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General Introduction

Biological imaging for medical diagnosis is nowadays still typically based on histopathology after

a resection of tissues, consisting in the analysis of specimens with bulky bench-top (and often ex-

pensive) optical instruments. Despite its efficiency, this approach is limited by sampling errors,

processing costs, preparation time and thus, by the amount of tissue that can be analyzed. More-

over, artifacts such as tissue sectioning, paraffin embedding and histochemical staining can widely

affect the accuracy of diagnosis. In the medical research framework, this also constrains to the

examination of tissues out of context, or post-mortem samples preventing longitudinal studies.

Consequently, there is a strong need for real time in vivo imaging in order to refine diagnosis

tools. To be applied in pathologic conditions, new methods based on small devices presenting sub-

cellular resolution are currently developed. Among all the different methods, optical microscopes

are extensively employed and within them, a particularly interesting method is confocal microscopy.

Confocal microscopy is a powerful imaging technique especially adapted to in vivo imaging, due

to its capability to perform high resolution imaging and optical sectioning in both reflectance and

fluorescence modes. Reflectance imaging is well suited for non-invasive diagnosis since extrinsic

contrast agents are not required. Whereas reflectance imaging provides information on cell and

tissue micro-morphology, fluorescence imaging allows the study of cell function by using targeted

fluorescent probes and dyes. Both methods can provide clear images from optically thick biological

tissues with sub-cellular resolution. Thanks to a “pinhole” placed in between the objective lens and

the detector, confocal microscopy rejects out of focus light and detects backscattered photons only

from a tiny focal volume within the tissue to be measured. Hence, it is necessary to move the point

source with respect to the specimen in order to collect a full image. Despite advantages of confocal

imaging, in vivo applications have been constrained by bulk optics. Consequently, as it is shown

with this example of biological imaging, size reduction and portability of confocal imaging systems

1



General Introduction

are desired. This is also the case for applications such as handheld micro total analysis systems.

One way to achieve such miniaturization is to rely on MEMS and MOEMS technologies. They

are based on wafer-level microfabrication that allows generation of micro-actuators and/or micro-

optical components such as microlenses, micromirrors and miniature beam-splitters. Moreover,

since planar wafer-level technology is used, components can be fabricated in dense arrays and many

identical systems can be produced in parallel. Consequently, such characteristic of batch microma-

chining approach can reduce significantly the cost of the final device if large volume production is

reached and then lead to unanticipated applications. Moreover, sensor arrays, performing parallel

measurements, could be produced. But if planar technology allows the natural array-ability of the

system, more complex optical systems require additional vertical assembly of the system elements.

During the last three years, I had the opportunity to work in the framework of DWST-DIS (The

Development of multi-Wafer Stacking 3D Technology for Displays and Imaging Microsystems), a

project funded within the Programme Inter Carnot Fraunhofer (PICF) and involving FEMTO-ST

institute and Fraunhofer ENAS (Chemnitz, Germany). This project (October 2010-March 2014)

is aimed at the development of a vertically integrated micro-optical scanner, suitable for a wide

number of imaging systems such as confocal microscopes or optical coherent tomography (OCT)

probes. Within this thesis, focus is mainly on confocal microscopy application.

Then, association of refractive microlenses and MEMS actuators is considered in order to imple-

ment a miniature confocal microscope. One of the most critical obstacles for achieving cost-effective

solutions is the complete integration of such optical microsystems. The integration requires numer-

ous hybrid technologies, positioning with tolerances of few microns, and complex packaging. To

match this ambitious objective, we identified three important challenges: - to develop an appropri-

ate optical design, in order to find the optimal optical architecture based on a stack of microoptical

and MEMS wafers, taking into account optical resolution as well as optical aberrations, - to pro-

pose fabrication technologies for wafers of planar microoptical components adapted to our vertically

integrated optical micro-instrument, and - to investigate technological issues of 3D packaging by

using multi-wafer vertical assembly, combining heterogeneous technologies (microoptical and micro-

machining technologies; glass and silicon technologies).

In consequence, the thesis manuscript concerns optical design and development of a vertically

integrated MEMS-based confocal microscope. Different optical architectures are proposed that aim

2



to combine optimal optical design and the numerous technological constraints linked to the batch

fabrication of the different building blocks. The latter, made by hybrid technologies and packaged

by vertical assembly using multi-wafer bonding, allow the construction of a complete microsystem

for instrumentation. Special emphasis is placed on the minimization of optical aberrations gener-

ated by the different microoptical components to ensure measurements with good resolution.

The manuscript contains five chapters:

Chapter 1 presents the principle of confocal microscopy and declines its different configurations.

It also reviews the state of the art on miniaturization of laser scanning confocal microscopes. In

addition, the principles of MOEMS are introduced along with the approach of vertical multi-wafer

assembly.

The second chapter deals with optical design of the vertically integrated MEMS-based optical

scanner adapted to the application of confocal microscope. The 3D microoptical scanner, which is

based on axial and lateral microlens displacements, is analyzed. Three different configurations are

shown, that differ in difficulty level of technological realization. The first scanner design that relies

on discrete micro-optical components (ball-lenses) is targeted for the preliminary demonstrator of

the integrated scanner. Further two designs are optimized, aiming at improving optical performance,

in order to be better adapted for application of the scanner to confocal microscopy. However, better

optical performance requires high quality optical elements like aspherical microlenses and reflective

micro-objective.

In the Chapter 3, techniques employed for the characterization of micro-optical components

are presented. A method based on direct optical characterization is proposed that allow quality

assessment of high numerical aperture components based on simple experimental set-up and data

interpretation.

Then, the fourth chapter concerns the development of the different building blocks of the mi-

croscope. Namely, we refer to a batch-fabricated cube-typed beamsplitter, different silicon molded

refractive microlenses and a miniature reflective objective. For all the different building blocks,

special attention is paid on the possibility to generate high quality components by batch fabrica-

tion. In particular, three different techniques of silicon etching that allow generation of spherical

geometries, are analyzed. They are the double step anisotropic wet etching, isotropic wet etching

and plasma etching.
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General Introduction

Finally, the Chapter 5 presents a conception of the technological realization of a vertically

integrated optical scanner. Mechanical construction, wafer bonding technology and electrical in-

terconnection technologies are presented. The application of the scanner in a confocal microscope

within hybrid (fiber-optics based) approach is discussed.
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1

Confocal microscopy and challenges of

miniaturization

1.1 Principles of confocal microscopy

Invented in 1957 by Minsky [1] confocal microscopy is an optical imaging technique that relies

on point-by-point image formation. A confocal system is based on a point source imaged by an

illumination objective whereas the light reflected/scattered by the object is imaged by a collection

objective onto a point detector (figure 1.1). The coupled point source and point detection in the

imaging system assure that only single point of the object is imaged. To generate 2D or 3D image

of an object the optical scanning is required to sequentially interrogate the volume of the object.

Indeed, the image is not formed directly by the optical system but has to be reconstructed from

data collected during scanning procedure. Then, point-by-point image formation allows imaging of

thick specimens by reconstruction of 3D images from data obtained by scanning through the volume

of the object.

Scanning microscopy originally targeted the imaging of thick specimens that cannot be well

resolved using conventional microscopes [1, 2]. In the conventional wide-field microscope, the entire

specimen is illuminated through a condenser lens 1.2a and the image can be projected directly onto

detector (photographic film or pixel array detector). However, when a point detector is used instead

of a 2D detector (figure 1.2b), only the response corresponding to a specific point of the specimen is

recorded. The inverse situation is also possible: 2D detector and point illumination (figure 1.2c) also

leads to better imaging of thick specimens. The confocal system can be seen as a combination of two

scanning systems so that both source and detector are scanned simultaneously [3, 4]. The important
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1. CONFOCAL MICROSCOPY AND CHALLENGES OF MINIATURIZATION

ILLUMINATION 
OBJECTIVE

[h1]

CONFOCAL
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OBJECTIVE

[h2]

OBJECT

DETECTOR
LIGHT

SOURCE

Figure 1.1: Working principle of the confocal microscope - Point illumination and point detec-

tion made by pinhole filtering allows 3D imaging of the object.

difference from the point of view of optical architecture of any of this optical systems is different

contribution of illumination and collection blocks into imaging performances of the systems. In the

case of conventional microscopy, the condenser lens has a minor impact onto imaging quality of the

system as for all microscopes where wide-field illumination is used (figure 1.2b). In case of point

illumination system (figure 1.2c) the illumination objective is mostly responsible for optical quality

of the generated image whereas collection lens is of minor importance. In the confocal systems

both objectives (illumination and collection) are equally contributing to the image formation. In

consequence, this “double imaging” leads to an important improvement of imaging performances of

confocal systems in respect to the conventional microscopy.

1.1.1 Image formation

The evaluation of performances of the imaging systems requires a precise model of image formation.

One of the most common method for analysis of optical systems is the point spread function (PSF)

formalism. PSF represents the impulse response of the system, ie, it is a functional (2D or 3D)

representation of an image of a point object generated by the considered optical system. The

image formation of extended objects can be then described by convolution of PSF of the optical

system with the function describing the object interaction with illumination light. The definition

of convolution is given by equation 1.1.

(h ∗ o)(x) =
∫

h(~x′)o(x− x′)dx′ (1.1)

where ∗ represent convolution operator, h and o are convolved functions.
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1.1 Principles of confocal microscopy
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Figure 1.2: Evolution of scanning microscopy - (a) conventional wide-field microscope; (b)

microscope with scanning point detector; and (c) scanning point illumination system. Combination of

(b) and (c) leads to confocal system presented on figure 1.1

The effective PSF of the optical system depends strongly on the configuration of used optical

system. The conventional wide-field microscopes and confocal microscopes build-up using same

optical elements are characterized by different effective PSF’s. The wave nature of light requires

consideration of both an amplitude and phase when considering imaging properties of optical sys-

tems.

Indeed, classical1 imaging system, image formation can be described by a convolution operation

[3, 5]:

Iclassical = |h2|2 ∗ |o|2 (1.2)

1wide-field, incoherent microscopy
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1. CONFOCAL MICROSCOPY AND CHALLENGES OF MINIATURIZATION

where h2 is the amplitude point spread function (PSF) of the imaging lens, ∗ is the convolution

operator, and o represents the object transmitance function.

In case of confocal imaging system, both objectives contribute to the image formation, so that:

Iconfocal = |(h1h2) ∗ o|2 (1.3)

where h1 is the PSF of the illumination lens. Here, it is clearly visible that illumination system

equally contribute to the image formation which is contrary to the conventional microscopy where

h1 does not appear1.

Although, equations 1.2 and 1.3 have similar form - the effective PSF’s of both system is different.

Moreover, the image formation (or convolution realization) is different between the two systems.

In wide-field system the image is generated at once - all points are imaged in parallel, in confocal

system imaging is sequential - point-by-point.

The concept of intensity PSF (IPSF) can be used to make a direct comparison between a wide-

field imager and confocal imager in terms of intensity image recorded by the detector in the case of

imaging a point object. Thus, figure 1.3 shows the resolution improvement offered by confocal system

over conventional wide-field system by comparing intensity response functions of both systems.

1.1.2 Optical Sectioning and 3D Imaging

The potential of confocal microscopy lies in the efficient imaging of thick specimens. When 2D

in-plane scanning is performed, the image obtained within a confocal system is a so-called “optical

section” (z-section) of the specimen. On the one hand, point illumination assures that only a

small volume of the sample is illuminated, on the other hand the point detector collects the light

only within this limited focal volume. In consequence confocal system is characterized by strong

localization of the observation volume.

The confocal detection is performed by a point detector. However, a true point detection can not

be realized physically (the power reaching the detector have to be reasonable), moreover existing

detectors have always finite sizes. In practice, confocal systems often utilize a pinhole filtering to

realize small area detection (figure 1.4). Important issue in the design of confocal microscope is the

choice of the pinhole size. From one hand, the pinhole has to be large enough to transmit enough

signal from the sample to detector. From other hand enlarging the pinhole decrease the confocality

1In here we did make same sort of simplification, precise analysis shows that in wide-field microscopy condenser

lens influence image formation, however this impact is minute comparing to the case of confocal microscopy. Precise

theory of image formation in classical microscopy is given for example in [6].
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Figure 1.3: Comparison of latral IPSF of wide-field and confocal system - Improvement of

the resolution of confocal system visible by narrower IPSF than in case of wide field case.
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Figure 1.4: Optical sectioning - The point illumination assure that only small volume is illuminated

whereas point detection realized by pinhole filtering defines the volume from which signal is collected,

when 2D in-plane scanning is performed, confocal system images specific z-section of thick specimen.

of the system - the observation volume increase (resolution decrease) when too large pinhole is used.

In conclusion, the best performance of confocal system (in terms of optical resolution) is achieved

when pinhole diameter satisfy condition given by equation 1.4 [3].

d <
2.5

π

λ

NAdet

(1.4)
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1. CONFOCAL MICROSCOPY AND CHALLENGES OF MINIATURIZATION

where d is the diameter of the pinhole and NAdet is numerical aperture of the system in the detector

plane (NAdet = sin(θdet)). The resolution of the confocal system is usually anisotropic (different

in axial and lateral directions) (figure 1.5) and is defined by the numerical aperture (NA) of the

objectives and the wavelength of the light source. In the case on symmetric system (same objective

in the collection and illumination blocks θill = θcol) the optical resolution can be expressed as

(equations 1.5-1.6):

δx, ycflfwhm = 0.37
λ

NA
(1.5)

δzcflfwhm = 1.26
λ

nNA2
(1.6)

where λ is working wavelength of the microscope, NA is objective numerical aperture (NA =

nsin(θill)), n is refractive index of object space, δx, ycflfwhm and δzcflfwhm are lateral and axial resolution

respectively.

Figure 1.5: Anisotropic resolution - The XZ cross section of |h|2 in case of ideal objective. The 3D

shape of image of a point object takes form a pot that is elongated in the direction of the propagation axis.

In here example for NA=0.2 is shown for which δfwhm
x = 1.6µm and δfwhm

z = 30µm, if the same optical

system would be used for confocal imaging (|h|4) resolution would be improved to: δfwhm
x = 1.1µm and

δfwhm
z = 20µm.

1.1.3 Different types of confocal microscopes

Many configurations of confocal microscopes have been proposed, each of them adapted to specific

imaging applications. Classical monochromatic modes are used when investigated specimen poses

intrinsic contrast variation due to light absorption or scattering, i.e. structure of the sample can be

analyzed by observation of variation of light intensity caused by absorption/scattering within the
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1.1 Principles of confocal microscopy

sample. However, in case of many biological specimens where sample contrast is low (sample weakly

absorbs/scatters the light), fluorescence technique is often employed. In the fluorescence systems,

illumination wave λil excite the specific molecules in the sample that emits fluorescence signal at

different wavelength λem that is observed by the microscope. Fluorescence system can be divided

into two groups: first one relies on so-called auto-fluorescence of the sample, that is molecules

of the sample are excited to generate the fluorescence signal. In the second group, fluorescence

signal originates from the special marker that sample is labeled with1. The optical architecture

of fluorescence confocal microscope is presented in figure 1.6, from the point of view of optical

implementation the origin of fluorescence does not define the optical configuration, however the

light source and the detection block that have to be adopted to the specific excitation and emission

wavelengths of the observed fluorescence.

OBJECTIVE

CONFOCAL
PINHOLE

DICHROIC
MIRROR

LIGHT
SOURCE

DETECTOR

OBJECT

Figure 1.6: Confocal fluorescence microscope - Fluorescence confocal microscope illumination

(λ1) excite the fluorescence in the sample and only fluorescence signal (λ2) is detected.

The confocal systems can operate in transmission or reflection modes, in the transmission mode

the investigated sample is sandwiched between the illumination and collection objectives (figure 1.1).

In the reflection mode, illumination and collection are performed with the same objective (figure

1.7a), the sample scattering signal being redirected to the detector by a beam splitter located before

the objective.

Reflectance, differential confocal microscopy is a special type of confocal system adapted to

topography measurements of reflective surfaces (figure 1.7b). The concept is based on the high-

sensitivity of confocal response function when the reflective object is located on the slope of axial

1sample labeling sometimes considered as invasive technique, however fluorescent labeling is a common technique

allowing observation desired structures within the specimen, for this reason fluorescence confocal microscopy is a

common tool even when “in-vivo” imaging is performed [7]
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Figure 1.7: Confocal imaging in the reflection mode - (a) the most popular confocal systems are

based on the reflective configuration, (b) differential confocal system - specific design for measurement

of micro/nano-topography of reflective specimens.

response function. This system allows achieving high axial resolution without the need of high

NA objectives. Authors of the method reported [8] 2nm axial resolution using NA=0.85 which is

much above the limit of conventional confocal microscopy given by equation 1.6. This particular

“super-resolution” is due to the specific relation between the signal level (recorded by the detector)

and the sample axial position relatively to illumination focus maximum in case of uniform reflec-

tion/scattering of the sample. In the case of non-uniform sample reflectivity, architectures that

allow monitoring of the varying reflectivity as well as the topography using two detectors in the

collection block has been also proposed [9, 10], leading to similar improvements.

1.2 Imaging Quality: Contrast and Resolution

In this section we discuss basic properties of optical systems in the context of imaging quality. In

particular, optical resolution definitions are reviewed and same specific configuration of confocal

systems aiming at improvement imaging quality are discussed.

1.2.1 Definitions

Resolution of on optical system describes is the ability to resolve fine detail in the object that is

imaged. In practice, several criteria are used to define the resolution of the optical system depending

on the object that is used for investigation of system imaging characteristics. Two cases are mainly

considered, the first class are the so called two-point criteria that defines the resolution on a basis
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1.2 Imaging Quality: Contrast and Resolution

of distinguish-ability of two close point-like objects imaged by the optical system. The second

commonly used formalism is based on frequency domain image analysis. This approach use the

optical transfer function (OTF) formalism to analyze the contrast transfer of spatial frequencies

through optical system. The advantage of this method is its applicability to imaging of extended

objects in contrary to two-point criteria for which resolution is well defined for point-like objects

only.

1.2.1.1 Two-Point Resolution Criteria

The resolution of an optical imaging systems is eventually limited by diffraction effects (related to

the wave nature of light). In the ideal case (aberration-free optics) of axially symmetric system with

circular aperture, image of a point at the focal plane has a form of an Airy disk (eq. 1.7). Then

the size and shape of the point response define the resolution of the optical system.

h(r, z = zf ) =
2J1(v)

v
(1.7)

where λ is the wavelength, v is unit-less radial coordinate defined as v = 2π
λ
rNA, r and z is axial

coordinates respectively, zf is axial focus position, and J1(v) is a Bessel function of the first kind

of order one.

The basic resolution criteria relay on the so called “two points resolution criteria”. This approach

defines the resolution of the system as the smallest distance between two point objects that can be

distinguished (resolved) in the imaging plane of the optical system. Quantification of this rather

imprecise definition was made firstly by Rayleigh [11] and later by Sparrow [12], that leads to two

different resolution criteria. Rayleigh resolution definition is based on the functional shape of the

airy disk, and says that two points can be resolved when distance between them corresponds to the

position of the first dark ring (first zero value) of the Airy disk (figure 1.8a). Sparrow resolution

criteria sometimes called “true limit of resolution” is defined as object separation for which combined

image intensity distribution has two first derivatives equal to zero (figure 1.8c). Finally, the third

criterion which has become one of most the used alternative to Rayleigh and Sparrow criteria is one

based on full width half maximum (FWHM) (figure 1.8c). These different approaches, employed

to define the resolution show that resolution is never the same strictly defined value. Equations

1.8-1.10 show the expressions for resolution defined by the three mentioned criteria. Visibly different

definitions result in resolution values that can differ by more than 20%.
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1. CONFOCAL MICROSCOPY AND CHALLENGES OF MINIATURIZATION

dRayleigh = 0.61
λ

NA
(1.8)

dFWHM = 0.51
λ

NA
(1.9)

dSparrow = 0.48
λ

NA
(1.10)

Rayleigh criterion is directly based on the functional form of focal spot of ideal (aberration free)

incoherent imaging system. Consequently it cannot be directly applied to all optical systems. In

order to extend Rayleigh resolution definition to arbitrary system the contrast value is used (eq.

1.11).

c =
Imax − Imin

Imax + Imin
(1.11)

Where Imax is the peak intensity in the image and Imin is the intensity value at mid distance

between images of the two points. Contrast value can lead to an alternative definition of Rayleigh

resolution expressed as the object separation that produces contrast equal to 26%. Generalization

of resolution criterion based on the image contrast leads to a more general formulation of resolving

power of optical systems. As discussed in [13] a more general way to define the resolution is to

define the detectable contrast and consequently the resolution as: “the distance of two objects at

which a certain contrast is achieved in their image” . Thus the different resolution criteria (for Airy

disk) given by 1.8-1.8 can be rewritten in the contrast frame as (eq. 1.12-1.14):

cRayleigh = 0.26 (1.12)

cSparrow = 0 (1.13)

cFWHM = 0.05 (1.14)

where cname is the contrast value. It can be noted that Sparrow criterion represents the absolute

limit of resolution and in this case the contrast vanishes. The FWHM criterion correspond to a

relatively small value of contrast (5%) in comparison to Rayleigh one that corresponds to 26%.

However, FWHM value is hardly ever translated into contrast values and is used as the first/sim-

plest estimation of resolving power of optical systems basing of the calculated or measured shape

of the system IPSF. It is important to underline that equations 1.8-1.14 describe the relations for

lateral resolution in the case of wide-field incoherent imaging system and do not represent gen-

eral rule between resolution criteria and contrast values in different systems. The contrast based

reinterpretation of two-points resolution criteria allows its use in arbitrary systems. In confocal
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1.2 Imaging Quality: Contrast and Resolution

a) Rayleigh b) FWHM c) Sparrow

0.31−0.31
x [λ/NA]

0.00

1.00

0.74

I
n
te
n
si
ty

[a
.u
.]

0.26−0.26
x [λ/NA]

0.00

1.00
0.96

I
n
te
n
si
ty

[a
.u
.]

−0.24 0.24
x [λ/NA]

0

1

I
n
te
n
si
ty

[a
.u
.]

Figure 1.8: Separation of two points imaged by the conventional microscope in case of separation

distance equal to Rayleigh a), FWHM b) and Sparrow c) separation distances

microscopy, the “double imaging” leads to an increased resolving power so that resolution can be

given as:

dcflRayleigh = 0.44
λ

NA
(1.15)

dcflSparrow = 0.27
λ

NA
(1.16)

dcflFWHM = 0.37
λ

NA
(1.17)

(1.18)

In here, Rayleigh resolution is defined by conserving original 26% contrast, the Sparrow criterion

by definition has the limiting value of zero contrast, whereas the FWHM resolution in case is

characterized by slightly higher contrast (6%) than in wide-field system (5%).

Finally contrast-based resolution definitions (Rayleigh and Sparrow criteria) are considered as

a more general (and more meaningful) definition than shape-based criteria. From one side it is

easily extensible to the case of imaging extended objects and from another side it allows taking

into account other properties of the imaging system that affects imaging quality, like noise, detector

dynamic range or image sampling or optical aberrations [13].

15



1. CONFOCAL MICROSCOPY AND CHALLENGES OF MINIATURIZATION

1.2.1.2 Frequency Domain Resolution Analysis

Another formalism to describe imaging performances employs the modulation transfer function

(MTF) [5, 6, 14]. MTF is the frequency domain representation of impulse response of the optical

system (modulus of Fourier transform of PSF). This method describes imaging quality of extended

objects, and is more general than the two-point resolution criterion used to describe imaging of

point-like objects.

a) b)

0

1

0.00

1.00

0.64

0.36

Figure 1.9: MTF contrast interpretation - Test pattern imaged by optical system, resulted image

has contrast (modulation) dependent of frequency of the object. a) the object - signal with varying period

and its image b) for which contrast decrease with increased frequency. Grid lines in b) correspond to

Rayleigh resolution limit defined by contrast value of 26%.

MTF can be interpreted as value of contrast, in function of spatial frequency, in the case of

imaging of test pattern (figure 1.9). In this context, high frequencies represent fine detail of the

object whereas low and mid frequencies describe slow modulation present in the structure. The

contrast transfer in the region of high frequencies defines the resolution of the system. When

contrast is too low, some information of the object may not be recorded by the detector. Similarly

to the two-point criteria in the frequency domain resolution qualification detection limit can be

defined in different manners.

In addition to contrast-defined resolution limit (ex. by Rayleigh 26% contrast value) important

characteristic of each system is the cut-off frequency. The cut-off frequency is the maximal value

frequency that can be imaged by the system with non-zero contrast (similarly to Sparrow criteria).

In the spatial domain cut-off frequency is equivalent to the Abbe resolution criteria [15] (first
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1.2 Imaging Quality: Contrast and Resolution

resolution limit ever defined) that reads dcut−off = λ
2NA

and dcflcut−off = λ
4NA

for conventional and

confocal microscopes, respectively (figure 1.10). The cut-off frequency or Abbe resolution limit are

often considered as the absolute limit of resolution of classical, far-field, linear imaging systems.

a) b)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x [λ/NA]

0.0

0.2

0.4

0.6

0.8

1.0

I
P
S
F
[a
.u
.]

widefield

confocal

0 2 4
freqxy

[
NA
λ

]

0.000

0.264

1.000

M
T
F
x
y

1.26

1.7

Figure 1.10: Classical wide-field vs confocal imaging system - Lateral resolution comparison

via (a) IPSF and (b) MTF, of confocal microscope (dashed line) and wide field system (solid line). It

is visible that confocal system has higher resolution since MTF reaches higher spatial frequencies than

classical system.

1.2.1.3 Axial resolution

Similar analysis as presented for lateral resolving power can be made to analyze axial resolution.

The axial extension of PSF is defined by equation 1.19 [3].

h(v = 0, u) =
sin

(
u
2

)

u
2

(1.19)

where u is unitless axial coordinate defined as u = 2π
nλ

zNA2, z - is coordinate along propagation

axis with coordinates origin at the focal plane and n is refraction index in the object space. From

this relation is also possible to derive resolution according to different discussed formalism.

δzc=0.26 = 2
nλ

NA2
(1.20)

δzfwhm = 1.26
nλ

NA2
(1.21)

δzcut−off =
nλ

NA2
(1.22)
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1. CONFOCAL MICROSCOPY AND CHALLENGES OF MINIATURIZATION

Equations 1.20-1.22 summarize resolution of confocal system in most useful criteria: δzc=0.26

- Rayleigh 26% contrast, δzfwhm FWHM and δzcut−off cut-off frequency. It is important to note

that axial resolution is always worse than lateral, and that it has faster dependence on numerical

aperture of the system (NA2). The MTF for axial frequencies can be also defined in similar way

that for lateral ones. In this case confocal systems show also improvement comparing to wide field

systems (figure 1.11).
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Figure 1.11: Axial resolution IPSF - Axial resolution analysis in confocal microscope (dashed line)

compared with wide-field system (solid line). (a) IPSF and (b) MTF.

1.2.2 Resolution in non-perfect optical system

In real system resolution is limited by additional aspects of optical and detection systems, like optical

quality (optical aberrations), dynamic range of the detector, noise present in the system (that can

originates from the source, sample or the detector) or the digitization procedure of the collected

signal influence the final resolution of the complete system. In general all these aspects reduce the

theoretical system resolution and should be considered as part of the system design. An additional

effect, impacting the resolution in confocal system is In the context of confocal microscopy is the

detector size (pinhole size) . In general when perfect optical system is employed and detector size

fulfill condition 1.4 the pinhole size do not impact resolution of confocal system.
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1.2 Imaging Quality: Contrast and Resolution

1.2.2.1 Aberrations

The resolution aspects discussed above quietly assumed perfect optical systems, i.e., without optical

aberrations. The perfect imaging system transforms electromagnetic wave introducing the curvature

to its wavefront. In the real systems finite size of optical systems add geometrical limitation to the

wave that propagate in the system leading to diffraction effects. Another issue that appears in the

physical systems is never exactly spherical wavefront generated by optical system. The wavefront

deviation from the ideal spherical shape is called the wavefront aberration.

The aim of an imaging system is to form image of the point on the image plane. A perfect

point source that emits electromagnetic radiation generate divergent spherical wave1. The inverse

relation is also valid: a convergent spherical wave should also “focus” into a point. This simple

observation based only on the symmetry and time invisibility of wave propagation indicate that

perfect imaging system should generate spherical waves. The two mentioned limitations for the

physical realization of an optical imaging system will cause degradation in focusing of the optical

systems. Firstly limited lateral size of the lenses cause that only part of spherical wave can be

generated in consequence focusing to a ideal point is not achievable. Second important issue in the

real systems is the precision of the shape of the wavefront generated by the objectives. In the optical

systems composed from lenses and mirrors generation of perfectly spherical wavefront is virtually

not possible. The aberrations always decrease the contrast of optical systems. The main criteria of

optical design is always to minimize the aberrations present in the system. The impact of wavefront

deviations to imaging quality is covered by the aberration theory [6, 16].

1.2.2.2 Noise

As was discussed the resolution of optical systems has a strict relationship with the contrast. How-

ever, detectable contrast is defined by the detection systems and sample itself. Practically, detectable

contrast depends on the noise present in the system or more precisely on signal to noise ratio (SNR).

In every optical instrument different system elements contribute to the noise present in the output

signal. The detector and light source noise often originates from the driving electronic.

1.2.2.3 Sampling

Digitization is a process of transforming analog system obtained within the optical measurement

system into a digital form that can be treated in the digital manner. In practice, confocal mi-

1under scalar wave approximation
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Focal spot for aberrated system
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Focal spot for aberration free system
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a) b)

Figure 1.12: Resolution limits in real optical systems - Point source generate spherical wave a),

physical optical system b) to focus light (ideally to a point) has to generate convergent spherical wave,

however limited size of objective (θ < 2π) and wavefront deformations lower the resolution capability.

croscopy that generates the 3D images the data post-processing and analysis is always done in the

digital form and the digitization is done directly within the system. Generally, in the context of

optical imaging two main parameters of the digitization are important: the sampling rate and the

quantization resolution (bits per sample). The sampling rate defines the frequency of the sampling

the signal where resolution defines values span of the possible values of the signal. The golden

rule for choosing the sampling rate is the Nyquist criterion [5] that states that sampling frequency

has to be twice larger then maximal frequency present in the signal to be digitized. In the context

confocal microscopy it is interpreted as sampling with frequency twice higher then optical resolution

provided by optical system [4]. In the many implementation of laser scanning confocal microscopy

systems the so-called oversampling is used, it means that higher than necessary sampling rate is

applied and redundant data are used for noise reduction via averaging [17]. The sampling data

size defines the number of intensity values that can be recorded within digital signal representation,

different confocal systems operates with the depths from 8 to 16 bits that is adapted to required

imaging conditions.
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1.2 Imaging Quality: Contrast and Resolution

1.2.3 Resolution improvements in confocal microscopy

As discussed before, the important advantage of confocal microscopy is an improvement of optical

resolution compared to classical microscopy. In terms of Rayleigh resolution criterion, the resolution

gain in confocal system is about 20%. However, when considering absolute resolution limit (Sparrow

criterion or frequency cut-off) resolving power of confocal microscopy is doubled (figures 1.10 and

1.11). Many investigations have been done to improve the useful resolution of confocal systems. In

this section, we discuss two approaches that can be employed in the confocal microscope to improve

system resolution without the increase the NA of the objective.

1.2.3.1 Apodization

ILLUMINATION 
OBJECTIVE

CONFOCAL
PINHOLE

COLLECTION 
OBJECTIVE

OBJECT

DETECTORLIGHT
SOURCE

PUPIL
FILTER

[P1]

PUPIL
FILTER

[P2]

Figure 1.13: Apodization in confocal microscopy - Two pupil filters can be used in confocal

microscopy: one in illumination and one in collection part. In the usual configuration apodization filters

are placed in the 4f arrangement, i.e. located in the focal plane of objectives.

One of the large area of research for improving resolution is so-called PSF-engineering [18, 19,

20]. The basic idea is to change the shape of the PSF (and consecutively MTF) by introducing

apodization filters (pupil filters) in the optical system (figure 1.13). This approach aims to increase

the contrast of high frequencies that in standard confocal systems are imaged with low contrast

and are in practice undetectable. However, the resolution improvement obtained by apodization is

achieved through contrast improvement and is always below the frequency cut-off that is defined

exclusively by the numerical apertures and wavelengths used in the optical system [21]. In figure

1.14 effect of linear apodization (gray-tone amplitude filter with linear transmittance) is presented

in the case of 2D optical imaging system. The PSF (figure 1.14a) of the apodized system has

reduced width, however side-lobes are clearly larger than in the system without the filter. The
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MTF plot (fig. 1.14b)) illustrates the effects of contrast transfer modification introduced by the

apodization filter. We can see an increased contrast in the region of high frequencies (fine detail)

which is obtained at the cost of lower contrast for mid and low frequencies [5].

In confocal microscopy, apodization can be applied twice: one filter is located in the illumination

objective aiming modification of the illumination response function (h1), and the second filter in

the collection objective modifies the collection PSF (h2) (figure 1.13). Then, since the effective PSF

in the confocal system is defined as a product of illumination and collection impulse responses (eq.

1.3) the system PSF can be improved to higher extent than in the conventional microscopy where

only single apodization is possible [22].

a) b)

Figure 1.14: Apodization example - A pupil filter introduced into optical path of microscope can

change (a) the impulse response function and (b) and transfer function of the optical system. In this

example linear apodization filter applied to 2D optical system improves the transfer of high frequencies,

however side lobes that appears in PSF due to apodization filter deteriorate imaging of mid-frequencies

[5].

1.2.3.2 Theta configuration

One of the main challenge in the construction of confocal imaging system is the requirement of high

NA objectives to achieve reasonable axial resolution (eq. 1.6). The high NA objectives that are

corrected for optical aberrations are complex systems and difficult to manufacture in miniature sys-

tem. Moreover, high numerical aperture of the objective also signifies usually a short corresponding

working distance of the optical system. The long working distance and low NA objectives are often

preferable, especially for miniaturized systems. Low NA always means larger field of view whereas
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1.2 Imaging Quality: Contrast and Resolution

long working distance allows larger separation between the device and the investigated specimen.

Additionally, in the context of miniaturized systems, construction of high NA micro-objectives is

very challenging, especially when beam scanning is employed for which off-axis aberrations need to

be considered.

a) b)
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CONFOCAL

PINHOLE

DETECTOR

ILLUMINATION 

OBJECTIVE

COLLECTION 

OBJECTIVE

ILLUMINATION COLLECTION

Figure 1.15: Architecture of theta confocal microscopy - Two separate objectives working in

reflective confocal mode in the theta-configuration (a), Noncolinear illumination and collection PSF

generated by low NA objectives whose optical axes cross at angle 2θ form effective response of theta

confocal microscopy that is isotropic in 3D space (b).

Apodization discussed before can modestly improve the system performances. However, it can-

not improve axial resolution sufficiently. One system that can provide high 3D resolution without

the use of high NA objectives was proposed by Stelzer and Lindek [23]. The architecture baptized

as “theta confocal microscopy” (sometimes called “dual-axis” or “bi-axial” confocal microscopy) uses

two objectives (one for illumination and second for collection) whose optical axes are inclined at

angle θ relative to each other (figure 1.15).

In this configuration, illumination and detection follow different axes and share only a small

common part of a focal volume (figure 1.15). This system allows significant reduction of axial

resolution compared to the classical systems. In the theta configuration, the resolution of the

system is defined not only by NA of the composing objectives but also by the angle between the

objectives. Consequently, the 3D resolution in paraxial approximation (low NA) is expressed [24]
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as follows (eq. 1.23-1.25):

∆xfwhm =
0.37λ

NAcos(θ)
(1.23)

∆yfwhm =
0.37λ

NA
(1.24)

∆zfwhm =
0.37λ

NAsin(θ)
(1.25)

where θ is the half-angle between the objectives axes (figure 1.15). The important consequence of

equations 1.23-1.25 is a linear dependence of axial resolution ∆z on NA comparing to the classical

confocal system (eq. 1.6) where relation is NA2 dependent. The improvement of axial resolution

is achieved in some level in cost of the lateral resolution. However, the resolution is more isotropic

(figure 1.15b) with low NA system than in the case of the classical system. Except the use of

low NA in this system important feature of this configuration is low impact of optical aberrations

onto imaging quality [25]. Moreover, the non co-linear illumination and collection paths improves

scattered light rejection in the case of imaging thick samples [26].

The realization of system using with two inclined microscope objectives is relatively complex to

setup and use in practice. Several experimental setups were described [24, 27, 28, 29, 30]. However,

this system is very attractive for realization in miniature form, especially since low NA objectives

can be used. The theta configuration gained more attention in the single objective configuration

in particular with the divided aperture technique [28, 31, 32]. The optical configuration of single

lens theta system is presented on figure 1.16. In this configuration resolution gain is less important

than in case of two objective systems [33, 34]. However, advantages of scattering light rejection and

decreased impact of optical aberrations are preserved [25].

1.3 Beam scanning in confocal microscopy

Confocal microscope, in principle, is not more demanding optically than standard microscope sys-

tems. The main difference and main difficulty in the construction of confocal systems is related to

the requirement of scanning. In general two options are possible: object scanning or beam scanning.

The simplest way to achieve imaging (2D or 3D) based on confocal point-by-point image for-

mation principle is to move the specimen around the stationary focus point of the optical system

in order to sample all volume of the specimen. This method allows observation of large volumes

without optical limits for the scanning range since objective works in the purely on-axis configura-

tion thus no limits related to off-axis aberrations are present. However, important drawback of this
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Figure 1.16: Single Lens Theta confocal microscopy - One objective used in theta configuration

so called “divided aperture” approach: one part of the objective is used for illumination another for

collection.

approach is the bulk size of the instrument in regards to the investigated object. Moreover, sam-

ple scanning speed is limited by relatively slow translational stages. In addition, the investigated

specimen has to be placed onto a stage limiting the applications of this technique.

1.3.1 Beam scanning techniques

The second scanning option, faster and more convenient in many cases (stationary object) is the

beam scanning. In this approach the position of imaged point is controlled by opto-mechanical

configuration of the optical scanning module. The most commonly employed scanning devices are

made with mirrors or acusto-optic deflectors [37, 38]. Lately, galvanometer mirrors that are com-

monly used in optical scanning systems are often replaced by MEMS mirrors that allow construction

of fast and compact optical scanners [39]. MEMS technology allows miniaturization (figure 1.17)

and cost reduction of confocal systems. Miniaturization is not due only to smaller dimensions of

the scanners but also to the integration of 2D scanner in the single element. The galvanometer

mirror can provide only 1D-scan, so that in-plane 2D-scan needs two mirrors set-up in appropriate

configuration. Thus, it requires the use of more complex optical systems and results in larger sizes

of the scanning systems. In the case of MEMS-based mirrors, 2D beam deflection can be achieved

with a single mirror [40, 41, 42].

Nowadays, the tilted mirror based scanning systems dominate the market of beam scanners

in confocal microscopy1. However, alternative scanning methods like rotating polygon or acousto-

1Spinning disks confocal microscopes are also popular but they are a little different class of systems
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a) b) c)
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Figure 1.17: Mirror-based optical scanning - Most common scanning method is based on beam

deflection by mirrors, (a) optical scheme, (b) classical galvanometer scanning mirror [35] and (c) MEMS-

based optical scanner [36].

optic deflectors have demonstrated their potential in specific applications [43]. Figure 1.18 presents

scanning principles of those elements. Rotating polygon scanners (figure 1.18a) allow fast scanning

without resonance effects present in galvanometer scanners. Acousto-optic deflectors (figure 1.18b)

are the only beam scanners that have no moving parts. Instead, it uses acoustic waves in a bulk,

transparent medium as a controllable diffraction grating [37].

Currently, most common configurations of beam scanning applies only to the XY plane (perpen-

dicular to the optical axis), whereas the Z-scan (along the optical axis) is still achieved by vertical

displacement of the sample. Alternatively, objective lens can be placed on the actuator (axial stage)

that allows displacement of the focal plane within stationary sample.

