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Résumé

La classi�cation non supervisée, souvent appelée par le terme anglais de clustering, est une
tâche importante en Fouille de Données, pour lesquelles de nombreuses approches ont été
développées. Depuis une dizaine d'années, la classi�cation non supervisée a été étendue
pour intégrer des contraintes utilisateur permettant de modéliser des connaissances préal-
ables dans le processus de clustering. Di�érents types de contraintes utilisateur peuvent
être considérés, des contraintes pouvant porter soit sur les clusters, soit sur les instances.
Par exemple, des contraintes peuvent exprimer des bornes sur la taille ou le diamètre
des clusters. Des contraintes sur des instances expriment que deux objets doivent ou ne
doivent pas être dans le même cluster (contraintes must-link et cannot-link).

Dans cette thèse, nous étudions le cadre de la Programmation par Contraintes (PPC)
pour modéliser les tâches de clustering sous contraintes utilisateur. Des avancés récentes
en PPC ont rendu ce paradigme puissant pour résoudre des problèmes combinatoires. Les
principes de la PPC sont : (1) le programmeur spéci�e le problème d'une façon déclarative
par un Problème de Satisfaction de Contraintes ; (2) le solveur recherche la (les) solution(s)
en intégrant la propagation de contraintes à l'exploration de l'espace de recherche. Utiliser
la PPC a deux avantages principaux : la déclarativité, qui permet d'intégrer aisément des
contraintes utilisateur et la capacité de trouver une solution optimale qui satisfait toutes
les contraintes (s'il en existe).

Nous proposons deux modèles basés sur la PPC pour le clustering sous contraintes
utilisateur. Les modèles sont généraux et �exibles, ils permettent d'intégrer des con-
traintes d'instances must-link et cannot-link et di�érents types de contraintes sur les clus-
ters. Ils o�rent également à l'utilisateur le choix entre di�érents critères d'optimisation.
A�n d'améliorer l'e�cacité, divers aspects sont étudiés. Les expérimentations sur des
bases de données classiques et variées montrent qu'ils sont compétitifs par rapport aux
approches exactes existantes. Nous montrons que nos modèles peuvent être intégrés dans
une procédure plus générale et nous l'illustrons par la recherche de la frontière de Pareto
dans un problème de clustering bi-critère sous contraintes utilisateur. A notre meilleure
connaissance, notre approche est la première pour les problèmes de classi�cation non
supervisée sous contraintes utilisateur, qui intègrent le critère de diamètre des clusters,
de la marge entre clusters, de la somme des dissimilarités intra-cluster et du bi-critère
marge-diamètre, en présence de contrainte utilisateur.

Mots clés : classi�cation non supervisée, contraintes utilisateur, Program-

mation par Contraintes, clustering bi-critère.





Abstract

Cluster analysis is an important task in Data Mining with hundreds of di�erent ap-
proaches in the literature. Since the last decade, the cluster analysis has been extended to
constrained clustering, also called semi-supervised clustering, so as to integrate previous
knowledge on data to clustering algorithms. Several kinds of constraints can be consid-
ered; they may be put on the clusters, as for instance their sizes, or their diameters, or on
instances the expert knows that they must be or cannot be in the same cluster (must-link
or cannot-link constraints).

In this dissertation, we explore Constraint Programming (CP) for solving the task of
constrained clustering. Among generic optimization tools, CP is a powerful paradigm for
solving combinatorial search problems. The main principles in CP are: (1) users specify
declaratively the problem in a Constraint Satisfaction Problem; (2) solvers search for
solutions by constraint propagation and search. Relying on CP has two main advantages:
the declarativity, which enables to easily add new constraints and the ability to �nd an
optimal solution satisfying all the constraints (when there exists one).

We propose two models based on CP to address constrained clustering tasks. The mod-
els are �exible and general and supports instance-level constraints and di�erent cluster-
level constraints. It also allows the users to choose among di�erent optimization criteria.
In order to improve the e�ciency, di�erent aspects have been studied in the dissertation.
Experiments on various classical datasets show that our models are competitive with other
exact approaches. We show that our models can easily be embedded in a more general
process and we illustrate this on the problem of �nding the Pareto front of a bi-criterion
optimization process. To the best of our knowledge, we are the �rst to �nd a global op-
timum for the problem of Constrained Clustering with the criteria of diameter, split and
within cluster sum of dissimilarities and to solve the bi-criterion (split-diameter) clustering
with user constraints.

Keywords: constrained clustering, bicriterion clustering, constraint pro-

gramming, modelling.
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Chapter 1

Introduction

Ce chapitre synthétise le contexte et la problématique de la thèse. Nous présentons briève-
ment les notions principales dans le mémoire: la classi�cation non supervisée (clustering),
le clustering sous contraintes utilisateur et la Programmation par Contraintes (PPC).
Dans cette thèse, nous étudions le cadre de la PPC pour modéliser les tâches de clustering
sous contraintes utilisateur. Nous proposons deux modèles basés sur la PPC pour le clus-
tering sous contraintes utilisateur. Les modèles sont généraux et �exibles, ils permettent
d'intégrer des contraintes d'instances must-link et cannot-link et di�érents types de con-
traintes sur les clusters. Ils o�rent également à l'utilisateur le choix entre di�érents critères
d'optimisation. A�n d'améliorer l'e�cacité, divers aspects sont étudiés. Le chapitre pré-
cise les contributions, les publications et l'organisation du mémoire.

Contents
1.1 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 4

Cluster analysis, also called clustering, is a fundamental task in Data Mining, which
aims at partitioning a given set of objects into homogeneous and well-separated subsets
called classes or clusters. Homogeneity means that the objects inside the same cluster
must be similar while well separation expresses that objects in a cluster must be di�erent
from the objects belonging to other clusters. The problem has been studied since the
18th century with applications in natural sciences, economics, sociology, geology and many
other �elds. Cluster analysis is an example of unsupervised learning, as it does not require
prede�ned category labels of objects. It helps to �nd and understand the nature or
the structure of the data. For instance, in marketing, by analysing the buying records
of supermarkets, cluster analysis can �nd groups of customers with similar behaviour.
Cluster analysis is a di�cult task with many challenges, for instance: how to de�ne the
similarities between objects? how to decide the number of clusters? or how to evaluate
the clusters? Although there have been hundreds of di�erent approaches in the literature,
such a general clustering algorithm does not exist. In cluster analysis, there is usually no
single correct result and a clustering algorithm may give good results with some types of
data and bad results with other data.

In many real applications, there exists some background knowledge about the data
that could be useful in clustering. Since the last decade, cluster analysis has been ex-
tended to semi-supervised clustering, so as to integrate previous knowledge on data to
clustering algorithms. The background knowledge is usually given in the form of user



2 Chapter 1. Introduction

constraints. The constraints can be classi�ed into cluster-level constraints, specifying re-
quirements on the clusters, or instance-level constraints, specifying requirements on pairs
of objects. Most of the attention has been put on instance-level constraints, also called
pairwise constraints, �rst introduced in [Wagsta� & Cardie 2000]. The instance-level con-
straints are composed of must-link and cannot-link constraints. A must-link constraint
on two data objects speci�es that they have to appear in the same cluster, whereas a
cannot-link constraint speci�es that the two objects must not be in the same cluster.
Over the last decade, many works have been done to extend classical algorithms for
handling must-link and cannot-link constraints, as for instance extensions of COBWEB
[Wagsta� & Cardie 2000], k-means [Wagsta� et al. 2001, Bilenko et al. 2004], hierarchical
clustering [Davidson & Ravi 2005a] or spectral clustering [Lu & Carreira-Perpinan 2008,
Wang & Davidson 2010], etc. This is achieved either by modifying the dissimilarity mea-
sure, or the objective function, or the search strategy. However, there is no general solution
to extend traditional algorithms to di�erent types of constraints.

Recently, there has been a growing interest in developing declarative framework
for Data Mining [Raedt et al. 2011], including the problem of constrained clustering.
Declarative frameworks may be less e�cient than classic algorithms for a speci�c task,
but it is more �exible and general, easy to incorporate new knowledge to the task.
[Guns et al. 2013] proposes a framework in Constraint Programming for k-pattern set
mining. [Métivier et al. 2012] presents a constraint-based language for expressing queries
to discover patterns in Data Mining. A Satis�ability of boolean formula (SAT) framework
for constrained clustering is proposed in [Davidson et al. 2010] for cluster analysis with 2

clusters. The framework integrates di�erent kinds of user-constraints: must-link, cannot-
link, diameter and split constraints. [Mueller & Kramer 2010] proposes an approach to
constrained clustering based on Integer Linear Programming. This approach takes a set
of candidate clusters as input and constructs a clustering by selecting a suitable subset. It
allows di�erent kinds of constraints on clusters or on the set of clusters, but no constraint
on individual objects. [Babaki et al. 2014] proposes an exact approach for constrained
clustering with the criterion of minimizing the within-cluster sum of squares, based on
Integer Linear Programming. It allows must-link, cannot-link and all constraints that are
anti-monotone.

Among generic optimization tools, Constraint Programming (CP) is a powerful
paradigm for solving combinatorial search problems that relies on a wide range of tech-
niques from Arti�cial Intelligence, Computer Science and Operational Research. The basic
idea of Constraint Programming is to solve problems by stating constraints that must be
satis�ed by the solution. The main principles in CP are: (1) users specify declaratively
the problem as a Constraint Satisfaction Problem; (2) solvers search for solutions by con-
straint propagation and search. We claim that Constraint Programming might be a useful
tool for the task of cluster analysis with constraints. Relying on Constraint Programming
has two main advantages: the declarativity, which enables to easily add new constraints
and the ability to �nd an optimal solution satisfying all the constraints (when there exists
one). In this dissertation, we present our research on Constraint Programming to solve
the problem of Constrained Clustering.
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1.1 Dissertation Contributions

The main contributions of this dissertation are three folds:

• We propose two models based on Constraint Programming, allowing to �nd an
optimal solution for clustering under constraints, given an optimization criterion.

• We show that such a framework can easily be embedded in a more general process
and we illustrate this on the problem of �nding the Pareto front of a bi-criterion
(split-diameter) optimization process.

• We have proposed new global constraints to improve the performance of the frame-
work.

We presented the �rst model [Dao et al. 2013d, Dao et al. 2013c, Dao et al. 2013a],
based on Constraint Programming, which enables to design clustering tasks by speci-
fying an optimization criterion and some constraints either on the clusters or on pairs
of objects. We proposed improvements of the search strategy and a �ltering algorithm
[Dao et al. 2013b] in order to enhance the performance of the model. In our framework,
several classical optimization criteria are considered and they can be coupled with dif-
ferent kinds of constraints. Experimental results show that our model dominates the
state-of-the-art exact clustering algorithms for the criterion of diameter.

Next, we analysed the limitation of the framework and we proposed a new
and improved model in Constraint Programming [Dao et al. 2014a, Dao et al. 2014c,
Dao et al. 2014b]. The second model is more �exible, as it does not require to set the
number of clusters. Moreover, the model is lighter in terms of the number of variables and
constraints. We also developed dedicated global constraints for two criteria. Experiment
results show that the second model it not only more general but also much more e�cient.

Finally, we studied the problem of constrained clustering with a multi-criterion op-
timization and demonstrated the use of our model in order to solve the problem of
clustering with the bi-criterion of diameter and split [Dao et al. 2014a, Dao et al. 2014c,
Dao et al. 2014b].

1.2 List of publications

International Journal Article

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Constrained Clus-

tering by Constraint Programming. Arti�cial Intelligence, 2014. To appear with a
minor revision.

National Journal Article

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Clustering sous

contraintes en PPC. Revue d'Intelligence Arti�cielle, 2014. To appear.
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International Conference Papers

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. A Declarative

Framework for Constrained Clustering. In Proceedings of the European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, pages 419�434, 2013

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. A Filtering Algo-

rithm for Constrained Clustering with Within-Cluster Sum of Dissimilarities Crite-

rion. In Proceedings of the 25th International Conference on Tools with Arti�cial
Intelligence, pages 1060�1067, 2013

National Conference Papers

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Une approche en

PPC pour la classi�cation non supervisée. In 13e Conférence Francophone sur
l'Extraction et la Gestion des Connaissances EGC, 2013

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Un modèle général

pour la classi�cation non supervisée sous contraintes utilisateur. In Neuvième
Journées Francophones de Programmation par Contraintes, 2013

• Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Classi�cation non

supervisée mono et bi-objectif sous contraintes utilisateur par la programmation par

contraintes. In Dixième Journées Francophones de Programmation par Contraintes,
2014.

1.3 Dissertation Organization

This dissertation is organized as follows:

Chapter 2 is dedicated to preliminaries on Constraint Programming.

Chapter 3 gives background on the problem of cluster analysis, mainly from an opti-
mization viewpoint. We present di�erent approaches of cluster analysis that are related
to our research. Finally, we present the state of the art of constrained clustering.

Chapter 4 brings an overview of recent declarative frameworks for Data Mining, spe-
cially those that are related to cluster analysis.

Chapter 5 presents our �rst model for solving the problem of constrained clustering.
The model, based on CP, supports instance-level constraints, specifying requirements on
pairs of objects, as well as di�erent cluster-level constraints, specifying requirements on
clusters. It also allows users to choose among di�erent optimization criteria. The con-
tributions of this Chapter have been published in [Dao et al. 2013d, Dao et al. 2013c,
Dao et al. 2013a, Dao et al. 2013b].
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Chapter 6 presents our second model for constrained clustering. The model is more
�exible as it does not require to set a priori the number of clusters k, but only bounds on
k are required. The second model is lighter in terms of the number of variables, as well
as the number of constraints. The contributions of this Chapter are in [Dao et al. 2014a,
Dao et al. 2014c, Dao et al. 2014b].

Chapter 7 gives the introduction of multi-objective optimization, and demonstrate the
use of our model for �nding the optimal Pareto solutions of a bi-criterion optimization
process. The contributions of this Chapter are in [Dao et al. 2014a, Dao et al. 2014c,
Dao et al. 2014b].

In the conclusion the dissertation is summarized and perspectives are discussed.





Chapter 2

Constraint Programming

Dans ce chapitre, nous présentons des connaissances de base en Programmation par Con-
traintes (PPC): le Problème de Satisfaction de Contraintes, la propagation de contraintes,
les contraintes globales et le �ltrage, la recherche de solutions et la notion de symétrie.
Un Problème de Satisfaction de Contraintes (CSP) est un triplet 〈X,Dom,C〉 où X =

〈x1, x2, . . . , xn〉 est un n-tuple de variables, Dom = 〈Dom(x1), Dom(x2), . . . , Dom(xn)〉
est un n-tuple de domaines (xi ∈ Dom(xi)), C = 〈C1, C2, ..., Ct〉 est un t-tuple de con-
traintes où chaque contrainte Ci exprime une condition sur un sous-ensemble de X. Une
solution d'un CSP est une a�ectation complète de valeurs ai ∈ Dom(xi) à chaque variable
xi qui satisfait toutes les contraintes de C. La propagation de contraintes opère sur une
contrainte c et enlève du domaine des variables de c des valeurs dont on est certain qu'elles
ne pourront pas apparaître dans une solution. Les contraintes globales représentent des
relations sur des ensembles de variables et en général, elles peuvent être exprimées par
une conjonction de contraintes élémentaires. Cependant, dé�nies d'une façon globale, les
contraintes globales béné�cient de mécanismes de propagations beaucoup plus e�caces,
qui sont e�ectuées par des algorithmes de �ltrage. Un solveur de contraintes itère une
étape de propagation suivie d'une étape de branchement jusqu'à ce qu'une solution soit
trouvée.

Contents
2.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Global constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Backtracking search in CP . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Variable and value ordering heuristics . . . . . . . . . . . . . . . . . 16

2.4.3 Search for COPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Symmetries in CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

This chapter gives an introduction and basic notions of Constraint Programming (CP).
A large part of this chapter is based on the books [Apt 2003] and [Rossi et al. 2006].

2.1 General Concepts

In this section, we present general concepts related to Constraint Programming. Con-
straint Programming is a powerful paradigm for solving combinatorial search problems
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that relies on a wide range of techniques from Arti�cial Intelligence, Computer Science
and Operational Research. The main principles in CP are: (1) users specify declara-
tively the problem in a Constraint Satisfaction Problem; (2) solvers search for solutions
by constraint propagation and search.

De�nition 1 Let x be a variable. The domain of x, denoted by Dom(x), is a set of

possible values that can be assigned to x. For each variable x, only a single value in

Dom(x) can be assigned to x.

Example 1 x1, x2, x3 are variables with the domains: Dom(x1) = {1, 2, 3}, Dom(x2) =

{2, 5} and Dom(x3) = {1, 3, 5}.

De�nition 2 Let X = {x1, x2, ..., xn} be a set of variables. An assignment is a n-tuple

t = (t1, . . . , tn) ∈ Dom(x1)× . . .×Dom(xn) such that xi = ti for all xi ∈ X,n = |X|.

Example 2 The tuple (1, 2, 5) is an assignment of variables given in Example 1. It is
equivalent with x1 = 1, x2 = 2 and x3 = 5.

De�nition 3 Let X = {x1, x2, ..., xn} be a set of variables. A constraint C on an ordered

tuple of variables, denoted by V ar(C) = (xi1, . . . , xik) ⊆ X, is a subset of the cartesian

product of the domains of the variables in V ar(C), i.e., C ⊆ Dom(xi1)× . . .×Dom(xik),

that speci�es the allowed combinations of values for the variables. V ar(C) is the scope

of the constraint and |V ar(C)| is the arity of the constraint C. C is called an unary

constraint if it is de�ned on one variable and is called a binary constraint if it is de�ned

on two variables. In many cases, constraints can be expressed by mathematical formulas

on variables.

Example 3 Given the variables de�ned in Example 1, we consider two binary con-
straints: C1 ≡ x1 6= x2 and C2 ≡ x1 + x3 ≤ 6. The �rst constraint can be
de�ned as {(1, 2), (1, 5), (2, 5), (3, 2), (3, 5)}. The second constraint is equivalent to
{(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (3, 1), (3, 3)}.

De�nition 4 A Constraint Satisfaction Problem (CSP) P is a triple 〈X,Dom,C〉 where:

• X = 〈x1, x2, . . . , xn〉 is a n-tuple of variables,

• Dom = 〈Dom(x1), Dom(x2), . . . , Dom(xn)〉 is a corresponding n-tuple of domains

such that xi ∈ Dom(xi),

• C = 〈C1, C2, ..., Ct〉 is a t-tuple of constraints where each constraint Ci expresses a

condition on a subset of X.

Example 4 Based on Examples 1 and 3, we have a CSP de�ned as:

x1 ∈ {1, 2, 3}, x2 ∈ {2, 5}, x3 ∈ {1, 3, 5}

x1 6= x2, x1 + x3 ≤ 6



2.1. General Concepts 9

De�nition 5 Given a CSP P = 〈X,Dom,C〉 with X = {x1, x2, ..., xn}, Dom =

〈Dom(x1), Dom(x2), . . . , Dom(xn)〉 and a set of constraints C = {C1, C2, ..., Cm}, a tuple

t = (t1, . . . , tn) satis�es a constraint Ci de�ned on the variables xi1 , . . . , xik if the tuple

(ti1 , . . . , tik) ∈ Ci.

Example 5 Given the CSP in Example 4, the tuple (1, 2, 3) satis�es the constraint
x1 6= x2 since the tuple (1,2) (which is equivalent to the assignment x1 = 1, x2 = 2)
satis�es the constraint x1 6= x2.

De�nition 6 Given a CSP P = 〈X,Dom,C〉 with X = {x1, x2, ..., xn}, Dom =

〈Dom(x1), Dom(x2), . . . , Dom(xn)〉 and a set of constraints C = {C1, C2, ..., Cm}, a tuple

t = (t1, . . . , tn) ∈ Dom(x1)× . . .×Dom(xn) is a solution of this CSP if it satis�es every

constraint in C.

Example 6 Given the CSP in Example 4, a solution to the problem is the tuple (1,2,3).
The assignment of x1 = 1, x2 = 2 and x3 = 3 satis�es all the constraints in this CSP.

De�nition 7 A constraint optimization problem (COP) is a CSP P = 〈X,Dom,C〉 to-
gether with an objective function f : Dom(x1)× . . .×Dom(xn)→ R to be optimized. An

optimal solution to a COP is a solution to P that optimizes the function f .

Example 7 Given the CSP in Example 4 and a function f = x1+x2+x3 to be maximized,
we have a COP de�ned as:

x1 ∈ {1, 2, 3}, x2 ∈ {2, 5}, x3 ∈ {1, 3, 5}

x1 6= x2, x1 + x3 ≤ 6

maximize x1 + x2 + x3

An optimal solution of this COP is the tuple (1, 5, 5), which is equivalent to the assignment
x1 = 1, x2 = 5, x3 = 5. Another optimal solution of this COP is the tuple (3, 5, 3).

In general, CSPs are NP-hard. However, techniques used in CP solvers allow to solve
e�ciently many di�cult problems. For solving a practical problem by CP, the problem
must be modeled as a CSP or a COP, which means it is needed to precise:

• De�nition of variables and theirs domains.

• Speci�cation of the constraints between variables.

• De�nition of the objective function on related variables if it is a COP.

CSPs and COPs can be modeled and then solved by a constraint solver such as: Gecode
[Gecode Team ], Choco [choco Team 2010], Comet [Van Hentenryck & Michel 2005], IBM
ILOG CP Optimizer [Laborie 2009], . . .
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2.2 Constraint Propagation

In general, a constraint solver �nds one or all solutions of a CSP by using successively con-
straint propagation and search. Constraint propagation consists of removing inconsistent
values from domains of variables. In consequence, the search space can be signi�cantly
reduced.

De�nition 8 Let C be a constraint de�ned on variables V ar(C) = {xi1, . . . , xim}. A

support for a value v ∈ Dom(xij) is an assignment t = (ti1, . . . , tim) such that tij = v and

(ti1, . . . , tim) ∈ C. If there doesn't exist such a support, the value v is inconsistent with

the constraint C.

The constraint propagation phase is proceeded by propagation algorithms, or also called
�ltering algorithms.

De�nition 9 A �ltering algorithm associated with a constraint C is an algorithm that

removes inconsistent values of variables involved in the constraint. If the �ltering algorithm

cannot remove any inconsistent value in the domain of variables, the constraint C is locally

consistent.

A constraint is locally consistent if the �ltering algorithm cannot remove any inconsistent
values. In constraint propagation, �ltering algorithms are applied repeatedly until all con-
straints are locally consistent, with respect to domains of variables. When this process
terminates, the CSP is called locally consistent. Many types of local consistencies have
been studied in Constraint Programming, including node consistency, arc consistency, gen-
eralized arc consistency and path consistency. The simplest type is the node consistency
which requires that every unary constraint C de�ned on a variable xi is satis�ed by all
values in Dom(xi). In practice, the node consistency can be achieved by reducing the
domain of each variable to the values that satisfy all unary constraints. As a result, unary
constraints can be handled one time at the beginning and be neglected later.

De�nition 10 A CSP is node consistent if for every variable x ∈ X, every unary con-

straint de�ned on x is consistent with the domain of x.

Example 8 Given the CSP in Example 4 with a new unary constraint C3 ≡ x1 ≤ 2.
The value 3 is inconsistent in Dom(x1) with the constraint C3. By �ltering this value,
Dom(x1) = {1, 2} and the CSP is node consistent.

The next level of consistency is arc consistency, which is de�ned on binary constraints.

De�nition 11 Given a binary constraint C de�ned on variables x and y, with the domains

Dom(x) and Dom(y) respectively. The constraint C is arc consistent (AC) if for every

value a ∈ Dom(x), there exists a value b ∈ Dom(y) such that the assignment x = a, y = b

satis�es the constraint C and vice versa:

∀a ∈ Dom(x),∃b ∈ Dom(y) : (a, b) ∈ C

∀b ∈ Dom(y), ∃a ∈ Dom(x) : (a, b) ∈ C

A CSP is arc consistent if all its binary constraints are arc consistent.



2.2. Constraint Propagation 11

Example 9 The two binary constraints of the CSP given in Example 4 are arc consistent.
Considering a new binary constraint: C3 ≡ x1 = x3, it is not arc consistent because if we
assign the value 1 to the variable x1, there is no value for x3 in its domain to satisfy the
constraint x1 = x3.

The notion of arc consistency can be generalized to arbitrary constraints.

De�nition 12 A constraint C is generalized arc consistent (GAC) if for each variable

involved in the constraint, for any of its value there exists a value for every other variables

such that the assignment of those values to variables satis�es the constraint.

In another way, a constraint C is generalized arc consistent if every value of every variable
involved in the constraint has at least a support. A CSP is generalized arc consistent if
all of its constraints are generalized arc consistent.

The basic arc consistency algorithm is presented in Algorithm 1. All the binary con-
straints are revised each time an inconsistent value is detected and removed. In the
literature, many other arc consistency algorithms (AC-2, . . . , AC-7) have been proposed
to reduce the complexity.

Algorithm 1: Basic Arc Consistency algorithm

1 Function Revise(xi, xj)

2 DELETED ← false
3 foreach value ai in Dom(xi) do

4 if there is no aj in Dom(xj) such that (ai, aj) satis�es all binary

constraints on (xi, xj) then

5 delete ai in Dom(xi)

6 DELETED ← true

7 end

8 end

9 Return DELETED

10 Function ArcConsistency(xi, xj)

11 repeat

12 CHANGED ← FALSE
13 foreach arc(xi, xj) do

14 CHANGED ← Revise(xi, xj) or CHANGED
15 end

16 until not Changed ;

Example 10 Assume the variables x1, x2 and x3 taking integer values in [1, 4]1 with
constraints: x1 < x2 and x2 < x3. Suppose that arcs will be revised in the order (x1, x2),
(x2, x1), (x2, x3), (x3, x2).

• we �rst select the arc (x1, x2) and remove the value 4 from Dom(x1) because if
x1 = 4, there exists no value for x2 such that x1 < x2

1For a discrete variable, [i, j] denotes the set of integers from i to j.
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• arc (x2, x1) is revised and the value 1 is removed from Dom(x2) for the same reason.

• arc (x2, x3) is revised and the value 4 is removed from Dom(x2). Now Dom(x1) =

[1, 3], Dom(x2) = [2, 3], Dom(x3) = [1, 4]

• arc (x3, x2) is revised and the values 1 and 2 are removed from Dom(x3). Now
Dom(x1) = [1, 3], Dom(D2) = [2, 3], Dom(x3) = [3, 4]

• all the arcs are revised again: when revising (x1, x2), the value 3 is removed from
Dom(x1)

• Finally Dom(x1) = [1, 2], Dom(x2) = [2, 3], Dom(x3) = [3, 4]

The Arc Consistency techniques reduce signi�cantly the search space in many CSPs
but there still exist many other possible inconsistencies.

