewrite (2.3.25) as ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ẋp1i(t) = Ap1iXp1i(t)+Bp1i(bi − b̂i),

˙̂bi = −S(ωm − η̂)b̂i +BT
p1iPp1iXp1i,

˙̂η = −Γp1 ∑m
i=1 S(bi)b̂i,

(2.3.27)

where the Hurwitz matrices Ap1i = Aπ(ϒi)⊗ Id ∈ R
(3(n−1)×3(n−1)) (Aπ(ϒi) is defined by (2.3.4),

see Note 2.1 for Ap1i Hurwitz) and the matrices Bp1i = γine(n−1) ⊗ Id ∈ R
3(n−1)×3 and the

matrices Pp1i ∈ R
(3(n−1)×3(n−1)), i = 1, ...,m, are real symmetric positive definite solutions of

the following Lyapunov equations for given symmetric positive definite matrices Qp1i :

AT
p1iPp1i +Pp1iAp1i =−Qp1i, (2.3.28)

Now, the third result can be stated
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Proposition 2.3. Consider the filter (2.3.25) with (2.3.26), applied for m inertial measurable
vectors bi (i = 1, · · · ,m) expressed in {B}, under Assumptions 2 and 3 in section 1.6, then the
errors (2.3.9) and (2.3.10) converge globally asymptotically to zero.

Proof. The error dynamics of (2.3.27) can be evaluated by using (2.3.7), (2.3.9) and (2.3.10),

as follow ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ẋp1i(t) = Ap1iXp1i(t)+Bp1ib̃i,
˙̃bi = −S(bi)η̃ +S(b̃i)(ω + η̃)−δiBT

p1iPp1iXp1i,

˙̃η = −Γp1 ∑m
i=1 S(bi)b̃i,

(2.3.29)

Consider now, the following Lyapunov function

V3 =
m

∑
i=1

δiXT
p1iPp1iXp1i +

m

∑
i=1

b̃T
i b̃i + η̃T Γ−1

p1 η̃ , (2.3.30)

the time derivative of (2.3.30) in view of (2.3.29) is given by

V̇3 = ∑m
i=1 δi

(
XT

p1i

(
AT

p1iPp1i +Pp1iAp1i

)
Xp1i

)
,

since Ap1i, i = 1, . . . ,m is Hurwitz, then the Lyapunov equation (2.3.28) holds. Therefore, one

can obtain

V̇3 =−
m

∑
i=1

δiXT
p1iQp1iXp1i � 0. (2.3.31)

Therefore, Xp1i, b̃i and η̃i are bounded and consequently from (2.3.29) and Assumption 3 in

section 1.6, Ẋp1i,
˙̃bi and

˙̃η i are also bounded. The rest of the proof is similar to the proof

of Proposition 2.1. It is easy to verify that V̈3 is bounded. Thus using Barbalat’s lemma,

lim
t→∞

V̇3(t) = 0 and consequentlylim
t→∞

Xp1i(t) = 03(n−1). In addition, Ẍp1i are bounded, then

lim
t→∞

Ẋp1i(t) = 03(n−1) and using (2.3.29), lim
t→∞

b̃i(t) = 0. By a standard reasoning by contra-

diction, one gets that lim
t→∞

˙̃bi(t) = 0. Using this fact and (2.3.29), therefore lim
t→∞

S(bi)η̃ = 0.
Under Assumption 2, one can conclude that lim

t→∞
η̃(t) = 0.
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2.3.4 High-Order Passive Linear-like Filters : Second form

Similar to the case of direct filter, it is possible to propose a second form high order passive

filter. Then, a new n-order passive filter second form is proposed as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(n−1)

i = −∑n−1
k=1 γikx(n−k−1)

i + γin(bi − b̂i)

˙̂bi = −S(ωm − η̂)b̂i + xi

˙̂η = Γp2 ∑m
i=1 S(b̂i)yi

(2.3.32)

where i= 1...m, x( j)
i is the j th order derivative of xi with x(0)i = xi, Γp2 is a real positive definite

diagonal matrix gain. There are many possibilities to reformulate (2.3.32) and give a definition

to the vector yi. My best is to obtain some condition on the selection of γik depending on the

norm of the angular velocity. The stability analysis of this filter for order higher than three
remain an open problem.

In this case, it is possible to write the first and the second order passive filters of the second

form similar to those of the first form. Thus it is possible to state about the stability of these

two cases.

2.4 Simulations

To show the effectiveness and performance of the proposed filters, many simulations were

done. Three cases were selected, depending on the order of the filters. Table 2.4.1 and 2.4.2

gives an overview of the first, second and third order filters in all forms, with the corresponding

chosen gains and matrices. The selected transfer functions are

H1i(s) =
γin

Pϒi(s)
=

αn

(s+α)n , i = 1,2, n = 1,2,3,

therefore

Ci(s) =
γin

Pπ(ϒi)(s)
=

sαn

(s+α)n −αn , i = 1,2, n = 1,2,3,

An additive zero-mean white noise were taken for measurements with standard deviation

0.01(normalized) for accelerometer and magnetometer, 1(°/s) for rate gyros. The measure-

ments from gyroscope are also corrupted by a constant bias η = [2,−3, 1] (◦/s). The used

integration method is “ode5” with 0.01s as sample time, all gains are presented in Table 2.4.1

and 2.4.2.

Figures 2.4.1-(a), (b) and (c) illustrate Euler angles evolution of the two first order direct

forms and first order passive form 1 filters, denoted D1F1, D1F2 and P1F1, respectively. The
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same results are presented in Figures 2.4.1-(d), (e) and (f) for the second order (denoted D2F1,

D2F2 and P2F1) and in Figures 2.4.1-(g), (h) and (i) for the third order (denoted D3F1, D3F2

and P3F1). Figure 2.4.2 illustrates gyro rate bias estimation in all selected filters and Figure

2.4.3 illustrates an example of the inertial vectors measurements with their form1 first order

passive estimates and rate gyro measurements.

The difference between all these filters can be showed by the evaluation of the standard

deviation of Euler angles in each case, Table 2.4.3 illustrates this evaluation, from which some

conclusion remarks should be stated :

1. With selected gains, the first order direct form1 and form2 are equivalent;

2. It is possible to find Qd1i such that the second order direct form1 and form2 will be

equivalent, gains presented in Table 2.4.1 are an arbitrary selection to show the differ-

ence;

3. For the same order, as expected, the passive form is less sensitive to noise;

4. For the same form, the second order is slightly better than the first order. This fact is

expected since in the case of second order filters, the second term in the expression of
˙̂bi are function of xi itself filtered by a first order filter. While in the first order filter, this

second term is formed by b̃i which is more sensitive to noise than xi;

5. With selected gains, the third order in all cases seems to exhibit poor performances com-

pared to the first and second order. In the case of direct first form, the vector υi introduce

disturbance on the bias estimation, which affect b̂i dynamics. One possible solution is

to review the gain tuning method and an optimal method will be better. The drawback

of the direct second form is that the complementarity aspect will be lost starting from

the third order. Similar remark in the case of passive third order filter.

Finally, the most interesting filters are the first and second order filters in all forms.
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,ẋ
T
,··

·,
x(

n−
2
)T
]

B
p1

i
=

γ in
e (

n−
1
)
⊗

I d
∈
R

3
(n
−1

)×
3

A
p1

i
=

A
π(

γ i
)
⊗

I d
∈
R
(3
(n
−1

)×
3
(n
−1

))

P p
1

i
∈
R
(3
(n
−1

)×
3
(n
−1

))

A
T p1

iP
p1

i+
P p

1
iA

p1
i
=
−Q

p1
i

1
D
ir
ec
t_
D
1_
F1

D
ir
ec
t_
D
1_
F2

Pa
ss
iv
e_
P1
_F
1

˙̂ b i
=
−S

(ω
m
−

η̂
)b

i+
γ i1

b̃ i
˙̂ η
=
−γ

2 i1
Γ d

1
∑

2 i=
1

S(
b i
)b̂

i

˙̂ b i
=
−S

(ω
m
−

η̂
)b

i+
β i

γ2 i1
b̃ i

˙̂ η
=
−Γ

d2
∑

2 i=
1

S(
b i
)b̂

i

˙̂ b i
=
−S

(ω
m
−

η̂
)b̂

i+
δ i

γ2 i1
b̃ i

˙̂ η
=
−Γ

p1
∑

2 i=
1

S(
b i
)b̂

i
γ i1

=
1
,γ

i2
=

1
,Γ

d1
=

0
.1

I d
γ i1

=
1
,γ

i2
=

1
,Γ

d2
=

0
.1

I d
,β

i
=

1
γ i1

=
1
,γ

i2
=

1
,Γ

p1
=

0
.1

I d
,δ

i
=

1

2

D
ir
ec
t_
D
2_
F1

D
ir
ec
t_
D
2_
F2

Pa
ss
iv
e_
P2
_F
1
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order
Direct first form Direct second form Passive first form

σx σy σz σx σy σz σx σy σz

1
Direct_D1_F1 Direct_D1_F2 Passive_P1_F1

0.4841 0.3437 0.3707 0.4841 0.3437 0.3707 0.4741 0.3367 0.3553

2
Direct_D2_F1 Direct_D2_F2 Passive_P2_F1

0.4781 0.3372 0.3625 0.4776 0.3416 0.3689 0.4638 0.3360 0.3530

3
Direct_D3_F1 Direct_D3_F2 Passive_P3_F1

1.0158 0.8759 0.9572 0.6090 0.4521 0.5202 0.5990 0.4403 0.5117

Table 2.4.3: Standard deviation of Euler angles errors of all filters

2.5 Conclusions

Due to its importance and despite the considerable number of solutions, the problem of atti-

tude estimation is still relevant. This chapter presented complementary linear-like filter-based

attitude estimation approach. In which, three kind of filters that ensure global asymptotic

convergence of the estimation errors have been presented. The proposed solutions allow the

choice between different possible combinations obtained by the selection of the form (direct,

passive) and the filter order. Thus, the non-sensitivity to noise and the quality of filtering can

be examined. These solutions includes the bias gyro-rate estimation as well.

The direct first form proposed filters preserve the structure of complementary filters with-

out any dependence on the selected filter order. Contrary to direct second form and passive

filters, where complementary aspect is lost starting from the third order. Nevertheless, it is

possible to preserve the structure of the passive complementary filters similar to the direct

high-order filter ensuring global convergence to the detriment of the choice of the cutoff fre-

quency depending on bound of the measured angular velocity. Another important conclusion

is the fact that the passive second order filter can be of great help. Indeed, in future work,

this filter will be used to enhance the low sampling frequency of magnetometer measurements

compared to that of accelerometer.
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Figure 2.4.3: Inertial vectors with their 1st form 1st order passive estimates and rate gyro





Chapter 3

Attitude Tracking using Linear-Like
Complementary Filters and without
“Attitude measurements”

3.1 Introduction

The problem of attitude control was treated using several type of parametrization of the atti-

tude (see, for instance, [85]). Review of attitude control problem can be found in [20, 110].

Classical solutions to this problem have been proposed using local-minimal parametrization

which lies in R
3, such as Euler angles or modified Rodriguez parameters (see, for instance,

[19, 73, 110, 117]). The global-unique representation, which is the natural parametrization

of the attitude is the direction cosine rotation matrix that lies in the special orthogonal group

SO(3). As a consequence, many recent solutions use this parametrization (see, for instance,

[7, 20, 56, 61]). However, for simplicity of analysis and numerical implementation reasons,

a considerable number of solutions to the problem of rigid body attitude control use rather

quaternion parametrization as global representation which lies in the unit sphere S3 (see, for

instance, [33, 48, 68, 98, 116]).

Numerous advanced control techniques have been proposed for the UAV control for which

accurate attitude tracking requires precise knowledge of its dynamic state (see, for instance,

[8, 17, 20, 56, 73, 95]). Most of traditional attitude control approaches are based on feedback

scheme using attitude estimation (see, for instance, [8, 48, 56, 97, 102]). Recently, some au-

thors propose to use directly raw vector measurements to perform attitude control (see, for

instance, [10, 95, 100]). In fact, the explicit use of the attitude in the control law involves

the determination of attitude from measurements provided by appropriate sensors. Many at-
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titude control applications use measurement data from an embedded “IMU” with three-axis

accelerometers, magnetometers and gyroscopes. The capability of the UAV to track desired

trajectories depends on the reliability of these sensors and the quality of measurements related

to sensitivity to noise, bias, etc.

The advantage of the method presented in this Chapter is the use of the data fusion to

improve the attitude tracking, where only inertial measurements and rate gyro measurements

are used to track the desired trajectories. In fact, some proposed control laws used to generate

the torque to be applied to the system, are mainly based on an error term between the desired

inertial vectors and the raw measurements inertial vectors. The new proposed control is based

on the use of an error term between the desired inertial vectors and the filtered measurements

inertial vectors. It should be noted that the quality of IMU measurements is much degraded

by the phenomenon of vibrations of real system since it influences their measurements. Fre-

quently, the implementation of some attitude control using directly raw vector measurements

are confronted with this phenomenon. The stability analysis of the tracking error dynamics

based on Lyapunov method and Invariance LaSalle’s theorem show that almost all trajectories

converge asymptotically to the equilibrium point. Although unit quaternion are used in stabil-

ity analysis, the proposed control law take into consideration the projection of the closed-loop

vector field from R
3m ×S

3×R
3 onto R

3m × SO(3)×R
3. Thus, the unwinding phenomenon

is avoided. Moreover and contrarily to what is stated in [7, 95], it is showed that the set of

control gains leading to a continuum of equilibria of the closed loop system is an algebraic

variety of positive co-dimension, independently on the choice of the observed vectors.

