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Introduction 

 

Throughout the eukaryotic lineage, to ensure cellular division and differentiation, various 

intracellular mechanisms exist to regulate gene expression and protect the genome against the 

deleterious influence of exogenous and endogenous selfish genetic elements. One of those 

regulatory mechanisms is RNA silencing, which provides highly specific RNA transcripts 

inhibition or cleavage, through complementary recognition of RNA targets by small non-coding 

RNA molecules1. Small silencing RNAs in metazoans can be divided into three classes: microRNAs 

(miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). They are 

defined by their short length (~20–34 nucleotides), and their association with members of the 

Argonaute (AGO) family of proteins, which guide these short RNAs to their targets. These three 

classes differ in their biogenesis, their modes of target regulation and in the biological pathways 

they are involved in2. The piRNA pathway was discovered and started to be characterized a few 

years ago3-5. piRNAs represent a distinct class of small non-coding RNAs whose processing 

mechanism is different from that of siRNAs and microRNAs. It was found that piRNAs function to 

repress transposable elements, specifically in the germline cells of animal gonads. 

 

Oogenesis 

Each new generation of a multicellular organism, undergoing sexual reproduction, 

requires the intervention of the female germline and the male germline. The male germline 

(sperm) fertilizes the female germline (egg), producing a multicellular embryo which becomes 

a new individual. Drosophila is an excellent model system to study germ cells development and 

especially the female gonads. The female reproductive organ, the ovary, produces eggs 

constantly over the span of its life, and all stages of the oogenesis are present in sub-structures 

called ovariole6. There are around 15 to 20 ovarioles per ovary, which comprise two major cell 

types: the germline cells surrounded by the somatic follicular cells supporting and maintaining 

the germline cells. These two cell types are dispatched over the different developmental stages 

in the ovariole from the germarium up to the final egg (12 stages total). Oogenesis debuts at the 

anterior tip of the ovariole, in the germline stem cell (GSCs) niche of the germarium. The GSC 

niche consists of necessary somatic cells-terminal filament cells, cap cells, escort cells, and 
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other cells which function is to maintain the GSCs. There are 2 GSCs in the GSC niche, which 

are directly attached to somatic cap cells and escort stem cells. The asymmetrical division of a 

GSC leads to the formation of two daughter cells: a new GSC and a differentiated cystoblast 

which then undergoes four rounds of incomplete mitosis until it eventually gives rise to a mature 

egg chamber consisting of 15 nurse cells, and one oocyte, the future egg. The nurse cells 

actively transcribe their genome and provide the oocyte with cytoplasmic components. In 

contrast, the oocyte enters meiosis, and is mostly inactive transcriptionally.  

Figure: Cartoon depicting Drosophila melanogaster ovariole. 

The germline cells’ genome being the only one to be transmitted to the next generation, 

it is therefore of outmost importance to protect them from internal and external threats. Any 

flaws in the integrity of the germ cells genome can lead to sterility, or strong morphological 

defects and lethality of the progeny. It is essential for the oocyte to be able to transmit a correct 

genome, so the next generation can in turn ensure survival of the species. 

One of the major internal threat to germline cells genome stability are transposable 

elements (TEs). These mobile genetic elements are repetitive parts of DNA that can move to 

insert at new locations in the genome7,8. They are very abundant in the Drosophila 

melanogaster genome, which consist of 15%–20% of TEs. Uncontrolled activity of TEs 

triggers DNA breaks causing cell cycle arrest, insertional mutagenesis causing gene disruption, 

and illegitimate recombination9,10. 

 

RNA interference 

To protect themselves against such invasive genetic elements, Drosophila germline have 

established a very effective defense mechanism that involves one of the major small RNA 

interference pathway: the piRNAs pathway11. The piRNA pathway has a memory of past 

transposon invasions as well as an ability to mount acute responses to active transposons. 
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In animals, three major small RNA interference pathways have been identified: the 

microRNA (miRNA) pathway , the small interfering RNA (siRNA) pathway, and the Piwi 

interacting RNA (piRNA) pathway2. At the core of these three pathways lies a 

ribonucleoprotein complex consisting of a small RNA, responsible for the target recognition, 

and a member of the Argonaute protein family carrying the effector function. miRNAs and 

siRNAs are ubiquitously expressed and play important roles in post-transcriptional regulation 

of gene expression and defense against exogenous viral agents, respectively12. The microRNA 

pathway is believed to work mainly through prevention of translation of mRNAs which have 

complementarity to miRNAs. First encoded in the genome as primary miRNAs (pri-miRNA) 

and then cleaved first by Drosha inside the nucleus into a precursor miRNA (pre-miRNA). 

Secondly, after export to the cytoplasm, pre-miRNAs are cleaved into miRNA by Dicer (DCR-

1), and the duplex is then loaded in AGO1 for further translational repression of target RNAs. 

The siRNA pathway responds to the presence of a double stranded RNA in the cell, which can 

be of either exogenous (e.g. viral) or endogenous (so called endo-siRNA) nature. It is active in 

most tissues and, besides being an object of extensive research, can be used as a powerful 

research tool: one can down-regulate expression of specific genes in a given tissue by 

expressing a dsRNA against these genes. In Drosophila, the siRNA pathway is first triggered 

by cleavage of a double strand (ds) RNA precursor (exogenous or endogenous origin) by a 

Dicer protein (DCR-2) into siRNA duplexes containing guide and passenger strands. They are 

then loaded into AGO2 to direct target cleavage.  

miRNAs and siRNAs are processed from double-stranded or hairpin precursors by the 

type III ribonucleases Drosha and Dicer. In opposite, piRNAs are expressed exclusively in the 

gonads of animals, are processed from single-stranded precursors, and do not require the action 

of Dicer proteins. Three Argonaute effector proteins, the Piwi proteins, are active in the 

Drosophila melanogaster piRNA pathway, from which two, Aubergine (AUB) and Argonaute 

3 (AGO3), are known to use their endonucleolytic activity to destroy transposon transcripts in 

the cytoplasm4,13. The third one, PIWI itself, is nuclear, but the molecular mechanism of its 

nuclear function remained unknown. 

piRNA clusters 

The biogenesis of piRNAs is far less elucidated than siRNAs and miRNAs. piRNAs are 

very diverse: hundreds of thousands of unique piRNAs are found that do not show any structure 

or sequence motif similarities4. In Drosophila, mapping of these piRNA sequences to the 
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genome revealed that piRNAs are coming from two types of genomic locations: the first and 

main source are discrete genomic loci, called piRNA clusters, while a much smaller fraction of 

piRNAs map to a hand-full of protein coding genes14. piRNA clusters are strongly enriched in 

repeats, transposon remnants, and are devoid of protein coding genes. Transposon remnants 

have accumulated enough mutations over time to lose their ability to move across the genome 

and represent a database of transposons that are to be recognized and silenced by the pathway: 

invasion of naïve host populations by a new transposon leads to uncontrolled jumping of the 

TE in the genome until a random integration occurs in a cluster leading to the generation of TE-

derived piRNAs. Thus, the sequence of piRNA clusters is in constant flux to maintain up-to-

date information about TE invasions15. Clusters can span up to 200kb and are located in 

pericentromeric and subtelomeric regions. Clusters are arranged in two constellations based on 

the orientation of their transcription: uni-directional clusters are transcribed in only one 

direction, while bi-directional clusters are transcribed convergently from two ends. 

Interestingly, the two cluster types differ in their expression pattern. Uni-directional clusters 

are mainly expressed in the somatic follicular cells of the Drosophila ovary, while bi-directional 

clusters are only transcribed in germline-derived nurse cells. P-element insertion at the 

beginning of the uni-directional Flamenco cluster disrupts piRNA expression up to 200kb 

downstream of the insertion sites, advocating for the presence of a single promoter unit 

responsible for the transcription of the whole cluster4.  

The second source of piRNAs, much lower in yield production, is protein coding genes. 

Some piRNAs are indeed mapping to the 3’ untranslated region (UTR) of genes. The most 

prominent genic piRNAs come from the gene encoding for the transcription factor Traffic Jam 

(tj)16. 

Two distinct biogenesis pathways have been proposed for piRNAs: the primary piRNA 

processing pathway and the secondary pathway, or also called the ping-pong amplification 

loop. 

The Primary pathway 

As piRNAs can originate from single-stranded RNA precursors, their processing differs 

from that of siRNAs and miRNAs. It was proposed that long single-stranded precursor 

transcripts are cleaved by an endonuclease to generate the 5' end of the mature piRNAs17. 

Recently, a combination of genetic, biochemical and structural data identified Zucchini as a 
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candidate nuclease for piRNA 5' end processing18,19. Zucchini is a member of the phospholipase 

D family of phosphodiesterases and resides in the outer membrane of mitochondria. It cleaves 

the RNA leaving a 5' phosphate residue characteristic of piRNAs. Following this cleavage, 

which generates the 5' end of piRNAs, the piRNA precursors are thought to be loaded into Piwi 

proteins before their 3' end is trimmed by a yet unidentified factor that was named trimmer20. 

Interestingly, each Piwi protein is associated with piRNAs of a distinct size range4,21. It was 

proposed that trimmer stops when it reaches the region of the RNA protected by the footprint 

of the Piwi protein, generating piRNAs of different lengths specific to each Piwi protein20. After 

piRNAs are trimmed to the final size, the 3' end of the RNA is 2'-O-methyl-modified by Hen1, 

resulting in mature piRNAs22. piRNAs have a strong bias for a uridine residue as their 5' 

nucleotide. Currently, the origin of this bias is unknown: it can be caused by preferential 

cleavage by Zucchini or due to selective incorporation of piRNAs containing a 5' uridine into 

Piwi proteins. The latter model is supported by the observation that the 5' binding pocket of 

many Argonaute proteins can discriminate the first base23,24.  

The Ping-Pong loop 

Many proteins that were implicated in piRNA biogenesis localize to nuage granules, 

cytoplasmic granular structures that are tightly associated with the outer nuclear membrane25. 

Accordingly, it is believed that many or all steps of piRNA biogenesis happen in nuage 

granules. In Drosophila, nuage granules contain two cytoplasmic Piwi proteins, AUB and 

AGO3. Computational analysis of piRNAs present in these two proteins revealed that Piwi 

proteins themselves can serve as nucleases that generate the 5' end of new piRNAs, in a process 

that was named the Ping-Pong amplification cycle4,26. AUB-loaded piRNAs recognize 

complementary transcripts (derived from active TEs or the opposite strand of the same piRNA 

cluster) and AUB cleaves them 10 nucleotides from the 5' end of the original piRNA. This 

forms the 5' end of a new piRNA, which is then incorporated into AGO3 and trimmed as 

described above. AGO3-associated piRNAs can in turn recognize complementary transcripts 

and cleave them, resulting in generation of new piRNAs that are identical in sequence to the 

initial piRNA that started the circle. Importantly, the Ping-Pong amplification loop is sensitive 

to target transposon expression and therefore might lead to amplification of piRNAs that target 

active elements.  
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Figure: The two pathways involved in piRNA biogenesis.  



 9 

PIWI function and piRNA cluster regulation 

Piwi proteins and the associated piRNAs expressed in the maternal germline during 

oogenesis are deposited into the developing egg and are present in the early embryo before the 

start of zygotic transcription27. In Drosophila, such maternally inherited piRNAs are essential 

for effective piRNA-mediated silencing and fertility of the progeny. Recent studies of a long-

known phenomenon called hybrid dysgenesis showed that the absence of piRNAs inherited 

from the previous generation causes a failure to silence TEs in the progeny28. 

Piwi proteins are essential to carry the effector function of the pathway, and are 

maternally transmitted. However, while a lot is known about the two cytoplasmic Piwis, AUB 

and AGO3, in post-transcriptional silencing, the mechanism of PIWI mediated transposons 

silencing in the nucleus is unknown. Loaded with piRNAs that are antisense to TE transcripts, 

defect in PIWI lead to up-regulation of TEs and sterility of the organism. 

 

piRNA cluster expression is central for piRNA biogenesis, thus some elements should 

exist within that differentiate them from non-piRNA producing loci. Clusters precursor 

transcripts are channeled into the piRNA biogenesis pathway through an unknown mechanism. 

In comparison to miRNA or siRNA pathways, for which the biogenesis of small RNAs is 

clearly identified and described, it is currently not known, how piRNA cluster transcripts are 

selected for piRNA production. 

The fact that only a very specific subset of transcripts is processed into piRNAs indicates 

that some features of either the genomic locus or the transcript itself must differentiate piRNA 

precursors from other cellular RNAs. Three hypotheses can be proposed on how piRNA-

producing loci are identified. First, distinct sequence or structure motifs in precursor transcripts 

or DNA inside or around clusters could signal the biogenesis machinery to process the transcript 

into piRNAs. Second, the chromatin structure of piRNA clusters could be marking these 

genomic regions for differential processing of their transcripts. Finally, piRNAs that are 

inherited from the previous generation could be responsible for selection of regions for piRNA 

processing in the progeny. It is not excluded however that all these system work in concert. 
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PhD projects 

Critical questions, regarding the role of the PIWI protein in the nucleus for TE silencing 

and the definition of piRNA producing loci (piRNA clusters), remain unanswered. 

Accordingly, the research projects I carried out during these three years of PhD aimed to 

characterize the mechanism of PIWI function in the nucleus, and aimed to uncover the specific 

features that make a piRNA cluster different from any other RNA producing locus. The work 

involved the use of several different techniques and different model organisms, Drosophila 

melanogaster and Drosophila virilis, in order to answer these central questions:  

a) What is role of PIWI in the germline cells nuclei? 

b) How piRNA clusters are transcribed and what is their chromatin structure? 

c) How cluster transcripts are selected for piRNA biogenesis? 
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Chapter 1 - The role of Piwi in Drosophila germline nuclei 

The Piwi protein is essential for the ovary integrity and was first discovered in a screen 

for factors affecting stem cell maintenance in Drosophila germ line29. Mutants have very small 

gonads, and were therefore named P-element Induced WImpy testis. Among all three 

Drosophila Piwis, PIWI itself, is the only one nuclear. Although its cleavage activity is not 

required to achieve silencing30, in contrast to other Piwis AUB and AGO3, loss of PIWI results 

in transposons up-regulation, and a general arrest in the ovary development. PIWI function is 

therefore necessary for the survival of the species. However, how Piwi is carrying its role in 

silencing transposons in the nucleus, is not yet known. 

  



Piwi induces piRNA-guided transcriptional
silencing and establishment of a repressive
chromatin state

Adrien Le Thomas,1,2,3 Alicia K. Rogers,1,3 Alexandre Webster,1,3 Georgi K. Marinov,1,3 Susan E. Liao,1

Edward M. Perkins,1 Junho K. Hur,1 Alexei A. Aravin,1,4 and Katalin Fejes Tóth1,4
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Diverse small RNA pathways function in all kingdoms of
life, from bacteria to higher eukaryotes. In eukaryotes,
several classes of small RNA associate with members of
the Argonaute protein family, forming effector complexes
in which the RNA provides target recognition by se-
quence complementarity, and the Argonaute provides the
repressive function. Argonaute–small RNA complexes
havebeen shown to regulate gene expressionboth transcrip-
tionally and post-transcriptionally. Post-transcriptional re-
pression involves cleavage of target RNA through either
the endonucleolytic activity of Argonautes or sequester-
ing targets into cytoplasmic ribonucleoprotein (RNP)
granules (Hutvagner and Simard 2008).
The mechanism of transcriptional repression by small

RNAs has been extensively studied in fission yeast and
plants. Several studies showed that Argonaute–small RNA
complexes induce transcriptional repression by tether-
ing chromatin modifiers to target loci. In fission yeast,

the effector complex containing the Argonaute and the
bound siRNA associates with the histone H3 Lys 9 (H3K9)
methyltransferaseClr4 to install repressiveH3K9-dimethyl
marks at target sites (Nakayama et al. 2001; Maison and
Almouzni 2004; Sugiyama et al. 2005; Grewal and Jia 2007).
Methylation of histone H3K9 leads to recruitment of the
heterochromatin protein 1 (HP1) homolog Swi6, enhanc-
ing silencing and further promoting interaction with the
Argonaute complex. The initial association of Ago with
chromatin, however, requires active transcription (Ameyar-
Zazoua et al. 2012; Keller et al. 2012). Plants also use
siRNAs to establish repressive chromatin at repetitive
regions. Contrary to yeast, heterochromatin in plants is
marked by DNA methylation, although repression also
depends on histone methylation by a Clr4 homolog
(Soppe et al. 2002; Onodera et al. 2005). Although siRNA-
mediated gene silencing is predominant on repetitive
sequences, it is not limited to these sites. Constitutive
expression of dsRNA mapping to promoter regions re-
sults in production of corresponding siRNAs, de novo
DNA methylation, and gene silencing (Mette et al. 2000;
Matzke et al. 2004).
In metazoans, small RNA pathways are predominantly

associated with post-transcriptional silencing. One class

3These authors contributed equally to this work.
4Corresponding authors
E-mail kft@caltech.edu
E-mail aravin@caltech.edu
Article published online ahead of print. Article and publication date are
online at http://www.genesdev.org/cgi/doi/10.1101/gad.209841.112.
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of small RNA, microRNA, regulates expression of a large
fraction of protein-coding genes (Friedman et al. 2009). In
Drosophila, siRNAs silence expression of transposable
elements (TEs) in somatic cells (Chung et al. 2008;
Ghildiyal et al. 2008) and target viral genes upon infection
(Galiana-Arnoux et al. 2006; Wang et al. 2006; Zambon
et al. 2006). Another class of small RNAs, Piwi-interact-
ing RNAs (piRNAs), associates with the Piwi clade of
Argonautes and acts to repress mobile genetic elements
in the germline of both Drosophila and mammals (Siomi
et al. 2011). Analysis of piRNA sequences in Drosophila
revealed a very diverse population of small RNAs that
primarily maps to transposon sequences and is derived
from a number of heterochromatic loci called piRNA
clusters, which serve as master regulators of transposon
repression (Brennecke et al. 2007). Additionally, a small
fraction of piRNAs seems to be processed from themRNA
of several host protein-coding genes (Robine et al. 2009;
Saito et al. 2009). The Drosophila genome encodes three
piwi proteins: Piwi, Aubergine (AUB), and Argonaute3
(AGO3). In the cytoplasm, AUB and AGO3 work together
to repress transposons through cleavage of transposon
transcripts, which are recognized through sequence com-
plementarity by the associated piRNAs (Vagin et al. 2006;
Agger et al. 2007; Brennecke et al. 2007; Gunawardane
et al. 2007).
In both Drosophila and mammals, one member of the

Piwi clade proteins localizes to the nucleus. Analogously
to small RNA pathways in plants, the mouse piRNA
pathway is required for de novo DNA methylation and
silencing of TEs (Carmell et al. 2007; Aravin et al. 2008;
Kuramochi-Miyagawa et al. 2008); however, the exact
mechanism of this process is unknown. In Drosophila,
DNA methylation is absent; however, several studies in-
dicate that elimination of Piwi from the nucleus causes
changes in histone marks on TEs (Klenov et al. 2011;
Pöyhönen et al. 2012), yet a genome-wide analysis of
Piwi’s effect on chromatin marks and transcription is
lacking.
Here we show that Piwi interacts with chromatin on

polytene chromosomes in nurse cell nuclei. We found
that Piwi exclusively represses loci that are targeted by
piRNAs. We show that Piwi-mediated silencing occurs

through repression of transcription and correlates with
installment of repressive chromatin marks at targeted
loci.