Example 11 Assume the variables x1, x2 and x3 taking integer values in {1, 2} with
constraints: x1 6= x2, x2 6= x3 and x3 6= x1. The Arc Consistency techniques can not
detect any inconsistencies in this case although there is no solution.

Path Consistency is stronger than Arc Consistency, it detects inconsistencies in every
path in the constraint graph. It removes more inconsistencies but it is too costly and is
not e�cient in most CSPs. Moreover, the Path Consistency is not able to detect all of the
inconsistencies.

2.3 Global constraints

A global constraint is a constraint that expresses a relationship between a non-�xed num-
ber of variables. This relationship can be expressed by a conjunction of simpler constraints.

De�nition 13 Let C = {C1, . . . , Cm} be a set of constraints. The constraint CG, which

is equal to the conjunction of all the constraints of C: CG = ∧{C1, . . . , Cm}, is a global

constraint.

A typical example of a global constraint is the AllDi�erent(x1, x2, . . . , xn) constraint.
This constraint requires that values assigned to the variables x1, . . . , xn must be pairwise
distinct.

De�nition 14 Let X = {x1, . . . , xn} be a set of variables. The AllDi�erent constraint on

X is de�ned as:

AllDi�erent(x1, . . . , xn) = {(d1, . . . , dn) | ∀i : di ∈ Dom(xi),∀i 6=j : di 6= dj}

For instance, the constraint AllDi�erent(x1, x2, . . . , xn) can be replaced by n(n−1)
2 binary

constraints: x1 6= x2, x1 6= x3, . . . , xn−1 6= xn.
Using global constraints makes a CSP become more intuitive. But more importantly,

powerful �ltering algorithms can be designed because the set of simple constraints can be
considered as a whole at the same time. Many �ltering algorithms for global constraints



2.3. Global constraints 13

Figure 2.1: graph value (left) and a maximum matching (right) of Example 12

use operational research techniques or graph theory to achieve generalized arc consistency
with low complexity. In this section, we present one of the most successful �ltering al-
gorithms associated to the well known AllDi�erent constraint, proposed by [Régin 1994].
The algorithm is based on graph theory.

De�nition 15 Given a graph G = (V,E), a matching in G is a set M ⊆ E of disjoint

edges, i.e no two edges in M share a vertex. A matching M is a maximum matching if it

contains the largest possible number of edges.

De�nition 16 Let X = x1, . . . , xn be a sequence of variables with respective domains

Dom(x1), . . . , Dom(xn). The bipartite graph G = (V,E), with V = X ∪Dom(x1) ∪ . . . ∪
Dom(xn) and E = {(xi, d)|xi ∈ X, d ∈ Dom(xi)} is called the value graph of X.

In the value graph G, each variable xi corresponds to a variable-node while each value v
corresponds to a value-node. There is an edge between a variable-node xi and a value-node
v i� the value v is in the domain of xi.

Example 12 Assume we have 3 variables x1, x2 and x3 with the domains: x1 ∈
{1, 3}, x2 ∈ {1, 3}, x3 ∈ {1, 2, 3}. The value graph of those variables and a maximum
matching are shown in Figure 2.1.

Let X = {x1, . . . , xn} be a set of variables and let G be the value graph of X,
[Régin 1994] introduced two important propositions on the relationship between assign-
ments of X and matchings.

• There is a matching of cardinality n if and only if the AllDi�erent constraint is
satis�able.

• An edge (xi, v) belongs to a matching of cardinality n if and only if the value v is
consistent with the constraint.

From that observation, the �ltering algorithm in [Régin 1994] consists of two steps:

• Determine if there exists at least one matching of cardinality |X|. If such a matching
does not exist, the constraint cannot be satis�ed.

• Mark all edges (xi, v) that could not belong to any matching of cardinality n. For
each edge (xi, v) satisfying the condition, the value v is inconsistent and can be
removed from the domain of xi.
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Figure 2.2: residual graph GM (left) and marked edges (right) in Example 13

The �rst step can be solved by �nding a matching of maximum cardinality M in the
value graph. Because there is only edges between variable-nodes and value-nodes, the
maximum cardinality of matchings in the value graph is at most |X|.

For the second step, [Régin 1994] constructs a residual graph GM that is a directed
version of the graph G, with the direction based onM . Edges that belong to the maximum
matching M are oriented from the value-nodes to variable-nodes. Otherwise, edges are
oriented from value-nodes to variable-nodes. The �ltering algorithm �nds all strongly
connected components in GM and marks all edges in those components. A simple depth-
�rst search marks all edges that lie on an even-length path starting at the free nodes. It is
proven that those marked edges belong to at least one maximum cardinality matching and
the unmarked edges do not belong to the matching M and cannot be a part of any other
maximum cardinality matching. Hence, the AllDi�erent constraint is made generalized
arc consistent by removing all the values v ∈ D(xi) such that (xi, v) is an unmarked edge.

Example 13 Given the value graph in Example 12, the graph GM and marked edges are
presented in Figure 2.2. There are two unmarked edges (x3, 1) and (x3, 3). Those edges
do not belong to any maximum cardinality matching, therefore we can remove value 1 and
3 from the domain of x3.

2.4 Search

De�nition 17 Given a CSP P0, a search tree for P0 is a rooted tree such that:

• its nodes are CSPs,

• its root is P0,

• if P1, . . . , Pm where m > 0 are all direct descendants of P0, then the union of the

solution sets of P1, . . . , Pm is equal to the solution set of P0.

A node in the search tree is a dead end if it does not lead to a solution. The general idea
is that the search tree is built by branching (also called splitting) a CSP into smaller CSPs
until each leaf is a dead end or a solved CSP. At each node, the constraint propagation is
applied to the CSP until the domains of variables are consistent. There are three cases:
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Figure 2.3: A search tree for a CSP

• If all the variable domains are singletons, these singleton domains form a solution
and the search continues to explore other branches.

• If any of the variable domains is empty, the CSP has no solution and the search
explorers other branches.

• Otherwise, the current CSP is locally consistent and it is split into smaller CSPs
either by splitting a constraint or by splitting the domain of a variable. In this
thesis, we only consider the latter technique.

The strategy of extending a node in the search tree is often called a branching strategy.
An example of a search tree is given in Figure 2.3. Solving a CSP can be complete or
incomplete:

• A complete search guarantees to �nd all existing solutions, or proves that the CSP
does not have any solution. A complete search also guarantees to �nd the optimal
solution of a COP. The chronological backtracking search is the most well known
complete approach. A search is completed if any leaf in the search tree is either a
dead end or a solved CSP.

• An incomplete search does not explore the search space completely, but focuses on
branches which have a high probability of containing a solution. It is often e�ective
at �nding a solution of CSPs if one exists. In COPs, an incomplete search can be
used to �nd an approximation to an optimal solution. Incomplete searches can not
be used to prove that the CSP does not have a solution or to prove the optimality of
a solution as the searches does not explore all possible branches of the search tree.

2.4.1 Backtracking search in CP

The naive backtracking algorithm begins with the root node P0 which is the original CSP.
The node is then split following a branching strategy. For example, in the branching
strategy of enumeration, the node P0 is extended by selecting a variable, for example the
variable x, and splitting its domain into singleton sets. For each value ai in the domain of
x, a descendant node Pi is generated. Pi is a copy of P0 except the domain of x is replaced
by a singleton: Dom(x) = {ai}. The backtracking algorithm then visits a node Pi and
the constraint propagation is applied to Pi. There are three cases after that:
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• The domain of a variable is reduced to an empty set: Pi is a failed CSP, the search
backtracks to visit other non-visited nodes.

• All the variable domains are singletons: these singleton domains form a solution,
the search backtracks to visit other non-visited nodes.

• Otherwise: Node Pi is extended and the search visits one of the descendent nodes.

The search is terminated after visiting every generated nodes. Three popular branching
strategies often used are:

• Enumeration: A branch is generated for each value in the domain of the variable, as
explained above.

• Binary choice points: A variable x and a value a ∈ Dom(x) are chosen. There are
two descendant nodes P1 and P2. In P1, the domain of x is replaced by a singleton
Dom(x) = {a} whereas in P2, the domain of x contains all remaining values.

• Domain splitting: Here the domain of the variable is split to create the branching.
Suppose that a variable x and a value a is chosen for branching. There are two
descendant nodes P1 and P2. In P1, the domain of x contains all values which are
less or equal to a, and P2 contains the remaining values.

Strategies for choosing variables and for choosing values for branching are extremely
important, since they can reduce drastically the search tree.

2.4.2 Variable and value ordering heuristics

For branching a node, we have to decide how to select a variable and how to split its
domain. The order in which variables and values are selected is extremely important in the
search process since correct choices can reduce drastically the number of nodes in the search
tree. The variable ordering may be either static or dynamic. In the static ordering, the
order of the variables is speci�ed before the search begins whereas in the dynamic ordering,
the choice of the variable is considered as the search processes. [Haralick & Elliott 1979]
suggests that "the best search order is the one which minimizes the expected length or

depth of each branch". In order to do that, [Haralick & Elliott 1979] introduced the Fail-
First Principle that tries to select the variable which can quickly leads to a dead end
node. The underlying idea is to detect failures early to avoid useless branches. If the
current node P cannot lead to a solution, then the sooner we detect the failure the better.
The most common variable ordering heuristic with the Fail-First Principle is the Smallest
Remaining Domain method. In this method, the variable with the smallest domain size
is selected for branching with the idea that the variable is most likely to lead to a dead-
end. This method is based on the assumption that each value in a domain has the same
probability to be in a solution, so the variable with the smallest remaining domain size
has the smallest chance to be successful. Other heuristics may be used during the search
to determine the next variable to be instantiated:

• the variable that participates in a higher number of constraints,

• the variable that has the largest number of constraints with instantiated variables.
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Figure 2.4: Search tree with the strategy: the variable with the smallest domain is selected
for instantiation

The order of values for each variable is important too, a correct choice of values can help
to reduce the search tree. The example below demonstrates the importance of the variable
ordering.

Example 14 Find distinct digits for the letters S,E,N,D,M,O,R, Y such that

S E N D
+ M O R E
= M O N E Y

To model this problem, we can de�ne a variable with the domain [0, 9] for each letter:
X = {xS , xE , xN , xD, xM , xO, xR, xY }.

The following constraints are added:

• AllDifferent(xS , xE , xN , xD, xM , xO, xR, xY )

• xS 6= 0, xM 6= 0

• 1000xS+100xE+10xN +xD+1000xM +100xO+10xR+xE = 10000xM +1000xO+

100xN + 10xE + xY

By using arc consistency techniques, we can reduce the domain of variables to:

Dom(xS) = {9}, Dom(xE) = [4, 7], Dom(xN ) = [5, 8], Dom(xD) = [2, 8],

Dom(xM ) = {1}, Dom(xO) = {0}, Dom(xR) = [2, 8], Dom(xY ) = [2, 8]

Figures 2.4 and 2.5 show two search trees with di�erent strategies for the next variable to
be instantiated. These search trees are generated by Gist environment of the Gecode solver
where a blue circle denotes a stable state but not yet a solution, a red square represents
a fail state (there is no solution) and a green diamond is a solution.
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Figure 2.5: Search tree with the strategy: the variable with the biggest domain is selected
for instantiation

2.4.3 Search for COPs

To solve a COP, a common approach is to use the branch-and-bound technique. A back-
tracking search is �rst used to �nd a solution which satis�es all the constraints without
considering the optimization criterion. When a solution is found, the value of the opti-
mization function is computed and an additional constraint is added to the CSP in order
to forbid solutions that are not better than this solution. The solver continues to search
for solutions of the new CSP and every time a solution is found, an additional constraint
is added to the CSP. When the search space is explored completely, the last solution found
is proven optimal.

Let us consider the following example for illustrating a Constraint Optimization Prob-
lem and search strategies.

Example 15 Find an assignment of digits to letters such that

S E N D
+ M O S T
= M O N E Y

and the value ofMONEY is maximized. The optimal solution of this problem is SEND =

9782, MOST = 1094 and the value MONEY = 10876. This problem can be modeled as
a Constraint Optimization Problem, using eight variables xS , xE , xN , xD, xM , xO, xT , xY ,
whose domain is the set of digits [0, 9], and a variable V of domain integer, which represents
the objective function, which is to be maximized. Constraints that specify the problem
are:

• the letters S and M must not be equal to 0: xS 6= 0, xM 6= 0
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Figure 2.6: Search trees (blue circle: a stable state but not yet a solution, red square: a
fail state (there is no solution), green diamond: an intermediary solution, orange diamond:
the optimal solution.)

• all the letters are pairwise di�erent: alldifferent(xS , xE , xN , xD, xM , xO, xT , xY )

• (1000xS + 100xE + 10xN + xD) + (1000xM + 100xO + 10xS + xT ) = 10000xM +

1000xO + 100xN + 10xE + xY

• V = 10000xM + 1000xO + 100xN + 10xE + xY .

The propagation of these constraints leads to a stable state with the domains:

Dom(xS) = {9}, Dom(xE) = {2, 3, 4, 5, 6, 7}, Dom(xM ) = {1}, Dom(xO) = {0},

Dom(xN ) = {3, 4, 5, 6, 7, 8}, Dom(xD) = Dom(xT ) = Dom(xY ) = {2, 3, 4, 5, 6, 7, 8}

Strategies de�ne the way to choose variables and for each chosen variable, the way to choose
values. If variables are chosen in the order xS , xE , xN , xD, xM , xO, xT , xY and for each
variable, the remaining values in its domain are chosen in an increasing order, the search
tree has 29 states with 7 intermediate solutions (a solution which is better than the prece-
dent one). However, if variables are chosen in the order xS , xT , xY , xN , xD, xE , xM , xO,
the search tree has only 13 states with 2 intermediate solutions. These two search trees
are shown in Figure 2.6. For each stable state, the left branch corresponds to the case
where the chosen variable is assigned to the chosen value, the right branch is the other
case where the chosen value is removed from the domain of the chosen variable. In these
search trees, blue circle is a stable state but not yet a solution, red square is a fail state
(there is no solution), green diamond is an intermediary solution and the orange diamond
is the optimal solution. It is worth to notice that it is an exhaustive search, the returned
solution is guaranteed to be optimal. Let us notice that in problems where there are
several solutions with the same optimal value, the system returns only a single optimal
solution.
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2.5 Symmetries in CP

De�nition 18 For any CSP instance P = (X,D,C), a solution symmetry σ of P is a

permutation of the set X ×D that preserves the set of solutions to P .[Cohen et al. 2005]

In other words, a solution symmetry is a bijection mapping on the set of variable-value
pairs, that maps solutions to solutions and also non-solutions to non-solutions. As a
result, given a solution symmetry σ, a complete assignment A is a solution if and only if
σ(A) is a solution. The solution symmetry makes some sub-trees in the search space to
be equivalent. If two sub-trees are equivalent, they will both have no solution, or every
solution in a sub-tree corresponds with a symmetric counterpart in the other sub-tree. As a
result, it is not necessary to explore both sub-trees which are symmetrically equivalent. In
practice, the most common symmetry types are: variable symmetry and value symmetry.
Variable (value) symmetries are symmetries that can be represented by a permutation of
only variables (values).

Example 16 The 8-queens problem: Find how to place 8 queens on a 8×8 board, so that
they do not attack each other: no two queens share the same row, column or diagonal.

This problem can be modelled as a CSP with 8 variables x1 . . . x8 for queens, with the
domain: dom(xi) = {1, . . . , 8}. The variable xi represents the column position for the
queen in row i. With those de�nitions of variables, no two queens can be on the same
row. The constraints for the problem are:

• ∀i < j ∈ {1, . . . , n} : xi 6= xj : Those constraints guarantee that two queens cannot
be on the same column.

• ∀i < j ∈ {1, . . . , n} : |xi − xj | 6= j − i: Those constraints guarantee that no two
queens are on the same diagonal.

With this modelling, there are solution symmetries as following:

1. The variable symmetry (x1, x2, x3, x4, x5, x6, x7, x8) ↔ (x8, x7, x6, x5, x4, x3, x2, x1)

that maps x1 to x8, x2 to x7, . . .. It represents a �ipping horizontal on the board,
as illustrated by the solution 0 and 1 in Figure 2.5. The solution 0 is:

x1 = 1, x2 = 5, x3,= 8, x4 = 6, x5 = 3, x6 = 7, x7 = 2, x8 = 4.

By switching values of x1 and x8, x2 and x7,. . . , we have the solution 1, which is
symmetry to the solution 0:

x1 = 4, x2 = 2, x3,= 7, x4 = 3, x5 = 6, x6 = 8, x7 = 5, x8 = 1.

2. The value symmetry (1, 2, 3, 4, 5, 6, 7, 8) ↔ (8, 7, 6, 5, 4, 3, 2, 1) that maps value 1 to
8, 2 to 7,. . . It represents a �ipping vertical on the board, as illustrated by the
solutions 0 and 2 in Figure 2.5.

3. The variable-value symmetry that maps every xi = j to xj = i that represents a
�ipping diagonal on the board, for example the solutions 0 and 3 in Figure 2.5.
Another variable-value symmetry maps every xi = j to x8−j+1 = 8 − i + 1, for
instance the solution 0 and 4 in Figure 2.5.
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Figure 2.7: Solution symmetries on 8-queens problem

4. Combination of the above symmetries.

Many researches have addressed the importance of symmetry breaking in the search of
CSPs. Solution symmetries can be avoided either by adding new constraints to prohibit
them or by modifying the search heuristic to prune symmetric states during the search.

2.6 Summary

In this chapter, we present basic preliminaries of Constraint Programming. Constraint
Programming is a powerful paradigm in which users specify declaratively the problem by
variables and constraint, then the solver �nds the solutions by constraint propagation and
search.

More details on Constraint Programming can be found in text books [Apt 2003] and
[Rossi et al. 2006].





Chapter 3

Clustering

Ce chapitre est consacré à l'état de l'art de la classi�cation non supervisée (clustering) et
du clustering sous contraintes, notamment les approches concernant nos recherches. Nous
présentons les notions principales et di�érents critères pour le problème de clustering. Ce
chapitre introduit ensuite des méthodes fondées sur le partitionnement des données et
des méthodes hiérarchiques. A�n de mieux modéliser la tâche d'apprentissage, mais aussi
dans l'espoir de réduire la complexité, des contraintes dé�nies par l'utilisateur peuvent être
ajoutées. Plusieurs types de contraintes peuvent être considérés; ces contraintes peuvent
porter sur les clusters, comme par exemple sur leur diamètre ou sur leur taille, ou porter
sur des paires d'objets qui doivent être ou ne doivent pas être dans une même classe.
Nous présentons ces contraintes et les approches développées pour intégrer des contraintes
utilisateur dans la tâche de clustering.
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Cluster analysis is an important task in Data Mining, which aims at partitioning a
given set of objects into homogeneous and well-separated subsets called classes or clusters.
Homogeneity means that the objects inside the same cluster must be similar while well
separation expresses that objects in a cluster must be di�erent from the objects belonging
to other clusters. The problem has been studied since 18th century with applications in
natural sciences, economics, sociology, geology and many other �elds. The cluster analysis
literature is vast and heterogeneous with hundreds of di�erent algorithms.

Clustering could be seen as an optimization problem, i.e., �nding a partition of the
objects that optimizes a given criterion. In this chapter, we present the state of the art
in clustering, mainly from an optimization viewpoint. We focus more on heuristics and
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exact methods with optimization criteria that are closer to our research. We also bring
an overview of constrained clustering with several well-known approaches.

3.1 Problem de�nitions

We consider a dataset of n objects O = {o1, . . . , on}. Each object is described by its
values on p attributes, also called variables. We denote the value of the j-th attribute of
an object oi by oij . Most cluster algorithms do not rely on the description of the objects
but on a dissimilarity between them.

Suppose that we have a dissimilarity measure between any two objects oi, oj ∈ O,
denoted by dij . The dissimilarity dij is typically calculated by using a distance metric
de�ned on the attribute space. A distance metric must satisfy the following properties
[Han et al. 2011]:

1. Non-negativity: dij ≥ 0, ∀i, j ∈ [1, n]. 1

2. Identity of indiscernible: dii = 0,∀i ∈ [1, n].

3. Symmetry: dij = dji,∀i, j ∈ [1, n].

4. Triangle inequality: dij ≤ dit + dtj ,∀i, j, t ∈ [1, n].

Note that the dissimilarity measure must satisfy the �rst three properties, but may not
satisfy the triangle inequality. In cluster analysis, the most popular distance metric is
Euclidean distance and the squared Euclidean distance [Han et al. 2011]. Given two object
oi, oj , the Euclidean distance between them is de�ned as:

dij =
√

(oi1 − oj1)2 + (oi2 − oj2)2 + . . .+ (oip − ojp)2

The squared Euclidean distance which is de�ned as:

dij = (oi1 − oj1)2 + (oi2 − oj2)2 + . . .+ (oip − ojp)2

Another popular distance measure is the Manhattan distance [Han et al. 2011], de�ned
as:

dij = |oi1 − oj1|+ |oi2 − oj2|+ . . .+ |oip − ojp|

Similarly, we denote a similarity measure between two objects oi and oj by sij . The
similarity measure is widely used in spectral clustering. It is typically calculated by a
Gaussian function of the dissimilarity [Luxburg 2007]:

sij = exp(− dij
2σ2

)

where σ is a parameter.
There exist other similarity measures, for instance the normalized Pearson correlation,

the Jaccard measure, the dice coe�cient measure,. . . [Han et al. 2011].
Most clustering methods can be classi�ed into two categories: hierarchical methods

and partitioning methods. A partitioning algorithm aims at �nding a partition P while a
hierarchical clustering aims at �nding a set of partitions P1, P2, . . . , Pl of O.

1[1, n] denotes the set of integers from 1 to n.
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De�nition 19 Let C1, C2, . . . , Ck be subsets of O. {C1, C2, . . . , Ck} is a partition of O
into k clusters if:

• for all c ∈ {1, . . . , k}, Cc 6= ∅

• ∪cCc = O

• for all c 6= c′, Cc ∩ Cc′ = ∅.

Many partitioning-based clustering methods rely on the choice of a representative for each
cluster, it could be a centroid or a medoid. When the objects are vectors of p quantitative
attributes, the centroid of a cluster is computed by averaging the data vectors belonging
to that cluster.

De�nition 20 The centroid mc of a cluster Cc is a point de�ned as:

∀j ∈ {1, . . . , p} (mc)j =
1

|Cc|
∑
oi∈Cc

oij

When attributes of objects are qualitative, the centroid point can no longer be calculated
and a point, usually a medoid, is chosen to represent each cluster.

De�nition 21 A medoid xc of a cluster Cc is an object of the cluster whose average

dissimilarity to all the objects in the cluster is minimal:

xc = arg min
oi∈Cc

1

|Cc|
∑
xj∈Cc

dij

Let us notice that a centroid may not belong to O whereas a medoid belongs to O.

3.2 Criteria

3.2.1 Criteria for a cluster

Cluster analysis aims at �nding clusters, which are homogeneous and well-separated. These
requirements are usually expressed by an optimization criterion and the clustering task
can be de�ned as �nding a partition of objects that optimizes a given criterion.

The separation of a cluster Cc is typically measured by the split criterion.

• the split of a cluster split(Cc) is the minimum dissimilarity between an object of
cluster Cc and objects belonging to other clusters [Hansen & Jaumard 1997]:

split(Cc) = min
oi∈Cc,oj /∈Cc

dij

Another criterion for the separation is the cut between clusters. This criterion is widely
used in the spectral clustering methods and is measured with the similarities between
objects.
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• the cut of a cluster Cc is the sum of similarities between objects of this cluster and
objects belonging to other clusters:

cut(Cc) =
∑
oi∈Cc

∑
oj /∈Cc

sij

The homogeneity of a cluster Cc can be measured by the following criteria
[Hansen & Jaumard 1997]:

• the diameter diameter(Cc) of cluster Cc is the maximum dissimilarity between two
of its objects:

diameter(Cc) = max
oi,oj∈Cc

dij

• the radius radius(Cc) of a cluster Cc is measured by the minimum for all objects oi
in the clusters of the maximum dissimilarity between oi and any other object oj in
Cc:

radius(Cc) = min
oi∈Cc

max
oj∈Cc

dij

• the within cluster sum of dissimilarities wcsd(Cc) of a cluster Cc is measured by the
sum of dissimilarities between any two of its objects:

wcsd(Cc) =
∑

oi,oj∈Cc

dij

Let us notice that, for this criterion the dissimilarities are usually measured by the
squared Euclidean distance.

If the objects oi are in the p-dimensional Euclidean space, the homogeneity of a cluster
Cc can also be measured by:

• the within cluster sum of squares wcss(Cc) of a cluster Cc is the sum of the squared
Euclidean distances between each object with the centroid mc of the cluster:

wcss(Cc) =
∑
oi∈Cc

||oi −mc||2

Let us notice that, when squared Euclidean distance is used for measuring the dis-
similarities, the wcsd criterion once standardized via the division by the size of each
group, is mathematically equivalent to the wcss:

wcss(Cc) =
wcsd(Cc)

|Cc|

• the variance variance(Cc) of a cluster Cc is the within cluster sum of squares divided
by the cardinality of Cc:

variance(Cc) =
wcss(Cc)

|Cc|
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3.2.2 Criteria for a partition

The separation of a partition P can be measured either by the minimum separation
of all clusters Cc with c ∈ [1, n] or by the sum of the separation. This leads to these
criteria:

• the split of a partition:

split(P ) = min
c∈[1,k]

split(Cc)

• the sum of splits of a partition:

sum_split(P ) =
k∑
c=1

split(Cc)

Another criterion that is often used in spectral clustering is the min cut, which mini-
mizes the cut between clusters.

• the cut of a partition is the sum of similarities of edges between cluster:

cut(P ) =
1

2

k∑
c=1

cut(Cc)

In case k = 2, the problem of �nding min cut is polynomial and can be solved e�ciently
[Stoer & Wagner 1997], otherwise it is NP-Hard. In many cases, the criterion of min cut
leads to a partition with imbalanced clusters, for example, one cluster with one vertex and
one cluster with the rest. The criterion of ratio cut [Hagen & Kahng 1992] and normalized
cut [Shi & Malik 2000] resolve this problem by introducing the size and the volume of the
clusters in the formula.

• the ratio cut of a partition is measured as:

ratio_cut(P ) =
1

2

k∑
c=1

cut(Cc)

|Cc|

• the normalized cut is measured as:

normalized_cut(C1, . . . , Ck) =
1

2

k∑
c=1

cut(Cc)

vol(Cc)

where vol(Cc) is the sum of similarities in Cc

vol(Cc) =
∑

oi,oj∈Cc

sij

The criteria of ratio cut and normalized cut are NP-Hard, even with k = 2.
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The homogeneity of a partition P can be measured either by the maximum homo-
geneity or the sum of homogeneity of each cluster. This leads to the following criteria:

• the maximum diameter:

diameter(P ) = max
c∈[1,k]

diameter(Cc)

• the sum of diameters:

sum_diameter(P ) =
k∑
c=1

diameter(Cc)

• the within cluster sum of dissimilarities:

wcsd(P ) =
k∑
c=1

wcsd(Cc)

• the within cluster sum of squares:

wcss(P ) =
k∑
c=1

wcss(Cc)

Let us notice that, for some criteria, for instance the diameter criterion or the split cri-
terion, this may exist di�erent partitions that share the same optimal value. All these
criteria lead to NP-Hard problems except the split criterion.

