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Short history of papillomavirus-induced carcinogenesis 
 

Human papillomaviruses (HPV) are small non-enveloped double-stranded circular DNA 

viruses. Their genome is approximately 8 kb and is incorporated in an icosahedral capsid 

(Figure 1) (1). HPVs are epitheliotropic viruses that infect keratinocytes at a wide range of body 

sites. To date, based on their DNA sequence variation, 170 HPV types are identified (2). The 

most frequent manifestation of HPV infection is the development of warts. However, some 

HPV types are involved in the development of cancers. The research in HPV field is centered 

on the study of the relationship between HPV infection and cellular transformation.  

 

Research on papillomaviruses (PV) was initiated about more than a century ago and passed 

through several phases. Few years after the use of filters retaining bacteria to demonstrate the 

filterability of the causative agent of tobacco mosaic disease (3), in late 19th century, 

experimental transmission of papilloma in dogs was reported (4). These were the first 

observations suggesting viruses as causative agents. In 1907, Ciuffo reported the cell-free 

transmission of human warts, demonstrating for the first time a viral etiology for human disease 

(5). A second phase of research in this field was stimulated by several observations related to 

the biology of PV in animals, in the 1930s. This period was initiated by the study of cottontail 

rabbits’ papilloma in 1933. Extracts isolated from large warts of wild cottontail rabbits’ lesions 

contained infectious particles capable of inducing cutaneous papilloma in domestic rabbits (6). 

This virus is now known as the Cottontail rabbits PV (CRPV) and became an important 

experimental model of viral tumorigenesis. With the advent of electron microscopy, tobacco 

mosaic virus was observed first in 1939 and a decade later HPV particles visualization was 

achieved (7). Although the research on papillomaviruses was hampered by the inability of these 

viruses to propagate in vitro, the interest on this field increased when Ito and Evans showed 

that papillomavirus DNA inoculation into rabbits was sufficient to induce carcinomas (1961) 

(8). This was the first demonstration that PV genome displays oncogenenic properties. Later 

on, Crawford and Crawford elucidated the physical properties of HPV DNA, in 1963 (9). 

Following the revolution of molecular cloning in the 1970s, cutaneous HPV types were 

identified in malignant skin lesions in patients with a rare hereditary skin disorder, 

Epidermodysplasia Verruciformis (EV) (10), providing the first link between HPV and human 

cancer. With the use of the new molecular biology technics, the plurality of HPV types was 
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demonstrated and two mucosal low-risk HPV types (i.e. 6 and 11), and shortly after, two 

mucosal high-risk HPV types (i.e. 16 and 18) were isolated from genital warts in early 1980s 

(11-17).  The initial studies aiming to demonstrate the role of HPV in human carcinogenesis 

was based on the hypothesis that only one type existed. This assumption led to many contrasting 

results when different studies analyzed lesions from different anatomical regions. The 

discovery of the existence of different HPV types with mucosal or cutaneous tropism explained 

the inconsistencies reported in many studies. Most importantly, these new findings overcame 

the criticism of the implication of HPV in cervical cancer proposed in 1976 (18), and 

epidemiological study clearly identified HPV infection as main risk factor for cervical cancer 

(19). In 1987, studies of Durst and colleagues showed in vitro experimental models the 

oncogenic properties of mucosal high-risk HPV16, and in particular highlighted the 

transforming abilities of the products of two early genes, E6 and E7 (20). Subsequently in last 

three decades, a vast number of studies have fully characterized the biological properties of E6 

and E7 as main viral oncoproteins, being able to deregulate fundamental cellular events, such 

as cell cycle and apoptosis (21). Thanks to the knowledge built on HPV biology, prevention 

methods are developed to defeat cervical cancer (22-24). 

 

 

 

Figure 1. Electron micrograph of negatively stained papillomaviruses.  

Sources: left picture from Inserm unit 190, right picture from NIH-Visuals Online n  AV-8610-
3067. 
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Several screening strategies for HPV-induced cervical lesions have been put in place in many 

worldwide countries, determining a strong decrease of cervical cancer incidence. In addition, 

two prophylactic HPV vaccines are now commercially available, one quadrivalent that included 

two mucosal low-risk HPV (e.i.6 and 11) and two mucosal high-risk HPV (e.i.16 and 18) and 

one bivalent that includes two mucosal high-risk HPV (e.i.16 and 18).  

Although research was initially focused on the role of mucosal high-risk HPV types in cervical 

cancer, it is now well established that this group of viruses are the etiological factor of a subset 

of other genital tract cancers (e.g. vagina, vulva, anus, and penis) as well as head and neck 

cancers (25-29). HPV research is still expanding the aim to identify new links with additional 

human cancers; such has cutaneous HPV types and nonmelanoma skin cancer (NMSC) (30, 

31). 

 

Classification and phylogeny 
 

The HPVs were originally included in the Papoviridae family, together with polyomaviruses. 

Subsequently, due to morphological characteristics and the accumulated knowledge on PVs 

genome, a distinct family of Papillomaviridae was created. PVs are classified according to the 

species of origin and the degree of relationship between viral genomes. A recent phylogenetic 

tree has been designed groups the different PV types and at least 170 HPV types are presently 

identified (Figure 2) (32, 33). The open reading frame of L1 gene is particularly conserved 

among PVs and is used for their classification. Phylogeny of PVs is organized with following 

taxonomic levels: family, genus, species, types, sub-types, and variants (32). Papillomaviridae 

family is composed of 16 genera with less than 60 % homology (from alpha to pi). Each genus 

is divided into several numbered species (60 to 70 % homology) that are divided into types (71 

to 89 % homology). Subtypes differ with only 2 to 10 % and variant with less than 2 % 

differences (34). Variants are indicated in reference to a prototype sequence of a PV gene and 

one nucleotide variation can be sufficient to define a variant. 

HPV are represented by the 5 genera: alpha, beta, gamma, mu and nu. Based on their tissue 

tropism, two main groups of HPV have been identified: cutaneous and mucosal. According to 

their oncogenic potential, mucosal HPV types are divided into low- and high-risk. Some of the 
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cutaneous types are preferably found in EV associated with a high risk of developing skin 

cancer upon UV-exposure. 

 

Morphology and genomic organization 
 

The HPV viral particle is approximately 55 nm in diameter and formed by an icosahedral capsid 

that is composed of L1 and L2 proteins arranged in 72 capsomers (Figure 1) (35). The number 

of L1 and L2 proteins was investigated and recent studies report that the capsid of HPV is 

composed of 360 L1 and 72 L1 molecules (36, 37). L1 plays an important role in the formation 

of the capsid and L2 is mainly involved in the encapsidation of the viral genome (38). 

The HPV genome is organized as illustrated in figure 3. The genome size is approximately 8 

kb forming a chromatin-like complex by associating histones. It is divided in three regions: (i) 

the long control of about 1 kb, (ii) the early region of about 4 kb, and (iii) the late region of 

about 3 kb. The long control region (LCR) encodes the cis regulatory elements regulating 

replication and gene expression (1, 39). The early region contains genes expressed during the 

initial phase of the virus life cycle and their products are important in genome replication and 

transcription as well as in processes of host cell transformation. The late region encodes the 

capsid proteins that are involved in the last steps of the virus life cycle. Transcription of each 

of the coding regions, early and late, is regulated through its respective promoter containing 

responsive elements for host-cell transcription factors. In undifferentiated cells only the early 

promoter is active whereas both early and late promoters are active in differentiated cells (40, 

41). 

Despite the highly conserved structure of the genome, HPV types of different genera have some 

exclusive features. For instance, the beta HPV genome is relatively short in comparison to the 

mucosal HPV types, ranging from 7.4 to 7.7kb. This fact is due to the considerably reduced 

size of the LCR, around 400bp compared to 650-900bp in other papillomaviruses. Beta HPV 

types display some differences also in the coding region.  Most of them lack the E5 gene, with 

the only exception of HPV14. In addition, the E2 ORF of all the beta HPV types is much longer 

compared to the other papillomaviruses.  Also the mucosal high-risk HPV types present some 

specific characteristics. Indeed, HPV 16, 18 and 31 produce an additional early protein, 
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E8^E2C that represses the expression of the viral oncogenes E6 and E7 and consequently 

cellular proliferation (42).  

