
HAL Id: tel-01202747
https://theses.hal.science/tel-01202747

Submitted on 21 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software architectures for cloud robotics : the 5 view
Hyperactive Transaction Meta-Model (HTM5)

Vineet Nagrath

To cite this version:
Vineet Nagrath. Software architectures for cloud robotics : the 5 view Hyperactive Transaction Meta-
Model (HTM5). Other. Université de Bourgogne; Université de Technologie de Malaisie, 2015. En-
glish. �NNT : 2015DIJOS005�. �tel-01202747�

https://theses.hal.science/tel-01202747
https://hal.archives-ouvertes.fr

Thèse de Doctorat

n

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E B O U R G O G N E

Software Architectures for Cloud
Robotics
The 5 View Hyperactive Transaction Meta-Model (HTM5)

VINEET NAGRATH

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E B O U R G O G N E

THÈSE présentée par

VINEET NAGRATH

pour obtenir le

Grade de Docteur de
l’Université de Bourgogne

Spécialité : Informatique

Software Architectures for Cloud Robotics
The 5 View Hyperactive Transaction Meta-Model (HTM5)

Soutenue publiquement le 15 January 2015 devant le Jury composé de :

TOMAS MAUL Rapporteur Professeur à l’University of Nottingham
FADZIL BIN HASSAN MOHD Examinateur Professeur à l’Universiti Teknologi

Petronas
OLIVIER MOREL Co-directeur Professeur à l’Université de Bourgogne
GILLES GESQUIERE Examinateur Professeur à l’Université de Lyon
BRUNO SADEG Rapporteur Professeur à l’Université du Havre
FABRICE MERIAUDEAU Directeur de thèse Professeur à l’Université de Bourgogne

N◦ X X X

Le Creusot, FRANCE
January 2015

Université De Bourgogne

Laboratoire Electronique, Informatique et Image (Le2i)

Software Architectures for

Cloud Robotics
The 5 View Hyperactive Transaction Meta-Model

(HTM5)

A dissertation presented to the

Université De Bourgogne, FRANCE and

Universiti Teknologi Petronas,

MALAYSIA in fulfilment of the

requirements for the degree of

DOCTOR OF PHYLOSOPHY

By:

NAGRATH, Vineet

Advisors:

Prof. Fabrice Meriaudeau

Dr. Aamir Saeed Malik

Dr. M Naufal B M Saad

Dr. Olivier Morel

Le Creusot, FRANCE
January 2015

Le Creusot, FRANCE
January 2015

Université De Bourgogne

Laboratoire Electronique, Informatique et Image (Le2i)

This was a cotutelle (Double/Joint) doctoral study conducted at

Université De Bourgogne, FRANCE (Home)

and

Universiti Teknologi Petronas, MALAYSIA (Host)

during October 2011 and January 2015.

Le Creusot, FRANCE
January 2015

Le Creusot, FRANCE
January 2015

ABSTRACT

Software Architectures for

Cloud Robotics

The 5 View Hyperactive Transaction Meta-Model

(HTM5)

Software development for cloud connected robotic systems is a complex software

engineering endeavour. These systems are often an amalgamation of one or more

robotic platforms, standalone computers, mobile devices, server banks, virtual

machines, cameras, network elements and ambient intelligence. An agent oriented

approach represents robots and other auxiliary systems as agents in the system. The

concept of agency preserves the autonomy on individual agents, which is essential

in implementing cloud computing business logic in a commercial cloud robotic

system. To enable flexible implementation of such systems we have introduced

hyperactivity mechanism to selectively release an agent’s autonomy to its

associated agents.

Software development for distributed and diverse systems like cloud robotic

systems require special software modelling processes and tools. Model driven

software development for such complex systems will increase flexibility,

reusability, cost effectiveness and overall quality of the end product. Currently

there is no industry oriented meta-model for agent oriented development of cloud

robotic systems. In this thesis we present a complete meta-model framework

catering to all stakeholders in a cloud robotics ecosystem. The proposed 5-view

meta-model has separate meta-models for specifying structure, relationships, trade,

system behaviour and hyperactivity in a cloud robotic system. The thesis describes

the anatomy of the 5-view Hyperactive Transaction Meta-Model (HTM5) in

computation independent, platform independent and platform specific layers. The

thesis also describes a domain specific language for computation independent

modelling in HTM5.

Automatic transformations from the domain specific language to lower layer

components are also explained with examples. The Model-to-Text transformations

generate a Java class hierarchy for platform independent and platform specific

components of the system. Model-to-Model transformation from HTM5 to UML is

also explained in the thesis. Multiple case studies regarding the design and

implementation of a cloud based multi-robot systems are also presented in the

Thesis. The case studies present use cases where dynamic trade decisions are

modelled using HTM5, validating feasibility of the proposed meta-model.

Le Creusot, FRANCE
January 2015

The thesis therefore has presented a complete meta-model for agent oriented cloud

robotic systems and has several simulated and real experiment-projects justifying

HTM5 as a feasible meta-model.

Le Creusot, FRANCE
January 2015

Acknowledgements

I would like to thank my supervisors Prof. Fabrice Meriaudeau at Université De

Bourgogne, FRANCE and Dr. Aamir Saeed Malik at Universiti Teknologi

Petronas, MALAYSIA for the opportunity to conduct my PHD studies in the two

universities in a wonderfully managed cotutelle doctoral program. I would also like

to thank my co-supervisors Dr. M Naufal B M Saad and Dr. Olivier Morel for their

help and guidance during these years.

I thank my advisors for the freedom and unconditional support that I received. You

were the coolest advisors any PHD student could have wished for. I hope my work

do justice to the free hand given to me in design and implementation of my ideas.

Your quick and constant assistance in bureaucratic affairs at the two universities

and visa consulates saved me a lot of troubles, special thanks for that. I would also

like to thank the examiners and reviewers of my thesis as their comments have

helped me produce a better manuscript.

I would like to thank the colleagues and staff at Le2i, IUT, Condorcet and CISIR

for making these years a memorable experience. I would like to thank the

Bourgogne regional council for their financial support for my research. A special

thanks to the people of Le Creusot. I am sure I will turn to Le Creusot time and

again for the peace and happiness it has brought to me. I regret that I could not

reciprocate by mastering the French language, but Le Creusot will remain in my

memories as my village. People all around Malaysia will be remembered for their

multicultural, multilingual and familiar culture. I would like to thank the monks

and brothers of Taizé Community for letting an atheistic traveller into their world

and rest for a while. The numerous friends and moments at Taizé will stay with me

forever.

No words will be enough to thank Mom, Dad and Puneet for their support. Thanks

to friends, uncles, aunts, cousins in India and Cheers to friends and nameless

strangers who helped me on the streets. Thanks everyone

Le Creusot, FRANCE
January 2015

Le Creusot, FRANCE
January 2015

Dedicated to Teachers…

Le Creusot, FRANCE
January 2015

As Above, So Below

As Within, So Without

“Logic is immaturity weaving its nets of gossamer wherewith it aims to

catch the behemoth of knowledge. Logic is a crutch for the cripple, but a

burden for the swift of foot and a greater burden still for the wise.”

-The Book of Mirdad

Contents

1 Introduction 29
1.1 Overview . 29
1.2 Objectives . 35
1.3 Contributions . 36
1.4 Outline of the Thesis . 36

2 Background Information 39
2.1 The Cloud . 39

2.1.1 Cloud Computing . 39
2.1.2 The Cloud Business Model 40
2.1.3 Cloud Computing In Robotics 40
2.1.4 Cloud Robotics Ecosystem 43

2.2 Model Driven Engineering and Architecture 44
2.2.1 Component Based Software Engineering 44
2.2.2 Models . 44
2.2.3 Meta-Models . 44
2.2.4 Multi-View Modelling 45
2.2.5 OMG Model Driven Architecture 45

2.3 Agents and Cloud Robotics 45
2.3.1 Agent and Agency . 45
2.3.2 Agent Metaphor and usage 46
2.3.3 Multi Agent Systems 46
2.3.4 Agent oriented cloud robotic systems 47

2.4 Hyperactivity . 48
2.4.1 The Mechanism . 49
2.4.2 Flexible Agency . 51
2.4.3 Agent Classification in HTM5 52

3 5 View Hyperactive Transaction Meta Model 55
3.1 HTM5 Sub Models . 56

3.1.1 HTM5 Computation Independent Model 56
3.1.2 HTM5 Platform Independent Model 58
3.1.3 HTM5 Platform Specific Model 59
3.1.4 HTM5 Machine Descriptor Model 60

3.2 HTM5 Views . 62
3.2.1 HTM5 Structural View 62
3.2.2 HTM5 Relational View 63
3.2.3 HTM5 Trade View . 64

19

20 CONTENTS

3.2.4 HTM5 Hyperactivity View 65

3.2.5 HTM5 Behavioural View 67

3.2.6 Functionalities in PIC*, PIC and PSC Component
Classes . 69

3.3 HTM5 Agent Relation Charts (ARCs) 73

3.3.1 Agent Relation Charts (ARC) 74

3.3.2 Trade - Agent Relation Charts (T-ARC) 75

3.3.3 Hyperactivity - Agent Relation Charts (H-ARC) 75

3.3.4 Use Case - Agent Relation Charts (U-ARC) 75

3.3.5 Sequence - Agent Relation Charts (S-ARC) 76

3.4 HTM5 P2P . 93

3.5 HTM5 Component . 95

3.6 The HTM5 Domain Specific Language (HTM5-DSL) 96

3.7 HTM5 Domain Specific Language and Automated Model Trans-
formations . 97

3.8 DSL development . 103

3.9 System development life-cycle 107

4 Case Study Projects 111

4.1 NAO Telerobotics . 111

4.1.1 The Initial Ideas . 114

4.1.2 Creation of CIM model using Agent Relation Charts . 114

4.1.3 Encoding the CIM model in HTM5-DSL 115

4.1.4 Creation of PIM layer UML model for various compo-
nents . 116

4.1.5 Execution of DSL code to produce Java and UML com-
ponent classes . 119

4.1.6 Refinement of component classes 120

4.1.7 Independent development of Components respective Ma-
chines . 120

4.1.8 Component and system testing 124

4.2 Dynamic Electronic Institutions 125

4.2.1 Dynamic Electronic Institutions 125

4.2.2 Dynamic Electronic Institutions in Cloud Robotics . . 127

4.2.3 Dynamic Electronic Institutions in HTM5 128

4.2.4 The Experiments . 134

4.2.5 Conclusion and future direction 138

4.3 Peer-to-Peer Cloud Trade Ecosystem 139

4.3.1 Peer-to-Peer Trade modelling in HTM5 144

4.3.2 Case Study Experiments 145

4.3.3 Conclusion . 152

4.4 Industrial and Research Feasibility 153

4.5 A summary of all Feasibility and Viability studies 162

5 Conclusions 171

Appendices 185

CONTENTS 21

A Full page version of intricate images. 187

B A Detailed explanation for Object Miner project 205

C Cloud Robotic Workshop at UTP 251

22 CONTENTS

List of Figures

1.1 Elements of a cloud robotic system 30

1.2 Model Driven Architecture proposed by Object Management
Group (OMG-MDA) . 31

1.3 Schematic representation of the 3-View Component Meta-Model
(V3CMM) views and relationships that exist among them . . 33

2.1 Comparison of popular approaches towards cloud robotics and
cloud connected devices. 42

2.2 Agent Oriented Cloud Robotics environment that implements
a Digital Business Ecosystem (DBE) 47

2.3 A conceptual representation of an HTM5 agent and its Hy-
peractivity mechanism . 49

2.4 Classification of HTM5 components based on their function-
ality and level of Agency. 52

3.1 An anatomical overview of the 5 views Hyperactive Transac-
tion Meta Model (HTM5) . 56

3.2 An anatomical description of the 5 views Hyperactive Trans-
action Meta Model (HTM5) 57

3.3 Separation of PIM and PSM parts of HTM5-MDM 60

3.4 An ARC diagram specifying Structural and Relational ele-
ments of a Cloud Robotic System named ’Object Miner Project’.
(See Table. 3.4 For Description). To Readers: Objects are
referenced in the thesis text using 2 axis references. 78

3.5 A Normalized version of the ARC diagram shown in Fig. 3.4 79

3.6 A Trade-ARC diagram specifying Trade elements of a Cloud
Robotic System named ’Object Miner Project’. (See Table.
3.6 For Description). To Readers: Objects are referenced in
the thesis text using 2 axis references. 81

3.7 A Hyperactivity-ARC diagram specifying Hyperactivity ele-
ments of a Cloud Robotic System named ’Object Miner Project’.
(See Table. 3.8 For Description). To Readers: Objects are
referenced in the thesis text using 2 axis references. 84

3.8 A Use Case-ARC diagram specifying Use Case ’Trader is Allo-
cated Miners’ of a Cloud Robotic System named ’Object Miner
Project’. (See Table. 3.10 For Description). To Readers: Ob-
jects are referenced in the thesis text using 2 axis references. . 87

23

24 LIST OF FIGURES

3.9 A Use Case-ARC diagram specifying Use Case ’Mining Pro-
cess’ of a Cloud Robotic System named ’Object Miner Project’.
(See Table. 3.10 For Description). To Readers: Objects are
referenced in the thesis text using 2 axis references. 88

3.10 A Sequence-ARC diagram specifying Use Case ’Trader is Allo-
cated Miners’ of a Cloud Robotic System named ’Object Miner
Project’. (See Table. 3.10 For Description). To Readers: Ob-
jects are referenced in the thesis text using 2 axis references. . 89

3.11 A Sequence-ARC diagram specifying Use Case ’Mining Pro-
cess’ of a Cloud Robotic System named ’Object Miner Project’.
(See Table. 3.10 For Description). To Readers: Objects are
referenced in the thesis text using 2 axis references. 90

3.12 Graphical representation of a section of HTM5-DSL grammar
specification for ’Component’ keyword. 99

3.13 Excerpts of code from HTM5-DSL Grammar specification in
Xtext and Model Transformations in Xtend 100

3.14 Excerpt of code written in HTM5-DSL for the example project
’Object Miner’ . 101

3.15 automated ’Model-to-Text’ and ’Model-to-Model’ transforma-
tions from the HTM5-DSL code presented in Fig. 3.14 102

4.1 Structural Overview of ’Telerobotics On Nao’ System. 113

4.2 ARC and Normalized ARC Diagrams for ’Telerobotics On
Nao’ System. 115

4.3 TARC, HARC, UARC002 and SARC005 Diagrams for ’Teler-
obotics On Nao’ System. 117

4.4 Excerpt of code written in HTM5-DSL for ’Telerobotics On
Nao’ System . 118

4.5 Excerpt of UML Class Components generated by execution of
HTM5-DSL code (Model-to-Model Transformation). 119

4.6 Excerpt of Component classes developed independently at var-
ious Machines in ’Telerobotics On Nao’ System (Part 1) 121

4.7 Excerpt of Component classes developed independently at var-
ious Machines in ’Telerobotics On Nao’ System (Part 2) 122

4.8 3F Life cycle of a Dynamic Electronic Institution. The three
phases are in order: Formation, Foundation and Fulfilment.
Re-Formation and Re-Foundation processes are also within
the 3F life cycle. 126

4.9 Example of Digital Business Ecosystem (DBE) in an Agent
Oriented Cloud Robotics environment 131

4.10 An example of Dynamic Electronic Institutions implemented
using HTM5 methodology . 132

4.11 Instants from Dynamic Electronic Institutions based Digital
Business Ecosystem simulations 133

4.12 Case Study Experiments . 135

4.13 Results of Case Study Experiments 136

4.14 Cloud entities in the ”Mine Cloud” cloud robotic system . . . 141

LIST OF FIGURES 25

4.15 ARCs specififying the structural and relational aspects of ”Mine
Cloud” cloud robotic system 142

4.16 Trade-Agent Relation Chart (T-ARC) for the ”Mine Cloud”
cloud robotic system . 143

4.17 A set of screen shots from the simulated experiments con-
ducted on the ”Mine Cloud” cloud robotic system 148

4.18 The physical robot colony of 5 TurtleBOT robots that was
used to implement a scaled down version of the ”Mine Cloud”
case study . 149

4.19 Test cases and corresponding productivity and profit data for
”peer-to-peer” and ”fixed-teams” trade models. Test cases 1
till 12 (marked red) are scenarios with bottleneck where one
part of the mining process lacks resources (e.g. Availability of
Digger or Transporter Robots). 150

4.20 Summary of the key recommended practices and their inter-
relationships in IEEE Std 1471-2000, IEEE Recommended
practice for architectural description of software-intensive sys-
tems. Source: IEEE Std 1471-2000 [1] 158

4.21 Model Driven Architecture proposed by Object Management
Group (OMG-MDA) . 159

4.22 An anatomical overview of the 5 views Hyperactive Transac-
tion Meta Model (HTM5) . 160

4.23 An anatomical description of the 5 views Hyperactive Trans-
action Meta Model (HTM5) 160

4.24 Separation of PIM and PSM parts of HTM5-MDM 161

4.25 A summary of the case studies and a workshop conducted
during the incremental development of HTM5 meta-model and
HTM5-DSL . 162

4.26 Top: Structural Overview of ’Telerobotics On Nao’ System.
Centre: Development of Nao Agent using choreograph, NaoQi
and OpenNao platforms. Bottom: The graphical user inter-
face at the Client Agent. Location of the Nao Robot is up-
dated to the human user as it moves towards a target location
specified by the user. 163

4.27 Above are some instants from Dynamic Electronic Institutions
based Digital Business Ecosystem simulations. Top: Forma-
tion of eight Institutions of different cardinality and type.
Some of the groups are in Formation or Re-Formation phase.
Centre: Two institutions have moved to Re-Foundation phase
while one of the institutes has finalized freeing its member
BOTs. Bottom: TurtleBOT setup for a scaled down ver-
sion of Dynamic Electronic Institutions based Digital Business
Ecosystem. 164

26 LIST OF FIGURES

4.28 Above are a set of screen shots from the simulated exper-
iments conducted on the ”Mine Cloud” P2P cloud robotic
system. The Cloud in these experiments is simulated by the
inter-agent message passing mechanism of the simulator. Left:
The mining action. Miner Robots search for their respective
target mineral ores while Digger and Transporter Robots are
hired by the Miner Robots at different stages of the mining
process. The Transporter Robots loads the mineral ore from a
mined plot and delivers the load to the market selected by the
Miner Robot (Through the matchmaking mechanism). Right:
The physical robot colony of 5 TurtleBOT robots that was
used to implement a scaled down version of the P2P ”Mine
Cloud” case study. Out of the five robots, three were imple-
mented as Miner Robots while the other two were implemented
as Digger Robots. No Transporter robots or Physical Market
locations were implemented. There were in all five mine plots
(named A, B C, D and E) which were both mining locations
and parking locations for Digger Robots. 165

4.29 A project based workshop on cloud connected multi-agent sys-
tems. 166

4.30 A list of inspection cases (checks) for the case studies. 166
4.31 Pairwise analysis of inspection cases (checks) presented in Fig.

4.30 with the case studies and the workshop presented in Fig.
4.25. The legends rate the studies based on the extent to
which an inspection case was tested. The combined result of
each of the studies for an inspection case gives a measure of
the extent to which an inspection case was tested in these
studies. The combined result of each of the checks for a study
gives a measure of the extent to which a study contributed
in testing the HTM5 methodology. The combined sum of all
contributions tests the overall satisfaction measure 341 (67.7
per cent of 504=3x6x28). A perfect 504 would mean each
of the implementation cases was rigorously proven while any
score above 336 (2x6x28) would mean that at an average all
inspection cases were tested with satisfaction. Further studies
are planned to test the inspection cases with scores lower or
equal to 50 per cent. 167

List of Tables

3.1 A summary of Functionalities associated with the 5 views and
PIC*/PIC/PSC Classes of HTM5 (PART 1). 70

3.2 A summary of Functionalities associated with the 5 views and
PIC*/PIC/PSC Classes of HTM5 (PART 2). 71

3.3 A summary of Functionalities associated with the 5 views and
PIC*/PIC/PSC Classes of HTM5 (PART 3). 72

3.4 Concerns in Structural and Relational Views of HTM5 and
corresponding Design Elements in ARC.(Part 1) 77

3.5 Concerns in Structural and Relational Views of HTM5 and
corresponding Design Elements in ARC. (Part 2) 80

3.6 Concerns in Trade View of HTM5 and corresponding Design
Elements in Trade-ARC. (Part 1) 82

3.7 Concerns in Trade View of HTM5 and corresponding Design
Elements in Trade-ARC. (Part 2) 83

3.8 Concerns in Hyperactivity View of HTM5 and corresponding
Design Elements in Hyperactivity-ARC. (Part 1) 85

3.9 Concerns in Hyperactivity View of HTM5 and corresponding
Design Elements in Hyperactivity-ARC. (Part 2) 86

3.10 Concerns in Behavioural View of HTM5 and corresponding
Design Elements in Use Case and Sequence ARCs. (Part 1) . 91

3.11 Concerns in Behavioural View of HTM5 and corresponding
Design Elements in Use Case and Sequence ARCs. (Part 2) . 92

4.1 A description of various Machines in the ’Telerobotics On Nao’
cloud robotic system. 112

27

28 LIST OF TABLES

Chapter 1

Introduction

To propose a meta-model [2] for agent oriented development of cloud robotic
systems is the main objective of this thesis. The proposed meta-model is
built following the guidelines laid out by object management group’s model
driven architecture document (MDA) [3]. Development of a domain specific
language for supporting the proposed meta-model and several case studies
to justify its usability are principle secondary objectives of this thesis. This
chapter provides an introduction to the work presented in this thesis. The
organization of this thesis is presented at the end of this chapter.

1.1 Overview

Cloud robotics is an emerging domain in distributed intelligent systems.
The domain is derived from the cloud computing business logic, cloud based
services and other internet technologies. Cloud robotics enables robots to
offer their resources as a service to other robots. The advantage of this ser-
vice oriented architecture is that it enables robots to carry just a minimum
set of hardware resources on board, and access all knowledge and resources
available on the cloud. Another advantage of cloud robotics is that it gives a
wider, richer canvas for designers to propose multi robot systems. The main-
tenance overheads are also reduced as updates are required where a service is
hosted and not at all the places where there are utilized. Rapidly increasing
data transfer rates and cheaper connectivity also increase the scope of cloud
robotic applications. A typical cloud robotic ecosystem (The ”environment”
created by a cloud robotic system) has robots as well as various other entities
which enable the cloud infrastructure and services to function (see Fig. 1.1).
The cloud itself could be built of more than one kind of computer networks.
Server banks, cloud platform, mobile devices, ambient intelligence and vari-
ous other auxiliary systems could all be part of a cloud robotic system even
though they are not exactly robotic entities. There are a number of systems
and practices which are closely linked with the idea of cloud robotics such
as Internet enabled robots, Internet of things, web of things, camera (and
sensor) networks, RoboEarth project and robot app stores.

Software development for cloud connected robotic systems is a complex
software engineering endeavour. These systems have different kinds of soft-

29

30 CHAPTER 1. INTRODUCTION

Figure 1.1: Elements of a cloud robotic system

ware and hardware platforms, and several independently running units of
code. Every code unit may be built by a different set of developers and at
different times. The code units could be as simple as camera drivers on an IP
camera (or even a simple light switch) and as complex as an AI based server
bank owned by a big corporation like Google. The companies developing the
auxiliary systems may want to maintain the autonomy of their code units,
propose their own terms for services offered by them, and may want to dy-
namically change the kind and cost of services offered by them. On the other
hand, there could be developers working on simple robotic platforms who are
just interested in a send-receive pay-per-use kind of cloud service with flexi-
bility of changing the service provider or the quality and scale of the service
as and when required. The complexities involved in making an open access
cloud robotic system involves publishing information about the setup of the
system without compromising the autonomy of the involved entities. It is
important to have a system where an individual’s business logic is kept au-
tonomous, while the cloud computing based trade of services can take place
dynamically. USA’s National Institute of Standards and Technology defines
Cloud Computing as: ”Cloud computing is a pay-per-use model for enabling
available, convenient, on-demand network access to a shared pool of config-
urable computing resources that can be rapidly provisioned and released with
minimal management effort or service provider interaction.” An approach
that is based on cloud computing phenomenon and supports independence
and heterogeneity would have a good impact on the cloud robotic ecosystem.
Furthermore, the approach should be assisted with tools that help design
such systems. To enable rapid absorption into the ecosystem, the proposed
tools and methodologies should require minimum changes in the way robots
and other auxiliary systems are developed individually.

1.1. OVERVIEW 31

Figure 1.2: Model Driven Architecture proposed by Object Management
Group (OMG-MDA). The three layers of MDA cater to different actors in
the software development life cycle. ”Model to model” transformations are
between the three layers of MDA, or to an external model as the target.
”Model to Text” transformation has a general purpose programming lan-
guage as target. Models are executed independently or via a domain specific
language for model transformations.

Software Agents are used in various application domains and are speci-
fied in different ways for different usage scenarios. The potential of agents as
a programming concept varies with the way they are specified and used in

32 CHAPTER 1. INTRODUCTION

different domains. One generic definition thus cannot be used to explain the
concept of agents. [4, 5, 6] are some of the most quoted definitions where
agents are seen as members of systems of autonomous computers where each
member has a sense of autonomy and flexibility over its actions. Some fea-
tures that distinguish such systems are a general unpredictability of their
behaviour, dynamism in their activity and openness. Open systems are sys-
tems which allow third party products to plug in or interoperate with them
[7]. Agents in such systems have personal goals, goals which concern a set of
agents and goals which are common to the whole system. In order to resolve
conflicts, there may be a set of protocols and semantics in the system. To
summarize, Software Agents are computational entities with specific roles
and personal objectives working in a visible environment with other entities
which may have dissimilar roles and objectives [8]. Distributed artificial
intelligence (DAI) [9] has two key elements. (1) Distributed problem solving
or DPS [10] which deals with the distribution of DAI’s problem solving pro-
cess and (2) Multi agent systems (MAS) which deals with interactions and
behaviour complexities in a DAI system. Multi Agent Systems are a collec-
tion of Agents interacting using complex but flexible protocols. The Agents
give equal weightage to personal and the collective goals of the system. The
intelligence in a multi agent system results from several simple competitions
and collaborations between agents [11]. Multi agent systems are capable
of solving problems which are normally beyond the capability of any one
of its member agents. We believe that an agent oriented methodology has
the essential elements for developing cloud robotic systems. The concept
of agency maintains autonomy of individual agents. The robots and other
auxiliary systems in a cloud robotic ecosystem could be represented as their
respective agents in the cloud. Later Chapters of this thesis will further
explain this approach in the 5-View Hyperactive Transaction Meta-Model
(HTM5). We will also discuss the adjustments that were required.

A model is a set of true statements about a system being studied [2].
A specification model species the behaviour of a system under study while
a descriptive model describes the way a system works. A meta-model is a
descriptive model where the entity being described is a model itself. A meta-
model describes the way a particular model has to be made [2]. Model driven
engineering or MDE is the engineering methodology where models with high
abstraction are built to specify a system, without including implementational
details. How a model will be implemented is described in lower layer models,
but this is not a priority at the early stages of the design process. MDE speeds
up the prototyping process and increases client involvement in requirement
acquisition and design. This is possible as top layer models are extremely
abstract and are syntactically specific to the domain. MDE has become
a popular mode of development in many industries including the software
industry. Cloud robotic systems with all their complexities are an ideal
candidate for model driven engineering.

Object management group (OMG) is a consortium of standards in com-
puter industry. OMG released a guide to model driven architecture (MDA)
[3] in the year 2003. OMG-MDA has gained popularity in the software indus-
try in the past decade. Many domain specific meta-models based on MDA

1.1. OVERVIEW 33

Figure 1.3: Schematic representation of the 3-View Component Meta-Model
(V3CMM) views and relationships that exist among them

are now available for development of software for specific domains. There is a
strong emphasis on the development of system models [2] in MDA. Software
product line engineering or (SPLE) [12, 13, 14] is a software manufactur-
ing technique on the lines of automotive or other component based product
manufacturers. The key idea in SPLE is to develop reusable components
that can be replaced when they are updated or damaged. The methodology
promotes independent development and sale of components by one or sev-
eral manufacturers that are compatible with one another. Software product
line engineering encourages creation of reusable software entities. These enti-
ties could be individual code units, components, classes, libraries, models or
components within a model. It is thus necessary that a meta-model should
support a modular design, with clear boundaries between components, and
between different functionalities within a component. MDA is a three layer
design where every layer has a different degree of abstraction and is meant
to be used at different stages of the product development and by different
people (see Fig. 1.2). Platform specific model (PSM), platform independent
model (PIM) and computation independent model (CIM) are designed for
software developers, software designers and domain experts respectively.

It is common to support a meta-model by a domain specific language
(DSL). DSL is a programming language based on a meta-model, which is
used to write solutions in a particular domain. Common examples of domain
specific languages are Structured Query Language (SQL) [15] for database
management, Very High Speed Integrated Circuit Hardware Description Lan-
guage (VHDL) [16] for FPGA/IC design, Hyper-Text Markup Language
(HTML) [17] for web page design and Matrix Laboratory (MATLAB) [18]
for matrix based rapid prototyping. These languages provide a syntax which
is readable to those working in a particular domain. Although a domain spe-
cific language can be written for any of the three layers of MDA, a domain
specific language with computation independent abstraction is an ideal one
for domain experts as well as for clients. The effort is also to build exe-
cutable models and DSLs which can be executed to make lower layer models
and executable code units (see Fig. 1.2). These ”model to model” (M2M)
and ”model to text” (M2T) (code/script) transformations are key objectives

34 CHAPTER 1. INTRODUCTION

in Model-driven software engineering [19, 20].

Due to greater complexities in some domains, a single model is not suf-
ficient to specify a system. When more than one model is made to repre-
sent/specify a system, it is called multi-view modelling. A multi-view system
is clearer as separate models/views are used to separate concerns for stake
holders [21]. V3CMM (3-View Component Meta-Model) [22] is an exam-
ple where multi-view modelling as well as OMG-MDA is used to develop a
Meta-model for development of software in robotic systems. V3CMM is a
3-View Component Meta-Model for Model-Driven Robotic Software Devel-
opment. The three views of V3CMM (see Fig. 1.3) capture different aspects
of a robotic software system, and it is supported by a platform independent
DSL and model transformations. The V3CMM structural view captures the
structure and component placement within the software architecture. The
coordination and interactions between the components is captured in the Co-
ordination view in V3CMM. The individual components might have one or
more algorithms running within them. The V3CMM algorithmic view is a
graphical representation of these algorithms.

Current cloud robotic systems are structured around the client server
methodology. One or more robotic clients access cloud resources through
one or many web servers. This is a useful approach since services such as
algorithms, maps, text and image based search engines are easily available as
a free service on the internet. A client server system provides a simple migra-
tion of cloud computing applications to robotic platforms. Although client
server based cloud robotic systems are useful, they are centralized systems
with a limited scope of services. The authors of this thesis are supporters
of a peer-to-peer cloud robotic methodology that will enable all members of
the cloud robotic ecosystem to act like a server and a client as and when
required. A peer-to-peer cloud robotic system will enable individual robots
to offer and avail services from other robots and auxiliary systems. These
services could be a simple sharing of sensor data or computational resources
or data concerning learnability, Belief, Desire and Intensions (BDI agents) in
a distributed artificial intelligent (DAI) application. The traditional client
server based system can be part of the proposed peer-to-peer systems and
the end result will be a flexible, dynamic exchange of services over the cloud.