However, current trend in the development of laser scanning confocal microscopy (LSCM) tends

to replace this hybrid scanning approach with full 3D beam scanning systems. One of the investi-

gated area to reach this aim is the use of deformable optical components. Shao et al. [44] developed

a scanner based on MOEMS technology performing 3D beam-scanning. The proposed scanner used

a deformable mirror made of SiN membrane that can be independently deformed and tilted around

x and y axes. Both deformation (focus scan) and til ting of the mirror are driven by electrostatic

actuation. A different approach to 3D optical scanning discussed in literature is based on acousto-

optics deflectors that analogically can be used to form an active optical component for very fast
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Figure 1.18: Classical beam scanning - Most common scanning modules for fast scanning: rotating

polygon mirror a) and by acusto-optic deflectors

optical scanner [45, 46].

An alternative and actually one of the oldest method of confocal scanning system is a spinning

disk microscope. Original design by Petran [47] used a rotating disk with spiral pattern of pinholes

(a so-called Nipkow disk) to generate in-plane optical scanning (figure 1.19). The high speed spin-

ning movement is easier to realize than mechanical oscillations. Moreover in this system parallel

measurements are achieved by use large number of pinholes employed simultaneously and use of

arrayed detector. Modern version of spinning disk systems use microlenses coupled with pinholes

to improve light efficiency of original system [48].

1.3.2 Dynamical modes of scanning

The interpretation of the data obtained by scanning microscope depends largely on the scanning

method. So-called “raster scanning” is the basic method used in most scanning devices (for example

in CRT displays). The raster scanning systems employ two orthogonal scanners to perform 2D scan.

In this mode the first axis (fast-axis) is driven in sawtooth mode while the second one (slow-axis)

is controlled in stepping mode (fig. 1.20). The raster scan is the simplest mode in terms of image

reconstruction. The scanning is made with constant speed so that sampling is naturally defined on

a 2D Cartesian grid. However, the true (linear) raster scan is not always most appropriate when

a fast mechanical scanning is required. Sawtooth driving is often not compatible with fast scans

because it requires linear displacement and rapid reset of the scanner position which is difficult to
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Figure 1.19: Spinning disk scanning microscope scheme - Rotating disk with pinhole pattern

used to perform optical scanning. Spiral pattern on the Nipkow disk generates raster scanning in the

image plane.

achieve in case of mechanical systems.

Two of the examples of optical scanners that generate sawtooth scanning is the rotating polygon

mirror or Nipkow spinning disk described in the previous section. In other mechanical scanning

systems it is often preferable to drive the scanners in the dynamic mode, i.e. in resonance. The

resonance mode allows fast, stable and power efficient scanning. To be close to the simplicity

of raster scanning only the fast axis is often driven at resonance whereas the second uses static

stepping like in the raster mode (figure 1.21). The principal drawback of this scanning method is

the non-uniform sampling of the image space along fast axis (red circles on the figure 1.21a)). To

address this issue non-linear acquisition triggering or post-processing (interpolation of the data to

the standard Cartesian grid) has to be performed. Still, this approach allowed reaching a speed of

12kHz for galvanometer scanners [49] and over 22kHz [50] in case of MEMS scanner where scanners

that work in static mode (linear displacement) usually operates below 1kHz [51].

In the context of micro-scanners, resonant mode is preferable because it leads to more efficient

mechanical performances of the scanning device. In consequence, it is often desirable to have not

only fast-axis scanner working in resonance but also the slow-axis. The all-resonance 2D scanning

does not speed up the overall system speed (2D) since the scanning speed is defined by the fast-axis

speed only. In this case both scanners work in the resonances however their resonant frequencies have
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a) b)

Figure 1.20: Raster scanning - (a) 2D image space scan pattern (line) and sampling (circles) and

(b) x(t) and y(t) displacements curves.

to be different. The result of superposition of two sinusoidal movements are Lissajous figures [52].

In this case scanning path is much more complex than in the cases considered before since sampling

is nonuniform in both directions (figure 1.22). However, since scanning pattern in both directions is

known a priori 2D image can be reconstructed in similar manner as in the case of raster scanning

mode. This “all resonance” mode makes use of maximal performance of MEMS-based scanners

[53]. And as it was demonstrated by several authors [17, 54, 55, 56] that technique can be used for

miniaturized confocal microscopes. The most important advantage of Lissajous scanning method is

simpler control of the actuators, i.e., driving and position readout of the scanners. Because driving

in resonant mode is achieved by single tone sinusoidal signal, the source takes a form of simple

sine generator. Moreover, sinusoidal movement of the scanner is often a natural dynamic mode of

the mechanical construction of MEMS scanners. This means that feed-back control (closed-loop

control) is not necessary and position readout can be largely simplified [57].

1.4 MOEMS for confocal microscopy

Era of Micro-Electro-Mechanical Systems (MEMS) has started during the sixties when active me-

chanical functional blocks were added to electronic circuits [58]. From then, various mechan-

ical microsystems were demonstrated like accelerometers, gyroscopes and pressure sensors [59].

Later, microsystems for light modulation have been demonstrated [60, 61] and Micro-Opto-Electro-

Mechanical Systems (MOEMS) were introduced [62]. The MOEMS allowed to integrate optical
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a) b)

Figure 1.21: Resonant scanning - (a) 2D image space scan pattern (line) and sampling (circles) and

(b) x(t) and y(t) displacements curves b).

functionality to the microsystems within the specific MEMS fabrication technology, which is differ-

ent from the so-called optical-MEMS where optical elements are included to the device in a separate

assembly process. The integration of optics with micromachining has lead to miniaturization of var-

ious optical devices like interferometers [63], spectrometers [64] and tunable filters [65, 66, 67].

Another family of microsystems are the fluidic-MEMS. Microfluidics has been developed in

parallel to the main branch of MEMS. In most cases microfabrication was limited to channels

generation where active components (pumps, detection systems) were laboratory scale [68, 69,

70]. Currently, microfluidics is often combined together with MOEMS to form the Lab-on-Chip or

microTAS (Total Analysis Systems) [71, 72, 73].

1.4.1 Wafer-level microfabrication

The MEMS term is not only related to miniaturization but also to the fabrication technology. From

the origin, fabrication of MEMS is based on wafer processing. The structures are made by etching,

layers deposition where pattern transfer is made by means of (photo)lithography.

The wafer level approach allows the so-called “batch fabrication”, which means parallel pro-

duction of many (hundreds to thousands) devices at the same time. This parallelism is the main

advantage of MEMS over traditional micro-devices made with classical methods like micro-milling

where each device is fabricated separately (serial fabrication). The most common wafer processes

are based on the monocrystaline silicon substrates. Silicon is the material most used in MEMS
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a) b)

Figure 1.22: Lissajous (2D resonant) scanning - (a) 2D image space scan pattern (line) and (b)

sampling (circles) a) and x(t) and y(t) displacements curves.

technologies. It has a well established micromachining technology and very good electric, thermal

and mechanical properties. As a many MEMS technologies, silicon as a principal material is directly

inherited from the electronics industry. In integrated circuits (IC) industry silicon was chosen as

cheap and easy to process semiconductor material, however having good mechanical properties [74]

allowing its use as a base material for mechanical devices. Moreover electronic industry developed

a large scope of silicon processing techniques e.g. isotropic and anisotropic wet etching, plasma

etching, thermal oxidation [75].

1.4.2 Integration, assembly and packaging

The important challenge in MEOMS design and fabrication concerns their assembly and packaging.

The assembly is a process of physical positioning and connecting of all components of the microsys-

tem. In the context of wafer-level processing, assembly tends to be replaced by the integration

of the system components. This means that the different components are fabricated on the same

substrate (by different but compatible processes) and all necessary connections are made by means

of microfabrication processing so that there is no need for elements assembly. Only components

that cannot be fabricated within system wafer level processing work-flow need to be assembled.

The packaging is the process of interfacing, sealing and isolating the system from environment.

From one point of view, microsystem has to be protected from the environment (moisture, dust)

and from the other, it has to be connected to the world. Interfacing takes the form of electrical
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a) b)

Figure 1.23: Wafer-level microfabrication - Components of the system are fabricated on the

substrates much larger than generated elements (typically used wafers has 4,6,8 inches diameter). On

the single substrate many elements can be generated, basic material used is silicon however for different

transparent materials can be also used when optical properties are important. (a) concave micromirors

generated by wet etching of silicon and (b) arrays of microlenses generated in glass.

connections (inputs/outputs) and e.g. optical windows that are necessary for most of MOEMS. The

sealing or encapsulation of the device is also necessary to ensure reliability of the devices indepen-

dently of the environment. The MOEMS packaging is a challenging task because performance of

the device often strongly depends on the package construction [53].

Although, assembly and packaging seems straightforward in the case of macro-devices, it is in

context of microsystems the bottleneck for industrialization of many microsystems. It was shown

that assembly, packaging and testing of MEMS devices often generate more than 70% of their total

cost [76, 77, 78]. The important conclusion is that packaging and assembly of MEMS have to be

considered from the beginning of the system design, and when it is possible favor integration and

wafer level approaches.

As many MEMS technologies originate from microelectronics the assembly and packaging used

micromechanical systems is often very different than one used in the case of integrated circuits.

The wafer level assembly and/or packaging technologies for micro devices such as pressure sensors,

accelerometers or gyroscopes was successfully applied. However, in the context of systems including

also micro-optical components, assembly tolerances and packaging methods are often not adequate.

Indeed alignment of optical components require precise positioning and external package has to

include optically transparent port. From this perspective, the most desirable method for building
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Figure 1.24: Philosophy of wafer-level assembly - The components of the microsystem fabricated

on wafer substrates (possibly with different materials) are aligned and bonded into a vertical multi-wafer

stack. The bonding process can realize electrical connections and provide hermetic package of fragile

elements. The final dicing step separates many systems fabricated on wafer into independent devices.

the system is to rely on the high degree of integration of whole device i.e. wafer-level assembly and

packaging. However this approach leads to constraints onto the design and materials used to build

the system.

1.5 Miniature Confocal microscopes: State of Art

1.5.1 Motivation of miniaturization: Why miniature confocal microscope?

Confocal microscopy is a powerful imaging technique that has gained popularity in scientific and

industrial communities. In particular, confocal microscopy is an everyday characterization tool in

the life science and material science.

As it was described before confocal systems are based on point light source and point detection.

Consequently, illumination as well as detection can be performed by discrete opto-electronic compo-

nents. In the context of miniaturization, the use of these discrete components allows higher degree

of system size-reduction. The point illumination can be realized by a single laser diode without

need of complex illumination system. The same principle applies to the detector, for which single

photodiode can be used. The latter is not only smaller but can be much more robust (in terms

of sensitivity, speed, internal noise or dynamic range) than arrayed detectors (image sensors) like

CCD or CMOS cameras [79, 80] used in conventional wide-field imaging systems.
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Today opto-electronic components used within MOEMS are usually fabricated separately and

have to be assembled during a separate step. Important trend in the MEMS/MOEMS community

is the direct integration of electronics within MEMS [81, 82]. Recently, Huang [83] presented

sensing microsystem that integrates polymer micro-optics (microlenses, mirrors) fabricated on a

substrate where matrices of avalanche photodiodes were previously generated. The integration of

laser source within MOEMS was also demonstrated. In [84], authors presented microlens scanner

that was collectively fabricated on top of VCSEL’s. These two examples show the potential towards

the direct integration of optoelectronic components within MOEMS that can lead to high degree

of miniaturization of confocal microscopes. In particular, MOEMS technologies represent a large

potential for the implementation of miniature confocal microscopes, putting together the potentials

of micro-optics, opto-electronics and MEMS.

The point-by-point image formation principle from the other side requires miniature scanning

systems. The MEMS technology developed in last decades has made possible strong miniaturization

of micro-actuators that can be used for construction of such miniature optical scanners. MEMS

in the form of gyroscopes, accelerometers, scanning mirrors have reached the market and have

proved that MEMS can replace traditional fabrications methods. In the field of beam steering,

MEMS mirrors have started to replace one of the classical method used for beam scanning i.e.

galvanometric mirrors. In particular, micro-mirrors with controlled tilt angle can be actuated by

either electrostatically [40, 41, 85], magnetically [86, 87], thermally [88] or piezo-electrically [89,

90] generated forces. Whatever actuation mechanism is employed, micro-devices have inherent

advantages over classical macro-devices. The first obvious advantage is clearly the potential of

miniaturization, since conventional fabrication technologies are characterized by a limit of size,

below which performances of the devices decrease. Secondly micro-mechanisms inherently have

low-inertia, it is then easier to generate high speed movement with smaller devices than with larger

system. Finally, the third important advantage lies in the technology of MEMS fabrication: wafer-

level processing makes possible parallel fabrication of MEMS devices. The so-called batch fabrication

can lead to a significant decrease of cost that often is the most important reason for migrating to

MEMS-based devices.

1.5.1.1 Applications of miniature confocal microscopes

Confocal microscopy is very often applied in life sciences, however classical confocal microscopy

used in biological research are bulky, cumbersome and expensive systems. The 3D visualization of

biological specimen on the cellular level that can be achieved by confocal microscopy is especially
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attractive when it is performed in-vivo. The in-vivo imaging has a particular interest in medical

diagnostics and in fundamental biological research. The diagnostics targeting devices aim to in-

vestigate the living tissues. The confocal systems already proved its usability in the research and

diagnosis of cancerous pathologies of skin [91, 92], ovary [93] and colon [94]. The confocal imaging

is also used for cornea pathologies diagnosis [95, 96]

a) b)

Figure 1.25: Handheld confocal microscopes - Two examples of miniaturized confocal systems

already present on the commercial market: a) OptiScan FiveI [97] and b) Vivascope 3000 [98].

Two different types of systems are considered for this task. The first ones are the endoscopic

systems which can inspect internal parts of the organism. Endoscopes are instruments which takes

the form of a small head that can be directly introduced into the body to have access to the interested

tissue. The head of the endoscope needs to be as small as possible to minimize the invasiveness of

the method. The main approach employed for the endoscopes construction is usually the separation

of the active part of the system (scanning/source/detection) from the part that is actually inserted

to the living organism. This approach allows to miniaturize only a part of the system whereas the

active part can remain bulk. Most of endoscopic devices are thus fiber-based systems.

The second family of devices that target in-vivo imaging are the systems imaging the external

tissues of the living organisms. The most common objects under investigation are skin [98, 99],

cornea [96] or tissues that can be surgically exposed for the time of investigation [100]. One of the

aim of these types of devices is also diagnosis of pathological changes of external human organs (skin

cancer, cornea pathologies). Figure 1.25 presents two examples of commercial handheld confocal

systems used for in-vivo investigations.

Another application of portable imaging instruments targets the fundamental biological research.

Confocal microscopy is then used to investigate functioning of living organism on cellular level.
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Direct in-vivo monitoring of cell behavior is crucial method in many fields of life sciences like: cancer

studies [91], drugs development and testing [101], brain studies[100]. For this type of investigation,

miniaturization allows more versatile use of the instrument, since, in most cases portability and

simplicity of use is a key factor. Figure 1.26 shows examples of in-vivo research performed on

animals, the first system (fig. 1.26a) is a laboratory-scale instrument, requiring attachment of the

investigated animal to be delivered and attached to the instrument. The second system (fig. 1.26b)

is a miniature system that allows the object of investigation to move freely during experiment. This

system demonstrated the possibility to study correlations of rat behavior with brain activity on the

neuron level [100]. However, miniaturization is not yet advanced enough and higher degree of size

reduction is consequently needed to allow less invasive in-vivo imaging.

a) b)

Figure 1.26: In-vivo imaging examples - (a) Standard bulk confocal system [101] and (b) minia-

turized (two-photon) imaging system [102] used in in-vivo studies.

1.5.1.2 Beam scanning for optical micro-manipulation

The laser scanning used in confocal microscopy can have other applications than only sample imag-

ing. As was demonstrated by Ashkin [103] light can be used for trapping the micro-particles. Since

90s optical trapping has grown into new domain of optics and already has found many applications

in biological research and colloids study. The so-called optical tweezers was successfully used for

cell trapping [73], sorting [104, 105].

The working principle of optical tweezers is the mechanical interaction between light and matter.

The scattering of light by micro-particle effects in momentum redistribution which in consequence
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effect in force exerted by light beam on the micro-object. However, the light pressure exist as general

phenomena, its minute values the dynamical interaction can be visible only in specific situations.

The most common system where optical trapping is performed is a colloidal solution in which

micro-particles suspended in liquid are easy to manipulate because eliminated surface interactions

and reduced effect of gravity [106]. The trapping effect is achieved within tightly focused laser beams

when intensity gradients are large and effective force drag particle to the center of the focused laser

spot (figure 1.27). The liquid environment used in the optical tweezers are well compatible with

classical biological environments. Recalling that Lab-on-chip devices are often based on microfluidics

we can notice that optical tweezers are naturally compatible with those systems. In consequence,

coupling optical tweezers technology with Lab-on-chip can found many interesting applications [107].

Figure 1.27: Optical tweezers - Optical force can appear when particle is close to nonuniform

electromagnetic field, since the force is proportional to the gradient of the intensity the particle is

attracted to the center of the focused beam [106].

As this work is focused on miniaturized confocal microscopy, it is easy to notice that laser scan-

ning confocal microscope and optical tweezers system are similar systems. The confocal microscopy

relies on fast 3D optical scanning of focused laser beam through the sample volume whereas optical

tweezers system use 3D slowly moved focused laser beam to displace the micro-particles. In conse-

quence, miniature optical scanner fabricated for LSCM can be used as well used as optical tweezers

systems.
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1.5.2 Fiber-optics based confocal microscopes

a) b)

Figure 1.28: Fiber-bundle based confocal microscopy - (a) scheme of the system proposed in

[108] the scanning system located at the one end of the fiber bundle (dashed box) can be located far

away from the objective, which is located at the other end of the fiber. (b) specific image structure due

to sparse location of the fiber in the bundle [109].

Optical fiber technology, developed initially for telecommunication industry has found many

applications in the sensing devices [110]. Among those, fiber based endoscopic systems were intro-

duced at first as simple image guiding devices, capable only of visualization of the surface of the

specimen. The first confocal system based on a bundle of fibers was proposed by Gmitro and Aziz

in 1993 [108], whereas theoretical analysis of confocal imaging using optical fiber was previously

addressed by Gu et al.[111]. The system proposed by Gimitro and Aziz has become the base for

most today’s endoscopic confocal systems. The principal idea of this system is to separate the

scanning optics from the imaging objective. Scanning system is located at the entrance of the fiber

bundle whereas the miniature objective is placed in direct neighborhood of the investigated object

(fig. 1.28). The core of the system is the fiber bundle, composed of tens of thousands of single

mode optical fibers. Then illumination and scanning systems couple the laser light to an individual

fiber for each scanned point. At the other end of the fiber, an objective lens image a point from the
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fiber in the volume of the sample. Collection of the light from the sample is done by the same fiber

than the one used for illumination. In principle the small core (4-10µm) of single-mode optical fiber

can be used also as confocal pinhole [111]. However, since fibers are packed closely in the bundle a

second physical pinhole is usually necessary to ensure that signal only from a single fiber reaches

the detector (figure 1.28a ). The number of sampling points in this imaging system is defined by

number of fibers in the bundle. Moreover, finite distance between the fibers add sparse structure to

the images obtained with the system (figure 1.28b ).

The main advantage of this approach is that the miniaturization problem is bypassed, the only

need for miniaturization is the final objective and not the main part of the system. However, fiber-

optic scanning method allows only 2D scanning. If axial (in depth) scanning is also necessary, it has

to be implemented into the objective location, i.e., on the objective side. The 3D scanning system

with fibers-bundle used for 2D scan was realized [7, 97]. In those systems miniaturized axial scanner

is added to the micro-objective so that objective lens can be axially displaced (figure 1.29).

Figure 1.29: Confocal micro-laparoscope - Fiber-bundle based confocal microscope as laparo-

scope designed for early detection of ovary cancer, 2D scanning is achieved within fiber-bundle external

scanning and axial scanning is performed in the objective by motorized lens [7]

1.5.3 MEMS confocal microscopes

MEMS applied were applied to confocal microscopy in two different ways. The first one is the use of

micro scanners within classical (large) optical system. This approach allow modest miniaturization
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of the system but in the important factor reduce its cost and dynamic performances. The second

approach is based on joining MEMS with micro-optics aiming at construction completely miniature

imaging system.

1.5.3.1 MEMS-enabled confocal microscopes

MEMS scanners presents an attractive alternative to the conventional scanning methods used in

confocal microscopy. Because of improved dynamical characteristic and their high reliability, the

microscanners tend to replace classical scanning techniques used in confocal systems.

Figure 1.30: Confocal system with MEMS mirrors and bulk optics - Prototype of hand-held

confocal system for skin imaging. Miniature in-plane scanning system made of bi-axial MEMS-mirror

and axial scanning is performed via miniature stepper motor (“picomotor”), The use of classical optical

components defines scale of the device (18× 10cm2) [112].

Arrasmith at al. [112] constructed the confocal system that employs micromachined mirrors for

in-plane beams scanning. Their construction uses standard optical elements and a stepper motor

for axial scanning, that makes the system a hybrid setup combining micro and macro components

(fig. 1.30). This types of construction uses MEMS scanner that allows size reduction of the system.

This is achieved by simplification of the optical system thanks to two-dimensional scanning system

achieved within single element.

The good dynamic performances and compactness offered by MEMS scanning systems impor-

tant advantage of micro-fabricated devices is the cost. Since MEMS, as was discussed before are
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fabricated by the wafer-level processes that can lead to important cost reduction if certain produc-

tion volume is reached. In consequence, MEMS based systems can significantly reduce the cost of

the device in regards to the one based on classical scanning systems.

a) b)

c)

Figure 1.31: Confocal system with MEMS mirrors and miniature optics - Confocal micro-

scope composed by MEMS scanning mirror and miniature optical components. Miniature metal package

of the device require precise assembly of the miniature components used in the system. [113]

When the device compactness is targeted, miniature optics has to be employed. Kumar et al.

[114] proposed a confocal microscope that uses miniature objective lenses together with MEMS

scanning block allowing higher degree of compactness of the device. In this system commercially

available miniature lenses were used (usually few mm in size glass molded lenses). The higher degree

of miniaturization can be achieved when micro-components are used. Xie [115] proposed confocal

system that utilized microlens as an objective. As shown in figure 1.32a, this system uses axial

displacement of a microlens mounted on top of an actuator for beam scanning.

The lens scanner allows to simplify the optical system - optical path is linear in contrary to

mirror based scanners where beam have to be deflected one or more times. This simplification

makes easier and more tolerant the assembly and packaging of the microsystems 1.32b).

The simplification of the optical design always tend to help the miniaturization of the optical

system. However, often this is made at the cost of the lower performance of the device. As

was discussed before confocal system to perform 3D imaging require high NA objective. A single

lens objective always suffers from geometric aberrations that decrease optical performance (image

resolution). In practice, it is difficult to make aberration corrected miniature objective from a single

lens.

Discussed before theta confocal system allows the use of lower NA objective or objective of

low quality to achieve a good optical resolution in 3D. Ra and coworkers [116, 117] constructed
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a) b)

Figure 1.32: Confocal system based on micro-optical components - In this system the scanning

is performed by movable microlens that is assembled on the micro-actuator a). The system is composed

of only two optical components: collimation lens (pig-tailed to the fiber) and actuated objective lens.

[115]

miniature theta confocal microscope. In their system the illumination and collection beams are

separated and coincide only in the focal volume of the system (figure 1.33). The both beams use

same objective (Single lens theta configuration) made of a single lens in the form of hemisphere.

This configuration allowed to obtain high resolution 2×3×6µm3 (δx×δy×δz) with relatively large

field of view (400× 260µm2) and working distance (300µm).
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Figure 1.33: Miniature theta confocal microscope - Theta configuration applied in miniature

confocal microscope, (a) scheme of the device, (b) model of the package, and (c) micromachined mirror

used for implementation of 2D beam scanning. Axial scanning is performed by additional actuator -

piezoelectric z-stage. [116]
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1.5.3.2 MOEMS approach to miniature confocal microscopes

In the opposite to assembly-based construction principle of systems presented in previous section, the

MOEMS approach used for construction of confocal microscope presents higher degree of integration

of micro-mechanics and micro-optics. The principal aim of the MOEMS is to integrate the optical

components into MEMS. To achieve this, the use of optics that can be fabricated on the wafer

is essential [118]. The microlenses and micromirrors have been successfully generated by means

of MEMS technologies. The most popular methods to generate microlenses are resist reflow [71,

119, 120], UV-polymer injection [121, 122] or combination of etching and molding techniques [123,

124]. The combination of micromechanical structures with wafer-level micro-optics have lead to

creation of the dynamic opto-mechanical systems. In the MOEMS the micromechanical as well as

micro-optical elements are fabricated within compatible processes using wafer-level approach. In

the context of miniature confocal microscopy the combination of micro-actuators with wafer level

micro-optics (microlenses, micro-beam-spliters) allows to avoid difficult assembly procedure increase

the possible alignment precision and provide reliable system packaging withing system fabrication

work-flow. The first example of a complete miniature confocal microscope made within MEMS

Figure 1.34: Mirror-based MOEMS confocal system - miniature system made by Dickensheets

and Kino [125] high degree of miniaturization is achieved by simplification of optical system and specific

zig-zag optical path.

only technologies was presented by Dickensheets and Kino [54, 125]. In their construction two

electrostatically actuated mirrors realize beam scanning (fig. 1.34). The employed zig-zag beam

path following the substrate plane reduces the size of the system. As an objective a diffractive

microlens fabricated within fused silica by electron lithography and plasma etching. The microlens
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substrate used also as a top lid for the microsystem providing its encapsulation. The single mode

optical fiber is used as illumination/collection subsystem wheres fiber coupler located outside the

system serve as a beam-splitter and redirect signal from specimen to the detector. The 2D scanning

that employs electrostatically actuated mirrors fast axis can reach speed of 4.3kHz (resonance of

fast axis) and 1.07kHz (resonance of slow axis) of the device allows field of view of 100× 100µm2.

This miniature system achieve 1µm lateral and 11µm axial resolution while the size of the device

is 6.5× 2.5× 1.2mm3.

Different architecture of a MOEMS confocal microscope was proposed by Kwon at al. [126, 127].

This system is characterized by vertical architecture 1.35 and non-conventional scanning system

that base on actuated micro-lenses. The scanning system utilizing lenses displacement is more

challenging because the in contrary to flat-mirrors lenses can introduce undesired optical aberrations

to the optical system. For this reason authors reported relatively low resolution of their system as

3 × 3 × 37µm (δx × δy × δz) while used numerical aperture in their system was relatively high

NA ≈ 0.3.

However, this architecture assure linear beam paths and allow strictly vertical assembly of

the system components. For this reason the vertical configuration is well adapted for wafer-level

fabrication of complete microscope.

a) b) c)

Figure 1.35: Microlens-based MOEMS confocal system - Alternative configuration of minia-

turized confocal system utilizing stacked movable microlenses for beam scanning and focusing [127]

.
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1.5.4 Review of performances of miniature confocal systems

Miniature imaging devices because of simplified optical construction and often lower quality op-

tical elements used are less performant than classical systems. However, different architectures

and different technologies used construction of different systems impact largely the performance of

miniature confocal systems. In table 1.1 summary of optical performance of selected miniaturized

confocal microscopes is presented. It is visible that low NA possible in micro-optical system leads to

relatively low axial resolution in all presented system. Another effect of miniaturization is decreased

field of view that is in most cases defined by the size to the objective lens.
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Type Technology

Resolution

XxY(xZ) [µm3]

FOV

XxYxZ [µm3]

WD

[µm]

Objective

size [mm]
Comments

[128] RL MEMS mirrors 0.82× 0.82× 13 140× 100 500 3.3 Classical optics used

[129] RL fiber bundle 3.1× 3.1× 16.6 340× 340 74 1
GRIN Lens as the

objective

[7] FL fiber bundle 3× 3× 25 450× 450× 200 0-200 3

In vivo ovary can-

cer diagnosis, GRIN

lens as objective(fig.

1.29)

[97] FL fiber bundle 0.7× 0.7× 7.0 475× 475× 250 0-250 5∗

Commercial product

(Optiscan Five 1)

for in-vivo animal

imaging (fig.1.25a)

[98] RL miniature galvo 1.25× 1.25× 5.0 1000× 1000× 200 0-200 5

Commercial prod-

uct (Vivascope3000)

for dermatological

application (fig.

1.25b)

[116] FL,θ MEMS 1.7× 3.2× 5.8 400× 260× 90 300 1∗
MEMS mirror for in-

plane scan, piezo for

z-scan (fig. 1.33)

[130] FL Oscillating SMF 0.87× 0.87× 11.5 70× 70 65 0.35
GRIN lens as the ob-

jective

[131] RL Magnetic MEMS 3.8× 3.9× 10.7 0× 145× 190 1400∗ 2.4

Aspheric lenses

oscillating fiber

for lateral scan,

magnetic MEMS for

axial scan

[125] RL MOEMS/SMF 1× 1× 11 100× 100 600∗ 1
Binary off-axis µlens

(figure 1.34)

[127] RL MOEMS 3× 3× 37 100× 50 380 0.3∗
Vertical µLens scan-

ner (fig. 1.35)

Table 1.1: Optical performances of selected miniature confocal microscopes - RL-Reflectance, FL-Fluorescence confocal

microscopes, θ configuration; ∗ value estimated not specified by the authors.
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1.6 Motivations

The aim of this work is to introduce a new conception and to demonstrate the different required

technologies in order to develop a MOEMS confocal microscope. The main idea lies in the joining of

classical MEMS technologies along with wafer level microoptics to produce complete optical imag-

ing microsystem. The wafer-level processing scheme does not allows only potentially cheap mass

production of such devices but also generation of dense arrays of microscopes allowing enlarging

field of view or perform parallel measurements. Our approach is based on the need of integration of

the fabrication, assembly and packaging steps on the wafer-level processing scheme. Joining all pro-

duction steps within classical MEMS work-flow requires a specific design of the considered system.

In here we propose specific optical design that takes into consideration the system encapsulation,

the vertical integration, the electrical connections; and at the same time, allows a high degree of

miniaturization and array-ability of the device.

The presented work was performed in the frame of DWST-DIS project. DWST-DIS - Devel-

opment of multi-Stacking Technologies for Display and Imaging micro-Systems. The aim of the

project is the development of MOEMS technologies specific to micro-optical systems. The stress

was made onto wafer-level vertical integration and packaging. The project is realized by two insti-

tutes FEMTO-ST responsible for building blocks of the system (optical elements, actuators) and

Franhoufer-ENAS that was working on integration of the system. The design of the system was

largely defined by technological constraints mainly the integration feasibility and actuators inter-

facing.
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Optical Design

The ultimate aim of the project is the construction of a compact, miniaturized, beam-scanning, re-

flectance (or fluorescence-based), confocal microscope. The miniaturization of such system imposes

not only scaling down of the elements composing the system, but also minimization of the number

of components and simplification of their arrangement. In the scope of MEMS-based devices, the

architecture of the device largely determines the fabrication flow that defines the price and thus the

accessibility of the system. In this work, we are focused on a system that allows as much as possible

the use of the advantages of parallel (wafer-level) processing. This is a step forward in respect to

most of the miniaturized imaging systems existing today, where MEMS-devices are fabricated using

different technology than the rest of the system. Indeed, as reviewed in previous chapter, many

different miniature confocal systems were proposed in the literature but most of them are based

only partially onto MEMS technologies and require assembly and packaging realized during different

fabrication processes. In here, we describe the design of a complete1 system that can be constructed

within silicon MOEMS technologies. Moreover, the architecture of the system is conceived in a way

that allows the vertical wafer-level system fabrication. The main advantages of this approach for

system construction are high level of miniaturization, array-ability and batch fabrication that result

in low-cost of fabricated system in case of high volume production.

The main constraint of the vertical architecture of the system is the transmissive scanning design

that requires adequate design of the optical train. The most common beam scanning method, based

on beam deflection using a mirror scanner, cannot be easily adapted to the vertical architecture.

Consequently, the discussed system is based on the 3D-beam scanning where the beam steering is

achieved by transversal and axial microlenses actuation.

1excluding electronics and source
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2.1 Design Specifications

In addition to the vertical architecture that is defined by the system fabrication philosophy, the main

points of interest in the construction of the confocal microscope are: scanning volume (3D field of

view), resolution (also in 3D space) and working distance (WD), thus, for this specific system,

we need to target the following specifications: maximize scanning zone, maximize resolution, and

consider reasonably large working distance (for easier encapsulation).

Another important constraint resulting from the wafer-based fabrication principle is the align-

ment accuracy. On the one hand, lateral alignment is achieved at the wafer-scale by the precise (in

the order of one micron1) pattern transfer by photolithography and wafer to wafer bonding [74].

On the other hand, the axial positioning of the system components is set by the substrates (wafers)

thicknesses. The latter are more difficult to adjust and control, since, for example, wafer to wafer

thickness dispersion can reach 20µm, standard wafer TTV: 5-10µm, and wafer bow can be as high

as 40µm. Thus, it is important to release the tolerances on the axial positioning of the optical

elements wherever it is possible.

2.1.1 MEMS-based system

The scale of the MEMS devices specifies the dimensions of used components as well as the possible

distances between them. From the point of view of optical design (OD), the possible sizes and

accessible space for the positions of the optical elements are very important. The considered system

uses MEMS actuators (figure 2.1) as the active parts of the scanning system. The actuators are

usually limited in size so that the payload to be displaced remains as small as possible, especially

because the speed of the system is highly dependent on the mass of the elements placed on the

micro-device. In practice, these elements can be efficiently actuated with MEMS actuators on

ranges up to several mm [134], however, when waver-level packaging is considered, mm-range dis-

placement is often too large to package the system made within standard (relatively thin) wafers

technology. In consequence, the optical system that need to be designed for wafer-level processing

(from components to packaging) requires sub-millimeter optical elements.

1 In practice the accuracy of elements alignment strongly depends on the architecture and technology sequence. In

the case of structures generated on a single-side wafer reaches 1µm, in case of double side wafer processing decreases

to 2-3µm and for structure produced in the multiwafer approach further decrease to around of 5µm.
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a) b)

1mm 1mm

Figure 2.1: MEMS elements for µconfocal microscope - (a) comb-drive based actuator realizing

in-plane (XY) displacement [132] (b) parallel-plate based actuator for out-of plane (Z) motion with

integrated microlens [133].

2.1.2 Micro-Optics

This work is then focused on micro-optical devices. The fact of working with micro-optical compo-

nents affect performances and tolerances of the optical systems, that are in some cases very different

compared to the ones encountered in macro-devices. The different optical phenomena have differ-

ent scale dependencies and it is then important to be aware of theoretical and practical differences

between micro- and macro-optical systems [135].
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Figure 2.2: Ball lens as a focusing element: scale effect - The wavefront transformed by a ball-

lens depends on the scale of the element. Two cases are compared in the two insets: 500µm diameter

lens and 5mm lens. It is visible that wavefront is much more deviated in case of larger lens than in the

case of a microlens. In both cases, NA of the system is fixed and is equal to 0.16.
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The basic geometrical properties of optical systems (focal length, aperture size) are linearly

dependent with scale. One consequence of linear scaling of metric parameters is that angles do

not scale with the change of the system size. Consequently, NA is invariant regarding the scale of

the system. As it was discussed in the previous chapter, limit of the optical resolution is defined

only by NA and λ. Then, the resolution is not scaled together with the system size neither. How-

ever, an important scaling behavior appears when optical aberrations impact the system resolution.

Wavefront aberration is a deviation of the wavefront generated by the optical system from a perfect

spherical shape. Since the wavefront accuracy has to be compared to the wavelength rather than

to the optical system scale, this leads to optical performances dependence with the scale of the

system. One of examples of this scaling behavior can be seen with microlenses having the form

of glass spheres and so-called “ball lenses” that are often used in micro-optical systems. Their size

determines the optical performance of the optical system where they are employed. Figure 2.2 shows

the behavior of two ball-lenses used as focusing elements. The two cases differ only by the ball-lens

diameters that are equal to 500µm and 5mm. It is clear that the aberrations are scaled together

with the size, leading to much better performance of the smaller lens (figure 2.3)

a) b)
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Figure 2.3: Performance comparison of two ball lenses of different scales - The intensity PSF

of two ball lenses of different sizes a) and MTF b). Smaller lens has much better performance compared

to the larger one and is close to the diffraction limit.

Another scale dependent important phenomena that needs to be considered in the design of

micro-optical system is the diffraction. As it was discussed before, diffraction is responsible for

the limitation of the optical systems resolution. In addition, another important aspect of the

diffraction appears when small light beams are used. The effect of divergence caused by diffraction

of geometrically-limited light beams limits the geometrical treatment of optical rays. In particular,

collimated light beam spreads by itself with a divergence rate that depends on the size of the beam.
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2.2 Beam scanning by lens displacement

In general, smaller beams spread much faster than larger ones. The quantification of the diffraction

effects is usually made with the use of the Fresnel number F :

F =
a2

Lλ
(2.1)

where a is the beam size, L is the distance of propagation and λ is the wavelength. It is then

possible to set limits between geometrical and wave optics in terms of Fresnel number1. Usually,

it is claimed that geometrical optics are valid when F >> 1, which means that diffraction effects

can be neglected and ray optics formalism is sufficient when the propagation length is much smaller

than the ratio a2/λ. When this condition is not valid, the diffraction-related divergence has an

important contribution to the propagation of the beam. For example, beam of size a = 100µm can

be treated as a ray bundle on the propagation distance L << 16mm for λ = 633nm, and for a

beam size a = 200µm, the diffraction free propagation is L << 63mm. This simple example shows

that the ratio between the beam size and the optical system length is an important parameter in

the micro-optical system design.

2.2 Beam scanning by lens displacement

The scanning beam confocal microscope is based on the three-dimensional controllable displacement

of focused light spot in the volume of the investigated specimen. The principle of the confocal

microscope relies on the point-by-point image formation, where each point of the sampled volume

is interrogated at a different time moment. Figure 2.4 schematically illustrates the aim of the

investigated system. As it was discussed before, real beam scanning is actually performed in the

XY plane in most of typical 3D imaging systems. The third dimension (Z) is then performed either

by the sample displacement (object placed on a piezoelectric stage), or by the objective movement

(changing effective distance objective-sample). In our system, axial scanning is also implemented

optically.

2.2.1 Single Lens Scanning Relations

Beam steering investigated in this work employs lens displacement as the only means to displace the

focused spot inside the sample. This approach was chosen because of its natural straight (linear)

1The Fresnel number is not the only parameter used to quantify the diffraction divergence. The Rayleigh range

is often used as a quantification of the diffraction-less propagation length. Rayleigh range was defined for Gaussian

beams as zR =
πw2

0

λ
where w0 is the beam-waist. Despite, slightly different definitions and a specific geometrical case

(laser Gaussian beams), the main dependence is the same (a2/λ) so that both formalisms are consistent.
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geometry which is well suited for wafer-level fabrication work-flow. When considering a single lens,

the focus position can be calculated using the lens equation 2.2:

1

f
=

1

z0
+

1

z1
(2.2)

where f is lens focal length, z0 and z1 are the distances (relatively to the lens) of the beam focus

before and after the lens, respectively (fig. 2.5). In the single lens case, the axial (z coordinate

Figure 2.4: 3D scanning - Focused light spot moved inside a defined scanned volume.