This Chapter is organized as follow. In Section 3.2, the notion of attitude tracking using

complementary filters principle is presented. The design of the new controller coupled with a

new linear-like complementary filter is detailed. After, stability analysis based on Lyapunov

theory and LaSalle’s theorem is presented. A more simplified control law for stabilization

case, where the desired trajectories are time invariant, is derived in Section 3.3. Section 3.4

illustrates the effectiveness of the proposed solution using simulations, a second validation us-

ing experiment will be presented in Chapter 5. Finally, some concluding remarks are presented

in Section 3.5. Partial results in this Chapter were presented in [12].

3.2 Attitude tracking using complementary filter principle

A novel attitude control law that use only filtered inertial vectors and rate gyro measurements

to track the desired trajectories, without using “attitude measurements” is presented. The

filtered inertial vectors are obtained using a new version of the filter based on first order direct

linear-like complementary filter already presented in Chapter 2.
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3.2.1 Controller Design

Let us first define the tracking orientation error by

R̄(t) = R(t)RT
d (t),

which corresponds to the quaternion error Q̄(t) such that R(Q̄(t)) = R̄(t) (The mapping R is

defined by (1.3.39)) and

Q̄(t) = Q(t)�Q−1
d (t)≡

[
q̄0(t)
q̄(t)

]
∈ S

3,

whose dynamics are governed by[
˙̄q0(t)
˙̄q(t)

]
=

[
−1

2 q̄T (t)Rd(t)(ω(t)−ωd(t))
1
2 (q̄0(t)Id +S (q̄(t)))Rd(t)(ω(t)−ωd(t))

]
, (3.2.1)

where ω(t) is the angular velocity of the rigid body expressed in {B}, ωd(t) is the desired

angular velocity and Rd(t) is a time-varying desired rotation matrix with its equivalent unit-

quaternion Qd(t) such that R(Qd(t)) = Rd(t).

Now, the following new filter for attitude control problem with new control law is proposed

as

˙̂bi(t) = αi(bi(t)− b̂i(t))+S(ωd)(bi(t)− b̂i(t))

−S(ω)bi +δiS(bd
i (t))(ω(t)−ωd(t)), (3.2.2)

τ(t) = S(ω(t))Jω(t)− JS(ωd(t))ω(t)+ Jω̇d(t)

+J
m

∑
i=1

ρiS(bd
i (t))b̂i(t)− kJ(ω(t)−ωd(t)), (3.2.3)

where αi > 0, δi > 0, ρi > 0 (i = 1, ...,m) and bi, i = 1, . . . ,m are the inertial measurements.

Define the following tracking errors

ω̄(t) = Rd(t)(ω(t)−ωd(t)), (3.2.4)

b̄i(t) = Rd(t)(bi(t)− b̂i(t)) (3.2.5)

Then, using the fact that bd
i (t) = RT

d (t)ri and properties (1.3.13), (1.3.18), one can obtain

the error dynamics as
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˙̄ω(t) = Rd(t)S(ωd(t))ω(t)+Rd(t)(ω̇(t)− ω̇d(t)), (3.2.6)

˙̄bi(t) = −αib̄i(t)−δiS(ri)ω̄(t), (3.2.7)

then the torque τ(t) can be rewritten as

τ(t) = S(ω(t))Jω(t)− JS(ωd(t))ω(t)+ Jω̇d(t)− kJRT
d ω̄(t)

+J
m

∑
i=1

ρiS(bd
i (t))bi(t)− JRT

d

m

∑
i=1

ρiS(ri)b̄i(t),

= S(ω(t))Jω(t)− JS(ωd(t))ω(t)+ Jω̇d(t)− kJRT
d ω̄(t)

−2JRT
d (q̄0(t)Id −S(q̄(t)))Wρ q̄(t)− JRT

d

m

∑
i=1

ρiS(ri)b̄i(t), (3.2.8)

where Lemma 1 of [95] are used to rewrite the term

m

∑
i=1

ρiS(bd
i (t))bi(t) =−2RT

d (q̄0(t)Id −S(q̄(t)))Wq̄(t), (3.2.9)

with

Wρ =−
m

∑
i=1

ρiS(ri)
2, (3.2.10)

is a positive define matrix (see Lemma 2 [95]).

Finally, using (1.4.16), (3.2.1), (3.2.4), (3.2.5), (3.2.6), (3.2.7), (3.2.8) and (3.2.9), one can

get the following closed loop dynamics

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

˙̄bi(t) = −αib̄i(t)−δiS(ri)ω̄(t)

˙̄q0(t) = −1
2 q̄T (t)ω̄(t)

˙̄q(t) = 1
2 (q̄0(t)Id +S (q̄(t))) ω̄(t)

˙̄ω(t) = −2(q̄0(t)Id −S(q̄(t)))Wρ q̄(t)−∑m
i=1 ρiS(ri)b̄i(t)− kω̄(t)

(3.2.11)

3.2.2 Stability analysis

Before stating our results, it is necessary to extend the results presented in [95], where the

authors take in consideration the case of continuum of equilibria due to the properties of the

matrix Wρ . In this work, it is shown that the set of control gains ρi, i = 1, . . . ,m leading

to a continuum of equilibria of the closed loop system (3.2.11) is an algebraic variety of
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positive co-dimension, independently on the choice of the observed vectors ri, i = 1, . . . ,m.

The following important Lemma is stated and will be used.

Lemma 3.1. With the notations above, one gets that the matrix Wρ defined in (3.2.10) has
simple eigenvalues generically with respect to ρ = (ρ1, · · · ,ρn) ∈ (R∗

+)
n, which mean that the

set of gains ρ leading to simple eigenvalues of Wρ is dense and open in (R∗
+)

n.

Proof. For ρ ∈ (R∗
+)

n, let Pρ(t) be the characteristic polynomial of Wρ and Λ(ρ) its discrim-

inant [89]. From (3.2.10), one can express Pρ(t) as

Pρ(t) = det

⎛⎜⎝tId −
m

∑
i=1

⎡⎢⎣ ρiw11 ρiw12 ρiw13

ρiw12 ρiw22 ρiw21

ρiw13 ρiw21 ρiw33

⎤⎥⎦
⎞⎟⎠

= det

⎛⎜⎝
⎡⎢⎣ (t −∑m

i=1 ρiw11) ∑m
i=1 ρiw12 ∑m

i=1 ρiw13

∑m
i=1 ρiw12 (t −∑m

i=1 ρiw22) ∑m
i=1 ρiw21

∑m
i=1 ρiw13 ∑m

i=1 ρiw21 (t −∑m
i=1 ρiw33)

⎤⎥⎦
⎞⎟⎠

=

(
t −

m

∑
i=1

ρiw11

)(
t −

m

∑
i=1

ρiw22

)(
t −

m

∑
i=1

ρiw33

)

+2

(
m

∑
i=1

ρiw13

)(
m

∑
i=1

ρiw12

)(
m

∑
i=1

ρiw21

)
−
(

m

∑
i=1

ρiw13

)2(
t −

m

∑
i=1

ρiw22

)

−
(

m

∑
i=1

ρiw21

)2(
t −

m

∑
i=1

ρiw11

)
−
(

t −
m

∑
i=1

ρiw33

)(
m

∑
i=1

ρiw12

)2

= a0t3+a1t2+a2t +a3,

where

a0 = 1 (3.2.12)

a1 = f1(ρi, . . .) (3.2.13)

a2 = f2(ρ2
i , . . .) (3.2.14)

a3 = f3(ρ3
i , . . .) (3.2.15)

with f j, j = 1,2,3 are real functions. Since Wρ is a 3 by 3 real symmetric positive definite

matrix for every ρ ∈ (R∗
+)

n and using the discriminant formula (see page 102 of [105]) one

can get that Λ(ρ) is actually a homogeneous polynomial of degree four in coefficients of Pρ(t)
such that

Λ(ρ) = a2
1a2

2−4a0a3
2−4a3

1a3−27a2
0a2

3+18a0a1a2a3, (3.2.16)
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therefore, one can use (3.2.12), (3.2.13), (3.2.14), (3.2.15) and (3.2.16) to deduce that Λ(ρ) is
homogeneous polynomial of degree six in ρ .

Recall that Λ(ρ) = 0 if and only if Pρ(t) admits a multiple root. Since Wρ is a 3 by 3 real

symmetric positive definite matrix for every ρ ∈ (R∗
+)

n. Thus the locus Λ(ρ) = 0 defines an

algebraic variety of co-dimension one in (R∗
+)

n and, on its complementary set S in (R∗
+)

n,

Wρ has simple eigenvalues.

This genericity result serves a justification to the following working hypothesis, which will

hold for the rest of this work.

(GEN)Wρhas simple eigenvalues.

Before stating the main result, let’s defined the vector field Δ := R
3m ×S

3×R
3 and given

a state vector Θ ∈ Δ such that Θ := (b̄1, ..., b̄m, Q̄, ω̄). Therefore, the closed loop dynamics

(3.2.11) can be rewritten as

Θ̇ = G(Θ),

which means that the error dynamics are autonomous.

Define the following positive radially unbounded function : V1 : Δ → R

V1(Θ) =
m

∑
i=1

ρi

δi
b̄T

i (t)b̄i(t)+4q̄(t)TWρ q̄(t)+ ω̄(t)T ω̄(t) (3.2.17)

Now, the main result can be stated.

Theorem 3.1. Consider System (1.4.9), (1.4.16) and the control law (3.2.3) with the filter
given by (3.2.2). Under Assumptions 1 and 2 in Section 1.6 and if hypothesis of Lemma 3.1
holds, then

(1) The equilibria of the closed-loop system (3.2.11) are defined by

Θ±
1 = (0, ...,0︸ ︷︷ ︸

m

,

[
±1

0

]
, 0), Θ±

2,3,4 = (0, ...,0︸ ︷︷ ︸
m

,

[
0

±v j

]
, 0),

where v j , j = 1,2,3 are the eigenvectors of Wρ .
(2) The equilibria Θ±

1 are asymptotically stable with a domain of attraction containing the
set

C+
a := {Θ ∈� |V1(Θ)< 4λmin(W ) and q̄0 > 0} ,

for Θ+
1 and

C−
a := {Θ ∈� |V1(Θ)< 4λmin(W ) and q̄0 < 0} ,
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for Θ−
1 , where λmin(Wρ) is the smallest eigenvalue of Wρ .

(3) The equilibria Θ±
2,3,4 are locally unstable and Θ±

1 are almost globally asymptotically
stable.

Proof. (1) To proof the first item one can solve G(Θ) = 0, where G is the non linear function

describing (3.2.11). For this, two cases can be considered.

The first one is when q̄0 �= 0 and since q̄0Id +S(q̄) and q̄0Id −S(q̄) are non singular, there-

fore one can conclude, using the third equation of (3.2.11) that ω̄ = 0 and thus, from the first

equation of (3.2.11) b̄i = 0, i = 1, . . . ,m. Now, from the forth equation of (3.2.11) and since

Wρ is a positive definite matrix, then one can get q̄ = 0, which means that q̄0 =±1. Finally, in

this case, there are two equilibria

Θ+
1 = (0, ...,0︸ ︷︷ ︸

m

,

[
1

0

]
, 0),

and

Θ−
1 = (0, ...,0︸ ︷︷ ︸

m

,

[
−1

0

]
, 0)

In the second case, assume that q̄0 = 0, then from the third equation of (3.2.11) q̄ is

collinear with ω̄ . Using this fact together with the second equation of (3.2.11), one can con-

clude that ω̄ = 0 and thus, from the first equation of (3.2.11) b̄i = 0, i = 1, . . . ,m. Now, using

the forth equation of (3.2.11), one can get that S(q̄)Wρ q̄ = 0, which mean that q̄ are collinear

with Wρ q̄. Equivalently, Wρ q̄ = λ q̄ and therefore q̄ is one of the eigenvectors of Wρ . Finally,

in this case, there are six equilibria

Θ±
2,3,4 = (0, ...,0︸ ︷︷ ︸

m

,

[
0

±v j

]
, 0), , j = 1,2,3,

where v j , j = 1,2,3 are the eigenvectors of Wρ .

(2) It is clear that (3.2.11) are autonomous, therefore it is possible to use LaSalle’s invari-

ance theorem to proof the second item.

