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Abstract

This thesis was designed to explore the dynamic regression models, assessing the sta-
tistical inference for the survival and reliability data analysis. These dynamic regression
models that we have been considered including the parametric proportional hazards and
accelerated failure time models contain the possibly time-dependent covariates. We dis-
cussed the following problems in this thesis.

At first, we presented a generalized chi-squared test statistics Y2
n that is a convenient to

fit the survival and reliability data analysis in presence of three cases: complete, censored
and censored with covariates. We described in detail the theory and the mechanism to used
of Y2

n test statistic in the survival and reliability data analysis. Next, we considered the
flexible parametric models, evaluating the statistical significance of them by using Y2

n and
log-likelihood test statistics. These parametric models include the accelerated failure time
(AFT) and a proportional hazards (PH) models based on the Hypertabastic distribution.
These two models are proposed to investigate the distribution of the survival and reliability
data in comparison with some other parametric models. The simulation studies were de-
signed, to demonstrate the asymptotically normally distributed of the maximum likelihood
estimators of Hypertabastic’s parameter, to validate of the asymptotically property of Y2

n

test statistic for Hypertabastic distribution when the right censoring probability equal 0%
and 20%.

In the last chapter, we applied those two parametric models above to three scenes of
the real-life data. The first one was done the data set given by Freireich et al. [46] on the
comparison of two treatment groups with additional information about log white blood cell
count, to test the ability of a therapy to prolong the remission times of the acute leukemia
patients. It showed that Hypertabastic AFT model is an accurate model for this dataset.
The second one was done on the brain tumour study with malignant glioma patients, given
by Sauerbrei & Schumacher [105]. It showed that the best model is Hypertabastic PH on
adding five significance covariates. The third application was done on the data set given
by Semenova & Bitukov [106] on the survival times of the multiple myeloma patients. We
did not propose an exactly model for this dataset. Because of that was an existing one
intersection of survival times. We, therefore, suggest fitting other dynamic model as Simple
Cross-Effect model for this dataset.

Keywords: Accelerated Failure Time model, Covariates, Cox model, Dynamic regres-
sion models, Flexible parametric models, Generalized Chi-squared statistic, Goodness-of-fit
tests, Hypertabastic survival models, Leukemia cancer, Malignant glioma cancer, Multiple
Myeloma cancer, Proportional Hazards model, Survival data analysis.
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Résumé

Cette thèse a été conçu pour explorer les modèles dynamiques de régression, d’évaluer
les inférences statistiques pour l’analyse des données de survie et de fiabilité. Ces modèles
de régression dynamiques que nous avons considérés, y compris le modèle des hasards
proportionnels paramétriques et celui de la vie accélérée avec les variables qui peut-être
dépendent du temps. Nous avons discuté des problèmes suivants dans cette thèse.

Nous avons présenté tout d’abord une statistique de test du chi-deux généralisée Y2
n qui

est adaptative pour les données de survie et fiabilité en présence de trois cas, complètes,
censurées à droite et censurées à droite avec les covariables. Nous avons présenté en détail
la forme pratique de Y2

n statistique en analyse des données de survie. Ensuite, nous avons
considéré deux modèles paramétriques très flexibles, d’évaluer les significations statistiques
pour ces modèles proposées en utilisant Y2

n statistique. Ces modèles incluent du modèle
de vie accélérés (AFT) et celui de hasards proportionnels (PH) basés sur la distribution de
Hypertabastic. Ces deux modèles sont proposés pour étudier la distribution de l’analyse de
la duré de survie en comparaison avec d’autre modèles paramétriques. Nous avons validé
ces modèles paramétriques en utilisant Y2

n. Les études de simulation ont été conçus.
Dans le dernier chapitre, nous avons proposé les applications de ces modèles paramétriques

à trois données de bio-médicale. Le premier a été fait les données étendues des temps de
rémission des patients de leucémie aiguë qui ont été proposées par Freireich et al. [46] sur
la comparaison de deux groupes de traitement avec des informations supplémentaires sur
les log du blanc du nombre de globules. Elle a montré que le modèle Hypertabastic AFT
est un modèle précis pour ces données. Le second a été fait sur l’étude de tumeur cérébrale
avec les patients de gliome malin, ont été proposées par Sauerbrei & Schumacher [105].
Elle a montré que le meilleur modèle est Hypertabastic PH à l’ajout de cinq variables de
signification. La troisième demande a été faite sur les données de Semenova & Bitukov
[106], à concernant les patients de myélome multiple. Nous n’avons pas proposé un modèle
exactement pour ces données. En raison de cela était les intersections de temps de survie.
Par conséquent, nous vous conseillons d’utiliser un autre modèle dynamique que le modèle
de la Simple Cross-Effect à installer ces données.

Mots clés: Analyse de survie, Covariables, Modèle de Cox, Modèle des Hasards Propor-
tionnels, Modèles de survie de Hypertabastic, Modèles des paramétriques flexibles, Modèle de
régression dynamique, Modèle de vie accélérée, Cancer de leucémie, Cancer de gliome malin,
Cancer de myélome multiple, Test d’ajustement, Statistique du test du Chi-deux généralisée.
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General Introduction

1 Goals

Survival models have been studied and applied in several fields, such as medicine, public,
health, epidemiology, engineering, social and behavioral sciences. During the 2nd half of
20th century, a lot of development is made and played a vital role in survival and reliability
analysis. Some frequently used survival models that can be mentioned here include the
Proportional Hazards (PH) (is so-called Cox) and Accelerated Failure Time (AFT) models.

The Cox model became famous and commonly used as soon after it was proposed by
Cox [34] in 1972. This model is the most widely used in clinical analysis because of it has
"the advantage of estimating the effect of covariates as the logarithm of hazard ratio without
the need to estimate the baseline hazard" (Nelson et al. [81]). There are some references,
for example, Cox [35], Andersen & Gill [5], Andersen et al. [6], Tsiatis [117], Hosmer et al.
[56] which we recommend as the good discussions on the PH model and its applications.
However, this model has also some limitations like the hazard ratio at any moment does not
depend on the values of the variables before this moment, so that, the use of Cox model can
lead to lost or omit the important clinical information. Furthermore, the behavior of the
hazard function that can be more interesting to the medical research because it is directly
related to the survival times of a type of disease. That is why many extensions have been
made for the Cox model. We can cite here some recent significant contributions that have
the good discussions, for instances, Qing Chen [30], Royston [99, 100], Royston & Parmar
[102], Lin & Ying [73]. Qing Chen [30] proposed an accelerated hazards regression model
to study the relationship between survival times and covariates through a scale change
between hazard functions. Royston & Parmar [102] proposed a flexible parametric model
using restricted cubic splines for censored survival data.

An alternate to Cox regression and perhaps a better way to evaluate the risks in co-
horts however exists in terms of the AFT models, which are efficiently used in the time to
event data. AFT models postulate a direct relationship between the logarithm of survival

1



2 General Introduction

time and covariates. Therefore, we can directly appraise the impact of the covariates on
the survival time instead of the hazard ratio as in the Cox model. This characteristic
allows for an easier interpretation of the results since the parameters measure the effect
of the correspondent covariate on the mean survival time. A semi-parametric AFT model
is much less used in survival analysis than the Cox model because of complicated estima-
tion procedures. A non-parametric AFT model also can be used. However, a frequently
used is a parametric AFT model. Different from the Cox model, the parametric AFT
model is mostly applied to the failure time regression analysis and accelerated life testing.
Some key references, for instance, Miller [78], Bagdonavičius [9], Meeker & Escobar [77],
Bagdonavičius & Nikulin [14], Martinussen & Scheike [75], Kalbfleisch & Prentice[60].

On the other hand, in recent years, the investigation of the parametric models as the
baseline functions for the PH or AFT models is also interested. In this regard, Hjort
[54] remarked that "The success of Cox regression has perhaps had the unintended side-
effect that practitioners too seldomly invest efforts in studying the baseline hazard... A
parametric version ... if found to be adequate, would lead to more precise estimation
of survival probabilities and related quantities and concurrently contribute to a better
understanding of the phenomenon under study...". A basic assumption of the parametric
models, one often used as the Exponential, Weibull, Gamma, Log-normal, Log-logistic
to fit the data. We can outline some key references, such as, Royston & Lambert [101],
Kleinbaum & Klein [65], Lee & Wang [69], Collett [33], Lawless [67]. Following these above
contributions we see that using the parametric models, we can receive some advantages as

• The parametric models can be brought the smooth estimates of the hazard and
survival functions for any combination of covariates. In addition, the parametric
models can completely adapt to the data influenced by time-dependent covariates.

• Unlike the PH regression model, with the parametric models we can consider to fit
the data with more time scales of interest.

These traditional parametric models commonly used in literature. However, these mod-
els may have some disadvantages, such as

• For the main parametric models, the Exponential, Weibull or Gamma have a hazard
functions that always goes in the same direction with time-up, time-down or constant.
This means that these models cannot fit the data well.

• For the Log-normal, Log-logistic distributions, although their hazard functions have
one turning-point, their posture graphs sometimes shown the flexibility poorly. Specif-
ically, the hazard rate of Log-normal has uniquely non-monotonic and Log-logistic
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hazard rate has monotone decreasing or increases from 0 to its maximum value and
then decreases to 0.

This indicate that the traditional parametric models are not enough flexible to repre-
sent real data adequately. So one often discovers the new parametric models with the rich
properties of hazard functions. One of them is a Hypertabastic distribution which was
introduced by Tabatabai, Bursac, Willams and Singh [113] in 2007. Hypertabastic distri-
bution seems quite complicated to calculate because it is built from the class of Hyperbolic
functions. As compared with traditional distributions, the Hypertabastic hazard rate func-
tion also can be monotone increasing, monotone decreasing or ∩-shaped in independence
of parameter values. Apart from that, Hypertabastic distribution can be brought some
following benefits.

• Hypertabastic can be used as the alternative for traditional distributions. This dis-
tribution also completely adapts to the data when the hazard ratio has monotone.
For example, Tabatabai et al. [113] concluded that the hazard rate for glioma brain
cancer patients was increasing function for both groups of misonidazole and without
misonidazole treatments.

• When the Hypertabastic hazard function has ∩-shaped, this distribution may be
played a role in competition with the Birnbaum-Saunders and Inverse Gaussian dis-
tributions. In this document, a part of simulation study carried out to demonstrate
this advantage.

• The Hypertabastic hazard function sometimes has the decline rapidly at some period
of time after the peak. This property allows this distribution becomes more flexible
and compatible with the real-life datasets.

Based on the log-likelihood and Akaike Information Criterion (AIC) statistics, Tabatabai
[113–115] also suggested using Hypertabastic distribution as the baseline function for para-
metric Cox and AFT models to fit the clinical data, such as, one data set from multiple
myeloma, the second taken from a randomized study of glioma patients who underwent
radiotherapy treatment with and without radiosensitizer misonidazole and other set from
survival times of breast cancer patients. Although the log-likelihood ratio and AIC statis-
tics are really good when they are used to select the significance variables or to evaluate the
correlation of the regression parameters in such model, but they will not give any warning
of that when the candidate models fit poorly. Therefore, these statistics are no more useful
to fit for the real-life datasets influenced by many covariates.
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We believe that the Hypertabastic survival models may be lead to more promise of sta-
tistical inferences if we use a good assessing adequacy of fit (or so-called a goodness-of-fit
(GOF) test) for real-life data influenced by the covariates. In fact, there are many ways to
test GOF, some frequently used are described in section 4-chapter 1 and section 4-chapter
3 of this document, though our primary focus is the generalized chi-squared statistic (Y2

n)
that was proposed by Nikulin [83, 85] in 1973. Let us cite some good references that stud-
ied the tests are those of Pearson [95], Kolmogorov [66], Smirnov [110], Cramer [37], von
Mises [124], Birnbaum [26], Anderson & Darling [7] and many other. There is no general
theory that tells us how to choose a good test. Because that a selected test depends many
factors including the quality of the data, properly designed and applied of test that one
use. This often refers to the estimation and then finding the limit of distribution of the
test statistic. However, for almost of tests, the only method currently available to get a
limit distribution of test statistic is by simulation. Then why we choose Y2

n statistic?
Before answering this question, we give bellow a brief review of a historical development
of Y2

n.
The first to initiate the GOF test is Pearson in 1900 with the introduction of the chi-

squared test statistic that is well-known as a Pearson’s statistic. A century later, at the
international conference Goodness-of-Fit Tests and Model Validity to celebrate the 100th

anniversary of the landmark paper by Karl Pearson on chi-square GOF test, Cox [36]
said "For perhaps 70 years following its introduction the chi-squared test was one of the
most widely used tools of formal statistical analysis...". However, the limiting distribution
of Pearson’s statistic has χ2 distribution only for simple null hypothesis. So, Pearson’s
statistic is not available for composite hypotheses, especially, when the data are not being
always fully observation and more influenced by the possible time-dependent covariates.
As a consequence, many investigations of modified Pearson’s statistic are considered. The
majority of these considerations are discussed in the direction of replacing the unknown
parameters of the null hypotheses by their estimates based on the groups or original sample.
For example, Fisher [44] shown that the distribution of Pearson’s statistic has in limit χ2

with the degrees of freedom that is reduced by the number of parameters estimated from
the sample. Fisher’s result is only correct when the parameters are estimated from the
frequency vector by the method of minimum chi-squared Pearson’s statistic. Later, Cramér
[37] also indicated that Fisher’s result remains valid if the parameters of the null hypothesis
are replaced by the multinomial maximum likelihood estimator based on grouped data. It
is evident that the frequency vector generally are not the sufficient statistics. This means
that we taken the censored data if we used the grouped data to estimate the parameters
of the null hypothesis. Thereafter, in 1954, Chernoff & Lehmann [31] clearly shown that
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the limiting distribution of Pearson’s statistic does not follow a χ2 distribution if the
parameters of the null hypotheses are estimated by the method of maximum likelihood
estimators (MLE) based on the original sample.

Until 1973, Nikulin [83, 85] is the first who proposed a modified chi-squared test statistic
for shape and scale distribution. The essence of this statistic is used the property of
multivariate normal distribution of the vector which is based on the differences between
two estimators of the probabilities to fall into grouping intervals: one estimator is based
on the empirical distribution function, one other is based on the MLE of parameters of
the null hypothesis using trivial sufficient statistic. Next, Nikulin, by using the property
"best asymptotically normal" of MLE and Wald’s method (see, Moore [80]), solved the
problem completely for any null hypotheses. Apart from that, with Nikulin’s statistic the
cell boundaries are grouped as the random continuous functions using the predetermined
probabilities for the cells. This approach does not change the characteristic of the chi-
squared of the limiting distribution of Nikulin’s statistic and it usually use in survival
and reliability analysis. A year later, Rao & Robson [97] obtained the same result for
the exponential family of distribution by using the method of moment to estimate the
parameters. Since then this statistic refers as Nikulin-Rao-Robson (NRR) statistic.

After its introduction the NRR statistic was the most widely utilized in literature.
Some good key references, have been published, we recommend, for instance, LeCam et al.
[68], Drost [38, 39], Aguirre & Nikulin [3], Van der Vaart [118], Voinov [123], Voinov et al.
[120], Bagdonavičius et al. [19], Voinov et al. [121] and many other. Apart from that, a
lot of investigations done to recommend the application of chi-squared NRR test statistic
in analysis of survival and reliability. For example, Habib & Thomas [51], Hollander &
Peña [55], Zhang [126] considered natural modifications of the NRR statistic to the case
of censored data.

In 2011, Bagdonavičius & Nikulin [16, 21], by developing the idea of Akritas [4] of
comparing observed and expected numbers of failures in time intervals, introduced the
similar test which we called generalized chi-squared test statistic (Y2

n) for the censored
failure-time data. Later, the most of considerations of Y2

n statistic and its applications
are considered in recent years, such as, Voinov et al. [122], Gerville-Réache et al. [47],
Haghighi & Nikulin [52], Bagdonavičius et al. [23, 24], Bagdonavičius & Nikulin [18],
Nikulin & Tran [88], Goual & Seddik-Ameur [48], Dupuy [41], Nikulin et al. [92]. In the
thesis of Tahir [116] at University Bordeaux I, he has discussed Y2

n on the validation of
some parametric models and its application to fit the Birnbaum-Saunders AFT model.
Goual [48] also proposed the Inverse Geleralized Weibull AFT model and applied it to the
survival and reliability analysis using Y2

n.
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We see that the use of Y2
n may be led some addition points as follows.

First, this statistic was taken the full information of the original data which are a
trivial sufficient statistic to estimate the parameters of the null hypothesis. This means
that all observation of the data are used. This statistic make sure overcome the obstacles
of Pearson’s statistic that still provide sufficient basic information of the sample.

Secondly, based on the MLE, this statistic used completely the Fisher information that
was to measure the information relative to a parameter contained in a model selection.
This gives a more objective assessments of the selected model of fit.

Further, this statistic is good adapted to fit the statistical models used in survival and
reliability analysis, when the data are censored and we take into account the influence of
covariates.

From these above reasons, we choose a Hypertabastis baseline distribution as an object
of our study and applying Y2

n statistic to the assessing adequacy of fit for the parametric
survival models based on this baseline distribution.

Our goals, foremost, are to explain in detail the mechanism used of Y2
n test statistic

for the complete or right censored or right censored with time varying covariates in the
survival and reliability analysis. Later, we present the statistical inferences of Hypertabas-
tic survival models including the estimated parameters and the goodness-of-fit test. The
tool which we use in the goodness-of-fit procedure to be Y2

n test statistic. Finally, we
discuss on the validation of these models above applying to the real-life datasets with the
development of R-language.

2 Outline of Thesis

In addition the general introduction, conclusion, bibliography and appendix. This
thesis includes four chapters.

In chapter 1, we first give a brief review of Pearson’s statistic and some estimated
methods for parameters of the null hypotheses. Next, we focus describe in detail our
approach on the NRR statistic to fit the complete and non-complete data. We also illustrate
the power of NRR test statistic in comparison with some other GOF tests for the testing of
normality by simulation study. In this chapter, we also take the Millikan’s measurements
data (see, Linnik [74], Voinov et al. [121]), that described the values of the charge of the
electron to validate the testing of normality using NRR statistic.

Chapter 2 addresses the question: how do we use the parametric survival models for
the right-censored data influenced by possible time-dependent covariates? So, our primary
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focus, in this chapter, is to consider some parametric survival models, including parametric
PH and parametric AFT models. A theoretical global of the properties of these models as
the estimations of the regression parameters and reliability characteristic are given explicit.
Later, we consider the problem of testing for these models using Y2

n.
Chapter 3 considers the validity of Hypertabastic survival models by using the theoret-

ical global of Y2
n which we discussed in the second chapter after presenting the properties

of Hypertabastic distribution. Next, the simulation studies were carried out, the first is to
illustrate the

√
n-consistent property of Hypertabastic parameters, the second is to prove

the limiting distribution of Y2
n do not change for the testing of Hypertabastic distribution

and other is to demonstrative the flexibility of Hypertabastic distribution in comparison
with Log-normal (LN), Log-logistic (LL), Birnbaum-Saunders (BS) and Inverse Gaussian
(IG) distributions when the data are the right censored. We also demonstrate the perfor-
mance of Y2

n in comparison its value with Anderson-Darling, Cramér-von Mises-Simirnov
statistics.

In the last chapter, we focus discuss the applications and the benefits of Hypertabastic
survival models to adapt for the three cases of real-life datasets including: completely
observation, right censored and right censored under the covariates. A complete dataset of
the quantities of the oil field which we are taken to validate the Hypertabastic distribution
using Y2

n statistic. Next, three real-life datasets from three motivating studies are explored,
the first is to discuss on the remission duration from a clinical trial for acute leukemia
study by applying to the parametric Hypertabastic AFT model; The second data set
from the brain tumour study of a randomized clinical trial comparing two chemotherapy
regimens in patients with malignant glioma, is to consider for the Hypertabastic PH model;
The third dataset was designed by the Hematology Center, in the Main Military Clinical
Hospital to compare the time of responses in two groups of treatment, one treated the drug
together Bortezomibe, other one received the drug without Bortezomibe. There is exiting
an intersection of survival times of two patient groups. So, this dataset is to explore for
several parametric survival models. Although those three datasets are already studied but
we would like here to propose a more accurate model for each of datasets by using Y2

n and
log-likelihood statistics.

3 The data

We offer as follows the failure time data which the response of interest is the time
from a well defined time origin to until some events happen or to the end-point time of
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study τ . If the moment τ is stochastic, it is really necessary to consider the distribution
of τ . Because, in this circumstance, the distribution of τ will affect to the reliability
characteristics estimation. We can cite here some key references, for example, Martinussen
& Scheike [75], Huber et al. [59], Shen [109]. Following the purpose of our works, we
assume that the end-point τ is constant and suit the aim of each study.

Returning the survival analysis, suppose that the data X = (X1, X2, · · · , Xn)T are
available on the failure times of n individuals usually taken to be independent during an
experiment. Follows that, the failure time data X can be classified by the way: complete or
censoring observations or censored with the time-dependent covariates (stresses, explana-
tory variables) or censored with covariates and observed degradation. For the our aims,
we only describe here three scenes of the data, as follows.

3.1 Complete data

If the failure time data are complete observations, that is Xi = Ti for all i = 1, 2, · · · , n
where

T = (T1, T2, · · · , Tn)T , (1)

are independent identically distributed (i.i.d.) random variables, then the statistical anal-
ysis of parametric models is doing by classical way.

In this situation, if the parameter of the models are known, we can use any test statistic,
on the contrary, if the parameters of models are unknown we can use the standard maximum
likelihood method to estimate the unknown parameters and we propose using the Y2

n

statistic for the assessing adequacy of fit the completely data.

3.2 Censored failure time data

Today, the commonly failure time data X are non-complete with the most common
example being the right censoring mechanisms. Censoring occurs when the value of ob-
servation is only partially known, i.e. the time T is observed if T ≤ C, C > 0 is called
the right-censoring time. Otherwise, we only know that T > C. On the contrary, left-
censoring means that the time T is observed if T ≥ C. The right censoring mechanisms
can be various the type I, type II or type III.

If n subjects are observed at fixed study time t then censoring is called Type I censoring,
in this case, C = t for all subjects.

If the study is terminated whenever a specified number r (r < n) of failures have
occurred, it is called type II censoring. The time of the rth failure is then defined as the
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censoring time C for all subjects.
However, the commonly data which we observed in survival analysis are right censoring,

therefore, our focus is to discuss on the right censoring data. Let us C1, C2, · · · , Cn are the
random censoring times and if the failure times Ti, Ci are mutually independent positive
random variables for all i = 1, 2, · · · , n. Let

Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, i = 1, 2, · · · , n. (2)

where a ∧ b = min {a, b} and 1A is an indicator of the event A. We obtain the following
data

(X1, δ1), (X2, δ2), · · · , (Xn, δn). (3)

If δi = 1, it is known that a failure occurs at the time Ti = Xi, else, if δi = 0, then
the failure occurs after the time Xi, i.e. the subject is censored by Ci = Xi. We note that
the distribution of bi-variate element (Xi, δi) is not trivial, since the first component is
continuous and the second element is discrete.

Right censored samples are often presented by different way, which is well adapted to
the problems considered in survival and reliability analysis. In particular, we shall use
the following counting processes for construction the chi-squared type tests for parametric
survival models. Set

(N1(t), Y1(t), t ≥ 0), (N2(t), Y2(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0), (4)

where Ni(t) = 1{Xi≤t ,δi=1} is the number of failures of the ith unit in the interval [0, t],
Yi(t) = 1{Xi≥t} indicate the number "at risk" of ith unit just prior the moment t.

The advantage of using data presentation (4) is the values of counting processes

{Ni(u), Yi(u), 0 ≤ u ≤ t, i = 1, 2, · · · , n},

is showed the history of failures and censorings up to time t. Indeed, the two presented
ways of data presentation in (3) and (4) are equivalent. We shall describe in detail the
presentation of data in terms of counting processes in section 6 - chapter 1 and section 3 -
chapter 2 of this document.

When the data are the right censored failure time, one can use again the maximum
likelihood method for parametric situation, and the Kaplan-Meier (KM) estimator in non-
parametric case (see, Kaplan & Meier [61]) to estimate the survival functions. The tool
which one can be used to the assessing adequacy of fit for the right censored data, one can
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be cited here, some test statistics proposed by Habib & Thomas [51], Akritas [4], Hjort
[53], Hollander & Peña [55], Kim [63] and Bagdonavičius et al. [16]. Of course, we suggest
again using the statistic Y2

n of Bagdonavičius et al. for this situation, since this statistic
have the nice advantages as the presented above in section 1.

3.3 Censored failure time data with covariates

Besides observing the censored observations, the failure time data X may be governed
by individual characteristics of units, that are expressed as the covariates. We suppose
that any covariate is given in terms of deterministic time function

z(·) = (z1(·), z2(·), · · · , zm(·))T : [0, ∞) −→ Rm, z(·) ∈ E, (5)

where E is a set of all possible covariates and zi(·) is a scalar function. Note that the
covariate z(·) can be endogenous or exogenous. They can be categorized into two classes:
the constant covariates over the time (and we note E1 is the set of all constant covariates)
and the time-varying covariates (and we note E in this situation). We also can classify the
covariates as the constant, or step-stresses, or degradation stresses, or cyclic stresses, or
random stresses (commonly used in reliability and degradation models). More about the
type of covariates, one can see, Meeker & Escobar [77], Dupuy [41].

It is evident that the changes in the values of covariates imply the changes in the life
conditions of patient. These changes can increase or decrease the risk of failure, and hence
all evolution processes of population go more quickly or more slowly. For example, the
survival time of cancer patients may be affected by the area of residence, age, gender,
groups of treatment and some other characteristics. A shabby area of residence, a high age
can make the failure time of cancer patient happen faster and contrary...

As a consequence, the information obtained from covariates data may be used in clin-
ical trial and reliability in order to quantify the prediction of survival, to control and to
improve the efficiency of different technology and procedures. So, to construct the dynamic
regression models at first we must to determine the impact of covariates, and after to un-
derstand by which way they influence on survival. We present as follows the presentation
of the right censored data with covariates.

Suppose that n items are observed and the ith item is affected by covariates zi(·) =
(zi1(·), · · · , zim(·))T ∈ E. The data are assumed to be independently right censored which
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we present as follows

(X1, δ1, z1(s)), (X2, δ2, z2(s)), · · · , (Xn, δn, zn(s)), 0 ≤ s ≤ τ, (6)

where Xi and δi, for all i = 1, 2, · · · , n, are defined in (2).
In this situation, one need the special methods for the special models. A test statistic

Y2
n which we propose to fit this kind of data, is the most consistent. In addition our

motivation is to work on the parametric survival models and to apply them to each kind
of data. These models is considered based on the several failure-time baseline function
as Weibull, Log-normal, Log-logistic, Birnbaum-Saunders, Inverse Gaussian and Hyper-
tabastic distributions. And the our discussed focus only include the dynamic parametric
PH and AFT models using Hypertabastic distribution as the baseline function. So, before
considering those two dynamic models, we give for illustration some well-known real-life
data which we analyze in this document.

4 Some real-life data examples for survival and relia-
bility analysis

Example 1 (The quantities of the oil field).

The data in Table 1 are taken from the book of Bagdonavičius et al. [19] to present
the quantities Ti (in conditional units) of 49 locations of the same area of an oil field.

Table 1: The quantities of 49 locations of the same area of an oil field.

8.7 6.6 10.0 24.3 7.9 1.3 26.2 8.3 0.9 7.1 5.9 16.8 6.0 13.4
31.7 8.3 28.3 17.1 16.7 19.7 5.2 18.9 1.0 3.5 2.7 12.0 8.3 14.8
6.3 39.3 4.3 19.4 6.5 7.4 3.4 7.6 8.3 1.9 10.3 3.2 0.7 19.0
26.2 10.0 17.7 14.1 44.8 3.4 3.5

Bagdonavičius et al. [19] suggested that this dataset is suitable for Log-normal distri-
bution. We take again this dataset in Chapter 4(subsection 2.1) to illustrate the flexibility
of Hypertabastic distribution using a chi-squared Y2

n statistic.

Example 2 (Remission durations for acute leukemia study).

The times of remission from clinical trial for acute leukemia of children study were first
introduced by Freireich et al. [46] in 1963. Since then, this dataset frequently studied in
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literature, such as, Lawless [67] disused then confidence intervals (CI) of remission times
using the KM estimator and Nelson-Aalen estimator, and fitted the Weibull distribution
for this dataset containing the treatment groups variable. Klein & Moeschberger [64] also
considered the same dataset to estimate the probability of survival times using the KM
and Nelson-Aalen estimates. They also suggested that the relapse rates of acute leukemia
are different in two treatment groups (6-MP and placebo) by using the stratified log rank
test. Later, Lee & Wang [69] also concluded that the rates of relapse from remission are
strongly different in the two groups.

Kleinbaum & Klein [65] concluded that there are different in two groups treatment and
the treatment effect is confounded by the effect of log(WBC). They also used the Cox
model to fit this dataset. In 2014, using generalized chi-squared statistic, Nikulin & Tran
[88] used the same data given non acceptable fit for Exponential AFT model. Figure 1
shows the KM estimates of survival function in two groups for each type of treatment.
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Figure 1: KM estimates plots for remission duration of acute leukemia pa-
tients receiving different groups.

We taken, in Chapter 4(subsection 2.2) of this document, the extended data including
two effect variables: treatment variable and the index of log while blood cell (log(WBC)).
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This dataset reproduced in subsection 2.1 of Appendix of this document.
Let us assume that we do not have any information of the model that is good to fit the

remission duration of acute leukemia influenced by two groups of patients with additional
the log(WBC) variable for each patient. So, we need to propose an accurate model that
can be fitted this dataset best. To do this task, we first take this dataset without covariates
to fit for Hypertabastic distribution. Later, let us consider the parametric AFT models
by taking the Hypertabastic distribution as the baseline hazard function to adapt the
remission duration of acute leukemia patient under two consideration covariates. A GOF
test procedure which we used to be Y2

n test statistic. We also consider the role of applying
the Hypertabastic AFT model in comparison with other parametric AFT models. Since
then, we given 95% CI for the remission duration of the acute leukemia patients.

Example 3 (Brain tumour study with malignant glioma patients).

A randomized clinical trial comparing two chemotherapy regimens in 447 patients with
malignant glioma that are studied by Sauerbrei & Schumacher [105]. During an accrual
period of five years, 293 patients have died and the median survival time from the random-
ization was about 11 months.

The data contains 12 explanatory covariates including age, three ordinal and eight
binary covariates. Three covariates are measured on an ordinal scale that are the index
of Karnofsky, the type of surgical resection and the grade of malignancy. One of these
covariates is represented by two dummy covariates resulting 16 covariates in all. Royston
& Sauerbrei [103] have discussed the strategy selection of covariates analyzing with the
PH model. Figure 2 illustrates the survival times of malignant glioma patients receiving
different age groups. It shown that the age variable has the effect to the survival times of
the patients.

This data set is used in Chapter 4 (subsection 2.3) to explorer the distribution of the
survival times of the patients with malignant glioma under the significance covariates. For
the overall model, we suggest using the parametric Hypertabastic PH model to fit this
dataset, in comparison it with other parametric baseline distribution function using the
Y2
n statistic. We also describe the stratified Hypertabastic PH model for the selection of

covariates as follows the approach of Collett [33].

Example 4 (Multiple myeloma study).

We consider the time of response of multiple myeloma patients that were carried out
in The Hematology Center, in the Main Military Clinical Hospital named after N. N.
Burdenko, to compare the response times in two patient groups of treatment. The difference
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Figure 2: KM survival estimates for malignant glioma patients receiving
different age groups.

in these groups is in the fact that the first group received the chemotherapy together
Bortezomibe, which is marketed as Velcade by Millennium Pharmaceuticals, other received
drugs without Bortezomibe. The data include 60 patients with 56 observations and 4
censored patients, influenced by four covariates: type of chemotherapy, type of response;
sex; and age in years. Detail of the data are presented in Semenova & Bitukov [106], and
reproduced in Appendix of this document. Figure 3 below illustrate the KM estimates of
survival function for multiple myeloma patients receiving two groups of treatment.

From Figure 3, we see that the Cox model can be inappropriate for this dataset. Se-
menova & Bitukov [106] suggest using the parametric Log-normal Hsieh model included a
combination of covariates using three statistics: Kolmogorov, Cramér von Mises-Smirnov
and Anderson-Darling statistics. However, those three statistics are not consistent for the
incomplete data with covariates. Therefore, we shall explore this dataset on adding a
combination of all covariates to select a more accurate model.

We, in Chapter 4 (subsection 2.4), propose using the parametric survival models for
relating the distribution of response time to the scheme of all covariates. The class of
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Figure 3: KM estimates of multiple myeloma patients receiving different
treatment.

baseline parametric which we use to fit this dataset, including Hypertabastic, Weibull,
Log-normal, Log-logistic, Birnbaum-Saunders and Inverse Gaussian distributions.

5 Some basic notations

Let us the positive random variable T denotes the failure time of a subject. The
probability of a patient surviving up to time t is given by survivor function or reliability
function S(·) as follows

S(t) = P{T > t}, t > 0.

The function
F (t) = 1− S(t), t > 0,

is called the cumulative distribution function (C.D.F.) of the failure time T . Further, the
function

f(t) = dF (t)
dt

= −S ′(t), t > 0,
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is called the probability density function (P.D.F.) of T . However, mostly failure time data
is expressed in terms of hazard rate function which can be written as

λ(t) = lim
h→0

1
h

P{t ≤ T < t+ h |T ≥ t} = −d[lnS(t)]
dt

, t > 0.

The hazard rate specifies the instantaneous rate of mortality or failure at time t. It
follows that S(·) can be written as

S(t) = e−Λ(t), where Λ(t) =
∫ t

0
λ(u)du, t > 0,

is the cumulative hazard function of the failure time T . It is clear that the cumulative
hazard function is an increasing function from Λ(0) = 0 to Λ(∞) =∞.



Chapter 1

Generalized Chi-squared type tests

1 Introduction

It is well-known that the goodness-of-fit (GOF) test procedure is an important tool
to select the probability distribution suitable the data. In the development of statistical
literature, there are many type of tests that have been developed. One of them is necessary
to mention to be a commonly test statistic named a chi-squared measure that is proposed by
Pearson [95] in 1900 and it, nowadays, is well-known as Pearson statistic. The distribution
of the Pearson statistic in the limit has only chi-square when we take the test for simple
hypothesis. Because this limiting distribution depends totally on the parameters of the
fitted model. This means that it would not be a chi-squared if we fit the data for the
composite hypothesis. Since then, many modifications and extensions of Pearson’s statistic
have been developed, such as, Fisher [44], Cramer [37], Chernoff & Lehmann [31], Roy
[98], Plackett [96], Stigler [111]. However, there exist some disadvantages in the use of
them for the validation. For example, Fisher showed that the limiting distribution of
Pearson’s statistic has a chi-squared with the degrees of freedom is reduced by the number
of estimated parameters if and only if the minimum or maximum chi-squared based on
the vector of frequencies, are used to estimate the parameters of fitted models. In reality,
however, the frequency vector is not the unique vector that can be found from the initial
data, more it in general is not the sufficient statistic. We cannot use this statistic to replace
for original data. Furthermore, the estimation based on the vector of frequencies, are not
best asymptotically efficient. Thus, it is necessary to find a better GOF test to make
sure overcome the above obstacles that still provide sufficient basic information about the
sample.

Note that it exists one famous modified classical chi-squared test that was introduced

17
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by Nikulin [83, 85], is well adapted. The initially non-grouped data are used to estimate
parameters of the fitted models, the endpoints of grouping intervals are taken as a random
function depend on the parameters, based on the asymptotic properties of the multivariate
normal distribution, a test statistic proposed by Nikulin good overcame the disadvantages
of Pearson’s test statistic as well as the test statistics proposed earlier. A year later,
Rao and Robson [97] found the same result for the exponential family. That is why this
statistic nowadays is well-known as Nikulin-Rao-Robson (NRR) statistic, for example, one
can see, Drost [38, 39], Van de Vaart [118], Voinov et al. [119]. The direction of modified
Pearson’s statistic was continued develop by Dzhaparidze & Nikulin [42], Hsuan & Robson
[58], Bolshev & Mirvaliev [27], Dudley [40], LeCam et al. [68], Nikulin & Mirvaliev [87],
Nikulin et al. [90] and many other.

In addition the section of introduction, the consideration of the brief view about Pear-
son’s statistic, this chapter include four section. We present our approach to give explicitly
a chi-squared test based on NRR statistic for two cases of data: complete and right cen-
soring observations in sections 3 and 6. Of course, we focus discussion our approach to
build Y2

n statistic, consider the selection of cell boundaries as the Neyman-Pearson (2NPG)
classes to improve the power of Y2

n statistic. In two sections 4 and 5, we consider some mod-
ifications of this statistic and employ on the simulated power of these tests for normality.
An example of Millikan’s data is also considered for the testing of normality.

2 A brief review of Pearson chi-squared tests

Let T = (T1, T2, · · · , Tn)T be a simple sample, i.e. T1, T2, · · · , Tn are i.i.d. random
variables. Suppose we have a family of distribution F (t, θ) in R, θ = (θ1, θ2, · · · , θm)T ∈
Θ, Θ is open in Rm.