Similarly to beta HPV genus, gamma HPV types lack the E5 gene. The isolation of three novel 

and related gamma HPV types (101, 103 and 108) from cervical tissues has been recently 

reported. Interestingly, the genomes of these three gamma HPV types lacks the E6 open reading 

frame (43, 44). 

 

 

Figure 2. Papillomavirus phylogenetic tree based on the sequence of the L1 open reading frame. 
The numbers at the ends of each of the branches identify the Type; c-numbers refer to candidate 
types; all other abbreviations refer to animal papillomavirus types. The number at the inner 
semicircular symbols refer to the papillomavirus species and the outermost semicircular symbols 
identify papillomavirus genera. The tree was constructed using the MEGA5.1 program (33).  

 

  



 

 

 

 10 

HPV-associated malignancies 

Cervical cancer 
 

The alpha genus comprises approximately 30 HPV types that infect the mucosa of the genital 

and oral tract as well as several benign cutaneous HPV types that are associated with the 

development of common skin warts. Based on their oncogenic potential, the mucosal HPV 

types are divided in into two groups: low-risk HPVs (e.g. types 6 and 11) that are mainly 

associated with benign genital warts, and high-risk HPVs that are the etiological agents of 

cervical cancer (45). In a recent monograph, the International Agency for Research on Cancer 

as classified as carcinogenic to humans 12 different HR HPV types, namely 16, 18, 31, 33, 35, 

39, 45, 51, 52, 56, 58 and 59 (46). HPV16 and 18 are the most frequently found HPV types in 

cervical cancers worldwide, being detected in approximately 50% and 20% of the cases, 

respectively (47, 48).  

The mucosal HPV types are sexually transmitted and in the female genital tract the area adjacent 

to the border of the endocervix and ectocervix, known as transformation zone or 

squamocolumnar junction, appears to be the preferential site for infection. It is believed that 

micro-traumas occurring during sexual intercourse strongly facilitate the viral infection. 

Approximately 80% of sexually-active women get a HPV infection during their life. In the 

majority of the cases, the HPV infections remain asymptomatic and are cleared by the immune 

system in a relatively short time (6−12 months). In a small number of cases, infection may 

persist, and after a period of latency, low and/or high-grade cervical intraepithelial neoplasia 

(CIN) develop, which may still regress or progress to an invasive cervical carcinoma (49). 

Impairment of the immune surveillance strongly facilitates viral persistence and subsequently 

HPV-induced carcinogenesis. 

 

Penile Cancer 
 

Cancer of the penis is common in developing countries (10 % of cancers in men), and is at least 

ten times higher than in the developed countries and mostly affects men aged between 50 and 

70 years (50). Penile cancer has a multi-factorial etiology. The identified risk factors for the 

development of this cancer include poor hygiene, smoking, lack of circumcision, multiple 

sexual partners, and HPV infection (50, 51). The investigation of HPV involvement in penile 
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cancer development revealed a heterogeneous prevalence of high-risk HPV types. Thus not all 

penile cancer cases are HPV-related (prevalence of 46,9 %) (52). HPV detection in penile 

cancer revealed that HPV 16 is the most frequent HPV type associated to this cancer (60 %) 

(53). Histological analysis of the HPV-positive cases revealed that the basaloid and warty 

subtypes of penile carcinomas show the strongest association with the HPV (54-56). Penile 

cancer is generally treated through surgery; however this affects psychology and sexuality of 

the patient. Therefore, chemotherapy and radiotherapy are also implemented for penile 

carcinoma treatment (57, 58). 

 

Anal cancer 
 

Anal cancer represents 3 % of the colon and rectum malignancies and appears mainly at the age 

of 60 years (59). Rates of this type of cancer are continuously increasing (2 % per year) (60). 

This observation is at least partly attributed to the sexual behavior during the last decades. Anal 

cancer development is related to several risk factors including smoking, HIV-positivity, 

previous cancers (cervical, vulvar and vaginal cancers), sexual behavior, and HPV infection 

(61). As is for the cervical region, the anal region is very susceptible to HPV infection and the 

lesions form anal intraepithelial neoplasia (as observed in cervical cancer) that can progress to 

squamous cell carcinoma (SCC). HPV DNA was detected in 46 to 94 % of all anal cancers (62). 

In populations of HIV-positive men having sex with men, studies detected high-risk HPV types 

in approximately 90 % of the cases. According to the tumor extend, surgery and 

chemoradiotherapy are the most practiced therapies for anal cancer. 

 

Head and neck cancer 
 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

worldwide, it accounts for 3 to 4 % of all cancers (63, 64). Tobacco and alcohol use are 

traditionally associated with HNSCC development. However, thirty years ago, HPV was also 

suspected to play a role in the development of HNSCC (65). It is now well demonstrated that 

high-risk HPV types are also involved in a sub-set of head and neck cancers (HNC). 

Approximately, 25% of worldwide oropharyngeal carcinomas are linked to high-risk HPV 

infection, while the role of these viruses in HNC, such as oral cavity, larynx, and hypopharynx, 
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appears to be considerably less significant (66, 67). Among the high-risk HPV types, HPV16 

is responsible for the majority (between 86-95%) of the HPV-positive oropharyngeal 

carcinomas (68). The higher prevalence of HPV16 in HNC in comparison to cervical cancer 

may be explained by intrinsic features of two distinct anatomical sites. In the oropharynx the 

immune system is much more active than the genital tract. Biological and epidemiological 

studies have shown that HPV16 is clearly more efficient in evading the host immune response 

than the other high-risk HPV types (69, 70). Thus, it is likely that HPV16 is more efficient than 

the other high-risk HPV types in establishing a persistent infection in the oropharynx, which is 

an essential step for the development of a malignant lesion.   

 

Non-melanoma skin cancer  
 

Non-melanoma skin cancer (NMSC) represents the most frequently diagnosed form of cancer 

among the Caucasian population, with continuing increase in incidence worldwide (71). The 

majority of NMSC are basal cell carcinomas (BCC), accounting for about 80 % of NMSC cases, 

and SCC account for the majority of the remaining NMSC (72, 73). It is well established that 

exposure to sunlight or ultraviolet A and B (UVA and UVB) can cause NMSC upon DNA 

damage (74). Fair skin, blond hair and blue eyes and immune status are also recognized as risk 

factors for NMSC (75-77). However, several studies indicate that HPV can be a co-factor 

favoring skin carcinogenesis, particularly beta HPV types. Genus beta comprises a large 

number of cutaneous HPV types that appears to be involved in the development of NMSC. 

Forty-three beta HPV types have been isolated and fully sequenced so far (78). Initial evidence 

for the possible association of beta HPV types with skin cancer came from the isolation of  the 

first beta HPV types, HPV5 and HPV8, in the skin of cancer-prone patients suffering from a 

rare autosomal recessive genetic disorder called Epidermodysplasia verruciformis (EV) (30, 

79). EV patients are highly susceptible to beta HPV type infections and develop disseminated 

pityriasis versicolor-like lesions and flat warts (80-82). These skin lesions arise early in life and 

in approximately 30–60 % of cases progress to multifocal SCC at sun-exposed regions. With 

the development of highly specific and sensitive detection methods, it became clear that beta 

HPV types are also abundantly present in the skin of normal individuals (83, 84). Investigation 

of the genetic background of EV patients identified a susceptibility locus within the 

chromosome 17. Mutations in EVER1 and EVER2 genes were therefore reported. In EV 

patients, a total of seven and five loss of function mutations were isolated in EVER1 and 
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EVER2 genes, respectively (85-87). These genes encode transmembrane proteins and also 

termed TMC6 (for EVER1) and TMC8 (for EVER2). They were recently reported to play a 

role in the regulation of zinc homeostasis that can have an effect on the HPV life cycle (88, 89). 

However, at present, it is still unclear whether EVER1 and EVER2 genes are involved the 

immune response to HPV infection.  