At present there is no UML like design methodology or meta-model
present for agent oriented development of cloud robotic systems. The use
of UML and other traditional software engineering models for agent oriented
cloud robotic systems are not beneficial since those tools were not designed
at a time when cloud and distributed computing was widespread. Since the
domain is new, there is currently no domain specific language to write com-
putation independent designs for such systems. In our work we have targeted
these gaps in the software development for agent oriented cloud robotic sys-
tems which will be found of use when imminently cloud robotics and cloud
connected multi agent systems mature into industrial and business reality.

1.2. OBJECTIVES 35

1.2 Objectives

Following are the research objectives presented in this thesis:

• To develop an OMG-MDA based Meta-Model for agent ori-
ented development of cloud robotic systems.

• To specify the 5 views (Structural, Relational, Trade, Hyperactivity
and Behavioural views) and their scope in the development of cloud
robotic system.

• To provide provisions in HTM5 to have a graphical representation
(Agent Relation Charts) for inter-agent interactions specific to each
of the 5 views.

• To provide a mechanism (Hyperactivity) by which an agent’s autonomy
can be released for specific agents. This is to give flexibility to system
designers by inducing an object-like character to some agents, without
fully dissolving their agency characteristics.

• To enable Components built in PIM layer of HTM5 be extendable to
PSM layer.

• To provide provisions in HTM5 to support a relationship based, peer-
to-peer exchange of services. HTM5 should propose mechanisms to
implement cloud computing business logic.

• To develop a domain specific language HTM5-DSL with CIM layer
abstraction.

• To automatically translate HTM5-DSL code to Java class hierarchy
and equivalent UML class diagrams.

• To conduct diverse case studies on real and simulated robot colonies
justifying the usability of HTM5 in cloud robotic systems. The case
studies should incorporate the following test cases for HTM5 usability:

– Incorporating multiple robotic platforms in one study

– Incorporating internet based agents in at least one case study

– Incorporating internet based commercial servers in at least one
case study

– Incorporating non robotic elements of a cloud robotic system

– Realtime execution response for all case studies

– Simulations for cloud robotic agent colonies in at least two case
studies

– At least 5 cloud robotic entities in all physical case studies

– Up to 1000 cloud robotic entities in simulated case studies

– Incorporation of Dynamic Electronic Institutions in at least one
case study

36 CHAPTER 1. INTRODUCTION

– Incorporation of Digital Business Ecosystem in at least two case
studies

– Incorporation of Peer-to-Peer trade dynamics in at least one of
the case study

– A scaled down version of simulated case studies to be implemented
on physical robots

– Incorporation of cloud robotic business model in at least two case
studies

1.3 Contributions

The key contributions of this doctoral research are as follows:

• Development of a 5 View Hyperactive Transaction Meta-Model (HTM5)
for development of agent oriented cloud robotic systems. The Meta-
model will address the absence of a unified metamodel for agent ori-
ented development of cloud robotic systems.

• Incorporation of OMG-MDA guidelines for development of HTM5, an
industrial standard for development of MDA meta-models.

• Development of a computation independent Domain Specific Language
(HTM5-DSL) for HTM5.

• ”Model to Model” and ”Model to Text” automated transformations
from HTM5-DSL to UML and Java class hierarchy.

• Numerous case study experiments to test and demonstrate the usability
of HTM5 in real projects and with complicated cloud robotic imple-
mentation scenarios.

1.4 Outline of the Thesis

Following is general description of the content of this thesis:
Chapter 1 presents a motivational introduction and overview of the

thesis, its motivation, objectives and contributions.

Chapter 2 provides a general overview of background information and
current industrial practices regarding cloud computing, cloud robotics, model
driven engineering, agents and agent driven cloud robotics. This chapter also
describes the concept of Hyperactivity, flexible agency and agent classifica-
tion based on Hyperactivity.

Chapter 3 presents in detail the anatomy of HTM5 meta model for agent
oriented development of cloud robotic systems. This chapter also presents the
design elements and grammar for HTM5-Domain specific language (HTM5-
DSL), a computation independent DSL for HTM5.

1.4. OUTLINE OF THE THESIS 37

Chapter 4 presents various case studies conducted during the incremen-
tal development of HTM5 meta-model and its DSL. This chapter discusses
in detail the feasibility and viability analysis for the proposed model and the
elements of HTM5 and HTM5-DSL that makes it a feasible meta-modelling
methodology for agent oriented cloud robotic systems in research and indus-
trial systems.

Chapter 5 discusses and analyses the presented work, summarizes the
conclusions of this thesis and outlines future directions.

38 CHAPTER 1. INTRODUCTION

Chapter 2

Background Information

This chapter provides a general overview of background information and
current industrial practices regarding cloud computing, cloud robotics, model
driven engineering, agents and agent driven cloud robotics.

2.1 The Cloud

”I don’t need a hard disk in my computer if I can get to the server faster...
carrying around these non-connected computers is byzantine by comparison.”
-Steve Jobs

2.1.1 Cloud Computing

In the past decade we have seen the emergence of cloud computing as a
new business model for internet based service industry. The dot-com bubble
bursted in the year 2000 after which businesses moved towards virtualization
and cloud computing. Cloud computing business model allows small and
medium businesses to use enterprise level resources without actually buy-
ing and maintaining the hardware and human-resource. This pay-per-use
and scale as and when required methodology of cloud computing made it
a popular industry model. Banking, security and standardization in cloud
computing increased confidence of businesses while affordable internet con-
nected devices and mobile connectivity exponentially increased the number
of users of such services. Cloud based Applications on mobile devices and
integration of traditional services in the cloud brought us today to age of
cloud driven mobile business ecology. The robotic community adopted the
concepts and ideas proposed by cloud computing and the phenomenon of
utilizing cloud services for internet enabled robots gave birth to the domain
of Cloud Robotics.

Cloud computing is the current generation of internet computing which is
currently evolving to become a peer-to-peer system where every cloud entity
is a potential service provider. The next generation peer-to-peer cloud com-
puting will give rise to a business ecosystem where entities in a cloud could
freely share their resources as services without a centralized cloud server.
Peers provide resources to other peers and reduce cost and dependency on

39

40 CHAPTER 2. BACKGROUND INFORMATION

original service provider. Addition of new peers increase the demand of
existing resources but they also contribute to the pool of resources shared
between all the peers. Most robots are entities that are capable of perform-
ing a physical action. In essence every robot is a potential service provider
and a peer-to-peer cloud robotic framework is a more suitable methodol-
ogy for robots working in a common physical environment. The shift from
the current client-server like cloud robotics to peer-to-peer cloud robotics
will enable robotic ecosystems to avail cloud resources as well as contribute
to the pool of cloud based services (Robot’s sensor data, images, gathered
knowledge, physical action through its actuators, power or communication
relay for other robots/devices). Service oriented peer-to-peer cloud robotic
methodologies could emerge to a whole new sub-domain in multi-robot sys-
tems and Distributed Artificial Intelligence (DAI) [9] systems. Design and
development of these systems will require special design tools, meta-models
[2] and development methodologies.

2.1.2 The Cloud Business Model

Cloud computing is a business methodology and is a remoulded use of exist-
ing computing and internet technologies. There are two levels at which cloud
robotics could evolve from cloud computing. Cloud services like cloud stor-
age, software and platform as a service (IaaS, PaaS, SaaS) could be readily
adopted to work for robots by treating robots as any other clients to these
cloud services. In this form, cloud robotics is cloud computing with a robot’s
computer as client and the underlying tools and mechanisms for the two re-
main the same. In other adaptations, cloud robotics could mean that robots
should be made capable to provide their physical and functional capabilities
as a service to other robots and computers across the cloud. In this second
form, the ideas of cloud computing are adopted as such to cloud robotics,
but special tools and mechanisms will be required to implement these ideas
on traditional robots. Tele-operated robotics is an example for the second
form, where a robot acts as a server offering its functionalities to a remote
user. In both form, there is a robotic/non-robotic server that provides its
functionalities as a service to other non-robotic/robotic clients. This matches
with the traditional client-server mechanism in cloud computing and could
be identified as client-server like cloud robotics.

2.1.3 Cloud Computing In Robotics

In Chapter 1 we discussed cloud robotics as an upcoming domain in robotics.
In the past few years, a number of projects have taken initiatives towards
cloud robotics. These are in addition to the developments in the cloud com-
puting domain, which too contribute to the cloud robotic ecosystem. Fol-
lowing are descriptions of some of the key initiatives in cloud robotics:

• 1999: Internet of Things (IoT): Internet of things [23] is a system
wherein objects, animals, people and services have the ability to trans-
fer useful data over internet without the requirement of human inter-

2.1. THE CLOUD 41

action and help. A thing in IoT can refer to an animal with a biochip
transponder, a human with heart monitor, or an even automobile with
sensors to send alerts about low tire pressure. It includes any natu-
ral or manmade object that can have an IP address and the ability to
transfer data using internet. IoT is often associated with machine to
machine communication (M2M); for example in case of manufacturing.
The products that are built with the capability of machine to machine
communication are referred to as being smart like smart grid. More
and more objects are embedded with sensors which provide them with
the ability to communicate. This has led to information networks that
improve efficiency in business processes, create novel business models
resulting in reduced costs.

• 2008: Web of Things (WoT): Web of Things [24] is a concept to in-
corporate day to day physical objects into the World Wide Web by
providing them with API (application programming interface). This
will help create a virtual profile for all the objects which can be used
for various applications. WoT goal is to build a web of devices that is
open, scalable, and flexible. Objects are made smart by providing them
the ability to connect to the web and these objects are capable of stor-
ing and sharing data. These smart devices are programmed to make
decisions based on data that they have created and the data from other
sources. The resulting infrastructure is a mix of equipment, machiner-
ies, systems, methods, structures and devices that require monitoring
and management when added to the web.

• 2010: Rosbridge [25]: This is a specification for a network layer proto-
col that enables communication between a ROS environment (hosted
on the cloud) and a robot. ROS [26] is abbreviation for Robotic Op-
erating System that contains tools and software libraries for robotic
application development.

• 2010: DAvinCi [27]: This is a cloud computing framework for service
robots. The project brings the parallelism and scalability aspects of
cloud computing to the robotics domain. This project is not publically
available.

• 2011: Rosjava [28]: A Java based library that allows Android devices
to utilize cloud services through ROS.

• 2011: RoboEarth [29]: This is a framework that allows robots to utilize
database and services hosted on a WWW style server. The robots
can share their behaviours with other robots through the database
leading to collective learning. RoboEarth project was started in 1999
in collaboration of robotic researchers and the industry. The purpose
of this project was to prove that connection to an information network
repository will catalyze the process of learning in robots that allows
robotic system to perform complex tasks. The purpose was also to show
that network connected to information repository will autonomously be

42 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.1: Comparison of popular approaches towards cloud robotics and
cloud connected devices.

able to perform tasks that were not exclusively laid out at the time of
designing the system. RoboEarth project received funding from the
European Commission’s Cognitive Systems to develop the open source
network database platform of RoboEarth project. RoboEarth platform
is used to create and execute action recipes. It is also used to perform
localization and mapping, 3D sensing and to track objects dynamically.
It is also a rich source of data. This database can be further used
to research and analyze to develop standard language protocol and
modular designing of cloud robotic system.

• 2011: GostaiNet [30]: This is a private project that allows sharing of
vision and algorithmic behaviours amongst compatible robots.

• 2013: Cloud Based Robot Grasping [31]: A cloud robotics system
for recognizing and grasping common household objects. The system
utilizes Google Goggle [32] and the Point Cloud Library (PCL) [33]
to estimate the ideal orientation for grasping common household items.
This project is not publically available.

Cloud robotics as a domain is fairly new. The projects mentioned above
are tools and frameworks that are an extension of traditional client server
methodology. Scalability and parallelism concepts are borrowed from the
cloud computing systems with robots as the clients. Projects like RoboEarth
[29] and GostaiNet [30] promote contributions from robots to the cloud

2.1. THE CLOUD 43

server. These are extensions of cloud storage services widely used in cloud
computing systems. A comparison of the popular approaches towards cloud
robotic ecosystems with the Meta-Model HTM5 is presented in Fig. 2.1 . The
parameters chosen for this comparison are inspired by common needs from
Industry, research and business personals. The comparison being made has
several components. We first see if the discussed entity is a methodology, a
software tool or a just a commercial product. If it is a methodology, then we
compare the entities on being model driven, multi-view, OMG-MDA based,
domain specificity, scope and its support for peer to peer transactions. We
also compare the entities on the extent to which they are in sync with the
popular industrial practices and their ability to include complex research and
business concepts. More refined comparisons on the existence and kind of
domain specific language and M2M/T transformations that the methodology
proposes. In general all of these entities have some level of feasibility study
associated with them. We did not compare the extent to which their feasi-
bility was checked by the developers and tools any kind of feasibility study
as a valid one.

2.1.4 Cloud Robotics Ecosystem

Development of cloud robotics as a business model will require new tools and
methodologies. It is essential to develop methodologies that are industry and
business oriented. The cloud robotic methodologies should go one step fur-
ther to include models that incorporate concepts like Distributed Artificial
Intelligence (DAI) [9], registry based service discovery and automated match-
making mechanism. Many of the services offered by a robot to other robots
will have a physical world component. A robot’s physical reach will deter-
mine the scope of the physical services offered by it and any business model
for a robotic ecosystem should include provisions to model factors that codify
physical world interactions. A cloud robotic ecosystem will also include many
non-robotic entities. These entities could range from ambient intelligence to
server banks. In theory any device that can communicate through a net-
work could be included as a working component of a cloud robotic system.
The communication networks that collectively build the cloud could be of
different kinds and visible in selective physical regions. A methodology that
allows modelling of these non-robotic devices, networks and interfaces will
give a complete design toolset to designers of cloud robotic systems. Fig. 1.1
shows a typical cloud robotic ecosystem with robotic and non-robotic enti-
ties. A design methodology for cloud robotic ecosystem should provide tools
to model all physical and theoretical aspects of these systems. Key theoret-
ical elements of a cloud robotic ecosystem would be its network structure,
event driven behaviour, social interactions, norm driven peer-to-peer trade,
micro level competitions and dynamically regulating collaboration [11].

44 CHAPTER 2. BACKGROUND INFORMATION

2.2 Model Driven Engineering and Architec-

ture

”And at the end of the day the Internet is still all about Software.”
–Marc Andreessen, from an interview in the NY Times

2.2.1 Component Based Software Engineering

The ratio of time spent reading code versus writing is well over 10 to 1 ...
making it easy to read makes it easier to write.

–Robert C. Martin, Clean Code: A Handbook of Agile Software Crafts-
manship

When writing software for the industry, managerial concerns such as
reusability have to be taken into account in the design process. Products
based on multi agent systems are generally very dynamic with newer versions
being produced very often and parts of software being used in other products.
In most cases, people working on robots and other hardware components of
the multi agent system are not trained in software engineering. Hence the
Ad-hoc software development at the time of research is not very useful for the
product development. To solve the above mentioned problems, the complete
system is split into components which are loosely connected and functionally
independent. Component-based software engineering (CBSE) [34] is a reuse-
based approach to software development. Once implemented and tested, the
components can be reused with ease in other products saving time and the
cost of software development. It is common practice in the software industry
to implement CBSE using objects.

2.2.2 Models

A set of comments about the behaviour or structure of a system under study
is a model of the system [2]. Both specification and descriptive models
are documents that define a system and are the starting points in a model
driven approach towards system development. In Model Driven Engineering
(MDE), models are used to specify a system at a high level of abstraction.
Implementational details of lower layers are later added to the system model
and are not given much attention while building the model of a system in
early stages of system design.

2.2.3 Meta-Models

A meta-model is a descriptive model for models [2]. A meta-model specifies
how models for systems in a particular domain should be built. Complicated
systems where lower layer implementation details are less important than the
overall idea of a system are ideal candidates for MDE. Rapid prototyping
and participation of clients in model development has made MDE popular
in several industries.

2.3. AGENTS AND CLOUD ROBOTICS 45

2.2.4 Multi-View Modelling

It is common to build more than one model for the same system. This multi-
model approach targets to capture different aspects of the system under study
in separate models (called Views) bringing clarity to the model document.
For systems with several stakeholders, the multi-view modelling methodology
helps in separation of concerns [21].

2.2.5 OMG Model Driven Architecture

Object Management Group’s Model Driven Architecture (OMG-MDA) guide-
lines [3] have become a popular standard in development of software models
for complicated systems. MDA promotes development of system models [2]
and Software Product Line Engineering (SPLE) [12, 13, 14] encourages reuse
of software components and models. Any proposed model for cloud robotics
will have greater acceptance and industrial feasibility if it is in accordance
with MDA and SPLE standards. MDA has a three layered design with
separate models for Computation Independent, Platform Independent and
Platform Specific stages in system development (see Fig. 1.2). Each layer of
MDA serves design needs of stakeholders at various stages of development.

2.3 Agents and Cloud Robotics

”Never send a human to do a machine’s job.”
–Agent Smith, The Matrix, 1999

2.3.1 Agent and Agency

”Software Agents are computational entities with specific roles and personal
objectives working in a visible environment with other entities which may
have dissimilar roles and objectives” [8].

The concept of agents is essentially an extension to the concept of objects
in object oriented methodology. An object is specified by its class attributes
and operations which can be accessed from other objects. This open access
to an object’s interior functionality compromises its autonomy. What makes
agents different from objects is the autonomy an agent has over its own oper-
ations. Agents are deployed in various domains with different functionalities
and thus there is no consensus on the definition of an agent. In general, an
autonomous entity in a system of computing entities interacting with other
autonomous entities with a mandate to complete their personal and shared
goals is known as an agent [35, 4, 5].

The concept of agency [36] however explains a wider set of abstractions
associated with an agent. Apart from autonomy, an agent should be hetero-
geneous in design giving its designer independence to design it in any manner
irrespective of the other agents and the network administration. Its inter-
actions must protect its autonomy and the communication protocol should

46 CHAPTER 2. BACKGROUND INFORMATION

not reveal its internal design. The commitments that an agent makes to
other agents should be based on a social concept with a debtor, a creditor,
action and a context. Unlike components, the receiving party (agent) takes
the ownership/responsibility for an action taken when a message is received
and not the party (agent) that sends the message. An agent should have
mental states, explicit goals and knowledge and none of these should be in
public domain. The above characteristics of an agent make it ideal for a
business logic implementation where it preserves the autonomy of the entity
it is representing. Agents present an excellent methodology for an open and
peer-to-peer implementation of cloud computing enabled robotics.

2.3.2 Agent Metaphor and usage

Agent technology is a well-defined methodology when seen as a
design metaphor of definitive approaches for designing and imple-
menting software intensive systems. The agent concept provides elegant
tools/methods for abstraction and encapsulation.

”Currently, agents provide software designers and developers an appropri-
ate way of structuring software tools and applications around autonomous,
communicative, situated and problemsolving entities to achieve the required
design goals.” [8]

”The agent concept offers a promising route to the development of compu-
tational systems, especially in open and dynamics environments of several
real-world domains.” [4]

2.3.3 Multi Agent Systems

Software agents are used in various scenarios and there is no single program-
ming concept that completely explains the idea of agents in all domains,
roles and scenarios where they are used. In other common definitions, agents
are described as members of a system of autonomous computers where every
member has a sense of flexibility and autonomy [4, 5, 6]. These systems
are known as Multi-Agent Systems and are known for inherent dynamism,
activity, heterogeneity and openness. An open system [7] is a system where
third party products can interoperate by plugging in. Protocols and seman-
tics resolve conflicts in such systems bringing a sense of order in an otherwise
chaotic system. The studies in Multi-Agent Systems are concerned with inter-
actional and behavioural complexities of a distributed Artificial Intelligence
System [9]. The intelligence in Multi-Agent Systems is a combined result
of several simple competitions and alliances among its member agents [11].
For their inherent autonomy, flexibility in development, and as platforms to
implement intelligent trade models, agents are ideal for representing cloud
robotic entities in a cloud robotic business ecosystem.

2.3. AGENTS AND CLOUD ROBOTICS 47

Figure 2.2: Above is an example of an Agent Oriented Cloud Robotics envi-
ronment that implements a Digital Business Ecosystem (DBE).

2.3.4 Agent oriented cloud robotic systems

Distributed Artificial Intelligence (DAI) [9] and Multi-Agent systems (MAS)
[4, 5, 6] are closely related domains. The challenge in DAI is distribution of a
complicated problem between multiple entities. MAS on the other hand deal
with the behavioural and transactional complexities that arise in implemen-
tation of DAI ideas. Problem formulation and distribution in multi-robot
systems resembles DAI applications and thus an agent oriented approach
towards design and development of multi-robot systems has some distinct
advantages. Agent oriented development of cloud robotic systems enables
easy transfer on DAI solutions in a cloud robotic ecosystem.

A typical cloud robotic ecosystem may have several robotic as well as non-
robotic entities. Fig. 1.1 shows a typical agent oriented cloud robotic ecosys-
tem where several robotic and non-robotic entities collaborate to establish
digital business ecology. Representing robotic/non-robotic entities in a cloud
robotic ecosystem by representative agents enables developers of those cloud
entities to have independent product development life cycles. Unlike objects,
agents are autonomous closed systems and they do not release their interior
structure to the outside world. Their functionality is controlled by an internal
operating logic and the communication between agents is through messages.

48 CHAPTER 2. BACKGROUND INFORMATION

This is different than objects since they communicate through function calls.
Agents are by design better suited to implement dynamically evolving busi-
ness logic and thus representing business interests of cloud robotic entities
through representative agents is an attractive proposition. Agent oriented
cloud robotic systems also promote inclusion of Dynamic Electronic Institu-
tions [37, 38, 39, 35] and Digital Business Ecosystem (See Fig. 2.2) [40, 41]
in a cloud robotic ecosystem further enhancing the usability of the approach.
In agent oriented cloud robotic system, all robotic/non-robotic entities are
represented by their respective agents. The cloud entities represented by
these agents may have different hardware and software configuration and
may be owned by different businesses. The agents advertise the services
that are offered by the entities they represent. Some cloud servers may have
more than one contributor that collectively builds up a pool of resources
on the cloud server. Existence of an open [7] service registry and match-
making mechanisms enable agents advertise and enrol to services available
on the cloud ecosystem. Portions of the cloud network infrastructure may
be owned by private businesses and their usage may also be provided as a
service in the cloud ecosystem. Special agents may be present in the system
which represent the banking and administrative entities. These special agents
help enforce standards (Trade, industry or legal rules) and enables transfer
of money between cloud entities. Each of the entities in the cloud robotic
system may have their internal developmental life cycle and the businesses
that deploy these entities may have dynamically evolving business models.
Entities may freely join or leave the ecosystem at will and their operating
logics may change with time. An agent oriented approach enables individ-
ual entities to have their independent and dynamic operation. This ensures
heterogeneity in business logic, design methodology and implementation of
these entities.

2.4 Hyperactivity

Hyperactive transaction model is an attempt to provide a model for designing
multi agent systems with a different ”thought process”. A similar example
can be seen in object oriented software modeling. Object oriented program-
ming is not only a different way to write code, but a new ”thought process”
to design software where we think in terms of objects in real life before mak-
ing their equivalent class in the code. Likewise in Hyperactive Transaction
Model, the attempt is to think of agents in terms of humans working together
in a team.

HTM5 is a meta-model for agent oriented development of cloud robotic
systems. In Chapter 1 we supported use of agents to represent robots and
auxiliary systems in a cloud robotic system. In this section we aim to pro-
vide elements which make agent orientation a suitable design choice for such
systems.

2.4. HYPERACTIVITY 49

Figure 2.3: A conceptual representation of an HTM5 agent. The agent is a
representative of base software and host hardware in the cloud ecosystem.
Agent communicates with associated agents through two separate channels.
An active agent is closest to the idea of agency [36]. HTM5 provides mech-
anisms to relax the idea of agency in two ways. Hyperactive agents are
agents with relaxed autonomy towards specific agents, while passive agents
are agents with reduced variability in their working logic.

2.4.1 The Mechanism

The agency concept is closely related to the concept of objects. In object
oriented methodology [42] objects are specified by their data and operations.

50 CHAPTER 2. BACKGROUND INFORMATION

The visibility of these data and operations can be controlled by visibility rules
(Private, public or protected). Objects have data and functions which can be
accessed from outside. Although an object may define some of its member
data variables and functions as private, there will still be at least one public
member data by which the outside world makes use of the object. The
access to an internal function or data of an object from outside compromises
its autonomy as such an access is not a communication that object can decide
upon. Agents are different from objects since agents have full autonomy over
their data and operations. Agents are generally understood as autonomous
entities which interact within a system of other autonomous entities with a
set of personal and shared goals [6, 5, 4]. However, the concept of agency
[36] is specified by a wider sphere of ideas:

• Independence to act (Autonomy): Agents are independent to act on
their own, even if their actions appear irrational to an external agent.

• Independence of design (Heterogeneity): A designer should be free to
design internal structure of an agent and thus a system of agents could
be heterogeneous and open [7].

• Independence from a central administration (Dynamism): There may
be no central administration in a system of agents. System is managed
by a distributed administration.

• Interactions that preserve autonomy (Communication): Agent to agent
interactions may not give any hints to the internal working of an agent.
It is possible that an agent interacts randomly with other agents with-
out any belief or intention attached to those interactions.

• Protocols: The only protocols in a system of agents are when and how
an agent may communicate with another agent. The protocols should
not specify why a communication is needed.

• A Social concept: Agents work with a social concept of commitments.
Every interaction has a debtor, a creditor, an action and a context.

The above ideas find relevance as a development methodology for cloud
robotic systems. Autonomy, heterogeneity, dynamism and interactions that
preserve autonomy are essential for a business oriented, open development
of cloud robotic systems. Robots and auxiliary systems in a cloud robotic
ecosystem may be developed by different manufacturers and deployed by
various businesses or individuals. The systems could be opened or closed,
the interactions may be standard or custom, and there could be high vari-
ability in terms of software engineering practices followed by organizations.
Agents are representative entity for a larger hardware or software framework
(see Fig. 2.3). The legacy designs of various products could be adapted to
the cloud robotic ecosystem by representing them via agents in the cloud.
The ideas of agency mentioned above are for idealistic scenarios. In practi-
cal usage, some relaxations and adjustments (Discussed in the next section
”Flexible Agency”) may be required for flexibility in system development.

2.4. HYPERACTIVITY 51

An example of one such relaxation in the idea of agency is when a man-
agerial agent needs to ”force-stop” or ”boot/initiate” an agent. Multi agent
systems can be chaotic and unstable. The idea is to create a sense of order
in these systems by including mechanisms that relax the idea of agency as
and when required.

2.4.2 Flexible Agency

Fig. 2.3 is a conceptual representation of a HTM5 agent. A traditional agent
have one channel for communicating with other agents. The agent have some
internal control parameters which will change with time. Control parameters
could be parameters for Belief, Desires and Intentions of a BDI agent [43], or
any other data entity that governs control logic of an agent. For a simplistic
representation, let us call the internal mechanism for update of an agent’s
control parameter as Update mechanism (Fig. 2.3) which generates a new set
of control parameters C[.](t+1) at time (t) based on some or all stored data
items. The data items could be control parameters from time (t) (C[.](t)),
parameters exchanged with the base software (i[.](t), o[.](t)) and parameters
exchanged with associated agents (I[.](t), O[.](t)). In HTM5 methodology, we
call an agent with such internal structure as an Active agent. An active agent
is closest to the idea of agency [36]. Some device manufacturers or software
developers may demand flexibility in the agency concept. The flexibility may
be required to bring an object like character to an agent, e.g. an agent that
acts as a static software entity with no variability in its control logic. In such
cases a software developer could choose to remove the Update mechanism,
and thus design a Passive agent in HTM5.

Passive agents are deviated from the agency concept since there is no
variability in their behaviour, and are not intelligent agents in the tradi-
tional sense. We earlier discussed that autonomy is the essential idea in the
concept of agency. A software designer could find it unnecessary to make
agents with full autonomy, in various scenarios. HTM5 allows the designers
to relax an agent’s autonomy for specific agents by allowing a secondary chan-
nel to expose internal parameters of an agent. The Hyperactivity mechanism
(Fig. 2.3) is a back channel communication mechanism that releases stored
parameters of an agent to select associated agents (Ho[.](t+1)). Although
the outside agents can access internal parameters, the hyperactivity mech-
anism could be designed to implement access control for individual agents,
and for individual data items. The Update mechanism in a hyperactive agent
includes the hyperactivity parameters (Hi[.](t), Ho[.](t)) to update the con-
trol parameters C[.](t+1). A software designer working on an agent oriented
methodology using HTM5 has the flexibility to relax the ideal concepts of
agency in a control way. This makes HTM5 a more useful methodology
for heterogeneous development of cloud robotic systems, where some agents
could have partial object like characteristics.

52 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.4: Classification of HTM5 components based on their functionality
and level of Agency.

2.4.3 Agent Classification in HTM5

We will discuss later in this thesis the five views of HTM5 and their scope.
It is common in distributed systems to have entities that enable the system
to function in a managed manner. Elements of this distributed management
may be hosted on various agents across the system, but some agents may
be placed in the system for this purpose alone. There could be agents who
have management of trade, relationships and message multiplexing as their
primary objective. There could be agents which are ports at which other
agents could dynamically join or leave a system. HTM5 has not placed any
functional or modelling limitation for any agent to have these capabilities but
to increase the readability of the model, agents are classified into three classes
based on their primary functionality. (1)Merges are agents which manage the
flow and merger of messages where there is a fixed number of lines on one
side (usually one), and a variable number of lines on the other. Merges are
also ideal for modelling ports where agents can join or leave the system.
(2)Relations are agents which manage a relationship between other agents.
(3)HTM5 components other than those classified as Merges and Relations
are called Agents.

In ideal agency, the management of relationships between agents by a
third agent is a violation of their autonomy. The Relations are special agents
which host the data and functional requirements necessary for sustaining col-
laboration between agents. A managed collaboration between specific agents
undermines their autonomy to some extent as relations enforce protocols on
an agent’s behaviour with other agents in a relationship. The advantage
of this external management of interactions is the flexibility and control a
designer has while modelling the social concepts of commitments (Debtor,
Creditor, Action and Context). Relations are also ideal to model a business

2.4. HYPERACTIVITY 53

logic, digital institutions [5, 40] and other human concepts (e.g. Trust [44],
Ethics [45]) in a cloud robotic system. Like any agent in HTM5, a Merge
or a Relation could be Active, Passive or Hyperactive (Fig. 2.4). Agents,
Merges and Relations are collectively called Components in HTM5 method-
ology.

In this chapter we presented a general overview of the current state of the
art in cloud robotics. We discussed popular attempts towards development
of a cloud connected ecosystem for robots, humans and things. We discussed
the new trends towards model driven architectures and agent orientations.
We presented the concepts like Hyperactivity and flexible agency which are
of great importance to the meta-model HTM5 presented in the next chapter.
The next chapter will present the central product of our work, the HTM5
meta-model for agent oriented development of cloud connected robots.