The time derivative of (3.2.17) in view of (3.2.11) can be evaluated as follows :

V̇1(Θ) = −2∑m
i=1 αi

ρi
δi

b̄i(t)T b̄i(t)−2∑m
i=1 ρib̄T

i (t)S(ri(t))ω̄(t)

+4q̄(t)TWρ (q̄0(t)Id +S (q̄(t))) ω̄(t)−4ω̄(t)T (q̄0(t)Id −S(q̄(t)))Wρ q̄(t)
−2ω̄(t)T ∑m

i=1 ρiS(ri)b̄i(t)−2kω̄(t)T ω̄(t),
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using the fact that

ω̄(t)T
m

∑
i=1

ρiS(ri)b̄i(t) =−
m

∑
i=1

ρib̄T
i (t)S(ri(t))ω̄(t),

and

ω̄(t)T (q̄0(t)Id −S(q̄(t)))Wρ q̄(t) = q̄(t)TWρ (q̄0(t)Id +S (q̄(t))) ω̄(t),

where property 1.3.19 was used, the time derivative V̇1(Θ) becomes

V̇1(Θ) =−2kω̄(t)T ω̄(t)−2
m

∑
i=1

αi
ρi

δi
b̄i(t)T b̄i(t)≤ 0 (3.2.18)

Therefore, all trajectories of (3.2.11) are bounded.

Since V1 is positive radially unbounded function and (3.2.11) is autonomous, then using

LaSalle’s invariance theorem every trajectory converges to a trajectory along which V̇1 ≡ 0.

Therefore, using (3.2.18) one can obtain that ω̄ = 0 and b̄i = 0, i = 1, . . . ,m. Then, using the

forth equation of (3.2.11), we get (q̄0(t)Id −S(q̄(t)))Wρ q̄(t) = 0 and similarly to first item,

one can get that the largest invariant set characterized by V̇1 ≡ 0 are composed of Θ±
1 and

Θ±
2,3,4.

Now, one can use quadratic property to obtain V1(Θ) ≥ 4λmin(Wρ)‖q̄(t)‖2, which means

that

min
‖q̄(t)‖=1

{V1(Θ)}= 4min
{

λmin(Wρ)
}
,

and since V1 is decreasing, therefore for every t ≥ 0 ‖q̄(t)‖< 1 and thus q̄0(t) never cross the
zero and keeps the same sign. Finally, since for every t ≥ 0 q̄0(t) �= 0 then Θ±

2,3,4 don’t belong

to the largest invariant set characterized by V̇1 ≡ 0. Moreover, if a trajectory starts inside C+
a

or C−
a then it remains there, which leads to the results of the second item.

(3) Now, let us proof that the equilibria Θ±
2,3,4 are unstable.

Since the only difference between these equilibria is the value of the eigenvector, the

proof is given for Θ+
2 ∈ Δ . The other cases will be similar. To do this, we consider Θ∗

2 :=

(b̄∗1, ..., b̄∗m, Q̄∗, ω̄∗) a neighborhood of Θ+
2 (arbitrary close) and since the function V1 is non-

increasing, it suffices to prove that V1(Θ∗
2)−V1(Θ+

2 )< 0. Let us use the following change of

variable

Q̄∗ =

[
q̄∗0
q̄∗

]
=

[
0

v1

]
�
[

x0
x

]
=

[
−vT

1 x
x0v1+S(v1)x

]
(3.2.19)

Using (3.2.19) and the fact that Wρv1 = λ1v1 (where λ1 is the eigenvalue associated to the
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unit eigenvector v1 of Wρ ), one can evaluate D =V1(Θ∗
2)−V1(Θ+

2 ) as follow

D =
m

∑
i=1

ρi

δi
b̄∗T

i b̄∗i + ω̄∗T ω̄∗+4λ (x20−1)−4xT S(v1)WρS(v1)x, (3.2.20)

If we take x close to v1 such that x= εv1, where ε > 0 sufficiently small, the unit quaternion

constraint gives x20 = 1− ε2. In this case, one can get

D =
m

∑
i=1

ρi

δi
b̄∗T

i b̄∗i + ω̄∗T ω̄∗ −4λ1ε2,

which means that if

ε2 >
1

4λ1

(
m

∑
i=1

ρi

δi
b̄∗T

i b̄∗i + ω̄∗T ω̄∗
)
,

then D < 0.

As a result, there exist Θ∗
2 arbitrary close to Θ+

2 such that V1(Θ∗
2)<V1(Θ+

2 ) and since the

function V1 is non increasing, it is clear that Θ+
2 is unstable. Similarly, all equilibria Θ±

3,4 are

unstable.

Finally, in the state space Δ the set of unstable equilibria is Lebesgue measure zero. There-

fore, almost all trajectories converge asymptotically to Θ±
1 .

3.3 The attitude stabilization case

In the case of attitude stabilization the desired angular velocity is equal to zero, then using

(3.2.2) and (3.2.3), one can obtain

˙̂bi(t) = αi(bi(t)− b̂i(t))−S(ω)bi +δiS(bd
i (t))ω(t), (3.3.1)

τ(t) = S(ω(t))Jω(t)+ J
m

∑
i=1

ρiS(bd
i (t))b̂i(t)− kJω(t), (3.3.2)

Rather than using (3.3.1) and (3.3.2) for stabilization case, we propose a more simple

control law as follows

˙̂bsi(t) = αi(bi(t)− b̂si(t))−S(ω(t))bi(t)+δiS(bd
i )ω(t), (3.3.3)

τs(t) =
m

∑
i=1

ρiS(bd
i (t))b̂si(t)− kω(t), (3.3.4)
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In this case, it is also possible to get an almost global stability of the closed loop dynamics.

Indeed, using the same steps as in the case of tracking, one can write the closed loop dynamics

as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃bi(t) = −αib̃i(t)−δiS(bd
i )ω(t)−S(ω(t))b̃i(t),

˙̄q0(t) = −1
2 q̄T (t)Rdω(t),

˙̄q(t) = 1
2 (q̄0(t)Id +S (q̄(t)))Rdω(t),

Jω̇(t) = −S(ω(t))Jω(t)−2RT
d (q̄0(t)Id −S(q̄(t)))Wρ q̄(t)

−∑m
i=1 ρiS(bd

i )b̃i(t)− kω(t),

, (3.3.5)

where b̃i(t) = bi(t)− b̂si(t). Then, using

V2 =
1

2

m

∑
i=1

ρi

δi
b̃T

i b̃i +4q̄TWρ q̄+ωT Jω,

as a positive radially unbounded function, one can get the same stability results as in tracking

case.

3.4 Simulations

In this section, full sets of simulations are presented to show the effectiveness of the proposed

solution in two cases, stabilization and tracking. The desired trajectories are generated using

the desired angular acceleration

ω̇d =

⎡⎢⎣ 0.4sin(0.4t)
0.5sin(0.5t +0.1)

0.3sin(t −0.2)

⎤⎥⎦ (rad/s2)

Additive zero-mean white noises were taken for measurements with standard deviation

of 0.9(m/s2), 0.1(Gauss) and 0.02(°/s) for accelerometer, magnetometer and rate gyros

respectively. The used fixed inertial vectors are

r1 =

⎡⎢⎣ 0

0

9.81

⎤⎥⎦ (m/s2), r2 =

⎡⎢⎣ 0.2086

0.0004

0.4320

⎤⎥⎦ (Gauss)

The other used parameters are:

• The ode5 integration method with 0.01s as sample time;
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• The chosen gains for the two cases are : α1 = α2 = 1, δ1 = δ2 = 1, ρ1 = ρ2 = 8 and

k = 5;

• The initial value of vector measurements b1, b2 were taken as initial values for filtered

ones b̂1, b̂2, where b1 (m/s²) represents the accelerometer measurements and b2 (Gauss)
represents the magnetometer measurements;

• The initial attitude in Euler angles were taken (ϕ(0), θ(0), ψ(0)) = (−30, 15, 5) and

(ϕd(0), θd(0), ψd(0)) = (0, 0, 0) for rigid body and desired attitude, respectively.

Despite the fact that the chosen noise represents nearly 10% of the amplitude of the measured

vectors, the proposed attitude controller stabilize and track the desired attitude successfully,

as shown in Figures 3.4.1, 3.4.2, 3.4.3 and 3.4.4. Figures 3.4.1-(a), -(b), -(c) and 3.4.1-(d),

-(e), -(f) illustrate the appearance of the raw measurements compared to the filtered ones in

the case of stabilization. In Figures 3.4.2-(a), -(b), -(c) desired and attitude error in quaternion

are presented, respectively.

To show the impact of using the filtered measurements b̂i, one can generate a raw control

torque by replacing b̂i in (3.2.3) with the raw measurements bi. In Figures 3.4.2-(d), -(e), -(f)

the torque τ with raw torque τn are illustrated. Quaternion stabilization errors are illustrated

in Figure 3.4.2-(c), where the trajectory converge to the stable equilibrium. In the case of

attitude tracking, all simulation results are illustrated in Figures 3.4.3 and 3.4.4, where the

effectiveness and performances of the proposed control solution are highlighted.
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3.5 Conclusion

As a logical sequel to the proposed attitude estimation solutions, another novelty of this work

led in the proposition of new control law for attitude tracking problem. This solution used fil-

tered inertial measurements and rate-gyro measurements to control the attitude of a rigid body

without using “attitude measurements”. That were possible by the introduction of a linear-like

complementary filter coupled with the control law to ensure an almost global asymptotic sta-

bility of the closed loop dynamics. The stability analysis was based on Lyapunov theory and

LaSalle’s invariance theorem. Moreover, some previous results were extended to ensure that

the case of the closed loop system continuum of equilibria can be always avoided. Also, it

was shown that the proposed control law avoid the undesired unwinding phenomena.

Even if the proposed attitude tracking control law ensures the stabilization case, a more

simple attitude stabilization control law was presented, in which almost global stability prop-

erty was also ensured. It was shown that the proposed control laws were very robust to strong

additive noise on measurements by a set of simulation results.

It is clear that the availability of at least two non-collinear inertial vector measurements

and the angular velocity measurements is required for the proper functioning of the proposed

control laws. If angular velocity is lost due to sensor or system failure, the proposed control

law in this Chapter exhibits a poor performance. In order to remedy this problem, it is nec-

essary to consider this special case in the design of the control law, which constitute the next

contribution.



Chapter 4

Attitude Stabilization Without Angular
Velocity Measurements

4.1 Introduction

Attitude stabilization of rotational motion of rigid body is a classical problem. Despite the

considerable existing solutions, it remains until today an active research topic. This is due to

the large field of applications such as robotics, unmanned aerial vehicles (UAVs), satellites,

marine vehicles, etc. Since attitude control and stabilization is as an interesting theoretical

and technical problem, many scenarios were studied in the literature (see for instance [72, 75],

[93],[53, 69] and [17]). An interesting and challenging scenario is the attitude stabilization

without angular velocity. The main goal is to stabilize the attitude without the use of gyro-

scopes, which can be very expensive or vital to the system, like gyroscopes on Hubble (see,

Figure 4.1.1) used for pointing the telescope. They measure attitude when Hubble is changing

its pointing from one target (a star or planet) to another, and they help control the telescope’s

pointing while scientists are observing targets. There are a total of six gyroscopes on board–

three serve as backups. In 2009, all six of Hubble’s gyroscopes had to be replaced and one can

imagine the cost generated. At the light of these problems, it is conceivable to reduce costs

and ensure continuity of the mission of the rigid body despite the failure of the gyroscopes

when this type of controllers is used. Many works in the literature dealt with attitude control

without angular velocity problem (see, for instance [5, 10, 32, 81, 95, 96, 99, 101, 111, 112]),

some of them exploited the passivity of the system such as [22, 29, 58, 97, 103].

In almost all results dealing with the case of attitude control without angular velocity, the

“instantaneous measurements of the attitude” are used in the control law (see, for instance

[5, 94, 96, 103, 104]). As there is no sensor which physically measures the attitude of a rigid
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body, the aforementioned velocity-free controllers require some kind of attitude observer re-

lying on the available direction sensors. However, almost all static algorithms based only on

body vector measurements are very sensitive to noise (see, for instance [6, 92, 114]). Also,

all the most efficient algorithms make use of the inertial vector measurements and the angular

velocity information to estimate the attitude of the rigid body (see, for instance [24, 25, 114]).

To overcome this problem, a “velocity-free” attitude control scheme, that incorporates explic-

itly vector measurements instead of the attitude itself, has been proposed for the first time in

[95].

Since it is impossible to achieve a global asymptotic stabilization using continuous time

invariant state feedback [14], the attitude control scheme presented in this chapter use the no-

tion of “Almost Global Asymptotic Stability” of the closed loop system. Therefore, this work

and that proposed in [95] present a stronger stability property compared to [99], where the

convergence depends on a non trivial condition on initial conditions. The notion of “almost
global stability” is used in the sense that a dense and open set belonging to the Special Orthog-

onal Group SO(3) exist, where all trajectories are stable. The proposed solution given here

can be regarded as an extension of [95]. The main differences are the following: (a) the use of

an auxiliary system in terms of body vector measurements, defined on R
3, rather than that of

an auxiliary system defined on S
3; (b) the explicit design of an angular velocity observer-like

which is used in the design of the stabilizing feedback; (c) the proposed controller doesn’t

use the inertial fixed reference vectors. As a consequence, the set of unstable equilibria of the

closed loop dynamics with the auxiliary error system is reduced as compared to that of [95].