We wish to test the null composite hypothesis H0, according to which

H0 : Pθ(T1 ≤ t) = F (t, θ), t ∈ R1, θ = (θ1, θ2, · · · , θm)T ∈ Θ. (1.1)

Assume that for each θ ∈ Θ the measure Pθ is absolute continuous with respect to
certain σ-finite measure µ, given on Borelian σ-algebra B. Let us

f(t, θ) =
dPθ
d µ

(t), |t| < ∞,

is the density of the probability distribution Pθ with respect to the measure µ.
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We define a measurable partition J1, J2, · · · , Jr of R by the boundary points

−∞ = a0 < a1 < a2 < · · · < ar = +∞,

such that

pi(θ) = Pθ(T1 ∈ Ji) =
∫ ai

ai−1
dF (t, θ) =: pi > 0, i = 1, 2, · · · , r. (1.2)

From (1.2), we see that
r∑
i=1

pi = 1. Let ν = (ν1, ν2, · · · , νr)T be a frequency vector
obtained by grouping the initial random variables T = (T1, T2, · · · , Tn)T over Ji. It is
evident that

νi =
∫ ai

ai−1
dFn(t), i = 1, 2, · · · , r,

where
Fn(t) = 1

n

n∑
i=1

1{Ti≤ t},

is the empirical cumulative distribution function (E.C.D.F.) obtained from the data T1, T2, · · · , Tn.
So, for each θ ∈ Θ, we have the random vector

Xn(θ) =
(
ν1 − np1(θ)√

np1(θ)
,
ν2 − np2(θ)√

np2(θ)
, · · · , νr − npr(θ)√

npr(θ)

)T
, (1.3)

and the random variable of Pearson’s statistic

X2
n(θ) = XT

n (θ)Xn(θ) =
r∑
i=1

(νi − npi(θ))2

npi(θ) . (1.4)

If θ is known equal θ0, we have the next

Theorem 1.1 (Pearson, 1990). If H0 is true, then for any x positive

lim
n→∞

Pθ0
{X2

n(θ0) ≤ x} = P{χ2
r−1 ≤ x}, (1.5)

where χ2
r−1 has the chi-squared distribution with r − 1 degrees of freedom.

Theoretically, the Pearson’s theorem is only valid when the null hypothesis H0 is a
simple and the data are grouped, i.e. parameters θ is known and the endpoints ai are
defined in advance of the experiment. In fact, however, one do not known all of them. So,
to use the Pearson’s statistic, in general, one must overcome two above problems.
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To take the first problem, one can choose one distribution F (t, θ∗) from the family
{F (t, θ), θ ∈ Θ} in the best possible way using the data. Obviously, it is necessary
to consider the distribution Pθ0

{X2
n(θ∗) ≤ x}, where Pθ0

= P0 is the true unknown
distribution and θ∗ is our point estimators, replace for θ in (1.4). In this regard, if we use
the grouped data ν = (ν1, ν2, · · · , νr)T , we can obtain the minimum chi-squared {θ̃n},
multinominal maximum likelihood {θ̌n} or modified minimum chi-squared {θn} estimators
of θ as follows the approach of Fisher [44] and Cramér [37]. On the contrary, when we use
the simple sample T = (T1, T2, · · · , Tn)T to estimate the parameters θ, we can obtain the
MLE {θ̂n}. Besides giving some method of finding estimators θ∗ and their asymptotically
properties, we consider below the effects of the methods estimators of parameters on the
limiting distribution of X2

n(θ∗) following the works of Greenwood and Nikulin [50], Cramér
[37], Fisher [44], Chernoff and Lehmann [31], Hsuan and Robson [58], Chibisov [32].

At first, suppose that the following conditions of Cramér [37] hold

1. 0 < c < pi(θ), and
r∑
i=1

pi(θ) = 1, for all i = 1, 2, · · · , r and θ ∈ Θ.

2. ∂2pi(θ)
∂θl ∂θj

are continuous functions on Θ.

3. The rank of the matrix C = C(θ) = ||∂pi(θ)
∂θj
|| is m. So, the rank of the matrix

B = B(θ) is m, where

B(θ) =
[

1√
pji(θ)

∂pj(θ)
∂θi

]
r×m

.

The matrix J(θ) = BT (θ)B(θ) is called the Fisher information matrix of multinational
distribution with parameters p(θ) and nJ(θ) is called the Fisher information matrix in
the vector of frequencies ν.

Minimum chi-squared estimator: Let θ̃n is an estimate of θ, such that

X2
n(θ̃n) = min

θ∈Θ
X2
n(θ) ⇐⇒ θ̃n = argmin

θ∈Θ
X2
n(θ),

this is called the minimum chi-squared method of estimating θ, and {θ̃n} is called the
sequence of minimum chi-squared estimators. It is so-called Fisher’s estimators. Under
some regularity conditions, the estimate {θ̃n} can be found by solving the system equations
below

r∑
i=1

νi − npi(θ)
pi(θ)

∂pi(θ)
∂θj

= 0, j = 1, 2, · · · , m.

Multinomial maximum likelihood estimator: We see that the vector frequency ν
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has the multinomial distribution Mr(n, p), for 0 ≤ ni ≤ n,
n∑
i=1

= n

Pθ(ν1 = n1, ν2 = n2, · · · , νr = nr) = n!
n1! · · · nr!

pn1
1 (θ) · · · pnrr (θ).

The likelihood function of ν is

`(θ) = n!
ν1! · · · νr!

r∏
i=1

pν1
1 (θ) · · · pνrr (θ).

The method of maximum likelihood is to use any estimator θ̌n which is maximize the
likelihood function `(θ), that is

θ̌n = argmax
θ∈Θ

`(θ),

called the multinomial maximum likelihood estimator. In 1946, Cramér [37] showed that
one can use the multinomial maximum likelihood estimator θ̌n of θ to replace for the
minimum chi-squared estimator θ̃n.

Modified minimum chi-squared estimator: Third method that also was proposed
by Fisher [44], is so-called modified minimum chi-squared estimator θn minimizing the
quadratic form

X2
n(θ) =

r∑
i=1

(νi − npi(θ))2

νi
,

with respect to θ. Note that here we use the estimator pi = νi
n

(i = 1, 2, · · · , r) in the
denominator of X2

n(θ).
Using grouped data ν, we have three methods of finding estimators of θ, that are

a minimum chi- squared, multinomial maximum likelihood and modified minimum chi-
squared estimators, denote by {θ̃n}, {θ̌n} and {θn}, respectively. We use the notation
θn to denote any of them. One see that such sequences of estimates are asymptotically
equivalent and have similar asymptotic properties, namely, the statistic Xn(θn) have the
same limit of distribution for θn equal θ̃n, θ̌n or θn in (1.4). Furthermore, such sequences
of estimates θn is consistent, that is

Pθ{|θn − θ| > ε} → 0, and
√
n(θn − θ) ' AN(0s, J−1(θ)), as n→∞.

We have the next theorem

Theorem 1.2 (Fihser, 1928). If H0 is true and θn is a consistent sequence estimators of
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θ then
lim
n→∞

P{X2
n(θn) > x} = P{χ2

r−m−1 > x}. (1.6)

Fisher’s theorem seems to solve the first problem by using the vector of frequencies
ν. In fact that the data are often non-grouped, so that we present follow the method of
Chernoff and Lehmann [31] to estimate the parameters θ using non-grouped data.

Maximum likelihood estimator (MLE): In addition to Cramér’s conditions 1.-3.,
we suppose that the following regularity conditions which lead up to the Chernoff and
Lehmann [31] result, are hold

4. The second derivatives

∂2f(t, θ)
∂θi ∂θj

, i, j = 1, 2, · · · , m,

of the density probability f(t, θ) = d
dt
F (t, θ) exist and are continuous on Θ.

5. The Fisher information matrix of one observation Ti

i(θ) = Eθ
˙̀
i(θ) ˙̀T

i (θ), i = 1, 2, · · · , n, (1.7)

is finite and positive definite for each θ ∈ Θ, where

˙̀
i(θ) = grad log f(Ti, θ) = ( ˙̀

i1(θ), ˙̀
i2(θ), · · · , ˙̀

im(θ))T ,

is the vector-informant of the observation Ti, where

˙̀
ij(θ) = ∂ log f(Ti, θ)

∂θj
, j = 1, 2, · · · , m.

6. Differentiation with respect to parameters under the integral sign in
∫ +∞

−∞
f(t, θ)dt = 1,

is acceptable, that is

∂

∂θj

∫ +∞

−∞
f(t, θ)dt =

∫ +∞

−∞

∂

∂θj
f(t, θ)dt = 0.

The identify
L(θ) =

n∏
i=1

f(Ti, θ), θ ∈ Θ, (1.8)
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is called the likelihood function of the simple sample T = (T1, T2, · · · , Tn)T . Note that
T is a trivial sufficient statistic that is only observed. So, if we use this sufficient statistic
to estimate the parameters of the null hypothesis, we always ensure to keep and to use all
information of the subjects.

We denote {θ̂n} be a sequence of MLE of the parameter θ based on the initial data T
maximizing the likelihood function L(θ) in (1.8), that is, for each n then

˙̀(θ̂n) = 0m,

where ˙̀(θ) is the vector-informant of sample T = (T1, T2, · · · , Tn)T , is given as

˙̀(θ) = grad logL(θ) =
n∑
i=1

˙̀
i(θ).

Under conditions 1.-6., the sequence of estimators θ̂n satisfies that for any ε > 0, exist
Cε, nε, such that

Pθ{
√
n |θ̂n − θ| > Cε} < ε, for all n > nε.

A sequence {θ̂n} is so-called
√
n-consistent for parameter θ. Suppose that θ0 is true

value of θ. Under the conditions 1.-6., the asymptotic properties of {θ̂n} can be given as
1. ˙̀(θ̂n) P−→ 0, θ̂n

P−→ θ0,

2.
√
n(θ̂n − θ0) = 1√

n
i−1(θ) ˙̀(θ) +O(1m),

3.
√
n(θ̂n − θ0) d−→ Nm(0m, i−1(θ0)),

4. 1√
n

˙̀(θ0) d−→ Nm(0m, i(θ0)),
5. − 1

n
῭(θ0) d−→ i(θ0), − 1

n
῭(θn) d−→ i(θ0),

so, θ̂n is "best asymptotically normal" (B.A.N.) for θ. From the above properties of {θ̂n},
we offer below a theorem of Chernoff & Lehmann [31], Greenwood & Nikulin [50].

Theorem 1.3 (Chernoff and Lehmann, 1954). If the condition 1.-6. hold, based on the
B.A.N. properties of θ̂n, then

lim
n→∞

P{X2
n(θ̂n) < x |H0)} = P{χ2

r−m−1 +
m∑
j=1

λjξ
2
j < x}, (1.9)

where, χ2
r−m−1, ξ1, ξ2, · · · , ξm are independent random variables, ξi ' N(0, 1) and λi =

λi(θ) are the roots of the equation

|(1− λ)i(θ)− J(θ)| = 0.
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So, in all cases if we use only grouped data to estimate the parameters of the fitted
models, then only 3 cases the Pearson statistic X2

n(θ) has in limit a chi-squared distribution
with r − 1 (in the case of Pearson), and r − m − 1 (in the cases of Fisher and Cramér)
degrees of freedom. If we use initial data to estimate the parameters, then as follows the
Chernoff & Lehmann’s theorem, the limiting distribution of X2

n(θ̂n) is totally changed and
depends on θ. This means that the classical Pearson’s test statistic is not easy to apply,
particularly, in survival and reliability analysis.

Returning to the test of the composite hypothesis H0 in (1.1), we assume that the
boundaries are chosen, at least to some extent, in accordance with observations. In fact
that aj = aj(T1, T2, · · · , Tn) can be falsified the limiting distribution of X2

n(θn), since the
vector of frequencies ν∗ = (ν∗1 , ν∗2 , · · · , ν∗r )T based on aj = aj(T1, T2, · · · , Tn) cannot be
suitable a multinomial distribution. Furthermore, during to collect the data into grouping,
we may be eliminated some information of observed realization of the random variables
T1, T2, · · · , Tn. We have a remark below

Remark 1.1. Note that the statistic ν = (ν1, ν2, · · · , νr)T is not sufficient. Since

νj =
n∑
i=1

1(aj−1, aj ](Ti), j = 1, 2, · · · , r,

this means that some information is lost if we use only grouped data. More we say that
the statistic ν is obtained using the so-called censoring mechanism of grouping data .
So this statistic cannot replace the full informative data T = (T1, · · · , Tn)T . For example,
the Fisher chi-squared test, based on the minimum chi-square estimator θ̃n, is not the best
if we have information that the statistic ν = (ν1, ν2, · · · , νr)T is not sufficient.

As follows remark 1.1 then the extensions of Pearson’s statistic clearly bring out mis-
conceptions and misunderstanding in the use of this method. Only the NRR statistic which
is proposed by Nikulin ([83–86]) in 1973, Rao & Robson [97] in 1974, is the best restricted
two problems above. Because that this statistic is constructed based on the MLE θ using
the trivial sufficient statistic (so it is the BAN), the cell boundaries are chosen as a random
function depend the parameters and the vector of probabilities p = (p1, p2, · · · , pr)T . On
the other hand, remark 1.1 also indicated that why we recommend using statistic of Nikulin
to test the statistical models used in survival analysis and reliability, when the data are
censored influenced by covariates. This problem will discuss detail in the next chapter. We
refer here to the book of Greenwood & Nikulin [49, 50], where this statistic is described
and explained in detailed.
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3 Generalized Chi-squared tests for complete data

3.1 Idea of test construction

Suppose that the regularity conditions 1.-6. hold and the asymptotically proper-
ties of MLE’s θ̂n of θ are satisfied. We fix the vector of positive probabilities p =
(p1 , p2 , · · · , pr)T , such that pT1r = 1 and 0 < pi < 1.

Let us ν = (ν1, ν2, · · · , νr)T be the vector of frequencies obtained by grouping the
initial data over the r intervals of the partition

(a0, a1(θ̂n)]; (a1(θ̂n), a2(θ̂n)]; · · · ; [ar−1(θ̂n), ar), (1.10)

where aj(θ) = F−1(
j∑
i=1

pi, θ), a0 = −∞, ar = +∞, (j = 1, 2, · · · , r − 1), (1.11)

and
F−1(u, θ) = inf

0<u< 1
{t : F (t, θ) ≥ u, θ ∈ Θ},

is the inverse of the cumulative distribution function F (t, θ).
We known that the statistic ν follows the multinomial distribution Mr(p, n) with pa-

rameters r, n,p under H0. From the properties of the multinomial distribution it follows
the next (see also, Nikulin et al. [90])

Theorem 1.4. If n → ∞, r = const ≥ 2, then from the central limit theorem it follows
under the H0 the statistic ν is asymptotically normal with parameters

Eν = np + O(1r) and E(ν − np)(ν − np)T = nD + O(1r×r), (1.12)

where the matrix D = P − ppT is degenerated (since 1Tr ν = n), hence rank(D) = r − 1
and P is a non-degenerated diagonal matrix with p1, ..., pr on the main diagonal.

To proof this theorem one can apply the methods and techniques of Chernoff & Lehmann
[31], Watson [125], Moore [79], Nikulin [83], Rao & Robson [97].

We similarly obtain the vector statistic Xn(θ) and Pearson’s sum X2
n(θ) in (1.3) and

(1.4), respectively. We shall use one trivial theorem stating one important property of
multivariate normal distribution Nr(a, Σ) according to which if we have a r-dimensional
normal vector Z ∼ Nr(a,Σ) then

(Z− a)TΣ−(Z− a) ∼ χ2
s,
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where Σ− is a general inverse of the matrix Σ, s is the rank of the matrix Σ, s ≤ r. For
example, in the case of simple hypothesis, the covariance matrix D in (1.12) can be written
as

D = P− ppT , and D− = P−1 + 1
pr

1r1Tr ,

since 1Tr P = pT , 1Tr p = 1, P1r = p. Note that by definition a general inverse matrix
D− verifies the next relation

DD−D = D,

So the Pearson’s vector Xn(θ) in (1.3) can be written as

Xn(θ) = 1√
n

P−1/2(ν − np(θ)), (1.13)

Pearson’s statistic X2
n(θ) therefore can be given as follows

X2
n(θ) = 1

n
(ν − np(θ))TP−1(ν − np(θ)). (1.14)

From the central limit theorem, then the probability distribution of the statistic ν can
be approximated by a chi-squared distribution with r − 1 degrees of freedom. Thus, the
probability distribution of Xn(θ) can be adjoined the multivariate normal distribution,
that is

Xn(θ) d−→ X ∼ Nr(0, Σ(θ)),

where Σ(θ) is the covariance matrix of Xn(θ), rank(Σ) = r − 1 and

Σ(θ) = P− ppT −W(θ)i−1(θ)WT (θ), (1.15)

where the matrix W(θ) = [wij]r×m include the following elements

wij := wij(θ) =
∫ ai(θ)

ai−1(θ)

∂

∂θj
f(t, θ)dt, (i = 1, 2, · · · , r, j = 1, 2, · · · ,m). (1.16)

We obtained
Y2
n(θ) = XT

n (θ)Σ−(θ)Xn(θ) d−→ Y2 ∼ χ2
r−1. (1.17)
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3.2 Generalized Chi-squared test statistic

Under the hypothesis H0, the generalized chi-squared test can be written as

Y2
n(θ̂n) = XT

n (θ̂n)Σ−(θ̂n)Xn(θ̂n), (1.18)

where θ is replaced by the MLE θ̂n, and

Σ−(θ̂n) = P−1 + P−1W(θ̂n)[i(θ̂n)− J(θ̂n)]−1WT (θ̂n)P−1. (1.19)

If the regularity conditions hold, using the class-integrals with aj(θ) equal ai do not
depend on θ then the expression (1.16) can be written as

wij :=
∫ ai

ai−1

∂

∂θj
f(t, θ)dt = ∂

∂θj

∫ ai

ai−1
f(t, θ)dt =: ∂pi(θ)

∂θj
. (1.20)

The statistic Y2
n has a particularly convenient form which is the sum of the Pearson

statistic X2
n and a non-negative quadratic form Q, and it can be presented as follows.

Y2
n = X2

n + Q, (1.21)

X2
n =

r∑
i=1

ν2
i

npi
− n, Q = 1

n
vTG−1v, v = (v1, v2, · · · , vm)T , vj =

r∑
i=1

cijνi
pi

,

G = [gll′ ]m×m, gll′ = ill′ −
r∑
i=1

cilcil′

pi
,

cij = ∂pi(θ̂n)
∂θj

= f(ai(θ̂n), θ̂n)∂ai(θ̂n)
∂θj

− f(ai−1(θ̂n), θ̂n)∂ai−1(θ̂n)
∂θj

,

and ill′ is the elements of the Fisher information matrix i(θ̂n) are defined in (1.7).

Theorem 1.5 (Nikulin, 1973). Under the regularity conditions 1.-6., if the hypothesis H0

is true then for any fixed positive x

lim
n→∞

Pθ{Y
2
n(θ̂n) ≤ x} = P{χ2

r−1 ≤ x}, (1.22)

where χ2
r−1 has a chi-squared distribution with r − 1 degrees of freedom.
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3.3 Remark on the choice of grouping cells

We wish to test that the data are in concordance with the hypothesis H0 at the sig-
nificance level α. If the available data are non-grouped, then it is necessary to divide the
real line into a finite number of intervals Ij = (aj−1, aj] so the Y2

n test statistic is more
powerful. From the partition Jj in (1.10), we see that the endpoint ai depends on the
choice of vector p = (p1, p2, · · · , pr)T .

If there is no alternative, as follows Greenword & Nikulin [50], we recommend using
the partition Ji as the equiprobable intervals (EQPG) on the real line, that is

p1 = p2 = · · · = pr = 1
r
, with r ≤ min

( 1
α
, lnn

)
,

with this choice of r, the expected number of observation in each class is not small and
the variance of the statistic Y2

n is smallest, so that in this case the statistic Y2
n is easier to

calculate.
If there is an alternative, suppose that we wish to test for the null composite hypothesis

H0 : Pθ(T1 ≤ t) = F (t, θ), t ∈ R1, θ = (θ1, θ2, · · · , θm)T ∈ Θ,

against the alternative

H1 : Pγ{T1 ≤ t} = G(t, γ), γ ∈ G ⊂ Rs.

We could choose p to maximize the power of the statistic Y2
n. Greenwood & Nikulin

defined the class of Neyman-Pearson (2NPG) to construct the partition Ij as follows.
Let us f(t, θ) and g(t, γ) are the density probability function of null and alternative

hypotheses, respectively. To construct grouping cells Ij, we find the points a1, a2, · · · , ar
of intersections of two densities by solving equation f(t, θ̂n) = g(t, γ̂n), where θ̂n and γ̂n

are the MLE of parameters θ and γ, respectively. We obtain r intervals

I1 = (−∞, a1] ∪ [ar, +∞), I2 = (a1, a2], · · · , Ir = (ar−1, ar], (1.23)

and two 2NPG classic given as

I1 = {t : f(t, θ̂n) ≥ g(t, γ̂n)}, I2 = {t : f(t, θ̂n) < g(t, γ̂n)}. (1.24)

Based on these 2NPG classic, we obtain the frequency vector ν = (ν1, ν2)T and positive
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probability vector P = (P1, P2)T that

ν1 = n
∫

I1
dFn(t), ν2 = n

∫
I2
dFn(t),

P1(θ) =
∫

I1
f(u, θ̂n)du =: P1, P2(θ) =

∫
I2
f(u, θ̂n)du =: P2,

where Fn(·) is the E.C.D.F. based on our data. We have, for j = 1, 2, · · · ,m

c1j = ∂

∂θj
P1(θ̂n), c2j = ∂

∂θj
P2(θ̂n), ν1 + ν2 = n, P1 + P2 = 1.

As in consequence, to test for H0 against H1 alternative, we can use a chi-squared test
based on statistic

Y2
n = ν2

1
nP1

+ ν2
2

nP2
− n+ 1

n
VTG−1V,

where

V = (V1, V2, · · · , Vm)T , Vj = c1jν1

P1
+ c2jν2

P2
, j = 1, 2, · · · ,m,

G = [gll′ ]m×m, gll′ = ill′ −
(
c1lc1l′

P1
+ c2lc2l′

P2

)
.

In this circumstance, the distribution of Y2
n statistic has in limit a chi-squared with 1

degrees of freedom as n to ∞. Thus, the hypothesis H0 is rejected if Y2
n > χ2

α(1).
Note that to take the 2NPG class with respect to the alternative close to each other, we

selected parameters of alternative in such a manner that graphs of the alternative would be
visually as close to each other as possible. This procedure is particularly useful when n is
not large because the numbers of observations in just two grouping intervals is larger and
the relevant central limit theorem is the Moivre-Laplace version. We discuss, in section 5
of this document, the use the 2NPG for testing alternative. A simulation study was carried
out to demonstrate the power of Y2

n test when the 2NPG classic is used to test normality
against the Logistic, Laplace and Weibull alternatives.

4 Some modification of chi-squared tests

If the regularity conditions hold, the matrices B(θ) in condition 3. and W(θ) in (1.16)
exist a simple connection that defined by expression (1.20). Using the expression

J(θ) = WT (θ) P−1 W(θ),
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and the identity

(I−B J−1 BT )−1 = I−B(BTB)−1BT + B{(J−BB)−1 + (BTB)−1}BT ,

McCulloch [76] presented (1.18) as

Y2
n(θ̂n) = 1

n
(ν − np)TΣ−(θ̂n) 1

n
(ν − np) = D2

n(θ̂n) + S2
n(θ̂n),

where

D2
n(θ̂n) = (ν − np)T

{
P−1 −P−1/2W(θ̂n)[WT (θ̂n)W(θ̂n)]−1WT (θ̂n)P−1/2

}
(ν − np),

is the Dzhaparidze-Nikulin [42] statistic that we note by DN statistic and

S2
n(θ̂n) = 1

n
(ν − np)TP−1W(θ̂n)

{
[i(θ̂n)− J(θ̂n)]−1 + J−1(θ̂n)

}
WT (θ̂n)P−1(ν − np),

the statistic S2
n(θ) is so-called McCulloch statistic (McCu).

McCulloch [76] has been proved that the statistics D2
n(θ̂n) and S2

n(θ̂n) are asymptoti-
cally independent and DN statistic D2

n(θ̂n) has in limit distribution as χ2
r−m−1, while McCu

statistic S2
n(θ̂n) is distributed asymptotically as χ2

m. More about of those modifications,
one can see Voinov et al.[121]. In the following section, we discuss the test of normality
using the generalized chi-squared statistic Y2

n following the contributions of Nikulin [85],
Nikulin et al. [91].

5 Application to testing normality

5.1 Chi-squared test for normality

Let T1, T2, · · · , Tn are i.i.d. random variables, we consider to test the hypothesis H0,
according to which

H0 : T1 ' Φ
(t− µ

σ

)
, θ = (µ, σ)T ∈ Θ = {|µ| <∞, σ > 0}, t ∈ R1,

where Φ(·) is the distribution function of the standard normal law.
The probability density function of Ti is

1
σ
ϕ
(
t− µ
σ

)
= 1
σ
√

2π
exp

(
−(t− µ)2

2σ2

)
, t ∈ R1.
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We see that there many results of test for normality have been contributed in the
statistical literature. We consider here generalized chi-squared test statistic Y2

n that are
described in (1.21).

Returning to the hypothesis H0 for normality, it is clear that

EθTi = µ, and VarθTi = σ2, i = 1, 2, · · · , n.

If parameter θ = (µ, σ2)T is unknown, then we can estimate it using the data by the
MLE’s θ̂n. If the H0 is true then the likelihood function `(·) on Θ can be given as

`(θ) = (2π)−n/2
σn

exp
{
− 1

2σ2

[ n∑
i=1

T 2
i − 2µ

n∑
i=1

Ti + nµ2
]}
,

from where one can see that a minimal sufficient statistic for θ is

T =
{ n∑
i=1

Ti,
n∑
i=1

T 2
i

}
,

and the statistics

T n = 1
n

n∑
i=1

Ti, s̃2
n = 1

n

n∑
i=1

(Ti − µ)2, s2
n = 1

n

n∑
i=1

(Ti − T n)2,

are the MLE’s for the components µ and σ2 of the parameter θ. It is well known that
for the regular family of distributions there exists a sequence of MLE’s θ̂n such that θ̂n =
argmaxθ∈Θ`(θ), where `(θ) is the likelihood functions of T1, T2, · · · , Tn, and

√
n(θ̂n − θ) d→ N2(0, i−1(θ)),

where i(θ) is the Fisher’s information matrix of one observation X1.

i(θ) = i(µ, σ2) = 1
σ2

(1 0
0 2

)
, θ = (µ, σ2)T .

For i = 1, 2, · · · , n. Set

ηi =



1
σ
(Ti − µ), if µ and σ are known,

1
σ

√
n
n−1(Ti − T n), if µ is unknown , σ is known,

1
s̃n

(Ti − µ), if µ is known , σ is unknown ,
1
sn

(Ti − T n), if µ and σ are known.
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Let p = (p1, p2, · · · , pr)T be the vector of positive probabilities, 0 < pi < 1, such that
pT1r = 1 and let define the quantiles of the standard normal distribution

−∞ = x0 < x1 < · · · xr−1 < xr = +∞, with xj = Φ−1
( j∑
i=1

pi
)
, j = 1, 2, · · · , r − 1.

Suppose that ν = (ν1, ν2, · · · , νr)T is a frequency vector obtained by grouping the
statistics η1, ..., ηn over the r intervals of the partition (x0, x1], (x1, x2], ..., (xr−1, xr). It
is evident that the same statistic is obtained by grouping the initial random variables
T1, T2, · · · , Tn over the random intervals Ji, (i = 1, ..., r)

Ji =


(xi−1σ + µ ; xiσ + µ], if µ and σ are known,
(xi−1σ + T n ; xiσ + T n], if µ is unknown, σ is known,
(xi−1s̃n + µ ; xis̃n + µ], if µ is known, σ is unknown,
(xi−1sn + T n ; xisn + T n], if µ and σ are unknown.

It is clear that if H0 is true then for any i = 1, · · · , n

P{ηi ∈ (xj−1, xj]} = P{Ti ∈ Jj} = pj, j = 1, 2, · · · , r.

As follows the theorem 1.4, under the H0 the statistic ν is asymptotically normal with
parameters

Eν = np + O(1r) and E(ν − np)(ν − np)T = nB + O(1r×r),

where

B =


P− ppT , if µ and σ are known ,
P− ppT − aaT , if µ is unknown , σ is known ,
P− ppT − 1

2bbT , if µ is known , σ is unknown ,
P− ppT − aaT − 1

2bbT , if µ and σ are unknown ,

the matrix B is degenerated, rank(B) = r − 1 in all considered 4 cases and

a = (a1, · · · , ar)T , aj = ϕ(xj)− ϕ(xj−1), (1.25)
b = (b1, · · · , br)T , bj = −xjϕ(xj) + xj−1ϕ(xj−1). (1.26)

Set

Xn(θ) =
(
ν1 − np1

np1
,
ν2 − np2

np2
, · · · , νr − npr

npr

)T
,
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the limiting distribution of Xn(θ) can be approximated by the multivariate normal law,
that is

Xn(θ) d−→ X ∼ Nr(0, Σ), rank(Σ) = r − 1,

where Σ is the covariance matrix of Xn(θ)

Σ = P−1/2BP−1/2 =

=



Er − qqT , if µ and σ are known ,
Er − qqT −P−1/2aaTP−1/2, if µ is unknown , σ is known ,
Er − qqT − 1

2P−1/2bbTP−1/2, if µ is known , σ is unknown ,
Er − qqT −P−1/2[aaT + 1

2bbT ]P−1/2, if µ and σ are unknown ,

where Er is r× r unit matrix, q = (√p1,
√
p2, · · · ,

√
pr)T , a and b are defined in (1.25) -

(1.26). We obtain (see also, Nikulin et al. [90])

Y2
n = XT

n (θ̂n)Σ−Xn(θ̂n) d−→ Y2 ∼ χ2
r−1.

So, the test statistics Y2
n is

Y2
n = XT

n (θ̂n)Σ−Xn(θ̂n) =

= X2
n + Q =



X2
n, if µ and σ are known,

X2
n + 1

nλ1
α2, if µ is unknown, σ is known,

X2
n + 1

nλ2
β2, if µ is known, σ is unknown,

X2
n + λ2α2−2λ3αβ+λ1β2

n(λ1λ2−λ2
3) , if µ and σ are unknown,

where

X2
n = XT

nXn = 1
n

r∑
j=1

ν2
j

pj
− n, α =

r∑
j=1

ajνj
pj

= aTP−1ν,

β =
r∑
j=1

bjνj
pj

= bTP−1ν, λ1 = 1−
r∑
j=1

a2
j

pj
= 1− aTP−1a,

λ2 = 2−
r∑
j=1

b2
j

pj
= 2− bTP−1b, λ3 = −

r∑
j=1

ajbj
pj

= −aTP−1b,
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and Σ− is the generalized inverse matrix of Σ are given as

Σ− =



Er + qqT , if µ and σ are known,
Er + qqT + 1

λ1
aaT , if µ is unknown, σ is known,

Er + qqT + 1
λ2

bbT , if µ is known, σ is unknown,
Er + qqT + (λ2aaT−λ3(abT+baT )+λ1bbT )

λ1λ2−λ2
3

, if µ and σ are unknown.

Under the hypothesis H0, the statistics Y2
n has an asymptotically chi-squared distribu-

tion with (r − 1) degrees of freedom. So, the hypothesis H0 is rejected with approximate
significance level α if Y2

n > χ2
α(r − 1).

In the selection of random grouping cells aj, which depends on the choice of vector
p = (p1, p2, · · · , pr)T such that pT1r = 1 and all pi > 0. So it is necessary to select p
maximizing power the value of test statistic. We, therefore, present follows some remarks
on the choice of the intervals for grouping data for testing normality.

Remark 1.2. If there is no alternative, we can choose the partition Ji as equiprobable
intervals (EQPG), that is p1 = p2 = · · · = pr = 1

r
, then λ3 = 0 and we have

Y2
n = r

n

r∑
j=1

ν2
j − n+ r2

nλ1

( r∑
j=1

ajνj
)2

+ r2

nλ2

( r∑
j=1

bjνj
)2
.

Remark 1.3. If the vector p = (p1, p2, · · · , pr)T is chosen symmetric probability (SPG),
so that p1 = pr, p2 = pr−1, p3 = pr−2 and so on, then λ3 = 0. So that, we obtain the
following expression of Y2

n statistic

Y2
n = X2

n + α2

nλ1
+ β2

nλ2
.

Furthermore, Ogawa [93] fond that this symmetric choice is optimal for testing normality.

Remark 1.4. If there is alternative, to optimize the choice of p, we may be used the class
of Neyman-Pearson (2NPG) as follows.

Suppose that we take the alternative hypothesis

H1 : Pγ{T1 ≤ x} = G(x, γ), γ ∈ G ⊂ Rm.

Let us ϕ(x, θ) = 1
σ
ϕ
(
x−µ
σ

)
and g(x, γ) are the density probability function of null

and alternative hypotheses, respectively. It is necessary to find the intersection points
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a1, a2, · · · , ar of two density probability by solving following equation

1
σ̂
ϕ

(
x− µ̂
σ̂

)
= g(x, γ̂n),

where θ̂n = (µ̂, σ̂2)T and γ̂n are the MLE’s of parameters θ = (µ, σ2)T and γ, respectively.
We obtain two Neyman-Pearson type classes (2NPG) give as follows

I1 = {t : ϕ(t, θ̂n) ≥ g(t, γ̂n)}, I2 = {t : ϕ(t, θ̂n) < g(t, γ̂n)}, (1.27)

and the frequency vector ν = (ν1, ν2)T , the positive probability vector p = (p1, p2)T are
given as

νj = n
∫

Ij
dFn(t), j = 1, 2,

p1 := p1(θ) =
∫

I1
ϕ(u, θ̂n)du, p2 := p2(θ) =

∫
I2
ϕ(u, θ̂n)du, θ = (µ, σ)T ,

where Fn(·) is the EDF based on our data. Note that

ν1 + ν2 = n, p1 + p2 = 1,

and the first derivative of probability vector

a1 = ∂p1(θ)
∂µ

, a2 = ∂p2(θ)
∂µ

, b1 = ∂p1(θ)
∂σ

, b2 = ∂p2(θ)
∂σ

,

satisfy a1 + a2 = b1 + b2 = 0. We construct the statistic Y2
n as defined

Y2
n = X2

n + λ2α
2 − 2λ3αβ + λ1β

2

n(λ1λ2 − λ2
3) ,

where X2
n = 1

n

(ν2
1
p1

+ ν2
2
p2

)
, λ1 = 1− a2

1
p1p2

, λ2 = 2− b2
1

p1p2
, λ3 = −a1b1

p1p2
,

α = a1ν1

p1
+ a2ν2

p2
, β = b1ν1

p1
+ b2ν2

p2
.

5.2 Power considerations

We investigate here the power of Y2
n in comparison with other test statistics as Dzhaparidze-

Nikulin (D2
n), McCulloch (S2

n), Shapiro-Wilk (W), Shapiro-Francia (W′), Cramér von
Mises-Smirnov (ω2

n) and Anderson-Darling (A2
n) statistics for the normal distribution as
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null hypothesis against some alternative hypotheses including Logistic, Laplace andWeibull
distributions. The Y2

n is constructed based two methods of selection grouping cells, one is
the equiprobable intervals (EQPG) and one other is the class of Neyman-Pearson (2NPG).

1. For Y2
n statistic using 2NPG class to choose endpoints aj, from Figure 1.1, we see

that there are four points of intersection among Normal and alternative references. Thus,
it is reasonable to construct 2NPG class from these points.

−1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Normal
Laplace
Logistic
Weibull

Figure 1.1: Probability density functions of N(1, 0.22), Log(1, 0.2),
L(1, 0.25) and W (1, 5) distributions.

For example, under Logistic distribution alternative Log(1, 0.2), solving of two density
functions, we obtained four point of intersections

a1 = 0.1686993, a2 = 0.7501097, a3 = 1.237212, a4 = 1.8538186,

and the following 2NPG class can be considered as (see, Figure 1.1)

I1 = (0.1686993, 0.7501097] ∪ (1.237212, 1.8538186],
and I2 = (−∞, 0.1686993] ∪ (0.7501097, 1.237212] ∪ [1.8538186, +∞).

Under Laplace L(1, 0.25) alternative, we obtain the points of intersection of two den-
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sities function

a1 = 0.1761564, a2 = 0.8260756, a3 = 1.1723921, a4 = 1.8313972,

so 2NPG class give by (see, Figure 1.1)

I1 = (0.1761564, 0.8260756] ∪ (1.1723921, 1.8313972],
and I2 = (−∞, 0.1761564] ∪ (0.8260756, 1.1723921] ∪ (1.8313972, +∞).

We obtain similarly the 2NPG class for Normal against Weibull W (1, 5) distribution

I1 = (−∞, 0.14823] ∪ (0.58350, 0.94616] ∪ [1.28586, ∞),
and I2 = (0.14823, 0.58350] ∪ (0.94616, 1.28586).

