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Abstract

This thesis takes place within the context of designing a behavior model for
controlling entities in video games.

In chapter 1, we propose to identify the current and future needs of Arti�cial
Intelligence in video games by means of a historical review of video games.
We will then discuss the purpose of AI. How is arti�cial intelligence used?
What features enable it to be implemented? What additional constraints are
necessary? With this review we will be able to show how imitating real players
seems to be a promising and fruitful strategy.

In chapter 2, we show that in order to consider the development of a generic
software solution for designing arti�cial intelligence in video games based on
replicating human behavior, it is pertinent to �ask the question� of the require-
ments of such a system. So we start by identifying the di�erent requirements
related to constraints in the development of a video game. Secondly, we focus
on the characteristics of human behavior in the context of a video game. These
features de�ne requirements on the expressiveness of the models to carry out
such behavior. And since we want to learn these behaviors, we are also inter-
ested in learning requirements by themselves. These di�erent criteria allow us
to put into perspective the relevance of di�erent models in the context of the
construction of the proposed model. Since we want to reproduce the behavior
of a human by imitation, we believe that the solution must be oriented by
data retrieved from real humans operating in the environment of the game.
Data mining techniques o�er an interesting range of techniques that can be
useful in the context of this approach. We present a state of the art of data
mining techniques and we evaluate them based on the requirements de�ned
above. We conclude that all of these techniques can be useful in developing
our solution and the solution must allow the use of several of them. However,
they alone are not su�cient to ful�ll all the criteria we have identi�ed.

In chapter 3, we present our contribution: the Orion model. This model
is composed of a structural part and a behavioral part. The structural model
allows datasets to be handled generically and semantics to be added to data.
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ABSTRACT

The behavioral part is based on behavior trees. They meet many of the needs
expressed previously. We propose an extension which makes it possible to
construct an arti�cial intelligence from data retrieved from real players. When
using behavior trees, the data is usually stored in a key-value dictionary used
by all behaviors. The structural model helps to streamline inputs and outputs
used by the model. Orion o�ers data typing, allowing the semantics of data
to be maintained throughout the design, as well as checking the consistency
of the data used by each behavior. We show, thanks to our implementation
of the model, the �exibility of our approach by manipulating and visualizing
various data sets. The behavioral model, although based on behavior trees,
enables behaviors performed by machine to learn both online (during the ex-
ecution of the game) or o�ine (during the design phase). These behaviors
can produce additional knowledge from data (such as automatic learning of
the environment) or automatically partition the set of sequences in order to
identify di�erent strategies used by the player.

In chapter 4, we �nally show how the proposed model can be used on con-
crete examples. This model can be used in many di�erent ways, using expert
added knowledge or not, performed online or not. First, we use the model in
order to implement a behavior able to play the video game Pong. Then, as
Tencé (2011) proposed a technique to automatically learn the environment in
the game Unreal Tournament, we propose to enhance these techniques using
the proposed model. We then, implement a bot able to perform better than
Tencé's agent model. As the implemented bot still lacks many important fea-
tures, we conclude by proposing a potential solution to �x issues that hinder
our model.
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Chapter 1

Introduction

The past is just a story we tell ourselves.

Samantha - Her (2014)

S
u
m
m
a
ry

In this chapter we propose to identify the current and future needs of

Arti�cial Intelligence in video games by means of a historical review of

video games. We will then discuss the purpose of AI. How is arti�cial

intelligence used? What features does it enable to implement? What

additional constraints are necessary? With this review we will be able

to show how imitating real players seems to be a promising and fruitful

strategy.

In
tr
o
d
u
ct
io
n Despite relatively recent development, in most technological societies,

there is nowadays a real infatuation around video games, with an in-
creasingly wide audience. Video games inspire other forms of art and
entertainment (such as cinema and literature), to the extent that there
has been much debate around the concept of a new kind of art (Smuts,
2005).
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CHAPTER 1. INTRODUCTION

In
tr
o
d
u
ct
io
n

Video games are also a source of interest to the scienti�c community.
The number of publications in this �eld is growing exponentially. They
are a source of interest for scientists from varied �elds such as soci-
ology, psychology (ergonomic and cognitive), pedagogy, and of course
computer science. As video games can be very complex environments,
they are well-suited to implementing and evaluating many types of al-
gorithms, such as learning algorithms.

However, the reverse is less true: the video game industry does
not make full use of this scienti�c involvement and uses this resource
marginally in order to develop arti�cial intelligence. For instance,
the techniques used to govern the behavior of Non Player Charac-
ters (NPCs) are quite limited: simple scripts, �nite state machines, etc.
Moreover, in most games, arti�cial intelligence is primarily intended to
increase the performance of NPCs. While this approach can o�er play-
ers a real challenge in order to defeat the computer (in the case of NPC
opponents), it can also be frustrating for the human players. This is
because excessive performance can even lead to a loss of interest. On
the other side, believability is at least as important as performance.
Human-like NPCs really can help the player's immersion, as he can use
his knowledge on humans to reason about the NPCs so as to complete
a task. Therefore, the real di�culty that developers face is the de-
sign of NPC's arti�cial intelligence that achieve a balance between the
challenge proposed to the players and the credibility of their arti�cial
entities. We consider that a natural way of reproducing this behavior
is to observe how real players operate in a game. But machine learning
algorithms are usually quite complex and have a high computational
cost, this is why game development studios are reluctant to use this
strategy. It is, therefore, a real challenge to design a suitable solution
to imitation learning of behaviors which is both e�cient and robust.

P
la
n

In this chapter we look back at the history of video games and focus
especially on arti�cial intelligence. As the use of AI in this medium is
becoming increasingly common, we propose to identify the reasons and
goals for incorporating it. This will lead us to precisely identify the
current and future needs of this vast industry. Then, we will discuss
how learning by imitation may ful�ll many of these needs.

2 PhD thesis � Julien Soler



1.1. HISTORY OF ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

1.1 History of Arti�cial Intelligence in Video

Games

1.1.1 Prehistoric Age

The video game history is quite complicated to trace back. Very early video
displays like Braun's Cathode Ray Tube (CRT) in 1897 may have been used
by researchers to experiment with entertaining activities. To our knowledge,
the very �rst device that can be considered a video game is Thomas Goldsmith
Jr.'s cathode ray tube amusement device patented in 1947 (Goldsmith, 1948).
It consists of an analog circuit controlling a dot on a CRT screen simulating a
missile trajectory.
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Figure 1.1: EDSAC

In 1951, the NIMROD
computer was presented
during the Festival of Britain.
This computer was spe-
cially designed to play the
Nim game with a human.
One year later, in 1952 dur-
ing his PhD, Sandy Dou-
glas developed one of the
very �rst games running
on a general purpose com-
puter: OXO, a tic-tac-toe
game running on the ED-
SAC computer. It was de-
veloped in order to create a
human-computer interface
built with a rotary dial. Each box of the tic-tac-toe grid was attributed a
number and the user was able to play by means of dialing the corresponding
number. The opponent was the machine. The algorithm de�ning the opponent
behavior was designed to be optimal so that the player could not win. This
was probably one of the �rst AI used in a video games. Those two games are
perfect examples of problem solving abilities of an AI in video games.
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1958 Name: Tennis for Two
Release date: 1958
Conceptor: William Higinbotham
Platform: Analogic

AI Purpose: Physics
AI Type: Simulation

Figure 1.2: Tennis for Two

A few years later, more ac-
cessible hardware was avail-
able in universities and was
powerful enough to create
video games. As a result, in
1958, William Higinbotham
designed an analog computer
game simulating the physics
of a tennis ball: Tennis For

2. The graphical display was
an oscilloscope and players
had to use home made con-
trollers consisting of a poten-
tiometer and a button. This
did not implement any AI as

both opponents were human. Nevertheless the physics was implemented pro-
viding the ball with a quite realistic behavior. This is an illustration of the
early need of autonomous behaviors for interactive objects in video games.
Another good example of early physics implementation is Spacewars!, devel-
oped in 1961 by MIT students and running on PDP-1 computer (one of the
�rst micro computers). This game is a spaceship battle simulation. The two
opponents can launch missiles and control the orientation and ignition of a
rocket engine. A black hole located in the middle of the screen attracts the
spaceships. While trying to destroy each other, the two players have to control
their trajectory using engine ignition in order to avoid being trapped inside
the black hole.

At the beginning of the 70's, video games gave rise to an actual industry.
They were placed next to pinballs and other arcade games. Many companies,
like Atari, Taito, Nintendo or SEGA, were either founded for, or focused their
activities on developing video games. Games like Atari's Pong became one of
the �rst video games to reach the status of popular success. But the golden
age of arcade video games really took place at the end of this decade.
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1.1. HISTORY OF ARTIFICIAL INTELLIGENCE IN VIDEO GAMES
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Release date: 1978
Conceptor: Taito
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AI Purpose: Enemy Behaviors
AI Type: Scripted

Figure 1.3: Space Invaders

Released in 1978 by Taito,
Space Invaders is a "shoot 'em
up" game considered in popular
culture as one of the most famous
games in history. The player
controls a spaceship horizontally
at the bottom of the screen and
must shoot at alien waves with a
raygun. The behavior of aliens
is totally predictable as they just
wave from left to right and move
down. This is an example of
scripted autonomous behav-
ior. This allows the player to
easily elaborate a strategy to de-
stroy all aliens before they reach the ground. Despite being basic, this kind of
"Intelligence" was su�cient to provide a real challenge as it was coupled with
an increase in the aliens' speed.
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Figure 1.4: Pacman

Pac-Man (Namco, 1980) is an-
other masterpiece of arcade video
games. The player controls Pac-
Man, a round yellow character,
opening and closing his mouth
as he travels. He operates in a
maze where ghosts are chasing
him. The player has to collect
dots scattered in the level while
avoiding the ghosts. However,
some dots (power pellets) make
the ghosts vulnerable for a lim-
ited time. Particular attention
was paid to the behavior of these
ghosts. Each has its own person-
ality. Thus, Blinky (red) contin-
uously chases Pac-Man while Pinky (pink) and Iky (blue) simply try to get in
front of him. Finally, Inky (orange) has a somewhat random behavior. The
design of these behaviors is the result of re�ection by Toru Iwatani, designer
of the game, who wanted to �nd a compromise between the di�culty of the
game and the player's interest. In this context, we observe that Arti�cial
Intelligence (AI) naturally became a crucial part of the game. It was a tool
that helped designing what will be later on named the �ow(Csikszentmihalyi,
1991): the abstract area where the player feels a deep enjoyment of a certain
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CHAPTER 1. INTRODUCTION

activity.

1.1.2 Modern Era

In 1972, the Magnavox Odyssey marked the beginning of the game console
market. These consoles used logic circuits which directly implemented the
games. Therefore the games that they would run had to be planned from the
outset of their design. Later on, in the late 70's we saw an explosion of this
market, due to the arrival of the second generation of game consoles. They
integrated microprocessors, like for instance the legendary Atari 2600. This
second generation of consoles surpassed the limitation of embedded games.
As a consequence, during this period and in the early 80's, the market was
�ooded with games that were quite similar (clones of Pong, Pac-Man, Space
Invaders or Arcanoid) and sometimes poorly developed. This situation led
to the video game crash of 1983. This crisis ended with two major steps
from Nintendo: on the one hand it released the game console named NES
(Nintendo Entertainment System), and on the other hand it imposed a new
economic model that made the game industry sustainable. This period saw the
appearance of franchises which are still widely popular today: Mario, Zelda,
Bomberman for Nintendo and Sonic for Sega. This was what we now call the
modern era of gaming. However, there were no major advances in the use of
AI for video games during this era.
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1992

Name: Dune II
Release date: 1992
Conceptor: Westwood Studios
Platform: PC

AI Purpose: Player Unit Behaviors
AI Type: A*

Figure 1.5: Dune II

Based on Frank Herbert's
famous science-�ction novel,
Dune II (Westwood Studios,
1992) is a game which de-
serve mentioning. Although
it did not revolutionize AI
in games, it laid the foun-
dations for a new kind of
video games. In this real
time strategy (RTS) game,
the player exploits resources
in order to build a colony
(mainly buildings and com-
bat units) and to �ght enemy
armies. The AI of the units
is relatively simple but pro-

vides an essential function to control these units e�ectively: path �nding.
This way, the player simply selects units and gives high level orders: "move to
a given location" or "attack an enemy unit". Therefore, the units in question
have to follow a path, avoiding potential obstacles. While it is di�cult to know
which algorithm was used in Dune II, nowadays, path �nding is usually done
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1.1. HISTORY OF ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

using an implementation of the A* algorithm (Hart et al., 1968). This algo-
rithm is one of the most commonly used in video games to solve some optimal
solution problems (path �nding problem being just one application of it).
This game mechanism was subsequently widely used by successive titles like
Warcarft and Starcraft or the games of the Command and Conquer franchise.
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1995 1995

Name: Worms
Release date: 1995
Conceptor: Team17
Platform: PC

AI Purpose: Path Finding
AI Type: A*

Figure 1.6: Worms

Worms, published in 1995 by
Team17, showed another use of
AI: automatic content gener-
ation. Worms is a turn based ar-
tillery game. Players control the
worms of their team alternately
and must choose between various
weapons in order to eliminate the
opposing teams. The land used
as a 2D �ghting arena is ran-
domly generated while remain-
ing consistent and playable. This
gives the game an uncommon
lifespan, since billions of game
levels are theoretically available.

1947

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

A
rcad

e
G

o
ld

en
 A

g
e

M
odern era

P
recu

rsors

1995 1995

Name: Creatures
Release date: 1996
Conceptor: Millenium
Platform: PC

AI Purpose: Gameplay
AI Type: Neural Networks,

Genetic Algorithm

Figure 1.7: Creatures

Now, if we were to �nd, in the
entire history of video games, one
game that stands out particularly
for its AI features, it would def-
initely be Creatures (Millenium,
1996). The goal of the game is
to raise an arti�cial life. In line
with Tamagotchi, released the
same year, the player must take
care of virtual creatures called
Norns. These creatures can play,
learn, breed, feed and protect
themselves from other evil crea-
tures (the Grendels). In this
game, learning is a gameplay
feature. Relatively advanced AI
techniques are used such as genetic algorithms and neural networks
(Grand and Cli�, 1998).
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1999

(1)ysource:yMicrosoftyacademyysearch

596
publicationsy(1)

Name: Unreal Tournament
Release date: 1999
Conceptor: Epic Games
Platform: PC

AI Purpose: Enemy Behaviors
AI Type: FSM

Figure 1.8: Unreal Tournament

Three years later Unreal

Tournament (Epic Games,
1999), a First Person Shooter
(FPS), was released. In
this game, the behavior of
non-player characters (ene-
mies or teammates), was
implemented using a Fi-
nite State Machine (FSM).
Of course, Unreal Tourna-
ment was not the �rst game
to use this technique, but
the mechanism was incorpo-
rated directly into the game
engine (Unreal Tournament

was primarily designed to showcase the Unreal Engine). This allowed devel-
opers to create other games using the UnrealScript language which includes
the mechanism of FSM. The convenience was to facilitate and thus accelerate
the development process, inciting code re-usability and robustness. On top
of that, the behavior thus developed was deterministic and testable. Unreal
Tournament led to some simpli�cations in the development of video games in
general, and in AI of NPCs in particular.
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2001

Name: Black & White
Release date: 2001
Conceptor: Lionhead Studios
Platform: PC

AI Purpose: Gameplay
AI Type: Belief Desire Intention,

Quinlan's ID3

Figure 1.9: Black & White

Black & White (Lionhead
Studios, 2001), where the
player embodies a god, uses
the same approach as Crea-
tures. The player has to
teach his servant creature
to help him reign over his
people. While, once more,
learning is the main element
of the gameplay, the tech-
niques are not the same.
In contrast to genetic and
connectionist methods, the
player's servant creature is
implemented with the belief
desire intention (BDI) ar-

chitecture and a decision tree, while learning is achieved through Quinlann's
ID3 (Quinlan, 1986) (Evans, 2001).
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2004

(1) source: Microsoft academy search

870
publications (1)

Name: Halo 2
Release date: 2004
Conceptor: Bungie Studios
Platform: XBOX

AI Purpose: Enemy Behaviors
AI Type: Behavior Tree

Figure 1.10: Halo 2

However, FSMs quickly showed
their limits when developers had
to address complex cases. Quite
often, the behaviors they had to
design depended on many pa-
rameters such as the level's dif-
�culty or the game type (death-
match, team death-match, cap-
ture the �ag, and so on). At this
point, FSM became extremely
complex and less maintainable.
The FPS Halo 2 (Bungie Stu-
dios, 2004) is probably the most
relevant example of the use of a
new approach in order to over-
come this pitfall: Behavior Trees (BTs) (Isla, 2005). A behavior tree rep-
resents the behavior of the agent by means of a tree structure. Leaf nodes
represent actual behaviors while non leaf nodes are used to make choice be-
tween their child nodes. Several types of non-leaf nodes exist, resulting in
a high level of expressivity of the model. Furthermore, a sub-tree may be
referenced in several places within the main tree. The main bene�ts of this
representation model are that it is highly human readable, debugging tools can
be easily implemented and entire subparts of a behavior can be easily reused.
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2005 2005

Name: F.E.A.R.
Release date: 2005
Conceptor: Monolith Productions
Platform: PC

AI Purpose: Enemy Behaviors
AI Type: Planning

Figure 1.11: F.E.A.R.

F.E.A.R. (Monolith Produc-
tions, 2005) used a di�erent ap-
proach. In order to simplify the
development and to get more be-
lievable behaviors, the game ex-
ploits a planner (even if, for
technical reasons, the implemen-
tation uses a FSM). Several ba-
sic actions are implemented such
as reload, take cover or suppres-
sion �re, and are associated with
preconditions and e�ects on the
state of the world. Each agent
has a number of goals that are
prioritized. The planning algo-
rithm (here, A*) generates an ac-
tion sequence that will lead to the achievement of these goals (Orkin, 2006).
The main bene�t of this approach is the simplicity of adding new features. As
an example, suppose you need the NPCs to turn on the lights when entering
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a dark room. With a FSM, developers need to add this feature in several
states (combat situation, patrolling, ...). With the planner, he just needs to
add a precondition �lights should be on� on the action handling movement
and to implement an action that changes the state of the world to �lights on�.
Moreover, each action is associated with a cost, and the planner provides the
solution with lowest total cost. When an action fails, it is possible to fall back
to another solution of higher cost, giving the illusion that the NPC can change
its �mind�.
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2008

Name: Left 4 Dead
Release date: 2008
Conceptor: Valve Corporation
Platform: PC

AI Purpose: Dynamic Di�culty
Adjustment

AI Type: Learning

Figure 1.12: Left 4 Dead

In recent years, many
games proposed ambitious
AI systems. In the game
Left 4 Dead (Valve Corpo-
ration, 2008), the AI sys-
tem, called Director AI, is
responsible for placing ob-
jects and enemies in the level
to encourage replayability
(Booth, 2009). Moreover,
this system can adapt the
game di�culty according to
the players' skills: this is
named dynamic di�culty
adjustment. It is also in-
volved in the rhythm of the

game, alternating stressful sequences and calmer ones, creating a real atmo-
sphere speci�c to the game.
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2013

Name: Forza Motorsport 5
Release date: 2013
Conceptor: Turn 10 Studios
Platform: XBOX 360

AI Purpose: Gameplay
AI Type: Learning

Figure 1.13: Forza Motorsport 5

The driving game Forza

Motorsport 5 (Turn 10 Stu-
dios, 2013) uses mechanisms
that come from academic re-
search in order to build what
the developers named Dri-
vatar. When a player drives
his virtual car, the program
records the driving session.
Then, the software analyses
these data and design the
drivatar. When the player is
o�ine, this drivatar will be
able to reproduce his behav-

ior so that other player may still face him o�. The player is encouraged to
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1.2. IMITATION LEARNING: THE NEXT CHALLENGE OF VIDEO
GAMES' AI?

train his Drivatar through two-phased learning sessions. Initially, the player is
asked to drive alone on the track. Opponents are added in the second phase in
order to learn how the player behaves in tra�c. Learning is really a part
of the gameplay as the player attempts by multiplying the training sessions
to make his Drivatar as accurate as possible. This is a rare example of the use
of imitation learning in video games.

1.2 Imitation Learning: The Next Challenge of

Video Games' AI?

This review allows us to identify the main uses of AI in video games as well
as the constraints on the techniques to be used. As a summary of that review,
we have seen that AI in video games aims to:

• Improve the performance of non-player characters (as opponents or friends)

• Enhance the believability of NPCs.

• Propose innovative gameplay.

• Promote replay value.

• Adjust the game's di�culty.

• Automatically generate content (maps, story arc, etc)

• Solve game-speci�c problems (path�nding, choosing an optimal strategy,
etc)

If the answers to game-speci�c problems and automatic content generation
seem to be side issues, the other use cases may be addressed by a generic
imitation learning solution. Indeed, with an e�ective solution, the performance
of the reproduced behavior would be directly related to the level of the teacher
player. In the case of online learning, it could be possible to propose gameplay
based on this learning (as in Creatures, Black & White or Forza Motors).
Moreover, online learning with the player as the teacher would cause a change
in the NPCs' behavior. Therefore the player would still face a NPC with
adapted skills. Still in the case of o�ine learning, real life data could be used.
It would then be possible to learn the behavior of an entire football team or
of a real tennis player for example.

The development of a generic software suite for learning behavior by imita-
tion would address, to some extent, these questions. The development of an
arti�cial behavior would then amount to a learning session. One may compare
this mode of development to motion capture. This process has resulted in
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CHAPTER 1. INTRODUCTION

signi�cant time saving in the production of humanoid animations. Without
motion capture, a graphic designer has to decompose all movements manually.
Motion capture can signi�cantly speed up the animation production process
and allow even more believable animations. �Behavior capture� seems to be
an interesting option for the future of AI in computer games. To the best of
our knowledge, the result of current imitation learning techniques are far from
convincing in all situations. The aim of this thesis is to propose ways to make
a further step towards this challenge.

1.3 Objective of our Work

With this brief study of the history of AI in video games, we provided clues
on future video game industry needs in AI. We then found that many of these
needs could be met through an imitation learning system.

The main objective of this thesis is to propose a generic model for imple-
menting AI in video games. This model aims to provide imitation learning
based on human game traces. By generic, we mean that our solution
should be able to be applied to di�erent video games. To provide im-
itation learning, we are considering the use of data mining to analyze
human player behavior and coupling data mining techniques with
bot behavioral model.