The quaternion parametrization is used in the main analysis and the final results are rewritten

with rotations expressed in SO(3) by simple projection, which guaranteed that the proposed

solution avoid the unwinding phenomenon. It is also shown that the introduction of gain matri-

ces improves drastically the controller performance with respect to both [95] and [99]. Finally,

in order to adjust properly the controller gains, a non-linear optimal tuning method is used.

This chapter is organized as follow. Section 4.2 presents an intuitive method to handle the

lack of angular velocity based on an observer-like design that will be used in the new proposed

control law. A rigorous stability analysis is presented in Section 4.3, where the almost global

stabilization of the closed loop system is shown. The effectiveness and robustness of the

proposed controller is illustrated via simulation results and comparison with the case where

the angular velocity is used in the feedback is presented in Section 4.4, where a detailed

optimal nonlinear constrained method for tuning gains is also presented. The obtained results

in this Chapter were presented in [11].
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(a) Angular speed sensor (www.nasa.gov) (b) Sensor unit (www.nasa.gov)

Figure 4.1.1: Hubble Gyro

4.2 Handling the lack of angular velocity and Design of the
attitude controller

Let m ≥ 2 be an integer and let bi(Q(t)) ∈ R
3 (i = 1, · · · ,m) be a measured vectors expressed

in {B}. Using (1.3.2), the relation between bi(t) and their corresponding fixed inertial vectors

ri ∈ R
3 are given by

bi(Q(t)) = RT (t)ri (4.2.1)

As a consequence we have bi(−Q) = bi(Q) for 1≤ i ≤ m and Q ∈ S
3.

The reduced attitude kinematics (1.4.8) can be rewritten as

ḃi(Q(t)) =−S(ω(t))bi(Q(t)), i = 1, · · · ,m. (4.2.2)

4.2.1 Angular velocity observer-like system

First of all, it is possible to express the true angular velocity ω(t) using only the vector

measurements by exploiting the reduced attitude kinematic defined in (4.2.2). Let us de-

fine Γ = diag(Λ1, . . . ,Λm), where Λi, i = 1, . . . ,m are real symmetric positive definite 3× 3

matrices, for 1≤ i ≤ m and define the symmetric matrix

M(t) =
m

∑
i=1

S(bi(t))T ΛiS(bi(t)) (4.2.3)

Fact. If Assumption 2 in Section 1.6 holds, then M(t) is positive definite matrix. It is straight-
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forward to verify this result by using the definition ∀x ∈ (R3
)∗
, xT M(t)x > 0.

Multiplying (4.2.2) by S(bi(t))Λi for 1≤ i ≤ m and doing the sum gives

m

∑
i=1

S(bi(t))Λiḃi(t) =−M(t)ω(t). (4.2.4)

From (4.2.4) the true angular velocity ω(t) is given by

ω(t) =−M−1(t)
m

∑
i=1

S(bi(t))Λiḃi(t) (4.2.5)

Since ḃi(t) is not a measured quantity, the following new angular velocity observer-like

signal is proposed

ω̂(t) =−M−1(t)
m

∑
i=1

S(bi(t))Λi
˙̂bi(t), (4.2.6)

where the vector ˙̂bi(t) can be viewed as an estimate of the vector ḃi(t) using the following

linear first-order filter on bi (i = 1, · · · ,m).

˙̂bi(t) = Ai(bi(t)− b̂i(t)), (4.2.7)

where the constant matrices Ai ∈ R
3×3 will be defined later.

Define an error for the linear first-order filter by b̃i(t) = bi(t)− b̂i(t). Using (4.2.7), (4.2.2)

leads to the following error dynamics

˙̃bi(t) =−Aib̃i(t)+S(bi(t))ω ,

which can be rewritten using the state vector defined by ζ (t) := [b̃T
1 (t), · · · , b̃T

m(t)]
T , as

ζ̇ (t) =−Aζ (t)+B(t)ω(t), (4.2.8)

where

A =

⎡⎢⎢⎢⎢⎣
A1 03 · · · 03

03 A2
. . .

...
...

. . .
. . . 03

03 · · · 03 Am

⎤⎥⎥⎥⎥⎦ , B(t) =

⎡⎢⎢⎢⎢⎣
S(b1(t))
S(b2(t))

...

S(bm(t))

⎤⎥⎥⎥⎥⎦
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.

Finally, the angular velocity observer-like signal can be written as

ω̂(t) = M−1(t)BT (t)ΓAζ (t). (4.2.9)

4.2.2 Controller Design

First, the orientation error is defined by

R̄(t) = R(t)RT
d , (4.2.10)

where R(t) is a rotation matrix and Rd is a constant desired rotation matrix. From (1.4.5) and

(4.2.10) one can obtain the attitude error dynamics in terms of rotation matrix as follows

˙̄R(t) = R̄(t)S(Rdω(t)), (4.2.11)

R̄(t) corresponds to the quaternion error Q̄(t) = Q(t)�Q−1
d (t) ≡ [q̄0(t), q̄(t)T ]T whose dy-

namics is governed by [
˙̄q0(t)
˙̄q(t)

]
=

[
−1

2 q̄T (t)Rdω(t)
1
2 (q̄0(t)Id +S (q̄(t)))Rdω(t)

]
, (4.2.12)

The reduced orientation error is defined by b̄i(Q̄(t)) = bi(Q(t))− bd
i . Therefore, on can

get

b̄i(Q̄(t)) = RT
d (R̄(t)

T − I)ri, (4.2.13)

where 1≤ i ≤ m which can be rewritten using (1.3.39) as

b̄i(Q̄(t)) =−2RT
d (q̄0(t)Id −S(q̄(t)))S(q̄(t))ri. (4.2.14)

Now, the following control law is proposed as

τ(t) = zρ(t)−M(t)ω̂(t), (4.2.15)

where the term zρ(·) was introduced in [95] and is given by

zρ(t) =
m

∑
i=1

ρiS(bd
i )bi, (4.2.16)

with the coefficients ρi’s are arbitrary positive constants. Then, it has been shown in Lemma
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1 of [95] that one can actually rewrite zρ(·) as

zρ(t) =−2RT
d (q̄0(t)Id −S(q̄(t)))Wρ q̄(t). (4.2.17)

One finally gets that the controller τ(·) can be expressed as

τ(t) =−2RT
d (q̄0(t)Id −S(q̄(t)))Wρ q̄(t)−Mω̂(t). (4.2.18)

Using (4.2.8), (4.2.12), (1.4.9) and (4.2.18), leads to the closed loop dynamics which can

be ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ζ̇ = −Aζ +B(Q̄)ω,

˙̄q0 = −1
2 q̄T Rdω,

˙̄q = 1
2(q̄0Id +S(q̄))Rdω,

Jω̇ = −S(ω)Jω −2RT
d (q̄0Id −S(q̄))Wρ q̄−Mω̂.

, (4.2.19)

The matrices Ai block diagonal of A are chosen as Ai � Pi(Λi), for 1≤ i ≤ m, with Pi positive

polynomial on R
∗
+ of degree two. As a trivial consequence, one deduces that, for 1≤ i ≤ m,

RdAiRT
d is symmetric positive definite and commutes with Λi.

Note. Set Ad � diag(RdA1RT
d , · · · ,RdAmRT

d ) and Γd � diag(RdΛ1RT
d , · · · ,RdΛmRT

d ). Then Γd

and Ad commute (ΓdAd = AdΓd).

One can make a further simplification by changing variables as follows:

ζ → ξ =

⎡⎢⎣ Rdb̃1(Q(t))
...

Rdb̃m(Q(t))

⎤⎥⎦ , ω → ω̄ = Rdω.

By setting

Bd :=

⎡⎢⎣ S(Rdb1)
...

S(Rdbm)

⎤⎥⎦=

⎡⎢⎣ S(R̄T r1)
...

S(R̄T rm)

⎤⎥⎦=

⎡⎢⎣ S((Id −2q̄0S(q̄)+2S2(q̄))r1)
...

S((Id −2q̄0S(q̄)+2S2(q̄))rm)

⎤⎥⎦ , (4.2.20)

and Jd := RdJRT
d . Therefore, one can end up with the following autonomous differential
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equation ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξ̇ = −Adξ +Bdω̄,

˙̄q0 = −1
2 q̄T ω̄,

˙̄q = 1
2(q̄0Id +S(q̄))ω̄,

Jd ˙̄ω = −S(ω̄)Jdω̄ −2(q̄0Id −S(q̄))Wρ q̄−BT
d ΓdAdξ .

, (4.2.21)

Note that Jd is a real symmetric positive definite matrix. If one defines the state χ := (ξ , Q̄, ω̄)

where Q̄ ≡
[

q̄0

q̄

]
∈ S

3 and the state space ϒ := R
3n ×S

3×R
3, one can rewrite (4.2.21) as

χ̇ = F(χ),

where F gathers the right-hand side of (4.2.21) and defines a smooth vector field on ϒ. More-

over, note that Q̄ and−Q̄ represents the same physical rotation, implying that (4.2.21) projects

on SO(3) as an autonomous differential equation. We will use that fact in Subsection 4.3.2.

4.3 Stability Analysis of the Proposed Controller

In this section, a rigorous analysis using two attitude representations are presented. As often, it

turns out that it is simpler for the stability analysis to use unit quaternions for the representation

of rotations instead of rotation matrices elements of SO(3), even-though the reformulation of

the results in terms of orthogonal matrices is useful. This is why, in a first step the stability

analysis is completed and obtain a first theorem (Theorem 4.1) using unit quaternions and, in

a second step, the main result in terms of elements of SO(3) is obtained by simply projecting

Theorem 4.1 using Rodriguez formula (1.3.39).

Lemma 4.1. Under the hypothesis (GEN) in Section 3.2, the solutions of equation zρ = 0
where zρ is defined by (4.2.17) are the following: (a) the two points ±(1,0); the six points
±(0,vi), 1≤ i ≤ 3, with (v1,v2,v3) being an orthonormal basis diagonalizing Wρ .

Proof. Let (q0,q) ∈ S
3 such that zρ = 0, i.e.,

(q0I −S(q))Wρq = 0.

If q0 �= 0, it is immediate to see that q0Id −S(q) is invertible and thus q = 0, finally implying

that q0 =±1.
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If q0 = 0, one can obtain the equation S(q)Wρq = 0. According to the properties of S(q)
with q ∈ S

2, one can get that q is an eigenvector of Wρ with unit length, which is concluded

under hypothesis (GEN).

4.3.1 Analysis with rotations expressed in S
3

Consider the following non negative differentiable function V : ϒ → R
+

V = ξ T ΓdAdξ +4q̄TWρ q̄+ ω̄T Jdω̄, (4.3.1)

which is radially unbounded over ϒ since Wρ and Jd are positive definite matrices. Moreover,

since Γd and Ad commute, the gain matrix ΓdAd is symmetric block diagonal positive definite.

Theorem 4.1. Consider System (1.4.9)-(1.4.16), under Assumptions 1, 2, 4 and 5 in Section
1.6 and the control law (4.2.15) with the auxiliary system given by (4.2.8), then if Hypothesis
(GEN) in Section 3.2 holds true, one gets that

(1) There are eight equilibrium points, given by

Ω±
1 = (03m,

[
±1

0

]
, 0), Ω±

2,3,4 = (03m,

[
0

±vi

]
, 0),

with (v1,v2,v3) is an orthonormal basis diagonalizing Wρ .

(2) All trajectories of (1.4.9)-(1.4.16) converge to one of the equilibrium points defined in
Item (1).

(3) Set c := 4λmin(Wρ), where λmin(Wρ) is the smallest eigenvalue of Wρ , then the equilibrium
point Ω+

1 is locally asymptotically stable with a domain of attraction containing the set

V+
c := {χ ∈ ϒ |V (χ)< c and q̄0 > 0} (4.3.2)

and the equilibrium point Ω−
1 is locally asymptotically stable with a domain of attraction

containing the set
V−

c := {χ ∈ ϒ |V (χ)< c and q̄0 < 0} . (4.3.3)

(4) The other equilibrium points Ω±
2,3,4 are hyperbolic and not stable (i.e. the eigenvalues of

each of the corresponding linear systems have non zero real part and at least one of them
has positive real part). This implies that the system (1.4.9)-(1.4.16) is almost globally
asymptotically stable with respect to the two equilibrium points Ω±

1 in the following
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sense: there exists an open and dense subset ϒ0 ⊂ϒ such that, for every initial condition
χ0 ∈ ϒ0, the corresponding trajectory converges asymptotically to either Ω+

1 or Ω−
1 .

Proof. Regarding Item (1), one must solve the equation f (χ) = 0, where f is the nonlinear

function describing (4.2.21). Two cases can be considered.

Assume first that q̄0 �= 0. Both matrices q̄0Id + S(q̄) and q̄0Id − S(q̄) are non singular.