Epidemiological studies, using anti-HPV antibodies and/or viral DNA as markers of infection, 

have provided evidence that non-EV individual with history of skin SCC showed a higher 

positivity for beta HPV infections than controls (90-94). The fact that impairment of the 

immune system in organ-transplant recipients (OTRs) strongly increases the risk of NMSC 

further supports the role of an infectious agent in skin carcinogenesis (95-98). Accordingly, 

beta HPV infections were associated with an increased risk of NMSC in OTRs (99). Several 

data indicate that beta HPV types are involved at early stage of skin carcinogenesis. For 

instance, quantitative type-specific PCR revealed that higher viral genome copy number can be 

detected in pre-malignant lesions, actinic keratosis, than SCC (100, 101). In addition, far less 

than one HPV DNA copy per cell is present in NMSC biopsies (79). It is therefore likely that 

the presence of the viral genome may not be required in the later stages of carcinogenesis. This 

may imply a need to consider a new scenario for the role of HPV in NMSC pathogenesis, such 

as a "hit-and-run" mechanism. In this case, HPV viral DNA is required at the initiation phase 

facilitating the accumulation of DNA damage induced by UV-irradiation, but not for the 

maintenance of the transforming state. 
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HPV replicative cycle 
 

Virus entry 
 

Studies on the mucosal HPV types have shown that the first step in HPV infection is the 

interaction of the viral capsid with the cytoplasmic membrane of cells at basal layer of the 

epithelium. This event is mainly mediated by the major capsid protein L1 that interacts with to 

heparan sulfonated proteoglycan (HSPG) on the cell surface (102, 103). It is also possible that 

the viral particles bind another component of the cellular membrane. In fact, it has been 

proposed that 6 integrin may act as secondary cellular receptor for HPV particles (104). 

However, other studies showed that cells that do not express 6 integrin can be still infected by 

animal or human PV (102, 105). After binding of HPV16 particles to the cellular membrane, 

their internalization is mediated by a clathrin-dependent endocytic pathway (106). Additional 

findings indicate that other mucosal HPV types may use different endocytosis pathways (107). 

It is highly likely that the minor L2 capsid protein also plays a role in membrane binding and 

cellular internalization. In fact, anti-L2 antibodies against specific linear epitopes are able to 

block the internalization of L1/L2 virus-like particles in in vitro assays (108-110). Surviladze 

and colleagues have recently presented evidence for a novel mechanism of viral entry. They 

observed that after binding to the cell surface, HPV16 particles are released as a soluble 

complex with HSPG and growth factors. The latter proteins mediate the interaction of the 

soluble complex with their cognate receptors facilitating the internalization of the viral particles 

(111). Endocytosis via the clathrin is characterized by the fusion of the endosome with another 

type of endosome (e.g. lysosome) and the endocytosis via the caveoline system can lead to a 

direct fusion between the endosome and the endoplasmic reticulum. The length of virus entry 

may involve several molecular events that are responsible for the transfer of the virion from 

first contact of the cellular surface to specific receptors that mediate the entry (112). For 

instance, the keratinocytes extra-cellular matrix component Laminin 5 was found to be required 

for the entry of HPV11 (113). Following virus release from the endosome, L2 protein mediates 

the transfer to the cellular nucleus (114, 115). The N-terminus of L2 is cleaved within the 

endosomal compartment via the cellular protease, Furin, thus releasing an L2/genome complex 

into the cytosol (116). The L2/genome complex may then interact with Syntaxin 18, which 

ferries the complex to a perinuclear site (114, 116). L2 can be translocated in the nucleus 
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through its NLS (117). Following entry and uncoating, HPV genomes are replicated in the 

nucleus to about 100 episomal copies per cell. 

 

Genome maintenance  
 

Subsequent to its entry, the virus maintains a low-copy number of its genome in the host cell 

nucleus (118). The proteins E1 and E2 play important roles in the maintenance of the genome 

in episomal form and its segregation during cell division (118-120). E1 and E2 proteins bind to 

the origin of replication and recruit host polymerases necessary for replication. Their activity 

ensures the maintenance of the genome at a low copy number in the basal cells (121). During 

mitosis, viral genomes are partitioned to the daughter cells through the binding of E2 to viral 

DNA and to protein complexes on host cell chromosomes (122-125). This observation was 

further investigated using bovine PV (BPV) E2 protein. At specific steps of cell cycle, BPV E2 

interacts with the DNA helicase ChlR1, suggesting the involvement of ChlR1 in the loading of 

the viral genome to the host cell chromosomes during DNA amplification (126, 127).  

 

Genome amplification 
 

The HPV genome is amplified in the suprabasal layer of the epithelium where keratinocytes 

undergo cell cycle arrest and differentiation. The E6 and E7 oncoproteins ensure a high 

proliferation rate of the cells by blocking cell cycle exit and inducing S-phase entry (128). 

Although host cell differentiation is necessary for the next steps of the viral life cycle, E7 forces 

cell cycle re-entry in differentiating cells by targeting a pRb family member, p130 (129, 130). 

Entry in differentiation process induces higher expression of the early proteins involved in 

replication (131). Therefore, this event induces a high production of viral genome that can be 

ranged at thousands per cells (128, 132). 
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Figure 3. Human papillomavirus (HPV) 
genome and life cycle. Upper panel: Genomic 
organization of HPV16. Eight major open 
reading frames code for early (E) and late (L) 
genes. Locus control region (LCR) and the 
responsive element within are also shown. 
Lower panel: Schematic representation of HPV 
life cycle in cutaneous and mucosal epidermis. 
Infected cells are represented in red. They 
proliferate and migrate through the upper layers. 
HPV life cycle is tightly linked to keratinocytes 
differentiation (133). 

 

 

  



 

 

 

 17 

Virion synthesis 
 

The assembly and release of the virions are dependent on the expression of the late proteins L1 

and L2 and loss of E6 and E7 expression in the upper layer of the epithelium (Figure 3) (134-

136). L1 and L2 proteins form capsomers in the cytoplasm and translocate into the nucleus 

thanks to nuclear localization signals using keryopherins (137). Virus assembly occurs in 

promyelocytic leukemia protein (PML) nuclear bodies, also referred as nuclear domains 10 

(ND10). All virus components are recruited to the ND10 via an important role played by the 

capsid protein L2 (138). The viral genome is recruited by E2 protein to the ND10 assembly 

sites (139). Following the packaging, virions undergo the last phase of their life cycle by 

releasing from the cells and escaping from the cornified envelop (140). During the virus life 

cycle, cells are forced to proliferate, accumulating DNA damage and deregulating their 

homeostasis. HPV persistence can lead to malignant lesions and even cancers for some cases. 
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Human papillomavirus E6 and E7 roles in carcinogenesis 
 

One of the first pieces of evidence for the oncogenic role of E6 and E7 was provided by the 

analysis of cervical cancer-derived cell lines. In many of these cells, HPV genome was found 

integrated into the host genome. This integration generally leads to disruption of the majority 

of viral genes with only preservation of the E6 and E7 genes that are efficiently expressed (141). 

Silencing the expression of E6 and E7 genes in cervical cancer cell lines results in rapid death 

(142). E6 and E7 are small proteins of approximately 150 and 100 amino acids, respectively.  

They have the capacity to alter important functions of the host cells resulting in their 

immortalization. E6 and E7 have several strategies to evade immunesurveillance, to alter cell 

cycle control, and to inhibit apoptosis. In the normal virus life cycle, these functions allow viral 

persistence and replication but, as side effect, cause the accumulation of DNA damage and 

subsequent malignant transformation. Both viral oncoproteins exert these activities by directly 

interacting with a vast number of cellular proteins.  Several E6 and E7 functions are shared with 

many HPV types, while some are exclusive features of E6 and E7 belonging to the high-risk 

HPV types. Among all HPV types, the high-risk HPV16 is the most investigated and therefore 

many of its E6 and E7 functions have been fully characterized.  In the contrary, only few studies 

have investigated the E6 and E7 properties from beta HPV types (143).  

 

Major transforming activities of E6 and E7 from alpha HPV types 
 

High-risk HPV E6 properties 
 

The best characterized activities of HPV16 E6 and E7 are their ability to target tumor 

suppressors, p53 and pRb respectively. The functions of E7 in the host cell cause an abnormal 

increase in DNA replication resulting in cellular stress. In this situation the host cell would 

activate apoptosis through p53; however, E6 protein from high-risk HPV types is able to inhibit 

the p53-dependent programmed cell death. To counteract the cellular response to the E7-

mediated unscheduled proliferation, E6 binds p53 and causes its proteasome-dependent 

degradation (143).  
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The interaction between E6 and p53 was the first activity described for high-risk HPV E6 

proteins (144). In a normal situation, cells maintain very low levels of p53 through the ubiquitin 

ligase mdm2 that is able to directly interact with p53 and to promote degradation via the 

proteasome pathway (145-147). Upon cellular stresses, several events lead to the loss of 

mdm2/p53 interaction, with strong stabilization of p53, which in turn promotes cellular arrest 

or apoptosis (148). In HPV16-infected cells, The E6 oncoprotein mediates the interaction of 

p53 with another ubiquitin ligase enzyme, E6 associated protein (E6AP), promoting the 

degradation of the tumour suppressor (149, 150). Thus HPV-positive cells display a relatively 

low expression of p53-regulated genes upon genotoxic stress, facilitating the accumulation of 

DNA damage and, ultimately, cellular transformation (151, 152). 