1.4 Organization of this Manuscript

This manuscript is organized with the following plan.
In chapter 2, we will study how tasks learned by data mining techniques

can be useful to implement a behavior imitation learning solution based on
human player behaviors. Data mining includes many techniques such as data
transformation, features extraction, vector quantization, data prediction, etc.
All these techniques are very useful to imitation learning. Data mining can be
used to extract knowledge on the environment or on other players, to reproduce
purely reactive behaviors, to identify sequences of games where the player was
performing similar tasks, etc. We will review a panel of families of techniques.
We will see that each of them has its weaknesses and qualities.

In chapter 3, we will develop our model proposal. The proposed work�ow
of this generic architecture is presented �gure 1.14. This model �rst proposed
to model datasets by adding semantic. Using semantic allows, �rst, to facilitate
their understanding. Thus, it is possible to use speci�c data representations
adapted to the semantic. Secondly, some data transformations or calculations
are only applicable to certain types of data (as an exemple, DeltaE distance is
only applicable between 2 colors). Our model proposes a generic architecture
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1.4. ORGANIZATION OF THIS MANUSCRIPT
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Knowledge
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Figure 1.14: Orion Work�ow

for data visualization, processing and prediction, either the main tasks achiev-
able by data mining techniques. Finally, our model o�ers a behavioral part,
�exible enough to implement any behavior since it is an extension of a model
used in video games. We extended that model in order to be able to perform,
full or partial, online or o�ine, learning.

In chapter 4, we will use our model to implement the behavior of an agent
for Pong video game. This learning is made online, using several data mining
algorithm and reproduces satisfactorily the behavior of a human playing to
Pong. We will also use our model to implement an agent for the game Unreal
Tournament 3 (UT3) . Learning here is more partial and is performed o�ine.
Although the resulting behavior is not yet able to pass a behavioral evaluation,
as a Turing test.

In chapter 5, we will conduct a review of the work presented in this thesis.
We will summarize the contributions of our work and expose those which, in
our opinion, are the most signi�cant. We will expose the weaknesses of our
model and will try to de�ne areas of research to overcome them.
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Chapter 2

AI Solutions for Video Games

I've seen things you people wouldn't believe. Attack ships on �re
o� the shoulder of Orion. I watched C-beams glitter in the dark
near the Tannhäuser gate.

Roy Batty - Blade Runner (1982)

S
u
m
m
a
ry

In this chapter, we study the development of a generic software so-

lution for arti�cial intelligence design in video games. We �rst list the

requirements such a system would need. The �rst requirements are

classic constraints in video game development. Next, we focus on the

characteristics of human behavior in a video game context. These fea-

tures help us to de�ne requirements on the expressiveness of the models.

Since we want to learn these behaviors, we are also interested in the re-

quirements of the learning process itself. These di�erent requirements

allow us to put into perspective the relevance of di�erent models in our

context.

We want to imitate human behavior, therefore we need to operate

with data from real humans operating in the game environment. The

�eld of Data Mining o�ers an interesting range of techniques that can be

useful. Weber and Mateas (2009) has already successfully used some

data mining techniques to implement a real time strategy game bot.

Thus we evaluate various data mining techniques, according to the re-

quirements de�ned previously. We conclude that all of these techniques

may be relevant and that our solution must allow the use of several of

them. However, these techniques are far from being su�cient to ful�ll

all our requirements.
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CHAPTER 2. AI SOLUTIONS FOR VIDEO GAMES

In
tr
o
d
u
ct
io
n

The development of a generic solution for arti�cial intelligence de-
sign in modern video games presents a great challenge. We argue that
current systems and attempts can be improved especially by means of
imitation strategies.

P
la
n

In section 2.1, we consider the requirements of such solutions accord-
ing to three di�erent points of view: development, expressiveness and
learning.

In section 2.2, we discuss the concept of data-oriented design. We
believe that, since we want to reproduce human behavior, it is perti-
nent to consider players' data as the cornerstone of our solution. We
explain how data mining techniques can be e�ective in order to extract
knowledge from these data and how they make behaviour reproduction
possible. We then study various data mining tasks and evaluate them
from the perspective of the requirements identi�ed in section 2.1.

2.1 A Modern AI System for Video Games:

Requirements

The design of a generic Arti�cial Intelligence (AI) solution for video games
needs to take many requirements into account. First (section 2.1.1), we list the
development constraints and identify a paradigm that would suit our needs.

Then (section 2.1.2), as we want to develop a learning system, we de�ne
criteria related to the characteristics of the behaviors we want to reproduce.
Finally (section 2.1.3), we consider learning problems. These two types of
requirements will allow us to identify the strengths and weaknesses of the
di�erent methods we may use.

2.1.1 Development Requirements

As in any complex project, the development of a video game involves many
people over a long period of time. Many constraints appear relating to the
general architecture of the solution. The associated requirements that we have
identi�ed are listed in table 2.1.
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2.1. A MODERN AI SYSTEM FOR VIDEO GAMES: REQUIREMENTS

Development requirements Summary

[D1: Maintainability] It should be easy to �x or improve
[D2: Scalability] The solution should be scalable
[D3: Flexibility] It should be possible to add ad hoc fea-

tures
[D4: Testability] The solution must be testable
[D5: Communication Support] The solution should facilitate communi-

cation between teams

Table 2.1: List of Development Requirements

[D1: Maintainability] One must be able to easily modify a behavior, or
even add a new behavioral feature.

[D2: Scalability] The solution should allow scalability since video games
usually involve several NPCs.

[D3: Flexibility] The solution must be �exible enough to accept ad hoc

solutions to speci�c problems. Indeed, during game development, problems
that had not been anticipated often arise.

[D4: Testability] Ideally, the solution should provide testing facilities such
as unit testing mechanisms.

[D5: Communication Support] When a large number of people are work-
ing on the same project, communication between them becomes critical. A
suitable solution should enable e�cient communication between those work-
ing on a project. It may be a graphical language or automatic generation of a
document, for example.

2.1.2 Expressivity Requirements

Several scienti�c contributions show attempts to de�ne the necessary crite-
ria in order to reproduce human-like behavior. (Livingstone, 2006) categorizes
these criteria in three distinct levels: reaction, action and planning. One �nds
these levels in management and military theories (strategic, tactical and op-
erational decisions). (Tencé, 2011) and (Doherty and O'Riordan, 2006) o�er
very detailed lists of important criteria to produce believable behavior. How-
ever, these lists are designed from basic observations and common sense, and
no scienti�c study (e.g. psychological) measures the link between the proposed
criteria and the viewer's perception regarding believability of behaviors. Nev-
ertheless, these criteria proved useful in de�ning the expressiveness of an AI
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CHAPTER 2. AI SOLUTIONS FOR VIDEO GAMES

solution (Tencé, 2011). The requirements we selected among these lists are
involved in the expressiveness of a model. They are summarized in table 2.2.

Criterion Summary

[E1: Reaction] React to players and environmental
changes

O
pe
ra
ti
on
al

[E2: Variability] Do not reproduce exactly the same be-
havior again and again. Be somehow
unpredictible.

[E3: Understandable] Have an understandable behavior

[E4: Memory] Be able to memorize information

[E5: Planning] Plan actionsT
ac
ti
c

[E6: Evolution] Do not reproduce mistakes

[E7: Inter Speci�c Variability] Di�erent NPCs should have di�erent
behaviors

[E8: Organization] Have an understandable role

St
ra
te
gi
c

[E9: Coordination] Have coordinated behaviors when in a
team

Table 2.2: List of Requirements for Reproducing Human-like Behavior

[E1: Reaction] The most basic criteria involved in behavior reproduction
is reactivity (Livingstone, 2006). Indeed, NPCs must react to players and to
changes in the environment in order to increase the feeling of presence (Tencé,
2011).

[E2: Variability] The way an action is completed has an impact on believ-
ability. Very accurate and e�cient movements are known to break the illusion
of believability (Laird and Duchi, 2000; Livingstone, 2006). Therefore, move-
ments should be as close as possible to those that a real player would do: it is
the �rst thing to see when one faces an avatar. For example, inaccuracy should
be added to the movement to create a feeling of humanness (Tencé, 2011).

[E3: Understandable] Unlike realistic characters, believable characters
might be forced to exaggerate their behaviors for observers to understand
what they are doing (Isla, 2005). Although it can seem strange, it is some-
times important to overemphasize some of the character's characteristics so
that people believe them. This technique is quite common in the Arts, espe-
cially in cartoons. This means that human-like characters could have quite
low believability. However, there are links between realism and believability
so one may begin to draw inspiration from realism. We stress the point that
believability should be easier to achieve than realism because we do not want
the character to exhibit a truly human-like behavior but only to maintain the
illusion (Tencé, 2011).
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[E4: Memory] It is important that the system can retain information. It
may be complex information about the environment or simply remembering
its topology. It can also be knowledge about other players, or even the system
itself.

[E5: Planning] In order to avoid making counter-productive actions which
could break the illusion, the character may need to be able to plan and/or
anticipate. By predicting the outcomes of its choices, the character should be
able to avoid actions that would lead to easily avoidable mistakes (Livingstone,
2006).

[E6: Evolution] Memory and evolution may be seen as two sides of the
same coin, so the character must use evolution mechanisms, for instance by
learning (Loyall, 1997, page 20). A character which behaves in the same way
repeatedly, even though it is clearly counter-productive, eventually breaks the
illusion of being human-controlled. Agents which are able to learn will tend to
surprise the players by exhibiting new behavior, adding some unpredictability
to the interaction. That is the main reason why believable characters must be
able to learn (Tencé, 2011).

[E7: Inter Speci�c Variability] NPCs can be numerous in video games.
Therefore it is crucial that they do not share the same behavior. For exam-
ple, in a group of players that move together into the environment, if each
individual moves along parallel paths at same speed, the group credibility is
irreparably compromised.

[E8: Organization] When players work on a collective task, each partici-
pant must have an identi�able role.

[E9: Coordination] When players work on a collective task, all participants
need to act in a coordinated manner.

2.1.3 Learning Properties

Since we want to learn behavior, several criteria are dedicated to this particular
aspect.
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Learning properties Summary

[L1: Online] Is the algorithm able to proceed incremen-
tally?

[L2: Discrete/Continuous] Does the algorithm handle discrete or contin-
uous variables?

[L3: Time Series] Does the algorithm handle time series?
[L4: Real Time] Is the algorithm fast enough to be processed

in real time?

Table 2.3: List of Requirements for Learning

[L1: Online] The algorithm should have incremental learning capabilities,
that is to say, the data can be submitted downstream to the learning algorithm.
If not, is it possible to provide packet data, allowing semi-online learning?

[L2: Discrete/Continuous] What kind of data can the learning algorithm
manage: continuous, discrete, both?

[L3: Time Series] Data collected when a human plays a video game are
time series. It is therefore likely that including this aspect may allow an
increase in the quality of learning. Therefore, does the algorithm treat the
data as time series?

[L4: Real Time] Does the algorithm learn quickly? This is a crucial ques-
tion, since a huge amount of data may be collected during a single player's
run. Therefore, it would be useful for an algorithm to be able to be processed
in real time on large data sets.

2.1.4 Conclusion

In this section, we have identi�ed the di�erent requirements of a generic soft-
ware solution for an AI design that would meet the needs of a modern video
game. These requirements are divided into three groups: development require-
ments, expressiveness requirements and learning requirements. In the following
sections, these requirements will give us the criteria needed in order to test the
models' suitability for our problem.
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2.2 Data Mining

In order to reproduce human behavior, we believe that data from real players
must be at the center of the method. These data contain a wealth of infor-
mation that will guide the design of the behavior to be reproduced. However,
recovering knowledge within this data is not easy. The discipline is named
knowledge discovery in databases (KDD). In this section, we present KDD
and show how its techniques can help achieve an AI solution for video games.

2.2.1 De�nition

Since the advent of the computer age, the collection of data has become an
essential practice in our society. This task already existed in ancient times: the
�rst population census was used to know the number of soldiers available or
to determine income from taxation. With the explosion of our data processing
capabilities, this collection really took o�. IBM estimates that every day, 2.5
billion gigabytes (2.5 exabytes) are collected 1. But this collection is, of course,
not only limited to censuses. Science and industry make great use of this. The
use of these huge amounts of data is therefore one of the major challenges of
research in the �eld of computer science. Exploring these amounts of data and
extracting knowledge from them is an important challenge. The complexity of
the subject requires a multidisciplinary approach that may stretch over many
research �elds such as AI, statistics or database systems.

In the literature, the term knowledge extraction refers to a complex process
consisting of several stages. These steps include collecting and preparing the
data, the analysis itself and �nally interpreting and validating results. Authors
such as Fayyad et al. (1996) reduce data mining to the analysis while other
authors refer to any of these steps.

The concept of data mining is extremely broad. According to Hand (2007),
data mining is to analyze observations (often extensive), to identify unsus-
pected relationships and to summarize data in a new way that is understand-
able and useful to their interpretation. These relationships or abstracts often
take the form of models or patterns constructed and identi�ed from this data.

2.2.1.1 Data Type

Data mining may be performed on inputs of various size, structure, or form,
such as a data table, relational database, graph or a time series. Each data
item is generally composed of a set of attributes. The number of attributes
de�nes the size of the data space. Moreover, attributes can be quantitative or
qualitative. Quantitative attributes are the attributes associated with a value
on which it is possible to perform operations such as calculating a mean or
comparison. These attributes can be discrete (population, number of children,

1http://www.ibm.com/big-data/us/en/
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...) or continuous (height, weight, ...). Qualitative attributes generally corre-
spond to a category (such as car brand, animal species). However, it should
be noted that the separation between the quantitative and qualitative is not
necessarily trivial. Indeed, qualitative data may be digital (postal codes are
numerical but it is not appropriate to calculate an average). In addition, some
data can be viewed as qualitative or quantitative. A boolean value for example
is essentially qualitative data but by associating false to zero and true to one,
it is possible to perform an average with a usable direction. Similarly, ana-
lysts can choose to convert data from qualitative to quantitative, according to
the type of information they wish to release. One can for example choose to
consider the price or the average power of vehicles of a brand instead of the
brand itself.

When working with quantitative data, we must �rst choose how they are
represented. This choice of the representation space can be crucial later. For
example, choosing to represent a size in centimeters or meters will change
the order of magnitude of some results, including calculations of distances.
Moreover, it is often appropriate to select or construct a distance di�erent
than the classical Euclidean distance. For example, in computer systems, a
color is usually represented by its coordinates in the sRGB space de�ned by
Hewlett-Packard and Microsoft in 1996 (Stokes et al., 1996). But it seems more
interesting to use a color space like CIE Lab (McLaren, 2008) for representing
the colors so the Euclidean distance in this space is more suitable for color
perception of most humans.

In data mining problems, it is common to work with incomplete data, for
which the attributes may not be complete for some individuals. This is usually
the case when working on data aggregation from sources whose collections were
carried out under di�erent conditions.

Time series are another example of the type of data that can be processed.
In meteorology for example, temperature or humidity data is located geograph-
ically, but also temporally. Useful information does not lie only in the value
of each parameter but also (and especially) in their evolution.

2.2.1.2 Objectives and Means

Data mining can be considered from two di�erent angles. It can be cat-
egorized based on the objectives to be attained or means that you want to
use.

Regarding the goals, some authors, like (Fayyad et al., 1996), distinguish
two main types: descriptive and predictive. More precisely, we can describe
these objectives as follows:

• Prediction: this is a machine learning technique. The goal is to predict
the value of a variable (called explained) depending on other variables
(called explanatory). The learning process is performed on example data.
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There are generally classi�cations and regressions. Classi�cation is a
special case of regression. Indeed classi�cation is for predicting a discrete
and �nite variable while the term regression is for quantitative variable
predictions.

• Data clustering: the key to good clustering is to maximize intracluster
similarities and minimize intercluster similarities (Chen et al., 1996).
This method involves dividing data into homogeneous groups. There are
many applications of this approach. It may be identifying consumer sub-
populations forming a homogeneous group. Search engines are another
good example. When a user searches for the word "python", a clustering
algorithm executed on the results of the request will be able to identify
two homogeneous groups of pages: a page group containing computer
science content and the other containing animal content. The search
engine can then ask the user to re�ne his request. This is an unsupervised
method.

• Automatic Summary: this is a descriptive approach to �nd a compact
representation of the data.

• Modeling dependencies: this consists of identifying dependencies be-
tween variables. This allows for example to see that a pathology is
signi�cantly more likely to occur in a particular population group. The
discovery of association rules (Agrawal et al., 1993), widely used by su-
permarket chains and online shopping sites, also falls into this category.
It is used to identify products that are usually sold together. This infor-
mation enables the supermarket to shelve and organize their stocks and
online stores to suggest relevant products to their clients.

• Outlier detection: in real data, it is common to �nd data that di�er
signi�cantly from the others. There can be many reasons for this. It may
be an error in the data collection process, so detection of such data can be
used to remove them, to �x data collection procedure or replace faulty
sensors. It may also be a deviant behavior and outliers then become
relevant information. These data may represent fraud (credit card, social
security, ...) or an intrusion attempt on a network for example.

Analysts use many tools to perform data mining. Such tools may use
di�erent approaches. The interaction between the analyst and the tool de�nes
three types of exploration method:

• Exploratory analysis: the analyst does not necessarily know what to look
for in the data. The tool then provides various display facilities. Here,
intelligence is not arti�cial; it is located on the user side. The tool is only
in charge of presenting the data to the analyst. However, data visualiza-
tion is far from easy. Indeed, when data has a relatively small number
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of dimensions, it is easy to show a cloud of points representing data. In
contrast, when the dimensions of the data increase, this kind of repre-
sentation becomes impractical. In section 2.2.2, we study di�erent data
representation possibilities and techniques for dimensional reduction.

• Supervised analysis: the analyst guides the process by providing the tool
with examples of patterns or rules to identify.

• Unsupervised analysis: the tool is solely responsible for identifying pat-
terns in data.

2.2.2 Exploratory Analysis

Exploratory analysis, in the context of replicating human behavior in a video
game, can be a very interesting way to understand how players act in a game.
Such an analysis can identify knowledge that was not expected beforehand. It
may help to identify such invariants in the behavior of the players for the be-
havior to be [E3: Understandable]. Likewise, we can also identify interesting
di�erences between the players ([E7: Inter Speci�c Variability]) or homoge-
neous groups of players.

2.2.2.1 Data Visualization

The main challenge of exploratory analysis is how to present the data. There
are many ways to present data and the simplest is probably the data array.
Spreadsheet tools are very common for data analysis. Many public databases
like UCI2 provide CSV3 �les which are simple text �les presenting data in
tabular format. They can be loaded by any Spreadsheet tool. This software can
also be used to perform various operations on the data such as sorting, �ltering,
calculations, or graphical production. A spreadsheet is already a general data
mining tool. But more elaborate tools, developed speci�cally for this task
exist, such as R (R Developement Core Team, 2008), ELKI (Achtert et al.,
2008), WEKA (Witten and Frank, 2005), Orange Data Mining (Dem²ar et al.,
2013) or GGobi (Swayne et al., 2004). All o�er di�erent ways to represent
data.

Univariate analysis can be performed using charts presenting data, attribute
by attribute (histograms, pie charts, box plots, etc). The diversity of these
representations often allows the analyst to �nd a compromise between the
amount and the compactness of information displayed. While histograms pro-
vide much more information, box plots provide a more stripped representation.
Although those representations are simple and purely descriptive, these uni-
variate analysis already provide highly relevant information about the data.

2http://archive.ics.uci.edu/ml/datasets.html
3Comma-Separated Values
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Such an analysis can sometimes identify a subset of attributes su�cient for
performing operations like classi�cation or clustering.

However, a multivariate analysis is generally required. Even if the most nat-
ural way of presenting multivariate data is via scatter plots (the coordinates of
a point representing the attribute of the corresponding data), we are generally
limited to two dimensions, or to three dimensions by using the perspective
representation. Of course, it is possible to push this limit, more or less e�ec-
tively, by varying the color, size or shape of the points. Google Public Data
Explorer4, for example, provides a display illustrating these methods.

We can imagine many other ways of displaying other dimensions, like adding
a temporal dimension (point animations, blinking, oscillations, etc.) or adding
other sensory information such as sounds. But although these techniques can
provide results in some cases, the cognitive load of the analyst remains high
and it is very di�cult to analyze very large datasets using these techniques.
Even 3D representations are hard to interpret without adding interactivity.

We can also choose comprehensive methods such as radar plots or parallel
coordinate plots. This, then, allows a clear view of all data attributes, the
price of the introduction of an order, a priori arbitrary, in the attributes.

2.2.2.2 Data Dimensional Reduction

Some data processing algorithms can be used to visualize data with large
dimensions by performing dimensional reduction. Principal Component Anal-
ysis (PCA) transforms a set of potentially correlated variables into linearly
uncorrelated variables. Output variables are sorted in descending order of
variance. By keeping only the �rst variables (the principal components), di-
mensional reduction is performed. As components farther down the ordered
list explain the least variance in our data, the distance between each data point
is more or less satis�ed when they are removed. PCA is a linear method. A
nonlinear variant called Kernel PCA (Schölkopf et al., 1998) was proposed. It
uses the so called "kernel trick" also used in Support Vector Machine (SVM)
presented section 2.2.3.2.

Multidimensional scaling is a technique which, from the matrix of distances
between each datum, builds a representational space for our data that main-
tains these distances. Figure 2.1 shows an example of dimensional positioning
achieved by classical MDS proposed by (Torgerson, 1952). This method gives
results similar to PCA but like any MDS technique, uses a distance matrix
as input. This is a linear method. Many non-linear algorithms have been

4http://www.google.com/publicdata/directory
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Bayonne Bordeaux Brest Lille Lyon Marseille Montpellier Nice Paris Perpignan Strasbourg

Bayonne 0 166 593 866 561 554 432 705 666 367 910

Bordeaux 166 0 496 700 437 506 381 638 500 368 760

Brest 593 496 0 600 765 951 837 1045 506 856 903

Lille 866 700 600 0 558 835 784 834 204 885 409

Lyon 561 437 765 558 0 278 252 299 392 376 383

Marseille 554 506 951 835 278 0 126 160 662 213 616

Montpellier 432 381 837 784 252 126 0 273 596 130 629

Nice 705 638 1045 834 299 160 273 0 686 373 543

Paris 666 500 506 204 392 662 596 686 0 688 398

Perpignan 367 368 856 885 376 213 130 373 688 0 757

Strasbourg 910 760 903 409 383 616 629 543 398 757 0

Figure 2.1: Classical MDS Example
Top: Distance matrix provided as the input of the algorithm

Bottom: the reconstructed coordinates of some French cities superimposed
with a scaled, rotated and mirrored map of France

proposed, such as Isomap (Tenenbaum et al., 2000), Locally linear embedding
(Roweis and Saul, 2000), Di�usion map (Coifman and Lafon, 2006), etc. These
methods are designed to perform manifold unfolding; i.e., remove the internal
model of the data. Figure 2.2 illustrates such a transformation. In this �gure,
the Isomap algorithm was applied to a set of images representing the letter A
with di�erent rotations and scales. Each image has a dimensionality of 225
(15x15 pixels), but is a constraint on a manifold of much lower dimension.
Isomap, here, successfully retrieves the only 2 parameters varying in the data
(scale and rotation).