3.3 Partitioning methods

Given a dataset of n objects, a partitioning algorithm searches a partition with exactly
k (k ≤ n) clusters in which each object belongs to exactly one cluster. In general, a
partitioning method optimizes a partitioning criterion. From the point of view of opti-
mization, partitioning methods can be classi�ed into heuristics and exact approaches. In
this section, we present well-known partitioning methods that are related to our research.

3.3.1 Heuristics

3.3.1.1 The k-means and k-medoid algorithms

The k-means algorithm [MacQueen 1967] is the most well-known method for clustering
for it is simple and e�ective. The algorithm is initialized by randomly picking k objects
from O as the k initial cluster centroids m1, m2,. . . , mk. Then each object is assigned to
the closest centroid, forming a partition of the dataset. After that, the cluster centroids
are updated and objects are reassigned again to the closest centroid. This process iterates
until there is no change of assignments of objects, or equivalently, until there is no change
of centroids. The k-means algorithm always converges to a solution where the centroids
are stable.



3.3. Partitioning methods 29

Algorithm 2: k-Means algorithm
Input: dataset O = {o1, . . . , on}, a number of clusters k
Output: a partition P with k clusters C1, C2, . . . , Ck

1 Generate randomly k objects as initial cluster centers: m1,m2, . . . ,mk

2 repeat

3 foreach oi ∈ O do

4 //oi is assigned to the closest centroid:
5 Assign oi to Cc such that d(oi,mc) = minj∈[1,k]d(oi,mj)

6 end

7 //Recalculate the new centroid of each cluster
8 foreach c ∈ [1, k] do

9 mc = 1
|Cc|

∑
oi∈Cc

oi

10 end

11 until no change of cluster centroids;
12 Return partition P = {C1, C2, . . . , Ck}

The k-means is e�cient if clusters are well separated from each other. It can handle
large datasets because the complexity of the algorithm is O(nkt) where t is the number
of iterations. However, this method can be applied only when the mean value of clusters
can be computed. Moreover, this method is sensible to noises and outliers because those
values a�ect the mean value of clusters. To reduce those e�ects, the k-medoid algorithm is
proposed in [Kaufman & Rousseeuw 1987]. In this method, an actual object is chosen in
each cluster as a representative object. This di�ers from k-means where the representative
of a cluster is computed as the mean value of the objects of the cluster. It starts by
choosing k objects as the initial cluster representatives. Each object is assigned to its
nearest representative object. It then chooses a new representative object for each cluster
and the method reassigned the objects by taking into account the new representative.
The algorithm iterates until each representative object is actually the medoid. It is more
robust to noise and outliers as compared to k-means.

3.3.1.2 The Furthest Point First algorithm

The method FPF (Furthest Point First) introduced in [Gonzalez 1985] relies on the maxi-
mum diameter criterion. In this method, each cluster has an object as the head and every
object in a cluster satis�es the property of being closer to their head than to the other
heads. The method starts by choosing an object as the head of the �rst cluster and assigns
all objects to it. In the next iteration, the furthest object from the �rst head is chosen
as the head of the second cluster. Any object which is closer to the second head than to
the �rst one is moved to the second cluster. The algorithm iterates: choosing the object
that is the furthest to its head as the head of the new cluster and reassigning objects. It
stops after k iterations since k clusters are needed. The time complexity is O(kn). Let
dopt be the global optimal, then this heuristic is guaranteed to �nd a clustering with a
maximum diameter d such that dopt ≤ d ≤ 2dopt if the dissimilarity measure satis�es the
triangle inequality. Moreover, [Gonzalez 1985] showed that this approximation ratio is
tight: �nding d such that d ≤ (2 − ε)dopt is NP-hard for all ε > 0 when objects are in a
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Algorithm 3: k-Medoids algorithm for partitioning
Input: dataset O = {o1, . . . , on}, a number of clusters k
Output: a partition P with k clusters C1, C2, . . . , Ck

1 Randomly generate k objects as initial cluster medoids x1, x2, . . . xk
2 repeat

3 foreach oi ∈ O do

4 //oi is assigned to the closest medoid:
5 Assign oi to Cc such that d(oi, xc) = minj∈[1,k]d(oi, xj)

6 end

7 Randomly select a non medoid object oi
8 Compute the cost S when swapping the object oi with a representative x
9 if S < 0 then

10 oi replace x as a new medoid
11 end

12 until no change of cluster medoids;

three dimensional space.

Algorithm 4: FPF algorithm for partitioning
Input: dataset O = {o1, . . . , on}, a number of clusters k
Output: a partition P with k clusters C1, C2, . . . , Ck

1 Randomly select an object, mark it as head1, the head of cluster 1
2 foreach i from 2 to k do

3 Select the object that is the furthest to its head, mark it as headi
4 Assign every object o to cluster i if o is closer to headi than to its head

5 end

3.3.1.3 Spectral methods

The main idea of spectral methods is to change the presentation of n objects xi to yi by
the Laplacian graph. Then the methods use the classic k-means clustering algorithm to
partition new objects yi. Spectral methods use the graph of similarity G = (V,E) where
each vertex vi represents an object oi, two vertices are connected if the similarity between
them is below a given threshold. G is a weighted graph where the weight of edges vi and
vj , denoted wij , is the similarity sij between oi and oj . The graph G is undirected and
the degree of a vertex vi is measured as the sum of weights of the edges connected to vi:

degree(i) =

n∑
j=1

wij

The degree matrix D is a diagonal matrix, where the diagonal contains the degrees of each
vertex vi of G

Dii = degree(i), Dij = 0 ∀i 6= j
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The spectral methods are used to solve the clustering problem with the criteria of
min cut, ratio cut or normalized cut. The optimization problems with those criteria are
NP-Hard. However, they can be relaxed by using spectral concepts of graph analysis. The
relaxation is done by the Laplacian graph.

The unnormalized Laplacian graph is introduced in [Chung 1997] :

L = D −W

where W is the matrix of (wij).
The unnormalized Laplacian graph has the following properties:

• For every vector f = (f1, . . . , fn) ∈ Rn:

f tLf =
1

2

n∑
i=1

n∑
j=1

wij(fi − fj)2

• L is symmetric and positive semi-de�nite

• The smallest eigenvalue of L is 0, it corresponds to the constant one vector.

• L has n non-negative eigenvalues

0 = λ1 ≤ λ2 ≤ . . . ≤ λn

In the literature, there are di�erent types of Laplacian graph and each Laplacian
graph has special properties, suitable for di�erent criteria. The basic spectral clustering
algorithm is presented in Algorithm 5.

Algorithm 5: Spectral methods

1 Compute the similarities between objects sij , ∀i, j ∈ [1, n]

2 Compute the Laplacian graph
3 Compute the �rst k eigenvectors u1, . . . , uk of the Laplacian graph
4 Construct a matrix U ∈ Rn×k by those k eigenvectors
5 The new dataset consists of n objects, yi is the vector corresponding to the i-th row
of U

6 Apply the k-means method for the new n objects yi

[Luxburg 2007] shows how the spectral method works with the criterion of minimizing
the ratio cut, in the case k = 2, with the unnormalized Laplacian graph .

For a cluster Cc, we de�ne the vector f = (f1, f2, . . . , fn)t with:

fi =

√
|O \ Cc|
|Cc|

,∀i : oi ∈ Cc

and

fj = −

√
|Cc|
|O \ Cc|

, ∀j : oj /∈ Cc (3.1)
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Due to the �rst property of the Laplacian graph , we have:

f tLf =
1

2

n∑
i=1

n∑
j=1

wij(fi − fj)2

=
1

2

∑
oi∈Cc

∑
oj /∈Cc

wij

(√
|O \ Cc|
|Cc|

+

√
|Cc|
|O \ Cc|

)2

+
1

2

∑
oi /∈Cc

∑
oj∈Cc

wij

(
−

√
|O \ Cc|
|Cc|

−

√
|Cc|
|O \ Cc|

)2

=
∑
oi∈Cc

∑
oj /∈Cc

wij

(√
|O \ Cc|
|Cc|

+

√
|Cc|
|O \ Cc|

)2

= cut(Cc)

(
|O \ Cc|
|Cc|

+
|Cc|
|O \ Cc|

+ 2

)
= cut(Cc)

(
|O \ Cc|+ |Cc|

|Cc|
+
|O \ Cc|+ |Cc|
|O \ Cc|

)
= n× ratio_cut(Cc)

We also have:

n∑
i=1

fi =
∑
oi∈Cc

√
|O \ Cc|
|Cc|

−
∑
oi /∈Cc

√
|Cc|
|O \ Cc|

= |Cc|

√
|O \ Cc|
|Cc|

− |O \ Cc|

√
|Cc|
|O \ Cc|

= 0

The vector f is orthogonal to the constant vector 1, and it satis�es:

||f ||2 =

n∑
i=1

f2
i = |Cc|

|O \ Cc|
|Cc|

+ |O \ Cc|
|Cc|
|O \ Cc|

= n

The problem of minimizing the ratio cut is equivalent with:

min
Cc

f tLf

subject to:
f de�ned in equation 3.1, f⊥1, ||f || =

√
n

This is a discrete optimization problem and it is NP-hard. This problem can be relaxed
allowing fi to take arbitrary values in R. The problem becomes a relaxed optimization
problem:

min
Cc

f tLf

subject to:
f⊥1, ||f || =

√
n
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The solution of this relaxed optimization problem is given by the eigenvector of the
second smallest eigenvalue of L. To obtain the partition corresponding to the approximate
ratio cut, the vector f must be transformed into a discrete vector. A simple way for the
transformation is:

oi ∈ Cc if fi ≥ 0, oi /∈ Cc if fi < 0

In the case k > 2, a better way for the transformation is to consider fi as points and
then to cluster them by k-means algorithm (as presented in Algorithm 5).

The main advantages of spectral methods are that they are not a�ected by particular
forms of clusters whereas other methods, for example, k-means algorithm tends to �nd
convex sets. It �nds clusters based on the connectivity, not on the compactness like
k-means. It can solve rather large datasets because it solves a linear problem.

3.3.2 Exact approaches

3.3.2.1 Graph-theoretical algorithm

Graphs are formed by a set of vertices and a set of edges, connecting pairs of vertices. If
we consider objects as vertices and using the dissimilarities as the edges between them,
the clustering analysis is close to the graph theory. The problem of �nding an optimal
partition with the criterion of maximum diameter is proved to be NP-Hard and an exact
method based on the problem of graph colouring is proposed in [Hansen & Delattre 1978],
presented in Algorithm 6. The algorithm is based on the observation that: there are at
most n(n−1)/2 distinct values of dissimilarities. Suppose that we have a partition P with
k clusters and dmax is the maximum diameter. It means that every pair of objects (oi, oj)

in which dij > dmax must be in di�erent groups. Let G = (V,E) be a graph where V
has n vertices corresponding to the n objects o1, o2, . . . , on, and E contains edges (oi, oj)

satisfying dij > dmax. It is evident that the graph G can be coloured into k colours.
Indeed, from the partition P, we can use the same colour for all objects of the same
cluster, thus we need at most k colours for k clusters.

Algorithm 6: graph colouring approach for clustering with the diameter criterion

1 Compute the matrix of dissimilarity D = (dij)

2 Build the initial graph G = (V,E) where V contains n objects and E is empty
3 dmax ← maxi,j∈[1,n] dij
4 repeat

5 Add edges (oi, oj) in which dij = dmax to E
6 Compute the number of colors Ncolor needed to colour the graph G
7 if Ncolor ≤ k then
8 dmax ← the next largest dissimilarity
9 end

10 until number of colors needed > number of clusters k;
11 Optimal diameter ← dmax
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3.3.2.2 Branch-and-bound algorithms

As the problem is de�ned as assigning n objects into k di�erent clusters, with a crite-
rion to optimize, branch-and-bound approaches can be useful to solve the problem. The
performance of a branch-and-bound method depends on how the algorithm calculates the
bounds and on the branching strategy. A branch-and-bound algorithm for the criterion
of the within cluster sum of squares has been proposed in [Koontz et al. 1975]. It was
improved later in [Brusco 2006]. For the criterion of within cluster sum of dissimilari-
ties, a branch-and-bound algorithm has been proposed in [Klein & Aronson 1991], and
in [Brusco & Stahl 2005]. For the criterion of minimum diameter, a method has been
proposed in [Brusco 2003].

The method of branch-and-bound is based on the evaluation of partial (incomplete)
partitions. A partial partition Q is an assignment of p objects to k clusters and it remains
n− p unassigned objects. It may exist empty clusters in a partial partition.

Depending on the criteria, di�erent bounds can be used to evaluate the partial solu-
tion. The basic BAB algorithm which uses a depth-�rst-search strategy is presented in
Algorithm 7, supposing that the objective is to minimize a criterion.

Algorithm 7: Branch-and-bound algorithm for clustering with Depth-First-Search

1 A heuristic is used to obtain a good solution
2 The upper bound is set to the criterion value of the solution
3 number of assigned objects p← 0

4 DepthFirstSearch(p)
5 Function DepthFirstSearch(p)

6 if p = n then

7 Update the optimal solution
8 Update the upper bound
9 Return

10 end

11 p← p+ 1

12 foreach cluster c ∈ [1, k] do

13 Assign object op to cluster Cc
14 Evaluate the partial solution with p objects
15 if the partial solution may be a part of the optimal solution then

16 DepthFirstSearch(p)
17 end

18 end

19 Return

The real challenge is how to e�ciently evaluate the partial solutions in order to prune
useless branches in the search tree. To determine whether a partial solution may be a part
of the optimal solution, a typical way is to compute a lower bound of the criterion. If the
lower bound is greater than the upper bound, then the partial solution cannot be a part
of the optimal solution and the search backtracks to explore other branches.
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For the criterion of diameter [Brusco 2003] uses three tests to evaluate the partial
solution:

• The �rst test is used to check if there are enough unassigned objects with respect to
the remaining empty clusters.

• The second test checks if the diameter of the partial solution is equal to or greater
than the maximal diameter of the current best solution, based on assigned objects.

• The third test is based on unassigned objects, it tests if there exists an object that
cannot be assigned to a cluster without leading to a new diameter equal to or greater
than the maximal diameter of the current best solution.

In any of these three tests return true, there is no need to continue with this partial
solution and the search backtracks.

For the criterion of the within cluster sum of dissimilarities The branch-and-
bound algorithm in [Klein & Aronson 1991] computes a lower bound of wcsd for the partial
solutions. The lower bound of wcsd is computed as a sum of three parts: the �rst part
is the sum of dissimilarities of assigned objects, the second part is the sum of dissimi-
larities between assigned objects and unassigned ones and the third part is the sum of
dissimilarities between unassigned objects.

As the �rst part is the sum of dissimilarities of assigned objects, it can be computed
exactly. The second and the third part cannot be calculated exactly and a lower bound
for these parts are measured by heuristics.

[Brusco & Stahl 2005] proposed to improve the lower bound of wcsd by computing
the optimal wcsd of unassigned objects for the third part instead of using a heuristic.
[Brusco & Stahl 2005] solves the problem in a Repetitive Branch-and-Bound Algorithm
(RBBA). Given a dataset of n point o1, . . . , on and a clustering task dividing the points
into k clusters, the RBBA is realized in n− k steps:

• Step 1: Find the optimal wcsd of k + 1 objects {on−k, onk+1, . . . , on} into k clusters
with a branch-and-bound algorithm. The search strategy assigns objects into clusters
following the order: on−k, . . . , on.

• Step 2: Find the optimal wcsd of k + 2 objects {on−k−1, onk
, . . . , on}.

• ...

• Step n− k: Find the optimal wcsd with n objects {o1, . . . , on}.

Let us consider the step i that �nds the optimal wcsd of k + i objects {on−k−i+1, . . . , on}
into k clusters with a branch-and-bound algorithm. The search strategy assigns ob-
jects into clusters in the order: on−k−i+1, . . . , on. Considering a partial solution with
p assigned objects, it is clear that the assigned objects are {on−k−i+1, . . . , on−k−i+p}
and the unassigned objects are {on−k−i+p+1, . . . , on}. The optimal wcsd of objects
{on−k−i+p+1, . . . , on} into k clusters is obviously already computed in one of the pre-
vious steps, therefore the third part can be obtained optimally and the lower bound of the
partial solution is evaluated better. Figure 3.1 illustrates the steps of RBBA algorithm
for solving the wcsd clustering with 7 objects o1, . . . , o7 into 2 clusters.
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Figure 3.1: Illustration of steps of repetitive branch-and-bound algorithm

For the criterion of within cluster sum of squares The RBBA algorithm can be
applied to the wcss criterion [Brusco 2006, Carbonneau et al. 2012]. The basic idea is the
same. For this criterion, a lower bound of a partial solution can be measured by the sum
of wcss of assigned objects and the optimal wcss of unassigned objects. The RBBA solves
the problem �rst with k+ 1 objects, then with k+ 2 objects and so on, until all n objects
are considered.

3.4 Hierarchical clustering methods

Hierarchical clustering aims at �nding a hierarchy of clusters. Unlike partitioning methods,
hierarchical clustering �nds a sequence of nested partitions. The result is a tree diagram
which is called a dendrogram. There are two types of hierarchical clustering:

• Agglomerative: a "bottom up" approach, it begins with n clusters, each cluster
contains one and only one object. At each iteration, two "close" clusters are merged
until a stopping criterion is satis�ed.

• Divisive: a "top down" approach, it begins with only one cluster that contains all the
n objects. It successively splits one cluster into two smaller parts until a stopping
criterion is satis�ed.

The agglomerative hierarchical clustering algorithms start by a partition Pn with n

clusters C1 to Cn, each cluster Ci contains exactly one object oi. The basic algorithm
is presented in Algorithm 8. At each iteration, the algorithm selects two close clusters
based on a criterion and merges them until there is only one cluster. The most popular
agglomerative hierarchical clustering algorithms are single-linkage and complete-linkage
algorithms. The main di�erence between those two algorithms is how they calculate the
distance between two clusters. In the single-linkage algorithm, the distance between two
clusters is the minimum of the distances between any pairs of objects of the two clusters
whereas in the complete-linkage algorithm, it is the maximum of the distances of all
pairs of objects in the two clusters. The single-link algorithm may su�er from the chain
e�ect [Johnson 1967], i.e. a chain of close objects may group very di�erent objects in
the same cluster whereas the complete-link cluster may produce compact clusters but not
well-separated.
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It is proved in [Delattre & Hansen 1980] that at all levels, the single-linkage algorithm
provides an optimal partition with respect to the criterion of split, so it can be used to
�nd the exact split with any number of clusters k.

Algorithm 8: Basic agglomerative hierarchical clustering algorithm

1 Construct a partition with n clusters Pn = {C1, C2, . . . , Cn}, Ci = {oi}
2 foreach t ∈ [1, n− 1] do

3 Select Ci, Cj ∈ Pn−t+1 based on a criterion
4 Cn+t = Ci ∪ Cj
5 Pn−t = (Pn−t+1 ∪ Cn+t) \ {Ci, Cj}
6 end

In contrast to the agglomerative algorithms, the basic divisive hierarchical clustering,
presented in Algorithm 9 starts by a partition P1 which contains only one cluster C1 with
the whole objects and it divides a cluster based on a criterion, until there are n clusters.

Algorithm 9: Basic divisive hierarchical clustering algorithm

1 Construct a partition with only one cluster P1 = {C1}, C1 = {o1, o2, . . . , on}
2 foreach t ∈ [1, n− 1] do

3 Select Ci ∈ Pt based on a criterion
4 Divide Ci into C2t and C2t+1

5 Pt+1 = (Pt ∪ C2t ∪ C2t+1) \ Ct
6 end

3.5 Constrained Clustering

In order to better model the task, but also in the hope of reducing the complexity, user-
speci�ed constraints are added, leading to Constrained Clustering that aims at �nding
clusters that satisfy user-speci�ed constraints. User constraints can be classi�ed into
cluster-level constraints, specifying requirements on clusters, or instance-level constraints,
specifying requirements on pairs of objects.

Instance-level constraints (also called pairwise constraints) are constraints on pairs
of objects. There are two types of instance-level constraints, introduced for the �rst
time in [Wagsta� & Cardie 2000], the must-link and cannot-link constraints. A must-link
constraint between two object oi, oj , denoted by ML(oi, oj), expresses that both objects
oi and oj must be in the same cluster. In contrast, a cannot-link constraint between oi and
oj , denoted by CL(oi, oj), means that these two objects must not be in the same cluster.
According to [Davidson & Basu 2007], the instance-level constraints have the following
properties:

• Must-link constraints are transitive: Let CCa and CCb be connected components
(completely connected subgraphs by must-link constraints), let oi and oj be objects
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Must-link P
Cannot-link NP-Complete
ε-constraint P
δ-constraint P

Must-link and ε constraint NP-Complete
Must-link and δ constraint P

ε and δ constraints P

Table 3.1: Complexity of �nding a feasibility partition with di�erent constraints
[Davidson & Ravi 2007]

in CCa and CCb respectively, then:

ML(oi, oj), oi ∈ CCa, oj ∈ CCb ⇒ML(ox, oy), ∀ox, oy : ox ∈ CCa, oy ∈ CCb

• Cannot-link constraints can be entailed. Let CCa and CCb be connected components
(completely connected subgraphs by must-link constraints), let oi and oj be objects
in CCa and CCb respectively, then:

CL(oi, oj), oi ∈ CCa, oj ∈ CCb ⇒ CL(ox, oy),∀ox, oy : ox ∈ CCa, oy ∈ CCb

The idea of must-link and cannot-link constraints might seem simple but in fact, those
constraints are powerful in many applications. Many researchers have reported that in-
creasing the number of pairwise constraints may improve the accuracy of the result. The
must-link and cannot-link constraints can also be used to express other user-constraints.
[Davidson & Ravi 2005b] has introduced ε-constraint and δ-constraint which can be han-
dled with pairwise constraints:

• δ-constraint (also called minimum split constraint) expresses that the distance be-
tween any pair of points which are in two di�erent clusters must be at least δ. It
can be handled by a conjunction of must-link constraints between all pair of objects
with distance less than δ.

• ε-constraint expresses that: for any cluster Cc containing more than one object,
for any object oi ∈ Cc, there must be another object oj ∈ Cc such that the dis-
tance between oi and oj does not exceed ε: dij ≤ ε. This constraint tries to cap-
ture the notion of density, introduced in DBSCAN [Ester et al. 1996]. It is shown
in [Davidson & Ravi 2005b] that this constraint is equivalent with a disjunction of
must-link constraints. For each point oi, a set X of point oj such that dij ≤ ε is
computed, then a disjunction of must-link constraints between oi and points in X
are generated.

[Davidson & Ravi 2007] show that �nding feasibility partition with those constraints
is not an easy task. Table 3.1 expresses the complexity of �nding a feasibility partition
with di�erent constraints.

Another constraint that can be expressed by instance-level constraints is the maximum
diameter constraint. This constraint speci�es an upper bound γ on the diameter of the
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clusters to express that any pair of points which are in the same cluster must be at a
distance of at most γ. This constraint can be handled by conjunction of cannot-link
constraints between all pair of objects with distance greater than γ.

3.5.1 Clustering algorithms for instance-level constraints

In the last ten years, many works have been done to extend classical algorithms
for handling must-link and cannot-link constraints, as for instance an extension of
COBWEB [Wagsta� & Cardie 2000], k-means [Wagsta� et al. 2001, Bilenko et al. 2004],
hierarchical non supervised clustering [Davidson & Ravi 2005a] or spectral clustering
[Lu & Carreira-Perpinan 2008, Wang & Davidson 2010], . . .
Those methods can be classi�ed into two general approaches [Davidson & Ravi 2007]:
constraint-based and distance-based methods. In constraint-based approaches, the clus-
tering algorithm is modi�ed to integrate pairwise constraints whereas in distance-based
approaches, only the distance measure is modi�ed.

3.5.1.1 Constraint-based methods

[Wagsta� et al. 2001] proposed a modi�ed k-means algorithm, called COP-Kmeans to
integrate must-link and cannot-link constraints. The major modi�cation is that, at each
iteration, objects are updated so that none of the constraints is violated. The drawback
of this approach is that it tries to satisfy all the constraints but the algorithm does not
provide any backtracking technique. As a result, the algorithm may fail to �nd a partition
even if one exists. It happens when there are many constraints, especially cannot-link
constraints.

Algorithm 10: COP-Kmeans algorithm

1 Generate randomly k objects as initial cluster centroids
2 repeat

3 foreach object oi do

4 Assign object oi to the closest cluster Cc such that:

@oj : oj ∈ Cc ∩ CL(oi, oj)

@oj : oj /∈ Cc ∩ML(oi, oj)

5 if no such cluster Cc exists then

6 Return FAILED
7 end

8 end

9 Recalculate the new centroid of each cluster as the mean value of the objects in
each cluster

10 until no change of cluster centroid ;

To overcome the disadvantage of COP-Kmeans algorithm, an approach is to try not to
satisfy all the constraints, but most of them. The CVQE (constrained vector quantization
error) algorithm [Davidson & Ravi 2005b] extends the K-means algorithm to incorporate
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must-link and cannot-link constraints by modifying the objective function. In K-means
algorithm, at each iteration, the centroid mc is updated as:

mc =

∑
oi∈Cc

oi

|Cc|

After that, each object is reassigned to the closest centroid to minimize the vector quan-
tization error (VQE):

V QE =
1

2

∑
c∈[1,k]

∑
oi∈Cc

||mc − oi||2

The CVQE algorithm modi�es the error function to penalize the violated constraints,
[Davidson & Ravi 2005b] de�nes the constrained vector quantization error CV QEc of a
cluster Cc by:

CV QEc =
1

2

∑
oi∈Cc

(mc − oi)2

+
1

2

∑
oi∈Cc,ML(oi,oj),oj∈C′

c,c
′ 6=c

||mc −m′c||2

+
1

2

∑
oi∈Cc,CL(oi,oj),oj∈Cc

||mc −mh(c)||2

where h(c) returns index of the cluster (other than c) whose centroid is the closest to mc.
In this equation, the �rst part is the VQE criterion as for the k-means algorithm.

The second part is the penalty for the violation of must-link constraints. If a constraint
ML(oi, oj) is violated, the penalty is measured as the square distance between the cluster
centroids containing objects of the constraint. The third part is the penalty for cannot-link
constraints, it is measured as the squared distances between the centroid containing both
objects and the nearest centroid.