In addition, E6 has developed other mechanisms to inhibit p53 transcriptional activity. It has 

been shown that E6 binds the transcriptional coactivators p300/CBP (CREB binding protein) 

that play a positive role in p53-regulated transcription via p53 acetylation (153-155). E6 protein 

inhibits another p53 coactivator, hADA3, that is part of acetyltransferases complex (156). This 

protein is degraded through an E6/E6AP-dependent process (157). Decreased levels of hADA3 

correlate with the inhibition of p14ARF/p53 pathway and subsequent cellular immortalization 

of mammalian epithelial cells (158). G protein pathway suppressor 2 (GPS2) is another E6-

targeted transcription coactivator, that is known to inhibit RAS- and MAPK-mediated signaling 

(159). GPS2 protein is degraded upon interaction with E6 (159). In addition to affecting p53-

induced apoptosis E6 has also an effect on the mitochondrial- and death receptors-related 

apoptosis. E6 was shown to bind, together with E6AP, the protein Bak leading to its degradation 

(160). Bax mRNA levels are also affected by E6, downregulating its protein levels (161). 

Moreover, E6 inhibits tumor necrosis factor (TNF) signaling. It binds to the TNF-receptor 1 

and blocks the interaction with Fas associated death domain (FADD) (162-164). 
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High-risk HPV E7 properties 
 

E7 proteins from high-risk HPV types can interact with pRb, p107, and p130 proteins, also 

termed pocket proteins (165, 166). The protein E7 is able to induce proteasome-dependent pRb 

degradation. During the G1/G0 phase of uninfected cells, the pocket proteins interact with the 

transactivating domain of E2F transcription factors (167). Upon exposure of the cells to 

proliferative stimuli, pRb is phosphorylated by the G1 cyclin-dependent kinase (CDK) 

complexes and loses the ability to interact with E2F. In turn, free E2F drives the transcription 

of key genes that encode proteins involved in cell cycle progression (167). In HPV-infected 

cells, E7, via degradation of pRb, induces constitutive activation of the G1/S transition, and 

induces the cellular proliferation independent of external proliferative stimuli (168-170). 

HPV16 E7 was reported to bind the ubiquitin ligase cullin 2, and this interaction is important 

for cellular transformation and cell cycle checkpoints deregulation. These observations suggest 

the contribution of cullin 2 in E7-mediated pRb destabilization (171).  

Transition from G1/S to the S phase is also achieved by the induction of cyclin A/CDK2 and 

as reported for E6, E7 also has redundant mechanisms for deregulation of the cell cycle control 

proteins (172-174). Indeed, E7 is able to directly associate with two CDK2 inhibitors, p21Cip1 

and p27Kip1, with consequent block of their functions (175, 176).  Beyond the role as regulator 

of cell cycle, it has been shown that pRb is involved in other cellular events, e.g. differentiation. 

Therefore, the E7-mediated pRb degradation also results in inhibition of other cellular 

functions.   

E7 from HPV16 has also been reported to deregulate the transcription of co-activators p300, 

CBP, and p/CAF (p300/CBP-associated protein) (177-179). These proteins are involved in the 

activation of E2F-mediated gene transcription (180). Similarly, E7 binds to histone acetyl 

transferases (HAT) and increases the levels of histone H3 acetylation within E2F-target gene 

promoters correlating with active transcription (181). In addition to binding pRb, E7 acts also 

on the histone deacetylases (HDAC) which remove acetyl groups from histones resulting in the 

formation of heterochromatin. High-risk HPV E7 binds to HDAC through the intermediate 

binding of Mi2 , a chromatin remodeling protein (182). The C-terminal domain of E7 plays an 

essential role in this interaction. Sequestration of HDAC by E7 results in the induction of gene 

expression following chromatin remodeling due to histone acetylation. Blocking the interaction 

of HDAC and pRb with E7 results, respectively, in the destabilization of viral genome 

maintenance and cell cycle progression during differentiation (182-185). This demonstrates the 
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importance of pRb and HDAC binding and inactivation by E7 during the process of 

keratinocytes immortalization.  

  

Deregulation of NF- B pathway 
 

Nuclear Factor- B (NF- B) constitutes a family of transcription factors: NF- B1 (p50 and its 

precursor p105), NF-κB2 (p52 and its precursor p100), RelA (p65), RelB and cRel (Rel). These 

proteins can form heterodimer or homodimers. The NF-κB protein family shares a highly 

conserved N-terminal region, known as the Rel homology domain (RHD), which is involved in 

dimerization, DNA binding sequence, interaction with the inhibitory IκB proteins, and contains 

a nuclear localization sequence (NLS). In a latent state, NF-κB dimers are mainly localized in 

the cytoplasm, sequestrated by binding the inhibitory subunits IκB. As NF-κB, IκB proteins 

form a family containing several members. In mammals, it includes IκB , IkBβ, IκBγ, IκBε, 

Bcl-3, and the precursor Rel-proteins, p100, and p105. Activating stimuli mediate the 26S 

proteasome-dependent degradation of IκB, following its phosphorylation by IκB kinases (IKK) 

at two conserved serine residues (S32 and S36) in its N-terminal regulatory domain. Then, NF-

κB dimer is free to translocate to the nucleus, it binds specific κB sites and regulates the 

expression of a target gene (186). 

As shown in figure 4, the canonical or classical pathway is characterized by the NF-κB dimer 

p50 and p65. Its activation is regulated by the IKK complex which is composed of the 

regulatory subunit IKKγ (NEMO) and the catalytic subunits IKKα and β. Following stimulation 

by different agents such as TNF-α or IL-1, viruses, genotoxic agents, and ionizing radiation, 

this pathway leads to the expression of several genes crucial for the activation of innate 

immunity and inflammation as well as modulation of apoptosis. Two other activating pathways 

included in the canonical one are not fully elucidated. The first is induced by DNA damage 

which activates casein kinase 2 (CK2). The second acts in response to phorbol esters, 

lipopolysaccharide (LPS), and cytokines stimuli, and involves the activation of IKKε and 

TANK-binding kinase (TBK). The other major NF-κB signaling is known as the alternative or 

non-canonical pathway. It is activated by several stimuli such as B-cell-activating factor, LT 

α/β, or CD40L, leading to the NF-κB-inducing kinase (NIK)-dependent activation of the 

homodimer IKKα. RelB and p100 form the NF-κB dimer which is activated by the degradation 
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of the C-terminal region of p100 after phosphorylation by IKKα. This pathway is required for 

B cell maturation and survival, and formation of secondary lymphoid organs (187-189). 

 

 

Figure 4. Schematic representation of NF-κB signaling. 
NF- B canonical pathway is characterized by the p50/p65 NF-κB subunits which are inhibited 
by IκB. The phosphorylation of IκB by CK2, IKKε or IKK complex leads to its degradation. This 
pathway targets genes implicated in inflammation and apoptosis. The non-canonical NF-κB 
pathway involves the p100/RelB complex which is targeted by the IKKα homodimer. 
Phosphorylation of p100 causes its processing to the active form p52. The activation of this 
pathway is mainly responsible for the expression of genes involved in B cell development 

 

NF- B signaling is found activated in many cancers and targeted by oncogenic viruses 

including EBV, HPV, and HTLV (190-193). These viruses have developed several strategies 

to take advantage of the ability of NF- B to induce for instance anti-apoptotic and growth-

promoting genes. In correlation with the presence of HPV, the NF- B pathway is found 
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overexpressed in penile and cervical cancer cases (194-196). In laryngeal SCC cells infected 

with HPV, a positive correlation has been reported between the level of HPV16 E7 and the 

nuclear localization of the p65 subunit of NF- B (197). A study carried out on oral tissue 

biopsies, showed that in high-risk HPV positive tumors the positive transcriptional regulatory 

complex p65/p50 is more abundant than the homodimer complex p50/p50, which is often 

detected in HPV-negative cancers (197, 198). Interestingly, in airway epithelium, it was 

observed that HPV16 E6-expressing cells have an increased transcription of the NF- B-

regulated anti-apoptotic gene cIAP-2 (193). E6 induces this event via the induction of the 

nuclear binding activity of p52 and it requires the E6 PDZ binding motif (193). This function 

of E6 is important to protect HPV infected cells from TNF-induced apoptosis. Furthermore, 

expression of E6 and E7 in cervical keratinocytes leads to pro-proliferation-specific activation 

of NF- B (199). In contrast with these observations, some studies have reported that HPV16 

oncoproteins can reduce NF- B signaling. HPV16 E6 was shown to attenuate p65 

transcriptional activity and E7 to target IKK complex and reduces NF- B activity (200, 201). 