2. For the Cramer-von Mises-Smirnov (ω2
n) and Anderson-Darling (An) statistics, we

take the results of Lemeshko et al. [70–72] to compute the power of these tests at α = 0.05
significance level.

3. The Shapiro-Wilk [108] statistic is defined as

W =

(∑n
i=1 aiX(i)

)2

∑n
i=1(Xi −Xn)2 , (1.28)

where T(·) = (T(1), T(2), · · · , T(n))T is the vector of order statistics associated with the
simple sample T1, T2, · · · , Tn and a = (a1, a2, · · · , an)T are the coefficients having the
forms

a = mTΣ−1

(mTΣ−1Σ−1m) 1
2
,

m = (m1, m2, · · · , mn)T ; Σ = [σij]n×n,

the expected values of normal order statistics and the covariance matrix of order statistics
from the standard normal distribution, which do not depend on unknown parameters µ
and σ under the normality hypothesis.

In 1972, Shapiro-Francia [107] proposed a modification of Shapiro - Wilk statistic which
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can be used for large sample and defined as

W′ =

(∑n
i=1 biX(i)

)2

∑n
i=1(Xi −Xn)2 , (1.29)

where, b = (b1, b2, · · · , bn)T are the coefficients has the form

b = mT

(mTm) 1
2
.

with m is the expected values of normal order statistics T(·).
The Shapiro - Wilk and Shapiro-Francia statistics are a widely used method for eval-

uating the condition of normality. However, the distribution of these test statistics are
unknown under the null hypothesis and we must be approximated them.

Using the Monte-Carlo method for 50000 simulated samples from a standard normal
distribution with sample size n, we obtained its estimated critical values corresponding
at two level of significance α = 5% and 10%. Following Table 1.1, we presented the
approximated critical values for each test which is used for reference.

Table 1.1: The approximated critical values of Shapiro - Wilk (W) and
Shapiro-Francia (W′) statistics for testing of normality.

α Tests Sample size n
40 50 80 100 150 200 250 300 400 500

0.05 W 0.944 0.953 0.969 0.974 0.982 0.986 0.988 0.990 0.992 0.994
W′ 0.943 0.953 0.968 0.974 0.982 0.986 0.988 0.990 0.992 0.994

0.10 W 0.953 0.961 0.973 0.978 0.985 0.988 0.990 0.991 0.993 0.994
W′ 0.954 0.961 0.974 0.978 0.985 0.988 0.990 0.992 0.993 0.995

Each simulated sample under the alternative hypothesis is repeated N = 10000 times
for the sample size n. For each operation, we compute the value of each test, then we
calculate the power of test that is the difference between N and the number of times where
each statistic is less than its critical value divided by N by subtraction, the significance
level α = 0.05 is used. The result of power tests for each alternative are given in Table
1.2-1.4.

From the practical point of view, the coefficients a and b of Shapiro-Wilk and Shapiro-
Francia tests are given only for 20 < n ≤ 50 by Shapiro, Wilk and Francia. These are
not available for n > 50. However, in the case of the sample size is small, these tests then
may not have enough power to detect non-normality in the population. Furthermore, the
results of the simulations shown that the Shapiro-Wilk and Shapiro-Francia tests get less
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Table 1.2: Power of test for normality against Logistic(1, 0.2) distribution.

Tests Sample size n
40 50 80 100 150 200 250 300 400 500

W 0.830 0.802 0.736 0.697 0.591 0.514 0.428 0.354 0.249 0.170
W′ 0.791 0.755 0.681 0.632 0.524 0.444 0.366 0.291 0.201 0.131
ω2
n 0.125 0.145 0.179 0.210 0.280 0.340 0.412 0.478 0.591 0.692

An 0.134 0.160 0.200 0.235 0.318 0.390 0.468 0.538 0.657 0.753
D2
n 0.058 0.063 0.064 0.067 0.077 0.088 0.095 0.112 0.129 0.157

S2
n 0.113 0.128 0.213 0.268 0.373 0.462 0.536 0.610 0.692 0.763

Y2
n(EQPG) 0.103 0.124 0.160 0.180 0.244 0.296 0.339 0.390 0.468 0.550

Y2
n (2NPG) 0.083 0.100 0.144 0.174 0.250 0.324 0.393 0.465 0.580 0.678

r 4 5 8 10 15 20 25 30 35 40

Table 1.3: Power of test for normality against Laplace(1, 0.25) distribution.

Tests Sample size n
40 50 80 100 150 200 250 300 400 500

W 0.561 0.486 0.297 0.203 0.07 0.024 0.007 0.001 0 0
W′ 0.491 0.416 0.240 0.158 0.055 0.017 0.005 9.10−4 0 0
ω2
n 0.449 0.536 0.737 0.821 0.941 0.984 0.996 0.998 0.999 1.000

An 0.454 0.539 0.738 0.824 0.941 0.983 0.996 0.999 0.999 1.000
D2
n 0.125 0.180 0.299 0.364 0.514 0.642 0.745 0.822 0.929 0.974

S2
n 0.339 0.416 0.604 0.682 0.830 0.899 0.936 0.963 0.985 0.995

Y2
n(EQPG) 0.341 0.423 0.614 0.701 0.845 0.922 0.958 0.979 0.996 0.999

Y2
n (2NPG) 0.390 0.474 0.680 0.781 0.922 0.976 0.992 0.997 0.999 1

r 4 5 8 10 15 20 25 30 35 40

Table 1.4: Power of test for normality against Weibull(1, 5) distribution.

Tests Sample size n
40 50 80 100 150 200 250 300 400 500

W 0.926 0.916 0.887 0.861 0.799 0.740 0.663 0.610 0.476 0.374
W′ 0.935 0.929 0.909 0.886 0.841 0.789 0.730 0.680 0.552 0.443
ω2
n 0.068 0.077 0.102 0.122 0.165 0.213 0.267 0.309 0.411 0.507

An 0.071 0.078 0.107 0.131 0.184 0.239 0.298 0.349 0.469 0.571
D2
n 0.048 0.053 0.065 0.074 0.082 0.093 0.107 0.117 0.141 0.161

S2
n 0.066 0.059 0.067 0.069 0.070 0.061 0.063 0.059 0.059 0.063

Y2
n(EQPG) 0.059 0.065 0.067 0.075 0.088 0.097 0.106 0.111 0.145 0.166

Y2
n(2NPG) 0.073 0.083 0.118 0.142 0.191 0.244 0.296 0.337 0.445 0.536

r 4 5 8 10 15 20 25 30 35 40

powerful while the sample size increases. Thus, Shapiro-Wilk and Shapiro-Francia have
disadvantages.

As can see Table 1.2 - 1.4, the power of Anderson-Darling (An), Y2
n with 2NPG class
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and Cramer-von Mises-Smirnov (ω2
n) statistics are the best power, in which, the first powers

are An and Y2
n(2NPG) in all of combination hypothesis considerations. In addition the

power of Y2
n(2NPG) test statistic shows that this statistic is the best stability among all

when we use the 2NPG class as the optimal grouping cells.

5.3 Testing normality for Millikan’s measurements

We take in this section the data of Millikan from the book of Linnik [74] to demon-
strate the practicability, the performance of the considered above statistics for the test of
normality. The Millikan’s data are given in Table 1.5 below.

Table 1.5: The values of the charge of the electron, data of Millikan.

4.781 4.764 4.777 4.809 4.761 4.769 4.795 4.776 4.765 4.790 4.792 4.806
4.769 4.771 4.785 4.779 4.758 4.779 4.792 4.789 4.805 4.788 4.764 4.785
4.779 4.772 4.768 4.772 4.810 4.790 4.775 4.789 4.801 4.791 4.799 4.777
4.772 4.764 4.785 4.788 4.799 4.749 4.791 4.774 4.783 4.783 4.797 4.781
4.782 4.778 4.808 4.740 4.790 4.767 4.791 4.771 4.775 4.747

Voinov et al. [121] suggested that the test does not reject the hypothesis of the normal
distribution for Millikan’s determinations of the charge of the electron by using the NRR
and McCulloch tests. We analyse here the testing of Millikan’s data for normality based
on the above considered statistics. Under the normal distribution, we obtain the MLE’s
θ̂n = (4.78081, 0.0002332)T .

Using result of Lemeshko [72] and from the equation (1.28), the value of Shapiro-Wilk,
Shapiro-Francia, Cramer-von Mises- Smirnov and Anderson-Darling test statistics are given

W = 0.984, W′ = 0.985, ω2
n = 0.024, An = 0.207,

and the p-value at 0.05 significance level of those test statistics are 0.643, 0.634, 0.916, 0.861,
respectively. We realize that the null hypothesis that the Millikan’s determinations of the
charge of the electron is generated by a normal distribution is clearly no rejected. The
values of Y2

n and S2
n statistics when the function of the number of equipropable random

(EQPG) and symmetric probability (SPG) intervals are given in Table 1.6.
Therefore, we concluded a statistical inference that the hypothesis of the normal dis-

tribution do not rejected for Millikan’s determinations of the charge of the electron in all
used considered test statistics.
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Table 1.6: Values of Y2
n and S2

n test statistics for Millikan’s determina-
tions recevring from the difference of the choice of grouping cells: the class of
Neyman-Pearson (2NPG) and the symmetric probability choice (SPG).

p-value
EQPG SPG EQPG SPG

r Y2
n S2

n Y2
n S2

n Y2
n S2

n Y2
n S2

n

4 2.100 1.757 1.668 1.583 0.551 0.415 0.643 0.452
5 2.454 1.640 2.103 1.701 0.652 0.440 0.716 0.427
6 2.355 0.873 1.859 1.466 0.798 0.646 0.868 0.480
8 6.199 3.203 4.524 1.052 0.516 0.202 0.717 0.590
10 7.872 2.583 4.970 0.762 0.547 0.274 0.836 0.683

6 Generalized chi-squared tests for right censored data

In section 3 we described clearly a generalized chi-squared test statistic for composite
hypothesis when the data are complete. In the survival and reliability analysis, however,
the data are frequently incomplete observed that usually well-known as censoring times.
In these circumstances, the exact survival times of these subjects are unknown. So, it is
necessary to consider the test for the censored failure-time data.

In the investigations of the modified Y2
n statistic adapted for the censored failure time

data, Habib & Thomas [51], Hollander & Peña [55] considered natural modifications of the
Y2
n statistic on the case of censored data without covariates. There tests are based on the

differences between two estimators of the probabilities to fall into grouping intervals. The
first estimators is based on the estimated KM of the cumulative distribution functions, the
estimated second is based on the MLE’s of unknown parameters of the fitted model using
initial non-grouped censored data.

In 2011, developing an idea of Akritas [4] (also was developed by Hjort [53]) that is to
compare the different of observed and expected numbers of failures in time intervals and
the choice of random grouping intervals used as data functions, Bagdonavičius et al. [16]
were introduced a modified generalized chi-squared test statistic Y2

n that is well adapted
for the censored failure time data no covariates. We discuss here this statistic Y2

n as follows
the contributions of Bagdonavičius & Nikulin [16], Bagdonavičius et al.[20].

6.1 The right censored failure-time data

Suppose that we observed the right censored failure time data

(X1, δ1); (X2, δ2); · · · ; (Xn, δn), (1.30)
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where
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, (i = 1, 2, · · · , n),

where T1, T2, · · · , Tn are absolutely continuous i.i.d. random variables, C1, C2, · · · , Cn
are censoring times. Suppose that T1, T2, · · · , Tn and C1, C2, · · · , Cn are mutually inde-
pendent. If δi = 1 then it means that the failure happens at the moment Ti = Xi, on the
contrary the failure occurs after the moment Xi. We note here that in classical statistic,
we observe the data (T1, T2, · · · , Tn)T and is present of censoring that we have in (1.30).

Assume that the P.D.F. of the random variable Ti belongs to a parametric family

{f(·, θ), θ := (θ1, θ2, · · · , θm)T ∈ Θ ⊂ Rm},

where f(·, θ) is the density of Ti with respect to σ-finite measure µ and Θ is open. Denote

S(t, θ) = Pθ{Ti > t}, Λ(t, θ) = − lnS(t, θ),

λ(t, θ) = lim
h→0

1
h

Pθ{t ≤ Ti < t+ h |Ti ≥ t}, t > 0,

are the survival, the cumulative hazard and the hazard rate functions of Ti, respectively.

Note that there is another way to describe right censored data (1.30) by using the
counting processes . Indeed, for any t ≥ 0, set

Ni(t) = 1{Xi≤t, δi=1}, Yi(t) = 1{Xi≥ t},

N(t) =
n∑
i=1

Ni(t) , Y (t) =
n∑
i=1

Yi(t),

Ni(t) is the number of failures of the ith unit in the interval [0, t], Yi(t) indicate the number
"at risk" of ith unit just prior the moment t. The process N(t) therefore shows the number
of observed failures in the interval [0, t] ans the process Y (t) shows the number of objects
which are "at risk" just prior to time t. The data (1.30) is equivalent to the sample

(N1(t), Y1(t), t ≥ 0), (N2(t), Y2(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0). (1.31)

The stochastic processes Ni(·) and Yi(·) shown dynamics of failures and censoring over
time. If the values of

{Ni(s), Yi(s), 0 ≤ s ≤ t, i = 1, 2, · · · , n},
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are known then history of failures and censoring in the interval [0, t] are known. Thus,
the data (1.31) give all history of failures and censoring during the experiment. More
about of the stochastic processes, one can see, Borgan [29], Hjort [53], Andersen et al. [6],
Bagdonavičius & Nikulin [14].

6.2 Maximum likelihood estimators for right censored data

Let Gi(·) and gi(·) be the survival and density functions of the censoring time Ci,
respectively. We suppose that the right censoring is non-informative which means that the
function Gi does not depend on θ. So, The likelihood function L(θ) of the data can be
written as

L(θ) =
n∏
i=1

f δi(Xi, θ)S1−δi(Xi, θ)g1−δi(Ci)Gδi(Ci),

Because the Gi and gi do not contain θ, so they can be rejected. The likelihood function
of our data can be written as

L(θ) =
n∏
i=1

f δi(Xi, θ)S1−δi(Xi, θ) =
n∏
i=1

λδi(Xi, θ)S(Xi,θ). (1.32)

The log-likelihood function is

`(θ) =
n∑
i=1
{δi ln λ(Xi, θ) + lnS(Xi, θ)} =

n∑
i=1
{δi ln λ(Xi, θ)−Λ(Xi, θ)}, θ ∈ Θ. (1.33)

If λ(u,θ) is a sufficiently smooth function of the parameter θ then the MLEs’ θ̂n satisfies
the equation ˙̀(θ̂n) = 0m, where ˙̀(θ) is the score vector

˙̀(θ) = ∂

∂θ
`(θ) =

(∂`(θ)
∂θ1

,
∂`(θ)
∂θ2

, · · · , ∂`(θ)
∂θm

)T
.

The Fisher information matrix is I(θ) = −Eθ
῭(θ), where

῭(θ) =
n∑
i=1

δi
∂2

∂θ2 ln λ(Xi, θ)−
n∑
i=1

∂2

∂θ2 Λ(Xi, θ).

Under the data (1.31), from the following identifies
∫ ∞

0
Yi(u)λ(u, θ)du =

∫ Xi

0
λ(u, θ)du = − lnS(Xi, θ),
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∫ ∞
0

ln λ(u, θ)dNi(u) =

ln λ(Xi, θ), if δi = 1
0, if δi = 0

= δi ln λ(Xi, θ),

then the log-likelihood function (1.33) can be written as

`(θ) =
∫ ∞

0
{ln λ(u,θ)dN(u)− Y (u)λ(u,θ)}du. (1.34)

The score function in this case is

˙̀(θ) =
∫ ∞

0

∂

∂θ
ln λ(u,θ){dN(u)− Y (u)λ(u,θ)du} =

∫ ∞
0

∂

∂θ
ln λ(u,θ)dM(u,θ),

where
M(t,θ) = N(t)−

∫ t

0
Y (u)λ(u,θ)du,

is the zero mean martingale with respect to the filtration generated by the data.
So, the Fisher information matrix in this case is

I(θ) = −Eθ
῭(θ) = Eθ

n∑
i=1

∫ ∞
0

( ∂
∂θ

ln λ(u,θ)
)( ∂
∂θ

ln λ(u,θ)
)T
λ(u,θ)Yi(u)du.

Let us θ̂n be the MLE of the parameters θ which is maximized the likelihood function
L(θ) hold. The most results of asymptotic properties of θ̂n can be obtained using the
stochastic processes M(t,θ). Assume that the following conditions (Borgan [29], Hjort
[53]) hold. Suppose that the processed Ni, Yi are observed during finite time τ .

Condition 1.1.
1) There exists a neighbourhood Θ0 of θ0 such that for all n and θ ∈ Θ0, and almost all

t ∈ [0, τ ], the partial derivatives of λ(t,θ) of the first, second and third order with respect
to θ exist and are continuous in θ for θ ∈ Θ0. Moreover, they are bounded in [0, τ ]×Θ0

and the log-likelihood function may be differentiated three times with respect to θ ∈ Θ0 by
interchanging the order of integration and differentiation.

2) λ(t,θ) is bounded away from zero in [0, τ ]×Θ0.
3) A positive deterministic function y(t) exists such that sup

t∈[0,τ ]
|Y (t)/n− y(t)| → 0.

4) Under condition 1)-3), the following matrix

i(θ0) = lim
n→∞

I(θ0)
n

=
∫ ∞

0

( ∂
∂θ

ln λ(u,θ0)
)( ∂
∂θ

ln λ(u,θ0)
)T
λ(u,θ0)Yi(u)du,

is positive definite.
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Under the conditions 1.1, we obtain the following the asymptotic properties of θ̂n

1. θ̂n
P−→ θ0,

2.
√
n(θ̂n − θ0) = 1√

n
i−1(θ0) ˙̀(θ0) +OP (1),

3.
√
n(θ̂n − θ0) d−→ Nm(0m, i−1(θ0)),

4. 1√
n

˙̀(θ0) d−→ Nm(0m, i(θ0)),
5. −1

n
῭(θ0) P−→ i(θ0) and −1

n
῭(θ̂n) P−→ i(θ0).

6.3 Chi-squared test construction

We consider the problem of testing of the null composite hypothesis H0

H0 : F (t) ∈ F0 = {F (t, θ), θ ∈ Θ ⊂ Rm, t > 0}, (1.35)

this means that the C.D.F. F (·) belongs to the class F0 of C.D.F. of the form F (t, θ), here
θ = (θ1, θ2, · · · , θm)T ∈ Θ ⊂ Rm is unknown m-dimensional parameter and F0 is a known
distribution function.

To construct a chi-squared test statistic for the composite hypothesis (1.35), we divide
(0, τ) into k intervals by the points

0 = a0 < a1 < · · · < ak−1 < ak = τ, we note Ij = (aj−1, aj].

Let us
Uj = N(aj)−N(aj−1) =

∑
i:Xi∈Ij

δi, j = 1, 2, · · · , k,

are the number of observed failures in the j-th interval. We consider the equality

EN(t) = E
∫ t

0
λ(u, θ0)Y (u)du,

where θ̂n is the MLE’s of θ, we denote by λ(t, θ) is the hazard function.
We consider the following vector Z

Z = (Z1, Z2, · · · , Zk)T ; Zj = 1√
n

(Uj − ej), j = 1, 2, · · · , k, (1.36)

of the differences between the numbers of observed and "expected" failures

ej =
∫
Ij
λ(u, θ̂n)Y (u)du, (1.37)
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in the intervals I1, I2, · · · , Ik, which is considered by Akritas [4].
To investigate the properties of the statistic Z, it is necessary to use the properties of

the stochastic properties

Hn(t) = 1√
n

(
N(t)−

∫ t

0
λ(u, θ̂n)Y (u)du

)
, t > 0.

Using the paper of Hjort [53], we have that the following lemma is hold

Lemma 1.1. If the condition 1.1 hold, then the stochastic Hn(t) is the weak convergence
in the space D[0, τ ] of cad-lag functions with Skorokhod metric, that is

Hn(t) d−→ V, on D[0, τ ],

exists, where V is the zero mean Gaussian martingale such that for all 0 ≤ s ≤ t,

Cov(V (s), V (t)) = A(s)− CT (s)i−1(θ0)C(t),

and
A(t) =

∫ t

0
λ(u, θ0)Y (u)du, C(t) =

∫ t

0

∂

∂θ
ln λ(u, θ0)Y (u)du,

where θ0 is the true value of θ.

For j, j′ = 1, 2, · · · , k. Set

Vj = V (aj)− V (aj−1), σjj′ = Cov(Vj, Vj′),
Aj = A(aj)− A(aj−1), Cj = (C1j, C2j, · · · , Cmj)T = C(aj)− C(aj−1),

Σ = [σjj′ ]m×m, C = (C1, C2, · · · , Ck)m×k,

and denote by A is k × k diagonal matrix with diagonal elements A1, A2, · · · , Ak. We
have the next

Theorem 1.6 (Bagdonavičius and Nikulin, 2011). Under conditions 1.1 then

Z d−→ Y ' Nk(0k, Σ), as n→∞. (1.38)

where the matrix Σ = A− CT i−1(θ0)C has the rank equal r.

From the theorem 1.6, we obtain the statistic Y2
n given as follows

Y2
n = ZTΣ−Z d−→ Y2 ∼ χ2

r, where r = rank(Σ), (1.39)
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where Σ− is the generalized inverse matrix of Σ. Denote G = i − CA−1CT , then one can
direct calculate that

Σ− = A−1 +A−1CTG−CA−1. (1.40)

As in consequence, we need to find the inverse A−1 of the matrix A and the general
inverse G− of the m×m matrix G. We take the next theorem

Theorem 1.7 (Bagdonavičius and Nikulin, 2011). Under condition 1.1, the following
estimators of Aj,Cj, i(θ0) and Σ are consistent

Âj = Uj
n
, Ĉj = 1

n

∫
Ij

∂

∂θ
ln λ(u, θ̂n)dN(u),

î = 1
n

∫ τ

0

∂

∂θ
ln λ(u, θ̂n)

( ∂
∂θ

ln λ(u, θ̂n)
)T
dN(u), and Σ̂ = Â − ĈT î−1Ĉ.

6.4 Chi-squared test statistic

Theorem 1.6 and 1.7 imply that, for random intervals of grouping cells, a test for the
hypothesis H0 can be based on the statistic

Ŷ2
n = ZT Σ̂−Z, (1.41)

where, Σ̂− that is the general inverse of the covariance matrix Σ̂, can be written as

Σ̂− = Â−1 + Â−1ĈT Ĝ−ĈÂ−1, Ĝ = î− ĈÂ−1ĈT .

The test statistic (1.41) in practically, can be written in the form

Ŷ2
n =

k∑
j=1

(Uj − ej)2

Uj
+ Q̂, (1.42)

where

Uj =
∑

i :Xi∈Ij
δi, Q̂ = ŴT Ĝ−Ŵ, Ŵ = ĈÂ−1Z, (1.43)

Ĝ = [ĝll′ ]m×m, ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j , (1.44)

îll′ = 1
n

n∑
i=1

δi
∂ ln λ(Xi, θ̂n)

∂θl

∂ ln λ(Xi, θ̂n)
∂θl′

, Ĉlj = 1
n

∑
i:Xi∈Ij

δi
∂ ln λ(Xi, θ̂n)

∂θl
. (1.45)
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Follows (1.39), under the hypothesis H0, the limiting distribution of the statistic Ŷ2
n is

a chi-squared with r degrees of freedom, where

r = rank(Σ−) = Tr(Σ−Σ).

So, the hypothesis H0 rejected with an approximate significance level α if Ŷ2
n > χ2

α(r).

Remark 1.5 (On the choice of random grouping cells aj). As follows Bagdonavičius &
Nikulin [16], we describe here the choice of grouping cells aj as the random data functions.
The idea is to divide the interval [0, τ ] into k small intervals with equal expected numbers
of failures. Define

Ek =
n∑
i=1

Λ(Xi, θ̂n), Ej = j

k
Ek.

Let us X(1), X(2), · · · , X(n) are the ordered sample from X1, X2, · · · , Xn. Set

bi = (n− i)Λ(X(i), θ̂n) +
i∑
l=1

Λ(X(l), θ̂n),

if i is the smallest natural number verifying Ej ∈ [bi−1, bi] then âj verifying the equality

(n− i+ 1)Λ(âj, θ̂n) +
i−1∑
l=1

Λ(X(l), θ̂n) = Ej,

so âj = Λ−1

Ej −∑i−1
l=1 Λ(X(l), θ̂n)
n− i+ 1 , θ̂n

 , âk = max {X(n), τ}, (1.46)

where Λ−1 is the inverse of the function Λ. With this choice of intervals, we have

0 < â1 < â2 < · · · < âk, and ej = Ek
k
, for all j.

More about the construction of the chi-squared Y2
n statistic and the several applications

of this statistic for failure time distributions, one can see, Bagdonavičius et al. [19, 21],
Voinov et al. [121].

Note that the approach of construction of a chi-squared statistic based on the difference
of observed and expected numbers of failures in time intervals, the grouping cells are taken
as the random function, will continue to be developed by us in section 5 of chapter 2 when
the data are the right-censored with covariates. We also consider the equations (1.46)
in section 3, chapter 3 of this document to estimate the endpoints aj constructing the
chi-squared Y2

n statistic for Hypertabastic distribution when the data are right censored.



Chapter 2

Parametric survival models

1 Introduction

Returning to the survival data that was designed from the response of the time of units
functioning under various values covariates. The failure processes of population happen
quickly or slowly depending on the effect of observed covariates data. For example, to
investigation the brain tumour study, a randomized clinical trial was designed to compare
two chemotherapy regimes of the patients with malignant glioma cancer together with 16
covariates are recorded for this study (see, Sauerbrei & Schumacher [105]). The analytically
results shown that there are five out of sixteen observed variables had an impact on the
survival time of each of patients (see, subsection 2.3, chapter 4). In these circumstances,
to construct the good accelerated life models at first we have to evaluate the impact of
covariates, after to understand by which way they influence on survival. Follows this, in
addition to identifying the most appropriate model for the observed, then a problem posed
is to study the effect of covariates on the survival, as well as to consider the estimation
of survival under the covariates. In literature development of the survival analysis, the
non-parametric and semi-parametric survival models that have been usually utilized as
Cox model (see, Cox [34]), Additive Hazards model (see, Aalen [2]), AFT model (see,
Bagdonavičius [9]), Hsieh model (see, Hsieh [57]), Additive-multiplicative hazard model
(see, Lin and Ying [73]), or the model with the crossing of survival functions which is
introduced by Bagdonavičius & Nikulin [14] and more other.

Along with non-parametric, semi-parametric models, many researchers developed para-
metric survival models such as Billingsley [25], Collett [33], Lee & Wang [69], Kim &
Balakrishnan [62], Kleinbaum & Klein [65], Bagdonavičius et al. [20].

Since our purpose is to employ the parametric survival models, to quantify the estimated

49
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survival, to predict the influence of the covariates on survival time, to find a suitable model
for the failure times, from which to control or improve the efficiency of the technology and
procedures different if covariate information can be used well. Therefore, our focus in
this chapter is to discuss of the parametric survival models. In addition to a section of
introduction, this chapter include four sections: Section 2, we present a global of accelerated
life models given covariates. Section 3, we focus to present the right-censored failure time
under covariates which are often obtained in the survival and reliability analysis. Section
4 and 5, we discuss the statistical inference for parametric survival models including the
problem of estimated parameters using the MLE’s when the data are right censored possibly
time-dependence covariates. In this chapter, we also focus to study the generalized chi-
squared test procedures for parametric survival models. Our discussions, in this chapter,
are refer to the important references of Bagdonavičius et al. ([17, 20–22]), Martinussen &
Scheike [75], Nikulin & Tran [88], Nikulin & Wu [89] and other.

2 The consideration models

Let z(·) be a m-dimensional covariate

z(·) = (z1(·), z2(·), · · · , zm(·))T : [0, ∞) −→ Rm, z(·) ∈ E, (2.1)

where z1(·), z2(·), · · · , zm(·) are the univariate time-dependent covariates and E is a set
of all possible m-dimensional covariates. For instance, if one wishes to examine the effect
of the chemotherapy together with Bortezomibe treatment versus chemotherapy without
Bortezomibe on the survival of multiply myeloma patients studied by Hematology Center,
in the Main Military Clinical Hospital, then the patients in the study were randomly
assigned to one of two treatment groups. In addition to treatment, several other covariates,
for example, type of response, sex, and age of the patients were also observed to analyses
the effect of them on the survival times of the multiple myeloma patients. In this study,
the covariates that are affected on the survival of multiple myeloma patients, are those two
treatment groups, the sex, the age and the type of response.

Let us consider a non-negative random variable Tz(·) that is to describe the failure time
of an item under the vector of covariate z(·). It can be expected that the survival and
hazard rate functions depend on the covariate z(·) as well as on the data history. If the
history of one item is described by the covariate z(·), z(·) ∈ E and the failure-time Tz(·),
then the survival function of Tz(·) under covariate z(·) is given as
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Sz(·)(t) = P{Tz(·) ≥ t | z(u) : 0 ≤ u ≤ t}, z(·) ∈ E.

The hazard rate function of Tz(·) under covariate z(·) can be written as

λz(·)(t) = lim
h→0

1
h

P{t ≤ Tz(·) < t+ h |Tz(·) ≥ t} = −
S ′z(·)(t)
Sz(·)(t)

, z(·) ∈ E.

The cumulative hazard and probability density functions given covariate z(·), respec-
tively, are

Λz(·)(t) = − ln {Sz(·)(t)}, fz(·)(t) = −S ′z(·)(t), z(·) ∈ E.

The failure time Tz(·) could be called the resource of the item, but the notion of the
resource it should not depend on z(·) ∈ E.

We say that a covariate z2 is higher than a covariate z1 writing z2 > z1, if for any t ≥ 0
the inequality Sz1(t) ≥ Sz2(t) holds and exists t0 > 0 such that Sz1(t) > Sz2(t). We also
say that the covariate z2 is accelerated with respect to the covariate z1.

We denote λ0(·) = λz0(·)(·) as a baseline hazards rate function, where z0(·) is a usual
(so-called as an ideal, normal) covariate. We also use the notation S0(·) and Λ0(·) instead
of the baseline survival Sz0(·)(·) and cumulative hazard Λz0(·)(·) functions, respectively.
Note that usual covariate z0(·) can be included in E or not. If z0(·) doesn’t include in E,
then it often describe some ideal or virtual conditions. If z0(·) include in E, then S0(·)
include in the class {Sz(·)(·), z(·) ∈ E} also. Then there exists a function denoting the
relation between two survival functions Sz(·)(·) and S0(·), that are known as the named
of transferable function (so-called the linking functions or the equipercentile equation).
More detail on the transferable function, one can see in the publication of Bagdonavičius
& Nikulin [14], especially, one can see in thesis of El Fassi. K. [43] at Pierre et Marie
Curie-Paris University.

Each specified accelerated life model relates the hazard function (or other function) to
the covariate in some particular way. As follows the significant contributions of Bagdonav-
ičius [9, 10], Bagdonavičius & Nikulin [11, 12, 15], Nelson [82], Cox [34], Meeker & Escobar
[77], Chen [30], Martinussen & Scheke [75], Nikulin & Wu [89], we briefly consider some
well-known survival models which are useful utilized in the survival and reliability data
analysis.
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2.1 Proportional hazards (PH) model

The proportional hazards model was proposed by Cox [34] in 1972 in order to evaluate
the effects of different covariates influencing to the life-time of a system. Since then, this
model has been well-known used in survival and reliability analysis.

Definition 2.1. The Proportional hazards (PH) (or Cox) model holds on a set of covariates
E if for all z(·) ∈ E then

λz(·)(t) = r{z(t)}λ0(t), z(·) ∈ E, (2.2)

where r(·) is a positive function on E and λ0(·) (it could λ0(·) = λz0(·)(·), where z0(·) is
the standard usual covariate) is an unspecified baseline hazard rate function. The equality
(2.2) implies that

Λz(·)(t) =
∫ t

0
r{z(u)}dΛ0(u), z(·) ∈ E, (2.3)

where
Λ0(t) =

∫ t

0
λ0(u)du.

The survival function of the PH model is given by

Sz(·)(t) = exp
{
−
∫ t

0
r{z(u)}dΛ0(u)

}
, z(·) ∈ E. (2.4)

If r(·) is unknown then we obtain the non-parametric model. If r(·) is parametrized in
the form

r(z) = eβ
T z, z(·) ∈ E, (2.5)

where β = (β1, β2, · · · , βm)T is a vector of finite-dimensional unknown regression param-
eters. Under the parametrization (2.5), we obtain the semi-parametric PH model on E
with time-dependent covariates

λz(·)(t) = eβ
T z(t)λ0(t), z(·) ∈ E. (2.6)

If the covariates are constant over time, the hazard rate, the survival and the cumulative
functions of PH model given constant covariate z ∈ E1, can be written as follows

λz(t) = eβ
T zλ0(t), Sz(t) = exp

{
−eβT zΛ0(t)

}
, Λz(t) = eβ

T zΛ0(t), z ∈ E1,

respectively.
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Returning to consider the PH model in (2.2), the hazard ratio HR(t, z1, z2) of hazard
rates given different fixed constant covariates z1 and z2 is

HR(t, z1, z2) = λz1(t)
λz2(t) = eβ

T (z1−z2), z1, z2 ∈ E1.

This ratio is constant over time, and more, for any t the conditional probability to fail
in a time interval (t, t+ s) given that a unit is functioning at the moment t depends only
on the value of the covariate z(·) in that interval but does not depend on the values of the
covariate until the moment t, that is

P{Tz(·) ≤ t+ s |Tz(·) > t} = 1− exp
{∫ t+s

t
eβ

T z(u)dΛ0(u)
}
, z(·) ∈ E,

where the baseline hazard rate function λ0(·) does not depend on the covariate. This
explains why we can say that the PH model has the absence of memory property and the
PH model is not useful utilized analyzing the failure time regression data in reliability.

Although, the PH regression is almost always utilized in survival analysis. However, if
the PH assumption does not hold, the PH model may be lead to the mistakes in estimating
or evaluating the statistical inference about the effect of a given prognostic factor on
lifetime. So that the parametric models that where the assumption of a specified probability
distribution for the data is valid, may be brought out some advantages. On the other hand,
inferences based on such a parametric proportional hazard assumption will be more precise.
Therefore, in some circumstances, the parametric PH model can be used to instead of the
classical semi-parametric PH model.

The parametric PH model is obtained when the baseline hazard function λ0(t) is taken
from some parametric family of hazard rates

λ0(t) ∈ λ0(t, γ), γ ∈ G ⊂ Rq.

So that, the parametric PH model under the vector of covariate z(·) gives

λz(·)(t) = eβ
T z(t)λ0(t, γ), γ ∈ G ⊂ Rq. (2.7)

The primary difference between of two type of models is that the baseline hazard func-
tion is assumed to follow a specific distribution when the parametric PH model is fitted
to the data, whereas the PH model does not needed the assumption. The coefficients are
estimated by partial likelihood in the PH model but maximum likelihood in the parametric
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PH model. In literature, the most commonly used baseline hazard functions are Exponen-
tial, Weibull, Gamma and Gompertz distributions. Note that the parametric PH model
was rarely used, because the parametric AFT model that will outline in the next section,
is also simple for analysis and more natural.

Let us consider below a specific PH model on a set of covariates E when the baseline
hazard rate is the constant

λ0(t) ' λ0 = const.

If the covariate z is constant over the time, then the PH model gives

λz(·)(t) = eβ
T z(t),

it means that the distribution of the failure time Tz is exponential under the constant
covariate z(t) = z.

On the other hand, if the covariate z(t) depends on the time t as the formula

z(t) = α ln t, α > 0,

it follows from model (2.7) that the hazard rate of the lifetime Tz(·) is

λz(·)(t) = eβz(t)λ0(t) = λ0e
αβ ln t = λ0t

γ,

where γ = αβ. It is evident that the failure time Tz(·), in this case, follows the Weibull
distribution.

As the same way, one obtain the distribution of failure time Tz(·) that belongs the
Gompertz distribution

λz(·)(t) = eβz(t)λ0(t) = λ0e
αβt,

if the covariate is formulated as below z(t) = α t.

2.2 Accelerated failure time (AFT) model

Definition 2.2. The accelerated failure time (AFT) model holds on the set of all covariates
E if there exists on E a positive function r(·) and a survival function S0 (S0 does not depend
on z(·)) such that for any z(·) ∈ E the following equality holds on E.

Sz(·)(t) = S0
(∫ t

0
r{z(u)}du

)
, z(·) ∈ E, (2.8)
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if the covariates are constant over time then the AFT model (2.8) is written as

Sz(t) = S0
(
r(z) t

)
, z ∈ E1, (2.9)

where E1 is a set of all constant covariates.

The AFT model (2.8) may be considered as non-parametric model (if the function
S0(t) and r(z) are unknown), semi-parametric model (if the function S0 is unknown, the
function r(z) has the parametrization form) or parametric model (if the baseline function
S0(t) belongs to a class of parametric distribution functions). Some key reference, we
recommend, for example, Bagdonavičius [9], Lin & Ying [73], Bagdonavičius & Nikulin
[13] and many other.