Results

To analyze the role of Piwi in the nucleus, we generated
transgenic flies expressing a GFP-tagged Piwi protein
(GFP-Piwi) under the control of its native regulatory re-
gion. GFP-Piwi was expressed in the ovary and testis in
a pattern indistinguishable from the localization of native
Piwi and was able to rescue the piwi-null phenotype as
indicated by ovarian morphology, fertility, transposon
expression, and piRNA levels. GFP-Piwi was deposited
into the mature egg and localized to the pole plasm; how-
ever, contrary to a previous observation (Brower-Toland
et al. 2007), we did not detect Piwi expression outside of
the ovary and testis in third instar larvae or adult flies. We
also did not observe the association of Piwi with polytene
chromosomes in salivary gland cells of third instar larvae.
In both follicular and germline cells of the Drosophila
ovary, GFP-Piwi localized exclusively in the nucleus,
with slightly higher concentrations apparent in regions
enriched for DAPI, indicating a possible interaction with
chromatin. To gain further insight into Piwi localization
in the nucleus, we took advantage of the fact that nurse
cell chromosomes are polytenized and can be visualized
on the otu mutant background (Mal’ceva et al. 1997).
Analysis of polytene chromosomes from nurse cells
demonstrated that GFP-Piwi associates with chromatin
in a specific banding pattern. Interestingly, coimmuno-
staining showed that a GFP-Piwi signal on polytene
chromosomes generally overlaps with the RNA poly-
merase II (Pol II) signal, which marks sites of active
transcription (Fig. 1A).
In order to identify factors that might be responsible

for targeting Piwi to chromatin, we immunoprecipitated
Piwi complexes from theDrosophila ovary and analyzed
Piwi interaction partners by mass spectrometry. We
purified Piwi complexes from ovaries of three different
transgenic lines expressing GFP-Piwi, myc-Piwi, or Flag-
Piwi using antibodies against each respective tag. As a
control, we used flies expressing free GFP in the ovary.

Figure 1. Piwi associates with chromatin and nuclear
transcripts. (A) Polytene chromosomes fromDrosophila

nurse cells expressing GFP-Piwi on the otu[7]/otu[11]

background. Piwi pattern on chromosomes correlates
with Pol II staining. (B) Mass spectrometry analysis of
Piwi interaction partners. Piwi complexes were pre-
cipitated in the presence and absence of RNase A. The
outer circle represents classification of Piwi-associated
proteins based on GO term analysis. The inner pies
represent the fraction of each group whose association
with Piwi depends on RNA (percentage indicated). Note
that chromatin, splice, and mRNA export factors are
virtually absent after RNase A treatment.

Piwi represses piRNA target transcription
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We identified >50 factors that showed significant enrich-
ment in all three Piwi purifications but were absent in the
control. We were unable to identify chromatin-associated
factors that directly associate with Piwi but identified
several RNA-binding proteins that associate with na-
scent transcripts, such as splicing (Rm62, Pep, Ref1, Yps,
CG9684, CG31368, CG5728, and Mago) and nuclear ex-
port (Tho2 and Hpr1) factors (Fig. 1B). Upon RNase A
treatment prior to immunoprecipitation, the presence
of most of these RNA-binding proteins in purified Piwi
complexes was eliminated.
Piwi proteins are believed to find their targets through

sequence complementarity of the associated piRNA. In
fact, it has been proposed that lack of the associated
piRNA leads to destabilization of piwi proteins and to
Piwi’s inability to localize to the nucleus (Saito et al.
2009; Haase et al. 2010; Olivieri et al. 2010; Handler et al.
2011; Ishizu et al. 2011). On the other hand, Piwi has been
proposed to have functions that are independent of its
role in transposon control by regulating stem cell niche
development (Cox et al. 1998; Klenov et al. 2011). To ad-
dress the role of piRNA in translocation of Piwi into the
nucleus and its function, we generated transgenic flies
expressing a point mutant Piwi—referenced as Piwi-YK—
that is deficient in piRNA binding due to a substitution
of two conserved amino acid residues (Y551L and K555E)
in the 59 phosphate-binding pocket (Kiriakidou et al.
2007; Djuranovic et al. 2010). The Piwi-YK mutant was
expressed inDrosophila follicular and germ cells at levels
similar to that of wild-type Piwi but was completely
devoid of associated piRNA (Fig. 2A). In contrast to wild-
type Piwi, Piwi-YK could be found in the cytoplasm,
supporting the existence of a quality control mechanism
that prevents entrance of unloaded Piwi into the nucleus
(Ishizu et al. 2011). Nevertheless, a significant amount of
piRNA-deficient Piwi localized to the nucleus (Fig. 2B).
Similar to wild-type Piwi, Piwi-YK seemed to associate
with chromatin, as indicated by its localization in DAPI-
stained regions of the nuclei, and this is consistent with
fluorescence loss in photobleaching (FLIP) experiments
that demonstrated reduced nuclear mobility compared
with free diffusion (Supplemental Fig. S1). Based on ster-
ility and ovarianmorphology, the piwi-YK transgene was
unable to rescue the piwi-null phenotype despite its
nuclear localization (Fig. 2C), indicating that while
piRNA binding is not absolutely essential for stability
and nuclear localization of Piwi, it is required for Piwi
function.
To directly test the function of Piwi in the nucleus, we

analyzed the effect of Piwi deficiency on gene expression
and chromatin state on a genome-wide scale. Piwi mu-
tant females have atrophic ovaries caused by Piwi defi-
ciency in somatic follicular cells (Lin and Spradling 1997;
Cox et al. 1998), which precludes analysis of Piwi func-
tion in null mutants. Instead, we used RNAi knockdown
to deplete Piwi in germ cells while leaving it functionally
intact in somatic follicular cells. The Piwi knockdown
flies did not exhibit gross morphological defects in the
ovary; however, they showed drastic reduction in GFP-
Piwi expression in germ cells and were sterile (Fig. 3A,B).

To analyze the effect of Piwi deficiency on the steady-
state transcriptome as well as the transcription machin-
ery, we performed RNA sequencing (RNA-seq) and Pol II
chromatin immunoprecipitation (ChIP) combined with
deep sequencing (ChIP-seq) experiments from Piwi knock-
down and control flies.
In agreement with previous observations that impli-

cated Piwi in transposon repression (Saito et al. 2006;
Aravin et al. 2007; Brennecke et al. 2007), we found that
steady-state transcript levels of several TEs were increased

Figure 2. Piwi function, but not its nuclear localization, re-
quires piRNA association. (A) The Piwi-YK mutant does not
associate with piRNA. Immunoprecipitation of Piwi–piRNA
complexes was performed with GFP antibody on ovaries from
GFP-Piwi and GFP-Piwi-YK transgenic flies and a control strain.
Small RNAs were isolated, 59-labeled, and resolved on a de-
naturing gel. The same amount of 42-nucleotide RNA oligonu-
cleotides was spiked into all samples prior to RNA isolation to
control for loss of RNA during isolation and labeling. piRNAs
(red arrow) are absent in the Piwi-YK complex. (B) GFP-Piwi-YK
is present in the nuclei of nurse cells and colocalizes with
chromatin (DAPI-stained areas). (C) The Piwi-YK mutant does
not rescue the morphological changes caused by the piwi-null
mutation. Dark-field images of ovaries where either the wild-
type piwi or the piwi-YK transgene has been backcrossed onto
the piwi-null background.
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upon Piwi knockdown in germ cells (Fig. 3C,D; Supple-
mental Fig. S2). We found little to no change of RNA
levels for transposons whose activity is restricted to
follicular cells of the ovary, indicating that the observed

changes are indeed due to loss of Piwi in the germline
(Supplemental Fig. S2). The analysis of Pol II ChIP-seq
showed that Pol II occupancy increased over promoters of
multiple TEs (Fig. 3D–F; Supplemental Fig. S3). Indeed,

Figure 3. Piwi transcriptionally represses TEs. (A) Piwi knockdown is efficient and specific to ovarian germ cells as indicated by GFP-
Piwi localization. GFP-Piwi; Nanos-Gal4-VP16 flies were crossed to control shRNA (shWhite) or shPiwi lines. Piwi is specifically
depleted in germ cells and not in follicular cells, consistent with expression of the Nanos-Gal4-VP16 driver. (B) Piwi expression as
measured by RNA-seq in the Piwi knockdown and control lines. Note that Piwi expression is unaffected in follicular cells, leading to
relatively weak apparent knockdown in RNA-seq libraries from whole ovaries. (C) Effect of Piwi knockdown on the expression of TEs.
Two biological replicate RNA-seq experiments were carried out, and differential expression was assessed using DESeq. Transposons
that show significant change (P < 0.05) are indicated by dark-red circles. Out of 217 individual RepeatMasker-annotated TEs, 15 show
a significant increase in expression upon Piwi knockdown. (D) The change in the levels of TE transcripts and Pol II occupancy on their
promoters upon Piwi knockdown. Twenty up-regulated and 10 down-regulated transposons with the most significant changes in
expression level are shown. Note the low statistical significance for down-regulated transposons. For a complete list of transposons, see
Supplemental Figure S2. (E) Pol II signal over the Het-A retrotransposon in control flies (shWhite; red) and upon Piwi knockdown
(shPiwi; blue). (F) Increased abundance of transposon transcripts upon Piwi depletion correlates with increased Pol II occupancy over
their promoters (r2 = 0.21). Note that the majority of elements do not show significant change in either RNA abundance or Pol II
occupancy.

Piwi represses piRNA target transcription

GENES & DEVELOPMENT 393

 Cold Spring Harbor Laboratory Press on April 10, 2013 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


the change in steady-state levels of transposon transcripts
upon Piwi depletion correlated with changes of Pol II
occupancy (Fig. 3F). This result demonstrates that Piwi
ensures low levels of transposon transcripts through a
repressive effect on the transcription machinery.
To test whether Piwi-mediated transcriptional repres-

sion is accompanied by a corresponding change in chroma-
tin state, we used ChIP-seq to analyze the genome-wide
distribution of the repressive H3K9me3mark in the ovary
upon Piwi knockdown. We identified 705 genomic loci
at which the level of H3K9me3 significantly decreased.
More than 90% of the regions that show a decrease in the
H3K9me3 mark upon Piwi depletion overlapped TE se-
quences, compared with the 33% that is expected from
random genome sampling (Fig. 4A). Furthermore, these
regions tend to be located in the heterochromatic por-
tions of the genome that are not assembled on the main
chromosomes (Fig. 4B). Only 20 of the identified regions
localized to the euchromatic parts of the genome. Of these,
15 (75%) contained potentially active annotated copies
of transposons. Taken together, our results indicate that
Piwi is required for installment of repressive H3K9me3
chromatin marks on TE sequences of the genome.
While the vast majority of protein-coding host genes

did not show significant changes in transcript level or
Pol II occupancy upon Piwi knockdown, the expression
of a small set of protein-coding genes (150 genes with a

P-value <0.05) was significantly increased (Fig. 5A; Sup-
plemental Table 1). There are several possible explanations
for Piwi’s effect on host gene expression. First, failure in
the piRNA pathway might cause up-regulation of several
genes that generate piRNAs in wild-type ovaries (Robine
et al. 2009; Saito et al. 2009). However, the genes up-
regulated in Piwi-deficient ovaries were not enriched in
piRNAs compared with other genes. Second, H3K9me3
marks installed on TE sequences in a Piwi-dependent
manner might spread into neighboring host genes and
repress their transcription, as was recently demonstrated
in a follicular cell culture model (Sienski et al. 2012). To
address this possibility, we analyzed genomic positions
of the genes whose expression was increased upon Piwi
knockdown relative to genomic regions that showed a
decrease in H3K9me3 marks. We found that up-regulated
genes did not show a significant change in the H3K9me3
mark (Fig. 5B; Supplemental Fig. S4). Furthermore, the
few genes located close to the regions that show a de-
crease in H3K9me3 signal had unaltered expression levels
upon Piwi knockdown. Next, we analyzed the functions
of up-regulated genes using gene ontology (GO) term
classifications and found significant enrichment for pro-
teins involved in protein turnover and stress and DNA
damage response pathways (Fig. 5C). Particularly, we
found that 31 subunits of the proteasome complex were
overexpressed. Therefore, our analysis indicates that up-
regulation of specific host genes is likely a secondary re-
sponse to elevated transposon levels and genomic damage.
In contrast to host genes, transcripts of TEs are targeted

by piRNA. To directly address the role of piRNA in Piwi-
mediated transcriptional silencing, we took advantage
of a fly strain that expresses artificial piRNAs against
the lacZ gene, which are loaded into Piwi complexes and
are able to repress lacZ reporter expression in germ cells
(Fig. 6A; Josse et al. 2007; Muerdter et al. 2012). Expres-
sion of piRNAs that are antisense to the reporter gene
caused transcriptional silencing of the lacZ gene as
measured by Pol II occupancy (Fig. 6B). Furthermore,
we found that piRNA-induced silencing of the reporter
gene was associated with an increase in the repressive
H3K9me3mark and HP1 occupancy and a decrease in the
abundance of the active H3K4me2/3 marks at the re-
porter locus (Fig. 6C). This result is in good agreement
with the genome-wide effect of Piwi depletion on distri-
bution of the H3K9me3 mark and suggests that tran-
scriptional silencing correlates with the establishment
of a repressive chromatin structure and is mediated by
piRNAs that match the target locus.

Discussion

Little is known about the function of nuclear piwi pro-
teins. The nuclear piwi in mice (Miwi2) affects DNA
methylation of TEs (Carmell et al. 2007; Aravin et al.
2008; Kuramochi-Miyagawa et al. 2008). Several recent
reports implicate Drosophila Piwi in regulation of chro-
matin marks on transposon sequences (Lin and Yin 2008;
Klenov et al. 2011; Wang and Elgin 2011; Sienski et al.
2012). The mechanism of these processes is unknown in

Figure 4. Piwi-induced transcriptional repression correlates
with establishment of a repressive chromatin state. (A) Overlap
between genomic regions of H3K9me3 depletion upon Piwi
knockdown and TEs. Two replicates of H3K9me3 ChIP-seq ex-
periments were carried out on control and Piwi-depleted ova-
ries, and enriched regions were identified using DESeq (see the
Materials and Methods for details). A total of 705 regions show
significant (P < 0.05) decrease in H3K9me3 occupancy upon Piwi
knockdown, while only 30 regions showed a similarly signi-
ficant increase. Out of the 705 regions that show a decrease in
H3K9me3 marks upon Piwi knockdown, 91% (646) overlap with
TE sequences compared with the 33% expected from random
genome sampling. (B) Genomic positions of H3K9me3-depleted
regions upon Piwi depletion (outer circle) and RepeatMasker-
annotated transposons (inner circle). Note that almost all re-
gions are localized in heterochromatic and repeat-rich portions
of the genome (Het, chrU, and chrUExtra chromosomes).
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both organisms. Previously, Piwi was shown to associate
with polytene chromosomes in salivary gland cells and
colocalize with HP1, a chromodomain protein that binds
to heterochromatin and a few loci in euchromatin, sug-
gesting that HP1 mediates Piwi’s interaction with chro-
matin (Brower-Toland et al. 2007). However, recent results
showed that the putative HP1-binding site on Piwi is
dispensable for Piwi-mediated transposon silencing (Wang
and Elgin 2011).
We did not detect Piwi expression outside of the ovary

and testis, including in salivary gland cells, using a GFP-

Piwi transgene expressed under native regulatory ele-
ments. We detected GFP-Piwi on polytene chromosomes
in ovarian nurse cells that have a germline origin; how-
ever, it localizes in a pattern that largely does not overlap
with HP1. FLIP experiments with GFP-Piwi indicated
a relatively fast rate of fluorescence redistribution as
compared with histone H2A (Supplemental Fig. S1), im-
plying a transient interaction of Piwi with chromatin.
Our proteomic analysis of Piwi complexes isolated from
Drosophila ovaries did not identify chromatin-associated
factors but revealed several RNA-binding proteins, such
as splicing and nuclear export factors that bind nascent
RNA transcripts (Fig. 1B). Importantly, the interaction of
most of these RNA-binding proteins with Piwi was
dependent on RNA, indicating that Piwi associates with
nascent transcripts. As Piwi itself lacks DNA- and RNA-
binding domains (beyond the piRNA-binding domain),

Figure 5. Piwi does not directly repress protein-coding genes.
(A) Effect of Piwi knockdown on the expression of genes. Two
replicate RNA-seq experiments were carried out, and differen-
tial expression was assessed using DESeq. Genes that show
significant change (P < 0.05) are indicated by black circles. The
vast majority of genes does not change significantly upon germ-
line Piwi knockdown (shPiwi) compared with control (shWhite).
(B) H3K9me3 mark density does not change over genes that
show a significant change in expression upon Piwi knockdown
(see Fig. 3C). Up-regulated and down-regulated genes are plotted
separately. Signal indicated is after background subtraction. (C)
Functional analysis of up-regulated genes by the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
reveals activation of the protein degradation and DNA damage
response pathways. Percentages of all up-regulated genes are
indicated.

Figure 6. piRNA-dependent targeting of Piwi to a reporter
locus leads to establishment of a repressive chromatin state
and transcriptional silencing. (A) The mechanism of trans-
silencing mediated by artificial piRNA and a schematic repre-
sentation of the repressor and reporter lacZ constructs. The
repressor construct is inserted in a subtelomeric piRNA cluster,
leading to generation of piRNA from its sequence. Primers
mapping to both constructs used for the Pol II and H3K4me2/3
ChIP-quantitative PCR (qPCR) are shown by light-gray arrows;
primers specific to the reporter locus used for the H3K9me3,
H3K9me2, and HP1 ChIP-qPCR are indicated by dark-gray
arrows. (B) piRNAs induce transcriptional repression of the lacZ

reporter. Pol II and H3K4me2/3 signals decreased on the lacZ

promoter in the presence of artificial piRNAs as measured by
ChIP-qPCR. Shown is the fold depletion of signal in flies that
carry both repressor and reporter constructs compared with
control flies that have only the reporter construct. The signal
was normalized to RP49. (C) piRNAs induce an increase in
H3K9me3 and H3K9me2 marks and HP1 binding as measured
by ChIP-qPCR. Shown is the fold increase of corresponding
ChIP signals downstream from the lacZ reporter in flies that
carry both repressor and reporter constructs compared with
control flies that have only reporter construct. The signal was
normalized to RP49.
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it is likely that the recruitment of Piwi to chromatin is
through interactions with other RNA-binding proteins
or sequence-specific interactions between Piwi-bound
piRNA and nascent transcripts.
Using specific Piwi knockdown in germ cells of the