- along optical axis of the system) displacement of the focused spot can be achieved with an axial

lens displacement. Figure 2.5 presents two scenarios for axial focus point scanning by simple lens

longitudinal displacement. In the first option (figure 2.5a), a collimated beam is incident upon the

lens, so that the focused spot is located at the focal point of the lens. Thus, the lens displacement

∆z results in the same focus displacement ∆z = ∆z. This is the most common configuration when

axial scanning is made with the system objective, however, one disadvantage is that objective lens

(the last lens of the system) has to be movable. If non-collimated (divergent or convergent) beam

enters the lens, the position of the focused spot strongly depends on the location of the divergence

(or convergence) point of the input beam. The relations between lens displacement and position of

the beam focus are plotted in figure 2.7a).
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2.2 Beam scanning by lens displacement

The lateral (direction laying in the xy plane perpendicular to the optical axis) beam steering

can also be achieved by lateral displacement of a lens 2.6. As for axial displacement, collimated

beam entering a lens that can move laterally produces the same lateral displacement of the beam

focus ∆y = ∆y. Similarly, the divergent/convergent incoming beam can produce an amplification

of the spot displacement, depending on the position of the source origin position. An important

case for lateral scan is the collimation configuration (fig. 2.6c). In this case, a focalized spot is not

generated, instead, a collimated beam with lens-displacement dependent tilt is produced.

a) b)

Figure 2.5: Axial scanning by single lens displacement - Single lens used for beam focus

displacement in the case of (a) collimated and (b) divergent beam entering the lens. .

a) b) c)

Figure 2.6: Lateral beam scanning by lens displacement - Single lens used for lateral focus

displacement in the case of (a) collimated, (b) divergent beam entering the lens. (c) Special case when

beam divergence is located in the focal point of the lens.
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Figure 2.7: Single lens scanning relations - (a) magnification of lens axial displacement (m∆z =
∂∆z

∂∆z∆z→0
) and (b) magnification of lens lateral displacement (m∆y =

∆y

∆y ) both in function of beam

divergence (convergence) position (z0), Resulting focus position is also indicated in both plots (dashed

curve with scale on the right).

2.2.2 Afocal doublet for 3D beam scan

In order to achieve the 3D beam-scanning, 3D movement of the lens would be the simplest con-

figuration, however, it is not the most suitable if system encapsulation is considered. Moreover,

realization of 3D-motion of micro-optical elements is not an easy task. Only very limited types of

micro-actuators are able to provide simultaneous 3D Cartesian movements [42].

In this work, we consider only one of many possibilities of implementation of 3D scanning by

lens displacement. The base of the considered system is two separate movements of microlenses. An

“in-plane” displacement (XY plane perpendicular to the optical axis of the lens), and a movement

along the optical axis (“out-of plane”, i.e. along the z-axis or the optical axis of the lens). Since

those two movements cannot be applied to a single element only, two-elements scanning-system is

considered for the generation of the 3D scanner.

Hence, the coupling of the two microlens/movements to obtain 3D scanning can be achieved in

many different configurations. In here, we have chosen an afocal system composed of two lenses

as a base for the 3D scanner . In such a system, a collimated beam enters the scanner, and

axial or lateral misalignments in the system (provided by controllable lens displacements) result

in decollimation or tilting of the output beam. This afocal doublet itself does not provide the

focusing power if the incident beam is collimated and an additional focusing element is needed
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2.2 Beam scanning by lens displacement

to obtain real 3D beam-scanning: the focusing block (the objective). Moreover, a collimation

block is also required if single element source is to be used. The scheme of two possible setups

of the scanner working in the afocal configuration are presented on figure 2.8. The two systems

differ by the scanners order. The first setup (fig. 2.8a), so-called Z-XY configuration, is made of

the axial scanner (Z-scanner) located before the in-plane scanner. In the second system (XY -Z

configuration), the scanners order is inverted (fig. 2.8b). The important advantage of such system

is the incident/output nearly collimated beams that release axial positioning tolerances between

the scanner and preceding/succeeding elements of the system. This is especially important in the

wafer-based fabrication where axial positioning are usually set by the construction wafers of the

building blocks. Moreover, if 3D scanner is used for, e.g. confocal microscopy, addition of optical

elements to the system, such as beam-splitters or dichroic filters, can be simplified by the use of

collimated beams.

a) b)

f1 f2f1 f2

f1 f2f1 f2

c) d)

CONFIGURATION Z-XY

CONFIGURATION XY-Z

Figure 2.8: Afocal systems for 3D beam scanning - Two lenses separated by a distance equal to

the sum of their focal lengths is used as a scanning system. The displacement of a lens along the optical

axis a) and c) adds curvature to the output beam whereas lens lateral displacement b), d) produces a tilt

of the output collimated beam. The two configurations are possible with different lens movement order.

However, the latter influences the ray paths in the system, which means that the optical properties

of the two setups are not equivalent on the level of scanning behavior and aberrations present in the

system.
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2.3 Four lens system for scanning and focusing

Consequently, the 3D scanning system, built around the afocal scanning-doublet, is composed of

three parts: a collimation block used to collimate the light from point-like source, a scanning block,

composed of the actuated lenses, and responsible for the beam-steering, and finally a focusing block,

responsible for the generation of focused spot at the output of the system. Schematic design of the

system is presented in figure 2.9.

1 2

SCANNING BLOCK

(AFOCAL DOUBLET)

COLLIMATION

BLOCK

FOCUSING

BLOCK

SOURCE

z1
0

z3 zfoc

SCANNED

VOLUME

L0 L1 L2 L3

Figure 2.9: Layout of the 4-lens system - Collimation and focusing lenses added to afocal scanning

doublet for 3D beam scanning. Two lenses located in the center of the system (i.e. L1 and L2) are

movable so that L1 can be displaced in-plane (XY), and L2 can be moved along the optical axis.

The view of the complete system reveals the advantages of using an afocal system for the

scanning function. The active part of the system (actuated microlenses) are located in the center of

the system and can be easily protected from the environment. The light-path is relatively simple and

since collimated beams are employed, tolerances on the distances are loosen. Moreover, collimated

light allows also the presence of additional elements in the light-path without issues related to their

angle dependence. This is especially important since we consider this scanner to be a part of the

confocal microscope for which a beam splitter (difficult to design in case of divergent beams) has

to be added to the system.

The scanner is thus based on two microlenses assembled onto MEMS actuators that can be

independently moved for realization of the scanning block. The fragile micromechanical systems

can be sealed in an hermetic package made of the other optical elements (L0 and L3) at each end.
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2.3 Four lens system for scanning and focusing

In other terms, the collimation lens (L0) and the objective lens (L3) separate the fragile MEMS

actuators used for microlenses displacements from the environment.

2.3.1 Paraxial Description - ABCD-EF formalism

OPTICAL AXIS

INPUT RAY

OUTPUT RAY

OPTICAL SYSTEM

Figure 2.10: Illustration of ray transfer matrix - Input ray of coordinates αin, hin is transformed

by the system described by transformation matrix M into output ray αout,hout

The scanning performance of the proposed system has been analyzed with the ABCD-EF matrix

formalism [136]. The method is a standard ABCD ray transfer matrix method extended to handle

shift-tilt transformations of the optical components in the optical train. The standard ABCD ray

transfer matrix that handles centered symmetric systems transforms the paraxial ray described by

height hin, and angle αin. The output ray coordinates hin, and αin are expressed by equation 2.3.

[
yout
αout

]

=

[
A B
C D

]

︸ ︷︷ ︸

M

·
[

yin
αin

]

(2.3)

where the coefficients in the transformation matrix M : A,B,C,D are defined by the optical

system under consideration. However, equation 2.3 can be used only in centered systems where

ray coordinates are measured from the optical axis of the system. In the case of optical setups

consisting in decentered or tilted elements, extended matrix formalism is used. The Equation 2.4
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describes ray transformation in such system.





yout
αout

1



 =





A B E
C D F
0 0 1





︸ ︷︷ ︸

M

·





yin
αin

1



 (2.4)

where additional matrix elements E and F originate from misalignments present in the optical

system.

The matrix for the whole system Msys is constructed from matrices describing each elements

composing the system. As mentioned before, the system can be naturally divided into three parts:

collimation block, scanning block and focusing block. Then Msys = Mfoc · Mscan · Mcol. The

matrix representing the scanning block, i.e. Mscan, can be expressed as a multiplication of matrices

representing components of the block. As it was mentioned before, two scanner configurations are

possible (figure 2.8). The ray transformation matrices for two scanning configurations are different

and expressed by equation 2.5 for “XY-Z” scanning order, and by equation 2.6 for scanner with

inverted scanner configuration (“Z-XY”).

M
(xy−z)
scan = M∆zML2 ·M−∆z

︸ ︷︷ ︸

axially displaced L2

·Mz2 ·M∆y ·ML1 ·M−∆y
︸ ︷︷ ︸

laterally displaced L1

(2.5)

M
(z−xy)
scan = M∆yML2 ·M−∆y

︸ ︷︷ ︸

laterally displaced L2

·Mz2 ·M∆z ·ML1 ·M−∆z
︸ ︷︷ ︸

axially displaced L1

(2.6)

For sake of simplicity and to investigate the general behavior of proposed optical system, all

lenses are modeled with thin lens approximation: Mlens =
[

1 0
−f−1 1

]

, where f is the lens focal

length. The free space propagation is described by Mzi =
[
1 zi
0 1

]
, where zi is the propagation

distance. The coordinates shift is M∆y =
[
1 0 ∆y
0 1 0
0 0 1

]

(M∆z), where ∆y (∆z) defines the element’s

shift perpendicular to (along) the propagation axis.

M
(xy−z)
scan =





(−∆z2+∆zf2−f22)
f1f2

∆z2−∆zf1+(f1+f2−∆z)f2
f2

(∆z2−∆zf1−∆zf2+f1f2+f22)
f1f2

∆y

−
∆z
f1f2

(∆z−f1)
f2

∆y
(∆z−f1)

f1f2
0 0 1



 (2.7)

M
(z−xy)
scan =





−
(∆z+f2)

f1

∆z(∆z+f2)+f1(∆z+f1+f2)
f1

0

∆z
f1f2

(−∆z2+f1f2−f1(∆z+f1+f2))
f1f2

dy
f2

0 0 1



 (2.8)
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2.3 Four lens system for scanning and focusing

From equation 2.7 and 2.7, we can extract the most important scanner properties. Firstly, the

axial displacement of lens L2 leads to decollimation of the scanning block output beam. The focal

length of the scanner fscanner is proportional to the inverse of axial lens displacement (eq. 2.9).

fscanner =
f1f2
∆z

(2.9)

Secondly, the lateral displacement of the lens L1 provokes the tilting of the output beam such

as:

δxy−z
y = ∆y

∆z − f1
f1f2

(2.10)

δz−xy
y =

∆y

f2
(2.11)

2.3.2 The scanning performance

The scanning performance is defined as the scanning range in all three dimensions and depends only

on the scanning doublet and the objective lens (L3). From the total system matrix Msys, we can get

the “scanning equations”, i.e. equations that define the displacement of focal spot as a function of

the lenses displacement ∆y, ∆z and the system configuration fi and zi. The scanning performance

are according to equations 2.12 and 2.13:

∆(xy−z)
z = ∆z

f2
3

∆z2 + f2
2 +∆z(z3 − f2 − f3)

(2.12)

∆(xy−z)
y = −∆y

f2f3
∆z2 + f2

2 +∆z(z3 − f2 − f3)
(2.13)

The focused spot moves around the focus point of the objective lens (L3). Thus, the focus

position is defined by L3 focal length and the displacement due to the scanner so that: zfoc = f3+∆z.

In the case of the inverse scanner configuration, scanning relations are slightly different (equations

2.14 and 2.15):

∆z−xy
z = −∆z

f2
3

∆z (z3 − f2 − f3)− f2
2

(2.14)

∆z−xy
y = ∆y

f3 (∆z + f2)

∆z (f2 + f3 − z3) + f2
2

(2.15)

An important characteristic of the scanner is the non-linearity of the axial scanning (equations

2.12 and 2.15). The lateral scanning, according to the equations 2.13, is linear in ∆y, however, it is
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Figure 2.11: Afocal scanner paraxial scanning behavior - (a) nonlinear dependence of scanning

in axial direction and (b) coupling effect in the case of simultaneous axial and lateral scanning (solid

line). In the Z-XY setup, nonlinearity can be cancelled and coupling minimized when z3 is chosen as

(z3 = f2 + f3) (dashed line). (plot for system with f3 = 3

2
f2) .

also coupled to the axial scanning (∆y = yfoc(∆z)). This effect defines the shape of the scanning

volume. Then, in the perfect case, i.e. linear and not coupled, scanning would generate a scanning

volume in the form of a cuboid. But, the nonlinearity and coupling effect leads to a scanned

volume having a more complicated form (fig. 2.12). Then, it can be noted that it is preferable

to set z3 = f2 + f3 in order to minimize these effects (equations 2.12 and 2.15 and fig. 2.12),

although complete linearization can be achieved only with the “Z-XY” configuration. Nevertheless,

the scanning coupling and nonlinearity are of the second order, and then, simpler linear scanning

relations can be written in the approximation of small lenses displacements (Equations 2.16-2.17)

that holds for both configurations of the scanner system:

∆z ≈ ∆z

(
f3
f2

)2

(2.16)

∆y ≈ ∆y
f3
f2

(2.17)

It is visible that the scanning performance depends mostly on the ratio f3
f2

for both considered

cases. Consequently, in order to amplify the scanning amplitude, f3 should be chosen higher than

f2.

NA ≈ h3
f3

=
h1
f1

(
f2
f3

)

(2.18)
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Figure 2.12: Paraxial prediction of the shape of scanning volume - Scanning zone (yz cross

section) for the two discussed cases: (a) nonlinear regime (z3 = f2) and linear case (z3 = f1 + f2).

However, resolution is defined by the system NA (eq. 2.18) which is proportional to f2
f3

,i.e.

inverse of the dependence of the scanning performance. This implies that is not possible to maximize

the scanning volume and resolution at the same time1 using only f2/f3 as parameters. Thus, the

optimization of the system parameters have to be a tradeoff between the desired scanning zone and

the resolution. In consequence, according to (eq. 2.18), the NA maximization with no decreasing of

the scanning performance can be done by increasing the scanner input beam (h1) and/or minimizing

f1 of the scanner. This, in practice, leads to maximization of the NA within the scanner doublet.

2.3.3 Conclusions of paraxial analysis

In the paraxial analysis aimed at analyzing the scanning performance, two possible configurations

have been considered based on different scanners arrangements. From the optical point of view,

the scanning properties of both systems are very similar. However, an important difference appears

when the scanning doublet is coupled to the focusing block (figure 2.8). In the Z-XY configuration,

the position of the beam center leaving the scanner follows the position of the XY scanning lens,

whereas in the case of XY -Z system, the beam center does not change in the focal plane of L2

where only a tilt of the optical axis is generated. This effect is expected to lead to a more efficient,

and optically optimal, use of the focusing block in the complete system. This is because, when the

1we can notice that this a common rule also in classical microscopy where improvement of the resolution usually

leads to a decreased field of view.
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L3 lens is placed near the focal plane, scanning leads to only a change of the incident tilt without

any lateral shift of the illuminated area onto the scanning block.

Moreover, from the perspective of micro-fabrication, system construction and integration de-

pends strongly on the scanners order. In the considered system, micro-actuators are enclosed be-

tween collimation and focusing blocks, then the electrical connections required for actuators control

have to be implemented through the wafers of both micro-mechanical systems. Since the XY -

scanner is more complicated and require more electrical connections than the Z-scanner, the XY -Z

order allows minimization of the number of electrical through wafer connections. As it was discussed

before, one advantage of Z-XY configuration is the possibility of linearization of the scanning zone,

that is not entirely possible within XY -Z setup. However, although complex shape of the scanning

zone seems inconvenient, it can be acceptable if appropriate data post-processing (or scanners con-

trol) is applied to remap the scanning zone to the Cartesian coordinate system. In consequence,

the following optical implementations are focused on the XY -Z configuration only.

The paraxial analysis provided analytic formulas for the scanning performance as a function

of optical elements parameters. A general rule to obtain good scanning behavior (i.e. small lens

displacement leading to large focus one) is the seek of a high numerical aperture within scanning

lenses (in the afocal scanning doublet). This conclusion corresponds to the observations of Schwertz

et al. [137]. Moreover, the system NA should be maximized to obtain a good optical resolution

(spot size) on the output of the system (including also the focusing block).

2.4 Scanner implementations

The system performance is defined by the amount of aberrations present in the system. Thus, a

high NA with minimum of aberrations is required to reach high resolution. In general, the on-axis

aberrations (mainly spherical aberrations) will limit the accessible NA of the system, and off-

axial aberrations (coma, astigmatism) will limit the scanning (lateral) range of the system. In the

following, the aberrations analysis and design optimization is performed within ZEMAX package.

2.4.1 First demonstrator: ball-lens based scanner

The first investigated system is based on discrete micro-optical components that are assembled onto

the micro-actuators by means of pick-and-place principle.

This hybrid approach (wafer level fabrication and discrete microlenses) was aimed at testing

the system integration technologies in parallel to the development of, on the one hand, an optical
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design better adapted to batch fabrication principle, and on the other hand, dedicated components

required for the optically optimized system. In consequence, the first considered system is based on

commercially available ball-microlenses, assembled and bonded into the MEMS by means of local

adhesive or thermal bonding [138].

Indeed, the available elements that can be used in our system only exist in limited geometrical

forms. The most common microlenses that are commercially available are then so-called ball-lenses

and takes the form of spheres. This type of elements are mostly used in fiber optics systems to

couple the light into fibers or for fiber to fiber interconnections [78]. Because of their well-defined

geometry and their good optical quality, they were already employed in optical MEMS in embedded

fiber switches [139, 140] or as a simple high NA objective [141].

XY-SCAN Z-SCAN

Figure 2.13: Ray-tracing through ball-lens based scanner - The scanner is composed from two

identical ball lenses fBL = 366.8µm, and a focusing lens (ROC = 150µm, diameter 220µm). Ray-

tracing is shown for two cases: no lens-displacement (blue rays) and 17.5µm displaced XY scanning

lens (green rays).

The optical design of the scanner is presented on figure 2.13. Two movable ball-lenses (500µm

diameter, made from NBK7 glass, from Edmunds) compose the discussed scanning doublet that

is set-up in the XY -Z configuration. The collimated input beam (150µm diameter) impinges the

first lens placed on a laterally movable stage, and the second lens that can be displaced along the

system optical axis re-collimates the beam finally focused by the last lens. The focusing lens is

made within wafer-level approach by means of silicon-glass molding techniques. The glass holding

wafer of the focusing lens provides the encapsulating wafer that allows to isolate the system from

the environment.

The presented system in figure 2.13 is characterized by a working distance WD ≈ 160µm, a

numerical aperture NA = 0.25 that provides in diffraction-limited case a focal spot in the order
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Figure 2.14: Ball-lens-based scanner: MTF - Modulation transfer function plotted for three cases:

axial state (dotted blue curve), lateral scanning lens displaced by ∆y = 17.5µm (solid and dashed black),

∆y = 35µm (solid and dashed red), diffraction limit marked as black dash-dotted curve.

of δxairy
= 1.5µm and δz = 15µm. However, the aberrations present in the system are responsible

for optical performance degradation. The used components and limited positioning freedom do

not provide much space for optimization of the optical setup. Consequently, the described system

exhibits deterioration of optical resolution due to the aberrations.

The axial behavior of the system is determined mostly by the spherical aberrations generated

by spherical lenses. All optical elements in the system contribute to the spherical aberration, with

the principal contribution brought by the focusing lens. However, the main limitation of the system

performance appears when the lateral scanning is considered. In figure 2.14, the contrast transfer

function is presented for the system in three cases: axial case (all lenses aligned on-axis - no dis-

placements) and two lateral scanning positions. Resolution in the on-axis case is reasonably close to

aberration free system (i.e. diffraction limited) in the region of high frequencies, however, the scan-

ning visibly deteriorates the system performance. In particular, for large lateral lens displacements,

off-axial aberrations (coma, astigmatism) deform the focal spot, resulting in a different resolution

along the two perpendicular directions. This resolution is always worse along the scanning direction.

Another common method to visualize (qualify) the effects of aberrations onto the systems res-

olution (lateral spot size) is the so-called “spot diagram”. The latter is obtained by geometrical

tracing of rays through the optical system by means of geometrical optics. Then, intersection of

rays within the focal plane defines the geometrical spot shape.
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2.4 Scanner implementations

a) b) c)

Figure 2.15: Spot diagrams of ball-lens scanning system - Impact of aberrations on the geo-

metrical (ray-traced) focus spot in the case of (a) ∆y = 0, (b) ∆y = 17.5µm and (c) ∆y = 35µm of the

lateral displacement of first scanning lens. The circle drown in each spot diagram represents the airy

disk of radius defined by the NA of the system (1.5µm).

The spot diagram is presented in figure 2.15. Off-axis aberrations are visible when lateral

scanning is considered. Its effect (figure 2.15b,c) is to enlarge and deform the focus spot. The

wavefront analysis for the three considered cases (table 2.3) also shows that σrms changes drastically

with lateral scan and that astigmatism and coma are the main aberration terms involved.

As it was discussed before, displacement of lenses in the scanning doublet is in general nonlinear

(∆z (∆z)) and coupled (∆y (∆y; ∆z)). In addition, image plane tends to be curved due to the

optical aberrations. Thus, the knowledge of the exact shape of the scanned volume is important

since its allows to relate the positions of lenses (defined directly by the scanners positions) to the

location of the focused spot generated by the system. The X-Z cross section of the scanned volume

is schematically presented on figure 2.16. In the considered case, the scanned volume is highly curved

with a shape having a parabolic form (z(x) = x2

2Rimg
) with curvature at center Rimg = 33µm. The

not spherical but parabolic image plane is an effect of the combination of classical image curvature

(Petzval curvature [6]) and specific dependence of astigmatism on the lateral scanning.

This first design, based on two 500µm diameter NBK7 ball-lenses and a plano-convex glass

lens was used to perform the first demonstration of the vertically integrated multi-wafer MOEMS

optical scanner for the DWST-DIS project (more details can be found in the chapter 5 of this

manuscript). Considering optical performances, this system is not efficient enough, especially for

an application such as confocal microscopy. In particular, the ratio between axial scanning range

and axial resolution is too weak to achieve a true optical sectioning. However, systems such as

differential confocal ones that perform uniform surface topography, could be already realized based

on this micro-system configuration. Obviously, the complete system integration requires source and
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∆y [µm] 0 17.5 35

σRMS [λ] 0.06 0.09 0.18

Z6 [λ] - -0.035 -0.13

Z7 [λ] - -0.069 -0.11

Z11 [λ] 0.06 0.05 0.033

SR 0.87 0.71 0.27

δx [µm] 1.9 1.9 3.7

δy [µm] 1.9 2.2 3.8

Table 2.1: System performance statistics for ball-lens scanner - The aberration analysis

made within Zernike wavefront expansion quantify the effect of lateral scanning (∆y dependence) on

optical performance of the system. The principal Zernike terms that contribute to the total wavefront

error (σRMS) were considered, i.e., Z6 - astigmatism, Z7 - coma, and Z11 - spherical aberration (in

all calculations λ = 670nm), Strehl ratio SR is also indicated. The resolutions δx/y derived from the

system MTF with 0.2 contrast criteria.
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Figure 2.16: Shape of scanning volume of ball-lens based system - Curved scanning volume

resulting from off-axis aberrations present in the system calculated by ray-tracing within ZEMAX.

Neighborhood points correspond to scanning lenses displaced by 2µm for two considered (x, z) directions.

detection units. It will be shown later (Chapter 5), that fiber optics components are an easy solution

for this aim. In particular, when fiber-coupled laser source and photodiode, connected to a fiber

coupler serving as a beam splitter are employed.
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2.4 Scanner implementations

2.4.2 Advanced system I: plano-convex scanning lenses

The ball-lenses for scanning doublet are clearly not an optimal solution. Aberrations generated

by the scanner, in particular, astigmatism and coma appearing during lateral scanning, seriously

deteriorate the resolution of the system in the edges of the scanning zones. Moreover, spherical

aberration and astigmatism are responsible for a low axial resolution. Scaling of this system, to

reach higher numerical apertures required to obtain real confocal imaging, is then not possible.

Finally, ball lenses cannot be integrated onto the MEMS scanner with batch-fabrication processes

and inconvenient pick-and-place scheme has to be employed for the system construction.

XY-SCAN Z-SCAN

Figure 2.17: Ray-tracing through plano-convex lens-based scanner - Scanner is composed

from two plano-convex aspherical lenses placed in the afocal configuration, in the figure lateral scanning

is visualized: blue rays correspond to aligned system while the red rays correspond to system where

first lens in laterally displaced by 35µm.

For all these reasons, it is necessary to design a more optimal scanner. The latter could be

constructed with plano-convex lenses that are expected to generate less optical aberrations. In ad-

dition to the improvement of the overall optical performance of the system, it would also allow their

wafer-level (batch mode) integration with actuators, provided that compatible microlens fabrication

is used.

However, similarly to ball lenses, the use of plano-convex lenses having spherical shape always

leads to poor off-axis performances of such scanning system. One of the solution to improve the

scanner optical performance is thus to rely on aspherical lenses.
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2. OPTICAL DESIGN

The scanning system built around two aspheric conic microlenses is presented in figure 2.17. The

lenses are arranged in the same architecture, however, ball-lenses of the scanning block are replaced

by plano-convex microlenses whose geometry is optimized for the considered scanning system. As

previously, the focusing objective is a standard spherical microlens.
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Figure 2.18: Aspherical scanning doublet: conic constants tolerances - Impact of conic

constant on the optical performance (via σRMS) of the scanning block.

The afocal scanning doublet was optimized as a separate block. Its magnification was chosen to

be less than 1.0 to allow the use of larger input beam than in the case of the ball-lens setup (150µm

only). Based on ZEMAX optimization, the best conic constants of the doublet were found to be

k1 = −0.314 and k2 = −0.859 for lenses fixed in the afocal configuration. Their radii of curvature

should then be R1 = 200µm and R2 = 110µm, their thickness dl = 85µm, and their diameters

D1 = 370µm and D2 = 275µm. The considered lenses are made of glass (n=1.457).

Although, microlenses with negative conic constant have been already fabricated [142] within

combination of resist reflow and reactive ion etching techniques, precise control of their shape is

a challenging task and the possibility of aspherizing the geometry of usual spherical microlenses

highly depends on the employed technology. The tolerances concerning these conic constants for

lenses of the afocal doublet are presented on figure 2.18 where the wavefront error is drown as a

function of the conic constants of the two microlenses. It can be noted that wavefront deviation
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2.4 Scanner implementations

∆y [µm] 0 17.5 35

σRMS [λ] 0.046 0.053 0.070

Z6 [λ] - -0.005 -0.012

Z7 [λ] - -0.002 -0.010

Z11 [λ] 0.05 0.05 0.05

SR 0.92 0.89 0.85

δx 2.34 2.38 2.53

δy 2.34 2.45 2.94

Table 2.2: Plano convex lenses based scanning system: performance summary - as in table

2.3

should remain lower than 0.050λ. According to figure 2.18, tolerances are larger on the first lens of

the doublet than on the second one.

Resolution obtained with such scanning system and a focusing block based on a spherical mi-

crolens (R3 = 140µm, dglass = 200µm, D3 = 260µm) is presented on figure 2.19 by use of the

spot diagrams, and in figure 2.20 by means of a modulation transfer function. It is visible that

this system is characterized by much better off-axis performance than the one based on ball-lenses,

i.e. the lateral resolution is not degraded on the edges of the scanning zone. Table 2.2 summarizes

the optical performance of the system where it can be seen that comas and astigmatism terms are

divided by a factor 10 compared to ball-lens system. Also, Strehl-ratio remains high while lenses

are displaced.

a) b) c)

Figure 2.19: Plano convex lenses based scanning system: spot diagram - Ray-traced form

of focal spot generated by scanning system, the circle in the center represents the Airy-disk of size

rAiry = 1.99µm. The three spots correspond to three lateral positions of the scanner: (a) ∆y = 0, (b)

∆y = 17.5µm, (c) ∆y = 35µm.
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Figure 2.20: Plano convex lenses based scanning system: MTF - Contrast transfer function for

the case of maximal considered lens displacement in the scanner. The difference between the diffraction

limit and obtained MTF within the system is significantly improved compared to the ball-lens system.

Finally, lower aberrations generated by the scanning doublet (because of aspheric lenses) as well

as the magnification that can be chosen lower than 1 (more freedom on the choice of plano-convex

lens geometries) allow to achieve a higher NA within the scanning block. This higher NA within

the scanning block allows in turn to reduce the NA of the focusing block without changing the

resolution of the entire system. Consequently, longer focal length of the focusing block f3 = R3
n−1

can be used to provide better scanning magnification (equations 2.17 and 2.16). The scanning zone

obtained with lenses scanning range ∆y = ∆x = ±35µm and ∆z = ±20µm is then: 84x84x60µm3

outperforming the one of the ball-lens based system. Moreover, it can be noted that the scanning

zone is less curved (figure 2.21).

2.4.3 Advanced system II: Anastigmatic focusing block

According to the table 2.2, the biggest contribution to the wavefront deviation comes from the

spherical aberration term, that can be attributed to the focusing block lens. Then, the use of

single plano-convex lens within the focusing block is the limiting factor to improve the system res-

olution. This is particularly the case if the scanner is aimed to be used in confocal microscopy

where single lens objective is not capable to provide high enough NA without introducing aberra-

tions. Consequently, as the third considered optical configuration, we discuss the implementation

of a mirror objective instead of the lens, that is expected to provide higher NA with lower aber-

rations. In particular, our proposition is to rely on a reflective micro-objective architecture, based
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Figure 2.21: Plano convex lenses based scanning system: scanned volume shape - XZ cross

section of the scanning volume obtained with aspheric lenses based system.

on the Schwarzschild and Burch [143] designs. This component is often referred in the literature as

“Schwarzschild objective” or “Schwarzschild anastigmat” to underline its aberration compensation

property. The details of the architecture and the first attempt of fabrication of such device by means

of micro-fabrication techniques are described in the section 4.2 of this thesis. In here, we present

the important advantages of this specific component for the considered scanning micro-system.

The Schwarzschild objective is composed of two mirrors, i.e. one concave (primary) and one

convex (secondary). The appropriate choice of their radius of curvatures and the separation between

them allow the elimination of the three primary aberrations, i.e. spherical, astigmatism and coma.

The system layout equipped with a Schwarzschild objective as the focusing block is presented in

the figure 2.22. In this system, the scanning doublet is exactly the same as in previously described

system and only the focusing block differs.

The optical performance presented by means of the spot diagrams (figure 2.23) shows very

efficient focusing. Indeed, all traced rays through the system are well embedded within a circle

defined by the airy radius of 1.1µm. However, MTF plots (figure 2.23) show that the resolution

is not as good as the one indicated by the simple geometrical analysis. This effect is due to the

obstruction generated by the specific reflective architecture. As wave-optics show [5], an optical

system, possessing circular shadow in the light path, yields to a different point spread function

(PSF) and hence to a different MTF than clear (unobstructed) system. In consequence, systems

having different pupils (obscured or not) are not directly comparable simply by use of NA or of
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XY-SCAN Z-SCAN

Figure 2.22: Scanning system with Schwarzschild objective as the focusing block - Mirror-

based objective, replacing the lens in the focusing block, allows increasing the NA of the system and

enlarging the working distance of the device. The specific construction of the mirror objective requires a

port in the primary mirror to allow the scanned beam to reach the secondary mirror, this port together

with secondary mirror creates shadow in the output beam.

derived airy radius. Instead, it is preferable, for general analysis of the system resolution, to use the

MTF formalism. The latter indicates that this system, in addition to its slightly higher resolution

than the one estimated from its NA (NA = 0.35), owns very good off-axis performance, with MTF

values slightly affected by the lens displacements. Another important advantage of this system is

the longer working distance of the Schwarzschild objective comparing to a simple lens. This feature

allows larger degree of system miniaturization while preserving the encapsulation possibility, which

in case of microlenses is limited by the focal length of the lens that needs to be longer than the

construction wafer thickness (figure 2.17).

The Schwarzschild objective is composed from two mirrors Rs = 190µm, Rp = 400µm, with

diameters Dp = 410µm and Ds = 130µm, separated by d = 219µm (vertex to vertex) where glass

support (n=1.457, thickness dglass = 200µm) serves as the secondary mirror support and system

encapsulation lid. The position of the objective in respect to the scanning doublet is chosen to

minimize the obstruction within the system, i. e., the secondary mirror is placed in the focal plane

of the second lens (f2 = 240µm) of the scanner. In this way, the secondary mirror is uniformly

illuminated, independently on the angle of the illuminated beam. Both subsystems (scanning dou-

blet and the objective) have been optimized separately so that the wavefront after the scanning

doublet is faintly aberrated. Hence, the separation distance between the two blocks do not affect
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a) b) c)

Figure 2.23: Scanning system with Schwarzschild objective: spots diagrams - Ray-traced

form of focal spot generated by scanning system, the circle in the center represents the Airy disk size

of rAiry = 1.11µm. Three spots correspond to three lateral positions of the scanner: (a) ∆y = 0, (b)

∆y = 17.5µm, (c) ∆y = 35µm.

Figure 2.24: Scanning system with Schwarzschild objective: MTF - Contrast transfer function

even in case of diffraction-free (dash-dotted curve) is visibly different than in the lens based case (fig.

2.20), the scanning weakly decrease the contrast transferred by the system.

the performance of the system1.

1in this case, only field distortion is dependent on the separation distance between the blocks, however as distortion

does not directly deteriorates the system resolution, we do not consider its minimization here.
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Figure 2.25: Scanning system with Schwarzschild objective: scanning volume shape - XZ

cross section of the scanning volume obtained within system.

∆y [µm] 0 17.5 35

σRMS [λ] 0.01 0.018 0.03

Z6 [λ] - 0 -0.0075

Z7 [λ] - 0.033 0.034

Z11 [λ] -0.01 -0.01 -0.01

SR 0.997 0.99 0.96

δx 1.53 1.53 1.53

δy 1.53 1.63 2.15

Table 2.3: System statistics for plano-convex scanner with Schwarzschild objective - as in

table 2.3

2.5 Summary

In this chapter, optical design for 3D scanner constructed within MOEMS technologies was con-

sidered. The technological constraints related to the micro-construction of the considered device,

i.e. a simple 3-elements optical system, was considered. As a result, 3 optical configurations were

proposed that differ in difficulties of technological realizations as well as in optical performances.

The first design, based on ball-lenses, does not perform well in the off-axis configuration However,

it allows to test the other (non-optical) challenges related to the project such as vertical integration

and connections. The second configuration is optimized in terms of optical performance, and relies
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on plano-convex microlenses with aspherical geometries. These lenses can be integrated into the

device by means of wafer-level approach, which is not possible in the case of ball lenses. Finally,

the third design pushed forward the optimization of the optical performance by adding a reflec-

tive micro-objective as the focusing block. This system, weakly affected by optical aberrations,

shows much better off-axis performances and can be used to achieve higher optical resolutions than

with the two first systems. However, technological realization is also more challenging as it will be

discussed in the chapter 4.
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Characterization of focusing components

To provide high resolution imaging the MOEMS confocal microscopes described in the second

chapter needs high quality optical components. For this purpose, wafer-level microoptics that rely

on specific methods of micromachining are adapted for generation of optical components. As it

was demonstrated [142, 144] such technologies allow to fabricate high quality microlenses within

wafer-level processes. Considered here MOEMS confocal microscope project focuses on micro-

optical elements that are fabricated in materials compatible with integration technologies, i.e.,

mainly anodic bonding. Thus, using silicon and glass requires also specific technologies for optical-

elements generation. In particular, micromirrors and microlenses to be used in the conceived system

are fabricated within silicon etching technology and glass molding technique, respectively. Then,

such relatively new [123, 124, 145] technology requires fabrication processes optimization which, in

turn, has to be based on reliable and pertinent characterization methods of generated structures.

Consequently, we present in the following different characterization techniques that will be employed

during the fabrication of micro-optical components. In particular, we present a setup developed

specifically for characterization of high NA transmissive and reflective micro-optical components.

3.1 Topography measurements

The optical properties of lenses or mirrors are largely defined by their geometry. Consequently

the basic evaluation of their quality starts with the measurement of their geometry. Topography

metrology can be realized by many ways among which the most popular methods are scanning

profilometery and various types of interferometric systems. However, it is important to underline
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3. CHARACTERIZATION OF FOCUSING COMPONENTS

that geometry measurements of micro-components made of highly curved and optically smooth

surfaces are not easy with standard equipments1.

3.1.1 Dicing and SEM imaging

One common method for micro-structure characterization is based on precise dicing and subsequent

imaging of sliced samples under a microscope. When high precision is needed or small structures

are investigated, cross sections are imaged with scanning electron microscope (SEM).

Figure 3.1 shows an example of cross section of a diced matrix of microlens molds. The image

itself does not provide information about the quality of the fabricated structure, however its profile

can be retrieved and analyzed to quantify its optical performance. For this purpose, we developed

a simple algorithms for profile retrieval and analysis obtained from digital images is described in

appendix A.

Figure 3.1: Dicing as a method for geometry characterization - SEM image of diced silicon

mold visualizing the profile of the structure

The dicing-based geometry analysis is straight-forward, however by definition, it provides only

information about a specific section of the structure. In consequence, it is not possible to get

complete information about the 3D shape of investigated structure. In particular, for microlens-

es/micromirrors, the dicing approach is not adequate for characterization of the structure symmetry.

Another drawback of this method is the fact that this method is destructive.

1in the sens of typical instruments accessible in MEMS-focused cleanrooms
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3.1 Topography measurements

3.1.2 Scanning profilometry

In order to obtain full information of the geometry of fabricated structures 3D topography mea-

surement is needed. The simplest system that can provide this kind of information is the scanning

profilometer. Scanning profilometer is a mechanical device that measures relative altitudes of the

sample by probing point by point its surface. It can be used to measure 2D surface topography

and quantify the surface roughness. Scanning profilometry systems are divided in two categories:

contact profilometry, where the small tip (diamond stylus) touches the measured surface. In this

method variations in the vertical movement of the stylus are measured and simultaneously recorded

during the sample (or tip) lateral scanning. The second category is a so-called non-contact pro-

filometry the surface to be measured is probed by an optical signal [146]. In this case the sample

altitude is derived from the optical signal reflected from the sample.
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Figure 3.2: Profilometry for mold topography measurements - (a) Principle of contact pro-

filometry, (b) image of profilometer during a measurement, (c) example of a profile obtained from contact

scanning 1D profilometer - visible measure artifacts on the edges of the structure (linear slope) originate

from finite size of the profilometer tip.

However, the important limitation of the scanning profilometry is related to geometrical limits

with which samples can be measured. Concerning contact profilometry the main constraint orig-

inates from the finite size of the scanning stylus. Firstly, the lateral resolution is limited by the

radius of curvature of the scanning stylus. Secondly, in the case of small and deep structures limited

area of structure can be investigated. In particular, according to the geometrical shape of the tip

areas with high slope cannot be measured (figure 3.2).

In the case of optical systems, similar problem arises when optically smooth surfaces are investi-

gated. The limit of observation area is connected to the numerical aperture of the probe objective.

The optical signal reflected from surface cannot be collected by the probe objective if the local slope

of the sample is higher then the collection angle of the objective (αslope > αobj). In this case, the
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3. CHARACTERIZATION OF FOCUSING COMPONENTS

reflected signal does not reach the detector and some regions of the sample are not visible by the

system (figure 3.3). The lateral resolution of optical profilometry follow classical relation as for all

optical systems and is defined by the numerical aperture of the objective used in the probe.
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Figure 3.3: Limits of optical measurements of curved surfaces - When Smooth reflecting

structures are under optical characterization, (a) depending on the angle of the slope the reflected

light can be redirected outside the collection cone of the objective leading to unmeasurable regions of

the sample, the higher slopes can be observable only when higher NA in the optical system are used,

(b) example of measurement by scanning optical profilometer visible unmeasured zone (edges of the

structure) are due to limited NA of the measuring objective.

3.1.3 Interferometric methods

Various metrology techniques based on interferometry were developed for characterization of M(0)EMS

and their components [147]. The dynamic behavior of mechanical micro-systems can be investigated

by white-light stroboscopic interferometry [148, 149], while topography characterization is usually

investigated by different types of interferometers like phase-shifting [150], white-light [151, 152],

speckle [153, 154], or holography-based systems [155, 156, 157].

Interferometric systems, as the name suggests, are based on the interference of monochromatic or

wide-band light. The light source (usually laser) is divided into two beams: one is used as a reference

whereas the second one is a probe. Probing beam is directed to the sample so that its reflection is

mixed with the reference beam. Interference between the beam that interacted with the sample and

the reference beam generates an interference pattern defined by the geometry of the object. Thus

topography of the measured object can be recalculated from the interference pattern. The usual
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3.1 Topography measurements

method for geometry extraction employs phase-shifting method, in which several interferograms are

recorded for different positions of the measured object.