54 CHAPTER 2. BACKGROUND INFORMATION

Chapter 3

5 View Hyperactive
Transaction Meta Model

This chapter explains different anatomical elements of HTM5 and the ideas
that they actualize. As discussed in previous sections, HTM5 is a MDA based
5 view meta-model for agent oriented development of cloud robotic system.
Fig. 3.1 and Fig. 3.2 gives an overview of the structure of the HTM5 meta-
model. In accordance with the MDA guide [3], HTM5 has a three layered
structure (Three layers of MDA: CIM, PIM and PSM Fig. 1.2). The three
layers are named as:

• HTM5-CIM: Computation Independent Model

• HTM5-PIM: Platform Independent Model

• HTM5-PSM: Platform Specific Model

The five views of MDA are designed to separate concerns of different
stakeholders. The Hyperactivity view is further divided in 4 sub-views to sep-
arate hyperactivity in individual views. In HTM5-CIM, views are separating
concerns at the macro-level. Agent Relation Charts (ARCs) are a graphical
representation for inter-agent interactions specific to each of the 5 views. In
HTM5-PIM and HTM5-PSM layers, the views separate concerns within an
HTM5 component (Agent, Merge or Relation). The HTM5-components may
be hosted at various machines. HTM5-MDM (Machine Descriptor Model) is
a model to describe these Machines. Agents are representing host hardware
or base software in the cloud ecosystem (Fig. 2.3). HTM5-MDM is used to
model the hardware or software framework on which an HTM5 component
is representing in the cloud. The cardinality of HTM5 is as follows:

• Number of Layers = 3

• Number of Views = 5

• Number of ARC diagrams >= 5

• Number of HTM5-PIM models = Number of HTM5 components in the
system

55

56 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Figure 3.1: An anatomical overview of the 5 views Hyperactive Transac-
tion Meta Model (HTM5). HTM5 is structured following the three layers of
OMG-MDA and has 5 views for separating concerns for stakeholders. The
Hyperactivity view is subdivided into 4 views, separating hyperactivity in
different views. The machine descriptor model is present for describing hard-
ware that hosts various agents. HTM5-MDM is spread over the bottom two
layers of HTM5 Meta Model. HTM5-CIM layer consists of Agent Relation
Charts, which are abstract representations of view specific concerns for vari-
ous stakeholders. An HTM5 component (Agent, Merge or Relation) has two
part design. The component is first specified in HTM5-PIM layer. The plat-
form specific parts of a component are declared as abstract classes [46], but
not completely defined in HTM5-PIM. In HTM5-PSM, the abstract entities
are extended and defined specific to the platform

• Number of HTM5-PSM models = Number of HTM5-PIM components
with abstract elements (Parts specific to a platform)

• Number of HTM5-MDM = Number of Host Machines (Hardware or
Software Framework)

• Number of Hyperactivity sub-views <= (4 x 2 x Number of Hyperac-
tivity Links)

3.1 HTM5 Sub Models

3.1.1 HTM5 Computation Independent Model

Fig. 3.1 and Fig. 3.2 shows the three layered structure of HTM5 with HTM-
CIM layer on the top. While lower layers of HTM5 are separately specifying
the individual HTM5 components (Agent, Merge or Relation) and Machines,
the CIM layer in HTM5 is a specification of the cloud robotic system as a
whole. As shown in Fig. 1.2, this layer is the most abstract layer and is
developed in the early stages of the project design.

3.1. HTM5 SUB MODELS 57

Figure 3.2: An anatomical description of the 5 views Hyperactive Transaction
Meta Model (HTM5). In CIM layer, there are 5 different Agent Relation
Charts for different views. The Behavioural view has two kinds of ARCs
namely Use case and Sequence ARCs while Relational and Structural views
have one common ARC. The PIM layer specifies the Platform Independent
parts of all HTM5 components. Every HTM5 component (Agent, Merge or
Relation) has an internal structure as shown above. The classes in PIM layer
are abstract classes [46] (Represented by an asterisk *) which are extended
by the classes in PSM layer. The core class of a component (*PIC or PSC)
is a class that envelopes objects of other view classes. The *PIC class may
contain an object of the PIM Machine Descriptor(MD) Class (’a’ in the above
figure). Machine Descriptor Classes are used to model host hardware or a
base software (see Fig. 2.3) that an HTM5 component (Agent, Merge or
Relation) represents in the cloud. PIM MD Classes extends PSM Machine
Descriptor Classes. When a Machine is changed, modification is required in
PSM layer MD classes alone. The Internal to external map in PSM layer MD
classes (’A1’ and ’A2’ in the above image) maps the new machine names to
the internal names used in PIM layer MD classes. Since an HTM5 *PIC class
has an object of the PIM MD classes, no modification in HTM5 is required
when a Machine is changed.

In HTM5, this layer consists of Agent Relation Charts (ARCs). ARC
is a graphical CIM model and its variations are suited for different views
and ideas in HTM5. The Structural and Relational elements of the design
are specified using graphical representations in the ARC diagram. Trade and
Hyperactivity views have their own ARC diagrams (Trade and Hyperactivity

58 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

ARCs. Fig. 3.2). In systems where the complexities in Trade view are dense,
more than one Trade ARC may be made. The same applies to ARCs in other
views as well. The Behavioural view in this layer consists of two kinds of
ARC diagrams. Use-Case ARCs (U-ARCs) are made to specify various use
case scenarios for the system while Sequence ARCs (S-ARCs) are used to
specify sequence of key events in those scenarios. As there could be several
number of use cases for a system, there could be any number of ARCs in
the Behavioural view. Fig. 3.2 shows the placement of different ARCs with
respect to different views. The structure and ideas behind individual ARCs
are explained later in Section 3.3. The cardinality of ARC diagrams is as
follows:

• Number of ARCs >=1

• Number of T-ARCs >=1

• Number of H-ARCs >=1

• Number of U-ARCs >=1

• Number of S-ARCs = Number of U-ARCs

Total: >=5

3.1.2 HTM5 Platform Independent Model

As discussed in Chapter 1 , the concept of Platform in MDA is vaguely de-
fined. This comes as an advantage in software development as the definition
of a platform is always with respect to a frame of reference. Different software
frameworks are structured differently, and a strict definition of platform will
have several operational difficulties. A platform could simply be a hardware
entity, or a software one. It could be an operating system in one component
and server bank in another. In HTM5, platform is understood as a point of
separation in the code of a component. HTM5 splits the PIM and PSM parts
of an HTM5 component without specifying the meaning of this separation.
Within the same cloud robotic system, different HTM5 components (Agent,
Merge or Relation) may have different meanings for this line of separation
between platform independence and platform specificity. The idea is just to
have a separable PIM layer which could be modified without affecting the
above layers.

Fig. 3.2 shows a description of HTM5-PIM component model. The sep-
aration between PIM and PSM parts is implemented using abstract classes
[46], represented by asterisk ’*’ in Fig. 3.2. The abstract classes are classes
where some elements are not completely defined. Abstract classes are ex-
tended by other classes which complete the missing parts, and these extend-
ing classes are then used to make objects. It is important to note that this
is just one mechanism to separate the platform specific concerns. Software
developers are not restricted by HTM5 methodology to use some other mech-
anisms. The PSM layer classes extend the abstract classes of PIM layer and
complete the platform specific elements. When a platform changes, changes

3.1. HTM5 SUB MODELS 59

are required only in the PSM layer classes leaving PIM layer classes un-
changed. The mechanism is further explained in Section 3.1.3.

In general, since *PIC is an abstract class, it cannot be used to form
objects. In a scenario where PSM layer is not required, *PIC class will not
have any abstract elements and can be represented as PIC. The PIC class can
then have nested objects of the view specific classes (R: Relational, S: Struc-
tural, T: Trade, RH: Relational Hyperactivity, SH: Structural Hyperactivity,
TH: Trade Hyperactivity, BH: Behavioural Hyperactivity, B: Behavioural)
as shown in Fig. 3.2 and can be used to make objects. Apart from view
specific classes, the model also includes UML diagrams for individual view
classes. The interactions within a particular view, and between different
views are specified in Behavioural view using UML behavioural diagrams.
This closeness with UML on internal levels of HTM5 makes it easy for in-
dividual manufacturers to adapt their products for an HTM5 based cloud
ecosystem.

The separation between PIM and PSM parts also exists in HTM5-MDM.
The meaning of Platform in MDM is clearer than in the 5 views. The separa-
tion in MDM is between physical hardware (or base software that an agent is
representing in the cloud ecosystem) and the internal Hardware model used
by HTM5 components. The *PIC class contains a nested object of the MDM
Hardware class (’a’ in Fig. 3.2) and the view classes access the machine el-
ements using this class object. The separation mechanism in MDM will be
explained later in Section 3.1.4.

3.1.3 HTM5 Platform Specific Model

HTM5-PSM layer is a platform specific model for HTM5 components. As
explained in Section 3.1.2, the view classes in PSM layer extend the view
classes in PIM layer. The abstract elements of abstract PIC classes are
extended in these classes to form complete component classes. The PSC class
contains nested objects of all view classes. Since PSM class is extending the
*PIC class, the MDM object is also available in objects of PSC class (See Fig.
3.2)). Like PIC, PSC too have UML diagrams to specify their functionality.
The diagrams here specify the functionality that is extended in the PSM
layer. No behavioural diagrams are present in this layer since at the PIM
layer, the behavioural diagrams specify inter and intra view behaviour of
HTM5 components. The missing abstract elements in PIC do have their
declarations in the PIM view classes, thus their references can be made in
the PIM level behavioural diagrams. Once the model is specified, it is used
by making an object of the PSC class. The scenario where the PSM layer is
missing, an object of the PIC class is made to utilize the model as explained in
Section 3.1.2. PSC is implementation oriented and closest to the platform
thus the separation of concerns at this layer may be diluted by specifying
common routines as members of the PSC class and not within the view
classes (r, s, t, rh, sh, th, bh, b). The extension of PIM layer components to
PSM layer components is further explained with an example in Section 3.5.

In HTM5-MDM, the PSM layer contains classes to specify a particular
machine. These classes have a mapping functionality which maps the names

60 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Figure 3.3: Separation of PIM and PSM parts of HTM5-MDM. HTM5 com-
ponent classes utilize the internal names of the hardware entities by nesting
an object of MDM PIC class. MDM PIC class extends the abstract hard-
ware platform class in the PSM layer of MDM. When hardware is changed;
a mapping mechanism reconfigures the internal names to the new hardware
settings. Adjustments and calibrations to the new hardware are included in
PSM layer model for the new hardware, thus no change in MDM PIC layer,
or HTM5 component classes is required.

used in PIM classes of MDM. Adjustments or calibrations for the new ma-
chine are also specified in the PSM classes of MDM. The mechanism is further
explained in the next section (Section 3.1.4).

3.1.4 HTM5 Machine Descriptor Model

We discussed in Chapter 1 that in agent oriented cloud robotics, HTM5
components (Agents, Merges or Relations) represent host hardware or base
software in the cloud robotic ecosystem. The 5 views of HTM5 are for mod-
elling of interactions between these HTM5 components. HTM5-MDM is
included in HTM5 for modelling of the hardware or software framework that
a HTM5 component is representing in the cloud. These entities could be any
of the following:

• A robot with or without an operating system onboard.

• A computer or mobile device where an agent is hosted as an application
program.

3.1. HTM5 SUB MODELS 61

• A server bank, database system or an existing cloud service.

• Cameras, sensors and ambient intelligence devices.

• A Close system, hosting an agent as a controlled interface.

• Virtual devices.

• A subsystem within a hardware or software framework. Note that one
machine can host more than one HTM5 components.

• Human actors, Interactive environments and practically any entity that
needs a representation in the modelling of cloud robotic ecosystem.

HTM5-MDM is spread across bottom two layers of HTM5 (See Fig. 3.2).
The separation between PIM and PSM parts of HTM5-MDM is required
to avoid alterations in HTM5 components when a machine is modified or
replaced. PIM layer MDM model is an internal hardware model that is
utilized by HTM5 components to access the machine. This model extends
from the PSM layer model, which is a model for the actual hardware platform
(actual machine that an agent is representing). As HTM5 component classes
utilize the internal model (By making an object of the MDM PIC class, see ’a’
in Fig. 3.2), their namespace requires no change when the hardware platform
is changed. A mapping mechanism exists in the hardware platform model
to map the machine names and configurations to the corresponding internal
names in the PIM layer hardware model (See Fig. 3.3). Using abstract
classes and their extension to separate PIM and PSM layers of MDM is
one of the mechanisms that can be used to implement the idea presented
in Fig. 3.3. HTM5 does not restrict software developers from using some
other mechanisms (e.g. Inheritance without the use of abstract classes or
using nested classes or member class objects) to implement this idea. We
have seen in this section the range of Machines that can be represented in the
cloud. In a commercial scenario, these machines are bound to be modified
and replaced. A machine description model separated across the platform
line will ease software change management in both sides of the platform line.
Changes in HTM5 components will not induce major changes in machine
software and vice versa.

62 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

3.2 HTM5 Views

A view by definition is a representation of the system with concerns specific
to a particular stakeholder. In a multi view model it is essential that the
designer should have a clear idea about the scope of a particular view. At
HTM5-CIM layer, the views have separate ARC diagrams. At lower layers,
the views have separate view classes. Every design element actualize some
ideas. In a multi view model, the design ideas cannot be specified at random.
The ideas that a design element represents, has an associated view and that
is where the design element should be specified. In Sections 3.2.1, 3.2.2,
3.2.3, 3.2.4 and 3.2.5 we will present the ideas that are represented by 5
views of the HTM5 meta-model.

3.2.1 HTM5 Structural View

In software engineering, the structural view is generally understood as the
structure of a system being modelled. In standalone software systems, struc-
ture normally means the internal arrangement of a software product. UML
[47] has several diagrams that are used to specify the structure of a system.
Class and Component diagrams in UML specify the internal structure of
entities that constitute a system. Composite structure diagrams and Pack-
age diagrams showcase the logical groupings and collaborations between the
classes. Deployment diagrams specify the hardware used in the system and
the execution environments that different entities operate in. HTM5 struc-
tural view provides structural details for distributed and heterogeneous cloud
robotic systems. Unlike a standalone system, a cloud robotic system is built
on entities which are autonomous and intelligent in design. The structural
view of HTM5 aims to capture the following design elements of an agent
oriented cloud robotic ecosystem:

1. Names, Physical and Relative Locations of the following entities
in a cloud robotic ecosystem:

(a) Machines (as defined in Section 3.1.4)

(b) Components (Agents, Merges and Relations)

(c) Network Clouds

2. The following Information about the above entities:

(a) Associations between Components and their host Machines.

(b) Connections between Components via Network Clouds.

(c) Cardinality of connections when Merges are involved.

3. Following Functionalities should exclusively go in the Structural view
classes of various components:

(a) Localization: Locating one’s position in the cloud ecosystem.

(b) Communication interfaces with associated clouds and agents.

3.2. HTM5 VIEWS 63

(c) Maintaining dynamic connections with other components (Espe-
cially if the component is a Merge).

(d) Communication interfaces with the Host Machine.

(e) Representation of the host machine in the cloud ecosystem.

(f) Generating triggers for Structural Hyperactivity sub-view class.
(Initiation, management or finalization of a Hyperactive link).

3.2.2 HTM5 Relational View

Previously we have discussed the classification of agents in HTM5 based
on their role in the cloud robotic ecosystem. We discussed that although
management of agent relationships by a special agent is a violation of their
autonomy but presence of Relations in HTM5 provides flexibility to the sys-
tem designer. Agents are an extension to the concept of objects oriented
technology, and it is thus normal to see them as a system of entities with
some relationships. The relationships are any kind of meaningful associations
amongst relatives and thus relationship modelling is one important concept
in agent systems. Relations are ideal for modelling Social Concepts (Debtor,
Creditor, Action and Context), Business logic, Institutions [5, 40] and other
Human Concepts [44, 45]. The relational view of HTM5 separates relation-
ship concerns in a cloud robotic system. The relational view of HTM5 aims
to capture the following design elements of an agent oriented cloud robotic
ecosystem:

1. Names and Relative Locations of Relation Components in a cloud
robotic ecosystem.

2. The following Information about the Relationships:

(a) Names of Components in Relationships.

(b) The role different components play in their relationships.

(c) Cardinality of connections around a Relation.

(d) Trade associated to a particular relationship.

3. Following Functionalities should exclusively go in the Relational view
classes of various components:

(a) Localization: Locating one’s position in different relationships.

(b) Maintaining Communication with Relations and Relatives.

(c) Establishing, Maintenance and finalization of Relationships.

(d) Communication and Enforcement of Relationship norms on Trade
logic.

(e) Receiving suggestions from Trade logic on readjustment of Rela-
tionship norms.

(f) Communication and Negotiations (for adjustments in norms of
relationships) with Relations and Relatives.

64 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

(g) Implementation of Social logic of a Component (Functionality re-
lated to social concerns of a particular HTM5 Component).

(h) Implementation of Social logic of the system (Functionality related
to social concerns of the cloud robotic system).

(i) Generating triggers for Relational Hyperactivity sub-view class.
(Initiation, management or finalization of a Hyperactive link).

3.2.3 HTM5 Trade View

Trade view of HTM5 is for modeling the trade logic in a cloud robotic ecosys-
tem. The meta-model proposes a Peer-to-peer service oriented trade mech-
anism managed by Relation agents. For a system designer, it is important
to specify the norms and default trade relationships in these systems. Agent
transactions in such systems follow the cloud computing business logic, but
unlike current cloud robotic systems, these transactions are driven by de-
centralized Relation agents. In Chapter 1 we discussed how a peer-to-peer
cloud robotic system will enable individual robots to offer and avail services
from other robots and auxiliary systems. The traditional client server based
systems can also be modelled using HTM5 but the meta-model is principally
designed to provide tools for an agent driven, peer-to-peer transaction mod-
elling of these systems. In Chapter 2 we discussed that the proposed meta-
model also enables incorporation of cloud computing business logic. Pay-
per-use, dynamic service and demand discovery, actual transfer of money
through banking agents, trust control are all elements of cloud computing
business model. The Trade view is for separating trade concerns. In Section
3.4 we will discuss the modelling of per-to-peer trade using the proposed
meta-model. The Trade view of HTM5 aims to capture the following design
elements of an agent oriented cloud robotic ecosystem:

1. Names and Relative Locations of the following Trade elements in a
cloud robotic ecosystem.

(a) Components (Agent, Relation or Merge) that are involved in Trade.

(b) Items in Trade.

(c) Data entities associated with Trade items.

2. The following Information about the above entities:

(a) Associations between Trade items and Components.

(b) Nature of association between a Trade item and a Component:

i. Item is a Demand by a Component.

ii. Item is a Service provided by a Component.

(c) Entities associated with a Trade item:

i. Components that provide the item as a service.

ii. Components which demand the item.

iii. Data entities which are associated with Trade of the item.

3.2. HTM5 VIEWS 65

iv. The Components (Generally Relations) that are hosting and
managing those data entities.

(d) Nature of various Data entities:

i. Is it a Lookup table?

ii. Is it a cost metric?

iii. Is it a management variable?

3. Following Functionalities should exclusively go in the Trade view
classes of various components:

(a) Localization: Locating one’s position in different transactions.

(b) Identifying relationships associated with a particular trade item.

(c) Implementing relationship norms associated with a trade item.

(d) Implementation of Business logic of a Component (Functionality
related to business concerns of a particular HTM5 Component).

(e) Implementation of Business logic of the system (Functionality re-
lated to business concerns of the cloud robotic system).

(f) Calculating readjustments in relationship norms based on business
logic.

(g) Communicating desired readjustments to relational view classes.

(h) Maintaining data entities associated with a trade item.

(i) Reading and updating of remotely hosted data entities associated
with a trade item.

(j) Generating triggers for Trade Hyperactivity sub-view class. (Ini-
tiation, management or finalization of a Hyperactive link).

3.2.4 HTM5 Hyperactivity View

We discussed in Chapter 2 the adjustments in the concept of agency that
may be required for flexible development of cloud robotic system. We dis-
cussed Hyperactivity as a mechanism to provide a back channel to access
the internal parameters of an agent. In simple terms, Hyperactivity allows
direct modifications in an agent’s internal data, or a forced execution of an
agent’s internal method (Functionality). This is against the autonomy con-
cept in Agency but allows a simple and controlled way to release an agent’s
(Component in general) autonomy to specific agents (Components). The
Hyperactivity view of HTM5 is for modeling of these adjustments in a cloud
robotic ecosystem. The Hyperactivity view in HTM5 is subdivided into 4
sub-views. The separation into sub-views occur at the bottom two layers of
the HTM5 (See Fig. 3.1 and Fig. 3.2). The reasons to separate hyperactiv-
ity concerns in a separate view, and subdivision of this view into 4 sub-views
are as follows:

• To identify design and code segments that are implementing the hy-
peractivity mechanism.

66 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

• To separate design and code segments that are implementing hyperac-
tivity in individual views.

• Hyperactivity gives special outside access to internal variables of a
Component. The mechanism to implement this should be separate
from the regular code to avoid inconsistencies.

• From security point of view, a separate view ensures a managed imple-
mentation of access control mechanism. This is even more important
in agents representing a business interest.

• Subdivision is necessary since the views have their own namespaces,
and there is a chance that a variable name is repeated in different
views.

• Subdivision will also make it easier to implement separate hyperactivity
mechanisms (Chapter 2) for the 4 views.

• Subdivision enhances reusability in view specific hyperactivity classes,
and makes it easier to manage change.

• Subdivision is not essential at the CIM layer. But in systems with
complicated hyperactivity logic, a designer can make separate Hyper-
activity ARCs for the sub-views (Section 3.3).

The Hyperactivity view of HTM5 aims to capture the following design ele-
ments of an agent oriented cloud robotic ecosystem:

1. Names and Relative Locations of the following Hyperactivity ele-
ments in a cloud robotic ecosystem.

(a) Components with Hyperactivity (Hyperactive Components, Chap-
ter 2).

(b) Components with Activity (Active Components, Chapter 2).

(c) Components with No Activity (Passive Components, Chapter 2).

2. The following Information about the above entities:

(a) Hyperactive Associations between Components (Hyperactive Links).

(b) Role of Components in a Hyperactive association (Master or Slave)

(c) Nature of Hyperactive Associations:

i. One Way Hyperactivity: Active Master and Hyperactive Slave.
The hyperactivity mechanism in Active Master does not re-
lease its autonomy.

ii. Two Way Hyperactivity: Two separate one way hyperactive
links exists between a pair of Components. Both are Hyper-
active masters and Hyperactive slaves at the same time.

3.2. HTM5 VIEWS 67

iii. Passive Hyperactivity: Passive Master and Hyperactive Slave.
This is the rare scenario when a hyperactive link originates
from a Passive Component. Passive Components do not have
an update mechanism for their internal control logic but logic
may exist in the hyperactivity mechanism to send hyperactive
inputs across hyperactive link. Hyperactivity mechanism in
a Passive component does not have stored variables as input
(see Fig. 2.3). A simple example of this could be a Boolean
hyperactive variable sent across a hyperactive link when a
passive component boots up (Powered on).

(d) Goal of a Hyperactive Association: At CIM layer, the exact names
and locations of variables accessed by a hyperactive mechanism are
not available. These are specified in the bottom two layers. At
CIM layer, the purpose of a hyperactive association is specified as
an abstract statement (Text).

3. Following Functionalities should exclusively go in the Hyperactivity
view classes of various components:

(a) Localization: Locating one’s position in different Hyperactive as-
sociations.

(b) Localization: Locating one’s activity status (Passive, Active or
Hyperactive).

(c) Reading Hyperactive inputs from associated components.

(d) Implementing Hyperactive inputs from associated components.

(e) Generating Hyperactive outputs for associated components.

(f) Sending Hyperactive outputs for associated components.

(g) Implementing Hyperactivity logic.

(h) Initiation, management and finalization of Hyperactive links (Trig-
gered by the other view classes).

3.2.5 HTM5 Behavioural View

Behaviour modelling in software engineering is one of the principle compo-
nents of system design. A behaviour model of a system specifies the valid
behaviour patterns. In UML [47], behaviour modelling is done through
Interaction, Activity, Use Case and State Machine diagrams. Use Case di-
agrams describe a system’s functionality in terms of actors, their goals and
functional dependencies. Sequence diagrams are a kind of Activity diagrams
in UML which specifies how objects communicate with each other. Sequence
diagrams depict the sequence of messages that translate into a usage scenario
for the system. HTM5’s structural, relational, trade and hyperactivity views
specify the functionalities related to the view concerns. HTM5’s behaviour
view specifies system behaviours that emerge as a result of functionalities
specified in the other 4 views. The event scenarios modelled in HTM5’s be-
havioural view are the net result of individual functionalities specified across

68 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

various views and in different HTM5 Components (Agents, Merges and Rela-
tions). At the CIM layer, the behavioural view specifies the behaviour of the
complete cloud robotic system, while at PIM layer it specifies behavioural
patterns within a Component.

The CIM layer in Behavioural view consists of Use Case and Sequence
ARCs. At PIM layer, there are UML based Use case and sequence diagrams
to specify behaviour patterns within a component. The Behaviour view
class holds functionalities which give shape to behaviour patterns specified
in behavioural view. Functionalities that are not part of any other view, but
are necessary for implementation of behaviour are placed in the behavioural
view classes. The Behavioural view of HTM5 aims to capture the following
design elements of an agent oriented cloud robotic ecosystem:

1. The following Information about System’s behaviour (Inter-Component
Behaviour):

(a) Identifying various Use Cases of the system by Name.

(b) External Actors to a System in various Use Case scenarios.

(c) Internal Actors (Components) associated with Use Cases.

(d) Roles of External and Internal Actors in each Use Case scenario.

(e) The sequence of events, and messages passed between Actors in
all Use Case scenarios.

2. The following Information about a Component’s behaviour (Inter-
View Behaviour):

(a) Identifying various Use Cases of the Component by Name.

(b) External Actors to a View in various Use Case scenarios.

(c) Internal Actors (Views) associated with Use Cases.

(d) Roles of External and Internal Actors in each Use Case scenario.

(e) The sequence of events, and messages passed between Actors in
all Use Case scenarios.

3. The following Information about a View’s behaviour (Intra-View
Behaviour):

(a) Identifying various Use Cases of the View by Name.

(b) External Actors to a Method (Code Unit) in various Use Case
scenarios.

(c) Internal Actors (Method) associated with Use Cases.

(d) Roles of External and Internal Actors in each Use Case scenario.

(e) The sequence of events, and messages passed between Actors in
all Use Case scenarios.

4. Following Functionalities should exclusively go in the Behavioural
view classes of various components:

3.2. HTM5 VIEWS 69

(a) Functionalities that are not directly concerned with any of the
other 4 views.

(b) Functionalities which manage a sequence of events, unless it’s al-
ready specified in any of the 4 other views.

(c) The ’Main’ routine implementation and ’Booting-up’ Views (Be-
havioural view could act as the System Routine, in case the PIC*
or PSC class is not implemented as the System Routine)

(d) Generating triggers for Behavioural Hyperactivity sub-view class.
(Initiation, management or finalization of a Hyperactive link).

3.2.6 Functionalities in PIC*, PIC and PSC Compo-
nent Classes

The view classes for a HTM5 component is enveloped by PIC* or PSC class
when PIC class is Abstract and by PIC class when there is no platform
level separation (See Sections 3.1.2, 3.1.3 and Fig. 3.2). Following are the
functionalities which can exist in these classes apart from functionalities that
they inherit by enveloping the objects of the view classes:

1. The ’Main’ routine implementation and ’Booting-up’ Views.

2. Management of the Host hardware when there is no software layer
between the HTM5 Component and the Hardware.

3. Management of threads when more than one thread are initiated on
the Component.

4. Functionalities that are not modelled at the CIM layer, but were re-
quired to be added at the time of implementation.

5. Code to implement ’Quick Fix’ solutions at the time of testing (or
deployment), without creating disorder in the code for view classes.

A summary of functionalities concerned with the 5 views and the Com-
ponent classes is presented in the Tables 3.1, 3.2 and 3.3 .

70 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Table 3.1: A summary of Functionalities associated with the 5 views and
PIC*/PIC/PSC Classes of HTM5 (PART 1).

Structural View 3.2.1

1. Localization: Locating one’s position in the cloud ecosystem.

2. Communication interfaces with associated clouds and agents.

3. Maintaining dynamic connections with other components (Especially if
the component is a Merge).

4. Communication interfaces with the Host Machine.

5. Representation of the host machine in the cloud ecosystem.

6. Generating triggers for Structural Hyperactivity sub-view class. (Initia-
tion, management or finalization of a Hyperactive link).

Relational View 3.2.2

1. Localization: Locating one’s position in different relationships.

2. Maintaining Communication with Relations and Relatives.

3. Establishing, Maintenance and finalization of Relationships.

4. Communication and Enforcement of Relationship norms on Trade logic.

5. Receiving suggestions from Trade logic on readjustment of Relationship
norms.

6. Communication and Negotiations (for adjustments in norms of relation-
ships) with Relations and Relatives.

7. Implementation of Social logic of a Component (Functionality related to
social concerns of a particular HTM5 Component).

8. Implementation of Social logic of the system (Functionality related to
social concerns of the cloud robotic system).

9. Generating triggers for Relational Hyperactivity sub-view class. (Initia-
tion, management or finalization of a Hyperactive link).

3.2. HTM5 VIEWS 71

Table 3.2: A summary of Functionalities associated with the 5 views and
PIC*/PIC/PSC Classes of HTM5 (PART 2).

Trade View 3.2.3

1. Localization: Locating one’s position in different transactions.

2. Identifying relationships associated with a particular trade item.

3. Implementing relationship norms associated with a trade item.

4. Implementation of Business logic of a Component (Functionality related
to business concerns of a particular HTM5 Component).

5. Implementation of Business logic of the system (Functionality related to
business concerns of the cloud robotic system).

6. Calculating readjustments in relationship norms based on business logic.

7. Communicating desired readjustments to relational view classes.

8. Maintaining data entities associated with a trade item.

9. Reading and updating of remotely hosted data entities associated with a
trade item.

10. Generating triggers for Trade Hyperactivity sub-view class. (Initiation,
management or finalization of a Hyperactive link).

Hyperactive View 3.2.4

1. Localization: Locating one’s position in different Hyperactive associations.

2. Localization: Locating one’s activity status (Passive, Active
orHyperactive).

3. Reading Hyperactive inputs from associated components.

4. Implementing Hyperactive inputs from associated components.

5. Generating Hyperactive outputs for associated components.

6. Sending Hyperactive outputs for associated components.

7. Implementing Hyperactivity logic.

8. Initiation, management and finalization of Hyperactive links (Triggered
by the other view classes).

72 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Table 3.3: A summary of Functionalities associated with the 5 views and
PIC*/PIC/PSC Classes of HTM5 (PART 3).

Behavioural View 3.2.5

1. Functionalities that are not directly concerned with any of the other 4
views.

2. Functionalities which Manages a sequence of events, unless it’s already
specified in any of the 4 other views.

3. The ’Main’ routine implementation and ’Booting-up’ Views (Behavioural
view could act as the System Routine, in case the PIC* or PSC class
is not implemented as the System Routine)

4. Generating triggers for Behavioural Hyperactivity sub-view class. (Initi-
ation, management or finalization of a Hyperactive link).