Therefore from the third equation of (4.2.21) ω̄ = 0 and thus ξ = 03m from the first equa-

tion of (4.2.21). The fourth equation of (4.2.21) reduces to zρ = 0 and one concludes that

q̄ = 0 and q̄0 = ±1 leading to two equilibrium points : Ω+
1 = (03m,

[
1

0

]
, 0) and Ω−

1 =

(03m,

[
−1

0

]
, 0).

Next, assume that q̄0 = 0. Then ‖q̄‖ = 1 and according to the third equation of (4.2.21),

one gets that ω̄ is collinear to q̄, let say Rdω̄ = μ q̄ and then μ must be equal to zero according

to the second equation of (4.2.21), implying that ω̄ = 0. As in the previous case, one deduces

that ξ = 03m. The fourth equation of (4.2.21) yields that q̄ and Wρ q̄ are collinear, leading to

the six points Ω±
2,3,4.

Regarding Item(2). Recall that ΓdAd is symmetric block diagonal positive definite, then

using the facts that

ω̄T S(ω̄) = 0, q̄TWρ(q̄0Id +S(q̄))ω̄ = ω̄T (q̄0Id −S(q̄))Wρ q̄, ω̄T BT
d Γdξ = ξ T ΓdBdω̄,

the time derivative of (4.3.1) in view of (4.2.21) yields

V̇ =−ξ T Λξ ≤ 0, (4.3.4)

since Λ = AT
d ΓdAd +ΓdA2

d = 2ΓdA2
d is symmetric positive definite. One can deduce that all

trajectories of (4.2.21) are defined for all times and bounded.

Since (4.2.21) is autonomous and V is radially unbounded, one can use LaSalle’s invari-

ance theorem, cf. (4.3.4). Therefore every trajectory converges to a trajectory γ along which

V̇ ≡ 0. Then ξ must be identically equal to zero, implying at once that Bdω̄ ≡ 0 as well.

The latter assertion yields that ω̄ must be non-collinear to all the bi’s, which can be true only

if ω̄ ≡ 0 since there are at least two non-collinear vectors bi. From the fourth equation of

(4.2.21) one can conclude that zρ = 0 leading to the conclusion by Lemma 4.1.

Regarding Item(3). The proof is given only for Ω+
1 since the other case is entirely similar.

Take an initial condition χ̄ in V+
c . Since V is non increasing, V (χ) < c for all times and, for

every t ≥ 0, q̄(t)TWρ q̄(t) ≤ λmin(Wρ). This implies that ‖q̄(t)‖ < 1 for every t ≥ 0 and thus

q̄0(t) �= 0 for every t ≥ 0, one can deduce that q̄0(t) keeps the same sign namely that q̄0(0),
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which is positive. Since the trajectory converges to one of the eight equilibrium points, it must

be Ω+
1 since this is the only one contained in V+

c .

The proof of Item (4) is deferred in Appendix A, where it is shown that the equilibria Ω±
j ,

j = 2,3,4 are unstable.

Finally, there exists an unstable manifold of dimension at least one in neighborhoods of the

Ω±
j , j = 2,3,4, and since all trajectories converge to an equilibrium point, therefore (4.2.21)

is almost globally asymptotically stable with respect to the two equilibrium points Ω±
1 .

Remark 4.1. Denote byΨ ⊂ϒ the set composed of the union of stable manifold of the unstable

equilibria Ω±
j , j = 2,3,4. Therefore, for every initial condition χ0 ∈ Ψ , the corresponding

trajectory converges to one of the unstable equilibrium point Ω±
j , j = 2,3,4.

4.3.2 Main result on SO(3)

Recall that (4.2.21) projects to an autonomous differential equation on ϒ̄ :=R
3m×SO(3)×R

3.

One can deduce at once the theorem given below. To state it, we need the following notations.

If v stands for a line corresponding to an eigenvector of Wρ , let Sv be the rotation of angle π
with respect to v and define the projection R : ϒ −→ ϒ̄ that associate each χ = (ξ , Q̄, ω̄) ∈ ϒ
a χ̄ = (ξ , R̄, ω̄(R̄)) ∈ ϒ̄ such that R(χ) = χ̄ and R(Q̄) = R̄.

Corollary 4.1. Consider the projection of system (1.4.9)-(1.4.16) onto ϒ̄ under Assumptions
1, 2, 4 and 5 in Section 1.6 and the control law corresponding to (4.2.18) with the auxiliary
system corresponding to (4.2.8). Then, if Hypothesis (GEN) in Section 3.2 holds true, one gets
that

(1) There are four equilibrium points, given by : Ω1 = (03m, Id,0), Ωv = (03m,Sv,0) with v a
line corresponding to an eigenvector of Wρ .

(2) All trajectories of the projection of (1.4.9)-(1.4.16) onto ϒ̄ converge to one of the equilib-
rium points defined in (1).

(3) Set c := 4λmin(Wρ), where λmin(Wρ) is the smallest eigenvalue of Wρ . Then the equilib-
rium point Ω1 is locally asymptotically stable with a domain of attraction containing
the set

V̄c :=
{

χ̄ ∈ ϒ̄ |V (χ)< c with χ̄ = (ξ , R(Q̄), ω̄)
}
. (4.3.5)

(4) The other equilibrium points Ωv are hyperbolic and not stable (i.e. the eigenvalues of
each of the corresponding linear systems have non zero real part and at least one of
them has positive real part). This implies that the projection of system (1.4.9)-(1.4.16)
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onto ϒ̄ is almost globally asymptotically stable with respect to the equilibrium point Ω1

in the following sense: there exists an open and dense subset ϒ̄0 ⊂ ϒ̄ such that, for every
initial condition χ̄0 ∈ ϒ̄0, the corresponding trajectory converges asymptotically to Ω1.

4.4 Control Gains Tuning and Simulation Results

This section provides a procedure to have optimal gains usually local but approaching as near

as possible to the global solution. The effectiveness of the proposed velocity-free attitude

stabilization controller will be shown using simulation results and comparison is done with

respect to the controller (3.3.3-3.3.4) that uses angular velocity measurements.

We denote a state vector χ = (

[
b̃1

b̃2

]
, Q, ω), where we take two non-collinear vectors b1

and b2. For simplicity and without loss of generality, we take Rd = Id , which means that q̄ = q,
ω̄ = ω and bd

i = ri. The matrices Λ1, Λ2 are chosen diagonal such as Λi = diag(γi1,γi2,γi3)

where i = 1,2, therefore the matrices A1 and A2 will be Ai = ai0Id + ai1Λi + ai2Λ2
i where

i = 1,2.

In what follows, the following parameters are the same: the inertial reference vectors

r1 = [0, 0, 1]T and r2 = [0.4348, 0.0008, 0.9005], the inertia matrix is selected from [101]

J =

⎡⎢⎣ 10 1.2 0.5

1.2 19 1.5

0.5 1.5 25

⎤⎥⎦ , (Kg.m2)

and the simulation sample time is 0.01s with RK4 solver. The notation “With ω” will be used

to design the controller (3.3.3-3.3.4) proposed in Chapter 3.

4.4.1 Parameters Tuning

Consider the case when two non-collinear inertial fixed vectors r1, r2 (i.e. m = 2) are con-

sidered and the used quaternion formulation of the closed loop dynamics is given by (4.2.21).

Consider now an objective function g(κ) such that κ is the vector of all parameters to be tuned.

The goal is to find min
κ
(g(κ)) with the following constraint l(κ(·))≤ κ(·)≤ u(κ(·)) , where

κ = [ ρ1 ρ2 a1( j−1) a2( j−1) γ1 j γ2 j ]T , ( j = 1, . . . ,3, κ ∈ (R∗
+)

14
is the vector of param-

eters), l(κ(·)) and u(κ(·)) are the lower and upper bounds corresponding to each parameter

and κ(·) is an element of κ .

Generally, optimization algorithms find a local optimum, which depends on a basin of

attraction of the starting point. Also, the effectiveness of existing algorithms depends on the
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lower and upper limits. These last values can be determined based on the dominant poles of

the linearized system around the stable equilibrium point.

The linearization of (4.2.21) at Ω+
1 = (06,

[
1

0

]
, 0) can be written as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

żξ = −Azξ +Gzω

żq = 1
2zω

Jżω = −GT ΓAzξ −2Wρzq,

(4.4.1)

where G =
[

GT
1 GT

2

]T
with Gi = S(ri), Γ and A are defined in Subsection 4.2.1 and Wρ

is defined in (3.2.10). Setting Z = (zT
ξ , zT

q , zT
ω)

T with zξ ∈ R
6, zq ∈ R

3 and zω ∈ R
3 are the

linearized vectors of ξ , q, ω , respectively. Then the system (4.4.1) can be rewritten as Ż =BZ,
where

B =

⎡⎢⎣ −A 06×3 G
03 03 Id/2

−J−1GT ΓA −2J−1Wρ 03

⎤⎥⎦ .
Note that we used the fact that żq0

= 0. The linearization of the closed loop dynamics is

used to determine the upper and the lower limitsu(κ(·)), l(κ(·)) respectively. Let’s take an

arbitrary initial condition Q(0) =
[

0.7212, 0.3999, −0.3999, 0.3999
]T

. For an arbitrary

chosen fixed κ(m), m = 3, . . . ,14 gains values, we start by varying κ(1) and κ(2). After

inspecting the zero-pole map, one can determine an upper and lower bounds for κ(1) and

κ(2) gains based on the location of the dominant pole, if it exists. The same reasoning gives

the values in Table 4.4.1.

Objective Functions and Optimal Control Gains Tuning

Since there exist many possibilities to select the objective function. Different objective func-

tions derived from three well known performance index (see section 5.7 of [28]) were tested.

The first is Integral of Absolute Error (IAE), the second is Integral of Time-weighted Absolute

Error (ITAE) and the last is Integral of Square Error (ISE), with the possibility to minimize

energy and attitude error in the same time by choosing σ ∈ [0 1]. The first conclusion after sev-

eral simulations is that the most appropriate objective function for our application is the ISE

function gise(κ) =
∫ ∞
0

(‖q̄‖2+σ‖τ‖2)dt with σ = 0.1. Indeed, it minimizes convergence time of

the quaternion error and gives a comparable energy consumption to the ones of the controller

used for comparison, as we will see after. Initial gains vector are chosen arbitrary as κ0 =

[0.599, 0.586, 0.754, 0.368, 0.015, 5.668, 1.963, 0.099, 2.155, 5.561, 0.021, 5.979, 5.464, 5.954].

To get an idea of the effectiveness of the optimization used methods, we compare two
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methods to calculate gains optimally. The first one uses the Matlab fmincon function and the

second method is based on the use of the same function with variation of initial conditions of

the parameters in a procedure called global search (see, for instance [67]) because the locality

of the solution essentially depends on the initial conditions. The best one is the third one, i.e.,

the global search method and the final value κ f inal with criterion ISE is presented in Table

4.4.2. The corresponding gain matrices are presented in Table 4.4.3. Note that the eigenvalues

of obtained matrix Wρ are simple, despite teh fact that it is not included as a constraint in the

tuning gains method. Also, during all conducted simulations using two non-collinear reference

vectors no selected set of gains led to multiple eigenvalues of Wρ . This fact is expected since

it is stated in Lemma 3.1.

gains l(κ(m)) u(κ(m))

ρi(i = 1,2) 4 17

ai0(i = 1,2) 0.1 0.5

ai1(i = 1,2) 0.001 0.05

ai2(i = 1,2) 0.00001 0.005

γi j(i = 1,2, j = 1,2,3) 20 120

Table 4.4.1: Lower and upper limits

gains ISE gise(κ) =
∫ ∞
0

(‖q̄‖2+0.1‖τ‖2)dt

ρi(i = 1,2) [9.0339, 7.3266 ]

a1( j−1)( j = 1,2,3) [0.4061, 0.0365, 0.0034]

a2( j−1)( j = 1,2,3) [0.2898, 0.0205, 0.0027]

γ1 j( j = 1,2,3) [30.7484 104.4165 93.6847]

γ2 j( j = 1,2,3) [93.4728, 20, 106.8129]

Table 4.4.2: Selected optimal gain values

4.4.2 Simulation results

This subsection shows the impact of the tuned gains on the nonlinear behavior of the new

controller and the effectiveness of the proposed controller compared with the controller (3.3.3-

3.3.4) named “with ω”. For comparison purpose, the gains of the controller (3.3.3-3.3.4) were
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parameters values calculated with ISE criterion

Λ1 diag([30.7484 104.4165 93.6847])

Λ2 diag([93.4728, 20, 106.8129])

A1 diag([4.7430 41.2868 33.6668])

A2 diag([25.7963 1.7798 33.2838])

Wρ

⎡⎣ 14.9750 −0.0025 −2.8686
−0.0025 16.3601 −0.0053
−2.8686 −0.0053 1.3851

⎤⎦
eigenvectors vρ1 =±

⎡⎣ 0

−1

0

⎤⎦
of Wρ vρ2 =±

⎡⎣ 0.9801
0.0018
−0.1984

⎤⎦, vρ3 =±
⎡⎣ −0.1984

−0.0004
−0.9801

⎤⎦
eigenvalues λρ1 = 16.3601, λρ2 = 15.5558

of Wρ λρ3 = 0.8044

Table 4.4.3: Gain matrices

tuned to generate a comparable torque compared to the controller (4.2.15). The chosen gains

for the the controller “with ω” are : α1 = 1.1234, α2 = 0.9874, δ1 = 0.9468, δ2 = 0.9987,

ρ1 = 0.3708, ρ2 = 0.4119 and k = 0.4770.