Various architectures of interferometers employs different configurations of beam splitting and

sample illumination. In the case of micro-structures characterization, interferometric systems are

built on the base of a microscope objective that allow high magnification of investigated objects. The

different architectures of illumination and beam splitting allows different types of measurements.

For example, Twyman-Green interferometer is well adapted for topography measurements of curved

objects (reflection mode)[158, 159], whereas Mach-Zehnder architecture is well suited for wavefront

aberrations measurement in the transmission mode (in case of microlenses) [158, 159]

a) b) c)

Figure 3.4: Interferograms examples of Silicon micromolds - (a) interferogram obtained within

Michelson system of micromolds with hexagonal footprint - the fringe pattern clearly indicates deviation

from axial symmetry of this structure; (b) interferogram of Si mold of high NA - small part of the

structure can be analyzed within used system (to small used NA in the interferometer); (c) interferogram

obtained within Mirau architecture with wide-band light source structure similar to (a).

In case of characterization of spherical surfaces, the resulting interference pattern takes the form

of circular fringes (figure 3.4). When the object is not axially symmetric, the fringes deviate from the

circular form. This observation allows to qualify the symmetry of the structures by analyzing single

interferogram. As an example, figure 3.4a shows an interferogram of microlens molds matrix. In

the observed structure, neighborhood effects (etching nonuniformity due to neighboring structures)

cause large asymmetry (deviation from axial symmetry) that is well visible by the deformation of

the fringes. The neighborhood effect is very scale dependent, so that it becomes negligible with

smaller structures as confirmed in the inteferogram shown at figure 3.4c.

The limitation of interferometry is similar to the one of optical profilometry. The numerical

aperture of the objective has to be high enough to capture the light from the whole structures.
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Moreover, with increasing slope, the fringes become denser and are more difficult to distinguish

[160]. In consequence, when measuring highly curved structures, only a small part of the structure

can be analyzed (figure 3.4b).

3.2 Direct Optical Characterization

As described above, topography measurements provide information about the shape of the element.

Indeed, the optical performance of the optical elements is strongly defined by their geometry. How-

ever, relation between the geometry and optical characteristics has then to be calculated using

optical propagation algorithms (by ray-tracing or diffraction theory). An alternative characteri-

zation method used for optical components metrology is the direct measurement of their optical

properties. The advantage of this approach is that complicated data reinterpretation is not required.

Moreover, it is a more general methodology in the sense that it can be applied not only to single

elements like microlenses, but also to more complex optical systems composed of several elements

or even to complete confocal microscopes.

The most popular method of direct optical measurement is the measurement of the wavefront

generated by optical systems [161]. Several setups proposed for this aim can be divided in two

distinct families: the first one is the interferometric systems [162] whereas the second one gathers the

wavefront sensing by discrete wavefront sampling, usually achieved with Shack-Hartmann sensors

[163].

Nevertheless, wavefront detection in case of micro-optical elements is not a trivial task since

complicated optical systems are necessary to provide high quality probing wavefront. Moreover,

they have to be scaled down to the size of the measured element and later rescaled to the size

of the detector. This “multi-scale” optical measuring system has to maintain high optical quality

(because of the need of well defined reference beam) and needs accurate alignment of measured

micro-elements [162].

In this work, we propose a simpler setup based on the measurement of 3D IPSF generated by the

optical elements [164]. As the IPSF is often used to define the imaging quality of optical systems,

measurement of system IPSF has been employed as characterization tool for complex optical systems

like confocal microscopes [165, 166] or lithographic objectives [167].

Considered method is easier to realize because it is less affected by probing beam quality and

much less demanding in terms of alignment accuracy than wavefront metrology systems. IPSF,

that is the point of interest in the characterization system, is simply defined as the 3D shape of the
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focal spot generated by the focusing micro-element. As it was discussed before, optical resolution

is directly defined by the shape of the PSF, but it is important to underline that PSF also depends

on the optical configuration in which the element is tested. In consequence, with this measurement

system special attention has to be made during data interpretation.

In particular, our system can be adapted to two different imaging cases: the first one is based

on the investigation of focusing of a collimated probing beam which corresponds to imaging a

point located at infinity, whereas the second one, adapted to the characterization of reflective

elements, relies on imaging a point (focused probing beam) located at the center of curvature of

the investigated element. Nevertheless, the fixed imaging configuration allows rapid estimation of

the quality and repeatability of fabricated focusing optical component. Moreover, if additional data

analysis is performed, then wavefront or in certain cases the 3D topography can be calculated from

the IPSF data [164].

3.2.1 Characterization setup for transmisive elements

The characterization of beam transformation generated by the optical elements depends on the type

of considered transformation. The first proposed architecture aims to characterize the transmisive

focusing elements. The “transmisive” configuration means that focus is generated along the optical

axis of the system, without changing the propagation direction.

3.2.1.1 Theory

System architecture for measuring 3D IPSF of a transmisive micro-elements is presented in figure

3.5. The collimated beam from laser source (probing beam) impinges a microlens that focuses the

light. Then, a collection system made of an objective lens, a tube lens and a CMOS camera is

used to analyze such focus. The collection system aims to project magnified images of the slices of

the 3D focus spot to the camera located in the image plane where the camera is located. The 3D

intensity distribution generated by the system can be described by the classical diffraction analysis

[6].

It(u, v,Φ) ∝
∣
∣
∣
∣

∫ 1

0

∫ 2π

0
Pobj(ρ, θ)Pm(ρ, θ) eikΦ(ρ,θ)

︸ ︷︷ ︸

aberration

term

e−i 1
2
u ρ2

︸ ︷︷ ︸

defocus

term

e−ivρ cos(θ−φ)ρdρdθ

∣
∣
∣
∣

2

(3.1)
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Figure 3.5: Scheme of characterization system “in transmission” - A microlens illuminated with

collimated laser beam (HeNe λ = 633nm) generates the focus whose volume is observed by the collection

system that can be axially displaced in order to change distance from lens to collection objective. The

sequential scanning allows reconstruction of 3D shape of the focus spot generated by the microlens.

where u = 2π
λ
zNA2 and v = 2π

λ
rNA are normalized axial and lateral coordinates, Φ is wave

aberration function, θ and ρ are normalized pupil coordinates, Pobj(ρ, θ), is a pupil function of

the objective lens, Pmρ, θ is the pupil function of measured microlens, and z is axial coordinate

of the system in respect to the focus position of the investigated microlens. In a perfect system

(clear, aberration-free, circular lenses), the pupil functions take the form of unit values over the

pupil P (ρ, θ) = 1. An important condition on the collection system has to be imposed to be able

to obtain data about the whole investigated structure: The collection system has to have larger

numerical aperture (NAobj) than the investigated microlens (NAµLens): NAobj > NAµLens, so

that all light passing through the microlens contributes to the image formed on the image plane.

From the point of view of equation 3.1, it signifies that the product Pm(ρ, θ)Pm(ρ, θ) is equal to

Pm(ρ, θ), where Pm(ρ, θ) =

{

1 if ρ < NAm/NAobj

0 otherwise
. If this condition is not fulfilled, only a part

of the object can be characterized. However, in some cases, it is convenient to probe the object

under a priori known NA that can be defined via the collection system NAobj .

3.2.1.2 Implementation

Realization of the characterization system is presented in figure 3.6. The laser beam from HeNe

source is expanded by a two-lens telescope and directed onto the microlens to be measured. The
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Figure 3.6: Optical system for focal spot measurement - The light from HeNe laser source

expanded by a telescope system composed of two lenses impinges the investigated microlens, the focused

beam after the lens is collected by the microscope objective and projected to the camera by the tube lens.

The objective-tube lens-camera system is placed on the movable stage that can be precisely displaced

along the beam propagation axis by precise servo motor.

focused spot generated by the microlens is collected by the microscope objective and consequently

projected onto the camera. The microscope objective used as a collection lens assures high numerical

aperture of the imaging system and provides large magnification. This is necessary since observed

features in the focal spot generated by microlens have usually sub-micron sizes. The use of high

quality microscope objective is necessary to avoid disturbance of the image by aberrations present in

the imaging system. Consequently, such system allows imaging of one slice of the focus generated by

the element under analysis. Thus, the distance between the collection system and the microlens can

be controlled by precise servo motor in order to displace the whole imaging system (objective - tube

lens - camera). Such axial scanning of the system allows a sequential registration of images (slices)

from the focal volume. Scanning of the imaging system was chosen over the scanning of the microlens

to fix the illumination conditions. In practice, when using a coherent source, completely uniform

illumination is difficult to generate when using relatively large (few mm diameter) collimated beam

because of some imperfections of optical elements. In our system, where the microlens is fixed,

small non-uniformity’s of illumination block are easier to handle.

It has to be noted that the image of each focus slice is recorded by a CMOS camera (ueye from

IDS). Low dynamic range of CMOS sensor employed in the system (8bits) is insufficient to register
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the rapidly changing structure of the observed focal spot. In order to improve the dynamic range

of the obtained data, multiple frames of each focus slices are then recorded with different exposure

times. The consecutive 6 frames (with exposures from 0.05ms to 100ms) are recorded and final

image is reconstructed from multi-exposure data. The reconstruction involves images normalization

(according to exposure time) of the different frames followed by frames averaging with exclusion of

saturated or under-threshold pixels. Then the axial scanning is performed by use of the linear servo-

motor that displaces a stage holding the optical module (figure 3.7). The camera and the motor

are controlled by a PC, for which system control and data post-processing have been programmed

in Python [168].

CMOS

CAMERA

SERVO

MOTOR

MICROSCOPE

OBJECTIVETUBE 

LENS

SAMPLE HOLDER

(XYZ-STAGE)

Figure 3.7: Collection system for through focus imaging - The system was built on an axially

movable stage. The exchangeable microscope objectives allow simple adaptation of system magnification

and numerical aperture to the characterized object. The measured sample, usually in the form of a 4inch

wafer, is fixed to the XYZ stage that allows its accurate alignment.

3.2.1.3 Data analysis and example measurements

The data obtained from measurements represent the 3D intensity variation near the focus of the

investigated element. The simplest data analysis is a qualitative comparison of measured data with

an ideal case, for example a perfect (aberration free) microlens. However, the intensity distribution

function defined in 3D volume is difficult to interpret, instead, 2D slices (XY and ZX) can be easier

analyzed (figure 3.8).
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The aberrations generated by non-ideal optical element typically deform the IPSF. In particular,

when comparing to ideal aberration-free response, the focal spot of aberrated system is always

wider along all three directions. Thus, this focus stretching can be used as a measure of aberration

generated by the microlens.

a) b)

Figure 3.8: Measurements of 500µm diameter ball lens - (a) XZ-slice of focus spot generated

by the microlens and (b) the focal plane (XY-slice), measurement performed with NAobj = 0.45.

As an example measurement and in purpose to test the system, the first object under consid-

eration is a microlens which has the form of a sphere, i.e., a so-called ball-lens. The investigated

ball-lens (Edmunds Optics) is made of N-BK7 glass (nd = 1.517) and is characterized by a diameter

D = (500± 3)µm, and a focal length f = (367± 2)µm. The sphericity precision is specified by the

manufacturer1 as 1µm. Although, the ball-lens has very well defined spherical geometry, the optical

performances in the used configuration (collimated light, relatively high NA) are not very high.

When completely illuminated, the ball-lens has a numerical aperture NABL:100% = 0.56. How-

ever, complete illumination is almost never used with ball lenses. Then, in order to characterize

lower-NA configuration, the objective used in the imaging system has a lower NA than the one of

the microlens. This configuration NAobj < NAµLens limits the observation zone of the beam gener-

ated by microlens to the defined NAobj . As it was discussed before, although it is usually the case

to characterize the whole fabricated structure, performing measurements under a priori known NA

(defined precisely by NAobj) can simplify the analysis of the obtained data. Consequently, the ball

lens was investigated under NA=0.45. The processed data visualized as two perpendicular slices

of the focal spot generated by the ball lens are presented in figure 3.8. The image of focal plane

(figure3.8b) shows the well defined spot similar to an Airy disk, however, with stronger outer rings

than in the case of aberration free imaging systems. On the one hand, the geometrical deviation

1sphericity is defined here (Edmunds) as maximum difference across the different cross section of a lens diameters
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from the ideal case is difficult to notice simply by investigating the image of the focal plane. On

the other hand, the XZ slice of the focal volume (figure 3.8a) is very different from the ideal case.

The visible lack of symmetry in respect to the focal plane is attributed to the wavefront aberrations

introduced by the microlens. The level of asymmetry in the XZ focus slice is then an easy qualitative

indication of aberrations generated by characterized element.

The focus lateral and axial size directly measured from the 3D spot distribution are δxfwhm =

1.8µm and δzfwhm = 25µm (for comparison, aberration free system (Φ = 0) is characterized by

δxΦ=0
fwhm = 0.7µm and δzΦ=0

fwhm = 4.7µm). However, it has to be noted that FWHM measure of PSF

does not well represent the resolution of aberrated system, in particular in the case of spherical

aberrations whose main effect is the generation of strong side-lobes (rings) around the principal

focal spot. In consequence, the effective resolution of the system is not defined only by the width

of the intensity peak, but also by the amplitude and size of the outer rings.

The spatial spread in the focus is often analyzed by means of an encircled energy plot, i.e. a

plot illustrating the power distribution in the focal plane. Figure 3.9 presents the power analysis

for the considered ball-lens. The numerical analysis performed with ZEMAX software, is compared

with data calculated from the measurement. The curve for diffraction limited system is also plotted

to illustrate the large difference between aberration free and aberrated cases. The shape of curves

obtained from numerical analysis and measurement data are not exactly the same, however, the

limits behave similarly (75% of energy is contained in a circle of radius ≈ 8µm for both cases).

The difference can originate from not accurate location of focus center, or can be caused by data

sampling (in the considered case pixelation ∆x = 0.168µm). Those two limitations makes difficult

very precise analysis of focal plane images.

The simulations 1 of the focusing performance of the ball-lens shows that, in this configuration

(NA=0.45) the wavefront aberrations are severe σRMS = 0.7λ and can be described by primary and

secondary spherical aberrations (Z11 = 0.68λ and Z22 = 0.11λ).

3.2.2 Characterization setup for reflective elements

The second considered system is similar to the one described in the previous section. The difference

consist on adaptation for measurements of the reflective structures (e.g. mirrors, silicon molds of

microlenses or curved faces of microlenses). The measurement of reflective optical micro-components

tends to be problematic as it was discussed before. This system is similar to the transmissive one

1performed within ZEMAX
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Figure 3.9: Encircled energy plot for focal plane of a ball lens - Energy distribution visualized

by the plot of fraction of total power encircled in a circle of certain radius. Plot compares measured

dependence with numerical calculated relation and the diffraction limited case.

and helps to quantify the quality of curved reflective surfaces without the problem of light vignetting

encountered in the classical systems (figure 3.3).

3.2.2.1 Theory

The basic aim is to obtain similar data from a measured object as in the transmission system. In

particular, estimation of aberrations generated by the investigated structure is targeted.

In the reflection mode, the use of collimated beam as the probing beam is not an applicable. In

here, we use the optical configuration that is commonly employed for optical measurement of radii

of curvature (ROC) of reflective surfaces [161, 169, 170]. This system (figure 3.10) relies on specific

reflection from a spherical surface. When a convergent beam impinges on a spherical mirror, the

reflected beam is perfectly inverted if its focus is located at the center of curvature (COC) of the

mirror. This arrangement is usually referred as “confocal configuration”. The measuring system

then relies on measuring the IPSF of the measured object in this specific imaging configuration.

This measurement configuration corresponds to imaging a point located in COC. And IPSF of this

specific configuration (aplanatic point of spherical mirror) is analyzed. The optical implementation

of the imaged point-object located at COC is achieved by a focused beam used as a virtual source

(point object). The beam focusing is performed by the objective already used in the collection

system.

In here, we perform sequential axial scanning of the investigated object in order to image different

slices of the focal spot generated by a measured surface. Similarly, to the transmission system, the
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Figure 3.10: Measuring system for reflective elements - Collimated beam enters the system

from the side and is redirected by a beam splitter to the objective that focuses the beam in front of

the measured sample. The confocal position is a specific arrangement of (objective)-(curved measured

object) where divergent beam impinging the curved object is retro-reflected to the imaging system along

the same trajectories. The probing beam is generated by the same objective that is used in collection

block, the beam input to the system is achieved by placing a beam-splitter between the objective and

the tube lens.

imaging of the system can be described by the diffraction integral (equation 3.2) [170]:

Ir(u, v; Φ) ∝
∣
∣
∣
∣

∫ 1

0

∫ 2π

0
Pobj(ρ, θ)Pm(ρ, θ)Pobj(ρ, θ − π)eik 2Φ(ρ,θ)e−iuρ2e−ivρcos(θ−φ)ρdρdθ

∣
∣
∣
∣

2

(3.2)

The response consecutive to the scanning is slightly different than in the transmission mode (equa-

tion 3.1). This is a natural consequence of working in reflection for which light encounters a

round-trip. This round-trip leads, on the one hand, to a factor 2 multiplying the aberration term.

It is important to note that, in here, the aberration function Φ(θ, ρ) is directly defined by the ge-

ometry of the measured object, literally how it geometrically deviates from a sphere. This is not

true for measurements of microlenses in the transmission mode for which basic geometrical analysis

demonstrates that perfectly spherical lenses do not generate spherical wavefronts [6]. The second

consequence of the round-trip, visible when comparing diffraction formulas describing the two sys-

tems, lies in the defocus parameter, which is also multiplied by two. In consequence, measured 3D

intensity does not correspond directly to the object IPSF but is axially compressed. Another differ-

ence with the transmisive system is the double use of the objective of imaging system (focusing and

collection). Thus, the quality of objective is literally twice more important than in the transmisive

system, since any aberrations present in the objective are also doubled within the round-trip of the

beam.
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As it was mentioned before, this optical configuration is based on the systems for radius of

curvature (ROC) measurement [170]. Consequently, although the primary target of our system

is the measurement of micro-components quality via the IPSF analysis, this system can also be

used (without any modification) to precisely measure the radius of curvature of the investigated

micro-components. The ROC measurement principle is sketched on figure 3.11, it is based on

axial scanning of sample between two characteristic points of a spherical surface. In addition, to

the confocal position, the second particular position of the measured object corresponds to the

generation of a focalized spot in the image plane of the collection system. This point, so-called

“cat’s eye position”, corresponds to the location of the object in the focus of the probing beam. The

difference between confocal and cat’s eye positions is equal to the radius of curvature of the object.

OBJECTIVE

LENS

TUBE

LENS

IMAGE

PLANE

CAT'S EYE

POSITION

CONFOCAL

POSITION

ROC
BEAM

SPLITTER

Figure 3.11: In reflection measuring system for ROC measurements - Cat’s eye and confocal

positions are the two positions that “refocus” the beam at exactly the same location than when the

incoming beam is focused by the objective. The detector located in the conjugate plane to the focal

plane of objective records the form of reflected beam.

The ROC measurement within this system can be simply understood when considering the ideal

case of a perfect spherical reflector as a measured object. In such case, the object axial scanning

generates a spot in the image plane whose size depends on the object position. When the sample is

located in the cat’s eye or confocal position, the image on the camera takes the form of the focused

spot (solid rays in the figure 3.10). In the other cases, the spot projected onto the camera has larger

size (dashed rays in the figure 3.10). Then, the on-axis intensity is recorded as a function of the

object displacement and the two intensity peaks correspond to the cat’s eye and confocal positions

of the investigated object and their separation to its ROC (figure 3.15). The axial response of the
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system near the cat’s eye is described by equation 3.3.

Ir(u, v = 0;Φ = 0) =

∣
∣
∣
∣

sin(u/4)

u/4

∣
∣
∣
∣

2

(3.3)

where Ir(u, v = 0,Φ = 0) is the on-axis intensity in the vicinity of the cat’s eye position. In the

case of a perfectly spherical mirror, the intensity responses at the two positions are supposed to be

the same. However, the intensity response near the confocal position is highly dependent on the

geometry of the reflecting surface and thus, any deformation of the geometry of measured surface

leads a different axial response at the cat’s eye position. In consequence, the ROC measurement of

not-ideally spherical objects results in ROC averaged over the area of the object [170].

Additional, advantage of the cat’s eye position is that it can be used as a reference measurement

for testing the imaging system quality. In fact, the 3D response function of reflection from cat’s eye

mirror location does not depend on geometry of the mirror but only from the quality of the optical

system used for illumination and collection (figure 3.14a).

3.2.2.2 Implementation.

Both measurements systems (transmissive and reflective) are assembled as a single measurement

station (figure 3.12). The illumination beam in the reflection mode is redirected to the objective by

a beam-splitter cube placed between the objective and the tube lens of the imaging system. The

measured object reflects the incident focused beam to the imaging system. The latter images the

focal plane of the objective onto the CMOS camera.

The imaging setup works in the infinite conjugate configuration1, so that the beam-splitter can

be placed between the tube lens and the objective without deterioration of optical quality of imaging

system. Since polarizing beam-splitter is used, a quarter-waveplate is required to rotate polarization

before re-entering the beam-splitter (figure 3.13). To investigate the volume of the focus generated

by the measured object, axial scanning is performed by displacing the object by a servo motor

along the optical axis. From the point of view of system control and data analysis, the system is

not different from the transmission mode, i.e., same image acquisition and post-processing is used.

3.2.2.3 Data analysis and example measurement.

The reflection mode system allows two types of measurements. The first one corresponds to the

same analysis than the one performed by the transmissive system.

1imaged plane corresponds to focal plane of the system objective
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Figure 3.12: Realization of characterization system in “reflection mode” - Optical setup

is the same as used in transmission mode, the main difference is different path of illumination beam,

that is introduced to the measuring system from the side by the use of a beam splitter cube. The

reconfiguration of the setup between transmission and reflection modes is made by sliding-in or out the

rail with mirrors and beam expander of transmission configuration.

The second analysis is a classical measurement of ROC. As it was discussed before, the accurate

determination of ROC can be done by investigating the axial intensity variation Ir(u, v = 0). In

practice, since used detector is a pixelized camera, the real intensity information are not accessible.

Moreover, since perfect alignment of the optical system is never possible (measurement setup -

sample), the optical axis of the system is not well defined. To address this problem, the axial

dependence of power encircled in the small pinhole located in the center of the beam instead of

axial intensity is investigated. The beam center is found for each z-frame separately, that makes

the method insensitive on possible beam misalignment. The power in the pinhole is calculated by

numerically integrating the intensity located in the circular pinhole of a given size (usually pinhole

size is in order of the lateral size of the focal spot).

In order to validate the characterization system, test measurements were performed with an

object of known and well-defined geometry, i.e., the previously used micro ball-lens. The measure-

ment data used for ROC determination are presented on figure 3.15. The resulted ROCmeas =

(247.5 ± 0.7)µm is consistent with specifications given by producer (deduced from the diameter

precision: ROCspec = (250 ± 1.5)µm). It can be noted that the lens was measured without any

additional reflective coatings. Indeed, all reflections observed by the system originate from the
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Figure 3.13: Reflection mode - imaging system - Same system as used in transmission configura-

tion, additional elements needed to work in reflection - the beam-splitter cube and quarter wave plate

does not influence the measurement in transmission mode.

Fresnel reflections on the dielectric boundary1. From the same data set, the geometrical extension

of focal spot can be extracted and reads as: δzfwhm
cat′seye = (6 ± 1)µm, δxfwhm

cat′seye = (1.0 ± 0.2)µm,

δzfwhm
confocal = (9± 1)µm and δxfwhm

confocal = (1.0± 0.2)µm. From the sizes of the focal spots and their

geometry (figure 3.14), we can deduce that aberrations are small (the diffraction limited spot would

have sizes: δzfwhm = 4.5µm and δxfwhm = 0.7µm).

Another, often used measure of aberration is the Strehl ratio (SR) which compare the maximal

values of IPSF of aberrated system with the ideal one.

SR =
max(IPSF (~x, φ))

max(IPSF (~x, φ = 0))
(3.4)

where φ is a wavefront aberration function. Since it is a single scalar value, Strehl ratio gives a

simple but pertinent quantification of the lens quality [167, 171]. In the low aberration systems,

the SR is defined by statistical measure of aberration function, literally the wavefront RMS (root

mean square) related by Maréchal approximation:

SR ≈ e−(σφ)
2 ≈ 1− σ2

φ (3.5)

1 this can pose a question if in this configuration cat’s eye and confocal position are complementary, the answer

is yes since focused beam reflected in object vertex has flat wavefront whereas in confocal position, reflection for all

rays are normal to the lens surface

96



3.2 Direct Optical Characterization

a) b)

Figure 3.14: Focus spot response in reflection mode of 500µm diameter ball lens - Measured

focal spot (xz slice) in two cases (a) reference reflection, i.e. cat’s eye position and (b) confocal position.

From the equation 3.5, it can be noted that determination of Strehl ratio allows the estimation

of wavefront σφ that is the most common aberration quantification. Moreover, SR is a decreasing

function of σφ. The strong relation SR(σφ) allows precise estimation of the optical quality of

analyzed optical system through the experimental measurement of SR. However, this approximation

is only valid for system having low aberrations (σφ < 0.15λ). For systems characterized by higher

aberrations, the peak intensity value is not directly related to σφ but depends on specific form of

the system aberrations [172, 173]. In consequence, the SR is meaningful only for the elements of

relatively high optical quality1. The through focus images (sometimes called aerial images) of the

focus spot can be directly used to obtain SR [167].

SR =
max(IPSF (~x, φ))

Ptotπ
NA2

µLens

λ2

(3.6)

where, max(IPSF (~x, φ)) is the peak intensity in the 3D focus pattern and Ptot is the total power

1in some cases, highly aberrated system can exhibit larger SR than less aberrated system [172]. However, in such

pathological cases, SR cannot be correlated with optical quality (resolution) of the optical system.
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Figure 3.15: ROC measurement of 500µm diameter ball lens - a) scheme of measuring config-

uration, b) slice (XZ) of measured intensity along all scanned distance (320µm) visible two focal spots

correspond to confocal (left) and cat’s eye (right) positions, c) plot of power passing through virtual

pinhole (r = 1.7µm) located on the center of the beam, clearly visible two peaks allows accurate location

of confocal and cat’s eye position and determine the ROC value.

carried by the beam. Both max(IPSF (~x, φ)) and Ptot can be obtained from measured 3D IPSF

data. Although the NAµLens has to be known a priori, it can be, in some cases, also calculated from

the data (for SR measurements, it is preferable to set NAobj < NAµLens to set a well-defined NA).

The estimation of numerical aperture could be made by measuring lateral or/and axial extension of

the focal spot, i.e. recalling that δfwhm
x = 0.5λ/NA and δfwhm

z = 1.4λ/NA2. Nevertheless, in the

presence of aberrations, these relations do not hold and estimation of NA based on focus extensions

is not precise. However, it can be mentioned that if the measured microlens tends to be used in the

same configuration than in the measuring system, the values δx, δz represent a good estimation of

the optical resolution of the element.

With the ball lens, since aberrations are relatively low, the Strehl ratio is well-defined and

directly related to wavefront aberrations by equation 3.5. The calculation of Strehl ratio requires

calculating Ptot and max(IPSF (~x)). For this purpose, the first step consists in the determination
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of the focal plane localization from the 3D IPSF data. The focal plane location can be defined in

different ways (for instance by minimal spot radius or wavefront deviation [174]), however, since we

do not have information about wavefront and since calculation of the spot radius for every collected

plane is cumbersome, we look for the maximum intensity peak value of 3D IPSF. This approach is

equivalent to the definition of the focal plane by maximal Strehl ratio, that, in the limit of small

aberrations, is equivalent to minimal wavefront deviation at focus plane.

Total power is calculated by integrating the intensity over the whole focal plane. In the context

of available numerical data, the simplest approximation of total power can be made by summing

the intensity values recorded by the camera, i.e., Ptot =
∑

i,j I(i, j)δx
2, where I(i, j) is the intensity

level in the focal plane at the grid coordinate system defined by pixel indexes i, j, and where δx2

represents the surface of the pixel (in δx = 0.168µm at object space coordinates). Peak intensity is

approximated as the maximal value in the measured data. The estimated Strehl ratio is for cat’s

eye position SRCE = 0.85 and is, in the case of confocal position, SRCF = 0.5. The < 1 value of

Strehl ratio in the cat’s eye position can be attributed to the aberrations present in the imaging

system (optical system characterized by SR > 0.8 can be considered as diffraction limited) which

limits the precision of our measuring system. Wavefront aberration of the imaging system can then

be estimated using the approximation (3.5) as σref
obj ≈ λ

16 . Moreover, since this value corresponds to

a round-trip, the estimation1 for a single pass about the performance of the imaging system in the

transmission mode is σtr
obj ≈ λ

32 , that corresponds to SR = 0.96. This value demonstrates the high

quality of the imaging system used in our setup based on a high quality microscope objective (Nikon

CF Plan, 50x/0.45 SLWD). In the confocal position, wavefront deviation reads as σr
µLens ≈ λ

8 that

once transformed to geometry RMS deviation is equal to σgeom
µLens ≈ λ

16 . For used λ = 633nm, it gives

a surface deviation as σgeom
µLens = 40± 10nm. The manufacturer specifications on the lens geometry

accuracy mention only the sphericity precision defined as maximal expected diameter difference of

lens sections. In consequence, it can be expected that used ball lens exhibits some level of spheroidal

form. From maximal diameter difference (specified as 1µm), the RMS geometrical deviation on an

observed zone (45% of lens diameter defined by NAobj = 0.45), is calculated as 27nm. This value

is in good agreement with the experimental results showing the high performance of the direct

characterization despite its rather simple implementation.

1used estimation assumes doubling of aberration in the round-trip case, that is not strictly valid: firstly the beam

formation (beam expander) is different in two modes, secondly objective aberrations should according to eq. 3.2 be

added as Φ(ρ, θ) + Φ(ρ, θ − π) not simply doubled. However only objective is working in the high NA configuration

and since aberration doubling, instead adding, is the worst case scenario, this approximation can be safely used.
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3.3 Conclusion and perspectives

Characterization of focusing micro-optical components fabricated by wafer-level methods is impor-

tant for optimization of fabrication processes. Nevertheless, standard methods are usually limited

to low numerical aperture components. Thus, in this chapter, different techniques that will be

employed in the next chapters are presented, namely topography measurements based on dicing

and SEM imaging as well as scanning profilometry and interferometry. In addition, a direct optical

characterization based on a rather simple setup has been proposed. The direct characterization

of optical response of focusing micro-elements allow simple, but very precise estimation of micro-

structures quality. As the geometry of optical surfaces largely defines the optical transformation

of the beam, the measurement of point spread function is adapted for precise characterization of

micro-elements. Moreover, the measurement corresponds to the typical use of optical components,

then optical performance in terms of achievable resolutions can be directly obtained. In this pre-

liminary work, we use only a simple data analysis to derive basic parameters of the measured focal

spots. However, much more information about the micro-optical elements can be obtained from

such data (3D IPSF). More sophisticated analysis, for example Njober-Zernike wavefront retrieval

algorithm developed by Braat et al. [164], allows to calculate the wavefront shape from the through

focus images. This method would give full information about the investigated object including the

additional possibility of calculating the object geometry in the case of measurements in reflection.
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Realization of microoptical components

for on-chip confocal microscopy

Introduction and Objectives

This chapter is dedicated to the development of all the different optical sub-components required

for the MOEMS-based confocal microscopes. It concerns, namely the investigation of silicon etch-

ing processes aimed at fabricating mirrors (i.e. for Schwarzschild micro-objective) or molds for

microlenses that are supposed to be integrated onto actuators (scanning block) or to be integrated

onto the last substrate (focusing block in 1st demonstrator). This part, gathering different types of

wet and dry etching of silicon is addressed in the first section of the chapter.

Then, the second section deals with the generation of a micro-beam-splitter, that can be fab-

ricated at wafer level and allows once added to the 3D-scanner, to build a complete, miniature,

vertically integrated confocal microscope.

Finally, in the third section, the design and fabrication of the Schwarzschild objective is ad-

dressed. As it was discussed in the second chapter, this anastigmatic component allows increasing

the performance of the system, especially in the edges of the scanning volume. For this purpose,

theoretical study of the objective is first given, to set the required dimensions and fabrication

tolerances.
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4.1 Technology of micro-mirrors and micro-lenses

In this section, we investigate the process for micro-optical components (lenses/mirrors) that are

based on silicon etching. Three different techniques are investigated: anisotropic wet etching in

aqueous KOH solution, isotropic wet etching in mixture of HF and HNO3 acids, and silicon dry

etching in SF6 plasma.

The micro-optics fabrication based on silicon as the building material, allows using established

bonding technologies for the integration of optical elements with MEMS structures. The use of

monocrystalline silicon as building material for curved optical structures can be challenging. Indeed,

The well-defined crystallography of used silicon substrates is responsible for anisotropic properties

of the material. In the context of fabrication of smooth, curved structures, these effects can lead to

undesired effects such as direction dependent etching resulting in asymmetry of generated structures.

Silicon as non transmissive material in visible spectrum can be directly used as a substrate

for mirrors. In the context of microlenses generation same techniques can be employed, however,

etched structures are used as molds, that in the process of replication are transformed into refractive

microlenses.

The aim of this section is to investigate and to compare different etching techniques for fabrica-

tion of microlenses and micromirrors that can be part of miniaturized confocal microscope.

4.1.1 Wet etching of silicon with KOH solution

Aqueous solution of KOH is widely used in MEMS fabrication as a simple method of anisotropic

etching of monocrystalline silicon [175]. The usual geometries generated by KOH mixture takes

the form of sharp structures limited by planes bounded by corners. This property of KOH etching

solution is frequently use for generation of membranes and tilted or vertical planes. The specific

topography of generated structures originates from chemical anisotropy, i.e., the chemical etchrate

(silicon removal rate) of monocrystalline silicon is highly dependent on the crystallography of the

exposed surface. However, if anisotropic structures are mostly generated, KOH etching can also in

some cases be employed for fabrication of smooth, curved structures.

4.1.1.1 Theory

The process proposed by Kendall [176, 177] allows generation of mirror-like structures by use of a

two step KOH anisotropic silicon etching process. The scheme of the process is presented in figure

4.1. The first step consist in anisotropic etching through a mask. In case of (100) oriented wafers this
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4.1 Technology of micro-mirrors and micro-lenses

process eventually leads to the creation of an inverted pyramid (figure 4.1b). The pyramid is formed

by {111} planes that are not etched in KOH solution1. Subsequently, the second etching process

is performed without the mask. This so-called maskless etch is responsible for the transformation

of pyramidal depression into a smooth spherical-like structure. During this step, sharp corners

between {100} and {111} planes are rapidly etched. Actually, etching of the convex corners leads

to exposition of {411} planes (figure 4.1d) that are locally (between {100} and {111}) the fastest

etched planes (figure 4.2). Then, when etching progresses four {411} meet at the vertex of the

original {111} pyramid forming at this moment an inverted pyramid made by {411} planes (figure

4.1e). From this point the bottom of the structure starts etch with different (slower) speed than

other regions of the structure. This etchrate gradient is responsible for the curved bottom of the

pyramid (figure 4.1f). The prolonged process leads to evolution of the size and the curvature of the

bottom part and eventually suppresses pyramid forming facets and create a smooth cavity.

a)

b)

c)

d)

e)

f)

g)

Figure 4.1: KOH etching for spherical cavities generation - Two-step etching process proposed

by Kendall: (a) the first step, the etching is performed through a mask. This results in a pyramid

structure limited by four {111} planes (b). After removing the mask (c), the maskless etching is

performed (d)-(g). During this step, the {111}-limited pyramid is transformed into a pyramid bounded

by {411} planes (e). Continued etching produces the rounded part at the bottom of the pyramid that

grows and eventually replaces all {411} planes, leading to smooth spherical-like depression.

The evolution of depth and diameter of the curved cavity is given by [177] relation derived by

1{111} Si planes have non-zero etchrate but etching speed is much slower than for other planes
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geometrical reasoning (equation 4.1) or by empirical approach (diameter) (equation 4.3)

s =
d0√
2
+

d0
m

(
1

2
sin(θ)− 1√

2
cos(θ)

)

(4.1)

where m is a ratio of etchrate of the locally fastest etched planes ({411}) to the etchrate of {100}

plane: m = v411/v100 (in solution used in this work m = 1.71), and θ is the angle between two

mentioned planes θ = 19.24o.

D = 7.8h0.58d0.420 (4.2)

where h is the etch depth along the wafer thickness. The curvature of generated structure is usually

obtained from equations 4.1 and 4.3 assuming the spherical geometry [145, 177] of the curved area.

R =
D2

8s
+

s

2
(4.3)

a) b)

(411)

Figure 4.2: Anisotropic etchrate in KOH solution - (a) Experimental etchrates map obtained

by Sato et al. [178] from hemisphere etching experiment and (b) etchrate dependence along different

crystallographic directions (investigated directions indicated by the dashed red line on (a)) showing

smooth local etchrate maximum around (411) direction [179].

4.1.1.2 Fabrication

The realization of curved microstructures by KOH etching of silicon is based on standard MEMS

fabrication processes. Silicon (100) wafers are employed. The first KOH etching (figure 4.1) re-

quires protective mask on the silicon substrate. Depending on the etching conditions (temperature,

etching time) different masking materials can be used. The common masking material used for

wet-anisotropic silicon etching is thermally grown SiO2. However, silicon oxide is also slowly etched
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by KOH solution (vSiO2 ≈ 7nm/min). The oxide mask can be used only for relatively short etching

processes since thermal oxidation can provide only limited thickness of masking layer (dSiO2 < 2µm).

a) b) c) d)

e) f) g) h)

i) j) k) l)

PHOTORESIST SiN SiO2

Figure 4.3: Fabrication process steps for mold generation by KOH - initial silicon wafer

with SiO2 (500nm) and SiN (150nm) (a) is covered with photoresist by spincoating, desired pattern

is transferred into resist by UV lithography (c), patterned resist is used as masking layer for etching

SiN and SiO2 layers (d) and (e), that is performed by RIE processes (SF6 based for SiN etching and

fluorocarbon based for SiO2 etching), After SiO2/SiN opening resist is removed and wafer is cleaned

(f), the next step is first KOH etching process that form inverted pyramids in the silicon (g). The

consequent steps concerns mask removing from the wafer frontside of the wafer by use of a fluorocarbon

RIE process (i). Next step is a backside resist protection removal (j) and wafer cleaning with Ar/O2

plasma (k), the last step is the KOH etching that generates the final structure (l).

Alternative mask materials are gold (Au) or silicon nitride (SiN). Gold mask is characterized

by high chemical resistance, however, it has low mechanical strength, and poor adhesion to silicon

surface. The adhesion problem is usually solved by an adhesive layer, i.e., thin layer (dad = 10 −
50nm) of chromium (Cr) or titanium (Ti) deposited between silicon surface and the gold layer.

Poor mechanical robustness of gold mask can results in mask cracks and solution contamination

that can in turn cause increased roughness of the etched structures.

Mask from silicon nitride is chemically and mechanically very stable and is often considered

as the best mask for deep KOH etching. It is important to notice that properties of thin layer of

silicon nitride is very dependent on the method of deposition. The silicon nitride layers deposited

by means of PECVD process usually have much lower chemical resistance than the one deposited

by LPCVD process. Moreover, within those two families of deposition processes various parameters
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can change the behavior of the final layer. In this work, KOH etch has been performed with mask

made of LPCVD SiN layer deposited on thermally grown oxide layer that provides buffer layer

between Silicon and rigid SiN layer, moreover tensil stress generated during LPCVD SiN deposition

can be compensated by compresive stress present in the thermal oxide.

The fabrication scheme is presented on figure 4.3, as the starting point silicon wafer (100mm

diameter) with double layer of SiN/SiO2 (bought already prepared from the supplier) is employed.

The pattern generation in SiN/SiO2 layer is performed by contact UV photolithography technique.