They inhibit interferon signals and their target genes. These effects of HPV oncoproteins could 

be important to counteract the immune sensing of the infected cells, and these functions could 

be in line with the evasion of the immune system allowing the virus to persist in the host cells. 

 

Deregulation of hTERT  
 

Telomeres’ length is shortened after each cell cycle causing, at the Hayflick limit, genomic 

instability and cellular senescence. A normal cell undergoes apoptosis before reaching this 

limit, but tumor cells bypass this limit and proliferate continuously (202). Different mechanisms 

of maintaining telomere length have been described. E6 was shown to activate the catalytic 

subunit human telomerase reverse transcriptase (hTERT) of the ribonucleoprotein complex 

responsible for the synthesis of telomere repetitions (203-205). Several studies have shown that 

high-risk HPV E6 can activate telomerase activity by independent mechanisms. For instance, 

E6 induces hTERT transcription via activation of c-Myc which binds on the promoter of 

hTERT and positively regulates its transcription (206, 207). In addition, E6, via the interaction 

with E6AP, promotes the degradation of a negative regulator of hTERT transcriptiom, nuclear 

transcription factor X-box binding 1-9 (NFX1-91) (208, 209). Another splice form of NFX1, 
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NFX1-123, is not affected by E6 and E6AP. This form of NFX1 acts positively on hTERT 

levels by increasing its mRNA stability (210, 211). 

 

Deregulation of PDZ proteins  
 

Another well characterized property of E6 from high-risk HPV types is the ability to target 

several members of the membrane-associated guanylate kinase (MAGUK) family that are 

involved in the regulation of cell-cell contact via the tight junction and cell polarity (212-214). 

They contain various protein/protein interaction domains, including PDZ motifs. The term PDZ 

refers to the first letters of the three first proteins in which a consensus domain of approximately 

90 amino acids was identified. These proteins are: PSD (PostSynaptic Density), DLG 

(Drosophila disc large protein), and ZO1 (Zonula Occludens 1) (166).  

The high-risk HPV16 E6 oncoproteins have a four amino acid PDZ-binding motif at the C-

terminus that mediates the interaction with the MAGUK family members. The PDZ-binding 

motif of E6 protein is important for its transforming activity. Mutation of this motif results in 

the inhibition of cellular growth and viral DNA replication (215-218). Upon interaction, E6 

induces the degradation of PDZ proteins leading to the loss of control of pathways that regulate 

cellular adherence and polarity (214, 219). Multiple PDZ proteins have been reported as E6 

substrates including hDlg1, MAGI-1, and hScrib (214, 220, 221). These events could increase 

the metastatic dissemination of the HPV-infected cells. 
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Major transforming activities of E6 and E7 from beta HPV types 
 

As mentioned above, the molecular mechanisms and role of beta HPV types in skin 

carcinogenesis are still not sufficiently investigated. However, several initial studies provide 

evidence that E6 and E7 from specific beta HPV types can deregulate important cellular 

functions and lead to cellular immortalization. In particular, it has been shown that E6 and E7 

from two beta HPV types, 38 and 49, are able to efficiently immortalize primary human 

keratinocytes (222-225). These observations support the putative etiological role of beta HPV 

types in NMSC development. 

 

Animal models  
 

The implication of cutaneous beta HPV in skin cancer was investigated in animal model 

through the expression of several early genes in the skin using tissue-specific promoters such 

as keratin 10 (K10) or keratin 14 (K14) promoters. Transgenic mice expressing HPV8 E2, E6, 

and E7 proteins in their skin display a higher risk to developing NMSC (226-229). Another 

study has shown that the expression of HPV20 E6 and E7 proteins in mice skin induces 

cutaneous cells hyperproliferation and inhibition of cell differentiation upon UVB-irradiation. 

Similar observations were made with the expression of HPV38 E6 and E7. The exposure of 

transgenic mice to UVB with a skin-specific expression of HPV38 E6 and E7 leads to 

hyperproliferation and p21 transcription inhibition (230, 231). The exposure of the same 

transgenic mice to chemical carcinogens, dimethylbenzanthracen (DMBA) and trimethylamin 

(TPA), enhanced the development of cutaneous epidermoid carcinomas compared to the control 

mice (230, 232). Another study has shown that transgenic mice expressing HPV8 E2 or E6 

protein developed skin tumors spontaneously or upon UV-irradiation (228, 233). 

All together, these findings demonstrate the carcinogenic capacity of some beta HPV early 

proteins in in vivo models. This risk of tumor development in the presence of the cited viral 

proteins appears to act in synergism with other carcinogens. 
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Deregulation of p53 pathway 
 

In contrast to E6 from mucosal alpha HPV types, those from cutaneous beta HPV types did not 

show the ability to degrade p53. However, a recent study has pointed out the destabilization of 

p53 protein levels in human keratinocytes expressing HPV49 E6 and E7, in line with their 

ability to immortalize human primary keratinocytes (224). The protein E6 from this beta HPV 

type appeared to bind p53 together with E6AP. The formation of this complex leads to p53 

proteolysis that is not as efficient as with HPV16 E6 suggesting possible differences in this 

process between the two HPV types (224). HPV49 E6 is, so far, the only beta HPV protein 

shown to act directly on p53 protein stability.  

Studies on beta HPV types also led to the characterization of a novel mechanism involved in 

the regulation of intracellular levels of Np73 , an antagonist of the p53/p73-regulated 

pathways (234, 235). HPV38 E6 and E7 promote the accumulation of a specific form of p53 

that positively regulates the transcription of Np73 . In addition, HPV38 acts on a post-

translational level increasing Np73  half-life (235). HPV38 E6 and E7 expression in primary 

human keratinocytes promotes the translocation of I B-kinase-  (IKK ) in the nucleus, which 

in turn associates with and phosphorylates Np73  at serine 422, leading to its stabilization 

and repression of several p53-regulated genes. Inhibition of IKK  results in a rapid degradation 

of Np73  and a rescue of p53 function (235).  

In addition, E6 from HPV23 was shown to block p53 activation by preventing its 

phosphorylation. HPV23 E6 binds to HIPK2 and hampers its interaction with p53, necessary 

for its phosphorylation at Ser46 (236). This activity of HPV23 E6 in human keratinocytes is 

important for the survival of the cells upon UV-exposure (236). Cutaneous HPV E6 is also able 

to inhibit the UV-induced apoptosis in the presence of high levels of active p53 protein (237). 

Apart of acting directly on p53 function, E6 can inhibit apoptosis independently of p53. It has 

been shown that E6 interacts with the pro-apoptotic protein Bak which is involved in 

mitochondria-mediated induction of apoptosis for instance upon UV-exposure (238). In cells 

irradiated with UV and expressing E6 from HPV5, and other cutaneous HPV types of different 

genera (HPV10 and 77), Bak-mediated apoptosis is inhibited (238). This protein was shown to 

be degraded through ubiquitin-ligase interaction with E6 from cutaneous HPV5, 8, 10 and 77 

(238). These features of beta HPV E6 proteins to block UV-mediated apoptosis reinforce the 

hypothesis of a possible synergism between HPV and UV-induced DNA damage during skin 

cancer development. In line with the inhibition of UV-induced apoptosis, E6 was moreover 
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shown to affect DNA damage repair pathways. This results in the accumulation of DNA 

damage and double strand breaks leading to chromosomal instability. UV-exposure of the cells 

induces the formation of cyclobutane pyrimidine dimers that are the predominant DNA lesions 

in human skin cells. HPV5 E6 is able to affect the repair of this DNA damage when expressed 

in epidermal cells (239). The XRCC1 protein, implicated in single strand DNA breaks repair, 

has been also reported to be targeted and inhibited by HPV8 E6 (240). 