The objects that appear in no constraint are always assigned to the nearest centroid.
For the other objects, they are assigned to the centroid so as to minimize the CVQE.

The update rule of centroids are:

mc =

∑
oi∈Cc

oi +
∑

ML(oi,oj),oj∈Cc′ ,c
′ 6=cmc′ +

∑
CL(oi,oj),oj∈Cc

mh(c)

|Cc|+
∑

ML(oi,oj),oj∈Cc′ ,c
′ 6=c 1 +

∑
CL(oi,oj),oj∈Cc

1

The meaning of the updating on centroids is as follows: if a must-link constraint
ML(oi, oj) is violated, the centroid mc of the cluster containing oi moves closer to the
centroidm′c of the cluster containing oj . Similarly, the violation of a cannot-link constraint
CL(oi, oj) makes the centroid containing both constrained objects move to the nearest
cluster centroid.

[Pelleg & Baras 2007] proposed LCVQE, an improved algorithm of CVQE, by changing
the penalty for violating constraints. For the violation of a constraint ML(oi ∈ Cc, oj ∈
Cc′), suppose that oi is assigned before oj , the penalty is now the squared distance between
oj and mc. For the violation of a constraint CL(oi ∈ Cc, oj ∈ Cc), the point that is further
to mc is chosen. The penalty is the squared distance between this point to the nearest
centroid to mc. The value LCVQE of each cluster c is measured between oi and oj as:
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LCV QEc =
1

2

∑
oi∈Cc

(mc − oi)2 +
1

2

∑
oi∈Cc,ML(oi,oj),oj /∈C′

c,c
′ 6=c

||mc −m′c||2

+
1

2

∑
oi∈Cc,CL(oi,oj),oj∈Cc

||mc −mh(c)||2

By modifying the formulation, the algorithm LCVQE has better computation time.

3.5.1.2 Distance-based algorithms

Another way to incorporate instance-level constraints is to modify the distance metric or
the objective function. The basic idea is that if there is a must link constraint between
two objects oi and oj , the distance between them might be smaller than usual, so they
have a higher chance to be in the same cluster, similarly to the cannot-link constraints.

[Xing et al. 2003] proposed an algorithm to learn a distance metric over must-link
and cannot-link constraints. The distance metric learning is formulated as an optimiza-
tion problem. The objective function is the sum of distances of pairs in the must-link
constraints. The algorithm searches to minimize this sum, under the condition that the
distances of pairs in the cannot-link constraints are greater than a constant. The distance
metric is of the form:

d(oi, oj) = dA(oi, oj) = ||oi − oj ||A =
√

(oi − oj)TA(oi − oj)

A is semi-de�nite positive and if A = I, we have the Euclidean distance. The problem is
now to �nd the matrix A:

min
∑

ML(oi,oj)

d2
A(oi, oj)

with ∑
CL(oi,oj)

dA(oi, oj) ≥ 1

A � 0

The optimization problem is convex and di�erentiable and it is possible to �nd a global
optimum in polynomial time.

3.5.2 Clustering algorithms for cluster-level constraints

Cluster-level constraints specify requirements on clusters. Beside the ε-constraint (mini-
mum split constraint), δ-constraint and maximum diameter constraints, other examples
of cluster-level constraints are:

• The minimum capacity constraint requires that each cluster has a number of objects
greater than a given threshold α: ∀c ∈ [1, k], |Cc| ≥ α

• The maximum capacity constraint requires each cluster to have a number of objects
inferior to a prede�ned threshold β: ∀c ∈ [1, k], |Cc| ≤ β.
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• The balance constraint expresses that all clusters have approximately the same size,
or the fraction between the size of smallest and largest cluster must be greater than

a given threshold θ:
mini∈[1,k] |Ci|
maxj∈[1,k] |Cj | ≥ θ

[Banerjee & Ghosh 2006] proposed a scalable framework for clustering to incorporate the
balance constraint. The framework consists of three steps:

• sampling the data into a small representative subset of the points,

• clustering of the sampled data,

• populating the initial clusters with the remaining data.

The �rst step is for the scalability of the framework. In the second step, any clustering
algorithm can be used. The third step consists of populating and re�ning the clusters. In
populating phase, the remaining objects are assigned to the existing clusters such that the
constraint is satis�ed while ensuring good quality clusters. In re�ning phase, objects are
re-assigned to improve the objective function.

[Demiriz et al. 2008] proposed an approach to integrate the minimum capacity con-
straint to k-means algorithm, to avoid empty clusters or clusters with few points in the
result. [Demiriz et al. 2008] modi�es the cluster assignment step of k-means algorithm to
introduce the minimum capacity constraint, then solves the constrained problem by using
linear programming or network simplex methods.

3.6 Summary

In this chapter, we made a brief introduction to clustering. We presented important
algorithms, mainly from an optimization viewpoint, with a focus on those related to our
research. Afterwards, we presented basic notions of constrained clustering and several
well-known approaches.



Chapter 4

Declarative Data Mining

Ce chapitre est consacré à l'état de l'art des approches déclaratives en fouille de données,
notamment les approches récentes concernant le domaine du clustering. Un bref aperçu
des approches déclaratives est donné. Nous introduisons ensuite les travaux utilisant
la programmation par contraintes [Khiari et al. 2010, Guns et al. 2013] pour résoudre le
problème de recherche de k motifs fréquents. Ces cadres sont appliquées au problème
de clustering conceptuel. Ce chapitre introduit ensuite di�érents travaux utilisant la
satis�abilité des formules booléennes (SAT) [Davidson et al. 2010, Metivier et al. 2011,
Berg & Jarvisalo 2013] et la programmation linéaire [Babaki et al. 2014] pour résoudre la
tâche de clustering sous contraintes.
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A large number of approaches have been developed for solving data mining problems.
Most researches aim at highly optimized and scalable algorithms, tailored towards speci�c
tasks, in imperative paradigm. Researchers express algorithms in a way that machine
understand how to solve the problems. In return, they expect that the machine will
�nd out what they want. Recently, there has been a growing interest in declarative pro-
gramming for data mining [Raedt et al. 2011]. According to [Lloyd 1994]: "A declarative
programming involves stating what is to be computed, but not necessarily how it is to
be computed". Here, researchers tell the machine what they want and the machine will
�gure out how to do it. Although declarative framework may be less e�cient than tailored
algorithms for a speci�c task, a declarative framework is way more �exible, easy to incor-
porate new knowledge to the task [Raedt et al. 2011]. Table 4.1 presents a comparison
between Declarative and Imperative approach.

To solve a problem in a declarative paradigm, users specify it in a modelling language
and a solver automatically generates the solutions. Declarative frameworks can be ex-
pressed in Constraint Programming, Propositional Satis�ability, Integer Linear Program-
ming or Logic Programming. The real challenge is how to encode the problem e�ectively.
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Declarative Approach Imperative Approach

Focus on what the problem is Express steps to solve the problem
High-level modelling Low-level control
Less fast and less scalable Fast and e�cient
General, Flexible and Reusable Speci�c for one problem

Table 4.1: Comparison of Declarative and Imperative Approaches (from a lecture of Tias
Guns)

In this Chapter, we present state of the art of recent declarative frameworks for Data
Mining, specially researches that are related to cluster analysis.

4.1 Constraint Programming framework for k-pattern set

mining

Pattern mining is a data mining method that involves �nding all existing patterns of a
database that satisfy a set of constraints. A well-known example of pattern mining is
�nding frequent itemsets in market basket analysis. We consider each product is an item
and a group of items is an itemset. Transactions are instances of products that are bought
by each customer. An itemset, such as milk and bread, is frequent if these products appear
frequently together in a transaction dataset.

[De Raedt et al. 2008] introduces a framework in Constraint Programming for item-
set mining, which is �exible and allows to combine di�erent mining constraints.
[Khiari et al. 2010] proposes a generic approach to express and mine n-ary patterns, i.e.
partterns involves several local pattern. [Guns et al. 2013] introduces the problem of k-
pattern set mining that �nds a set of k related patterns under constraints. The set of
constraints consists of local constraints, i.e. constraint on individual pattern, and global
constraints, i.e. constraints on the overall pattern set.

[Guns et al. 2013] proposes a framework in Constraint Programming for k-pattern set
mining. The framework is similar to [Khiari et al. 2010], but it covers wider range of tasks.
The framework can be applied in various well-known mining tasks, including conceptual
clustering.

The principle of conceptual clustering is not limited to �nd a partition of the data, but
it has to generate a conceptual description for each cluster. A cluster concept is a set of
properties that every object of the cluster has. If objects are transactions, the description
of a cluster can be represented by a set of items and the conceptual clustering can be
considered as a k-pattern set mining problem under speci�c constraints.

To solve the problem of k-pattern set mining, [Guns et al. 2013] proposes a general
framework in Constraint Programming. Considering a dataset of n items and m transac-
tions, the goal is to �nd k-patterns π1, . . . , πk that satisfy all local and global constraints.
The model uses k × n binary variables I[p, i] ∈ {0, 1} for items and k × m variables
T [p, t] ∈ {0, 1} for transactions (p ∈ {1, . . . , k}, i ∈ {1, . . . , n}, t ∈ {1, . . . ,m}). The vari-
able I[p, i] = 1 indicates that item i is in the pattern πp. Similarly, the variable T [p, t] = 1

indicates that transaction t is in the pattern πp. By using Constraint Programming, the
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model is �exible to express di�erent kinds of constraints on items, on transactions, on
patterns and on an objective function:

• Coverage constraint: the k patterns are disjoint.

• The k patterns cover all transactions.

• Each pattern is closed: the itemset must be the largest itemset that is contained in
all transactions of the pattern.

• Constraint on the size of the pattern which is measured by the size of the itemset.

• Constraint on the di�erence between the sizes of the patterns.

• Constraint on the number of transactions in each pattern.

• Constraint on the overlap: it allows a percentage of transactions that can be in more
than one pattern/cluster.

The model integrates di�erent objective functions: maximizing the minimum cluster size
or minimizing the di�erence between cluster sizes. Although the proposed CP model, when
applied to cluster analysis, is limited to transaction database and conceptual clustering,
the model is �exible in modeling constraints and objective functions.

4.2 SAT based framework for clustering

In propositional logic, a propositional variable xi is a boolean variable, which takes a truth
value 0 (false) or 1 (true). A literal li is a variable xi or its negation xi, a clause Ci is
a disjunction of literals li, for example: C1 = x1 ∨ x2 ∨ x3. A conjunctive normal form
(CNF) formula is a conjunction of clauses Ci, for example: C1 ∧ C2 ∧ C3. A literal xi
(resp. xi) is satis�ed if xi gets value 1 (resp. 0). A clause is satis�ed if at least one of
its literals is satis�ed, and a CNF is satis�ed if all the clauses are satis�ed. The SAT
problem consists of �nding an assignment of truth values to variables that satis�es a CNF
formula. A 2-SAT problem is a SAT problem in which each clause involves no more than
2 variables. In MaxSAT problem, the objective is to satisfy the maximum number of
clauses. A partial MaxSAT instance is a CNF formula which contains soft (relaxable) and
hard (non-relaxable) clauses. Solving a partial MaxSAT problem consists of �nding an
assignment that satis�es all hard clauses and the maximum number of soft clauses. The
SAT problem was the �rst known example of an NP-complete problem (except for the
2-SAT problem, which has a polynomial time algorithm). However, modern SAT solvers
can e�ciently solve problems containing a large number of clauses.

4.2.1 A Constraint Language based on SAT for Declarative Pattern
Mining

[Metivier et al. 2011] presents a constraint-based language that can be used for mod-
elling di�erent pattern mining problems. The general idea is similar to the framework
of [Guns et al. 2013], but the resolution is completely di�erent. A pattern mining prob-
lem can be de�ned as queries of the language. A query is a conjunction of constraints
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and all primitive constraints of the language are modelled using the SAT framework. The
problem then can be solved by a SAT solver. In [Métivier et al. 2012], the authors illus-
trate how to use the language for the problem of clustering on transaction datasets. Each
cluster is a pattern that consists of a set of transactions. The problem of �nding k pat-
terns/clusters C1, . . . , Ck can be expressed by the conjunction of the following constraints
in the language:

• ∧i∈[1,k] isNotEmpty(Ci): each pattern must contain at least one transaction.

• coverTransaction(C1, . . . , Ck): each transaction is covered by at least one pattern.

• noOverlapTransactions(C1, . . . , Ck): there is no transaction, which is covered by
more than one pattern.

• canonical(C1, . . . , Ck): the pattern is in lexicographic order. This constraint is for
symmetry breaking.

The language also supports must-link, cannot-link and size constraints, which allow users
to handle di�erent constrained clustering tasks, by changing or adding constraints to the
modelling. A SAT solver then can �nd some or all partitions that satisfy all the queries.
The SAT encoding of the language integrates features of SAT solvers to improve the
performance, for example: binary clauses, unit propagation, sorting networks. The ex-
periments show that with this encoding, SAT solvers can solve e�ciently the clustering
task with medium size datasets. For example, with the MiniSat solver, the �rst ten solu-
tions are found quickly for the dataset Mushroom with 8124 transactions. In conclusion,
this constraint-based language is declarative and �exible, but when applied to constrained
clustering, it is limited to itemset data and does not integrate optimization criteria.

4.2.2 A SAT framework for constrained clustering with 2 clusters

[Davidson et al. 2010] proposed a 2-SAT framework for constrained clustering, allowing
�nding a partition with 2 clusters that optimizes the diameter criterion or the split crite-
rion. For the modelling, [Davidson et al. 2010] uses n boolean variables xi; xi is assigned
to 1 (0) if the object oi is a�ected to cluster 1 (0). The assignment of truth values to these
n variables gives us a partition that consists of two clusters.

With those variables, the instance level constraints can be easily expressed by CNF
formulas. A must-link constraint between objects oi and oj is expressed by:

(xi ∨ xj) ∧ (xi ∨ xj)

Similarly, a cannot-link constraint between objects oi and oj is expressed by :

(xi ∨ xj) ∧ (xi ∨ xj)

The diameter constraint α can be handled by adding cannot-link constraints to every pair
of points oi and oj such that their distance exceeds α. With this modelling, a diameter
constraint is expressed by adding two clauses (xi ∨ xj) ∧ (xi ∨ xj) for every pair oi and
oj such that dij > α. Similarly, a split constraint β is handled by adding two clauses
(xi ∨ xj) ∧ (xi ∨ xj) to every pair oi and oj such that dij ≤ β. With these CNF formula,
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a SAT solver can be used to �nd a partition with 2 clusters that satis�es the must-link,
cannot-link, diameter and split constraints. To �nd a partition that optimizes the diameter
criterion (resp. the split criterion), [Davidson et al. 2010] uses repeated calls to solve the
SAT formula. It is clear that the optimal value of diameter (split) criterion must be one of
the pairwise dissimilarities. Therefore, the optimal value can be found by a binary search.
For example, with the diameter criterion, at each iteration, a dissimilarity x is chosen for a
constraint on the diameter (diameter ≤ x), then a SAT formula is generated. Then a SAT
solver is used to �nd the assignment of truth values to variables. The assignment gives us
a partition that satis�es all the constraints, including the diameter constraint. If such a
solution exists, the optimal diameter is less or equal to the dissimilarity x, otherwise the
optimal diameter is greater than x. Suppose that there are m di�erent dissimilarities, the
algorithm takes at most O(logm) calls to �nd the optimal diameter.

The approach is somewhat similar to the algorithm of [Hansen & Delattre 1978]:
[Davidson et al. 2010] uses a SAT formula to test if a dissimilarity can be the optimal
diameter while [Hansen & Delattre 1978] uses a graph coloring method to verify that.

This framework is the �rst modelling of a clustering problem as an instance of SAT.
It is limited to 2 clusters and the optimization criterion is not modelled but is expressed
by the search strategy, which repeatedly generates the SAT formula and then calls a SAT
solver.

4.2.3 MaxSAT framework for Optimal Constrained Correlation Clus-
tering

Correlation clustering [Bansal et al. 2004] is a clustering method that �nds the partition
based on the relationships between the objects, instead of the actual representations of the
objects. Correlation clustering uses a boolean similarity measure sij between two objects
oi and oj : sij = 1 if oi and oj are similar and sij = 0 if they are dissimilar. In correlation
clustering, the objective is to minimize the cost function:∑

i,j:λi=λj

(1− sij) +
∑

i,j:λi 6=λj

sij

where λi denotes the index of the cluster the object oi is assigned to.
The goal of correlation clustering is to �nd the partition that agrees as much as possible

with the similarity measure. This criterion does not require to specify the number of
clusters k as a parameter, as the optimal number of clusters could be any value between
1 and n [Bansal et al. 2004]. Finding a partition that optimizes this criterion is NP-hard.
[Berg & Jarvisalo 2013] presents a partial MaxSAT framework for �nding a global optimal
solution for Correlation Clustering. The Correlation Clustering is encoded as a partial
MaxSAT instance, which contains a set of hard clauses and a set of soft clauses. With
this encoding, a MaxSAT solver is used to �nd an optimal solution of the instance. This
solution can be mapped to the optimal solution of the Correlation Clustering. Instance-
level constraints can also be encoded in the MaxSAT instance.

The encoding uses boolean variables xij , where i < j, i, j ∈ {1, . . . , n}. xij is equal to
1 if the two objects oi and oj are in the same cluster. Hard clauses are used to ensure a
well-de�ned clustering: for each triple of objects (oi, oj , ot), if oi, oj are in the same cluster
and oj , ot are in the same cluster, then objects oi, ot must be in the same cluster. The
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condition is equivalent with: if xij = 1 and xjt = 1 then xit = 1. It can be expressed by a
hard clause:

(xij ∨ xjt ∨ xit)

The soft clauses are used to encode the cost function. To minimize the cost function,
each pair of objects (oi, oj) with the similarity sij = 1 should be in the same cluster, hence
xij should be equal to 1, or it can be expressed by a soft clause (xij). Similarly, with each
pair of objects (oi, oj) that sij = 1, a soft clause (xij) is added to the MaxSAT formula.

With this encoding, the instance-level constraints can be easily expressed by hard
clauses. A must-link constraint between objects oi and oj is expressed by a clause (xij)

and a cannot-link constraint between objects oi and oj is expressed by a clause (xij). From
a MaxSAT solution, it is easy to construct a clustering as follows:

• Assign object o1 to the �rst cluster C1,

• For every i such that variable x1i = 1, assign object oi to cluster C1,

• Find the smallest i for which oi is not assigned to a cluster, then assign object oi
and any object j such that xij = 1 to cluster C2,

• Iterate this process until every object is assigned.

It is demonstrated in the paper that the partition found by this method is an optimal
partition. In this encoding, the number of clusters k is not bounded and the optimal
partition may have a large number of clusters. The authors also propose an alternative
MaxSAT formulation, which uses an upper bound k on the number of clusters.

4.3 Column generation framework for Constrained Sum of

Squares Clustering

Column generation is an e�cient method for solving linear programming (LP) problems
with a large number of variables. In many LP problems, most of the variables will be zero
in the optimal solution and only a subset of variables is needed to solve the problem. In
a column generation method, the LP problem is split into the master and the auxiliary
problem. The master problem is the initial problem. The column generation method
begins by solving a restricted master problem, which is the master problem but with only
a small number of variables. The auxiliary problem is a problem created from the solution
of the restricted master problem. It is used to �nd a new variable with negative reduced
cost, i.e. a variable that can improve the objective function of the master problem. If such
a variable exists, it is added to be considered for resolving the restricted master problem.
In the column generation method, the restricted master and the auxiliary problems are
solved iteratively until solving the auxiliary problem shows that there exists no variable
with non-negative reduced cost. It is proven that the solution of the restricted master
problem is now the optimal solution of the origin problem.

[Rao 1969] proposes an integer programming formulation for cluster analysis by con-
sidering all possible clusters. With n objects, there are a total of 2n possible clusters: C1

to C2n . A matrix A = (ait) with size n × 2n is used to represent the relation between
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objects and clusters: ait = 1 if oi ∈ Ct and ait = 0 otherwise. For the criterion of SSE,
the cost ct for each cluster Ct is de�ned as:

ct = SSE(Ct) =
∑
oi∈Ct

||oi −mt||2 =
n∑
i=1

||oi −mt||2ait

where mt denotes the centroid of the cluster Ct.

Let T be the set of all possible cluster indices, i.e. T = {1, 2, . . . , 2n}. For all t ∈ T ,
let xt be boolean variables, xt = 1 denotes that the cluster Ct is in the optimal partition.

The problem can now be formulated as an integer linear problem as:

min
∑
t∈T

ctxt (4.1)

subject to:



∑
t∈T

aitxt = 1 ∀i ∈ {1, . . . , n} (4.2a)∑
t∈T

xt = k (4.2b)

xt ∈ {0, 1} (4.2c)

In this formulation, there are n constraints in Equation (4.2a) to express that, in the
optimal partitions, each point must be in exactly one cluster. The constraint in Equation
(4.2b) expresses that there are exactly k clusters. The dual of the master problem in (4.1)
is expressed by [Rao 1969]:

max (−kσ +

n∑
i=1

λi) (4.3)

subject to: 
−σ +

n∑
i=1

aitλi ≤ ct ∀t ∈ T (4.4a)

λi ≥ 0 ∀i = 1, 2, . . . , n (4.4b)

σ ≥ 0 (4.4c)

The n dual values λi correspond to n constraints in Equation (4.2a) and the dual value
σ corresponds to the constraint in Equation (4.2b). Each column t in the master problem
(4.1) corresponds to one constraint of the dual in Equation (4.4a).

This ILP formulation has 2n variables, therefore it cannot be solved straightforwardly.
The column generation method restricts the master problem in Equation (4.1) to a smaller
set of columns T ′ ⊆ T . The dual of the master problem, a LP relaxation, can be solved
by three di�erent strategies [du Merle et al. 1999] and the best strategy is the ACCPM
interior point method of [Go�n et al. 1992]. Suppose that solving the restricted master
problem returns values for σ and λi. The objective of the auxiliary problem is to �nd a
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column t with negative reduced cost. The column t with the smallest reduced cost is the
solution of:

arg min
t∈T

σ −
n∑
i=1

aitλi + ct (4.5)

For solving the auxiliary problem, [du Merle et al. 1999] considers the problem as
a hyperbolic program in 0-1 variables, and solves it by a branch-and-bound algorithm
for unconstrained quadratic 0-1 optimization. The column generation framework itera-
tively solves the LP relaxation of the master problem and the auxiliary problem to �nd
the optimal solution of the LP relaxation. This solution is not necessarily integer and
branching is added to obtain an optimal partition. The column generation framework
[du Merle et al. 1999] solved for the �rst time the optimal sum of squares partition on
datasets with 100-200 objects, as for example the dataset Iris.

[Aloise et al. 2012] improved the performance of the framework by introducing a new
method based on geometric arguments to solve the auxiliary problem. It is claimed to
solve the optimal partition with datasets over 2300 objects.

[Babaki et al. 2014] introduced for the �rst time user-constraints to the framework.
The constraints can be among must-link, cannot-link and anti-monotone constraints. A
constraint on a cluster is an anti-monotone constraint i� whenever a cluster C satis�es this
constraint, any sub-cluster C ′ ⊆ C also satis�es it. According to the authors, an important
observation to incorporate user-constraints to the column generation framework is: Must-
link, cannot-link and anti-monotone constraints can be evaluated on individual clusters
in a partition. For example, a must-link constraint ML(oi, oj) is satis�ed in cluster Ct
if objects oi, oj are both in or not in this cluster. Similarly, a cannot-link constraint
CL(oi, oj) is satis�ed in cluster Ct if the cluster contains at most one of two objects. A
must-link or cannot-link constraint is satis�ed in a partition if it is satis�ed in every cluster
Ct of the partition. With this observation, it is su�cient to process user-constraints in
the auxiliary solver: �nding a column t with negative reduced cost such that Ct satis�es
all user-constraints. [Babaki et al. 2014] proposes a BAB algorithm for �nding the cluster
Ct which satis�es all user-constraints and corresponds to a negative reduced cost. The
search process begins with an empty cluster Ct and a set of candidate blocks such that
covers all objects. A block is a set of objects that are connected by must-link constraints.
In case there is no must-link constraints, each block is equivalent to an object. The BAB
algorithm performs a set-enumeration. In each iteration, a candidate block is considered
to be a�ected to the cluster Ct. With the notion of blocks, all must-link constraints are
guaranteed to be satis�ed in the returned cluster Ct at the end. The cannot-link and
anti-monotone constraints are used to remove incompatible candidate blocks.

4.4 Summary

In this chapter, we described recent declarative frameworks for solving data mining prob-
lems. We discussed the ideas and techniques involved and investigate advantages and
disadvantages of proposed solutions. These researches inspire us that we could construct
a general and �exible framework for the problem of constrained clustering.
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An initial CP Model for Constrained

Clustering

Dans ce chapitre, nous proposons un cadre déclaratif et générique, fondé sur la Program-
mation par Contraintes pour modéliser une tâche de clustering sous contraintes. Nous
disposons d'une collection de n points et d'une mesure de dissimilarité entre ces points.
Nous considérons le cas où le nombre de clusters k est connu à l'avance. Le modèle a pour
objectif de trouver une partition des points en k clusters, optimisant un critère et intégrant
facilement des contraintes utilisateur. Le modèle proposé est basé sur une représentation
à deux niveaux : un ensemble de variables a�ectant un point représentatif à chaque classe
et un ensemble de variables a�ectant un point représentatif à chaque objet. Trois critères
d'optimisation di�érents sont modélisés: minimiser le diamètre maximal, maximiser la
marge minimale, ou minimiser la somme des dissimilarités intra-classes. Nous montrons
que notre cadre intègre naturellement des contraintes d'utilisateur connues, par exemple
les contraintes sur les instances (must-link, cannot-link) ou des contraintes sur les classes
(capacité maximale ou minimale, séparation, diamètre, densité).

Des améliorations du modèle sont étudiées, reposant sur des résultats théoriques, ce
qui permet d'alléger le modèle sans changer la sémantique. De plus, parmi les critères
d'optimisation, celui de la somme des dissimilarités se présente sous forme d'une somme
linéaire. A�n d'avoir une propagation plus e�cace pour ce critère, nous avons proposé un
algorithme de �ltrage qui exploite les informations données par une a�ectation partielle
de variables.

Des expérimentations sur des bases de données classiques montrent la performance de
notre modèle. De plus, la possibilité de combiner di�érents types de contraintes utilisa-
teur et la �exibilité du choix du nombre de clusters permettent d'obtenir des solutions
intéressantes.
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5.1 Introduction

We introduce in this chapter our �rst model for constrained clustering that can be provided
to Constraint Programming solvers. We �rst present the problem on which we focus. The
problem consists of �nding a partition composed of a given number of clusters that satis�es
a set of user-constraints and optimizes a criterion. We de�ne the problem as follows:

Input

• O = {o1, . . . , on}: set of points to be clustered. Points are indexed and named by
their indices.