Depending on the attitude initial condition and tacking in consideration or not the mea-

surements noise, forth cases were selected.

• In the first case, the initial attitude is Q(0) =
[

0.7212, 0.3999, −0.3999, 0.3999
]T

without noise measurements.

• In the second, case the initial attitude is Q(0)=
[
−0.7212, 0.3999, −0.3999, 0.3999

]T

without noise measurements.

• The third case is chosen to be an unstable equilibrium point Q(0) =
[

0, 0, −1, 0
]T

without noise measurements.

• The forth case use the same initial condition as the first case, but a noise with standard

deviation of 0.01(normalized) is added to the vector measurements b1 and b2.

In all cases the initial angular velocity is chosen to be ω(0) = [0.005, 0.006, 0.004]T (rad/s).

Remark 4.2. Special care should be taken where dealing with noisy measurements. In the

forth case the gain parameters are chosen differently, the gains a1( j−1)( j = 1,2,3), ai1(i =
1,2) and ai2(i = 1,2) remain unchanged (see Table 4.4.2), the selected other gains are Λ1 =

diag([25.7484, 19.4165, 30.6847]) , Λ2 = diag([30.4728, 15, 10.8129]) which gives A1 =
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diag([3.6, 2.3966, 4.7274]) , A1 = diag([3.4217, 1.2048, 0.8271]) and ρ1 = 6.0339 , ρ2 =

4.3266. This choice is justified by the fact that matrices A1 and A2 represent the frequency

cutoff of the auxiliary filters.

The evolution of the unit-quaternion trajectories with respect to time for the new and “with

ω” controllers are presented in Figure 4.4.1. In which the trajectories converge asymptoti-

cally to the equilibrium point Ω+
1 in the first case illustrated in Figure 4.4.1a, the trajectories

converge asymptotically to the equilibrium point Ω−
1 in the second case illustrated in Figure

4.4.1b. Thus, it is clear that the two controllers can avoid the unwinding phenomenon. Note

that, in the third case, even if the initial condition is a theoretical unstable equilibrium point,

we verified by simulation that the numerical errors push the trajectories far from this point as

depicted in Figure 4.4.1c. Figures 4.4.2, 4.4.3 and 4.4.4 show the angular velocity and applied

torque in the three cases. It is clear that the introduction of gain matrices gives better results

according to each axis separately. Even if measurements are corrupted by noise, Figure 4.4.1d

show that the unit-quaternion trajectories converge to the stable equilibrium point. Figure

4.4.5 illustrates the behaviors of angular velocity and applied torques in the forth case, where

one can conclude that the proposed control law without angular velocity is more sensitive to

noise than the one with angular velocity.

4.5 Conclusions

In this chapter, attitude stabilization controller for rigid body was proposed, in which neither

the angular velocity nor the instantaneous measurements of the attitude are used in the feed-

back. This controller could be of great help (as main or backup controllers) in applications

where prone-to-failure and expensive gyroscopes are used. When almost all existing solu-

tions to this problem use the instantaneous attitude measurements, while it is well known that

efficient attitude observer use the angular velocity to obtain an accurate results, the approach
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Figure 4.4.1: Quaternions trajectories in all cases

presented in this chapter overcomes totally reconstructing the attitude. It mainly uses an auxil-

iary system that can be considered as an observer of the angular velocity using only the inertial

measurements.

The proposed controller has the following interesting properties :

• It doesn’t use the inertial fixed reference vectors.

• It reduces the set of unstable equilibria of the closed loop dynamics with respect to

previous proposed controller.

• It provides an almost global asymptotic stability of the desirable equilibrium.

• It avoids the “unwinding phenomenon”.
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Figure 4.4.2: Angular velocity and applied torques in case 01

In addition, it was shown that the set of control gains leading to a continuum of equilibria

of the closed loop system is an algebraic variety of positive co-dimension given at least two

non-collinear observed inertial vectors. A non-linear optimal tuning method have been used

to adjust properly the controller gains and it was shown via simulations that the introduction

of gain matrices leads to good results. The performances and effectiveness of the proposed

solution were illustrated via simulation results and compared with respect to the case where

angular velocity was used.
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Figure 4.4.3: Angular velocity and applied torques in case 02



4.5 Conclusions 91

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

ω
x (r

ad
/s

)

proposed
with ω

0 20 40 60 80 100 120
−0.2

0
0.2
0.4
0.6
0.8

ω
y (r

ad
/s

)

proposed
with ω

0 20 40 60 80 100 120

−0.2

0

0.2

0.4

time(s)

ω
z (r

ad
/s

)

proposed
with ω

0 20 40 60 80 100 120

−3

−2

−1

0

1

2

τ x (N
.m

)
proposed
with ω

0 20 40 60 80 100 120

−5

0

5

τ y (N
.m

)

proposed
with ω

0 20 40 60 80 100 120

−0.5

0

0.5

1

1.5
2

time(s)

τ z (N
.m

)

proposed
with ω

Figure 4.4.4: Angular velocity and applied torques in case 03
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Figure 4.4.5: Angular velocity and applied torques in case 04



Chapter 5

Experimental Validation

5.1 Introduction

One of the most known aerial robot is the quadrotor and probably the most used one as a

research platform for experimental tests. Mainly, this is due to their simple structure and low

cost. For this, many universities have designed their own quadrotor and an interesting open

source projects are growing [57]. The first attempt was the design of a quadrotor with an

autopilot based on a Hardware In the Loop board. The goal was to provide a quick implemen-

tation method to experiment and validate designated observers and controllers for attitude,

which is possible since the user can use Matlab-Simulink to implement the developed model

directly on the TMS DSP Board. The result of this work is presented in Figure 5.1.2, where

all models required for operating sensors and actuators were developed. This solution took

longer time than expected, thus abandoned.

The best way to use such platforms is to start from an open source project. The use of this

type of project provides a functional solution with the ability to make any kinds of changes,

both hardware and software. One of the most famous open-hardware and open-software mul-

tirotor projects is DIY drone project [2]. The open source software code named “ArduCopter”

is a generic customized code that can be used for many type of aerial multirotor robots. The

hardware is developed and marketed by 3DR [3] and a set of platforms are available, see

Figure 5.1.1. The software development follows the evolution of material and two types of

autopilots are available, the APM2.6 and PixHawk, that can be used on any platform. The

cheaper solution was selected based on DIY Quad and APM2.6 autopilot. The cost of all

hardware needed do not exceed 800 Euros.

This chapter presents the experimental used test-bench (see, Figure 5.2.1) and operations

performed for turning on the platform such as calibration operations. The effectiveness and

the performances of all proposed solutions in this thesis are validated by performing many ex-
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periments using this platform. Details about the software used project ArduCopter are differed

in Appendix B. Note that partial results in this Chapter were presented in [12].

5.2 Test-bench presentation

Experiments were done based on the open-hardware and open-software DIY drone project

[2]. We have used the platform shown in Figure 5.2.1. It is a test-bench with DIY Quad [3]

used for indoor tests. Specially, to validate the developed observers and controllers for attitude

estimation and control.

The test bench for attitude control and estimation is composed of a support and the DIY

Quad. The DIY Quad is a Quadcopter equipped with

1. Holder with rotation ball joint

2. Quad frame

3. Autopilot APM2.6

4. Four electronic speed controllers (ESCs)

5. Four 850Kv brushless motors with propellers

6. Graupner RC receiver

7. 3DR Telemetry Radios

8. u-blox GPS with compass

9. Power distribution board and LiPo battery

10. APM Power module for current consumption and battery voltage measurements
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(a) DIY Quad kit (b) IRIS+

(c) AeroSkywalker (d) X8+

(e) DIY Y6 kit

Figure 5.1.1: Overview of 3DR solutions(htt p://store.3drobotics.com)
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(a) Platform (b) DSP based Autopilot

Figure 5.1.2: First developed HIL platform

Figure 5.2.1: Test-bench DIY Quad equipped with the APM2.6 autopilot
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Figure 5.2.2: AMP2.6 Mounting

In addition, the RC transmitter is used to perform manual control and fly mode selection.

The open source ground station APM planner is also used to visualize telemetry data and

to configure adjustable gains and parameters. See Figure 5.2.2 for AMP2.6 mounting with

different other components. The autopilot APM2.6 is based on Atmel ATMEGA2560-16AU

using an external clock of 16MHz and ATMEGA32U-2 as a fail-safe processor. The embedded

system is equipped with Invensense’s 6 DoF Accelerometer/Gyro MPU-6000 and a 3-axis

external digital compass HMC5883L-TR.

The open source software project “ArduCopter V3.3-dev” was modified and used to per-

form different experiments, especially, parts dealing with attitude control. One can found the

complete architecture for existing attitude control process in Figure B.0.1. The main loop

operating frequency of the firmware is 100Hz. The acquisition of accelerometer and gyros

measurements is similar to the main loop while the frequency acquisition of magnetometer

measurements is 10 Hz (after an internal filtering).
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5.3 Calibrations and inertia matrix determination

5.3.1 Accelerometer calibration and mounting

The accelerometer model (1.5.6) can be rewritten as

aB(t) = a(t)+ηa +na(t), (5.3.1)

where a(t) is the real value of the acceleration vector and aB(t) is the measured acceleration

vector by an accelerometer. The aim of accelerometer calibration is the compensation of the

constant offset ηa and scale correction when accelerometer measure the earth gravitational

acceleration g. The process is based on placing the quadrotor in positions where all axis

of the mobile reference {B} should be collinear to the gravitational earth vector in positive

and negative direction. At each position and without moving the quadrotor an accelerometer

measurement should be stored. The selected positions allow us to determine the minimum

and the maximum accelerometer measurements on each axis. Denote ai_min and ai_max the

minimum and maximum measurements on axis i. Then the calibrated measurement for each

axis can be evaluated as follow

o f f seti =
ai_max +ai_min

2
, i =′ x′,′ y′,′ z′

scalei =
g

ai_max −o f f seti
, i =′ x′,′ y′,′ z′

ai_calibrated = scalei(aiB −o f f seti), i =′ x′,′ y′,′ z′

aB(t)calibrated =
[

ax_calibrated ay_calibrated az_calibrated

]
,

where g = 9.81(m/s2).

Now let us focus on the noise na(t). Generally, many users mount the autopilot on the

frame using a double sided foam tape. An interesting technique was presented in [82], where

the author showed that the use of vibration dampening gel rather than a double sided foam tape

help reducing a part of the noise na(t) due to the vibrations from the motors. This technique

was used as illustrated in Figure 5.3.1.
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Figure 5.3.1: Used vibration dampening gel

5.3.2 Magnetometer calibration

The magnetometer calibration can be done using a classical method similar to what was pre-

sented before for accelerometer calibration. Since magnetometers are sensitive to hard and

soft disturbances, obtaining an accurate magnetometer readings is not obvious, specially in

indoor tests. A better calibration method to remove the biases, scaling and misalignment er-

rors can be used. Only the model and results are presented here, more details can be found in

[82] or in [108]. Consider the following magnetometer raw measurements model

mB(t)uncalibrated = A mB(t)calibrated +ηm, (5.3.2)

where A ∈ R
3×3 represents a matrix transformation containing sensor scaling and misalign-

ment errors, ηm represent the measurements offset. After storing a set of measurements un-

calibrated data, an ellipsoid that fit to a set of these measurements, see Figure 5.3.2. Thus, A

and ηm can be found and the calibrated data are given by

mB(t)calibrated = A −1(mB(t)uncalibrated −ηm), (5.3.3)

where

A −1 =

⎡⎢⎣ 0.827786 0.0399225 −0.0296002

0.0399225 0.959383 0.0185603

−0.0296002 0.0185603 0.990549

⎤⎥⎦ and ηm =

⎡⎢⎣ 274.308

−84.3697

−20.8206

⎤⎥⎦ (mGauss)
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(a) Ellipsoid fit (b) Calibrated measurements

Figure 5.3.2: Magnetometer calibration results

5.3.3 Rate gyro calibration

Rate gyro sensors are very important, especially for attitude estimation. Their calibration

is the simplest one, since it is based on storing rate gyro measurements during few seconds

without moving the gyro. The average of these measurements constitute a bias that should be

compensated.

5.3.4 RC channels and ESCs calibration

The calibration of the RC transmitter/receiver consists in the determination of the minimum,

maximum and trim PWM values for each RC channel. The RC Graupner transmitter was

configured in mode 2, where left stick controls throttle and yaw and the right stick controls

pitch and roll. To control flight mode a three-position switch was attached to RC channel 5.