Drosophila ovary, we analyzed the effect of Piwi deple-
tion on gene expression, the transcription machinery,
and H3K9me3 chromatin marks genome-wide. In agree-
ment with previous results (Klenov et al. 2011), we
found up-regulation of several TEs upon Piwi knock-
down (Fig. 3C). The TEs that did not change their ex-
pression upon germline knockdown of Piwi might be
expressed exclusively in somatic follicular cells of the
ovary, such as the gypsy retrotransposon. Alternatively,
some elements present in the genome might not have
transcriptionally active copies, or the cytoplasmic AUB/
AGO3 proteins may efficiently silence them at the post-
transcriptional level.
The increase in steady-state levels of RNA upon Piwi

depletion strongly correlates with an increase in Pol II
occupancy on the promoters of transposons (Fig. 3D,F;
Supplemental Fig S2). This result suggests that Piwi re-
presses transposon expression at the transcriptional level,
although we cannot completely exclude the possibility
of an additional post-transcriptional effect. It was shown
previously that depletion or mutation of Piwi leads to
depletion of the repressive H3K9me3 mark and an in-
crease in the active H3K4me2/3 marks on several trans-
poson sequences (Klenov et al. 2011; Wang and Elgin
2011). Our ChIP-seq data extend these results to a genome-
wide scale, proving that transposons are indeed the
sole targets of Piwi, and demonstrate that changes in
histone marks directly correlate with transcriptional
repression.
Piwi depletion in the germline does not affect expres-

sion of the majority of host genes, although a small frac-
tion of genes changes expression (Fig. 5A). One possible
mechanism of the effect Piwi has on host genes is the
spreading of repressive chromatin structure from trans-
poson sequences to adjacent host genes. Indeed, such a
spreading and the resulting repression of host gene tran-
scription were observed in an ovarian somatic cell (OSC)
culture model (Sienski et al. 2012). However, we did not
find significant changes in the H3K9me3 mark for genes
that are up-regulated upon germline depletion of Piwi,
arguing against this mechanism playing a major role in
host gene regulation. Instead, we found that the majority
of host genes whose expression is increased as a result of
Piwi depletion participate in protein turnover (e.g., pro-
teasome subunits) and stress and DNA damage response
pathways, indicating that they might be activated as a
secondary response to cellular damage induced by trans-
poson activation. The different effect of Piwi depletion on
host gene expression in ovary and cultured cells might be
explained by the fact that silencing of host genes due to
transposon insertion would likely have a strong negative
effect on the fitness of the organism but could be tolerated
in cultured cells. Accordingly, new transposon insertions
that cause repression of adjacent host genes should be
eliminated from the fly population but can be detected

in cultured cells. In agreement with this explanation, the
majority of cases of repressive chromatin spreading in
OSCs were observed for new transposon insertions that
are absent in the sequenced Drosophila genome. Indeed,
it was shown that the vast majority of new transposon
insertions is present at a low frequency in theDrosophila
population, likely due to strong negative selection (Petrov
et al. 2003). Such selection was primarily attributed to the
ability of TE sequences to cause recombination and ge-
nomic rearrangements. We propose that in addition to the
effects on recombination, the selection against transpo-
sons can be driven by their negative impact on host gene
expression in the germline linked to Piwi-mediated chro-
matin silencing.
How does Piwi discriminate its proper targets—

transposons—from host genes? In the case of cytoplas-
mic Piwi proteins AUB and AGO3, recognition and post-
transcriptional destruction of TE transcripts is guided
by associated piRNAs. Our results indicate that piRNAs
provide guidance for transcriptional silencing by the nu-
clear Piwi protein as well. First, in contrast to host genes
that are not targeted by piRNAs, TE transcripts, which
are regulated by Piwi, are recognized by antisense Piwi-
bound piRNA (Brennecke et al. 2007). Second, a Piwi
mutant that is unable to bind piRNA failed to rescue the
piwi-null mutation despite its ability to enter the nu-
cleus. Finally, expression of artificial piRNAs that target
a reporter locus induced transcriptional silencing associ-
ated with an increase in repressive H3K9me3 and HP1
chromatin marks and a decrease in the active H3K4me2/3
marks (Fig. 6B,C). In contrast, the tethering of Piwi to
chromatin in a piRNA-independent fashion by fusing
Piwi with the lacI DNA-binding domain that recognizes
lacO sequences inserted upstream of a reporter gene did
not lead to silencing of the reporter (data not shown).
Together, our results demonstrate that piRNAs are the
essential guides of Piwi to recognize its targets for tran-
scriptional repression.
It is tempting to propose that, similar to Argonautes in

fission yeast, Drosophila Piwi directly recruits the enzy-
matic machinery that establishes the repressive H3K9me3
mark on its targets. Establishment of repressive marks
can lead to stable chromatin-based transcriptional silenc-
ing that does not require further association of Piwi with
target loci. This model explains why we found that Piwi
is relatively mobile in the nucleus, indicative of only a
transient interaction with chromatin. The Piwi-mediated
transcriptional silencing has an interesting parallel in
Caenorhabditis elegans, where the Piwi protein PRG-1
and associated 21U RNAs are able to induce stable trans-
generational repression that correlates with formation of
silencing chromatin marks on target loci. Interestingly,
PRG-1 and 21U RNAs are necessary only for initial es-
tablishment of silencing, while continuing repression
depends on siRNA and the WAGO group of Argonautes
(Ashe et al. 2012; Bagijn et al. 2012; Buckley et al. 2012;
Shirayama et al. 2012). Future studies should reveal the
pathway that leads to transcriptional repression down-
stream from Piwi in Drosophila and the differences from
and similarities to other species.
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Materials and methods

Drosophila stocks

Nanos-Gal4-VP16 (BL4937), UASp-shWhite (BL33623), UASp-

shPiwi (BL 33724), and Chr. I and II Balancer (BL7197) were
purchased from the Bloomington Stock Center. GFP-Piwi-
expressing flies (see below) were backcrossed onto the piwi1/

piwi2 (available from Bloomington Stock Center) background
or the otu7/otu11 (available from Bloomington Stock Center)
background, respectively. LacZ reporter lines were a generous
gift from S. Ronsseray.

Generation of transgenic fly lines

The GFP-Piwi, 3xFlag-HA-Piwi, and myc-Piwi constructs were
generated using bacterial recombineering (Gene Bridges Counter
Selection kit) to insert the respective tag after the start codon of
the Piwi genomic region cloned in BAC clone BACN04M10. The
KpnI–XbaI genomic fragment that contains the Piwi gene and
flanking sequences was transferred to corresponding sites of the
pCasper4 vector to create pCasper4/tagged Piwi.

The pCasper4/GFP-Piwi construct was used to generate
pCasper4/GFP-Piwi-YK with two point mutations, Y551I and
K555E. Mutations were introduced by PCR, amplifying products
corresponding to a 3.1-kb upstream fragment and a 2.58-kb down-
stream fragment. The upstream fragment included a unique XbaI
site at the 59 end of the amplicon and overlapped 39 base pairs
(bp) with the downstream fragment, which included a unique
BamHI site at its 39 end. The single XbaI–BamHI fragment was
generated by overlap PCR with outside primers and cloned
into corresponding sites of pCasper4/GFP-Piwi to replace the
wild-type fragment. Transgenic flies were generated by P-element-
mediated transformation (BestGene).

Immunoprecipitation of Piwi proteins and RNA gel of piRNA

Dissected ovaries were lysed in lysis buffer (20 mMHEPES at pH
7.0, 150 mM KCl, 2.5 mM MgCl, 0.5% Triton X-100, 0.5%
Igepal, 100 U/mL RNasin [Promega], EDTA-free Complete Pro-
tease Inhibitor Cocktail [Roche]) and supernatant clarified by
centrifugation. Supernatant was incubated with anti-eGFP poly-
clonal antibody (Covance) conjugated to Protein-G Dynabeads at
4°C. Beads were spiked with 5 pmol of synthesized 42-nucleotide
RNA oligomer to assess purification efficiency, proteinase
K-digested, and phenol-extracted. Isolated RNAwas CIP-treated,
radiolabeled using PNK and g-P32-labeled ATP, and run on a
15% urea-PAGE gel. Western blots of ovary lysate and anti-eGFP
immunoprecipitates were obtained from 8% SDS-PAGE gels and
probed with polyclonal rabbit anti-eGFP antibody to confirm
expression of the full-length transgene.

Mass spectrometric analysis of Piwi interaction partners

Lysis and clarification of ovary samples were performed as de-
scribed above using lysis buffer with reduced detergent (0.1%
Triton X-100, 0.1% Igepal). Piwi proteins with Flag, Myc, or GFP
tag were purified from Drosophila ovaries using correspond-
ing antibodies covalently coupled to M-270 epoxy Dynabeads
(Invitrogen) (Cristea et al. 2005). Immunoprecipitation of free
GFP from GFP-expressing ovaries was used as a negative control.
Immunoprecipitations were performed in the presence or ab-
sence of RNase A (100 mg/mL; 30min at 25C). Piwi and copurified
interacting proteins were resolved on NuPAGE Novex 4%–12%
Bis-Tris gels and stained with colloidal Coomassie blue. Gel
fragments that contained protein bands were excised and in-gel-

trypsinized, and the peptides were extracted following the
standard protocol of the Proteome Exploration Laboratory at
California Institute of Technology. Peptide analyses were per-
formed on an LTQ-FTUltra (Thermo Fisher Scientific) equipped
with a nanoelectrospray ion source (Thermo Fisher Scientific)
connected to an EASY-nLC. Fractionation of peptides was per-
formed on a 15-cm reversed-phase analytical column (75-mm
internal diameter) in-house-packed with 3-mm C18 beads
(ReproSil-Pur C18-AQ medium; Dr. Maisch GmbH). Acquired
spectra were searched against the Drosophila melanogaster

proteome using the search engine Mascot (Matrix Science,
version 2.2.06), and protein inferences were performed using
Scaffold (Proteome Software, version 3). For an Excel file of Piwi
interaction partners, see the Supplemental Material.

ChIP, ChIP-seq, and RNA-seq

ChIP was carried out using standard protocols (Moshkovich and
Lei 2010). ChIP-seq and RNA-seq library construction and se-
quencing were carried out using standard protocols following
the general principles described by Johnson et al. (2007) and
Mortazavi et al. (2008), respectively. Data analysis was carried
out using a combination of publicly available software tools and
custom-written python scripts. Additional details regarding
high-throughput data analysis are described in the Supplemental
Material. For quantitative PCR (qPCR) primers, see Supplemen-
tal Table 2. GO term analysis of genes up-regulated upon Piwi
knockdown was performed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (Huang et al.
2009a,b) and FlyBase for additional assignment of GO terms.
Sequencing data is available through Gene Expression Omnibus
(accession no. GSE43829).

Antibodies

eGFP antibody (rabbit polyclonal serum; Covance) was affinity-
purified in our laboratory. Anti-myc (Millipore), anti-Flag
(Sigma), Pol II (ab5408), and Pol II pSer5 (ab5131) are commer-
cially available.

Imaging of ovaries

Ovaries were fixed in 4% PFA in PBS for 20 min, permeabilized
in 1% Triton X-100 in PBS, DAPI-stained (Sigma-Aldrich),
washed, andmounted in 50% glycerol/PBS. Images were captured
using an AxioImager microscope; an Apotome structured illumi-
nation system was used for optical sections (Carl Zeiss).

FLIP

FLIP time series were captured on an LSM510 confocal micro-
scope equipped with a 403/0.9 NA Imm Corr multi-immersion
objective. Ovaries were dissected into halocarbon 700 oil (Sigma)
and mounted under a 0.17-mm coverslip (Carl Zeiss) immedi-
ately before imaging. Two initial baseline images were captured,
followed by 80–100 iterations consisting of two bleach iterations
at 100% laser power (488 nm or 543 nm for GFP- and RFP-tagged
proteins, respectively), followed by two images with reduced
illumination intensity. FLIP series were cropped and median-
filtered with a 2-pixel radius to reduce noise using FIJI
(Schindelin et al. 2012) and the ‘‘Rigid Body’’ function of the
StackReg plugin (Thévenaz et al. 1998) to correct drift when
needed. Using Matlab software (The Mathworks), images were
background-subtracted and corrected for acquisition bleach-
ing. A value representing the true loss of intensity relative to
the initial prebleach images, where 0 indicates no change in
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intensity and 1 represents complete photobleaching, was calcu-
lated for each pixel and each bleach/capture cycle and plotted
with a color lookup table and calibration bar. Scale bars and
annotations were made in Inkscape (http://inkscape.org).

Preparation of polytene squashes for immunofluorescence

Flies carrying the GFP-Piwi BAC construct were backcrossed
onto the otu[7] and otu[11] background. Progeny from the cross
of the two lines were grown at 18°C. Stage 7–12 egg chambers
were separated and transferred to a polylysine-coated micro-
scopic slide into PBST. From here, the ‘‘smush’’ protocol was
followed (Johansen et al. 2009), but PFA cross-linking was re-
duced to 10 min. Slides were imaged using an AxioImager mi-
croscope and a 633 oil immersion objective (Carl Zeiss).
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Chapter 2 - piRNA cluster promoter and chromatin 

piRNAs originate from peri-centromeric and subtelomeric loci, called piRNA clusters, 

which are transcribed as continuous units producing long RNA precursors later processed into 

piRNAs. Previous studies demonstrate that the heterochromatic nature of germline piRNA 

clusters is very important for piRNA production31-33. 

It was, however, never precisely described how different the chromatin landscape is between 

the two piRNA cluster types (bi-directional and uni-directional), and how does that compare 

with the rest of the genome. In addition, how their transcription is starting is also not known. 

Here, we try to bring light into those two questions. 

 

 

 

 

 

 

Germline bi-directional and uni-directional piRNA clusters have a 

distinct chromatin structure. 

In order to understand the chromatin status of piRNA clusters we performed ChIP-seq 

for a variety of active and repressive histone marks34 together with the HP1a protein in 

Drosophila melanogaster ovaries. The profiling of these marks along bi-directional piRNA 

clusters (Fig. 1), expressed in the germline, shows an evident depletion for active marks, such 

as H3K36me1, H3K36me3, and also H3K4me2/3, whereas a strong enrichment for repressive 

marks is observed, as seen for HP1a, H3K9me2, and more specifically H3K9me3 and Rhino. 
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Figure 1. Germline Bi-directional piRNA clusters chromatin structure. 
Chromatin marks and RNA Polymerase II densities at the bi-directional piRNA cluster 42AB 
(delimited by the piRNA density--Total piRNA track) in Drosophila melanogaster. An 
enrichment for repressive chromatin marks (H3K9me2, H3K9me3, and HP1) is observed along 
the cluster. Active marks, H3K4me2/3, H3K36me1, and H3K36me3, are depleted along the 
cluster. Repressive marks tend to spread in the vicinity of the cluster at immediate flanking 
regions, especially overlapping with the last exons of the Pld gene that are signaled by the active 
H3K36me3 chromatin mark. 
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To quantitatively compare the chromatin of piRNA clusters with other genomic regions, 

we defined enrichment of H3K9me3 (repressive) and H3K36me3 (active) chromatin marks 

(defined as a ratio of depth-normalized read number in ChIP to input) for prominent piRNA 

clusters in the genome, compared to their immediate genomic environment (Fig. 2). All bi-

directional clusters, including the most prominent cluster at region 42AB, show a significantly 

higher H3K9me3 mark enrichment and lower H3K36me3 mark enrichment than their 

neighboring regions. The only uni-directional cluster expressed in the germline, X upstream, in 

contrary shows a totally opposite profile. These results indicate that high level of H3K9me3 

mark is an important characteristic of piRNA clusters. 
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Figure 2. Germline piRNA clusters chromatin environment. 
Chromatin marks changes around known piRNA clusters. Taking the list of major piRNA 
clusters4, RPKMs values (IP/Input) were calculated for a 50kb region flanking each cluster 
upstream (up) and downstream (dwn), and for the cluster itself. The repressive mark H3K9me3 
is depleted around cluster whereas the active mark H3K36me3 is regained. 
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In addition, we used all the marks we profiled to group genomic regions using Self-

Organized Maps (SOM) (Fig. 3). SOM allows for unbiased clustering of genomic regions that 

possess similar chromatin features. Subsequently, the chromatin characteristics can be extracted 

for any group of genomic features (such as promoters, exons, transposons or clusters, and 

compared to the chromatin of other genomic entities). As expected, promoters of protein coding 

genes are characterized by enrichment of the H3K4me2/3 mark and occupancy of Serine 5 

phosphorylated RNA Pol II. Genomic sequences occupied by protein-coding genes group 

together and are defined by high level of H3K36me3 mark found on exons. In contrast, piRNA 

clusters occupy a different territory on SOM maps that overlap with regions characterized by 

high level of H3K9me3 mark and HP1. As the vast majority of protein-coding genes are located 

in euchromatin, we decided to compare the chromatin of piRNA clusters with that of expressed 

protein-coding genes located in heterochromatin. We defined heterochromatic genes by a high 

fraction of repetitive sequences in their environment (both up- and downstream of the gene and 

in their introns). Heterochromatic genes did not show a significant enrichment for the H3K9me3 

mark and HP1a. Therefore, the chromatin signature of clusters is clearly distinct from that of 

the majority of protein-coding genes. 
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Figure 3. Chromatin marks and RNA Polymerase II densities clustered genome-wide: 
Self-Organizing Maps (SOMs). 
The first six represent the enrichment of each individual chromatin mark at different locations 
on the same background map covering the whole genome. Each dots on the maps represent an 
ensemble of 100bp genome bins that have the same densities for each chromatin mark. The 
more similar the dots are from each other, the closer they are. Clusterization was performed 10 
times, only the best score was kept to generate the final SOM. Signal density is calculated by 
RPKMs normalized to mappability of 50bp reads. In addition, were mapped on this SOM: 
piRNAs clusters, TSSs, gene exons, and heterochromatic gene exons (last 4 maps). The black 
ellipse represent the location of piRNA cluster bins for easy comparisons in maps.  
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In contrast, the only germline expressed uni-directional piRNA cluster, X upstream, 

displays a dramatically different chromatin pattern (Fig. 4). Active marks H3K4me2/3 and 

H3K36me3 are enriched respectively at the putative promoter region and along the body of the 

cluster. On the other hand, repressive marks are all depleted along the cluster. We also did 

RNA-seq where RNA transcripts were Poly-A selected prior to library preparation and 

sequencing. We were surprised to see that the X upstream cluster appears to be the only piRNA 

cluster that has a strong RNA-seq signal all along its body. This result indicates that the 

precursor transcript arising from this piRNA cluster has a poly-A tail, and a poly-A site must 

be present in its genomic sequence (Fig. 4). This feature along, with the presence of active 

chromatin marks, suggests that, unlike any other piRNA cluster, the X upstream genomic region 

and precursor mostly behave like a regular gene. The X upstream cluster has the singularity to 

be expressed, not only in germ cells, but also in somatic follicular cells of the ovary. Therefore, 

it is conceivable that these particular features are necessary to ensure proper expression of the 

cluster in both cell types. However, other characteristics, absent to genic regions, must be 

present at the X upstream cluster to channel the precursor transcript into the piRNA pathway. 
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Figure 4. Germline Uni-directional piRNA cluster chromatin structure.  
Chromatin marks and RNA Polymerase II densities at the uni-directional piRNA cluster X 
upstream (delimited by the piRNA density--Total piRNA track) in Drosophila melanogaster. 
In opposite to bi-directional clusters, the active mark specific for promoter, H3K4me2/3, is 
strongly enriched at the beginning of the cluster, and the active mark H3K36me3 also show a 
slight enrichment along the cluster. The H3K4me2/3 signal overlap with the RNA Pol II signal. 
Accordingly, repressive marks are depleted from the body of the cluster. One can notice the 
strong enrichment for mRNA polyA selected signal along the cluster (absent at bi-directional 
clusters) correlating with the piRNA density. 
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piRNA cluster promoters are necessary for piRNA expression 

Along with chromatin marks, we also ChIPed for the RNA polymerase II 

phosphorylated on the serine 5 of its CTD domain to identify putative promoter regions of every 

piRNA cluster (Fig. 1,2). Doing so, we were able to find distinct RNA pol II signals around bi-

directional clusters, and a unique signal upstream of uni-stranded clusters X upstream and 

Flamenco.  

In order to determine if the regions corresponding to the RNA Pol II ChIP signal are 

really promoting transcription of piRNA clusters, we performed two types of experiment: first, 

we tested the ability of putative promoter cluster sequences to drive transcription by cloning 

them in front of a LacZ reporter gene and transfecting resulting constructs into embryonic S2 

culture cells. The transcription output was assessed by measuring the level of LacZ expression 

in the cells (Fig. 5). Each putative promoter tested was able to drive expression of LacZ, 

indicating that those regions are indeed promoters, and do not need the presence of an active 

piRNA pathway to perform their function.  

Figure 5. Identification of diverse piRNA cluster promoter regions. Qualitative and 
quantitative LacZ staining assays using piRNA cluster putative promoter regions. Quantitative 
assay values are normalized to Luciferase expression (co-transfected plasmid).  
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Secondly, we tested if the absence of these promoter regions would affect the production 

of piRNAs. Using a BAC construct containing a full length piRNA cluster, 38C upstream, in 

which we inserted inverted sequences of LacZ fragments (non-coding), we deleted the putative 

promoter regions (corresponding to the RNA pol II peak signals at either the 5’ or the 3’ end). 