Enveloping Component Classes 3.2.6

1. The ’Main’ routine implementation and ’Booting-up’ Views.

2. Management of the Host hardware when there is no software layer between
the HTM5 Component and the Hardware.

3. Management of threads when more than one thread are initiated on the
Component.

4. Functionalities that are not modelled at the CIM layer, but were imple-
mentational layer obligation.

5. Code to implement ’Quick Fix’ solutions at the time of testing (or deploy-
ment), without creating disorder in the code for view classes.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 73

3.3 HTM5 Agent Relation Charts (ARCs)

Agent Relation Charts are a set of graphical models which constitute the
CIM layer of HTM5 (See Fig. 3.2 and Fig. 3.3). In 3.1.1 we introduced
different kinds of ARC diagrams and the views associated with each of them.
In Sections 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.2.5 we have discussed the ideas
that are represented by the 5 views of HTM5. The ARCs that are associated
with these views are used to specify the design elements that implement
those ideas. We have taken a ’Object Miner’ Cloud robotic system as an
example to showcase various elements of the ARC diagrams. Attributes of
’Object Miner’:

• Machines:

1. Trader Machines: [Mobile Computers] [Count: Na]

2. Miner: [Mobile Robots] [Count: N = Nc + (Nb1 + Nb2 + Nb3
+. . .+NbNa)]

3. Collector Server: [Web Server] [Count: 1]

4. Agency Server: [Local Server] [Count: 1]

• Network Clouds:

1. Cloud-1: [Local Wireless Network]

2. Cloud-2: [WWW]

• Component Types:

1. Agents: [Miner] [Trader][Collector][Agency]

2. Relations: [R1] [R2] [R3] [R4]

3. Merges: [M1] [M2] [M3] [M4]

• Trade Items: Item: [Available At]=>[Demanded At]

1. Mine Coordinates: [Collector]=>[M1]

2. Cargo: [Trader]=>[Collector]

3. Search Space: [M1]=>[Trader]; [Trader]=>[M4]

4. Cargo Payment: [Collector]=>[Trader]

5. Sub Search Space: [Trader]=>[Miner]

6. Trader ID: [Agency]=>[Miner]

7. Miner ID: [Agency]=>[Trader]

8. Initial Location: [Agency]=>[Miner]

9. Initial Coordinates: [M4]=>[Trader]

10. Miner Salary: [Trader]=>[Miner]

11. Target Minerals: [M4]=>[Miner]

12. Sub Space Hit: [Miner]=>[M4]

74 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

• External Actor: Mine Field

• Trade Data: Item: [Type] [Location]

1. Mineral l Price: [Demand Lookup Table] [R1]

2. Trader ID l Cargo: [Service Lookup Table] [R1]

3. Miner ID l Salary: [Demand Lookup Table] [R4]

4. Mineral ID: [Data entity] [R4]

5. Location l Mineral ID: [Service Lookup Table] [R4]

6. Mined Area % :[Data entity] [R4]

7. Mineral ID l Hz:[Service Cost Metric] [R4]

8. Trader ID l NumMiner:[Demand Lookup Table] [R2]

9. Trader ID l Coordinates: [Demand Cost Metric] [R2]

10. Trader ID l Salary: [Demand Cost Metric] [R2]

11. Miner ID: [Data entity] [R3]

12. Miner ID l Job Status: [Service Cost Metric] [R3]

13. Miner ID l Min. Salary: [Service Cost Metric] [R3]

14. Pipeline Trader ID l Salary: [Demand Cost Metric] [R3]

• See APPENDIX B for a detailed explanation of ’Object Miner’
Project

In this section we will describe different Agent Relation Charts, and the
way they are used to specify design elements as a graphical model. The text
based attributes mentioned above is a abstract and computation independent
description of the ’Object Miner’ Cloud robotic system. These attributes
can be separated in various views using ARC diagrams.

3.3.1 Agent Relation Charts (ARC)

ARC diagrams are for specification of Structural and Relational concerns
of a cloud robotic system. Machines are located and named as Rectilinear
Polygon enveloping the Components that it is hosting. In case a Machine is
hosting only one Component, the enveloping polygon is not drawn. Agents
are represented as Rectangles, Relations as Rhombuses and Merges are rep-
resented as Isosceles triangles. Network Clouds are represented as Circles
and are placed on the Links that are utilising that network(See Fig. 3.4).
Similar Components which do not have complex interactions amongst them-
selves can be represented as one Component in Normalized versions of
ARC diagrams (See Fig. 3.5). Components in a relationship are attached
to different ports of a Relation Component. A comparison of ARC elements
with view concerns is summarized in Table 3.4.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 75

3.3.2 Trade - Agent Relation Charts (T-ARC)

T-ARC diagrams are for specification of Trade concerns of a cloud robotic
system. Components, Services, Demands, Data entities and Trade links are
Named and Located in T-ARC diagrams (See Fig. 3.6). Trade items are as-
sociated to various components as a Service provided by them, or a Demand.
Data entities associated with a Trade item can be of different types. Trade
Data could be implemented as lookup tables, cost metrics or trade variable.
Trade variables are data entities associated to a trade item as demand or
service management variables. The nature of association between a Compo-
nent and the trade item is depicted by the shape of the Item (Angular Box:
Service; Box with one corner truncated: Demand; Parallelogram: Data item
See Fig. 3.6). Data entities associated with Trade items are hosted by the
Relations managing their trade. A comparison of T-ARC elements with view
concerns is summarized in Table 3.6. The implementation of peer-to-peer
trade logic in a cloud robotic system is discussed in the Section 3.4 of this
thesis.

3.3.3 Hyperactivity - Agent Relation Charts (H-ARC)

H-ARC diagrams are for specification of Hyperactivity concerns of a cloud
robotic system. Components, Their Hyperactivity Status, Hyperactivity
Links and Statements about Hyperactivity are named and located in H-ARC
diagrams. A Component is Hyperactive if there is at least one Hyperactiv-
ity link directed towards it. Active Components are depicted by a Star
attached to them in H-ARC diagrams (See Fig. 3.7). Components with no
star attached to them are Passive Components. There are three kinds of Hy-
peractive Associations between HTM5 components. When a one directional
Hyperactive link exists between two components, the starting point of the
link is the Master component and the end point of the link is the hyperac-
tive Slave. In One Way Hyperactive association, the link is from an Active
Component towards a Hyperactive Component. In Two Way Hyperactive
association, two separate hyperactive links exist between a pair of Compo-
nents. The two links are in opposite directions and thus both Components
are Hyperactive Slaves and masters at the same time. The third kind of
Hyperactive association is called Passive Hyperactive association. In Pas-
sive hyperactive association, the hyperactivity link originates from a Passive
Component, towards a Hyperactive Component. Goal of a Hyperactive As-
sociation is specified by Abstract statements (Text) on the hyperactive links.
A comparison of H-ARC elements with view concerns is summarized in Table
3.8.

3.3.4 Use Case - Agent Relation Charts (U-ARC)

U-ARC diagrams are for specification of Behavioural concerns of a cloud
robotic system. Use case Scenarios of System’s behaviour are Named and
Specified in Use Case-ARCs. External Actors to a System are named and
Located and behaviour of Internal Actors are specified in Use Case-ARC dia-

76 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

grams. For every Use Case Scenario, a different U-ARC is built (See Fig. 3.8
and 3.9). Action bubbles are drawn around every interaction link in a Use
Case ARC to specify the intended action between a pair of Actors. U-ARCs
are similar to UML’s Use Case diagrams, but unlike Use Case diagrams, the
Actors are agents representing different machines and not modules within a
software product. A comparison of U-ARC elements with view concerns is
summarized in Table 3.10.

3.3.5 Sequence - Agent Relation Charts (S-ARC)

S-ARC diagrams are for specification of Behavioural concerns of a cloud
robotic system. Use case Scenarios of System’s behaviour are Named and
Specified in Use Case-ARCs. For every Use Case, a Sequence ARC is drawn
to specify the sequence of messages and events associated to the scenario. Ac-
tion sequences are drawn around every Actor in a Sequence ARC to specify
the intended action between a set of Actors (See Fig. 3.10 and 3.11). S-ARCs
are similar to UML’s sequence diagrams, but unlike Sequence diagrams, the
Actors are agents representing different machines and not modules within a
software product. A comparison of S-ARC elements with view concerns is
summarized in Table 3.10.

In this section we presented various ARC diagrams in CIM layer of HTM5
meta-model. A graphical representation of a system’s attributes and sepa-
ration of concerns in 5 views makes ARC diagrams a useful model for agent
oriented development of cloud robotic systems.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 77

Table 3.4: Concerns in Structural and Relational Views of HTM5 and corre-
sponding Design Elements in ARC.(Part 1)

Structural and Relational View Concerns 3.2.1, 3.2.2

Structural View

1. Names, Physical and Relative Locations of the following entities in a cloud
robotic ecosystem:

(a) Machines (as defined in Section 3.1.4)

(b) Components (Agents, Merges and Relations)

(c) Network Clouds

2. The following Information about the above entities:

(a) Associations between Components and their host Machines.

(b) Connections between Components via Network Clouds.

(c) Cardinality of connections when Merges are involved.

Equivalence In ARC Diagrams 3.3.1

1. Machines are located and named as Rectilinear Polygons enveloping the Com-
ponents that they are hosting (e.g. Fig. 3.4E9...E10: ’Collector Server’).

2. Components are located and named as follows:

(a) Rectangles: Agents e.g. Fig. 3.4E1: ’Miner’ Agent

(b) Rhombuses: Relations e.g. Fig. 3.4A5: ’R4’ Relation

(c) Triangles: Merges e.g. Fig. 3.4A4: ’M4’ Merge

3. Network Clouds are located and named as Circles (e.g. Fig. 3.4A3,D8: ’1’ and
’2’ are separate Network Clouds).

4. Components associated to a machine are enveloped by the polygon representing
the machine (e.g. Fig. 3.4E9...E10: ’Collector Server’ hosts 3 Components).
In case the Machine hosts just one Component, the Component itself represents
the Machine.

5. Connections are Lines between Components, marked by the Circle representing
the Network Used (e.g. Fig. 3.4B9: ’Miner’ Agent is connected to ’M3’ Merge
via ’1’ Network).

78 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

F
ig

u
re

3.
4:

A
n

A
R

C
d
ia

gr
am

sp
ec

if
y
in

g
S
tr

u
ct

u
ra

l
an

d
R

el
at

io
n
al

el
em

en
ts

of
a

C
lo

u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

4
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 79

F
ig

u
re

3.
5:

A
N

or
m

al
iz

ed
ve

rs
io

n
of

th
e

A
R

C
d
ia

gr
am

sh
ow

n
in

F
ig

.
3.

4.
T

h
e

N
or

m
al

iz
ed

ve
rs

io
n

of
an

A
R

C
d
ia

gr
am

re
p
re

se
n
ts

a
si

m
p
li
fi
ed

ve
rs

io
n

of
th

e
cl

ou
d

ro
b

ot
ic

sy
st

em
.

M
u
lt

ip
le

in
st

an
ce

s
of

si
m

il
ar

C
om

p
on

en
ts

an
d

M
ac

h
in

es
ar

e
re

m
ov

ed
in

a
n
or

m
al

iz
ed

ve
rs

io
n
.

T
h
is

ve
rs

io
n

is
id

ea
l

fo
r

re
p
re

se
n
ti

n
g

th
e

sy
st

em
w

h
en

co
m

p
on

en
ts

w
it

h
m

or
e

th
an

on
e

in
st

an
ce

(’
M

in
er

’,
’T

ra
d
er

M
ac

h
in

e’
in

th
e

ab
ov

e
ex

am
p
le

)
h
av

e
Id

e
n
ti

ca
l

B
e
h
a
v
io

u
r.

In
ca

se
m

u
lt

ip
le

in
st

an
ce

s
of

a
C

om
p

on
en

t
In

te
ra

ct
ex

te
n
si

ve
ly

w
it

h
ea

ch
ot

h
er

,
a

n
or

m
al

iz
ed

A
R

C
w

il
l

p
ro

ve
le

ss
u
se

fu
l.

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

80 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Table 3.5: Concerns in Structural and Relational Views of HTM5 and corre-
sponding Design Elements in ARC. (Part 2)

Structural and Relational View Concerns 3.2.1, 3.2.2

Relational View

1. Names and Relative Locations of Relation Components in a cloud robotic
ecosystem.

2. The following Information about the Relationships:

(a) Names of Components in Relationships.

(b) The role different components play in their relationships.

(c) Cardinality of connections around a Relation.

Equivalence In ARC Diagrams 3.3.1

6. Cardinality of connections: (e.g. Fig. 3.4B9:’Miner’ Represents ’Nc’ similar
Entities attached to Merge ’M3’; Fig. 3.4Column 4,5,6: ’Na’ Trader Machines
attached to Merge ’M2’).

7. Components attached to a Relation are in a relationship (e.g. Fig. 3.4B10).

8. A Component’s role in a relationship depends on the port at which it is attached
to a relation (e.g. Fig. 3.4A4...A6: ’M4’ Merge is attached to port ’1’ of
Relation ’R4’, and ’Trader’ Agent to port ’2’).

9. Cardinality in Relations: More than 4 links can be attached to a relation provided
they are uniquely identified by their port numbers. Alternatively, to avoid
confusions, the designer may Merge all relatives to a single port (e.g. Fig.
3.4E8: Merge ’M1’ Merges ’Na’ instances of ’Trader’ Agent to port ’2’ or
Relation ’R1’).

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 81

F
ig

u
re

3.
6:

A
T

ra
d
e-

A
R

C
d
ia

gr
am

sp
ec

if
y
in

g
T

ra
d
e

el
em

en
ts

of
a

C
lo

u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

6
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

82 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Table 3.6: Concerns in Trade View of HTM5 and corresponding Design Ele-
ments in Trade-ARC. (Part 1)

Trade View Concerns 3.2.3

1. Names and Relative Locations of the following Trade elements in a cloud
robotic ecosystem.

(a) Components (Agent, Relation or Merge) that are involved in Trade.

(b) Items in Trade.

(c) Data entities associated with Trade items.

Equivalence In Trade-ARC Diagrams 3.3.2

1. Components which are involved in Trade are located in the Trade-ARC (e.g. Fig.
3.6 Components, Services, Demands, Data entities and trade links are Named
and Located).

2. Items in Trade are located as Services (or Demands) in Trade-ARC (e.g. Fig.
3.6C1: Item ’Trader ID’ is a demand while Item ’Sub Space Hit’ is a service
associated with the ’Miner’ Agent).

3. Data Entities are located as Lookup Tables, Cost Metrics or Trade Variables (e.g.
Fig. 3.6D3, B3: ’Miner ID l Salary’ is a Demand Lookup Table; ’Mineral ID
l Hz’ is a Service Cost Metric and ’Mined Area %’ is a Data Entity).

4. Trade items associated with a Component are placed attached to them.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 83

Table 3.7: Concerns in Trade View of HTM5 and corresponding Design Ele-
ments in Trade-ARC. (Part 2)

Trade View Concerns 3.2.3

2. The following Information about the above entities:

(a) Associations between Trade items and Components.

(b) Nature of association between a Trade item and a Component:

i. Item is a Demand by a Component.

ii. Item is a Service provided by a Component.

(c) Entities associated with a Trade item:

i. Components that provide the item as a service.

ii. Components which demand the item.

iii. Data entities those are associated with Trade of the item.

iv. The Components (Generally Relations) that are hosting and manag-
ing those data entities.

(d) Nature of various Data entities:

i. Is it a Lookup table?

ii. Is it a cost metric?

iii. Is it a management variable?

Equivalence In Trade-ARC Diagrams 3.3.2

5. The nature of association between a Component and the trade item is depicted
by the shape of the Item (Fig. 3.6B3).

6. Locations of Data Entities associated with a Trade Item is depicted by their place-
ment. Data entities associated with Trade items are hosted by the Relations
managing their trade (e.g. Fig. 3.6D7: Data entities associated to ’Cargo’
and ’Cargo Payment’ trade items are hosted at ’R1’ Relation).

7. Nature of a data entity may be depicted by their placement around a Relation.
This however can also be achieved by the way they are named (e.g. Fig.
3.6D3, B3: ’Miner ID l Salary’ is a Demand Lookup Table; ’Mineral ID l Hz’
is a Service Cost Metric and ’Mined Area %’ is a Data Entity).

84 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

F
ig

u
re

3.
7:

A
H

y
p

er
ac

ti
v
it

y
-A

R
C

d
ia

gr
am

sp
ec

if
y
in

g
H

y
p

er
ac

ti
v
it

y
el

em
en

ts
of

a
C

lo
u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

8
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 85

Table 3.8: Concerns in Hyperactivity View of HTM5 and corresponding De-
sign Elements in Hyperactivity-ARC. (Part 1)

Hyperactivity View Concerns 3.2.4

1. Names and Relative Locations of the following Hyperactivity elements in a
cloud robotic ecosystem.

(a) Components with Hyperactivity (Hyperactive Components, Chapter 2).

(b) Components with Activity (Active Components, Chapter 2).

(c) Components with No Activity (Passive Components, Chapter 2).

Equivalence In Hyperactivity-ARC Diagrams 3.3.3

1. Components with their Hyperactivity status are located in the Hyperactivity-
ARC (e.g. Fig. 3.7 Components, Their Hyperactivity Status, Hyperactivity
Links and Statements about Hyperactivity links are Named and Located).

2. Hyperactive Components are those attached to a Hyperactive Link directed
towards them (e.g. Fig. 3.7 C1: ’Miner’ is a Hyperactive Agent).

3. Active Components are depicted by a Star attached to them (e.g. Fig. 3.7 E7:
’Collector’ is a Active Agent).

4. Passive Components are depicted by NO Star attached to them (e.g. Fig. 3.7
D6,D7: ’M1’ is a Passive Merge; ’R1’ is a Passive Relation).

5. Hyperactive Associations are depicted by Hyperactive links. Hyperactive links
are links with a Star on them (e.g. Fig. 3.7 D5...D7: A Hyperactivity link
between ’Collector’ Agent and ’Trader’ Agent).

86 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Table 3.9: Concerns in Hyperactivity View of HTM5 and corresponding De-
sign Elements in Hyperactivity-ARC. (Part 2)

Hyperactivity View Concerns 3.2.4

2. The following Information about the above entities:

(a) Hyperactive Associations between Components (Hyperactive Links).

(b) Role of Components in a Hyperactive association (Master or Slave)

(c) Nature of Hyperactive Associations:

i. One Way Hyperactivity: Active Master and Hyperactive Slave. The hyper-
activity mechanism in Active Master does not release its autonomy.

ii. Two Way Hyperactivity: Two separate one way hyperactive links exists be-
tween a pair of Components. Both are Hyperactive masters and Hyperactive
slaves at the same time.

iii. Passive Hyperactivity: Passive Master and Hyperactive Slave. This is the
rare scenario when a hyperactive link originates from a Passive Component.
Passive Components do not have an update mechanism for their internal
control logic but logic may exist in the hyperactivity mechanism to send
hyperactive inputs across hyperactive link. Hyperactivity mechanism in a
Passive component does not have stored variables as input (see Fig. 2.3). A
simple example of this could be a Boolean hyperactive variable sent across a
hyperactive link when a passive components boots up (Powered on).

(d) Goal of a Hyperactive Association: At CIM layer, the exact names and locations
of variables accessed by a hyperactive mechanism are not available. These are
specified in the bottom two layers. At CIM layer, the purpose of a hyperactive
association is specified as an abstract statement (Text).

Equivalence In Hyperactivity-ARC Diagrams 3.3.3

6. Role of a Component in a Hyperactive association is depicted by the Arrow Head of
the link. The link originates from Master, and ends at the Slave Component (e.g. Fig.
3.7 D5...D7: ’Collector’ Agent is Master while ’Trader’ Agent is Slave).

7. Nature of Hyperactive Associations:

(a) One Way Hyperactivity: Fig. 3.7 D4...D7: ’Collector’ is Active, ’Trader’ is
Hyperactive.

(b) Two Way Hyperactivity: Fig. 3.7 D2...D4: ’M4’ is Hyperactive, ’Trader’ is
Hyperactive and a pair of hyperactivity links exists between them.

(c) Passive Hyperactivity: Fig. 3.7 A6...B7: ’M3’ is Passive, ’Agency’ is Hyperactive.

8. Goal of a Hyperactive Association is specified by abstract statements (Text) on the hy-
peractive links e.g. (Fig. 3.7 E2...E4: Hyperactivity link from ’M4’ to ’Trader’ is
associated to the goal of ’Remove Miner Unilaterally’).

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 87

F
ig

u
re

3.
8:

A
U

se
C

as
e-

A
R

C
d
ia

gr
am

sp
ec

if
y
in

g
U

se
C

as
e

’T
ra

d
er

is
A

ll
o
ca

te
d

M
in

er
s’

of
a

C
lo

u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

10
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

88 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

F
ig

u
re

3.
9:

A
U

se
C

as
e-

A
R

C
d
ia

gr
am

sp
ec

if
y
in

g
U

se
C

as
e

’M
in

in
g

P
ro

ce
ss

’
of

a
C

lo
u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

10
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 89

F
ig

u
re

3.
10

:
A

S
eq

u
en

ce
-A

R
C

d
ia

gr
am

sp
ec

if
y
in

g
U

se
C

as
e

’T
ra

d
er

is
A

ll
o
ca

te
d

M
in

er
s’

of
a

C
lo

u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

10
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

90 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

F
ig

u
re

3.
11

:
A

S
eq

u
en

ce
-A

R
C

d
ia

gr
am

sp
ec

if
y
in

g
U

se
C

as
e

’M
in

in
g

P
ro

ce
ss

’
of

a
C

lo
u
d

R
ob

ot
ic

S
y
st

em
n
am

ed
’O

b
je

ct
M

in
er

P
ro

je
ct

’.
(S

ee
T

ab
le

.
3.

10
F

or
D

es
cr

ip
ti

on
).

T
o

R
ea

d
er

s:
O

b
je

ct
s

ar
e

re
fe

re
n
ce

d
in

th
e

th
es

is
te

x
t

u
si

n
g

2
ax

is
re

fe
re

n
ce

s.

3.3. HTM5 AGENT RELATION CHARTS (ARCS) 91

Table 3.10: Concerns in Behavioural View of HTM5 and corresponding De-
sign Elements in Use Case and Sequence ARCs. (Part 1)

Behavioural View Concerns 3.2.5

1. The following Information about System’s behaviour (Inter-
Component Behaviour):

(a) Identifying various Use Cases of the system by Name.

(b) External Actors to a System in various Use Case scenarios.

(c) Internal Actors (Components) associated with Use Cases.

(d) Roles of External and Internal Actors in each Use Case scenario.

(e) The sequence of events, and messages passed between Actors in
all Use Case scenarios.

2. The following Information about a Component’s behaviour (Inter-
View Behaviour):

(a) Identifying various Use Cases of the Component by Name.

(b) External Actors to a View in various Use Case scenarios.

(c) Internal Actors (Views) associated with Use Cases.

(d) Roles of External and Internal Actors in each Use Case scenario.

(e) The sequence of events, and messages passed between Actors in
all Use Case scenarios.

Equivalence In Behavioural-ARC Diagrams 3.3.4, 3.3.5

Use Case ARC

1. Use case Scenarios of System’s behaviour are Named and Specified in Use
Case-ARCs (Fig. 3.8, Fig. 3.9).

2. External Actors to a System are Named and Located (e.g. Fig. 3.9B1:
’Mine Field’ is an external Actor to the ’Object Miners’ System).

3. Internal Actors in a Use Case scenario are Specified in the Use Case-ARC
of the scenario. For every Use Case Scenario, a different U-ARC is built
(e.g. Fig. 3.8 is U-ARC for the scenario ’Trader is Allocated Miners’
while Fig. 3.9 is a U-ARC for the scenario ’Mining Process’).

4. Roles of External and Internal Actors in a Use Case scenario are depicted
with Action Bubbles similar to UML’s Use Case Diagrams (e.g.
Fig. 3.8 D3: An Action Bubble associated to the Components ’M4’
and ’R4’).

92 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Table 3.11: Concerns in Behavioural View of HTM5 and corresponding De-
sign Elements in Use Case and Sequence ARCs. (Part 2)

Behavioural View Concerns 3.2.5

3. The following Information about a View’s behaviour (Intra-View Be-
haviour):

(a) Identifying various Use Cases of the View by Name.

(b) External Actors to a Method (Code Unit) in various Use Case
scenarios.

(c) Internal Actors (Method) associated with Use Cases.

(d) Roles of External and Internal Actors in each Use Case scenario.

(e) The sequence of events, and messages passed between Actors in
all Use Case scenarios.

Equivalence In Behavioural-ARC Diagrams 3.3.4, 3.3.5

Sequence ARC

1. Message Sequences in various Use case Scenarios are Named and Specified
in Sequence-ARCs (Fig. 3.10, Fig. 3.11).

2. External Actors to a System are Named and Located (e.g. Fig. 3.11B1:
’Mine Field’ is an external Actor to the ’Object Miners’ System).

3. For every Use Case Scenario, a different Sequence-ARC is built (e.g. Fig.
3.10 is S-ARC for the scenario ’Trader is Allocated Miners’ while Fig.
3.11 is a S-ARC for the scenario ’Mining Process’).

4. The sequence of events, and messages passed between Actors are depicted
by Action Sequences similar to UML’s Sequence Diagrams (e.g.
Fig. 3.10 E5: Action Sequence shows that the step ’20’ and ’21’ of
the Scenario ’Trader is Allocated Miners’ takes place at the ’Trader’
Agent).

Inter-View and Intra-View Behaviour: These are PIM and PSM layer
entities which are specified using UML’s Use Case and Sequence diagrams
within HTM5’s PIC model.

3.4. HTM5 P2P 93

3.4 HTM5 P2P

In Chapters 1 and 2 we discussed the benefits of agent oriented, peer-to-
peer cloud robotic system. In section 3.2.3 we saw Trade-ARC as a CIM
layer model to specify service oriented trade in a cloud robotic ecosystem.
We saw an example of a cloud robotic system with placement of relations
and merges to manage trade and dynamism in a system of trading robots.
In this section we present a discussion on some mechanisms that need to
be placed in such a system to enable dynamic service discovery, relationship
based trade, contracts and digital institutions. This section discusses these
ideas as possible usage scenarios for HTM5 based meta-modelling. No claims
are being made to show HTM5 as the only implementational methodology for
such ideas. The attempt is more towards understanding technical feasibility
of HTM5 meta-model as a methodology to implement the upcoming ideas in
cloud robotic systems.

We believe most peer-to-peer cloud robotic systems will be dynamic open
systems. The robots and auxiliary systems will trade services based on
short term contracts and their economy will have a concept of money as
well. Robots and auxiliary systems will publish the services they offer to the
ecosystem. These services will be discovered by other robots and auxiliary
systems which based on their business logic will choose a service from a list
of service providers. Like other service oriented open systems, a service dis-
covery mechanism will have to be placed to allow service providers to publish
service advertisements and the quality and cost parameters associated to a
service. Unlike a centralized service exchange, a peer-to-peer system allows a
distributed system to advertise services and demands. In the example from
Section 3.3 (the ’Object Miner’ system), the ’Collector’ Agent is in a trade
relationship with ’Na’ number of ’Trader’ Agents (Fig. 3.6D4. . .D7). The
trade relationship is managed by a relation ’R1’ which hosts a service registry
(Implemented as a lookup table) by the name of ’Trader ID l Cargo’ where
traders publish the information about the service ’Cargo’. Similarly, in the
same relation ’R1’, the ’Collector’ agent publishes in a demand registry (Im-
plemented as a lookup table) to display the list of minerals and the offered
prices. Traders can modify their mining operations when ’Collector’ agent
updates prices of certain minerals. A similar logic exists all over the ’Ob-
ject Miner’ system, for various services managed by various relations. The
traditional cloud robotic and cloud computing services can be included in a
peer-to-peer system by including their service advertisements in distributed
service registries.

The service registry and discovery mechanism is followed by a match-
making mechanism. The matchmaking mechanism could be hosted by the
relation that is managing the registry for the trade item. Special agents could
exist in these systems which are primarily concerned with making matches
between merchants. In the ’Object Miner’ system, the ’Agency’ Agent (Fig.
3.6B7) is an agent managing the matchmaking and registry services between
’Na’ ’Trader’ Agents and ’N’ ’Miner’ Agents. A matchmaking mechanism also
exists at ’R1’ Relation (Fig. 3.6D7) for management of ’Cargo’ Service. We
discussed in Chapter 2 how management of services between two agents by

94 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

an outside entity is a violation of an Agent’s autonomy. An agent, by coming
in a relationship releases this autonomy to the ’Relation’ Agent. The advan-
tage of letting a ’Relation’ manage the matchmaking service is the visibility a
’Relation’ has in the service ecosystem. An agent may be desiged to retain its
autonomy by initiating its own negotiations with other merchants. An agent
may also be designed to use the registry service provided by a ’Relation’
and use that registry to connect to merchants bypassing the matchmaking
mechanism hosted by the ’Relation’. HTM5 is a meta-model that enables
modelling all such scenarios without restrictions. System designers thus are
free to develop their own idea of economy using HTM5 meta-modeling tools.
The registries can be updated by merchants as and when required, thus a
dynamic system can be designed in a cloud ecosystem. The flexibility and
openness in implementation together with the Hyperactivity mechanism and
flexible agency makes HTM5 a methodology that supports heterogeneity in
development of open cloud robotic systems.

In multi agent systems, relationships are relative positioning of agents
in a predefined social construct. An agent joining a relation knows its role
in the relationship. This brings a sense of order in an otherwise chaotic
system. Agents representing various ’Machines’ and business interests have
their personal goals. Being attached to a relation, the agents enter a contract
of assisting in a collective effort towards personal and system goals of all rel-
atives. A ’Relation’ implements a matchmaking mechanism which can also
work as an entity that ensures enforcement of terms in a service exchange.
The mechanisms to monitor or regulate quality of service in a relationship
can be implemented in the ’Relation’ that is managing a service. This is
another advantage of using external entities like ’Relation’ agents to manage
service exchanges between two agents. Cloud computing business logic like
pay per use can be implemented at ’Relation’ agents. Like commercial cloud
computing scenario, Banking and Administrative agents could make cloud
robotic systems a viable business model for commercial use. Banking, Ad-
ministration, Law enforcement and Heterogeneity in design can bring cloud
robotics in the commercial domain just the way they did for cloud comput-
ing. Relation based trade of services and contracts bring a level of trust and
reliability in operations which will be essential in popularizing cloud robotics
as a business possibility. We would like to see HTM5 methodology as a step
in that direction.

Another step towards commercialisation of peer-to-peer cloud robotics is
implementation of dynamic electronic institutions [40, 5]. Institutions repre-
sent a norm based collection of entities. Social, administrative and business
institution shape the way human societies work. Electronic institutions are
norm based multi agent systems that are ideal for modelling social concepts
in agent systems. Institutions may be seen as factors that limit agent and
system functionality, but their constraining effects decrease system random-
ness and make a system more productive in long run. One proposed life
cycle for dynamic electronic institutions proposes a three phase life cycle
(3F life cycle) [40]. The three phases named Formation, Foundation and
Fulfillment take a collection of agents from ’Coalition’ to a norm based ’In-
stitution’. HTM5 can be used to model dynamic electronic institutions by

3.5. HTM5 COMPONENT 95

implementing the lifecycle in individual ’Relations’. An institutional frame-
work will enable trade relations over an extended period bringing stability
in otherwise disordered and greedy behaviour that emerges between trading
parties.