The AFT model (2.8) can be written in terms of hazard rate function as below

λz(·)(t) = r{z(t)} q{Λz(·)(t)}, z(·) ∈ E, (2.10)

where the function q(·) is given by the following equation

H(u) =
∫ − lnu

0

dv

q(v) , 0 < u < 1, H = S−1
0 .

As can seen from (2.10) that different from the PH model, the hazard rate λz(·)(t),
under AFT model, at the moment t depends not only on the covariate applied at this
moment but also on the covariate applied in the past, that is, in the interval [0, t).

Suppose that we consider the AFT model in (2.8), if S0 = Sz0(·), where z0(·) is a usual
covariate, then

Sz(·)(t) = Sz0(·)
(∫ t

0
r{z(u)}du

)
⇐⇒

∫ t

0
r{z(u)}du = S−1

z0(·)

(
Sz(·)(t)

)
, z(·) ∈ E. (2.11)

From (2.8) and (2.11), one can see that in the case of the AFT model on E the function
r(·) changes locally the scale of time to failure distribution.

Let us set
fz(·)(t) =

∫ t

0
r{z(u)}du,

then the random variable

Rz(·) = fz(·)(Tz(t)) =
∫ Tz(t)

0
r{z(u)}du = S−1

z0(·)

(
Sz(·)(Tz(t))

)
, z(·) ∈ E,
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is called the resource under failure time Tz(·) and the survival function of Rz(·) is Sz0(·),
where

S−1
z0(·)(t) = inf {u : Sz0(·)(u) ≥ t},

and more, the derivative of fz(·)(t) at the moment t

∂fz(·)(t)
∂t

= r(z(t)),

at the continuity points of r{z(·)}. Note that the functional

fz(·)(·) : E× [0, ∞) → [0, ∞),

is called the transferable function or linking function (see, El Fassi. K. [43]).

On the other hand, under the constant covariates, from (2.8), it follows that for any
x1, x2 ∈ E1, the survival functions Sx1 and Sx2 are related in the following way

Sx2(t) = S0
(
r(x2) t

)
= Sx1

(r(x2)
r(x1)t

)
= Sx1

(
ρ(x2, x1) t

)
, x1, x2 ∈ E1, (2.12)

where ρ(x2, x1) = r(x2)
r(x1) shows the degree of scale variation. It is evident that ρ(x, x) = 1.

The equality (2.12) show that the AFT model on E1 coincide with the Sedyakin’s model
(see, Bagdonavičius [10]) on E1.

In practically, the function r(·) is often written in the following parametrization

r(z) = e−β
T z, (2.13)

where β = (β0, β1, · · · , βm)T is a vector of unknown regression parameters and

z = (1, z1, z2, · · · , zm)T = (1, ϕ1(z), ϕ2(z), · · · , ϕm(z))T ,

is a vector of specified functions ϕi of covariates z. In this circumstance, the AFT model
is given by the next formula

Sz(·)(t) = S0
(∫ t

0
e−β

T z(u)du
)
, z(·) ∈ E, (2.14)

and the hazard rate is

λz(·)(t) = e−β
T z(t) λ0

(∫ t

0
e−β

T z(u)du
)
, z(·) ∈ E. (2.15)
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For constant covariates then

Sz(t) = S0
(
e−β

T zt
)
, z ∈ E1. (2.16)

We see that the AFT model on E1 can also be given as a log-linear model or linear
transformation model, since the logarithm of the failure time Tz given z can be written as

lnTz = βT z + ε, ε ∼ S(t) = S0(ln t), z ∈ E1,

it is evident that if the distribution of ε is normal in the case of log-normal failure time
distribution than we have the standard linear regression model.

We note here that the choice of the functions ϕi(z) is very important in accelerated
life testing because the usual covariate used in the experiment, and the bad choice of the
model may give bad predict of reliability characteristics given the usual covariate. We cite
here some specified choice of ϕi given univariate z.

1. Log-linear model: z1 = z, then e−βT z = e−β0−β1z.

2. Power rule model: z1 = ln z, then e−βT z = e−β0−β1 ln z = α1z
−β1 .

3. Arrhenius model: z1 = 1
z
, then e−βT z = e−β0−

β1
z = α1e

−β1
z .

4. Meeker-Luvalle model: z1 = ln z
1−z , then e

−βT z = e−β0−β1 ln z
1−z = α1

(
z

1−z

)−β1 .

Some times a better choice is taking m = 2, then z = (1, z1, z2)T . In this case, we
often use the Eyring and generalized Eyring models.

5. Eyring model: z1 = ln z, z2 = 1
z
, then e−βT z = e−β0−β1 ln z−β2

z = α1 z e
−β1

z .

6. Generalized Eyring model: z1 = ln z, zi = 1
zi
, i = 2, · · · , m, then

e−β
T z = exp

{
−β0 − β1 ln z −

m∑
i=2

βi
zi

}
.

Unlikely to the PH model, the semi-parametric and non-parametric AFT models are
rarely used. This is because of the function S0, in those cases, are supposed completely
unknown. So the modified variants of likelihood functions are not differentiable and even
not continuous functions, the limiting of covariance matrices of the regression parameters
depend on the derivatives of the probability density functions. This leads to the estimation
procedure becomes more complicated than the PH model. On the contrary, a parametric
AFT model is mostly utilized in survival, in failure time regression analysis and accelerated
life testing in particular. From (2.16), one can see that if the baseline survival function S0
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is taken from Exponential or Weibull distribution functions, that is,

S0(t) = exp
{
− t
θ

}
or S0(t) = exp

{
−
( t
θ

)ν}
,

respectively, then the AFT models are coincided with PH model on E1.

Nevertheless, it is mention that one disadvantage of parametric AFT model is usually
the estimation of these models are carried out by assuming a distribution for the failure
time, which in most cases is unknown. As in consequence, Orbe et al. [94] were proposed
the methodology which is based on the method of Stute [112] to estimate survival regres-
sion models with censored observations without assuming the distribution of the lifetime
variable.

The AFT model is the parametric if the baseline survival function S0 is taken from a
class of parametric distributions

S0(t, γ), γ = (γ1, γ2, · · · , γq)T ∈ G ⊂ Rq.

So, the parametric AFT model can be written by the following form

Sz(·)(t) = S0
(∫ t

0
e−β

T z(u)du, γ
)
, z(·) ∈ E, (2.17)

if the covariates are constant over time, then

Sz(t) = S0
(
e−β

T zt, γ
)
, z ∈ E1.

In literature of parametric AFT model analysis, the most commonly used specified
survival functions are Exponential, Weibull, Gamma, Log-normal, Log-logistic, Birnbaum-
Saunders, Inverse Gaussian, Inverse Weibull, Generalized Weibull and Inverse Generalized
Weibull, v.v. families of distributions.

3 Right censored failure-time data with covariates

Let us consider n items observed and the ith- item is tested under the covariate

zi(·) = (zi1(·), zi2(·), · · · , zim(·))T ∈ E. (2.18)
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Suppose that we consider the right censored survival data

(X1, δ1, z1(s)), (X2, δ2, z2(s)), · · · , (Xn, δn, zn(s)), 0 ≤ s ≤ τ. (2.19)

where
Xi = Ti ∧ Ci, and δi = 1{Ti≤Ci}, (i = 1, 2, · · · , n), (2.20)

Ti is being failure time, Ci is being censored times. The random variable δi is the indicator
of the event {Ti ≤ Ci} and τ is the finite time of the experiment.

If the covariates are constant over the times, we obtain the right censored failure time
under the constant covariates as follow

(X1, δ1, z1), (X2, δ2, z2), · · · , (Xn, δn, zn). (2.21)

In the following we describe the right-censored failure time data (2.19) in terms of
counting processes keeping the significance contributions of Aalen [1], Andersen et al. [6],
Fleming & Harrington [45], Bagdonavičius & Nikulin [14].

Set

Ni(t) = 1{t≥Xi, δi=1} =

1, if t ≥ Xi and Xi = Ti,

0, if t < Xi and Xi = Ci,
(2.22)

be the number of failures of the ith item in the interval [0, t]. It is equal to 1 if failure is
observed in this interval, otherwise it is equal to 0. Also set

Yi(t) = 1{t≤Xi} =

1, if t ≤ Xi,

0, if t > Xi,
(2.23)

then Yi(t) is the at-risk process of the ith item, it’s mean that it is not censored and not
failed just prior the moment t. And then

N(t) =
n∑
i=1

Ni(t), Y (t) =
n∑
i=1

Yi(t), t ≥ 0, (2.24)

are the total number of failures observed in the interval [0, t] and the number of subjects
at risk for failure just prior to the moment t, respectively. We also say that the value Y (t),
for any t, gives the number of the patients who are at risk for failure during a small time
interval (t− ε, t] for an arbitrarily small positive ε, since any unit that fails exactly at time
t must be both in the risk set at the failure time and known to be at risk before the failure
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occurred.
The stochastic processes Ni(t), Yi(t) is called the counting processes. We say that if

(Xi, δi) (i = 1, 2, · · · , n) are given then the stochastic processes Ni(t), Yi(t) can be found
using their definition. Conversely, suppose that Ni(t), Yi(t) are defined follow (2.22) and
(2.23), if Ni(t) has the jump at Xi then Xi = Ti and δi = 1, this means that we obtain an
observation Ti = Xi. If Ni(t) = 0 for any t ≥ 0 then Xi = Ci and δi = 0, it is censoring
time. On the other hand, the moment Xi is the moment of the jump of Yi(t) from 1 to 0.
For this raison, the data (2.19) can be written in terms of couting processes Ni(t), Yi(t) as
follows

(N1(t), Y1(t), t ≥ 0), (N2(t), Y2(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0). (2.25)

We note that the representation (2.25) give us the dynamics of the stories of failures
and censoring up to time t. The notion of the history is formalized by the notion of the
filtration. The very concept history is well formalized in terms of the concept filtration of
a random process. One very important advantage of data presentation in the form (2.25)
is the following: The processes Ni(·) and Yi(·) show dynamics of failure and censoring
mechanism over time. If the values of

{Ni(u), Yi(u), 0 ≤ u ≤ t, i = 1, 2, · · · , n}, (2.26)

are known then the history of failures and censoring up to the moment t is known.
We want to cite here some important references that have been used the counting

processed for survival analysis, for example, Aven & Jensen [8], Huber et al. [59], Klein et
al. [64], Lawless et al.[67], Bagdonavičius et al. [21].

Following, we consider the data described in formulas (2.19) (also (2.21) or (2.25)) for
constructing the parameter estimation and the assessing adequacy of fit for the parametric
survival models starting from section 4 to the end of chapter 2. We also validate the
Hypertabastic survival models to fit the same data in the chapter 3 of this document.

4 Estimates of parameters

4.1 Parametric estimations

Assumption that distributions of all n units that are tested under different explana-
tory variables or stresses generally are different, are absolutely continuous with the sur-
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vival functions Si(t,θ), the probability densities fi(t, θ), the hazard rates λi(t, θ) and the
cumulative hazard Λi(t, θ), specified by a common possibly multidimensional parameter
θ = (θ1, θ2, · · · , θs)T ∈ Θ ⊂ Rs.

Let us consider the right censored failure-time data (2.19) under covariates zi(·) ∈ E.
Denote by Gi(t) and gi(t) are the survival and the density functions of of the censoring
time Ci, respectively. In this case for non-informative and independent censoring we may
give the following expressions for the likelihood function

Ln(θ) =
n∏
i=1

f δii (Xi, θ)S1−δi
i (Xi, θ).Gδi

i (Xi)g1−δi
i (Xi), θ ∈ Θ.

Since the problem is to estimate the parameter θ, we can skip the multipliers which do
not depend on this parameter. So under non-informative censoring the likelihood function
has the next form

Ln(θ) =
n∏
i=1

f δii (Xi, θ)S1−δi
i (Xi, θ), θ ∈ Θ. (2.27)

Using the relation fi(t,θ) = λi(t,θ)Si(t,θ) the likelihood function (2.27) can be written

Ln(θ) =
n∏
i=1

λδii (Xi, θ)Si(Xi, θ), θ ∈ Θ. (2.28)

The log-likelihood function of (2.28) has the form

`(θ) =
n∑
i=1
{δi ln λi(Xi, θ) + lnSi(Xi,θ)}

=
n∑
i=1
{δi ln λi(Xi, θ)− Λi(Xi,θ)}, θ ∈ Θ. (2.29)

The log-likelihood function is maximized at the same point as the likelihood function.
As before the estimator θ̂n, maximizing the likelihood function Ln(θ), θ ∈ Θ, is called the
MLE (see, Hjort [54]). Denote by θ̂n = (θ̂1, θ̂2, · · · , θ̂s)T , are the MLE of θ under H0. If
λi(u, θ) is sufficiently smooth function of the parameter θ then the MLEs’ θ̂n satisfies the
equation

˙̀(θ̂n) = 0s, (2.30)

where ˙̀(θ) is the score vector

˙̀(θ) = ∂

∂θ
`(θ) =

(
˙̀1(θ), ˙̀2(θ), · · · , ˙̀

s(θ)
)T
,
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where the score function ˙̀
j(θ), (j = 1, 2, · · · , s) given as

˙̀
j(θ) = ∂

∂θj
`(θ) =

n∑
i=1

{
δi
∂

∂θj
ln λi(Xi, θ)− ∂

∂θj
Λi(Xi,θ)

}
, θ ∈ Θ. (2.31)

As before, the Fisher information matrix is I(θ) = −Eθ
῭(θ), where

῭(θ) =
n∑
i=1

δi
∂2

∂θ2 ln λi(Xi,θ)−
n∑
i=1

∂2

∂θ2 Λi(Xi,θ), θ ∈ Θ. (2.32)

Note here that the data (2.19) can be presented in the form (2.25). So, we can write
the log-likelihood `(θ) and the score ˙̀(θ) functions in terms of the processes Ni(·) and Yi(·)
as follows. We see that

∫ +∞

0
ln λzi(.)(u, θ) dNi(u) =

ln λzi(.)(Xi, θ), if δi = 1,
0, if δi = 0,

= δi ln λzi(.)(Xi, θ),

and

∫ +∞

0
Yi(u)λzi(.)(u, θ) du =


t∫

0
λzi(.)(u, θ)du, if t ≤ Xi,

0, if t > Xi,

=
∫ Xi

0
λzi(.)(u, θ)du = − lnSzi(.)(Xi, θ).

So, those two expressions (2.29), (2.31) imply that

`(θ) =
n∑
i=1

∫ +∞

0
{ln λi(u, θ)dNi(u)− Yi(u)λi(u, θ)}du, θ ∈ Θ, (2.33)

˙̀
j(θ) =

∫ +∞

0

∂

∂θ
ln λi(u, θ)dMi(u, θ), θ ∈ Θ, (2.34)

where
Mi(t,θ) = Ni(t)−

∫ t

0
Yi(u)λi(u,θ)du,

is the zero mean martingale with respect to the filtration generated by the data.
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The Fisher’s information matrix is given by formula

I(θ) = −Eθ
῭(θ)

= Eθ

n∑
i=1

∫ ∞
0

( ∂
∂θ

ln λi(u, θ)
)( ∂
∂θ

ln λi(u, θ)
)T
λi(u, θ)Yi(u)du. (2.35)

4.2 Asymptotic properties of the maximum likelihood estimators

Suppose that the sufficient conditions of Borgan [29] (one can also be found in Bag-
donavičius & Nikulin [14]) hold. These conditions are

Condition 2.1.
1. There exists a neighbourhood Θ0 of the true value θ0 of θ such that for all i, θ ∈ Θ0

the derivatives of λi(u, θ) of the first, the second and the third order with respect to θ

exist and are continuous in θ for θ ∈ Θ0. Moreover, they are bounded in [0, τ ] × Θ0

and the log-likelihood function may be differentiated three times with respect to θ ∈ Θ0 by
interchanging the order of integration and differentiation.

2. There exists a positive definite matrix i(θ) = [σjj′(θ)]s×s such that

1
n

n∑
i=1

∫ τ

0

( ∂
∂θ

ln λi(u, θ0)
)( ∂
∂θ

ln λi(u, θ0)
)T
λi(u, θ0)Yi(u)du P−→ i(θ0), as n→∞.

3. For all j > 0 and all ε > 0 then

1
n

n∑
i=1

∫ τ

0

{ ∂

∂θj
ln λi(u, θ0)

}2
1{∣∣∣n−1/2 ∂

∂θj
lnλi(u,θ0)

∣∣∣>ε} Yi(u)du P−→ 0.

4. For any n and i, there exist measurable functions gin and hin, not dependent on θ,
such that for all t ≥ 0

sup
θ∈θ0

∣∣∣ ∂3

∂θj∂θj′∂θj′′
λi(u, θ0)

∣∣∣ ≤ gin(t),

and

sup
θ∈θ0

∣∣∣ ∂3

∂θj∂θj′∂θj′′
λi(u, θ0)

∣∣∣ ≤ hin(t),
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for all j, j′, j′′. Moreover, for all j, j′

1
n

n∑
i=1

∫ τ

0
gin(t)Yi(t)dt,

1
n

n∑
i=1

∫ τ

0
hin(t)λi(t, θ0)Yi(t)dt,

and

1
n

n∑
i=1

∫ τ

0

{ ∂

∂θj
ln λi(u, θ0)

}2
λi(t, θ0)Yi(u)du,

all converge in probability to finite quantities as n→ +∞, and, for all ε > 0 then

1
n

n∑
i=1

∫ τ

0
hin(t)1{n−1/2hin(t)>ε}Yi(t)λi(t, θ0)dt P−→ 0.

As follows Bogran, we have the next

Theorem 2.3 (Bogran, 1984). Under independent right censoring and the sufficient con-
ditions 2.1 hold, suppose that θ̂n is the MLE of θ then

1. θ̂n
P−→ θ0.

2.
√
n(θ̂n − θ) = 1√

n
i−1(θ0) ˙̀(θ0) +OP (1).

3.
√
n(θ̂n − θ) d−→ Ns(0, i−1(θ0)).

4. 1√
n

˙̀(θ0) d−→ Ns(0, i(θ0)).

5. − 1
n

῭(θ0) P−→ i(θ0), and − 1
n

῭(θ̂n) P−→ i(θ0).

From theorem 2.3, we obtain the Wald statistic for θ that follows

(θ̂n − θ)T i(θ̂n) (θ̂n − θ) d−→ χ2
s,

where χ2
s is the chi-squared distribution with s degrees of freedom.

The asymptotic distribution of θ̂n when n as∞ is approximately normally distributed,
that is

θ̂n ' N(θ̂, nΣ−1(θ0)), (2.36)

in practically, the covariance matrix nΣ(θ) can be estimated by i(θ). Follow (2.36) then
the approximated (1−α) confidence intervals (CI) for the parameter θj, (j = 1, 2, · · · , s)

θj ∈
{
θ̂j − w1−α/2σ(θ̂j), θ̂j + w1−α/2σ(θ̂j)

}
, (2.37)
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where w1−α/2 is the (1− α
2 ) quantile of the normal distribution and

σ2(θ̂j) = eTj i−1(θ̂n)ej,

ej is the unit vector with the ith-element equal 1, other elements equal 0.

4.3 Approximate confidence estimate of survival function

Suppose that θ̂n is a MLE of θ. Suppose that {an} is a sequence of real numbers.
Based on the functional delta method (see, Andersen et al. [6]), we have

an(θ̂n − θ) d−→ N(0, Σ−1(θ)) as an →∞. (2.38)

Suppose that g : Rs −→ R is a function verifying the conditions of Andersen et al.
[6]. This implies that

an(g(θ)− g(θ̂n)) d−→ N(0, Jg(θ)Σ−1(θ)JTg (θ)) as an →∞, (2.39)

where

Jg(θ) =
(
∂g(θ)
∂θ1

,
∂g(θ)
∂θ2

, · · · , ∂g(θ)
∂θs

)T
.

If n is large then (2.38) implies that

θ̂n ' Ns(θ, a2
nΣ−1(θ)).

The convergence (2.39) implies

g(θ̂n) ' Ns(g(θ), Jg(θ) a2
n Σ−1(θ)JTg (θ)).

Suppose that a−2
n i−1(θ̂n) is a consistent estimator of Σ−1(θ). Thus, we have

g(θ̂n)− g(θ)
σg(θ̂n)

' N(0, 1), (2.40)

where σ2
g(θ̂n) = Jg(θ̂n) i−1(θ̂n)JTg (θ̂n).

In the following we construct the CI for survival function of ith-item: g(θ) = Si(t, θ).
Because the survival function take values in the interval (0, 1], so the approximation by
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the normal law is improved by using the transformations

Qi(t, θ) = ln Si(t, θ)
1− Si(t, θ) , for i = 1, 2, · · · , n.

Taking into account that (
ln u

1− u
)′

= 1
u(1− u) ,

and using (2.38), we obtained

Qi(t, θ̂n)−Qi(t, θ)
σQi(θ̂n)

' N(0, 1),

where

σ2
Qi

(θ̂n) =
JTSi(θ̂n)i−1(θ̂n)JSi(θ̂n)
S2
i (t, θ̂n)[1− Si(t, θ̂n)]2

,

and

JSi(θ̂n) =
(
∂Si(t, θ̂n)

∂θ1
,
∂Si(t, θ̂n)

∂θ2
, · · · , ∂Si(t, θ̂n)

∂θs

)T
.

As in consequence, the approximated (1− α) confidence intervals (CI) for the survival
function Si(t, θ) is

{[
1 + 1− Si(t, θ̂n)

Si(t, θ̂n)
eσQi (θ̂n)w1−α/2

]−1
;
[
1 + 1− Si(t, θ̂n)

Si(t, θ̂n)
e−σQi (θ̂n)w1−α/2

]−1
}
, (2.41)

where w1−α/2 is the α quantile of the standard normal law.

5 Generalized chi-squared tests for parametric sur-
vival models

Suppose that n independent failure time variables are observed. Let us consider the
hypothesis H0 stating that the survival function given the vector of covariates z(·) ∈ E

H0 : S(t, θ) = S0(t, θ, z(·)), θ = (θ1, θ2, · · · , θs)T ∈ Θ ⊂ Rs, z(·) ∈ E, (2.42)

where S0(·) is a specified function of time t. The hypothesis H0 in (2.42) can be also
formulated in terms of the hazard function λ(t, θ) = −S′(t,θ)

S(t,θ)
or the cumulative hazard

function Λ(t, θ) = − ln {S(t, θ)}.
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About the hypotheses (2.42), we can construct a test for the parametric AFT model
(2.17); parametric PH model (2.7); the parametric generalized proportional hazards mod-
els; or the class of models with cross effects of survival functions (for detail see, Bagdon-
avičius et al. [21]).

Additional information about the baseline function S0(·), we have to cite here the fami-
lies of the Weibull, Log-logistic, Log-normal, Generalized Weibull, Exponentiated Weibull,
Birnbaum-Saunders, Inverse Gaussian, Generalized Inverse Weibull distributions. In re-
search of Bagdonavičius et al. [20], Tahir [116], Saaidia [104], Goual [48], they have been
discussed on them.

We shall present in detail a test for parametric survival models include parametric
AFT and PH models using Hypertabastic distribution as the baseline hazard functions,
in chapter 3 of this document. Therefore, we consider the foremost the generalized chi-
squared test for general hypothesis H0 with possibly time dependent covariates following
Bagdonavičius et al. [21, 22], Nikulin & Tran [88]. Using the same approach like the
section 6 of chapter 1, the choice of random grouping intervals as data functions is also
considered.

5.1 Idea of test construction

We shall give chi-squared test for the hypothesis H0 from right censored failure time
regression data that are described in (2.21) or in counting processes (2.25), respectively.

Let us θ̂n be the MLE’s of θ under H0. The estimated parameters θ̂n satisfied the
score equations (2.30) assuming that the consistency and asymptotic normality of the θ̂n

(theorem 2.3) hold under H0.
Suppose that the following condition hold

Condition 2.2.
1. The processes Ni, Yi, zi are observed up to the finite time of the experiment τ ;
2. Survival distributions of all n objects given zi are absolutely continuous with the

survival functions Si(t, θ) with the hazard rates λi(t, θ) and the cumulative hazard rates
Λi(t, θ) of Xi under zi;

3. Censoring is non-informative and independent, supposing that the multiplicative
intensity model holds. The compensators of the counting processes Ni with respect to the
history of the observed processes are

∫ t
0 Yi(u)λi(u, θ) du.

As the same the approach of the construction of the test statistic for right censored
failure time data which we discussed in the first chapter, here, we divide the interval [0, τ ]
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into k smaller intervals Ij = (aj−1, aj], a0 = 0, ak = τ , and denote by

Uj = N(aj)−N(aj−1), (2.43)

is the number of observed failures in the j-th interval, j = 1, 2, · · · , k.
Under regularity conditions, suppose that the equality

ENi(t) = E
∫ t

0
λi(u, θ)Yi(u)du, θ ∈ Θ, (2.44)

holds. It suggests that we can expect to observe

ej =
n∑
i=1

∫ aj

aj−1
λi(u, θ̂n)Yi(u)du, θ ∈ Θ, (2.45)

failures in the interval Ij.
Let us consider the stochastic process

Hn(t) = 1√
n

(
N(t)−

n∑
i=1

∫ t

0
λi(u, θ̂n)Yi(u)du

)
, (2.46)

which characterizes the difference between observed and expected numbers of failures.
So we obtain the vector Z = (Z1, Z2, · · · , Zk)T of the difference between observed and
expected numbers of failures, where

Zj = Hn(aj)−Hn(aj−1) = 1√
n

(Uj − ej), (j = 1, 2, · · · , k). (2.47)

It is very reasonable that we can construct the test for H0 based on the vector Z.

5.2 Asymptotically properties of test statistic

It is evident that the properties of the statistic Z depends the properties of the stochastic
process Hn(t), t ≥ 0. To investigate the properties of Hn(t), we need to use the asymptotic
properties of the MLE in section 4. Set

S(0)(t, θ) =
n∑
i=1

Yi(t)λi(t, θ), S(1)(t, θ) =
n∑
i=1

Yi(t)
∂ ln λi(t, θ)

∂θ
λi(t, θ),

S(2)(t, θ) =
n∑
i=1

Yi(t)
∂2 ln λi(t, θ)

∂θ2 λi(t, θ).
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We also suppose that the Conditions VI.1.1 given in Andersen et al. [6] and the following
condition hold.

Condition 2.3. There exist a neighborhood Θ0 of θ0 and continuous bounded on Θ0×[0, τ ],
the functions

s(0)(t, θ), s(1)(t, θ) = ∂s(0)(t, θ)
∂θ

, s(2)(t, θ) = ∂2s(0)(t,θ)
∂θ2 ,

such that for j = 0, 1, 2

sup
t∈[0,τ ],θ∈Θ0

|| 1
n
S(j)(t, θ)− s(j)(t, θ)|| P−→ 0 as n→∞.

The conditions 2.3 imply that uniformly for t ∈ [0, τ ]

1
n

n∑
i=1

∫ t

0
λi(u, θ0)Yi(u)du P−→ A(t), 1

n

n∑
i=1

∫ t

0

∂

∂θ
λi(u, θ0)Yi(u)du P−→ C(t),

where A(·) and C(·) = (C1(·), C2(·), · · · , Cs(·))T are finite functions. As in consequence,
we have the next follow

Lemma 2.1 (Bagdonavičius et al., 2011). If the conditions 2.1, 2.3 and Conditions VI.1.1
(see, Andersen et al. [6]) are hold, then the following convergence exists

Hn
d−→ V on D[0, τ ],

here D[0, τ ] is space of cadlag functions with Skorokhod metric, V is zero mean Gaussian
martingale such that, for all 0 ≤ u ≤ v ≤ τ

cov(V (u), V (v)) = A(u)− CT (u)i−1(θ0)C(v).

For l = 1, 2, · · · , s, j, j′ = 1, 2, · · · , k, set

Vj = V (aj)− V (aj−1), σjj′ = cov(Vj, Vj′), Σ = [σjj′ ]k×k,
Aj = A(aj)− A(aj−1), Clj = Cl(aj)− Cl(aj−1), C = [Cij]s×k,

and we denote by A a k × k diagonal matrix with the diagonal elements A1, · · · , Ak.
From the lemme 2.1 one can obtain the theorem below
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Theorem 2.4 (Bagdonavičius et al., 2011). Under conditions 2.1, 2.3 and condition VI.1.1
Andersen et al. [6] then

Z d−→ Y ∼ Nk(0s,Σ) as n→∞, (2.48)

where
Σ = A− CT i−1(θ0)C, rank(Σ) = r. (2.49)

As follows Theorem 2.4, we obtain a statistic

Y2
n := ZTΣ−Z d−→ χ2

r, (2.50)

where χ2
r is a chi-squared distribution with r degrees of freedom.

5.3 Test statistic

The formula (2.50) shows that a test for the hypothesis H0 can be based on the statistic

Y2
n = ZTΣ−Z, (2.51)

where, the matrix Σ− that is the general inverse of the covariance matrix Σ. And then,
we have

lim
n→∞

P{Y2
n < x | H0} = P{χ2

r < x}, for any x > 0.

Note that if we set G = i− CA−1CT . The formula

Σ− = A−1 +A−1CT G−CA−1, (2.52)

implies that we need to invert only diagonal k × k matrix A and find the general inverse
of the s× s matrix G.

From Theorem 2.4, it follows that under conditions 2.1 and 2.3, the following estimators
of Aj, Cj, Σ and i(θ0) are consistent

Âj = Uj
n
, Ĉj = 1

n

n∑
i=1

∫
Ij

∂

∂θ
ln λi(u, θ̂n) dNi(u), Σ̂ = Â − ĈT î−1Ĉ, (2.53)

î = 1
n

n∑
i=1

∫ τ

0

∂ ln λi(u, θ̂n)
∂θ

(∂ ln λi(u, θ̂n)
∂θ

)T
dNi(u). (2.54)

The statistic Y2
n in fact has a convenient form which is the sum of the Pearson statistic
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Y2
n and a non-negative quadratic form Q, and it can be presented as

Y2
n := ZT Σ̂−Z = X2

n + Q, (2.55)

where Σ̂− is the general inverse of the estimate covariance matrix Σ̂ and

X2
n =

k∑
j=1

(Uj − ej)2

Uj
, Q = W TG−W, G = i− ĈÂ−1ĈT , (2.56)

W = (W1, · · · , Ws)T , Wl =
k∑
j=1

ĈljÂ
−1
j Zj, (l = 1, 2, · · · , s), (2.57)

and the elements of the matrix Ĉ = [Ĉlj]s×k and Fisher information matrix î = [̂ill′ ]s×s
estimated by the formulas below

Ĉlj = 1
n

∑
i:Xi∈Ij

δi
∂ ln λi(Xi, θ̂n)

∂θl
, (2.58)

îll′ = 1
n

n∑
i=1

δi
∂ ln λi(Xi, θ̂n)

∂θl

∂ ln λi(Xi, θ̂n)
∂θl′

. (2.59)

The distribution of the statistic Y2
n has in limit a chi-squared distribution with

r = rank(Σ−) = Tr(Σ−Σ),

degrees of freedom. If the matrix G is non-degenerate then r = k.
Statistic inference: The hypothesis H0 is rejected with approximate significance level

α if Y2
n > χ2

α(r).

5.4 On the choice of random cells boundaries

An usual experiment plan in accelerated life testing is to test several groups of units
under different higher stress conditions. In such experiment it is possible that the failures of
units from different groups are mostly concentrated in different non-intersecting intervals.
So using common idea of constructing chi-squared test by division of the interval [0, τ)
into smaller intervals and comparing observed and expected numbers of failures the choice
of the ends of the intervals is very important because dividing into intervals of equal length
may give intervals where the numbers of observed failures are zero or very small.

Let us consider the choice of the limits of grouping intervals as random data functions.
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Define

Ek =
n∑
i=1

∫ τ

0
λi(u, θ̂n)Yi(u)du =

n∑
i=1

Λi(Xi, θ̂n), Ej = j

k
Ek, (j = 1, 2, · · · , k). (2.60)

So we seek âj to have equal numbers of expected failures (not necessary an integer) in
all intervals. So âj satisfy the equality

g(âj) = Ej, g(a) =
n∑
i=1

∫ a

0
λi(t, θ̂n)Yi(u)du.

Denote by X(1) ≤ · · · ≤ X(n) the ordered sample from X1, · · · , Xn. Note that the
function

g(a) =
n∑
i=1

Λi(Xi ∧ a, θ̂n) =
n∑
i=1

[ n∑
l=i

Λ(l)(a, θ̂n) +
i−1∑
l=1

Λ(l)(X(l), θ̂n)
]
1[X(i−1), X(i)](a),

is continuous and increasing on [0, τ ]; here X(0) = 0 and we denote by ∑0
l=1 cl = 0. Set

bi =
n∑

l=i+1
Λ(l)(X(i), θ̂n) +

i∑
l=1

Λ(l)(X(l), θ̂n). (2.61)

If bi−1 ≤ Ej ≤ bi then âj is the unique solution of the equation

n∑
l=i

Λ(l)(âj, θ̂n) +
i−1∑
l=1

Λ(l)(X(l), θ̂n) = Ej. (2.62)

For this choice, we have ej = Ek/k for any j and

0 < â1 < â2 < · · · < âk = τ.

So the hypothesis H0 is rejected with approximate significance level α if Y2
n > χ2

α(r), the
statistic Y2

n computed using the formulas from (2.55) to (2.59), replacing aj by âj in all
formulas and taking

e1 = · · · = ek = 1
k

n∑
i=1

Λ(Xi, θ̂n, zi). (2.63)

More about the construction of Y2
n test statistic and its applications for the parametric

survival models, one can see, Bagdonavičius et al [21, 22], Nikulin & Tran [88] and many
other. Using the Y2

n test statistic, in the next chapter, we shall validate the Hypertabastic
survival models.



Chapter 3

Validity of Hypertabastic models

1 Introduction

On the application of generalized chi-squared test statistic Y2
n, we look at some signif-

icant references as Aguirre & Nikulin [3], Bagdonavičius et al. [19, 21, 23], Zhang [126],
Nikulin et al. [92], Tahir [116] and Saaidia [104] in their Bordeaux Ph.D thesis. There are
several failure-time distributions, such as, Exponential, Weibull, Log-normal, Log-logistic,
Birnbaum-Saunders, Inverse Gaussian, Generalized Weibull, Generalized Exponentiated
Weibull distributions have been validated using the chi-squared test and applying to the
real data. We interest a new probability distribution that has the nice properties with
uni-modal shape of hazard function, was recently proposed by Tabatabai et al. [113], it is
called Hypertabastic distribution. In addition to being used as the baseline function in the
parametric models for applying to the clinical trial data as the myeloma cancer (Tabatabai
et al. [113]) or the breast cancer (see, Tabatabai et al. [114, 115]), Tabatabai and his
colleagues demonstrated the performance of this distribution in comparison with Weibull,
Log-normal, Log-logistic and Gamma distributions based on the log-likelihood ratio and
AIC statistics. But those two statistics have not useful to use for assessing adequacy of fit
for the survival and reliability data analysis.

As follows our methodology and generalized chi-squared test that have been described
in the first and second chapters. We wish give here to explicit the formula of our con-
sideration tests for Hypertabastic survival models in three scenes of the data: Complete,
right censored and right censored with covariates. We take, firstly, the Hypertabastic dis-
tribution as follow the text of Tabatabai and his colleagues [113] in section 2. Later, we
focus to discuss the properties of the two parametric models included Hypertabastic AFT
and Hypertabastic PH models. We also consider the testing of those two models using Y2

n

73
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statistic. The simulation studies were carried out in section 4 to illustrate the power of Y2
n

test in comparison with other statistics. Using Monte Carlo procedure, the more precise
models of statistic distribution of considered tests are also analyzed for this distribution
when unknowns parameters are estimated by the MLE.

2 Hypertabastic distribution H(a, b)

We say that the random variable T follows Hypertabastic distribution noting H(a, b)
if the C.D.F. of this distribution is given as

F (t, θ) = 1− Sech
{
a

b

(
1− tb Coth(tb)

)}
, t > 0, θ = (a, b)T , a > 0, b > 0, (3.1)

where, Sech(·) and Coth(·) are hyperbolic secant and hyperbolic cotangent, respectively.
Its survival function is

S(t, θ) = Sech
{
a

b

(
1− tbCoth(tb)

)}
, t > 0, a > 0, b > 0. (3.2)

P.D.F. and hazard functions of H(a, b) distribution are given the expressions below

f(t, θ) = atb−1{tbCsch2(tb)− Coth(tb)} Sech(W )Tanh(W ), (3.3)

and
λ(t, θ) = atb−1{tbCsch2(tb)− Coth(tb)}Tanh(W ), (3.4)

respectively, where
W = a

b

(
1− tb Coth(tb)

)
.

The consideration of the different hazard shapes bring out the different biological mech-
anisms of disease progression which can be assist clinicians, researches and pharmacologists
to keep track of the disease status over time. The Hypertabastic hazard function has in-
teresting properties (for detail, see Tabatabai et al. [113]) as follows.