Those constructs were injected into flies and piRNAs were sequenced (Fig. 6). We also 

sequenced piRNAs from another publicly available BAC construct that present large truncation 

of the 3’ end, and in which LacZ fragments were also inserted at the exact same position. 

However, it should be noted that the 3’ end truncation does not eliminate the 3’ RNA Pol II 

ChIPseq peak signal.  

 
Figures 6. piRNA production depends on active promoter transcription. 
Deletion of regions corresponding to the RNA Pol II ChIP signal flanking the bi-directional 
piRNA cluster 38C upstream disrupt piRNA production from that cluster. After insertion of 
fragments a of the LacZ sequence into a BAC construct encompassing the piRNA cluster full 
length, precise deletion of the 5’ or 3’ RNA Pol II site were done. The constructs were injected 
into D. melanogaster and finally piRNAs were sequenced. In addition, the LacZ sequence was 
also inserted, at the same location, into another BAC constructs showing a truncation of 3’ 
region. The 3’ truncation does not include the 3’ RNA Pol II site. LacZ piRNAs mapping to the 
positive strand strongly decrease when the 5’ RNA Pol II signal is lost (read numbers and 
ratios). However, 3’ deletion only show a small decrease in piRNAs levels.   
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The amount of piRNAs mapping to the LacZ fragment of the transgenic cluster in the 

control BAC line correlates with what is expected from the endogenous 38C upstream cluster: 

around 80% map the positive strand, and 20% map to the negative strand. piRNAs coming from 

antisense transcription are particularly low in read numbers, so piRNAs, here, mostly arise from 

the sense transcript of the cluster. In the fly line that was injected with a transgenic 38C 

upstream cluster that has its 5’ promoter deleted, piRNAs mapping to positive strand decrease 

to the level of the negative strand (almost 50% each). 3’ deletion of the promoter also reduce 

the percentage of piRNA mapping to the antisense strand (11% vs 20% originally), however, 

no change was seen in the case of the 3’ truncation (RNA Pol II signal still present). It confirms 

that even if for a low transcriptional level, this region is needed as an antisense promoter. The 

same experiment was performed, on the uni-directional X upstream cluster, by another student 

in the lab. The putative promoter region was removed and piRNAs sequenced. In addition, 

another construct was made where the putative promoter was replaced by an inducible UASp 

promoter. The interesting result is that more piRNAs seemed to be produced when the cluster 

is driven by the inducible UASp promoter (data not shown here). However, as for the 38C 

upstream cluster, piRNAs are lost upon promoter deletion. Overall, these results indicates that 

we identified promoters that drive cluster expression. 

 

Cluster promoter motifs, and effect on transcription 

Once we identified promoter sequences, we decided to align together those of major bi-

directional piRNA clusters (5 peaks). We quickly noticed a 150-200 bp region that is highly 

similar in every promoter sequence. Inside this homologous region, we can identify several 

motifs that have already been described previously for promoters: a TATA box, an Initiation 

motif (Inr), and a CCAAT-box like35,36 motif (Fig.7). These motifs all seem to be relatively 

well conserved between different Drosophila species (see UCSC Genome Browser). In addition 

to these known motifs, we can also find another one that appear three times in that same region: 

G[G,T,C]C[A,C]C[A,T]C[C,T]. It is an eight nucleotides motif that was only identified 

previously in large-scale computational studies of Drosophila gene promoters. It was shown to 

be present mostly at genes expressed in Drosophila ovaries37,38.   
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Figures 7. Similarities between bi-directional piRNA cluster promoters. 
Here is represented part of the homologous sequence present among the five RNA Pol II peak 
signal at the beginning of double-stranded piRNA clusters. + and – signify the orientation of 
the transcription by the RNA Pol II (bi-directional clusters). We can identify the three DMv4 
motifs (in red), the CCAAT-like box (in green), the TATA box (in blue), and the transcription 
initiation motif (Inr, in yellow). – sequences had to be reverse-complemented in order to detect 
similarities. 
 
 

Following these studies, we refer to this motif as the DMv4 motif. Unfortunately, we 

were not able to find more information to date for this motif in the literature: nothing is known 

about its role or what transcription factor can bind to it. It is especially worth noting that this 

motif was never identified to occur three times in the same genic promoter in those previous 

studies, but just once (also confirmed by ourselves computationally). Therefore this seem to be 

a peculiarity of piRNA cluster promoters. 

We tested the importance of these motifs in transcription efficiency. We cloned the 

promoter region of the 38C upstream cluster with, beside an untouched version of the promoter 

(WT), either all the DMv4 motifs (DMv4), or only the CCAAT-box like motif (CAAAT) 

scrambled, in front of a LacZ coding sequence and transfected the constructs into S2 cultured 

cells. Interestingly, LacZ staining and OPNG assay experiments, show that LacZ expression is 

lost, when the DMv4 motifs are being scrambled, but not for the CCAAT-box motif (table 
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below, values are normalized to Luciferase expression). The DMv4 motif is therefore essential 

for transcription. 

 

We next injected the same constructs into flies and tested their expression to see when 

exactly piRNA clusters might be expressed in the ovaries. No LacZ staining was visible in 

ovaries where the wild-type (WT) version of the promoter was cloned in front of LacZ.  

However, the WT and CAAAT constructs do produce a detectable RNA transcript in ovaries 

in comparison to the DMv4 construct and carcasses of the same flies (RT-PCR). In contrary to 

S2 cells, ovarian germline cells have a fully active piRNA pathway (all factors expressed). It is 

possible that the construct is being silenced by the pathway or that cluster promoters are 

sufficient to induce piRNA production from the LacZ reporter sequence. Indeed, when 

knocking-down the primary piRNA processing factor Zucchini, responsible for 5’ end 

processing of piRNA cluster precursor transcripts, we can retrieve LacZ expression from the 

WT construct of the ovary. Next, we tested if this WT construct (called now, LacZ source) was 

able to produce piRNAs that can silence, in trans, a LacZ reporter construct (called here LacZ 

target). However, the main problem in this scenario is that, if the LacZ source transgene does 

produce piRNAs, those are sense to the LacZ source and target transcripts, and therefore unable 

to mediate target recognition by complementarity with the LacZ reporter construct. Therefore, 

in order for the newly made LacZ piRNAs to silence in trans, it needs to target an antisense 

LacZ RNA transcript. Fortunately, we have in our lab a fly line containing a LacZ coding 

sequence surrounded on both side by UASp promoters: one sense upstream, and another one, 

inverted, anti-sense downstream. This produce two types of transcripts, one sense that results 

in LacZ expression in ovaries when driven by the Nanos-Gal4 driver (germline specific), and 

one antisense that can now be targeted by piRNAs from the LacZ source transgene (Fig. 8). 

According to our previous results in Piwi transcriptional silencing (see Chapter 1), we can 

expect to see silencing of the LacZ target if proper piRNAs are being produce from the source: 

deposition of H3K9me3 over the target region and RNA Pol II repression. 
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Figures 8. LacZ trans-silencing scheme. 
Recognition, by sense piRNAs coming from the LacZ source transgene, of the antisense LacZ 
target RNA transcript should induce co-transcriptional repression of the locus, through 
deposition of repressive chromatin marks, as shown in Chapter 1, over the genomic region.  

 

And indeed, we were able to observe loss of LacZ staining when LacZ source and target 

transgenes are combined in the same fly line (Fig. 9). However, although very promising, this 

results are also very preliminary and need more attention. Beside ChIPing for H3K9me3 at the 

target locus, piRNAs obviously need to be sequenced, but in absence of an active endogenous 

38C upstream cluster, to rule out any involvement of paramutation (see next chapter) effects 

(possible, and currently in process, through the help of the newly developed CRISPR system39). 

Overall, these results confirm the necessity for a dedicated promoter for proper piRNA 

cluster expression and subsequently piRNA production.  
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Figures 9. piRNA cluster promoter induces mature piRNA production. 
LacZ staining of the ovaries that seem to reveal the ability of the 38C upstream cluster promoter, 
cloned in front of a LacZ sequence, to produce mature LacZ piRNAs by itself. These LacZ 
piRNAs can, in turn, silence in trans another LacZ reporter construct present in the genome. 
The first picture represent staining in the fly line possessing only the LacZ source construct 
(WT= 38Cup-LacZ): no staining is observed. The second picture represent the staining in fly 
line possessing only the LacZ target (Inv. LacZ) construct, driven by the Maternal-alpha tubulin 
(MTα) driver: LacZ staining can be observed in later stage of the ovaries, which correspond to 
the driver activation pattern. The third picture represent the staining in the progeny of the cross 
of the first two fly lines: there is loss of the LacZ staining in the ovarioles. The fourth and last 
picture represent staining in the progeny of the cross between a special version of LacZ source 
fly line, where all DMv4 motifs have been scrambled the 38Cup promoter, and the fly line 
possessing the LacZ target (Inv. LacZ) construct: LacZ staining is still present.   
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Chapter 3 - Selection of piRNA cluster precursors 

A recent study of de Vanssay and colleagues showed that a transgenic locus that 

generates piRNAs is able to induce piRNA production from another homologous locus that was 

originally incompetent for piRNA generation40. Importantly, the study revealed that deposition 

of a cytoplasmic factor from the mother, which expresses the active locus, into the embryo is 

sufficient to activate piRNA generation from the recipient locus without the inheritance of the 

active locus itself. The authors proposed that the epigenetic signal that activates piRNA 

biogenesis in the next generation is a pool of piRNAs that are generated from the active locus 

and inherited by the progeny. Indeed, Piwi proteins and the associated piRNAs that are 

expressed in the maternal germline during oogenesis are deposited into the developing egg and 

are present in the early embryo before the start of zygotic transcription4,27,41. Furthermore, 

maternally inherited piRNAs are essential for effective piRNA-mediated silencing and the 

fertility of the progeny28. Trans-generational inheritance of piRNAs that initiate piRNA 

biogenesis from homologous genomic regions in the progeny provides an attractive solution to 

the specification of piRNA precursors, however, the molecular mechanism for this process has 

remained unknown.  

Here, we use several genetic systems and two different Drosophila species, D. 

melanogaster and D. virilis, to dissect requirements for piRNA biogenesis. 
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Part 1 - Trans-generationally inherited piRNAs trigger piRNA biogenesis by 

changing the chromatin of piRNA clusters and inducing precursor 

processing. 

Activity of transgenic piRNA clusters correlates with the level of H3K9me3 mark 

and with the presence of trans-generationally inherited piRNAs 

To identify the features that discriminate piRNA-generating regions from other genomic 

loci, we searched for examples when the same locus is active in piRNA generation in one 

Drosophila strain but inactive in another. Two D. melanogaster strains, T1 and BX2, contain 

an identical number of tandem repeats of the P-lacZ transgene inserted in the same locus in the 

middle of chromosome arm 2R, a genomic position that does not give rise to piRNAs in other 

strains42,43. In the T1 strain the transgene gives rise to abundant piRNAs in germ cells, and these 

piRNAs are able to silence expression of another lacZ transgene in trans. In contrast, no 

piRNAs are generated from the same transgene in the BX2 strain40 (Fig. 1A). As the sequence 

of the T1 and the BX2 transgenes is identical, the reason for their differential ability to generate 

piRNAs is unknown. Recent studies revealed that two chromatin factors, SetDB1 (a 

methyltransferase responsible for installation of the H3K9me3 mark) and the HP1 homologue 

Rhino, are required for piRNA biogenesis32,33. Based on this, we hypothesized that a difference 

in the chromatin state of the T1 and the BX2 transgenes explains their differential ability to 

produce piRNAs. To test this we profiled the histone 3 lysine 9 trimethylation (H3K9me3) mark 

on the transgene sequences in ovaries of flies from both strains using ChIP-qPCR. The 

H3K9me3 mark was enriched by ~4 fold over the transgene in the ‘active’ T1 strain compared 

to the ‘inactive’ BX2 strain (Fig. 1B). To rule out the possibility that the differences in 

H3K9me3 mark between T1 and BX2 are caused by changes in nucleosome occupancy, we 

performed total H3 ChIP that showed no difference between the two strains (Fig. S1). This 

result indicates that the ability of a genomic locus to generate piRNAs indeed correlates with 

its chromatin structure and in particular with a high level of the H3K9me3 mark. 

In Drosophila, piRNAs expressed in germ cells during oogenesis are deposited into the 

embryo and are important for transposon silencing in the next generation28. It was previously 

found that the BX2 locus, which is deficient in piRNA production, can be converted into an 

active locus (designated as BX2*) by exposure to maternally inherited cytoplasm, carrying 

piRNAs homologous to the lacZ transgene40 (Fig. 1A). To determine whether activation of the 
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BX2 locus caused by trans-generationally inherited piRNAs was coupled with a change in the 

chromatin state of the locus, we analyzed this region for the presence of the H3K9me3 mark 

before and after conversion. Conversion of BX2 to BX2* was accompanied by an increase in 

the H3K9me3 mark on the transgene (Fig. 1C). The level of the H3K9me3 mark on the activated 

BX2* transgene was similar to the signal observed on the locus in the T1 strain. Therefore, 

exposure of an inactive locus to homologous piRNAs inherited from the previous generation 

leads to installment of the H3K9me3 mark and conversion of the locus to an active piRNA 

cluster.  

The ability of the T1 and the activated BX2* loci to generate piRNAs was reported to 

be stable over many generations if the locus was inherited from the mother40 (Fig. 1A). 

However, the transgenic loci lose their capacity to generate piRNAs after paternal transmission, 

suggesting that the presence of piRNAs is necessary to maintain the locus in an active state. We 

measured the enrichment of the H3K9me3 mark on the T1 transgene after maternal and paternal 

transmission. The paternal transmission reduced the level of the H3K9me3 mark ~2 fold, 

although levels were slightly higher than those on the non-activated BX2 locus (Fig. 1D). Thus, 

lack of trans-generationally inherited piRNAs homologous to the transgene correlates with 

decreased levels of the H3K9me3 mark.  

Taken together, our experiments demonstrate that the ability of a transgenic locus to 

generate piRNAs correlates with a high level of H3K9me3 over the transgene. Reciprocally, 

the high level of H3K9me3 mark on the locus requires the presence of trans-generationally 

inherited piRNAs homologous to the locus. Specifically, an active locus loses its high 

H3K9me3 signal and becomes inactive if it is not exposed to homologous piRNAs, whereas an 

inactive locus with low H3K9me3 signal acquires both a higher level of the H3K9me3 

chromatin mark and the ability to generate piRNAs after exposure to homologous piRNAs. 

Together these observations suggest that piRNAs inherited from the previous generation induce 

a change in the chromatin state of homologous genomic regions in the progeny and this change 

in chromatin is required to produce piRNAs from these regions. 
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Figure 1. Activity of transgenic piRNA clusters correlates with the level of H3K9me3 

mark and with the presence of trans-generationally inherited piRNAs 
 (A) Transgenic D. melanogaster strains used for the study. Both T1 and BX2 strains contain 
seven identical tandem copies of the P{LacW} transgene inserted at the cytological site 50C. 
Strain T1 was derived from BX2 by X-ray irradiation and carries large-scale chromosome 
rearrangements. Transgene-derived piRNAs are generated in T1 but not in BX2 females. Trans-
generational inheritance of piRNAs from T1 females leads to activation of the BX2 locus in the 
progeny (indicated as BX2*) resulting in piRNA production. Note that inheritance of the T1 
locus is not required for the activation of BX2. The ability to generate piRNAs from the T1 
transgene is inherited through the female, but not the male, lineage (bottom). The locations of 
regions A, B and C along the LacZ sequence, analyzed in the ChIP-qPCR experiments, are 
indicated. 
(B) piRNA production from transgenes correlates with enrichment of the H3K9me3 mark over 
the transgene. H3K9me3 signal on T1 and BX2 as measured by ChIP-qPCR on three different 
regions of the lacZ sequence shown on (A). Signal was normalized to input and compared to 
signal at a control genomic region (chr2R: 2336913-2337023) highly enriched in the H3K9me3 
mark. The ChIPs were performed on two independent biological samples followed by duplicate 
qPCRs on each sample. Two-sided t-test was used to calculate significance of the differences 
(p<0.05). 
(C) Conversion of the inactive BX2 locus to a piRNA producing BX2* locus correlates with 
an increase in the H3K9me3 signal, as measured by ChIP-qPCR on three different regions of 
the lacZ sequence. The ChIPs were performed on two independent biological samples followed 
by duplicate qPCRs on each sample. Two-sided t-test was used to calculate significance 
(p<0.05). 
(D) Paternal transmission of the T1 transgene is accompanied by a loss of H3K9me3 signal, 
as measured by ChIP-qPCR. The ChIPs were performed on two independent biological 
samples followed by duplicate qPCRs on each sample. Two-sided t-test was used to calculate 
significance (p<0.05).  



 31 

Trans-generationally inherited piRNAs enhance the ping-pong processing of 

piRNAs 

To test if trans-generational inheritance of piRNAs is required for piRNA biogenesis 

from other loci we used another transgenic system that contains single-copy unique sequences. 

The insertion of the P{lArB} construct into a subtelomeric piRNA cluster in strain P1152 leads 

to generation of abundant piRNAs from this transgene44,45. Importantly, piRNAs generated 

from the lacZ sequence in P1152 are able to silence other lacZ transgenes located in 

euchromatic sites, such as the P{A92} in strain BC69, in trans40,44,46. 

We analyzed the generation of piRNAs from the P1152 locus in the parental strain and 

two reciprocal progenies of crosses between P1152 and BC69 stocks. Maternal Deposition 

(MD) progeny inherit transgene-derived piRNAs from their P1152 mothers, while genetically 

identical No Maternal Deposition (NMD) progeny of the reciprocal cross do not inherit piRNAs 

(Fig. 2A). In addition to profiling total piRNA populations in the ovaries of each genotype, we 

immunoprecipitated the PIWI, AUB and AGO3 proteins and defined piRNA populations 

associated with each protein. As reported before40,45 we detected a large number of piRNAs 

mapping to the P1152 transgene in the parental P1152 strain. Transgenic piRNAs are found in 

all three Piwi complexes (Fig. 2B). In contrast, practically no piRNAs were detected in the 

BC69 strain. The level of piRNAs mapped to the transgene drops two-fold in the MD progeny 

compared to the parental P1152 flies reflecting the fact that only one allele of the transgene is 

present in MD flies compared to two copies in the parental P1152 strain. The level of piRNAs 

decreases ~10-fold in the NMD progeny compared to the genetically identical MD flies, 

indicating that inherited piRNAs are essential for piRNA generation (Fig. 2B).  

One mechanism by which trans-generationally inherited piRNAs might boost 

production of new piRNAs in the progeny is processing of complementary transcripts through 

the ping-pong loop. In the ping-pong loop, piRNA guide endonucleolytic cleavage of 

complementary transcript leading to the generation of new piRNA from the cleaved 

product4,13,47.  Indeed, piRNA clusters that are expressed in germ cells, including telomeric 

cluster containing the P1152 locus, are transcribed from both genomic strands, therefore, trans-

generationally inherited piRNAs can target transcripts from these regions to initiate their 

processing. To study the impact of inherited piRNAs on the ping-pong processing, we analyzed 

the characteristic feature of ping-pong, the number of complementary piRNA pairs with a 10-

nt overlap between their 5’ ends (so called ping-pong pairs). To account for different numbers 
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of sequences in each library we sampled the same number of reads from each library 1000 times 

and calculated the fraction of piRNAs in ping-pong pairs. A large number of piRNAs derived 

from the transgene in the P1152 strain was generated by ping-pong processing (Fig. 2C, S2). In 

agreement with previous studies4,48, the strongest ping-pong interaction was observed between 

AUB and AGO3, while PIWI participation in the ping-pong is negligible. The fraction of the 

ping-pong pairs in the total piRNA populations as well as in AUB/AGO3 pairs is similar in the 

parental P1152 strain and MD progeny. However, the ping-pong processing dramatically 

decreased in the NMD progeny: the fraction of piRNAs in ping-pong pairs decreases 4 to 7 fold 

in the most prominent partners, AUB and AGO3 (Fig. 2C, S2). This result shows that 

inheritance of homologous piRNAs indeed boosts ping-pong processing in the progeny. 