By moving the control sticks and toggle switches to their limits of travel one can obtain the

limits presented in Table 5.3.1. After, these limits can be given to the law level controller to

allow a symmetric variation in the negative and positive directions for channel 1,2 and 4. It

is important to calibrate RC channels without propellers. A complete process of RC and ESC

calibration using the ground station APM can be found in [2]. Similarly, ESCs calibration is

important, since it allows ESCs to know the PWM limits generated by the autopilot (or flight

controller), see [2] for more details.
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Channel Minimum PWM Maximum PWM Trim function

1 1099 1900 1498 pitch

2 1099 1885 1477 roll

3 1100 1899 1100 throttle

4 1099 1900 1500 yaw

5 1099 1900 1500 flight mode

Table 5.3.1: RC channels limits

5.3.5 Inertia Matrix determination

Since the quadrotor is characterized by a symmetric mechanical structure. The inertia matrix

can be considered diagonal in the following form

J =

⎡⎢⎣ Jx 0 0

0 Jy 0

0 0 Jz

⎤⎥⎦ (N.m/(rad/s)2),

where Jx = Jy.

The process of matrix determination is detailed in [26]. It consists of suspending the

quadrotor as depicted in Figure 5.3.3. In each position, one should make a smooth manual

rotation around the desired axis and rate gyro can be used to measure the angular velocity

from which one can get the oscillation frequency, an example of measured angular velocity is

given in Figure 5.3.4. Then, the inertia Ji, i = ′x′,′ y′,′ z′ can be determined using the following

formula

Ji =
mgr2

ω2
i l

, i =′ x′,′ y′,′ z′ ,

where m(Kg) is the mass of the quadrotor, g = 9.81(m/s2) is the norm of the gravitational

earth vector, r (m) is the distance from the wire attachment to the axis of rotation (see Figure

5.3.3-a), l (m) is the length of the wires (see Figure 5.3.3-b) and ωi = 2π fi (rad/s) is the

oscillation frequency around axis i. Note that it is possible to use Discrete Fourier Transform

to get directly fi.

Finally, the inertia matrix of the quadrotor in Figure 5.3.3 is J = diag([ 9.7701 9.7701 20.3906 ])×
10−4, (N.m/(rad/s)2).
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(a) Supporting wires position for x and y axis (b) Supporting wires position for z-axis

Figure 5.3.3: Inertia matrix determination
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Figure 5.3.4: Gyro rate measurements for a rotation around x-axis

5.4 Experimental validation of proposed attitude estimation
and control methods

All operations detailed in previous sections are needed to make possible experimental use of

the quadrotor. In this section, we present some experimental results showing the effectiveness

and the performances of the proposed solutions.

For experiments, the following parameters are used:

(1) The measurements are given in the mobile frame as shown in Figure 5.2.1.

(2) The first normalized reference fixed inertial vector is r1 = [0, 0, 1]T corresponding to

the normalized vector of the gravitational earth vector in North East Down “NED” reference

frame.

(3) The second normalized reference fixed inertial vector is r2 = [0.4348, 0.0008, 0.9005]T

corresponding to the normalized vector of the earth magnetic filed in NED reference frame at

Vélizy-FRANCE.

For experimental validation, two main experiments were done. The first one was made to

evaluate the performance of our attitude observer using the well known Xsens MTi AHRS, as

illustrated in Figure 5.4.1. In this experiment, the attitude measurements provided by the MTi

is considered as a reference signal. Note that, Kalman filter is implemented inside this IMU.

The second experiment consists in the implementation in C/C++ user code of our attitude
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controller directly on the autopilot APM2.6.

5.4.1 Attitude estimation

For simplicity, only first order “Direct” and “Passive” filters presented in Section 2.3 were

implemented in experimental tests by using first order Euler integration. The choice of the

first order filters is due to real time implementation consideration. Indeed, they are faster and

simpler filters. As described above, the attitude measurements delivered by the XsensMTi will

be considered as a reference signal for the comparison of results. This reference is obtained

with an internal Kalman filter implemented inside MTi. For comparison purpose, the explicit

observer presented in [61] with quaternion formulation was implemented and will be termed

as “MHP” observer.

From Table 2.4.1, one can rewrite⎧⎨⎩
˙̂bi = −S(ωm − η̂)bi + γi1(bi − b̂i)

˙̂η = Γ1 ∑m
i=1 S(bi)b̂i

, (5.4.1)

for the first order “Direct” filter and⎧⎨⎩
˙̂bi = −S(ωm − η̂)b̂i + γi1(bi − b̂i),

˙̂η = Γ2 ∑m
i=1 S(bi)b̂i,

, (5.4.2)

for the first order “Passive” filter.

Remark 5.1. The first order “Direct” and “Passive” filters given by (5.4.1) and (5.4.2) were

implemented using first order Euler integration, where we take i= 1,2, b1 = a= [ ax ay az ]T (m/s2)
for accelerometer measurements and b2 = m = [ mx my mz ]T (normalized) for magne-

tometer measurements.

For implementation, the following gains were chosen: γ11 = γ21 = 1 and Γ1 = Γ2 =

0.003Id for both two filters while for “MHP” observer, the gains presented in [61] were

used : kP = 1 and kI = 0.3. The measured initial attitude condition given by MTi was

Q(0) = [0.998043,−0.030992,−0.028809,−0.046046]T , which was used as initial condition

for “MHP” observer and the equivalent initial conditions for ’Direct’ and ’Passive’ proposed

filters were a(0) = [0.7708, −0.7963, 9.6520]T and m(0) = [0.0491, 0.0157, −0.2630]T .

For reporting results, we first consider the performance of the data fusion obtained by

implemented complementary filters. Then, figures 5.4.2 and 5.4.3 show experimental results

for the direct and passive filters. One can observe that the two complementary filters have

similar performance which corroborates the fact that asymptotic stability were demonstrated
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Figure 5.4.1: The Inertial Measurements Unit Xsens mounted on the test-bench

for both filters. As explained before, the passive filter is less sensitive to noise. This can

be illustrated in Figure 5.4.2. Note that the raw magnetometer measurements are not very

corrupted by noise as illustrated in Figure 5.4.3 and this is due to the fact that they were already

filtered inside the MTi. Thereafter, the outputs of theses filters are used to estimate attitude

using TRIAD algorithm as illustrated in Figure 5.4.4. In this figure, the estimated attitude

using fused data is compared to that obtained with the raw measurements and improvement is

observed for the estimation by the proposed method with the TRIAD.

The comparison presented in Figure 5.4.5 illustrates the effectiveness of the proposed ob-

server compared to Kalman filter (implemented inside MTi) or “MHP” observer. If we con-

sider the attitude measurements given by the MTi as a reference signal, it is clear that the

performance of the proposed passive observer is better than “MHP” observer. In Figure 5.4.6,

the gyros bias estimation from both observers is shown and both two observers give roughly

similar results. Note that in this test, the constant component of the bias was canceled by

preprocessing in the MTi.
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Figure 5.4.2: Complementary Accelerometer filters experimental results
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Figure 5.4.3: Complementary Magnetometer filters experimental results

5.4.2 Attitude stabilization

For this test, we considered for simplicity and without loss of generality the special case

of stabilization of attitude. The experiment was done using the test-bench shown in Figure

5.2.1. The controller (3.3.2) was implemented using the following notations and parameters

: b̂1 = â (normalized) , b̂2 = m̂ (normalized) are the estimates of the inertial vector measure-

ments given by the accelerometers and magnetometers, respectively and ω(t) (rad/s) is the

rate gyro measurements. The gains corresponding to accelerometer and magnetometer mea-

surements are ρ1 = 1.66 and ρ2 = 0.1161 (for the axis x and y), respectively, and ρ1z = 0.05

and ρ2z = 0.03 (for the axis x and y). The damping gain k = 0.2621 and the filter gains are

α1 = 6 and α2 = 10.

The main loop for attitude stabilization is running at 100Hz. At each loop the measure-

ments of accelerometers and magnetometers are normalized after each iteration. As desired

attitude is Rd(t) = I, the desired vectors are: bd
1 = r1 and bd

2 = r2. Due to the poor quality of
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Figure 5.4.4: Attitude estimation experimental results for the proposed observers



5.4 Experimental validation of proposed attitude estimation and control methods 109

Figure 5.4.5: Attitude estimation experimental results comparison
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Figure 5.4.7: Attitude stabilization experimental results

magnetometer measurements the gains corresponding to z axis are chosen small. Therefore,

the stabilization is done around x and y axis only. Then, starting from an arbitrary measured

initial condition in Euler angles (φ ,θ ,ψ) = (−18.478,41.192,2.847)°, the evolution of nor-

malized inertial measurements vectors, torque and Euler angles are shown in Figure 5.4.7. We

can see that after transient time, the normalized measurements vectors a and m converge to

the desired values bd
1 = [0,0,1]T and bd

2 = [0.434,−0.04,0.899]T . Consequently according

with the attitude estimate, this corresponds to the roll and pitch angles close to zero which

confirms the stabilization of the platform. We can also observe that the control torques are

smooth without noise through the use of the complementary filter.

5.5 Conclusion

The Unmanned Aerial Vehicles (UAVs, drones, multirotors, quadcopters) markets are in expo-

nential growth. Especially, due to widening of the civil application fields and high potentials

of aerial robotics. Generally, it is hard to use commercial aerial robot for research purposes,

due to the fact that researcher should develop his own flight controller to get access to all
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needed sensor informations and control correctly the robot. The emergence of the open source

projects in this domain resolve this problem. Probably, one of the most known open source

project in aerial robots community is ArduCopter project. Sponsored by 3DRobotics, the

project offer a complete open source solution to control various types of aerial robots. For this

reason, we used this project as a start point to make experimental research.

ArduCopter project was modified and used successfully to validate research theoretical

results. Indeed, the proposed attitude estimation and control solutions were validated using

DIY Quadcopter hardware and ArduCopter software project. A test-bench for attitude control

was assembled using holder with rotation ball joint for security purposes. The obtained ex-

perimental results show the effectiveness and performances of the proposed solutions. These

results can be improved in future by using the new advanced autopilot system PixHawk rather

then the used one (for instance, the APM2.6). Actually, with APM2.6 controls are generated

at 100Hz as main loop frequency. PixHawk will allow us to increase this frequency four times,

which means 400Hz as a main loop running frequency. Thus, stability will be better and more

reliable measurements will be available for other experimental tests.



Conclusion

Despite the considerable number of solutions and due to their importance, attitude estimation

and control problems are still relevant. In fact, this thesis gave some contributions on rigid

body attitude estimation and rigid body attitude control problems. There are especially three

majors contributions presented in this dissertation :

The first one was given in chapter 2, where the notion of complementary linear-like filter

was introduced and used with algebraic algorithms (such as TRIAD, Quest, etc.) to give an

attitude estimation solution. The novel solution led to several possibilities of implementation

considering n-order direct or passive forms of the complementary filters and the estimation

of gyro bias. A complete stability analysis concluded that all trajectories of the closed loop

system converge globally asymptotically to the desired equilibrium point. The obtained results

were validated and compared to efficient existing solutions by simulations and experiments

using a Quadrotor aerial robot and an external reliable Inertial Measurements Unit.

The second contribution of this dissertation was presented in Chapter 3, in which a novel

attitude tracking control law coupled with a new linear-like complementary filter were pro-

posed. Only inertial vector measurements and rate-gyro measurements were used to con-

trol the attitude of a rigid body without using “attitude measurements”. Based on Lyapunov

method and Invariance LaSalle’s theorem, it was shown that the closed loop error dynamics

are almost global asymptotic stable and by a suitable choice of control gains, the closed loop

system can not have continuum of equilibria. The designated controller avoids the undesired

unwinding phenomena and exhibits noticeable robustness to noise. This was illustrated by

simulations and real time implementation on a quadrotor autopilot.

The third contribution was presented in Chapter 4, where a new rigid body attitude stabi-

lization control law was presented, in which neither the angular velocity nor the instantaneous

measurements of the attitude are used in the feedback. The unavailability of the angular veloc-

ity is handled by the use of an observer-like based on an auxiliary system represented by a first

order linear filter of inertial vector measurements. The originality of the proposed controller

is that it doesn’t use the inertial fixed reference vectors, it reduces the set of unstable equi-

libria of the closed loop dynamics with respect to previous proposed controllers, it provides
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an almost global asymptotic stability of the desirable equilibrium and avoids the “unwinding

phenomenon”. Also, it was shown that by an adequate choice of control gains, continuum of

equilibria of the closed loop system does not exist given at least two non-collinear observed

inertial vectors. To correctly set the controller gain matrices, a non-linear constrained optimal

tuning method have been used. The performances and effectiveness of the proposed solution

were illustrated via simulation results and compared with existing work.

Throughout the completion of this work, several future challenges were identified. The

first one related to the proposed high order passive second form, in which the stability analysis

remains an open problem when the order is higher than two. The passive second order filter

could be of great help to enhance the low sampling frequency of magnetometer measurements

compared to that of accelerometer. This seems possible by the introduction of the sensor

model as a low pass filter in the complementary filter disign. Also, an interesting work will be

the use of vision sensors as source of at least two or more non-collinear observed vectors.