- If 0 < b ≤ 0.25, then its hazard rate is decreasing from ∞ to 0.
- If 0.25 < b ≤ 1, then its hazard rate is ∩-shaped: The first increases with time until

it reaches its maximum and then decreases.
- If 1 < b ≤ 2, then its hazard rate is increasing with upward concavity until it reaches

its inflection point and then it continues to increase with downward concavity thereafter.
- If b > 2, then its hazard rate is increasing with upward concavity.
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Figure 3.1: Hypertabastic hazard plot with difference of parameter (a, b).
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In addition to being used a Hypertabastic distribution as the baseline function of
parametric survival models, this distribution can be alternated for other as Exponential,
Weibull, Gamma, Log-normal, Log-logistic, Inverse Gaussian and Birnbaum - Saunders
distributions in survival and reliability analysis. In the next chapter, our statistical results
will show that Hypertabastic survival models be a more accurate than other models for
the real-life dataset based on Y2

n statistic. However, if Hypertabastic survival model is
rejected for the data, we need to select other model to fit best. So, it is really necessary to
consider in the next the goodness-of-fit test for Hypertabastic survival models as the null
hypotheses.

3 Validity of H(a, b) using generalized chi-squared tests

We have the foremost to test the composite hypothesis H0, according to which

H0 : F (t, θ) = 1− Sech
{a
b

(
1− tb Coth(tb)

)}
, t > 0, a > 0, b > 0, (3.5)

when the data can be the complete or right censored observations.

3.1 Complete data

Let T = (T1, T2, · · · , Tn)T be a complete sample, i.e. T1, T2, · · · , Tn are i.i.d. random
variables. We consider to test for the composite hypothesis H0 in (3.5) from the sample T.

The log-likelihood function of T is

`(θ) = n ln a+ (b− 1)
n∑
i=1

lnTi +
n∑
i=1

ln {Ui Tanh(Wi)}+
n∑
i=1

ln {Sech(Wi)}, (3.6)

and the score functions are

˙̀
a(θ) = n

a
− 1
a

n∑
i=1

Wi(2Tanh2(Wi)− 1)
Tanh(Wi)

,

˙̀
b(θ) =

n∑
i=1

lnTi + 2b
a

n∑
i=1

Ni

Ui
+ 1
b

n∑
i=1

Ki(2Tanh2(Wi)− 1)
Tanh(Wi)

,

where
Wi = a

b

(
1− T bi Coth(T bi )

)
, Ui = T bi Csch2(T bi )− Coth(T bi ),

Ki = Wi − aT bi Ui lnTi, and Ni = T biWiCsch2(T bi ) lnTi, (i = 1, 2, · · · , n).
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The MLE’s θ̂n = (ân, b̂n)T of θ = (a, b)T can be obtained by solving the non-linear
system of scores functions ( ˙̀

a(θ), ˙̀
b(θ))T = 02.

Using the formulas that are described in section 3 of chapter 1, we present below the
mechanism of Y2

n test statistic for the hypothesis (3.5) when the data are complete and
the MLE’s are usage.

Let us p = (p1 , p2 , · · · , pr)T is a vector of positive probability, 0 < pi < 1, such that
pT1r = 1 and defining the endpoints aj of the grouping intervals that are solution of the
equation

1− Sech
{ ân
b̂n

(
1− ab̂nj Coth(ab̂nj )

)}
=

j∑
i=1

pi, (j = 1, 2, · · · , r − 1), a0 = 0, ar = +∞.

(3.7)

Suppose that ν = (ν1, ν2, · · · , νr)T is a frequency vector arising from grouping T1, · · · , Tn
over the partition Ij = (aj−1, aj] and the probability p(θ) = (p1(θ), p2(θ), · · · , pr(θ))T to
fall into each cell is

pj(θ) =
∫ aj

aj−1
f(x, θ)dx = F (aj, θ)− F (aj−1, θ), (j = 1, 2, · · · , r).

The Fisher’s information matrix I(θ) for one observation Ti can be replaced by

I(θ̂n) = − 1
n

∂2`(θ̂n)
∂a2

∂2`(θ̂n)
∂ab

∂2`(θ̂n)
∂ba

∂2`(θ̂n)
∂b2

 ,
where

∂2`(θ̂n)
∂a2 = − 1

â2
n

{
n+

n∑
i=1

W 2
i Sech2(Wi)(1 + 2Tanh2(Wi))

Tanh2(Wi)
}
,

∂2`(θ̂n)
∂ba

= 1
ânb̂n

n∑
i=1

Ki

Tanh(Wi)
{

2Tanh2(Wi)− 1 + WiSech2(Wi)(2Tanh2(Wi) + 1)
Tanh(Wi)

}
,

∂2`(θ̂n)
∂b2 = 2

ân

n∑
i=1

Ni lnTi
Ki

− 2
b̂2
n

n∑
i=1

Ki(2Tanh2(Wi)− 1)
Tanh(Wi)

+ 2b̂n
ân

n∑
i=1

Ai lnTi
U2
i

−

1
b̂n

n∑
i=1

T b̂ni (ânUi + 2b̂nNi)(2Tanh2(Wi)− 1) ln2 Ti
Tanh(Wi)

− 1
b̂2
n

n∑
i=1

K2
i Sech

2(Wi)(2Tanh2(Wi) + 1)
Tanh2(Wi)

,

where
Wi = ân

b̂n

(
1− T b̂ni Coth(T b̂ni )

)
, Ui = T b̂ni Csch2(T b̂ni )− Coth(T b̂ni ),
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Ki = Wi − ânT b̂ni Ui lnTi, Ni = T b̂ni WiCsch2(T b̂ni ),

Ai = T b̂ni UiCsch2(T b̂ni )
[
Wi lnTi −

Ki

b̂n
− 2T b̂ni WiCoth(T b̂ni ) lnTi

]
− 2b̂n

ân
N2
i lnTi.

Let J(θ̂n) = BT (θ̂n)B(θ̂n) is the Fisher’s information matrix of the vector frequencies
ν, where the matrix B = [bij]r×2 include the elements

bi1 = 1√
pi(θ̂n)

∂pi(θ̂n)
∂a

, bi2 = 1√
pi(θ̂n)

∂pi(θ̂n)
∂b

, (i = 1, 2, · · · , r).

From (1.18) - (1.21) in chapter 1, a chi-squared test statistic for H0 can be written as

Y2
n(θ̂n) = X2

n(θ̂n) + Q, (3.8)

where X2
n(θ̂n) = XT

n (θ̂n)Xn(θ̂n), Xn(θ̂n) is the Pearson’s vector

Xn(θ̂n) =
(
ν1 − np1(θ̂n)√

np1(θ̂n)
,
ν2 − np2(θ̂n)√

np2(θ̂n)
, ...,

νr − npr(θ̂n)√
npr(θ̂n)

)T
,

and the quadratic form Q give as the following expression

Q = Xn(θ̂n)B(θ̂n)(I(θ̂n)− J(θ̂n))−1BT (θ̂n)Xn(θ̂n).

Following the theorem 1.5 in chapter 1, the hypothesis H0 is rejected with approximate
significance level α if Y2

n(θ̂n) > χ2
α(r−1), where χ2

α(r−1) is the upper α percentage points
of the chi-squared distribution with r − 1 degrees of freedom.

3.2 Right censored data

Let us consider the composite hypothesis H0 in (3.5) from the right censored failure
time data that are given in (1.30).

In this situation, the log-likelihood function can be written as

`(θ) =
n∑
i=1
{δi[ln a+ (b− 1) lnXi + ln (UiTanh(Wi))] + ln Sech(Wi)}, (3.9)

where
Wi = a

b

(
1−Xb

i Coth(Xb
i )
)
, Ui = Xb

iCsch2(Xb
i )− Coth(Xb

i ).
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The MLE’s θ̂n = (â, b̂)T of θ = (a, b)T can be obtained by solving the non-linear system
of scores functions: ( ˙̀

a(θ), ˙̀
b(θ))T = 02. Set

Ŵi = â

b̂

(
1−X b̂

i Coth(X b̂
i )
)
, Ûi = X b̂

iCsch2(X b̂
i )− Coth(X b̂

i ),

we obtain the expression of the element of the matrix C = [Ĉlj]2×k and the Fisher infor-
mation matrix î = [̂ill′ ]2×2 by using the formula (1.45), are given as follows

î11 = 1
â2

n∑
i=1

δi
(
1 + ŴiÛiSech2(Ŵi)

Tanh(Ŵi)

)2
,

î22 = 1
b̂2

n∑
i=1

δi
(
b̂ lnXi + 2b̂2

â

X b̂
i Ŵi Csch2(X b̂

i ) lnXi

Ûi
− (Ŵi − â X b̂

i Ûi lnXi) Sech2(Ŵi)
Tanh(Ŵi)

)2
,

î12 = 1
âb̂

n∑
i=1

δi
(
1 + ŴiÛiSech2(Ŵi)

Tanh(Ŵi)

)
×

(
b̂ lnXi + 2b̂2

â

X b̂
i Ŵi Csch2(X b̂

i ) lnXi

Ûi
− (Ŵi − â X b̂

i Ûi lnXi) Sech2(Ŵi)
Tanh(Ŵi)

)
,

Ĉ1j = 1
â

∑
i :Xi ∈ Ij

δi
(
1 + ŴiÛiSech2(Ŵi)

Tanh(Ŵi)

)2
,

Ĉ2j = 1
b̂

∑
i :Xi ∈ Ij

δi
(
b̂ lnXi + 2b̂2

â

X b̂
i Ŵi Csch2(X b̂

i ) lnXi

Ûi
− (Ŵi − â X b̂

i Ûi lnXi) Sech2(Ŵi)
Tanh(Ŵi)

)
.

Choice âj: Let us X(1), X(2), · · · , X(n) are the ordered sample from X1, X2, · · · , Xn. Set

Λ(X(i), θ̂n) = − ln
{
Sech

{ â
b̂

(
1−X b̂

(i) Coth(X b̂
(i))
)}}

, Ej = j

k

n∑
i=1

Λ(X(i), θ̂n), (3.10)

and
bi = (n− i)Λ(X(i), θ̂n) +

i∑
l=1

Λ(X(l), θ̂n), i = 1, 2, · · · , n. (3.11)

If i is the smallest natural number verifying Ej ∈ [bi−1 ; bi] then âj verifying the equality

(n− i+ 1)Λ(âj, θ̂n) +
i−1∑
l=1

Λ(X(l), θ̂n) = Ej. (3.12)

Because the inverse of the cumulative hazard function of H(a, b) distribution can not
be written in an explicit form. So, the equations in (3.12) are solved based on the numerical
method.
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4 Some other GOF tests for H(a, b) distribution

We consider, in this section, some test statistics including the modified "omega-squared"
and Anderson-Darling statistics for H(a, b) distribution (3.5) for the complete data. Let
T(1), T(2), · · · , T(n) are the ordered sample from T1, T2, · · · , Tn.

"Omega-squared" statistic. This statistic based on the integral of squared difference
between of C.D.F. and E.C.D.F. and is given as

W2
n = n

∫ 1

0
[Fn(u)− u]2du, where Fn(t) = 1

n

n∑
i=1

1{Ti≤ t},

W2
n is so-called Cramer-von Mises-Smirnov statistic. This statistic in fact has the more

convenient following formula

ω2
n = 1

12n +
n∑
i=1

[
F (T(i), θ)−

2i− 1
2n

]2
. (3.13)

Anderson-Darling statistic. The test based on Anderson-Darling statistic can be
written as

An = −n− 1
n

n∑
i=1

(2i− 1)
[
lnF (T(i), θ) + ln (1− F (T(n−i+1), θ))

]
. (3.14)

ω2
n and An tests: The hypothesis H0 is rejected if ω2

n, An exceed their critical values.

Remark 3.1 (Remark on the limit distribution of ω2
n and An statistics).

1. If θ is known, the critical values of ω2
n and An computed by statistical software

when the sample n is small. If n is large then the critical values are found using following
asymptotic results

nω2
n

d−→ C =
∫ 1

0
B2(t)dt, nAn

d−→ A =
∫ 1

0

B2(t)
t(1− t)dt.

For detail the C.D.F. of the random variables C and A, one can see Bolshev [28].
2. If θ is unknown, we use the MLE of Hypertabastic’s parameters θ̂n = (â, b̂)T instead

of θ = (a, b)T in the expressions (3.13) and (3.14). In this case, the distributions of
ω2
n and An statistics depend on the estimated parameters θ̂n = (â, b̂)T . However, under
H(a, b) hypothesis (3.5), using the same approach of Lemeshko et al. [72], we suggest that
the limiting distributions of ω2

n, An statistics are best approximated by the Johnson - SB
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family of distributions (JSB) with the cumulative function

JSB(x, θ) = Φ
{
θ0 + θ1 ln

( x− θ3

θ2 + θ3 − x
)}
, θ = (θ0, θ1, θ2, θ3)T ,

where Φ(x) is the distribution function of the standard normal law. In fact, by simulating
for the sample size n = 200 with N = 10000 of repeat on the difference combination
Hypertabastic’s parameters (a, b) = (1, 0.2), (1, 0.5), (1, 1.5), (1.5, 0.75), (1, 1) and (2, 3),
then the limiting distributions of ω2

n, An statistics when MLE are used, are given as follows

ω2
n → JSB(4.00256, 1.51431, 0.63650, 0.00652), as n → ∞,

An → JSB(4.55893, 1.69143, 4.41847, 0.05498), as n → ∞.

Figure 3.2 shows the curve of estimated distribution of ω2
n statistic using maximum

likelihood method to estimate two unknown Hypertabastic’s parameters. In this Figure,
a black line shows the curve of the estimated C.D.F. of JSB family with the estimated
parameters θ̂ = (4.00256, 1.51431, 0.63650, 0.00652)T .
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Figure 3.2: Simulated Cramer-von Mises-Smirnov statistic distribution for
testing of Hypertabastic and estimate of JB distribution when MLE’s used.

Similarly, Figure 3.3 shows the curve of estimated distribution of An statistic for calcu-
lating difference MLE’s under H0, a black line indicate the curve of the estimated C.D.F.
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Figure 3.3: Simulated Anderson-Darling statistic distribution for testing of
Hypertabastic and estimate of JB distribution when MLE’s used.

of JSB family with estimated parameters θ̂ = (4.55893, 1.69143, 4.41847, 0.05498)T .

Table 3.1: Upper α percentage points of ω2
n and An statistical distributions

for H(a, b) in the case of MLE usage.

Test statistics α = 0.01 α = 0.05 α = 0.1
Cramer-von Mises-Smirnov’s ω2

n 0.1646562 0.1173248 0.0970515
Anderson-Darling’s An 0.9865201 0.724399 0.611299

Table 3.1 shows the upper α percentage points of statistic distributions of the ω2
n and

An tests that were constructed by modeled pseudo-random H(a, b) sample size n = 200
for N = 10000 of repeat, when two unknown parameters estimated by their MLE’s.

5 Validity of Hypertabastic AFT model

5.1 Hypertabastic AFT model

Suppose that

z(·) = (z0(·), z1(·), z2(·), · · · , zm(·))T ∈ E, z0(·) ≡ 1, (3.15)
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is the possible time-varying m-dimensional vector of covariate.

The Hypertabastic accelerated failure time (AFTH) model under z(·) ∈ E can be
written in the form

Sz(·)(t) = G0
{(∫ t

0
e−β

T z(u)du
)b}

, z(·) ∈ E, (3.16)

where β = (β0, β1, · · · , βm)T is the unknown regression parameter and G0(·) is the baseline
survival function, given as

G0(u) = Sech{a
b

[1− uCoth(u)]}, a, b > 0, (3.17)

here a > 0, b > 0 are the unknown parameter of H(a, b) distribution. The scale parameter
a do not change the posture and characteristics of the hazard rates and may be include in
the coefficient β0. So, we obtain

Sz(·)(t, β, σ) = G0
{(∫ t

0
e−β

T z(u)du
) 1
σ , σ

}
, σ = 1

b
, z(·) ∈ E, (3.18)

where
G0(u, σ) = Sech{σ [1− uCoth(u)]}. (3.19)

Set
G(u, σ) = G0(eu, σ), σ > 0, (3.20)

then the survival function of AFTH model can be written as the form

Sz(·)(t, β, σ) = G
{ 1
σ

ln
( ∫ t

0
e−β

T z(u)du
)
, σ

}
, σ > 0, z(·) ∈ E, (3.21)

if the covariate z(·) ≡ z is constant that

Sz(t, β, σ) = G
{ ln t− βT z

σ
, σ

}
, σ > 0, z ∈ E1, (3.22)

where G(·, σ) and G0(·, σ) are defined by the formulas (3.19) and (3.20), respectively. Note
that, the formula (3.22) seem to us that the AFTH model belongs the log-location scale
parametric AFT classical models, such as AFT Weibull, AFT Log-normal or AFT Log-
logistic models. However, the AFTH is more interesting other. Since the Hypertabastic
baseline function is more flexibility than shape-scale function distributions.
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Following (3.21), we set θ = (βT , σ)T and

fz(·)(β) =
∫ t

0
e−β

T z(u)du, vz(·)(θ) = 1
σ

ln
(∫ t

0
e−β

T z(u)du
)
, z(·) ∈ E, (3.23)

under constant covariate then

fz(β) = e−β
T zt, vz(θ) = ln t− βT z

σ
, z ∈ E1. (3.24)

We obtain the hazard rate function of AFTH model

λz(·)(t, θ) = e−β
T z(t) evz(·)(θ) f−1

z(·)(β)Uz(·)(θ) Tanh(Wz(·)(θ)), z(·) ∈ E, (3.25)

where

Wz(·)(θ) = σ
[
1− evz(·)(θ) Coth(evz(·)(θ))

]
, (3.26)

Uz(·)(θ) = evz(·)(θ) Csch2(evz(·)(θ))− Coth(evz(·)(θ)). (3.27)

5.2 MLE for the regression parameters of AFTH model

Returning to consider the right-censored data influenced by covaraites that are given
in (2.19). Follows that, the likelihood function of AFTH model is

L(θ) =
n∏
i=1

{
e−β

T zi(Xi) eVi(θ) f−1
i (β)Ui(θ) Tanh(Wi(θ))

}δi SechWi(θ), (3.28)

where Vi(θ) = 1
σ

ln
(∫ Xi

0
e−β

T zi(u)du
)
, fi(β) =

∫ Xi

0
e−β

T zi(u)du, zi(·) ∈ E, (3.29)

Wi(θ) = σ
[
1− eVi(θ) Coth(eVi(θ))

]
, (3.30)

Ui(θ) = eVi(θ) Csch2(eVi(θ))− Coth(eVi(θ)), (3.31)

if the covariate zi(·) is constant then the likelihood function is

L(θ) =
n∏
i=1

{1
t
eVi(θ) Ui(θ) Tanh(Wi(θ))

}δi SechWi(θ), zi ∈ E. (3.32)
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The log-likelihood function is

`(θ) =
n∑
i=1

{
δi
[
−βT zi(Xi)− ln fi(β) + Vi(θ) + ln {Ui(θ) Tanh(Wi(θ))}

]
+ ln Sech(Wi(θ))

}
,

(3.33)
under the constant covariate, the log-likelihood function can be written as

`(θ) =
n∑
i=1

{
δi
[
Vi(θ) + ln (Ui(θ)Tanh(Wi(θ)))− lnXi

]
+ ln (Sech(Wi(θ)))

}
, (3.34)

where Vi(θ) = lnXi − βT zi
σ

, Wi(θ) = σ
(
1− eVi(θ) Coth(eVi(θ))

)
, (3.35)

Ui(θ) = eVi(θ)Csch2(eVi(θ))− Coth(eVi(θ)), i = 1, 2, · · · , n. (3.36)

The score functions are

˙̀
βl(θ) := ∂`(θ)

∂βl
=

n∑
i=1

δi
{
ḟ li (β)− zil(Xi)

}
− 1
σ

n∑
i=1

ḟ li (β)Di(θ), (3.37)

˙̀
σ(θ) := ∂`(θ)

∂σ
= − 1

σ

n∑
i=1

Wi(θ)Bi(θ)− 1
σ

n∑
i=1

Vi(θ)Di(θ), (3.38)

where δ =
n∑
i=1

δi and for all l = 0, 1, · · · , m, i = 1, 2, · · · , n,

ḟ li (β) =
∫Xi

0 zil(u)e−βT zi(u)du∫Xi
0 e−βT zi(u)du

, Bi(θ) = Tanh(Wi(θ))− δi
Sech2(Wi(θ))
Tanh(Wi(θ) , (3.39)

Di(θ) = δi

(
1 + 2

σ
Ai(θ)

)
− σeVi(θ) Ui(θ)Bi(θ), (3.40)

where Ai(θ) = eVi(θ) Wi(θ) Csch2(eVi(θ))
Ui(θ) , (3.41)

and fi(β), Vi(θ), Wi(θ) and Ui(θ) are defined in (3.29)-(3.31), respectively.

Under the constant covariate zi(·) the score functions (3.37), (3.38) can be written as

˙̀
βl(θ) = − 1

σ

n∑
i=1

zilDi(θ), (l = 0, 1, · · · , m), (3.42)

˙̀
σ(θ) = − 1

σ

n∑
i=1

Wi(θ)Bi(θ)− 1
σ

n∑
i=1

Vi(θ)Di(θ), (3.43)
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where Bi(θ), Di(θ) are defined in (3.39) - (3.41) and Vi(θ), Wi(θ) and Ui(θ) are defined in
(3.29)-(3.31), respectively. The MLE’s θ̂n = (β̂T , σ̂)T are obtained by solving the system
of equations

˙̀
βl(θ) = 0m+1, ˙̀

σ(θ) = 0, (l = 0, 1, · · · , m).

5.3 Estimators of the reliability characteristic

Let us suppose that z(·) = (z0(·), z1(·), · · · , zm(·))T ∈ E is a possible time-varying
covariate which may be different from zi(·). Suppose that θ̂n = (β̂T , σ̂)T are the MLE’s of
θ = (βT , σ)T . As follows the section 4 in chapter 2, the estimator of the survival function
Sz(·)(t) of AFTH model under covariate z(·) is

Ŝz(·)(t) = Sech
{
σ̂
[
1− eV̂z(·) Coth(eV̂z(·))

]}
, where V̂z(·) = 1

σ̂
ln
(∫ t

0
e−β̂

T z(u)du
)
. (3.44)

Under the constant covariate z(·) = z, we obtained

Ŝz(t) = Sech
{
σ̂
[
1− eV̂z Coth{eV̂z}

]}
, where V̂z = ln t− β̂T z

σ̂
. (3.45)

5.4 Asymptotic distribution of the regression parameters esti-
mators

Under the regularity conditions 2.1 in chapter 2, the limiting distribution of θ̂n =
(β̂T , σ̂)T has the normal law, that is

(β̂, σ̂)T ' Nm+2((β, σ)T , Σ−1(β̂, σ̂)),

the covariance matrix Σ−1(β̂, σ̂) is estimated by the inverse

I−1(β̂, σ̂) = [ils(β̂, σ̂)](m+2)×(m+2),

of the Fisher information matrix I(β̂, σ̂) = −1
n

[ils(β̂, σ̂)](m+2)×(m+2) containing the elements
below

ils(β̂, σ̂) =
n∑
i=1

¨̂
f lsi
[
δi −

1
σ̂
D̂i

]
− 1
σ̂

n∑
i=1

˙̂
f li

˙̂
f si
{
K̂i + σ̂eV̂i Û2

i Ĥi

}
, (3.46)

il(m+2)(β̂, σ̂) = 1
σ̂

n∑
i=1

˙̂
f li
{ 1
σ̂
D̂i + P̂i − V̂i K̂i

}
, (3.47)
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i(m+2)(m+2)(β̂, σ̂) = 1
σ̂2

n∑
i=1

(
ŴiB̂i + 2V̂iD̂i

)
− 1
σ̂

n∑
i=1

V̂i
{
V̂iK̂i − P̂i

}
−

1
σ̂2

n∑
i=1

(
Ŵi − σ̂V̂i eV̂i Ûi

)(
B̂i + ŴiĤi

)
+ δ

σ̂2 , (3.48)

where ˙̂
f li =

∫Xi
0 zil(u)e−β̂T zi(u)du∫Xi

0 e−β̂T zi(u)du
, (l = 0, 1, · · · , m),

¨̂
f lsi =

∫Xi
0 zil(u)e−β̂T zi(u)du

∫Xi
0 zis(u)e−β̂T zi(u)du(∫Xi

0 e−β̂T zi(u)du
)2 −

∫Xi
0 zil(u)zis(u)e−β̂T zi(u)du∫Xi

0 e−β̂T zi(u)du
,

V̂i = 1
σ̂

ln
(∫ Xi

0
e−β̂

T zi(u)du
)
, Ŵi = σ̂

[
1− eV̂i Coth(eV̂i)

]
,

Ûi = eV̂i Csch2(eV̂i)− Coth(eV̂i), Âi = eV̂i Ŵi Csch2(eV̂i)
Ûi

,

B̂i = Tanh(Ŵi)− δi
Sech2(Ŵi)
Tanh(Ŵi)

, D̂i = δi
(
1 + 2

σ̂
Âi
)
− σ̂eV̂i Ûi B̂i,

Ĥi = Sech2(Ŵi)
{

1 + 2δi + δi
Sech2(Ŵi)
Tanh2(Ŵi)

}
, P̂i = eV̂i Ûi

{
B̂i −

(
Ŵi − σ̂V̂i eV̂i Ûi

)
Ĥi

}
,

K̂i = −2δi
σ̂2 Q̂i + eV̂i

{
Ûi B̂i + 2

σ̂
eV̂iŴiB̂iCsch2(eV̂i)

}
,

and Q̂i = Âi
{

1− 2
σ̂
Âi − 2eV̂iCoth(eV̂i)

}
+ σ̂ e2V̂iCsch2(eV̂i).

If the covariate zi(·) is constant over the time, we have

ils(β̂, σ̂) = − 1
σ̂

n∑
i=1

zilzis
{
K̂i + σ̂eV̂i Û2

i Ĥi

}
, (3.49)

il(m+2)(β̂, σ̂) = 1
σ̂

n∑
i=1

zil
{ 1
σ̂
D̂i + P̂i − V̂i K̂i

}
, (3.50)

i(m+2)(m+2)(β̂, σ̂) = 1
σ̂2

n∑
i=1

(
ŴiB̂i + 2V̂iD̂i

)
− 1
σ̂

n∑
i=1

V̂i
{
V̂iK̂i − P̂i

}
−

1
σ̂2

n∑
i=1

(
Ŵi − σ̂V̂i eV̂i Ûi

)(
B̂i + ŴiĤi

)
. (3.51)

In particular, the CI approximation at (1− α) level for the parameter βl

βl ∈
{
β̂l − w1−α/2σ(β̂l), β̂l + w1−α/2σ(β̂l)

}
, (l = 0, 1, · · · , m), (3.52)
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where w1−α/2 is the (1 − α
2 ) quantile of the normal law and the variance σ2(β̂l) of the

estimator β̂l is estimated by

σ2(β̂l) = ill(β̂, σ̂), (l = 0, 1, · · · , m).

5.5 Approximate CI for the reliability characteristic

For any covariate z(·) = (z0(·), z1(·), · · · , zm(·))T ∈ E, using (2.41) in chapter 2, we
obtain the approximate (1− α) CI for survival function Sz(·) that is given as follows.

{[
1 + 1− Ŝz(·)(t)

Ŝz(·)(t)
eσQi (β̂, σ̂)w1−α/2

]−1
;
[
1 + 1− Ŝz(·)(t)

Ŝz(·)(t)
e−σQi (β̂, σ̂)w1−α/2

]−1}
, (3.53)

where w1−α/2 is the 1− α/2 quantile of the normal distribution, Ŝz(·)(t) is given in (3.38)
and

σ2
Qi

(β̂, σ̂) =
JTSz(·)

(β̂, σ̂)I−1(β̂, σ̂)JSz(·)(β̂, σ̂)
Ŝ2
z(·)(t)[1− Ŝz(·)(t)]2

, (3.54)

where

JSz(·)(β̂, σ̂) =
(∂Ŝz(·)(t)

∂β0
,
∂Ŝz(·)(t)
∂β1

, · · · ,
∂Ŝz(·)(t)
∂βm

,
∂Ŝz(·)(t)
∂σ

)T
,

∂Ŝz(·)(t)
∂βl

= ˙̂
f lz e

V̂z Ûz Sech(Ŵz) Tanh(Ŵz), l = 0, 1, · · · , m,

∂Ŝz(·)(t)
∂σ

= − 1
σ̂

(Ŵz − σ̂V̂zÛzeV̂z)Sech(Ŵz) Tanh(Ŵz),

here ˙̂
f lz =

∫ t
0 zl(u)e−β̂T z(u)du∫ t

0 e
−β̂T z(u)du

, V̂z = 1
σ̂

ln
(∫ t

0
e−β̂

T z(u)du
)
,

Ŵz = σ̂
[
1− eV̂z Coth(eV̂z)

]
, Ûz = eV̂z Csch2(eV̂z)− Coth(eV̂z).

5.6 Validity of Hypertabastic AFT model using Y2
n

Under the right censored failure-time data under the constant covariates that are defined
in (2.21), we consider the hypothesis H0 stating AFTH model as follows

H0 : Si(t) = Sech{σ [1− eViCoth(eVi)]}, where Vi = ln t− βT zi
σ

, t > 0, (3.55)
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where β = (β0, β1, · · · , βm)T is a vector of unknown regression parameters, σ > 0. The
hypothesis H0 in (3.55) can be written as the following expressions of the hazard rate or
cumulative hazard functions, respectively

λi(t) = 1
t
eVi
[
eViCsch2(eVi)− Coth(eVi)

]
Tanh{σ [1− eViCoth(eVi)]},

Λi(t) = − ln {Sech{σ̂ [1− eV̂iCoth(eV̂i)]}}.

Suppose that θ̂n = (β̂T , σ̂)T are the MLE’s of θ = (βT , σ)T . The statistic Y2
n and its

components are given from (2.55) to (2.59). We obtain

Y2
n = X2

n + Q, X2
n =

k∑
j=1

(Uj − ej)2

Uj
, Q = W TG−W, Uj =

∑
i :Xi∈Ij

δi,

G = i− ĈÂ−1ĈT , W = ĈÂ−1Z, Z = (Z1, Z2, · · · , Zk)T , Zj = 1√
n

(Uj − ej).

The diagonal matrix Â includes the diagonal elements Âj = Uj
n
, the elements of the

matrix i = [̂ill′ ](m+2)×(m+2) and C = [Ĉlj](m+2)×k are calculated by taking the formulas
(2.58) and (2.59) as follows

îll′ = 1
nσ̂2

n∑
i=1

δizilzil′
{

1 + 2
σ̂

Ŵie
V̂iCsch2(eV̂i)
Ûi

+ σ̂Ûie
V̂iSech2(Ŵi)

Tanh(Ŵi)

}2
,

îl(m+1) = 1
nσ̂2

n∑
i=1

δizil
{

1 + 2
σ̂

Ŵie
V̂iCsch2(eV̂i)
Ûi

+ σ̂Ûie
V̂iSech2(Ŵi)

Tanh(Ŵi)

}
×

{
1 + V̂i + 2

σ̂

V̂iŴie
V̂iCsch2(eV̂i)
Ûi

−

(
Ŵi − σ̂V̂iÛieV̂i

)
Sech2(Ŵi)

Tanh(Ŵi)

}
,

î(m+1)(m+1) = 1
nσ̂2

n∑
i=1

δi
{

1 + V̂i + 2
σ̂

V̂iŴie
V̂iCsch2(eV̂i)
Ûi

−

(
Ŵi − σ̂V̂iÛieV̂i

)
Sech2(Ŵi)

Tanh(Ŵi)

}2
,

Ĉlj = −1
nσ̂

∑
i:Xi∈Ij

δizilzil′
{

1 + 2
σ̂

Ŵie
V̂iCsch2(eV̂i)
Ûi

+ σ̂Ûie
V̂iSech2(Ŵi)

Tanh(Ŵi)

}
,

Ĉ(m+1)j = −1
nσ̂

∑
i:Xi∈Ij

δi
{

1 + V̂i + 2
σ̂

V̂iŴie
V̂iCsch2(eV̂i)
Ûi

−

(
Ŵi − σ̂V̂iÛieV̂i

)
Sech2(Ŵi)

Tanh(Ŵi)

}
,
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respectively, ej is given in (2.43) and

V̂i = lnXi − β̂T zi
σ̂

, Ŵi = σ̂
[
1− eV̂i Coth(eV̂i)

]
,

Ûi = eV̂i Csch2(eV̂i)− Coth(eV̂i), i = 1, 2, · · · , n.

For testing AFTH model based on Y2
n statistic, the endpoints aj are found from the

equations (2.61) - (2.63) based on the numerical method. Since the matrix G is non-
degenerate, so rank(G) = k. As follows Theorem 2.4, the limiting distribution of statistic
Y2
n is a chi-squared with k degrees of freedom. So, the hypothesis H0 is rejected with an

approximate significance level α if Y2
n > χ2

α(k).

6 Validity of Hypertabastic PH model

6.1 Hypertabastic PH model

Suppose that each individual is taken with associated the possible time-varying m-
dimensional vector of covariate

z(·) = (z1(·), z2(·), · · · , zm(·))T ∈ E.

We consider the parametric Hypertabastic PH (PHH) model under the covariate z(·) ∈
E, are given in the form

λz(·)(t, θ) = atb−1
[
tbCsch2(tb)−Coth(tb)

]
Tanh

(a
b

[
1−tbCoth(tb)

])
eβ

T z(t), z(·) ∈ E, (3.56)

where β = (β1, β2, · · · , βm)T is a vector of unknown regression parameter, a, b are the
unknown parameters of the Hypertabastic baseline, we set θ = (βT , a, b)T .

The PHH model can be written as the following form of survival and cumulative func-
tions, respectively

Sz(·)(t, θ) = exp
{
−
∫ t

0
eβ

T z(u)dΛ0(u, a, b)
}
, Λz(·)(t, θ) =

∫ t

0
eβ

T z(u)dΛ0(u, a, b), (3.57)

where Λ0(t, a, b) is the baseline cumulative hazard of the H(a, b) distribution given as

Λ0(t, a, b) = − ln
{
Sech

(a
b

[
1− tbCoth(tb)

])}
, a, b > 0. (3.58)
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If the covariate z(·) is a constant over the time, we obtained follow the expressions of
the survival, hazard rate and the cumulative hazard functions of PHH model

λz(t, θ) = atb−1
[
tbCsch2(tb)− Coth(tb)

]
Tanh

(a
b
[
1 − tbCoth(tb)

])
eβ

T z, z ∈ E1, (3.59)

Sz(t, θ) =
{
Sech

(a
b

[
1− tbCoth(tb)

])}eβT z
, Λz(t, θ) = eβ

T zΛ0(t, a, b), (3.60)

respectively.

6.2 MLE for the regression parameters

Returning to consider the right-censored data influenced by covaraites that are given
in (2.19). Follows that, the likelihood function of PHH model can be written as

L(θ) =
n∏
i=1

{[
aXb−1

i UiTanh(Wi)eβ
T zi(Xi)

]δi exp
{
−
∫ Xi

0
eβ

T zi(u)λ0(u, a, b)du
}}
, (3.61)

where
Wi = a

b

[
1−Xb

iCoth(Xb
i )
]
, Ui = Xb

iCsch2(Xb
i )− Coth(Xb

i ), (3.62)

and λ0(u, a, b) is the hazard rate baseline function is given as (3.4).
The log-likelihood function of PHH model is given as

`(θ) =
n∑
i=1

{
δi
[
ln a+ (b− 1) lnXi + βT zi(Xi) + ln {UiTanh(Wi)}

]
−

∫ Xi

0
eβ

T zi(u)λ0(u, a, b) du
}
, θ = (βT , a, b)T . (3.63)

If zi(·) is constant covariate then

`(θ) =
n∑
i=1

{
δi
[
ln a+ βT zi + (b− 1) lnXi + ln (UiTanh(Wi))

]
+ eβ

T zi ln (Sech(Wi))
}
. (3.64)

The score functions are

˙̀
βl(θ) =

n∑
i=1

{
δizil(Xi)−

∫ Xi

0
zil(u)eβT zi(u)λ0(u, a, b) du

}
,

˙̀
a(θ) = 1

a

n∑
i=1

δi
(
1 + WiSech2(Wi)

Tanh(Wi)
)
−

n∑
i=1

∫ Xi

0
eβ

T zi(u)∂λ0(u, a, b)
∂a

du,
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˙̀
b(θ) =

n∑
i=1

{
δi
(
lnXi + 2b

a

Ni

Ui
− 1
b

KiSech2(Wi)
Tanh(Wi)

)
−
∫ Xi

0
eβ

T zi(u)∂λ0(u, a, b)
∂b

du
}
,

where Wi, Ui are given in (3.62) and

Ni = Xb
iWiCsch2(Xb

i ) lnXi, Ki = (Wi − aXb
iUi lnXi). (3.65)

Under constant covariate zi(·) ≡ zi ∈ E1, the score function can be written as follows

˙̀
βl(θ) =

n∑
i=1

zil
{
δi + eβ

T zi ln (Sech(Wi))
}
,

˙̀
a(θ) = 1

a

n∑
i=1

(
δi + Wi(δiSech2(Wi)− eβ

T ziTanh2(Wi))
Tanh(Wi)

)
,

˙̀
b(θ) =

n∑
i=1

δi
(
lnXi + 2b

a

Ni

Ui

)
− 1
b

n∑
i=1

Ki(δiSech2(Wi)− eβ
T ziTanh2(Wi))

Tanh(Wi)
, zi ∈ E1.