The level of PIWI-bound piRNAs mapped to P1152 transgene is decreased 8.3-fold in 

the absence of inherited piRNAs in NMD progeny (Fig. 2B). However, analysis of piRNA 

sequences associated with PIWI showed that they, in contrast to AUB and AGO3 piRNAs, do 

not form significant ping-pong pairs (Fig. 2C, S2) supporting previous studies that indicate that 

PIWI-bound piRNA are generated by other biogenesis mechanism, so called primary 

processing. Therefore, the boost in ping-pong processing is not sufficient to explain the whole 

impact of inherited piRNAs that also enhance primary piRNA biogenesis.  
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Inherited piRNAs trigger the deposition of the H3K9me3 mark and initiation of 

primary piRNA biogenesis from the same genomic sequence 

We analyzed chromatin states of both source (P1152) and target (BC69) loci in ovaries 

of MD and NMD progenies (Fig. 2A). Previously, we found that the presence of piRNAs 

generated from the P1152 source locus leads to an increase in the H3K9me3 mark and a 

decrease in the H3K4me mark on the BC69 target locus49. We confirmed accumulation of the 

H3K9me3 mark on the BC69 target locus and found that it occurs only in MD progeny that 

inherited homologous piRNAs from their mothers (Fig. 3A). Importantly, we also observe that 

in the absence of inherited piRNAs, in NMD progeny, the level of H3K9me3 decreases on the 

P1152 source construct (Fig. 3A). These results showed that high level of H3K9me3 on both 

the source and the target loci requires trans-generational piRNA inheritance. 

To test if the deposition of H3K9me3 on the BC69 target also triggers initiation of 

piRNA biogenesis we mapped piRNAs to the junction between the hsp70 and rosy sequence 

segments that is specific to this construct (Fig. 2A, 3B). As expected no target-derived piRNAs 

were found in piRNA populations from the parental P1152 and BC69 strains. However, 9 

distinct sequences were detected in the MD progeny, while none was detected in the NMD 

progeny (Fig. 3B, S3). This result shows that the same single-copy sequence acquires the 

H3K9me3 mark and becomes a source of new piRNA at the same time. Importantly, the target-

derived piRNAs were detected in the MD progeny in the total piRNA population (2 piRNA 

reads) and in complex with PIWI (7 reads), while they were absent in AUB and AGO3. This 

indicates that the new target-derived piRNAs are generated by primary processing and not by 

ping-pong. Overall, our data show that exposure to homologous piRNAs leads to an increase 

in the H3K9me3 mark and initiation of primary piRNA biogenesis on the target locus. 

In addition to piRNAs that target the lacZ sequence, the P{lArB} transgene in the P1152 

strain generates piRNAs that can potentially target three endogenous loci in the Drosophila 

genome, Adh, hsp70 and rosy. We tested if exposure to homologous piRNAs initiated piRNA 

biogenesis at these genomic regions. Few piRNAs are generated from Adh, hsp70 and rosy loci 

in NMD progeny. In contrast, abundant piRNAs are generated from endogenous Adh and hsp70 

sequences that flank the region targeted by transgene-derived piRNAs in MD progeny (Fig. 3C 

and data not shown). Importantly, the Adh sequences that generate piRNAs in MD flies are not 

directly targeted by transgene-derived piRNAs. This eliminates ping-pong processing initiated 

by transgene-derived piRNAs as a possible mechanism for biogenesis of piRNAs from 
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endogenous Adh locus. Instead this result indicates that exposure to inherited piRNAs activates 

primary piRNA biogenesis at previously naïve genomic loci (Fig. 3D).  
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The H3K9me3 mark on piRNA clusters is recognized by the HP1 homolog Rhino 

One possible reader of the H3K9me3 mark on piRNA cluster chromatin is Rhino, a 

germline specific HP1 homolog, which was previously shown to be enriched on double-

stranded piRNA clusters and to be required for piRNA biogenesis32. Rhino harbors a conserved 

chromodomain predicted to recognize methylated lysine residues (Fig. S4). To get insights into 

the genome-wide distribution of Rhino on chromatin, we performed ChIP-Seq on ovaries of 

flies that expressed a BioTAP-tagged Rhino protein. Genome-wide analysis showed that Rhino 

is enriched on the regions that have high level of H3K9me3 (Fig. S5). Analysis of the ChIP-

Seq data confirmed the previous observations of Rhino enrichment on chromatin of double-

stranded, but not single-stranded piRNA clusters (Fig. 4A).  

Next, we tested if the high level of the H3K9me3 mark on the transgenic T1 locus that 

was induced by trans-generationally inherited piRNAs leads to binding of Rhino protein. ChIP-

qPCR showed that Rhino is enriched on the active T1, but not the inactive BX2 locus (Fig. 4B). 

Furthermore, Rhino localization on T1 chromatin is lost together with the H3K9me3 mark after 

paternal transmission of the locus. 

To test if the Rhino chromodomain directly recognizes the H3K9me3 mark, we 

monitored the binding affinity of the Rhino chromodomain as a function of the methylation 

state of the H3(1-15)K9me peptide using isothermal titration calorimetry (ITC). The H3K9me3 

and H3K9me2 peptides showed similar binding affinity of 21.8 μM and 28.4 μM, respectively. 

By contrast, the H3K9me1 and unmodified H3 peptide showed no detectable binding affinity, 

establishing that recognition of the H3 tail by Rhino prefers high methylation states of lysine 9 

(Fig. 4C). 

To further investigate the molecular mechanism of recognition of H3K9me3 by Rhino, 

we determined the crystal structures of the Drosophila Rhino chromodomain in the free form 

and in complex with the H3(1-15)K9me3 peptide at 1.5 Å and 2.5 Å resolution, respectively. 

The overall structure of the Rhino chromodomain (Fig. 4D) resembles that of the classic HP1 

chromodomain, which has an N-terminal three-stranded twisted β-sheet and a C-terminal short 

α-helix, and forms a homodimer. The Rhino-H3(1-15)K9me3 complex also adopts a dimeric 

arrangement, similar to its free form (Fig. 4E, S6A). We can trace and build the H3(1-

15)K9me3 peptide from Thr3 to Ser10. The interaction between the peptide and the Rhino 

chromodomain consists of specific recognition of H3K9me3 by three conserved aromatic 
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residues Phe48, Try24 and Trp45, like that observed in the canonical recognition of H3K9me3 

by the HP1 protein, complemented by hydrogen bonding interactions mainly to the peptide 

backbone together with a few side chains50 (Fig. 4F, S6B). The dimer interface in the complex 

is stabilized by a network of hydrogen bonding and hydrophobic interactions (Fig. S7). Overall, 

our data suggest that the H3K9me3 mark installed on piRNA clusters in a manner that depends 

on trans-generationally inherited piRNAs is read by the Rhino chromodomain protein. 
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Figure 4. Chromodomain protein Rhino binds the H3K9me3 mark and is enriched on 

chromatin of piRNA clusters. 
(A) Rhino ChIP-seq signal is enriched at double-stranded piRNA clusters. No enrichment is 
seen on flamenco, a uni-stranded cluster that is active only in follicular cells and on cluster 20A, 
a uni-stranded cluster that is expressed in germ cells. Shown are enrichments of ChIP-Seq signal 
relative to input. Read counts are normalized to sequencing depth and region length (RPKMs). 
(B) Activity and H3K9me3 signal on the T1 and the BX2 transgenes correlates with Rhino 
binding. Rhino signal on T1 and BX2 was measured by ChIP-qPCR on three regions of lacZ 
(n=2). Signal was normalized to input and compared to signal at a control genomic region 
(chr2R: 2336913-2337023). Error bars represent the standard error of the mean between two 
independent biological replicates. Two-sided t-test was used to calculate significance (p<0.05). 
(C) Binding of Rhino chromodomain to different methylated states of the H3(1-15)K9me 
peptide measured by isothermal titration calorimetry (ITC). 
(D) Crystal structure of D. melanogaster Rhino chromodomain in the free state. The Rhino 
chromodomain forms a homodimer with each monomer labeled as Mol A and Mol B.  
(E) Structure of the D. melanogaster Rhino chromodomain in complex with the H3(1-
15)K9me3 peptide. Each monomer contains a bound H3K9me3 peptide. 
(F) Specific recognition of the H3K9me3 peptide by the Rhino chromodomain. 
Intermolecular hydrogen-bonding interactions are designated by dashed red lines. 
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Rhino recruits the piRNA biogenesis factor Cutoff and promotes efficient 

transcription of piRNA clusters 

In the nucleus Rhino co-localizes with Cutoff, a protein that plays an important, but not 

well defined role in piRNA biogenesis51. Cutoff is homologous to proteins that participate in 

RNA quality control and transcriptional termination in yeast and mammals52-55. Localization of 

Cutoff in specific nuclear foci was reported to be dependent on Rhino protein suggesting that 

Cutoff might be recruited to chromatin through Rhino51. We immunoprecipitated tagged Rhino 

and Cutoff proteins from Drosophila ovaries and found that they form a complex (Fig. S8). 

Next, we used genome-wide ChIP-Seq to determine Cutoff localization on chromatin. In 

agreement with previous ChIP-PCR observations51 we found that Cutoff localizes on double-

stranded, but not single-stranded piRNA clusters in perfect correlation with Rhino localization 

(Fig. 5A). The Cutoff profile at the border of piRNA clusters closely correlates with the 

H3K9me3 profile (Fig. 5B), suggesting that Cutoff is recruited to piRNA cluster chromatin 

through the interaction with Rhino that binds this mark. Interestingly, enrichment of Cutoff on 

piRNA cluster chromatin was abolished if during the ChIP experiment the crosslinked 

chromatin was treated with RNase prior to immunoprecipitation, indicating that Cutoff also 

interacts with nascent transcripts (Fig. S9).  

We tested if the high level of the H3K9me3 mark and Rhino on the transgenic T1 locus 

leads to binding of the Cutoff protein. ChIP-qPCR showed that Cutoff is more enriched on the 

active T1 compared to the inactive BX2 locus (Fig. 5C). Furthermore, Cutoff localization on 

T1 chromatin is lost together with the H3K9me3 mark and Rhino after paternal transmission. 

To study the functional importance of Cutoff localization on piRNA cluster chromatin 

we profiled small and long RNA from ovaries of Cutoff mutants and control flies. In agreement 

with previous observations51, we found that piRNAs from double-stranded piRNA clusters are 

almost entirely eliminated in Cutoff mutants (Fig. 6A, B). In contrast, Cutoff mutation did not 

affect piRNA generation from flamenco, a uni-stranded cluster that is active only in follicular 

cells, and from 20A, a uni-stranded cluster that is expressed in germ cells, but is not enriched 

in Rhino and Cutoff proteins. Double-stranded piRNA clusters also give rise to a significant 

fraction of the 21 nt siRNAs that are generated from double-stranded RNAs by Dicer56 (Fig. 

S10). Importantly, siRNAs from double-stranded clusters were also eliminated in the Cutoff 

mutant (Fig. 6A, B) indicating that the function of Cutoff is broader than just targeting nascent 

transcripts to the piRNA processing machinery. 
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Figure 5. Rhino recruits the piRNA biogenesis factor Cutoff to chromatin of piRNA 

clusters. 
(A) Cutoff ChIP-Seq signal is enriched at double-stranded piRNA clusters. No enrichment is 
seen on uni-stranded flamenco and 20A clusters. Shown are enrichments of ChIP-Seq signal 
relative to input. Read counts are normalized to sequencing depth and region length (RPKMs). 
(B) Profiles of H3K9me3, Cutoff, and piRNAs along a fragment of the 42AB cluster 
(chromosome 2R: 2129920 - 2181079). The Cutoff ChIP-Seq signal correlates with the 
H3K9me3 and piRNA profiles and progressively increases along the beginning of the 42AB 
cluster. 
(C) Cutoff is enriched on chromatin of the active T1, but not the inactive BX2 or the paternally 
transmitted T1 transgene. Cutoff signal on T1 and BX2 as measured by ChIP-qPCR on three 
regions of lacZ (n=2). Signal was normalized to input and compared to signal at a control 
genomic region (chr2R: 2336913-2337023). Error bars represent the standard error of the mean 
between two technical replicates.  
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Instead this result suggests that Cutoff is required to generate precursor molecules for both si- 

and piRNA processing. Indeed, RNA-Seq of long rRNA-depleted RNA showed a decrease of 

transcripts from dual-stranded clusters upon depletion of Cutoff and Rhino (Fig. 6A, B). To 

study if Rhino/Cutoff complex is directly involved in transcription of piRNA precursor 

transcripts we performed nuclear run-on/GRO-Seq experiments on ovaries of control and 

Rhino-depleted flies. Quantification of nascent transcripts in two independent run-on 

experiments using two different methods, RT-qPCR and deep sequencing, showed that Rhino 

is indeed required for efficient transcription of dual-stranded piRNA clusters (Fig. 6C, S11). 

Together our data indicate that the H3K9me3 mark on piRNA clusters leads to recruitment of 

the Rhino/Cutoff complex, which is critical for transcription of piRNA precursors.  
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Figure 6. Transcriptional output of piRNA clusters is decreased in absence of Rhino and 

Cutoff. 
(A) Profiles of Cutoff, piRNA, siRNA and long RNA (rRNA-minus RNA-Seq) along a 
fragment of the 42AB cluster (chromosome 2R: 2129920 - 2181079). Both piRNAs and 
siRNAs as well as long RNA from the 42AB locus are almost entirely eliminated in Cutoff 
mutant flies. Similar decrease in long RNA is seen in Rhino-depleted flies (shRhino). RNA-seq 
signal on the left correspond to exons of the Pld gene. 
(B) The levels of piRNAs, siRNAs and long RNAs (rRNA-minus RNA-Seq) from double-
stranded piRNA clusters are decreased in the Cutoff mutant. Shown are fold-decrease in the 
normalized number of piRNA, siRNA and long RNA reads generated from each piRNA cluster 
in the ovaries of Cutoff homozygous mutant compared to control heterozygous animals. 
(C) Transcriptional output from double-stranded piRNA clusters is decreased upon Rhino 
depletion. Shown are RT-qPCR quantification of nascent transcripts from nuclear run-on 
performed on wild type and Rhino knockdown ovaries. The experiment was performed on two 
biological samples with three technical replicates each; p-values were calculated with a two-
sided t-test, * indicates p<0.05. 
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Part 2 - A trans-generational epigenetic process defines piRNA biogenesis 

in Drosophila virilis. 

To understand the determinants of piRNA cluster activity and identify the features that 

discriminate piRNA-generating regions from other genomic loci we took advantage of previous 

finding of piRNA clusters that are differentially active in two D. virilis strains57. Three genomic 

regions designated as clusters #1, #2, and #3 are present in the genomes of both strains 9 and 

160, yet piRNAs are only generated from these clusters in strain 160 (we will refer to strain 160 

as the Active or A strain) (Fig. 1, 2A). Strain 9 (the Inactive or I strain) does not have general 

defects in the piRNA pathway as piRNAs are generated from other genomic regions in this 

strain. The reason for differential ability to generate piRNAs from certain genomic regions in 

the two strains is unknown. 

Following our previous results, we hypothesized that a difference in the chromatin state 

of the genomic regions in strains A and I might explain their differential ability to produce 

piRNAs. To determine whether the chromatin state plays a role in the differential activity of 

the piRNA clusters, we profiled the H3K9me3 mark in ovaries from flies of both strains. For 

each strain, ChIP-Seq libraries from two independent biological samples were generated, 

sequenced and analyzed. Genomic regions that generate piRNAs exclusively in strain A 

(clusters #1-3) had significantly higher levels of H3K9me3 in this strain compared to strain I 

(Fig. 1, 2A, B, S1A). 

In contrast, cluster #4, which produced a similar amount of piRNAs in both strains, had 

comparable levels of the H3K9me3 mark (Fig. 2A, B, S1A). The H3K9me3 profile on piRNA 

clusters in strain A closely parallels the profile of piRNAs generation: both signals drop at the 

same genomic position (Fig. 1). Therefore, the activity of native piRNA-generating regions in 

D. virilis correlates with high levels of the H3K9me3 mark for all three differentially expressed 

clusters. 
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Figure 1. Profiles of the H3K9me3 mark, piRNAs and long RNAs on differentially 

expressed piRNA clusters. 
piRNA, H3K9me3, and long RNA-seq (rRNA-depleted total RNA) densities on cluster #1 in 
the two D. virilis strains. High H3K9me3 signal is present over the cluster sequence in strain A 
that generates abundant piRNAs from this region; low H3K9me3 signal and no piRNAs are 
present in strain I. Only reads that mapped to the genome uniquely at this position are shown, 
resulting in the gap in read-density over a recent and non-divergent repetitive element (LTR 
retrotransposon) insertion. Unique-mappability tracks for 25-bp and 50-bp long reads are 
shown in gray. piRNAs mapping to the +  and - strand are shown in green and red, respectively. 
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To understand how the H3K9me3 mark affects the activity of piRNA-generating loci, 

we used ChIP-seq to profile genome-wide RNA polymerase II occupancy and RNA-seq to 

measure transcript levels in ovaries from strains A and I. We found that high H3K9me3 levels 

on differentially expressed clusters in strain A correlated with high occupancy of RNA 

polymerase II on these regions (Fig. 2C, S1B). Furthermore, the piRNA clusters gave rise to 

more precursor transcripts in strain A than in strain I, indicating that the enrichment of Pol II at 

these sites represents polymerase engaged in active transcription (Fig. 2D, S2). Together, these 

results suggest that high level of H3K9me3 on piRNA clusters correlates with the generation 

of precursor transcript for piRNA processing.  

 
Figure 2. Enrichment of H3K9me3 on piRNA clusters correlates with increased 

transcription and piRNA generation. 
(A) Differential expression of piRNA clusters in the two D. virilis strains. Clusters #1, #2, and 
#3 generate large numbers of piRNAs in strain A, but are inactive in strain I. Cluster #4 shows 
similar piRNA levels in both strains. Only the 5’ portion of cluster 1 that does not contain 
protein-coding sequences (marked on Fig.1) was used for quantification on this and other 
panels. 
(B) Production of piRNAs correlates with the enrichment of H3K9me3 over the genomic 
sequence. Clusters #1, #2, and #3 have high levels of H3K9me3 in strain A and low levels in 
strain I; cluster #4 has similar levels of H3K9me3 in both strains as measured by ChIP-seq. 
Cluster genomic regions were divided into 200 bp windows and a sequencing-depth normalized 
RPM (Reads Per Million) score was calculated for each window. The Mann-Whitney U test 
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was used to calculate the p-values and evaluate the significance of the observed differences. An 
independent biological replicate for this experiment is shown in Figure S1A. 
(C) RNA polymerase II density over piRNA clusters in the two strains as measured by ChIP-
seq. Clusters #1, #2, and #3 have higher RNA Pol II density in strain A, while cluster #4 shows 
similar levels of RNA Pol II signal in both strains. Cluster #1 contains a protein-coding gene; 
only sequences coming from the regions not overlapping with the gene were considered. Cluster 
genomic regions were divided into 200 bp windows and a sequencing-depth normalized RPM 
(Reads Per Million) score was calculated for each window. The Mann-Whitney U test was used 
to calculate the p-values and evaluate the significance of the observed differences. An 
independent biological replicate for this experiment is shown in Figure S1B. 
(D) Long RNA expression from piRNA clusters in the two strains as measured by RNA-seq on 
rRNA-depleted total RNA. Clusters #1, #2, and #3 generate more transcripts in strain A than in 
strain I; levels were similar in the two strains for cluster #4. Cluster genomic regions were 
divided into 200 bp windows and a sequencing-depth normalized RPM (Reads Per Million) 
score was calculated for each window. The Mann-Whitney U test was used to calculate the p-
values and evaluate the significance of the observed differences.  
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To further understand the properties of genomic regions that generate piRNAs we 

studied the activity of piRNA clusters in the progeny of the cross between strains A and I. The 

cross between the two strains can be performed in two different directions: the progeny of the 

cross between strain A females and strain I males was designated as MD (for Maternal 

Deposition) as the A chromosomes are inherited from the mothers (Fig. 3A). In the progeny of 

the opposite cross, designated as NMD (for No Maternal Deposition), the A chromosomes are 

inherited from the fathers. Importantly, the genotypes of MD and NMD progeny are absolutely 

identical.   