• k: number of clusters in a partition.

• A matrix of dissimilarities between two points. We denote by dij the dissimilarity
between points i and j.

Output A partition of O in k clusters C1, . . . , Ck.

User-Constraints

• Minimal size α of clusters: It requires that each cluster has a number of points
greater than a given threshold α, i.e. ∀c ∈ [1, k], |Cc| ≥ α.

• Maximal size β of clusters: It requires each cluster to have a number of objects
inferior to a prede�ned threshold β, i.e. ∀c ∈ [1, k], |Cc| ≤ β.

• Split δ-constraint: It expresses that the split between any two clusters must be at
least δ, i.e. ∀c ∈ [1, k],∀c′ 6= c,∀oi ∈ Cc,∀oj ∈ Cc′ , dij ≥ δ.

• Diameter constraint γ: It expresses that the diameter of each cluster must be at
most γ, i.e. ∀c ∈ [1, k], ∀oi, oj ∈ Cc, dij ≤ γ.
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• Density constraint: The ε-constraint introduced in [Davidson & Ravi 2005b] requires
for each point oi to have in its neighborhood of radius ε at least another point
belonging to the same cluster: ∀c ∈ [1, k],∀oi ∈ Cc, ∃oj ∈ Cc, oj 6= oi and dij ≤
ε. This constraint tries to capture the notion of density, introduced in DBSCAN
[Ester et al. 1996]. We have extended it by proposing a density-based constraint,
stronger than the ε-constraint: it requires that for each point oi, its neighborhood
of radius ε contains at least m points belonging to the same cluster as oi, i.e. ∀c ∈
[1, k], ∀oi ∈ Cc, |{oj : oj ∈ Cc, j 6= i, dij ≤ ε} ∩ Cc| ≥MinPts.

• Must-link constraint: A must-link constraint on two points i and j requires that
these two points must be in the same cluster.

• Cannot-link constraint: A cannot-link constraint on two points i and j requires that
these two points must be in di�erent clusters.

Criterion

• No criterion: Finding all partitions with n points divided into k clusters that satisfy
all given user-constraints.

• Diameter criterion: Finding a partition with n points divided into k clusters that
satis�es all given user-constraints, and the partition has the minimal maximum
diameter. The maximum diameter D of a partition is measured as:

D = max
i,j s.t. λi=λj

dij

where λi denotes the cluster that contains point i.

• Split criterion: Finding a partition with n points divided into k clusters that satis�es
all given user-constraints, and the partition has the optimal minimum split. The
minimum split S of a partition is measured as:

S = min
i,j s.t. λi 6=λj

dij

• Within Cluster Sum of Dissimilarities (WCSD) criterion: Finding a partition with
n points divided into k clusters that satis�es all given user-constraints, and the
partition has the optimal WCSD. The WCSD is measured as:

WCSD =
∑

i,j s.t. λi=λj

dij

Let us notice that, for this criterion the dissimilarities are usually measured by the
squared Euclidean distance.

For solving the described problem, we propose a model in Constraint Programming
(CP). CP is a powerful paradigm for solving combinatorial optimization problems. The
problems are encoded in CP by de�ning variables and constraints. A problem can be
encoded in di�erent ways in CP. CP relies on constraint propagation and search for solving
the problem. As a result, the choice of variables and constraints is extremely important
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since di�erent constraints have di�erent �ltering algorithms with di�erent complexity and
di�erent levels of consistency. Finding a correct and e�cient encoding in CP for a speci�c
problem can be a di�cult task.

CP provides a rich set of constraints that are designed to express relations between
the variables. We present the constraints used in our model:

• Unary constraints: These constraints are de�ned on a single variable. The propaga-
tion of such a constraint is simple, as presented in Chapter 2.

• Binary constraints: Those are constraints between two variables x, y. In most CP
solvers, binary constraints are guaranteed to be arc consistent with built in �ltering
algorithms. A basic arc consistency algorithm is presented in section 2.2 of Chapter
2.

• Global Cardinality Constraint: It bounds the number of times a value or a set of
values is assigned to the variables in a set X to be at least l and at most u. We
consider only a simple form of this constraint, which bounds the number of times a
value v is assigned to variables in X. It is written as:

gcc(X, v, l, u)

where X is a set of variables, v is the value, l and u are the lower bound and upper
bound of times v is assigned to variables in X. Another version used in this thesis
is:

gcc(X, y, l, u)

where y is a variable. This enforces that the value assigned to y must appear at
least l and at most u times in the set X.

Example 17 Consider a set of variables X = {x1, x2, x3} with the domains
Dom(x1) = Dom(x2) = Dom(x3) = {1, . . . , 10}. The constraint gcc(X, 3, 1, 2)

requires that at least one and at most two of the variables x1, x2, x3 are assigned to
the value 3.

Generalized arc consistency for this constraint can be achieved by a �ltering algo-
rithm, which is based on a network �ow [Régin 1996]. We consider in the thesis
two simple versions of the cardinality constraint: AtLeast and AtMost constraints,
which are de�ned as:

AtLeast(X, v,m)

AtMost(X, v,m)

These constraints require that there are at least (at most) m variables in X that are
assigned to value v.

• Element constraint: It gives access to a speci�ed variable in an array of variables
[x1, . . . , xn]. It is written as:

element([x1, . . . , xn], y, i)

It constrains the variable y to be equivalent to the i−th variable in the array, or: y =

xi. Generalized arc consistency for this constraint can be achieved [Gent et al. 2006].
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• Rei�ed constraint: It associates a boolean variable b to a constraint c. It is written
as:

b↔ c (5.1)

In this constraint, the variable b takes the value 1 if the constraint c is satis�ed and
0 otherwise. The propagation of rei�ed constraints depends on the constraint c, and
also depends on solvers. Most constraint solvers support rei�ed versions of unary
and binary constraints.

Example 18 Consider a set of variables X = {x1, x2, x3} with the domains
Dom(x1) = Dom(x2) = Dom(x3) = {1, . . . , 10}. Suppose that we need to post
a constraint:

(x1 = 2)→ (x2 = x3) (5.2)

This constraint cannot be posted directly in most solvers. For modeling this con-
straint, we can use two auxiliary boolean variables b1 and b2: Dom(b1) = Dom(b2) =

{0, 1}. Then we post the 2 rei�ed constraints as follows:

b1 ↔ (x1 = 2) (5.3)

and
b2 ↔ (x2 = x3) (5.4)

Those are rei�ed versions of binary constraints and are supported in most of con-
straint solvers. Finally, we post a binary constraint for binding b1 and b2 as follows:

b1 → b2 (5.5)

For instance, during the search, suppose that the domains of variables have been
reduced to:

Dom(x1) = 2, Dom(x2) = {1, 3}, Dom(x3) = {1, . . . , 10}

According to the constraint (5.3), the variable b1 is instantiated: b1 = 1. The propa-
gation of constraint (5.5) then instantiates the variable b2: b2 = 1. The propagation
constraint (5.4) actives the constraint x2 = x3, which restricts the domain of variable
x3:

Dom(x3) = {1, 3}

5.2 Variables and domains

For modeling the problem described in section 5.1, we propose an encoding on two levels:

Representation of clusters For each cluster, a point in the cluster is chosen
to be the representative point. The idea comes from the k-medoids algorithm
[Kaufman & Rousseeuw 1987] where each cluster is represented by a medoid, i.e. the
point whose average dissimilarity to all the objects in the cluster is minimal. However,
identifying the medoid of each cluster requires to know the partition. We propose to re-
place the condition on representative points: a representative point is not necessary in the
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center of a cluster, but it is the point that has smallest index in the cluster. With this
condition, modeling the representation of clusters in CP is simple, as presented by con-
straints given in the next section. This condition also helps to avoid symmetric solutions,
as given a cluster, there is only one point satisfying the condition.

Representation of the assignment of points to a cluster Each cluster is associated
with a representative point. We therefore propose to replace the assignment of points to
a cluster to the assignment of points to the representative point. Suppose that the rep-
resentative points are identi�ed, the dissimilarity between a point and the representative
of each cluster is known. Encoding the assignment of points to a representative point is
intuitive and simple.

Based on these ideas, for modeling the problem of constrained clustering, we de�ne
two sets of variables:

• I = {I1, . . . , Ik}: For each cluster c ∈ {1, . . . , k}, the point with the smallest index
is considered as the representative point of the cluster. The variable Ic gives the
representative point of the cluster c. The domain of each variable Ic is all possible
indices, hence Dom(Ic) = {1, . . . , n}.

• G = {G1, . . . , Gn}: Assigning a point to a cluster becomes assigning the point to
the representative of the cluster. For each point i ∈ {1, . . . , n}, the variable Gi is
the representative point of the cluster that contains the point i. At the beginning,
any point can be a representative point, hence the domain of variable Gi is also all
possible indices, Dom(Gi) = {1, . . . , n}.

A complete assignment of those variables corresponds to a partition. We also propose
another encoding which relies on only one one level, as presented in the next chapter.

Example 19 Given a dataset of 7 points O = {o1, . . . , o7} and a clustering task dividing
the points into 2 clusters. We de�ne I = {I1, I2} and G = {G1, . . . , G7} where the initial
domains of all variables are {1, . . . , 7}. Let us consider a partition of 2 clusters, the �rst
one composed of o1, o2, o5 and o6 and the second one composed of the remaining points.
The points are denoted by their integer indices (o1 is denoted by 1, o2 by 2 and so on).
This partition corresponds to the assignment of variables:

I1 = 1, I2 = 3

(since 1 is the smallest index among {1, 2, 5, 6} and 3 is the smallest index among {3, 4, 7})

G1 = G2 = G5 = G6 = 1

(since 1 is the representative of the �rst cluster)

G3 = G4 = G7 = 3

(since 3 is the representative of the second cluster).
Figure 5.1 presents this example. The left image shows the dataset and the domain of vari-
ables at the beginning whereas the right image presents a partition and the corresponding
assignment of variables.
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Figure 5.1: Example of assignment values to variables in a solution

A �oat variable is introduced for representing the optimization criterion. It is denoted
by D for the maximal diameter, S for the minimal margin and V for the Within Cluster
Sum of Dissimilarities. The domains of D and S are the interval whose lower (upper)
bound is the minimal (maximal, resp.) dissimilarity between any two points. The domain
of V is upper-bounded by the sum of the dissimilarities between all pairs of points.

5.3 Constraints

5.3.1 Modeling Partition Constraints

The relationships between points and their clusters are expressed by the following con-
straints:

The representative of a representative point is itself Obviously, if a point i is the
representative point of the cluster c, then Ic = i. The variable Gi must be assigned to i
(Gi = i) because the point i is in the cluster c, and the point i is also the representative of
this cluster. As a result, the variables GIc , giving the cluster to which the representative
point Ic belongs to, must be equal to Ic. This can be expressed by an element constraint.
For each value c ∈ {1, . . . , k}, we post a constraint:

element([G1, . . . , Gn], Ic, Ic) (5.6)

With those constraints, as soon as a representative point i of a cluster c is identi�ed, both
variable Ic and Gi are instantiated to the value i: Ic = Gi = i.

The representative of a cluster must be the smallest index in the cluster This
condition makes the representative be unique for each cluster. For each point i, the value
Gi giving the representative point of its cluster, must be smaller or equal than i. To
represent this constraint, for each value i ∈ {1, . . . , n}, we post a unary constraint:

Gi ≤ i. (5.7)
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Example 20 Given the dataset in Example 19, the constraints (5.7) restrict the domain
of variables in G to:

Dom(G1) = {1}, Dom(G2) = {1, 2}, . . . , Dom(G7) = {1, . . . 7}.

The representative of each point must be one and only one of all the represen-

tatives The value of a variable Gi must be among the possible representative points. It
means that Gi must be assigned to the value of exactly one of the variables in I. This
relation can be expressed by a global cardinality constraint. For each value i ∈ {1, . . . , n},
we post a constraint:

gcc(I, Gi, 1, 1) (5.8)

This means that the value of Gi must appear exactly once time in I. With these con-
straints, when all variables in I are assigned, the domains of variables in G contain only
the values of representative points.

Example 21 Given the dataset in Example 19, suppose that the two representatives
points are identi�ed: I1 = 1, I3 = 3. With the constraints (5.6), (5.7) and (5.8) the
domains of all variables in G are �ltered to:

Dom(G1) = Dom(G2) = {1},

Dom(G3) = {3},

Dom(G4) = Dom(G5) = Dom(G6) = Dom(G7) = {1, 3}.

Symmetry breaking constraints In our model, given an assignment of variables in
I and G, any permutation of the values of the representative points leads to the same
partition. Figure 5.2 presents an example of symmetric solutions, if there is no restriction
on the choice of representative points. A simple way to avoid symmetry solutions is
to impose a strict ordering on the representatives: the representatives must be in an
ascending order. This relation can be expressed by binary constraints. For each value
c ∈ {1, . . . , k − 1}, we post a constraint:

Ic < Ic+1.

Since a representative must have the smallest index, the representative of the �rst cluster
must be the �rst point, so we post a constraint:

I1 = 1.

5.3.2 Modeling the user-constraints

The advantage of modeling with CP is that many di�erent types of user constraints can
be directly added. Both cluster-level constraints and instance-level constraints can be for-
mulated within our model. All popular user-de�ned constraints may be straightforwardly
integrated:
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Figure 5.2: Example of symmetric solutions

Minimal size α of clusters It requires that each cluster has a number of points greater
than a given threshold α. This constraint can be expressed by an AtLeast constraint. For
each value c ∈ {1, . . . , k}, we post a constraint:

AtLeast(G, Ic, α).

This constraint expresses that there must be at least α variables in G taking the value of
the variable Ic, which is equivalent to there are at least α points in the cluster c.

Maximal size β of clusters It requires each cluster to have a number of objects inferior
to a prede�ned threshold β. Similarity, for each value c ∈ {1, . . . , k}, we post a AtMost
constraint:

AtMost(G, Ic, β).

This constraint requires that there must be at most β variables in G taking the value of
the variable Ic.

Split δ-constraint It expresses that the split between any two clusters must be at least
δ. This constraint is satis�ed if for any two points i and j, if the dissimilarity between them
is less than δ, we require them to be in the same cluster. Therefore, for each i < j ∈ [1, n]

satisfying the condition dij < δ, we put a binary constraint:

Gi = Gj .

Diameter constraint γ It expresses that the diameter of each cluster must be at most
γ. This constraint is satis�ed if for any two points i, j, if the dissimilarity between them is
greater than γ, we require them to be in di�erent clusters. Therefore for each i < j ∈ [1, n]

such that dij > γ, we put a binary constraint:

Gi 6= Gj

Density constraint It requires that for each point i, its neighbourhood of radius ε
contains at least MinPts points belonging to the same cluster as i. To express this
constraint in our model, for each point i ∈ [1, n], we compute the set of variables Xi
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composed of variables Gj (j ∈ {1, . . . , n}) such that dij < ε. We then post an AtLeast
constraint:

AtLeast(Xi, Gi,MinPts).

It requires that, in the set of variables Xi, there must be at least MinPts variables that
have the same value as Gi, which means that there must be at leastMinPts points in the
same cluster as point i.

Must-link constraint A must-link constraint on two points i and j is expressed by a
binary constraint:

Gi = Gj .

Cannot-link constraint A cannot-link constraint on i and j is expressed by a binary
constraint:

Gi 6= Gj .

5.4 Criterion Modeling

As presented in Chapter 2, a Constraint Optimization Problem (COP) is a CSP together
with an objective function f() to be optimized. Typically, a COP is solved in CP by
adding a constraint whenever a solution ∆ is found during the search. The constraint
requires that the value of the optimization function must be better than f(∆) in any
future solution. For modeling a COP, in general, a variable, i.e. x, is de�ned and users
have to post constraints on x to express the function f(). Then an optimization constraint
is posted, e.g. in case of minimization:

minimize x

This constraint ensures that, whenever a solution ∆ is found, a new constraint is added
to the model, e.g. in case of minimization:

x < f(∆) (5.9)

where f(∆) is the actual value of the function f() on the solution. f(∆) is obtained by the
value of the variable x in the solution. In some problems, the variable x is not instantiated
and f(∆) is obtained by a lower or upper bound of x.

By using the constraint (5.9), the last found solution is guaranteed to be the solution
with the minimal value of the function f() among all found solutions. When a complete
search is used, the last found solution is guaranteed to be the optimal solution. Note that
the constraint (5.9) is strict, providing an increasingly tight bound. As a result, only one
optimal solution is found, even if there exists di�erent optimal solutions with the same
value of f().

5.4.1 Modeling the diameter criterion

The criterion of diameter is encoded with the �oat variable D. At the beginning, the
domain of D is not a set of values, but an interval:

Dom(D) = [dmin, dmax]
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where dmin and dmax are the minimum and the maximum dissimilarity between any two
points. To express the criterion, a straightforward way to encode it is to put a requirement
on each pair of points: if two points i and j are in the same cluster, the dissimilarity
between these two points should be equal or inferior to the value of the maximum diameter:

Gi = Gj → dij ≤ D (5.10)

With these constraints, whenever two points i and j are known to be in the same
cluster, the lower bound of the variable D is modi�ed: D.lb = max(D.lb, dij). When all
variables in G are instantiated, the lower bound of D is the maximum diameter.

Note that the constraint (5.10) is a logic constraint in the form a → b, which is
equivalent with !b →!a, with the meaning: if the dissimilarity between any two points is
superior to the diameter, then they must be in di�erent clusters.

dij > D → (Gi 6= Gj) (5.11)

The condition dij > D is satis�ed if the dissimilarity dij is superior to the upper bound
of the variable D. Whenever dij > D.ub, the constraint Gi 6= Gj has to be activated to
restrict the domain of variables Gi and Gj .

For modeling the constraints (5.10, 5.11), we propose to use rei�ed versions of binary
constraints. For each pair of points i and j, two auxiliary boolean variable bij1 and bij2
are generated and three constraints are posted. The �rst one models the condition that
the dissimilarity between any two points is superior to the diameter:

bij1 ↔ dij > D. (5.12)

The second one models the condition that the two points are not in the same cluster:

bij2 ↔ (Gi 6= Gj). (5.13)

The third one binds the two conditions:

bij1 → bij2. (5.14)

The propagation of the constraints (5.12, 5.13, 5.14) is as follows:

• If bij1 = 1, which happens when dij > D.ub holds in the constraint (5.12), then
the variable bij2 is instantiated to 1 because of the constraint (5.14). The rei�ed
constraint (5.13) will then propagate the binary constraint Gi 6= Gj .

• If bij1 = 0 or bij1 is not instantiated (bij1 ∈ [0, 1]), there is no propagation.

• If bij2 = 1 or (Gi 6= Gj) holds, there is no propagation.

• If bij2 = 0 or (Gi = Gj) holds in the constraint (5.13), then the variable bij1 is
instantiated to 0 because of the constraint (5.14). With the rei�ed constraint (5.12),
the constraint dij ≤ D is propagated. This is done by setting the lower bound of
the domain of D:

D.lb = max(D.lb, dij)

These propagations ensure that the lower bound of D is always the maximum diam-
eter of clusters.
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The optimal diameter is guaranteed with an optimization constraint:

minimize D. (5.15)

The constraint (5.15) is activated each time a solution ∆ is found. The diameter maximum
of the solution, denoted by D∆, is obtained by the value D.lb, then a new constraint is
added to ensure that the next solution (if it exists) must have a better maximum diameter:

D < D∆. (5.16)

5.4.2 Modeling the split criterion

The criterion of split is encoded with the �oat variable S. At the beginning, the domain
of S is not a set of values, but an interval:

Dom(S) = [dmin, dmax]

where dmin and dmax are the minimum and the maximum dissimilarity between any two
points.

For the split criterion, a similar requirement is put on each pair of points: if the two
points are in di�erent clusters, then the dissimilarity between them must be equal or
superior to the split:

(Gi 6= Gj)→ dij ≥ S (5.17)

It is equivalent with the constraint: if the dissimilarity between any two points is inferior
to the split, then they must be in the same cluster.

dij < S → (Gi = Gj) (5.18)

Similar to the criterion of diameter, for each pair of points i, j, two auxiliary boolean
variables bij1 and bij2 are generated and three constraints are posted as follows:

bij1 ↔ dij < S. (5.19)

bij2 ↔ (Gi = Gj). (5.20)

bij1 → bij2. (5.21)

The propagation of these constraints is as follows:

• If bij1 = 1 or dij < S holds, the variable bij2 is instantiated to 1 because of the
constraint (5.21). The rei�ed constraint (5.20) then propagates the binary constraint
(Gi = Gj).

• If bij1 = 0 or bij1 is not instantiated (bij1 ∈ [0, 1]), there is no propagation.

• If bij2 = 1 or (Gi = Gj) holds, there is no propagation.

• If bij2 = 0 or (Gi 6= Gj) holds, then the variable bij1 is instantiated to 0, the
constraint dij ≥ S is propagated. The lower bound of the domain of S is modi�ed:

S.lb = max(S.lb, dij)

These propagations ensure that the lower bound of S is the minimum split.
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The optimal split is guaranteed with an optimization constraint:

minimize S.

With this optimization constraint, each time a solution ∆ is found, the minimum split S∆

is obtained by the value of S.lb, then a new constraint is added:

S > S∆.

5.4.3 Modeling the criterion of Within Cluster Sum of Dissimilarities

The Within Cluster Sum of Dissimilarities (WCSD) is measured as the sum of dissimi-
larities between any two points in the same cluster, where the dissimilarities is usually
de�ned as the squared Euclidean distance. To represent the relation between points and
WCSD, we need a constraint wcsd(G,V,d), which ensures:

V =
∑

i<j∈[1,n]

(Gi = Gj)dij . (5.22)

where (Gi = Gj) is a truth value in {0, 1}.
Using prede�ned constraints, the constraint (5.22) for the WCSD criterion can be

implemented by the following constraints:

• A set of rei�ed constraints: for all 1 ≤ i < j ≤ n,

bij ↔ (Gi = Gj)

bij is a boolean variable, which is equal to 1 i� Gi = Gj .

• A linear sum constraint:
V =

∑
1≤i<j≤n

bij × dij

However, these constraints, while considered independently, do not o�er enough propaga-
tion. For example, with k = 2, given 4 points from 1 to 4 and a partial assignment where
G1 = 1 and G2 = G3 = 2 as in Figure 5.3 (the number on each edge {i, j} represents the
value dij). We have three instantiated boolean variables:

b12 = b13 = 0, b23 = 1.

The remaining boolean variables are uninstantiated:

b14, b24, b34 ∈ {0, 1}.

Let us assume that a solution with V = 5 was found. With the branch-and-bound search,
this solution sets the upper bound of variable V to 5. A new constraint is added:∑

i<j

bij × dij < 5.

As b12 = b13 = 0, b23 = 1, this constraint becomes:

b14 + 2b24 + 3b34 < 4.
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Figure 5.3: Example of �ltering

Since G2 = G3, we can see that b24 and b34 must be equal and then must not be equal
to 1, otherwise the constraint is violated. We should then infer that point 4 cannot be
in the cluster number 2, as points 2 and 3, that means value 2 should be removed from
the domain of G4. This �ltering however is not done, since the constraints are considered
independently.

Several recent works have proposed more e�cient �ltering for the sum constraint, when
it is considered with other constraints. For a sum constraint y =

∑
xi with inequality

constraints xj − xi ≤ c, a domain �ltering algorithm reduces the domain of xi when
new bounds for y are known [Régin & Rueher 2005]. A bound-consistency algorithm is
proposed for a sum constraint with increasing order constraints xi ≤ xi+1[Petit et al. 2011]
or with a constraint alldi�erent(x1, . . . , xn)[Beldiceanu et al. 2012]. These cases however
do not �t the WCSD criterion constraint (5.22). A generic bound-consistency algorithm
for a sum constraint with a set of constraints is proposed in [Régin & Petit 2011]. In our
case, the domain of Gi is a set of representative indices, which is not an interval in general,
and from which we wish to remove any inconsistent value. We have developed a �ltering
algorithm for a new global constraint on a variable V , an array of variables G of size n
and an array of constants d, which is of the form:

V =
∑

i,j∈[1,n],i<j

(Gi=Gj)dij . (5.23)

Taking into account the partitioning problem, the domain of each variable Gi is the set
of the representative indices of the clusters that can contain point i. Let us assume that
the domain of the variable V is [V.lb, V.ub) where V.lb is the lower bound, which can be
initially 0, and V.ub is the upper bound, which can be the value of V in the last solution
with a branch-and-bound search. Suppose that we have a partial assignment of variables
in G, where there is at least one point assigned for each group (e.g the representative of
the group). Let K be the set of points i which have been already assigned to a group (Gi
is instantiated) and U the set of the unassigned points. The sum in (5.23) is split into
three parts V = V1 + V2 + V3, where:

• V1 is the sum of dissimilarities between the assigned points:

V1 =
∑

i,j∈K,i<j,Gi=Gj

dij
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• V2 is the sum of dissimilarities between the unassigned points and the assigned
points:

V2 =
∑

i∈U,j∈K
(Gi=Gj)dij

• V3 is the sum of dissimilarities between the unassigned points:

V3 =
∑

i<j,i,j∈U
(Gi=Gj)dij

The evaluation of these three parts is based on [Klein & Aronson 1991]. The value of
V1 can be calculated exactly because the set K is already known. For the second part,
the value of V2 is unknown because of the unassigned points. However, a lower bound
of V2, denoted by V2.lb, can be calculated by a sum of the minimum contribution of all
the unassigned points. Since each unassigned point i will be assigned to a group, it will
contribute to V by a sum of dissimilarities between point i and all the points of K that
are in that group. The minimal contribution v2i of the point i is the minimal amount
when considering all k groups, with respect to the assigned points:

v2i = min
c∈[1,k]

(
∑

j∈K∩Cc

dij).

A lower bound of V2 is then the sum of v2i:

V2.lb =
∑
i∈U

v2i.

For the third part, the value of V3 is unknown too, but a lower bound of V3 can be
calculated by a heuristic. We recall that V3 is the sum of all dij with i and j in the
same group. Let p = |U |, the minimal number of terms dij in the sum V3 is the minimal
number of within-group pairwise connections1, while considering all partitions of p points
into k groups. This number can be calculated by a function, i.e. f(p, k). With a set U of
unassigned points, with the constants dij (i, j ∈ U) ordered increasingly, a lower bound
V3, denoted by V3.lb, is then calculated by the sum of the f(|U |, k) �rst constants in this
order.

Example 22 With p = 10, k = 3 and with a partition into 3 groups of sizes 2, 3 and 5,
the number of within-group pairwise connections is 14. The minimal value of this number
is 12, corresponding to a partition into 3 groups of sizes 3, 3 and 4.