The parameters θ = (βT , a, b)T can be estimated by maximizing the log-likelihood function
`(θ). Suppose that θ̂n = (β̂T , â, b̂)T is the MLE’s of θ which is obtained by solving the
system equation

˙̀
βl(θ) = 0m, ˙̀

a(θ) = 0, ˙̀
b(θ) = 0, (l = 1, 2, · · · , m).

6.3 Estimators of the reliability characteristic

Let us consider any possible time-varying covariate z(·) = (z1(·), z2(·), · · · , zm(·)) ∈ E,
θ̂n = (β̂T , â, b̂)T is the MLE’s of θ. The estimator Ŝz(·)(t) of survival function Sz(·)(t) of
PHH model under covariate z(·) has

Ŝz(·)(t) = exp
{
−â

∫ t

0
eβ̂

T z(u) ub̂−1
[
ub̂Csch2(ub̂)− Coth(ub̂)

]
Tanh

( â
b̂

[
1− ub̂Coth(ub̂)

])
du
}
,

(3.66)
if the covariate z(·) is constant over the time, we obtained below the estimator of the PHH

survival function

Ŝz(t) =
{
Sech

( â
b̂

[
1− tb̂Coth(tb̂)

])}eβ̂T z
, z ∈ E1. (3.67)
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6.4 Asymptotic distribution of the parameters estimators

Suppose that the regularity condition 2.1 hold. As follows (2.36), we obtain the asymp-
totic distribution of the parameters estimators θ̂n = (β̂T , â, b̂)T has

(β̂, â, b̂)T ' Nm+2((β, a, b)T , Σ−1(β, a, b)).

In particular, the estimator of the covariance matrix Σ−1(β, a, b) can be estimated by

I−1(θ̂n) = [ils(θ̂n)](m+2)×(m+2),

where I−1(θ̂n) is inverse of the information matrix I(θ̂n) = −1
n

[ils(θ̂n)](m+2)×(m+2) with the
following elements

ils(θ̂n) = −
n∑
i=1

∫ Xi

0
zil(u)zis(u)eβ̂T zi(u)λ0(u, â, b̂)du,

il(m+1)(θ̂n) = −
n∑
i=1

∫ Xi

0
zil(u)eβ̂T zi(u)∂λ0(u, â, b̂)

∂a
du,

il(m+2)(θ̂n) = −
n∑
i=1

∫ Xi

0
zil(u)eβ̂T zi(u)∂λ0(u, â, b̂)

∂b
du,

i(m+1)(m+1)(θ̂n) = − 1
â2

n∑
i=1

δi
{

1 + Ŵ 2
i [1− Tanh4(Ŵi)]

Tanh2(Ŵi)

}
−

n∑
i=1

∫ Xi

0
eβ

T zi(u)∂
2λ0(u, â, b̂)

∂a2 du,

i(m+1)(m+2)(θ̂n) = − 1
âb̂

n∑
i=1

δi
K̂iSech2(Ŵi)

Tanh(Wi)
{

1− Ŵi[1 + Tanh2(Ŵi)]
Tanh(Ŵi)

}
−

n∑
i=1

∫ Xi

0
eβ

T zi(u)∂
2λ0(u, â, b̂)
∂a∂b

du,

i(m+2)(m+2)(θ̂n) = 2b̂
â

n∑
i=1

δi
{ N̂i

b̂Ûi
+

ˆ̇N b
i

Ûi
− 2b̂

â

(N̂i

Ûi

)2}
−

n∑
i=1

∫ Xi

0
eβ

T zi(u)∂
2λ0(u, â, b̂)

∂b2 du+

1
b̂2

n∑
i=1

δi
Sech2(Ŵi)
Tanh(Ŵi)

{
(K̂i − b̂ ˆ̇Kb

i )−
K̂2
i (1 + Tanh2(Ŵi))

Tanh(Ŵi)

}
,

where Ŵi = â

b̂

[
1−X b̂

iCoth(X b̂
i )
]
, Ûi = X b̂

iCsch2(X b̂
i )− Coth(X b̂

i ), (3.68)

N̂i = X b̂
iWiCsch2(X b̂

i ) lnXi,
ˆ̇N b
i =

{
−1
b̂
K̂iX

b̂
iCsch2(X b̂

i ) + N̂i − 2N̂iX
b̂
iCoth(X b̂

i )
}

lnXi,

K̂i = (Ŵi − âX b̂
i Ûi lnXi), ˆ̇Kb

i = −1
b̂
K̂i −

(
2b̂N̂i + âX b̂

i Ûi lnXi

)
lnXi. (3.69)
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Under the constant covariates zi, we obtain

ils(θ̂n) =
n∑
i=1

zilzise
β̂T zi ln Sech(Ŵi),

il(m+1)(θ̂n) = −1
â

n∑
i=1

zile
β̂T ziŴiTanh(Ŵi), il(m+2)(θ̂n) = 1

b̂

n∑
i=1

zile
β̂T ziK̂iTanh(Ŵi),

i(m+1)(m+1)(θ̂n) = − 1
â2

n∑
i=1

{
δi +

Ŵ 2
i Sech2(Ŵi)

[
δi(1 + Tanh2(Ŵi)) + eβ̂

T ziTanh2(Ŵi)
]

Tanh2(Ŵi)

}
,

i(m+1)(m+2)(θ̂n) = 1
âb̂

n∑
i=1

{δiK̂iSech2(Ŵi)
Tanh(Ŵi)

(
−1 + Ŵi(1 + Tanh2(Ŵi))

Tanh(Ŵi))

)
+

eβ̂
T ziK̂i[Tanh(Ŵi) + ŴiSech2(Ŵi)]

}
,

i(m+2)(m+2)(θ̂n) = 1
b̂2

n∑
i=1

(K̂i)− b̂ ˆ̇Kb
i )(δiSech2(Ŵi)− eβ̂

T ziTanh2(Ŵi))
Tanh(Ŵi)

−

1
b̂2

n∑
i=1

K̂2
i Sech2(Ŵi)

[
δi(1 + Tanh2(Ŵi)) + eβ̂

T ziTanh2(Ŵi)
]

Tanh2(Ŵi)
+

2b̂
â

n∑
i=1

δi
{ N̂i

b̂Ûi
+

ˆ̇N b
i

Ûi
− 2b̂

â

(N̂i

Ûi

)2}
,

where Ŵi, Ûi, N̂i, K̂i, ˆ̇N b
i and ˆ̇Kb

i are given from (3.62) to (3.65), respectively.

6.5 Approximate CI for the reliability characteristic

Let us consider any covariate z(·) = (z1(·), z2(·), · · · , zm(·))T ∈ E, using the formula
(2.41) in chapter 2, we obtain the approximate (1 − α) confidence intervals for survival
function Sz(·) that is given by the following formula

{[
1 + 1− Ŝz(·)(t)

Ŝz(·)(t)
eσQi (θ̂n)w1−α/2

]−1
;
[
1 + 1− Ŝz(·)(t)

Ŝz(·)(t)
e−σQi (θ̂n)w1−α/2

]−1
}
, (3.70)

where w1−α/2 is the 1−α/2 quantile of the normal distribution, Ŝz(·)(t) is the estimator of
Sz(·)(t) which is defined in the form (3.60) and

σ2
Qi

(θ̂n) =
JTSz(·)

(θ̂n)I−1(θ̂n)JSz(·)(θ̂n)
Ŝ2
z(·)(t)[1− Ŝz(·)(t)]2

, (3.71)
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where JSz(·)(β̂, σ̂) =
(∂Ŝz(·)(t)

∂β1
,
∂Ŝz(·)(t)
∂β2

, · · · ,
∂Ŝz(·)(t)
∂βm

,
∂Ŝz(·)(t)
∂a

,
∂Ŝz(·)(t)
∂b

)T
,

∂Ŝz(·)(t)
∂βl

= − exp
{
−
∫ t

0
eβ̂

T z(u)dΛ0(u, â, b̂)
} ∫ t

0
zl(u)eβ̂T z(u)dΛ0(u, â, b̂),

∂Ŝz(·)(t)
∂a

= − exp
{
−
∫ t

0
eβ̂

T z(u)dΛ0(u, â, b̂)
} ∫ t

0
eβ̂

T z(u)∂λ0(u, â, b̂)
∂a

dΛ0(u, â, b̂),

∂Ŝz(·)(t)
∂b

= − exp
{
−
∫ t

0
eβ̂

T z(u)dΛ0(u, â, b̂)
} ∫ t

0
eβ̂

T z(u)∂λ0(u, â, b̂)
∂b

dΛ0(u, â, b̂),

λ0(t, a, b) and Λ0(t, a, b) are the hazard rate and cumulative hazard functions of baseline
Hypertabastic distribution and

∂λ0(t, â, b̂)
∂a

= 1
â

{
1 + Ŵ ÛSech2(Ŵ )

Tanh(Ŵ )

}
λ0(t, â, b̂),

∂λ0(t, â, b̂)
∂b

= 1
b̂

{
b̂ ln t+ 2b̂2

â

tb̂ŴCsch2(tb̂) ln t
Û

− (Ŵ − âtb̂Û ln t)Sech2(Ŵ )
Tanh(Ŵ )

}
λ0(t, â, b̂),

where Ŵ = a

b

[
1− tb̂Coth(tb̂)

]
, Û = tb̂Csch2(tb̂)− Coth(tb̂).

If the covariates z(·) is constant over the time, we have

∂Ŝz(t)
∂βl

= zle
β̂T z ln {Sech(Ŵ )} {Sech(Ŵ )}eβ̂

T z

,

∂Ŝz(t)
∂a

= −1
â
Ŵ eβ̂

T zTanh(Ŵ ){Sech(Ŵ )}eβ̂
T z

,

∂Ŝz(t)
∂b

= 1
b̂

(Ŵ − âtb̂Û ln t)eβ̂T zTanh(Ŵ ){Sech(Ŵ )}eβ̂
T z

.

6.6 Validity of Hypertabastic PH model using Y2
n

Let us consider to test for the hypothesis H0 that the right censored failure time
regression (Xi, δi, zi) under the constant covariates zi = (zi1, zi2, · · · , zim)T follow the
parametrization PHH model, that is

H0 : λzi(t) = eβ
T zi atb−1{tbCsch2(tb)− Coth(tb)}Tanh(W ), (3.72)

where β = (β1, β2, · · · , βm)T ∈ Rm is the m-dimensional unknown regression parameters
and

W = a

b

(
1− tb Coth(tb)

)
, a > 0, b > 0.
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Suppose that θ̂n = (β̂T , â, b̂)T is the MLE’s of θ = (βT , a, b)T . We give follow the
explicit formulas of generalized chi-squared test for H0 in (3.67). Following the formulas
(2.55) to (2.59), the components of Y2

n statistic give as

Y2
n = X2

n + Q, X2
n =

k∑
j=1

(Uj − ej)2

Uj
, Q = W TG−W, Uj =

∑
i :Xi∈Ij

δi,

G = i− ĈÂ−1ĈT , W = ĈÂ−1Z, Z = (Z1, Z2, · · · , Zk)T , Zj = 1√
n

(Uj − ej),

where the diagonal matrix Â include the diagonal elements Âj = Uj
n
and ej is given in (2.63).

Using the formulas (2.58) - (2.59), the expressed elements of the matrix î = [̂ill′ ](m+2)×(m+2)

and Ĉ = [Ĉlj](m+2)×k are given as follows

îll′ = 1
n

n∑
i=1

δizilzil′ ,

îl(m+1) = 1
na

n∑
i=1

δizil
{

1 +Wi
Sech2(Wi)
Tanh(Wi)

}
,

îl(m+2) = 1
n

n∑
i=1

δizil
{

lnXi + 2b
a

Xb
iWiCsch2(Xb

i ) lnXi

Ui
−

(
Wi − aXb

iUi lnXi

)
Sech2(Wi)

bTanh(Wi)
}
,

î(m+1)(m+1) = 1
na2

n∑
i=1

δi
{

1 +Wi
Sech2(Wi)
Tanh(Wi)

}2
,

î(m+2)(m+2) = 1
n

n∑
i=1

δi
{

lnXi + 2b
a

Xb
iWiCsch2(Xb

i ) lnXi

Ui
−

(
Wi − aXb

iUi lnXi

)
Sech2(Wi)

bTanh(Wi)
}2
,

î(m+1)(m+2) = 1
na

n∑
i=1

δi
{

1 +Wi
Sech2(Wi)
Tanh(Wi)

}
×

{
lnXi + 2b

a

Xb
iWiCsch2(Xb

i ) lnXi

Ui
−

(
Wi − aXb

iUi lnXi

)
Sech2(Wi)

bTanh(Wi)
}
,

and Ĉlj = 1
n

∑
i:Xi∈Ij

δizil, Ĉ(m+1)j = 1
na

∑
i:Xi∈Ij

δi

{
1 +Wi

Sech2(Wi)
Tanh(Wi)

}
,

Ĉ(m+2)j = 1
n

∑
i:Xi∈Ij

δi
{

lnXi + 2b
a

Xb
iWiCsch2(Xb

i ) lnXi

Ui
−

(
Wi − aXb

iUi lnXi

)
Sech2(Wi)

bTanh(Wi)
}
,

The choice of grouping cells aj: For the choice of grouping cell for testing of
Hypertabastic PH model, the equations from (2.60) to (2.63) is to estimate the endpoints aj
by using the numerical method because that the inverse of the cumulative hazard function
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of the Hypertbastic distribution can’t write in an explicit form.
Note here that for testing of the PHH model, the matrix G is non-degenerate, so

rank(G) = k. The limiting distribution of test statistic Y2
n, therefore, is a chi-squared

with k degrees of freedom. Thus, the hypothesis H0 is rejected with an approximate
significance level α if Y2

n > χ2
α(k).

7 Simulation study

This our part include three sub-part, the first we demonstrate that the MLE of Hyper-
tabastic distribution are

√
n-consistent in two cases of the data, the second we illustrate

the limiting distribution of Y2
n statistic for testing of Hypertabastic distribution in two

cased of the data, and other we shall consider the powerful of Y2
n statistic in comparison

with other GOF test which we described in sub-section 4.
Follows this, in subsections 7.1 and 7.2, the observations Ti are generated by the nu-

merical solution of the following equation

1− Sech
{
a0

b0

(
1− tb0 Coth(tb0)

)}
= ξi, (3.73)

where ξi are the pseudo-random numbers of uniformly over the interval [0, 1].
If the data are right censored, then the censoring times Ci are taken independently

of Ti, belongs uniformly distributed random variables U(0, c), where c is the positive
constant which can be chosen dependent on p as follows: If we fix the level of censoring
p (0 < p < 1) as well

p = P{Ci ≤ Ti} = P{Ci ≤ c ≤ Ti} then p = 1
c

∫ c

0
S(u, θ0)du, (3.74)

where S(·, θ0) is the Hypertabastic survival function of Ti.

7.1 Hypertabastic’s parameters Estimation

Since the problem of finding the maximization of `(θ) are usually difficult, so we investi-
gated MLE’s θ̂n of parameters θ by Monte Carlo simulation. To do this task, corresponding
with the true values of the parameters θ0 = (a0, b0)T , the samples of pseudo-random Ti

from the Hypertabastic distribution (3.1).
An example of simulated MLE for true values of the parameters θ0 = (1.0, 0.5)T .

The simulated average absolute errors of MLE θ̂n = (ân, b̂n)T versus their true value can



98 Chapter 3. Validity of Hypertabastic models

Table 3.2: Simulated average absolute errors of MLE θ̂n versus their true
value θ0 = (1.0, 0.5)T when the right censoring probability p take values 0
(complete data) and 20%.

Sample size ' n−0.5 ân b̂n
p = 0% p = 20% p = 0% p = 20%

100 0.100 0.055 0.061 0.035 0.039
150 0.081 0.045 0.050 0.028 0.032
200 0.070 0.039 0.042 0.024 0.027
250 0.063 0.034 0.039 0.022 0.024
300 0.057 0.032 0.035 0.019 0.022
350 0.053 0.029 0.032 0.018 0.020
400 0.050 0.027 0.030 0.017 0.019
450 0.047 0.026 0.028 0.016 0.017
500 0.044 0.024 0.027 0.015 0.017

be find by using the maxLik package in R statistical software with simulated samples
n = 100, 150, 200, 250, 300, 350, 400, 450 and 500.

The number of runs for every n was N = 10000. For each run, we obtain the corre-
sponding MLE of each parameter. An each simulate sample n, the average absolute of
errors are the total of absolute different of the MLE’s against the true value on the number
of runs N .

Table 3.2 shown that all simulated MLE converge faster than n−0.5 and, hence confirm
the theorem established by Fisher [44].

7.2 Simulated distribution of Y2
n statistic for H(a, b)

Figure 3.4 illustrate the simulated distribution of generalized chi-squared Y2
n statistic

of the null hypohthesis (3.1) recevering from difference initial value of parameters (a, b)
for the sample size n = 200 and r = 13 intervals, versus the chi-squared distribution with
r − 1 = 12 degree of freedom, the number of runs for every n was N = 5000.

As can see from Figure 3.4, one can observe that the statistical distribution of Y2
n in

the limit follows a chi-squared with r − 1 degrees of freedom within the statistical errors
of simulation. We obtain the same results for different value of parameters and different
number of equiprobable grouping intervals. It is means that the limiting distribution of
the generalized chi-squared Y2

n statistic is distribution free. This result also established
the Theorem 1.5 of Nikulin.
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For H(1, 0.5) with n = 200, r = 13
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Figure 3.4: Simulated distribution of the Y2
n statistic (n = 200, r = 13)

under the null hypothesis H(a, b) recevering difference of parameters versus
the chi-squared distribution with 12 degree of freedom.

7.3 Power considerations

In this sub-section, we illustrate the flexibility of Hypertabastic distribution and the
performance of Y2

n statistic for considering two cases of the data included the completely
and right censoring observations. The comparison distributions which we use in this sub-
section include the following distributions.

1. Log-normal distribution (LN(θ, ν))

H1 : Ti ' FLN(t, θ, ν) = Φ
( ln t− ν

θ

)
, t > 0, −∞ < ν < +∞, θ > 0, (3.75)

where Φ(·) is the distribution function of a normal random variable.
2. Log-logistic distribution (LL(θ, ν))

H1 : Ti ' FLL(t, θ, ν) = 1−
{

1 +
( t
θ

)ν}−1
, t > 0, θ > 0, ν > 0. (3.76)

3. Birnbaum-Saunders distribution (BS(θ, ν))

H1 : Ti ' FBS(t, θ, ν) = Φ
{1
ν

[( t
θ

) 1
2 −

(θ
t

) 1
2
]}
, t > 0, θ > 0, ν > 0. (3.77)
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4. Inverse Gaussian distribution (IG(θ, ν)), set θ > 0, ν > 0, with t > 0 then

H1 : Ti ' FIG(t, θ, ν) = Φ
{√

ν
[( t
θ

) 1
2 −

(θ
t

) 1
2
]}

+ e2νΦ
{
−
√
ν
[( t
θ

) 1
2 +

(θ
t

) 1
2
]}
. (3.78)

Complete data

For evaluating the power of the considered test statistics, we analyze a simulation result
in which estimate the powerful of Y2

n, ω2
n and An tests for Hypertabastic (H(a, b)) against

LN(2, 0.5), LL(2, 3), BS(0.5, 2.5) and IG(0.5, 3.5) distributions.
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Figure 3.5: Power of tests for H(a, b) against LN(2, 0.5) alternative.

A Monte Carlo procedure is employed with N = 10000 times of run for each sample size
n = 40, 50, 60, 80, 100, 150 and 200 at significance level α = 0.05. Note that the test based
on Y2

n statistic is constructed by using the equi-probable intervals with r = 4, 4, 5, 6, 8, 11
and 13 corresponding with the n sample size.

Figure 3.5 - 3.8 illustrate the power of three consideration tests for H(a, b) against
LN(2, 0.5), LL(2, 3), BS(0.5, 2.5) and IG(0.5, 3.5), respectively.

The power of three tests considered indicate that the modified Anderson-Darling GOF
test bring out the highest power among other modified in all of alternative distributions.
On the contrary, the Y2

n test for equiprobable grouping cells is generally lower powerful.
However, one note that the power of Y2

n test will be improved using the class of Neyman-
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Figure 3.6: Power of tests for H(a, b) against LL(2, 3) alternative.

●

●

●

●

●

●

●

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

P
ow

er

●

●

●

●

●

●

●

●

●

Y^2_n
w^2_n
A_n

Figure 3.7: Power of tests for H(a, b) against BS(0.5, 2.5) alternative.

Pearson to group intervals. This is given the references of Voinov et al. [120], Nikulin et al.
[90] on testing of normality against composite alternative hypotheses. Power studies also



102 Chapter 3. Validity of Hypertabastic models

●
● ●

●

●

●

●

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

P
ow

er

●

●

●

●

●

●

●

●

●

Y^2_n
w^2_n
A_n

Figure 3.8: Power of tests for H(a, b) against IG(0.5, 3.5) alternative.

shown that the Hypertabastic distribution is the best flexibility, can be suitable with the
sample belong to the Log-logistic and Log-normal distributions, this distribution also can
be use as a hypothesis to oppose the Birnbaum-Saunders and Inverse Gaussian distributions
in statistical analysis.

Although the powerful of Anderson-Darling (An) and Cramer-von Mises-Smirnov (ω2
n)

statistics are higher than Y2
n and these statistics may be used for Hypertabastic distribu-

tion when the data are censoring times. Follows that, the KM survival estimates can be
used instead of the E.C.D.F. Fn(t) in the formulas (3.13) and (3.14). In this circumstance,
we need to estimate the asymptotic of the limiting distributions for each of these tests.
However, by simulation study, we realize that the limiting distributions of these test statis-
tics depend totally the MLE of Hypertabastic distribution and we cannot fit the observed
statistics for any other distributions. Therefore, we do not recommend using the An and
ω2
n statistics to fit the Hypertabastic distribution for the right censored data.

Right censored data

We illustrate here the flexibility of Hypertabastic in comparison with other failure time
distributions using Y2

n statistic. We consider the case of independently censored samples
with censoring proportion approximately p = 20%. Using the Monte-Carlo simulation with
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the number of runs N = 1000 for each considered hypothesis, the failure time T which are
generated from 7 different combination parameters θ0, are given by the formula

T = F−1(ξ, θ0), (3.79)

where F−1(·, θ0) is the inverse function of the H, LN , LL, BS and IG alternative dis-
tributions, ξ are the pseudo-random numbers of uniformly over the interval [0, 1] for the
sample size of n = 200.

The censoring times C are taken independently of T , belongs uniformly distributed
random variables U(0, c), where c is the positive constant which can be chosen dependent
on p as follows: If we fix the level of censoring p (0 < p < 1) as well

p = P{C ≤ T} = P{C ≤ c ≤ T} then p = 1
c

∫ c

0
S(u, θ0)du, (3.80)

where S(·, θ0) is the survival function of T .
The number of grouping intervals is k = 8, we obtain the value of Y2

n test for the each
hypothesis comprising it with the critical value χ2

8(0.05) = 15.50731. So, the simulated
powerful of Y2

n which counts the number of times where Y2
n > χ2

8(0.05) divided by N , are
given in following Table 3.3.

From simulated results, we see that the powerful of Y2
n is lowest for Hypertabastic

when the failure time data generate from Log-logistic in four out of seven combination
parameters. The performance of Y2

n for Birnbaum-Saunders and Inverse Gaussian are
highest. So that, two distributions does not fit the data which are generated form Log-
logistic distribution.

When the data generate from Log-normal alternative distribution, the Hypertabastic
fit the data with highest precision, surpass Log-logistic in performance in all instances. In
addition, the Birnbaum-Saunders and Inverse Gaussian distributions again present to offer
a opposition with Log-normal alternative distribution.

As follows Table 3.3, we also see that the Hypertabastic again expressed higher op-
position when the data are generated from the Birnbaum-Saunders and Inverse Gaussian
alternative hypotheses. That is because the powerful of Y2

n for this distribution are highest
performance than other distributions. This was reaffirmed when the data are generated
from the Hypertabastic alternative, the powerful of Y2

n for Birnbaum-Saunders and In-
verse Gaussian distributions are higher than other two distribution. So, we can be give a
statistical inference that the Hypertabastic distribution can be in concord with the failure
time data which belong to the Log-logistic and Log-normal distributions, Hypertabastic
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Table 3.3: Power of Y2
n test for LL, LN , BS, IG and H distributions against

alternative hypothesis when the data are the right censored and MLE used
(n = 200, k = 8).

Log-logistic alternative LL(θ, ν)
(2, 3) (3, 2) (2, 2) (3, 5) (0.25, 1.5) (5, 3) (3, 4)

H 0.201 0.137 0.169 0.380 0.223 0.228 0.224
LN 0.228 0.194 0.195 0.270 0.171 0.225 0.243
BS 0.809 0.944 0.930 0.684 0.976 0.809 0.734
IG 0.813 0.959 0.965 0.493 0.999 0.798 0.571

Log-normal alternative LN(θ, ν)
(0.75, 0.5) (0.5, 0.75) (0.75, 1.5) (1, 1) (2, 1) (1, 0.5) (0.5, 2)

H 0.160 0.170 0.147 0.178 0.153 0.184 0.139
LL 0.216 0.260 0.254 0.246 0.271 0.251 0.289
BS 0.466 1.000 0.962 0.802 0.824 0.451 1.000
IG 0.268 1.000 1.000 0.942 0.946 0.259 1.000

Birnbaum-Saunders alternative BS(θ, ν)
(2.5, 0.5) (2, 3) (0.5, 3) (3, 2) (1, 1) (0.5, 1) (2, 2.5)

H 0.496 0.999 0.993 0.994 0.815 0.770 0.998
LL 0.322 0.998 1.000 0.978 0.595 0.582 0.998
LN 0.155 0.998 0.993 0.901 0.350 0.312 0.982
IG 0.318 1.000 1.000 0.996 0.418 0.410 1.000

Inverse Gaussian alternative IG(θ, ν)
(0.5, 3.5) (1, 2.5) (3, 0.5) (3, 2) (1, 1) (0.5, 0.5) (2.5, 1)

H 0.894 0.769 0.827 0.586 0.908 0.963 0.774
LL 0.894 0.659 0.382 0.384 0.694 0.884 0.405
LN 0.737 0.447 0.204 0.191 0.457 0.724 0.208
BS 0.508 0.297 0.312 0.303 0.316 0.466 0.306

Hypertabastic alternative H(a, b)
(0.5, 0.5) (0.25, 1) (0.5, 1.5) (1, 1) (0.5, 1) (1, 0.5) (2, 0.75)

LL 0.103 0.164 0.166 0.129 0.142 0.130 0.180
LN 0.163 0.141 0.117 0.160 0.129 0.230 0.279
BS 0.917 0.697 0.627 0.790 0.688 0.939 0.936
IG 0.941 0.719 0.622 0.793 0.699 0.951 0.940

distribution also can be use as a hypothesis to oppose the Birnbaum-Saunders and Inverse
Gaussian distributions in statistical analysis.



Chapter 4

Some numerical applications

1 Introduction

Parametric survival models are frequently being used in the analysis of survival and
reliability and they are also consistent with many different real-life dataset. However,
sometime the accepted model for some specific data is not the best model because some
other models can be very close. In these circumstances, it is better to compare it with
other models having similar properties.

In chapter 3, we have been described our approach to validate the Hypertabastic sur-
vival models using generalized chi-squared test statistic Y2

n for three scenes of data: com-
plete, right censored and right censored with covariates. We also designed the simulation
studies to evaluate the flexibility of the Hypertabastic distribution showing the performance
of the generalized chi-squared test statistic Y2

n.
We therefore consider in this chapter the application of the Hypertabastic survival

models for the some real-life dataset that are described in section 4 of General Introduction
by using Y2

n statistic. These datasets are already studied but we recommend here the
different models from previously proposed.

For the datasets do not affected by the covariates, using Y2
n, we demonstrate again

the flexibility and the validity of the Hypertabastic distribution that can be use as the
alternative distribution (see subsection 2.1).

For the data governed by one or more covariates, we focus explore the profits of Hyper-
tabastic survival models in comparison with other parametric survival models by applying
them to these datasets. The comparison models which we use here include Weibull (W ),
Log-normal (LN), Log-logistic (LL), Birnbaum-Saunders (BS) and Inverse Gaussian (IG)
models. Specifically, the first dataset we focus on evaluating the role of AFTH model by

105
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applying it to the data set from the remission duration of acute leukemia patients with
one influence covariate, see subsection 2.2. The second dataset, we present a methodology
for covariate selection as follow the approach of Collett [33]. Later, we consider the PHH

model by fitting for the survival times of malignant glioma patients in the brain tumour
study and focus on exploring the role of the most significance covariate in combination with
remaining covariates, see subsection 2.3. We also give the estimation of the confidence in-
terval (CI) for the regression parameters and the CI for the reliability characteristic for
each of datasets besides making a most accurate model. The final dataset, we take an
analysis to suggest that the parametric models sometime can be inappropriate for the data
existing the intersection of survival functions, see subsection 2.4. So that we proposed
using other model with cross-effect as the simple cross-effect (SCE) model to analyze this
dataset.

2 Statistical analysis and inferences

2.1 Analysis of the quantities of the oil field

We take the data that are described in Example 1-section 4 about the quantities of the
oil field. Bagdonavičius et al. [19] proposed using the Log-normal for the quantities of the
oil. For this example, our aim is looking for accurate distribution for this dataset based
on the Y2

n statistic. The class of Neyman-Pearson (2NPG) are used here to help us get a
best decision for selected distribution.

Indeed, we first obtain the MLE’s of Hypertabastic’s parameters: ân = 0.3259 and
b̂n = 0.5400. Using the equi-probable grouping cell for r = 6 intervals, the values of
endpoints ai and the vector frequency νi are presented in the following Table.

i 0 1 2 3 4 5 6
ai 0 3.445 5.716 8.470 12.530 20.459 +∞
νi 9 4 13 5 11 7

The Fisher’s information matrix I of Ti and the information matrix J of νi are

I =
19.493 9.509

9.509 7.087

 , J =
12.585 4.269

4.269 2.501

 .
The statistic X2

n = 7.449, the quadratic form Q = 1.149. So, the value of the statistic
Y2
n = 8.598. The asymptotic p-value of the test based on Y2

n and the critical value C0.05
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at significance level α = 0.05 are

p0.05 = P{χ2
5(0.05) > 8.598} = 0.1261792, C0.05 = 11.07050.

We see that the value of statistic Y2
n is less than the critical value Cα. On the other hand,

using the Cramer-von Mises- Smirnov or Anderson-Darling statistic, we also obtained the
value of statistics are less than their critical value: ω2

n = 0.054987 < Ccvm
0.05 = 0.11732 and

An = 0.41141 < Cad
0.05 = 0.72439, respectively. So, all consideration statistics shown that

we are not reasonable to refuse the hypothesis H0 that the distribution of the quantities
Ti is appropriate to the Hypertabastic distribution.

Furthemore, we see that this dataset also is in concord for all of consideration hypothe-
ses, including LN, LL, BS and IG distributions, based on the value of Y2

n. Table 4.1 shows
the statistical inferences for LN(θ, ν), LL(θ, ν), BS(θ, ν) and IG(θ, ν) distributions.

Table 4.1: Statistical inference for null hypotheses that the quantities of oil
data belong LN , LL, BS, IG distributions with r = 6 intervals.

LN LL BS IG
MLE Std.err MLE Std.err MLE Std.err MLE Std.err

Shape (ν) 2.102 0.138 8.728 1.187 1.086 0.109 0.654 0.180
Scale (θ) 0.967 0.097 1.830 0.218 7.406 0.989 12.018 2.246
−2 ` 341.898 342.230 184.695 347.079
Y2
n 5.630 10.681 7.143 7.212

p-value 0.343 0.058 0.210 0.205

So, we continue analyse and compute the value of the statistic Y2
n for Hypertabastic

distribution against alternative hypotheses. Figure 4.1 shows the curve of P.D.F. ofH(a, b),
LN(θ, ν), LL(θ, ν), BS(θ, ν) and IG(θ, ν) when the MLE usage. It exists the intersection
of H(a, b) density with other ∩-shape densities distribution functions.

So, we have a reason to use the 2NPG class for testing the hypothesis H(a, b) distribu-
tion against LN(θ, ν), LL(θ, ν), BS(θ, ν) and IG(θ, ν) alternatives for this dataset. We
proceed the Y2

n using the 2NPG class for each pair of hypotheses as follows.
1. For a pair of hypotheses: H(a, b) in (3.4) versus LN(θ, ν) alternative (3.69): Solving

the equation of two densities, we obtain three points of solutions: a1 = 0.79467, a2 =
4.91036, a3 = 31.52838. Consider the following 2NPG class (see, Figure 4.1)

I1 = (0, 0.79467] ∪ (4.91036, 31.52838],
I2 = (0.79467, 4.91036] ∪ (31.52838, +∞).
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Figure 4.1: Density curves of consideration distributions for quantities of oil
when MLE usage.

2. For the test of H0 in (3.4) against LL(θ, ν) alternative in (3.70). We obtained
four points of intersection of densities: a1 = 0.73541, a2 = 5.65267, a3 = 15.81745, a4 =
46.20444 (see, Figure 4.1) and using the 2NPG class as

I1 = (0.73541, 5.65267] ∪ (15.81745, 46.20444],
I2 = (0, 0.73541] ∪ (5.65267, 15.81745] ∪ (46.20444, +∞),

3. Similarly, for the test of the null hypothesis H0 : H(a, b) versus alternative H1 :
BS(θ, ν). We consider the following 2NPG class

I1 = (0, 0.720452] ∪ (28.49408, 54.15587],
I2 = (0.720452, 28.49408] ∪ (54.15587, +∞),

where a1 = 0.720452, a2 = 28.49408, a3 = 54.15587 are the points intersections of two
densities of H(a, b) and BS(θ, ν) (see, Figure 4.1).

4. For testing of the null hypothesis H0 : H(a, b) versus alternative H1 : IG(θ, ν).
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We consider the following 2NPG class (see, Figure 4.1)

I1 = (0, 0.913635] ∪ (5.51039, 40.69827] ∪ (236.79819, +∞),
I2 = (0.913635, 5.51039] ∪ (40.69827, 236.79819].
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Figure 4.2: Empirical and H(0.325, 0.540) cumulative curves of quantities
of oil field data.

The statistical references which we obtain when the 2NPG class used to test the H(a, b)
against alternative hypotheses, are given in the Table 4.2.

Table 4.2: Statistical inference for quantities of oil data for testing of H(a, b)
against alternative hypotheses when 2NPG used.

Alternative hypotheses H1
LN(2.102, 0.967) LL(1.830, 8.728) BS(7.406, 1.086) IG(12.018, 0.654)

ν = (ν1, ν2)T (27, 22)T (35, 14)T (4, 45)T (37, 12)T
Y2
n 0.05022 1.11645 0.00188 3.89851

p-value 0.82268 0.29068 0.96535 0.04832
Inference Accepte H0 Accepte H0 Accepte H0 Refuse H0

From Table 4.2, all of statistical inferences give the acceptable for the H(a, b). This
indicates that the H(a, b) distribution fits the data much better than all other considered
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distributions. Figure 4.2 shown the plot of E.C.D.F. and H(0.325, 0.540) estimates C.D.F.
of the quantities of the oil field data.

2.2 Analysis of remission duration from a clinical trial for acute
leukemia

Returning the time of remission of acute leukemia patients from a clinical trial that are
described in Example 2 - section 3. We see that this dataset consist two covariates: groups
of patient and log(WBC) and we use z = 1 if the patient was given 6-MP and z = 0 if a
placebo.

For this dataset, using likelihood ratio test, we see that the Cox model does not fit
for this dataset. This is because that the value of likelihood ratio test is ` = 16.4 with
the p-value at 0.05 approximate 5.10−5. Therefore, here, we focus consider a parametric
AFT model where the Hypertabastic distribution is used as the baseline hazard function in
comparison with other failure time baseline distribution functions. Besides indicating that
AFTH is an accurate model, we shall evaluate the effect of log(WBC) on the remission of
survival of acute leukemia patients. The MLE’s of the parameters β̂0, β̂1, β̂2, σ̂ of AFTH
model are

β̂0 = 3.428, β̂1 = 0.751, β̂2 = −0.741, σ̂ = 1.311.

Choose k = 7 intervals, intermediate results are given in following Table

j 1 2 3 4 5 6 7
aj 2.979 4.787 6.736 9.084 12.247 17.173 +∞
ej 4.079 4.079 4.079 4.079 4.079 4.079 4.079
Uj 4 3 5 5 5 4 4
Zj -0.012 -0.166 0.142 0.142 0.142 -0.012 -0.012

The statistical inferences for testing of hypothesis H0 that the acute leukemia patients
belong the AFTH model, are given as follows

I =


2.413 0.889 7.327 −0.071
0.889 0.889 2.635 −0.060
7.327 2.635 24.313 0.185
−0.071 −0.060 0.185 0.842

 , W = (−0.367, −0.293, −0.949, −0.110)T ,

X2
n = 0.901, Q = 2.140, Y2

n = 3.041, and p0.05 = P{χ2
7(0.05) > 3.041} = 0.881.
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We see that the values of X2
n and Q are smaller. So, the value of Y2

n statistic is also
smaller. This means that the hypothesis H0 of AFTH is well accepted at the significance
level 0.05. Figure 4.3 gives the KM and Hypertabastic remission survival estimates of acute
Leukemia patients without the covariates.
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Figure 4.3: KM and Hypertabastic survival estimates plots for remission
duration of acute leukemia patients.