Another possible future work is the extension of the methods presented in this thesis related

to attitude control to the case of absolute position control problem of aerial vehicles. Another

major contribution would be the generalization of attitude stabilization control without angular

velocity to the case of tracking, where the desired attitude and desired angular velocity are time

varying. This property makes the stability analysis very challenging.



Appendix A

Proof of Item 4 of Theorem 4.1

Proof. First of all notice the equilibrium points Ω±
i , i = 2,3,4, cannot be locally asymptot-

ically stable. Indeed let Ω be one of these points and U any open neighborhood of Ω in ϒ.

Define

V−
Ω := {χ ∈ ϒ |V (χ)<V (Ω)} , (A.0.1)

and set U− := (V−
Ω ∩U). The set U− is obviously non empty since it contains points of the

type λΩ with |λ |< 1 close enough to 1. Moreover, for every χ ∈U−, the trajectory of (4.2.21)

does not converge to Ω since V is non increasing.

We next prove that the linearization of (4.2.21) at Ω is hyperbolic and admits an eigenvalue

with positive real part. We first perform a change of variables. If q̄0 = 0 then q̄ = σvρ , where

σ =±1 and vρ is an eigenvector of Wρ . Let us use the following change of variable (cf. Bullo

and Lewis [16], Chaturvedi et al. [20], Mahony et al. [61])

X =

[
x0
x

]
=

[
0

−σvρ

]
�
[

q̄0

q̄

]
= σ

[
vT

ρ q̄
−q̄0vρ −S(vρ)q̄

]
(A.0.2)

From (A.0.2) we have[
q̄0

q̄

]
=

[
0

σvρ

]
�
[

x0
x

]
= σ

[
−vT

ρ x
x0vρ +S(vρ)x

]
(A.0.3)

Recall that vρ is a unit eigenvector of Wρ with associate eigenvalue λρ . The term Ξ =

−(q̄0Id − S(q̄))Wρ q̄ function of the new variable can be evaluated as follows. First using the

fact that σ2 = 1, Wρvρ = λρvρ , S
(
S(vρ)x

)
= S(vρ)S(x)−S(x)S(vρ) and S(vρ)vρ = 0, one can

obtain
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Ξ = −σ2
((

−vT
ρ x
)

Id −S
(
x0vρ +S(vρ)x

))
Wρ
(
x0vρ +S(vρ)x

)
= λρx0vT

ρ xvρ + vT
ρ xWρS(vρ)x+ x0S(vρ)WρS(vρ)x

+
(
S(vρ)S(x)−S(x)S(vρ)

)
Wρ
(
x0vρ +S(vρ)x

)
, (A.0.4)

then, using the fact that xT vρ = vT
ρ x, and S2(vρ) = vρvT

ρ −vT
ρ vρ Id = vρvT

ρ − Id , one can get that

vT
ρ xvρ = vρvT

ρ x =
(
S2(vρ)+ Id

)
x, (A.0.5)

using the fact that S(vρ)S(x) = xvT
ρ − vT

ρ xId and vT
ρ S(vρ) = 0, then

S(vρ)S(x)WρS(vρ)x =−vT
ρ xWρS(vρ)x, (A.0.6)

using the fact that Wρvρ = λρvρ and S(x)vρ =−S(vρ)x, then

x0S(vρ)S(x)Wρvρ =−λρx0S2(vρ)x (A.0.7)

Finally, using (A.0.3), (A.0.4), (A.0.5), (A.0.6) and (A.0.7), one can rewrite (4.2.21) func-

tion of the new variable as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇ = −Adξ +Bd(X)ω̄

ẋ0 = −1
2xT ω̄

ẋ = 1
2 (x0Id +S(x)) ω̄

Jd ˙̄ω = −BT
d (X)ΓdAdξ −S(ω̄)Jdω̄

+2(x0Id −S(x))
(
λρ Id +S(vρ)WρS(vρ)

)
x

(A.0.8)

Therefore, the tangent space of S3 at

[
1

0

]
is given by the equation x0 = 0 and the lin-

earization of system (A.0.8) at Ω = (ξ , X , ω̄) = (03m,

[
1

0

]
, 0) is given by

Ż = A Z, with A =

⎡⎢⎣ −Ad 03m×3 H
03×3m 03 Id/2

−J−1
d HT ΓdAd 2J−1

d G 03

⎤⎥⎦ ,
where Z = (zT

ξ , zT
x , zT

ω)
T with zξ , zx, zω are the linearized vectors of ξ , x, ω̄ , respectively.

The matrices G = λρ Id +S(vρ)WρS(vρ) and H =
[

HT
1 · · · HT

m

]T
with Hj = S

(
Rd
(
Id +2S2

(
vρ
))

bd
j

)
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were evaluated as following : recall that an element Bdi of Bd is defined as

Bdi = S(Rdbi)

= S(RdRT ri)

= S(R̄T ri)

= S
((

Id −2q̄0S(q̄)+2S2(q̄)
)

ri
)

(A.0.9)

= S
((

Id +2vT
ρ xS
(
x0vρ +S(vρ)x

)
+2S2

(
x0vρ +S(vρ)x

))
ri

)
B

di

∣∣∣Ω = S
((

Id +2S2
(
vρ
))

ri
)

= S
((

Id +2S2
(
vρ
))

Rdbd
i

)
(A.0.10)

Since Ω is not locally asymptotically stable, it is enough to show that A does not admit

any eigenvalue with zero real part. Reasoning by contradiction, we thus assume that A has

an eigenvalue il, i2 =−1, l ≥ 0, with Zl = (zT
1 ,z

T
2 ,z

T
3 )

T ∈ C
3n+6 a corresponding eigenvector.

One gets the linear system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Adz1+ Hz3 = i lz1,

z3/2 = i lz2,

−J−1
d HT ΓdAdz1+ 2J−1

d Gz2 = i lz3.

(A.0.11)

If l = 0, one gets z3 = z1 = 0 (since Ad is positive definite) and J−1
d Gz2 = 0. Recalling that Wρ

is real symmetric with distinct eigenvalues, we have that

Wρ = λρvρvT
ρ +λ1v1vT

1 +λ2v2vT
2 ,

where (vρ ,v1,v2) is an orthonormal basis of R3 made of eigenvectors of Wρ . By using the

properties of S(vρ), one gets that

G = λρvρvT
ρ +(λρ −λ2)v1vT

1 +(λρ −λ1)v2vT
2 ,

implying that det(G) = λρ(λρ −λ1)(λρ −λ2) �= 0 and thus z2 = 0. Then the eigenvector Z is

equal to zero, which is impossible.

We deduce that l > 0. One deduces that z1 = (Ad + i lI3n)
−1Hz3, z2 =− i

2l z3 and

(i(Jdl +G/l)+HT ΓdAd(Ad + i lI3n)
−1H)z3 = 0 (A.0.12)
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Note that

HT ΓdAd(Ad + i lI3n)
−1H =

m

∑
j=1

HT
j RdΛ jA jRT

d (RdA jRT
d + ilId)

−1Hj

=
m

∑
j=1

HT
j RdΛ jA jRT

d (Rd(A j + ilId)RT
d )

−1Hj

=
m

∑
j=1

HT
j RdΛ jA jRT

d ((R
T
d )

−1(A j + ilId)
−1(Rd)

−1)Hj

=
m

∑
j=1

(RT
d Hj)

T Λ jA j(A j + ilId)
−1(RT

d Hj), (A.0.13)

For j = 1, . . . ,n, let (y j1,y j2,y j3) be an orthonormal basis diagonalizing Λ j and Yj the

corresponding orthonormal matrix such that Λ j = YjL jY T
j , where L j = diag(λ j1, λ j2, λ j3)

with λ jk ∈ R
∗
+, j = 1, . . . ,n, k = 1,2,3. Therefore, Pj(Λ j) = YjPj(L j)Y T

j , where Pj(L j) =

diag(Pj(λ j1), Pj(λ j2), Pj(λ j3)).

Recall that A j = Pj(Λ j), j = 1, . . . ,n where Pj is a positive polynomial of degree two on

R
∗
+, one deduces that

Λ jA j(A j + ilId)
−1 = Λ jPj(Λ j)(Pj(Λ j)+ ilId)

−1

= YjL jPj(L j)(Pj(L j)+ ilId)
−1Y T

j

=
3

∑
k=1

λ jkPj(λ jk)

Pj(λ jk)+ il
y jkyT

jk, (A.0.14)

where the results on functions of matrices of Chapter 6 and section 6.2 in Horn and Johnson

[40] have been used.

Multiplying Eq. (??) on the left by (z∗3)
T and using Eq. (A.0.14), yields

i(z∗3)
T (lJd +G/l)z3+

n

∑
j=1

3

∑
k=1

λ jkPj(λ jk)(Pj(λ jk)− il)
Pj(λ jk)2+ l2

((T ∗
j )

T y jk)(yT
jkTj) = 0, (A.0.15)

where l > 0, Tj = RT
d Hjz3 for j = 1, . . . ,n and T ∗

j is the conjugate of the complex vector Tj.

Since (z∗3)
T (lJd +G/l)z3 is a real number, one gets by taking the real part of Eq. (A.0.15)

n

∑
j=1

3

∑
k=1

λ jkPj(λ jk)
2

Pj(λ jk)2+ l2

∣∣∣yT
jkTj

∣∣∣2 = 0, (A.0.16)

where |·| denotes the modulus of a complex number. One deduces at once that Tj = RT
d Hjz3 =

0 for j = 1, . . . ,n. Therefore, S
((

Id +2S2
(
vρ
))

r j
)

z3 = 0 for j = 1, . . . ,n. Since at least

two vectors r j are not collinear, one gets that z3 = 0 and finally Z = 0, which is again a
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contradiction.

If A does not have eigenvalues with positive real part, it would have only eigenvalues

with negative real part and thus A would be Hurwitz, implying that (4.2.21) would be locally

asymptotically stable with respect to Ω. Since this is not true, A does admit at least one

eigenvalue with positive real part. Thus, there exists an unstable manifold of dimension at

least one in neighborhoods of the Ω±
j , j = 2,3,4, and since all trajectories converge to an

equilibrium point, therefore (4.2.21) is almost globally asymptotically stable with respect to

the two equilibrium points Ω±
1 .





Appendix B

Attitude Control in ArduPilot Project
Code

The ArduPilot Project Code 3DRobotics [1] is a full open source project, designated for

Copter, Rover and Plane robots. The total code base are about 700 thousands lines includ-

ing libraries. The project make use of external support open source code, such that MAVLink

micro air vehicle marshaling-communication library and the core NuttX Real Time Operating

System, etc. The code is well documented and can be used for experimental tests. For this

purpose, we used the version “ArduCopter V3.3-dev” and made many modifications to create

our proper flight mode for attitude control. The class “attitude_control” and other part of the

code were modified to accept our controllers, the hole original process for attitude control is

depicted in Figure B.0.1.
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List of Publications

C.1 Relevant Journal Publications

1. Lotfi Benziane, Abdellaziz Benallegue, Yacine Chitour and Abdelhamid Tayebi, “Iner-

tial Vector Based Attitude Stabilization of Rigid Body Without Angular Velocity Mea-

surements”. In International Journal of Robust and Non Linear Control, arXiv preprint

arXiv:1501.04767, Article in review.

2. Lotfi Benziane, Abdelhafid El Hadri, Ali Seba, Abdellaziz Benallegue, Yacine Chitour,

“Attitude Estimation and Control Using Linear-Like Complementary Filters: Theory

and Experiment”, In International Journal of Control, arXiv preprint arXiv:1503.02718,

Article in review.

C.2 Relevant Conference Publications

1. Lotfi Benziane, Abdellaziz Benallegue and Abdelhafid El Hadri, “A globally asymptotic

attitude estimation using complementary filtering”. In Proceedings of IEEE Interna-

tional Conference on Robotics and Biomimetics (ROBIO), pages 878-883, Guangzhou,

China, 11-14 Dec. 2012. DOI:10.1109/ROBIO.2012.6491079.

2. Lotfi Benziane, Abdellaziz Benallegue and Abdelhamid Tayebi, “Attitude Stabilization

Without Angular Velocity Measurements”. In Proceedings of IEEE International Con-

ference on Robotics & Automation (ICRA), pages 3116-3121, Hong Kong, China, May

31 2014-June 7 2014. DOI:10.1109/ICRA.2014.6907307.
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C.3 Other Publications

1. Ali Seba, Abdelhafid El Hadri, Lotfi Benziane and Abdellaziz Benallegue, “Multiplica-

tive Extended Kalman Filter based on Visual Data for Attitude Estimation”. In IEEE

ICRA Workshop on Modeling, Estimation, Perception and Control of All Terrain Mo-

bile Robots, Hong Kong, China, May 31-June 7 2014.

2. Ali Seba, Abdelhafid El Hadri, Lotfi Benziane and Abdellaziz Benallegue, “Attitude

Estimation Using Line-Based Vision and Multiplicative Extended Kalman Filter”. In

International Conference on Control, Automation, Robotics and Vision (ICARCV ),

Marina Bay Sands, Singapore, Dec 10-12 2014.
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