Isomap

Isomap (Tenenbaum et al., 2000) is a dimensional reduction algorithm that, unlike techniques such
as principal component analysis or the classic dimensional positioning, can be used to discover
non-linear structures in the data.
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This algorithm performs three steps:

1. Construct the neighborhood graph: This step consists of building a graph by connecting
data i and j of the dataset if the distance d(i, j) is below a value ε (ε-Isomap), or if datum
i is part of k nearest neighbors (see section 2.2.3.2) of the j datum (k-Isomap). The length
of the edge is then d(i, j).

2. Compute shortest paths: This step consists of building the distance matrix D between each
datum. The required distance is the shortest distance in the graph built in step 1. This
step can be performed with various algorithms such as Dijkstra, A* or Floyd-Warshall.

3. Perform dimensional reduction: This step consists of performing classical MDS using matrix
D computed in step 2.

Isomap (continued)

Because multi dimensional scaling techniques rely on a distance matrix, they
are not able to process new data [L1: Online]. However, some extensions of
some such algorithms have been proposed to provide that ability (Shi et al.,
2005).

Sammon Mapping

Sammon mapping (Sammon, 1969) is another nonlinear dimensional reduction algorithm. The error
function ERRORSammon, given below, is minimized using an iterative algorithm such as gradient
descent, as is the case in the article providing the method. This error function marginalizes distance
errors in the output space when the distances in the original space are important.

The error function is:

ErrorSammon =
1∑

i<j
d∗ij

N∑
i<j

(d∗ij − dij)2

d∗ij

where dij represents the distance between i and j datum in the output space and d∗ij the distance
between i and j datum in the original space.

2.2.3 Supervised Analysis

Supervised learning is a machine learning technique to infer a function from
labeled data. Formally, it approximates a mathematical function from a space
of independent variables to a dependent variable:

f : E1 × · · · × En → Y

We distinguish classi�cation, where the dependent variable is discrete (even
binary) and regression, whose dependent variable is continuous.

In the case of learning a human behavior, it is clear that this task can be very
useful, for example, to reproduce a purely reactive behavior made naturally
by the player (target an enemy), but it is not su�cient. A human does not
consistently exhibit the same mathematical functions in everything he does.
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Figure 2.2: Isomap example: Images are rearranged in space as a result of an
Isomap algorithm

These techniques will be particularly useful therefore only to reproduce the
basic behavior of the player. These basic behaviors match the requirements
[E1: Reaction] and [E3: Understandable]. Moreover, if learning is conducted
online, the behavior will be able to evolve ([E6: Evolution]).

2.2.3.1 Connectionist Methods

Multilayer Perceptron

The multilayer perceptron is the most well-known type of neural network. In this model, the network
is composed of successive layers of which all the neurons are connected to all neurons of the next
layer. The �rst layer (input layer) has as many neurons as there are inputs and the last (output
layer) consists of as many neurons as there are outputs. The neuron output is calculated as follows:

φ(w0 +
n∑
i=1

wixj)

where φ is an activation function (such as the sigmoid function or a hyperbolic tangent function, for
example), xi the input data, w0 the bias of the neuron and wi the weights of the neuron associated
with each entry. The outputs can therefore be calculated, layer through layer, thanks to the input
values.

Learning weights of neurons is then generally performed by the backward propagation of errors
algorithm.

Connectionist approaches use the biological paradigm of the neuron. These
neurons are connected by synapses. In these bio-mimetic systems, these neu-
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rons are usually modeled by a linear combination of the inputs to which an
activation function is applied. There are however other types of neuron mod-
els, such as radial based neurons, wherein the input vector is subtracted from
the neuron weight vector for calculating a norm. This norm is then applied as
an input to an activation function.

Alone, these neurons are not able to learn nonlinear functions or classi�ers.
Therefore they are usually used in a network. Multi layer perceptrons are
widely used in optical character recognition, for example, where they have
obtained excellent results.

Other types of networks exist, including recurrent networks. These net-
works have a [E4: Memory] e�ect. The Hop�eld networks (Hop�eld, 1982) for
example, act as an addressable memory.

These connectionist techniques are able to process online ([L1: Online]) but
typically require a large number of training samples to produce satisfactory
results (there is no [L4: Real Time]). Although not designed for this, they can
also be e�ective on time series ([L3: Time Series])(Koskela et al., 1996).

2.2.3.2 Statistical and Probabilistic Methods

Regression is a term that originates from statistics. It is therefore not sur-
prising that many prediction methods stem from this �eld. There are two
large families of regression methods: Parametric models and non-parametric
models.

Linear Regression

Linear regression assumes that the variable is a linear combination of explanatory variables:

y = α0 + α1x1 + . . .+ αnxn + ε

where y is the explained variable, xi are explanatory variables, ε is the prediction error and αi
the desired parameters. The so-called least squares method was developed in the early nineteenth
century and is used to �nd the parameters αi minimizing, as its name suggests, the squares of the
error of each point of the sample to the model. An extension of this method can be used to �nd
the parameters of a non-linear model.

With parametric models, we assume that data are derived from a model
with parameters and we try to identify those parameters to best �t the data.
For example, linear classi�cation/regression assumes that the data is separable
by/arranged on a hyper plane and we try to �nd the parameters of this hyper
plane. In non-parametric models, no assumptions are made about the data
structure. The prediction is performed directly from the data. The most
commonly used non-parametric method is the K-Nearest Neighbors (KNN)
algorithm. This method is very simple. To make a prediction, we �nd in
our data the k nearest neighbors of the input data and then, we combine the
outputs of these k neighbors to make the prediction. There are various ways
to combine the outputs of this method. Taking the example of classi�cation,
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once we found the nearest neighbors of the input datum, each of them can vote
for its output class. Then, the most represented class is chosen as output. It
is also possible to weight the voting system so that the nearest data has more
in�uence over the prediction. Parametric regression can also be achieved but
only on the k nearest neighbors, thus greatly facilitating computation, rather
than doing it over the whole dataset. However, it is necessary to de�ne the
notion of proximity, that is to say, to choose a distance. The choice of distance
can indeed greatly in�uence the outcome. Appendix A proposes a study on
the in�uence of distance on various algorithms.

Support Vector Machine (SVM) provides an interesting extension to lin-
ear classi�cation. It makes it possible to perform non-linearly separable data
classi�cation.

SVM

SVM is an extension of linear regression. This method assumes that the unique optimal hyper-plane
is de�ned as the hyper-plane that maximizes the margin between samples. Formally, we de�ne the
following function:

h(x) = wT x+ w0, x ∈ RN

if h(x) > 0, x is from class 1, otherwise it is the class -1. We thus try to �nd the equation of
a hyper-plane writing:

h(x) = wT x+ w0 = 0

The distance between sample xk and the separator hyper plane is:

||x− xk|| =
|wT xk + w0|
||w||

The maximum margin separator hyperplane is given by:

arg max
w,w0

{
1

||w||
min
k

[
|wT xk + w0|

]}
Without going into details, this problem can be expressed as follows:

argmax
α

p∑
k=1

αk −
1

2

∑
i,j

αiαj liljx
T
i xj (2.1)

Under the constraints:

αi ≥ 0 , et

p∑
k=1

αklk = 0

where lk represents the class (-1 or 1) of the given k.
In order to process cases that are not linearly separable, the kernel trick is used. The kernel

trick uses Mercer's theorem (Mercer, 1909). If a function K(~x, ~y) is continuous, symmetric and
positive semi de�nite, then, there is a space wherein: K(~x, ~y) is the inner product f(~x)·f(~y), where
the function f is a function to project the data in that space. One can show that for functions
ful�lling these conditions, the space concerned is of much higher dimension compared to the starting
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Letter-4 Letter-3 Letter-2 Letter-1

Letter

Figure 2.3: Bayesian network used to generate text in di�erent languages

space and can even be of in�nite dimension. Noticing in the equation 2.1 that xTi xj represents
the dot product of two vectors, we can replace this factor in the equation by K(xi, xj). The linear
separation will be carried out in a much larger space than the size of the starting area. And since
there is (almost) always a separator hyper-plane between n+ 1 data in a space of dimension n, it
is possible, by choosing well the K function to achieve the separation of our data.

SVM (continued)

All these statistical parametric regression methods require access to a rel-
atively large amount of samples. The larger the sample, the better the clas-
si�cation/regression. But learning cannot be done [L1: Online]. Moreover,
most of these methods are relatively expensive in terms of computation (no
[L4: Real Time]).

Bayesian inference is a probabilistic method to assess the probability of an
explained variable, given the explanatory variables. It is based on a random
variable dependency network. In the most simple networks, it is considered
that all predictors are independent and the explained variable is dependent on
all the explanatory variables. As an example, we built a network modeling ap-
pearances of letters in a text. We consider the random variable corresponding
to the nth letter in the text which depends on the previous four letters. Figure
2.3 presents this network. We then evaluate the probabilities of the network
from texts in French, English and Romanian. We perform a random draw of
an entire text from the network in accordance with the calculated probability
distributions. Figure 2.4 shows the results. It is noted that, obviously, the
texts do not mean anything, but a reader who does not know one of the lan-
guages may have the impression that the text is meaningful. These techniques
could be applied appropriately for applications where the semantics are less
signi�cant than in a text.

In this example, we assume that the explanatory variables are all indepen-
dent and known and that the explained variable is directly dependent on all
the explanatory variables. In many cases, these assumptions are false. It is
then necessary to build a network that models the given problem. The con-
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English:

so shall daub her �owerets with her �ower own children's blood nor mothers'

womb to tell beseeming war, like this dear expedienced in for our purposed

feet now, under whose soldier now. then let me heaven, all now, under whose

no more shock and furious close blessed eyes, what yester.

French:

la splendent sons ta cri rempli de roulis coucher, ni fait les travers que

cervent, aimer à la race hume à loisin cieux, destige! le beau comme une

peut des marcher. sont-ils qui nous vivant tour, les sens. un amour! nage

des ténèbres fonde! n'es pants se commes dont les esprit ont tendre.

Romanian:

cu drept cu fat
,
a unui o lacrim  -neiubir . ei în clasele f r  îndoial  a aceste

idealele frumos îmb t cit , mai r u zidite s
,
i bustul nu mai r u... ce timpul

lui de mindependent
,
  era orfan, o �ic  câte-o femere în lt

,
au ochii cei alben 

la un vis toare o palid, multe la aromant
,
ios? adesea sfârs

,
itul.

Figure 2.4: Example of texts produced by a Bayesian network

struction of this network is usually the responsibility of an expert, but some
algorithms are able to learn the network structure (Friedman, 1998).

To handle time series, we generally use dynamic Bayesian networks such as
the Hidden Markov Model (HMM) or one of its extensions like Input-Output
Hidden Markov Model (IOHMM) (Bengio and Frasconi, 1995). This dynamic
Bayesian network is widely used in many �elds to analyze time series (speech
recognition, �nancial analysis). The network has a hidden state that depends
on its previous state (so, there are probabilities to transit from one state to
another). Observed variables then depend on this current state (for a given
state, there are probabilities to emit an observable output). Figure 2.5 shows
a fairly simple example. Imagine an ice cream shop operating in the subway;
the seller does not know the weather outside because he is underground all
day. He only knows the number of ice creams he sells per day. This problem
can be modeled with a HMM.

There are three major tasks one can perform with HMM. First, knowing
the HMM parameters (transition and emission probabilities) and the obser-
vations, one can compute the most likely sequence of hidden states with the
Viterbi (1967) algorithm. Within this example, the seller only knows that he
sells three ice creams on the �rst day, three on the second and two on the third
(the observation sequence is then (3,3,2)). The Viberbi algorithm computes
the most likely sequence of weather (it may be (Sun,Sun,Sun)). The second
task is, given the parameters of the HMM and the observations, to compute the
probability of each hidden state and of the overall observation sequence. This
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Hidden

Observable

Figure 2.5: HMM example

can be computed with the "Forward Backward" algorithm (described in Russel
and Norvig (2009, p.566)). The third task is, given the observation sequence,
to learn the HMM parameters (transition and emission probabilities). This is
then performed by the Expectation-Maximization algorithm (EM) and, in par-
ticular, with the Baum-Welch algorithm (BW) (Baum et al., 1970). Without
going into detail, this iterative algorithm maximizes (locally) the probability of
observing the sequence of observations. When there are several sequences one
wishes classi�ed, it is possible to learn the parameters of a HMM for each class.
The classi�cation is then performed by calculating the observation probability
of a sequence for each learned HMM and retaining the one with the highest
probability.

These probabilistic methods have many advantages: they provide unpre-
dictability [E2: Variability], many algorithms have [L1: Online] implementa-
tions, [L4: Real Time], and models exist to e�ciently process time series ([L3:
Time Series]).

2.2.3.3 Boosting Methods

Boosting methods are used to construct an arbitrarily accurate classi�er
from weak classi�ers, which have slightly greater accuracy than chance. To
illustrate the principle, (Freund and Schapire, 1997) o�ers the example of a
horse racing gambler. The latter, frustrated by losing continuously, decides to
bet based on the bets of his friends. These friends are here considered as weak
classi�ers, that is to say that these predictions are a little better than chance.
The purpose of the method is then to combine these so-called weak predictions
to build a more accurate prediction. AdaBoost (Freund and Schapire, 1997) is
probably the most commonly-used algorithm of this category. In this article
the authors present an algorithm to solve the problem of binary classi�cation as
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well as extensions for multi-class classi�cation and regression. It is successfully
used in the Viola Jones method Viola and Jones (2004) for face detection in
images.

AdaBoost

AdaBoost (standing for adaptive boosting) (Freund and Schapire, 1997) is a Boosting algorithm
based on the selection of a weak classi�er to build a strong classi�er. In order to achieve this, the
learning algorithm uses a weight list ~w quantifying the di�culty of each example on each iteration.
Each weight is initialized to 1

N
, where N is the number of examples. At each iteration, we look

for the best weak classi�er ht and calculate the error εt (the sum of the weights of misclassi�ed
examples). A coe�cient βt is calculated with this error providing the participation of ht in the �nal
classi�er. The weights of each sample are then updated (they are increased where the classi�cation
of the example was incorrect and decreased otherwise). Most of the proposed enhancements of
the algorithm are di�erent methods to calculate the relation βt or to update the weights. The
algorithm presented in Figure 2.6 presents the method proposed by (Freund and Schapire, 1997).

inputs

< (x1, y1), . . . , (xN , yN ) >: labeled examples
H: a set of weak learner
T: number of iteration

Init wi ← 1
N

for t = 1 to T do

Normalize ~w (Make
∑N
i=1 w

t
i = 1)

Find ht, εt ← argminh∈H,ε(ε =
∑N
i=1 wi|h(xi)− yi|)

Calculate βt ← εt/(1− εt)
Update weights: wt+1

i ← wtiβ
1−|ht(xi)−yi|
t

end for

outputs

the strong classi�er:

h(x) =

{
1 if

∑T
t=1 log(1/βt)ht(x) ≥

1
2

∑T
t=1 log(1/βt)

0 otherwise

Figure 2.6: AdaBoost algorithm

2.2.4 Unsupervised Analysis

Unsupervised learning, while learning human behavior, achieves three goals:

• Perform variable discretization. It may be useful, for example, to use
supervised algorithms which only support discrete data as inputs, with
continuous data ([L2: Discrete/Continuous]),

• Automatically identify homogeneous segments in the data (clustering of
[L3: Time Series])

• Perform vector quantization. This can be used to produce knowledge
about the environment or opponents for example. In this way, informa-
tion can be memorized ([E4: Memory]).

34 PhD thesis � Julien Soler



2.2. DATA MINING

2.2.4.1 Centroid Based Methods

K-Means

K-Means produces k centroids (points in the data space) and the point groups associated with each
centroid Pi ∈ E de�ned by the Voronoï cell of the centroid:

V oronoi(Pi) = {p ∈ E, d(Pi, p) < d(Pj , p), j 6= i}

The basic algorithm (Lloyd, 1982) consists of:

1. Randomly choosing k centroids in search space ;

2. Assigning each data to its closest centroid (clusters) ;

3. Moving centroid, computing the mean of points within the cluster ;

4. Repeating steps 2 and 3 until convergence.

The k-means algorithm is probably the most commonly-used data cluster-
ing algorithm (Jain, 2010). This algorithm, named by (Macqueen, 1966), is
a centroid based algorithm. In such algorithms, clusters are de�ned by the
Voronoi cell of centroids.

This very simple algorithm, however, has many shortcomings: it converges
to a local minimum, it is very sensitive to the centroid initialization, the desired
number of clusters has to be speci�ed, found clusters are convex and linearly
separable.

There are solutions to some of these problems. In particular, many articles
deal with how to initialize the algorithm, like k-means++ (Arthur and Vas-
silvitskii, 2007), in which the centroids are selected with a probability that is
proportional to the distance to the centroid previously selected. The k-medoids
algorithm (Kaufman and Rousseeuw, 1987) imposes the centroids to be part of
the input data, which in some cases improves the robustness of the algorithm.
The kernel k-means (Zhang and Rudnicky, 2002) (Dhillon et al., 2004) allows
no linearly separable clusters. This technique uses the kernel trick also used
in SVM.

These centroid based methods allow to perform both discretization and
vector quantization and they converge fast enough [L4: Real Time]. However,
they do not allow [L1: Online] learning.

2.2.4.2 Connectionist Methods

As we already explained in section 2.2.3.1, many neural network models exist
today, but their use is rather suitable for classi�cation or regression. Tradi-
tional multilayer perceptrons (MLP) (generally associated with back propa-
gation of the error gradient algorithm) are very good classi�ers and are also
capable of regression. But they can also be used to perform data clustering.
(Charalampidis and Muldrey, 2009) propose, for example, an algorithm which
is fairly similar to k-means in its principle, with the di�erence that the clusters
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are no longer represented by the Voronoi cell of a centroid but with the one of
a hyper-curve or hypersurface described by the multilayer perceptron.

Most common arti�cial neural networks to perform unsupervised learn-
ing are rather Self-Organizing Map (SOM) (Kohonen, 1982) (Kohonen, 1990).
These consist of a �xed network topology (often a grid). The data is submitted
to the network. The weights associated to the nearest node of the data are then
modi�ed in order to �get closer� to the latter. Neighboring nodes of the nearest
node are close together. But the SOM requires the network topology to be
prede�ned. N eural Gas (Martinetz et al., 1993) and Growing Cell Structures
(Fritzke, 1994) or the Growing Neural Gas (GNG) (Fritzke, 1995b) (Fritzke,
1995a) overcome this problem. Using these approaches, non-convex clusters,
and the structure of each cluster (Canales and Chacón, 2007), can be found.
The Stable Growing Neural Gas (SGNG) (Tencé et al., 2013) further proposes
an adaptation of GNG to better manage [L3: Time Series]. These algorithms
are iterative and therefore allow [L1: Online] learning.

2.2.4.3 Hierarchical Methods

The result of clustering can also be seen as a tree structure: a cluster can
usually be repartitioned into several clusters. To do this, one has a choice
between two approaches: the bottom-up approach (or agglomerative) and top-
down approach (or divisive). In the agglomerative approach for a set ofN data,
we begin with N clusters and group them according to their similarity until
a single cluster remains containing all the data. The result of clustering is
a dendrogram (tree structure). This method is quite expensive. The key is
therefore to carefully choose the similarity criterion to be used for consolidation
(this point is discussed in appendix A.3). Some special cases can be handled
more e�ciently. In the SLINK algorithm (Sibson, 1973), the two clusters with
the smallest minimum distance between of two of their points are grouped
together. In the CLINK (Defays, 1977) algorithm, the two clusters with the
smallest maximum distance between two of their points are combined with
each iteration. Both algorithms run in the O(n2), where n is the number of
data. Other similarity criteria can be used, such as in the CHAMELEON
algorithm (Karypis et al., 1999), o�ering a measurement of the similarity of
clusters based on two relative distances, calculated from a k-neighborhood
graph.

The top-down approaches consist of starting from a single cluster that
contains all the data and dividing it successively. This method, although less
common, may have, as Guénoche et al. (1991) argue, several advantages over
the agglomerative approach. The most obvious argument is that, in most
cases, we try to obtain a small number of clusters. The number of iterations
of an algorithm which proceeds by divisions will be generally lower than the
number of iterations of a agglomerative algorithm.
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2.2.4.4 Probabilistic Methods

Gaussian Mixture Model (GMM)

Gaussian Mixture Models (GMM) is a probabilistic model that can be used to cluster data. In this
model, it is assumed that each sample data item has been produced by a law which consists of a
linear combination of Gaussians.
For a mixture of k Gaussian (univariate in the later for simplicity), this law is de�ned as:

f(x) =

k∑
i=1

λiG(x, µi, σi)

where λi are mixture weights, G the Gaussian law, µi and σi the mean and standard deviation of
the Gaussian.

The Gaussian parameters are generally determined by the Expectation-Maximization algorithm
(EM). This iterative algorithm attempts to maximize likelihood. It performs the following steps:

• Randomly initialize the parameters λi, µi et σi of each Gaussian

• While the algorithm has not converged:

� For each Gaussian and for each data, compute γij the probability of the i-th datum
to had been produced by the Gaussian j

� µi=weighted (by γi) mean of the data

� σi=weighted (by γi) standard deviation of data

� λi =
∑
j γij

Thus, after the execution of the algorithm, it is possible, for each point, to calculate the
probability that it is produced by each Gaussian, de�ning the partitions.

Unsupervised probabilistic methods usually involve supposing that the
data came from a statistical model and �nding the parameters of this model.
These parameters are usually learned by an EM algorithm. The Gaussian Mix-
ture Model (GMM) is a representative example of this family. Other models
have been developed in order to handle [L3: Time Series] such as dynamic
Bayesian networks. As an example, HMM, already presented in section 2.2.3.2
can also perform clustering (Smyth, 1997).