3.5 HTM5 Component

A reusable software component is defined as ”A logical cohesive, loosely
coupled module that denotes a single abstraction” [48]. Components are
deployable entities which can be composed into larger systems. Component
Based Software Engineering (CBSE) [34] is a component based approach
to software development. For past few decades, object oriented software
engineering promotes direct or inherited reuse of classes. Object orientation
is a good practice in software engineering but it doesn’t guarantee reuse.
The principle objective in object oriented software engineering is appropriate
domain representation and not how the objects and classes will be reused.
In CBSE, the goal is to develop connected components at more than one
level which utilize services of runtime infrastructure provided by Component
Model. Following are the levels at which a component driven approach is
implemented:

1. Model Component: A specification or description model for devel-
opment of components.

2. Component: A conceptual entity that can be independently identified
in a system.

3. Class Component: An abstract template for creation of Object Com-
ponent.

4. Object Component: Actual implemented instance of a component
in a running system.

HTM5 has PIC and PSC component models in PIM and PSM layers
(Sections 3.1.2 and 3.1.3, Fig. 3.2). A component in HTM5 is separated
at the platform line. The definition of platform is subject to interpreta-
tion making this separation open to managerial decisions. In HTM5, the
view classes in PIM and PSM layers are also component models. Individual
views can be reused and redeveloped without interfering with the other view
classes. Within a view class, object orientation ensures some level of modu-
larity and reuse. The CIM layer models Inter-Component interactions while
behavioural view in PIM and PSM layers models Inter-View and Intra-View
interactions. One mechanism to implement separation between PIM and
PSM layers of components, view classes and modules within a view class is
to declare platform specific parts as abstract classes. The abstract elements
of the abstract classes can be defined when classes in PSM layer extend the
PIM classes. This however is one of many techniques to implement the sep-
aration across platform lines. Similar techniques can be used in separation
of HTM5-MDM component model (Section 3.1.4).

96 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

Software Components are also defined as a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to composition
by third parties. [49]. Interfaces are groups of related methods that facilitate
a connection between components. These methods specify a contract, seman-
tics, non-functional properties, quality of service and negotiation mechanism.
’HTM5 Components’ (Agents, Merges and Relations) can be interlinked in
standardized interfaces defined by ’Relation’ agents. An interface can be
described by standardized interface descriptors (e.g. Microsoft Interface Def-
inition Language, M-IDL). Interface definition languages are language in-
dependent specification models for interfaces which can be compiled into
language independent skeleton code.

3.6 The HTM5 Domain Specific Language (HTM5-

DSL)

Cloud robotic systems are complicated and heterogeneous systems consist-
ing of several computational entities. Cloud entities are developed by vari-
ous vendors which have their internal developmental methodologies. Cloud
robotics is an extension of cloud computing ideas of sharing resources as a
service across network cloud. To maintain autonomy of cloud entities and
to allow heterogeneity in their design and development, cloud entities may
be linked to cloud network via a software agent. These agents are also re-
sponsible for implementing social and business logic of cloud entities that
they represent. Agent oriented development of cloud robotic system is a
distinct domain and requires tools and methodologies that are suited for its
design and development. For systems with high complexities, a model driven
methodology can be used to simplify the design process. HTM5 is a meta-
model for designing models for agent oriented cloud robotic systems. The key
design drivers behind HTM5 are agent orientation, industrial acceptability,
cloud computing business model and reusability. General purpose program-
ming languages like C++ and Java are not designed to contain features to
aid software development for a particular domain. The current work was
motivated by the need for a domain specific language for software develop-
ment and system design using HTM5 meta-model. HTM5-Domain Specific
Language can be used to codify design made using HTM5 methodology.
The language can be executed to automatically generate code and design
templates for developers of individual cloud entities. These model transfor-
mations generate results in Java and UML which are widely used in software
industry. Availability of a domain specific language and its execution to gen-
erate automated model transformations promote industrial acceptability of
a new development methodology like HTM5.

A General Purpose programming Language (GPL) like Java or C++ does
not have a domain specific syntax. General purpose programming languages
are often supported by function libraries that contain functionalities specific
to a particular domain. Although function libraries bring reusability in the

3.7. HTM5 DOMAIN SPECIFIC LANGUAGE AND AUTOMATED MODEL TRANSFORMATIONS97

development process, their reliance on the general purpose language inhibits
specialized development of applications in a particular domain. A program-
ming language based on a particular meta-model allows developers to encode
models in a syntax specific to their domain. A Domain Specific Language
(DSL) has grammar and syntax that are suited to model based development
in a particular domain. HTML [17] for web page development, VHDL [16]
for electronic hardware, MATLAB [18] for Matrix based computing and SQL
[15] for database systems are popular examples of languages designed for do-
main specific development. In context of model driven development, Domain
specific languages are also documentation tools for designs made following a
particular modelling methodology.

In this Section we present a computation independent, Domain Specific
Meta Modelling Language based on HTM5 meta model. The presented do-
main specific language (HTM5-DSL) is designed for codifying HTM5 based
designs for agent oriented development of cloud robotic systems. An exe-
cutable model or DSL is one that can be executed to generate automated
model transformations (see Fig. 1.2). HTM5 DSL code is executable and gen-
erates automated ”Model to Model” and ”Model to Text” transformations
from HTM5 to UML [47] and Java class hierarchy. Model transformations
help in integration of a domain specific model with standardized development
practices and are important components of Model-driven software engineer-
ing [19, 20].

3.7 HTM5 Domain Specific Language and Au-

tomated Model Transformations

In Chapter 1 we discussed Domain Specific Languages (DSL) and their as-
sociation with meta-modelling methodologies. The aim in development of
a DSL for HTM5 meta-model was to first give domain experts a language
to code according to the meta-model, and later convert the written code
to a general purpose language (GPL, e.g. Java) or a more commonly used
software modelling language (like UML). In cloud robotic systems, individ-
ual components may be designed and manufactured by different vendors. In
these systems, it is necessary that the component models should not im-
pose any restrictions on individual development of functional elements of a
model. Automated Model-to-Text transformations from HTM5-DSL gen-
erate a Java class hierarchy with class components based on HTM5’s PIC
and PSC component models. The Model-to-Model transformations generate
UML class diagrams for these component classes with their inheritance and
object dependencies in place. These template components (Java or UML)
can be independently developed by vendors of different robots and auxiliary
systems.

The benefits of component based approach were discussed in previous
chapters. In this section we present the tool chain developed for HTM5-DSL
and automated model transformations using the example project ’Object
Miner’. ARC diagrams for this example were presented in Chapter 3 of this

98 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

thesis. HTM5-DSL is a CIM layer language which gives a grammar to codify
information and design elements that are presented in the ARC diagrams.
The grammar specification for any language is a set of rules that sets its
syntax. Fig. 3.12 represents syntax rule for specifying a ’HTM5 Compo-
nent’. The grammar of the language is written in Xtext [50] framework
(Fig. 3.13A). HTM5-DSL is a collection of rules to codify ’Machines’ (Fig.
3.14D), ’Components’ (Fig. 3.14E), ’Clouds’ (Fig. 3.14A), ’Trade Items’
(Fig. 3.14B, E), ’Connections’ (Fig. 3.14C), ’Hyperactivity’ (Fig. 3.14E),
’Cardinality’ (Fig. 3.14C, D, E), ’Use Cases’ (Fig. 3.14F) and ’Sequence’
ARCs (Fig. 3.14G). Fig. 3.14 is an example code written in HTM5-DSL.
This code is a representation of the ARC diagrams presented as an example
project ’Object Miner’ in Chapter 3.

HTM5-DSL is an executable language. The HTM5-DSL ’Code Genera-
tor’ is written in Xtend [51] (Fig. 3.13B) and it executes the code written in
HTM5-DSL for automated Model-to-Text (Java GPL) and Model-to-Model
(UML) transformations. The ’Code Generator’ generates PlantUML [52]
script and uses Graphviz [53] graphical visualizer framework to generate
UML diagrams. Fig. 3.15 shows the Java class hierarchy, PIC and PSC
component classes for various elements and UML class diagrams for the ’Ob-
ject Miner’ example project. These are results of automated model transfor-
mations by executing the HTM5-DSL code given in Fig. 3.14. Java GPL
was used as a target for Model-to-Text transformation as Java is an object
oriented language and is widely used in the industry. UML was chosen as
the target for Model-to-Model transformation as UML is an OMG standard
widely accepted and used in the software industry. HTM5-DSL and its model
transformations are still a work in process. Refinements, wide-ranging doc-
umentation and support from open source community are essential to popu-
larize HTM5-DSL and associated tool chain.

3.7. HTM5 DOMAIN SPECIFIC LANGUAGE AND AUTOMATED MODEL TRANSFORMATIONS99

F
ig

u
re

3.
12

:
G

ra
p
h
ic

al
re

p
re

se
n
ta

ti
on

of
a

se
ct

io
n

of
H

T
M

5-
D

S
L

gr
am

m
ar

sp
ec

ifi
ca

ti
on

fo
r

’C
om

p
on

en
t’

ke
y
w

or
d
.

100 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

F
ig

u
re

3.
13

:
A

b
ov

e
ar

e
E

x
ce

rp
ts

of
co

d
e

fr
om

H
T

M
5-

D
S
L

G
ra

m
m

ar
sp

ec
ifi

ca
ti

on
in

X
te

x
t

(A
)

an
d

M
o
d
el

T
ra

n
sf

or
m

at
io

n
s

in
X

te
n
d

(B
).

X
te

x
t

is
u
se

d
to

cr
ea

te
a

d
om

ai
n

sp
ec

ifi
c

la
n
gu

ag
e

(n
am

ed
H

T
M

5-
D

S
L

)
fo

r
C

IM
la

ye
r

H
T

M
5.

T
h
e

X
te

n
d

b
as

ed
C

o
d
e

G
en

er
at

or
is

th
e

b
ac

k
gr

ou
n
d

p
ro

ce
ss

or
th

at
ge

n
er

at
es

m
o
d
el

tr
an

sf
or

m
at

io
n
s

fr
om

a
co

d
e

w
ri

tt
en

in
H

T
M

5-
D

S
L

.
T

h
es

e
au

to
m

at
ed

tr
an

sf
or

m
at

io
n
s

ge
n
er

at
e

P
IM

an
d

P
S
M

la
ye

r
J
av

a
C

la
ss

C
om

p
on

en
ts

(M
o
d
el

-t
o-

T
ex

t)
an

d
U

M
L

(M
o
d
el

-t
o-

M
o
d
el

).

3.7. HTM5 DOMAIN SPECIFIC LANGUAGE AND AUTOMATED MODEL TRANSFORMATIONS101

Figure 3.14: Excerpt of code written in HTM5-DSL for the example project
’Object Miner’. Section ’A’ specifies the cloud networks, section ’B’ specifies
the trade information while connections between components are coded in
section ’C’. The syntax provides cardinality specification for ’Merges’ and
’Relations’. HTM5 components are specified in section E while the machines
which are represented by the components; they are specified in section ’D’.
The behavioural elements of the system are specified by conversion of Use
Case and Sequence ARCs to DSL code (section ’F’, ’G’). The above figure
marks the sections with labels specifying the ARCs (Fig. 3.4, 3.5, 3.6, 3.7,
3.8, 3.9, 3.10 and 3.11) that they represent.

102 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

F
ig

u
re

3.
15

:
T

h
e

ab
ov

e
fi
gu

re
p
re

se
n
ts

au
to

m
at

ed
’M

o
d
el

-t
o-

T
ex

t’
an

d
’M

o
d
el

-t
o-

M
o
d
el

’
tr

an
sf

or
m

at
io

n
s

fr
om

th
e

H
T

M
5-

D
S
L

co
d
e

p
re

se
n
te

d
in

F
ig

.
3.

14
.

T
h
e

tr
an

sf
or

m
at

io
n
s

ge
n
er

at
e

a
H

T
M

5-
P

S
C

or
P

IC
J
av

a
cl

as
s

h
ie

ra
rc

h
y

w
it

h
cl

as
s

m
o
d
el

te
m

p
la

te
s.

C
la

ss
m

o
d
el

s
h
av

e
m

o
d
u
le

s
w

h
er

e
J
av

a
co

d
e

fo
r

in
d
iv

id
u
al

fu
n
ct

io
n
al

it
ie

s
ca

n
b

e
p
la

ce
d
.

T
h
e

ta
rg

et
m

o
d
el

fo
r

’M
o
d
el

-T
o-

M
o
d
el

’
tr

an
sf

or
-

m
at

io
n
s

is
U

M
L

’s
cl

as
s

d
ia

gr
am

s
fo

r
in

d
iv

id
u
al

cl
as

s
co

m
p

on
en

ts
w

it
h

in
h
er

it
an

ce
an

d
ob

je
ct

in
te

rd
ep

en
d
en

ci
es

.
B

ot
h

tr
an

sf
or

m
at

io
n
s

ge
n
er

at
e

te
m

p
la

te
co

m
p

on
en

ts
w

h
ic

h
ca

n
b

e
d
ev

el
op

ed
in

d
ep

en
d
en

tl
y

b
y

st
ak

eh
ol

d
er

s
re

p
re

se
n
ti

n
g

va
ri

ou
s

m
ac

h
in

es
in

th
e

cl
ou

d
ro

b
ot

ic
ec

os
y
st

em
.

3.8. DSL DEVELOPMENT 103

3.8 DSL development

In previous sections of this chapter we have presented the HTM5 domain
specific language (HTM5-DSL) that was developed to support an OMG-
MDA [3] based meta-model (HTM5) for agent oriented development of cloud
robotic systems. During the incremental development of the meta-model
and the DSL, several design choices were made based on the requirements
of their end-users. In this section we present a post-development analysis
of those choices and discuss general lesson that were learned with respect to
developing a domain specific language.

The development of a domain specific language can be seen as a 5 step
process: decision, analysis, design, implementation and deployment [54,
55]. The decision stage is an analysis of the reasons why a DSL should
be developed. In analysis stage, the domain requirements are analysed and
domain specific methodologies are identified that could act as a guide for
the development of the DSL. The design stage conceptualizes the overall
structure, syntax and execution semantics for the DSL. The DSL is then
constructed in the implementation stage followed by its deployment in the
field. In an incremental development model, the DSL features are added
and recalibrated following multiple rounds of the 5 step process. We now go
through these steps one by one with respect to the incremental development
of HTM5-DSL.

The decision stage: As mentioned in previous sections, the HTM5-DSL
is founded on HTM5 metamodel which is an OMD-MDA [3] based
meta-model for agent oriented cloud robotic systems. The two most
common ways in which a meta-model may be objectified are through
an application library or a domain specific language. In the case of
multi-vendor, multi-device and distributed systems like cloud robotic
ecosystems, a domain specific language serves as a better option. The
standardised DSL gives a common communication language for all stake
holders which may have their own independent software development
methodologies. Individual components of a cloud robotic system are
developed and deployed by different vendors. An executable DSL sup-
ported by appropriate model to text (M2T) and model to model (M2M)
transformations is more suited compared to development of application
libraries for every software development methodology.

Another benefit of using a DSL is unlike an application library, a DSL
also works as a design document. This is important since DSL gives a
concrete structure to the designs represented by the meta-model and
is the end-document resulting from the multi-layer development of a
model for the cloud robotic ecosystem. The DSL thus gives a sense
of order to the multi-party distributed development of cloud robotic
system components and can be executed to generate template compo-
nents in another model (e.g. UML) or a general purpose language (e.g.
Java). The importance of a DSL is even more when the meta-model
is multi-view with interlinking inter and intra-view dependencies. For

104 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

the benefits mentioned above, it was decided that a DSL should be
developed to support the HTM5 meta-model.

The other important decision regarding the development of the DSL
was to choose where in the three layers of OMG-MDA (Computation
independent, Platform Independent and Platform specific) the DSL
should be placed. A Computation independent layer DSL was under-
stood to be the ideal choice since it is the most abstract of the three
layers and at this layer, the components are treated as closed entities.
A computation independent DSL design aims to capture the compo-
nent to component dependencies and functionalities in the code, which
is later individually developed by the vendors responsible for the de-
velopment of those components.

The analysis stage: After the decision to develop a computation indepen-
dent DSL was taken, the next step was to identify the elements of the
HTM5 meta-model that need to be included in the DSL. The compu-
tation independent model in HTM5 is a set of ARC diagrams. The
computation independent DSL thus had a clear guide to follow. Fur-
thermore, HTM5 is a 5 view meta-model with clearly identified view
specifications. For the development of the DSL, these view specific
specifications acted as a list of functionalities that needs to be included
in the DSL. In general, the DSL was developed alongside the develop-
ment (and refinement) of the ARCs and followed the identical entity
relationships, parameterization and nomenclature.

The language being developed should be compact, expressive and ef-
ficient since it was meant to be used by domain experts, business
strategists and non-technical personals that may not have any expe-
rience in programming. The language at computation independent
layer should be expressive enough to include all design elements of the
followed meta-model with syntax that resembles a non-programming
language like English. The design of the DSL should be such that the
non-programming language like syntax should not diminish the overall
computational power of the code upon compilation.

The design stage: The computation independent DSL required an abstract
syntax and structure. Like in the HTM5 computation independent
model, the design of the DSL was based on the view specific elements.
Individual elements of the ARC diagrams were identified as entities in
an object oriented methodology. These entities were treated as classes
and every unique instance of these entities as class objects. The individ-
ual entity classes were designed in the DSL followed by the containers
that bring the linkage and hierarchy relationships between the entities.

The syntax for several design elements (of ARC diagrams) was intended
to be a visual representation of their act. An example of this visual
representation can be seen in the shorthand notation for Connection
element which is represented as:
”Connection C1 Comp1 #n# ←− Net1 −→ #m# Comp2”.

3.8. DSL DEVELOPMENT 105

This one line is the syntax to represent a connection named C1 be-
tween n components of type Comp1 and m components of type Comp2
through a cloud network named Net1. The grammar rules to imple-
ment such syntax features were designed keeping in mind the end users
and the decisions made at the analysis stage.

At this stage, it was also necessary to formulate a strategy by which
the DSL code written for different views can be compatible with one
another. Although the entities necessary to codify the ARCs of a par-
ticular view require to be placed together, the project code should have
one common namespace. The use of one common namespace will also
integrate the view specific ARC diagrams into one all-inclusive model.
This is necessary to omit ambiguities especially in projects with several
ARC diagrams built at various iteration of the development process.

Before the DSL syntax and grammar rules are implemented, it was es-
sential to identify the appropriate execution targets for the language.
Executability is not an essential feature for a DSL [55] but for reasons
identified at the decision stage, it was essential to develop an executable
DSL. A DSL may be executed to produce documents, scripts, code in
another language (DSL or GPL) or design in another meta-model. Such
executions are broadly classified into two categories namely model to
text (M2T) and model to model (M2M) transformations. The targets
for the automated transformations were chosen to be Java general pur-
pose programming language (GPL) and Unified Modeling Language
(UML). Java is widely used in the industry and is object oriented pro-
gramming language. UML is the most common modeling language used
for standalone applications and thus is an ideal candidate as a target
for M2M transformation. Since UML is widely used, automated trans-
formations from UML to other common GPLs like C++ and Python
are easily available. Thus a M2T transformation to Java and a M2M
transformation to UML cover a vast spectrum of software development
methodologies that may be used by vendors of individual components
of the cloud robotic ecosystem.

The implementation stage: This is the stage when the DSL is actually
constructed using customized language development tools. In many
cases, these tools are special DSLs that help define the syntax and
compiler for other DSLs. For HTM5-DSL, we used Xtext [50], which
is an open-source framework for development of domain-specific lan-
guages. For an executable DSL like HTM5-DSL, a complete set of
compiler functions are required to be written. We used Xtend [51]
based code generator to write the compiler functions for HTM5-DSL.
These functions are executed while compilation of the DSL code and
generate the M2T and M2M transformations from the DSL code to
Java and UML respectively.

The compiler function for HTM5-DSL is distributed openly with the
language. Keeping the compilation functions open enables end-users to
modify these functions to generate more specific resultant transforma-

106 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

tions in Java and UML. As the compiler is open, new functions may be
added to generate supporting documents or scripts to suit to a vendors
software development requirements. The existence of an executable
DSL and open compiler enhances the interoperability amongst design-
ers of the cloud robotic systems and individual vendors (component
developers). Such a DSL helps increase the overall speed of software
construction as well as system integration. Since it is simpler to pro-
totype a design decision in the DSL code, the executable DSL reduces
the cost and time required for rapid prototyping of system components
and the cloud ecosystem as whole. The design and implementation
of HTM5-DSL thus encourages generative and end-user programming
methodologies.

The deployment stage: The HTM5-DSL developed alongside the HTM5
meta-model was deployed in several case study projects. The feedback
obtained from these studies was used to improve the meta-model and
the DSL. The case studies were designed to test various features of the
meta-model and through them DSL proved its usability as a computa-
tion independent design capture media.

3.9. SYSTEM DEVELOPMENT LIFE-CYCLE 107

3.9 System development life-cycle

This work so far has covered the background, HTM5 anatomy and elements
of HTM5-DSL grammar and implementation. The authors understand that
some parts of the thesis so far were very descriptive and might have appeared
unappetizing to a non-practitioner. To present a clearer perspective to all
readers, this section will go through all important steps in development of
an agent oriented cloud robotic system using HTM5 methodology.

This section is a walk-through the system development life-cycle using
HTM5 design methodology, HTM5 Domain Specific Language and auto-
mated model transformations.

(1) Initiation and system concept development: The initial ideas and
abstract concepts are identified. The system in the idea space is a
verbal concept and often has very limited or no descriptive documen-
tation. The initiator of the concept brings together the stakeholders
(cloud businesses or product vendors) and technology practitioners at
a forum and shares the concept and the benefits it has for the stake-
holders. After the initial brainstorming, a team with representatives
(managing technological and business interests) from all stakeholders
is founded which together work on interdependencies and polishes the
initial concepts.

(2) Identifying structural dependencies: Once the system in the idea
space is well established, the team then moves on to identify depen-
dencies with respect to hardware, physical location, communication
network and scale. Important decision on the scale of operation, the
type of agents (software) that will be hosted at various hardware units,
the relationships that these agents have with other agents are concep-
tualized. At this stage the emphasis is on what is to be made without
going into the mechanics of how these ideas will be implemented.

(3) Identifying trade dependencies: Items and services that will be pro-
vided by various stakeholders are identified and reward mechanisms for
these services are envisioned. Services are also classified as those which
will be backed by contracts and others that will remain open to runtime
negotiations (automated or supervised). Physical locations and scope
of service and demand registries (special agents that manage service-
demand matchmaking) are identified together with open ports where
stakeholders through their respective agents (software) can attach or
detach from a size invariant system (open systems where members can
join or leave dynamically).

(4) Identifying Hyperactivity: The concept of agency in HTM5 is kept
flexible. Along with regular agents, there are passive and hyperactive
agents that deviate from one or more elements of ideal agency. The hy-
peractivity associations between agents and the control that an agent
releases to an external agent are identifies at this stage. This stage re-
quires some insights from the engineers as a deviation from ideal agency

108 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

is often on account of ease of implementation and generalization of un-
necessary bottlenecks. In some development cycles, the hyperactivity
controls may be added in the second design iteration (after the first
version of the system is ready) for implementing quick-fix solutions to
implementation complexities.

(5) Identifying use cases: Envisioning the system as a black-box, the stake-
holders enlist all supported use-cases for the complete system. These
use cases takes the entire system as one unit and external agencies
(other systems or humans) as foreign actors. The use-cases for individ-
ual components of these systems however are not enlisted at this stage.
The component level behaviours are defined later in component level
design.

(6) Computation independent design: The steps above were all part of
the requirement elicitation and analysis for the first iteration of system
development. At this point, the agent oriented design and requirements
are made into the computation independent HTM5 model. At compu-
tation independent layer, the HTM5 has agent relation charts (ARCs)
which are a visual representation of the ideas and design semantics
identified in the previous steps. The initial ARC diagrams may be re-
fined over several brainstorming sessions within the team and later in
second and later iterations of the system development process. The
model (ARC drawings) is design specification as well as requirement
documentation model and thus legal contracts (if any) between the
business stakeholders and product vendors can be made based on the
specifications documented in computation independent ARC designs.

(7) Hardware independent machine description: After the ARC de-
signs are made, the individual stakeholders can design their respec-
tive agent components. In order to separate platform independent and
specific parts of the component design, the component is built in two
stages and with clear separation using abstract class inheritance (or any
other feasible mechanism chosen by individual component designers).
The agent host machine may also have some hardware dependencies
and thus the design elements have to be separated in parts that are
dependent on the actual hardware and the names that are used in the
agent components. The hardware independent elements of the machine
(agent host) are identified and built into a class.

(8) Platform independent component design: The platform indepen-
dent parts of an agent component are separated from the platform
dependent parts by design teams of different stakeholders. HTM5
methodology gives independence to individual stakeholders to design
their component with independence. A stakeholder may decide to keep
bulk of the functionality in platform specific partition if it suits their
internal software development life cycle. The components developed
at this stage are UML based class diagrams (or executable code in

3.9. SYSTEM DEVELOPMENT LIFE-CYCLE 109

HTM5-DSL) which can later be developed as working code segments
in a general purpose programming language (GPL).

(9) Platform specific component designs: The platform specific designs
may be described with little or no implementation details at the first
design iteration. These designs need to be modified as and when there
is a platform level change. The platform specific component design is
the most frequently altered items in the complete agent oriented cloud
system.

(10) Hardware specific machine description: The machines that an agent
is representing in the cloud ecosystem may change with time or may
have some firmware updates. To manage these changes with limited
effect on the overall design of the system, the machine are separately
represented in HTM5 as hardware independent and dependent model
classes. This part of the design is also updates very frequently like the
platform specific component designs mentioned above.

(11) Writing executable code in HTM5-DSL: As mentioned above, a
stakeholder may decide to develop its agent component directly in a
general purpose language or UML. Otherwise, the system level design
team may take the computation independent HTM5 model (ARC di-
agrams) and using a domain specific language (HTM5-DSL) writes a
corresponding computation independent code for that. The executable
code written by the system design team can now be executed to gener-
ate template classes and designs for individual components via model
to model and model to text transformations.

(12) Automated model transformations: As mentioned above, the ex-
ecutable code written in HTM5-domain specific language can be exe-
cuted to generate template classes in Java programming language or
equivalent UML design classes. Java is a popular general purpose pro-
gramming language used in the industry hence a template class in java
that already has interconnections and elements to handle cloud interde-
pendencies could serve as a good starting point for development teams
of individual stakeholders. Stakeholders who do not use Java for their
internal development processes can utilize the UML template classes
at their starting point. The UML template classes can be processed
manually (or via model to code transformation) to generate an object
oriented code in several commonly used general purpose programming
languages. Such UML to code transformations are commonly available
in the industry since UML is a worldwide standard as a component
description and specification model.

(13) Vendor side product development: Starting from the template classes
(Java or UML), the development teams at various stakeholders inde-
pendently develop their agent components. As the development process
has a template class and ARC designs to start with, the development
teams are free to choose their internal development methodology. This

110 CHAPTER 3. 5 VIEW HYPERACTIVE TRANSACTION META MODEL

is beneficial since involvement of a business or product vendor in a
cloud project should require minimal changes in its internal software
development apparatuses. This flexibility to add/delete agency con-
cepts and independence in internal component design process makes
HTM5 comparatively an easier model to adapt to.

(14) System integration and testing: Once the components are individ-
ually developed and tested at various development sites, the compo-
nents are pairwise tested against the design and behaviour test-cases
specified in the AR charts. Once individual demand-supply pairings are
tested, the system can run several dependencies in parallel and start
the system testing against the system use-cases specified in the ARC
model.

The development of systems of such scale and diversity is an incremental pro-
cess. The second and further iterations for system development build upon
the system designed after the initial iteration.

In the next section of this thesis we present some of the case study experi-
ments and a workshop conducted over the last 3 years to test the feasibility
and viability of the HTM5 meta model and its corresponding domain specific
language (HTM5-DSL). The objective of these studies was to improve the
proposed model through feedback and usage and to present a defense to the
major claimed benefits of the HTM5-DSL and the HTM5 methodology.

Chapter 4

Case Study Projects

4.1 NAO Telerobotics

This case study illustrates the usage of the proposed HTM5 methodology for
a typical cloud robotic system. This is a simple telepresence application for a
humanoid robot supported by a number of auxiliary devices. The humanoid
robot in our system does not have localization capability. Three roof mounted
cameras provide their feed as a service to camera reading computers. These
computers then locate the robot in their respective camera feeds and offer
the location as a service to a manager computer. The manager computer
combines the information coming from these sources and provides direction
and location as a service to the humanoid robot. The manager computer is
connected to a web server across the internet cloud which runs a secure access
telepresence service for the humanoid robot. Computers and Mobile devices
around the world can register to the service and access the robot. The robot
can be directed to a particular location in its workspace by the remote users.
Once reached, the robot performs a set of actions as directed by the remote
user and sends images or information as a service to the remote clients. The
whole system is location independent and is a simple but adequate example
of a cloud robotic system. Table 4.1 describes various machines in the
’Telerobotics On Nao’ cloud robotic system while Fig. 4.1 gives a structural
overview of the system without using any HTM5 representations.

111

112 CHAPTER 4. CASE STUDY PROJECTS

T
ab

le
4.

1:
A

d
es

cr
ip

ti
on

of
va

ri
ou

s
M

ac
h
in

es
in

th
e

’T
el

er
ob

ot
ic

s
O

n
N

ao
’

cl
ou

d
ro

b
ot

ic
sy

st
em

.
M

a
ch

in
e

C
o
u
n
t

L
o
ca

ti
o
n

D
e
v
e
lo

p
m

e
n
t

P
la

tf
o
rm

O
p

e
ra

ti
n
g

S
y
st

e
m

N
A

O
H

u
m

an
oi

d
R

ob
ot

>
=

1
U

T
P

,
M

al
ay

si
a

N
ao

Q
i

O
p

en
N

ao

IP
C

am
er

a
3

U
T

P
,

M
al

ay
si

a
E

m
b

ed
d
ed

E
m

b
ed

d
ed

C
am

er
a

R
ea

d
er

P
C

2
U

T
P

,
M

al
ay

si
a

P
y
th

on
G

P
L

,
O

p
en

C
V

W
in

d
ow

s

M
an

ag
er

P
C

1
U

T
P

,
M

al
ay

si
a

P
y
th

on
G

P
L

,
N

ao
Q

i,
X

M
L

L
in

u
x

W
eb

S
er

ve
r

1
G

o
og

le
,

U
S
A

G
o
og

le
A

p
p

E
n
gi

n
e,

A
J
A

X
C

u
st

om
iz

ed
L

in
u
x

M
ob

il
e

P
h
on

e
m

N
ew

D
el

h
i,

In
d
ia

A
J
A

X
,

H
T

M
L

A
n
d
ro

id
,

S
y
m

b
ia

n
,

Io
s

M
ob

il
e

D
ev

ic
e

N
-m

U
B

,
F

ra
n
ce

A
J
A

X
,

H
T

M
L

W
in

d
ow

s,
L

in
u
x
,

M
ac

O
S

4.1. NAO TELEROBOTICS 113

F
ig

u
re

4.
1:

S
tr

u
ct

u
ra

l
O

ve
rv

ie
w

of
’T

el
er

ob
ot

ic
s

O
n

N
ao

’
S
y
st

em
.