Profiling of piRNAs in ovaries of MD and NMD flies showed that similar amounts of 

piRNAs were generated from cluster #4, which is equally expressed in both parental strains 

(Fig. 3B). Surprisingly, ~3-fold more piRNAs were generated from the three differentially 

active clusters in MD compared to NMD progeny. As the genotypes of MD and NMD progeny 

are identical, this result indicates that the trans-generational inheritance of an epigenetic signal 

that is transmitted from the mothers to their progeny enhances the ability to generate piRNAs.  

One mechanism that can boost generation of piRNAs is processing of complementary 

transcripts through the ping-pong amplification loop.  We analyzed the efficiency of ping-pong 

processing by measuring its characteristic feature, the number of complementary piRNA pairs 

with a 10-nt overlap between their 5’ ends (so called ping-pong pairs). In the MD progeny, the 

majority of piRNA sequences coming from clusters 1-3 can form pairs with a 10-nt overlap 

between their 5’ ends (Fig. 3C).  In contrast, only a small fraction of piRNAs form ping-pong 

pairs in the NMD progeny. To account for the different number of sequences derived from 

differentially-expressed clusters in MD and NMD progenies, we sampled the same number of 

reads from each library and calculated the fraction of reads in ping-pong pairs a thousand times. 

A similar fraction of the piRNAs formed ping-pong pairs in strain A and in the MD progeny; 

however, the fraction of piRNAs generated through the ping-pong mechanism from clusters #1, 

#2, and #3 was dramatically reduced in the NMD progeny, compared to the fraction in the MD 

progeny (Fig. 3D). A similar fraction of piRNAs mapping to cluster #4 formed ping-pong pairs 

in strain A and in both the MD and the NMD progeny, indicating that the ping-pong machinery 

was intact in both progenies. These data suggest that an epigenetic signal inherited by MD 

progeny from their mothers boosts the ping-pong processing of cluster transcripts into mature 

piRNAs. 
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Figure 3. The effect of trans-generational epigenetic signal on the ping-pong piRNA 

processing. 
(A) Scheme of the cross between A and I strains along with the chromatin status and piRNA 
levels at differentially expressed clusters in the parental strains. The level of H3K9me3 mark 
(red triangle) and piRNA abundance for the parental strains are shown in the gray box. 
(B) Trans-generational inheritance of piRNAs from the mother leads to increased piRNA 
generation in the progeny. Expression of piRNAs in MD progeny (female A crossed to male I) 
that inherited piRNAs derived from clusters #1, #2, and #3 from their mothers and NMD 
progeny (female I crossed to male A) that did not inherit these piRNAs.  
(C) piRNA density on a 500-bp fragment of cluster #1 shows higher numbers of ping-pong 
pairs in the MD progeny than in the NMD progeny. Shown are individual piRNA reads. Reads 
that have a ping-pong pair are shown in red and blue. 
 (D) Trans-generational epigenetic signal enhances the ping-pong amplification cycle in the 
progeny as indicated by the higher abundance of ping-pong pairs in MD compared to NMD 
progeny. To determine the fraction of piRNAs that participate in ping-pong pairs uniquely 
mapped piRNA reads that mapped to opposite strands of each other and have a 10 bp distance 
between their 5’ ends were counted. To account for variable sequencing depth, we carried out 
the analysis by sampling reads to ~25% of the read counts in the library with the fewest reads 
in a region and repeating this 1000-times (see Material & Methods for details).  
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To test if increase in ping-pong biogenesis in MD progeny might be a consequence of 

increased production of piRNA precursors we analyzed the correlation between piRNA cluster 

expression and ping-pong biogenesis. If the increase in the fraction of piRNA participating in 

ping-pong pairs is a simple consequence of increased cluster expression then the fraction of 

such reads should correlate with cluster expression levels. We analyzed piRNAs generated by 

all double-stranded piRNA clusters and found no correlation between cluster expression and 

the fraction of reads in ping-pong pairs (Fig. S3). This result suggests that enhanced ping-pong 

processing in MD progeny is likely caused by a mechanism that is independent of the increase 

in the level of piRNA precursors.  

Next, we studied the chromatin state of differentially active clusters in MD and NMD 

progenies. We compared the levels of H3K9me3 using separate ChIP-qPCR and ChIP-seq 

experiments performed on two independent biological samples of MD and NMD ovaries (Fig. 

4A, S4). In both progenies H3K9me3 levels over the clusters were intermediate between the 

strong and weak enrichment seen in strain A and strain I, respectively. Importantly, both 

methods show that H3K9me3 enrichment was higher in ovaries of MD compared to NMD flies 

indicating that the maternally-supplied epigenetic signal affects chromatin of piRNA clusters 

in the progeny (Fig. 4A, S4).  

The identical genomes of the MD and the NMD progenies each contain two alleles of 

differentially active piRNA clusters that have different H3K9me3 levels in their parents, the A 

and the I strains. To understand the impact of the maternally-supplied epigenetic signal on 

individual alleles, it is critical to differentiate sequences derived from the A and I chromosomes. 

We therefore carried out whole-genome sequencing of the genomes of both strains and 

generated 82x and 71x coverage for strains A and I, respectively. Next, we identified single 

nucleotide polymorphisms (SNPs) for each strain relative to the D. virilis reference genome 

(see the Methods section for details). We found 326,026 and 1,086,963 SNPs in genomes of A 

and I respectively, of which, 169,192 SNPs were shared. A total of 1,074,605 SNPs differed 

between the genomes of the two strains (average density of 5.19 such SNPs per Kb) allowing 

us to determine the allelic origin of piRNAs and ChIP-seq reads derived from polymorphic 

genomic regions. Importantly, we identified such SNPs in each of the differentially expressed 

piRNA clusters (Table S1). This allowed us to unambiguously map a fraction of the ChIP-seq 

and piRNA reads to each individual allele (Fig. 4B-D, S5).  
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We found that the two alleles of differentially expressed piRNA clusters maintained 

their distinct chromatin states in the hybrid progeny. Levels of H3K9me3 were higher on the A 

alleles compared to the I alleles in both the MD and the NMD ovaries (Fig. 4B, S5). However, 

MD progenies had higher levels of H3K9me3 mark on both the A and I alleles. This result 

indicates that maternally-inherited epigenetic signal in MD flies causes an increase in 

H3K9me3 methylation on the I alleles. Importantly, the increase in the H3K9me3 signal on the 

I alleles in the MD progeny correlated with the induction of piRNA generation from these 

alleles, whereas no piRNAs were generated from the I alleles in the NMD flies (Fig. 4C-D). 

Therefore, trans-generational inheritance of an epigenetic signal correlates with deposition of 

the H3K9me3 mark and induction of piRNA generation from previously inactive genomic loci 

(Fig. 4E). 
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Figure 4. The effect of trans-generational epigenetic signal on the activity and the 

chromatin state of piRNA clusters. 
(A) Trans-generational epigenetic signal leads to increase in H3K9me3 signal on piRNA 
clusters in the progeny. The input-normalized H3K9me3 signal as measured by ChIP-qPCR is 
higher in the MD progeny compared to the NMD progeny. ChIP-qPCR signals were normalized 
to respective inputs and compared to signal at a control genomic region located inside cluster 
#4 (scaffold_12823:176535-176654). The levels of H3K9me3 mark on the same clusters 
measured by ChIP-Seq performed on two independent biological samples are shown in Figure 
S4. 
(B) Maternally inherited piRNAs lead to an increase in H3K9me3 levels on both the paternal 
and maternal genomes in the progeny. H3K9me3 ChIP-seq data was mapped to the individual 
alleles, considering only reads that could be unambiguously mapped to either the I or the A 
genome (see Methods for details). For each cluster the H3K9me3 levels are normalized to the 
signal on allele A in MD cross. Only reads mapping uniquely to one strain are shown.  For both 
the I and the A chromosomes, H3K9me3 levels over the differentially expressed clusters 
increase when cognate piRNAs are inherited (MD vs. NMD progeny). At the same time each 
parental chromosome preserves its distinct chromatin state in the progeny: H3K9me3 levels are 
higher on the parental chromosome coming from strain A than on the one coming from strain 
I. The error bars represent the standard deviation of the mean between two independent 
biological replicates. 
(C) Inheritance of piRNAs boosts piRNA production from both parental chromosomes in the 
progeny. piRNA density on each of the parental chromosomes was determined by mapping 
reads to the individual alleles, considering only reads that could be unambiguously mapped to 
either the I or the A genome. For each cluster the number of piRNAs are normalized to the 
piRNA derived from allele A in MD cross. For each differentially expressed cluster, more 
piRNAs are produced from each allele when piRNAs are maternally inherited (MD vs. NMD 
progeny). Importantly, inheritance of piRNAs activates piRNA generation from clusters that 
were inactive in the parental I strain (solid light blue vs. dark blue bars).  
(D) The profiles of piRNA derived from A and I chromosomes in MD and NMD progenies on 
cluster #1. Only reads that mapped to SNPs that are distinct between strain A and I genomes 
are shown. Note that chromosome I generates piRNAs in MD, but not NMD flies. The 
distribution of SNPs is shown below piRNA tracks. 
(E) Scheme of the cross between A and I strains along with the chromatin status (the level of 
H3K9me3 mark, red triangles) and the piRNA levels of each chromosome in the progeny. 
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Discussion 

For the past 3 years, our results lead to three major advances in the piRNA field, that 

help us better understand the biogenesis of piRNAs: 

1) Piwi mediates transcriptional silencing through piRNA recognition of 

TE transcripts. The silencing is achieved by deposition of the repressive chromatin mark 

H3K9me3, and subsequently alteration of RNA Pol II transcription.  

 2) Germline piRNA clusters are fully heterochromatic and their promoters 

are involved in piRNA cluster transcription. 

3) Trans-generationally inherited piRNAs are necessary to induce germline 

piRNA clusters formation at each new generation. They are responsible to recognize 

which genomic sequence is going to be generating new piRNA and process clusters 

transcripts into secondary piRNAs. 

 

Cluster chromatin and promoters: 

Our results show that piRNA clusters are covered with repressive chromatin marks, and 

totally devoid of known active chromatin marks. It would suggest that piRNA clusters are being 

silenced by the cell machinery. However, bi-directional clusters are being effectively 

transcribed in nurse cell nuclei of the Drosophila ovary, do lead specifically to production of 

piRNAs, and have two distinct promoter regions (one if unidirectional, like X upstream), which 

are responsible for driving expression of both genomic strands: piRNAs are lost upon precise 

deletion of the promoter region. More importantly, these promoter regions present a stretch of 

DNA sequence that is highly similar in each one of them. Inside this homologous sequence we 

can identify a TATA box, an initiation motif, a CCAAT-like box motif, and especially the 

recurrence of one particular eight nucleotides motif, called DMv4. This motif is present three 

times in each promoter region and their deletion lead to loss of transcription. More work is 

needed to understand the exact role of these motif and especially what transcription factor might 

be binding this motif. In our hands, cluster promoters containing this motif were able to promote 

transcription in ovaries and S2 embryonic cells. Bi-directional clusters promoters present a 



 53 

unique disposition of motifs: they have a special architecture where the three DMv4 motifs 

seem to hold a crucial role. 

 

Trans-generational piRNAs in cluster activation: 

De Vanssay and colleagues showed that a maternal factor supplied to the progeny by 

females expressing piRNAs from the T1 locus activates piRNA generation from the 

homologous inactive BX2 locus40. Furthermore, maintaining the activity of T1 in the 

subsequent generation also requires the maternal factor. We extended this observation to other 

systems and show that generation of piRNAs from a single-copy transgene, inserted into a 

telomeric piRNA cluster, also depends on a maternally-transmitted cytoplasmic factor. This 

maternal factor also activates piRNA generation from a single-copy euchromatic sequence, 

which simultaneously becomes the target of repression and the source of new piRNAs. In D. 

virilis, it is able to activate previously naive loci on I chromosomes. Finally, the activity of 

endogenous clusters in D. melanogaster also seems to require a maternally inherited factor: our 

analysis of previously published piRNA profiles in interspecies hybrids between D. 

melanogaster females and D. simulans males58 showed that only D. melanogaster piRNA 

clusters generated piRNAs, while D. simulans piRNA clusters were inactive (Annexes – 

Chapter 3 Part 1 - Figure S12).  

What is the nature of the maternally supplied epigenetic factor that triggers piRNA 

generation in the progeny? Multiple lines of evidence point to piRNAs themselves as the 

carriers of this epigenetic signal. As first shown by de Vanssay and colleagues, the epigenetic 

signal produced by the T1 locus does not require inheritance of the locus itself, indicating that 

the signal has non-chromosomal nature. This eliminates the possibility that the signal is any 

kind of chromatin mark linked to the active locus. Second, the process of BX2 activation 

genetically depends on piRNA pathway genes, but is independent of Dicer, which is required 

for siRNA biogenesis40. Third, both piRNAs and Piwi proteins are inherited from the maternal 

germline to the early embryos, while piRNAs are not transmitted through the sperm28. Finally, 

piRNAs can be sequence-specific guides to identify and activate homologous loci. Importantly, 

recent studies have shown that piRNAs and the nuclear Piwi protein trigger installation of the 

H3K9me3 mark on homologous targets providing a possible mechanism by which inherited 

piRNAs could lead to chromatin changes49,59-61. Together these results strongly support the role 
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of inherited piRNAs as a trans-generationally inherited epigenetic signal that activates piRNA 

generation from homologous loci in the progeny. 

How can trans-generationally inherited piRNAs activate piRNA generation from 

homologous loci? Our results imply two mechanisms that cooperate and work at different steps 

of piRNA biogenesis. In the cytoplasm trans-generationally inherited piRNAs activate 

processing of complementary transcripts by the ping-pong amplification loop as evidenced by 

a dramatic increase in piRNAs generated by the ping-pong processing upon maternal deposition 

of cognate piRNAs.  

In the ping-pong processing, initial piRNAs guide generation of secondary piRNAs 

from complementary sequences. Previously, it was proposed that the ping-pong cycle requires 

two types of piRNA precursors, cluster transcripts and transcripts from active transposons 

provided in trans4,26. Our results indicate that the ping-pong cycle can be activated by inherited 

piRNAs derived from the very same locus, provided that it is bi-directionally transcribed. 

Importantly, with the exception of one locus, all major piRNA clusters in the D. melanogaster 

germline are transcribed from both genomic strands providing an abundant source of 

complementary transcripts to be used by the ping-pong process. 

The major players in ping-pong processing in Drosophila are two Piwi proteins, AUB 

and AGO3, while the third Piwi protein, PIWI itself, is not involved in this process (Fig. 2C, 

S2). AUB and AGO3 co-localize in cytoplasmic nuage granules, where the ping-pong 

processing is believed to take place4. Therefore, the effect of inherited piRNAs on ping-pong 

processing impacts a late step of piRNA biogenesis after piRNA precursor transcripts are 

exported to the cytoplasm. 

Though enhancing the ping-pong processing is clearly an important mechanism by 

which trans-generationally inherited piRNAs boost piRNA biogenesis, it cannot explain all our 

observations, suggesting the existence of another mechanism. We found that maternal piRNAs 

are also required for the biogenesis of PIWI-associated piRNAs, although those are not 

generated by ping-pong processing. Using several genetic systems we showed that inheritance 

of piRNAs leads to an increase of the H3K9me3 mark on regions homologous to the piRNAs. 

Importantly, acquisition of the H3K9me3 mark by genomic regions that did not previously 

produce piRNAs, triggered piRNA generation in two transgenic systems. In contrast, absence 

of inherited piRNAs lead to a decrease H3K9me3 signal on homologous regions and 
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concomitant decrease of the corresponding piRNAs. These results suggest that modification of 

the chromatin structure of homologous genomic regions is the other mechanism by which trans-

generationally inherited piRNAs turn on piRNA biogenesis in the progeny. Counter-intuitively, 

we found that enrichment of the H3K9me3 mark, which is generally assumed to be repressive, 

strongly correlates with enhanced piRNA biogenesis. In agreement with our results, a previous 

study showed that biogenesis of piRNAs from double-stranded clusters requires 

Eggless/SetDB1, one of the methyl-transferases responsible for installation of the H3K9me3 

mark33.  

Our analysis of several transgenic piRNA clusters revealed differences in the impact of 

inherited piRNAs on the level of the H3K9me3 mark. The inherited piRNAs seem 

indispensable to maintain high H3K9me3 signal on the transgenic T1 and BX2* loci. However, 

the absence of maternal piRNAs leads to a relatively mild decrease in H3K9me3 on the 

telomeric piRNA cluster in the P1152 strain and D. virilis clusters. These results indicate that 

natural piRNA clusters are able to maintain a certain level of the H3K9me3 mark in a piRNA-

independent fashion. This is not unexpected as natural piRNA clusters are located close to 

heterochromatin, which is known to have a high level of H3K9me3 signal. In contrast, the T1 

and BX2 transgenes are inserted in a euchromatic site that is normally lacking this mark. 

Overall, our data strongly support an essential role of the H3K9me3 mark in piRNA generation. 

They further reveal that enrichment of this mark on regions that generate piRNAs at least 

partially depends on the inheritance of homologous piRNAs from the previous generation. 

Finally, acquisition of the H3K9me3 mark by a naïve locus as a result of exposure to 

homologous piRNAs strongly correlates with the initiation of de novo primary piRNA 

biogenesis from such a locus. The exact mechanism for piRNA-dependent deposition of the 

H3K9me3 mark on piRNA regions remains to be elucidated, however, recent studies suggest 

that it might occur through recognition of nascent transcripts by the nuclear PIWI/piRNA 

complex, which is known to be deposited by the mother into the developing egg27,28 and which 

has been shown to install H3K9me3 on its genomic targets49,59,60,62. 

The proposal that inherited piRNAs trigger piRNA biogenesis by changing chromatin 

structure of homologues sequences raises the question of how the piRNAs distinguish a genuine 

transposon, a target that needs to be silenced, from a piRNA cluster that needs to be activated? 

Surprisingly, our results indicate that targeting by piRNAs leads to simultaneous repression of 

the target and activation of piRNA biogenesis from the same sequence. We found that targeting 
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of a unique sequence by piRNAs triggers accumulation of the H3K9me3 mark, a decrease in 

target expression and activation of piRNA biogenesis. Importantly, the target-derived piRNAs 

are not generated by the ping-pong mechanism (which would be a trivial explanation) as they 

are present in complex with PIWI, which does not participate in ping-pong processing. The 

similarity between transposon targets and piRNA-producing regions is supported by recent 

work that demonstrated that new transposon insertions in euchromatin start to generate piRNAs 

i.e. they are becoming de novo piRNA clusters63. By extension, we can propose that transposon 

remnant copies present inside piRNA clusters may not all be inactive. The few copies still 

active, most likely scattered along clusters, would participate in the establishment of H3K9me3 

over the cluster: transcript recognition by Piwi-bound piRNAs mediating SetDB1 deposition of 

the repressive mark. Cluster promoters might avoid repression thanks to the presence of 

multiple Dmv4 motifs in its core, allowing for a strong binding of a yet-to-be-found TF 

increasing transcription. Careful consideration suggests that the requirement to ‘silence’ a 

genuine transposon target vs. ‘activate’ a piRNA cluster is a false dichotomy: if nascent 

transcripts generated from piRNA target loci are channeled into the piRNA processing 

machinery instead of the standard mRNA processing pathway, the transcript will be effectively 

silenced since no full-length mRNA will accumulate. The idea that target of piRNA repression 

becomes a source of new piRNAs makes the distinction between piRNA clusters (source of 

piRNAs) and targets obsolete. Furthermore, our results expose a case in which the same 

genomic region is ‘silenced’ and ‘activated’ at the same time, depending on the exact output 

the researcher is looking at (generation of full-length mRNA or piRNAs). Similar phenomena 

might be more widespread than previously suspected as studies in yeast suggest a very similar 

model, where centromeric repeats are ‘silenced’ and generate siRNAs at the same time64.  