Theorem 22 Let m be the quotient of the division of p by k and m′ the remainder. The

minimal total number of connections for all groups can be calculated as follows:

f(p, k) = (km2 + 2mm′ − km)/2.

Proof Let the number of points in each group c be m+ αc, with αc < 0 when the group
c has less than m points, αc ≥ 0 otherwise. We have then∑

1≤c≤k
(m+ αc) = p = km+m′.

1A group is like a clique and the number of pairwise connections is the number of edges in the clique.
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It is equivalent with:
m′ =

∑
1≤c≤k

αc.

The number of pairwise connections in a group c is:

(m+ αc)(m+ αc − 1)/2.

The total number for all groups is:∑
1≤c≤k(m+ αc)(m+ αc − 1)/2

= (
∑

1≤c≤k(m+ αc)
2 −

∑
1≤c≤k(m+ αc))/2

= (km2 + 2mm′ +
∑

1≤c≤k(α
2
c − km−m′))/2

By replacing the value of m′ (m′ =
∑

1≤c≤k αc.), we have:

m′ ≤
∑

1≤c≤k
|αc| ≤

∑
1≤c≤k

α2
c

where αc are integers.
Therefore the total number for all groups is greater or equal to:

(km2 + 2mm′ − km)/2.

The equality is reached when αc is 1 for m′ groups and is 0 for k −m′ groups

Example 23 Given a dataset with 8 points as illustrated in Figure 5.4 and a clustering
task dividing the points into 2 groups (green and red). Suppose that there are 5 assigned
points (3 red points and 2 green points) and 3 unassigned points. The value of V1 is
calculated exactly by the sum of the solid black lines. The lower bound V2.lb is the
sum of the dash red lines and dash green lines. With 3 unassigned points, we have
p = 3, k = 2,m = 1 and m′ = 1, the minimum total number of connections is

f(p, k) = f(3, 2) = (km2 + 2mm′ − km)/2 = 1.

Therefore, the lower bound V3.lb is the dot blue line.

A lower bound of variable V is given by:

V.lb = V1 + V2.lb+ V3.lb

This lower bound is used for two purposes:

• Detecting the failure during the branch-and-bound search, it happens when V.lb ≥
V.ub.

• Filtering inconsistent values of unassigned variables. For each value v of an unas-
signed variable Gi, a new lower bound, denoted by V ′.lb, is computed with the
assumption Gi = v (the computation is explained in the next paragraph). This
value is inconsistent if V ′.lb ≥ V.ub. For example in Figure 5.3, value 2 can be
removed from the domain of variable G4 because with the assumption G4 = 2, the
new lower bound V ′.lb = 6, and it is greater than the upper bound V.ub = 5.
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Figure 5.4: Example of V.lb = V1 + V2.lb+ V3.lb

The �ltering algorithm is presented in Algorithm 11. This algorithm uses two arrays
add and min:

• add[i, c] is the added amount if i is assigned to group c:

add[i, c] =
∑

j∈K∩Cc

dij .

• m[i] is the minimal added amount while considering all possible assignments for i:

m[i] = min
c
add[i, c].

Since the constants dij must be ordered increasingly in the computation of V3.lb, they are
ordered once in the array ord, so ord[pos] gives the constant dij in the order at position
pos, and px[pos] (py[pos]) gives the index i (j, resp.) of the constant. For the time being,
the �ltering algorithm is developed for the clustering task, where values in the domain
of Gi are the representatives of all clusters for which point i can be assigned. Given a
value v in the domain of a variable Gi, the function gr(v) gives the index of the cluster
corresponding to v.

The lower bound of V is revised in line 26. Line 30 �lters the domain of Gi (i ∈ U):
for each value v in the domain, in case of assignment of i into group gr(v), a new lower
bound for V.lb is V ′.lb = V ′1 + V ′2 .lb+ V ′3 .lb with:

• V ′1 = V1 + add[i, gr(v)] because point i is supposed to be assigned to group gr(v),
the sum of dissimilarities between instantiated points increases of add[i, gr(v)].

• V ′2 = V2.lb−m[i] because point i is no more unassigned, the contribution of point i
in the calculation of V2.lb must be removed.

• V ′3 .lb is the sum of the �rst f(|U | − 1, k) elements of ord that are related to U \ {i}.
In order to reduce the complexity of the �ltering algorithm, we use V4 instead of
V ′3 .lb. Here, V4 is the sum of the �rst f(|U | − 1, k) elements of ord (possibly some
related to i). It is obvious that V ′3 .lb ≥ V4.

The new lower bound is:

(V1 + add[i, gr(v)]) + (V2.lb−m[i]) + V ′3 .lb
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Algorithm 11: Filtering algorithm

1 V1 ← 0; V2.lb← 0; V3.lb← 0; V4 ← 0;
2 for i← 1 to n where Gi is instantiated do

3 for j ← 1 to n do

4 if Gj is instantiated and Gj == Gi and i < j then V1 ← V1 + dij ;
5 if Gj is not instantiated then add[j, gr(Gi)]← add[j, gr(Gi)] + dij ;

6 end

7 end

8 for i← 1 to n where Gi is not instantiated do

9 m[i]←∞;
10 foreach value v ∈ Dom(Gi) do

11 if m[i] > add[i, gr(v)] then m[i]← add[i, gr(v)];
12 end

13 V2.lb← V2.lb+m[i];

14 end

15 p← number of uninstantiated variables in G;
16 cpt← 0; pos← 1;
17 while cpt < f(p, k) do

18 i← px[pos]; j ← py[pos];
19 if Gi is not instantiated and Gj is not instantiated then

20 cpt← cpt+ 1;
21 V3.lb← V3.lb+ ord[pos];
22 if cpt ≤ f(p− 1, k) then V4 ← V4 + ord[pos];

23 end

24 pos← pos+ 1;

25 end

26 V.lb← max(V.lb, V1 + V2.lb+ V3.lb);
27 for i← 1 to n where Gi is not instantiated do

28 foreach value v ∈ Dom(Gi) do

29 if V.lb+ add[i, gr(v)]−m[i]− V3.lb+ V4 ≥ V.ub then
30 delete v from Dom(Gi);
31 end

32 end

33 end
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which is greater or equal to:

V.lb+ add[i, gr(v)]−m[i]− V 3.lb+ V4

So if this last value is greater than the actual upper bound of V , v is inconsistent. The
complexity of this algorithm is O(n2 + nk), since the domain of each Gi is of size at most
k. Since k ≤ n, the complexity is then O(n2).

5.5 Search Strategy

A search strategy must be given to indicate to the solver the choice of variables and
values. Variables will be chosen in the order I then G. This order represents the fact
that the cluster representatives must be identi�ed �rst, then the solver tries to determine
the assignment of points to clusters. Variables in I are chosen from I1 to Ik, that means
identifying the representative of the �rst cluster till the last cluster. For the choice of
values for each Ic, since the representative is the smallest index in each cluster, the values
are enumerated in the ascending order. The next step is branching on variables in G. The
branching on uninstantiated variables in G �nds a variable Gi and a value c in the domain
of G[i] and makes two alternatives: G[i] = c and G[i] 6= c.

For the criterion of maximum diameter and minimum split Variables in G are
chosen in the ascending order of the size of their remaining domain. For the choice of
values for each Gi, the closest representative is enumerated �rst.

Example 24 Given a dataset of 4 points and a clustering task dividing points into 2
clusters. Figure 5.5 expresses the search tree by using the explained strategy. Node 0
presents the initial domain of variables at the beginning of the search. As I1 is instantiated,
the variable I2 is branched by assigning I2 = 2 �rst. When I2 = 2, the variable G2 is
instantiated to 2 and the domain of others variables in G is restricted to {1, 2}. The
variable G3 is chosen for the next branching. As the representative point I2 is actually
closer to the point 3, G3 is assigned �rst to 2, as expressed in Node 2. In Node 19, as soon
as the second representative point is instantiated I2 = 4, the variables G2, G3 and G4 are
all instantiated, by the propagation of the partition constraints: the representative point
is the point with the smallest index in the cluster.

For the criterion of WCSD A mixed strategy is used. Because an upper bound
is necessary for the WCSD constraint to be e�ective, a greedy strategy is used �rst to
quickly �nd a solution. In this step, Gi and c are selected to make sure that the value
of V increases as little as possible. The �rst solution found in general has a good value
of WCSD (which is close to the optimal value). After �nding a �rst solution, the search
strategy is changed, following the fail-�rst principle, which tends to cause the failure early.
In this strategy, the branching tries to make alternatives on frontier points. The value c
is always the representative of the closest group to point i. The variables in G with the
smallest domain size are all considered and the variable that makes the most changes on
V is chosen for branching.



70 Chapter 5. An initial CP Model for Constrained Clustering

Figure 5.5: Example of search strategy for the criterion of diameter and split
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Figure 5.6: Example of search strategy for the criterion of WCSD

Example 25 Given a node in the search tree with 6 points that have been instantiated
to two clusters, as illustrated in Figure 5.6. If we have not found the �rst solution, the
variable GA (that corresponds to point A) is considered for the branching. The reason
is, this point is very close to the cluster on the right and by assigning the point A to
this cluster, the value of WCSD increases very little. With this strategy, we have a good
chance that the WCSD of the �rst solution found is close to the optimal value. If we
already have found one or more solutions, the variable GB (which corresponds to point B)
is considered for branching. This point is in the frontier between two clusters. Although
this point is closer to the cluster on the left, there is a high probability that it is not true
in the optimal solution, as the di�erence between the dissimilarities of this point to the
cluster on the left and on the right is close to zero. If assigning the point B to the cluster
on the left is not correct, we want to detect this failure soon. Branching on point B makes
the �rst part (V1) of the calculation on bounds on WCSD increase a lot, and the lower
bound of WCSD is larger than the bound when we make the branching on point A. As
a result, the �ltering algorithm for WCSD is more e�ective, we have a better chance to
detect a failure and to �lter more values in the domain of variables in G.

5.6 Model Improvements

By using a complete branch and bound search, our model allows to �nd the optimal
solution. In order to improve the e�ciency, di�erent aspects have been studied.

5.6.1 Search strategy improvement by point ordering

In order to instantiate cluster representatives, the variables in I are taken in the order
I1, . . . , Ik when enumerating with values. Since a representative must have the smallest
index in the cluster, for each variable, values (point indexes) are enumerated in the as-
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Figure 5.7: Before and After reordering points

Figure 5.8: The �rst solution found with initial and new ordering

cending order. The index of points is then really important. Points should be reordered
such that those which are more probably a representative should have smaller index.

We present in Algorithm 12 the reordering algorithm. It is based on the FPF heuristic
[Gonzalez 1985] to reorder points. The idea is to use the FPF algorithm with k = n

(each point is in a cluster), so that each point will be taken in turn. The order in which
the algorithm chooses points gives the order of points. Figure 5.7 presents points indices
before and after the reordering. Figure 5.8 presents the �rst solution found with the old
and new ordering. With the new ordering, the �rst solution usually has a diameter which
is close to the optimal value. It is very important as this value is used for the upper bound
of the variable D.

5.6.2 Constraint improvements

For a given k, without any user-constraints, the diameter dFPF returned by the FPF
algorithm has been proved by [Gonzalez 1985] to satisfy:

dopt ≤ dFPF ≤ 2dopt (5.24)

where dopt is the optimal diameter, which is aimed to be found.
This entails bounds for the variable D, whose domain is [dFPF /2, dFPF ]. Moreover, if
the dissimilarity between any two points i, j is greater than dFPF , we can directly add
constraints to indicate that they must be in di�erent clusters. It replaces the constraints
dij > D → (Gi 6= Gj). That is, for all points i < j ∈ [1, n]:

• If dij < dFPF /2: There is no need to post the constraints (5.12, 5.13, 5.14) for the
criterion of diameter. The reason is that as dij < dFPF /2 and dFPF /2 ≤ dopt, the
condition dij > D is always false, there is no propagation on these constraints even
if we post them.
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Algorithm 12: Reordering algorithm based on the FPF heuristic
Input: a number of points n, a number of clusters k, a matrix of dissimilarity (dij)

Output: a new index of points in array NewIndex[1..n]

1 i← the furthest point (i← arg maxj
∑

t∈[1,n] djt)

2 point[i]← visited
3 NewIndex[i]← 1

4 foreach j ∈ [1, n] do

5 if point[j] is not visited then

6 DistanceToV isitedPoint[j]← dij
7 end

8 end

9 foreach index ∈ [2, n] do

10 i← the point that is not visited and has the largest value
DistanceToV isitedPoint[i]

11 point[i]← visited
12 NewIndex[i]← index

13 foreach j ∈ [1, n] do

14 if point[j] is not visited then

15 DistanceToV isitedPoint[j]← dij
16 end

17 end

18 end
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• If dFPF /2 ≤ dij ≤ dFPF : There is no change, three constraints (5.12, 5.13, 5.14)
are posted for the criterion of diameter.

• If dij > dFPF : a constraint Gj 6= Gi is posted, instead of three constraints (5.12,
5.13, 5.14), because the condition dij > D is always true.

Lots of rei�ed constraints can be removed from the model, which improves the model
e�ciency.

In case there are user-constraints, the properties: dopt ≤ dFPF is no longer true. The
reason is that the optimal diameter in case there are user-constraints is actually equal or
superior to the optimal diameter in case without user-constraints. However, we always
have: dFPF ≤ 2dopt or dFPF /2 ≤ dopt. As a result, only the lower bound of D is changed
to dFPF /2. For all points i < j ∈ [1, n], we make the changes:

• If dij < dFPF /2: There is no need to post the constraints (5.12, 5.13, 5.14) for the
criterion of diameter.

• If dFPF /2 ≤ dij : Three constraints (5.12, 5.13, 5.14) are posted for the criterion of
diameter.

5.7 Experiments

Our model is implemented on Gecode solver version 4.2.1. Twelve databases from the
repository UCI [Bache & Lichman 2013] are used in our experiments. They vary by their
size, number of attributes and number of classes. Table 5.1 summarizes information on
these datasets, presented in the increasing order of the number of objects. The experi-
ments are all performed on a 3.4GHz Intel Core i5 processor running Ubuntu 12.04. We
experiment the performance of our model with each criterion by comparing with other
exact methods. To our knowledge, there is no exact algorithm for these criteria that sup-
ports any kind of user constraints for a general value k ≥ 3. For the criterion of diameter,
our model is compared with the branch-and-bound approach [Brusco & Stahl 2005] and
the algorithm based on graph coloring [Delattre & Hansen 1980], in the case without user-
constraints. For the split criterion, �nding a partition that optimizes the criterion is a
polynomial problem. We experiment our model adding user-constraints on the diameter.
For the criterion of WCSD, our model is compared with the Repetitive Branch-and-Bound
Algorithm (RBBA) [Brusco & Stahl 2005]. These algorithms are detailed in section 3.3.2
of Chapter 3. We also demonstrate the bene�t of using user-constraints in our model.

5.7.1 Minimizing the maximal diameter of clusters

We compare our previous model (denoted by CP) with the branch-and-bound
approach [Brusco & Stahl 2005] (denoted by BaB) and the algorithm based on
graph coloring [Delattre & Hansen 1980] (denoted by GC). Our programs are
available at http://cp4clustering.com. The program BaB can be found at
http://mailer.fsu.edu/�mbrusco/ whereas the program GC is not available and
we have coded it in C++ using a well known available graph coloring program
[Mehrotra & Trick 1995]. We consider clustering without user-constraints since the other
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Dataset # Objects # Attributes # Classes

Iris 150 4 3

Wine 178 13 3

Glass 214 9 7

Ionosphere 351 34 2

User Knowledge 403 5 4

WDBC 569 30 2

Synthetic Control 600 60 6

Vehicle 846 18 4

Yeast 1484 8 10

Multiple Features 2000 10 6

Image Segmentation 2000 19 7

Waveform 5000 40 3

Table 5.1: Properties of datasets

Dataset Dopt BaB GC CP

Iris 2.58 1.4 1.8 < 0.1

Wine 458.13 2 2.3 0.3

Glass 4.97 8.1 42 0.9

Ionosphere 8.6 − 0.6 0.5

User Knowledge 1.17 − 3.7 84.5

WDBC 2377.96 − 1.8 0.7

Synthetic Control 109.36 − − 56.1

Vehicle 264.83 − − 14.9

Yeast 0.67 − − 2388.1

Multi Features 12505.5 − − −
Image Segmentation 436.4 − − 649.2

Waveform 15.6 − − −

Table 5.2: Performance with the criterion of minimizing the maximal diameter

algorithms cannot handle them and in the best of our knowledge, there is no exact al-
gorithm handling user-constraints with this criterion. In the experiments, the time-out
is set to 1 hour and the Euclidean distance is used to compute the dissimilarity between
objects. The number of clusters k is set to the number of real classes given in Table 5.1.
Table 5.2 shows the results of our experiments. For each dataset we present the value of
Dopt (the optimal diameter) in the second column and the run time in seconds of each
system. The − sign is used when the system cannot complete the search after 1 hour. All
the algorithms are exact and therefore all �nd the same value for the optimum diameter.

It is clear that with these datasets, our model is the most e�cient in all cases and can
�nd the optimal diameter in 10 datasets. Among the programs, BaB algorithm is the least
e�cient, it is not able to solve datasets with more than 300 objects. The performance
of GC is better than that of BaB but it decreases rapidly if the number of objects n is
over 500. The BaB algorithm is based on the bounds of the maximal diameter to detect
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Dataset Sopt Total time

Iris 0.53 0.2

Wine 53.33 0.3

Glass 1.78 1.3

Ionosphere 5.29 52.1

User Knowledge Modeling 0.32 423.1

WDBC 421.99 7.1

Synthetic Control 43.59 31.3

Vehicle 27.06 21.9

Yeast − −
Multi Features − −
Image Segmentation − −
Waveform − −

Table 5.3: Maximizing the minimal split between clusters with a diameter constraint

failures during the search, while the GC algorithm considers all available dissimilarities in
descending order to �nd the optimum diameter. Our model, which exploits the bene�ts of
Constraint Programming such as constraint propagation and appropriate search strategies,
is more e�cient.

5.7.2 Maximizing the minimal split between clusters

Finding a partition maximizing the split between clusters is a polynomial problem. How-
ever, this is no longer true with user constraints, as for instance with a diameter constraint.
To our knowledge, there is no exact algorithm for this criterion that supports any kind
of user constraints for a general value k ≥ 3. We experimented our model by adding a
diameter constraint. In order to set it we use the results given in Table 5.2: the diameter
of each cluster must not exceed 1.5Dopt. The number of clusters k is set to the actual
number of classes given in Table 5.1. The results are given in Table 5.3. For each dataset,
we present the optimal split Sopt and the total execution time in seconds. Our model is
able to solve datasets with less than 1000 objects.

5.7.3 Minimizing the Within Cluster Sum of Dissimilarities (WCSD)

Finding an exact solution for minimizing the WCSD is di�cult and we compare our model
with the Repetitive Branch-and-Bound Algorithm (RBBA) [Brusco & Stahl 2005]. The
program is available at http://mailer.fsu.edu/�mbrusco/, which, to our best knowl-
edge, is the best exact algorithm for the WCSD criterion. In these experiments, the
dissimilarity is measured as the squared Euclidean distance.

Minimizing the WCSD is a di�cult task since the propagation of the sum constraint
is less e�cient than the propagation of the diameter constraint. Without user-constraints,
both our model and the RBBA approach can �nd the optimal solutions only with the Iris
dataset. Our model needs 4174s to complete the search whereas RBBA takes 3249s. How-
ever, with appropriate user-constraints, the performance of our model can be signi�cantly
improved.
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Table 5.4: split constraint and must-link constraints with dataset Iris
split constraint WCSD Total time # must-link WCSD Total time
no constraint 573.552 4174 no constraint 573.6 4174
δ = 2% dmax 573.552 1452 0.2% 602.6 1275.1
δ = 4% dmax 573.552 84.4 0.4% 602.6 35.6
δ = 6% dmax 573.552 0.3 0.6% 617 16.1
δ = 8% dmax 2169.21 0.1 0.8% 622.5 3.5
δ = 10% dmax 2412.43 <0.1 1% 622.5 1.6
δ = 12% dmax 2451.32 <0.1 100% 646 <0.1

WCSD and the split constraint Let us add a split constraint δ, where δ ranges from
0% (no constraint) to 12% of dmax, where dmax is the maximum dissimilarity between two
objects in the dataset. Table 5.4 (left) reports the WCSD value of an optimal solution and
the total computation time. It shows that when the split constraint is weak, the optimal
WCSD value does not change but the computation time decreases signi�cantly when this
additional constraint becomes stronger. The reason is that the total number of feasible
solutions decreases and the search space is reduced. When the split constraint is weak,
propagating this constraint is more time-consuming than its bene�ts.

WCSD and must-link constraints Let us now add must-link constraints, where the
number of must-link constraints, generated from the true classes of objects, varies from
0.2 to 1% of the total number of pairs. The results are expressed in Table 5.4 (right),
giving the WCSD value and the total computation time. In fact, the optimal value of
WCSD, with no information on classes, does not correspond to the WCSD found when
considering the partition of this dataset into the 3 de�ned classes. The more must-link
constraints, the less computation time is needed for �nding the optimal value, and the
closer to the value of WCSD, when considering the 3 initial classes. The reduction of
computation time can be easily explained, since when an object is instantiated, objects
that must be linked to it are immediately instantiated too. Furthermore, with any kind
of additional constraint, the total number of feasible solutions is always equal or less than
the case without constraint.

WCSD and appropriate user-constraints Finding an exact solution minimizing the
WCSD is di�cult. However, with appropriate combination of user-constraints, the per-
formance can be boosted. Table 5.5 presents some examples where our model can get
an optimal solution with di�erent user-constraints, which reduce signi�cantly the search
space.

5.7.4 Flexibility of model

Our system �nds an optimal solution when there exists one; otherwise our system proves
that there is no solution. Let us show the interest of combining di�erent kinds of
constraints. Figure 5.9 presents 3 datasets in 2 dimensions, similar to those used in
[Ester et al. 1996].
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Dataset User-constraints WCSD Total time

Wine S ≥ 0.015dmax 1.40× 108 50.6
30 ≤ size of each cluster ≤ 100

WDBC D ≤ 0.8dmax 1.82× 1010 1.7
S ≥ 0.01dmax

Vehicle S ≥ 0.03dmax, D ≤ 0.65dmax 1.93× 109 2.3
30 ≤ size of each cluster ≤ 300

Table 5.5: Example of appropriate combinations of user-constraints

Figure 5.9: Datasets

The �rst dataset is composed of 4 groups with di�erent diameters. The second one is
more di�cult, since groups do not have the same shape. The third one contains outliers:
outliers are not handled and are therefore integrated in classes.

When optimizing the maximal diameter, the solver tends to �nd rather homogeneous
groups, as shown in Figure 5.10. Adding a split constraint (with δ = 5% of the maximum
dissimilarity between pairs of points) improves the quality of the solution (see Figure 5.11).
Let us notice that maximizing the minimum split allows also to �nd this solution.

Concerning the third dataset, minimizing the maximum diameter or maximizing the
minimum margin do not allow �nding a good solution (see Figure 5.12). The quality of the
solution is improved when a density constraint is added with MintPts = 4 and ε = 25%

from the maximal dissimilarity between pairs of points.

Figure 5.10: Maximal diameter optimization
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Figure 5.11: Maximal diameter optimization + split constraint

Figure 5.12: Diameter optimization (left) Split optimization (center) Split optimization
+ density constraint (right)

5.8 Summary

Modeling a problem in Constraint Programming in an e�cient and e�ective way requires a
lot of skills and e�orts. In practice, in order to �nd a good model, we may have to try many
models before achieving a good formulation. In this chapter we have proposed a general
and declarative model in Constraint Programming for solving the problem of Constrained
Clustering. Our model allows to choose among di�erent optimization criteria and to
integrate various kinds of user-constraints. Experiments on various classical datasets show
that our model is competitive with other exact approaches. To increase the e�ciency and
to deal with larger datasets, we address some analysis that may help us to improve the
model:

• The model requires to specify the number of clusters k, which is not always known
in the task of clustering. In order to allow more �exible models, where the number
of clusters is not �xed, we may need other representations of variables.

• For the criterion of maximum diameter and minimum split, we have to post a large
number of rei�ed constraints. Many of these constraints may never help the solver
to �lter inconsistent values in the domain of variables. For example, for the criterion
of minimum split, if the dissimilarity between two points i and j is large, it is
obvious that this dissimilarity has nearly zero chance to be the optimal split. As the
result, the rei�ed constraints on these points cannot remove values in the domain
of variables. However the constraint solver still has to check these constraints every
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time it visits a new node in the search tree. Finding other ways for modeling the
criteria may speed up the performance.



Chapter 6

A Modular CP Model for

Constrained Clustering

Dans ce chapitre, nous proposons un nouveau modèle plus simple, qui est composé d'un
seul ensemble de variables a�ectant à chaque objet l'indice de la classe à laquelle il ap-
partient. Avec ce modèle, l'utilisateur a la �exibilité de ne pas �xer le nombre de clusters
à l'avance, mais seulement de donner une borne supérieure kmax et une borne inférieure
kmin sur le nombre de clusters. Le modèle trouve, s'il existe une solution, une partition
en k classes, avec kmin ≤ k ≤ kmax, satisfaisant toutes les contraintes et optimisant glob-
alement le critère spéci�é. A�n d'avoir une propagation plus e�cace, nous développons
deux contraintes globales diameter(G, D, d) and split(G, S, d) pour modéliser les critères
de diamètre et de marge.

Dans les expérimentations, nous analysons di�érents aspects de nos deux modèles. Ce
nouveau modèle, tout en o�rant plus de �exibilité, est plus e�cace en temps et en espace
que le modèle précédent.
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6.1 Introduction

In this chapter, we propose a second model, still based on Constraint Programming, but
signi�cantly di�erent from the one presented in Chapter 5. In the previous model, in order
to identify a partition, two sets of variables were introduced, namely a variable for each
cluster identifying a cluster by one of its points and a variable for each point assigning it
to a cluster. The number of classes had to be �xed beforehand. The new model we present
here contains only a variable for each point, giving the number of the cluster the point
belongs to. The model is thus lighter in terms of the number of variables, it also enables to
remove the restriction on the number of classes, only bounds on the number of classes are
required. We develop dedicated �ltering algorithms for global constraints for the criteria
of minimizing the maximal diameter and maximizing the minimal split between clusters.

6.2 Variables and domains

We present our second CP model, which is based only on a set of variables for the assign-
ment of a number of class to each point. In this model, the number of classes k is only
bounded by kmin and kmax, where kmin and kmax are given by the user. The di�erence is
signi�cant, the new model o�ers more �exibility, while it is more e�cient than the previous
model.