 

Deregulation of pRb pathway 
 

The knowledge on cutaneous beta HPV E7 proteins is extremely limited compared to those 

from mucosal alpha HPV types. The most relevant finding for cutaneous beta HPV E7 to 

mention is the characterization of some biological properties of HPV38 E7. It has been reported 

that this protein is able to interact with pRb protein, as efficiently as seen for HPV16 E7, in 

human keratinocytes (222, 224). This function of HPV38 E7 deregulates cell cycle check points 

in G1 and S phases, contributing to the transformation of the host cell (222). The observe effect 

on pRb by HPV38 E7 does not occur in presence of beta HPV20 E7 proteins (224). A 

comparative study of the effects of E7 proteins from several beta HPV types highlighted the 

efficiency of HPV38 E7, and HPV49 E7, in deregulating the pRb pathway. The expression of 

HPV49 E7 in human keratinocytes appeared to inhibit the inactivation of E2F by pRb and 

enhanced the expression of cell cycle regulators such as cMyc, cyclin A, and Cdc2 (224). 

 

Deregulation of NF- B pathway 
 

As exposed above, despite the important place of NF- B pathway in cellular homeostasis 

through its involvement in several functions such as inflammation and cellular growth balance, 

very few studies have investigated its deregulation upon the expression of beta HPV proteins. 

A recent study has investigated the effect of E7 proteins from several cutaneous HPV types in 

U2OS cells, including the E7 proteins from beta HPV20, 37, 38, 92, 93, and 96 (241). In these 

cells, the investigators have reported the inhibition of NF- B activity in presence of E7 proteins 

that are able to bind IKK  but not IKK . This finding is in line with what has been shown 

for HPV16 E7 in the same cellular model (200). Additional experimental analysis will be 
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required to understand the effect of NF- B deregulation. In the present thesis we will explore 

the status of NF- B pathway in human keratinocytes expressing HPV38 E6 and E7. 

 

Deregulation of hTERT 
 

It is now well established that although HPV38 E6 and E7 fail to degrade p53, they possess 

efficient mechanisms to inhibit cellular cell cycle control and apoptosis induction (234). It has 

also been shown that human primary keratinocytes expressing HPV38 E6 and E7 gradually 

erode their telomeres (223). The shortening in telomere length correlates with genomic 

instability and chromosomal rearrangements that can result in the transformation of some 

cellular clones. The same study has shown that the transcriptional activation of hTERT 

expression can be at least partially inhibited by the knockdown of Np73  protein synthesis 

(223). This observation suggests the involvement of Np73  in the overexpression of hTERT 

in presence of HPV38 E6 and E7. Another study has investigated the status of hTERT 

expression in keratinocytes by comparing the effects of the expression E6 and E7 from different 

beta HPV types. E6 and E7 from HPV38 and HPV49 were the most significantly inducing 

hTERT expression in human keratinocytes (224). It was also reported that E6AP plays and 

important role in the beta HPV-mediated hTERT activation (242). E6 proteins from different 

beta HPV type interact with E6AP and NFX1-91 and induce telomerase activity (242). 

 

Deregulation of Notch pathway 
 

Notch was described to play an important role in keratinocyte differentiation and cell cycle 

arrest processes (243). In human keratinocytes, Notch has been reported to act as a tumor 

suppressor (244). Several studies investigated the status of Notch signaling in presence of beta 

HPV proteins. It has been shown that E6 from several beta HPV types are able to inhibit Notch 

signaling (245). E6 proteins from HPV8 and as well as cutaneous HPV1 associate mastermind-

like 1 (MAML1), a NOTCH coactivator, and repress the expression of Notch target genes (246, 

247). These findings highlight the potential important role of Notch pathway inhibition during 

HPV infection and the need of further characterization of the molecular mechanism. 
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Aim of the thesis 
 

Viral infections trigger numerous host cell defenses. A well-known cellular protection against 

viral infection and spread is the suicide of the infected cells. To complete the viral life cycle, 

several viruses adopt complex strategies to evade apoptotic cell death. The molecular 

mechanism of high-risk HPV E6 and E7-mediated targeting of important cellular pathways 

such as p53 signaling is well described. However, knowledge on beta HPV E6 and E7 functions 

toward cellular transformation is still poor. In this thesis we have studied HPV38 E6 and E7 

activities in deregulating p53 and NF- B pathways. 

 

First study: 

It has been shown that p53 functions are inhibited in HPV38 E6 and E7-expressing 

keratinocytes through the accumulation of Np73 . In this study we have investigated the 

individual contribution of E6 and E7 in IKK -nuclear accumulation and Np73  stabilization. 

We have also further characterized the cooperation between IKK  and Np73  to achieve the 

transcriptional inhibition of p53-regulated genes. 

 

Second study: 

In contrast to high-risk HPV types that are known to deregulate NF- B, we have limited 

knowledge about the influence of beta HPV early proteins expression on this pathway. In this 

study we have investigated the effects of HPV38 E6 and E7 proteins on the activity of NF- B 

signaling. We have also evaluated the role of NF- B in E6 and E7-mediated apoptosis 

inhibition. Finally we asked which of E6 and E7 is responsible of NF- B activation and through 

what potential mechanism. 
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Chapter II: Results 1 

The E7 oncoprotein from beta human papillomavirus type 38 induces the 

formation of an inhibitory complex for a subset of p53-regulated promoters 
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Chapter II: Results 2 

NF- B Protects Human Papillomavirus Type 38 E6/E7-Immortalized 

Human Keratinocytes against Tumor Necrosis Factor Alpha and UV-

Mediated Apoptosis 
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Chapter II: Results 3 

Supplementary results: Human papillomavirus type 38 protein E7 induces 

NF- B pathway and interacts with IKK  
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1/ HPV38 E6 and E7 oncoproteins expression directly influence NF- B 
transcriptional activity 
 

To determine the impact of HPV38 E6 and E7 expression on the NF- B pathway, we have 

analyzed the status of key players of this pathway in primary keratinocytes transduced with an 

empty retrovirus or with recombinant retroviruses expressing E6 and E7 from HPV10, 14 or 

38.  E6 and E7 from HPV10 and HPV14 do not display any in vitro transforming activities, 

while HPV38 E6 and E7 are able to efficiently immortalize primary human foreskin 

keratinocytes (38E6E7 HFK). The levels of phosphorylated I B  (serine 32 and 36) and p65 

(serine 536) were determined by immunoblotting in primary cells or cells expressing E6 and 

E7 from three different HPV types. As shown in Figure 1A, higher levels of phosphorylated 

I B  and p65 were detected in 38E6E7 HFK in comparison to primary keratinocytes or 

keratinocytes expressing HPV10 or HPV14 E6 and E7. To corroborate these findings, we 

investigated whether HPV38 oncoproteins have the ability to modulate IKK complex activity. 

To this end, 38E6E7 HFK constitutively expressing a pRetrosuper (pRS) containing shRNA 

for HPV38 E6 and E7 were generated. Efficiency of E6 and E7 expression inhibition was 

measured by quantitative PCR (Figure 1D). IKK  was then isolated by immunoprecipitation 

from HPV38 pRS38E6/E7 and from HPV38 pRS keratinocytes and incubated with GST-I B  

substrate in presence of [ -32P]ATP. The in vitro kinase assay showed a higher kinase activity 

of IKK  in presence of the viral proteins supporting the previous result (Figure 1B). 

Consistently, in the same cellular system, we observed a reduction in the protein levels of 

phospho-I B  and phospho-p65 in presence of the shRNA for HPV38 E6 and E7 (Figure 1C). 