Continuously, we make a comparison of the AFTH model with other parametric AFT
models based on the ∩-shape baseline functions, including Log-normal (LN), Log-logistic
(LL), Birnbaum-Saunders (BS) and Inverse Gaussian (IG) distributions. We also consider
the models without covariates included. Table 4.3 shows the statistical results for each of
these comparison models to fit this dataset.

Note that the distribution of Y2
n for all considered models has in limit a chi-squared

distribution with k = 7 degrees of freedom. So that the critical value of Y2
n test is C0.05 =

14.067 at significance level 0.05.
From Table 4.3, comparing the value of Y2

n with its critical value C0.05 = 14.067, we
see that this dataset without the covariates are consistent for all consideration models and
the Log-normal model without the covariates is fitted this dataset best.

For the considered models contain each of two covariates: log(WBC) or patient groups,
there are three models: AFTH , AFTLN and AFTLL, are well adapted for this data set.
However, the value of Y2

n for AFTH contain any each of two covariates is lowest for all of
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Table 4.3: Comparison models for remision duration of acute leukemia pa-
tients (k = 7).

Models
With With With Without

overall variables log(WBC) variable patient groups variables
−2` Y2

n −2` Y2
n −2` Y2

n −2` Y2
n

AFTH 183.682 3.041 196.240 3.627 213.951 2.408 230.782 4.395
PHH 181.610 4.327 194.469 4.271 214.118 16.485 230.782 4.395
AFTLN 132.746 7.934 145.796 10.723 158.272 3.063 175.649 1.767
AFTLL 184.662 6.085 196.991 3.975 215.322 3.958 230.702 3.983
AFTBS 93.742 17.195 108.713 14.136 115.133 14.197 135.357 8.669
AFTIG 136.679 27.957 152.343 20.223 158.191 15.724 178.162 8.483

models considered. We also see that the AFTBS and AFTIG models containing log(WBC)
variable are fitted badly for this dataset. Because of the values of Y2

n for two these models
are higher than its critical value, i.e. the hypothesis that this dataset belong one of two
models AFTBS or AFTIG on adding log(WBC) variable is rejected, although the value of
−2` for two models are lowest. This indicate that the log(WBC) has the opposite effect in
the AFTBS and AFTIG models. From Table 4.3, we suggest using AFTH containing one
out of two variables, log(WBC) or patient groups variables to fit this dataset.

Table 4.4: 95% CI for the remission duration of acute leukemia patients
based on AFTH model.

Mean Ŝ Mean ŜAFTH Std.err lower 95% CI upper 95% CI
All of patients 0.579 0.603 0.034 0.567 0.637
Group 1: 6-MP 0.692 0.716 0.034 0.680 0.750
Group 2: Placebo 0.464 0.490 0.034 0.455 0.524

For overall model, we consider this dataset on adding a combination of two variables:
groups of patient and log(WBC). In this circumstance, we see that the −2` values of
AFTBS and AFTIG models are lowest but on the contrary their values of Y2

n are highest
for all of consideration models. So, we cannot use two models AFTBS and AFTIG to fit
this dataset on adding two variables: group of patients and log(WBC). Apart from that,
the AFTH model with a combination of two covariates continue play in optimal role in the
assessing adequacy of fit the remission survival of acute leukemia patients, although we
see that the parametric PHH , AFTLL and AFTLN models also fit this dataset well. This
is because that the value of Y2

n for AFTH model contain two variables is lowest for all of
consideration models in Table 4.3.

Figure 4.4 shows the KM and AFTH estimates of survival distribution function in two
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groups for each type of treatment. Table 4.4 shows the 95% CI of the time of remissions
of acute leukemia patients constructed on AFTH model for each of two groups.
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Figure 4.4: KM and AFTH survival estimates plots for remission duration
of acute leukemia patients receiving different groups.

We conclude that the AFTH is an accurate model for the remission survival of acute
leukemia patients from clinical trial study.

2.3 Analysis of brain tumour study

We continue considering the data set from the brain tumour study which discussed in
Example 3 section 3. A randomized clinical trial comparing two chemotherapy regimens
in 447 patients with malignant glioma cancer are presented by Sauerbrei & Schumacher
[105]. The data contains 12 explanatory variables including age, three ordinal and eight
binary variables. Three variable are measured on an ordinal scale that are the index
of Karnofsky, the type of surgical resection and the grade of malignancy. One of these
variables is represented by two dummy variables resulting 16 variables in all. Details for
these variables are presented in Table 4.6 below.

We use here the data include 411 patients (274 events, 137 censored times) that can be
see in the publications of Sauerbrei & Schumacher [105], Royston & Sauerbrei [103].
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Table 4.5: The variables for malignant glioma trial.

Name Variable Descriptions Code/Values
SEX z1 Sex Male = 1, Female = 0
TIME z2 Time from first symptoms Short = 1, Long = 2

to clinical confirmation
GRADD1 z3 Grade of malignancy1 Yes = 1, No = 0
GRADD2 z4
AGE z5 Age Years
KARD1 z6 Karnofsky index1 Yes = 1, No = 0
KARD2 z7
SURGD1 z8 Type of surgical resection1 Yes = 1, No = 0
SURGD2 z9
CONVUL z10 Convulsions Yes = 1, No = 0
CORT z11 Cortisone Yes = 1, No = 0
EPI z12 Epilepsy Yes = 1, No = 0
AMNESIA z13 Amnesia Yes = 1, No = 0
OPS z14 Organic psycho-syndrome Yes = 1, No = 0
APH z15 Aphasia Yes = 1, No = 0
TRT z16 Treatment Std = 0, New = 1
1Categorical predictor represented by 2 dummy variables.

Using a bootstrap re-sampling procedure for cox regression, Sauerbrei & Schumacher
[105] found five variables (z5, z3, z8, z6 and z12) which might influence the outcome variable.
Royston & Sauerbrei [103] analyzed the survival time of the malignant glioma patients for
Cox model. We focus to discus the validity of PHH for this dataset using the Y2

n statistic.
As follows the general variable selection strategy outlined by Collett [33], we consider

foremost the PHH model in chapter 3 to find the significant variables using the value of
−2log-likelihood (−2`) and Y2

n statistics on the choice of grouping interval k = 15 for all
considered models. For PHH model, the parametrization function is eβT z. To take this
task, there six steps were carried out to make the choice of the significant variables, are
given as follows.

The first step, we fit this dataset for null PHH model without all of variables. We
see that the survival time of the malignant glioma patients are closed to a Hypertabastic
distribution. This is because that the value of −2` equal 683.597, the value of NRR statistic
Y2
n = 16.963 which is lower than the critical value χ2

0.05 = 24.995 at 5% level of significance.
We thus expect that the addition of the variables to the model will minimize the value of
the considered statistics.

The second step, we continue to fit this dataset for the models that contain each of
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Table 4.6: Values of −2log-likelihood (−2`) and Y2
n for PHH models fit to

the malignant glioma patients.

Steps Variables in models −2 ` Y2
n p0.05 value

1 Non 683.597 16.963 0.321
2 z1 683.500 18.735 0.224

z2 676.834 19.979 0.172
z3 649.035 16.012 0.381
z4 651.691 14.496 0.488
z5 620.059 31.475 0.007
z6 672.111 22.804 0.088
z7 674.708 17.312 0.300
z8 672.156 24.771 0.053
z9 681.814 18.248 0.249
z10 682.645 17.954 0.265
z11 671.384 19.529 0.190
z12 670.682 20.498 0.153
z13 679.508 18.782 0.223
z14 680.192 16.467 0.351
z15 680.044 17.237 0.304
z16 683.500 16.735 0.224

3 z5 + z3 599.651 21.067 0.134
z5 + z8 605.190 25.850 0.039
z3 + z4 644.187 15.010 0.450
z6 + z7 668.582 22.314 0.099
z8 + z9 671.875 25.625 0.042
z5 + z14 618.860 33.776 0.003
z5 + z15 620.054 31.872 0.006

4 z5 + z3 + z8 571.461 19.111 0.208
z5 + z3 + z2 598.353 19.850 0.177
z5 + z3 + z13 598.489 24.320 0.059
z5 + z6 + z7 609.860 24.227 0.061

5 z5 + z3 + z8 + z6 562.535 16.797 0.331
z5 + z3 + z8 + z4 568.362 17.469 0.291
z5 + z3 + z8 + z11 568.588 21.988 0.108
z5 + z3 + z8 + z12 567.032 21.256 0.128

6 z5 + z3 + z8 + z6 + z12 558.606 17.458 0.292

sixteen variables. Of these variables, the −2` statistic is largest diminished from 683.597
to 620.059 for the model that contain only AGE (z5) variable. The next variables belong
to KARD1 (z3) and KARD2 (z4). Besides, there are three variables that be to doubt its
significance in the relation with the survival times of the malignant glioma patients. That
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are SURGD2 (z9), OPS (z14) and APH (z15). Since the reduction in −2` on adding z9 or
z14 or z15 to the null model are 1.783 (nearly 20% at significance level 5%), 3.405 (nearly
6% at significance level 5%) and 3.553 (nearly 5.5% at significance level 5%), respectively.
However, we will keep three variables under consideration for inclusion in the model. Apart
from that, we eliminated three variable that are SEX (z1), CONVUL (z10) and TRT (z16)
outside the PHH model. This is because that the reductions of −2` on adding one of three
variable are not significantly minimized. So, three variables (z1, z10 and z16) will not be
further considered for inclusion. Also in the second step, we see that the model given two
variables: z5 and z3 carried out the maximal reduction for −2` when we fit this dataset.
Because of the reduction of −2` from 620.059 to 599.651. Therefore, it is necessary to add
two variables z5 and z3 in the models for inclusion.

In the third step, we fit the data for the models that include z5 variable in addition
with one of three doubt variables (z9, z14 and z15). We also consider the relation of three
double dummy variables that are z3 with z4, z6 with z7 and z8 with z9 in the effect with
the survival of malignant glioma patients. There are three variables (z9, z14 and z15) that
were eliminated in step 2. Because the values of −2` do not well reduced when we fit for
the PHH model on adding each of two variable (z14, z15) with z5, and fit for the PHH

model on adding z9 with z8. Specifically, when we fit this dataset for PHH model on
adding variable z5 with z14 or z15 then the reduction of −2` are corresponding 1.199 and
0.005 units. Similarly, if we taken the PHH model contain two variable z8 and z9 then the
reduction of −2` is 0.281 unit. This is mean that the variable z8 is contained z9. Therefore,
it is not necessary to retain three variables (z9, z14 and z15) in the PHH model.

The next step, 4th step, is to fit the model that contains z5, z3 and each of seven
remaining variables. We see that the effect of losing TIME (z2) variable did not significantly
changed the value of statistical consideration. Indeed, the value of −2` reduce a smaller
units when we fit the model that contains z5, z3 and z2, on adding the z2 in the model
then the decrease is 1.298 for −2` statistic. So z2 does not appear to be needed in the
model. As the same statistical point of view, two variables, KARD2 (z7) and AMNESIA
(z13) does not keep in the model. Since the reduction of −2` is not significance minimized,
it reduced from 611.271 to 609.860 units on adding z7 in the model contain z5 and z6

and from 599.651 to 598.063 units on adding z13 in the model contain z3 and z5. End of
4th step, we retained seven variables that are GRADD1 (z3), GRADD2 (z4), AGE (z5),
KARD1 (z6), SURGD1 (z8), CORT (z11) and EPI (z12) of which there are one variable
that on its has some explanatory power is z4, which leads to a reduction in −2` that is
nearly significant at the 8.9%. The effect of the variables for the survival time of malignant
glioma patients from PHH model are shown in Table 4.6.
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The 5th step is to fit the PHH model includes four of the seven variables that we
retained after the third step. We see that the model given combination of four variables
(z3, z5, z8 and s6) leads to the largest reduction in −2`, reducing the value of the statistic
from 571.461 to 562.535. This reduction of 8.926 is significant at the 5% (p = 0.0022). The
reduction in −2` on adding z4 in the PHH model that contain a combination z3, z5, z8

variables is 3.098, which is also significant at the 5% level p = 0.089. Similarly, if we
fit the PHH model include a combination z3, z5, z8 and z11 then the reduction in −2` is
2.873 (nearly 9.3% at significance level 5%). This indicates that we can be eliminated two
variable (z4, z11) get out the model.

The selection variables strategy will continue in the 6th step that we can be eliminated
the AMNESIA (z13) variable. Because the value of −2` is not significantly minimized, its
reduction is 1.590 when we fit this dataset for PHH model given by four variables: z5, z3,
z8 and z13. In this step, we see that the reduction of −2` is lowest when we fit this dataset
for the model on adding five variables: z5, z3, z8, z6 and z12.

We therefore conclude that the optimal PHH model that is containing five variables:
z5, z3, z8, z6 and z12 for the malignant glioma patients in which the AGE (z5) is the most
important variable.

Table 4.7: Comparison models for malignant glioma data (k = 15).

Models With combination 5 variables Without variables
X2
n Q Y2

n p0.05 X2
n Q Y2

n p0.05
PHH 10.719 6.739 17.458 0.292 16.729 0.234 16.963 0.321
PHLN 30.035 9.890 39.925 4.6.10−4 47.610 3.292 50.903 8.10−6

PHLL 10.311 7.957 18.269 0.248 19.300 2.814 22.115 0.104
PHW 17.135 1.498 18.634 0.179 29.714 0.013 29.728 0.008

Using Y2
n statistic with the grouping intervals k = 15 for all of consideration models,

we make a comparison of the Hypertabastic model with several other parametric mod-
els, including Log-Normal, Log-logistic and Weibull models. We note that the limiting
distribution of Y2

n statistic for PHW model including a combination 5 variables has the
chi-squared distribution with k − 1 degrees of freedom. Because of the rank of matrix G
in formula (2.49) is degenerate for PHW model. Therefore, p value at 0.05% significance
level for PHW given by

P{χ2
14(0.05) > 18.634} = 0.179.

Table 4.7 shows the statistical results of Y2
n statistic for each of these models. In order

to see the role of the covariates, we also include the values of these models considered
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without variables. Hypertabastic is the most exact of these models, although we see that
Log-logistic and Weibull also fit this dataset well.
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Figure 4.5: Hypertabastic rate of hazard curve for malignant glioma.

As also from Table 4.7, we see that the PHH model containt 5 variables is an accurate
model for this dataset. Using the method of MLE, we obtained in following Table 4.8 the
MLE of the parameters of PHH model.

Table 4.8: MLE of the parameters of PHH model and 95% CI.

Variables Parameter Estimates Std.err lower 95% CI upper 95% CI
AGE (z5) β5 0.038 0.006 0.030 0.045
GRADE1 (z3) β3 0.993 0.193 0.747 1.239
SURGD1 (z8) β8 -1.096 0.193 -1.350 -0.842
KARD1 (z6) β6 -0.377 0.127 -0.540 -0.215
EPI (z12) β12 -0.275 0.142 -0.456 -0.094

a 0.772 0.168 0.545 0.999
b 0.397 0.019 0.365 0.429

It is clear that the graph of Hypertabastic hazard rate is ∩-shape for malignant glioma
patients. Since the estimates of shape parameter of Hypertabastic distribution when this
distribution play the role of baseline hazard function in the PH model is b̂ = 0.397. Figure
4.5 shows the graph of Hypertabastic hazard for malignant glioma data. The Hypertabastic
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hazard function shows that the failure rate reaches is maximum velocity in about 2.21 years.
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Figure 4.6: KM, PHH estimates and 95% CI for survival times of malignant
glioma patients.

Figure 4.6 shows the graph of KM estimates of survival time of malignant glioma patient
in comparison with the PHH and the 95% CI estimates survival function. We see that the
CI of the survival of malignant glioma patients are very closed at the significant level 95%.

2.4 Analysis of multiple myeloma patients

The patients of multiply myeloma that were carried out by The Haematology Center, in
the Main Military Clinical Hospital named after N.N.Burdenko, to compare the response
time to the treatment in two groups of patients. The difference in these groups is in the fact
that the first group received the chemotherapy together Bortezomibe, which is marketed
as Velcade by Millennium Pharmaceuticals, other received drugs without Bortezomibe.

The data include 60 patients with 56 observations and 4 censored patients, of two
treatment groups: chemotherapy without Bortezomibe (z1 = 0) and chemotherapy together
with Bortezomibe (z1 = 1). In addition to variable of treatment, three such variables are
given in the data that consider in their work, namely: Type of response (the value z2 = 0
corresponds to the progression of the disease, z2 = 1 - the general response); sex (z3 = 1-
male, z3 = 0-female); and age in years (z4). Detail of the data are presented in Semenova
and Bitukov [106].
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In Example 4 section 4, we illustrated the KM estimates of survival function for multiple
myeloma patients receiving two treatment by Figure 3. As seen that, we believe that the
Cox model can be inappropriate for this dataset.

We therefore propose considering the parametric survival models for relating the dis-
tribution of response time to the scheme of chemotherapy, type of the response, age, sex
and age. The class of baseline parametric consider included Hypertabastic, Weibull, Log-
normal, Log-logistic, Birnbaum-Saunders and Inverse Gaussian distributions.

For k = 7 interval, using Y2
n and −2log-likelihood (−2`) statistics for all fitted models,

we first consider the GOF test for the models without covariates. Later, to evaluate
the effect of type of chemotherapy covariate on the response times of multiple myeloma
patients, we consider the models on adding type of chemotherapy covariate. For overall
models, the models on adding a combination of all covariates are fitted for this dataset.
Table 4.9 illustrates the statistical results of Y2

n and −2` for all fitted models.

Table 4.9: Fitted models for the multiple myeloma patients (k = 7).

Models
With With Without

all covariates z1 covariate covariates
−2` Y2

n −2` Y2
n −2` Y2

n

AFTW 191.183 13.296 204.292 15.295 508.635 26.514
AFTH 481.397 36.208 501.072 24.719 501.839 7.373
AFTLN 375.485 18.669 395.964 10.468 397.361 12.413
AFTLL 477.052 16.904 501.761 10.354 502.606 13.709
AFTBS 302.643 18.671 315.557 8.493 318.489 11.443
AFTIG 377.045 19.481 396.755 21.110 397.680 14.186

From Table 4.9, for all of considered models without covariates, this dataset is consistent
for the Hypertabastic, Log-normal, Log-logistic and Birnbaum-Saunders distributions at
significance level α = 0.05. Because their values of Y2

n statistic are lower than their critical
value Cα = χ2

0.05(7) = 14.067. This dataset also is clearly rejected for Weibull distribution
without covariates, because of its value of Y2

n = 26.514 is higher than its critical value
C ′α = χ2

0.05(6) = 12.591. Figure 4.7 shown the KM and good fitted models for the response
times of multiply myeloma patients without covariates.

Continuously, for the models contain the type of chemotherapy covariate (z1), we see
that three models, including AFTW , AFTH and AFTIG are rejected. And this dataset
responded to be the acceptable for AFTLN , AFTLL and AFTBS on adding type of response
covaraite. So, if we need find an accurate model contain only one covariate to fit this dataset
on adding type of chemotherapy (z1), then we proposed using AFTBS model.
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Figure 4.7: KM and fitted models without covariates for reponse times of
multiple myeloma.

However, a model which we really need to be a prognostic model for overall that can be
fitted best this dataset with a combination of all covariates. Table 4.10 shows the values of
Y2
n and their p0.05 value at the significance level 0.05 for the overall considered models with

the different grouping cells k. From Table 4.10, the value of Y2
n for overall fitted models

are greater than their critical values, it follows that all considered models are rejected.

Table 4.10: Values of Y2
n with k = 8, 9, 10, 11 intervals when we fit the

multiply myeloma data for overall models that contain all covariates.

Overall Number of intervals
models k = 8 k = 9 k = 10 k = 11

Y2
n p0.05 Y2

n p0.05 Y2
n p0.05 Y2

n p0.05
AFTW 8.662 0.277 21.501 0.005 38.890 1.10−5 40.663 1.10−5

AFTH 45.851 2.10−7 38.312 1.10−5 82.481 1.10−13 72.496 4.10−11

AFTLN 40.999 2.10−6 23.548 5.10−3 48.878 4.10−7 43.664 8.10−6

AFTLL 45.658 2.10−7 21.199 0.011 31.353 5.10−4 42.666 1.10−5

AFTBS 36.208 2.10−5 47.513 3.10−7 58.178 9.10−9 75.963 1.10−11

AFTIG 38.728 5.10−6 47.567 3.10−7 49.183 3.10−7 50.498 5.10−7

Note that we received almost same of the statistical inferences for overall fitted models
when we fit this dataset using Y2

n with the different of the number of intervals. Only the
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value of Y2
n with k = 8 intervals is lower its critical value C0.05 = χ2

0.05(7) = 14.067 when we
fit this dataset for AFTW on adding all covariates. So, we can temporarily conclude that
the hypothesis is accepted for the AFTW on adding all covariates. However, we recognize
that we will continue to propose an another overall model that fit this dataset better than
AFTW model, such as the simple cross-effect model which was proposed by Bagdonavičius
& Nikulin [14]. Because the survival times of two patient groups have the cross-effect.
So, we hope that we, in the future, will to cooperate with our colleagues to realize this
proposition.
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Although a type of chi-squared statistic Y2
n that became famous and commonly used as

soon after it was proposed by Nikulin-Rao-Robson in 1973-1974. Since then there also have
been many discussed on this statistic in literature. However, the most of the textbooks
that are more technical in nature to use it as a tool of goodness-of-fit test procedures. In
our works, besides proving that the use of this statistic are perfectly reasonable for the
almost kind of survival data analysis: complete, censored failure time and censored failure
time with covariates, we also presented in detail the mechanism used of Y2

n test statistic
so that we can apply it an optimal way.

Apart from that we have been validated a new probability distribution that is named
a Hypertbastic distribution by using Y2

n statistic. The power of Y2
n test statistic for this

distribution, against the parametric ∩-shape distributions, is simulated to demonstrate the
flexibility of the considered distribution in survival and reliability analysis. Some real-life
data was analyzed to confirm the advantages of this distribution in literature.

We also continued to study, apply and develop the idea of Tabatabai and his colleagues
whom proposed using the Hypertabastic distribution as the baseline hazard rate function
in the parametric survival models, applying to the clinical data. The classes of parametric
survival models which we taken here include the parametric Proportional Hazards and
Accelerated Failure Time models.

However, unlike the approaches only used the values of log-likelihood ratio and AIC
statistics to solve the problem of Tabatabai and his colleagues, we used here an other
approach based on the generalized chi-squared test statistic following the textbooks of
Bagdonavičius and Nikulin to choose a good model for each of dataset. A chi-squared test
statistic have been firstly constructed to fit the parametric Hypertabastic survival models
for the data influenced by many covariates. We afterwards indicate that the Hypertabastic
survival models is the accurate model to fit for two dataset, one set from the remission
duration from a Clinical Trial for acute leukemia and one-other set from a randomized
study comparing two chemotherapy regimes in patients with malignant glioma. Since
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then, we make the prognosis of the confidence estimates of regression parameters and
survival functions. These results may help the clinicians predict the developement tendency
of patients, thereby making the decisions treatment suitable. In addition to fitting the
Hypertabastic AFT and Hypertabastic PH for those two datasets above, we also give a
suggestion on the disadvantages of these models when we fit them for the dataset contain
intersection of survival functions. For kind of dataset, the parametric survival models can
not be consistent. Therefore, it is necessary to select other dynamic model that can be
well adapted this kind of dataset, to alternate for the parametric models.

We also constructed in our works the programs for all of considered models based on
R-languages.

We found that the Hypertabastic distribution is closed and plummeted after achieving a
maximum speed if the shape parameter 0.5 < b < 1 besides its uni-modal properties. This
means that we have the reasons studying in the future the redundant system that’s where
use this distribution as baseline distribution function of the "hot" or "warm" conditions.
We also wish to be together with our colleagues will continue considering the dynamic
model for the multiple myeloma patients in sub-section 2.4 of chapter 4. Simultaneously,
in the future, we wish to be together with our colleagues will develop a generally package
of the generalized chi-squared test statistic to fit the parametric models for the censoring
data possible influenced by covariates based on R-languages.
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2 The data

2.1 Remission durations for acute leukemia study

The investigation of acute leukemia of children was carried out by Freireich et al. [46]
in 1963. This study was designed to test the ability of a therapy to prolong the remission
times. These patients were selected who had a remission induction (complete or partial)
of their leukemia by treatment with the drug prednisone that was continued as the steroid
treatment until complete bone marrow remission achievement or for a maximum of 28
days (PHASE I). The patients with marrow remission before 28 days or marrow remission
on the 28th day were continued to treat randomly to 6-MP or placebo for the remission
maintenance (PHASE II). The patients with marrow improvement after 28 days of steroid
treatment or received placebo maintenance were treated with 6-MP for remission induction
and maintenance (PHASE III). Freireich and his colleagues designed a treatment starting
from 97 acute leukemia patients aged from 0 to 19 and conducted at 11 participating
institutions, in the period from April 1959 to April 1960, 92 patients were considered
acceptable for analysis. Patients were followed until their leukemia returned or until the
end of the study (in weeks). This study was terminated when a report analyzing the
results of 21 pair of patients are given - this number resulting in the sample path crossing
a boundary line of the restricted sequential procedure.

Because of the log while blood cell (log(WBC)) count is often considered important
predictor in the analysis of the remission duration of leukemia patient. Therefore, we
consider in this document the data including the remission survival times for the two
treatment groups with additional information about white blood cell count for each patient
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studied. Table 1 give the 21 pair of patients as follow the context of Freireich as well as
the textbook of Kleinbaum & Klein [65].

Table 1: Remission duration of 6-MP versus placebo in acute leukemia pa-
tients.

No Drug Length log(WBC) No Drug Length log(WBC)of Remission of Remission
1 Placebo 1 2.80 22 6-MP 10 2.96
2 Placebo 5 3.49 23 6-MP 20+ 2.01
3 Placebo 22 2.73 24 6-MP 7 4.43
4 Placebo 4 4.36 25 6-MP 19+ 2.05
5 Placebo 3 4.01 26 6-MP 32+ 2.20
6 Placebo 15 2.30 27 6-MP 6 4.06
7 Placebo 12 1.50 28 6-MP 23 2.57
8 Placebo 8 2.32 29 6-MP 17+ 2.16
9 Placebo 8 3.52 30 6-MP 22 2.32
10 Placebo 23 1.97 31 6-MP 35+ 1.45
11 Placebo 17 2.95 32 6-MP 6 2.31
12 Placebo 5 3.97 33 6-MP 6 3.28
13 Placebo 2 4.91 34 6-MP 16 3.60
14 Placebo 11 2.12 35 6-MP 13 2.88
15 Placebo 11 3.49 36 6-MP 34+ 1.47
16 Placebo 4 2.42 37 6-MP 9+ 2.80
17 Placebo 8 3.05 38 6-MP 32+ 2.53
18 Placebo 1 5.00 39 6-MP 6+ 3.20
19 Placebo 12 3.06 40 6-MP 25+ 1.78
20 Placebo 8 3.26 41 6-MP 10+ 2.70
21 Placebo 2 4.48 42 6-MP 11+ 2.60
+ Censored observations.

2.2 Brain tumour study with malignant glioma patients

A randomized clinical trial comparing two chemotherapy regimens in 447 patients
with malignant glioma that are studied by Sauerbrei & Schumacher [105]. During an
accrual period of five years, 293 patients have died and the median survival time from the
randomization was about 11 months. The data contains 12 explanatory variables including
age, three ordinal and eight binary variables. Three variable are measured on an ordinal
scale that are the index of Karnofsky, the type of surgical resection and the grade of
malignancy. One of these variables is represented by two dummy variables resulting 16
variables in all. Details for these variables are presented in Table 4.5 in chapter 4
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Table 2: Brain tumour study of the patients with malignant glioma

pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

1 1 2 0 0 64 1 0 0 0 1 0 0 0 1 0 1 157 1
2 0 2 0 0 59 0 0 1 0 1 1 1 0 0 1 0 300 1
3 1 2 0 0 60 1 0 1 0 1 1 0 0 0 1 0 238 1
4 0 1 1 1 54 0 0 1 0 1 1 0 0 0 0 1 196 1
5 0 2 0 0 63 0 0 0 0 1 1 0 0 0 1 0 443 1
6 0 1 0 0 58 1 0 0 0 1 1 1 0 0 0 1 372 1
7 0 1 1 1 53 0 0 0 0 1 1 0 0 0 0 0 131 1
8 0 2 1 0 61 1 1 1 1 1 1 1 0 0 0 1 254 1
9 0 1 1 1 57 1 1 1 0 0 1 0 0 0 0 0 233 1
10 0 1 0 0 62 1 0 1 0 1 1 0 0 1 1 1 434 1
11 1 2 0 0 50 1 0 0 0 0 1 0 0 0 0 1 673 1
12 1 1 1 1 64 1 1 1 0 0 1 0 0 0 0 0 324 1
13 0 1 1 1 63 1 1 1 1 1 1 0 0 0 0 0 385 1
14 0 2 1 0 67 1 0 1 0 1 1 0 1 0 1 1 37 1
15 0 1 1 1 45 0 0 1 0 1 1 1 0 0 0 1 200 1
16 0 2 1 1 52 1 0 1 0 1 0 0 0 1 0 1 169 1
17 1 2 1 0 68 1 0 0 0 1 1 1 1 1 0 0 53 1
18 1 2 1 0 62 1 0 0 0 0 1 0 0 0 0 1 225 1
19 1 2 1 1 57 1 0 1 0 1 1 0 1 0 0 0 30 1
20 0 1 0 0 44 1 1 1 0 0 1 0 0 0 0 0 1249 0
21 0 1 1 1 63 0 0 1 1 0 1 0 0 0 1 1 134 1
22 1 1 0 0 58 1 0 0 0 0 1 0 0 0 1 0 491 1
23 1 1 0 0 52 0 0 1 0 0 1 0 0 1 1 0 422 1
24 0 2 1 0 20 1 0 1 0 1 1 0 0 0 0 1 1447 0
25 0 2 1 0 43 1 0 1 1 1 0 0 0 0 0 1 614 1
26 0 1 1 1 23 1 0 1 0 1 0 0 0 0 0 0 887 1
27 0 2 1 1 49 1 1 1 1 1 1 1 0 0 0 0 239 1
28 1 2 1 1 23 0 0 1 0 1 1 0 0 1 0 1 72 1
29 0 2 0 0 45 1 1 0 0 1 1 1 0 0 0 1 1250 0
30 1 1 1 0 53 0 0 1 1 1 1 0 0 0 0 0 728 1
31 0 2 1 0 33 1 1 1 0 1 1 0 0 0 0 1 956 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

32 1 1 1 1 41 0 0 0 0 1 1 0 0 0 1 0 124 1
33 0 2 1 1 26 1 0 1 0 1 1 1 0 0 1 1 527 1
34 1 1 1 0 62 1 0 1 1 1 1 0 1 1 1 1 1145 1
35 0 2 1 1 45 1 0 1 0 1 1 0 0 0 0 1 507 1
36 1 1 1 1 59 0 0 1 1 0 1 0 0 0 0 0 533 1
37 0 2 1 1 57 1 0 1 0 1 1 0 0 0 1 1 395 1
38 0 2 0 0 46 1 1 1 0 0 1 1 0 0 0 0 1167 0
39 0 1 1 1 68 1 0 1 0 0 1 1 0 0 0 0 85 1
40 0 2 0 0 45 0 0 0 0 1 1 0 1 1 1 0 664 1
41 1 1 1 1 61 1 0 1 0 1 1 0 1 0 0 1 77 1
42 0 1 1 1 68 1 0 1 0 0 1 0 0 0 0 0 112 1
43 0 1 1 0 27 1 1 1 0 1 1 1 0 0 1 1 343 1
44 0 1 1 1 60 0 0 0 0 1 1 0 0 0 1 1 38 1
45 0 2 1 1 63 0 0 1 0 1 1 0 0 1 0 1 315 1
46 1 1 1 1 59 1 0 0 0 0 1 0 0 0 1 1 207 1
47 1 1 1 1 43 0 0 1 0 1 1 0 0 0 0 0 936 0
48 1 2 1 0 32 0 0 0 0 1 1 0 0 0 0 0 343 1
49 1 2 1 1 48 1 1 1 1 1 0 1 0 0 1 0 468 1
50 0 1 1 1 45 0 0 0 0 0 1 1 0 0 0 0 109 1
51 1 2 1 0 28 1 0 1 0 0 0 0 1 1 0 1 140 1
52 1 1 1 1 58 0 0 1 1 0 1 0 1 0 1 1 155 1
53 0 1 1 1 56 0 0 0 0 0 1 0 0 0 0 0 23 1
54 1 2 1 1 50 1 0 1 0 1 0 0 0 0 1 1 757 1
55 0 2 0 0 37 1 1 1 0 1 0 0 0 0 0 1 796 1
56 0 2 1 1 44 1 0 1 0 1 1 1 0 0 0 1 390 1
57 0 1 1 1 52 1 1 1 1 0 1 0 0 0 0 1 510 1
58 0 2 0 0 57 1 0 0 0 1 1 0 0 0 1 0 145 1
59 1 2 1 1 67 0 0 1 0 0 1 0 0 0 0 1 174 1
60 1 2 1 1 62 1 0 0 0 0 1 0 0 0 0 0 254 1
61 0 1 1 1 58 1 0 1 0 0 1 0 0 1 0 1 190 1
62 0 1 1 1 73 1 0 1 0 1 1 0 0 0 1 1 350 1
63 0 1 1 1 58 0 0 0 0 0 1 0 0 1 0 1 111 1
64 0 1 1 1 53 0 0 1 0 1 1 0 0 0 0 0 623 0
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

65 1 1 1 1 63 1 0 1 0 1 1 0 0 0 1 0 347 1
66 0 2 1 1 58 1 1 1 1 1 1 0 1 0 0 0 193 1
67 0 1 0 0 56 0 0 0 0 0 1 0 0 0 0 0 212 1
68 0 1 1 1 54 1 1 1 0 0 1 0 0 0 0 0 237 0
69 1 2 1 0 53 1 0 1 0 0 1 0 0 0 0 0 149 1
70 0 2 1 1 56 1 0 1 0 0 1 0 0 0 0 0 547 1
71 0 2 1 0 57 1 1 1 0 0 1 0 0 0 0 1 712 0
72 0 2 0 0 55 0 0 1 0 1 1 1 1 0 1 1 16 0
73 0 1 1 1 61 1 1 1 0 0 1 0 0 0 1 1 519 1
74 0 1 1 1 52 1 0 1 0 0 1 0 1 0 0 1 87 1
75 1 1 1 1 61 0 0 1 1 0 1 0 0 0 1 1 241 1
76 0 2 1 1 61 0 0 0 0 1 1 0 0 1 0 0 91 1
77 0 1 1 1 43 1 0 1 1 1 1 1 0 0 1 1 403 1
78 0 2 1 1 64 1 1 1 1 0 1 0 0 0 1 1 589 0
79 0 1 1 1 70 1 0 1 0 1 1 0 0 0 1 1 157 1
80 0 1 1 1 54 1 0 1 1 1 1 1 0 0 1 1 446 1
81 1 1 0 0 58 1 0 1 0 1 1 0 1 1 1 1 101 1
82 0 1 1 1 33 1 0 1 1 1 1 1 0 0 0 0 382 1
83 0 1 1 1 61 1 0 1 0 1 1 0 0 1 1 0 45 1
84 1 2 1 0 51 1 0 0 0 1 1 0 0 1 0 0 146 1
85 0 2 1 1 62 1 0 0 0 1 1 1 0 0 0 0 82 1
86 1 1 1 1 51 1 1 1 1 1 1 1 0 0 0 0 432 1
87 1 1 1 1 54 1 1 1 0 1 1 1 0 0 0 1 183 0
88 0 1 1 1 63 1 1 1 1 0 1 0 0 0 1 0 314 1
89 1 1 1 1 47 1 0 1 1 1 1 0 1 0 0 0 259 1
90 0 2 0 0 35 1 1 0 0 1 1 1 0 0 0 0 205 1
91 1 2 1 1 67 1 0 1 0 0 1 0 0 1 0 0 129 1
92 1 2 0 0 57 1 0 1 1 1 1 0 0 1 1 1 465 0
93 1 1 1 1 63 0 0 1 0 1 1 0 0 0 0 1 233 1
94 1 2 0 0 30 1 1 1 0 1 1 0 0 0 0 1 221 0
95 0 1 0 0 64 1 0 1 0 1 1 0 0 1 0 0 264 0
96 1 1 1 1 55 1 0 1 0 1 1 1 0 0 0 0 503 0
97 1 1 1 1 53 0 0 1 1 0 1 0 0 1 0 1 190 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