2.2.4.5 Density Based Methods

DBSCAN (Ester et al., 1996) and OPTICS (Ankerst et al., 1999) are meth-
ods designed to overcome many of the recurring problems with other data
clustering algorithms. They detect outliers and their clusters can be of any
shape. These are density based methods, that is to say, they require parame-
ters to specify a minimum density for the data not being considered as outliers.
They do not, however, perform vector quantization, and they cannot be used
[L1: Online].
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DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering algorithm
based on density insofar as it use the estimated density of the clusters to complete clustering. The
algorithm �nds the ε-neighborhood of a datum and, if this neighborhood contains enough points,
the area is considered to be su�ciently dense to be a cluster. The data in epsilon-neighborhood are
traversed and added to the current cluster until there are no more points to go. Once a cluster is
�nished, the algorithm iterates with another, not yet traversed, datum. The algorithm is as follows:

DBCAN(D, ε, M)
inputs

D = x1, . . . , xN : data
ε: distance to consider
M : minimum points to consider

ClusterId← 1
for i = 1 to N do

if xi is Unclassi�ed then

if Expand(D, xi, ClusterId, ε, M) then
ClusterId++

end if

end if

end for

Expand(D, p, ClusterId, ε, M)
inputs

D = x1, . . . , xN : data
p: point to expand
ClusterId: current cluster Id
ε: distance to consider
M : minimum points to consider

seeds← ε− neighborhood(D, p)
if size(seeds) < M then

Set p to Noise
return false

else

Set p to ClusterId
remove p from seed
while size(seeds ≥ 0 do

currentP ← seeds[0]
remove currentP from seeds
if currentP already visited then

continue
end if

results← ε− neighborhood(D, currentP )
if size(results) > M then

add all results to seeds
end if

end while

end if

2.2.5 Conclusion

We have seen how various data mining tasks can be useful in creating AI in
video games. For each of these tasks, we have also performed a brief review
of existing techniques. All these techniques are interesting but none is useful
in every situation. A choice has to be made by the analyst regarding which
method to use, depending on the given context. The analyst must choose the
best on a case-by-case basis. We also �nd that the various tasks carried out

38 PhD thesis � Julien Soler



2.3. DISCUSSION

using data mining techniques do not meet all the requirements identi�ed in
this chapter.

2.3 Discussion

In this chapter, we have put into perspective the needs of the video game
industry and di�erent Data Mining and Machine Learning techniques, which
mainly come from research. We concluded that Data Mining o�ers a vari-
ety of tools to perform tasks that would be very helpful to develop an AI in
video games based on using data from human players. However it appears,
�rstly, that Data Mining is a complex process involving many disciplines, and
secondly, that on its own it is not su�cient to produce complex behaviors
required for creating AI in video games.

2.3.1 Data Mining

During our study on Data Mining and the di�erent techniques it o�ers, we
found that many of these techniques can be used to perform many tasks. The
KMeans algorithm for example, can be used for clustering and vector quan-
tization. The HMM can be used in many ways. There are many techniques
available, developed with multiple variations, and parameters need to be set
correctly to produce the expected results. Use of these techniques thus requires
rather extensive knowledge of these algorithms.

Modeling these techniques would seem an interesting approach to provide
a level of abstraction to potential users. In tools like WEKA, GGobi or ELKI,
algorithms are often grouped into categories (Pre-Process, Classi�cation, Re-
gression, Clustering, etc). It seems that a little more re�ned modeling is
possible in particular by grouping algorithms by task (�ltering, discretization,
clustering, vector quantization, etc) and by o�ering several levels of abstrac-
tion. This task modeling however requires in-depth knowledge of Data Mining.

Data visualization is both a sizable and di�cult task. Data can be viewed
in several ways (scatter plot, histograms, etc). These common visualization
methods are available in the aforementioned tools. But these general methods
do not take into account the semantics of data. Consider an example: when
trying to make changes or prediction on images, viewing by scatter plot is
unnecessary and diagrams such as histograms are not su�cient. For these
tools, the imported data are only numerical or categorical attributes. As an
example, they cannot take into account the fact that three real values represent
a vector and display it in this form. Furthermore, the addition of semantics
would allow transformations or calculations that would be relevant only for a
particular type, such as calculating an angle between two or three dimensional
vectors.
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2.3.2 Behavior Production

Since these Data Mining techniques do not fully satisfy the requirements ex-
pressed in section 2.1, we must �nd a way to overcome these drawbacks. These
shortcomings are mainly related to the development requirements identi�ed in
section 2.1.1. Therefore, a solution appears fairly obvious: to use a global
architecture which is possibly already used in the video game industry. This
architecture should however be able to use data mining techniques in order to
construct behaviours by learning from data produced by human players.

40 PhD thesis � Julien Soler





Contents of Chapter 3

3 Orion: A Generic Model Proposition for Imitation Learn-
ing of Behavior 43
3.1 General Models for AI Systems . . . . . . . . . . . . . . . . . . 45

3.1.1 Procedural Models . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Declarative Models . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Structured Models . . . . . . . . . . . . . . . . . . . . . 46
3.1.4 Multi-agents Models . . . . . . . . . . . . . . . . . . . . 47
3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Orion Structural Model . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Data Representation . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Data Transformation . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Data Visualization . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Data Prediction . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Orion Behavioral Model . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Standard Behavior Trees . . . . . . . . . . . . . . . . . . 59

3.3.1.1 Leaf Nodes . . . . . . . . . . . . . . . . . . . . 60
3.3.1.2 Composite Nodes . . . . . . . . . . . . . . . . 60
3.3.1.3 Decorator Nodes . . . . . . . . . . . . . . . . . 61

3.3.2 Orion Behavior Tree Extensions . . . . . . . . . . . . . 62
3.3.2.1 Data Mining Behaviors . . . . . . . . . . . . . 62
3.3.2.2 Online and O�ine Learning . . . . . . . . . . . 63

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

PhD thesis � Julien Soler



Chapter 3

Orion: A Generic Model

Proposition for Imitation

Learning of Behavior

I saw the inner me.

Andrew - Bicentennial Man (1999)

S
u
m
m
a
ry

Most arti�cial intelligence techniques used in video games may be

integrated into di�erent kinds of global architectures. We study the

following types of architectures: procedural, rule-based, structured and

multi-agent. We conclude from this study that structured architectures

are the best suited to ful�lling our requirements.

We then present the Orion model. This model is composed of a

structural part and a behavioral part. The structural part enables

datasets to be handled generically and even allows semantics to be

added to data. The behavioral part is based on behavior trees as they

satisfy many of the requirements expressed in chapter 2. Moreover, we

propose an extension that constructs arti�cial intelligence from data

retrieved from human players.
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S
u
m
m
a
ry

When using behavior trees, data are usually stored in a key-value dic-

tionary used by every behavior. The structural model helps to stream-

line inputs and outputs used by the model. Orion o�ers typed data,

therefore allowing the semantics of data to be maintained throughout

the design as well as checking the consistency of the data used by each

behavior. Thanks to our implementation of the model, we demonstrate

the �exibility of our approach by manipulating and visualizing various

data sets from a widely used database known as UCI.

The behavioral model enables behaviors performed by machine learn-

ing, both online (during the execution of the game) and o�ine (during

the design phase), to be integrated within its design. These behaviors

can produce additional knowledge from data (such as automatic learn-

ing of the environment) or automatically partition the set of sequences

in order to identify di�erent strategies used by the player.

In
tr
o
d
u
ct
io
n

In the previous chapters, we have identi�ed the necessary require-
ments of our solution and we proposed to use various data mining tech-
niques in order to reproduce human behaviors in video games. Now
we have to integrate these techniques into a more comprehensive archi-
tecture dedicated to the design of higher-level behaviors. To do so, we
have chosen Behaviors Trees as they ful�ll most of our requirements.
We propose extensions of this model that overcome the shortcomings
that a behavior imitation learning solution requires.

P
la
n

Since we have seen in the previous chapter that data mining tech-
niques lack some requirements we identi�ed, we need to choose a
broader architecture that will integrate data mining techniques. In
section 3.1, we study general purpose architecture families for AI.

In section 3.2, we present the structural model of Orion. We start
by describing how the data are represented. Data representation is an
important feature. Since we want to obtain behaviors from these data,
particular attention must be paid in order to generically manipulate
and visualize them while keeping their semantics.

In section 3.3, we present the behavioral model of Orion. This is an
extension of the behavior tree model. We start by accurately describing
this model. Next, we describe the extension of this model that handles
behaviors construction by learning from a dataset (behaviors that can
be learned online or o�ine).
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3.1 General Models for AI Systems

We have demonstrated, in the previous chapter, the value of using data
mining to build our solution. Classi�cation and regression algorithms can
reproduce reactive behaviors ([E1: Reaction]) and some of them are able to
partly produce variability ([E2: Variability]). The extraction of knowledge can
be implemented through vector quantization techniques while providing [E4:
Memory] to the solution. When these techniques are used [L1: Online], the
learned behavior can get better in time ([E6: Evolution]).

However, these techniques are not, strictly speaking, a technical develop-
ment that meets the requirements de�ned in section 2.1.1. In addition, some
expressivity requirements de�ned in section 2.1.2 are not met. [E5: Planning],
[E7: Inter Speci�c Variability], [E8: Organization] or [E9: Coordination] are
indeed di�cult to learn automatically. Because we want to build a solution
able to learn this expressivity, we must implement the use of data mining so-
lution in a more general architecture, responding to development criteria such
as [D1: Maintainability], [D3: Flexibility] or [D5: Communication Support].

In this section, we study di�erent families of architectures that can be im-
plemented as part of an AI solution in video games. This study will allow us
to choose the most suitable architecture to our requirements.

3.1.1 Procedural Models

Most games are designed using imperative and procedural programming lan-
guages. If the �rst few games directly used the machine language for which
they was designed. Very quickly, more advanced languages appeared extend-
ing this paradigm. Thus, games are now often created with object-oriented
languages. This paradigm allows better [D1: Maintainability] than purely pro-
cedural languages. Regarding the implementation of AI, game engines usually
provide dedicated script language. For example, the Unreal engine o�ers Unre-
alScript inspired by Java, while Lua is a language widely used in many games
(it is present, for instance, in games using the CryEngine, World of Warcraft
or Fable II). These scripting languages allow a great [D3: Flexibility], since
it is possible to design almost any feature by this method. However, [D4:
Testability] can be penalized without the use of dedicated tools. The source
code, meanwhile, can hardly serve as a [D5: Communication Support] between
di�erent development teams.

3.1.2 Declarative Models

While procedural models consist in the description of successive actions that
will reach a speci�c result, declarative methods consist only in the declara-
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tion of a set of actions and their e�ects. This method is used in the game
F.E.A.R. (see chapter 1). Production systems can then make use of these sets
of actions/e�ects. In this category of methods, one can �nd for example some
cognitive architectures such as Soar (Laird and Duchi, 2000) or programming
languages such as Prolog. This information can also be used by automatic
planners such as STRIPS. These approaches have the advantage of allowing
the addition of new features rather easily, bringing [D3: Flexibility] and [D1:
Maintainability]. But they are di�cult to test ([D4: Testability]). Since they
are based on purely declarative knowledge, they do not necessarily require
technical knowledge to be understood and might therefore be e�cient as a
[D5: Communication Support].

3.1.3 Structured Models

The probably most used architectures for IA development in video games
are structured architectures. As we saw in chapter 1, �nite state machines are
widely deployed in today's gaming systems. While they have been developed
to enable better [D1: Maintainability] over procedural models, the complexity
of AI makes FSM increasingly complicated and less maintainable. For these
reasons, another structured architecture is becoming more and more popular:
the behavior trees. In this architecture, the goals and sub-goals are represented
as nodes in a tree. But the nodes may be used at several places in the tree, so
that this model is more, formally, an acyclic graph than a tree. Anyway, this
structure allows better [D1: Maintainability] than FSM. In addition, the leaf
nodes usually run the ad hoc code o�ering a large [D3: Flexibility] (although
this is also the case in FSM).

UML is a language mainly used for software development. It is a graphical
language naturally designed to act as [D5: Communication Support] during
software development. It can express the structure of the software as well as
its behavioral content, interactions between components or even the integra-
tion of the software solution within the material necessary to operate it. The
behavioral description tools included FSM but also activity diagrams. These
allow to describe and de�ne parallelizable behaviors and complex processes
with an acceptable level of [D1: Maintainability]. The UML model is usually
�lled in tools which generate the source code. But most of these tools only
generate the code of the structural part of the model. However, some work,
such as the Mascaret library (Querrec et al., 2013) provide an implementation
to interpret behavioral models.

All these structured architectures have inherently interesting character-
istics: They provide a [D5: Communication Support] between the di�erent
actors of development.
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3.1.4 Multi-agents Models

In this section, the term multi-agents is considered in the broadest sense. We
present architectures that take into account other characters, either controlled
by humans or not. In the previous section, we mentioned the Mascaret model.
This model, in addition to an UML interpreter, provides an extension to it.
This extension allows to include information in the model related to the virtual
environment (such as spatial constraints (Trinh et al., 2011)), interactions
(which objects are interactive, which kind of interactions, etc) and the [E8:
Organization] of entities that evolve in the environment. An activity diagram
is then used to de�ne how entities have to coordinate ([E9: Coordination]).

The BIGRE model (Rivière et al., 2012) uses a Belief Desire Intention
(BDI) architecture to generate facial expressions. Expressions of the agent
should react not only to its perception of the environment but also to the per-
ception of other people. Thus, the model adds a social interaction appearance.
Such models could be extended to other �elds of application than emotional
management and thus provide a way to obtain [E7: Inter Speci�c Variability]
by implementing di�erent characters into our AI.

3.1.5 Summary

From the di�erent architectures that we mentioned in this review, we choose
not to retain, for our solution, procedural approaches that do not o�er enough
[D1: Maintainability] and [D3: Flexibility], the most important development
requirements to our opinion. Moreover, they do not meet a large number
of other important criteria. Multi-agent approaches seem interesting in the
development of AI of cooperating NPCs. However, these approaches seem
very complex and development-related demands seem di�cult to obtain with
this kind of model. For these reasons, structured approaches and rules-based
approaches seem more appropriate. Declarative models are very interesting be-
cause they allow [E5: Planning] by essence, and because they are goal oriented
(to obtain [E3: Understandable]). The behavior tree is also goal oriented, but
does not allow [E5: Planning]. However, it better �ts the development criteria
including [D4: Testability]. There is therefore no trivial choice on the possible
overall architecture of our solution. Table 3.1 summarizes the concordance
of each paradigm requirements. We choose a structured solution and, more
particularly, behavior trees as they correspond the best to our criteria.

3.2 Orion Structural Model

The datasets we want to use to learn behaviors can be of various types and
forms. The Orion model proposes a generic approach to represent these
datasets and enables as well some transformations and their visualization.

Final version � September 17, 2015 47



CHAPTER 3. ORION: A GENERIC MODEL PROPOSITION FOR
IMITATION LEARNING OF BEHAVIOR

Requirement Procedural Rule based Structured Multi-Agent

[D1: Maintainability] 7 ∼ X 7

[D2: Scalability] X ∼ X X
[D3: Flexibility] 7 X X ∼
[D4: Testability] 7 ∼ X 7

[D5: Communication Support] 7 ∼ X ∼
[E1: Reaction] N/A N/A N/A N/A
[E3: Understandable] ∼ X X ∼
[E4: Memory] N/A N/A N/A N/A
[E6: Evolution] N/A N/A N/A N/A
[E5: Planning] ∼ X ∼ ∼
[E7: Inter Speci�c Variability] ∼ ∼ ∼ X
[E8: Organization] ∼ 7 7 X

Table 3.1: Concordance Summary of Model Requirements

Datasets can be time-series or not, contain quantitative and qualitative
attributes, be abstract or have strong semantics. The way our model will
represent data must cover all these cases and �ll some gaps in the existing
software. The data semantics is generally not taken into account in di�erent
data processing and representation tools such as ELKI (Achtert et al., 2008)
WEKA (Hall et al., 2009) or GGobi (Swayne et al., 2004). Even if these tools
allow to visualize data through scatter plots, histograms and other diagrams,
in order to perform an analysis, it is essential to visualize the data according to
their semantics. The problem is well identi�ed by Vondrick et al. (2013). They
put it into focus with object detection in an image using feature extraction
techniques. Once feature extraction is done, the data becomes abstract. Inves-
tigating why a particular data is misclassi�ed, for example, becomes extremely
complex. In order to maintain understandability of data throughout the anal-
ysis process, the authors propose an image reconstruction from the extracted
features (in this article, histograms of oriented gradient). This is indeed a
major problem that must be addressed. Visualization and transformations
applied to the data should be consistent with their semantics.

3.2.1 Data Representation

In our model, we preserve the semantics of the data via a generic approach:
each attribute has a type. An interface Type must be implemented for each
type of data to be processed. The Orion model provides basic types (reals,
integers, enumerations) but also vectors, images, etc. The components that
will transform or display the data therefore have access to the semantics associ-
ated. A Type is considered as a possible data aggregation. A three-dimensional
vector is, for example, considered as the aggregation of three values. These
values are necessarily convertible to real numbers. Thus, an image is composed
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Figure 3.1: Orion data model

of the width × height (× 3 if it is a color image) real numbers representing the
intensity of each pixel. An enumeration is composed of an integer (and thus
a real) representing its position in a list of possible values of the enumeration.
This allows to process data from any type of component even if no processing
or display is able to take into account the semantics of the data. The Type

interface is also in charge of the textual representation of the data. Thus, a
user can edit with a simple text �eld. Finally, this interface is also responsible
for data conversion to another type. For example it is possible to convert three
real values into a Vector3.

A data set is represented in the model Orion by the Dataset class. This
class stores information on the data set, like for instance its name, or the
fact that it is or not a time series, and in that case its sampling frequency,
etc. This class is composed of VariableSpec representing the speci�cation
of each attribute in the data set and VariableSet representing a given data
set. The VariableSpec consists of the name and type of the attribute, and
whether the attribute is an input or an output. The VariableSet consist of
a list containing their values referenced by the VariableSpec of the corre-
sponding attribute. Figure 3.1 shows the UML class diagram that implements
our data representation. The Dataset class is also composed of an attribute
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Figure 3.2: Type Conversion process for the Optitrack Database in Orion.

summaryData of type VariableSet. This attribute is mainly used to store the
result of vector quantization for example. Attributes can be converted from
one type to another. To illustrate data conversion, we present in �gure 3.2 the
conversion process of the Optitracks database available on the UCI database1.

This dataset represents images of handwritten digits. The original image
was made up of two colors and had a resolution of 32x32 pixels. Each image was
cut into blocks of 4x4 pixels. The dataset consists of 65 attributes. The �rst 64
attributes represent the number of black pixels in each block of 4 pixels by 4.
The 65th represents the class of the data (a digit). After importing the csv �le
into the tool, the process is made of �ve steps: (a) selection of the attributes to
be converted, (b) speci�cation of the parameters of VariableSpec into which
the data will be converted (the name of the attribute, input or output), (c)
type selection and optionally (d) con�gure the parameters of this type (here
it is the image type, so we need to specify its dimensions). Step (e) shows the
result of the conversion of the �rst 64 attributes in an attribute (which was
the type Real) to a type Image and the 65th (which was of type Int) into
FiniteSet type. Orion includes the following types:

1http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+

Handwritten+Digits
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• Int: an integer

• Real: a real

• FiniteSet: a �nite set

• Vector2: a 2-dimensional vector

• Vector3: a 3-dimensional vector

• RotationVector: an orientation in a 3-dimensional space

• Quaternion: a quaternion

• Basis3D: a 3-dimensional localization (position and rotation)

• Vector: a n-dimensional vector

• Image: an image

• Graph: an oriented graph

This list can be extended by implementing the Type interface. These im-
plementations are then available in our tool via the re�ection mechanism of
the language (here, Java).

3.2.2 Data Transformation

In order to perform data transformations, the generic DataTransform interface
must be implemented. The latter simply has access to the Dataset and a list of
VariableSpec to process and must implement the DataTransform.transform()
method. Allowed transformations can vary signi�cantly. They generally in-
volve attributes modi�cation, addition of attributes or summaryData, etc.

The downside of this simplicity is that the GUI for manipulating this
model has no information on the type of transformation performed by the
DataTransform. In order to overcome this problem, various sub-interfaces are
available by Orion:

• ClusteringTransform: Classes implementing this interface perform data
clustering. That is to say, they add to the Dataset an attribute corre-
sponding to a class identi�ed by a partitioning algorithm.

• SummarizeTransform: Classes implementing this interface add summarize-
Data to the dataset.

• DataTransformer: Classes implementing this interface are able to pro-
cess new data not belonging to the Dataset. It must therefore implement
an additional method taking a parameter VariableSet (a datum). As an
example, the class NormalizeDataTransform, which scale real numbers
to the [0,1] interval implements this interface.
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Figure 3.3: Orion data transformation model

• DiscretizerTransform: Classes implementing this interface perform
discretization of the data.

• VectorQuantization: Classes implementing this interface perform vec-
tor quantization of the data.

These interfaces are only present to classify data transformation methods into
several categories. An algorithm can also implement several of these interfaces.
For example, the implementation of the algorithm KMeans in this model im-
plements the interfaces ClusteringTranform and SummarizeTranform. Figure
3.3 shows the UML class diagram implementing the transformation model of
Orion.

Using the example of UCI's Optitracks database, original images used to
build the dataset are not available because each image is represented by the
sums of black pixels in a block of 4 by 4 pixels. However, it is possible to recon-
struct 8x8 grayscale images with this data. To do this, we need to normalize
each value between 0 and 1 (1 being white and 0 black). Orion provides a class
BatchDataTransform to apply an expression to each value of the data set. In
addition, it may be useful to produce multidimensional scaling on data. Figure
3.4 illustrates the multidimensional scaling execution process carried out by
the Isomap algorithm through our tool. Data normalization was previously
carried out via a similar process.

Data transformation algorithms implemented in Orion include:

• Normalize: This transformation scales the value of a real attribute in or-
der to normalize it between a minimum and a maximum value, typically
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Figure 3.4: Transformation process for the optitrack database (Isomap).

between 0 and 1. This class implements the DataTransformer interface.

• StandardScore: This transformation standardizes a real variable (sub-
tract its mean and divide by its standard deviation). This class imple-
ments the interface DataTransformer.

• Differentiate: This transformation computes the derivative of an at-
tribute of time series over time. This class implements the DataTransformer
interface.

• Batch: This transformation changes the value of an attribute with a
javascript script. Various values are put into the execution context of
the script as the VariableSpec of the attribute, its current value, its
average, maximum and minimum values, etc. This class implements the
DataTransformer interface.

• PCA: This transformation performs a principal component analysis on the
data. This class implements the DataTransformer interface.

• KernelPCA: This transformation performs a principal component anal-
ysis using the kernel trick on the data. This class implements the
DataTransformer interface.

• MDS: This transformation allows a classical multidimensional scaling on
the data.
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• Isomap: This transformation allows nonlinear multidimensional scaling
using Isomap algorithm.

• Sammon: This transformation performs Sammon projection on the data.

• Clustering: These transformations add an attribute to the data set cor-
responding to the class identi�ed by the clustering algorithm.