Finally, we verified the transcriptional activity of NF- B in the same cells by measuring the 

mRNA levels of xIAP, cIAP1 and cIAP2 transcripts, products of NF- B anti-apoptotic target 

genes. As expected, we observed lower expression levels of xIAP, cIAP1 and cIAP2 genes in 

the pRS38E6/E7 cells compared to the cells harboring the pRS empty vector (Figure 1D). These 

results show that NF- B pathway is up-regulated in 38E6E7 HFK through the induction of the 

kinase activity of IKK .  
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Figure 1. HPV38 E6 and E7 influence directly IKK and NF- B activaties
A/ Immunoblot on total proteins from cellular lysates of HFKs expressing E6 and E7 oncoproteins from
HPV10, 14 or 38 or transfected with the pLXSN empty vector. Antibodies were used to look for the
expression of phosphorylated-IkBa and phosphorylated-p65 compared to the total I B and p65 protein
amount. B/In vitro kinase assay using same amounts of immunoprecipitated proteins from
38E6/E7HFKs expressing pRS38E6/E7 or with the empty pRS vector (left panel). IKK proteins were
incubated with GST or GST-I B during 30min at 30°C in presence of [g-32P]ATP and radio activity is then
detected. C/ HPV38 E6/E7HFKs expressing pRS38E6/E7 or pRS ampty were used to detecte by
immunobloting the protein levels of phopho-I B and phospho-p65 compared to the total amounts of this
proteins. D/ Quantitative PCR on the total cDNA obtained with RT-PCR on total RNA isolated from
38E6/E7HFKs expressing pRS38E6/E7 or containing the empty pRS vector. The expression levels of
HPV38E6, HPV38E7, xIAP, cIAP1 and cIAP2 were analysed and normalized on the GAPDH expression
level.
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2/ E7 oncoprotein plays an important role in HPV38-mediated up-regulation of 
NF- B pathway  
 

Next, we asked whether the activation of IKK activity was due to the expression of E6 and/or 

E7. Therefore, we transduced HFK with 

recombinant retroviruses expressing 

HPV38 E6 or E7. The levels of 

phosphorylated I B  and IKK /  were 

determined in these cells by 

immunoblotting, since phosphorylation 

of IKK at serine 176 and IKK  at serine 

188 are hallmark of activation of the IKK 

complex. Higher amounts of phospho-

I B  and phospho-IKK /  were 

observed in the keratinocytes expressing 

38E7 than in the one expressing 38E6, 

supporting a major role of HPV38 E7 in 

the events described so far (Figure 2).  

 

3/ IKK  physically interacts with HPV38 E7 and is translocated into the nucleus 
 

It has been previously shown that certain viruses constitutively activate NF- B using different 

strategies. HTLV-1 Tax oncoprotein was shown to interact with the IKK complex by direct 

binding of NEMO (IKK ). Therefore, we asked whether similarly to Tax protein, HPV38 E7 

could target the IKK complex. To explore this hypothesis, we first investigated IKK  and IKK  

sub-cellular localization performing immunofluorescence staining on 38E6E7 HFK. Previous 

findings have shown that IKK  is localized in the cytoplasm, while IKK  is also cytoplasmic 

but with a shuttling capacity between the cytoplasm and the nucleus. In addition, studies on E7 

from different HPV types indicate that the viral protein can shuttle between the nucleus and 

cytoplasm. We analyzed IKK and IKK localizations in 38E6E7 HFK, and the result shows 

that in contrast to IKK , which appeared cytoplasmic, IKK  was localized in the nucleus 

(Figure 3A). In agreement with our previous results (Chapter I, Results I), we found that IKK  

Figure 2. NF- B pathway activation in primary
keratinocytes expressing HPV38E6 or
HPV38E7
Primary keratinocytes expressing individually the
oncoproteins HPV38E6 and HPV38E7 or with a
pLXSN empty vector were collected at early
passages for immunobloting assay. Protein levels
of phosphorylated IKK and phosphorylated
I B were detected and compared to the total
I B amounts and -actin.
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nuclear localization was associated with HPV38 E7 expression. Indeed, HPV38 E6 expressing 

HFK showed a similar IKK  cellular localization to primary HFK, (Chapter II, Results 1). Since 

HPV38 E7 and IKK  appeared to co-localize we asked whether they physically interact. We 

therefore transiently transfected Human Embryonic Kidney (HEK) 293 cells with Flag-38E7 

and un-tagged IKK , and cellular extracts were prepared for immunoprecipitation of Flag-38E7 

or IKK . The immunoblotting analysis shows that the two proteins co-immunoprecipitated, 

indicating a physical interaction between HPV38 E7 and IKK  (Figure 3B). This result 

correlates with the IKK  translocation in the nucleus in presence of HPV38 E7 protein.  

 

 
 

4/ IKK  is localized in the nucleus of several cancer cell lines  
 

The studies on HPV38 E6 and E7 HFK highlighted a key role of IKK  nuclear localization in 

cellular proliferation. To determine the role of IKK  in additional transformed cells, we 

 

Figure 3. IKK interacts with HPV38 E7 and accumulated in the nucleus
A/ Co-immunoprecipitation analysis using cell lysates from 293 cells transiently transfected with IKK Flag-
38E7. Anti-IKK and anti-Flag antibodies were used for the immunoprecipitation and for immunoblotting.
B/ Immunofluorescence staining of IKK and IKK in human forskin keratinocytes expressing HPV38E6
and E7 together. DAPI is used to detect the nuclei.

A B
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explored the localization of IKK  in cancer cell lines of different origins. Head and neck 

  

 

Figure 4. IKK sub-cellular localization in cancer cells
Immunofluorescence staining for IKK in head and neck (HNC124, HNC136),
breast (Cal51, HBL100, HCC1937) and colon (Co-115, TC7, LoVo) cancer cells.
The nuclei were stained with DAPI.
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(HNC124, HNC136), breast (Cal51, HCC 1937) and colon (Co-115, LoVo and TC-7) cancer 

cell lines were then cultured on cover-slides and stained with a monoclonal anti-IKK  antibody. 

The immunofluorescence analysis shows that, besides its cytoplasmic localization, IKK  is also 

localized in the nucleus of most of the cancer cells tested (Figure 4). Hence, IKK  nuclear 

localization appears to be a shared event between some viral- and non-viral- immortalized cells. 

  



 

 

 

 92 

 
  



 

 

 

 93 

 

 

 

 

 

 

 

 

 

 

Chapter III: Discussion and conclusions 
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Through sophisticated mechanisms affecting important cellular signaling, oncogenic viruses 

display an ability to prevent host cell suicide. Among the large number of factors that are 

involved in the modulation of apoptosis, p53 and NF- B signaling are particularly targeted by 

oncogenic viruses. The present work highlights key roles for HPV38 E7 protein in the 

prevention of apoptosis. Indeed, expression of E7 protein in human keratinocytes leads to a 

dual effect toward inhibition of transcription of pro-apoptotic and activation of transcription of 

anti-apoptotic genes. HPV38 E7 is shown here (i) to activate NF- B pathway and subsequent 

expression of anti-apoptotic genes upon TNF-  treatment or UV-exposure and (ii) to stabilize 

Np73 , antagonizing the transcription of anti-proliferative genes regulated by p53. 

 
 

Model : Schematic representation of summarizing the combined results of our studies. 

 

Although it is evident that HPV38 E6E7 can activate canonical NF- B signaling, the molecular 

mechanisms responsible for IKK kinase activity activation are not yet established. We have 

observed that E7 protein can bind IKK  but we do not have evidences of the consequences of 

this interaction. It was shown that other viral protein could also target the IKK complex. For 
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instance, HTLV1 transforming protein Tax constitutively activates NF- B, by physically 

binding the regulatory subunit of the IKK complex (IKK ) (248, 249). Therefore, it is possible 

that the interaction of E7 with IKK  could lead to the stimulation of its kinase activity and 

consequent stimulation of NF- B pathway. The E7 protein domains involved in the interaction 

with IKK  are still not identified. Their characterization is important for the understanding of 

the biological significance of this protein complex.  Indeed, generation of HPV38 E7 mutants 

unable to bind IKK  will provide evidence whether the interaction with the cellular kinase is 

important for the stimulation of its activity.  

 

In our study we have focused on a small number of NF- B-regulated genes, but it is likely that 

a larger number of cellular genes are deregulated. Broader investigation of HPV38-deregulated 

NF- B target genes expression will help to better describe how HPV38 resets NF- B to a more 

virus-advantageous setting, such as transcription of genes involved in the prevention of UV-

induced apoptosis.  

When NF- B signaling is inhibited by different strategies in 38E6E7 HFK, we have observed 

that inhibition of NF- B nuclear translocation had a marginal impact on cellular proliferation, 

while inhibition of IKK  promoted a severe decrease of cellular growth. This observation 

highlights the existence of NF- B-independent pro-proliferation roles of IKK . Previous 

studies have also shown that IKK  activity is not reduced to the unique function of I B  

phosphorylation and NF- B activation. For instance, IKK  has been shown to target several 

other proteins such as FOXO3a, TSC1, Np73 , and p53, resulting in the promotion of cell 

survival and tumorigenesis (250). Further studies will be needed to better dissect the newly 

discovered IKK  implication in other pathways than NF- B. It is also possible that the NF- B-

independent IKK -pro-proliferative roles in 38E6E7 HFK could be linked to its subcellular 

relocalization.  