98 1 1 1 1 56 1 0 1 0 1 1 1 0 1 1 1 281 1
99 0 1 1 1 60 0 0 1 0 1 1 1 1 1 0 0 126 1
100 1 2 0 0 64 0 0 0 0 0 1 0 0 1 0 1 71 1
101 1 2 0 0 34 1 0 0 0 1 1 1 0 0 0 0 240 0
102 0 1 1 1 28 1 1 1 1 1 1 1 0 0 0 0 85 0
103 1 1 1 1 57 0 0 1 1 0 0 0 1 1 0 1 260 1
104 1 1 1 1 62 1 1 1 0 1 1 0 0 0 1 1 201 0
105 1 1 1 1 62 1 0 1 0 1 1 1 0 0 0 0 197 0
106 1 1 1 1 64 1 0 1 0 1 1 0 0 0 1 1 173 0
107 1 1 1 1 34 1 0 1 0 1 1 0 1 0 0 0 337 0
108 0 1 1 1 55 1 0 1 1 1 1 0 1 0 0 0 354 1
109 0 1 1 1 70 0 0 1 0 0 1 0 1 1 0 1 187 1
110 0 1 1 1 64 1 1 1 0 1 0 0 0 0 0 1 215 0
111 1 1 1 0 59 0 0 1 0 1 1 0 1 0 1 0 189 0
112 0 1 1 1 46 1 1 1 0 0 0 0 0 0 0 0 227 0
113 0 1 1 1 61 1 0 1 0 0 1 0 0 0 1 1 84 0
114 1 1 1 0 62 1 0 1 0 1 1 0 1 0 0 1 324 0
115 1 1 1 0 33 1 0 1 0 1 1 1 0 0 0 1 209 0
116 0 2 1 0 40 1 0 1 0 1 1 0 0 0 1 1 174 0
117 1 1 1 1 52 1 1 1 0 1 1 0 0 0 0 1 226 1
118 1 1 1 0 30 1 1 1 0 1 1 1 0 0 0 0 238 0
119 0 1 1 1 66 1 0 0 0 0 1 0 0 0 0 0 212 1
120 0 1 1 1 60 1 0 1 1 1 1 0 1 0 0 0 172 1
121 0 1 0 0 22 1 0 1 0 1 1 0 0 0 0 0 42 0
122 0 2 1 1 43 1 0 1 0 1 1 0 0 0 0 0 210 0
123 1 2 1 1 56 1 0 1 1 1 1 0 0 0 0 1 172 0
124 0 2 1 1 52 1 0 1 0 1 1 0 0 0 0 1 173 0
125 0 2 1 1 57 1 0 0 0 0 1 0 0 0 1 1 84 0
126 0 1 1 1 64 1 0 1 0 0 1 0 0 0 0 1 121 0
127 0 1 0 0 42 1 1 1 1 1 0 0 0 0 0 0 63 0
128 0 2 1 1 48 1 0 1 0 1 1 1 0 0 0 1 49 0
129 0 2 1 1 59 0 0 1 1 1 1 0 0 1 1 0 52 1
130 1 2 0 0 61 1 1 1 0 1 1 1 0 0 0 0 73 0
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

131 0 1 1 1 62 1 0 1 0 0 1 0 0 0 0 0 42 0
132 1 2 1 1 63 1 0 1 0 1 1 1 0 1 1 0 64 0
133 0 2 0 0 27 1 1 1 0 1 1 1 0 0 0 1 41 0
134 0 2 0 0 28 1 0 1 0 1 0 1 0 0 0 1 42 0
135 1 2 1 1 59 0 0 1 0 1 1 1 0 0 1 1 171 1
136 0 2 0 0 56 0 0 0 0 1 1 0 0 0 0 0 133 1
137 0 1 0 0 45 1 1 1 1 0 1 0 0 0 0 1 1617 0
138 1 1 1 1 52 1 0 1 1 1 1 0 0 0 0 1 10 1
139 0 1 1 1 31 1 1 1 1 1 0 0 0 0 0 0 292 1
140 1 1 1 1 59 1 0 1 1 1 1 0 0 0 0 1 309 1
141 0 1 1 1 52 1 1 1 1 1 0 0 0 0 0 0 535 1
142 0 1 1 1 56 1 0 1 1 1 0 0 0 0 0 1 328 1
143 1 1 1 0 48 0 0 1 1 1 1 0 0 0 0 0 674 1
144 0 1 0 0 52 0 0 1 0 1 1 0 0 0 0 1 81 1
145 0 2 1 1 68 1 0 1 0 1 1 0 0 0 0 0 77 1
146 0 1 1 1 57 1 0 1 0 1 1 0 0 0 0 1 152 1
147 1 1 1 1 71 0 0 0 0 1 1 0 0 0 0 1 62 1
148 0 1 1 1 47 1 1 1 1 1 0 1 0 0 0 0 517 1
149 0 1 1 1 63 1 0 1 0 1 0 0 0 0 1 0 36 1
150 0 1 0 0 58 1 1 1 0 1 1 0 0 0 0 0 85 1
151 0 1 1 1 50 1 0 1 0 1 1 0 1 0 0 1 521 0
152 0 2 1 1 22 1 1 1 0 1 0 1 0 0 0 0 187 1
153 0 1 0 0 50 1 1 1 0 1 0 1 0 0 1 1 879 1
154 0 1 0 0 32 1 1 1 1 1 1 1 0 0 0 0 843 0
155 0 1 1 0 50 0 0 1 0 1 1 0 0 0 0 1 29 1
156 0 1 1 1 43 0 0 1 1 1 1 0 0 0 1 1 691 1
157 1 1 1 1 60 1 1 1 0 1 0 1 0 0 0 1 545 1
158 1 2 0 0 45 0 0 1 1 1 0 0 0 0 0 0 836 0
159 1 1 1 1 20 1 0 1 1 1 0 1 0 0 0 0 1080 0
160 1 1 1 1 70 0 0 1 1 1 0 0 0 0 0 1 76 1
161 0 1 1 1 61 0 0 1 1 1 1 1 0 0 0 1 15 1
162 1 1 1 1 59 1 0 1 1 1 1 0 0 0 0 0 36 1
163 1 1 0 0 49 1 1 1 1 1 1 0 0 0 0 0 344 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

164 1 2 1 1 51 1 0 1 0 1 0 0 0 0 0 0 596 1
165 0 2 1 1 57 0 0 1 0 1 1 0 0 0 0 1 163 1
166 1 2 1 1 65 1 0 1 0 1 1 0 1 1 0 0 40 1
167 1 1 1 1 66 1 1 1 0 1 1 0 0 0 1 1 33 1
168 0 2 1 0 48 1 0 1 0 1 1 1 0 0 0 1 279 1
169 0 1 1 1 51 1 1 1 1 1 1 0 0 0 0 0 193 1
170 1 1 1 1 60 0 0 1 0 1 1 0 0 0 0 0 179 1
171 0 1 1 1 49 0 0 0 0 1 1 0 0 0 1 0 12 1
172 0 1 1 1 57 0 0 0 0 1 1 0 0 0 1 1 64 1
173 1 1 1 1 36 0 0 1 1 1 1 0 0 0 1 0 304 1
174 0 1 1 1 66 1 0 1 0 1 1 0 1 0 0 1 76 1
175 0 1 1 1 66 1 0 1 0 1 0 0 0 0 0 1 266 1
176 0 1 1 1 70 0 0 1 0 1 1 0 0 0 0 1 16 1
177 1 1 1 1 69 1 0 1 0 1 1 0 0 0 1 1 30 1
178 0 2 0 0 23 1 1 1 0 1 1 0 0 0 0 0 456 0
179 0 2 1 0 27 1 1 0 0 1 1 0 1 1 1 0 189 0
180 0 1 1 1 62 1 0 0 0 1 1 0 0 0 1 0 191 1
181 1 1 0 0 65 0 0 1 0 1 1 0 0 0 0 0 327 0
182 0 1 1 1 56 1 0 1 0 1 1 0 0 0 0 0 35 1
183 1 1 0 0 33 1 1 1 0 1 1 0 1 0 0 1 329 0
184 1 2 1 1 44 1 0 1 0 1 1 1 0 0 0 0 97 0
185 0 1 1 1 46 1 0 0 0 0 0 0 0 0 1 0 265 1
186 0 2 1 1 66 1 0 0 0 1 1 0 0 0 0 0 11 1
187 0 2 1 1 52 1 0 0 0 1 1 0 0 1 1 0 299 0
188 0 1 1 1 62 0 0 1 0 1 1 1 0 0 1 1 7 1
189 1 1 1 1 58 1 0 1 1 1 1 1 0 0 0 1 220 0
190 0 1 1 1 60 1 0 1 0 1 1 0 0 0 0 0 259 0
191 1 2 1 1 44 1 0 1 0 0 1 0 0 0 0 1 27 1
192 0 2 1 1 51 1 0 1 0 1 0 1 0 0 1 0 134 0
193 1 1 1 1 45 1 0 1 1 1 1 0 1 0 1 0 44 0
194 1 1 1 1 47 0 0 1 0 1 1 1 0 0 0 1 44 0
195 0 2 0 0 35 0 0 1 1 1 0 0 0 1 0 1 683 1
196 1 2 1 0 54 0 0 1 1 1 1 0 0 0 0 0 234 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

197 0 1 1 1 58 1 1 1 1 1 0 1 0 0 0 0 633 1
198 1 2 0 0 34 1 0 1 1 0 0 0 0 0 0 1 761 1
199 0 1 1 1 59 0 0 1 0 0 0 1 0 0 0 1 567 1
200 0 2 1 1 28 1 0 1 0 1 1 1 0 0 0 1 768 0
201 1 1 0 0 69 0 0 1 1 1 1 1 1 1 1 1 198 1
202 1 2 1 1 58 1 0 1 0 1 0 1 0 0 0 1 255 1
203 0 2 0 0 48 1 0 1 0 1 1 1 0 0 0 1 348 0
204 0 1 0 0 46 1 0 1 1 1 1 0 0 0 0 0 227 1
205 1 2 0 0 65 1 0 1 1 1 0 1 0 0 0 0 565 0
206 0 2 1 1 46 1 0 1 0 1 0 0 0 0 0 0 479 1
207 0 1 1 1 39 0 0 1 1 1 0 1 0 1 0 0 324 1
208 0 1 1 1 58 1 0 1 0 0 1 0 0 0 0 0 349 0
209 1 1 1 1 52 0 0 1 0 0 0 0 0 0 0 1 141 0
210 0 1 1 1 58 1 0 1 0 1 0 0 0 0 0 0 241 0
211 0 1 1 1 61 0 0 1 0 1 1 0 0 1 0 1 137 1
212 1 1 1 1 62 1 0 1 0 0 0 0 0 0 0 1 783 1
213 0 1 1 1 66 0 0 1 0 1 1 0 0 0 0 1 98 1
214 0 2 1 1 47 1 0 1 1 0 0 0 0 0 0 0 436 1
215 0 1 1 1 54 1 0 1 1 0 1 0 0 0 0 1 578 1
216 1 1 1 1 56 0 0 1 0 0 1 0 0 1 0 0 180 1
217 1 1 1 1 60 0 0 1 1 0 1 0 0 0 1 0 73 1
218 0 2 1 1 42 1 0 1 0 1 1 1 0 0 0 0 316 1
219 1 2 1 1 45 0 0 1 0 0 0 0 0 0 1 1 323 1
220 1 1 1 0 45 1 0 1 0 0 1 0 0 1 0 0 379 0
221 1 1 1 0 59 0 0 1 0 1 1 0 0 0 1 0 128 1
222 1 1 1 0 58 1 0 1 0 0 0 0 0 0 0 0 277 1
223 1 1 1 1 49 1 0 1 1 0 1 0 0 0 0 1 181 1
224 1 1 1 1 56 1 0 1 1 0 0 0 0 0 0 1 564 0
225 1 1 1 1 67 1 0 1 0 1 1 0 0 0 1 0 148 1
226 0 2 0 0 32 1 1 1 0 1 0 1 0 0 0 0 804 1
227 1 1 1 1 51 1 0 1 0 0 1 0 0 0 1 1 159 1
228 0 1 1 1 59 1 0 1 0 1 1 0 0 0 0 0 103 0
229 0 2 1 0 55 1 0 1 0 0 1 1 1 0 0 0 466 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

230 0 2 1 1 45 1 0 1 0 0 1 0 0 0 0 0 225 1
231 0 1 1 1 59 1 1 1 1 1 1 1 0 0 0 0 491 1
232 1 1 1 1 50 1 1 1 1 0 0 0 0 0 0 1 450 1
233 0 1 1 1 51 1 0 1 0 0 1 0 0 0 1 1 526 1
234 1 1 0 0 37 1 1 1 0 0 0 0 0 0 0 0 539 0
235 1 1 1 0 68 1 1 1 1 1 1 0 0 0 0 1 98 0
236 1 2 1 0 50 1 1 1 1 1 1 1 0 0 0 0 166 0
237 0 1 1 0 62 1 1 1 1 0 1 0 0 0 0 1 216 1
238 0 1 1 0 60 1 0 1 0 0 1 0 0 0 1 1 32 1
239 1 2 1 0 65 1 1 1 0 1 1 1 0 0 0 0 50 0
240 0 1 0 0 34 0 0 1 0 0 1 0 0 1 0 0 279 0
241 1 2 1 0 65 1 0 1 1 0 0 1 0 0 1 1 390 1
242 1 1 1 0 64 0 0 1 1 0 0 0 0 0 0 0 48 0
243 0 2 1 0 60 1 1 1 0 1 1 1 0 0 0 1 280 0
244 1 1 0 0 62 0 0 0 0 0 1 0 0 0 1 1 65 1
245 0 1 1 0 61 0 0 1 1 0 1 0 0 1 0 1 62 1
246 1 1 1 0 49 0 0 1 1 0 0 0 0 0 1 0 295 1
247 0 2 1 0 58 1 1 1 1 0 1 0 0 1 0 1 90 0
248 0 2 1 1 52 0 0 1 1 1 1 1 0 0 1 1 901 1
249 1 1 1 1 58 0 0 1 0 1 0 0 0 1 1 0 190 1
250 0 2 1 1 24 1 0 1 0 1 1 0 0 0 0 0 617 1
251 1 1 1 1 56 0 0 1 0 0 0 1 0 0 0 1 209 1
252 1 2 0 0 25 1 1 1 1 1 0 0 0 0 0 1 1384 0
253 0 1 1 1 40 0 0 1 1 1 1 0 1 1 0 1 103 1
254 0 2 0 0 59 0 0 1 1 0 0 1 0 0 0 0 371 1
255 0 1 1 1 50 1 0 1 1 0 1 0 1 1 0 1 346 1
256 0 1 1 1 41 0 0 1 1 0 1 0 1 0 0 0 932 1
257 0 2 1 1 55 1 0 1 1 1 0 0 0 1 0 0 1149 0
258 0 2 0 0 21 1 0 1 1 1 0 1 0 0 0 1 744 0
259 1 1 1 1 60 1 0 1 1 1 0 0 1 1 0 1 627 1
260 0 1 1 1 55 1 0 1 1 1 0 1 0 1 0 1 288 1
261 0 1 1 0 50 0 0 1 1 0 1 1 0 1 0 1 56 0
262 0 1 1 1 52 1 0 1 1 1 0 1 0 1 0 0 408 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

263 0 1 1 1 45 0 0 1 1 1 1 0 0 1 0 1 264 1
264 1 1 1 1 57 0 0 1 0 1 1 0 1 1 0 1 200 1
265 1 1 1 1 53 1 0 1 1 1 1 1 0 0 0 1 89 0
266 1 1 1 1 46 1 0 1 1 1 0 1 0 0 0 0 108 0
267 0 1 1 1 60 1 0 1 0 1 1 0 0 0 0 0 79 0
268 1 1 1 0 56 1 1 1 1 0 0 0 0 0 1 1 414 1
269 0 2 1 0 60 0 0 1 1 1 0 1 1 1 1 0 342 1
270 1 1 1 1 51 1 1 1 0 0 0 0 1 1 0 1 283 1
271 0 1 1 1 53 0 0 1 1 0 0 0 0 1 1 1 584 1
272 0 1 1 1 22 1 1 1 0 0 0 0 0 1 0 0 84 1
273 1 2 1 1 63 1 0 1 1 1 1 1 0 0 1 0 663 0
274 0 2 1 1 39 1 0 1 1 0 0 0 0 1 0 1 496 1
275 1 2 1 1 66 1 0 1 0 0 0 0 0 1 1 1 75 1
276 1 2 1 1 50 1 1 1 0 0 0 0 0 1 1 0 229 1
277 0 1 1 1 61 1 0 1 0 1 1 1 0 1 1 1 535 1
278 1 1 1 1 59 1 0 1 0 0 0 0 0 0 0 1 380 1
279 1 2 1 1 70 1 0 1 1 0 0 0 0 1 1 1 384 0
280 0 1 1 1 66 1 0 1 1 1 1 1 0 0 1 0 359 1
281 1 2 0 0 52 1 0 1 1 1 0 1 0 1 0 0 806 0
282 1 2 1 1 63 1 0 1 0 0 0 0 0 0 0 1 462 1
283 0 1 1 1 40 1 0 1 1 0 0 1 1 1 1 0 694 0
284 0 2 1 0 31 1 0 1 1 1 0 1 0 0 0 1 772 0
285 0 1 0 0 47 0 0 1 0 1 0 1 1 1 0 1 498 1
286 0 1 1 1 47 1 1 1 0 0 0 1 0 0 0 1 502 0
287 0 1 1 1 30 1 1 1 1 1 0 1 0 0 0 1 583 0
288 1 1 0 0 47 1 0 1 1 0 0 0 0 0 1 0 487 1
289 1 2 1 0 51 1 0 1 1 1 0 1 0 0 1 1 379 0
290 0 2 0 0 41 1 0 1 0 0 0 0 0 1 0 0 345 0
291 1 1 1 1 57 0 0 1 1 0 0 0 0 1 1 1 34 0
292 0 1 1 1 41 0 0 1 1 0 1 0 1 1 0 0 308 1
293 0 1 1 1 67 0 0 1 0 0 1 0 0 1 0 0 130 1
294 1 1 1 1 56 1 0 1 0 1 1 1 0 1 0 0 98 1
295 1 1 1 1 63 1 0 1 1 0 0 0 0 0 0 0 123 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

296 1 2 0 0 51 1 0 1 0 1 1 0 0 0 0 1 1596 0
297 1 1 0 0 55 1 0 1 0 1 0 0 0 0 0 1 426 1
298 0 2 0 0 45 1 0 1 0 1 1 1 0 0 1 0 1058 1
299 0 2 0 0 38 1 0 1 0 1 0 0 0 1 0 1 1333 0
300 1 1 1 0 64 1 0 1 0 1 1 0 0 0 1 0 594 1
301 0 1 0 0 42 1 0 1 0 1 0 0 0 0 0 1 349 1
302 0 1 0 0 62 1 0 1 0 1 0 0 0 0 1 0 263 1
303 0 1 1 1 65 0 0 1 0 1 0 0 1 1 0 1 304 1
304 0 1 1 0 38 1 0 1 0 1 0 0 0 0 0 0 192 1
305 0 2 1 1 60 1 0 1 0 1 1 1 0 0 0 1 385 1
306 1 2 1 0 49 0 0 1 0 1 1 0 0 0 1 0 196 1
307 0 2 1 0 35 0 0 1 0 1 0 1 0 0 1 1 1167 0
308 0 1 1 0 62 1 0 1 0 1 0 0 0 0 0 1 201 1
309 0 2 1 1 45 0 0 1 0 1 1 0 0 1 0 0 255 1
310 0 2 1 1 34 1 0 1 1 1 0 0 0 0 0 0 552 1
311 1 1 1 1 65 0 0 1 0 1 0 0 0 0 0 1 85 1
312 1 2 1 0 52 0 0 1 0 1 0 0 1 1 0 0 47 0
313 1 1 1 1 41 1 0 1 0 1 0 0 0 1 1 1 972 0
314 1 1 1 1 57 0 0 1 0 1 0 0 0 0 1 0 744 1
315 0 2 1 1 58 1 0 1 1 1 0 0 0 0 0 1 105 1
316 0 1 1 1 46 1 0 1 0 1 0 0 0 0 0 0 705 1
317 1 2 1 1 35 1 0 1 0 1 0 1 0 0 0 1 799 1
318 1 1 1 1 53 0 0 1 0 1 0 1 0 0 0 0 349 1
319 1 1 1 1 54 0 0 1 0 1 0 0 0 0 1 0 305 1
320 0 2 0 0 48 0 0 1 0 1 0 0 0 1 0 1 371 1
321 0 1 0 0 44 0 0 1 0 1 0 0 0 1 1 1 893 0
322 1 1 1 1 66 0 0 1 0 1 1 1 0 0 0 1 557 1
323 1 1 1 1 47 0 0 1 0 1 1 0 0 0 0 1 320 1
324 0 2 0 0 50 0 0 1 0 1 1 1 0 1 0 0 652 0
325 0 1 1 1 47 1 0 1 0 1 1 0 0 0 0 0 374 1
326 0 1 1 1 47 0 0 1 0 1 1 0 0 0 0 1 312 1
327 0 1 1 1 67 0 0 1 0 1 0 0 0 0 1 0 455 1
328 0 1 1 0 64 1 0 1 1 1 0 1 1 1 0 1 261 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

329 0 1 1 1 53 1 0 1 0 1 0 0 0 0 1 1 192 1
330 0 1 1 1 31 0 0 1 0 1 1 1 0 0 1 0 423 1
331 0 1 0 0 48 0 0 1 0 1 0 1 0 0 0 1 520 0
332 1 1 0 0 57 1 0 1 0 1 0 1 0 0 0 0 199 1
333 1 1 1 1 43 1 0 1 0 1 0 0 1 1 0 1 427 1
334 1 1 1 1 58 0 0 1 1 1 0 1 1 1 0 0 286 1
335 1 2 1 1 62 0 0 1 0 0 0 0 0 0 0 0 324 0
336 1 1 1 1 70 1 0 1 1 1 0 0 0 0 0 0 315 1
337 0 2 1 1 38 1 0 1 0 1 0 1 0 0 0 1 385 0
338 1 2 1 1 36 1 0 1 1 1 0 1 0 0 0 1 298 1
339 1 2 0 0 48 1 0 1 0 1 0 1 0 0 0 0 292 0
340 0 2 0 0 44 1 0 1 0 1 0 1 0 0 0 1 297 0
341 0 2 1 1 54 1 0 1 0 1 1 1 0 1 0 0 192 1
342 1 1 1 1 56 0 0 1 0 1 1 0 1 1 0 1 47 1
343 0 2 1 1 39 1 0 1 0 1 0 1 0 1 0 1 168 0
344 0 1 1 1 57 1 0 1 0 1 0 1 1 1 0 1 187 0
345 1 1 1 1 49 1 0 1 0 1 0 0 1 1 0 0 200 0
346 0 1 1 1 59 0 0 1 0 1 1 0 0 0 1 0 77 0
347 1 2 1 1 67 0 0 1 0 1 0 0 0 1 1 0 135 0
348 0 2 0 0 36 1 0 1 0 1 0 1 0 0 0 1 65 0
349 0 1 1 1 34 1 0 1 0 1 0 0 0 1 0 0 57 0
350 0 1 1 1 33 0 0 1 0 1 0 0 0 1 1 0 64 0
351 0 2 0 0 44 1 0 1 0 1 1 1 0 0 0 0 586 1
352 1 1 1 1 58 1 0 0 0 0 1 0 0 0 1 0 315 1
353 1 1 1 1 52 1 1 1 0 1 0 1 0 0 0 1 566 1
354 0 2 1 1 54 1 1 1 0 0 1 0 0 0 0 1 393 0
355 0 1 1 0 32 1 1 1 0 1 1 1 0 0 0 0 183 0
356 1 2 1 1 48 1 1 1 0 1 1 1 0 0 0 1 488 1
357 1 1 1 1 41 1 1 1 0 1 1 0 0 0 0 1 1347 0
358 0 2 1 1 62 1 0 1 1 1 1 1 0 0 0 1 252 1
359 0 1 1 0 16 1 1 1 0 0 0 0 0 0 0 0 396 1
360 1 1 1 1 46 1 1 1 1 1 1 0 0 0 0 0 290 1
361 0 1 1 1 60 1 1 1 1 1 1 0 0 0 1 1 6 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

362 1 2 1 1 70 1 0 1 1 1 1 1 0 1 0 0 102 1
363 1 1 1 1 59 1 0 1 1 1 1 0 1 1 0 1 173 0
364 1 1 1 1 56 1 1 1 0 1 1 0 0 1 1 0 295 1
365 0 1 1 1 60 1 1 1 1 1 1 1 0 0 0 0 430 1
366 0 1 1 1 48 1 0 1 1 0 1 0 0 0 0 0 274 0
367 0 2 1 1 54 1 0 1 1 0 1 1 0 0 0 0 417 0
368 1 1 1 0 53 1 0 1 0 1 0 0 0 0 0 1 301 0
369 1 1 1 1 54 0 0 1 0 1 1 0 0 1 1 1 87 1
370 0 1 1 0 58 1 0 1 1 0 0 0 0 0 0 1 308 1
371 1 2 1 0 66 0 0 1 1 1 0 1 0 0 0 0 497 0
372 1 1 1 1 55 1 0 1 0 1 0 0 0 0 0 1 273 1
373 0 1 1 1 54 1 0 1 0 1 0 0 0 0 1 0 245 1
374 1 1 1 1 58 1 1 1 0 0 0 0 0 0 0 0 272 1
375 0 2 1 0 36 1 0 1 0 1 0 1 0 0 0 0 227 1
376 1 1 1 1 62 0 0 1 1 1 1 0 0 0 0 1 471 1
377 1 2 1 0 67 0 0 1 1 0 1 0 0 1 1 0 376 1
378 0 2 1 1 46 0 0 1 0 1 1 0 0 0 1 0 166 1
379 0 2 1 1 50 0 0 1 0 1 1 0 0 1 1 1 121 1
380 0 2 1 1 40 1 0 1 1 1 1 1 0 1 0 1 45 0
381 0 2 1 0 49 1 1 1 1 0 0 0 1 1 0 0 336 1
382 1 2 1 1 51 1 1 1 1 1 1 0 1 0 0 1 592 1
383 1 2 1 1 54 1 1 1 1 1 1 1 0 0 0 1 340 1
384 0 2 1 1 49 1 1 1 0 0 1 0 0 0 1 0 293 1
385 0 2 1 1 61 1 1 1 1 0 1 0 0 0 0 0 267 1
386 0 1 1 1 61 1 1 1 1 0 1 0 0 0 0 1 114 1
387 1 1 1 1 45 1 1 1 0 1 1 1 0 0 1 0 250 1
388 1 1 0 0 57 1 1 1 0 0 1 1 0 0 0 1 295 0
389 0 1 1 1 66 1 1 1 0 0 1 0 0 0 1 1 335 1
390 1 1 1 1 65 1 1 1 0 0 1 0 0 1 1 1 154 0
391 1 1 1 1 64 1 1 1 0 0 1 0 0 1 1 0 174 1
392 0 2 1 1 41 1 0 1 0 0 1 1 0 0 1 1 60 0
393 1 1 0 0 47 1 1 1 1 0 1 0 0 0 0 1 155 0
394 1 2 1 1 48 1 1 1 1 0 1 0 0 0 0 0 76 1
To be continue
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pt z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 t d

395 1 1 1 1 40 1 1 1 1 1 0 0 1 1 0 0 83 1
396 0 1 1 0 47 1 1 1 0 1 1 1 0 0 0 1 203 0
397 0 1 1 1 40 1 1 1 0 1 1 1 0 0 0 1 16 0
398 0 1 1 0 44 1 1 1 1 1 1 0 1 1 0 0 50 0
399 0 2 1 1 40 1 0 0 0 1 1 0 0 0 0 0 4 1
400 1 2 0 0 21 1 1 1 0 1 1 1 0 0 0 0 236 0
401 0 1 0 0 29 1 1 1 0 1 1 1 0 0 0 1 300 0
402 1 1 1 1 65 0 0 1 0 0 0 0 0 0 0 0 249 0
403 0 1 1 1 60 1 1 1 0 0 0 0 0 0 0 1 156 1
404 0 1 1 1 45 1 1 1 0 0 1 1 0 0 0 1 282 0
405 1 1 1 1 50 1 0 1 0 0 1 0 0 0 1 1 282 0
406 1 1 1 1 66 0 0 1 0 0 0 1 0 0 0 0 245 0
407 0 1 1 1 65 1 0 1 0 0 0 0 0 0 1 0 81 1
408 1 2 1 1 68 1 0 1 0 1 1 1 0 0 1 0 172 0
409 0 1 1 1 64 1 0 1 0 0 1 0 1 1 0 0 59 1
410 1 1 0 0 52 1 1 1 0 1 1 1 0 0 0 0 172 0
411 0 1 1 1 51 1 1 1 0 1 0 0 0 1 0 1 103 0

2.3 Multiple myeloma data

The patients of multiply myeloma study was carried out in The Hematology Center, in
the Main Military Clinical Hospital named after N.N.Burdenko to compare the response
times in two patient groups of treatment. The difference in these groups is in the fact that
the first group received the chemotherapy together Bortezomibe, which is marketed as
Velcade by Millennium Pharmaceuticals, other received drugs without Bortezomibe. The
data include 60 patients with 56 observations and 4 censored patients, of two treatment
groups: chemotherapy without Bortezomibe (z1 = 0) and chemotherapy together with
Bortezomibe (z1 = 1). The first group consists 38 observations with one observed censoring
and other include 22 observation with 3 observed censoring. In addition to variable of
treatment, three such variables are given in the data that consider in their work, namely:
Type of response (the value z2 = 0 corresponds to the progression of the disease, z2 = 1 -
the general response); sex (z3 = 1-male, z3 = 0-female); and age in years (z4). Detail of the
data are presented in Semenova & Bitukov [106]. Note that 4 observation are independent
randomly censored observations. The data are given in following Table.
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Table 3: Multiply myeloma data

pt z1 z2 z3 z4 survtime censure pt z1 z2 z3 z4 survtime censure
1 1 1 1 64 61 1 31 1 1 0 51 5 1
2 1 0 1 81 50 1 32 1 0 1 81 30 1
3 1 1 0 71 2 1 33 1 0 1 58 25 1
4 1 0 1 69 36 1 34 1 0 1 77 39 1
5 1 0 0 74 14 1 35 1 1 1 65 6 1
6 1 0 1 83 27 1 36 1 0 0 69 83 1
7 1 1 0 46 1 1 37 1 1 1 52 24 1
8 1 1 1 80 4 1 38 1 1 1 49 3 1
9 1 0 0 58 27 1 39 0 1 1 61 7 1
10 1 0 1 50 115 0 40 0 1 1 45 2 1
11 1 0 1 85 13 1 41 0 1 0 66 7 1
12 1 1 1 56 2 1 42 0 1 0 60 2 1
13 1 1 1 57 3 1 43 0 1 1 68 262 0
14 1 1 1 71 25 1 44 0 1 0 81 81 1
15 1 1 1 64 4 1 45 0 0 0 79 33 1
16 1 0 0 57 62 1 46 0 0 1 95 214 1
17 1 1 0 71 9 1 47 0 0 0 85 57 1
18 1 0 0 56 10 1 48 0 0 1 89 17 1
19 1 1 1 55 7 1 49 0 1 0 75 26 1
20 1 0 1 75 54 1 50 0 0 1 47 7 1
21 1 0 1 75 62 1 51 0 0 1 75 30 1
22 1 1 1 64 3 1 52 0 0 1 66 2 1
23 1 1 1 61 26 1 53 0 1 1 76 26 1
24 1 0 1 72 22 1 54 0 1 1 37 20 0
25 1 0 1 59 46 1 55 0 0 0 57 5 0
26 1 1 1 77 3 1 56 0 1 0 73 8 1
27 1 1 1 66 16 1 57 0 0 0 79 127 1
28 1 0 0 46 10 1 58 0 0 1 87 149 1
29 1 1 0 55 25 1 59 0 1 1 65 10 1
30 1 1 1 48 6 1 60 0 1 1 61 8 1
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Dynamic regression models
and their applications in survival and reliability analysis

Thesis by
TRAN Xuan Quang

This thesis was designed to explore the dynamic regression models, assessing the statistical inference for the survival and reliability

data analysis. These dynamic regression models that we have been considered including the parametric proportional hazards and accelerated

failure time models contain the possibly time-dependent covariates. We discussed the following problems in this thesis.

At first, we presented a generalized chi-squared test statistics Y2
n that is a convenient to fit the survival and reliability data analysis in

presence of three cases: complete, censored and censored with covariates. We described in detail the theory and the mechanism to used of

Y2
n test statistic in the survival and reliability data analysis. Next, we considered the flexible parametric models, evaluating the statistical

significance of them by using Y2
n and log-likelihood test statistics. These parametric models include the accelerated failure time (AFT) and

a proportional hazards (PH) models based on the Hypertabastic distribution. These two models are proposed to investigate the distribution

of the survival and reliability data in comparison with some other parametric models. The simulation studies were designed, to demonstrate

the asymptotically normally distributed of the maximum likelihood estimators of Hypertabastic’s parameter, to validate of the asymptotically

property of Y2
n test statistic for Hypertabastic distribution when the right censoring probability equal 0% and 20%.

In the last chapter, we applied those two parametric models above to three scenes of the real-life data. The first one was done the data

set given by Freireich et al. [46] on the comparison of two treatment groups with additional information about log white blood cell count, to

test the ability of a therapy to prolong the remission times of the acute leukemia patients. It showed that Hypertabastic AFT model is an

accurate model for this dataset. The second one was done on the brain tumour study with malignant glioma patients, given by Sauerbrei &

Schumacher [105]. It showed that the best model is Hypertabastic PH on adding five significance covariates. The third application was done

on the data set given by Semenova & Bitukov [106] on the survival times of the multiple myeloma patients. We did not propose an exactly

model for this dataset. Because of that was an existing one intersection of survival times. We, therefore, suggest fitting other dynamic model

as Simple Cross-Effect model for this dataset.

Keywords: Accelerated Failure Time model, Covariates, Cox model, Dynamic regression models, Flexible parametric models, Generalized

Chi-squared statistic, Goodness-of-fit tests, Hypertabastic survival models, Leukemia cancer, Malignant glioma cancer, Multiple Myeloma cancer,

Proportional Hazards model, Survival data analysis.



Les modèles de régression dynamique
et leurs applications en analyse de survie et fiabilité

Thèse par
TRAN Xuan Quang

Cette thèse a été conçu pour explorer les modèles dynamiques de régression, d’évaluer les inférences statistiques pour l’analyse

des données de survie et de fiabilité. Ces modèles de régression dynamiques que nous avons considérés, y compris le modèle des hasards

proportionnels paramétriques et celui de la vie accélérée avec les variables qui peut-être dépendent du temps. Nous avons discuté des problèmes

suivants dans cette thèse.

Nous avons présenté tout d’abord une statistique de test du chi-deux généralisée Y2
n qui est adaptative pour les données de survie et

fiabilité en présence de trois cas, complètes, censurées à droite et censurées à droite avec les covariables. Nous avons présenté en détail la forme

pratique de Y2
n statistique en analyse des données de survie. Ensuite, nous avons considéré deux modèles paramétriques très flexibles, d’évaluer

les significations statistiques pour ces modèles proposées en utilisant Y2
n statistique. Ces modèles incluent du modèle de vie accélérés (AFT) et

celui de hasards proportionnels (PH) basés sur la distribution de Hypertabastic. Ces deux modèles sont proposés pour étudier la distribution

de l’analyse de la duré de survie en comparaison avec d’autre modèles paramétriques. Nous avons validé ces modèles paramétriques en utilisant

Y2
n. Les études de simulation ont été conçus.

Dans le dernier chapitre, nous avons proposé les applications de ces modèles paramétriques à trois données de bio-médicale. Le premier

a été fait les données étendues des temps de rémission des patients de leucémie aiguë qui ont été proposées par Freireich et al. [46] sur la

comparaison de deux groupes de traitement avec des informations supplémentaires sur les log du blanc du nombre de globules. Elle a montré

que le modèle Hypertabastic AFT est un modèle précis pour ces données. Le second a été fait sur l’étude de tumeur cérébrale avec les patients

de gliome malin, ont été proposées par Sauerbrei & Schumacher [105]. Elle a montré que le meilleur modèle est Hypertabastic PH à l’ajout

de cinq variables de signification. La troisième demande a été faite sur les données de Semenova & Bitukov [106], à concernant les patients

de myélome multiple. Nous n’avons pas proposé un modèle exactement pour ces données. En raison de cela était les intersections de temps

de survie. Par conséquent, nous vous conseillons d’utiliser un autre modèle dynamique que le modèle de la Simple Cross-Effect à installer ces

données.

Mots clés: Analyse de survie, Covariables, Modèle de Cox, Modèle des Hasards Proportionnels, Modèles de survie de Hypertabastic,

Modèles des paramétriques flexibles, Modèle de régression dynamique, Modèle de vie accélérée, Cancer de leucémie, Cancer de gliome malin,

Cancer de myélome multiple, Test d’ajustement, Statistique du test du Chi-deux généralisée.
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