114 CHAPTER 4. CASE STUDY PROJECTS

The case study comprises of three main steps.

1. Designing the system using HTM5 Methodology.

2. Executing the HTM5-DSL code to generate a UML model for various
Components in the system.

3. Independent development of system Components at various Machines.

The peer-to-peer trade in the ’Telerobotics On Nao’ system is not based
on predefined contracts or institutionalization. There is no actual transfer
of money in the system and the services are not governed by measurement
of Trust or Quality of Service. This is a scalable system with provisions
to include any number of NAO robots, cameras and clients in the system.
Automatic initialization of new members however is implemented only for
clients and not for robots or cameras. In view of the cloud robotic concepts
presented in this work, this case study is a simplified one. The Machines
in this case study (see Table 4.1) have different development platforms,
operating systems and locations. A variety of services dependencies exist in
the system between various peers. Hyperactivity is extensively used to suit
easy implementation. The heterogeneity and practical use of hyperactivity
in the system makes this a simple but representative case study for HTM5
and cloud robotic systems. Following are details of step by step development
of ’Telerobotics On Nao’ system.

4.1.1 The Initial Ideas

The first step towards development of any system is a collection of ideas for
an application. The ideas for a system need a representation in form of a
textual or graphical sketch. The ideas that emerged for a ’Telerobotics On
Nao’ system were roughly jotted down in a set of graphical representations
like the one shown in Fig. 4.1. The ideas in early brainstorming are abstract
and crude. The aim at this stage is to understand the overall theme of the
system. The next step is to migrate from the idea domain to a model for the
system.

4.1.2 Creation of CIM model using Agent Relation
Charts

The rough ideas about the system were now converted to a computation
independent model using ARC diagrams. In Model based development, the
ideas are represented using guidelines set by a meta-model. A good model not
only helps in representation of ideas but it is a tool to assist in development
of ideas about the system. The most essential anatomical elements of the
’Telerobotics On Nao’ system design are ready by the end of this step. Fig.
4.2 and Fig. 4.3 wrt the ARC diagrams developed for ’Telerobotics On Nao’
system. ARCs can be drawn using most generic drawing software. We used
’Open Office Draw software [56] for drawing these ARC diagrams. Open
Office Draw is an open source software for making drawings and charts.

4.1. NAO TELEROBOTICS 115

Figure 4.2: ARC and Normalized ARC Diagrams for ’Telerobotics On Nao’
System.

4.1.3 Encoding the CIM model in HTM5-DSL

Once the CIM layer model is ready, HTM5-DSL is used to encode the model
in an executable form. The domain specific language HTM5-DSL has CIM
layer abstraction. Fig. 4.4 shows excerpts from the code written in HTM5-
DSL for ’Telerobotics On Nao’ system.

116 CHAPTER 4. CASE STUDY PROJECTS

4.1.4 Creation of PIM layer UML model for various
components

In previous steps we specified system level views and identified components.
The functional and behavioural specification within a component is done in
two phases. In first phase UML use case and sequence diagrams for inter and
intra view interactions are specified (see Fig. 3.2). Platform independent
components of a component are specified at this stage using UML. Platform
specific elements of view classes are only partially specified in the first phase.
In the second phase, extended specification of platform specific elements is
done when component classes are independently developed by various ven-
dors.

4.1. NAO TELEROBOTICS 117

F
ig

u
re

4.
3:

T
A

R
C

,
H

A
R

C
,

U
A

R
C

00
2

an
d

S
A

R
C

00
5

D
ia

gr
am

s
fo

r
’T

el
er

ob
ot

ic
s

O
n

N
ao

’
S
y
st

em
.

118 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.4: Excerpt of code written in HTM5-DSL for ’Telerobotics On Nao’
System. Section ’A’: Cloud networks, Section ’B’: Trade Information, Section
’C’: Machines, Sections ’D’ and ’E’: Behavioural Elements and Section ’F’:
HTM5 Components. The code is executed to generate Java Class components
(Model-to-Text) and UML class model (Model-to-Model). Section ’G’ is the
component directory structure generated as a result of code execution.

4.1. NAO TELEROBOTICS 119

Figure 4.5: Excerpt of UML Class Components generated by execution of
HTM5-DSL code (Model-to-Model Transformation).

4.1.5 Execution of DSL code to produce Java and UML
component classes

The DSL code for the system is executed to generate Java class hierarchy
and UML class components. Fig. 4.4G and Fig. 4.5 show results of these
model transformations.

120 CHAPTER 4. CASE STUDY PROJECTS

4.1.6 Refinement of component classes

The component classes generated by executing a HTM5-DSL code contains
specification for only the essential framework. This is because HTM5-DSL
is at the computation independent layer and does not include specifications
made at the PIM layer. Before the component classes are dispatched to
various vendors, the classes may be refined by adding some of the PIM func-
tionalities. The classes may also be refined by adding appropriate comments
in the code making them more readable. Some class diagrams in Fig. 4.5 are
examples of refined components which include elements from the PIM layer
model. Once the component classes (Java or UML) are finalized, the develop-
ment enters its second phase where the component classes are independently
developed for the machines they represent.

4.1.7 Independent development of Components respec-
tive Machines

The automated transformations and refinements generate Java class compo-
nents or UML design for view and component classes. As various machines
have different development platforms and operating systems, the Java and
UML designs may be converted to a language more suited for machine’s
development platform.

1. Cam Reader Machine: The Cam Reader Agents were hosted on a
windows machine and a Python programming platform. Python is a
widely used GPL and it is designed to enable programmers to express
concepts in fewer lines of code. The Cam Reader Agent reads a video
stream from the cameras and extracts location of the Nao Robot. Ev-
ery instance of Cam Reader Agent generates a part of the information
about the location and offers it as a service to the Location Merge.
For processing of the incoming video stream, OpenCV library was uti-
lized. The component class generated in first phase of the development
was available in both UML and Java. Like Java, Python is an object
oriented high level language. One possibility to utilize the first phase
designs could be to start from scratch and use UML design to build the
Cam Reader component. Since automated conversion from Java com-
ponent classes to Python is readily available, we converted the Java
component classes to an equivalent Python code (Text to Text trans-
formation). Python platform is more present in research domain while
Java is more towards Industry. Python is a good balance between a
high and a low level language and is ideal for video and image process-
ing functionality required in Cam Reader component. Java component
classes will be more usable in an industry setup, this was the rea-
son Java and not Python was chosen as the target for Model-to-Text
transformations from HTM5-DSL. Fig. 4.6A shows a segment of the
developed Cam Reader class in Python. Development of components
is an independent software engineering process. Vendors develop in-
ternal documentation to manage their product, which in this case is

4.1. NAO TELEROBOTICS 121

Figure 4.6: Excerpt of Component classes developed independently at var-
ious Machines. A: Cam Reader Agent developed in Python. B: Software
specification documents for Image processing functionalities at Cam Reader
Computer. C: MAN Agent developed at the Manager Computer. D: Con-
figuration file written in XML. The file contains network and interface con-
figurations for MAN Agent. E: Represents interactions of Web Server Agent
hosted on Google’s Infrastructure with other Agents and Database Servers.

122 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.7: A: Client Agent developed using Google App Engine. Human
users can connect to the Web Server through the Client Agent to access
’Telerobotics On Nao’ system. B: The graphical user interface at the Client
Agent. Location of the Nao Robot is updated to the human user as it moves
towards a target location specified by the user. C: Human user specifies the
action that has to be performed once the robot reaches the target location.
An image (a portrait posted on the wall) is sent back as feedback along with
result of face recognition algorithm performed on the image. D: Development
of Nao Agent using choreograph, NaoQi and OpenNao platforms.

4.1. NAO TELEROBOTICS 123

a component class and supporting functionalities. Fig. 4.6B shows a
section of the documentation for the image processing functionalities
that support the Cam Reader component class.

2. Manager Computer: Like in the case of Cam Reader Agent, the
MAN Agent was developed by automatically converting the Java com-
ponent into equivalent Python code. The class was then developed to
add functionalities and configurations. XML based configuration files
were used to specify communication interfaces with Web Server, Cam
Reader computer and Nao Robot. XML is a markup language that
defines a set of rules in a format suited for Internet applications. Fig.
4.6C shows a section from the Python code for the MAN agent and
Fig. 4.6D is part of the configuration file written in XML.

3. Web Server: The Web Server for ’Telerobotics On Nao’ system was
implemented using Google’s App Engine. App Engine is a service
provided by Google to develop cloud applications on Google’s Infras-
tructure. Fig. 4.6E is the functional representation of the Web Server
and how it connects to other components and Database infrastructure
hosted by Google. The Web Server represents Google’s server banks in
the ’Telerobotics On Nao’ system. It also represents the server side of
the AJAX application that the Client Agent utilizes to connect to the
’Telerobotics On Nao’ system.

4. Client Agent: The Web Server agent connects to the human users
through Client Agents. Users can connect to the Web Server by logging
on to the system and accessing the graphical user interface provided
by the Client Agent. Fig. 4.7A shows a section of the code written
on Google App engine to implement the Client Agent. A user first
specifies the target location by clicking on the workspace map and
specifies the action a robot should perform once it reaches the location.
Image frames from the three cameras locates the robot and its path
is updated on the workspace map (Fig. 4.7B). Once the robot reaches
the target location, it performs the action specified by the user. The
user is updated with action logs on robot’s status, the robot may be
ordered to take an image of the target and use its face recognition
algorithm to identify the person in the image. In robot’s workspace,
we posted portraits on the walls. Fig. 4.7C shows the image sent to
the Client Agent as the action feedback. The system can be accessed
from anywhere since it is connected to the internet. At one time only
one user can access the system, though system can be scaled up to add
more robots and more instances of the Client Agent.

5. NAO Humanoid Robot: NAO Agent is developed using Choreo-
graph, NaoQi and OpenNao development platforms provided by Alde-
baran Robotics (Developers of Nao Humanoid robotic platform). MAN
Agent sends instructions to the NAO Agent, guiding it through the
workspace (avoiding obstacles) towards the target location specified by
the human user (through Client Agent). Fig. 4.7D shows one of the

124 CHAPTER 4. CASE STUDY PROJECTS

sequenced on Choreograph that developes the functionality associated
with the NAO Agent.

4.1.8 Component and system testing

As components are developed independently, they are first tested at the
vendor site. Test cases for components and system are made based on the
behavioural designs made in CIM and PIM layers. Once the components
are debugged and tested for all test case scenarios, components are tested in
pairs. The testing is done in increments and in the end the whole system is
tested against test cases based on behavioural ARC diagrams.

The above case study is a good usage scenario for the HTM5 methodology.
We saw that various machines in the system had different developmental
processes. This is true for any cloud robotic system since the robots and
other auxiliary systems are different in terms of their hardware and software
constructs. We saw that HTM5 methodology unifies the top layer design
of a heterogeneous cloud robotic system without imposing constraints on
development of individual components. We believe that the proposed HTM5
methodology can be scaled up from this case study to more complex and
extensive cloud robotic systems.

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 125

4.2 Dynamic Electronic Institutions

Cloud computing is a business model for the internet. A typical scenario
of cloud computing has a serving party that offers its infrastructure, plat-
form or software resources to one or many clients across the network cloud.
Cloud service businesses charge their clients based on the quality and vol-
ume parameters chosen as and when required by the client. Service contracts,
banking and administrative mechanism created the trust envelop that made
cloud computing business model a success. When we move the ideas of cloud
computing to robotics, there are two kinds of adaptations that will take
place. The first kind of adaptation will involve direct modification of cloud
services to suit robotic applications while the second kind of adaptation will
be on the lines of social and business ideas represented by cloud comput-
ing. We believe that this second kind of adaptation will require special tools
and development methodologies. Cloud robotic entities include all robotic
and non-robotic entities that collectively build a cloud robotic service ecosys-
tem. Using software agents to represent cloud robotic entities will require
minimal changes in the way those entities are independently developed by
various vendors. Agents are also ideal for implementing social and business
concerns of a cloud robotic entity. HTM5 is a 5-view meta-model for model
driven development of agent oriented cloud robotic systems. The trade view
of HTM5 promotes peer-to-peer exchange of services based on relationships
and contracts between participating agents. Agents are autonomous entities
with personal goals that may make them greedy in their interactions with
other agents. Dynamic Electronic Institutions are modelled on the ideas of
Institutions in Human societies. Norms based on trade contracts, social rela-
tionships and institutions bring a sense of order in multi agent systems. The
aim of this study is to test feasibility of HTM5 methodology in implementing
Dynamic Electronic Institutions.

4.2.1 Dynamic Electronic Institutions

Human societies are amalgamation of several norm based institutions that
give order to otherwise random interactions. Institutions are structures based
on mutual incentives based on predefined contracts. Social, political and
economic institutions represent the norms of a society and interactions of its
members. Institutes establish standardization in response from a member
entity which, in absence of an institution, is free to act solely for its own
benefit. Institution helps in controlling the greediness of individual entities
and brings order to a system [61]. Electronic Institutions are a relatively
new field where the concept of human institutions is extended to Multi Agent
Systems (MAS) [4, 5, 6] and Distributed Artificial Intelligence (DAI) [9].
Some early attempts towards the use of organizational metaphors for system
modelling systems were presented in [62, 63]. The first approach towards
electronic institutions was given in [35] where an abstract notion of agent-
mediated electronic institution was introduced for the first time. These in-
stitutions are described as environments where agents are interacting with
other agents under predefined restrictions. An institution is specified by a

126 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.8: 3F Life cycle of a Dynamic Electronic Institution. The three
phases are in order: Formation, Foundation and Fulfilment. Re-Formation
and Re-Foundation processes are also within the 3F life cycle.

set of pre-defined norms that restrict actions of its member agents. The idea
of an electronic institution is very open and various groups [37, 38, 39] are
working on this problem with different perspectives. Electronic institutions
require limited human intervention for institution design phase. In open
agent systems, it is necessary to automate the design phase of institutions.

The term Dynamic Electronic Institutions first appeared in the roadmap
for agent technology [5]. Dynamic Electronic Institutions are Electronic
Institutions where formation, reformation and dissolution of institutions are
automated processes. The norms and objectives of institutionalization are
dynamically adapting to the needs of its member agents. Fig. 4.8 shows
the 3-F life cycle of an institution proposed in recent works [40, 41]. Re-
Formation and Re-Foundation processes are also incorporated in the 3-F life
cycle.

• Formation: Agents with similar objectives come together to form a
coalition. A coalition is usually not governed by a set of norms, but
trust between agents may play a part in the coalition formation phase.
Any logic that governs coalition formation between a set of agents is
their Formation logic.

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 127

• Re-Formation: Re-formation is the process of reconfiguring a coalition.
A reformation may be triggered by change in coalition membership or
a change in parameters responsible for coalition formation.

• Foundation: The member agents in a coalition choose a candidate In-
stitution to form. The norms of the candidate institution are based
on collective views of individual members of the coalition. Once the
target institution is selected, the coalition goes through institutional-
ization to form an institute of the selected type. This step presents
a lot of challenges as selection of the kind of institution and mainte-
nance of institution-base requires a well-defined strategy. In theory,
any strategy that assigns an institute to a group of agents (based on
their collective decision parameters) is qualified as a Foundation Logic.

• Re-Foundation: Re-foundation is the process of reconfiguring an insti-
tution. A reconfiguration may be triggered by a change in environment
variables or a foundation-timeout value set by Foundation logic (at the
time of institution foundation).

• Fulfilment: The member agents in an institute dissolve into individual
free agents when the institute completes all its objectives. An insti-
tute may also fulfil when triggered by a fulfilment-timeout value set by
Foundation logic (at the time of institution foundation). Like founda-
tion, fulfilment is also a challenging logic to device. The decision may
be based on weighted percentage of collective goals of member agents,
or time elapsed since institution foundation / re-foundation. Fulfilment
logic is usually devised at foundation state when the institute candidate
is selected by Foundation logic.

4.2.2 Dynamic Electronic Institutions in Cloud Robotics

There are many application domains where Dynamic Electronic Institutions
(DEIs) are applicable. In agent oriented cloud robotics, DEIs are applicable
in tasks involving a contract based cooperation amongst ad-hoc teams. Col-
laboration between agents which were not originally programmed to work
together is examples of Ad-Hoc teams. Common scenarios where DEIs are
used are Ad-Hoc mobile networks, B2B electronic commerce and OOTW (op-
erations other than war) scenario. For the current thesis we will concentrate
on B2B electronic commerce as a scenario for agent oriented cloud robotic
system. Following the 3F life cycle in B2B electronic commerce, following
analogy was proposed by [40, 41].

• A Digital B2B electronic commerce ecosystem: Agent Community

• A Business Opportunity: Coalition

• Digital Business Ecosystem (DBE): Dynamic Institution

128 CHAPTER 4. CASE STUDY PROJECTS

The aim of the DEI scenario mentioned above is to find new opportunities
to exchange services amongst member agents. Formation of a coalition repre-
sents a viable service exchange (a business opportunity). When the member
agents agree upon a set of norms to execute the service exchange, it is rep-
resented as foundation of an institution. Fig. 4.9 shows an example where
DBE is applied to an agent oriented cloud robotic ecosystem. Individual
cloud entities may have different hardware and software setup. Each of these
entities may have a business owner and set of offered services. An approach
based on representative agents ensures that heterogeneity in business logic,
design methodology and implementation of these products is respected. In a
real life scenario, it may be required to have a minimal human involvement
in the 3F life cycle (see Fig. 4.8). A proposal by [40, 41] advocates a 7 step
life cycle where human decision makers are involved at two stages (when a
business opportunity is detected and when a contract needs acceptance) to
validate business opportunities detected by the DBE system.

Steps of the DBE lifecycle [40, 41] :

1. Search of opportunities (Formation Logic)

2. Analysis of opportunity by business owner (Validation I, Optional)

3. Coalition establishment (Formation and Re-Formation Phase, Re-formation
will require re-validation)

4. DBE selection (Foundation Logic)

5. Acceptance by business owner (Validation II, Optional)

6. DBE establishment (Foundation and Re-Foundation Phase, Re-foundation
will require re-validation)

7. DBE Finalization (Fulfilment Phase)

4.2.3 Dynamic Electronic Institutions in HTM5

In the previous section we saw the steps in a DBE lifecycle and its applicabil-
ity in the cloud robotic domain. HTM5 [58, 59, 60] is OMG-MDA [3] based
meta-model for development of agent oriented peer-to-peer cloud robotic sys-
tems (See Chapter 1). The meta-model is designed to provide tools to im-
plement advance distributed Artificial Intelligence (DAI) designs in a cloud
robotic ecosystem. In this section we discuss the tools and anatomical ele-
ments of HTM5 that are utilized to implement a Digital Business Ecosystem
based on Dynamic Electronic Institution.

Fig. 4.10 shows an example of a Dynamic Electronic Institution with
two institutions. The HTM5 methodology allows for special agents called
Relations that maintain the relationships between groups of agents. For the
example shown in Fig. 4.10, the relations are designed to act as Institution
seeds. No anatomical change is required in HTM5 to use HTM5 relation
construct as Institution seeds. An institution between groups of agents can

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 129

be seen as a special kind of relationship. In HTM5, the norms and rela-
tionship variables of a relationship are hosted and managed by the Relation
agent. When HTM5 is used to implement Dynamic Electronic Institutions,
the variables, formation and foundation logic may be hosted in institution
seeds (which are relation agents). For ease of implementation, an institution
may be implemented as two separate agents. In Fig. 4.10, the Manager
agent along with InsA relation and M4 merge are all hosted at one machine.
It is possible to implement the logic of all three components (Manager, InsA
and M4) onto one agent but separation and placement of machine functional-
ities into agent, merge and relation specific parts is encouraged in HTM5. In
Fig. 4.10 Part II is a normalized version of the ARC diagram shown in Part
I. Part III is the Trade-Agent Relation Chart (Trade-ARC) that defines the
following trade relationships and dependencies between members of Sandbox
cloud robotic ecosystem.

Trade relationships and dependencies:

1. Trade Search Space is a service provided by Trader to Manager and
assigns a search space in the mine for the Manager.

2. Trade Sub Search Space is a service provided by Manager to Miners
and assigns a section of the search space (allocated to the Manager) to
the Miner.

3. Trade Sub Space Hit is the notification service from the Miner agent
when it detects the target mineral. This service is a demand at Manager
agent.

4. Trade Initial coordinates locates the found mineral in the mine field.
This service is a demand at Trader agent.

5. Trade Miner Salary is the payment that a Miner agent receives in
exchange of the mineral locations it delivers to the Trader agent. The
service is a demand at the Bank agent which transfers the amount from
Trader’s to Miner’s account.

6. Trade Cargo is a service by the Trader agent to the Market where it
sells the acquired mineral locations.

7. Trade Cargo Payment is the payment that a Trader agent receives
in exchange of the mineral locations (Cargo) it delivers to the Market
agent. The service is a demand at the Bank agent which transfers the
amount from Market’s to Trader’s account.

8. Demand Lookup Table Miner ID — Salary is a lookup table to
get the desired salaries (Trade: Miner Salary) by individual Miner
agents.

9. Demand Lookup Table Mineral — Price is a lookup table to get
the prices of different minerals (Trade: Sub Space Hit) by individual
Trader agents. A Miner agent chooses its target mineral based on the
current price of minerals.

130 CHAPTER 4. CASE STUDY PROJECTS

10. Demand Cost Metrice Mined Area Pc. Is a trade variable to check
the percentage of mine’s area that is already explored. This is a metrice
to know when to allocate a new search space (Trade: Sub-Search
Space) to individual Miners.

11. Service Lookup Table Trader ID — Cargo is for the trade Cargo
Payment and is used by the Market agent to initiate cargo payments.

12. Institution InsA is an institution between one Manager agent, one
relation InsB, one Bank agent and Nm Miner agents. The institution
manages the allocation, reallocation and management of mine spaces
for individual Miners and allows for dynamic updating of a Miner’s
asking salary based on inputs from Bank (Miner’s current bank balance)
and Market Server (updated prices of different minerals).

13. Institution InsB is an institution between one Market agent, one rela-
tion InsA, one Bank agent and Nt Trader agents. The institution man-
ages the allocation, reallocation and management of Cargo items for
individual Traders and allows for dynamic updating of a Trader’s ask-
ing price for individual minerals based on inputs from Bank (Trader’s
current bank balance) and President Machine (updated percentage of
Mined area).

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 131

Figure 4.9: Example of Digital Business Ecosystem (DBE) in an Agent Ori-
ented Cloud Robotics environment. Agents are independent software entities
that represent a robotic/non-robotic entities in cloud robotic ecosystem. In-
dividual cloud entities may have different hardware and software setup. Each
of these entities may have a business owner and set of offered services. Some
online server banks may have a number of contributors which build up a re-
source (like algorithms and other internet resources) which is then offered as
a service to other entities through cloud. An open registry and matchmaking
service allows peer-to-peer trade of these services in cloud robotic ecosys-
tem. The network cloud itself may have many private and public networks,
some of which may be owned by businesses that allow their use as a service.
Banking super agents (Agents with special access norms) allow actual trans-
fer of money between agents. Other super agents may be present to enforce
law, quality, communication and trade standard over the agent community.
Development life cycle of cloud robotic products may differ from vendor to
vendor. Business model of organisations that deploy these products may also
differ. Individual entities may enter or exit the ecosystem dynamically and
their behaviour may change with time. An approach based on representative
agents ensures that heterogeneity in business logic, design methodology and
implementation of these products is respected.

132 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.10: An example of Dynamic Electronic Institutions implemented
using HTM5 methodology. Above are Agent Relation Charts (Computation
Independent Layer of HTM5) for structural, relational and trade views of
HTM5. The sample project Sandbox is a Digital Business Ecosystem example
with two institution seeds. Part I of Figure is a full ARC diagram of the
Sandbox system while part II is its normalized version. There is multiple
numbers of Miner and Trader agents in the system. Part III models trade
dependencies in Sandbox cloud ecosystem. Peer-to-Peer trade relationships
exist between members of a relationship (here relationships are modelled as
Institutions). Institutes (Relation Agents) manage trade within an institute
and host service and cost lookup tables along with other trade data items.
Social and business logic of an Institute is implemented at relation agents.
Detailed description of ARCs and HTM5 anatomy can be found at [57, 58,
59, 60]. The above example locates elements of Digital Business Ecosystem
in a HTM5 based implementation.

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 133

Figure 4.11: Above are some instants from Dynamic Electronic Institutions
based Digital Business Ecosystem simulations. Part I shows a colony of
BOTs (Agents) randomly moving in an environment. There are seed BOTs
which are not moving and they act as the open ended joining point for other
BOTs to form a coalition or an institution. Part II shows some of the seeds
in Formation phase (3F life cycle) while some of the groups have formed
a coalition and are now in Foundation phase. Part III shows formation
of eight Institutions of different cardinality and type. Some of the groups
are in Formation or Re-Formation phase. In going from Part III to Part
IV two institutions have moved to Re-Foundation phase while one of the
institutes (of Type I in Part III) has finalized freeing its member BOTs.
All simulations are run with different experimental conditions and against
different Market trends. When institutions are not allowed to be formed, the
groups come together without setting up a set of norms and are dissolve as
soon as a minimal number of member BOTs are unhappy with the current
market direction/trend. Part V shows sample graphs of market values over
a period of 5000 event steps. The results of running the experiment without
institution formation are matched to the scenario where institutions can be
formed. The profits of all BOTs are visually inspected at the end of the
experiment in graphs shown in Part VI and VII. ARC designs, analysis of
experimental results and a scaled down version of simulation experiments on
physical TurtleBOTs is presented in Fig. 4.12 and Fig. 4.13.

134 CHAPTER 4. CASE STUDY PROJECTS

4.2.4 The Experiments

The case study for the use of HTM5 methodology in developing a Dynamic
Electronic Institution based Digital Business Ecosystem was executed in two
phases. In the first phase computer simulations using VisuaBOT [64] and
VBA [65] were developed for conducting various experiments on the agent
colony. Economic comparisons were made between agent colonies working
with and without dynamic electronic institutions. In the second phase, a
scaled down version of the experiments performed on the simulations were
implemented on five physical robots (TurtleBOTs [66]). The principle moti-
vation for these case study experiments is to show HTM5’s feasibility in im-
plementation of a Dynamic Electronic Institution based cloud robotic ecosys-
tem. This section discusses the system design, experiments, results and key
observations. HTM5 is proved to be a usable methodology for this imple-
mentation since the experiments were performed using anatomical and design
constructs prescribed by HTM5. Fig. 4.11 shows some instances from the
simulated experiments. Fig. 4.12 Part I and II show the physical TurtleBOT
robots on which the scaled down versions of the experiments were performed.
The Agent Relation Charts for simulated and physical experimental setup is
shown in Fig. 4.12 Part III, IV. Due to a lower number of physical robots,
the physical experiments were based on location based institution seeds. This
is unlike the simulated experiments where institution seeds are assigned to
agents and not their parking locations. Some run time videos of the simula-
tion experiments and experiments (as part of HTM5 feasibility studies) on
the physical TurtleBOT robots are available at [67].

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 135

Figure 4.12: Part I and Part II of the above Figure shows the TurtleBOT
setup for a scaled down (5 BOTs 3 location based seeds) version of Dynamic
Electronic Institutions based Digital Business Ecosystem. Part III shows an
Agent Relation Chart for the experiments on the VisualBOT simulator. All
agents are running in the simulator environment (no real hardware) and the
seeds are labelled by default. Part III shows ARC for a scenario with 99 BOTs
of which 12 are seed BOTs. For experiments on real robots (TurtleBOTs), the
seeds were based on the parking location of a robot. TurtleBOT Agents were
running on individual TurtleBOT robots while Merge MB, Relation InsA,
Market and Bank agents were running on a Desktop computer connected
to TurtleBOTs through wireless LAN (WiFi). Part IV shows the modified
ARC diagram from Part III for real life experiments. Control variables for the
simulator experimental setup were varied to get a mix set of usage scenarios.
Part V shows values for number of BOTs, number of Seed BOTs (Seed
bots are designated BOTs that initiate institution formation. Other BOTs
attach themselves to a seed BOT when the process of coalition/institution
formation starts), length of Experiment and the kind of market variation
pattern (generated based on a random integer as a seed input) used for all
15 experiments. The detailed textual outputs of these 15 experiments are
presented in Fig. 4.13. Parts VI, VII, VIII, IX, X and X of the above image
are graphical representations of some pair of result variables.

136 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.13: A Figure showing the table of aggregated results from the 15
experiments performed with varying controls on simulated Agent ecosystems.
EoW: End Of World in event units of time. Bnk t0 and Bnk EoW are com-
bined Bank balance of all agents in an agent ecosystem. Advantage is the
additional profit that the use of institutions brought to an agent ecosystem
(All Positive means it is always advantageous to use institutions in cur-
rent environmental setting). Number of sets (working groups) is the number
of coalitions established during the experiment when institutes cannot be
formed. When institutes can be formed, the number of Sets is the number
of unique institutions formed (Re-Foundation counts as a new institute).

4.2. DYNAMIC ELECTRONIC INSTITUTIONS 137

Institution Election and Maintenance of Institution Database :
In the foundation phase of the 3F life cycle of a Dynamic Electronic Institu-
tion, member agents of a coalition negotiate amongst themselves to choose
a type of institution. The mechanism can be implemented in many ways of
which Case Based Reasoning and Meta-Institute approach are most common
[40]. For our experiments we have adopted a mixed approach where every
Institute in the institute-base (a database of institutions) has a feature vector
(a sequence of variables) that specifies the financial and social parameters of
a particular institution (e.g. Institution size, Measure of institution’s intent
to stay in a falling market, Measure of an institution’s will to not sell at low
profit and aim for a higher profit in a raising market). When an agent is
defined, it has its own feature vector that specifies financial and social pa-
rameters that an agent is happy with. In the foundation (or re-foundation)
phase, the feature vectors of all the member agents of a collation are com-
bined to form a mean feature vector. The mean feature vector is compared
with the feature vectors of all the institutes in the institution base and the
institute whose feature vector is closest to the mean feature vector is chosen
for institution formations. Any institution with high performance is given
additional weightage in the institution database. The feature vectors of in-
stitutions and the list of institutions in the database are thus dynamically
adapting to the market values and profit trends (One element in the feature
vector is the reputation of a particular institution type).

Variability in experiment control variables : We performed a num-
ber of different experiments on the agent colony of which 15 are presented as
this case study. Fig. 4.12 Part V shows the variation in control parameters
for the 15 experiments. Fig. 4.13 shows the control variables and results of
these experiments in a tabular form. The control variables are: (1) Number
of BOTs (agents) in the agent colony, (2) number of seed BOTs, (3) the time
for which an experiment is allowed to run and (3) variation in market values
(Fig. 4.11 Part V shows one of the 15 different market variation patterns
used for the experiments). Fig. 4.12 Part VI to XI and Fig. 4.13 are
graphical and tabular representations of outputs of these experiments.