 

Interestingly, we observed that HPV38 E7 induces translocation of IKK  in the nucleus where 

(i) it induces stabilization of Np73  and (ii) it is part of a negative regulatory complex 

containing Np73 , EZH2 and DNMT1. In the presented data, we have characterized the 
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formation of this complex on several p53-regulated gene promoters with the exception of 

Survivin promoter that is, in contrast to the other investigated genes, an anti-apoptotic p53-

target gene. However it is important to explore a larger number of gene promoters that could 

be bound and regulated by the described protein complex. Np73  appeared to be the central 

component of this transcription inhibitory complex. Investigation of the variation gene 

expression upon dowregulation of Np73  expression in 38E6E7 HFK will help to identify the 

potential target genes and will provide insights on the function of the Np73 , IKK , EZH2, 

and DNMT1 complex. 

 

The interaction of Np73  with EZH2 and DNMT1 and its correlation with histone 

H3Lys27me3 and CpG methylation, reveals a mechanism that can allow an efficient activity of 

Np73  in repressing gene transcription. This event shows that Np73  goes over the 

competitive action against p53, its binding can cause chromatin condensation and stable gene 

transcription silencing. EZH2 and other polycomb complex 2 components were previously 

reported to cooperate with DNMTs, including DNMT1, to form transcription inhibitory 

complexes. In keratinocytes expressing HPV38 E6 and E7, IKK -phosphorylated Np73  

appears to highjack this protein complex in order to induce p53-regulated genes silencing. The 

formation of this multimeric protein complex in 38E6E7 HFK constitutes a mechanism that 

could also take place in other virus-immortalized cells and non-virus-related cancers. Actually, 

Np73 , EZH2, and DNMT1 are found accumulated in several cancers (251-254). In addition, 

IKK  is also localized in the nucleus of numerous cancer cells lines (Results 3, Figure 4). These 

observations are in favor of a possible broader cooperation between IKK , Np73 , EZH2, 

DNMT1, and their not yet discovered other partners in the repression of p53-regulated pro-

apoptotic genes during cellular transformation. A wider investigation of the gene promoters co-

bound by this protein complex will help to better describe their common action within the cells. 

In addition, it remains of high interest to know if the formation of this complex can be a 

common event for some human cancers. 

 

As cited above, although IKK  is known to be localized in the cytoplasm, it is also accumulated 

in the nucleus of 38E6E7 HFK. This subcellular delocalization appears to be induced by the 
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protein E7. However, the mechanism of IKK  nuclear translocation is not yet known. As 

previously mentioned, the identification of E7 mutants that lose their ability to bind IKK  will 

provide evidences on the possible implication of the E7/IKK  interaction in the translocation 

of IKK  in the nucleus. 

A previous report has shown that IKK , in the nucleus of B-cell non-Hodgkin lymphoma, is 

part of a transcription regulation complex. In cooperation with BAFF-R, IKK  phosphorylates 

histone H3 and leads to chromatin remodeling and gene transcription regulation (255). Thus, it 

is likely that IKK , in addition to Np73 , binds to a wider range of transcriptional regulatory 

factors in 38E6E7 HFK. One possible strategy to evaluate this possibility is to perform ChIP-

seq experiments using IKK  antibodies. This experiment will lead to the identification of 

different promoters that are associated with IKK . The analysis cis responsive elements within 

these promoters will provide evidence whether IKK  binds additional cellular transcription 

factors. Finally, ChIP and Re-ChIP experiments will be needed to validate the ChIP-seq results. 

It is likely that such an approach will also result in the identification of novel and important 

genes that are regulated by IKK  in transformed cells.  

 

In summary, the presented data not only further clarify the HPV38 mechanisms in deregulating 

several cellular events, but also pave the way to novel studies aiming to elucidate the precise 

events that play a key role in cellular transformation.  
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Alteration of p53 and NF- B pathways by E7 protein from cutaneous Human Papillomavirus type 38 

 
Abstract 
 
Viral infections contribute to 15–20% of all human cancers. Studying the mechanisms employed by the 
oncogenic viruses to induce cellular transformation is essential for a better understanding of the resulting 
cancers and the discovery of new mechanisms involved in cancer development which can be targeted in 
therapeutic approaches. Human papillomaviruses (HPVs) are small dsDNA viruses which have been clearly 
associated with certain cancers. They were first isolated from the skin of patients suffering from 
Epidermodysplasia Verruciformis (EV) having an increased susceptibility to infection by specific HPV types 
and to the development of non-melanoma skin cancer (NMSC). Certain cutaneous HPV types, such as 5, 8, 
and 38, are suspected to play a role in skin cancer development. However the direct role of cutaneous HPV 
in the etiology of cancer is still under debate. Previous studies from our laboratory have reported that HPV38 
E6 and E7 proteins are able to immortalize human primary keratinocytes in vitro and in vivo. Cellular 
immortalization can be achieved through the deregulation of important signaling pathways including p53 and 
NF- B. In the present work, we have investigated the molecular mechanisms of p53 and NF- B pathways 
deregulation by E6 and E7 oncoproteins from HPV38 in human keratinocytes. We show here that HPV38 
E6E7 induce the formation of a transcription repressor complex including IKK , Np73 , and polycomb 
group members EZH2 and DNMT1. The formation of this protein complex correlates with the inhibition of 
several p53-target genes, such as PIG3. We also report in these studies that HPV38 E6E7 activate NF- B 
pathway, which plays an important role in the survival of HPV38 E6E7-immortalized human keratinocytes 
upon TNF-  – and UVB-mediated apoptosis. In addition our data highlight E7 being the main HPV38 protein 
mediating p53 and NF- B deregulation. Our studies shed light on novel molecular mechanisms that could be 
important for HPV38-mediated cellular transformation. 
 

 
Dérégulation des voies de signalisation p53 et NF- B par la protéine E7 du Papillomavirus Humain 

de type 38 
 
Résumé 
 
Les infections virales sont responsables de 15 à 20 % des cancers humains. L’étude des mécanismes 
moléculaires avec lesquels les virus oncogènes induisent la transformation cellulaire est essentielle pour la 
compréhension des cancers qui en résultent. Cela permettra également la découverte de nouveaux 
mécanismes pouvant être impliqués dans le développement de cancers, qui peuvent être ciblés par des 
approches thérapeutiques. Les virus du papillome humain (HPV) sont des petit virus à ADN qui futs isolés 
de la peau de patients souffrants de Epidermodysplasia Verruciformis (EV) qui cause un risque élevé 
d’infection par les HPV et le développement de cancer de la peau non mélanique (NMSC). Certains HPV 
cutanés, tels que HPV5, 8 et 38, sont suspectés de jouer un rôle dans de développement du cancer de la peau. 
Cependant, le lien direct entre les HPV cutanés et l’étiologie du cancer n’est pas encore clairement établi. 
Des études de notre laboratoire ont montré que les oncoprotéines HPV38 E6 et E7 sont capables 
d’immortaliser des kératinocytes primaires humains in vitro et in vivo. Pour immortaliser des cellules, 
d’importantes voies de signalisations, telles que les voies de p53 et celle de NF- B, doivent être affectées. 
Dans cette étude, nous avons cherché à mettre en évidence les mécanismes moléculaires menant à la 
dérégulation de p53 et de NF- B par E6 et E7 de HPV38, dans des kératinocytes humains. Nous avons montré 
que HPV38 E6 et E7 induisent la formation d’un complexe protéique incluant IKK , Np73 , EZH2 et 
DNMT1. La formation de ce groupement protéique corrèle avec l’inhibition de la transcription de certains 
gènes cibles de p53, tel que PIG3. Nous avons également mis en évidence l’activation de la voie NF- B par 
les oncoprotéins E6 et E7 de HPV38. Cette activation est importante par le rôle joué par NF- B dans la 
protection des cellules de l’apoptose induite par TNF-  et par l’exposition aux rayonnements UVB. De plus 
nous avons observé que E7 est la principale oncoprotéine de HPV38 responsable de la dérégulation des voies 
p53 et NF- B. Nos études mettent en évidence de nouveaux mécanismes moléculaires qui peuvent être 
essentiels dans le processus de transformation cellulaire par HPV38. 

 