� KMeans: This transformation allows data partitioning via the algo-
rithm KMeans. It adds a summarizeData to the dataset.

� DBSCAN: This transformation allows data partitioning via the algo-
rithm DBSCAN.

� SLINK: This transformation allows data partitioning via the algo-
rithm SLINK.

� CLINK: This transformation allows data partitioning via the algo-
rithm CLINK.

� GMM: This transformation allows data partitioning through a Gaus-
sian mixture model.

� GNG: This transformation allows data partitioning via the GNG al-
gorithm. It adds a summarizeData to the dataset.

This list can be extended by implementing the DataTransform interface.
These implementations are then available in our tool via the re�ection mech-
anism of the language at use (here, Java).

3.2.3 Data Visualization

In the Orion model, every element in charge of data visualization implements
the DataViewer interface. This interface is con�gurable by the enumeration
DisplayRange to de�ne the data to be represented (the current datum, the
current selection or all data). Two display types are present: the 2D and
3D rendering interfaces implements the GraphicalViewer interface while the
various components displaying data, attributes by attributes, implement the
AttributeViewer interface.

The GraphicalViewer interface is implemented by the classes Viewer2D

and Viewer3D. This interface is not intended to be extended by other classes. A
GraphicalViewer is composed of a Renderer. The Renderer interface provides
methods (draw2D and draw3D) to draw a datum on the display panel and a
method to provide a dialog panel to con�gure the Renderer. For example,
the implementation of PointRenderer allows to represent data as points. The
position of the point can be de�ned by an attribute of type Vector2 or Vector3
or three Real attributes. Similarly, its size, shape or color can be speci�ed as
�xed, varying with an attribute value or with its position in the time series.
Figure 3.5 shows the control panel of a PoinRenderer. A CompositeRenderer
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simply allows multiple Renderer to display the data, each Renderer displaying
di�erent attributes of the data.

Orion implementations of Renderer include:

• PointRenderer: This Renderer is used to represent data points. It is
possible to vary the position, size, shape and color depending on the
value of attributes of the data to display.

• VectorRenderer: This Renderer is used to represent data by lines. It is
possible to vary the position, the size, thickness and color depending on
the value of attributes of the data to display.

• ImageRenderer: This Renderer is used to represent data as images. It
is possible to vary the position, size and color of a frame surrounding the
image according to the attribute value of the data to display.

• TextRenderer: This Renderer is used to represent data by texts. It is
possible to vary the position and color based on the attribute value of
the data to display.

• Base3DRenderer: This Renderer is used to represent a 3D location and
orientation.

• CompositeRenderer: This Renderer is used to combine display of data
from multiple Renderer.

This list can be extended by implementing the Renderer interface. These
implementations are then available in our tool via the re�ection mechanism
of the used language (here, Java). Figure 3.7 shows the display of UCI's Op-
titracks dataset as well as the display of NAO robot's skeleton taken from a
goalkeeper agent in the context of the RoboCup 3D Soccer Simulation Com-
petition.

The interface AttributeViewer consists of a list of attributes to display.
Orion implementations of AttributeRenderer include:

• RadarPlot: Displays the attributes as a radar plot

• ParallelePlot: Displays the attributes as a parallel plot

• HistogramPlot: Displays the histogram of the attributes

• LineChart: This component, intended for time series, displays the tem-
poral evolution of each attributes

This list can be extended by implementing the AttributeViewer inter-
face. These implementations are then available in our tool via the re�ection
mechanism of the language at use (here, Java).

Figure 3.6 shows the UML class diagram that implements the visualization
model of Orion.
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Figure 3.5: Con�g dialog for a PositionRenderer

Figure 3.6: Orion Data Visualization Model
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Figure 3.7: Example of datasets visualizations in Orion.
Above: NAO Skeleton dataset (bones positions and speed). The picture at
the bottom right, that is not part of Orion GUI, illustrate NAO within the

simulation.
Bottom: UCI Optitracks dataset
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Figure 3.8: Orion data prediction model

3.2.4 Data Prediction

Data prediction is an important task of our data-based learning approach. In
order to achieve data prediction and therefore improve learning functions, the
model Orion o�ers a level of abstraction for all methods of classi�cation and
regression. Figure 3.8 illustrates this model. The FunctionLearner interface
represents a regression or classi�cation algorithm. This interface is composed
of the explanatory variables and the dependent variables. It has the methods
predict and train that are respectively used to predict the dependent variable
based on explanatory variables and to train the algorithm based on sample data
(containing the explanatory variables and the corresponding dependent vari-
able). The Classifier and Regressor interfaces extend FunctionLearner.

Several interfaces extend Classifier to separate di�erent characteristics
of these algorithms. Indeed, many classi�cation algorithms are binary clas-
si�ers (although most classi�cation methods being initially binary have seen
multiclass extensions proposed like for SVM and AdaBoost). In addition,
many algorithms do not perform a peremptory classi�cation but instead re-
turn a probability of belonging to each class. Interfaces BinaryClassifier,
ConfidenceClassifier and BinaryConfidenceClassifier, therefore express
these features. Thereby, it becomes possible to implement the standard meth-
ods of extending of the binary classi�cation problem to a multiclass classi�-
cation. The OneVersusAllClassifier and OneVersusOneClassifier classes
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provide implementations to perform a multiclass classi�cation using respec-
tively M and M(M−1)

2 binary classi�ers.
Regression and classi�cation algorithms implemented in Orion include:

• KNN: k nearest neighbors algorithm (classi�cation and regression)

• QuinlanC4_5: C4.5 algorithm proposed by Quinlan as an extension of
his ID3 to handle continous attributes. This algorithm train decision
trees (classi�cation)

• SVM: Support Vector Machine algorithm (classi�cation and regression)
implemented in Orion using libSVM (Chang and Lin, 2011)

• FFNN: Feed Forward Neural Network trained by the back propagation
algorithm. (classi�cation and regression)

• IOHMM: Input-Output Hidden Markov Model trained by Baum-Welch al-
gorithm (classi�cation)

• NaiveBayesNet: classi�cation using a Bayesian inference engine

• AdaBoost: classi�cation using multiple weak classi�ers.

This list can be extended by implementing the Classification or Regressor
interface. These implementations are then available in our tool via the re�ec-
tion mechanism of the used language (here, Java).

3.3 Orion Behavioral Model

Orion's behavioral model is an extension of behavior trees. Section 3.3.1
presents the concepts underlying this model and in section 3.3.2 we present
the extensions of this model made in Orion.

3.3.1 Standard Behavior Trees

The BT model is the structured architecture which, as we have seen in
section 3.1, seems to best match our requirements. We saw that the FSM and
BT are the most used in the game development architectures. The FSM allow
to simplify the development of AI, but they have the following shortcomings:

• Transitions from one state to another must be explicit, resulting in ex-
cessive complexity when the number of states is large.

• A state machine is not a Turing machine. As a consequence, some be-
haviors are impossible to describe with FSM.
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• They are not goal oriented. FSM are designed to be event oriented:
events are needed to cause state changes. So it is quite di�cult to im-
plement goals with priority management among them for example.

• They are not adapted to parallelism.

BTs do not have these problems. For this reason, we believe that BTs
seem better suited to the development of an AI solution in video games.

As the name suggests, the BT model is represented by a tree structure.
Each node of the tree represents a goal. Each child of a node represents a sub
goal. When the nodes are executed, it returns their current status. This state
can be:

• Success: Execution succeeded

• Fail: Execution failed

• Running: Execution in progress

In its most simple implementations, at each time step, the tree is traversed
from the root node spreading deep into the branches to the leaves. We study in
more detail the di�erent types of nodes in sections 3.3.1.1, 3.3.1.2 and 3.3.1.3.

3.3.1.1 Leaf Nodes

The leaves of the trees are mainly of two types: condition and action. The
condition nodes return Success if the condition evaluates to true and Fail

otherwise. They are used to condition the execution of actions or goals. For
example, a node describing the behavior of attacking an enemy will be pre-
ceded in the tree by a condition node Enemy present?. Action nodes perform
operations on either the agent environment or its internal state. Possible ac-
tions are varied and depend largely on the kind of agent implemented by BT.
For example, a node can add data to the internal state of the agent, play an
animation, send a command to a motor, write to a �le, etc.

3.3.1.2 Composite Nodes

Composite nodes are used to control the execution of their child nodes.
There have two main types: Sequence and Selector.
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?

Smash DoorPress Handle

Use Key

A Selector node (?) executes its child nodes until one
of them returns Success. This type of nodes allows to
reach a goal by testing several solutions. Thus, in the
example on the left, in order to open a door, the agent
will try to press the handle, if that fails it will to use a
key, and in the end, if the two previous solutions failed, it

will break the door down. The selector will return Success if one of its child
nodes succeeds and Fail otherwise. This node allows to manage prioritized
actions required to achieve a goal.

Grab Key

Put Key in Lock Turn Key

Press Handle

A Sequence node (→) executes its child nodes until
they all return Success. This type of nodes, thus, allows
to perform an action sequence in order to achieve a goal.
In the example on the left, when trying to open a door, the
agent will successively try to get the key, and if successful,
try to insert it in the lock, if successful it will try to turn

the key, and �nally, if all the previous actions are successful, it will press the
handle. The node will return Fail if one of its child nodes fails and Success

if all succeed.

Other types of composite nodes exist, such as parallel nodes, executing its
child nodes simultaneously, random nodes, running a child chosen at random,
etc.

3.3.1.3 Decorator Nodes

Decorator nodes have only one child node. These nodes are used to add
execution control features. Most common decorators are, for example:

• Repeater: Executes its child node a determined (passed as parameter)
number of times. Many variations are possible, as RepeatUntilFail re-
peating the execution until the child node fails or a speci�ed condition
becomes false.

• Succeder: Executes its child nodes and returns Success whenever the
child node succeeded of failed.

• Failer: Executes its child nodes and returns Fail whenever the child
node succeeded of failed.

• Limiter: Executes its child node but limits the maximum number of
ticks. Thus, a node can return Running a maximum number of times. If
the execution is not completed after this number of tick is reached, the
node returns Fail.
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3.3.2 Orion Behavior Tree Extensions

We have seen how the BT is endowed with many qualities in order to achieve
an AI in video games. So, we choose to extend this model. First, without losing
the potential of BT to add ad hoc code features, we use as an execution context
of BT, a VariableSet. This context contains, at each tick, data collected by
the agent (its perceptions) and allows the di�erent nodes to change this context
(add or change data). The data being typed, each behavior can control its
consistency and performs introspection on these data. It would further be
possible to control, during the design process of BT, that the data used by
each behavior will be present in the context before their executions. However,
this is not implemented in Orion. We now propose to extend BT to be able
to use the data mining techniques we studied in chapter 2. We presented, in
section 3.2, a model encompassing the various tasks achievable by data mining
techniques. Here we present the integration of the structural model into the
behavioral model.

3.3.2.1 Data Mining Behaviors

The most important functionality we want to add to BT is the possibility of
using behaviors that have been learned from a dataset. To do this, we propose
to add node types to the BT model. First, we add a particular type of node
composed of a FunctionLearner, to predict an output variable based on input
variables. So, this is an action node that changes the context by adding the
predicted value in it. We also add a new type of composite node to choose
which child node to run through the prediction of a classi�er. Finally, we
add an action node composed of a DataTransformer, to transform the data.
Figure 3.9 presents our model of Behavior Tree.

Figure 3.9: Orion data mining behaviors

62 PhD thesis � Julien Soler



3.3. ORION BEHAVIORAL MODEL

3.3.2.2 Online and O�ine Learning

We want the construction of BT to be possible both online and o�ine.
The o�ine construction is simply enabled by our implementation of Orion,
manually constructing the tree and setting the node parameters (by associating
a FunctionLearner previously trained with data to a FunctionBehavior for
example). But online training requires integrating other mechanisms. Indeed,
many additional problems arise when trying to learn online. Most data mining
techniques we studied in the previous chapters are not iterative. It is not
possible to start learning each tick. We must therefore o�er a �exible method
to trigger a learning algorithm, following an event in the game or after a
number of tick for example. BT's formalism allows to simply achieve this kind
of behavior: we decide to add to our other models some node types that will
collect data and perform learning on the data collected.

We propose the following nodes:

• StoreDataBehavior: Add data to a Dataset

• TrainBehavior: Train a FunctionLearner with a Dataset

• DataTransformBehavior: Perform data transformation on a Dataset

Figure 3.10: Orion online learning model

Figure 3.10 illustrates the implementation of these features in the Orion

model.

The typical use of these units in order to perform online learning is shown
in �gure 3.11. In this example, the left side of the tree allows the execution
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of the behavior performed once learning is done and the right part allows
directed learning and implement a default behavior if learning has not been
achieved. Thus, if learning has not yet been done, the condition node on the
left (Trained? in the �gure) returns Fail and the right node is executed. The
current context is then stored in a Dataset. If the number of data in the
Dataset is su�cient or an event occurs in the game for example, learning is
carried out in several steps. First, the Dataset is divided into n sequences by a
data processing algorithm (usually a time series clustering algorithm). These
sequences belong in this example to two di�erent types. Then, the three
FunctionLearner nodes associated both with the execution part (the three
nodes references Classi�er 1, Regression 1 and Regression 2 in the �gure)
and the Train nodes are trained with the Dataset. Finally, the execution
context is changed to indicate that learning was achieved (Trained = True).
The following tick therefore executes the train behavior (left side of the tree).
As long as learning is not �nished, the default behavior (implemented with ad

hoc features for example) is executed.

3.4 Conclusion

In this chapter, �rst of all, we justi�ed the use of a structured general ar-
chitecture to enable the design of AI in video games. These architectures
allow indeed a �exible design and improve the robustness, maintainability and
testability of the solution. Moreover, they allow better e�ciency in teamwork.

Then, we presented the Orion model. Orion permits to associate seman-
tics to the data. This semantics is essential to enable a better understanding
of the results of data mining algorithms we want to use. Orion also provides a
powerful data visualization solution. Traditional charts for univariate or mul-
tivariate analysis of the data set (histogram, radar and parallel plot, etc.) are
implemented and can be extended. A very generic representation mode allows
the data to be displayed in 2 or 3 dimensions. Data visualization primitives
such as points, vectors, images, texts or graphs are proposed and the model
allows extensions. This allows us to display, in a generic tool, most of the data
available on the UCI database.

The Orion model formalizes various techniques coming from research in
data mining and proposes to gather them together according to their use. Our
tool, therefore, proposes to perform tasks as diverse as data clustering, vector
quantization, extraction of characteristics or prediction. The implementation
of our model provides a generic approach for data analysis and data mining in
the manner of WEKA or ELKI. The main contributions of our tool in relation
to the latter are the management of semantics and the greater possibility of
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visualization. The number of available algorithms is smaller than the ones
provided with WEKA but may easily be extended.

Finally, Orion also o�ers a behavioral model. Since we have decided that
our solution should be based on a structured general architecture, we chose
to extend the BT model for our needs. So, we add to this model the ability
to use data mining techniques to implement complex behaviors. This model
allows both online and o�ine learning.

66 PhD thesis � Julien Soler





Contents of Chapter 4

4 Applications: Pong and Unreal Tournament 3 69
4.1 Pong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Explanatory Analysis . . . . . . . . . . . . . . . . . 72

4.1.2.1 Add Semantic . . . . . . . . . . . . . . . . 72
4.1.2.2 Data Visualization . . . . . . . . . . . . . . 73
4.1.2.3 Transform Data . . . . . . . . . . . . . . . 76
4.1.2.4 Conclusion . . . . . . . . . . . . . . . . . . 76

4.1.3 Unsupervised Analysis . . . . . . . . . . . . . . . . . 77
4.1.3.1 Time Series Segmentation . . . . . . . . . . 78

4.1.4 Data Prediction . . . . . . . . . . . . . . . . . . . . 80
4.1.4.1 Low Level Behavior Reproduction . . . . . . 80
4.1.4.2 Strategic Level Design . . . . . . . . . . . . 81

4.1.5 Behavioral Model . . . . . . . . . . . . . . . . . . . 81
4.1.5.1 Pong BT . . . . . . . . . . . . . . . . . . . 81
4.1.5.2 Online Learning . . . . . . . . . . . . . . . 82

4.2 Unreal Tournament 3 . . . . . . . . . . . . . . . . . . . . . 84
4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . 85

4.2.1.1 Raw Data . . . . . . . . . . . . . . . . . . 85
4.2.1.2 Low Level Behavior Data Collection . . . . . 86

4.2.2 Data Transformation and Visualization . . . . . . . . 86
4.2.3 Chameleon Model . . . . . . . . . . . . . . . . . . 87

4.2.3.1 Environment Learning . . . . . . . . . . . . 88
4.2.3.2 Behavioral Model . . . . . . . . . . . . . . 90
4.2.3.3 Implemeting the Chameleon Model with

Orion . . . . . . . . . . . . . . . . . . . . 91
4.2.3.4 Evolving Environment Learning . . . . . . . 93

4.2.4 Data Prediction . . . . . . . . . . . . . . . . . . . . 94
4.2.4.1 Movement . . . . . . . . . . . . . . . . . . 94
4.2.4.2 Long Range Aiming . . . . . . . . . . . . . 95
4.2.4.3 Close Combat . . . . . . . . . . . . . . . . 96

4.2.5 Behavioral Model . . . . . . . . . . . . . . . . . . . 97
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 99

PhD thesis � Julien Soler



Chapter 4

Applications: Pong and Unreal

Tournament 3

I am putting myself to the fullest possible use, which is all I think that any
conscious entity can ever hope to do.

HAL - 2001, A space Odyssey (1968)

S
u
m
m
a
ry

In this chapter, we show two applications of our Orion model. We

start by applying data mining techniques to the video game Pong. We

analyze the data from game sequences played by human players. We

show that the exploratory analysis allows us to identify various strate-

gies implemented by players. We also identify the evolution of these

strategies during gameplay and some invariant behavior between play-

ers.

We continue using unsupervised analysis methods to segment our

data into homogeneous groups. We try to identify the player strategy

corresponding to a given situation. We will see that we are, to some ex-

tent, able to perform this clustering automatically. However, we evoke

reservations about the applicability of this method.

Then we use and evaluate supervised learning techniques to repro-

duce part of the behavior. To do this, we �rst annotated game sequences

with a semi-automatic method using rules. Then, each identically an-

notated sequence is used as training data for the regression algorithms

tested. We evaluate the performance of each algorithm. We then use

a classi�cation algorithm in order to choose the most appropriate low

level action to execute, producing the overall behavior.

Subsequently, we use Orion to implement a bot for the game Un-

real Tournament 3 (UT3). We implement the Chameleon model

(Tencé, 2011) with Orion. Then, we propose an improvement of the

Chameleon method in order to learn the environment automatically.

Still using our model, we use that improvement to make the bot move-

ments more in line with those of a human player. We also learn aiming

and close combat behaviors through supervised learning techniques.
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S
u
m
m
a
ry Finally, we implement the overall behavior using the Orion BT,

integrating ad hoc features in order to manage aspects of behavior that

we have not been able to learn automatically.

In
tr
o
d
u
ct
io
n

In the previous chapter we have presented our model, Orion. We
built this model in order to implement arti�cial intelligence in a video
game. Our ambition is to learn behaviors by analyzing data from real
players. Some commercial games o�er this type of learning like for
instance Forza Motors 5, which attempts to replicate how a player
drives in order to propose its digital clone. The techniques used in this
game are not easily transferable to other games and results are still fat
from perfect. This is a good indication of how challenging this task is.
That is why we use our model in a somewhat more pragmatic manner
since we built a Pong and an UT3 agent with Orion using learning
methods but still exploit expert knowledge.

P
la
n

The section 4.1 of this chapter focuses on using Orion to achieve ar-
ti�cial intelligence in the context of the Pong game. In section 4.1.2, we
perform an exploratory analysis on data collected with our implemen-
tation of the game. This analysis allows us to discover some invariant
in players' behaviors. In section 4.1.3, we use clustering techniques
to automatically identify the strategy of the players. These methods
do not, however, give us full satisfaction regarding the results we get.
Therefore we apply an expert rule method in order to achieve this iden-
ti�cation. In section 4.1.4, we use regression algorithms to reproduce
the behaviors identi�ed by a semi-automatic method in the previous
section. The regression algorithms are tested with di�erent parame-
ters, allowing us to compare their performances. In section 4.1.5, we
implement the overall behavior using Orion's BT with both o�ine and
online learning.

Section 4.2 describes the use of Orion in the design of a Bot for the
game Unreal Tournament 3 (UT3). We start by describing the data
collection process in section 4.2.1. We then, in section 4.2.2, show how
we use Orion in order to visualize and transform the collected data.
In section 4.2.3, we use Orion to implement the Chameleon model
proposed by Tencé (2011). We then, in section 4.2.4, show how we learn
low level behaviors. Finally, section 4.2.5 shows how we implement
features of the Bot behavior which we have not been able to learn
automatically.
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4.1 Pong

Figure 4.1: Pong screen

The game Pong was one of the �rst video games to enjoy popular success.
This is a table tennis game where the ball passes through the screen laterally.
Players vertically control a paddle on one of the edges of the screen and try to
make the ball bounce on it. A point is scored by the opponent when a player
fails to catch the ball with the paddle before the ball touches the edge of the
screen. Figure 4.1 shows the screen viewed by players. In our implementation,
a frictional force is applied to the ball when the paddle velocity at impact with
the ball is not zero, thereby de�ecting its trajectory. The ball speed (the norm
of the vector) is constant. The player controls the paddle with a mouse. When
a point is scored, the ball is placed at the center of the playing area and the
player who lost the point must press a mouse button to put the ball into play.
The ball is then launched with a velocity vector de�ned randomly.

4.1.1 Data Collection

We asked �ve persons to play in our implementation of the game and col-
lected the traces: �ve traces when the players face a bot following the ball
perfectly, that is to say it can not lose, and �ve traces when human players
play against each other. The data collected are:
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• position of each paddle

• ball position

• state of the mouse buttons

• current scores

0

ORION

Semantics

RawgData

Transform Visualization

Predict

Structural

Behavioral

Standard DatagMining OnlinegLearning
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BatchDataTransform
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...
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RegressionBehavior
DataStore
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Figure 4.2: Orion Work�ow for Pong

4.1.2 Explanatory Analysis

In this section, we perform an explanatory analysis of the collected data.

4.1.2.1 Add Semantic

Exploratory analysis is used to retrieve valuable information from the data.
In order to illustrate this concept, we study the previous traces. First, to con-
duct this analysis, we need to �nd representations of our data that give the
analyst the best understanding. In the case of Pong, it may be game recon-
struction because each datum in the traces of the game has an understandable
semantics. The ball position is a two-dimensional vector (Vector2, see 3.2.1
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page 50), paddle positions also (although one of the coordinates of each pad-
dle is �xed, because the horizontal movement of the paddle is impossible).
The scores are simple integers (Int). The state of mouse buttons is boolean
(FiniteSet).