Key Observations :

1. Fig. 4.12 Part VI shows that profit of the agent community is always
greater when they operate with institutions. This is also visible by
absence of any negative value in the Advantage column in Fig. 4.13.

2. Fig. 4.12 Part VII shows that average profits of agents are always
greater when they operate within institutions irrespective of the size of
the agent community.

3. Fig. 4.12 Part IX shows that the number of working groups is very high
when agents do not operate with institutions. This is due to greedy
nature on individual agents which force a working group to dissolve
when their personal goals are not fulfilled. Institutions on the other
hand are very low in number as they are dissolved when a collective
decision is made.

138 CHAPTER 4. CASE STUDY PROJECTS

4. Another observation from Fig. 4.12 Part IX shows that the number of
working groups with institutions have fluctuations of greater magnitude
with changing market patterns (as institutes are less sensitive to minor
fluctuations in market trend).

5. Profit per working group is mostly higher in the case of institutions
(Fig. 4.12 Part X and columns Profit per Set in Fig. 4.12).

6. Fig. 4.12 Part VIII shows that the working groups sustain for longer
duration when they operate as institutions (More work hours per work-
ing group). The peak in Experiment 12 suggests that the man hours
per working group go higher as experiments run for longer duration
(Experiment 12 is the longest experiment).

7. With a few exceptions, an institution based ecosystem gives more profit
per work hour (Fig. 4.12 Part XI).

Profits tend to be greater in general with institutions as unlike coalitions,
institutions decide on the dissolution rules at the beginning of institution
formation. In coalition, whenever an agent is not happy with the current
market trend, it can leave the coalition leading to the dissolution of the
complete coalition. In institutions, none of the member agents has any power
over when an institute will dissolve (after the institution starts to function)
thus the institutions are in general not susceptible to greedy behaviours of
individual agents. Another factor that leads to greater profits in institution
based economy is since the popularity of an institution is also a factor in its
selection; a profitable institution structure is more probable to be chosen for
institution formation.

4.2.5 Conclusion and future direction

In this work we presented Dynamic Electronic Institutions (DEI) implemen-
tations in HTM5 meta-model for agent oriented development of cloud robotic
systems. Digital Business Ecosystem (DBE) is one application domain of dy-
namic electronic institutions in cloud robotic colonies. HTM5 meta-model
is designed for including distributed artificial intelligence designs on cloud
robotic ecosystems. Peer to peer trade based on relationships between agents,
representing heterogeneous cloud entities in the cloud using agents, an OMG-
MDA based three layered design and its domain specificity makes HTM5 an
suitable methodology for development of agent oriented cloud robotic sys-
tems. The case study, examples and discussions presented in the current
thesis give sufficient evidence that HTM5 is a feasible methodology for im-
plementing complex trade and institution logics on a cloud robotic system.
The complete HTM5 model, a domain specific language supporting HTM5
and a case study specific for peer to peer trade variability in HTM5 is cur-
rently submitted to well-known journals. The next step in this direction is
to test the methodology in real life industrial projects and to improve the
model by industrial feedback. A detailed user guide and a graphical design
interface for HTM5 based designing is also currently under development.

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 139

4.3 Peer-to-Peer Cloud Trade Ecosystem

Cloud robotics is a general term to specify the use of cloud in robotic ap-
plications. Cloud is a term used to represent computer networks and thus
any application where robotics utilizes a computer network to connect with
other network entities is a cloud driven robotic application. It is important to
remember that cloud computing is not a new computing or network technol-
ogy. Cloud computing is a business model and a methodology that utilized
existing technologies in a particular manner. Cloud computing is the busi-
ness of offering one’s resources to entities across the cloud at a price that is
regulated by quality and quantity of utilized resource. When cloud robotics
emerges as a new domain, it not only adapts existing cloud computing ser-
vices but also adopts the cloud computing business model. A methodology
for development of cloud robotic systems should have provisions to express
and implement business ideas represented by cloud businesses. HTM5 is a
meta-model that is designed for agent oriented development of cloud robotic
systems. The HTM5 methodology has 5 views of which the Trade-view has
models for specifying designs for peer-to-peer services oriented trade in cloud
robotic ecosystems. In this work we first explain the anatomical elements in
HTM5 that support peer-to-peer trade in cloud robotic systems. We present
a case study implemented using HTM5 methodology that studies behaviour
of simulated robot colonies deploying peer-to-peer trade. A scaled down ver-
sion of these experiments were repeated on physical robots. The motivation
behind the current work is to showcase HTM5 as a feasible meta-model for
design of peer-to-peer, service oriented trade in agent oriented cloud robotic
systems.

Cloud computing is the current generation of internet computing which
is currently evolving to become a peer-to-peer system where every cloud
entity is a potential service provider [68, 69]. The next generation peer-to-
peer cloud computing will give rise to a business ecosystem where entities in
a cloud could freely share their resources as services without a centralized
cloud server. Peers provide resources to other peers and reduce cost and
dependency on original service provider. Addition of new peers increase
the demand of existing resources but they also contribute to the pool of
resources shared between all the peers. Most robots are entities that are
capable of performing a physical action. In essence every robot is a potential
service provider and a peer-to-peer cloud robotic framework is a more suitable
methodology for robots working in a common physical environment. The
shift from the current client-server like cloud robotics to peer-to-peer cloud
robotics will enable robotic ecosystems to avail cloud resources as well as
contribute to the pool of cloud based services. Service oriented peer-to-peer
cloud robotic methodologies could emerge to a whole new sub-domain in
multi-robot systems and Distributed Artificial Intelligence (DAI) [9] systems.
Design and development of these systems will require special design tools,
meta-models [2] and development methodologies.

”Software Agents are computational entities with specific roles and per-
sonal objectives working in a visible environment with other entities which
may have dissimilar roles and objectives” [8]. Agents are by design better

140 CHAPTER 4. CASE STUDY PROJECTS

suited to implement dynamically evolving business logic and thus represent-
ing business interests of cloud robotic entities through representative agents
is an attractive proposition. Agent oriented cloud robotic systems also pro-
mote inclusion of Dynamic Electronic Institutions [37, 38, 39, 35] and Digital
Business Ecosystem (See Fig. 4.9) [40, 41] in a cloud robotic ecosystem
further enhancing the usability of the approach.

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 141

Figure 4.14: The above figure shows cloud entities in the ”Mine Cloud”
cloud robotic system. ”Mine Cloud” is a simulated agent colony representing
robotic and non-robotic entities in a digital business ecosystem implemented
on a cloud robotic system. The physical robots form short term collabo-
rations to extract minerals from the mine. Miner BOT are robots which
select a target mineral based on the current market prices and searches for
that mineral ore in the mine field. Once the Miner BOTs detects the tar-
get mineral, it then hires a Digger BOT from a pool of available digging
robots based on their ground speed, service delay (digging time) and cost of
service parameters. Once the mineral is dug up, another service discovery
and matchmaking mechanisms associates Miner BOT with a suitable market
(based on offered price) and a Transporter ROBOT (based on ground speed,
loading and dumping time and cost of service). The transfer of money is man-
aged by a banking agent which transfers service fee from one agent account
to another. All service providers advertise their quality and cost parameters
in respective registries hosted on relation agents. The point of comparison
in this experiment is profits made (and system’s mining productivity) using
a peer-to-peer trade mechanism against fixed teams of collaborating agents.
The case study however primarily tests HTM5 as a feasible meta-model for
implementing peer-to-peer and fixed-team based trade methodologies.

142 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.15: Above is one of the 5 different kinds of Agent Relation Charts
(ARCs) that constitutes the computation independent layer of HTM5 meta-
model. Above ARC specifies the structural and relational aspects of ”Mine
Cloud” cloud robotic system. Above ARC specifies the physical and relative
locations of different HTM5 components (Agents, Relations and Merges). Re-
lationships between agent groups and open ports to the system are depicted
by Relation and Merge agents respectively. The system simulates two differ-
ent kinds of public clouds namely WWW and GSM. Cardinality of different
agent groups is depicted by a number by their side. Relational cardinality
(relative positioning of related agents around a relationship) is depicted by
a numbered port at which they attach to a relationship.

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 143

Figure 4.16: Above is the Trade-Agent Relation Chart (T-ARC) for the
”Mine Cloud” cloud robotic system. The structural and relational elements
of this system are specified in the ARC diagram shown in Fig. 4.15. The
Trade-ARC specifies the trade dependencies in the peer-to-peer service econ-
omy. Services, demands, lookup tables (Service LT, Demand LT), cost met-
rics (Service CM, Demand CM), agent indexes and trade variables are spec-
ified with respect to each trade item in this peer-to-peer trade ecology. Spe-
cial Relations (e.g. Discovery, Pay Antenna) manage service discovery and
matchmaking mechanisms and are assisted by several open ended Merges
(Mail Merge, Locator) to allow dynamic teams.

144 CHAPTER 4. CASE STUDY PROJECTS

4.3.1 Peer-to-Peer Trade modelling in HTM5

In Chapter 1 of this thesis we discussed the advantages of peer-to-peer
cloud robotics over a traditional client-server like model. We believe that
a typical cloud robotic system will have elements of both peer-to-peer and
client-server mechanisms. A meta-model designed for modelling such systems
should enable specification of both kinds of design elements. HTM5 meta-
model by itself does not inhibit or endorse a particular kind of trade model.
HTM5 has 5 different views (models that separate a particular kind of design
concern) of which the trade view is designed to support both peer-to-peer
and a traditional client-server based trade model. In this work we present
the anatomical elements of HTM5 that enable peer-to-peer trade modelling
based on relationships and contracts between groups of agents.

HTM5 classifies its agents in three main categories. Agents which repre-
sent a cloud entity in the cloud ecosystem is a regular Agent (represented by
rectangles in Agent Relation Charts) while agents which exist in the system
to serve a managerial purpose are given special names and graphical rep-
resentations. Agents which may/may not represent a cloud entity, but are
managing relationships between other agents are called Relational agents or
Relations. Relations are represented by rhombuses in Agent Relation Charts
and host social and business logics of a relationship. Two or more agents may
be attached to relation agents directly or through a Merge agent. Merges or
merge agents are special agents which are ports to which new agents can join
a cloud robotic system. The primary functionality of Merges is to manage
the flow of messages between agents and manage the open [7] system char-
acteristics. All three kinds of HTM5 agents (Agents, Relations and Merges)
are further classified as Active, Passive or Hyperactive. This classification is
based on the degree to which an agent’s autonomy is released to other agents
and the extent of object like character they exhibit. For the scope of current
thesis, further discussion on Hyperactivity characteristics is extraneous.

Implementing cloud computing business logic in cloud robotic systems
will require a mechanism for relationship based trade contracts. Out of all
available services, an agent may have a business compulsion to prefer or reject
certain service providers. Business logics of business owners that deploy
cloud entities will require a place to exist in the system. These dynamically
evolving transaction controls can be hosted in an agent’s trade view class or
at the Relation agent that is managing an agent’s trade with other agents.
Advance trade concepts like Digital Institutions [37, 38, 39, 35] and Digital
Business Ecosystem [40, 41] could also be implemented through Relation
agents. An open system [7] is a system where third party entities can plug
in and join the system. In an open system the entities are free to join or
leave the system at will. In HTM5, open systems can be implemented using
Merges. An open cloud robotic system could define ports at which agents
can dynamically join or leave the system. In HTM5 such ports could be
implemented using Merges. Merges could be used to specify Ad-Hoc open
systems with an unknown number of third party entities. Merges could also
be used when within a known system, agents switch positions in relationships.
The concepts and implementation of Relations and Merges is very flexible and

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 145

can be used to specify any kind of trade or social dynamics. HTM5 by itself
does not inhibit or endorses any particular trade methodology and provides
generic tools and structure that can be used to specify any logic.

A vital functionality that can be implemented at HTM5’s Relation agents
is the service discovery and matchmaking mechanism. Peer to peer trade
in cloud robotic systems will require distributed locations where service
providers could advertise their services along with their associated costs and
quality parameters. As relationships between trading parties are managed
by Relation agents, it would be preferable to implement service registries and
demand-supply matchmaking mechanisms on the Relation agents. Relation
and Merge agents have more visibility in the cloud ecosystem since they are
connected to a number of other agents and act as open ports. For this reason
Merges and Relations are also ideal for hosting agent indexes and other trade
related data items. Lookup tables for services and demands; distance, speed
and quality related cost metrics and other trade variable are suitably hosted
at associated Relation and Merge agents.

4.3.2 Case Study Experiments

Following are the key motivations, methods and precautions associated to
these case study experiments:

1. The primary objective of this case study was to test the feasibility of
HTM5 meta-model as a design methodology for implementing complex
trade methodologies on agent oriented cloud robotic systems.

2. The method chosen to achieve the primary objective was to implement
a cloud robotic system that implements Peer-to-Peer trade methodol-
ogy with multiple trade items, service and demand advertising, service
discovery, matchmaking and banking mechanisms.

3. Once the system was designed and implemented using HTM5 method-
ology, the secondary objective was to compare Peer-to-Peer trade method-
ology with some other popular methodology.

4. In this work, a Peer-to-Peer methodology for trade amongst cloud
robotic entities is described as an open [7] system with multiple ser-
vice providers publishing services which are matched to demands by
several other cloud entities. We assumed that examining such a system
against a system with fixed trade relationships (fixed teams) would be
interesting.

5. Comparison of peer-to-peer trade methodology to any other methodol-
ogy is a relatively subjective study as every methodology is suited for
a particular scenario, ground rules and implementational realities. The
observations presented in this section are based on the data collected
in 32 test cases and for a particular trade environment. The authors do
not claim that these results will stand valid for all trade environments
in real world. The baseline idea is to implement complex trade logics

146 CHAPTER 4. CASE STUDY PROJECTS

on cloud robotic systems using HTM5 methodology, empowering its
claim as a usable methodology for cloud robotic systems.

For the case study experiments, we envisioned a cloud robotic system
named ”Mine Cloud” with several robotic and non-robotic entities (see Fig. 4.14).
Figures 4.15 and 4.16 are HTM5’s computation independent meta-models
for system level design specification. Computer simulations for the first part
of the case study were implemented using VisuaBOT [64] and VBA [65]
toolboxes. Fig. 4.17 shows some elements of the simulating environment
created for the case study. For the second part, a scaled down version of the
simulated environments were implemented on a colony of five TurtleBOTs
[66] (see Fig. 4.18). Some run time videos of the simulation experiments
and experiments on the physical TurtleBOT robots are available at [67].

Following are the list of elements that constitute the ”Mine Cloud” cloud
robotic system: (Refer to Fig. 4.14, 4.15, 4.16 and 4.17) Physical
Entities:

1. Miner Robots x Nb

2. Digging Robots x Nd

3. Transporter Robots x Nt

4. Base Transceiver Station (BTS) Computer x Na

5. Bank Server

6. Market Server x Nm

7. Discovery and Matchmaking Server

HTM5 Components:

1. 1 Antenna Agent Hosted at BTS Station Computer

2. Nb Miner BOT Agents Hosted on Miner Robot

3. Nb Locator Merges Hosted on Miner Robot

4. Nt Transporter BOT Agents Hosted on Transporter Robot

5. Nd Digging BOT Agents Hosted on Digging Robot

6. 1 Bank Agent Hosted at Bank Server

7. Nm Market Agents Hosted at Market Server

8. 3 Discovery Relations Hosted at Discovery and Matchmaking Server

9. 1 Pay Antenna Relation Hosted at Discovery and Matchmaking Server

10. 7 Mail-Merge Merges Hosted at Discovery and Matchmaking Server

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 147

Cloud Networks:

1. WWW Between [Discovery and Matchmaking Server] and [Market Server];
[Discovery and Matchmaking Server] and [Bank Server]

2. GSM Between [Discovery and Matchmaking Server] And [Miner Robot];
[Discovery and Matchmaking Server] And [Transporter Robot]; [Dis-
covery and Matchmaking Server] And [Digging Robot]; [Miner Robot]
And [BTS Station Computer];

Trade Items: Item:[Served By]–[Demand At]

1. Assisted Global Positioning System (AGPS) Location Info :[Antenna]–
[Miner BOT]

2. Assisted Global Positioning System (AGPS) Usage Fee :[Miner BOT]–
[Antenna]

3. Digging Fee :[Miner BOT]–[Digger BOT]

4. Transport Fee :[Miner BOT]–[Transporter BOT]

5. Mine Plot Location :[Miner BOT]–[Transporter BOT]

6. Market Location :[Miner BOT]–[Transporter BOT]

7. Transport Service :[Transporter BOT]–[Miner BOT]

8. Transported Ore :[Transporter BOT]–[Market]

9. Digging Service :[Digger BOT]–[Miner BOT]

10. Money Transfer :[Bank]–[Miner BOT, Market]

11. Mineral Of Interest :[Market]–[Discovery]

12. Mineral Payment :[Market]–[Miner BOT]

Trade and Matchmaking Data:

1. Antenna Index

2. Miner Index

3. Market Index

4. Transport-BOT (T-BOT) Index

5. Digger-BOT (D-Bot) Index

6. Market X Price (Service Lookup table)

7. Market X Mineral (Demand Cost Metrice)

8. Digger X Price (Service Lookup table)

9. Digger X Speed (Service Lookup table)

10. Transport X Price (Service Lookup table)

11. Transport X Speed (Service Lookup table)

148 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.17: Above are a set of screen shots from the simulated experiments
conducted on the ”Mine Cloud” cloud robotic system. The Cloud in these
experiments is simulated by the inter-agent message passing mechanism of
the simulator. Part (a) above shows the virgin mine with 10 different kinds of
mineral ores randomly embedded at 320 mine plots. The right-most column
of the scene simulates the physical locations of the markets and corresponding
columns in white displays their preferred mineral and the cost that they offer
for that mineral at a given time. At the start of the simulation, all Digger
and Transporter Robots are at their parking positions. Part (b) of the figure
shows the mining action. Miner Robots search for their respective target
mineral ores while Digger and Transporter Robots are hired by the Miner
Robots at different stages of the mining process. The Transporter Robots
loads the mineral ore from a mined plot and delivers the load to the market
selected by the Miner Robot (Through the matchmaking mechanism). Part
(c) shows a mine field near the end of the mining process. Most of the Miner,
Digger and Transporter Robots are now free as very few mine plots remains to
be mined. Part (d) shows the mining process with matchmaking associations
made visible. At the peak of mining process, the number of matchmaking
associations between agents could become very frequent. Part (e) is a table
of various parameters that could be controlled for the simulated agent colony.
It is necessary to have this variability in the simulation environment so that
test cases with large variability could be formed.

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 149

Figure 4.18: The above figure shows the physical robot colony of 5 Turtle-
BOT robots that was used to implement a scaled down version of the ”Mine
Cloud” case study. Out of the five robots, three were implemented as Miner
Robots while the other two were implemented as Digger Robots. No Trans-
porter robots or Physical Market locations were implemented. There were
in all five mine plots (named A, B C, D and E) which were both mining
locations and parking locations for Digger Robots. This limited experiment
was conducted to have a real life representation of the ideas tested in the
simulated world. The economy (profits and productive) in physical experi-
ments were of limited use due to very few measured parameters and limited
variability. For analysis of peer-to-peer and fixed-teams trade methodologies,
only data from simulated experiments was utilized. The implementation of
peer-to-peer trade ideas on real life robots using HTM5 methodology was
encouraging since all three layers of HTM5 design methodology was followed
to write software for each of these robots in different roles.

150 CHAPTER 4. CASE STUDY PROJECTS

F
ig

u
re

4.
19

:
T

es
t

ca
se

s
an

d
co

rr
es

p
on

d
in

g
p
ro

d
u
ct

iv
it

y
an

d
p
ro

fi
t

d
at

a
fo

r
”p

ee
r-

to
-p

ee
r”

an
d

”fi
x
ed

-t
ea

m
s”

tr
ad

e
m

o
d
el

s.
T

es
t

ca
se

s
1

ti
ll

12
(m

ar
ke

d
re

d
)

ar
e

sc
en

ar
io

s
w

it
h

b
ot

tl
en

ec
k

w
h
er

e
on

e
p
ar

t
of

th
e

m
in

in
g

p
ro

ce
ss

la
ck

s
re

so
u
rc

es
(e

.g
.

A
va

il
ab

il
it

y
of

D
ig

ge
r

or
T

ra
n

sp
or

te
r

R
ob

ot
s)

.

4.3. PEER-TO-PEER CLOUD TRADE ECOSYSTEM 151

In ”Mine Cloud” cloud robotic system, there are more than one service
providers for any particular service and a service could be demanded at sev-
eral agents. All agents advertise their services and demands to the Relation
agent that is hosting the demand or service registry (implemented as lookup
tables) for their respective services and demands. A service is discovered by
agents by reading the lookup tables associated with that service. Matchmak-
ing is done based on preferences that an agent has for a particular service
provider and for a particular quality and cost parameters. Preference vectors
(A sequence of variables profiling an agent’s service and demand preferences)
of agents are matched with the quality, source and cost parameters of all avail-
able services (from different sources). This matchmaking chooses the closest
matching service to an agent’s preference. The matchmaking mechanism
in ”Mine Cloud” was hosted at the ”Relation Agents” (Discovery). HTM5
however allows a designer to implement the matchmaking mechanism on any
of the agents. In the absence of a matchmaking mechanism, agents could
just utilize the service and demand discovery services and then negotiate
bilaterally for a service contract.

Fig. 4.17 Part (e) shows the variability that exists in the simulation
environment. Fig. 4.19 shows the results and comparisons for the 32 test
cases simulated on the ”Mine Cloud” system. Implementation of complicated
trade logics on cloud robotic colonies (Simulations and real world robots)
justifies the claim of HTM5 meta-model as a usable model for development
of agent oriented cloud robotic systems. As mentioned earlier in this section
of the thesis, comparison of peer-to-peer trade methodology to any other
methodology is a relatively subjective study as every methodology is suited
for a particular scenario, ground rules and implementational realities. The
observations presented in this section are based on the data collected in
32 test cases and for a particular trade environment. The authors do not
claim that these results will stand valid for all trade environments in real
world. The baseline idea is to implement complex trade logics on cloud
robotic systems using HTM5 methodology, empowering its claim as a usable
methodology for cloud robotic systems.

Key Observations :

1. Average profits made by Antenna Agents are always higher in the case
of Peer-to-Peer trade (see Fig. 4.19). Unlike in fixed-teams scenario,
the dynamic allocation of robots to a mine plot requires multiple lo-
cation requests by the Miner Robots to the Antenna Agents. Service
discovery and matchmaking mechanisms are hosted on a server which
is connected to robots through a GSM cloud (simulated). The services
of Antenna Robots thus are more in demand in peer-to-peer trade sce-
nario and thus the profits made by them are always higher in the case
of peer-to-peer trade.

2. Average profits made by Agents (Miner Bot, Digging Bot, Transporter
Bot and Antenna Agents) are mostly higher in the case of Peer-to-Peer
trade methodology (see Fig. 4.19). In 25 out of 32 cases (78.125 per
cent) the peer-to-peer methodology resulted in a greater average profit
as against fixed-teams trade methodology.

152 CHAPTER 4. CASE STUDY PROJECTS

3. The productivity of the colony in mining the available plots is generally
higher when peer-to-peer trade methodology is used (see Fig. 4.19).
Only in 9 out of 32 cases (28.125 per cent), the productivity (Number
of Mine plots processed) is lower in peer-to-peer scenario.

4. Out of the 9 cases when the productivity is lower in peer-to-peer sce-
nario, 8 cases are from the bottleneck set (cases 1 till 12).

5. In non-bottleneck scenarios, only 1 out of 20 cases (5.0 per cent) sce-
narios result in a lower productivity in peer-to-peer scenario.

4.3.3 Conclusion

In this work we presented HTM5 as a feasible meta-model for designing
and implementing complex trade methodologies on an agent oriented cloud
robotic system. The anatomical elements of HTM5 with respect to the peer-
to-peer relational trade were presented. A case study with a comparative
economic analysis of peer-to-peer approach against a fixed-teams approach
was presented. The primary objective of the case study was to test the feasi-
bility of HTM5 meta-model as a design methodology for implementing com-
plex trade methodologies on agent oriented cloud robotic systems. Design
and Implementation of complex trade methodologies using HTM5 validates
its claim as a feasible meta-model for agent oriented cloud robotic system
development. The complete HTM5 meta-model, a domain specific language
supporting HTM5 and a case study specific for peer to peer trade variability
in HTM5 is currently submitted to well-known journals. Next steps in de-
velopment of HTM5 are to involve industry professionals to use and improve
the meta-model. A detailed user guide and a graphical design interface for
HTM5 based designing is also currently under development.

4.4. INDUSTRIAL AND RESEARCH FEASIBILITY 153

4.4 Industrial and Research Feasibility

Architecture has a strong influence on lifecycle of a system. Architecture
is ”The fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the principles
guiding its design and evolution.” [1]. ”An architectural description (AD)
is a collection of products to document an architecture” [1]. The influence
of software architecture in design, construction, deployment and evolutions
of a system is even more in software intensive systems. Fig. 4.20 shows the
conceptual model of architecture and IEEE recommended practices for de-
velopment of software intensive systems. The architecture of a system is
described by a set of architecture documents. Models and views organize
and aggregate the architecture documents. Stakeholders in a system include
clients, managers, architects, developers, evaluators and users of the system.
Stakeholders provide inputs in the creation of architecture documents, and
later use these documents for their role in the system development life cy-
cle such as analysis, development, planning, maintenance, operational and
infrastructure support, budget, human resource and analysis of alternative
architectures.

Object management group (OMG) is a consortium of standards in com-
puter industry. OMG released a guide to model driven architecture (MDA)
[3] (Fig. 4.21) in the year 2003. OMG-MDA has gained popularity in the
software industry in the past decade. Many domain specific meta-models
based on MDA are now available for development of software for specific do-
mains. There is a strong emphasis on the development of system models [2]
in MDA. Software product line engineering (SPLE) [12, 13, 14] encourages
creation of reusable entities. These entities could be individual code units,
components, classes, libraries, models or components within a model. It is
thus necessary that a meta-model should support a modular design, with
clear boundaries between components, and between different functionalities
within a component. MDA is a three layer design where every layer has a
different degree of abstraction and is meant to be used at different stages
of the product development and by different people (see Fig. 1.2). Platform
specific model (PSM), platform independent model (PIM) and computation
independent model (CIM) are designed for software developers, software de-
signers and domain experts respectively.

Current cloud robotic systems are structured around the client server
methodology. One or more robotic clients access cloud resources through
one or many web servers. This is a useful approach since services such as
algorithms, maps, text and image based search engines are easily available
as a free service on the internet. A client server system provides a simple
migration of cloud computing applications to robotic platforms. Although
client server based cloud robotic systems are useful, they are centralized
systems with a limited scope of services. The authors of this thesis are
supporters of a peer-to-peer cloud robotic methodology that will enable all
members of the cloud robotic ecosystem to act like a server and a client as and
when required. A peer-to-peer cloud robotic system will enable individual
robots to offer and avail services from other robots and auxiliary systems.

154 CHAPTER 4. CASE STUDY PROJECTS

The traditional client server based system can be part of the proposed peer-
to-peer systems and the end result will be a flexible, dynamic exchange of
services over the cloud.

Cloud computing is a business methodology and is a remoulded use of
existing computing and internet technologies. There are two levels at which
cloud robotics could evolve from cloud computing. Cloud services like cloud
storage, software and platform as a service (IaaS, PaaS, SaaS) could be read-
ily adopted to work for robots by treating robots as any other clients to these
cloud services. In this form, cloud robotics is cloud computing with a robot’s
computer as client and the underlying tools and mechanisms for the two re-
main the same. In other adaptations, cloud robotics could mean that robots
should be made capable to provide their physical and functional capabilities
as a service to other robots and computers across the cloud. In this second
form, the ideas of cloud computing are adopted as such to cloud robotics,
but special tools and mechanisms will be required to implement these ideas
on traditional robots. Tele-operated robotics is an example for the second
form, where a robot acts as a server offering its functionalities to a remote
user. In both form, there is a robotic/non-robotic server that provides its
functionalities as a service to other non-robotic/robotic clients. This matches
with the traditional client-server mechanism in cloud computing and could
be identified as client-server like cloud robotics.

Development of cloud robotics as a business model will require new tools
and methodologies. It is essential to develop methodologies that are industry
and business oriented. The cloud robotic methodologies should go one step
further to include models that incorporate concepts like Distributed Artificial
Intelligence (DAI) [9], registry based service discovery and automated match-
making mechanism. Many of the services offered by a robot to other robots
will have a physical world component. A robot’s physical reach will deter-
mine the scope of the physical services offered by it and any business model
for a robotic ecosystem should include provisions to model factors that codify
physical world interactions. A cloud robotic ecosystem will also include many
non-robotic entities. These entities could range from ambient intelligence to
server banks. In theory any device that can communicate through a net-
work could be included as a working component of a cloud robotic system.
The communication networks that collectively build the cloud could be of
different kinds and visible in selective physical regions. A methodology that
allows modelling of these non-robotic devices, networks and interfaces will
give a complete design toolset to designers of cloud robotic systems. Fig. 1.1
shows a typical cloud robotic ecosystem with robotic and non-robotic enti-
ties. A design methodology for cloud robotic ecosystem should provide tools
to model all physical and theoretical aspects of these systems. Key theoret-
ical elements of a cloud robotic ecosystem would be its network structure,
event driven behaviour, social interactions, norm driven peer-to-peer trade,
micro level competitions and dynamically regulating collaboration [11].

When writing software for the industry, managerial concerns such as
reusability have to be taken into the design process. Products based on
multi agent systems are generally very dynamic with newer versions being
produced very often and parts of software being used in other products. In

4.4. INDUSTRIAL AND RESEARCH FEASIBILITY 155

most cases, people working on robots and other hardware components of the
multi agent system are not trained in software engineering. Hence the Ad-
hoc software development at the time of research is not very useful for the
product development. To solve the above mentioned problems, the complete
system is split into components which are loosely connected and functionally
independent. Component-based software engineering (CBSE) [34] is a reuse-
based approach to software development. Once implemented and tested, the
components can be reused with ease in other products saving time and the
cost of software development. It is common practice in the software industry
to implement CBSE using objects.

Hyperactive transaction model (Fig. 4.22, 4.23 and 4.24) is an attempt to
provide a model for designing multi agent systems with a different ”thought
process”. A similar example can be seen in object oriented software modeling.
Object oriented programming is not only a different way to write code, but a
new ”thought process” to design software where we think in terms of objects
in real life before making their equivalent class in the code. Likewise in
Hyperactive Transaction Model, the attempt is to think of agents in terms
of humans working together in a team.