How can the high level of the allegedly repressive H3K9me3 mark enhance piRNA 

biogenesis? Our results suggest that, counterintuitively, high levels of H3K9me3 correlate with 

elevated transcription in the context of piRNA clusters. Indeed we found that high levels of 

H3K9me3 on differentially expressed piRNA clusters in D. virilis correlated with increased 

RNA Pol II occupancy and with the generation of more precursor transcripts. We propose that 

changes in chromatin state associated with high levels of H3K9me3 lead to the recruitment of 

non-conventional readers of this mark, which subsequently affect transcription in these regions, 

providing more precursors for piRNA biogenesis. Our results show that the H3K9me3 mark 

provides a platform for the binding of Rhino, a chromodomain protein that shows specific 

enrichment over piRNA clusters. As high levels of H3K9me3 mark is also present in other 
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genomic regions, it is possible that recognition of H3K9me3 is not sufficient for Rhino stable 

binding and it interacts with other proteins to achieve its localization on chromatin of double-

stranded clusters. Rhino forms a complex with Cutoff, a protein that is also required for piRNA 

biogenesis51. The H3K9me3 mark, Rhino and Cutoff co-localize at double stranded piRNA 

clusters and Cutoff is de-localized from nuclear foci in Rhino mutants51 suggesting that it is 

recruited to piRNA clusters through its interaction with Rhino. Taken together our results 

suggest that Rhino and Cutoff, which were previously shown to be indispensable for piRNA 

generation from double-stranded piRNA clusters32,51, are recruited to cluster chromatin through 

the H3K9me3 mark. 

The exact molecular mechanism by which the Rhino/Cutoff complex activates piRNA 

biogenesis in the nucleus remains to be elucidated, however, two not necessarily mutually 

exclusive hypotheses can be proposed. First, Cutoff might bind and target nascent transcripts 

generated from piRNA clusters to the piRNA processing machinery instead of the normal pre-

mRNA processing. In support of this idea we found that association of Cutoff with chromatin 

is RNA-dependent. We have previously shown that inserting intron-containing heterologous 

gene sequences into piRNA clusters results in abundant piRNAs from both the exonic and 

intronic sequences indicating that normal splicing is perturbed45. According to the second 

hypothesis, the Rhino/Cutoff complex might enhance transcription of piRNA clusters, hence 

providing more precursors for piRNA biogenesis. Indeed, run-on experiment showed that 

Rhino is required for efficient transcription of dual-stranded piRNA clusters. Furthermore, in 

agreement with an effect on transcription we found that in the Cutoff mutant both siRNAs and 

piRNAs as well as long RNAs are eliminated from double-stranded piRNA clusters arguing 

against a role of Cutoff exclusive to piRNA processing. 

The counter-intuitive idea that the H3K9me3 mark might enhance rather than suppress 

transcription through binding of non-conventional epigenetic ‘readers’ has interesting parallels 

in yeast. In S. pombe, H3K9 methylation induces binding of Swi6/HP1, which then recruits the 

Jumonji protein Epe1 that promotes nucleosome turnover, resulting in increased transcription 

of heterochromatic repeats and generation of siRNAs65,66. One possible mechanism by which 

Cutoff might enhance cluster transcription is by suppressing RNA Pol II termination. Indeed, 

transgenic insertions that contain polyA cleavage/termination signals into piRNA clusters 

generate piRNAs downstream of the polyA signal indicating that not only splicing, but 

transcription termination is also suppressed in piRNA clusters45. Ignoring transcription 



 58 

termination signals is likely an important feature of piRNA clusters, as otherwise, multiple 

signals within transposon sequences present in the clusters would terminate transcription and 

disrupt piRNA generation. 

Overall, our data revealed that regions that produce piRNAs in Drosophila germ cells 

are defined by the epigenetic process of the trans-generational inheritance of cognate small 

RNAs. We found that inherited piRNAs trigger piRNA generation in the progeny by two 

mechanisms that seem to work simultaneously and cooperate to shape the final piRNA 

population (next Figure). In the nucleus inherited piRNAs mark genomic regions that will give 

rise to new piRNAs and enhance early steps of piRNA biogenesis. In the cytoplasm inherited 

piRNAs further trigger the post-transcriptional processing of cluster transcripts through the 

ping-pong amplification loop. 

Figure: A model for the role of trans-generationally inherited piRNAs in determining 

piRNA biogenesis in the next generation. 
The inherited piRNAs act in two ways: In the nucleus piRNAs mediate installment of the 
H3K9me3 mark over piRNA producing loci. Increased level of H3K9me3 is required for 
recruitment of the Rhino/Cutoff complex. Cutoff might target nascent transcripts to the piRNA 
processing machinery and/or enhance transcription. In the cytoplasm, piRNAs initiate the ping-
pong amplification cycle thereby boosting processing of piRNA cluster transcripts into mature 
piRNAs. 
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Material and methods: 
 
 

Drosophila stocks 

D. virilis strain 160 (A) and strain 9 (I) were a generous gift from M. Evgeyev. Strains T1 and 

BX2 described in40,42. The strain P-1152, that carries insertion of P{lArB} construct in 

telomeric sequences of X chromosome (site 1A) is described in 67. The strain BC69 that has 

insertion of P{A92} construct at a euchromatic location on chromosome 2L (site 35B10-35C1) 

is described in 68.  Both stocks were a generous gift from S. Ronsseray. The Rhino-GFP fly line 

(GFP-tagged Rhino driven by the Rhi promoter) was a generous gift from W. Theurkauff. The 

Cutoff-EGFP fly line (Nanos-GAL4/UASp-Cutoff-GFP), Cuffwm25 and Cuffqq37 were a 

generous gift from T. Schupbach. The Rhino-BioTAP flies were made by fusing the BioTAP 

tag69 to the C-terminal region of the Rhino gene under the UASp promoter. shRhino flies were 

obtained from Bloomington stock center (stocks 34071 and 35171) and driven by Nos-Gal4 

(stock 4937). 

 

piRNA isolation, immunoprecipitation of PIWI proteins and small RNA 

cloning 

Immunoprecipitations of PIWI, AUB and AGO3 proteins from D. melanogaster ovaries were 

carried out using rabbit polyclonal antisera directed against the N-terminal 14–16 AA 

according to previously described procedures4. Small RNAs from immunoprecipitates and total 

RNA extracts were cloned as previously described in4,70. Briefly, small RNAs within a 19-29nt 

window were isolated form 12% polyacrylamide gels. 3’ and 5’ linkers were ligated, and 

products were reverse transcribed using Superscript III (Invitrogen). Following PCR 

amplification, libraries were submitted for sequencing using the Illumina platform.  

 

Analysis of the ping-pong processing 

To determine the fraction of piRNAs that participate in ping-pong pairs we counted uniquely 

mapped piRNA reads that map to opposite strands of each other and have a 10 bp distance 

between their 5’ ends. To account for variable sequencing depth, we carried out the analysis by 

sampling reads to ~25% of the read counts in the library with the fewest reads in a region and 

repeating this 1000-times. 
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ChIP and ChIP-qPCR  

ChIPs were carried out using commercially available antibodies (anti-H3K9me3 (ab8898), anti-

RNA Pol II (ab5408), and anti-GFP (DHSB-4C971). ChIPs for Rhino and Cutoff were 

performed with anti-GFP antibodies on ovaries from transgenic animals expressing GFP-tagged 

proteins. 

 

Prior to any ChIP experiment, 100 flies, per IP condition, were put on yeast for 2 to 3 days 

before ovary dissections. Ovaries were fixed using Paraformaldehyde (PFA) at a final 

concentration of 1% and incubated for 10min at RT. Samples were quenched by adding directly 

glycine (final concentration 25mM) for 5min at RT, and then washed 3 times in PBS. Ovaries 

were afterwards slightly dounced in Farnham Buffer (5mM HEPES pH8.0; 85mM KCl; 0.5% 

NP-40/Igepal; Protease Inhibitor Cocktail; NaF 10mM; Na3VO4 0.2mM) followed by strong 

douncing in RIPA Buffer (20mM Tris pH7.4; 150mM NaCl; 1% NP-40/Igepal; 0.5% Sodium 

Deoxycholate; 0.1% SDS; Protease Inhibitor Cocktail; NaF 10mM; Na3VO4 0.2mM) prior to 

sonication. Sonication was done using a Bioruptor from Diagenode on Medium power for 20 

cycles (30sec ON, 30sec OFF). Samples were centrifuged, supernatant collected and pre-

cleared for 2h at 4C using Dynabeads Protein G (Invitrogen) beads. If RNase treatment was 

required, half of the sample was incubated with 1µl of RNase A (10mg/ml) during pre-clearing 

and all samples incubated 2h at RT. Meanwhile, in parallel, antibodies were conjugated to 

Dynabeads Protein G for 2h at 4C too. 5% of pre-cleared samples were saved for Input fraction 

and the rest was then transferred to the antibody-conjugated beads and incubated for 2h at 4C. 

Beads were then washed 5 times at 4C using LiCl IP Buffer (10mM Tris ph7.5; 500mM LiCl; 

1% NP-40/Igepal; 1% Sodium Deoxycholate), then rinsed in TE and finally resuspended in 

Proteinase K Buffer (200mM Tris ph7.4; 25mM EDTA; 300mM NaCL; 2% SDS) with 100µg 

of proteinase K. Samples were incubated 3h at 55C then overnight at 65C. DNA was then 

extracted following standard phenol-chlorophorm extraction and concentration was measured 

by Qbit. 

 

In case of the Cutoff ChIP-seq, the experiment was performed using an altered protocol: ovaries 

were treated with Collagenase (2mg/ml) for 3 minutes at room temperature (RT), washed once 

in PBS, then fixed using fresh EGS (Thermo Scientific, 21565) solution (1,5mg/ml final in 

PBS) for 30 min at RT. Paraformaldehyde (PFA) was then added to the solution to a final 
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concentration of 1% and incubated for 10min at RT. Consecutive steps were as previously 

described. H3K9me3 and Rhino quantitative ChIP-PCR (ChIP-qPCR) experiments were 

performed in at least two biological replicates with three technical replicates each. Cutoff ChIP-

qPCR was performed in two technical replicates. Values were normalized to respective inputs 

and to a genomic region known to be enriched in H3K9me3, Rhino, and Cutoff (chr2R: 

2336913-2337023). Cutoff ChIP-qPCR including RNase treatment was normalized to 

respective inputs and to the control region RP49. For primers see Table S2. Error bars represent 

the standard error of the mean. 

 

ChIP-seq and RNA-seq library construction and high-throughput data 

analysis 

ChIP-seq and RNA-seq library construction and sequencing were carried out using standard 

protocols following the general principles described by Johnson et al.,200772 and Mortazavi et 

al., 200873, respectively. Libraries were sequenced on the Illumina HiSeq 2000 (50-bp reads) 

platform. Datasets for piRNAs were extracted from available GEO data57,58: D. melanogaster 

SRX205641, D. simulans SRX205642, and F1 SRX205643, D. virilis strain A (160) 

SRX023769, strain I (9) SRX023754, strain NMD SRX023737, and strain MD SRX023735. 

The resulting sequencing reads were mapped against the genome using Bowtie74 v0.12.7 with 

the following settings: ''-v 0 --best --strata'', retaining only uniquely mappable reads with zero 

mismatches. Read mapping statistics for ChIP-seq datasets processed this way are presented in 

Tables S1 (Chapter 2 – Part 1) and S2 (Chapter 2 – Part 2). Data analysis was carried out using 

a combination of publicly available software tools and custom-written python scripts.  

 

D. virilis genome sequencing and allele-specific mapping 

Genomic libraries were generated from each D. virilis strain and sequenced (as 2x100 reads) 

on the Illumina HiSeq 2000 platform. Sequencing coverage was ~82x for strain A and ~71x for 

strain I. Reads were mapped against the droVir2 version of the D. virilis genome using bwa 

mem (Li and Durbin, 2009) (version 0.7.5a). Variant calling was carried out using GATK 

(DePristo et al., 2011) in two steps. First, an initial set of variants was obtained and filtered for 

high-confidence variants (GQ > 90; DP >15). That set of variants was then used for base-quality 

recalibration and a second round of variant calling. Single-nucleotide polymorphisms with GQ 

>30 were retained. Next, a diploid version of the droVir2 assembly was constructed using the 

resulting set of SNPs. A Bowtie74 (v0.12.7) index containing two versions of each droVir2 



 62 

chromosome (one for each strain) was created and ChIP-seq, RNA-seq, and piRNA reads were 

mapped to it with the following settings: “-v 0 -k 3 -m 2 -t --best --strata” (i.e., allowing for up 

to 2 locations in the diploid genome that a read can map to and zero mismatches). The 

alignments were further filtered to exclude any reads that map to 2 different positions. Detailed 

statistics on the number of SNPs identified genome-wide and in the particular piRNA clusters 

studied here can be found in Table S1 (Chapter 2 – Part 2). 

 

Rhino and Cutoff co-immunoprecipitation 

Immunoprecipitation and western blots were performed as previously described51,75 on ovarian 

extracts from transgenic flies expressing Rhino-BioTAP and Cutoff-EGFP using anti-BioTAP 

antibody (Sigma, P1291) for immunoprecipitating Rhino-BioTAP. Western blots were carried 

on with anti-BioTAP antibody at 1:1000 and anti-GFP antibody at 1:1000 dilution in 5% non-

fat milk. 

 

Cloning, expression, and purification of Rhino 

The Drosophila melanogaster Rhino chromodomain (19-85) was inserted into the pETSumo 

expression vector (Invitrogen) which fuses a hexa-His tag plus a yeast sumo tag at the N-

terminus to the target protein. The plasmid was transformed into the E. coli BL21(DE3) strain 

(Stratagene). The cells were cultured at 37 °C until OD600 reached 0.8, and then the protein 

expression was induced with 0.2 mM IPTG at 18 °C overnight. The hexa-His-Sumo tagged 

protein was purified using a HisTrap FF column (GE Healthcare). The tag was cleaved by Ulp1 

protease and further removed by a second step HisTrap FF column (GE Healthcare) 

purification. The target protein was further purified by a Hiload Superdex G200 16/60 column 

(GE Healthcare). 

 

Crystallization and diffraction data collection 

The purified Rhino protein was concentrated to about 15 mg/ml in a storage buffer of 150 mM 

NaCl, 20 mM Tris, pH 7.5, and 5 mM DTT. Synthetic H3(1-15)K9me3 peptide was added at a 

threefold excess molar ratio to Rhino chromodomain and incubated at 4 °C for 30 min. 

Crystallization was conducted at 20 °C using the hanging drop vapor diffusion method by 

mixing 1 μl protein solution and 1μl reservoir solution (0.2 M ammonium nitrate, and 20% 

PEG3350) and equilibrated against 0.5 ml reservoir solution. The crystals were soaked into the 

reservoir solution supplemented with 15% glycerol before flash-cooled into liquid nitrogen for 
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diffraction data collection. The diffraction data were collected at beamline 24-ID-E at the 

Argonne National Laboratory, Chicago, and processed using the HKL2000 suite76. The 

statistics of the diffraction data are summarized in Table S4. 

 

Structure determination and refinement 

The structure of Rhino chromodomain was solved using the molecular replacement method as 

implemented in Phaser77 using the structure of the HP1 chromodomain as the search model 

(PDB ID: 1KNE). The model building was carried out using Coot78 and the structure refinement 

was conducted using Phenix79. Throughout the refinement, a free R factor was calculated using 

5% randomly chosen reflections. The stereochemistry of the structure model was analyzed 

using Procheck80. The structure of Rhino-H3(1-15)K9me3 complex was solved using the same 

protocol as the free form structure. The statistics of the refinement and the structure model are 

summarized in Table S4. All the molecular graphics were generated using Pymol (DeLano 

Scientific LLC). 

 

Isothermal titration calorimetry 

All the peptides, including H3(1-15), H3(1-15)K9me1, H3(1-15)K9me2 and H3(1-15)K9me3, 

were purchased from Tufts University Peptide Facility. Protein concentration was determined 

by absorbance spectroscopy. The Rhino chromodomain (23-85) was dialyzed against 25 mM 

sodium chloride, 20 mM Tris, pH 8.0, 2 mM b mercaptoethanol. The peptide was dissolved in 

the same buffer. ITC was conducted at a Microcal calorimeter ITC 200 instrument at 20 °C. 

Binding curves were analyzed by non-linear least-squares fitting of the data using Origin 7.0 

software.  

 

Nuclear Run-On / GRO-Seq  

Nuclear run-on / GRO-Seq experiments were performed on ovaries of shRhino flies 

(Bloomington stock 3407) driven by Nos-Gal4 (Bloomington stock 4937). Nos-Gal4 flies were 

used as a control. The nuclear run-on procedure was carried out as previously described81 with 

slight modifications. BrUTP (5’-Bromouridine-5’-triphosphate, Sigma, B7166) labeled NRO-

RNA was filtered through Illustra MicroSpin G25 columns (27-5325-01) twice to remove 

unincorporated BrUTP. The NRO-RNA was captured using the anti-BrdU antibody (Sigma, 

032M 4753) for 1 hour followed by incubation with ProteinG beads (Dynabeads, Invitrogen, 

1003D) for 1 hour. The immunoprecipitation procedure was sequentially performed three times 
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to yield highly enriched BrUTP RNA. As a negative control the same procedure was performed 

on non-labeled, total Drosophila ovary RNA. As a quality control RT-qPCR was performed on 

10% of the purified RNA with primers for Vasa, Rp49 and selected piRNA clusters. Libraries 

were cloned with NEBNext Ultra Directional RNA Library Kit (E7420S) and sequenced on the 

Illumina HiSeq 2000 (50-bp reads) platform. Reads were mapped uniquely to the dm3 genome 

using Bowtie 0.12.7 allowing for no mismatches. The numbers of reads from the respective 

clusters are shown in Table S5. 

 

BAC recombineering 

Region targeted in the 38C upstream cluster for LacZ fragments insertion: BAC CH322-76F01, 

insertion in chr2L:20101698-20119654. 