4.1.2.2 Data Visualization

Orion o�ers the aforementioned types and the visualizers of these semantics.
Therefore, we can simply reconstruct the game from the traces. To do this,
we use three PointRenderers (see 3.2.3 page 55) to represent the ball and
two paddles, and two TextRenderers to view the scores. The PointRenderers
used for paddle representation are con�gured so that their color correspond
to the state of the mouse buttons. Thus, the dataset can be displayed with
a relevant representation with respect to its semantics. Figure 4.3 illustrates
reconstruction of a game state within Orion.

Figure 4.3: Pong game visualization in Orion

In our case, the traces we are studying are time series. Therefore it is
appropriate to use adapted visualization methods, such as the evolution of
data over time. Figure 4.4 illustrates the representation from Orion of a few
seconds of a game. The top diagram shows time evolution of the player's
paddle position (red curve) and the vertical position of the ball (green curve).
In addition to �nding a high correlation (which seems logical enough because
the player's goal is to catch the ball), it can be observed that, when the ball
touches the paddle, the position of the player's racket tends to evolve faster.
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This illustrates that the player tries to use the friction force to de�ect the ball
and give it a more di�cult trajectory for the opponent to catch the ball. The
bottom curve shows the development of the paddle positions of each player
(red curve for the left player and blue curve for the right one) when the ball
is stationary. We can see that a kind of �question and answer� game sets up
between the two players. When one oscillates the position of his paddle, the
second does the same.

Figure 4.4: Time series visualization in Orion. Top: Interaction between the
player and the ball. Bottom: Interaction between the two players when the
ball is not moving

Still using our visualization model, we are able to represent the data in other
ways. For example, in �gure 4.5, the horizontal axis represents the vertical
position of the ball and the vertical axis represents the vertical position of
the player's paddle. The color represents the horizontal position of the ball.
Thus, the more blue the point's color is, the more the ball's distance to the
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Figure 4.5: In the 3 diagrams, the horizontal axis represents the vertical posi-
tion of the ball, the vertical axis represents vertical position of the paddle and
color represents the horizontal position of the ball

edge decreases. This diagram shows three di�erent sequences. On the three
charts blue points are very close from the diagonal. This is not surprising since
it expresses that when the ball is near the edge defended by the player, the
vertical positions of the paddle and the ball are similar. The players are simply
trying to catch the ball on the three charts. However, we note that in the �rst
chart, all points are approximately on the diagonal: the player was applying
the basic strategy of always following the movement of the ball. On the second
chart, a majority of non blue points stand on a horizontal line one the center
of the screen. Therefore we can detect that the player was using a di�erent
strategy: let the paddle in the center of the screen and move towards the ball
only when it approaches and then re-position the paddle at the center. Finally,
in the third chart, the horizontal lines are present over the entire height of the
screen. The player's strategy was therefore to only move when the ball came
closer and stay still when the ball is not close. So we identify three di�erent
strategies used by players. Moreover, these strategies can be used in succession
by the same player in the same game.
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Figure 4.6: Paddle speed histogram

4.1.2.3 Transform Data

Exploratory analysis is not based solely on data visualization. Other pro-
cesses can help in this analysis. Dimensional reduction, studied in chapter
2, is notably one of the most useful techniques to perform exploratory anal-
ysis. Here, however, this method does not seem relevant as the number of
dimensions is relatively small and the dataset is easily displayable through its
semantics. A common data transformation for time series consists in comput-
ing the derivatives of some attributes over time. Applied to the positions of
the ball and paddles, we get their speeds. This technique can, for example, be
su�cient to achieve regression or classi�cation on time series with algorithms
not being specially dedicated. This transformation in Orion is implemented
by the Differentiate class (see 3.2.2 page 52). In addition, it provides addi-
tional information to the analyst that can lead to relevant conclusions. Here,
we found an invariant between players with a simple univariate analysis. Fig-
ure 4.6 shows the histogram of the paddles speeds. We �nd a similar histogram
for all our players: indeed it seems that players are likely to apply friction to
the ball by pushing the mouse rather than pulling it. Without alleging any
reason of this invariant (which is perhaps due to a bias in our data collection or
a coincidence given the low number of players), it is interesting that the imple-
mentation our AI reproduces it. This process illustrates one of the main task
performed by exploratory analysis: exploring the data without any a priori

question and discovering knowledge that was not expected beforehand.

4.1.2.4 Conclusion

In conclusion, on the example of the game Pong, exploratory analysis of
human traces allowed us to:
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• Reconstruct the di�erent game sequences

• Identify characteristics of a low-level behavior (a frictional force applied
to the ball)

• Identify di�erent strategies used by players (follow the ball, back to cen-
ter, imitated the opponent, etc)

• Identify an invariant between the players (the friction force applied in
one direction rather than in another)

These �ndings constitute knowledge that can be implemented by an expert
to build a believable behavior. It can also be used to accurately select learning
algorithms to be used to reproduce these behaviors. Finally, it may help to
validate the learned behaviors a posteriori.

4.1.3 Unsupervised Analysis

Unsupervised analysis, including data clustering, is an e�ective way of per-
forming a discretization of continuous variables. This discretization may be
necessary if one wants to use learning algorithms that accept only discrete data
as an input (such as Quinlan (1986)'s ID3 or most implementations of Bayesian
networks). Since we want to use such algorithms (see section 4.1.4.2), we have
to discretize our data. If we want to perform this discretization automatically
rather than arbitrarily choosing the limits of each discrete value, we may use a
clustering algorithm. Such an algorithm would divide our data into a number
of homogeneous groups, thereby performing discretization. However, cluster-
ing algorithms usually need the whole set of data but, in our case, once the
clustering is achieved, we would like to be able to place any new datum in the
more appropriate cluster. This may be a problem, for instance, in the case
of density-based algorithms such as DBSCAN, because processing new data
once the clustering is done is impossible. A simple solution would be, once the
clustering operation done, to perform discretization as a classi�cation prob-
lem. But since it can be time consuming, centroid based clustering algorithms
seem a better approach. With these algorithms, clusters are de�ned as the
Voronoi cell of each centroid. Knowing the centroids characteristics, one can
�nd the cluster of new data by �nding the closest centroid. In Orion, we pro-
vided two interfaces that distinguish, among algorithms, those that are able
to transform a single datum and those which need all dataset: DataTransform
and DataTransformer. A DataTransformer is a DataTransform able to per-
form a transformation on a single datum. The only data clustering algorithm
implemented in Orion and implementing the DataTransformer interface is
the KMeans class. Therefore, by default we will use this algorithm to perform
a discretization.
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Figure 4.7: Time series conversion process

4.1.3.1 Time Series Segmentation

Clustering can also be applied to time series: in this situation, the goal is
to segment the time series and annotate each segment. Thus, two segments
annotated in the same way are considered to be close. In the case of Pong,
the idea is to use this technique to automatically �nd the strategy employed
by the player. To test this approach, we asked a player to alternately use one
of three strategies that we had previously identi�ed in our data. We did not
impose any particular order nor particular constraint on the distribution of
these three strategies. The purpose of this experiment was to check if we were
able to correctly segment a sequence that does not result of synthetic data.
However, those data need to be su�ciently clean so as not to have to deal with
various problems like excessive noise.

First, our segmentation process splits the dataset into roundtrip sequences
of the ball. Then we compute the distance between each sequence using a
Dynamic Time Warping (DTW) distance. Informally, the DTW distance con-
sists in �nding an optimal alignment of data between the two time series and
computing the sum of distances between each datum aligned identically in the
series. The distance problem between the time series and the DTW are ex-
plained in appendix A.4. Once calculated, the distance matrix enables a multi
dimensional scaling (see chapter 2 section 2.2.2.2). Each rountrip sequence is
then represented by a single datum. The applied process is shown in �gure
4.7.

Once this process is achieved, standard clustering becomes possible in or-
der to gather the most similar rountrips. By performing this process on our
dataset (which could be described as semi-synthetic), the result of the time
series clustering was relatively satisfactory, but this process needs many pa-
rameters to be set. Clustering (the �nal step) has been produced with the
KMean algorithm, and we set k = 3 since we wanted to identify the strategies
applied by the players identi�ed in section 4.1.2 (there were three strategies).
In addition, the DTW itself uses a distance we also had to choose. Again,
we tested di�erent distances and selected the one that made the result more
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Figure 4.8: Rule based segmentation

in line with our expectations. It is therefore no surprise that by testing the
same approach on a set of real data, we did not obtain satisfactory results.
Nevertheless, this approach to time series segmentation seems interesting and,
in our view, deserves to be thorough.

Since the previous method does not allow to achieve a satisfactory time
series clustering of our data, we have implemented a much more pragmatic
approach by exploiting the knowledge we had extracted during the exploratory
analysis. We identi�ed that players perform the following low-level actions:

• Imitate: This is the game of questions and answers between two players
when the ball is stationary

• Catching : Get the ball

• Reposition: Move the paddle at the center of the screen

• Wait : Wait for the ball to get close

These low-level actions can be considered as primitives to reproduce the
strategies identi�ed in section 4.1.2. Also, in the di�erent dataset of real
games, many segments can not be identi�ed as one of these low level behavior.
Therefore we need to add another low level behavior to handle this as noise
(UnknownMove).

Thus, we implemented a fairly simple algorithm, design to identify these
behaviors in a time series with simple rules. These rules are presented in �gure
4.8.
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FFNN KNN SVM
MSE Time MSE Time MSE Time

Imitate 2879 48s 3598 N/A 990 <1s
Catching 3292 122s 6640 N/A 2532 5s
Reposition 6016 46s 8924 N/A 1817 <1s

UnknownMove 3974 32s 5239 N/A 3653 <1s

Figure 4.9: Regression of low level behavior results

4.1.4 Data Prediction

4.1.4.1 Low Level Behavior Reproduction

In section 4.1.3.1, we achieved the low level behavior identi�cation through
expert de�ned rules. Now we need to replicate these behaviors individually.
This is a typical use of regression algorithms. We tried regression on these
low level behaviors using the following algorithms: Feed Forward Neural Net-
work (FFNN), KNN and SVM. Table 4.9 shows the results. The algorithm pa-
rameters were investigated by cross validation and grid search. We used KNN
with the Euclidean, Manhattan and Mahalanobis distances (see appendix A).
Neural networks have a topology with one or two hidden layers having a num-
ber of neurons varying from 3 to 25. We used Mean Squared Error (MSE) to
compute error in the results.

Figure 4.10: Time series visualization of learned low level behaviors. Left:
Catching behavior. Right: Imitating behavior

While MSE provides quantitative information about the learned behaviors,
qualitative analysis of those behaviors may also be conducted. Figure 4.10
shows the resulting behaviors. We can see that the two curves look like
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those shown in �gure 4.4, that display real human data. However, our feel-
ing while looking at the result in the game is that the Imitation behavior
lacks amplitude in its imitation movements. This is not surprising because the
questions-answers game is a chronological process and we use regular regres-
sion algorithms that do not �t time series analysis. Moreover, movements of
the Catching behavior seem a little jerky sometimes. The overall results are,
nevertheless, quite satisfactory from our point of view.

4.1.4.2 Strategic Level Design

BallPos BallVel EnnemyPaddlePos

Action
t

Action
t-1

ScoreDiff

Figure 4.11: Naive Bayesian Network Classi�er for Pong action choice

As already mentioned, the low level behaviors identi�ed in section 4.1.3.1
and reproduced in section 4.1.4.1 can be seen as primitive behaviors of our
agent. Thereby, we have to use these primitives to produce an action sequence
that is similar to those observed in our data set. To do this, we use a very
simple naive Bayesian network, as shown in �gure 4.11. In this model, low
level actions at a given tick depends on the ball's position and velocity, the
opponent's position, the score di�erence and the previous action. Since in this
model all variables can be observed, learning probabilities is straightforward.

4.1.5 Behavioral Model

4.1.5.1 Pong BT

Now that we have presented all the steps we performed, in order to re-
produce the behavior that was partially learned from the data, we need to
put all these behaviors together. The BT producing the complete behav-
ior is presented in the not pretty nor ergonomic but functional Orion agent
model editor GUI in �gure 4.12. The model consists in a sequence containing
DataTransformerBehaviors linked to a KMeans algorithm in order to dis-
cretize data. Then, a SelectorClassifierBehavior linked with the Bayesian
network is in charge of selecting the low level behavior to execute. The low
level behaviors are represented in the BT by RegressionBehavior, linked to
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the regression algorithm used to learn them. The Wait behavior is imple-
mented by a SetOutputBehavior (set paddle position to the previous one).

Figure 4.12: Orion Agent Model Editor Displaying Pong BT

4.1.5.2 Online Learning

We have added the ability to learn behavior online. For that purpose, we
used the method we have already presented in the previous chapter. The BT
is presented �gure 4.13. In this �gure, the left side corresponds to the BT
presented in section 4.1.5. The right side shows the management of online
learning. The data are stored on each tick (the "Store in Dataset" node).
Whenever one thousand data were stored, learning is started. The latter con-
sists in performing discretization of each input data, annotating sequences and
training the classi�ers and regression algorithms. When no learning has been
made, the paddle is simply positioned at the y-position of the ball.
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4.2 Unreal Tournament 3

Figure 4.14: In-game Screenshot of UT3

Unreal Tournament 3 is a First Person Shooter video game developed by
Epic Games and released in 2007. In this game, the player incarnate a character
with a variety of futuristic weapons, evolving in an arena with other players.
The arena contains items that players can collect. They may be weapons,
ammunition, shields, �rst aid kits etc. Several game modes are available. The
simplest one consists of a mode called "deathmatch", in which each player
plays against all the other players. Each time the player eliminates another
player (by dropping his life points to zero using the weapons at his disposal),
he scores one point. The eliminated player respawns (reappears) in another
location of the arena. The game is played for a limited time and for a maximum
score determined in advance. If a player reaches the maximum score, he wins
and the game ends. If the limit time is reached, the player with the higher
score wins. Figure 4.14 shows a screenshot of the game.

In order to recover the traces of the players and control the bots in the game,
we use the GameBots API. This API, written using the game engine script-
ing language (UnrealScript) provides a Telnet (very simple network protocol)
interface to retrieve the events of the game and control our bot via a separate
process of the game, and possibly on another machine. We implemented a
Java API, encapsulating a Telnet client that exposes all GameBots features.
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Figure 4.15: Orion Work�ow for UT3

4.2.1 Data Collection

4.2.1.1 Raw Data

When observing a player evolving in the game with GameBots, we have
access to many information about him and his environment. We choose to
collect this unprocessed information in a CSV �le. Raw data are processed
with Orion as explained later in section 4.2.2. The information collected
includes:

• Player position

• Player orientation (pitch and yaw, roll is always 0)

• Player velocity

• Current weapon name

• Life points

• Remaining ammunition
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• Shoot (is the player shooting?)

• Number of enemies visible

• Enemy positions (the 3 closest)

• Enemy orientations (the 3 closest)

• Enemy velocities (the 3 closest)

• Number of seen items

• Item positions (the 3 closest)

• Number of seen navigation points

• Navigation point positions (the 3 closest)

4.2.1.2 Low Level Behavior Data Collection

In order to create datasets containing only sequences where a player is per-
forming a speci�c task, we conducted scripted gaming sessions. A human
player performs the tasks de�ned in our scenarios and game traces are recov-
ered. Three scenarios are proposed:

1. Movement: The player must simply navigate in the environment. No
enemy is present. These data will allow us to learn how to move in the
environment.

2. Long range aiming: The player cannot move. He has in�nite ammuni-
tion. He is alone in a large room with a single enemy and only intended
to shoot it.

3. Close Combat: The player is in a small room with an enemy and must
dodge attacks while �ring at the enemy.

4.2.2 Data Transformation and Visualization

Raw data do not allow to easily perform analysis. As Orion adds semantics
to the data, we make use of it to facilitate an exploratory analysis. In UT3,
most data are spatial locations of elements in the game (players, items, etc).
Orion implements several types associated with locations in three-dimensional
space and Renderers allowing their visualization. Using these features, we are
able to rebuild the game play in Orion as shown in �gure 4.16.
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Figure 4.16: UT3 game reconstruction in Orion

Spatial location from the raw data does not allow us to e�ectively reproduce
the observed behavior. The position of the player, for example, should not be
used as input data of a learning algorithm. Doing so, the learned behavior
would only be able to reproduce actions at the speci�c locations where they
were observed. Therefore, we need to transform all data related to location
in the environment to the local coordinates of the player. The Basis3D type,
implemented inOrion, is used to represent a position and orientation in space.
This type is implemented through a matrix of homogeneous coordinates and
corresponds, from a mathematical point of view, to a 3D orthonormal basis.
Spatial transformations become possible in Orion when data are of this type.
Such transformations are mainly changes of coordinates. We use this feature of
Orion to express all the data related to a location in the coordinates system
of the player.

Finally, as for Pong, we wish to use algorithms that accept only discrete data
as inputs. Therefore we perform a discretization of data using the KMeans
algorithm.

4.2.3 Chameleon Model

The Chameleon model, proposed by Tencé (2011), aims at designing a
behavior model for the control of believable characters in video games. This
work was conducted in the IHSEV team of Lab-STICC. We therefore had
access to the implementation of this model. They de�ne a believable agent
as a computer program able to control a NPC in a virtual environment so
that other human users in the environment think the avatar is controlled by a
human user. They proposed to learn by imitation the layout of environments
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with a GNG model. The behavior model is inspired by a model proposed by
Le Hy (2007) but they made di�erent choices in order to improve believability.
They add to the model the ability to learn by imitation with an Expectation-
Maximization algorithm (EM). The proposition makes the model able to learn
how to act in the environment rapidly. Stimulus-action associations are made
which make the agent look-like a human player. However, this model has some
limitations like low action accuracy and lack of planning mechanisms. One of
the aims of this thesis is to overcome these problems.

4.2.3.1 Environment Learning

Chameleon proposed to learn the environment with a vector quantization
method called GNG. The model has been modi�ed to be able to learn contin-
uously on a player without growing inde�nitely but being able to extend itself
if the teacher begins to use a new part of the environment. Moreover, this
model better deals with time series. This model is called Stable Growing Neu-
ral Gas (SGNG) (Tencé et al., 2013). The principle of the SGNG is explained
in the �gure 4.17. The algorithm performs the following steps:

• an input is submitted to the network (a)

• the two closest neurons in the network are selected (b)

• if there is no edge between those, an edge is added, the edge's age is set
to 0 otherwise (c)

• error of the closest neuron is increased (d)

• the closest neuron and its neighbors are moved closer to the input (e)

• the ages of all edges of the closest neuron are increased (f)

• edges reaching the maximum age are deleted (g)

• if the closest neuron's error is too high, a new neuron is added between
it and its max error neighbor (h) (i)

• errors of all neurons are decreased (j)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(j)

Figure 4.17: Detailed steps of the SGNG algorithm. The black cross is the

input, black circles are the nodes of the SGNG and black lines are the edges

of the SGNG. Gray shapes represent the obstacles in the environment.
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4.2.3.2 Behavioral Model
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Figure 4.18: Chameleon IOHMM model

The Chameleon behavioral model is implemented with an Input-Output
Hidden Markov Model (IOHMM) (see �gure 4.18). The hidden state model
corresponds somehow to the strategy of the player. The model inputs are di-
vided into two categories. The �rst one consists of high level inputs: they are
the stimuli necessary to choose strategies (hidden state) and actions. These
stimuli represent the internal state of the agent's remaining life points, current
weapons, etc. On the other hand, the low level stimuli only in�uences the
choice of actions. These stimuli are typically information about agent's sur-
roundings like positions of the points of interest (enemies, items, etc.). This
division allows a semantic re�nement of the model. For example, it is not
necessary to know exactly where the enemy is located to choose to attack
him but it is necessary to have this information to perform the actual attack.
This semantic re�nement reduces the number of dependencies between random
variables and thus reduces learning time. The description of the inputs and
outputs of the model is given in appendix B.

The inputs of the model include points of interest characterized primarily by
their position. These are low level stimuli, including, for example, navigation
points, items and visible enemies. An attention mechanism selects a point
of interest which is used to select the actions to perform. This attention
mechanism in the model corresponds to a random variable indicating the index
of the point of interest, taken into account among all the points of interest in
the provided input. Unfortunately, learning the parameters of these random
variables is really di�cult and is not really e�cient in the Chameleon model,
so probabilities (parameters) of these variables are indicated manually.
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4.2.3.3 Implemeting the Chameleon Model with Orion

In order to implement theChameleonmodel inOrion, we use the Bayesian
inference engine it provides. Each entry is modeled by a random variable de-
�ned over the discrete domain used in its implementation. The hidden state
of the network, which represents of the strategy or decision of the agent, is
de�ned over a two-element domain. The dependencies between variables meet
the recommendations of Tencé between high and low level stimuli and re�ec-
tive or external outputs. The declaration of this IOHMM is given by the code
presented in �gure 4.19 (the syntax is speci�c to Orion).

The model parameters are learned, as in Chameleon model, by the BW
algorithm, also implemented in Orion. Since learning the attention mecha-
nism's parameters is not entirely satisfactory in the Chameleon model, we
replace, in our implementation, this attention mechanism with a fairly simple
ad hoc behavior, choosing the point of interest to be considered (in order of
priority: the nearest enemy, the nearest item, a waypoint).
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Figure 4.19: Chameleon IOHMM implementation in Orion
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4.2.3.4 Evolving Environment Learning

In order to improve the agent's ability to move in the environment, we pro-
pose to enrich the data learned by the SGNG. In the Chameleon model, the
learning environment algorithm rebuilds the navigation graph automatically.
This information allows to know which places are reachable in the environ-
ment and to compute a path. However, a navigation graph is not su�cient to
reproduce the movement of a real player in this environment. A human player
with a minimum of experience in the game has, for example, a natural ten-
dency to strafe (move sideways) when reaching the corner of a hallway. This
is easily explained by the fact that doing so, the player maximizes his �eld of
vision and can quickly see if an enemy is present in the corridor. Similarly, the
navigation graph created by the designers of the game contains special node
types indicating for example that a jump is needed at this stage on the way.
This information is not learnt by the model.