For this purpose the photosensitive resist (SPR220, thickness 2.7µm) is spincoated on the wafer

and the desired pattern is transferred to the resist thought the chromium mask prepared by laser

writing system1. The initial mask openings are circular and inverted pyramid created in the first

KOH process are self-aligned to the crystallography of silicon substrate. The etching of SiN with

mask formed from photoresist is performed by RIE in SF6 plasma (p = 60µbar, flowSF6 = 15sccm,

Ubias = 260V ). Oxide etching is also performed by RIE but witch a mixture of fluorocarbon gases

(p = 60µbar, flowCHF3 = 10sccm flowC2F6 = 15sccm,Ubias = 380V ). One the mask opened

KOH etching is performed in 10M aqueous solution at a temperature 80oC. For this purpose,

the glass etching baker containing the KOH solution (1.5L) is placed into a heated water bath in

order to achieve good control of the etchant temperature. The etching is performed without the

agitation, where wafer in the etching baker is placed horizontally, etched side up, this assures uniform

temperature during the process and facilitates releasing gas generated during etching process. The

process time (t1) of the first etching aiming at generation inverted pyramids (figure 4.3) is defined

by the size of the larger openings patterned on the wafer.

t1 >
d0

v100
√
2

(4.4)

The inverted pyramid generation by KOH is a self stopping process ( v100
v111

≈ 300), and pro-

longing the time does not influence the final structure. This effect will allow the generation of

mirrors of different parameters on the same wafer simply varying opening of the initial mask (d0)

within the substrate. The mask removing (stripping) necessary for second anisotropic etch is per-

formed in RIE system by means of fluorocarbon plasma process used to dissolve both masking

layers. After mask stripping, wafer is cleaned in reactive plasma (flowO2 = 18sccm, flowAr =

3sccm,p=0.21Torr,P=550Watt,T=170◦C, in Nanoplas) to remove fluorocarbon film deposited on

Si during mask removing process. This step is important since any residual fluorocarbon that rests

1 mask design is prepared in the KLayout - an open source CAD software [180]
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on the silicon surface can act as a mask during KOH process and can lead to increased roughness

of resulting structures. The final KOH maskless etching is performed in the same conditions than

inverted pyramid generation. Front side of the wafer is etched on the whole surface, while the

backside is protected by original mask material.

4.1.1.3 Experimental results and discussion

Realized structures appears to be circular (footprint) and spherical-like (profile) when they are

observed by an optical microscope or a 1D-scanning profilometer. However, the more precise char-

acterization of their geometry reveals that structures poses residual 4-fold rotational symmetry

originated from the Si substrate crystallography. In figure 4.4 the 3D-topography measurement

obtained by scanning optical profilometer1 is presented. It can be noticed that the raw data

a) b)

Figure 4.4: Scanning profilometer topography measurement of KOH structure - (a) to-

pography of KOH structure obtained by scanning optical profilometer (NanoJura) and (b) difference

between fit and measured data. Deviation from axial symmetry is well visible, large deviation from sym-

metry assumption of the model results in a poor fit quality: RMS = 0.3µm, The structure generated

by relatively short maskless etch (h0 = 3.5d0).

obtained from the measurement (figure 4.4a) does not allow distinguish an asymmetry. However,

when data are fitted to an axially symmetrical model2, the 4-fold symmetrical pattern be noticed

by observation of fitting error distribution. The level of asymmetry is directly related to the depth

(duration) of the maskless etching, i.e., the deeper maskless etch, the lower amplitude of deviation

1Acknowledgments to Florian Maury from Institute Pierre Vernier for performing the measurements.
2in this case, axially symmetric parabola was used as a model
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from axial symmetry. Figure 4.5 shows the topography measurement of the structure fabricated

with a deeper maskless etch. Although, the same specific symmetry is still visible the amplitude is

visibly smaller.

a) b)

Figure 4.5: Optical measurement of KOH structure topography - (a) topography of the

structure obtained by white light interferometer (Polytec) and (b) difference between the data and

fitted axially symmetric parabola. The considered structure was fabricated within a longer etching ratio

(h0 > 7d0). In this case asymmetry is less pronounced than in the previous case (fig. 4.4) but still

visible. The fit error is RMS = 0.08µm.

a) b) c)

Figure 4.6: Lateral cross section of measured focus spot generated by KOH etched mirror

- Optical measurements of beam reflected by the structure, reflected beam is not axially symmetric.

The three images represent sections of a beam focused by the Si mirror: (a) before (b) at and (c) after

the focal plane. It can be mentioned that three images are have not the same scale.

The optical consequences of particular non-axial symmetry of fabricated micro-structures was

investigated by use of the 3D-IPSF characterization setup (described in chapter 3). The figure

4.6b shows sections of focal volume generated by the mirror generated by KOH based process

(similar structure to the one analyzed in fig. 4.5). It is clearly visible that the focus is highly
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influenced by the symmetry of the mirror (similar 4-fold symmetrical pattern in focal plane as

seen in topography measurement). When observing IPSF section along propagation direction the

effect of mirror asymmetry can also be noticed in the form of axial elongation of focal spot that is

significantly different along two considered sections.

a) b)

Figure 4.7: Axial cross sections of measured focus spot generated by KOH etched mirror

- (a) focus section along XZ plane and (b) and along the diagonal (X/Y )Z plane (in respect to fig.

4.6.

According, to these characterization, KOH etching in order to fabricate spherical structures

can be employed only when long etching is applied. However, it also signifies that only low NA

structures can be fabricated. The impact of slightly asymmetrical geometries depends largely on

the specific application. In case of using as a mirrors the impact of asymmetry will be much more

pronounced than in the case of microlenses replicated from KOH-generated molds.
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4.1.2 Isotropic wet etching of silicon

The term “isotropic” in the context of etching of crystalline silicon has two interpretations. The

first one is the independence of the etching regarding the crystallography of the substrate, whereas

the second interpretation originates from the geometry of structures generated by masked etching.

In the latter case isotropy means that etching is the same in all directions in respect to the wafer

surface, i.e., vertical and lateral etch rate are the same. To distinguish this two often confused

interpretations, we use in this work the term isotropic to describe the independence of etching versus

crystallography, while we refer to the local uniformity of the process to define the directionality in

respect to the wafer surface. This distinction is necessary when geometry of the rounded structures

is considered. In case of fabrication of microlenses or micromirrors, any crystallographic dependence

is undesired, however, the local non-uniformity of the etch rate can be used to control geometry of

fabricated structures.

4.1.2.1 Wet etching models

In the framework of fabrication of optical components, for which the precise control of their geometry

is required, model of process kinetics is needed. The kinetics of chemical etching is usually divided

into two categories: reaction limited and mass-transfer limited.

In the reaction limited system the etching speed is defined by the chemical reaction rate of the

dissolution reaction. This type of process, from the one hand is highly dependent on crystallography

and temperature. From the other hand it is less dependent on etchant concentration and dynamic

properties (viscosity, density, diffusion coefficient, agitation). Silicon etching in discussed in previous

section aqueous KOH is an example of reaction limited process1. Anther reaction limited etching

system often used in microfabrication that is etching of SiO2 by aqueous solution of HF/NH4F.

This system in the case of crystalline material (quartz) exhibit high anisotropy [181], but produce

uniformly etched smooth structures when applied to amorphous material etching [182].

The second family of processes is so-called mass-transfer limited. These etching processes are

then defined by the concentration of etching species in the vicinity of the dissolved material. The

particular case of mass-transfer limited etching appears when chemical reaction rate is faster than

the delivery rate of reactive species to the etched surface.

1 KOH silicon etching is usually considered as reaction-limited but it has some particular properties such as

specific dependence of etch rate on the solution concentration, for some concentrations mass transport effects are also

important.
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In the case of wet-etching processes where the process takes place in a liquid (usually water

based solution) the mass-transfer in the direct neighborhood of the surface is due to the diffusion

phenomena. The diffusion originates from atomistic, random movement of the molecules composing

the solution and it always tends to uniformization of concentration in the mixture.

An additional mass-transfer factors can also be important in etching processes related to large

scale movements of the liquid (advection, agitation). However, in real systems where solution has

non-zero viscosity in the vicinity1 of the surface the diffusion is dominant mass transfer phenomena.

One important consequence of the mass-transfer governed processes is the particular tendency to

form smooth and rounded structures in the case of masked etching. Moreover, even if the chemical

reaction has some crystallography dependence the anisotropy is suppressed when the process is

mass-transfer limited.

When of processing crystalline silicon, the mass-transfer processes are necessary to obtain

isotropic etching unlike amorphous material (for example glass) where both type of processes can

generate curved surfaces. However, the different process kinetics lead to different geometries of

the etched structures. In particular, the isotropic etching of glass (reaction limited process) the

bottom of generated structure remains flat [183, 184] while only underetched areas became rounded

(figure 4.8b). Nevertheless, in the case of the mass transfer-limited process, nonuniform (geometry-

dependent) etching leads to curved profile of the etched cavity (figure 4.8a). The shape evolution

is then more complicated and more difficult to control than in the case of reaction-controlled case

(figure 4.8b).

a) b)

Figure 4.8: Isotropic etching geometries - a) mass transfer-limited and b) reaction-limited pro-

cesses produce different geometrical structures

1 In practice viscosity is responsible for stopping the macroscopic flow of a fluid at the stationary surface, it is

responsible for creation of so-called diffusion layer - the area close to solid-liquid interface where diffusion dominates.
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Chemistry of HF/HNO3 silicon etching process: Isotropic wet-etching can be achieved in

the mixture of concentrated water solution of HF and HNO3 acids. The first chemical investigation

of etching in HF/HNO3 mixtures was done by Robbins and Schwartz [185, 186, 187, 188]. The

etching process, achieved by multi-component mixture and being a multi-step reaction is difficult

to describe by simple chemical formula. The overall reaction is often written as equation 4.5 [185]:

3Si+ 4HNO3 + 18HF → 3H2SiF6 + 4NO + 18H2O (4.5)

where the resulting H2SiF6 is dissolved in the solution. This reaction, although commonly recog-

nized, is a rough simplification and do not explain the chemistry of the etching process.

Figure 4.9: Scheme of silicon dissolution in HF/HNO3 mixture - Reaction scheme proposed

by Steinert [189] to explain silicon etching without intermediate SiO2 formation. The form generated

hydrogen (gaseous H2 or H+ ion) depends on HF/HNO3 ratio of the etching mixture.

The complex electrochemical reactions that lead to dissolution of silicon are still under discussion

[189, 190, 191]. The first model, relying on silicon oxidation by derivatives of HNO3 forming SiO2,

that are subsequently dissolved by HF, was recently [189, 191] replaced by a model in which SiO2

is not created (figure 4.9). The oxidation step occurring in the etching process relies on the N(III)

species (N2O3,NO+) created by decomposition of HNO3 in the etching solution. The efficiency of

this step determines the etching characteristics in the mixture. Moreover, since NO+ is generated in

the etching process (equation 4.5), the etching reaction is in some level autocatalytic [186, 192]. The

effects of auto-catalysis is more pronounced in HF-rich regions where etch rate can be much lower

in the beginning of the etching process than after a certain amount of Si is already dissolved [189].

Another important effect of non-direct species (created in the etching mixture) participating to the

etching reaction is the fact that they are not stable when exposed to the ambient atmosphere. The

decomposition ratio depends on solution composition, and according to [189] the better stability is

achieved in HNO3-rich mixtures.
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The precise study of etching mechanism in HF/HNO3 mixtures divides the process in two regions,

differing in principal chemical mechanism that determines the etching kinetics. The two regimes

are defined by the composition of the etching solution: the first one, so-called HF-rich regime

produces rough (sometimes even porous structure) silicon surfaces because oxidation process is the

rate limiting step. The second one, the so-called HNO3-rich regime, leads to very smooth, rounded

surfaces of etched sample. This system is also called the “polishing regime” since it is often use as

a chemical polishing method in silicon wafer processing [193]. The obtained smoothing character

and low-roughness surfaces with those mixtures allows using it for generation of spherical cavities

in silicon that can be used as micromirrors [194] or microlenses molds [123]. Consequently, we focus

in the following on HNO3-rich etching solution, for which the etching kinetics is governed by mass

transfer of HF (minority reactive species) to the etched surface [185].

a) b)

Figure 4.10: Etch Rate tri-plot of isotropic etching mixtures - (a) Iso-curves of etch rate and

(b) surface topology in function of etching mixture composition [188] (diluent - bottom, horizontal axis;

HF - left axis and HNO3 right axis), the mixture we use in this work is indicated by red circles and

corresponds to mixture HF/HNO3 in proportion 1:9 with no diluent added.

The mass-transfer regime in considered mixtures is relatively wide, i.e., different composition of

etching mixtures can be used. In particular the solutions that can be used to etch rounded, smooth

structures are schematically indicated on the figure 4.10b. Our mixture is composed of HF (48%

wt. water solution) and HNO3 (65% wt. solution) mixed in a ratio 1:9 without any diluent added to

the mixture. For this concentration ratio etched structures are characterized by very good surface
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roughness (in the order of several nanometers), and can be well described as mass-transfer governed

process. From etch rate vs composition plot (figure 4.10a), it is visible that etch rate does not

depend on concentration of HNO3 if the mixture ratio is about 1:9 (etch rate isolines are parallel to

constant value of HF concentration). This is characteristic of mass-transfer regime in which process

kinetics depend only on transfer HF (the minority reaction species) to the etched silicon surface.

Kinetics and geometry of masked etch. The geometry of the etched structure is defined by

the transport phenomena. The evolution of the shape is then not trivial. Kuiken presented so-

called asymptotic solutions of the masked etching process for two basic geometrical cases: etching

through a slit (mask opening in the form of long rectangle) [195] and in the case of circular mask

opening [196]. According to [196], long etching1 through circular mask produces a shape described

by equations 4.6-4.82:

x =
a

2

(

ζ +
1

ζ

)

Cos(θ)Cos(φ) (4.6)

y =
a

2

(

ζ +
1

ζ

)

Cos(θ)Sin(φ) (4.7)

z =
a

2

(

ζ − 1

ζ

)

Sin(θ) (4.8)

ζ =

(
24DMSiC0

πnρSi

t

a2

) 1
3

(4.9)

where φ and θ are angular coordinates and t is the etching time. The physical parameters of the

model are summarized in table 4.1. Kuiken formula is an asymptotic solution of diffusion-limited

etching problem, i.e., under the assumption that diffusion is the only mass transfer mechanism

present in the system. The asymptotic solution is based on the fact that diffusion process weakly

depends on initial conditions i.e., for relatively deep etching the shape and location of the mask does

not defines the etching kinetics. Only the average diffusive flux through the mask window defines

the etching characteristics (figure 4.11). In practice, asymptotic solution signifies that the formula

is valid for a limited range of process parameters - equation 4.10 defines validity range of equations

4.9:

a ≪
√

DC0MSi

nρSi
t (4.10)

1Kuiken presents two separate solutions: one for shallow and one for deep etchings. In here we discuss only the

deep one since it corresponds to our targeted geometry.
2 [196] utilizes spheroidal coordinate system. In here, equations are expressed in classical spherical coordinates

system.
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In practice this condition means that Kuiken solution in context of HF/HNO3 etching is valid only

for long etching times and/or small mask window openings (for t=30min, a ≪ 100µm). Kuiken

solution properly describes evolution characteristics (week time and strong aperture size dependen-

cies) of etched structures even outside the formal validity condition. Important relation obtained

from the Kuiken’s analytic solution is the particular dependence of geometry with etching time

and mask opening radius. Actually, the geometry is parametrized by ratio t
a2

which signifies that

exactly the same geometry (of different scale) can be produced from different mask opening only

adjusting the process duration. This important correspondence was confirmed experimentally for

HF/HNO3 etching mixture by Svetovoy et al. [197].

a) b)

Figure 4.11: Impact of mask window shape in isotropic etching - Resulting structure of wet-

etching in case of (a) circular and (b) square mask window respectively. The mask opening area was

set to be the same in both cases. As the result, very similar structures are generated. The optically

measured ROC for both cases was 123.5µm and 125.7µm, etching time: 35min. Image by optical

microscope (DIC), structures after etching SiN/SiO2 mask was not stripped - mask pattern is visible

together with the structures.

Equations 4.6-4.8 describe oblate spheroid that can be also seen as conic section with positive

conic constant k given by equation 4.11:

k ≈ 4

ζ2
∝

(
a2

t

) 2
3

(4.11)

prolongation of the etching time leads to vanishing conic constant meaning a hemispherical shape

of the etched cavity. From the perspective of application of the etching process for fabrication

of microlenses and micromirrors positive conic constant is hardly ever desired, for this reason long

etching time and/or small mask opening are needed under Kuiken conditions (diffusion only system).
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variable description value range unit

a mask opening radius 2-250 µm

D Diffusion coefficient 6 · 104 µm2

min

MSi Silicon molar mass 28 g
mole

ρSi Silicon density 2.33 g
cm3

n reaction stechiometric ratio 6 1

C0 HF etchant initial concentration ≈ 2.7 · 10−3 mol
cm3

k surface reaction rate ≈ 6 · 103 µm
min

Table 4.1: Etching modeling data - Variables and constants used in mathematical formulation of

the etching problem.

We performed simulations based on finite element method [198] that allowed to cover a wider

range of geometrical cases than Kuiken model (limited to small structures). It also allowed simu-

lation of etching evolution in whole range of process time. Figure 4.12 presents the simulation of

etching process, where diffusion-governed etching leads first to developing an ellipsoidal cavity that

with time is transformed into a spherical shape.

−60 −40 −20 0 20 40 60
−60

−50

−40

−30

−20

−10

0

10

x [um]

y
 [
u
m

]

 

 

Figure 4.12: Etching evolution calculation by FEM simulation - Profile evolution of etched

cavity starts from flat unprotected silicon surface limited by circular mask window opening (diameter

60µm), in the beginning become concave and with progression of the etching become more ellipsoidal

that with progressing etching transforms into hemi-spherical shape (simulated etching time t=30min).
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Limits of mass-transfer regime approximation. The mass transfer regime is defined as sys-

tem in which kinetics of the process depends only on transfer of reactive species to the reacting

surface. The etching reaction in this case can be considered as infinitely fast. This regime is charac-

terized by high dependence on agitation (stirring the solution during the process), concentration of

minority species and week temperature dependence1. The intermediate case where reaction-rate do

not dominate however has non-zero impact on the etching kinetics is referred as reaction-influenced

regime. In the HF/HNO3 system in the high HNO3 regime effects of chemical rate in some cases

can be observed. As was noticed by Svetovoy [197] the masked etch of silicon in HF/HNO3/H2O

(ratio 1:6:2) mixture exhibits some degree of anisotropy correlated with crystallographic directions

of etched silicon substrate. Also, investigations made by Schwartz and Robbins [187] on maskless

etching revealed a small correlation between etch rate and crystallography of etched samples (figure

4.13). This observations indicate that even the HNO3-rich etching mixtures are not perfectly mass-

transfer governed but also reaction-influenced. It is important to underline that character of the

etching system is not defined only by the chemistry (composition) of etched mixture. In general, the

etching is governed by the slowest of two processes (mass transfer or reaction) at the etched surface.

Consequently, if aggressive agitation is applied accelerating the mass-transfer, the chemical charac-

ter of the process can be amplified. Similarly, if the process is performed at lower temperature, the

decreased reaction rate can cause a increased degree of the chemical behavior (figure 4.13a).

The formal condition defining when mass-transfer dominates the chemical kinetics can be derived

by comparing reactive flux (flux of reactive particles that can react due to finite reaction rate) with

diffusive flux (mass-transfer flux due to diffusion). The diffusion governed process takes place when

reactive flow is much higher than the diffusive flux. This can be written as condition 4.12:

k ≫ D

L
(4.12)

where k is reaction constant, D diffusion coefficient, and L is the length scale of the system. The

dependence of eq. 4.12 on the system scale indicate that small structures are more affected by

chemistry of the process than the large ones [198]. This effect is clearly visible in the case of etching

through small mask apertures. Figure 4.13b presents structures etched by our isotropic solution

through very small mask openings (mask-defects) where clearly anisotropic pyramid-like forms can

be observed.

1there is always some level of temperature dependence however it is more connected to kinetics of mass transfer

processes (diffusion coefficient, viscosity) than the reaction itself
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a) b)

(100)
(110)
(111)

Figure 4.13: Anisotropy in HF/HNO3 solution - a) effects of temperature, crystallographic

orientation ((110) dotted; (111) dashed; (100) solid) on reaction rate, for three different mixtures (ratio:

HF/HNO3 5/95; 10/90; 20/80), the reaction rate obtained from maskless etching experiment (plotted

data from [187]). b) anisotropic effects in the case of masked etching are clearly visible when very small

structures are etched. In here, etching through sub-micron openings (mask defects) cause formation of

pyramid-like structures correlated with crystallography of etched (100) Si wafer.

Effects of agitation. The principal assumption leading to asymptotic solution is diffusion-only

mass-transfer. In practice, structures generated with a properly agitated mixtures are better in

terms of geometry (for considered application). Agitation i.e. stirring or introducing movement in

the etching solution, can accelerate and locally change the uniformity of the etching. In practice,

when masked etching is performed, agitation accelerates the etching more vertically (in depth)

than in the lateral direction. It is than easier to obtain spherical shape than based on diffusion-

only governed process [199]. In figure 4.14a, comparison of vertical and lateral etching extents for

processes with and without agitation is presented. The numerical simulations (figure 4.14b) shows

the change of structure shape when agitation is used.

4.1.2.2 Fabrication

The fabrication process relies on standard MEMS tools, i.e. photolithography, RIE etching, wet

etching and thin layer deposition. The wet silicon etching process as the one requiring special

attention is made in a dedicated system in which agitation is optimized for generation of the desired

structures. Only single etching composition is used made of HF (48% wt.) and HNO3 (65%wt.) in

proportions 1:9.
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Figure 4.14: Agitation effect on underetch and sag - (a) experimentally measured effect of agi-

tation demonstrated by measuring lateral and vertical etching extents (underetch and sag) of structures

etched with and without agitation [200]. (b) FEM simulation of etching with and without agitation

applied.

Mask material choice. HF/HNO3 etching mixtures are very demanding with respect to masking

material. Photoresist-like mask do not withstand this type of solution and only so called hard masks

can be used. Moreover, in high concentration HF/HNO3 mixtures only few materials are possible.

For short processes, SiO2 mask can be employed [201]. However, for long etching processes, Cr/Au

and LPCVD nitride masks are preferable [123, 197, 202]. The metal mask as Cr/Au are chemically

resistant to the etching solution. However, it is also more fragile which in case of large underetching

can lead to mask breaking during the process. LPCVD silicon nitride is mechanically more stable

than standard metal layers, but chemically less resistant (etch rate ≈ 3nm/min). Silicon nitride

layer is often used in the form of double layer where first layer is thermally grown SiO2. In this

work such nitride-based mask has been used made of SiO2(500nm) / SiN(150nm). Mechanical

characteristics of oxide/nitride masking layers1 are uncertain: from one side the double layer is

robust in terms of adhesion and mechanical strength (no cracks was ever observed). From the other

side, deformation of mask is observed in the underetched regions (figures 4.16a and 4.16c). The

silicon nitride layer is specified by the producer as “super-low-stress” which means that mechanical

stress of the layer is minimized.

Nevertheless, residual compressive stress in the masking double layer can result in the deforma-

tion of the mask during the process and thus, can impact the geometry of the etched structures.

For example an asymmetrically deformed mask can provoke asymmetry in the etching. The partic-

ular case where mechanical properties of the mask are important is the case of generation of dense

1Silicon wafers are purchased (SI-MAT) with masking double layer.
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A1) A2) A3) A4)

A5) A6) A7) A8)

B1) B2) B3) B4)

B5) B6) B7) B8)

PHOTORESIST (SPR220) SiN SiO2

PHOTORESIST (Ti09XR) Cr Au

A)

B)

Figure 4.15: Process flow of wet isotropic Si etching - Two schemes for two used mask materials

used with (A) SiN-based and (B) Cr-Au masking layers. Patterning method for two masks are different:

the SiN mask is patterned via positive photo-resist (A2-A3) and RIE process for window mask opening

for (A4),

matrices of etched structures. This effect is strongly pronounced in the case of generation closely

packed structures. In figure 4.17, the structure fabricated with SiO2/SiN mask is characterized by

surprising “double” periodicity that does not correspond to the pattern of the mask openings. This

effect was observed for all investigated wafers with SiO2/SiN mask, although, different degree of de-

viation from desired pattern are observed within different batches of silicon wafers1. It is important

to notice that this effect is highly pronounced in the case of fabrication of dense matrices. However,

in the case of generation of singular structures mask deformation also visible has smaller impact on

1 Since wafers was ordered with the SiO2/SiN layers wafer batch usually means that all layers are created in the

same fabrication run, the difference between batches can be attributed to slightly different SiN deposition conditions.

That can leads to different stress values, stress is specified as σres < 50MPa, the exact value of stress is not known

to the author.
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a) b)

c) d)

Figure 4.16: Mask state after HF/HNO3 etching - a) and c) LPCVD SiN mask is visibly

deformed; b) and d) same structure when multilayer metal mask was used (Cr/Au/Cr/Au) this type of

mask has no visible deformations.

the final shape of the etched cavities.

The standard Cr/Au mask used for deep HF/HNO3 etching often breaks during the etching

process (especially when agitation is applied). In order, to improve the mechanical stability of the

metal mask, we used multilayer in the form of Cr/Au/Cr/Au (10nm/100nm/100nm/100nm). This

configuration allows to combine high chemical resistivity of gold and good mechanical properties

of chromium. The first layer of chromium (10nm) assures good adhesion of consequent layer to

the silicon surface. Then, first gold layer (100nm) creates chemical protection of mask for the

underetched zone. The middle chrome layer (100nm) provides mechanical support for the mask,

and the last layer of gold (100nm) is employed for front-side chemical protection of the multilayer.

This composed mask allows to suppress mask deformation effects that were observed with

SiO2/SiN masked samples. In figure 4.16, comparison of mask state after etching with two types

of masks is presented for two close structures and for a large matrix (3x3mm2). The matrix is

etched until the connection between all structures is achieved, so that the mask forms a membrane

suspended over the structures. The SiO2/SiN mask is highly deformed, in the case of metal mul-
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Figure 4.17: Mask deformation effects on the geometry of the etched structure - SEM

image of structure etched from periodic mask aiming at generation of the spherical depressions with

triangular footprint Resulting final “double periodic” structure is attributed to mask deformation during

the etching. The mask pattern is superimposed with the image where mask openings marked as red

dashed circles.

tilayer mask, there is no sign of mask deformation nor bending of the membrane. In consequence

generated structures are strictly dependent on mask pattern not on dynamic evolution of the mask

shape during the process.

The multilayer metal mask was fabricated by sputtering processes where the mask pattern was

created by a lift-off procedure (figure 4.15b). In this particular case, the motivation of using lift-off

avoids the metal etching process that can leave residues of metal particles on the silicon surface to

be etched. Indeed, metallic contaminants on the surface etched in acid solutions can cause increased

surface roughness.

To avoid stress induced mask deformation, deposition of metal multilayer are made in the

conditions that minimize stress in metal layers. Metal deposition of all 4 layers are performed in a

single run (sample was not removed from the vacuum chamber). The parameters of the deposition,

that largely define the mechanical properties of the layers, are as follows1: Cr deposition: 0.5A

(deposition rate: 0.870nm/s), Au deposition: 0.3A (deposition rate: 1.75nm/s). All processes are

performed at Argon atmosphere under a pressure of p = 5µbar. Stress in metal layers deposited

by sputtering depends on the distance the sputtering target - the substrate and the gas pressure in

1Acknowledgments to Jean-Yves Rauch for finding optimal parameters for the deposition
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the chamber1. In consequence controlling the pressure it is possible to optimize the stress in the

layer [182]. In our work, we did not performed precise stress measurement of deposited metallic

multi-layer however, since no deformation was observed after etching experiment, we claim that

fabricated multilayer is of low tensile residual stress.

An important parameter related to the multilayer mask concerns the proper choice of the adhe-

sion layer. The adhesion layer is necessary to ensure good mechanical connection between the Au

layer and the silicon substrate (generally gold has very poor adhesion to Si). Different metals can

be used as adhesion layers. The most popular are Cr, Ti and Ni. However, in considered case where

etching process is performed in HNO3-based solution. Ti and Ni cannot be used since they are

rapidly etched out by etching solution[203]. Chromium is characterized by good chemical resistivity

to the employed etching solution and can provide good adhesion between Au and Si interface. The

performance of adhesion layer depends also on its thickness and the cleanness of the host (Si) sur-

face. Thus, RF argon plasma is used to clean the surface directly before the deposition (t = 20s 2,

PRF = 150W , p = 5µbar). The thickness of the adhesion layer has to be properly chosen since too

thin layers do not assure good adhesion whereas to thick ones can cause various defects during the

etching. Figure 4.18a shows the effects of 50nm thick Cr adhesion layer on the etched structures.

The surface defects are probably caused by penetration of the etchant into the thick adhesion layer,

causing degradation of surface quality. Moreover, etching geometry was disturbed, i.e, the pyrami-

dal structure appeared in the underetched area3. The optimal result was obtained with thin 10nm

thick Cr adhesion layer deposited with same parameters set as other layers composing the mask.

Summarizing, in the performed experiments two different masking materials were used. The first

one is the double layer composed of SiN (150nm) deposited on SiO2 (500nm). Whereas the second

one was the metallic mask composed of Cr/Au/Cr/Au multilayer. In consequence two different,

patterning processes where used: positive photography and RIE etching for SiN based mask (4.15a)

and described above lift-off process for metal mask patterning (figure 4.15b). The isotropic etching

were performed in the same conditions for both types of masks.

1Those two parameters defines the energy of metal atoms reaching the substrate: higher the pressure and larger the

travel distance more collision sputtered particle encounters in consequence it loose the energy that allows relaxation

on the substrate.
2 time of argon cleaning cannot be too long in order to avoid damaging of the resist pattern.
3Similar faceting is often observed in glass wet-etching when adhesive layer is etched at similar speed as glass

substrate [184], or when adhesion layer delaminates because of low adhesive force or high tensile stress [204]
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a) b)

Figure 4.18: Adhesion layer defects - Thick metal adhesion layer (50nm Cr) caused deterioration

of quality surface of the etched structure a), geometry of the structure is also affected when adhesion

layer is not properly chosen b)

Agitation. As it was discussed before, agitation of etching solution can significantly improve

the sphericity of generated structures. Then, the method of agitation is also important when

geometry control is crucial. Different agitation methods can be applied. The most common are

based on magnetic stirrer, rotational table or ultrasonic bath. The magnetic stirring is difficult

to apply when small quantity of the solution is used. Rotational table tends to negatively impact

the symmetry of the structure since the usual one-directional rotation privileges specific direction.

In our system, since we use small quantity of the etching solution (100ml), we employ specific

agitator that allows to perform nearly random agitation of the solution without negative influence

on generated structure. The agitator (Programmable 3D-sunflower-shaker from BIOSAN figure

4.19) continuously moves the etching baker, but with a complex motion. The agitation can be

composed of three basic movements: orbital rotation, reciprocal rotation and vibrating rocking. The

platform of the agitator is also slightly tilted (7o) so that in case of rotational movement (orbital or

reciprocal) it cause relatively complex (quasi-chaotic) movement of the fluid contained in the baker.

In described experiments the agitation is programmed as follows: 6 seconds of reciprocal rotation

at 8rpm with 360o turning period, following by 4seconds of rocking movement with 2o amplitude.

These steps lasting 10 seconds are repeated during the whole etching process. It allows sufficient

degree of agitation without introducing negative effects to the process like breaking metal mask or

introducing asymmetry to the generated structures.
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Figure 4.19: Agitation setup for isotropic silicon etching - The Agitator [205] allows quasi-

random movement of the etching baker. This is needed to improve aspect ratio of etched structures

without introducing asymmetrical effects that can be caused by classical monotonic agitation systems.

The agitator from BIOSAN was adapted to the need of etching station by replacing original platform

by a PTFE one to provide holder for the etching baker1.

Process control. The standard method of the process definition is the etching time. However,

since the process is very sensitive on several factors difficult to control accurately, such as mixture

composition or agitation etching time is not always the best parameter to control the etching

process. Consequently, we investigated an alternative method for in situ etching progress control.

The method based on so-called “etching flags” allows to define the time moment when desired etch

depth is reached. This approach, suitable mostly for prototyping, allows achieving more repeatable

results despite changes in etching conditions such as: inaccuracy of mixture preparation, aging of the

solution or when comparing different agitation programs. The idea of the method is schematically

sketched on figure 4.20a. The flags are the additional patterns added to the mask design. They

takes the form of long rectangular mask island which are during the etching process underetched.

When specific underetch is reached, the island is released to the solution.

The release moment is visible2 and indicates that designed underetch has been reached so that

the process should be stopped. The practical realization of the flag structure relies on the design

of the island structure, that should well reflect the etching progress. The two main parameters of

the flag geometry are inner rectangle width am and the outer-frame width bm (figure 4.20a). In

2Etching mixture has to be under careful visual inspection, the flags are few mm length but less than 100µm

width
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a) b)

Si

Si

maskmask

Figure 4.20: Etching flags - a) the mask layout of a flag structure and a working principle; b) image

of a realized flag structure after the etching process in this case the flag was not fully detached from the

silicon wafer.

practice, in order to assure good visibility of flags releasing point, many structures are necessary

( 20). They take the form of few mm long rectangles with width am ∈ (70, 200)µm and frame size

bm = 200µm depending on the desired etching depth. Example flag structure is presented on figure

4.20b at the moment where the flag is not yet fully released from the Si substrate.

Microlenses molds and micromirrors. Generation of spherical cavities, by means of silicon

etching in aqueous solution of HF/HNO3, is achieved by etching through circular openings in mask.

According to the theoretical analysis, it is preferable to use small apertures and long etching times

if good sphericity of the structure is required. In practice, the mask apertures can range from

2microns for the smallest structures to 300microns for the largest. As far as there is no technological

limitations for the maximal size of the mask window, the main limit of acids-based etching is the

process duration. The aggressive etching solution (except for etching silicon) attacks the mask

material, thus limiting the maximal process time. Within performed experiments, the longest

etching performed with Cr/Au multilayer was 120 minutes, while with SiO2/SiN masking it was

40 minutes. This limitation defines the ranges of structures that can be generated as ranging from

about 20 to 500 microns in diameter.

The small structures takes the form of hemispheres whereas the larger ones exhibit more flatten

form (positive conic constant). The optical properties of generated structures are investigated by

the characterization system described in chapter 3 of this thesis. The measurement results are
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a) b) c) d)

Figure 4.21: Optical measurements of micromolds: small mask window - Focal spot measured

in confocal imaging configuration of two molds: (a) and (b) 130µm diameter mold generated by etching

(120min) through 20µm diameter mask window; (c) and (d) mold diameter 200µm obtained within

same process with mask diameter of 50µm. (a) and (c) corresponds to the xy image of a focal plane

while (b) and (d) are the slices along the propagation directions (xz). Focus dimensions are summarized

in table 4.2.

d0 [µm] t [min] dt [µm] δxfwhm [µm] δzfwhm [µm] ROC [µm]

20 120min 130 1.2 11.5 63.75

50 120min 200 1.0 10.0 96.5

110 40min 265 1.7 56 559

350 40min 525 2.9 222 785

Table 4.2: Summary of IPSF measurements of isotropically etched mirrors - Summarized

characteristics of IPSF presented in figures 4.21 and 4.22, d0 - diameter of mask opening, t - etching

time , dt - diameter after etching, δxfwhm - lateral spot size at focus, δzfwhm-axial spot extension,

ROC- radius of curvature.

presented in the figures 4.21 and 4.22. In the case of etching through small windows (20 and 50

µm), the resulted structures have nearly the spherical shapes (focal spot is small and short in axial

direction), however, they are slightly asymmetric (fig. 4.21a and c) due to the residual anisotropy of

the etching solution ([100] Si wafer was used). The structures generated from large mask openings

(110 and 350 µm) generate focal spot with better axial symmetry (fig. 4.22a and c). However, the

resulting geometry is less spherical than the previously discussed structures. As the consequence,

the focal spot posses strong rings around the central peak. Moreover, the focus is strongly stretched

in the axial direction. This behavior can be attributed to the oblate ellipsoid form of the cavity

that provokes spherical aberration of the observed beam.
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a) b)

c) d)

Figure 4.22: Optical measurements of micromolds: large mask window - Similar measure-

ments to figure 4.21 in the case of two structures etched 40minutes through masks of diameters 110µm

(a),(b) and 350µm (c),(d). Focus dimensions are summarized in table 4.2.

The small crystallography dependent asymmetry of smaller (< 150µm) structures was confirmed

by comparing the etching of differently oriented wafers. In figure 4.23, IPSF measured in reflection

for similar structures produced within silicon substrates with different crystallographic orientation,

are compared. In the case of the structure etched in (100) oriented substrate, the IPSF has visibly

four-fold symmetry (fig. 4.23a,b) while (111) orientation leads to tri-fold symmetrical IPSF. This

results correlates with crystallographic symmetry of two considered substrates.

The investigations of anisotropy of silicon etching in HF/HNO3 mixtures was made in [197].

They were based on analysis of cavity footprint and demonstrated that (111) oriented wafers exhibits

lower degree of crystallographic dependence then (100) or (110) wafers. However, analysis of the

footprint cannot fully describe the impact of anisotropy on etched geometry. In here, we presented

our first results of investigation etching anisotropy in the context of 3D geometry. In the investigated

cases, i.e. etching through small circular windows (12-50µm) etched for 30 minutes, the anisotropy

is clearly visible for both types of wafers and its degree is very similar. However, quantitative

comparison could not be done because slightly different etching conditions of the discussed samples.

The fabrication of spherical micromirrors and micromolds by isotropic etching of silicon require
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a) b) c) d)

Figure 4.23: Impact etched wafer orientation on reflection IPSF - Residual anisotropy of the

etching process observed as asymmetry of IPSF. (a), (b) and (c),(d) correspond to structures etched in

(100) and (111) oriented wafers respectively. (a) and (c) correspond to focal planes while (b) and (d)

to slightly defocused planes.

special attention in choosing process parameters. The window mask opening from one the hand has

to be small to be able to generate well spherical geometry, and from other hand etching through

small mask windows provokes small degree of asymmetry in the generated structures. The etching

time as main limiting factor of this constraints need to be maximized that can be achieved by using

multilayer metallic mask.

Arrays. One of the advantage of the wafer-level fabrication approach is the possibility of gener-

ation densely packed structures. In this section investigates the possibility of using wet isotropic

etching for generation of high fill-factor arrays of microlenses molds. Microlens arrays have already

found many application in beam shaping, 3D imaging, displays, wavefront-sensors or beam scanning

systems [206]. In here, we investigate generation of dense arrays of micromolds in silicon aiming at

simplification of integration array-based optical systems within silicon based MEMS. One of impor-

a) b) c) d)

Figure 4.24: Focal spots generated by lenses with different footprints - Four apertures

considered: (a) circular; (b) triangular; (c) square and (d) hexagonal, respectively.
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Figure 4.25: Scheme of the etching dense matrices of micromolds - (a) mass-transfer effects

in the case etching closely placed structures and (b) profile evolution of etched array.

tant issue is the density or filling-factor of the arrayed structures. In particular when light efficiency

is an important factor. Circular structures (mirrors/molds) cannot yield 100% surface covering. In

order to obtain full-fill factor microlenses molds, the footprint of the structures need to be adjusted.

The most common footprints allowing to generate 100% fill-factor are square, hexagonal or triangu-

lar (figure 4.26). Changing the footprint form of a lens slightly changes its optical characteristics.

The most important change is the different shape of the focal spot generated by lenses with different

footprints (apertures). In figure 4.24, the focal spots generated by lenses with different apertures

are presented. The effect of straight edges composing triangular, square and hexagon apertures

manifest themselves in the focal spot as the linear diffraction pattern perpendicular to the footprint

edges.