See published paper for detailed protocol information82:  

A Framework for piRNA Cluster Manipulation 

Olovnikov, I., Le Thomas, A., Aravin, A.A.  
Methods in Molecular Biology, Volume 1093, PIWI-Interacting RNAs, 47-58. 
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Table S1. Read mapping statistics 

Library 

Read 

length 

Unique 

mappers 

RNA-seq (rRNA minus) Cutoff+/Cutoff qq37/wm25, D. mel. 50 6,870,786 
RNA-seq (rRNA minus) Cutoffqq37/Cutoffwm25, D. mel. 50 583,407 
RNA-seq (rRNA minus) shWhite, D. mel. 50 5,688,673 
RNA-seq (rRNA minus) shRhino, D. mel. 50 5,075,564 
   

Library 
Cloning 

range 
Unique 

mappers 
SmallRNA-seq D. mel mapped on D. sim. genome 19-29 617,944 
SmallRNA-seq D. sim mapped on D. sim. genome 19-29 715,023 
SmallRNA-seq F1 mapped on D. sim. genome 19-29 860,898 
SmallRNA-seq D. mel mapped on D. mel. genome 19-29 1,224,035 
SmallRNA-seq D. sim mapped on D. mel. genome 19-29 715,023 
SmallRNA-seq F1 mapped on D. mel. genome 19-29 575,365 
SmallRNA-seq Cutoff+/Cutoff qq37/wm25, D. mel. 19-29 796659 
SmallRNA-seq Cutoffqq37/Cutoffwm25, D. mel. 19-29 1012788 
SmallRNA-seq MD:♀ P1152 x ♂ BC69 progeny 19-29 2,184,242 
SmallRNA-seq NMD: ♀ BC69 x ♂ P1152 progeny 19-29 1,782,627 
SmallRNA-seq Total-BQ16, D. mel. 19-29 1,246,326 
SmallRNA-seq Total-P1152, D. mel. 19-29 1,232,610 
SmallRNA-seq Total-NMD, D. mel. 19-29 1,340,181 
SmallRNA-seq Total-MD, D. mel. 19-29 1,155,386 
SmallRNA-seq Piwi-P1152, D. mel. 19-29 1,651,641 
SmallRNA-seq Piwi-MD, D. mel. 19-29 2,184,242 
SmallRNA-seq Piwi-NMD, D. mel. 19-29 1,782,627 
SmallRNA-seq Aub-P1152, D. mel. 19-29 574,772 
SmallRNA-seq Aub-MD, D. mel. 19-29 644,996 
SmallRNA-seq Aub-NMD, D. mel. 19-29 370,322 
SmallRNA-seq Ago3-P1152, D. mel. 19-29 390,085 
SmallRNA-seq Ago3-MD, D. mel. 19-29 426,663 
SmallRNA-seq Ago3-NMD, D. mel. 19-29 124,222 

http://genesdev.cshlp.org/content/suppl/2013/01/31/gad.209841.112.DC1.html
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Table S2. qPCR primers 
 
LacZ-a-f GTTACGGCCAGGACAGTCGTTTGC 
LacZ-a-r TCCAACGCAGCACCATCACC 
LacZ-b-f TATTGAAACCCACGGCATGGTGC 
LacZ-b-r GCTGCACCATTCGCGTTACG 
LacZ-c-f CCTTACTGCCGCCTGTTTTGACC 
LacZ-c-r CGTTTTCGCTCGGGAAGACG 
LacZ-control-f GTGGAGTTTGGTGCAGAAGC 
LacZ-control-r AGCCGTGCTTTATGCTTTAC 
S1-f GCCTTTGACCCGTGTGC 
S1-r CAGGAAATTCAGGGAGACGGG 
S2-f GTAATACTGTGACTGGGAGCCAAC 
S2-r CTGTTACGAAAGCACGGGATCTG 
T1-f ATCCGTCGACCTGCAGCCAAG 
T1-r CGTGGCATGCAATGCATTCTG 
T2-f TGCACATTTTGCAGGAGTACGGC 
T2-r GATTTCGGCGCGACTGCTACC 
RP49-f CCGCTTCAAGGGACAGTATCT 
RP49-r ATCTCGCCGCAGTAAACG 
42AB-f CTTCAGCTTGGAGGAAACCAG 
42AB-r CAGCGACTTAAAGAGTGCAGTG 
ST-control-f GCTTTGGAGGAAGGGAGACAC 
ST-control-r GCATCCAGCCAATTTACCCTC 

 
 
 
 

Table S3. piRNA cluster coordinates 

Cluster ID Chromosome Start Stop 

42AB: chr2R    2144349    2382500 
20A: chrX    21391192    21431907 
38C: chr2L    20148652    20223262 
80EF: chr3L    23281510    23310943 
Flamenco: chrX    21502935    21844576 

 chr3LHet    1402377    1521600 
38C-up: chr2L    20104577    20116331 
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Table S4. Summary of diffraction data and structure refinement statistic. 

 

Summary of diffraction data  

Crystal  Chromodomain 
Chromodomain 

+ H3(1-15)K9me3 

Beamline  NSLS-X29A APS-24ID-E 

Wavelength (Å)  1.029 0.9792 

Space group  P3221 P21 

Cell parameters    

   a, b, c (Å)  36.5, 36.5, 76.1 42.3, 79.9, 81.2 

   β (°)  90 96.4 

Resolution (Å)  50.0-1.5 (1.55-1.50)a 50.0-2.5 (2.59-2.5) 

Rmerge (%)  5.8 (65.3) 13.1 (81.8) 

Observed reflections  95,734 75,287 

Unique reflections  9,293 18,675 

Redundancy  10.3 (9.5) 4.0 (4.0) 

Average I/σ(I)  61.9 (3.1) 13.3 (2.0) 

Completeness (%)  94.0 (85.0) 100.0 (99.9) 

Refinement and structure model 

R factor / Free R factor (%) 21.1 / 25.3 19.5 / 24.5 

Number of non-H atoms 506 3,506 

   Protein / peptide  461 / - 2,946 / 357 

   Water  45 203 

Average B factors (Å2) 40.6 30.3 

   Protein / peptide  36.8 / - 28.7 / 44.2 

   Water  44.5 28.9 

RMS deviations    

   Bond lengths (Å) 0.010 0.008 

   Bond angles (°) 1.252 1.233 
a Values in parentheses are for highest resolution shell 

 
 
  



 74 

Table S5. Read-mapping statistics for GRO-Seq experiment 

 

Cluster 
Numbers or reads 

 
shRhi_GRO-Seq control_GRO-Seq 

42AB  1,220   2,642  
80EF  1,413   1,405  
38C  293   452  
Xup  3,846   2,824  
TJ  440   273  
total mapped reads  4,443,868   3,280,199  
uniquely mapped reads  3,151,761   2,438,699  

 

 

Chapter 3 - Part 2 

Table S1. SNPs identified in genomes of strains A and I 

 

Region 

SNPs 

Strain A Strain I Common 
Unique to 
Strain A 

Unique to 
Strain I 

Strain A 
vs. I 

Whole genome 326,026 1,086,963 169,192 156,834 917,771 1,074,605 
Cl. 1. Scaffold 12822: 
5314-28206 7 27 6 1 21 22 
Cl. 2. Scaffold 13052: 
1782637-1820594 2 6 1 1 5 6 
Cl. 3. Scaffold 10322: 
427899-451171 13 9 9 4 0 4 
Cl. 4. Scaffold 12823: 
172786-186120 4 4 3 1 1 2 
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Table S2. Read mapping statistics 

Library Read length Unique mappers 

ChIP-Seq H3K9me3 strain A rep1 50 7,648,612 

ChIP-Seq Pol II strain A rep1 50 4,991,905 

ChIP-Seq input strain A rep1 50 6,548,402 

ChIP-Seq H3K9me3 strain I rep1 50 3,572,652 

ChIP-Seq Pol II strain I rep1 50 3,740,529 

ChIP-Seq input strain I rep1 50 5,673,571 

ChIP-Seq H3K9me3 MD progeny rep1 50 11,756,746 

ChIP-Seq input  MD progeny rep1 50 23,944,512 

ChIP-Seq H3K9me3 NMD progeny rep1 50 11,016,563 

ChIP-Seq input NMD progeny rep1 50 27,633,846 

ChIP-Seq H3K9me3 strain A rep2 50 8,416,288 

ChIP-Seq Pol II strain A rep2 50 13,697,961 

ChIP-Seq input strain A rep2 50 10,310,302 

ChIP-Seq H3K9me3 strain I rep2 50 5,126,455 

ChIP-Seq Pol II strain I rep2 50 7,236,748 

ChIP-Seq input strain I rep2 50 8,749,926 

ChIP-Seq H3K9me3 MD progeny rep2 50 43,753,436 

ChIP-Seq input  MD progeny rep2 50 11,394,244 

ChIP-Seq H3K9me3 NMD progeny rep2 50 37,452,873 

ChIP-Seq input NMD progeny rep2 50 6,996,146 

 

RNA-seq (rRNA minus) strain A 50 12,164,323 

RNA-seq (rRNA minus) strain I 50 6,707,230 

   

Library Cloning range Unique mappers 

SmallRNA-Seq strain A 19-29 566,504 

SmallRNA-Seq strain I 19-29 737,247 

SmallRNA-Seq MD progeny 19-29 499,334 

SmallRNA-Seq NMD progeny 19-29 770,258 
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Table S3. qPCR primers 

cl.1-a-f CGGCCACTTATGTTTCAAGC 
cl.1-a-r TAGTTCTTGCTATGTGTTGG 
cl.1-b-f ACAGCAGACTACACAACAGC 
cl.1-b-r CCTAACAGCAAGTTTTAGCTCC 
cl.1-c-f CGTCCGTTCACAATTAGACC 
cl.1-c-r AAGATTAAGCTAGCAATCGC 
cl.2-a-f AAGTATTGGCACTTGGGTCC 
cl.2-a-r CTATTTCGGATACTAGCAGG 
cl.2-b-f GAAGCTGTTCCGTTCATTGG 
cl.2-b-r CCACCACTTTTTGGGTTGCG 
cl.2-c-f CTTGGACACCCAATAACTGC 
cl.2-c-r TTTTGTAGGCACGTGATTGG 
cl.3-a-f ACCACAAAGGTACTCAGTCC 
cl.3-a-r GGCAACGTATATCTGAAATGC 
cl.3-b-f TCACAACGCCCAGTAATACC 
cl.3-b-r GATTTGGCATCTCACTGTGG 
cl.3-c-f CGCATTTCGATAGCTCATGG 
cl.3-c-r AGCACCATATTATTTGCCGA 
cl.4-f AGGTGAAATCGCGCAAATGG 
cl.4-r TGTTGGGTTTGTTGACTTGG 
vir-control-f ATGAGCAAGAGGCTGAAAGG 
vir-control-r CTTTAAGTTTGCGACGAAGC 

 
 
 

Table S4. piRNA cluster coordinates 

Cluster ID Scaffold Start Stop 

cl.1 12822 5314 9259 
cl.2 13052 1764724 1822123 
cl.3 10322 427899 451171 
cl.4 12823 172751 189360 
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Annexes – Supplementary Figures 
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Supplemental materials available online at the address: 

http://genesdev.cshlp.org/content/suppl/2013/01/31/gad.209841.112.DC1.html 

 

Chapter 3 - Part 1 

 

 

Figure S1. H3 ChIP-qPCR over T1 and BX2 transgenes.  
H3 signal on T1 and BX2 as measured by ChIP-qPCR on three different regions of the lacZ 
sequence shown on Fig. 1A. Signal was normalized to input and compared to signal at the same 
control genomic region (chr2R: 2336913-2337023) used in Fig. 1B-D. Error bars represent the 
standard error of the mean between two technical replicates.  
 

  

http://genesdev.cshlp.org/content/suppl/2013/01/31/gad.209841.112.DC1.html
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Figure S2. Analysis of the ping-pong processing.  
An equal number of piRNA reads mapping to the P{lArB} transgene in each library was 
sampled 1000-times. Shown are the distributions of the fractions of reads participating in ping-
pong piRNA pairs.  
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Figure S3. piRNA sequences that mapped to BC69 target locus. 
The junction between hsp70 and rosy segments is present in BC69, but not in P1152. 
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Figure S4. Sequence alignment of the Rhino chromodomain.  
(A) Structure based sequence alignment of HP1 chromodomain from D. melanogaster. The 
secondary structure of Rhino is shown on the top of alignment. The three conserved aromatic 
residues involved in methyl-lysine recognition are highlighted with asterisk at the bottom of the 
alignment. 
(B) Alignment of the Rhino chromodomain with HP1 family chromodomains from human, 
mouse, Drosophila and S. pombe. The three conserved aromatic residues involved in methyl-
lysine recognition are marked with arrows.  
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Figure S5. Genome-wide analysis of the correlation between Rhino and H3K9me3 
occupancy. Shown are Rhino ChIP-Seq enrichments (RPMs, ChIP/Input) for genomic regions 
that have different level of H3K9me3 mark. The analysis was performed on 50 kB genomic 
windows that were binned into four groups according to the level of H3K9me3 ChIP-Seq 
enrichment.  
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Figure S6. Recognition of the H3K9me3 peptide by the Rhino chromodomain. 
(A) Superposition of the H3K9me3 peptide-bound Rhino chromodomain (in color) with the 
free form chromodomain (in silver) reveals no conformational change. 
(B) The K9me3 group of the H3 peptide is recognized by three conserved aromatic residues.  
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Figure S7. Intermolecular recognition contacts at the dimer interface of the Rhino-H3(1-

15)K9me3 complex. 
(A) Hydrophobic interactions at the dimer interface. 
(B) Hydrogen bonding interactions at the dimer interface. 
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Figure S8. Rhino and Cutoff form a complex in vivo.  
Co-immunoprecipitation from ovary extract shows specific interaction between tagged Rhino-
BioTap and Cutoff-eGFP proteins. 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S9. Association of Cutoff with piRNA cluster chromatin depends on RNA. Cutoff 
signal as measured by ChIP-qPCR on several regions of cluster 42AB and control region cluster 
20A (n=2). Signal was normalized to input and compared to signal at a control genomic region 
(rp49 gene). Where indicated, RNase treatment was performed on the lysate prior to 
immunoprecipitation. 
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Figure S10. Size profile of small RNAs generated from the 42AB piRNA cluster. 
Total small RNAs of the size range between 18 and 29 nt were cloned from Drosophila ovaries. 
The peak at 21 nt corresponds to siRNAs. The broader peak at 23-28nt corresponds to piRNAs. 
 
 
 
 
 
 

 
Figure S11. GRO-Seq analysis of transcriptional output from double-stranded piRNA 

clusters upon Rhino depletion.  
Shown are RPM (reads mapping to the piRNA cluster normalized to total number of mapped 
reads in the respective library) of GRO-Seq on ovaries from wildtype and Rhino knockdown 
flies. 
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Figure S12. Specification of piRNA clusters by trans-generationally inherited piRNAs in 
interspecies hybrids between D. melanogaster and D. simulans. Shown are piRNAs (RPMs) 
expressed in ovaries of D. melanogaster, D. simulans, and F1 hybrids between D. melanogaster 
females and D. simulans males that inherited the piRNAs from their mothers. The left panel 
shows piRNAs mapping to a D. simulans piRNA cluster (chr2L:15156-36342), and the right 
panel shows mapping of piRNAs to a D. melanogaster piRNA cluster (chr3L:23257666-
23337605). The D. melanogaster piRNA cluster is expressed in the F1 progeny (F1), but the 
D. simulans piRNA cluster is not. 
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Chapter 3 - Part 2 

 

 

Figure S1. H3K9me3 and RNA pol II occupancy over piRNA clusters in parental strains 

and MD and NMD progenies.  
(A) H3K9me3 over piRNA clusters in strains A and I as measured by ChIP-seq (an independent 
biological replicate for the experiment shown in Figure 2B). Cluster genomic regions were 
divided into 200 bp windows and a sequencing-depth normalized RPM (Reads Per Million) 
score was calculated for each window. The Mann-Whitney U test was used to calculate the p-
values and evaluate the significance of the observed differences. 
(B) RNA polymerase II density over piRNA clusters in the two strains as measured by ChIP-
seq (an independent biological replicate for the experiment shown in Figure 2C). Cluster 
genomic regions were divided into 200 bp windows and a sequencing-depth normalized RPM 
(Reads Per Million) score was calculated for each window. The Mann-Whitney U test was used 
to calculate the p-values and evaluate the significance of the observed differences.  
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Figure S2. RNA-Seq profiles on the cdi gene present in cluster 1.  
Production of piRNAs in strain A correlates with a higher level of RNA-Seq signals in intron 
regions (IR) as well as downstream sequences (NGR) of the cdi gene. In contrast, RNA-Seq 
levels at exons (ER1-3) are higher in strain I that does not generate piRNAs from this region. 
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Figure S3. No correlation between the level of piRNA cluster expression and the ping-

pong piRNA biogenesis.  
Each dot represents individual double-stranded piRNA cluster in D.virilis genome. Expression 
of each piRNA cluster was measured by the level of piRNAs (A) or long RNAs (B). The same 
number of piRNA from each cluster was sampled 1000 times to determine normalized fraction 
of piRNAs generated through ping-pong biogenesis (Y-axis). 
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Figure S4. H3K9me3 over piRNA clusters in NM and NMD progenies. 
The levels of H3K9me3 over piRNA clusters were measured by ChIP-seq on two independent 
biological samples. The input-normalized H3K9me3 signal is higher in the MD progeny 
compared to the NMD progeny. Signals on cluster #4, which is equally active in the two strains, 
are unchanged in the progeny. Cluster genomic regions were divided into 200 bp windows and 
a sequencing-depth normalized RPM (Reads Per Million) score was calculated for each 
window. The Mann-Whitney U test was used to calculate the p-values and evaluate the 
significance of the observed differences. 
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Figure S5. piRNA and H3K9me3 density over SNPs in cluster #1 in MD and NMD 
progenies. A higher level of piRNAs and H3K9me3 density is observed over the cluster 
sequence in strain MD at each chromosome versus strain NMD. Only reads that mapped to 
SNPs that distinct between A and I chromosomes are shown. 
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Abstract: 

piRNAs are an extremely diverse population of small RNA found in the animal germline to silence 
mobile genetic elements: loaded into Piwi proteins, they guide homology-dependent cleavage of active 
transposon mRNAs. In Drosophila, three Piwi proteins are expressed, from which two, AUB and AGO3, 
are known to destroy transposon transcripts in the cytoplasm. The third one, PIWI itself, is nuclear, and 
the molecular mechanism remains unknown. The main sources of piRNAs are discrete genomic loci 
called piRNA clusters, however it is not known what differentiate them from non-piRNA producing 
loci. During my PhD, I focused my work on two central questions in the field: 

1) What is the role of Piwi in the nucleus?

We showed that Piwi is responsible for transcriptional silencing by mediating installment of repressive 
marks, especially H3K9me3, over active transposons copies in a piRNA dependent manner. 

2) How are piRNA clusters defined, and what regulates their expression?

. We showed that maternally inherited piRNAs are responsible to define germline bi-directional clusters 
at the next generation through two mechanisms: in the nucleus, by deposition of H3K9me3 onto 
complementary genomic sequences, and, in the cytoplasm, by initiating the ping-pong cycle. 

. We found that cluster promoters are essential to mediate full cluster transcription, which is allowed 
thanks to a very specific chromatin signature necessary to ensure piRNA production. 

Résumé: 

Les piRNAs sont une population de petit ARNs très diverse, que l’on retrouve dans la lignée 
germinale des animaux pour réprimer les éléments génétiques mobiles : agissant de pair avec les 
protéines Piwi, ils guident le clivage des transposons actifs. Chez la Drosophile, 3 protéines Piwi sont 
présentes, dont deux d’entre elles, AUB et AGO3, sont cytoplasmiques et la dernière, PIWI, est 
nucléaire, mais son mécanisme d’action reste inconnu. La source principale de piRNAs sont des 
régions du génome bien particulière, appelé cluster de piRNAs. Cependant, il n’est pas encore connu à 
ce jour ce qui différentie ces régions du reste du génome. Durant mon doctorant mon travail s’est 
focalisé sur ces deux questions centrales : 

1) Quel est le rôle de PIWI dans le noyau?

Nous avons montré que PIWI était responsable de répression transcriptionelle des transposons par 
l’intermédiaire de la déposition de marques chromatiniennes répressives, H3K9me3, grâce à la 
spécificité des piRNAs. 

2) Comment sont définit les régions générant des piRNAs et comment sont régulés leur
expression ? 

Nous avons trouvé que les piRNAs, transmis par la mère aux progénitures, sont responsables de 
l’identification des régions génomiques donnant naissance à de nouveaux piRNAs, grâce à la 
déposition de H3K9me3 dans le noyau et par l’initiation du cycle ping-pong dans le cytoplasme. 

Nous avons aussi mis en évidence les régions promoteurs des clusters de piRNAs, et trouvé qu’elles 
sont nécessaires pour la production de piRNAs. 

Keywords: piRNA, chromatin, transposons, transcription, epigenetic, Drosophila 