We propose to add speed and orientation information to be learned by the
SGNG. Therefore, at each tick we submit to the SGNG, besides the player's
position, his speed and direction. However, this creates an additional di�culty:
one of the steps of the algorithm is to submit a datum to the network and
to �nd the two closest data. When the data is a position in space, using the
Euclidean distance to �nd the closest points is totally justi�ed. But when data
additionally contains speed and direction, choosing a distance to obtain the
desired result becomes more di�cult. The orientation is indicated in our data
by a unit vector, therefore the use of a simple Euclidean distance would tend
to just ignore it from the positions (an unreal unit represents one centimeter).
We propose to perform a rescaling by feeding the SGNG with the following
distance:

Distance(( ~p1, ~o1, ~v1), ( ~p2, ~o2, ~v2)) = d( ~p1, ~p2)+αd( ~o1, ~o2)+βd( ~v1, ~v2)
(4.1)

where d is the regular Euclidean distance and α and β are scaling factors.

In order to choose the scale parameter related to the speed, we start from the
observation that a player rarely moves backwards when simply navigating (but
does, when �ghting). The direction of the velocity vector is strongly correlated
with the orientation. The norm of the velocity vector is also relatively constant
when the player is moving (the character control being done by keyboard,
which only contains binary switches). So there seems to be no need to take
into account the speed when calculating the distance and we therefore choose
to set β to zero. On the contrary, the orientation is essential. We expect the
vector quantization performed by the SGNG to be able to contain two data
having the same position but opposite orientations for example. We choose
the parameter α so that criterion is met.
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Figure 4.20: SGNG Results on UT3 (Left: Chameleon, Right: Orion)

Figure 4.20 illustrates the result. On the left, the SGNG has learned the
navigation graph (Chameleon version). On the right, the velocity vectors
are shown in red and the direction vectors are shown in blue (α = 250). We
distinguish the di�erence between the orientation and velocity vectors in the
turns, illustrating the stra�ng performed by the player.

4.2.4 Data Prediction

In section 4.2.1.2, we presented a data collection of low level behavior sam-
ples through scenarios previously performed by human players. The problem
now is to replicate these behaviors individually.

4.2.4.1 Movement

Section 4.2.3.4 showed how we conducted a vector quantization of the en-
vironment, using velocities and orientations in addition to the positions. To
reproduce a more realistic navigation behavior, we will use this information
with the algorithm KNN. Figure 4.21 illustrates the principle. In this �gure,
a part of the network is displayed in (a). The point and the green arrow corre-
spond respectively to the current position of the agent and the direction it aims
in. As for the construction of the network with the SGNG, the use of KNN
requires the use of a distance. Once again we need to perform data scaling.
We apply the same distance 4.1 in order to perform this scaling. However, the
parameters α and β must be selected di�erently: knowing the position and
the desired direction of the agent, we try to get the speed and direction that
the agent should adopt. So this time, we must use the velocity vector (indicat-
ing the desired direction) and not the orientation, to compute this distance.
Therefore, we choose α = 0. In order to set the parameter β, we apply the
following requirement: two data should be far away if their velocities are in
opposite directions, even if their position is really close. In �gure 4.21, the
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(a) (b) (c)

Figure 4.21: Movement regression principle in UT3

image (b) illustrates a possible choice of three nearest data (k = 3). The
image (c) shows the regression then performed by weighting the closest data
by the inverse of the distance to the data submitted to KNN.

4.2.4.2 Long Range Aiming

Aiming is one of the most important elements of FPS games. There are
many techniques dedicated for that, and experienced players use advanced
ones. The performance of the players in this activity largely determines their
overall performance in the game. We chose to make it easier to reproduce
this behavior, by learning it from scripted game play in which the player does
not move and faces a single enemy. But an experienced player uses, at least
partially, the movement for aiming. It is a very commonly seen technique to
strafe from side to side without moving the mouse to re�ne the target. So we
will not be able to reproduce the behavior of an experienced player. However,
beginners and average players mainly perform a static aiming. So, we focus
on reproducing the aiming behavior of such players.

In order to better choose a method to reproduce this behavior, we conduct
an exploratory analysis. The inputs and outputs involved in performing of this
behavior are rather obvious. The outputs are necessarily rotational speeds (in
yaw and pitch) and �ring. As inputs, the position of the enemy is essential
and it is likely that its speed is necessary too. By performing an exploratory
analysis, we found no clear correlation between the enemy orientation and
outputs. So we do not use this information as input to learn this behavior.
But we found the current weapon is very important as an input. Some weapons
are used by continuously pressing the �re button and others by discrete �ring.
In addition, the velocity of projectiles is di�erent from weapon to weapon.
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Therefore, the in�uence of enemy speed is not the same from one weapon to
another. We identify, regardless of the weapon used, the following correlations
between:

• the Y position of the enemy in the player's coordinate system (right or
left) and the yaw rotation speed

• the Z position of the enemy in the player's coordinate system (top or
bottom) and the pitch rotation speed

• the Y enemy speed in the player's coordinate system (right or left) and
the yaw rotation speed

The di�erences in behavior according to the weapon suggest to process dif-
ferent training sessions for each of them. We learn these behaviors with regres-
sion algorithms. We conducted this learning through FFNN, KNN and SVM
algorithms. The quantitative results appeared to be quite similar from one
algorithm to another but the resulting behaviors were not really correlated to
the MSE.

To compare the arti�cial behaviors to those of the human player, we repro-
duce them in our test case scenario. When collecting the data for the weapon
called LinkGun, the human player scored 50 points and was killed 10 times (so
the bot scores 10 points), winning the game. We have reproduced this scenario
using our behavior instead of the player's. The best behavior, obtained with
a multilayer perceptron, killed the bot 32 times and was eliminated 50 times,
losing the game. Our behavior is therefore less e�cient than the player.

4.2.4.3 Close Combat

Close combat is quite common in UT3. The arenas are often made of tor-
tuous corridors, where one often encounters enemies at turning points. Some
weapons are more appropriate for this kind of confrontation. Re�exes are nec-
essary but an unpredictable behavior is the key to make the task of the enemy
harder.

By analyzing the data from our scenario in which the player is in contact
with an enemy in a small room, it was di�cult to �nd relevant information
in the context of the reproduction of this behavior. Changes in direction
and jumps are common, without being obviously correlated with the slightest
stimuli. The player, however, constantly tries to face the enemy. Stra�ng and
backward runs are often used rather than the forward movement.
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We tried to reproduce this behavior using standard regression algorithms
that we have used for the aiming behavior. However, we have not been able to
obtain convincing results with this method. This is not surprising because the
exploratory analysis shows that there was no obvious dependencies between
inputs and outputs. These algorithms are used to approximate a mathematical
function that, for a given input always provides the same output. However, in
our data set, this is clearly not the case.

Therefore, we used a IOHMM to reproduce this behavior. A probabilistic
model is indeed more suited to this type of data because it provides a certain
unpredictability. We used a network very similar to the Chameleon model,
applying the recommendations on variable dependencies. The behavior result-
ing from this learning seems quite satisfactory.

4.2.5 Behavioral Model

We have shown how we reproduce three low level actions: shoot the enemy
from afar, �ghting hand-to-hand and navigating in the environment. Now we
have to o�er a complete behavior, using these actions in the behavioral model
of Orion. The overall behavior is implemented with a BT using common
methods from the video game industry.

Figure 4.22 shows a simpli�ed version of the BT implementing the overall
behavior. In this �gure, the green boxes represent reference decorator nodes.
They are used to name a sub-tree in order to reference that sub-tree elsewhere
in the BT. They are only present here for the sake of clarity. The behavior
starts to transform the input data (discretization and change of basis). The
implementation details of this node are not shown in the �gure. Then, the
selected node is in charge of the choice of the low level behavior to execute.
The implementations of CloseCombat and AimAndShoot nodes is quite sim-
ple, since they test if an enemy is present (and close enough in the case of
CloseCombat), select the nearest enemy (by adding a variable in the execution
context) and perform the regression with the algorithm having been previously
trained. Both behaviors then delete variables used by the navigation behavior
from the execution context. If no enemy is present, the navigation behavior
is executed. It consists in choosing a destination if needed (and puting it in
the context of execution), calculating the path to this destination if needed
too, selecting the navigation point to which to go and performing regression
movement with KNN. The BT is scanned depth-�rst on each tick.
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4.3 Conclusion

In this chapter, we illustrated the use of our model to produce Arti�cial
Intelligence in Pong and Unreal Tournament 3 games using machine learning
techniques. We have shown how the exploratory data analysis can help to
identify noticeable patterns like invariant between players and also provides
help to make the choice of learning techniques to use.

We also showed how some of the supervised and unsupervised learning al-
gorithms can be used as part of the creation of an AI in video games. Un-
supervised learning, for example, helped us to automatically reconstruct the
environment and the information on how the players move in it. Supervised
learning has allowed us to reproduce relatively simple actions that can be used
as primitives to implement more elaborate behaviors.

While the behaviors conducted with our model are neither more e�cient
nor more believable than behavior implemented with far more widely used
methods in this industry, their implementation shows that learning methods
from the world of research can help the design of AI in video games, easing
the designer's workload and providing it with relevant information on human
player behavior.
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Chapter 5

Conclusion

Big things have small beginnings.

David - Prometheus (2012)

S
u
m
m
a
ry In this chapter, we �rst summarize this thesis. We then discuss the

proposals we have made, their contributions and their weaknesses. We

provide suggestions for future works to overcome them.

In
tr
o
d
u
ct
io
n

In this thesis, we proposed a general tool for data mining and a be-
havioral model design to build video game characters based on data
from real players. In this chapter we examine the strengths and weak-
nesses of our proposals and suggest some areas for improvement.

P
la
n

In this chapter, we start by summarizing this thesis (section 5.1).
We discuss the proposals put forward in this thesis (section 5.2), their
contributions to the problem of designing Arti�cial Intelligence in video
games (section 5.2.1) and the main weaknesses of our proposals (section
5.2.2). We then o�er some suggestions for overcoming them (section
5.3).

5.1 Summary of the Thesis

We started this thesis by identifying the current and future needs of Arti�cial
Intelligence (AI) in video games by means of a historical review of video games.
We then discussed the purpose of AI. How is Arti�cial Intelligence used? What
features are used to implement it? What additional constraints are necessary?
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With this review we were able to show how imitating real players seemed to
be a promising and fruitful strategy.

We then studied the development of a generic software solution for AI de-
sign in video games. We �rst listed the requirements such a system would
need. The �rst requirements are classic constraints in video game develop-
ment. Next, we focused on the characteristics of human behavior in a video
game context. These features helped us to de�ne requirements regarding the
expressiveness of the models. Since we want to learn these behaviors, we are
also interested in the requirements of the learning process itself. These di�erent
requirements allowed us to put the relevance of di�erent models into perspec-
tive in our context. We want to imitate realistic human behavior, therefore we
need to operate with data from real humans operating in the game environ-
ment. The �eld of Data Mining o�ers an interesting range of techniques that
can be useful. Weber and Mateas (2009) have already successfully used some
data mining techniques to implement a real time strategy game bot. Thus
we evaluated various data mining techniques, according to the requirements
de�ned previously. We concluded that all of these techniques may be relevant
and that our solution must allow the use of several of them. However, these
techniques are far from being su�cient to ful�ll all our requirements.

Most AI techniques used in video games can be integrated into di�erent
kinds of global architectures. We studied the following types of architectures:
procedural, rule-based, structured and multi-agents. We concluded from this
study that structured architectures are best suited to ful�lling our require-
ments. We then presented the Orion model. This model is composed of a
structural and a behavioral part. The structural part allows datasets to be
handled generically and even enables semantics to be added to data. The
behavioral part is based on behavior trees. Together, these two sides of the
model satisfy many of the needs expressed before. Moreover, we propose an
extension that allows to build an AI from data retrieved from real players.
When using behavior trees, data are usually stored in a key-value dictionary
used by every behavior. The structural model helps to streamline inputs and
outputs used by the model. Orion o�ers typed data, it is therefore possi-
ble to maintain the semantics of the data throughout the design as well as
to check the consistency of the data used by each behavior. Thanks to our
implementation of the model, we demonstrated the �exibility of our approach
by manipulating and visualizing various data sets from a database known as
UCI1. The behavioral model, although based on behavior trees, can be used
to handle behaviors performed by machine learning both online (during the
execution of the game) and o�ine (during the design phase). These behaviors
can produce additional knowledge from data (such as automatic learning of

1http://archive.ics.uci.edu/ml/datasets.html
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the environment) or automatically partition the set of sequences in order to
identify di�erent strategies used by the player.

Later, using Orion, we implemented two applications. We applied data
mining techniques to the video game Pong. We analyze the data from games
played by human players. We showed that exploratory analysis allows us
to identify various strategies implemented by players. We also identi�ed the
evolution of these strategies during gameplay along with invariants between
players. We continued using unsupervised methods of analysis to segment our
data into homogeneous groups. We tried to identify the strategy of the player
corresponding to a given situation. We saw that we are, to some extent, able to
perform this clustering automatically. However, we evoked reservations about
the applicability of this method. Then we used supervised learning techniques
to reproduce part of the behavior (low level actions). To carry out this task,
we �rst annotated game sequences with a semi-automatic method using rules.
Each identically annotated sequence was then used as training data for the
regression algorithms tested. We evaluated the performance of each algorithm.
We used a classi�cation algorithm in order to choose the most appropriate low
level action to execute, thus producing the overall behavior. Subsequently,
we used Orion to implement a bot for the game Unreal Tournament 3. We
started by implementing the Chameleon model (Tencé, 2011) with Orion.
Then, we proposed an improvement of the Chameleon method to learn the
environment automatically. Still using our model, we used that improvement
to make the bot movements more in line with those of a human player. We
also learned aiming and close combat behaviors through supervised learning
techniques. Finally, we implemented the overall behavior using the Orion
BT, integrating ad hoc features in order to manage aspects of behavior that
have not be learned automatically.

5.2 Discussion

In this section, we discuss the contributions and weaknesses of our proposal.

5.2.1 Contributions

5.2.1.1 Data Mining Tool

This thesis was conducted in order to o�er a �exible solution to designing
AI in video games based on data from real players. Data mining seemed to
us to be a �eld of research which could provide many useful techniques in
this context. We therefore had to implement and test a large number of these
techniques and to provide a general tool for Data Mining, similar to software
like WEKA, Orange Data Mining or ELKI. While the primary reason for
these implementations (rather than using one of these programs) was to obtain
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deeper insight into these techniques, it soon became clear that these tools do
not allow for the addition of semantics to data. Datasets are usually limited
to a set of discrete or continuous attributes. However, it seemed important
to rely on data semantics. First, because using semantics makes it possible
to visualize this data in a more understandable way. Furthermore, some data
transformations are only applicable to data with speci�c semantics. Existing
tools do not o�er e�cient means of data visualization. This therefore led us
to develop a model with advanced visualization abilities. By using our tool, it
is now possible to represent a wider variety of data. Finally, this tool o�ers an
abstraction of tasks that are achievable through Data Mining techniques.

5.2.1.2 Behavior Tree with Data Mining Possibilities

The behavioral model of Orion aims to complement the Chameleon

model (Tencé, 2011). One of the main �aws of Chameleon was the poor
accuracy of low-level actions. This model used only discrete data, so it was
not possible to accurately model behaviors such as that of targeting the enemy
in UT3. This is because perceptions and actions were discrete and therefore
the expressiveness was limited to actions like slightly turning to the left or
right, going forward or backward, etc. Under these conditions, the resulting
behavior was not able to accurately track the target. By using Data Mining,
our model makes it possible to learn these behaviors much more reliably.

Our behavioral model is based on the Behavior Trees. This way, the behavior
designer has complete freedom to achieve goal-oriented behavior. The integra-
tion of standard problem-solving algorithms such as path �nding is available
in our model. Low-level actions such as targeting behavior or evasion maneu-
vers can be learned instead of being hard-coded, thus signi�cantly reducing
the workload and saving time. Furthermore, our model proposes an online
learning mechanism.

5.2.1.3 Environment Learning Improvement

In the Chameleon model, the environment learning mechanism consisted
of vector quantization using the SGNG algorithm. Using this algorithm it was
possible to learn the environment's navigation graph online. This navigation
graph allows the agent to �nd its way through the environment, but does
not provide any information about how to actually perform the movement.
For example, UT3 players arriving at the corner of a hallway generally use
a lateral displacement (stra�ng) to see the end of the corridor and detect
potential enemies as quickly as possible. Another example is jumping over a
ravine. The navigation graph does not give any information about the need to
jump in order to move from one platform to another. So we added velocity and
orientation information to the learning process through the SGNG algorithm.
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This information can help �ll these gaps. Using all these data (positions,
orientations and velocities) with the KNN algorithm, it was possible to obtain
movements that reproduce the stra�ng behavior of the human players at the
turn points of the corridors.

5.2.2 Weaknesses

The proposals in this thesis are still far from providing a complete solu-
tion for data mining and learning by imitation and minimizing the workload
needed for its implementation e�ectively. In this section, we present the main
shortcomings of our work.

5.2.2.1 Data Mining

While Orion tries to structure the Data Mining techniques by providing
a level of abstraction of these methods, we believe it would be better if this
structure were more in-depth. As we have seen, Data Mining is a very broad
and multidisciplinary �eld. While our model is not su�ciently �t for all the
problems encountered in Data Mining, we identify a series of possible improve-
ments to Orion. In Orion, we do not model the parameters of algorithms;
in fact, we use Java introspection mechanisms to o�er one of these settings
to the user by using the GUI. Yet, such modeling would facilitate the auto-
matic search for optimal parameters and provide non-expert users with more
information in order to better select these parameters.

Orion does not organize the �ow of data processing as is possible in Orange
Data Mining. This tool indeed o�ers a user-friendly interface for de�ning the
processing sequence to be done. This kind of approach is commonly included
in many tools such as in the 3D modeling software, Blender 2. This is an
important shortfall in Orion.

5.2.2.2 Behavioral Model

We chose the BT model as the basis of our behavioral model. This is a
deliberate choice insofar as this model is both very �exible and that it enables
a representation of the behavior that is easier to handle. But the BTs are
a programming paradigm. Therefore, our model can currently only be used
by experts with programming skills. Developing a behavior still requires a
signi�cant e�ort, although the proposed extension of the model does, to some
extent, decrease it. We hope that our proposals o�er a progression toward the
�nal goal which is automatic and complete learning of a behavior from the
traces of a human. However, our model is still far from performing it.

2http://www.blender.org/
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To achieve this goal, the low-level actions in the traces must be identi�ed au-
tomatically. In our applications, this task was performed by an expert or using
learning scenarios containing only traces of these low-level actions. However,
Data Mining techniques can be used to perform this task. We have obtained
encouraging results in splitting sequences of gameplay in Pong but we were
not able to provide usable results.

Finally, while the use of human player traces is an essential source of data to
reach our goal, we have not considered other data sources. It seems reasonable
to assume that a particular player attempts to win when playing a game. How-
ever, our model does not take performance into account. Behavior resulting
from learning should be as good as the �teacher� player and, consequently, the
performance of the resulting behavior should be taken into account in learning.

5.2.2.3 Evaluation

The applications on which we used our model are relatively simple. Pong

has been very useful for testing our model on a case that does not require major
expressiveness. Our application on UT3 was mostly to show the integration
of Chameleon within our architecture. This application has also allowed us
to demonstrate that it was possible to enrich this model with more traditional
AI methods and the use of learning methods to achieve low-level behaviors. It
would nonetheless be interesting to use Orion for a more ambitious applica-
tion. In addition, the behaviors we made have not been evaluated. A study
of the believability of obtained behaviors and the development time saved by
using our model, are still necessary.
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5.3 Future Work

The limits of Orion, identi�ed in section 5.2.2, led us to suggest ways in
which our model could be improved. The proposed improvements are identi�ed
in green in �gure 5.1 within the Orion work�ow.
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Figure 5.1: Future Work (green) represented in the Orion Work�ow

5.3.1 Data Mining

Our implementation of the structural model of Orion could be greatly im-
proved with �ner modeling of Data Mining techniques. Modeling algorithm
parameters would provide additional information, in order to automatically
search for optimal values of these parameters during a classi�cation or regres-
sion process. Such research may be performed by optimization techniques such
as simulated annealing or a genetic algorithm for example. By observing the
existing tools such as WEKA, it appears to us that the use of Data Mining
tools is quite complex when users are unfamiliar with the algorithms they try
to use. Better modeling of algorithm parameters would therefore provide more
relevant information to the user about their meaning, generally acceptable val-
ues, their in�uence on the result, and provide a more educational tool.

Also with a view to improving the educational qualities of Orion, it would
be interesting to propose a step by step execution of the iterative algorithms
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implemented. This would provide, on the one hand, a better understanding of
the algorithm process to non-specialist users, and on the other hand, it would
facilitate the choice of some parameters. Moreover, Orion does not currently
provide prediction visualization abilities. It would be an interesting feature
to be able to graphically specify the input and to see the prediction results.
As an example, using the movement regression we proposed in UT3, the user
would graphically specify the position and the direction of the bot and be able
to visualize the resulting velocity and orientation.

5.3.2 Behavior Model

Many issues still need to be resolved before our behavioral model can auto-
matically and completely learn both credible and e�ective behaviors without
human intervention. The �rst opportunity for improvement is probably auto-
matic identi�cation of low-level behavior in the traces of the player. Temporal
clustering is a di�cult task but work done as part of the video segmentation,
such as that of (Nguyen, 2012), seems to provide good results. While we have
not been able to e�ectively adapt these techniques to our situations, it nev-
ertheless seems to us that some results are encouraging and that it is worth
pursuing.

The addition of a reinforcement learning mechanism to our model seems to
be a possible avenue for improvement. Taking into account the performance
of the behavior seems a very useful source of information in order to obtain
more convincing behavior. However, the choices made during this thesis do
not directly support such an integration. It is therefore possible that some
proposals in this thesis should be challenged in order to accommodate this
change.

Finally, an automatic construction of BTs could be seen as one of the last
steps required for creating a behavior by using traces and without human
intervention. But this task still seems di�cult to access and therefore seems
to be a distant prospect of improvement.

5.3.3 Evaluation

Finally, this research aims to address the problem of creating believable
virtual characters (Buche, 2012) in video games. Believability is very com-
plex and subjective. According to Thomas and Johnston, two major Disney
animators, the objective of believable characters is to give the illusion of life
(Johnston and Thomas, 1981). Reidl's de�nition is more accurate: "Character
believability refers to numerous elements that allow a character to achieve the
�illusion of life�, including but not limited to personality, emotion, intentional-
ity, and physiology and physiological movement" (Riedl and Young, 2005, p.2).
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Loyall believes that such a character "provides a convincing portrayal of the
personality they [the spectators] expect or come to expect" (Loyall, 1997). If
we want to apply the de�nition of believability to video games, things become
even more complex. Players can be incarnated into avatars and can interact.