Circular mask openings arranged in a dense array generates a matrix of etched cavities with

the footprint shape defined by matrix periodicity. Etching of closely packed structures changes

the mass-transfer conditions (figure 4.25a), moreover the etching time has to be well adjusted if

the spherical shape of the structure is required. If, etching time is not long enough cavities would

not fully connect (figure 4.25b step 2), in the opposite if the etching is to long the connection

borders “collapse” (figure 4.25b step 4). The effect of etching silicon below the mask defines the

3D geometrical shape of the generated structures. In figure 4.27 three different structures in the

different etching stadium are presented. In first stage of the process (figure 4.27a) the structure

is not etched enough and vertical pillars are still present. Continued etching suppress the pillars

(figure 4.27b) and the structure in this moment is uniformly spherical on the whole area. When the

molds array is “over etched” (figure 4.27c) the corners of the structures started to collapse producing

visible deviation from spherical shape near the corners of the mold edges.
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a) b) c)

Figure 4.26: SEM images of realized molds for high fill-factor microlenses molds - Three

matrices composed of elements of different footprints that assure 100% fill factor in the array: (a)

triangular; (b) hexagonal and (c) square.

a) b) c)

Figure 4.27: Different etched geometries in wet etching of dense molds array - (a) triangular

structure etched not enough, (b) optimal etch of triangular mold and (c) over-etched square structure.

4.1.2.3 HF/HNO3 etching: conclusions

The isotropic wet etching is well adapted for fabrication of microlens molds or micromirrors of

high numerical aperture, since the process tends to generate hemispherical cavity in silicon. The

technological limitations of the process are the resistivity of mask material and residual anisotropic

dependence of the process. The first one limits the maximal possible process time, that in conse-

quence limits the maximal size of the structures that can be generated with well spherical profile.

The second limitation, i.e., anisotropy observed in the etching process is manifested mainly in

smaller structures, so that they are slightly asymmetrical.

In addition, generation of micromirrors and micromolds the isotropic etching allows to generate

matrices that are densely packed in an 100% fill factor array. For these structures, resulted geometry
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is dependent not only of window size and etching time but also on the pitch and periodicity of the

array.
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4.1.3 Silicon etching in SF6 plasma

As it was discussed in the previous sections, the wet etching technologies are limited in terms of

the possible geometries and sizes of generated structures. Moreover, in the context of the miniature

confocal microscope project, the better control of microlens geometry as well as the possibility to

obtain more advanced aspherical shapes of microlens are highly desired. Then, this section describes

very first results of plasma silicon etching, which was developed in order to generate similar struc-

tures as obtained previously by means of silicon wet etching (i.e. spherical shapes). Nevertheless, we

investigate particularly the possibility to generate larger spherical shapes or structures characterized

by negative conic constants that are difficult to make by use of wet etching techniques.

4.1.3.1 Basic etching mechanisms in plasma process

Etching in plasma is performed in a vacuum chamber where special gas is supplied and ionized

by means of time varying electric (capacitively coupled plasma - CCP) or magnetic (inductively

coupled plasma - ICP) fields. Basically, plasma etching can rely on two different mechanisms:

reactive ion etching and radical etching [207]. The reactive ion etching (RIE) is based on etching

by energetic ions that physically attack the material to be etched. The second mechanism, radical

etching (RE), relies on chemical process between the reactive species (radicals) present in the plasma

and the etched substrate. In real systems, the two mechanisms are present and, depending on the

plasma conditions, one mechanism can dominate the other, leading to large variation of geometries

generated by different plasma processes. Moreover, both mechanisms can impact each other, hence,

theoretical predictions of geometrical shapes that can be generated by plasma process are relatively

difficult [208, 209].

In MEMS fabrication, the most commonly used plasma processes aim anisotropic, i.e. vertical,

etching1 of silicon. The etching is governed by so-called physical etching, realized by ions that are

accelerated towards the etched surface by an electric field (figure 4.28).

In consequence, the plasma process naturally exhibits the etching anisotropy. However, in order

to fabricate spherical-like cavities with smooth surfaces, lateral etching is also necessary. In this

work, the chemical etching mechanism present in the plasma system is employed to generate rounded

structures.

1the term "anisotropy" is used here as directional in respect to the wafer surface and do not refer to the crystal-

lography
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Figure 4.28: Scheme of plasma etching process - Geometry of etched structures by RIE depends

on ions angular distribution (IAD), electrical interaction of ions and grounded etched surface (image

force - IF). The different phenomena are usually highly dependent on the scale and aspect ratio of the

etched structures [210].

4.1.3.2 Plasma etching of silicon for mirrors/mold fabrication

Several approaches of fabrication of mirrors or microlens molds by silicon plasma etching have been

already investigated. Larsen et al. [124] proposed a two-step process based on the combination of

isotropic etching in SF6 plasma followed by a maskless etching step serving as a thinning process.

The latter allows to enlarge the spherical zone obtained within first masked etch. In the same

time, maskless etch eliminates the non-spherical parts of the structure produced by the first etching

process.

Another approach was employed in [211] where two-step etching is also used, however for a

different aim and by use of different processes. The convex silicon mirror was generated by use of

a mask having the form of a dense grid of rectangles of varying sizes. The first anisotropic (DRIE)

etching process, based on classical Bosch process, generates a structure made of a grid of vertical

walls where depth of the etching is spatially varying and defined by the microloading effect. The

second etching step is a maskless etch in SF6 plasma that transform the grid-like structure in the

smooth convex structure.

However, both approaches consider only small structures with relatively small numerical aper-

tures of the final mirrors or microlenses. In here, we are focused on the investigation of single step,

masked plasma process for generation of relatively large structures (diameter> 300µm) and the

possibility of more advanced control of the geometry of generated structures.
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4.1.3.3 Experiment

The experiments were carried out in Pegasus-Rapier ICP-DRIE system (SPTS) using SF6 plasma.

Test pattern contained circular openings with diameter in the range of 10µm to 600µm. The

pattern was transferred in standard photolithography process into 12µm-thick AZ9260 photoresist,

serving as the etching mask. The characterization of generated structure was made with precise

wafer dicing and SEM imaging. The process parameters were based on the following recipe: ICP

generator power: PICP = 2000W , CCP generator power: PBias = 20W , pressure: 40mTorr, wafer

temperature TSi = 0◦C, SF6 gas flow flSF6 = 500sccm, and etching time t = 900seconds.

In order to find correlation between process parameters and generated geometry, different pro-

cess parameters (i.e. mask diameter, gas pressure, substrate temperature) were separately varied.

The obtained silicon structures were then diced and observed under SEM. Processing of SEM mi-

crographs allowed the visual investigation of etched surfaces as well as the extraction of their shape

profile. This analysis led to identify the role of each process parameter in the etching process.

Figure 4.29 presents the cross sections of etched structures generated by the plasma process. In

here, the important dependence of the size scale on the geometry of etched structures are clearly

visible. Small structures (figure 4.29 a,b) are relatively uniformly curved whereas larger structures

geometry differs in the bottom and in the underetched zone. This effect could be explained by

shadowing phenomena (figure 4.28), i.e. etching of the bottom part is enhanced by ion bombardment

(physical etching) whereas underetching is generated by radicals (chemical etching). The different

mechanism of etching that are present within single structures are responsible for double curvature

visible in the large structures (figure 4.29 c,d). Although the generated shape is not spherical when

considering the whole structure, its bottom part is characterized by a spherical profile.

a) b) c) d)

Figure 4.29: Geometry of etched cavity for different size of mask opening - Profiles of etched

structures obtained by plasma etching, different mask openings etched within a single wafer: (a) 10µm,

(b) 100µm, (c) 200µm and (d) 600µm diameter (etching performed under pressure p=100mTorr).
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Gas pressure. The pressure of the gas in the plasma chamber can impact the etching in different

ways. Firstly, if power is kept constant, the increase of the pressure reduces the ionization efficiency

- there is more particles in the chamber so the mean energy per particle is lower. Consequently,

the ratio of ions to radicals in the plasma should decrease1 and etching should be more chemical.

Secondly, pressure affects ions angular distribution, i.e. ions directions are more spread in higher

pressure [213]. This means that physical etching should be less anisotropic so that it can reach larger

zones under the shadowing mask (figure 4.28). In figure 4.30, experiments of etching with three

different pressures are summarized. As expected, higher gas pressure results in increased lateral

etching (mask underetching). Nevertheless, crystallographic-based anisotropy of the etching is also

revealed. This indicates that chemical mechanism is mostly responsible for the lateral etching.

Similarly to the case of HF/HNO3 wet etching process, crystallography has a larger impact on

smaller structures than on larger ones.

10µm 50µm 600 µm

40mTorr

100mTorr

150mTorr

Figure 4.30: Impact of gas pressure on the footprint of etched structures - Three different

pressure levels were investigated: 40mTorr, 100mTorr, and 150mTorr while all other process parame-

ters were fixed. With increased pressure, underetching is faster, but new phenomena in the form of

crystallography dependence appears.

Substrate temperature. In the etching reactor, the sample is placed on a wafer chuck that allows

to control the etched substrate temperature. Since the considered process is partially a chemical

1ionization in general requires more energy than generation of radicals [212]
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process, the sample temperature can impact the etching characteristics. Moreover, as etching is

governed by the two mechanisms, i.e. ion etching and radical etching, different temperatures could

be use to act on the geometry of the etched structures. Indeed, radical etching, that can be

understood as a chemical etching, is supposed to be more dependent on temperature than physical

one. In figure 4.31, two similar structures were etched in the same conditions except the wafer

temperature. Sample etched at temperature T = 0◦C shows smaller underetching than sample

processed at T = 20◦C. Since the temperature dependence of lateral etching is much stronger than

vertical one, the 3-D geometry is also changed. In consequence, the structure etched at higher

temperature has a more spherical profile than the one etched at lower temperature. However, as

chemical etching is accelerated when substrate temperature is increased the anisotropy and surface

roughness of generated structures also increase.

a) b)

Figure 4.31: Effect of substrate temperature on etched profile - Two structures etched with

the same plasma parameters but different temperatures of substrate (set by wafer chuck cooling system),

two cases are compared: (a) T = 0◦C and (b) T = 20◦C.

Aspherical Structures. The geometries generated by plasma process can be divided into two

categories. The first one consists in structures obtained by etching through relatively large mask

opening (diameter > 100µm). Those structures are characterized by relatively well spherical part

at the bottom of the etched cavity. As the curvature is relatively low, they could be used as low

power micromirrors. The second category of generated geometries are structures etched through

relatively small mask openings (diameter < 100µm). In this case, the whole surface of the structure

can be used since the etched surface is smooth and continuous. There is no visible border between

differently, i.e. chemically or by ions, etched parts, such as in the case of etching through large

mask windows. Figure 4.32 presents a profile of such structure. This profile obtained by SEM

imaging (4.32a), was fitted until a diameter of 120µm to the conic section equation. It reveals
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that the structure can be described by conic section k = −0.35, and ROC = 55.5µm. As it was

discussed in the chapter 2, microlenses with such negative conic constant are highly desirable for

the construction of micro-optical scanner.

a) b)
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Figure 4.32: Negative conic constant profile - Generated (p = 40mTorr,t = 1800s,dmask = 30µm)

structure of aspect ratio slightly higher than a hemisphere, results in a profile that can be described as

a conic section with negative conic constant. (a) SEM image of diced structure and (b) results of the

fitting the profile to: conic section (black line) and to a sphere (red line), resulted fit parameters of the

conic sections: k = −0.35, ROC = 55.5µm RMSfit = 0.18µm.

Surface roughness. The investigated process produces structures characterized by some level of

roughness. The surface quality of the etched structure is not uniform, being much better on the

bottom of the structure than on the edges (figure 4.33). High quality surface at the bottom of

the etched cavity correlates with the mask opening diameter. This could indicate that roughness

accompanies the chemically driven etching that takes place on the mask shadowed area. However, as

roughness formation in plasma processes is a complex phenomenon [214, 215], it could be minimized

by appropriate process parameters choice. Additionally, a so-called “plasma polishing” process,

proposed by [216] and applied by [217] for improvement of silicon micromirrors surface quality, may

be used in our case.

4.1.3.4 Conclusions and future work

The preliminary results concerning fabrication of micro-molds and micromirrors by use of SF6

plasma are promising. The main advantage of this process is in principle more possibilities for

generated geometries. Moreover, plasma etching systems can provide better process reliability, in
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a) b)

Figure 4.33: Roughness in SF6 plasma etched structures - (a) variation of roughness within

etched structure, (b) zoom on the edge of the cavity where surface roughness is the largest.

the form of process repeatability and uniformity over wafer, than in the case of wet etching based

techniques.

In this work, the performed experiments were only the first attempts in order to investigate

the physics of the plasma process and determine the range of structures that could be fabricated.

Nevertheless, they demonstrated a clear potential of this technique for the generation of more

complex shapes than the one that can be produced by wet-etching based techniques. In particular,

possibility of creating aspherical shapes with desirable negative conic constant and high aspect

ratio (and consequently high NA of corresponding optical elements) were presented. In addition,

when considering plasma etching through larger mask openings, such process can be used for the

generation of large spherical depressions. In this case, although only the central part of the etched

structure is optically usable, fabrication of relatively large mirrors is possible. Such mirrors are

needed as primary mirrors in the construction of micromachined Schwarzschild objective (that will

be presented later in this chapter).

Then, future work needs to deeper explore the process in order to better understand the etching

process. In particular, precise correlation of temperature impact on the etched geometry in a wider

range of etching parameters has to be determined. The minimization of both surface roughness and

crystallography dependence is also necessary.
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4.1.4 Molding

Cavities etched in silicon, by the different wet or dry etching processes previously presented, can

be used directly as micro-mirrors. But, transformation of these silicon concave structures into

microlenses requires a replication process. Replication is a procedure of transfer of shape from a

mold (which is made in silicon in this specific case) to another material. In the context of micro-

optics, replication is made into an optically transparent material, e.g. glass or polymer.

4.1.4.1 Glass replication

Transfer of silicon structure into glass is made by combination of silicon-glass bonding and glass

reflow techniques [123]. The scheme of the process is presented on figure 4.34. A glass wafer

(Borofloat 33 from Schott) is bonded under vacuum condition to the silicon wafer with etched

structures (step 1). Then, the created sandwiched structure is heated in the furnace up to 850◦C

(step 2). During this step, soft glass fills the silicon cavity. One effect of glass reflow is also to

bend the backside surface of the glass wafer. Thus, in order to planarize it, a mechanical grinding

of glass is applied. In addition, the optical quality of grinded surface is restored by a polishing step

(step 3). Finally, the generated glass structure is released by silicon etching from the silicon wafer

backside (step 4). This step can be made by wet etching (KOH) or dry etching (DRIE). In both

cases, silicon can be etched whether selectively to keep a silicon frame around the glass structure

or completely to let the replicated structure as a single glass wafer.

1. Anodic bonding 

under vacuum 
2. reflow, Tmax=850oC 3. Wafer planarization - 

glass grinding and polishing 
4. Lens releasing

 (silicon etching)

Si

Glass

Figure 4.34: Scheme of molding process - Combination of glass silicon bonding and glass thermal

reflow used for generation of glass microlens from silicon cavity via molding technique.

Glass molding technique is very interesting since it provides robust optical micro-components.

The good optical, mechanical and thermal properties of glass makes it an appropriate material for

micro-optics fabrication. This is especially important in the frame of complex microsystems where

additional processing such as bonding or layer deposition can be required. However, the main

disadvantage of glass molding is the resulting destruction of the mold.
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4.1.4.2 Polymer replication

Consequently, for less demanding applications (in terms of robustness) or simply prototyping or

testing of optical quality of produced molds, one alternative method is employed. This faster and

cheaper method is the polymer-based replication. It uses mold as a multi-use stamp, since, in

principle, replication procedure can be repeated many times (if molds are robust enough). Many

different replication methods adapted to micro-optics exist[206]. In here, we employ a method

based on UV-curable polymer that is relatively simple to use and does not require heavy dedicated

equipments. In order to easily separate the replica from the mold, and to further achieve repeatable

molding-demolding process, the surface of the mold is covered by an anti-adhesion layer. In here,

the anti-adhesive layer is a fluorocarbon film, deposited from the C4F8 plasma discharge and per-

formed in a silicon etching system (A601E by Alcatel). The polymer used for replication is NOA65

(Norlands Adhesive). The polymer is deposited in the form of a single drop on the Si substrate to

be replicated. It is then slowly pressed by glass support wafer to fill all the structures. The poly-

merization is afterwards obtained by UV-irradiation. Such curing is performed with a UV-lamp

whose exposition time is adjusted to reach recommended curing energy (4.5J/cm2). Demolding

Figure 4.35: Example of a polymer replica - Replicated 100% fill-factor microlens array.

is performed via mechanical separation of silicon mold wafer and glass support wafer that host the

replicated structures. Finally, the replicated structures are located on the glass wafer (figure 4.35).

The polymer-based micro-structures create an additional layer on the host glass wafer whose thick-

ness is in the order of 80-150microns. The replicated structures can be tested within transmissive
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characterization bench that allows to measure their optical performance in the configuration that

they are intended to be used.

4.1.5 Microlenses and Micromirrors: Conclusions

In this section, we discussed techniques for generation of micro-mirrors and microlenses molds by

use of silicon etching. Although different methods for generation of micro-optical elements on the

wafer-level can be used, the silicon-based techniques are especially attractive because they can be

relatively easily integrated within silicon MEMS.

Hence, we discussed three different methods of etching, allowing generation of spherical-like

cavities. The first considered technique, based on a two-step silicon etching in aqueous solution

of KOH, allows generation of relatively large structures (> 200µm) but with low aspect ratio

(sag/diameter< 0.02) resulting in low NA microoptical components.

The second investigated technique relies on isotropic wet-etching in aqueous solution of HF/HNO3

mixture. This technique allows generation of hemispherical structures, i.e. characterized by high

NA. Small anisotropy is pronounced within this etching solution, although it is much smaller than

the one observed within KOH-based process. Moreover, it is present only on relatively small struc-

tures, i.e., generated by etching through small (< 50µm) mask apertures. When this technique is

used to generate larger structures (typical diameter: 500µm), the etching time has to be increased

to obtain spherical shape. However, the process time is limited by resistance of the mask material.

Consequently, isotropic etching can produce structures of high NA with diameters in a range of few

hundreds micrometers. Future work on the optimization of the (chemical as well as mechanical)

mask resistivity is required in order to increase the possible etching time and then the accessible

structure sizes. We also demonstrated that isotropic etching can be used for generation of full

fill-factor microlens arrays.

The third studied etching technique was SF6 plasma etching. The preliminary aim was to study

the possibility of generation of larger structures. In addition, it has been shown that it can be

used to produce structures with aspherical geometries. This has been achieved by adjusting the

etching parameters to balance the physical and chemical parts of the etching mechanisms, which

are more vertical or lateral, respectively. Therefore, future work concerning silicon processing for

microlenses and micromolds generation should be focused on SF6 process for generation of aspherical

components with wider spectrum of diameters.

The generation of microlenses from silicon molds was also presented. Two different techniques of

replication were discussed. The first one is based on anodic bonding and glass reflow for generation
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of glass microlenses, allowing their natural integration with silicon structures. The second one is

based on polymer, and is used for prototyping and testing of generated structures.
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4.2 Micro Schwarzschild Objective

Optical aberrations are usually encountered in micro-systems based on microlenses, especially when

high numerical aperture microlenses or large spectrum of wavelengths are required. Such aberrations

are responsible for a limitation of the system resolution. Besides, optical MEMS field also relies on

reflective optical elements, such as plane mirrors or, in some cases, curved reflective surfaces for off-

axis systems. In this paragraph, we investigate a reflective system, i.e., a two-curved-micro-mirrors

integrated system, well known as a macro-component and so-called Schwarzschild objective. This

sytem can be used in the analogous fashion than microlenses but with much lower three primary

Seidel aberrations as well as an improved working distance. Thanks to molding from silicon, we

show that miniaturization of this anastigmatic reflective objective is possible in order to generate

low aberration and high numerical aperture (up to 0.6 for a diffraction limited system) micro-optical

components with achromatic behavior.

4.2.1 Two-mirrors anastigmat

The elimination of optical aberration in micro-optical systems can be achieved by use of aspherical

geometries [16], however not many micro-fabrication technologies allow arbitrary control of gener-

ated geometries of microlenses. Moreover, each microlenses fabrication technology has limitation

in respect to possible materials and available microlenses sizes. For example, on the one hand,

generation of the aspheric microlenses characterized by negative conic constant was developed by

combination of resist reflow and reactive ion etching of fused silica [118].

On the other hand more MOEMS-friendly microlenses generation techniques allow produce

spherical structures. However, spherical microlenses have limited performance in terms of optical

aberrations. In particular, the spherical microlenses are inefficient when working in high NA systems,

when intrinsic spherical aberration seriously deteriorate imaging/focusing ability of the microlens.

For instance, in plano-convex spherical micro-lenses, optical aberrations limit their performance as

soon as NA reaches 0.25. As the aspherical microlenses usually outperforms spherical ones, a simple

aspheric structure (single plano-convex conic surface), is not a perfect imaging solution in case of

high NA and large fields angles (like in configuration used in beam scanning confocal microscope)

will also exhibit optical aberrations.

In the field of telescope optics and microscopy, K. Schwarzschild and C. Burch [143] have shown

a century ago that a system made of two mirrors can be designed in order to eliminate optical
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aberrations. Indeed, the reflective optical systems present naturally superior performances for wide-

band optical applications than refraction- or diffraction-based systems, simply because reflective

systems do not suffer from chromatic aberrations. In addition, when a system is arranged along

the so-called "Schwarzschild configuration" (with proper choice of mirror geometries and of their

relative separation, the three primary Seidel aberrations, namely spherical aberration, coma and

astigmatism are eliminated making the system anastigmatic.

In this work, we investigated the use of a collective technique we employed in the past to

fabricate microlenses [123] in order to generate a miniaturized anastigmatic reflective objective.

The technique is based on wet-etching of silicon in order to fabricate the two micromirrors (directly

or through molding). Because of this technology, we consider Schwarzschild Anastigmat composed

of spherical only mirrors. The use of silicon and glass technology allows natural integration of

generated micro-objective within complex micro-systems.
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Figure 4.36: Geometry of the Schwarzschild anastigmat - Mp,s Primary and Secondary mirror,

cc common center of curvature, gf geometric focus, Rp,s Mirror radii of curvature, φp,s Mirror diameters,

d mirror separation, f effective focal length.

Figure 4.36 shows the principle of the reflective objective. Few rules have to be respected so

that spherical and off-axis aberrations are eliminated. First, mirrors need to share the same center

of curvature (COC) to create a point-symmetric system, avoiding the definition of an optical axis.

In other terms, all incident rays are on-axis so that off-axis aberrations do not exist. Secondly,

the ratios of curvature of the two mirrors are chosen so that their present spherical aberration

contribution have opposite signs, leading to their compensation. Correction of the third order
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spherical aberration is then achieved by a system composed from one convex and one concave

mirror arranged in co-centric configuration. The main system parameters can be expressed as a

function of the effective focal length (equations 4.13- 4.16):

Rp =
(√

5 + 1
)

f (4.13)

Rs =
(√

5− 1
)

f (4.14)

d = 2f (4.15)

φp =
(√

5 + 2
)

φs (4.16)

where Rp,s are the radii of curvatures of two mirrors, d is their relative separation and φp,s are

their diameters. The important feature of the co-centrism employed in the Schwarzschild system

eliminates the off-axis aberrations, however, co-centric condition has also important disadvantage

that is a curved image plane. The curvature of the image plane is defined by the focal length

(RPtz = −f) of the system and is usually referred as Petzval curvature RPtz [6]. Petzval curvature

is usually considered as optical aberration (field dependent defocus). Thus, in the classical imaging

systems, Schwarzschild systems are equipped with an additional “field flattener” lens, aimed at

correcting the image curvature of the system. However, in the context of confocal systems with

3D-beam scanning, curvature in the image space does not impact the system resolution, the only

effect is a geometric deformation of imaged volume that can be corrected in the post-processing step.

In consequence, in here, we will not consider any additional elements than the mirrors. Moreover,

in the aberration analysis we exclude the Petzval term from the total aberration of the system.

The aberration analysis of such system was performed with Zemax (EE version, nov. 2008,

Zemax Development Corporation, USA) by means of Zernike polynomial wavefront expansion [6].

The optical quality of the system is evaluated by means of wavefront RMS which defines the wave-

front deviation from ideal spherical reference at the system image plane.

Although several criteria exist for the "Diffraction Limited systems", one of them defining high

quality optical systems says that aberration “free” optical systems are characterized by Strehl ratio

SR > 0.8 [16], this condition translated (equation 3.4) into wavefront rms leads to σrms < 0.02λ.

If the incident light onto the system is collimated, then only axial aberrations, i.e., primary and

secondary spherical aberrations, limit the optical performances. For the Reflective objective based

on spherical mirrors, important contribution of such aberrations (σrms ≈ 0.02) appears only for NA

> 0.57 whereas they appear as soon as NA is equal to 0.26 for an hemispherical glass lens (figure

4.38);
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a) b)

Figure 4.37: Two mirrors anastigmatic configuration - (a) light path (Zemax) of Schwarzschild

system, (b) Seidel diagram of the system: surface 3 corresponds to secondary mirror, while surface 8

corresponds to primary mirror. The three principal Seidel aberrations are in exact balance resulting in

corrected (aberration free) anastigmatic system.
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Figure 4.38: Axial aberrations of Schwarzschild system compared to a microlens - Theoret-

ical comparison of microlens and schwarzschild micro-objective: the diffraction limited performance of

anastigmatic reflective objective allow achieving much higher NA than a spherical refractive microlens.

Analysis made with Zemax where input beams for both cases have been kept constant (125µm) and

where the system focal length was varied to change NA.

Thus, the reflective objective remains diffraction limited for NA twice larger than an equivalent

microlens. Concerning off-axial aberrations, and as it was mentioned earlier, high symmetry of the

system tends to eliminate them. Zemax aberration analysis confirms the elimination of coma, and

shows that only small traces of astigmatism (primary and secondary) remains in high NA systems,

however it never reaches high values, i.e., bellow 0.02λ even for high angle (15o) fields and high

NA (0.5). Another feature of such system is an increased working distance compared to standard

microlenses, because of the combination between positive and negative powers of the two mirrors
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resulting in the principal plane location at the physical end of the system instead of its center in

the case of microlens. This feature can be interesting in the case of MEMS based imaging systems,

where space for packaging is often required.

Reflective objectives also suffer several drawbacks consecutive to the so-called obstruction. In-

deed, the secondary mirror or the port in the primary mirror create circular shadow for incident light

passing through the objective. It reduces the light efficiency of the system and changes the shape

of the (3D) PSF of the setup, i.e. the airy disk is not anymore standard. In addition, obstruction

is responsible for an increased depth of field (in the confocal system, it means deterioration of the

axial resolution) in comparison with clear (not obstructed) systems.

4.2.2 Fabrication within Si/Glass µtechnologies

Construction of multi-component micro-objective using micro-fabrication technologies is a challeng-

ing task. From one side, precise fabrication of each component according to the specifications of

the system has to be made, and from the other side, precise positioning of system elements is

also required. Moreover, the physical realization of the system require additional elements such as

mechanical support for the secondary mirror.

4.2.2.1 Architecture

Miniaturization and collective fabrication of the anastigmatic reflective objective is achieved through

silicon/glass micromachining. The architecture is shown in figure 4.39 and the generic fabrication

flow-chart in figure 4.40.

The primary concave mirror is formed directly in silicon (for example by wet etching), and

its central input/output port is made by deep reactive ion etching (DRIE) (figure 4.40(II.2)). To

increase reflectivity of silicon mirror, a metallic layer (Al) is deposited on the surface (PVD) (figure

4.40(II.3)).

The generation of secondary mirror is based on the replication of silicon molds in glass (section

4.1.4). For this purpose, the concave spherical cavity generated in silicon is replicated into a

(anodically bondable) glass by means of anodic bonding under vacuum and thermal reflow technique

(figure 4.40(I.2-I3)). The original Si wafer used for generation of molds for secondary mirror is then

used as the separation wafer defining precisely the separation between the two mirrors. The mirror

release is done from the backside of the Si wafer by means of dry etching (DRIE) or wet etching

(KOH) (figure 4.40(I.5)). Since, the secondary mirror is made in glass and is suspended of glass

substrate the reflective layer has to be deposited on the top of the mirror. It is important to notice
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Glass Secondary Mirror

Silicon Secondary

Mirror host wafer - separator

Silicon Primary Mirror

Eutetic/Adhesive bond

Input/Output port

Mirrors coatings (Al)

Anodic Bond

Working Distance

Figure 4.39: Architecture of Schwarzschild micro-objective within Si/Glass fabrication

technology - Two mirror system fabricated withing Si/Glass technologies: the primary mirror is made

in Silicon whereas the convex secondary mirror is formed by replication of a silicon concave mold into

glass. The Si mold wafer used for generation of mold of secondary mirror serve as a separator defining

the distance between mirrors.

that patterning the surface (metal coating on the mirror surface) on the bottom of the deep cavity

is not straight-forward and needs special attention.

Finally, the two elements composing the system can be integrated together by means of wafer

bonding techniques. Since two silicon interfaces have to be joined, eutectic (Au-based) or adhesive

(SU8-based) bonding methods can be used.

4.2.2.2 Tolerances

The important issue about Optical Design (OD) of optical systems is their technical feasibility

strictly related to the tolerances that OD needs to fulfill. Tolerances depend on the particular

system. In the case of original Schwarzschild configuration, i.e. when equations 4.13-4.16 are

fulfilled, the system depends on only a single parameter (from point of view of the aberration

correction). However, when deviation from exact solution exist (perturbed system) the setup has

3 parameters: two radii of curvatures Rs, Rp and the mirrors separation d. According to 4.13-

4.16, the aberration correction is based on two concepts: cocentrism (off-axial aberrations) and

appropriate ratio of radii of curvature of two mirrors. Deviation from one of these two conditions

produces aberrations in the system.
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1. Spherical cavity in silicon. 

I. Secondary mirror 

2. Anodic bonding  with 

glass wafer under vacuum

3. Glass reflow 

4. Glass wafer 

planarization (grinding 

and polishing)

5. Releasing of glass 

structure by DRIE from 

backside

6. Metal coating

II. Primary mirror 

III. Mirrors Integration

1. Spherical cavity in silicon. 

2. DRIE from backside

3. Metal coating 

Eutetic or adhesive bonding  

Figure 4.40: General flowchart of reflective micro-objective fabrication - (I) secondary mirror

generation via combination of silicon etching and glass molding, (II) primary mirror is made in silicon

whereas central port is etched by DRIE technology, (III) integration of elements on the wafer level is

made via wafer bonding technologies.
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Figure 4.41: Impact of mirror separation on the aberration present in the system - The

deviation of mirror separation rapidly increases spherical aberration (on-axis aberration), while off-axis

components increase much slower. Solid curve represent on axis illumination (no off-axial aberration

in the system), while dashed curve corresponds to off-axis illumination (10◦) (in here both axial and

off-axial aberrations are present).

In figure 4.41 impact of in-optimal separation on to aberrations present in the system is plot-

ted. Considered system has the following parameters: φp = 600µm, φs = 150µm, Rs = 200µm

Rp = 524µm, dexact = 324µm resulting NA ≈ 0.35. It is visible that axial misalignment mostly im-
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pacts the spherical aberration while off-axial effects (mainly coma and astigmatism) increase much

slower with deviation from the optimal value of mirror separation. In other terms, spherical aber-

ration is dominant over the off-axial ones. In the considered system and from figure 4.41 a 50µm

deviation from optimal separation distance provokes 0.05λ of wavefront aberration, value that can

be considered as the tolerance of our system.

The two other parameters of the system, i.e., curvatures of mirrors also need to be precisely

defined. In the figure 4.42 the impact of dispersion of mirrors ROC on the resulting wavefront

aberrations is shown. In the case of on-axis illumination (figure 4.42a) the deviations of the two

mirrors can compensate each other if there deviates accordingly (black zone in fig. 4.42a). However,

when off-axis aberration are also considered (figure 4.42b), deviation of Rs or Rp, even if it is in

the same direction, results in deviation from cocentrism of the two mirrors setup. The effects are in

tightening of the tolerances compared to on-axis performance. However, it is important to notice

that principal impact defining the tolerances in the system is the on-axis aberration, precisely due

to the primary spherical aberration.

Compared to tolerance of mirror separation distance, tolerance of ROC seems to be more strict

since in considered system, 20µm error leads to already non-negligible aberrations.
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Figure 4.42: Radius dispersions impact on aberrations of Schwarzschild system - (a) on-axis

case and (b) off-axis case (10◦). For both cases, separation between mirrors is fixed as d = 324µm.

Furthermore, from the point of view of realization of the device, it is important to estimate the

precision of mirror geometry needed by the system. In practice, various figure errors can appear

depending on the fabrication process. In here, we analyze simple deviation from the spherical shape
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of the mirrors by adding nonzero conic constant (A) to the mirror geometry definition. As it is

a very specific deviation from the spherical shape, it can be used only as an estimation of the

precision needed for mirror fabrication. To do so, the conic constant of two mirrors was varied and

its impact on resulting wavefront was analyzed (figure 4.43a). It is clearly visible that secondary

mirror sphericity precision affect less the system then the primary one. It can be attributed partially

to the scale difference between the two cases.

a) b)
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0.30

0.40

0.50

Figure 4.43: Tolerance dependence with NA of the system - (a) dependence of on-axis aberra-

tion as a function of mirror separation (∆d is a deviation from Schwarzschild condition) and NA of the

system. In here, one system was analyzed (separation fixed as d = 324µm) - NA was varied by changing

diameter of the input pupil. (b) The precision of mirror shape in the case where mirror has non zero

conic constant, kp,s - conic constant of primary and secondary mirror respectively.

Finally, the tolerances are also highly dependent on the system NA. In general, higher NA

requires higher precision than lower NA systems. In the figure 4.43b, the aberration dependence as

a function of separation deviation and the system numerical aperture is drown. It can be seen that

low NA systems are much more tolerant than high NA systems and that tolerances are not symmetric

in respect to exact value of mirror separation. This effect applies to other system parameters as

well so that tolerance analysis is strictly connected with the system NA.

4.2.2.3 Influence of Glass Support

The specific considered architecture based on Si/Glass technology uses a glass plate in the optical

path as a support for the secondary mirror. As it is commonly known, transparent parallel-plate

can add wavefront deformation to the convergent (or divergent) beam. The flat glass block in the
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a) b)

Figure 4.44: Schwarzschild system with added glass support - (a) Ray tracing of modified

system and (b) Seidel diagram illustrating aberrations that originate from the additional glass plate in

the light path, in here surfaces numbered: 3, 7, 9, 10 correspond to secondary mirror, primary mirror,

first and second glass plate surface, respectively.

case of collimated light does not deform the beam only spatially shift it position, however in the

case of convergent rays, various aberration are introduced. The source of aberration is that different

rays composing the beam are shifted differently depending on their incidence angle with respect to

the normal to the plate. Moreover, when polychromatic light is considered chromatic aberration

may also appear. In the context of the point-symmetric Schwarzschild system, introducing parallel

plate to the system naturally breaks its symmetry, and in consequence, exact correction of off-axis

aberrations is not possible.

Thus, the glass support should be as thin as possible (figure 4.45). In addition, it is also possible

to correct the unwanted effects of glass plate by changing the parameters of the mirror setup, viz.

mirror separation d and curvature of the secondary mirror Rs.

The adjustment aiming at the compensation, is done thanks to Zemax, optimization runtime

with RMS wavefront as merit function. The correction of influence of glass support dglass = 150µm

was performed. By changing d from 324µm to 312µm and Rs from 200µm to 194µm compared to

exact Schwarzschild configuration (NA=0.35), the RMS wavefront drops from 0.13λ (SR=0.56) to

0.03λ (SR=0.94). Interested feature of this modified system is a slightly smaller obstruction ratio

of the corrected system when glass support is in the optical path.
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Figure 4.45: Aberration generated by glass support - (a) RMS wavefront deformation provoked

by glass parallel plate in function of its thickness, (b) RMS aberration for glass support (dglass = 150µm)

in function of mirror separation (d) - simple change of separation distance cannot eliminate aberration

generated by glass plate.

4.2.3 First Demonstrator

As it was discussed in previous sections of this chapter dealing with technologies of micro-lenses/mirrors

in silicon/glass technology, isotropic wet etching process cannot generate well spherical structures

above 300µm diameter. Though KOH-based process can be used for generation of larger mirrors

but of lower focusing power (longer focal lengths).

Because, in the considered system the input/output port has to be made in the center of the

primary mirror it is difficult to scale the system down. Scaling to much the system down is not

appropriate in the considered system because the input/output port has to be made in the center of

the primary mirror and should not truncate the incident beam. According to equation 4.16, the input

port diameter should be around 4.2 times smaller than the primary mirror. Moreover, if the mirrors

made by isotropic etching our current process (max 250µm diameter to have correct profile) tend

to be used for the primary mirror the input port would have a diameter of 60µm which is too small

for targeted application. Indeed, this size of the port would cause noticeable diffractive spreading

of the beam inside the system that could affect the work of the system. Besides, characterization

of the device would also be much more difficult.

For this reasons, the first attempt to fabricate the discussed reflective objective was made by

using KOH wet etching for mirrors generation. In this case achievable NA of the system remains
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small (NA < 0.1), however, it allows to test most of technology steps and validate the optical/tech-

nological concept1.

4.2.3.1 Specifications

KOH double step etching process (presented in section 4.1.1) allows good control of radius of

curvature of generated micro-mirrors, since geometry of mirrors is well defined by initial conditions

of masked etching and etching conditions are well controllable. For the first demonstrator primary

mirror was designed as: Rp = 6200µm and φp = 800µm while secondary has mirror Rs = 2370µm

and φs = 190µm, these define geometrical parameters of the system as: d = 3832µm, NA = 0.05,

f = 1916µm. It can be mentioned that the complete integration of the system elements would be

difficult since the separation of the two mirrors is larger (d ≈ 3.8mm) than standard thicknesses of

wafers used in the MEMS fabrication processes. However, the wafers with elements of the micro-

objective could be easily aligned and tested on an optical test bench. Moreover, since in considered

configuration NA is small, the impact of glass support (dglass = 200µm) discussed before does not

need to be included since it has negligible impact on the theoretical performance.

4.2.3.2 Fabrication

Both mirrors (primary and secondary) were generated with KOH techniques described in section

4.1.1 where initial apertures (circular mask windows) for masked etching step were d0p = 70µm and

d0s = 10µm for primary and secondary mirrors, respectively.

The masked etching done in 10M KOH water solution at 80oC was made within tmp = 90min and

tms = 15min with etching speed v100 = 0.85 µm
min

. The mask-less etching was performed in the same

etching solution with following etching depths: hml
p = 340µm (tml

p = 400min) and hml = 120µm

(tml
s = 125min), for primary and secondary mirrors, respectively.

The input port in the primary mirror is etched from the backside by DRIE process. Since etching

is performed through wafer, mirror surface is protected by deposited 250nm layer of aluminum that

serves as the etch-stop for etching performed from backside. The DRIE process performed through

a resist mask (AZ-9260, 10µm thickness) that was and aligned to the mirror structures by use of the

alignment marks created in backside nitride mask used in KOH etching and transferred to silicon

(in the form of inverted pyramids during maskless etching step). DRIE etching is performed with an

1 it is worth to mention that in parallel to fabrication of first demonstrator based on KOH-mirrors the development

of large mirrors by isotropic wet etching and dry plasma etching are investigated in order to generate higher NA

reflective objective.
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additional silicon holding wafer temporary bonded (by thermo-conductive oil) to the etched wafer.

The aim is to prevent a leakage in the cooling circuit as the wafer is etched through. The array of

primary mirrors with etched input ports is presented on figure 4.46a.

a) b)

Figure 4.46: Realized mirrors for Schwarzschild micro-Objective - (a) SEM image of primary

mirrors, (b) optical micrograph of secondary mirror within it silicon frame.

The wafer with molds for secondary convex mirror was bonded under vacuum condition with a

borofloat 33 glass wafer (525µm thickness), consequently thermal process was performed (section

4.1.4) to fill the silicon cavities with glass. The next step consisting glass planarization by use of

grinding and polishing of front side (glass-side) of the two-wafer stack. During the grinding step,

the thickness of the glass part of the sandwich can be precisely adjusted. In considered case glass

substrate was grinded until the thickness of 200µm.