In this model, the clusters are identi�ed by their index, which varies from 1 to k for a
partition into k clusters. To represent the assignment of points to clusters, we use a set
of integer variables:

G = {G1, . . . , Gn}

The domain of each variable Gi is all possible cluster indices, which ranges from 1 to kmax:

Dom(G1) = · · · = Dom(Gn) = {1, . . . , kmax}

An assignment Gi = c means the point i is put into the class number c. A complete
assignment of those decision variables corresponds to a partition.

For modeling the criteria, we use the same variables as in the previous model: D for the
maximal diameter criterion, S for the minimal split criterion and V for the Within-Cluster
Sum of Dissimilarities criterion. Figure 6.1 presents a sample data and an assignment of
variables in G which corresponds to a partition. The left image presents the initial domains
of the variables in G in which we want to solve a clustering task into 1 or 2 clusters. The
right image presents an assignment that corresponds to a partition of 2 clusters.

6.3 Constraints

6.3.1 Modeling Partition Constraints

Similarly to the previous model, we need constraints to ensure that each possible partition
with at least kmin clusters and at most kmax cluster corresponds to only one complete
assignment of variables in G and vice versa.

Without any constraint, given a partition with k clusters (kmin ≤ k ≤ kmax), there
exists di�erent assignments of variables which correspond to the same partition.
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Figure 6.1: Assignment of values to variables

Example 26 Given a dataset of 7 points O = {o1, . . . , o7} and a clustering task dividing
the points into 2 or 3 clusters. For solving the clustering task, we de�ne G = {G1, . . . , G7}
with the initial domains:

Dom(G1) = . . . = Dom(G7) = {1, 2, 3}

Let us consider a partition of 2 clusters, the �rst one composed of o1, o2, o5 and o6 and
the second one composed of the remaining points. There are in total 6 assignments of
variables, presented in Figure 6.2, which express the same partitions.

From an assignment, we can obtain a symmetric solution by:

• Permutation of the values of variables, for example the solution A and B, C and D,
E and F in Figure 6.2.

• Changing the values of variables corresponding to a cluster to another cluster index
value that has not yet been assigned, for example the solution A and C, C and E
in Figure 6.2.

To avoid the symmetric solutions C,D,E and F , it is simple to put a constraint that:
if there are k clusters, then for each value c ∈ {1, . . . , k}, there exists at least one variable
Gi that is assigned to c. To avoid the symmetry solution B, a simple way is to post
a condition that: For any two cluster indices c < c′ that appear in an assignment, if a
variable Gi is assigned to c′, there must exists a variable Gj that is assigned to c and j < i.

The global constraint precede [Law & Lee 2004] helps to achieve both requirements
above. For avoiding all possible symmetry solutions, all we need is to post a constraint:

precede([G1, . . . , Gn], [1..kmax]).

This constraint imposes that G1 = 1 and moreover, if Gi = c with 1 < c ≤ kmax, there
must exist at least an index j < i with Gj = c− 1.

The fact that there are at least kmin clusters means that all the numbers among 1

and kmin must be used in the assignment of the variables Gi. When using the constraint
precede, one only needs to require that at least one variable Gi is equal to kmin. This is
expressed by an AtLeast constraint:

AtLeast(G, kmin, 1)

Since the domain of each variable Gi is [1, kmax], there will be at most kmax clusters. If
the user needs exactly k clusters, all he/she has to do is to set kmin = kmax = k.
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Figure 6.2: Symmetric solutions
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6.3.2 Modeling the user-constraints

In our previous model, the user-constraints can be straightforwardly integrated with con-
straints on variables in G and I. Although in this new model, the variables in G express
the cluster indices, not the representative, the underlying meaning is the same in the two
models: two points i and j are in the same cluster if and only if Gi = Gj . There are
therefore not many di�erences in the modeling of user-constraints.

Minimal size α of clusters It requires that each cluster has a number of points greater
than a given threshold α. This constraint can be expressed by a constraint AtLeast. If
the number of clusters is �xed to k, the constraint can be simply expressed by global
cardinality constraints: for each value c ∈ {1, . . . , k}, we post a constraint:

AtLeast(G, c, α).

However, in our model, the number of clusters is bounded by two values kmin and kmax.
We, therefore, propose to express the minimal size constraint by n constraints AtLeast:
for each value i ∈ {1, . . . , n}, we post a constraint:

AtLeast(G, Gi, α).

Each constraint expresses that there must be at least α variables in G taking the value
that is assigned to Gi. This is equivalent with there are at least α points in the cluster
that contains point i.

Maximal size β of clusters It requires each cluster to have a number of objects inferior
to a prede�ned threshold β. For each value c ∈ {1, . . . , kmax}, we post a constraint AtMost:

AtMost(G, c, β).

This constraint requires that there must be at most β variables in G taking the value c.

Split δ-constraint It expresses that the split between any two clusters must be at least
δ. Similar to the previous model, for each i < j ∈ [1, n] satisfying the condition dij < δ,
we put a binary constraint:

Gi = Gj .

Diameter constraint γ It expresses that the diameter of each cluster must be at most
γ. For each i < j ∈ [1, n] such that dij > γ, we put a binary constraint:

Gi 6= Gj .

Density constraint It requires that for each point i, its neighbourhood of radius ε
contains at leastMinPts points belonging to the same cluster as i. Similar to the previous
model, for each point i ∈ [1, n], we compute the set of variables Xi which contains variables
Gj of points j ∈ {1, . . . , n} such that dij < ε. We then post a constraint AtLeast:

AtLeast(Xi, Gi,MinPts).

It requires that, in the set of variables Xi, there must be at least MinPts variables that is
equal to Gi, which means there must be at least MinPts points in the same cluster with
point i.
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Must-link constraint A must-link constraint on two points i and j is expressed by a
binary constraint:

Gi = Gj .

Cannot-link constraint A cannot-link constraint on i and j is expressed by a binary
constraint:

Gi 6= Gj .

6.4 Criterion Modeling

6.4.1 Modeling the diameter criterion

In our previous model, the criterion of diameter is expressed by implication constraints:

dij > D → (Gi 6= Gj) (6.1)

For modeling each implication constraint, in most constraint solvers, we have to use several
primitive constraints. For instance, we proposed to use two rei�ed constraints and one
binary constraint for modeling each implication constraint, as presented in the previous
chapter. In order to have better interactions and propagation between these relations, a
better way is to sum up these relations into one global constraint with a dedicated �ltering
algorithm.

We have developed a global constraint for the criterion of maximum diameter, de-
noted by diameter(G, D, d), which exploits the dissimilarity measure d between any two
points and which operates on the set of variables G and the variable D. The constraint
diameter(G, D, d) ensures that D is the maximal diameter of the clusters formed by the
variables G1, . . . , Gn. This means, for every couple 1 ≤ i < j ≤ n, this constraint ensures
the constraints in (6.1). By developing the constraint diameter(G, D, d), we maintain all
these relations in one constraint, which makes the model much less heavy. The �ltering
algorithm is presented in Algorithm 13, where Dom(D) = [D.min,D.max). In this al-
gorithm, if D.max has been changed and if D.max < dij , the relation (6.1) will infer
Gi 6= Gj , but we �lter the domain of Gi (or Gj) only if the other variable has been in-
stantiated. Otherwise, if some variables in G have been instantiated, if Gi = Gj , with the
relation (6.1) we infer D ≥ dij so the lower bound D.min can be changed. Let us notice
that as soon as the domain of one variable becomes empty, a failure case is detected by
the solver. The worst case complexity is O(n2).

6.4.2 Modeling the split criterion

For the criterion of split, we have developed a similar global constraint split(G, S, d) en-
suring that for every couple 1 ≤ i < j ≤ n:

S > dij → Gi = Gj . (6.2)

The �ltering algorithm is presented in Algorithm 14, where Dom(S) = (S.min, S.max].
In this algorithm, if S.min has been changed and if S.min ≥ dij , the relation (6.2) will
infer Gi = Gj , which is propagated by enforcing Dom(Gi) = Dom(Gj). Otherwise, in
line 18, in case some variables Gj have been instantiated, if Gi 6= Gj by (6.2) we infer
S ≤ dij , so the upper bound of S can be changed. The worst case complexity is O(n2).
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Algorithm 13: Filtering for the constraint diameter(G, D, d)

1 stack ← ∅;
2 if D.max has been changed then

3 for i← 1 to n where Gi is instantiated do

4 stack ← stack ∪ {i};
5 end

6 else

7 foreach i that Gi has just been instantiated do

8 stack ← stack ∪ {i};
9 end

10 end

11 foreach i ∈ stack do
12 for j ← 1 to n do

13 if dij ≥ D.max then
14 delete value of Gi from Dom(Gj);
15 end

16 if Gj is instantiated ∧ Gi = Gj then

17 D.min← max(D.min, dij);
18 end

19 end

20 end

6.4.3 Modeling the WCSD criterion

For the WCSD criterion, we use the same constraint wcsd(G,W, d), presented in section
5.4.3 of Chapter 5. This constraint relies only on variables in G, and more speci�cally,
only on the condition Gi = Gj . The �ltering algorithm for this constraint is therefore
mostly unchanged in this model. The only di�erence is, in this model, the number of
clusters k is not �xed but kmin ≤ k ≤ kmax. Therefore, for calculating the low bound
of WCSD, the number of clusters k is set as the maximum number of clusters: k =

max(∪i∈[1,n]Dom(Gi)).

6.5 Search strategy

To improve the e�ciency, points are beforehand reordered following the strategy presented
in section 5.5 in the previous Chapter. For the search strategy, branching is realized on
the variables of G.

For the diameter and split criteria At each branching point, a variable Gi with the
smallest remaining domain is chosen. With this variable Gi, all the values c in the domain
of Gi are examined and the number of the closest cluster to i is chosen. The dissimilarity
between a point i and a cluster number c is de�ned as the maximal dissimilarity dij where
Gj is assigned and Gj = c. If the cluster number c is empty (there is no point j such
that Gj = c), the dissimilarity between i and the cluster c is null. This means that the
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Algorithm 14: Filtering for the constraint split(G, S, d)

1 stack ← ∅;
2 if S.min has been changed then

3 for i← 1 to n where Gi is instantiated do

4 stack ← stack ∪ {i};
5 end

6 end

7 else

8 foreach i that Dom(Gi) has just been changed do

9 stack ← stack ∪ {i};
10 end

11 end

12 foreach i ∈ stack do
13 for j ← 1 to n do

14 if dij ≤ S.min then
15 Dom(Gi)← Dom(Gi) ∩Dom(Gj);
16 Dom(Gj)← Dom(Gi);

17 end

18 if Gj is instanciated ∧ Gi 6= Gj then

19 S.max← min(S.max, dij);
20 end

21 end

22 end
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assignment of a point to a new cluster is favoured if there are unused cluster numbers.
In this case, the least remaining number is chosen. The closest cluster c to the point i is
chosen and two alternatives are created Gi = c and Gi 6= c. This strategy, which takes
into account all the points already assigned to decide the branching, is di�erent from the
one used in the previous model, where the branching depends on the dissimilarity between
the point i and the representative of each cluster.

For the criterion WCSD The same strategy is used as in the previous model. For
�nding the �rst partition, the chosen variable Gi and value c are those such that the
assignment Gi = c increases WCSD as least as possible. After �nding the �rst solution,
the strategy is changed following the �rst fail principle. A value sic for each point i
and each cluster c is de�ned as the sum of the squared dissimilarity between i and all
points j already assigned to the cluster c. At each branching point, for all points i with
Gi unassigned, the minimal value si = minc∈Dom(Gi) sic is computed. The variable Gi
with the smallest value si is then chosen and the value c = arg min sic is chosen. Two
alternatives where Gi = c and Gi 6= c are created for the branching.

6.6 Experiments

6.6.1 Comparison of two models

We compare our �rst model (denoted by CP1) with our second model (denoted by CP2)
in order to study the following questions:

• Q1: Do both models eliminate all symmetry solutions?

• Q2: Which one better models variables and partition constraints?

• Q3: How do the dedicated global constraints for the criteria of maximum diameter
and minimum split help to improve the performance?

To answer the questions Q1 and Q2, we run both models, without giving any criterion or
user-constraints, to �nd all partitions for a clustering task with 2 clusters. Both models
CP1 and CP2 are implemented on Gecode solver version 4.2.1. The experiments are
performed on a 3.4GHz Intel Core i5 processor running Ubuntu 12.04. They both use
the same branching rule: in CP1, variables are chosen in order I1, . . . , Ik then G1, . . . , Gn
whereas in CP2, variables are chosen in order G1, . . . , Gn. For the choice of values for each
variable, the values are enumerated in the ascending order. The choice of the dataset is
not important as the dissimilarities between points are not used in partition constraints.
The number of partitions depends only on the number of points n and the number of
clusters k.

Theorem 23 Given a number of points n and a clustering task that divides these points

into 2 clusters, the number of di�erent partitions, when ignoring the index of each cluster

in a partition, is given by a function f(n), which is de�ned by the recursive relation:

f(n) =

{
1 if n = 2,

2× f(n− 1) + 1 if n > 2.
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CP1 CP2
n f(n) #Solutions Time #Solutions Time Performance gain

18 131071 131071 0.5 131071 0.3 167%

19 262143 262143 1.1 262143 0.7 157%

20 524287 524287 2.3 524287 1.4 164%

21 1048575 1048575 4.8 1048575 3 160%

22 2097151 2097151 10 2097151 6.1 164%

23 4194303 4194303 20.8 4194303 12.8 163%

24 8388607 8388607 42.8 8388607 26.1 164%

25 16777215 16777215 88.8 16777215 53.7 165%

Table 6.1: Comparison of the two models without optimization criterion

Proof It is obvious that in the case there are two points {o1, o2}, there is only one possible
partition P with 2 clusters, where each cluster contains one point:

P = (C1 = {o1}, C2 = {o2})

In case n > 2, for each partition P = (C1, C2) of n−1 points {o1, . . . , on−1} into 2 clusters,
there are two corresponding partitions with n points {o1, . . . , on}:

P1 = (C1 ∪ {on}, C2), P2 = (C1, C2 ∪ {on}).

Moreover, with n points, we have one more partition: ({o1, . . . , on−1}, {on}). In total,
there are 2× f(n− 1) + 1 partitions of n points into 2 clusters.

If there are no symmetric solutions, the total number of solutions given by our models
must be equal to the number of partitions given by the function f(). Table 6.1 shows the
results of our experiments. We present in the �rst column the number of points n and in
the second column the value of f(n). The third and fourth columns present the number of
solutions and the total run time taken by CP1. The next two columns express the results
corresponding to CP2. The last column expresses the speed up from CP1 to CP2, given
in percentage.

It is clear that both our models �nd the same number of solutions as the value of f(n).
It shows that, in practice, there is no symmetry solutions found by both models. The
model CP2 is 60% faster than CP1. In all the tests, the number of nodes in the search
tree is identical in both models. It shows that the modeling of variables and partition
constraints in CP2 is more e�cient than CP1.

To respond the question Q3, we take the same datasets and the same experimentation
as presented in previous chapter in Table 5.1.

For the criterion of maximal diameter We consider the clustering task without
user-constraints, and the number of clusters k is �xed (for CP2: kmin = kmax = k).
Similarly to the previous chapter, in the experiments, the time-out is set to 1 hour and
the Euclidean distance is used to compute the dissimilarity between objects. The number
of clusters k is set to the real number of classes given in Table 5.1. Table 6.2 shows the
results of our experiments. We present in the �rst column the datasets. The second and
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CP1 CP2
Dataset #Nodes Time #Nodes Time Performance gain

Iris 435 < 0.1 307 < 0.1 Unidenti�ed
Wine 1241 0.3 821 < 0.1 Unidenti�ed
Glass 2679 0.9 1264 0.2 450%

Ionosphere 2917 0.5 1535 0.3 167%

User Knowledge 10151 84.5 1413 0.2 422%

WDBC 569 0.7 569 0.4 175%

Synthetic Control 3537 56.1 1537 1.6 3500%

Vehicle 38781 14.9 846 0.9 1656%

Yeast 219622 2388.1 16467 5.2 45925%

Multi Features - − 7039 10.4 Unidenti�ed
Image Segmentation 23568 649.2 6047 5.7 11389%

Waveform - − 9021 50.1 Unidenti�ed

Table 6.2: Performance of the two models with the criterion of minimizing the maximal
diameter

third column present the number of nodes in the search tree and the total run time taken
by CP1. The two next columns express the results corresponding to CP2. The last column
expresses the performance gain from CP1 to CP2, given in percentage. It is clear that the
model CP2 outperforms CP1 on all datasets. All twelve datasets can be solved by CP2
within one minute. Although our two models are based on the Constraint Programming
framework, there are three reasons that explain the signi�cant di�erences in performance
of the two models.

• The modeling of variables and partition constraints: the improvement is clear as
explained in question Q2.

• The heuristic of branching: in CP2, for selecting the value for branching, we consider
all assigned variables, whereas in CP1, only the representative point is measured.
This improvement is signi�cant, in some datasets (for example: User Knowledge,
Vehicle, Yeast, Image Segmentation) there are much less number of nodes in the
search tree generated by CP2 than CP1. As a result, the total run time of CP2 in
those datasets is much faster than CP1. Figure 6.3 compares the diameter of the �rst
solution found by both CP1 and CP2. We compute the ratio of the diameter found
in the �rst solution to the optimal Diameter. With a good heuristic on branching,
the ratio should be close to 1. CP2 has a better ratio in most datasets, except for the
dataset Synthetic Control. In many tests, the ratio in CP2 is less than 1.1, which
means that the diameter of the �rst solution is very close to the optimal diameter.
It explains the boost on performance with the second model.

• The dedicated global constraint for the criterion of diameter: The improvement is
clearer with larger datasets. For example with the dataset Yeast, the number of
nodes in CP1 is 13 times more than CP2 but CP2 is 459 times faster than CP1. The
reason is, in CP1, for modeling the criterion, the number of rei�ed constraints is a
square function of the number of points n. Although our dedicated global constraint
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Figure 6.3: Comparison of CP1 and CP2 with the criterion of Diameter on 1st solution

has a complexity in the worst case of O(n2), it considers only necessary variables
whereas in CP1, at each node, every rei�ed constraints are checked at least one time.
This improvement is important and allows us to solve larger datasets.

For the criterion of split We redo the experiments of split done in the previous
chapter, with the second model (CP2). We consider the clustering task with the criterion
of split and with an user-constraint: the diameter of each cluster must not exceed 1.5Dopt,
where Dopt is the optimal diameter. In addition, we experiment the second model in two
cases: the number of classes k is �xed to the actual number of classes, and the number of
classes k is bound from 2 to the actual number of classes. Table 6.3 presents the results.
Similar to the criterion of diameter, the performance of CP2 is much better than that
of CP1. There is a slight increase in time taken in the second case, as the model has to
consider more partitions.

6.6.2 Experiments on user-constraints

We evaluate the e�ectiveness of our constrained clustering model (CP2), in term of the
quality of the optimal partition with user-constraints and a given criterion. For measuring
a partition, we consider the Adjusted Rand Index (ARI) [Hubert & Arabie 1985]. The
ARI measures the similarity between two partitions, in this case, the true partition P of
the dataset and the partition P ′ found by our model. The ARI is de�ned as:

ARI =
2(ab− cd)

(a+ d)(d+ b) + (a+ c)(c+ b)
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Case 1 Case 2
Sopt CP1 CP2 Sopt CP2

Iris 0.53 0.2 < 0.1 0.53 < 0.1

Wine 53.33 0.3 < 0.1 53.33 < 0.1

Glass 1.78 1.3 0.1 1.78 0.7
Ionosphere 5.29 52.1 1.2 5.29 1.2
User Knowledge 0.32 423.1 2.8 0.32 2.9
WDBC 421.99 7.1 0.6 421.99 0.6
Synthetic Control 43.59 31.3 6.4 45.2 6.5
Vehicle 27.06 21.9 3.7 27.06 3.7
Yeast 0.15 - 106.3 0.15 106.3
Multi Features 1107.1 - 82.2 1107.1 82.9
Image Segmentation 228.7 - 20.4 - 20.6
Waveform - - - -

Table 6.3: Comparison with the criterion of split

where a is the number of pairs of points that are in the same cluster in P and in P ′, b is
the number of pairs of points that are in di�erent clusters in P and in P ′, c is the number
of pairs of points that are in the same cluster in P , but in di�erent clusters in P ′ and d is
the number of pairs of points that are in di�erent clusters in P , but in the same cluster
in P ′.

We consider the instance-level constraints: must-link and cannot-link constraints. The
constraints are generated following the method in [Wagsta� & Cardie 2000]: two points
are chosen randomly from the dataset, if they are in the same cluster in P , a must-link
constraint is generated, otherwise a cannot-link constraint is generated. For the criterion,
we consider the partition given by:

a. the �rst solution with the criterion of Diameter.

b. the optimal solution with the criterion of Diameter.

c. the �rst solution with the criterion of WCSD.

d. the optimal solution with the criterion of Split.

The experiments are on the two datasets Iris and Wine. Surprisingly, the criterion
of split cannot solve these datasets with pairwise constraints. The underlying reason
is that in these datasets, there are two clusters that are very close. As a result, the
minimum split in the real partition is close to 0. The propagation of the constraints for
the criterion of split is poor and the search space is too large. The solver has to consider
many partitions and cannot end the search in one hour. We report in Figure 6.4 and 6.5
the average ARI over 100 constraint sets for 0 (unconstrained), 30, 60, . . . , 300 constraints
randomly generated from the data. In both datasets, the ARI is improved as the number
of constraints increases. For the dataset Wine, the ARI of partitions found without user-
constraint is typically worse. However, the ARI improves when there are more than 200
constraints (200 is equivalent to 1.27% of the number of pairs of points in this dataset).
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Figure 6.4: Dataset Iris with user-constraints
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Figure 6.5: Dataset Wine with user-constraints
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Figure 6.6: Experiments on bound of k: kmin = 2 . . . 10, kmax = 10

6.6.3 Analysis of bounds on the number of clusters

We evaluate the in�uence of the bounds on the number of clusters k ∈ [kmin, kmax] on
the performance with the diameter criterion. In the �rst experiment, we set kmax = 10

and we increment kmin from 2 to 10. The diameter criterion favours the high number of
clusters such that the higher the number of clusters, the smaller the value of the optimal
diameter. Without user-constraints, the optimal solution with the criterion of diameter
always has a number of clusters equal to kmax. The result is given in Figure 6.6 where we
report the number of nodes in the search tree, for each dataset, when we vary the bound
kmin. For all datasets, the number of nodes in the search tree is constant when kmin is
changed. By changing the bound, the performance of our model remains the same. It
shows that the propagation of the constraint of diameter is e�ective. After �nding and
proving the optimal solution with kmax clusters, the solver can conclude that there does
not exist a better solution, with less than kmax clusters.

In the second experiment, we �x kmin = 2 and we increment kmax from 2 to 10. The
result is given in Figure 6.7 where we report the number of nodes in the search tree,
for each dataset, when we increment the bound kmax. In general, when kmax increases,
there are more partitions to be considered. However, we see an interesting trend in Figure
6.7. In many datasets, the number of nodes in the search tree does not increase as kmax
increases. Indeed, since kmax is higher, the optimal maximum diameter is smaller, and
propagation of the diameter constraint is more e�ective. It explains that in some cases, it
takes less computation time when kmax increases.
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Figure 6.7: Experiments on bound of k: kmin = 2, kmax = 2, . . . , 10

6.7 Summary

In this chapter, we proposed a second model in Constraint Programming for solving the
problem of Constrained Clustering. Its goal is to maximally improve the performance as
well as to give more �exibility to users . Our �rst model presented in Chapter 5 is based
on a two-level representation: a set of variables for the assignment of a representative
for each class and a set of variables for the assignment of a representative for each point.
This choice of variables requires that the number of classes k is �xed beforehand, since
each representative is modelled by a CP variable. The second model is based only on a
set of variables for the assignment of a number of class to each point. In this model, the
number of classes k is only bounded by kmin and kmax given by the user. We designed
two new global constraints to replace a large number of rei�ed constraints for the criteria
of diameter and split. The di�erence between two models is signi�cant. We demonstrated
that while the second model is more modular and o�ers more �exibility, it is more e�cient
than the �rst model.
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Bi-criteria constrained clustering by

CP

Dans ce chapitre, nous montrons que nos modèles peuvent être intégrés dans une procédure
plus générale et nous l'illustrons par la recherche de la frontière de Pareto dans un problème
de clustering bi-critères sous contraintes utilisateur.

Dans la tache de clustering, le critère de diamètre vise à trouver des clusters compacts
mais sou�re souvent de l'e�et de découpage [Cormack 1971], i.e. des objets assez similaires
peuvent être classés dans des classes di�érentes pour réduire le diamètre. Par contre, le
critère de la marge peut sou�rir de l'e�et de chaîne [Johnson 1967], i.e. des objets très
di�érents peuvent se trouver dans une même classe. Pour éviter ces problèmes, on peut
considérer ces critères en même temps. Nous présentons dans ce chapitre la tâche de
clustering bi-critères, à savoir maximiser la marge entre clusters et minimiser le diamètre
maximal des clusters. Pour résoudre ce problème, une approche générale est de chercher
la frontière de Pareto.

Nos modèles o�rent à l'utilisateur le choix du critère d'optimisation et la capacité
d'intégrer di�érents types de contraintes utilisateur. Nous montrons que la généricité
et la déclarativité de nos modèles permettent de l'utiliser directement pour traiter le
clustering bi-critères de marge-diamètre et sous contraintes utilisateur. Ceci est réalisé
par des optimisations mono-critère successives utilisant des contraintes utilisateur. Des
expérimentations sur des bases de données classiques montrent que l'utilisation de notre
modèle est plus e�cace que les algorithmes exacts existants.
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We show in this chapter that our model can easily be embedded in a more general
process and we illustrate this on the problem of �nding the Pareto front of a bi-criterion
optimization process.
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Figure 7.1: Illustration of the decision and the criterion space

7.1 Multi-objective Optimization

In real world, many problems are concerned with di�erent con�icting criteria. For in-
stance, when we consider to buy a new car, we wish to get a car that has high speed, high
durability, low petrol consumption, but with low price. The four criteria are clearly in
con�ict and it is impossible to �nd such a car that is the best in each criterion whereas
�nding the best car with any of the four criteria alone is easy. This is an example of
a multi-objective optimization problem. In mathematics, multi-objective optimization is
the problem of optimization where two or more objective functions are considered simul-
taneously. A Multi-objective Optimization Problem (MOP) is de�ned as follows [?]:

Minimize f(x) = [f1(x), . . . , fm(x)]T

subject to x ∈ X

where m is the number of criteria. The vector x ∈ Rn is composed of n decision variables.
Each vector x, also called point x, presents a solution in the multi-objective optimization
problem. X is the decision space, also called the feasible design space, which describes
the feasible solutions that can be made. The criterion space Z is de�ned as the set
{f(x)|x ∈ X}. The vector function f : Rn → Rm is formed by m objective functions
fi : Rn → R. In the case where some objective functions are to be maximized, it is
equivalent to minimize its negative.