The issue of believability is to procure the illusion that the virtual play-
ers are controlled by a human player (Livingstone, 2006). As believability is
subjective, evaluation is a crucial and complex step. The Turing test is still
considered as a reference benchmark to evaluate believability (Turing, 1950).
In its standard interpretation, a judge should discuss with either a human or
a machine using only text. If after a certain period of time, the judge cannot
tell if the entity is arti�cial or not, the machine is said to have passed the test.

The objective of this test was to evaluate intelligence, but it was much
criticized (Searle, 1980; Hayes and Ford, 1995). This criticism, however, is not
about believability. Many parameters in believability evaluation methods have
to be set (Mac Namee, 2004; Livingstone, 2006), for example the number of
questions/answers. The Turing test has only one question and one yes/no an-
swer while others have many questions and graduated responses. The original
choice may be too restrictive and the others may lead to uncertain responses.
Another problem is the calculation of the overall score of believability because,
in case of multiple questions, experimenters can in�uence the results. To add
more objectivity, it is possible to have a relative notation of the score of the
participant ("Is participant A more believable than participant B?"). It is
also necessary to decide whether the judges participate in the gameplay or are
just spectators. While players can actively test evaluated characters, view-
ers are more focused on the entities to evaluate and may notice more details
in behavior. Finally, the choice of judges is particularly important. Cultural
background (Mac Namee, 2004) and experience level (Bossard et al., 2009) may
have a signi�cant impact on believability scores. Such a complex study there-
fore needs to be carried out by psychologists, since such evaluation involves
humans and their feelings about the observed behavior.

5.4 Publications

This section presents the articles published as part of this thesis.

• Tencé, F., Gaubert, L., Soler, J., De Loor, P., & Buche, C. (2013).
Stable growing eural gas: A topology learning algorithm based on player
tracking in video games. Applied Soft Computing, 13(10), 4174�4184.

• Tencé, F., Gaubert, L., Soler, J., De Loor, P., & Buche, C. (2013).
Chameleon: Online learning for believable behaviors based on humans
imitation in computer games. Computer Animation and Virtual Worlds,
24(5), 477�496.
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• Soler J., Tencé F., Gaubert L., & Buche C. (2013). Data Clustering
and Similarity. In Proceedings of the Twenty-Sixth International Florida
Arti�cial Intelligence Research Society Conference (pp. 492 � 495).
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Appendix A

Data Clustering and Similarity

This appendix was published in
the 26th International Florida
Arti�cial Intelligence Research
Society Conference

FLAIRS'13

A.1 Introduction

Data clustering is an important part of data mining. This technique is used in
many �elds such as biological data analysis or image segmentation. The aim
is to identify groups of data known as clusters, in which the data are similar.

E�ective clustering maximizes intra-cluster similarities and minimizes inter-
cluster similarities (Chen et al., 1996). Before de�ning inter- and intra-cluster
similarities, �rst we must de�ne the similarity between a data pair. There are
many di�erent ways of de�ning these similarities and depending on the chosen
method, the results of the cluster analysis may strongly di�er.

So how can we reliably choose one de�nition over another? The aim of this
article is to provide clues in order to answer this question by studying di�er-
ent de�nitions of similarity. We will study the following elements separately:
distance between two pieces of data and inter-and intra-cluster distances.

In section A.2, we will discuss the notion of distance between two pieces of
data. We shall examine di�erent distances which can be used in the majority
of clustering algorithms and their relevance depending on the problem at hand.
We shall see in section A.3 how the use of di�erent inter/intra-cluster distances
can dote the resulting clusters with certain properties. Finally, we will discuss
how our study might be of merit for unresolved issues.
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A.2 Data Similarity

Generally speaking, data similarity is evaluated using the notion of distance.
In this section, we will de�ne the notion of distance. First, we shall identify
the mathematical properties required in clustering. Then we will turn to the
way in which the distances can exploit the distribution of the data to be
clustered. We will also see that certain metrics are more appropriate in high-
dimensional spaces. We shall also see that it is possible to better separate
data by expressing the data within another space, thus increasing the contrast
between the distances.

A.2.1 Mathematical Properties

Formally, a distance on a set E (in our case, E will be a vector space) is
de�ned as an application:
d : E× E→ R+ with the following properties:

• Symmetry: ∀x, y ∈ E, d(x, y) = d(y, x)

• Separation: ∀x, y ∈ E, d(x, y) = 0⇔ x = y

• Triangular inequality: ∀x, y, z ∈ E, d(x, z) ≤ d(x, y) + d(y, z)

Examples of distances along with their de�nitions are presented in Table A.1.
Distances which correspond to this de�nition alone are not necessarily the

best solution for accurately clustering the data. Indeed, such a distance may
not necessarily be stable by translation, for example (d(x + a, y + a) 6=
d(x, y)). For this reason, most of the distances used stem from the notion
of the norm (the distance is thus expressed by d(x, y) = ‖x − y‖), with
the addition of the property of homogeneity (‖ku‖ = |k| ∗ ‖u‖). Moreover,
certain norms derive from a scalar product (by ‖x‖ =

√
x · x). and therefore

have other additional properties. For instance, it is possible to show that the
barycenter of N points is the point which minimizes the squares of the distances
to these points. This is a very useful property in the �eld of cluster analysis.
The Euclidean distance stems from the L2 norm, itself de�ned by the usual
scalar product. They thus possess all of these properties.

It is nonetheless possible to use functions which do not even meet the
criteria of distance de�nition. This is true for example in the case of Minkowski
distances when p < 1, which do not satisfy for triangular inequality. It is
therefore necessary to check that the chosen algorithm converges without this
property.

A.2.2 Data Distribution

Distances such as Euclidean distance or Minkowski distances are independent
of the data they are used to compare. However the scales of the dimensions
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Manhattan d(x, y) =
∑n
i=1 |xi − yi|

Euclidean d(x, y) = (
∑n
i=1(xi − yi)2)

1
2

Euclidean, Standardized d(x, y) = (
∑n
i=1

(xi−yi)2
σ2
i

)
1
2

Minkowski d(x, y) = (
∑n
i=1 |xi − yi|p)

1
p , p ≥ 1

Chebyshev d(x, y) = lim
p→∞

(
∑n
i=1 |xi − yi|p)

1
p

Mahalanobis d(x, y) = ((x − y)TS−1(x − y))
1
2 where S

denotes the covariance matrix of the dataset.

Table A.1: De�ning Di�erent Distances

are not necessarily comparable. Therefore, when dealing with data relating to
a person, for example, the units of age and height are not commensurate. By
using the Euclidean distance, data clustering does not discriminate between
people according to age alone, because an age di�erence of one year is as big
a di�erence as a height variation of one meter. The standardized Euclidean
distance is much more suited, as when considering each dimension it divides its
value by its variance. If we look at this in more detail, using the same example,
height and age are correlated dimensions. This correlation carries additional
information which can be taken into account. The Mahalanobis distance uses
the covariance matrix of the data, thus exploiting the correlation and the
variance between the data. However, it is possible for one of the dimensions to
be proportional to another. This dimension thus becomes redundant. In such
cases, the eigenvalues of the covariance matrix are null, and the Mahalanobis
distance therefore cannot be calculated. It is possible to conduct a principal
component analysis in order to detect these correlated data and to ignore them.
It is interesting to note that the standardized Euclidean distance of the data
projected in the eigenspace is equal to the Mahalanobis distance.

Figure A.1 depicts image clustering conducted with a randomly initialized
k-means algorithm with three centroids by using various distances. The input
data for each pixel is its coordinates in x and y along with its red, green and
blue color (thus a 5-dimensional vector space). For each distance function, the
algorithm was run three times and the most convincing result (as chosen by
a human) was retained. We can see the e�ectiveness of Mahalanobis distance
and standardized Euclidean distance compared with other distances.

A.2.3 The Curse of Dimensionality

When the data originate from a high-dimensional space, we face a problem
known as the curse of dimensionality. Dimension reduction is possible by con-
ducting a principal component analysis and retaining only the most signi�cant
dimensions. However, this method discards some of the information. A behav-
ioral study of the Minkowski distances on high-dimensional spaces (Aggarwal
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Figure A.1: Illustration of the importance of the distance function on clustering. (a)
Image to be clustered, (b) Manhattan Distance, (c) Euclidean Distance, (d) Standard-
ized Euclidean Distance, (e) Minkowski Distance (p=20), (f) Mahalanobis Distance

et al., 2001) shows that the p-distances for a high p-value only exacerbates
the problem. As we have already explained, the fractional p-distances are not
distances in the formal sense; despite this fact, they can be used to accentuate
relative contrast between data. Indeed, they tend to group data together and
therefore reduce the curse of dimensionality e�ect. The Manhattan distance
has the advantage of both having triangular inequality and o�ering better data
contrast than Euclidean distance. Furthermore, it is interesting to note in Fig-
ure A.1, that the clustering calculated with the Manhattan distance does not
divide the image into three equal parts, as in the cases of the Euclidean and
Minkowski distances with p = 20. The clustering seems better than any reg-
ular p-distance (Figure A.1: b., c. and e.). Figure A.2 shows the same image
clustered using a fractional p-distance (p=0.2).

A.2.4 Data Separation

Although the curse of dimensionality poses serious problems, processing data
with high dimensions also has the advantage that the data are easier to sep-
arate. In the majority of cases, N+1 data with N dimensions are linearly
separable. In addition, Mercer's theorem (Mercer, 1909) can be used, with
a mathematical trick (the kernel trick), to describe the data in a potentially
in�nite dimensional space. This trick is used especially in classi�cation or re-
gression, particularly in SVMs (Vapnik et al., 1996). However it can also be
used to conduct a kernel principal component analysis (Schölkopf et al., 1998).
This technique makes it possible to express the data in a higher-dimensional
space, in an orthogonal base. Data which are not linearly separable in the
initial space become so after being retranscribed in the space created by this
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Figure A.2: The �ower image clustered using a fractional (0.2) p-distance

Cluster 1 Cluster 2 Cluster 3
Iris-virginica 31 0 19
Iris-setosa 0 50 0
Iris-versicolor 9 0 41

Iris-virginica 48 0 2
Iris-setosa 0 50 0
Iris-versicolor 4 0 46

Table A.2: Matching matrices for the iris data clustering. Top: with the
Mahalanobis distance; Below: with the standardized Euclidean distance after
a kernel PCA

technique. The main drawback is that the diagonalization of aM×M matrix
needs to be calculated, where M denotes the number of pieces of data to be
clustered. Table A.2 presents clustering conducted by a k-means algorithm
on the well-known database of UCI iris data using the standardized Euclidean
distance of the data as expressed by a linear PCA and a kernel PCA. A k-
means algorithm was used and run 3 times, and the best result is presented in
this table.

A.2.5 Summary

We have discussed certain properties of common distances. Table A.3 presents
the properties of these distances. Mahalanobis distance seems to be an appro-
priate choice when the dimension number remains reasonable.
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Distance Property

Manhattan Relatively good data contrast in high di-
mensions

Euclidean The barycenter minimizes the sum of the
squares of the distances

Standardized Euclidean The barycenter minimizes the sum of
squares of the distances, Uses part of the
data distribution

Minkowski p < 1 No triangular inequality, Good data con-
trast in high dimensions

Mahalanobis The barycenter minimizes the sum of
squares of the distances, Uses data corre-
lation

Table A.3: Summary of the properties of the most common distances

Single linkage min(d(x, y)), x ∈ A, y ∈ B
Complete linkage max(d(x, y)), x ∈ A, y ∈ B
UPGMA or Average dis-
tance

1
|A|·|B|

∑
x∈A

∑
y∈B d(x, y)

Average linkage (varia-
tion)

d(µA, µB) where µA and µB are the arith-
metic means of the clusters

Table A.4: Common inter-cluster distances

A.3 Cluster Similarity

Once the notion of similarity between the data is de�ned, similarity of data
in one cluster (intra-cluster similarity) and similarity between clusters (inter-
cluster similarity) must also be clari�ed. Tables A.4 and A.5 present the most
commonly used inter/intra-cluster distances. Indeed, these metrics are used
by algorithms such as hierarchical clustering. Ascending (or agglomerative)
hierarchical clustering iteratively groups together clusters with the greatest
similarity (inter-cluster similarity). The result of the clustering is strongly
in�uenced by the choice of this metric. But these metrics also serve to evaluate
clustering quality. This evaluation can be used as a stopping criteria, or to
choose the parameters of the chosen algorithm (such as the number of clusters
for a k-means algorithm for example). In this section, we discuss the impact
the choice of metric can have on clustering.

A.3.1 Outlying Data

In most real problems, the dataset includes outliers. They can be caused by
a defective sensor or a typing error for example. The presence of such data,
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Radius
max(d(x, µA) where µA is the arithmetic
mean of A

Radius (variation)
1
|A|

∑
x∈A d(x, µA) where µA is the arith-

metic mean of A
Diameter max(d(x, y)), x ∈ A, y ∈ A, x 6= y

Diameter (variation) 1
|A|·(|A|−1)

∑
x∈A

∑
y∈A d(x, y)

Table A.5: Common intra-cluster distances

Figure A.3: Comparison of common inter-cluster distance for hierarchical clustering
on a dataset containing outlying data. The �rst column corresponds to single linkage,
the second to complete linkage and the third to average linkage

even if there are very few, can greatly in�uence the inter- and intra-cluster
distances. Figure A.3 illustrates these variations, with clustering conducted
using SLINK (Sibson, 1973), CLINK (Defays, 1977) and UPGMA. The �rst
row shows that de�ning the distance by the arithmetic mean of distances be-
tween the data of the two groups is much more robust than using the minimum
distances of the closest data (SLINK) or the furthest data (CLINK). Indeed,
outliers have a tendency to increase intra-cluster distances and decrease inter-
cluster distances.

A.3.2 Cluster Shapes

Intra- and inter-cluster distances also in�uence the shapes of clusters. Of
course, the de�nition of a radius or a diameter for a cluster implies that the
cluster is spherical. This hypothesis can be satisfactory for certain problems
but not for every case. Figure A.4 illustrates the in�uence of inter-cluster
distance of hierarchical data clustering with clusters of various shapes. In this
example, only SLINK calculates the clusters satisfactorily.

A.3.3 Size and Density of Heterogeneous Clusters

Figure A.5 illustrates the in�uence of inter-cluster distance of hierarchical clus-
tering of data with clusters of various sizes. It can be seen that CLINK has
di�culty clustering this type of data.
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Figure A.4: Comparison of common inter-cluster distance for hierarchical clustering
with clusters of various shapes. The �rst column corresponds to single linkage, the
second to complete linkage and the third to average linkage

Figure A.5: Comparison of common inter-cluster distance for hierarchical clustering
with clusters of various sizes. The �rst column corresponds to single linkage, the
second to complete linkage and the third to average linkage

The CHAMELEON (Karypis et al., 1999) algorithm o�ers a measurement
of cluster similarity which better accounts for the individuality of the data. It
consists to construct a k-nearest neighbors graph of the data and uses the no-
tions of relative inter connectivity and relative closeness of two clusters. These
two aspects are de�ned as functions of the clusters's internal connections and
connections between two clusters in the KNN graph. This makes it possible to
account for data size and density, for example in order not to systematically
group together the small low-density clusters into large, dense clusters.

A.4 Temporal Series Similarity

Temporal data analysis is important in �elds as diverse as economics, me-
teorology, speech recognition, movement recognition or even the recognition
of handwriting. In this section, we identify the principal di�culties involved
by mesuring similarities between time series and discuss about some solutions
proposed to handle them during last past decennies.

A.4.1 Time Wraping

A naive approach to de�ning distance between two temporal sequences is sim-
ply to take the sum of the distances of each piece of constituent data. But in
such cases both sequences must be of the same size and the calculated distance
is not necessarily relevant. In the �eld of automatic voice recognition for ex-
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Figure A.6: Alignment between two temporal sequences

ample, the same sentence can be spoken with a completely di�erent temporal
dynamic which yields a great di�erence between sequences even if they rep-
resent the same sentence. It is therefore expected that solutions in this �eld
have been suggested, such as Dynamic Time Warping (DTW). This approach
aligns the data of each sequence in order to minimize the distance between the
data Berndt and Cli�ord (1994). The distance is then de�ned as the sum of
the distances of aligned data. Figure A.6 depicts an illustration of an align-
ment between two temporal sequences. Both time and space complexity of
this algorithm is O(n∗m) where n andm are the sizes of the two sequences.
This can be problematic with large sequences but some less accurate imple-
mentations with linear time and space complexity can be used Salvador and
Chan (2007).

A.4.2 Translation and Scale

When comparing time series, the information consist in both the data and
their positions in the sequence. DTW allows to take into account the relative
position of the data within the compared sequences, while comparing absolute
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values of the data. When comparing two instances of the same movement made
by a person, for example, this movement can be performed with varying am-
plitude. Two di�erent movements of comparable magnitude provide a smaller
DTW distance than two identical movements of di�erent amplitude. This also
holds true for position. The distance of the two identical trajectories of the
mouse cursor done in a di�erent location on the screen is equal to the distance
between two points of the trajectory multiplied by the number of points of the
trajectory. However, these di�erences are insigni�cant for this type of prob-
lem, so it is possible to normalize the data between -1 and 1 Agrawal et al.
(1995). Another proposition Bollobás et al. (1997) Das et al. (1997) is to use
a linear transformation between the 2 sequences. The key idea is to compute
similarity between time seriesX and Y using a linear function mapping. This
approach tries to minimize d(X,F(Y )) where F is a linear function with
f(y) = ax + b for all data within a sequence. Figure A.7 shows a better
temporal alignment using this kind of approach than with regular DTW. The
distance is also much lower.

Figure A.7: Left: DTW mapping between 2 time series. Right: translation
and scale DTW mapping

A.5 Discussion

In this article, we have discussed the di�erent aspects to be taken into account
when choosing metrics for data clustering. We have shown how the properties
of the most common distances lead to a better support of many speci�c prob-
lems such as size, density, shape of the clusters, or the curse of dimensionality.

These distances are used in most of the clustering algorithms, whether cen-
troids based algorithms as k-means, neural networks such as self-organizing
map (Kohonen, 1982), Growing Cells Structure or Growing neural gas net-
work (Fritzke, 1995a), density based approach as DBSCAN (Ester et al., 1996)
or OPTICS (Ankerst et al., 1999), or agglomerative hierarchical algorithms.
Again, the choice of the best suited algorithm to the problem is not triv-
ial and a thorough study of the characteristics of these di�erent approaches
would be helpful. There is indeed no universal clustering algorithm achieving
good quality partitioning whatever the problem. In addition, these algorithms
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generally require parameters to be set correctly. Setting these parameters is a
particularly di�cult problem of data partitioning, because unlike classi�cation
problems, we do not have labels indicating the �solution� which would allow
one to perform a cross-validation to adjust settings.

Finally, the di�culty to �nd the main speci�cities of a given problem (size,
density, linear separation of clusters etc.) raises the issue already extensively
discussed on visualization of high-dimensional data.
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Chameleon Model IO

B.1 Inputs

B.1.1 High Level Stimuli

CurrentWeaponAmmo

NONE (<10%)
LOW(>10%)

MEDIUM(>40%)
HIGH(>70%)

CurrentWeapon

SHIELD GUN
ASSAULT RIFLE

BIO RIFLE
ONS MINE LAYER
SHOCK RIFLE

MINIGUN
LINK GUN

FLAK CANNON
ONS GRENADE LAUNCHER

ROCKET LAUNCHER
ONS AVRIL

LIGHTNING GUN
SNIPER RIFLE
REDEEMER

LifeArmor
LOW (<80)

MEDIUM (>80)
HIGH (>150)

NumberOfEnemies

ZERO
ONE
TWO

THREE OR MORE

TakeDamage
TRUE
FALSE

Table B.1: Inputs speci�cations
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APPENDIX B. CHAMELEON MODEL IO

B.1.2 Point of Interest

Yaw

FARLEFT (<-7000)
LEFT

CENTER
RIGHT

FARRIGHT (>7000)

Pitch
TOP (>2000)
CENTER

BOTTOM (<-2000)

Distance
CLOSE (<200)

MEDIUM (<1500)
FAR (>=1500)

YawSpeed

FARLEFT (<-10000)
LEFT (<-2000)

NONE
RIGHT (>2000)

FARRIGHT (>1000)

PitchSpeed
TOP (>500)

NONE
BOTTOM (<-500)

Table B.2: Points of Interest Attributes

B.2 Outputs

B.2.1 Re�ective Actions

ChangeWeapon

SHIELD GUN
ASSAULT RIFLE

BIO RIFLE
ONS MINE LAYER
SHOCK RIFLE

MINIGUN
LINK GUN

FLAK CANNON
ONS GRENADE LAUNCHER

ROCKET LAUNCHER
ONS AVRIL

LIGHTNING GUN
SNIPER RIFLE
REDEEMER

Table B.3: Points of Interest Attributes
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B.2. OUTPUTS

B.2.2 External Actions

Yaw

FARLEFT
LEFT

CENTER
RIGHT

FARRIGHT

Pitch
TOP

CENTER
BOTTOM

Run
NORUN

FORWARD
BACKWARD

Shoot
STOPFIRE

FIRE
ALTFIRE

Strafe
NOSTRAFE

RIGHT
LEFT

Jump
NOJUMP
JUMP

DOUBLEJUMP

Table B.4: Points of Interest Attributes
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Abstract

This thesis aims to design a behavior model for controlling entities in video
games.

The needs of the games industry are constantly changing, partially due to
increased computing capacity and diversi�cation of platforms to run games.
In the �eld of arti�cial intelligence, we identi�ed in chapter 1, the di�erent
needs of the industry in this area. We believe that the design of a functional
and e�cient imitation learning solution would cover most of these needs. In
chapter 2, we saw that Data mining techniques can be very useful to o�er such a
solution. However, for now, these techniques are not su�cient to automatically
build a complete behavior which would be usable in modern video games. In
chapter 3, we propose a generic model to learn behaviors by imitating human
players: Orion. This model is composed of two parts, a structural model and
a behavioral model. The structural model proposes a data mining framework,
abstracting the di�erent methods used in this �eld of research, to build a
general purpose tool with better visualization possibilities than other existing
data mining tools. The behavioral model is designed to integrate data mining
techniques within a more general architecture. In chapter 4, we illustrate
how we used our model by implementing behavior of Pong players and Unreal
Tournament 3 using Orion.

However, the proposed solutions are based on a pragmatic approach. Our
model is very �exible indeed to allow more traditional behavior designs while
the use of advanced learning techniques is also available. In chapter 5, we iden-
tify possible improvements, both of our data mining tool and our behavioral
model. Our data mining tool can be improved by more �nely modeling Data
Mining techniques and by o�ering a more educational approach. Our behav-
ioral model can be improved in a number of ways: automatic identi�cation of
homogeneous sequences by a better time series clustering method, performance
based learning and even ideally, automatic construction of Behavior Trees.
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