The releasing of the secondary mirror, the etching of the silicon in the hybrid silicon/glass struc-

ture, is achieved by use of DRIE technology (Bosh process). For this purpose, the silicon (backside)

was patterned with photoresist (AZ-9260, 10µm thickness) by means of UV-photolithography, where

the pattern was aligned with structures located on the frontside (alignment marks were created in

oxide mask on the backside after first KOH etching). The standard DRIE process was used (within

A601E by Alcatel) for generation of through holes until the glass substrate. Only difference from

the standard etching recipe was the periodic pauses in the process. The etching was made with

5minutes etching cycles followed by 3minutes of pause in order to compensate the low thermal con-

ductivity of silicon/glass stack. That latter can cause overheating of the sample when the etching is

continued for long time (through etching of silicon 450µm wafer takes approximately 110minutes).
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Figure 4.47: Deposition of reflective layer on secondary mirror - Two strategies considered

for the selective deposition of metal on the mirror placed in deep silicon cavity: a) backside (Si-side)

and b) frontside (glass-side) photolithography.

Once glass convex structures are released (figure 4.46b) they have to be covered with reflective

metallic layer to generate the secondary mirror. In here, the patterning of bottom of Si cavity

bottom can be a difficult task: firstly resist deposition cannot be performed within standard spin-

coating process, secondly the photolithography, in particular UV-exposure, is also unusual (normally

we employ contact exposition). In here, the mask used for UV-exposure is located at a significant

separation (Si wafer thickness) from the interested structure. The third issue concerns the resist

development: In the case of small and deep structures, the resist developer (water solution) does

not well penetrate the cavities and the bottom of the structure remains undeveloped.

The first issue was addressed by using spray-coating system for resist deposition, the large sepa-

ration structure-photomask did not cause visible pattern deterioration in the considered geometries

(450µm separation and 200µm structures sizes), however this could be a problem in the case of

larger separations or smaller structures. The problem of poor wet-ability of cavities covered with

photoresist requires the use of aggressive agitation during development (ultrasound bath).

Two process schemes are considered for this step. The first one is based on material deposition

followed by selective metal etching made by backside photolithography (figure 4.47a), The alterna-
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tive considered method is the UV-exposure through the glass wafer (figure 4.47b). In this scheme,

the resist is first deposited onto the structure and the UV-exposition is performed from the glass

side, i.e., through only 200µm thick glass. This approach requires finally a lift-off process so that

reflective layer is deposited on the patterned resist. The important advantage of this process is

minimization of the number of wet processes since only resist development is performed in water

solution. Comparing to first scheme where in addition to development also metal etching has to

be performed in the water solution, the number of wet processing is minimized. This is preferable

since the specific geometry of the structure is not easy for wet processing.

4.2.3.3 Characterization

Characterization of the device is performed by IPSF measurement system described in the 3rd

chapter. The two components of the system are not assembled together but tested on the optical

bench so that distance between the wafers can be adjusted. The measured system response is

presented on figure 4.48. The measurements does not match expected results. In particular, the

focal spot is not axially symmetrical (figure 4.48a), and local side lobes (secondary, local maxima)

are highly pronounced (inset in fig. 4.48a). Axial slice of the focus (figure 4.48b) also shows high

asymmetry around the focal plane.

a) b)

Figure 4.48: Measured focus spot of fabricated system - (a) focus plane and (b) ZX slice of

focal volume.
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In consequence, this 1st demonstrator is not aberration free. The origin of the aberration present

in the constructed system probably lies in geometry inaccuracy of composing mirrors. As was seen

in section 4.1.1, used KOH technology does not generate mirror of very good spherical shapes.

This appears to be clearly critical for reflective objective generation. Observed 4-fold symmetrical

geometry corresponds to observed IPSF pattern of a single KOH mirror. Moreover, since two KOH-

etched mirrors are used, the effect can be larger than for single surface elements (single lens, or single

mirror). Finally, we have to conclude that mirror quality generated by the KOH-based technology

is not sufficient for this compound system where optical quality is crucial.

4.2.4 Conclusions/Perspectives

The Schwarzschild objective is a very attractive optical architecture that in many aspects, outper-

forms single refractive lens. The 3 primary aberrations, namely: spherical aberration, coma, and

astigmatism are completely eliminated. That means that within this system, high NA and high

field of view can be achieved without resolution degradation. As a reflective element, it is also com-

pletely achromatic thus it can be employed for system employing wide-band spectrum or extreme

wavelengths (e.g. X-rays, far IR) for which refraction-based elements are not adequate or available,

respectively. From the point of view of the fabrication, this device can be made in batch process by

stacking wafers with mirrors composing the system.

Future work will be linked to alternative mirror generation techniques (discussed in previous

sections: HF/HNO3 wet or SF6 dry Si etching), that can allow to produce mirrors of better quality

than the ones used here based on KOH wet etching.
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4.3 Micro-Beam-Splitter

Many optical devices require beam splitting functionality. In macroscopic optical systems, beam

splitting or beam division is achieved by use of beam-splitting cubes or tilted semitransparent

mirrors. In micro-optical systems, micro-beam-splitters are necessary. Currently, beam-splitting

structures for micro-optical devices rely on complicated pop-up-structures [218], complicated litho-

graphic patterning of thick polymer films like angled UV-exposure SU8 layer [219, 220], or LIGA

technology [221].

In the context of reflective confocal microscopy and in particular for the system designed in the

frame of this thesis, beam-splitting is necessary to redirect the signal returning from the sample

to the detector. In the miniature confocal systems, usual way to by-pass this requirement on the

level of the micro-device is to employ fiber optics as the input and output of the system so that

beam-splitting is performed within a fiber coupler [114, 125]. However, if miniaturization of the all

parts of the system is needed, miniaturization of beam-splitters that can be easily integrated with

microsystems has to be addressed. In this section, we describe the design and the fabrication of a

micro beam-splitter made at the wafer-level by use of MEMS technologies.

4.3.1 Classical Beam-Splitting

Beam splitters (BS) are usually divided into two classes, i.e., polarizing and non-polarizing (polarization-

insensitive). The non-polarizing BS is independent on polarization of incident beams, i.e., splits the

beam in same power ratio whatever is its polarization state. Polarizing BS is normally understood

as a polarizing element: on the two outputs of the BS, two orthogonal linear polarizations are

present. In here, at first a more specific situation is considered: beam-splitting of a specific linear

polarization state is targeted. This approach simplifies design and construction of the BS, although

it still allows full use of the device in the confocal system when input polarization is well defined.

Classical beam splitting devices are usually so-called beam splitting cubes, where a semi-transparent

mirror is located at the diagonal plane of the glass cube (glass cube being formed by two right-

handle prisms glued together). Most of BS characteristics depends on the semitransparent mirror

embedded in the cube. For such mirror commonly used method is dielectric multi-layer deposition.

The advantage of multilayers are low losses (comparing to metallic layers) and wide possibility of

designs, i.e., appropriate stack can be chosen to obtain polarization control, achromatic or dichroic

behavior.
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a) b)

Figure 4.49: Beam splitting - (a) classical beam splitting cube and (b) arrangement of BS cube and

45o mirrors allowing vertical two-way beam-splitting.

Typical beam-splitter separates the incident beam into two beams that propagate in two per-

pendicular directions (figure 4.49a). This standard configuration is not convenient in the case of

miniature systems, where linear alignment of optical components is preferable, especially when they

are vertically integrated. To achieve vertical beam splitting, micro-beam-splitter (MBS) has then

to split the beam into two parallel laterally shifted beams. This can be achieved by arranging the

beam splitter together with two “outcoupling” mirrors (figure 4.49b).

4.3.2 Wafer-Level Cube-Type Micro-Beam Splitter

Figure 4.50: Conception of integrated vertical MBS - The integration of beam-splitting structure

with two mirrors in a single component allows realization of “vertical” micro-beam-splitter, well adapted

to the vertically integrated microsystems.

The scheme of targeted device is presented in figure 4.50. The main challenge for the realization

of this concept is generation of 45◦ slanted mirrors, embedded in optically uniform medium. The

fabrication is based on bulk micromachining, viz. saw-dicing of glass substrates with custom-made

blades, to generate directly the 45◦ slanted mounts, combined with usual thin film deposition (mirror
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surfaces) and embedding of the mirrors with optically appropriate (i.e. refractive index matching)

UV-curing polymer (filling machined glass structure). The MBS structure is made of borosilicate

glass wafer that is compatible with anodic bonding process1 which allows easy wafer-level integration

of MBS with silicon components, and particularly, thanks to wafer-level alignment/positioning

possibility.

4.3.3 Realization of MBS

The technological realization of the device is based on wafer dicing process. Then the layer de-

positions employ standard technologies used in MEMS facilities such as physical layer deposition

(PVD) for metal deposition and chemical layer deposition (CVD) for dielectric films deposition,

respectively.

Structure embedding is performed with UV-curable polymer usually employed for creation of

robust mechanical connections with high optical quality (transparency, uniformity). Although,

employed fabrication techniques are well known and commonly applied in the MEMS community

optimization of critical process steps was performed and dedicated design taking into account the

fabrication accuracy was made.

Two designs are investigated: the first one is the 50/50 BS that works with a single incident

polarization (TE), whereas the second design considers polarizing beam splitter. In the following,

the first design was realized experimentally and demonstrated.

4.3.3.1 Architecture

The MBS is composed of two glass substrates. The bottom micromachined one is bonded together

with a lid by use of UV-curable optical adhesive, as shown in figure 4.51. Thanks to refractive

index precise match between UV-curable material (NOA 84, Norland Products, Inc.) and glass

(borosilicate or fused silica), layers deposited onto the micromachined glass part are then embedded

into an optically uniform volume, avoiding deflection of the beam due to refraction. In the demon-

strator (figure 4.51), a dielectric multilayer is deposited onto central 45◦ surface of the structured

cavity. It is designed to be, once embedded, semi-transparent to achieve beam splitting function. In

addition, metallic layers are deposited onto two other inclined surfaces working as micromirrors for,

1 It is important to note that the total structure composed from glass and polymer is not compatible with anodic

bonding (temperature incompatibility of polymer), however if appropriate bonding order is chosen the device can be

easily integrated by use of the standard anodic bonding process.
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Figure 4.51: Integrated MBS architectures - System architecture allowing parallel beam splitting

by use of immersed mirrors tilted at 45◦.

reflecting on the one hand, the beam directly from the source and, on the other hand, the beam re-

turned from the sample, for monitoring and sensing purposes, respectively. Thus, different types of

multi-layer stacks can be deposited onto the central 45o-inclined surface depending on the required

beam-splitting function, i.e. to adapt the beam splitting ratio, the wavelength dependence or the

polarization sensitivity. Such stack embedded in material of refractive index n=1.457 (borosilicate

glass and UV-curing adhesive) takes the form of suspended semitransparent mirror.

Stack design The design of the stack is based on so-called quarter-wave layers. Single quarter-

wave layer, composed of material of higher refractive index than the one of the substrate, can be used

to increase the reflectivity of the optical interface [6]. The use of stacked quarter-wave layers allows

increasing performance of the mirror. However, technological realization becomes more difficult

when number of layers grows since the tolerances on the layers fabrication are more strict. In here,

the quarter wave stack is composed from layers periodically deposited on the glass surface. The

layer of lower index (nL) of refraction is fixed as the same as the one of embedding medium, i.e.

nL = 1.457, the index of second layer (nH) has to be larger than nL. The thickness of both layers

are defined as a quarter of considered wavelength (λ) (equation 4.17):

h =
λ

4n cos(βn)
(4.17)

where βn is the incident angle at the layer interface (in our case β1 = 45o) and λ = 632.8nm.

Condition 4.17 fixes the thickness of low index layer as hL = 153.6nm. The choice of nH , and

number of layers was done by analyzing beam-splitting parameters of the stack and the tolerances
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nH 1.7 1.8 1.9 2.0 2.1

hH [nm] 117.0 107.2 99.1 92.3 86.5

3 Layers:

RTM [%] 0.53 1.59 3.38 5.95 9.21

RTE [%] 24.62 38.00 49.63 59.18 66.82

TTM [%] 99.47 98.41 96.62 94.05 90.79

TTE [%] 75.38 62.00 50.37 40.82 33.18

Table 4.3: Beam splitting performance of examples dielectric stacks - 3 layers stack scan assure

50/50 beam splitting only for TE polarization, TM polarization has always relatively high transmission

through the stack. The exact 50/50 TE splitting can be achieved with nH = 1.904.

required on the layers composing the stack. Table 4.3 shows beam splitting performance of several

multilayer stacks for few different values of nH (that can be reached with SiOxNy). As it can be seen

TM polarization weekly interacts with the multilayer (relatively small reflection coefficient). Indeed,

with considered geometry and principal material (glass with n=1.457) it is difficult to achieve 50/50

splitting ratio for both polarizations. In consequence, for the first realization of the MBS we have

employed 50/50 beam splitting ratio for a single TE polarization only. From the table 4.3, it can

be seen that 3 layers stack can assure desired reflectivity for nH = 1.904 (and hH = 99.1nm).

Finally, the 3 layer stack has to be constructed from 3 layers with refractive indices equal to

1.904/1.457/1.904 (nH/nL/nH) and thicknesses equal to 99/154/99nm (hH/hL/hH), respectively.

Such stack embedded in material of refractive index n=1.457 (borosilicate glass and UV-curing

adhesive) splits equally the incident beam (without absorption unlike metallic layers) if the latter is

TE-polarized and if its angle to the stack normal is 45o. If 1% splitting ratio deviation is considered

whereas incident angle and refractive indices are well controlled, the thickness tolerances are ±20

nm and ±9nm for low and high refractive index layers, respectively. If thicknesses and refractive

indices are well controlled, 1% splitting ratio deviation is encountered when incident angle differs

by ±0.7o from 45o.

Advanced polarizing MBS One efficient way to generate a PBS is to use property of the

Brewster angle1 - an angle for which TM polarized incident light is not reflected. The difficulty of

1 Brewster angle is the angle defined for an optical interface for which TM polarization has null reflection

coefficient, this particular phenomena is often use as principal method for controlling both polarization in most

commercial polarizing BS [222].
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4.3 Micro-Beam-Splitter

Figure 4.52: Modified architecture for polarizing MBS - Change of the angle of the mirror

allow to employ the Brewser angle properties and add controllable polarization sensivity to the device.

controlling both polarization within considered system originates from fixed material of the base

substrate, when using borofloat glass (to low refractive index) as a substrate Brewster angle property

is not possible to employs in considered geometry. However, using a blade with a slightly different

shape, can results in an angle close to the Brewster condition (tan(θB) =
nH

nL
) for all slanted sidewalls

(θB = 52.5o with previously considered refractive indices). Then, polarizing beam splitting with

high extinction ratio (>100 in reflection and transmission) can be reached with relatively simple

stack based on only few layers (7 to 9). Furthermore, since higher refractive index substrates are

not required to respect Brewster condition at 45o, MPBS can be fabricated from borosilicate glass

as well.

The modified geometry of the device is shown in figure 4.52 and considered stacks parameters

are summarized in table 4.4. It is visible that increasing the number of layers improves its efficiency

along TE. It is important to underline that in considered system when Brewster angle is required

the choice of nH defines the angle of the mirror (θ = θB) and in consequence the thickness hL

(via equation 4.17). Table 4.4 presents few performances of several possible stacks. Efficiency

of polarization separation is in here reported through the transmission extinction ratio (TER)

defined as a ratio of transmission coefficients for two perpendicular polarization, i.e. TER = TTM

TTE
.

For possible refraction indices of dielectric films (i.e. accessible nH) deposited within standard

techniques 7 or 9 layer stack can already provide efficient polarization separation.
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nH 1.7 1.8 1.9 2.0 2.1 2.2

θB [◦] 49.40 51.01 52.52 53.93 55.25 56.49

hL [nm] 166.9 172.6 178.5 184.5 190.6 196.7

hH [nm] 122.6 113.1 105.0 97.9 91.7 86.3

7 Layers:

RTE [%] 71.2 87.3 94.4 97.5 98.9 99.4

TER 3.5 7.9 18.0 40.3 87.3 183.4

9 Layers:

RTE [%] 83.3 94.3 98.0 99.3 99.7 99.9

TER 6.0 17.7 51.1 141.8 375.4 951.5

Table 4.4: Multilayer stacks for polarizing MBS - The performances of different stacks expressed

in terms of TE polarization reflective coefficient (RTE) and extinction ration in transmission. The most

efficient stacks are marked with bold font, TER reaching almost one thousand (like for nH = 2.2, 9

layers stack) is close to performance achieved by commercial PBS.
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Metallic

 mirror
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Figure 4.53: MBS fabrication flowchart - 1. dicing of glass; 2. deposition and patterning of

dielectric multilayer; 3. deposition and patterning of metallic layers; 4. filling with refractive-index

matching UV-curable adhesive; 5. sealing with glass lid and bonding by UV-exposure.
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4.3 Micro-Beam-Splitter

4.3.3.2 Fabrication

The fabrication process is shown schematically in figure 4.53. It combines saw-dicing-based micro-

machining of glass with deposition of thin-film dielectric and metallic layers. 0.7mm thick Borofloat

33 glass substrate (Schott) is first structurized by use of automatic high precision dicing saw DAD321

from DISCO (Step 1). After dicing, selective deposition of dielectric beam-splitting stack (Step 2)

based on lift-off using spray-coated resist. For this step, three layers of SiOxNy are deposited by

inductively coupled plasma-enhanced chemical vapor deposition (ICP-PECVD) at low temperature

(80oC), where refractive index is alternately changed between 1.45-1.95 by variation of each layer

stoichiometry. Following (Step 3), selective metal deposition is performed by means of physical

vapor deposition (PVD) for the outcoupling mirrors. The last, 4th step is the polymer deposition

and closing the structure with glass lid by means of index matching UV-curable polymer (NOA 84).

Glass dicing. Dicing process is commonly used in the MEMS fabrication workflow, however only

as a dicing method to separate/release the micro-structures fabricated within the wafer. The less

conventional use of saw dicing as a bulk micromachining method was demonstrated in [223]. An

interesting result, considering the use of dicing saw for generation of “optical grade” surfaces, was

obtained in the case of processing of crystalline lithium niobate [224].

Dicing optimization Glass dicing process is commonly employed in microfabrication work-

flow but the quality of surface generated by the process is hardly ever considered. In the investigated

process, and since saw-machined surfaces serve as optical elements, surface quality is of the most

importance. The optimization of dicing process was performed in order to obtain smooth, flat sur-

face with minimal quantity of defects (scratches, digs) that are generated in the standard dicing

process.

Dicing procedure has been first optimized on vertical cuts (with polishing blade). Optimized

dicing process schematically shown in figure 4.54, it includes conditioning of the blades with special

DISCO plate and silicon wafer, then dicing of vertical groove at low speed (0.2 mm/s), followed by

a second dicing (0.2mm/s) in order to improve the surface quality, dicing blade in all processing

steps spins at the same speed of 15000rpm.

Figure 4.55 (a) and (b) show the improvement consecutive to the second blade travel (60µm of

the bottom encountered only one travel). The custom made dicing/polishing blades and optimized

dicing procedure lead to surfaces characterized by four-times lower roughness than obtained typically
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Figure 4.54: Scheme of optimized dicing process - Optimized procedure consists dicing blade

conditioning and double passage of dicing blade with low speed over the machined surface.

after standard glass dicing/polishing process (roughness measured by stylus profilometer) as shown

in figure 4.55 (c) and (d).

Similar procedure was employed to generate the 45o inclined surface, for which a vertical groove

is first diced at low speed (0.2 mm/s), followed by final dicing with 45o-inclined custom made blade

to form slanted surfaces. Figure 4.58 shows the resulting saw-diced glass structure. Height of the

inclined surfaces is 400µm. It can be noted that the 2mm lateral separation (requiring several

adjacent saw cuts) is chosen to facilitate optical characterization, although they could be much

closer if source and photodetector are closely located on the same chip.

Figure 4.55: Illustration of Dicing optimization - a),b) effect of blade passing on surface quality

in case of the substrate where the bottom part has encountered only one dice passage, c) example of

diced surface after standard process and d) sample diced by optimized process.

Roughness impact. In any optimization process, it is important to have a simple merit func-

tion that allows comparing and guiding the optimization procedure. The standard merit function

in the context of surface quality optimization is RMS surface roughness. RMS is calculated as the

root mean squared deviation from filtered topography data (obtained via 1D or 2D profilometry).

Filtering is applied to the data in order to extract and analyze only small scale topography details
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4.3 Micro-Beam-Splitter

(so-called high-frequencies). In general, quantitative absolute measurements of roughness measure-

ment is a difficult task since it strongly depends on the used equipment and details of the data

processing method. For these reasons, roughness measurement are often not directly comparable

[225]. The process optimization was guided by comparative analysis of RMS obtained within contact

profilometer (Alpha-Step IQ TENCOR: tip ROC: 5µm; cone angle: 60o; high-pass filter with cut-off

at 80µm). According to this measurement presented dicing procedure improve surface quality over

4 times over standard dicing process (figure 4.55).
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Figure 4.56: Optical impact of diced surface structure - (a) measured topography (white light

interferometry) of mirror, (b) simulation of beam reflected from beam-splitter surface and (c) reference

beam.

This comparative analysis of surface roughness is useful during optimization, however it does

not provide the real measure of surface quality that can be translated to optical performance of the

final device. Normally, surface quality measures (flatness, roughness etc.) in the context of optical

application are compared to the operational light wavelength, that in our work is λ = 633nm.

However, in the considered case when the mirror surfaces are embedded in a medium, the wavelength

interacting with mirror is shortened so that λn = λ/n. In consequence tolerances for surface quality

are tighten than in the case of free space optical mirrors.

The optical impact of residual surface imperfections of the diced structures at 45◦ was analyzed

by use of 2D topography measurements performed by white-light interferometer (MSA-500 by Poly-

tec). Based on the measurements, propagation of a Gaussian beam was simulated after reflection

from the surface. The results are reported in figure 4.56 where measured topography, simulated

beam after reflection (24mm after the mirror) and reference Gaussian beam (in the case of reflection

from a perfect mirror) are presented. The roughness present on the surface of the mirror scatters
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part of the reflected light out of the propagation direction. The power loss encountered by the beam

can be used to quantify the surface quality. In the considered case, about 28% of light is lost due to

imperfect surface of the diced surface. This is obtained by comparing energy in beams (fig. 4.56a

and b ) encircled by a circle of diameter equal to the reference beam waist.

Important observation is the asymmetrical scattering generated by the considered surface. This

effect is a consequence of the specific structure of the surface defects. The scratches consecutive

the dicing process diffract light in the direction perpendicular to the scratches direction. This

effect is better visible in the figure 4.57 where cross-sections of beams from figure 4.56b and c are

plotted. The y-section (along the scratches) is smooth and symmetrical while section in x-direction

(perpendicular to the scratches) is perturbed with visible secondary peaks and thus wider and less

symmetrical than the y-profile.
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Figure 4.57: Cross sections of the beam reflected from diced surface - Two orthogonal cross

sections have different structures, the difference originates from specific “anisotropic” defects of the

machined surface.

The impact of surface quality is more pronounced after the reflection from the surface, than in

the case of the transmission. Since non-perfect surface is embedded in index matching material, the

surface roughness will not directly affect the beam propagation. In this case the roughness could

affect the performance of the dielectric layer that inherits rough structure of the surface, however

experiment does not show significant losses nor beam deformation in the beam transmitted through

the structure.
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NH3[sccm] SiH4[sccm] O2[sccm] Ar[sccm] P [W] p[Pa] n rate [nm/min]

SiNx 145 6.8 0 140 150 5 1.95 17.3

SiOy 0 130 9 126 300 2 1.45 13.6

Table 4.5: IC-PECVD dielectric films deposition process parameters - Different condition

in the deposition chamber results in different refraction indices of deposited layer the deposition was

performed at temperature 80oC.

Dielectric mirror The beam splitting functionality lies in the semitransparent dielectric mirror

deposited in central 45◦ wall (figure 4.51). The beam-splitting mirror is constructed as a stack of

thin films generated by use of chemical vapor deposition (CVD) technology. The parameters of

MBS in terms of light transmission, reflection and polarization sensitivity largely depend on the

design and realization of the stack. In here, we present a system rather simple to realize but showing

sufficient performances to be deployed in considered miniature confocal system.

Stack multilayer is fabricated by means of inductively coupled - plasma enhanced chemical vapor

deposition system (IC-PECVD). All the films composing the stack during a single sample load are

fabricated at single sample load. Patterning of the structure can be performed by lift-off technique

for which resist deposition on the structured wafer is made within spray coating system. The layers

refractive index can be precisely controlled by adjusting process conditions. In general, refractive

indices obtained within considered system (“ICPECVD SI 500 D” by SENTECH) can vary as the

stoichiometry of the deposited material changes [226]. Process parameters used in the deposition

are summarized in the table 4.5.

4.3.4 Characterization

Figure 4.59 shows a fabricated device during its characterization. It has to be noticed that the

pictures display only the scattered light to illustrate the device principle, whereas the beams of

interest are reflected perpendicularly to the device and not captured by the camera. Figure 4.59a

shows the light path when the incident light hits the semi-transparent stack and is reflected by the

facing mirror. In Figure 4.59b, transmitted light through the device is reflected onto an additional

mirror (placed under the device) and returned into the device to be guided to the second mirror.

From incident TE-polarized light, 48.5% is transmitted by the multi-layer stack (Fresnel reflections

subtracted), i.e. close to the designed 50% splitting ratio. This value demonstrates the correct

behavior of the stack. The measured reflected beam (left side of pictures in figure 4.59) is equal
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Figure 4.58: Fabricated MBS - a),b),c) - SEM micrographs of diced structure and d) MBS with

deposited layers ready to be sealed with lid and UV-curable adhesive.

to 25.3% of the incident light (power-meter located at 6cm from the device). These measured

efficiencies lead to a beam splitting ratio T/R=65.7/34.3 at λ=632.8 nm with 26.2% losses.

Losses of reflected light encountered at both multidielectric stack and gold mirror (totally near

20% of incident light) are attributed to gold absorption (5%) and mostly to scattering resulting

from non-perfect quality of the two 45◦-inclined surfaces.

As seen in section 4.3.3.2, compared to a perfect surface, the 45o inclined saw-diced one realized

for the demonstrator leads to 28% of losses due to scattering. Shape anisotropy of the reflected

beam confirms that losses are mainly due to scratches oriented along the dicing travel (figure 4.56).

Considering the complete device characterization, and when such losses are taken into account along

with gold absorption, the ratio between reflected and incident light should be equal to 24.8%. This

value is in very good agreement with the measured reflected light (25.3%).

4.3.5 Conclusions and Perspectives

This novel fabrication method for micro beam splitter (MBS) is based on saw-dicing of borosilicate

glass substrate and on deposition of multidielectric layer. In order to avoid deflection of beams, the

structure is filled with refractive index matching UV-curable adhesive. The demonstrator behaves
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Figure 4.59: Characterization of constructed MBS - (a) device working in single pass mode

(light-path in the inset), and (b) in the round-trip mode.

as a beam splitter for TE-polarized light. Concept for easily-manufacturable micro polarization

beam splitter is also presented, reaching high extinction ratio with only few dielectric layers. The

device was developed for application into the miniature confocal microscope, however, as it is

a generic optical component, it can find applications in many different photonic micro-systems

(interferometers, bio detection systems, data storage, etc.). This is strengthened thanks to its

wafer-level fabrication methodology and consecutive integration and packaging capabilities as well

its wafer-level alignment.

The future work will be focused on improving the quality of diced surface to suppress the losses

due to scattering and eliminate the beam deformation due to imperfect surface. The optimization

of the dicing process can be still improved, since in fabricated structure, dicing process was based on

optimization made with vertical cuts. In practice, since slanted walls are generated with a blade of

different geometry, mechanical behavior can be expected to be different, resulting in worst quality of

slanted walls than vertical ones. Then, the improvement of dicing could be also achieved by using

more mechanically stable dicing blade such as a symmetric v-shaped disc. The other possibility

is to add a post-processing step aiming to improve quality of the surface. For instance thermal

processing could be used for this step.
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5

Toward first demonstrator of scanning

confocal microscope

In this chapter, the general concept of scanning confocal microscope demonstrator, based on com-

bination of MEMS 3-D optical microscanner and fiber-optics illumination/detection system, is de-

scribed. The construction of the MEMS 3-D microscanner, which is a key sub-system of scanning

confocal microscope, is presented. In particular, we emphasize the integration method of glass

microlens with silicon microactuators as well as the overall wafer-level bonding/interconnecting

strategy for 3-D microscanner.

5.1 Introduction

Realization of scanning confocal microscope on-chip, employing microlens transmissive 3D opti-

cal scanning, represents several technological difficulties and challenges. The optical design of

3D scanning mechanism, described in detail in Chapter 2, has to be implemented in a compact

three-dimensional structure, which is built according to the rules of MEMS technology and follows

numerous opto-mechanical constrains, compatibility requirements etc. Moreover, besides scanning

system, some additional elements, such as light source, collimation block, beam splitter and pho-

todetector are required. Thus, one of the main difficulties is the 3D integration of heterogeneous

building blocks, especially fragile micromechanical components (microactuators) and micro-optical

components (microlenses), both fabricated at wafer level. Another challenge lies in the optimal

choice of monolithic or hybrid technologies to integrate glass microlenses on top of MEMS mi-

croactuators, allowing high-frequency scanning of optical beam as well as compatibility with batch
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fabrication and bonding process (temperature, pressure). The last but not least demanding tasks

are the efficient electrical interconnection for microscanner driving and overall protection of system

from environment (dust, moisture).

The development of the scanning confocal microscope has therefore multidisciplinary character.

Particularly, it requires expertise in state-of-the-art integration and packaging technologies. Hence,

this part of work, concerning the MEMS 3D optical microscanner, was carried out in the frame

of DWST-DIS project in cooperation with Fraunhofer Institute for Electronic Nanosystems ENAS

(Group of System packaging, lead by dr Maik Wiemer) the world wide known specialist in micro/-

nanosystems integration and packaging technologies. The chosen development strategy for the first

demonstrator was based on the following assumptions:

• development in parallel of different building blocks of the 3-D microscanner and vertical inte-

gration technologies1,

• simplification of illumination/detection blocks by use of fiber optics components,

• development of relatively simple hybrid method of integration of microlenses with silicon

microactuators.

In consequence, the simplified version of the microscope, considered to be fabricated as a proof-of-

concept demonstrator, consists of fully integrated MEMS 3-D microscanner (scanning doublet +

focusing lens), whereas source, detector and collimation block are realized by use of commercially

available optical fibers components.

5.2 General architecture

The scheme of hybrid scanning confocal microscope, utilizing MEMS 3D microscanner and optical-

fiber components, is presented in figure 5.1. The illumination is provided by single mode optical

fiber from pigtailed laser VCSEL source (λ=637nm). The collimated input light beam is provided

by a GRIN lens that is apertured (φ = 150µm) in front of the scanning system. The collection

of the output light of the system is performed within the same components, where the fiber core

serves as a confocal detector (confocal pinhole). In order to fulfill condition of optimal confocal

imaging, for given size of the fiber core (dcore = 4µm), the focal length of GRIN lens should be

1this choice was also motivated by division of blocks development and integration technology to two project

partners: FEMTO-ST and Fraunhofer/ENAS
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fgrin > 600mm. In our system, the commercial GRIN lens (Edmunds Optics), characterized by

focal length of fgrin=920mm and diameter of Dgrin = 1000µm is used. The 3D microscanner

employs commercially available glass ball microlenses, which are assembled and bonded into the

microscanner platforms.

FIBER COUPLER

(BEAM SPLITTER)

PHOTO-DIODE

LASER DIODE

GRIN LENS

APERTURE

SINGLE MODE

FIBER

SCANNED

VOLUME

(SAMPLE)

Figure 5.1: Scheme of optical design of hybrid confocal microscope - Scanner transformed into

confocal microscope by providing illumination/collection blocks by fiber-optics components (all unitless

numbers refer to distances in microns).

5.3 MEMS microscanner for confocal microscope

As it was discussed in detail in chapter 2, the working principle of the microscanner is based on a

free-space transmission steering of a laser beam when it passes through two movable microlenses.

The displacement of microlenses is provided by two electrostatic MEMS micro-actuators, in-plane

(comb-drive X-Y-axis) and axial (parallel-plate Z-axis), which are stacked vertically (Figure 5.2).

This type of MEMS-based scanning has been proposed by [127] as an alternative approach for micro-

machined confocal microscopes, usually employing scanning micromirrors [125]. This architecture

allows implementation of a compact and possibly array-type optical microsystems with simplified

optical path and possibility of on-wafer packaging of sensitive components. It is also compatible
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with multi-wafer integration, where all individual building blocks are wafer-level fabricated, stacked

and mechanically/electrically connected by appropriate wafer bonding methods.

5.4 Opto-mechanical design

The construction of the 3-D microscanner is presented in the figure 5.3. The device is composed of

5 functional elements (building blocks) that are fabricated individually on five different wafers: top

glass lid, silicon electrostatic comb-drive X-Y microactuator with integrated scanning microlens,

spacer wafer, silicon electrostatic Z microactuators with integrated second scanning microlens, and

bottom glass lid with integrated focusing microlens. The XY microactuator that has been the

purpose of a former PhD work [132], is a translation microstage with frame-in-the-frame architecture,

which provides an independent movement of microlens in the range of ±35µm using four comb-

drive actuators and a system of straight spring suspensions. The Z microactuator is based on

a electrostatic parallel-plate actuation principle, in which the microlens is located in the center

of a movable electrode and allowing out-off plane microlens scanning in the range ±20µm [133].

All the building blocks of the microscanner are mechanically and electrically connected at the

wafer level. Two glass lids, made of borosilicate glass, ensure an excellent optical transparency

through the whole stack for incoming laser beam, providing at the same time hermetic sealing of the

device. Thus, the sensitive microactuators and glass microlenses are protected from environmentally-

induced degradation (dust, moisture). The MEMS microactuators that are the core of the scanning

system are fabricated by double-side high-aspect-ratio DRIE of silicon on insulator (SOI) substrates.

The both lids enclosing the system are fabricated in borosilicate glass, while separator wafer located

between two scanners is made of bondable LTCC substrate. Although this system is heterogeneous

in terms of materials used for generation of different blocks, only one anodic bonding technique is

necessary to mechanically connect all the blocks. The illumination/collection system, realized by

use of commercially available fiber-optics components is connected with the 3D microscanner by

assembly of the GRIN lens onto the top glass lid using the optical UV glue. The aperture deposited

on the top lid defines the stop of the optical system truncating the beam from relatively large GRIN

lens.
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a) b)

Figure 5.2: Vertically stacked MOEMS scanner: System conception - The idea of system is

based on vertical architecture of the device that can be realized within integration method based on

vertical-stacking of the functional wafers. (a) scheme of system composed of stacked functional blocks

and (b) optical scheme of the system.

5.4.1 MEMS/Mechanical constraints, technological limitations

5.4.1.1 Bonding methods and materials selection

The borosilicate glass materials, such as Borofloat33 (Schott) or Pyrex (Corning) are commonly

used in the M(O)EMS technology due to their excellent connection with silicon via anodic bonding

method. The composition is borosilicate glass is based generally on silica mixed with boron oxide and

doped with sodium. The possibility of reliable bonding is important parameter when considering

heterogeneous micro-systems. Many different bonding techniques exist [227] from which anodic

bonding is considered as one of the most reliable (hermetic packaging) and relatively simple bonding

methods. As such, it is very convenient method for use in the considered microsystem. However, this

specific bonding technique is limited to specific materials. The usual substrates that are anodically

bonded to silicon are sodium containing, high quality borosilicate glass wafers, having coefficient

of thermal expansion (CTE) adjusted to CTE of silicon. However, due to several technological

reasons, the vertical interconnects are difficult to realize in glass wafers with thickness of several

hundreds of micrometers. Recently, Nikko company [228] has developed low temperature co-fired
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Figure 5.3: Construction scheme of vertically stacked MEMS confocal microscope - Archi-

tecture of the device realized within hybrid approach: vertical-wafer stacking approach used for scanner

construction and fiber based system for illumination/detection block.

ceramic (LTCC) substrates, which can be anodically bonded to silicon due to matched CTE [229].

The important advantage of using LTCC substrate instead of more standard glass substrate, is the

possibility of relatively easy integration of lateral and vertical electrical interconnections as well as

embedded cavities during the substrate fabrication. Embedded structures and vias are created by

pin punching of the green sheet, followed by screen printing of via materials, lamination and firing.

Due to the relatively low sintering temperature of this LTCC (around 800◦C to 900◦), the vias can

be filled with highly conductive materials such as Ag or Au. figure 5.48 is a SEM. cross-section

photo of a LTCC substrate sample.
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Figure 5.4: LTCC substrate - Cross section of anodically bondable LTCC substrate with through

wafer electrical interconnects [229].

5.4.1.2 Thickness limitations

The basic MEMS material is silicon in the form of thin wafers. The thickness of Si wafers varies from

typically 300-600µm ( 4 inch wafers ) up to 1500-2000µm for special applications. The limitation of

Si wafer thickness and generally planar fabrication principle ( based on photolithography ) , defines

relatively small vertical dimensions of MEMS ( up to few mm range ) , while lateral dimensions are

constraint mainly by wafer size.

5.4.1.3 Micromachining methods and process availability

The material applicability for construction of a specific device is not only defined by its integra-

bility potential. Important limitations originate from the accessible fabrication processes that are

highly dependent from considered material. For instance, silicon as the principal substrate used for

microsystems fabrication has a wide range of developed micromachining processes. Various etch-

ing techniques exist, such as wet isotropic, wet anisotropic, deep vertical plasma etching ( DRIE

) and many others. Moreover, the equipment for silicon etching is easily accessible. However, the

micromachining of other materials may be much more difficult. For instance, deep etching of glass

can be only realized by wet techniques ( HF/BHF ) . In consequence, the creation of via structures

presents a difficult task due to the limited mask selectivity and large under-etching accompanying

wet processes.

5.4.2 Sensitive components, hermetic packaging

The electrostatic actuators used in the device are composed of fragile and precise micromechanical

structures. The XY-stage contains 30µm-thick suspended platform, actuated by a set of four comb-
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drives that are composed of dense array of 10µm-wide combs, separated by tiny isolation gap ( 5 µm

wide ) . The second Z-axis parallel-plate actuator is fabricated within 15µm thick silicon platform.

As the employed actuators are driven by electrostatic force, generated by applying of relatively high

voltage (up to ≈ 100V), the system has to be protected from the environment ( dust, moisture ) .

For this reason, protection of active components by hermetic packaging is crucial.

5.5 Components tolerance analysis

The optimal distances between optical elements are determined by the optical design. However,

in the real structure, the distances are ensured by appropriate choice of wafers used for system

construction. The thickness variation within wafer batch can vary from ±5µm to ±10µm, depending

on wafer type and the manufacture. Moreover, the substrates exhibit thickness variation ( TTV≈
1−10µm ) that can also impact the deviation of positioning of system elements. As it was discussed

in the chapter 2, the optical design was conceived to minimize the constraints for axial positioning

of optical elements in the system. The collimated beams employed on the input and output of

the system sets relatively large tolerances to the location of the scanning system in respect to

neighborhood blocks. The scanning block designed as an afocal doublet has to be well arranged

in respect to the afocal condition. Deviation from this position leads to axial displacement of the

scanned volume in considered system, i.e. when axial magnification is close to 1, the separation error

in the afocal doublet positioning causes the same error in axial position of the scanning zone. In the

first demonstrator, two ball lenses are considered to be used in the scanning system. Their separation

is defined as a sum of their focal lengths (f1+f2 = 734µm ) , which fixes necessary spacing ( counted

from centers of lenses ) . The LTCC separator wafer has a thickness of dltcc = (700 ± 20)µm. In

the system based on ball lenses, the distance is not only defined by the spacer distance but also by

the lens assembly method. Ball lenses are individually assembled into so-called assembly ports and

subsequently bonded. Hence, additional positioning errors can arise. The diameter tolerance of ball

lenses, specified by manufacturer, equals to ∆D = 3µm. Diameter and following ROC inaccuracies

provoke variation in focal length of the microlenses ( ∆f = 2.2µm).