Figure 7.1 expresses an example of the decision space X and the criterion space Z.
Note that a point in the criterion space may correspond to more than one point in the
decision space.

Typically, the objective functions con�ict each others and there is no single optimal
solution that optimizes all objective functions. For evaluating solutions of MOPs, it is
necessary to de�ne how to compare di�erent objective vectors f(x) for di�erent solutions
x ∈ X . A common way to de�ne it is using the Pareto dominance relation [Pareto 1896].

De�nition 24 Given two vectors of function values f(x1) and f(x2) ∈ Z, w.r.t two

solutions x1 and x2. We say the vector f(x1) Pareto-dominates f(x2), denoted by f(x1) ≺
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f(x2), if and only if the solution x1 is no worse than x2 in all objectives and the solution

x1 is strictly better than x2 in at least one objective.

f(x1) ≺ f(x2) i�

{
fi(x1) ≤ fi(x2) ∀i ∈ 1, . . . ,m,

∃j ∈ 1, . . . ,m fj(x1) < fj(x2).

For simpli�cation, we also say that solution x1 dominates solution x2, denoted by x1 ≺ x2,

if f(x1) ≺ f(x2).

From the de�nition of the Pareto dominance relation, it is obvious that the "best" solutions
of a MOP should not be dominated by any other solutions. The solutions that are not
dominated by any other solutions are called Pareto optimal solution, de�ned as follows:

De�nition 25 A feasible solution x∗ ∈ X is called Pareto optimal, if there is no other

x ∈ X such that f(x) ≺ f(x∗).

In practice, a common way to solve a MOP is �nding the Pareto optimal set, or the Pareto
Front set.

De�nition 26 The Pareto optimal set of solutions P∗ is de�ned as follows:

P∗ = {x ∈ X | @y ∈ X : f(y) ≺ f(x)}

De�nition 27 The Pareto Front set PF∗ of a MOP is the projection of its Pareto optimal

set in the criterion space.

PF∗ = {f(x) | x ∈ P∗}

Example 27 Let us consider a MOP with two objective functions f1 and f2 to be mini-
mized. Figure 7.2 illustrates an example of Pareto optimal set and Pareto front set. In this
example, solution x1 does not dominate any other solutions, as f2(x1) is the maximized
value. However, the solution x1 is Pareto optimal, as it is not dominated by any other
solutions. The solution x3 is not Pareto optimal. The reason is that f1(x3) > f1(x2) and
f2(x3) > f2(x2), so solution x3 is dominated by solution x2.

7.2 Bi-criterion Constrained Clustering

Clustering with the criterion of minimizing the maximal diameter aims at �nding homo-
geneous clusters, but it often su�ers from the dissection e�ect [Cormack 1971], i.e. quite
similar objects may be classi�ed in di�erent clusters, in order to keep the diameter small.
On the other hand, clustering with the criterion of maximizing the minimal split, which
aims at �nding well separated clusters, often su�ers from the chain e�ect [Johnson 1967],
i.e. a chain of close objects may group very di�erent objects in the same cluster. The
popular WCSS criterion minimizes the sum of the squared distances between points and
the center of their cluster. With this criterion sometimes objects which should be in a
large group may be classi�ed in di�erent clusters in order to keep this sum small. Fig-
ure 7.3 gives an illustration of these e�ects. Image A shows three groups that are easily
recognized. Image B shows the obtained solution with the diameter criterion when the
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Figure 7.2: Illustration of Pareto optimal set and Pareto front set

number of clusters is set to 3. In this partition, there are points which are very closed but
which are classi�ed in two di�erent groups. Considering the split criterion, the obtained
partition is shown in Image C. Because of the chain e�ect, the largest group contains
points which are very far each from other. The exact solution with the WCSS criterion is
shown in Image D. In this partition, there are also points which are very closed but which
are grouped in di�erent clusters.

An ideal partition of homogeneous and well-separated clusters should have a mini-
mum diameter and a maximum split. Unfortunately, such a partition in general does not
exist, since the two criteria are often con�icting. [Delattre & Hansen 1980] suggests to
consider the bi-criterion optimization problem of maximizing the minimal split between
clusters and minimizing the maximal cluster diameter. This bi-criterion is natural and
captures both the homogeneity and the separation requirements for a good clustering.
[Delattre & Hansen 1980] proposes an algorithm for searching the complete Pareto front
set, w.r.t these two criteria. In this thesis, we consider the same bi-criterion problem,
but with the user-constraints. As presented in section 7.1, a Pareto optimal solution is a
solution for which it is impossible to improve the value of one criterion without degrading
the value of the other criterion. Considering the two criteria of diameter and split, given
two partitions ∆′ and ∆, we say ∆′ dominates ∆, denoted by ∆′ ≺ ∆, if and only if:

D(∆′) ≤ D(∆) and S(∆′) > S(∆)

or
D(∆′) < D(∆) and S(∆′) ≥ S(∆).

A partition ∆ is Pareto optimal if and only if there is no other partition ∆′ that dominates
∆. If the user speci�es a function on the criteria to optimize, for example max(S/D) or
min[αD−(1−α)S] with 0 ≤ α ≤ 1, the optimal solution will be among the Pareto optima
[Wang et al. 1996]. For instance, when the number of classes is set to 3, the Pareto optima
of the example in Figure 7.3 are given in Figure 7.4. If we minimize the ratio S/D, the
optimal solution is the solution 5, which seems the most reasonable. The user can specify
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Figure 7.3: Illustration of e�ects with di�erent criteria

conditions on desired solutions, for instance points 5 and 14 must be in the same cluster. In
this case only solutions 5 and 6 are found. If in addition of this condition another condition
is added, requiring that the size of each group must be at least 2, only the solution 5 is
found. A bi-criterion clustering algorithm �nding the complete Pareto front set for di�erent
numbers of clusters k is proposed in [Delattre & Hansen 1980]. In case of k = 2, an exact
polynomial algorithm is proposed in [Wang et al. 1996, Wang & Chen 2012]. However,
to the best of our knowledge, there is no algorithm dealing with this bi-criterion, while
supporting any kind of user constraints.

7.3 CP Model for Bi-criterion Clustering with user-

constraints

Our CP model represents a general and declarative framework for constrained clustering,
where a user can choose one among di�erent optimization criteria and can integrate dif-
ferent kinds of user constraints. This �exibility o�ers di�erent possibilities of usage. We
present in this section the use of our model to deal with bi-criterion constrained clus-
tering tasks. We are given a constrained clustering task with a set of user constraints
U , which is possibly empty. We aim at computing the Pareto front set for this con-
strained clustering task with the bi-criterion (maxS,minD). One approach to achieve
this, is given in Algorithm 15; it is comparable to the ε-constraint approach as presented
in [T'kindt & Billaut 2006]. In this algorithm, optimizations with a single criterion are
iterated, each time with a condition on the value of the other criterion. The function
Maximize_Split(U) or Minimize_Diameter(U) means the use of our model with the crite-
rion of maximizing the split or minimizing the diameter, respectively, and with the set of
user constraints U . It returns an optimal solution which satis�es all the constraints in U ,
if there exists one, or NULL otherwise. The idea of the algorithm is presented in Figure
7.5. The �rst Pareto solution found is the solution with the best diameter whereas the
last Pareto solution found is the solution with the best split. We prove that this algorithm
�nds the complete Pareto front set.
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Figure 7.4: Pareto optimal solutions

Algorithm 15: Algorithm computing the set A of all the Pareto optima

1 A ← ∅;
2 i← 1;
3 ∆D

i ← Minimize_Diameter(U);
4 while ∆D

i 6= NULL do

5 ∆S
i ← Maximize_Split(U ∪ {D ≤ D(∆D

i )}) ;
6 A ← A∪ {∆S

i };
7 i← i+ 1;
8 ∆D

i ← Minimize_Diameter(U ∪ {S > S(∆S
i−1)}) ;

9 end
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Figure 7.5: The solutions found by Algorithm 15

Proposition 28 Let ∆D
1 ,∆

S
1 , . . . ,∆

D
m,∆

S
m be the solutions visited by Algorithm 15. We

have:

1. if ∆D
i 6= NULL then ∆S

i 6= NULL,

2. for all 1 < i ≤ m, S(∆S
i ) > S(∆S

i−1),

3. for all 1 < i ≤ m, D(∆D
i ) > D(∆D

i−1),

4. for all 1 ≤ i ≤ m, D(∆S
i ) = D(∆D

i ),

5. 6 ∃∆ such that D(∆) < D(∆D
1 ),

6. for all 1 ≤ i < m, 6 ∃∆ such that S(∆) ≥ S(∆S
i ) and D(∆) < D(∆D

i+1).

Proof

1. If ∆D
i 6= NULL, since ∆D

i satis�es the constraint D ≤ D(∆D
i ), it is a candidate for

∆S
i .

2. Since among all the partitions satisfyingD ≤ D(∆D
i ), ∆S

i is the one which maximizes
the split (line 5), we have S(∆S

i ) ≥ S(∆D
i ). Since ∆D

i is among the partitions
satisfying S > S(∆S

i−1) (line 8), we have S(∆D
i ) > S(∆S

i−1). Therefore S(∆S
i ) >

S(∆S
i−1).

3. The set of the partitions satisfying S > S(∆S
i ) is a strict subset of the set of the

partitions satisfying S > S(∆S
i−1), since S(∆S

i ) > S(∆S
i−1). Since ∆D

i and ∆D
i−1 are

the partitions which minimize the diameter among all the ones in these two respective
sets, we have D(∆D

i ) ≥ D(∆D
i−1). If D(∆D

i ) = D(∆D
i−1), then S(∆S

i ) = S(∆S
i+1)

(line 5) which contradicts S(∆S
i ) > S(∆S

i−1). Therefore D(∆D
i ) > D(∆D

i−1).
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4. Since ∆S
i is a partition satisfying the condition D ≤ D(∆D

i ), we have D(∆S
i ) ≤

D(∆D
i ). Since S(∆S

i ) > S(∆S
i−1) and ∆D

i is a partition which minimizes the diameter
among all the ones satisfying the condition S > S(∆S

i−1), we have D(∆S
i ) ≥ D(∆D

i ).
Therefore D(∆S

i ) = D(∆D
i ),

5. Since ∆D
1 is a partition which minimizes the diameter under no condition (line 3),

there exists no partition ∆ with D(∆) < D(∆D
1 ).

6. Assume that there exists a solution ∆ such that S(∆) ≥ S(∆S
i ) and D(∆) <

D(∆D
i+1). Since S(∆) ≥ S(∆S

i ) and ∆D
i+1 is a partition which minimizes the diameter

among all those which satisfy the condition S > S(∆S
i ), we have D(∆) ≥ D(∆D

i+1).
This contradicts the fact that D(∆) < D(∆D

i+1). �

By Proposition 28, the position of the solutions found by Algorithm 15 is as presented
in Figure 7.5. There exists no solution in the grey zone. A solution in the white zone is
dominated by a solution ∆S

i ∈ A.

Proposition 29 Given the set A = {∆S
1 , . . . ,∆

S
m} computed by Algorithm 15, the Pareto

front set B = {(D(∆S
1 ), S(∆S

1 )), . . . , (D(∆S
m), S(∆S

m))} is complete, i.e.:

1. ∆S
i (1 ≤ i ≤ m) is a Pareto optimal solution,

2. 6 ∃∆ Pareto optimal solution such that (D(∆), S(∆)) /∈ B

Proof Algorithm 15 terminates since according to Proposition 28, S(∆S
i ) > S(∆S

i−1)

and these values are discrete and limited by the maximal dissimilarity of pairs of points.

1. We prove that for all ∈ [1,m], there exists no partition ∆ which dominates ∆S
i , i.e.

D(∆) ≤ D(∆S
i ) et S(∆) > S(∆S

i ), or D(∆) < D(∆S
i ) et S(∆) ≥ S(∆S

i ). Since
D(∆S

i ) = D(∆D
i ), the partition ∆ must satisfy D(∆) ≤ D(∆D

i ) et S(∆) > S(∆S
i ),

or D(∆) < D(∆D
i ) et S(∆) ≥ S(∆S

i ). The �rst case is impossible since ∆S
i is

a partition which maximizes the split among all those which satisfy the condition
D ≤ D(∆D

i ). For the second case, if i = 1 then ∆ does not exist according to the
point 5 of Proposition 28. If i > 1, since S(∆S

i ) > S(∆S
i−1), the partition ∆ must

satisfy D(∆) < D(∆D
i ) and S(∆) > S(∆S

i−1). This is impossible according to the
point 6 of Proposition 28.

2. Let us assume that there exists a Pareto optimal solution such that (D(∆), S(∆)) ∈
B. According to the points 5 and 6 of Proposition 28, ∆ to be not dominated must
have S(∆) > S(∆S

m). But Algorithme 15 terminates after ∆S
m, i.e. there exists no

partition with the split greater than S(∆S
m). Therefore, a Pareto optimal solution

∆ 6∈ A does not exist.

Multi-objective optimization in Constraint Programming in only one phase of
search is proposed in [Gavanelli 2002]. The idea is to realize a global constraint
Pareto(Obj1, . . . , Objm,A), which keeps a set of non dominated solutions so far com-
puted A and which operates on the variables representing the objective functions Obji.
This constraint reduces the domain of a variable Obji if the domains of the other variables
enter into the dominated zone of a solution in A. A detailed description of this constraint
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Dataset #Sol bGC CP2

Iris 8 4.2 < 0.1

Wine 8 0.9 < 0.1

Glass 9 21.5 0.4

Ionosphere 6 1.8 2.6

User Knowledge 16 23.6 12.8

WDBC 7 167.5 1.1

Synthetic Control 6 − 6.7

Vehicle 13 − 5.5

Yeast − − −
Multi Features 15 − 229.1

Image Segmentation 8 − 41.3

Waveform − − −

Table 7.1: Comparison of performance with bi-criteria

as well as an extension with Large Neighborhood Search is proposed in [?]. This constraint
Pareto can be introduced in our model. Nevertheless this approach for the moment is still
much less e�cient than Algorithm 15 and therefore needs deeper studies, for instance of
the search strategy, in order to improve the e�ciency.

7.4 Experimentation

7.4.1 Performance test

For the bi-criterion split-diameter, we compare our second model presented in Chapter
6 (denoted by CP2) with the bi-criterion clustering algorithm based on graph coloring
[Delattre & Hansen 1980] (denoted bGC). The program is not available, we have coded
it in C++. To our knowledge, this is the only exact algorithm for general values of k.
In the experiments, datasets presented in Table 5.1 are used and the time-out is set to 1
hour. The number of clusters k varies between 2 and the real number of classes. Table
7.1 shows the result of the experiments. The second column (#Sol) gives the number of
Pareto optimal solutions found and the next columns give the run time in seconds of each
approach. Note that both approaches �nd a complete Pareto front set, so the number of
Pareto optimal solutions found is the same as it is the cardinality of the complete Pareto
front set. However, the partitions found by the two approaches might be di�erent as there
exists di�erent partitions with the same values of diameter and split. It can be seen that
our model is the most e�cient in most cases. It takes advantage of the e�cient constraint
propagation to reduce the search space. As in the case of GC, the algorithm bGC is
limited to datasets with less than 500 points.

7.4.2 Bi-criterion clustering with user-constraints

We consider the instance-level constraints: must-link and cannot-link constraints. The
constraints were generated with the same method as in the previous Chapter: two points
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are chosen randomly from the dataset, if they are in the same cluster, a must-link con-
straint is generated, otherwise a cannot-link constraint. We generate a set of 80 instance-
level constraints from the dataset Iris and use our second model for the task of bi-criterion
constrained clustering. The �rst test is without user-constraints, the second one is with
the �rst 20 instance-level constraints, the third one is with the �rst 40 instance-level
constraints and so on. Figure 7.6 presents the results of the Pareto front in six cases,
where there are from 0 to 80 instance-level constraints. As there are more and more user-
constraints, it is clear that there are less feasible solutions and as a result, the criterion
space is reduced. Because we generated user-constraints from real labels, it is obvious that
the values (diameter,split) of the real partition of the dataset lies in the smallest criterion
space (the region de�ned by red lines in Figure 7.6). There are signi�cantly di�erence of
the location of Pareto front between di�erent cases in Figure 7.6. It shows that without
user-constraints, even there are many points in the Pareto front, they may all lie far from
the real partition in the criterion space. For that reason, it could be useful to enable
user-constraints for the task of bi-criterion clustering.
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Figure 7.6: Bi-criterion constrained clustering with dataset Iris

7.5 Summary

In this chapter we explore the problem of constrained clustering with the multi-objective
optimization. Typically, for solving a multi-objective optimization problem, a common
way is to �nd the set of Pareto optimal solutions. We proposed an e�cient algorithm, based
on the ε-constraint approach [T'kindt & Billaut 2006], using our CP model for �nding the
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complete Pareto front set, w.r.t the two criteria of split and diameter. Experiments on
various UCI benchmark datasets show that our model is more e�ective than the bi-criterion
clustering algorithm based on graph coloring [Delattre & Hansen 1980]. More than that,
to the best of our knowledge, we are the �rst to integrate user-constraints to the problem
of bi-criterion clustering.





Chapter 8

Conclusion and Future Work

Dans ce chapitre, nous rappelons nos contributions et discutons quelques perspectives.
Les deux premières contributions sont deux modèles basés sur la Programmation par
Contraintes pour le clustering sous contraintes utilisateur. Les modèles sont généraux et
�exibles, ils permettent d'intégrer des contraintes d'instances must-link et cannot-link et
di�érents types de contraintes sur les clusters. Ils o�rent également à l'utilisateur le choix
entre di�érents critères d'optimisation. A�n d'améliorer l'e�cacité, divers aspects sont
étudiés. Les expérimentations sur des bases de données classiques et variées montrent qu'ils
sont compétitifs par rapport aux approches exactes existantes. La dernière contribution
de la thèse est de montrer que nos modèles peuvent être intégrés dans une procédure plus
générale et nous l'illustrons par la recherche de la frontière de Pareto dans un problème
de clustering bi-critères sous contraintes utilisateur.

A notre connaissance, notre approche est la première pour les problèmes de classi�ca-
tion non supervisée sous contraintes utilisateur, qui intègre le critère de diamètre ou de
marge ou de la somme des dissimilarités intra-cluster et du bi-critère marge-diamètre, en
présence de contraintes utilisateur.
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This chapter concludes the dissertation and provides perspectives for future work.

8.1 Contributions of this Dissertation

Cluster analysis is an important task in Data Mining with hundreds of di�erent approaches
in the literature. Since the last decade, cluster analysis has been extended to constrained
clustering, or semi-supervised clustering, so as to integrate previous knowledge on data
to clustering algorithms. In this dissertation we de�ne two models based on Constraint
Programming (CP) to address constrained clustering tasks. Relying on CP has two main
advantages: the declarativity, which enables to easily add new constraints and the ability
to �nd an optimal solution satisfying all the constraints (when there exists one). However,
modelling a problem in CP in an e�cient and e�ective way requires a lot of skills and
e�orts.

The �rst model is based on a two-level representation: a set of variables for the as-
signment of a representative for each class and a set of variables for the assignment of
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a representative for each point. In literature, most constrained clustering algorithms are
limited to few kinds of user-constraints. Our model, based on CP, is more general in
the sense that it supports instance-level constraints, specifying requirements on pairs of
objects, as well as di�erent cluster-level constraints, specifying requirements on clusters.
It also allows user to choose among di�erent optimization criteria. In order to improve
the e�ciency, di�erent aspects have been studied in the dissertation. We de�ne a �ltering
algorithm for the criterion of within cluster sum of dissimilarities in our model. Experi-
ments on various UCI benchmark datasets show that our model is competitive with other
exact approaches.

The second model is based only on a set of variables for the assignment of a cluster,
represented by its number, to each point. The model is more �exible as it does not require
to �x a priori the number of clusters k, but only bounds on k are required. The second
model is lighter in terms of the number of variables, as well as the number of constraints.
We de�ne two new global constraints for the criteria of split and diameter in order to
replace a large number of rei�ed constraints. Experiments show that the second model is
more e�ective and can handle larger datasets.

Another important contribution is to apply the model to the task of constrained bi-
criterion clustering. We show that our model can easily be embedded into a more general
process and we illustrate this on the problem of �nding the Pareto front of a bi-criterion
optimization process. To the best of our knowledge, we are the �rst to:

• Find a global optimum for the problem of Constrained Clustering with the criteria
of diameter, split and within cluster sum of dissimilarities.

• Solve the bi-criterion (split-diameter) clustering with user constraints.

8.2 Directions for Future Work

Directions for future work include the following:

• Firstly, we would like to study di�erent heuristics for the search strategy in order
to improve the performance of our models. The goal of the search strategy is not
only to quickly �nd an optimal solution, but to quickly prove the optimality. During
the search process, the choices on variables and values for branching are important,
as the correct choices may help the constraint propagation to reduce e�ciently the
search space. A good search strategy may not only depend on the criterion, but also
depend on the type of datasets. As a consequence, it is worth to take time and e�ort
to study and to experiment with di�erent techniques.

• The goal of our models is to �nd an optimal solution for a given criterion. In prac-
tice, it is not always true that the optimal solution corresponds to a good partition
whereas �nding and proving an optimal solution requires exhaustive search. We
would like to study and apply heuristics search techniques, to balance between the
computation time and the quality of the solution. For instance, heuristics based on
Large Neighbourhood Search [Shaw 1998] have recently shown tremendous results



8.2. Directions for Future Work 111

in solving various problems in CP. We would like to study and apply Large Neigh-
bourhood Search for solving large-scale datasets, in which it is impossible to �nd an
optimal solution.

• Relating to the multi-objective clustering, our approach presented in Chapter 7
requires to restart the model multiple times in order to get the complete Pareto
front. Multi-objective optimization in Constraint Programming in only one phase
of search is proposed in [Gavanelli 2002]. The idea is to realize a global Pareto con-
straint, which keeps a set of non dominated solutions and operates on the variables
representing the objective functions. A detailed description of this constraint as well
as an extension with Large Neighbourhood Search is proposed in [?]. This Pareto
constraint can be introduced in our model. Nevertheless this approach for the mo-
ment is still limited and much less e�cient than the approach presented in Chapter
7. It therefore needs deeper studies, for instance of the �ltering algorithm or of the
search strategy, in order to improve the e�ciency.

• Our models �nd an optimal solution that satis�es all given user-constraints. How-
ever, in practice, there may exist noise in the set of user-constraints, or the problem
is over-constrained, i.e. there is no solution satisfying all constraints. We would like
to integrate soft constraints to our model, i.e. constraints that are preferred but not
required to be satis�ed. Soft constraints allow users to set a threshold on the number
of constraints that must be satis�ed, while there are some constraints unsatis�ed.
One solution is to study other modelings for the problem, for instance to design
new dedicated �ltering algorithms for soft constraints. Another possible technique
that we would like to study is applying a schema that allows hard constraints for
representing soft constraints [Régin 2011].

• Our models support the criteria of diameter, split and within cluster sum of dis-
similarities. We would like to study and integrate other well-known criteria to the
model, for instance, the within-cluster sum of squares. Adding a new criterion in our
model is simple, by adding new constraints to express the function objective. There
are di�erent ways to model a given criterion in CP. The challenge is how to model a
criterion with high performance. The propagation of criterion constraints is there-
fore highly important. We need �ltering algorithms that have low computational
complexity but are able to compute good bounds on the objective function and to
�lter as much as possible inconsistent values in the domain of variables. We would
like to study and to apply techniques in linear programming, for instance column
generation techniques, for designing e�ective �ltering algorithms for other criteria.

• Finally, we would like to extend our research to address other clustering tasks, for
instance fuzzy clustering where points can belong to more than one cluster.
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Khanh-Chuong DUONG

Classi�cation non supervisée sous contrainte utilisateurs par la programmation par
contraintes

Résumé : La classi�cation non supervisée, souvent appelée par le terme anglais de clustering,
est une tâche importante en Fouille de Données. Depuis une dizaine d'années, la classi�cation
non supervisée a été étendue pour intégrer des contraintes utilisateur permettant de modéliser
des connaissances préalables dans le processus de clustering. Di�érents types de contraintes
utilisateur peuvent être considérés, des contraintes pouvant porter soit sur les clusters, soit sur
les instances.
Dans cette thèse, nous étudions le cadre de la Programmation par Contraintes (PPC) pour
modéliser les tâches de clustering sous contraintes utilisateur. Utiliser la PPC a deux avantages
principaux : la déclarativité, qui permet d'intégrer aisément des contraintes utilisateur et la
capacité de trouver une solution optimale qui satisfait toutes les contraintes (s'il en existe).
Nous proposons deux modèles basés sur la PPC pour le clustering sous contraintes utilisateur. Les
modèles sont généraux et �exibles, ils permettent d'intégrer des contraintes d'instances must-link
et cannot-link et di�érents types de contraintes sur les clusters. Ils o�rent également à l'utilisateur
le choix entre di�érents critères d'optimisation. A�n d'améliorer l'e�cacité, divers aspects sont
étudiés. Les expérimentations sur des bases de données classiques et variées montrent qu'ils
sont compétitifs par rapport aux approches exactes existantes. Nous montrons que nos modèles
peuvent être intégrés dans une procédure plus générale et nous l'illustrons par la recherche de la
frontière de Pareto dans un problème de clustering bi-critère sous contraintes utilisateur.
Mots clés : classi�cation non supervisée, contraintes utilisateur, Programmation par

Contraintes, clustering bi-critère.

Constrained Clustering

by Constraint Programming

Abstract: Cluster analysis is an important task in Data Mining with hundreds of di�erent
approaches in the literature. Since the last decade, the cluster analysis has been extended to
constrained clustering, also called semi-supervised clustering, so as to integrate previous knowl-
edge on data to clustering algorithms.
In this dissertation, we explore Constraint Programming (CP) for solving the task of constrained
clustering. The main principles in CP are: (1) users specify declaratively the problem in a
Constraint Satisfaction Problem; (2) solvers search for solutions by constraint propagation and
search. Relying on CP has two main advantages: the declarativity, which enables to easily add
new constraints and the ability to �nd an optimal solution satisfying all the constraints (when
there exists one).
We propose two models based on CP to address constrained clustering tasks. The models are
�exible and general and supports instance-level constraints and di�erent cluster-level constraints.
It also allows the users to choose among di�erent optimization criteria. In order to improve the
e�ciency, di�erent aspects have been studied in the dissertation. Experiments on various classical
datasets show that our models are competitive with other exact approaches. We show that our
models can easily be embedded in a more general process and we illustrate this on the problem
of �nding the Pareto front of a bi-criterion optimization process.
Keywords: constrained clustering, bicriterion clustering, constraint programming,

modelling, �ltering algorithm
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