However, positioning of ball lens has to be considered, the lens axial position can be very fragile

on the small deviation of its diameter. The ball lens is assembled in the circular hole in the actuator

stage, as shown schematically in figure 5.5a. Thus, the lens auto-align itself that its center lies

directly above the center of the assembly port. The position of the lens center above the wafer level

(h) substrate depends on the lens diameter and port size (figure 5.5a). Finally,the positioning error
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Figure 5.5: Assembly of ball lens in actuator platform - (a) positioning of the ball lens (D =

2R = 500µm) into a circular assembly port (of radius rp), axial (in respect to wafer surface) position

(h) of the lens center depends on lens radius and size of the port. (b) size dispersion’s of microlenses

cause error in axial positioning of the lens, the position error ∆h strongly depends on assembly port

size, plot of error assuming lens radius deviation as 1.5µm, and port diameter error 1µm.

(∆h) depends on: assembly port size, lens and assembly port diameter errors. Figure 5.5b presents

dependence of assembly port size (its radius rp) Finally, when the port size is defined as rp = 200µm,

the biggest contribution to the dispersion of separation distance originates from the LTCC wafer

thickness inaccuracy. Since the total positioning in-accuracy is of the same order of magnitude as

the axial scanning range of Z-scanner the optical performances the optical performance (optical

resolution) would not be affected in an important degree. Finally, the main consequence of the

positioning error of scanning lenses is an axial shift of scanned volume.

5.6 Integration methods

Wafer bonding of device components allow generation of whole device on the wafer level including

wafer level hermetic packaging and interwafer electrical connections. In discussed system all wafer

level bonding is achieved by anodic bonding technique. The special type of LTCC used as a separator

wafer. This material, from the one hand allows to incorporate vertical VIAs within substrate

fabrication, and from the other hand allows to use anodic bonding as a integration technique for

creation of mechanical connection with silicon. Another bonding method employed consist a laser

induced thermal bonding of discrete optical components employed within the system.
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5.6.1 Ball lens bonding

As was discussed before ball lenses employed as the scanning lenses are assembled within circular

ports made in actuators platforms. Bonding between glass (ball lens) and silicon (actuators) is

achieved by laser induced thermal bonding. The bonding process relies on heating the platform by

high power IR radiation (the used laser station consist 3Watt laser diode working at λ = 608nm).

Since absorption of silicon is much larger than in glass, the laser radiation is mostly part absorbed

by the silicon platform that leads to its efficient heating while lens is heated mostly in the contact

points with silicon. The 30 seconds of exposure with power of 1.3W allows to generate permanent

bond between lens and silicon platform. Figure 5.6 presents the scheme of the bonding process and

SEM image of bonded structure.

a) b) c)

P=1.3 W, t=30sek

Figure 5.6: Ball lens assembly and laser bonding - (a) Ball lens placed in assembly port etched

in the platform that is heated by high power infrared laser, (b) example of bonded ball lens and (c)

zoom on the interface lens / silicon platform.

5.6.2 Electrical connections

The active elements of the system, i.e., electrostatic actuators are enclosed inside the wafer stack.

The electrical connections through the wafers have to be provided to assure the control of two

actuators. In order to simplify further integration with other components of confocal microscope

on-chip, including external electronics board, all electrical inputs to the microscanner are made on

its front side (Top Lid side). In consequence, the vertical electrical “wiring” through the stack up

to 3-wafers have to be provided. The number of connections, required for driving of each of two

microactuators is different. The XY comb-drive stage requires 4 driving lines (two lines for each

direction), and the out-of plane scanner needs one driving line. In addition, both actuators share

common ground that also needs to be connected to the driving electronics. The minimization of
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the number of vertical interconnections is an important parameter in the system architecture choice

due to high impact on technology involved as well as on overall costs of the device. From this

perspective, it is preferable to place the comb-drive actuator close to the top of the structure.
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Figure 5.7: Electrical connections in the stacked system using through wafer vias technol-

ogy - silicon columns, isolated by air gap, guide electrical signal through handle layer of W2. Access

ports in device layer of SOI connects the TSVs with device layer that conduct the signal to comb-drives

of XY-actuator. The signal driving Z-stage is guided also through LTCC wafer (W3) by embedded

Au-filled VIA connection. Connection between wafers is achieved by compresivelly bonded gold pads,

deposited on both wafers.

The construction of vertical through wafer vias, employed in the 3-D microscanner, is schemat-

ically shown in figure 5.7. Vertical electrical lines through wafers are made within each wafer

fabrication workflow. Signal lines through silicon wafer (W2 in the figure 5.3) are accomplished by

use of silicon columns, surrounded by air gap. Low resistivity silicon wafers are used for this purpose

( ρ=0.01Ohm cm). The silicon columns, further called through silicon vias (TSVs), are generated

by DRIE of narrow trenches (30µm or 100µm) into the 400µm-thick handle layer of SOI wafer.

TSVs are mechanically connected to the device layer of the SOI through insulating layer of buried

silicon dioxide (BOX). The use of conductive properties of silicon for making vertical interconnects

simplify the fabrication flow chart since no additional filling process (with conductive material) of

TSVs is needed. Connection of columns with driving elements (comb-drives) of XY-actuator on the

device layer is made by combination of wet etching (creation of access ports in device layer to the

TSVs and etching the BOX) and metal layer deposition (PVD). On the level of device layer, the
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electrical signals are guided by metal lines and by bulk silicon (e.g. spring suspensions) whereas

different paths are isolated from each other by DRIE insulation air gaps.

The separation wafer (W3) is made of special type of LTCC [230], which allows incorporation

of vertical metal paths into the substrate during substrate generation. The LTCC employed in the

fabrication of 3-D microscanner contains circular vias with diameter of 100µm, filled with gold.

Electrical connections between stacked wafers are achieved during the system integration process.

Anodic bonding used to create mechanical connection between blocks of the systems is used to form

the (thermo)compressive bond between metal (Au) pads, creating electrical connections between

wafers W2/W3 and W3/W4. Thin layer of gold (100nm deposited on 10nm adhesive layer of

chromium) used for formation of connection pads does not affect the bonding quality. Moreover,

Au-Au contact is made by high force and elevated temperature that accompanies anodic bonding

process. Since gold is relatively soft, its allows generation of the high quality electrical connection

between conductive VIA’s of the stacked wafers. Preliminary tests, carried out at Fraunhofer/ENAS

have shown that a temperature of at least 300◦C is necessary to form a low ohmic contact (3.5-4.8Ωm

for contact area 100× 100mm2 [231].

5.6.3 Multi wafer anodic-bonding

Considering that the anodic bonding can only be realized either between Si and glass or between Si

and LTCC, the bonding sequence has been chosen in such a way that Si and glass or LTCC are used

alternatively. In the first steps of the bonding sequence, two SOI wafers for electrostatic X-Y-axis

and Z-axis microactuators are fabricated using silicon direct bonding process. This bonding process

consists of three main steps, i.e. 1)surface pre-treatment with RCA1, RCA2 and again RCA1 fol-

lowed by low pressure oxygen plasma, 2) a vacuum bonding process at low pressure (<10−4mbar)

using a standard bonding equipment, and 3) an annealing step at during 6h in nitrogen in a hor-

izontal furnace. SOI wafer used for construction of XY stage is a standard substrates are used

(purchased as complete SOI stack from Ultrasil, USA), the construction of Z-scanner is coupled

with the fabrication of customized SOI structure, carried out at Fraunhofer/ENAS [231].

After the fabrication of the five building blocks (i.e. two wafers of top and bottom glass lids, one

LTCC spacer wafer and two wafers of electrostatic microactuators), they are connected according to

the sequence depicted in figure 5.8 [232]. First, the Z scanner is bonded anodically to LTCC spacer.

The integration of scanning microlens ML2 into the Z scanner, based on laser-assisted bonding

method, is performed before the anodic bonding step. During this bonding step, the electrical

contacts are formed between Cr/Au pads by thermo-compression accompanying the wafer bonding
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Figure 5.8: Bonding sequence of 5-wafer stack - Stack integration order starts with bonding

Z-scanner with LTCC spacer (step 1), following by joining LTCC with XY-scanner (step 2) two last

steps consit in bonding glass lids: firstly top lid (step 3), and bottom lid with focusing lens (step 4)

[232].

process. In the step 2, the first stack must be bonded to the X-Y scanner with already assembled and

bonded scanning microlens ML1. In this case, the interface consists of LTCC and device layer of SOI

wafer. Similarly, the electrical contact is formed by thermo-compression of Cr/Au pads, deposited

on separator wafer and the device layer of X-Y scanner. Step 3 starts the process of encapsulation of

the microsystem by bonding the top glass lid. The top glass lid wafer contains isotropically etched

holes for contacting the underlying layers. Thus, after a successful anodic bonding, the sputtering

of 20/200nm Cr/Au layer is performed over the holes through a shadow mask. In the last step, a

hermetic sealing is performed by anodic bonding of the bottom glass lid to the bottom side of the

Z scanner.
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5.7 Conclusions and perspectives

In this chapter, we have presented the concept of hybrid scanning confocal microscope, which

combines fully integrated MEMS 3-D microscanner with external illumination/detection system,

based on fiber-optics components. The design and realization concept of the millimeter-size MEMS

3-D microscanner has been also described. The 3-D microscanner employs several multi-wafer

vertical integration technologies to bond and interconnects five deeply structurized wafers made of

silicon, glass and LTCC ceramics. Presented approach allows space-effective integration of complex
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Figure 5.9: Scheme of advanced version of integrated scanner - Advanced version of the scanner

including plano-convex batch fabricated scanning lenses, integrated beam splitter and Schwarzschild

objective as focusing block and an additional block consisting illumination/detection block.

MOEMS devices, fabricated using various heterogeneous technologies. The first demonstrator of the

MEMS 3-D microscanner is, in the moment of writing of this thesis, under fabrication in the frame

of DWST-DIS project. The main goals here concern demonstration of successfully developed wafer-

level integration technologies and to validate the opto-mechanical design of the microscanner. The

future system would implement more optically optimal design (figure 5.9). Indeed, the use of plano-

convex glass microlenses, fabricated within glass-silicon molding technique and integrated onto the

actuators by wafer-level methods, could allow complete batch fabrication of the microscanner.
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Replacing single lens in the focusing block by micro Schwarzschild objective allow increase the

accessible resolutions and scanning zone of the system. Additional integration of beam-splitter,

described previously in section 4.3 as well as collimation block would allow elimination of fiber-

optics systems, creating complete confocal microscope on chip. In order to eliminate the bulk fiber

elements, used in the first concept of microscope demonstrator, the illumination/detection block

has also to be added. Since this block requires two opto-electronic components, i.e. light source

(VCSEL) and photodetector (photodiode), complete integration with MOEMS scanner would be

very complicated. One of the possible solutions would be to create this block as a separate sub-

component, that can be fabricated within wafer level process, while assembly and bonding with the

scanner could be performed on the chip level by means of e.g. flip-chip bonding.
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Appendix A

SEM Profiles Analysis

The dicing is a common method of investigation of cross sections of generated microstructures. In

particular, dicing coupled with SEM imaging allows relatively simple high resolution measurement

of fabricated geometries. In case of optical structures like mirrors or lenses, line measurements (di-

ameter, depth etc.) performed on acquired image are not sufficient. In particular, when qualitative

geometry characterization is needed1 a more precise geometry analysis is necessary. However, the

precise profile analysis cannot be performed directly on the image. This appendix describes proce-

dures used for extraction and analysis of profiles acquired by dicing and SEM imaging technique.

A.1 Profile extraction

The analysis is divided in two steps: profile extraction achieved with an image processing software

(Fiji2) followed by the profile analysis done in Python3.

The profile extraction algorithm presented in figure A.1 is composed from 4 steps: The first

step is a pre-processing aiming at removing the noise from the image. To not affect the profile

shape a median filter is used as it conserves the sharp edges present in the image. Then, the profile

extraction is based on binarization of the image. For this purpose, a threshold value is set and the

image is converted to a binary form. The choice of the threshold is the most important parameter

of the procedure, and in most cases can be simply set as a mean value of image. However, when

1imho it is always needed
2Fiji is a clone of ImageJ [233], famous image processing open source software that is very popular in the area of

scientific image processing. Especially, it is frequently used for microscope images analysis
3Python is general purpose programming language, however numerical packages (like NUMPY, SCIPY) make it

a powerful open source numerical (data processing) environment (in some level Python equipped in numpy, scipy is

very similar to better known commercial MATLAB environment)
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Median Filter

Artifacts removal 
("Invert" + "fill holes") 

BinarizationInput:
SEM image

Outline the profile bounding box removal   

Figure A.1: Profile extraction algorithm - The input SEM image of diced structure is smoothed,

transformed to binary image and cleaned from unwanted structures. Then, profile is outlined and

cropped to the structure dimensions

images charcaterized by low contrast between observed sample and the background are analyzed, an

alternative threshold value needs to be chosen. Binary image before outlining (profile extraction)

is also processed to remove artifacts appearing in binarization process due to contrast variation in

the image. The outline of the binary image produces a binary image with binary contour of the

observed structure. The last step of the procedure consist in removing the frame generated by

outlining algorithm (boundary effects) and saving the binary profile image as a coordinates set (a

plain text file). The outcome of the described procedure is a text file with pixel coordinates of the

structure profile. The text file can be read in any data analysis software. The implementation of

presented procedure in Fiji macro language is presented in listing A.1. The profile coordinates are

in pixel units, thus in order to transform profile to physical units, pixel resolution has to be known1.

The profile extracted from image has the same quantization as the original image (figure A.2) It is

then important to acquire high resolution images when profile analysis is considered to minimize

1when SEM images are registered in TIF format the resolution is written in image metadata and can be accessed

directly from the image file

192



A.2 Profile analysis

undesirable effects of discretization

Figure A.2: Pixelized structure of extracted profile - Extracted profile superimposed with ex-

tracted profile on the left whole structure and magnified image on the left. visible step-like structure of

the profile is due to the pixelization of the original image.

A.2 Profile analysis

The profile analysis is based on a standard curve fitting procedure, which requires the definition of

the targeted geometry. In general, lenses or mirrors can take a form of a sphere, more generally

of a conic section or an arbitrary aspheric [16]. The important assumption is that the lens is axis-

symmetrical. This is an ideal case, however, not always fulfilled. In here, we analyze only the cross

section and consequenly only the mirror symmetry can be verified, not the axial symmetry for which

the 3D analysis is necessary. In the case of most common spherical lenses/mirrors, the geometry is

described by equation A.1.

z(r) = R−
√

R2 − r2 (A.1)

where z is depth coordinate (sometimes called sag function), r is the radial coordinate and R is the

radius of the sphere.

The more complex geometries are often described as conic sections that can be expressed as

equation A.2.

z(r) =
cr2

1 +
√

1− (k + 1) c2r2
(A.2)

where c is curvature at the vertex, curvature defined as an inverse of vertex radius of curvature

c = 1
Rvert

, k is a conic constant that describe the geometry of the structure: for k = 0 is equivalent

to a sphere, k = −1 is a parabola, k < −1 describes hyperbolas finally k ∈ (0,−1) and k > 0

describes prolate and oblate ellipsoids respectively (figure A.3).

193



A. SEM PROFILES ANALYSIS

1 // Ex t r a c tP r o f i l e . i jm : p r o f i l e e x t r a c t i on macro ( f o r Imagej / F i j i )

// to be used with SEM images o f d iced molds/ l e n s e s

3 // program w i l l f a i l to ex t r a c t the p r o f i l e i f c on t r a s t sample/background i s not

high enough ;

// the r e s u l t i s a p r o f i l e wr i ten to the text f i l e (XY−coord in p i x e l c oo rd i an t e s )

5 // author : macie j . baranski@femto−s t . f r

7 // s e t f i e l d s in Result ( Measure ) t ab l e

run ( "Set Measurements . . . " , " area min bounding f i t shape d i sp l ay add r e d i r e c t=None

decimal=3" ) ;

9

// get data about image :

11 IJ . deleteRows (0 , 100) ; // r e s e t measure t ab l e

run ( "Measure" )

13 w=getResu l t ( "Width" , 0) ; h=getResu l t ( "Height " , 0) ;

// Median F i l t e r :

15 run ( "Median . . . " , " rad iu s=3" ) ;

// s e t Treshold f o r b i n a r i z a t i o n :

17 setAutoThreshold ( "Mean dark" ) ;

// i f automatic Tresho ld ing does not produce good r e s u l t s ad jus t t r e sho l d manually :

19 // setThresho ld (A,B) ; i t can be done in GUI : Image−>Adjust−>Treshold . . .

21 // B ina r i z a t i on :

run ( "Make Binary" , " thre sho lded remaining black " ) ;

23 // ARTFACTS REMOVAL

run ( " F i l l Holes " ) ; run ( " Inve r t " ) ; run ( " F i l l Holes " ) ;

25 // OUTLINE

run ( "Out l ine " ) ;

27 // ARTFACTS REMOVAL stage 2 (@ ou t l i n e l e v e l )

run ( " Inve r t " ) ;

29 makeRectangle (0 , 0 , w, 2) ; run ( "Cut" ) ;

makeRectangle (w−2, 0 , 2 , h ) ; run ( "Cut" ) ;

31 run ( " F i l l Holes " ) ;

// Remove Frame ( bounding box )

33 makeRectangle (w∗0 .05 , h ∗0 . 1 , w∗0 . 9 , h ∗0 . 8 ) ;

run ( "Make Inve r s e " ) ; run ( "Cut" ) ;

35 // save the p r o f i l e as XY coord iante s e t ( . txt f i l e )

run ( " S e l e c t Al l " ) ; run ( " Inve r t " ) ;

37 run ( "Save XY Coordinates . . . " , "background=255" ) ;

Listing A.1: ExtractProfile.ijm macro used for profile extraction from SEM images
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Figure A.3: Profiles of conic sections - Conic constant defines different shapes from different kinds

of ellipses, circle, parabola and hyperbolas, numbers on the figure correspond conic constant of the

specific curves, image retrieved from [234]

The description of optical surfaces as conic sections is usual in optics, since it provides simple

translation of surface geometry parameters (conic constant, curvature) into optical properties (focal

length, aberration performances). However, conic section is not general enough to describe all

the possible geometries that are obtained. The most general form of description of any axially

symmetrical geometry is a general polynomial: z(r) =
∑N

i=0 αir
i. High order polynomial can

describe arbitrary geometry, although the polynomials coefficients are difficult to interpret. For

this reason, the usual way to deal with more complex geometries than conic sections, is to use the

polynomials only as correction term to the conic equation:

z(r) =
cr2

1 +
√

1− (k + 1) c2r2
+

N∑

i=n0

αir
i (A.3)

where αi are the polynomials coefficients.

The fitting of profiles is performed on Cartesian coordinate system (r → x). The parameters of

the fit define not only the parameters of model shape (R, or k) but also the location of the structure

vertex (x0, z0). Finally, in most considered cases, we limit our fitting model to 3 geometry models:

parabolic, spherical and general conic. The fiting equations used for fiting in Cartesian system are

195



A. SEM PROFILES ANALYSIS

written as equations A.5-A.6:

z(x; a, b, c) = Ax2 +Bx+ C (A.4)

z(x;R, x0, z0) = z0 +R−
√

R2 − (x− x0)2 (A.5)

z(x; c, k, x0, z0) = z0 +
c(x− x0)

2

1 +
√

1− (k + 1) c2(x− x0)2
(A.6)

In general, vertex location (x0,z0) can be set as explicit parameters of the geometry model. However,

in the case of a parabola, it is advantageous to fit the corresponding equation in classical polynomial

form (eq. A.5) and calculate the vertex position from polynomial coefficients: x0 = − B
2A and

z0 = C − B2

4A . The polynomial form of the fitting function sets linear relation of model parameters

and the z value. In consequence, linear methods of curve fitting can be used for finding the model

parameters. In the case of equation of circle and conic, the linear form does not exist and nonlinear

curve fitting algorithms have to be employed. The nonlinear fitting in general is more complicated

than linear fitting, we will not discuss here the detail of the fitting algorithms, however it is important

to be aware of the practical differences between linear and nonlinear fitting algorithms that are used.

The linear fitting is based on the linear least squares minimization, which has always single, unique

solution1. In the case of nonlinear fitting problem, the least squares solution in general can have

more than one minimal solution. In this case, and to obtain physically meaningful solution of

nonlinear problem special solving methods have to be used. In practice, the good solution can be

easily found if the minimum search is performed close to the optimal result. To achieve this, an

initial set of model parameters (so-called initial guess) has to be chosen and nonlinear fitting is

performed in the vicinity of the starting point. In the case of considered spherical-like structures,

the fitting procedure is as follow: first fitting of a parabola is performed (linear least squares can

be applied here and unique solution is ensured), in the second step, the parabola coefficients are

used to calculate the parameters of adequate circle or adequate conic, then nonlinear fitting of circle

or conic section with initial guess obtained from parabolic fit is performed. The relations between

parabola coefficients and adequate circle and general conic parameters are summarized in equations

1 curve fitting can be seen as error minimization problem, the minimized function is an error function defined

by the difference of data and fitting model as a function of the model parameters (p), the error function: S(p) =
∑data points

i (zi − f(xi; p))
2 - it is visible that S(p) has unique minimum for model parameters only if f(x; p) is linear

in p.
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de f f i t_parabo laL in (x , z ) :

2 """ l i n e a r l e a s t square pa rabo l i c f i t

z = c+bx+ax∗∗2 """

4 import numpy as np

# matrix o f base ve c to r s :

6 A= np . z e r o s ( ( z . shape [ 0 ] , 3 ) )

A[ : , 0 ] = np . ones_l ike (x )

8 A[ : , 1 ] = x

A[ : , 2 ] = x∗∗2

10 # SOLVE matrix eq (A∗ c f s=z )

# f o r the c f s o f the polynomial by ∗LINEAR∗ l e a s t squares :

12 c f s , res , rank , s i ng = np . l i n a l g . l s t s q (A, z )

# eva luate f i t t e d parabola (A∗ c f s ) :

14 z f i t=A. dot ( c f s )

re turn c f s , z f i t , z f i t −z

Listing A.2: Python function for linear fitting of a parabola to the profile data, the function input

x,z are the profile coordinates obtained by profile extraction from SEM image or any other profilometry

method.

A.7-A.11

R =
1

2A
(A.7)

x0 = − B

2A
(A.8)

z0 = C − B2

4A
(A.9)

c = 2A (A.10)

k = −1 (A.11)

The Python implementation of fitting procedures are presented on listings A.2, A.3, A.4. The used

engine for parabolic fit linear least squares is a part of numpy.linalg package, nonlinear fit was

performed within scipy.optimize package [235].

A.3 Example

The demonstration of fitting procedure was performed on a sample SEM image (figure A.4) of diced

silicon structure (microlens mold). The profile extraction was performed according to the procedure

described in the first section of this appendix. Three fittings are performed: first fitting a parabola,
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1 de f f i t _ c i r c l e (x , z ) :

""" non l in ea r l e a s t square CIRCLE (2D sphere ) f i t

3 z = z0 + R−s q r t (R∗∗2−(x−x0 ) ∗∗2) """

import numpy as np

5 from sc ipy . opt imize import curve_f i t

de f f (x , r , x0 , z0 ) :

7 """ f i t t i n g func t i on d e f i n i t i o n """

z=z0+r−np . sq r t ( r ∗∗2−(x−x0 ) ∗∗2)

9 z [ np . i snan ( z ) ]=1e6

return z

11 # Linear parabola "pre− f i t " ( f o r i n i t guess f o r non l in f i t ) :

c f s , z f , e r r=f i t_parabo laL in (x , z )

13 # re−c a l c u l a t e f i t e d parabola c o e f s to

# get c i r c l e params (R, x0 , z0 ) :

15 R = 0.5/ c f s [ 2 ]

x0 = −c f s [ 1 ] / ( 2 ∗ c f s [ 2 ] )

17 z0 = c f s [0]− c f s [ 2 ] ∗ x0∗∗2

p r in t x0 , z0 ,R

19 # f i t :

c f s , cv =curve_f i t ( f , x , z , p0=(R, x0 , z0 ) )

21 # eva luate f i t t e d c i r c l e :

z f i t=f (x , c f s [ 0 ] , c f s [ 1 ] , c f s [ 2 ] )

23 re turn c f s , z f i t , z f i t −z

Listing A.3: Python function performing fitting of a circle to the profile data.
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2 de f f i t_con i c (x , z ) :

""" non l in ea r l e a s t square CONIC f i t

4 z=z0+c ∗(x−x0 ) ∗∗2/(1+ sq r t (1−(k+1)∗c ∗∗2∗(x−x0 ) ∗∗2 ) ) """

import numpy as np

6 from sc ipy . opt imize import curve_f i t

de f f (x , c , k , x0 , z0 ) :

8 """ f i t t i n g func t i on d e f i n i t i o n """

z=z0+c ∗(x−x0 ) ∗∗2/(1+ sq r t (1−(k+1)∗c ∗∗2∗(x−x0 ) ∗∗2 ) )

10 z [ np . i snan ( z ) ]=1e6 # k i l l nans i f appeared

return z

12 # Linear parabola "pre− f i t " ( f o r i n i t guess f o r non l in f i t ) :

c f s , z f , e r r=f i t_parabo laL in (x , z )

14 # re−c a l c u l a t e f i t e d parabola c o e f s to

# get con i c params ( c(=1/R) , x0 , z0 ) :

16 R = 0.5/ c f s [ 2 ]

x0 = −c f s [ 1 ] / ( 2 ∗ c f s [ 2 ] )

18 z0 = c f s [0]− c f s [ 2 ] ∗ x0∗∗2

# f i t :

20 c f s , cv =curve_f i t ( f , x , z , p0=(1/R,−1 ,x0 , z0 ) )

# eva luate f i t t e d t i l t e d con i c :

22 z f i t=f (x , c f s [ 0 ] , c f s [ 1 ] , c f s [ 2 ] , c f s [ 3 ] )

r e turn c f s , z f i t , z f i t −z

Listing A.4: Python function performing fitting of a conic section to the profile data.
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second a circle and third a general conic section. The three models more or less correctly fits the

investigated profile. However, precise quantification of the obtained fits allows to extract optically

meaningful data describing the structure.

Figure A.4: SEM image used for demo - Sample SEM image of fabricated structure (Si wet

etching) used for demonstrating profile analysis. In the image two structures are visible only the one on

the left was considered in the example.

The most important results of performed fits are the geometry parameters obtained. In table

A.1 the results of fitting to 3 considered geometries are summarized. Different geometry models

lead to slightly different R (15% maximal difference), whereas the vertex positions are consistent

for all 3 performed fits. The quality of fit are characterized as RMS error or PV error between fitted

function and the data. It is visible that conic model describes best the geometry of investigated

structure. In this case, the RMS fit error is in order of 1px that is the resolution of the used data.

Figure A.5 illustrates the results of the fits by plotting the difference of fitted data and the fitted

curves.
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Figure A.5: Example fits difference: model - data - The parabola and circle fits yields to

relatively similar shape of the difference profile, whereas the fitted conic describes much better the

measurement data. Small residual deviation could be fitted employing aspheric equation, however the

difference is in order of the resolution of profile data. For this reason using more complicated model

is doubtful. The data that originate from pixelized image are clearly visible on the plots (especially in

the center of the structure) however the precision of the data is sufficient to notice asphericity of the

structure (positive conic constant).
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R [px] k x0 [px] z0 [px] RMS [px] PV [px]

PARABOLA 860.3 (-1) 564.8 876.0 3.25 14.8

CIRCLE 912.1 (0) 564.7 876.7 2.60 12.4

CONIC 1071.9 2.9 564.3 879.1 1.26 7.9

Table A.1: Comparison of fitted parameters for 3 different model geometries - All parameters

are in pixel units except k which is unit-less. Rescaling to physical units can be done by multiplying by

pixel size (in this case ∆x = 0.192µm). Values in parenthesis are not the fit parameters but are defined

by geometry model.

1000

parabola

circle

conic

Figure A.6: Graphical comparison of fitted curves and raw SEM image - The original image

superimposed with curves representing three fitted models: parabola (blue), circle (green) and conic

(red).
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Biological imaging requires nowadays compact, low-cost and high resolution imaging tools to im-

prove quality, modularity, portability and cost of medical instrumentation. Small metrology devices

offering sub-cellular resolution are particularly needed for real time in vivo imaging. Among all

the different methods, confocal microscopy is able to perform high resolution imaging and optical

sectioning in both reflectance and fluorescence modes.

The goal of this PhD thesis is then to design and to develop the different building blocks of a

miniaturized confocal microscope based on MOEMS technologies.

For this purpose, two challenging aspects have been mainly addressed. First, the miniature con-

focal microscope has been optically designed in the framework of specific technological constraints.

The latter were the compatibility to wafer-level fabrication of planar components and to their verti-

cal assembly, in order to ensure affordability and array-ability of the resulting microsystem. These

conditions are crucial for reaching new and maybe unpredicted applications in the future. Secondly,

several building blocks of the miniature confocal microscope were developed, according to design

requirements. A strong effort has been made to increase the optical quality of micro-optical com-

ponents.

The proposed optical design, reported in the Chapter 2, is based on beam-scanning achieved

by microlens displacements. Specific constraints of planar wafer-level fabrication, such as limited

accuracy of axial positioning, needs for microsystem encapsulation and minimization of system ele-

ments, were taken into account. As a result, the proposed architecture is composed of three blocks,

namely a collimation block, a scanning block and a focusing block, rather independent from each

other. Three different versions of this last architecture have been proposed, depending on the micro-

optical components that are employed. The first configuration was targeted for the demonstration

of proof-of-concept of the integrated micro-optical scanner proposed in the frame of the DWST-DIS
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project. It is based on discrete optical components (ball lenses) to be assembled on micro-scanners

by pick-and-place methodology. Moreover, since optical performances of the first version are lim-

ited, two more advanced versions have been also proposed. They are focused on the improvement

of optical performance in terms of accessible resolution in the whole field of view. This optimization

was obtained by use of aspherical plano-convex scanning lenses, whereas, even better performances

have been predicted by adding an anastigmatic reflective objective as the focusing block. These

two upgrades allow the reduction of off-axis aberrations and thus, improving resolution within the

whole scanned volume.

Concerning the development of building blocks for on-chip microscopy (Contribution of Chapter

4), the technologies of fabrication of micro-lenses and micro-mirrors have been investigated. Three

different types of silicon wet-etching were studied for the generation of spherical cavities, usable as

concave micromirrors or microlens molds.

The first considered technique, based on a two-step silicon etching in aqueous solution of KOH,

allows generation of relatively large structures (> 200µm) with low aspect ratio (sag/diameter<

0.02) resulting in low NA microoptical components. It has been demonstrated that this fabrica-

tion method produces structures characterized by residual anisotropy which is correlated with the

crystallography of the etched silicon substrate. This last effect is dependent of the aspect ratio of

the etched structures, i.e. anisotropic effects become smaller for structures of lower aspect ratio. If

this non-perfect sphericity can be neglected when the structure is used as microlens mold, it is not

anymore the case when the structure is used as a mirror because of the doubled wavefront deforma-

tion. This was highlighted during the first attempt to demonstrate a micromachined Schwarzschild

objective based on two KOH-etched mirrors. Consequently, this technique should be restricted to

low NA microlenses generation.

The second investigated technique relies on isotropic wet-etching in aqueous solution of HF/HNO3

mixture. This technique allows generation of hemispherical structures, i.e. characterized by high

NA. It has been noticed that it shows also anisotropic effects, although much smaller and mostly

present on structures obtained by etching through small (< 50µm) mask apertures. We demon-

strated to an extent that it can be interesting for generation of full fill-factor microlens arrays. At the

other extreme of the possible size range (typical diameter: 500µm), generation of large structures

is limited by resistance of the mask material to the etching solution since they require relatively

long etching time. Moreover, enlarging the window mask size leads to ellipsoidal profile of etched

structures. Consequently, isotropic etching can produce structures of high NA with diameters in a
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range of few hundreds micrometers. Future work on the optimization of the (chemical as well as

mechanical) mask resistivity is required in order to increase the possible etching time and then the

accessible structure sizes.

The third studied etching was dry etching in SF6 plasma. The preliminary aim was to study

the possibility of generation of larger structures. In addition, it has been shown that it can provide

structures with aspherical geometries, unlike wet-etching which is restricted to spherical geometries

at best. This has been achieved by adjusting the etching parameters to balance the physical and

chemical parts of the etching mechanism, which are more vertical or lateral, respectively. Although

surface roughness is not yet optimal, structures characterized by negative conic constant, that

are very attractive from the optical point of view, have been produced. Therefore, future work

concerning silicon processing for microlenses and micromolds generation should be focused on SF6

process for generation of aspherical components with wider spectrum of diameters. Moreover,

it would be in my opinion interesting to consider a hybrid approach, combining wet etching for

generation of well-spherical pre-structures that are enlarged via ionic etching within SF6 plasma.

As it was just mentioned, large spherical molds are also required for the Schwarzschild objective.

The latter was proposed to be integrated as the focusing block because it allows a significant

improvement of the optical performances of the confocal microscope thanks to its anastimagtic

character. This component would increase the possible system NA (and its 3D resolution) and would

allow much larger lateral scanning, since it does not generate off-axis aberrations. The design of such

objective and a preliminary demonstrator (in the so-called Schwarzschild configuration) fabricated

by Si-Glass processes have been done. However, it was found that quality of the two KOH-etched

mirrors was not sufficient to demonstrate the aberration compensation and then the high optical

performances of this component. Future work on the second demonstrator will be based on the

generation of a large primary mirror. This fact is one of the motivations for study of SF6 plasma

etching.

In order to build the fully integrated confocal microscope, illumination and detection blocks are

also necessary. In particular, for reflective confocal microscope, a beam splitting element is needed.

In consequence, an integrated beam-splitter fabricated within wafer-level machining was developed.

It consists of one semi-transparent (beam-splitting) and two out-coupling mirrors in order to ensure

vertical architecture of the microscope. The construction is based on saw-dicing for 45◦ slanted

walls generation in the glass substrate. One advantage is the possibility to perform the alignment

at the wafer-level.
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It can also be noticed that all these components require to be characterized. Thus, Chapter

3 was dedicated to present employed characterization methods. In particular, a dedicated bench

for quality assessment of these optical elements was developed. This system, based on the direct

measurement of impulse response (IPSF), allows quality assessment by a simple analysis of the focal

spot extension (lateral and axial). Depending on the operation mode, both transmissive objects

(e.g. microlenses, Schwarzschild micro-objective, MEMS scanner) and reflective components (e.g.

silicon molds, mirrors) can be characterized. Future developments of this system will be made to

improve the analysis of 3D IPSF data in order to distinguish particular aberrations generated by

the tested components.

Finally, Chapter 5 shows the procedure of realization of the MEMS 3-D micro optical scan-

ner. This first demonstrator is, at the moment of writing this manuscript, under fabrication in the

frame of DWST-DIS project. The 3-D microscanner employs several multi-wafer vertical integra-

tion technologies to bond and interconnect five structurized wafers made of silicon, glass and LTCC

ceramics. Presented approach allows space-effective integration of complex MOEMS devices that

are fabricated using various heterogeneous technologies. The main goals of this first system concern

the demonstration of wafer-level integration technologies and the validation of the opto-mechanical

design of the microscanner. The upgrade of this microscanner into a first hybrid confocal micro-

scope will be achieved by the addition of an illumination/detection system based on fiber-optics

components.

Once this demonstration achieved, the next step will concern the realization of the fully inte-

grated miniature confocal microscope. It will incorporate the collectively integrated microlenses

onto the scanners, the integrated beam-splitter and the reflective objective (Schwarzschild anas-

tigmat). Indeed, wafer-level integration of scanning optics is necessary in order to achieve fully

batch-fabricated system. This integration can be made by alternative methods: Either based on

the generation of microlens directly in the SOI wafer used for fabrication of actuators. Or by a

lens transfer, i.e., generation of lenses on one substrate followed by their transfer and bonding to a

substrate with pre-fabricated actuators. Both approaches will be investigated in a near future.

As it was already mentioned, such optical architecture for confocal microscopy is very demand-

ing in terms of optical components quality and numerical aperture when fine optical sectioning is

considered. Moreover, it has been shown that high optical quality microlenses are easier to produce
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when they remain relatively small. Nevertheless, demands for system encapsulation, long working

distance and large field of view avoid a strong miniaturization of the optical elements.

Consequently, as a further perspective of this work, we could imagine benefit from these con-

clusions and employ arrays of small microlenses. These arrays, arranged specifically, could mimic

larger scale systems. This idea is displayed on the figure A.7a.

Another perspective that could be an interesting option for the future architecture of miniature

confocal system is the theta configuration. By using two separated channels for illumination and

detection that have tilted optical axes (figure A.7b), it should be possible to increase the axial

resolution without the need of high NA. Such configuration would lead to an increased working

distance.

Finally, it has to be noticed that these last two perspectives are compatible with the requirements

of vertically integrated optical architectures. Moreover, several concepts, approach of microoptical

design as well as the developed building blocks are today contributions to new projects of the

MOEMS group at FEMTO-ST Institute (e.g. European collaborative project VIAMOS of FP7).

ILLUMINATION DETECTION
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Figure A.7: Alternative ideas of optical configurations for µconfocal - (a) micro-lens array

used in focusing and scanning block, (b) theta configuration implemented with transmissive scanning

block.
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Abstract:

The thesis manuscript concerns optical design and development of a vertically integrated MEMS-

based confocal microscope. Different optical architectures have been proposed that aim to combine

optimal optical design and the numerous technological constraints linked to the batch fabrication

of the different building blocks. The latter, made by hybrid technologies, and packaged by

vertical assembly using multi- wafer bonding, allow the construction of a complete microsystem for

instrumentation. Special emphasis is placed on the minimization of optical aberrations generated

by the different microoptical components to ensure good resolution of measurement. For these

purposes, different building blocks have been developed, namely a batch-fabricated cube-typed

beamsplitter, different silicon moulded refractive microlenses and a miniature reflective objective.

Dedicated characterization system for quality assessment of the fabricated micro-components was

also developed. Moreover, different processes of silicon-based micromachining for generation of

micromirrors and microlenses (wet anisotropic and isotropic etch, dry isotropic etch of silicon) have

been compared. Finally, procedures of vertical assembly including all electrical interconnection

technologies have been developed. The thesis work was performed in the frame of the DWST-DIS

(The Development of Multi Wafer Stacking 3D Technology for Displays and Imaging MicroSystems)

project funded by the Programme Inter Carnot Fraunhofer (PICF) – an ANR project between FEMTO-

ST and ENAS - Fraunhofer Institute.

Keywords: mems,moems, micro-optics, confocal microscopy, microlenses, microfabrication, vertical inte-

gration

Résumé :

Les travaux de thèse concernent le design optique et le développement d’un microscope confocal

miniature MEMS intégré verticalement. Différentes architectures optiques ont été proposées afin

de combiner un design optique optimal aux nombreuses contraintes technologiques liées à la

fabrication collective des différents blocs élémentaires du microscope sur puce. Ceux-ci, réalisés

avec des technologies hybrides, sont encapsulés par assemblage vertical de wafers utilisant les

technologies de soudure ≪multi-wafer≫, et permettent la construction d’un microsystème complet

d’instrumentation. Un accent particulier a été mis sur la minimisation des aberrations optiques

générées par les différents composants microoptiques pour permettre une résolution de mesure

élevée. Pour satisfaire ces besoins, différentes briques élémentaires ont été développées : un

cube semi-transparent micro-fabriqué, différentes microlentilles réfractives basées sur le micro-

moulage silicium et un micro-objectif réflecteur. Un montage expérimental de caractérisation dédié à

l’évaluation de la qualité de ces microcomposants a également été proposé. De plus, les différents

procédés de micro-usinage silicium (gravure humide anisotrope et isotrope, gravure sèche isotrope

du silicium) pour la génération de micro-miroirs et de microlentilles ont été comparés. Enfin, les

procédures d’assemblage vertical, incluant toutes les technologies d’interconnexion électrique ont

été développées. Le travail de thèse a été réalisée dans le cadre du projet DWST-DIS (The

Development of Multi Wafer Stacking 3D Technology for Displays and Imaging MicroSystems),

programme financé par le programme Inter Carnot Fraunhofer (PICF) - un projet ANR entre FEMTO-

ST et l’institut Fraunhofer ENAS.

Mots-clés : mems, moems, micro optique, microscopie confocal, micro-lentilles, micro-usinage, intégration

verticale
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