Discovery and matchmaking mechanism
We assume most cloud robotics systems will be dynamic with agents having
more than one options to get the required services from and where members
become online and offline randomly. In such systems there will be a need to
have a registry system (like in many service oriented open systems) to pub-
lish services and demands of agents. In such system more than one service
provider publishes the availability and cost of its services through a lookup
table hosted on a relation agent. One possibility for service initiation could
be the matchmaking mechanism implemented on the relation. In such sce-
nario it is necessary for the agents to grant authority to the relation agent to
decide on their behalf which service provider is allotted to them and on what
basis (The relation agent will have to be hyperactive to surpass autonomy
of other agents). The other possibility could be to allow agents to negoti-
ate the costs of the services. The relation agent in such a case may store
and maintain the registry, the trust and quality of service variables of indi-
vidual relatives. Agents communicate the updated values (or read requests)
for the lookup table entries to relation agents, as and when required. The
relation agent adds/deletes records from the lookup tables when agents be-
come online/offline. Any updates made in relationship variables are reflected
in the matchmaking mechanism (on the relation agent) or the negotiation
mechanisms (between pair of agents).

Relationships and contracts:
Relationships are relative positioning of agents into a predefined social con-
struct. In scenarios where we have relation agents dynamically adding or
deleting agents to a relationship (via a merge agent, discussed in part D of
the current section), the joining agents instantly know their role in a relation-
ship by the kind of relation agent they are attaching to. As each agent has its
personal goals and business logic, a pre-defined trade relationships help re-
duce otherwise chaotic system of agents. Once agents decide to exchange the
services (by matchmaking mechanism or by agent to agent negotiations), the

156 CHAPTER 4. CASE STUDY PROJECTS

relation agent or the agents themselves may bind themselves to a contract.
This is similar to current pay per use cloud computing services available on-
line, the service provider and the user agree upon a cost and quality of service
before initiating the service. The quality of service between a pair of agents is
monitored by the relation agent. The denial of service by a service provider,
or a problem with the quality of service after contract initiation is reported
by the client agent and is recorded by the relation agent. Counter Actions
could be initiated by the relation agent like termination of the current con-
tract, penalty and/or lowering of the trust parameter for the service provider.
Trust parameter of an agent may affect the matchmaking/negotiations for its
future deals. Trust is a complex human factor to model, and its implementa-
tion may vary from project to project. In peer to peer (or client server based)
cloud robotics, the parties involved in the use of paid services will have to
bind themselves in a legal contract. Administrative and banking agents as a
part of the cloud computing system could be one of the possible solutions.
These measures will be essential in popularizing cloud robotics as a business
possibility as relationships and contracts bring reliability and a level of trust
in the cloud robotic system.

Dynamic Electronic Institutions:
The most advantageous step towards bringing peer-to-peer cloud robotics
closer to a viable business model, would be to establish mechanism for au-
tomated dynamic electronic institution formation. An institution is a rep-
resentation of a norm based society. Social, business and administrative
institutions shape the way humans interact. Electronic institutions are a
representation of a norm based multi agent system leading to a sociologically-
inspired computing. The norms introduced by electronic institutions or dy-
namic electronic institutions may be seen as a limiting factor in a system’s
functionality, but by constraining agent’s behaviour they decrease the sys-
tem complexity and make agent behaviour more predictable. For dynamic
electronic institutions, one proposed lifecycle is a three phase life cycle (3F
life cycle). Formation, Foundation and Fulfillment are the three phases in a
digital institution’s lifecycle. Agents from an agent community are selected
to form a coalition (Formation Phase) followed by establishment of norms of
an institution. Once the norms are finalized and a particular kind of institu-
tion is chosen, the agents form and participate in the institution (Foundation
phase). Re-formation and re-foundation may occur as and when required to
keep an institution effective. On completion of an institution’s mandate, the
institution is dissolved (Fulfillment phase). The 3F approach has one appli-
cation in agent based business ecosystem development. Cloud robotics is one
such ecosystem, and an agent based peer-to-peer approach towards cloud
robotics requires an institutional framework to find acceptance as a busi-
ness model. The digital electronic institution concept can be implemented
in HTM5 trade model by using merges for managing formation, foundation
and fulfillment phases, and relational agents for re-formation, re-foundation
and managerial logic constructs.

The above ideas find relevance as a development methodology for cloud
robotic systems. Autonomy, heterogeneity, dynamism and interactions that
preserve autonomy are essential for a business oriented, open development

4.4. INDUSTRIAL AND RESEARCH FEASIBILITY 157

of cloud robotic systems. Robots and auxiliary systems in a cloud robotic
ecosystem may be developed by different manufacturers and deployed by
various businesses or individuals. The systems could be open or closed, the
interactions may be standard or custom, and there could be high variability
in terms of software engineering practices followed by organizations.

158 CHAPTER 4. CASE STUDY PROJECTS

F
ig

u
re

4.
20

:
S
u
m

m
ar

y
of

th
e

ke
y

re
co

m
m

en
d
ed

p
ra

ct
ic

es
an

d
th

ei
r

in
te

r-
re

la
ti

on
sh

ip
s

in
IE

E
E

S
td

14
71

-2
00

0,
IE

E
E

R
ec

om
m

en
d
ed

p
ra

ct
ic

e
fo

r
ar

ch
it

ec
tu

ra
l

d
es

cr
ip

ti
on

of
so

ft
w

ar
e-

in
te

n
si

ve
sy

st
em

s.
S
ou

rc
e:

IE
E

E
S
td

14
71

-2
00

0
[1

]

4.4. INDUSTRIAL AND RESEARCH FEASIBILITY 159

Figure 4.21: Model Driven Architecture proposed by Object Management
Group (OMG-MDA). The three layers of MDA cater to different actors in the
software development life cycle. Model to model transformations are between
the three layers of MDA, or to an external model as the target. Model to
Text transformation have a general purpose programming language as target.
Models are executed independently or via a domain specific language for
model transformations. (Repeated image)

160 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.22: An anatomical overview of the 5 views Hyperactive Transaction
Meta Model (HTM5). (Repeated image)

Figure 4.23: An anatomical description of the 5 views Hyperactive Transac-
tion Meta Model (HTM5). (Repeated image)

4.4. INDUSTRIAL AND RESEARCH FEASIBILITY 161

Figure 4.24: Separation of PIM and PSM parts of HTM5-MDM. (Repeated
image)

162 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.25: A summary of the case studies and a workshop conducted during
the incremental development of HTM5 meta-model and HTM5-DSL

4.5 A summary of all Feasibility and Viabil-

ity studies

In this section we present some of the case study experiments and a work-
shop conducted over the last 3 years to test the feasibility and viability of the
HTM5 meta model and its corresponding domain specific language (HTM5-
DSL). The objective of these studies was to improve the proposed model
through feedback and usage and to present a defense to the major claimed

4.5. A SUMMARY OF ALL FEASIBILITY AND VIABILITY STUDIES 163

Figure 4.26: Top: Structural Overview of ’Telerobotics On Nao’ System.
Centre: Development of Nao Agent using choreograph, NaoQi and OpenNao
platforms. Bottom: The graphical user interface at the Client Agent. Loca-
tion of the Nao Robot is updated to the human user as it moves towards a
target location specified by the user.

benefits of the HTM5-DSL and the HTM5 methodology. Fig. 4.25 is a
summary of the case studies and a workshop conducted during the incre-
mental development of HTM5 meta-model and HTM5-DSL. These projects,
experiments and workshop are essential for the continuous improvement of
the meta-model and the proposed domain specific language. The studies
capture a wide scope of cloud robotic ecosystems ranging from simulations,
real world projects and ideas at the computation independent model (CIM).
Most of the participants and stakeholders in these studies were first time
users of HTM5 and HTM5-DSL. The stakeholders were from a variety of
domains making these studies closer to the real life development of cloud
robotic ecosystems. The development tools, platforms, networks, component
development methodologies touched a number of popular practices in the
industry. These studies also implemented complex behavioural models for
cloud robotic ecosystems and proved the usability of HTM5 as viable plat-
form for research and business needs. Fig. 4.26, 4.27, 4.28 and 4.29 present
brief accounts on these studies and workshops. This section will present a

164 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.27: Above are some instants from Dynamic Electronic Institutions
based Digital Business Ecosystem simulations. Top: Formation of eight In-
stitutions of different cardinality and type. Some of the groups are in For-
mation or Re-Formation phase. Centre: Two institutions have moved to Re-
Foundation phase while one of the institutes has finalized freeing its member
BOTs. Bottom: TurtleBOT setup for a scaled down version of Dynamic
Electronic Institutions based Digital Business Ecosystem.

short introductory text on these studies followed by an analysis on how these
studies accumulate elements to defend the claimed benefits of HTM5 and
HTM5-DSL.

Telerobotics on NAO: This is a simple telepresence application for a hu-
manoid robot supported by a number of auxiliary devices. The hu-
manoid robot in our system does not have localization capability. Three
roof mounted cameras provide their feed as a service to camera reading

4.5. A SUMMARY OF ALL FEASIBILITY AND VIABILITY STUDIES 165

Figure 4.28: Above are a set of screen shots from the simulated experiments
conducted on the ”Mine Cloud” P2P cloud robotic system. The Cloud in
these experiments is simulated by the inter-agent message passing mecha-
nism of the simulator. Left: The mining action. Miner Robots search for
their respective target mineral ores while Digger and Transporter Robots are
hired by the Miner Robots at different stages of the mining process. The
Transporter Robots loads the mineral ore from a mined plot and delivers the
load to the market selected by the Miner Robot (Through the matchmak-
ing mechanism). Right: The physical robot colony of 5 TurtleBOT robots
that was used to implement a scaled down version of the P2P ”Mine Cloud”
case study. Out of the five robots, three were implemented as Miner Robots
while the other two were implemented as Digger Robots. No Transporter
robots or Physical Market locations were implemented. There were in all five
mine plots (named A, B C, D and E) which were both mining locations and
parking locations for Digger Robots.

computers. The manager computer combines the information coming
from these sources and provides direction and location as a service to
the humanoid robot. The manager computer is connected to a web
server across the internet cloud which runs a secure access telepresence
service for the humanoid robot. Computers and Mobile devices around
the world can register to the service and access the robot.

166 CHAPTER 4. CASE STUDY PROJECTS

Figure 4.29: A project based workshop on cloud connected multi-agent sys-
tems.

Figure 4.30: A list of inspection cases (checks) for the case studies.

The robot can be directed to a particular location in its workspace by
the remote users. Once reached, the robot performs a set of actions

4.5. A SUMMARY OF ALL FEASIBILITY AND VIABILITY STUDIES 167

Figure 4.31: Pairwise analysis of inspection cases (checks) presented in Fig.
4.30 with the case studies and the workshop presented in Fig. 4.25. The
legends rate the studies based on the extent to which an inspection case
was tested. The combined result of each of the studies for an inspection
case gives a measure of the extent to which an inspection case was tested
in these studies. The combined result of each of the checks for a study
gives a measure of the extent to which a study contributed in testing the
HTM5 methodology. The combined sum of all contributions tests the overall
satisfaction measure 341 (67.7 per cent of 504=3x6x28). A perfect 504 would
mean each of the implementation cases was rigorously proven while any score
above 336 (2x6x28) would mean that at an average all inspection cases were
tested with satisfaction. Further studies are planned to test the inspection
cases with scores lower or equal to 50 per cent.

as directed by the remote user and sends images or information as a
service to the remote clients. The whole system is location independent
and is a simple but adequate example of a cloud robotic system. This
is a scalable system with provisions to include any number of NAO
robots, cameras and clients in the system. Automatic initialization

168 CHAPTER 4. CASE STUDY PROJECTS

of new members however is implemented only for clients and not for
robots or cameras.

The peer-to-peer trade in the ’Telerobotics on Nao’ system is not based
on predefined contracts or institutionalization. There is no actual trans-
fer of money in the system and the services are not governed by mea-
surement of Trust or Quality of Service. This is a scalable system with
provisions to include any number of NAO robots, cameras and clients
in the system. Automatic initialization of new members however is
implemented only for clients and not for robots or cameras.

Dynamic Electronic Institutions: Dynamic
Electronic Institutions (DEI) are modelled on the ideas of Institutions
in Human societies. Norms based on trade contracts, social relation-
ships and institutions bring a sense of order in multi agent systems. The
aim of this study is to test feasibility of HTM5 methodology in imple-
menting Dynamic Electronic Institutions on a digital business ecosys-
tem (DBE). Dynamic Electronic Institutions are Electronic Institutions
where formation, reformation and dissolution of institutions are auto-
mated processes. The norms and objectives of institutionalization are
dynamically adapting to the needs of its member agents. Following are
the stages in a DBE:

1. Search for a business opportunity

2. Analysis of opportunity by business owner

3. Coalition establishment (Formation and re-formation phase)

4. Selection of an appropriate DBE

5. Acceptance by business owner

6. Establishment of a DBE (Foundation and re-foundation phase)

7. Finalization of the DBE and release of acquired resources and
agents

The most advantageous step towards bringing peer-to-peer cloud robotics
closer to a viable business model, would be to establish mechanism for
automated dynamic electronic institution formation.

Peer-to-Peer Trade: Peer-to-Peer methodology for
trade amongst cloud robotic entities is described as an open system
with multiple service providers publishing services which are matched
to demands by several other cloud entities. Comparison of peer-to-peer
trade methodology to any other methodology is a relatively subjective
study as every methodology is suited for a particular scenario, ground
rules and implementational realities. The authors do not claim that
these results will stand valid for all trade environments in real world.
The baseline idea is to implement complex trade logics on cloud robotic
systems using HTM5 methodology, empowering its claim as a usable
methodology for cloud robotic systems.

4.5. A SUMMARY OF ALL FEASIBILITY AND VIABILITY STUDIES 169

A vital functionality that is implemented for HTM5 relation agents is
the service discovery and matchmaking mechanism. Peer to peer trade
in cloud robotic systems will require distributed locations where ser-
vice providers could advertise their services along with their associated
costs and quality parameters. As relationships between trading parties
are managed by Relation agents, it could be preferable to implement
service registries and demand-supply matchmaking mechanisms on the
Relation agents. Relation and Merge agents have more visibility in the
cloud ecosystem since they are connected to a number of other agents
and act as open ports.

Workshop: In order to test the feasibility of ARC based designing, we con-
ducted a project based feasibility study at a workshop organized at
University Technology Petronas, Malaysia in April 2012. A group of
24 students participated in the study. In total of 6 project ideas were
developed using the ARC model, followed by detailed analysis of the
usability of the model. A comparison was made to the traditional
methods to represent ideas at the most abstract level and participant
feedback was taken on various usability and functional aspects of the
ARC model.

In order to simulate different levels of technical knowledge of the users
of the ARC model, participants were chosen from various levels of ed-
ucation. The participants had a wide breadth of technical skills and
were working in different domains. This was a crucial component of
the participating group as it enabled to test the feasibility of the ARC
model in representing ideas coming from people with different kind of
expertise. It was important that the model was proved useful to all the
participants in representing their ideas, but another important aspect
of the study was to see how useful the model is to establish a common
standard to represent ideas within the group, and its communication
to the other groups.

A number of robots and devices were used by the participants to form
the project ideas. The inclusion of a wide variety of agent-hosts in
idea formation was mainly because of the freedom the participants had
while working at an abstract level, without being influenced by the im-
plementational details. The top layer of the proposed model (ARCs) is
designed for this abstract level idea formation where all project stake
holders can contribute into the design.

The 6 teams were given time to brainstorm on their own group project
idea. In the first section, they were told to use any kind of textual
or diagrammatical tools to make abstract design documents for their
designs. Later in second section they were trained to use ARCs and
then told to use ARCs to make their abstract design documents. The
teams gave presentations of their design ideas twice, once using their

170 CHAPTER 4. CASE STUDY PROJECTS

own textual/ diagrammatical aids and once again using the ARCs.
In the end the participants gave their feedback on 22 subjective data
points. The feedback target was ranging from their understanding of
the tasks given to them, to comparing the tools they used to make
abstract design documents for their ideas. They were also asked about
how easy it was for them to use the different tools and to understand
the presentations of other teams when they used those tools. In all,
6 project ideas were developed and discusses. ARCs were developed
for all 6 projects and the workshop provides a number of pointers to
improve and validate the usability of the ARC based modeling.

Chapter 5

Conclusions

This thesis proposed a 5-view meta-model for agent oriented development
of cloud robotic systems. Cloud robotic systems are systems with multiple
robots and auxiliary devices such as computers, server banks, cameras, sen-
sor networks and ambient intelligence devices. In an industrial setup, these
devices and robots are developed by different vendors and have a multitude
of hardware and software constructs. In order to unify the design process in
these systems, it is necessary that the meta-model should be multi layered
and should permit flexibility in the development process. It is also important
that the systems should be capable to adopt intelligent and evolving tech-
nologies in the field of cloud computing and robotics. The cloud computing
business model and elements of distributed artificial intelligence should find
their way into the cloud robotic domain to make it a business possibility.
In this work we proposed an agent oriented approach towards cloud robotic
systems. We also discussed the advantages of an agent oriented approach
to the development of cloud robotics. Peer-to-Peer exchange of services over
cloud robotic ecosystem will empower the idea of intelligent environments.
We placed a great importance in developing a methodology that is feasible for
research, industry as well as business. The 5-View Hyperactive Transaction
Meta-model (HTM5) for agent oriented development of cloud robotic sys-
tems is based on Model Driven Architecture (MDA) guidelines of the object
management group (OMG). The methodology is agent oriented, component
based, reusability oriented and compatible with current industrial practices
for product development. HTM5 supports heterogeneity in the cloud robotic
ecosystem. Agent orientation in HTM5 is concept based and flexible. System
designers and developers are empowered by mechanisms to relax the Agency
concepts as and when required. The model itself does not put any constraints
in a flexible, multi-platform, multi style development of Agents for various
machines. This thesis discusses the status of cloud robotics and how the
proposed model is designed to support upcoming ideas in the domain. In
this thesis we have explained the design drivers behind the proposed HTM5
methodology. The anatomical constructs and concepts associated to design
decisions were expressed. The significance of the 5 views and the concerns
represented by them were clearly stated. The domain specificity and usabil-
ity of HTM5 was justified with extensive examples and case studies. The
case studies presented in this thesis does not reflect on all the benefits of

171

172 CHAPTER 5. CONCLUSIONS

the methodology like large complex systems developed in a commercial sce-
nario. However, even with the small set of machines and platforms touched
in the case studies, HTM5 was shown to be a feasible methodology. This the-
sis was also a generous discussion on the thought process that went behind
development of HTM5 methodology.

Following are the research objectives presented in this work:

• To develop an OMG-MDA based Meta-Model for agent oriented devel-
opment of cloud robotic systems.

• To specify the 5 views and their scope in the development of cloud
robotic system.

• To provide provisions in HTM5 to have a graphical representation
(Agent Relation Charts) for inter-agent interactions specific to each
of the 5 views.

• To provide a mechanism (Hyperactivity) by which an agent’s autonomy
can be released for specific agents. This is to give flexibility to system
designers by inducing an object-like character to some agents, without
fully dissolving their agency characteristics.

• To enable Components built in PIM layer of HTM5 be extendable to
PSM layer.

• To provide provisions in HTM5 to support a relationship based, peer-
to-peer exchange of services. HTM5 should propose mechanisms to
implement cloud computing business logic.

• To develop a domain specific language HTM5-DSL with CIM layer
abstraction.

• To automatically translate HTM5-DSL code to Java class hierarchy
and equivalent UML class diagrams.

• To conduct diverse case studies on real and simulated robot colonies
justifying the usability of HTM5 in cloud robotic systems. The case
studies should incorporate the following test cases for HTM5 usability:

– Incorporating multiple robotic platforms in one study

– Incorporating internet based agents in at least one case study

– Incorporating internet based commercial servers in at least one
case study

– Incorporating non robotic elements of a cloud robotic system

– Real time execution response for all case studies

– Simulations for cloud robotic agent colonies in at least two case
studies

– At least 5 cloud robotic entities in all physical case studies

173

– Upto 1000 cloud robotic entities in simulated case studies

– Incorporation of Dynamic Electronic Institutions in at least one
of the case study

– Incorporation of Digital Business Ecosystem in at least two of the
case study

– Incorporation of Peer-to-Peer trade dynamics in at least one of
the case study

– A scaled down version of simulated case studies to be implemented
on physical robots

– Incorporation of cloud robotic business model in at least two case
studies

The key contributions of this doctoral research are as follows:

• Development of a 5 View Hyperactive Transaction Meta-Model (HTM5)
for development of agent oriented cloud robotic systems.

• Incorporation of OMG-MDA guidelines for development of HTM5, an
industrial standard for development of MDA meta-models.

• Development of a computation independent Domain Specific Language
(HTM5-DSL) for HTM5.

• Model and Model and Model to Text automated transformations from
HTM5-DSL to UML and Java class hierarchy

• Numerous case study experiments to test and demonstrate the usability
of HTM5 in real projects and with complicated cloud robotic imple-
mentation scenarios

Key advantages that HTM5 brings to the Industry, Scientific
and Business community working towards cloud robotic ecosys-
tems:

• The proposed meta-model supports heterogeneity in robotic platforms.

• The proposed meta-model supports heterogeneity in the kinds and
number of communication networks (Clouds).

• The proposed meta-model supports heterogeneity in kinds of cloud in-
frastructures.

• The proposed meta-model supports heterogeneity in number and kind
of auxiliary devices in the cloud ecosystem.

• The proposed meta-model supports design heterogeneity at component
level.

174 CHAPTER 5. CONCLUSIONS

• The proposed meta-model follows object management groups (OMG)
model driven architecture guidelines (OMG-MDA) for model transfor-
mations.

• The proposed meta-model is designed to work at computation inde-
pendent layer (CIM) of HTM5 which is the most suited placement for
a DSL used for requirement elicitation and concept development.

• A CIM level DSL promotes contribution of clients and non-domain
personals in system design process.

• The code written in HTM5-DSL is abstract and has an intuitive gram-
mar which serves as a design document even before execution.

• HTM5-DSL supports automated model to text (M2T) and model to
model (M2M) transformations. The targets for these execution results
are Java (general purpose language, GPL) and UML (unified modelling
language) which are widespread in software industry.

• The proposed meta-model is agent oriented.

• The proposed meta-model enables implementation of complex behavioural
models on cloud robotic systems.

• The proposed meta-model supports peer-to-peer service-demand inter-
actions.

• The proposed meta-model is a multi-view meta-model which allows
clear separation of view specific concerns.

• The proposed meta-model views support engineering needs at initial
stages of the design process and in subsequent increments by allowing
quick fix solutions (flexible agency).

• The proposed meta-model views supports inclusion of business logic at
initial stages of the design process and dynamically during a system
run.

• The proposed meta-model views supports research/rapid-prototyping
needs of researchers.

• The proposed meta-model supports incremental development of cloud
robotic ecosystem.

• The proposed meta-model enables smooth design upgradation when a
base software/machine is changed/updated. (Inclusion of a machine
model)

• The proposed meta-model allows flexibility in the concept of agency as
and when required.

175

Future Work

• GUI tools to support ARC designs.

• Automated ARC to HTM5-DSL transformation.

• Extended HTM5-DSL to UML transformation to include behaviour
specific methods/functions.

• Extended HTM5-DSL to Java transformation to include behaviour spe-
cific methods/functions.

• Integration of Simulation tools with HTM5-DSL.

• Industrial projects.

• Extended documentation.

• Product website and integration with open source community.

In HTM5 the behaviour of the agent oriented cloud robotic system is
recorded in the behaviour view. In dynamic agent systems, the number of
possible scenarios could be very large and not all foreseeable. In such systems,
the behaviour view might not be able to capture all behaviour scenarios
of the system. Furthermore, in learning systems and systems which have
a global time/agent-age dependence on the behaviour model, the current
behaviour model may seem limited. Although a good designer may still use
the HTM5 behaviour model to capture all possible behaviour scenarios, the
current model is not designed to automatically identify (based on other view
designs) all possible use case scenarios that may occur. HTM5 was developed
incrementally based on the case studies and feedbacks from the users. All
captured features or suggestions from the users were incorporated in the
model. I more rigorous analysis of the weaknesses or shortcomings of HTM5
will be possible in future industrial projects when HTM5 will be deployed in
real life projects industrial constraints and feature variability

Model transformations and Domain Specific Language (DSL) are essential
supplements to any model driven methodology. Development of HTM5-DSL,
and making it an executable language required knowledge of various aspects
and cultures of software industry. Automated Model-to-Text (to Java compo-
nent classes) and Model-to-Model (to UML) transformations required a lot of
engineering. The transformations are still a work in progress and more can be
done to include all elements of HTM5 in automated code generation. Results
of these transformations are design as well as implementation templates for
individual development of Agents (representing robots and auxiliary systems)
by various vendors. Future line of research would be to conduct case stud-
ies with industrial partners to popularize and improve HTM5 methodology.
Automated transformations need more refinement to make them suitable
for commercial use. Industry Participation; contributions from open source
community for development of graphical tools to construct and transform the
model; inclusion of dynamic digital institutions in HTM5 methodology are
key requirements for establishing HTM5 as a usable methodology for future
Cloud Robotics.

176 CHAPTER 5. CONCLUSIONS

A list of publications:

1. [IEEE CSNT 2012] Nagrath, V.; Meriaudeau, F.; Malik, A.S.; Morel,
O. Agent Relation Charts (ARCs) for Modeling Cloud based trans-
actions, Communication Systems and Network Technologies (CSNT),
2012 International Conference on, On page(s): 704 - 709

2. [IJCSN Korea 2012] Nagrath, V.; Meriaudeau, F.; Malik, A.S.;
Morel, O.A multi-view approach for modeling agent transactions over
cloud, International Journal of Communication Systems and Networks
published by SERSC Korea (IJCSN) EXTENDED VERSION OF
CONFERENCE PAPER [1] AS REQUESTED BY THE JOUR-
NAL

3. [IEEE CSNT 2013] Nagrath, V.; Meriaudeau, F.; Malik, A.S.; Morel,
O. ”Introducing the Concept of Hyperactivity in Multi Agent Systems”,
Communication Systems and Network Technologies (CSNT), 2013 In-
ternational Conference on, On page(s): 542 - 546

4. [IEEE CSNT 2013] Furler, L.; Nagrath, V.; Malik, A.S.; Meriaudeau,
F. ”An Auto-Operated Telepresence System for the Nao Humanoid
Robot”, Communication Systems and Network Technologies (CSNT),
2013 International Conference on, On page(s): 262 - 267

5. [UTP APC 2013] Nagrath, V.; Malik, A.S. ; Saad, N.M.; Meri-
audeau, F. ”A Multi-View Approach On Platform Independent Com-
ponent Design for Multi Agent Systems”, Annual Postgraduate Con-
ference 2013, University Technology Petronas (APC2013), 27-29 June
2013

6. [IJCSN 2012 Vol1 Iss 3] Nagrath, V.; Meriaudeau, F.; Malik, A.S.;
Morel, O. ”Inter Agent flow of control parameters by Hyperactivity
Mechanism”, International Journal of Communication Systems and
Networks (IJCSN), 2012, VOLUME 1, ISSUE-3 EXTENDED VER-
SION OF CONFERENCE PAPER [3] AS REQUESTED BY
THE JOURNAL

7. [IJCSN 2012 Vol2 Iss 1] Nagrath, V.; Furler, L.; Malik, A.S.; Meri-
audeau, F. ”A Telepresence and Teleoperation Implementation on the
Nao Humanoid Robotic Platform”, International Journal of Commu-
nication Systems and Networks (IJCSN), 2013, VOLUME 2, ISSUE-1
EXTENDED VERSION OF CONFERENCE PAPER [4] AS
REQUESTED BY THE JOURNAL

8. [SAI 2013 London] Nagrath, V.; Morel, O.; Malik, A.S.; Saad, N.M.;
Meriaudeau, F. ”HTM5-Trade Model For Relationship Based Trade
Modelling In Multi Agent Systems”, Science and Information Confer-
ence (SAI), London, United Kingdom, 7-9 October 2013, On page(s):
188-196

177

9. [IROS 2013 Tokyo] Nagrath, V.; Morel, O.; Malik, A.S.; Saad, N.M.;
Meriaudeau, F. ”Agent driven Peer-to-Peer Cloud Robotics”, Cloud
Robotics Workshop, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS2013), Tokyo Big Sight, Japan, 3-9 Novem-
ber 2013

10. [Springer Software and Systems Modeling (SOSYM)] Nagrath,
V.; Morel, O.; Malik, A.S.; Saad, N.M.; Meriaudeau, F. ”HTM5 Do-
main Specific Language for Agent Oriented Cloud Robotic Systems”
Accepted, awaiting publication

11. [SpringerPlus] Nagrath, V.; Morel, O.; Malik, A.S.; Saad, N.M.;
Meriaudeau, F. ”Dynamic Electronic Institutions in HTM5 Meta Model
for Agent Oriented Cloud Robotic Systems” Accepted, awaiting
publication

12. [Springer Peer-to-Peer Networking and Applications] Nagrath,
V.; Morel, O.; Malik, A.S.; Saad, N.M.; Meriaudeau, F. ”Peer to Peer
Trade in HTM5 Meta Model for Agent Oriented Cloud Robotic Sys-
tems” Accepted, awaiting publication

178 CHAPTER 5. CONCLUSIONS

Bibliography

[1] “IEEE recommended practice for architectural description of software-
intensive systems,” IEEE Std 1471-2000, pp. i–23, 2000.

[2] E. Seidewitz, “What models mean,” IEEE Softw., vol. 20,
no. 5, pp. 26–32, Sep. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1231147

[3] OMG, Model Driven Architecture (MDA) Guide, 2003, oMG doc.
ab/2003-06-01.

[4] M. Luck, P. McBurne, O. Shehory, and S. Willmott, Agent Technology:
Computing as Interaction (A Roadmap for Agent Based Computing).
AgentLink, 2005.

[5] M. Luck, P. McBurney, and C. Preist, Agent Technology: Enabling
Next Generation Computing (A Roadmap for Agent Based Computing).
AgentLink, 2003.

[6] M. Wooldridge, An Introduction to Multi-agent Systems. John Wiley
& Sons, February 2002.

[7] J. I. Hungate and M. M. Gray, “Conference report: Application portabil-
ity profile and open system environment users forum gaithersburg, may
910, 1995,” Journal of Research of the National Institute of Standards
and Technology, vol. Volume 100, Number 6, pp. 699–709, 1995.

[8] N. R. Jennings and S. Bussmann, “Agent-based control systems. Why
are they suited to engineering complex systems?” IEEE Control Systems
Magazine, vol. 23, no.3, pp. 61–73, Jun. 2003.

[9] P. Stone and M. Veloso, “Multiagent systems: A sur-
vey from a machine learning perspective,” Autonomous Robots,
vol. 8, no. 3, pp. 345–383, 2000. [Online]. Available:
http://dx.doi.org/10.1023/A3A1008942012299

[10] L. Panait and S. Luke, “Cooperative multi-agent learning: The
state of the art,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 11, no. 3, pp. 387–434, 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10458-005-2631-2

179

180 BIBLIOGRAPHY

[11] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Ar-
tificial Intelligence, G. Weiss, Ed. Cambridge, MA, USA: MIT Press,
1999.

[12] D. M. Weiss and C. T. R. Lai, Software Product-line Engineering:
A Family-based Software Development Process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[13] P. C. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2001.

[14] K. Pohl, G. Böckle, and F. J. V. D. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[15] Information technology – Database languages – SQL – Part 1: Frame-
work (SQL/Framework), ISO/IEC Std. 9075-1, 2008.

[16] IEEE Standard VHDL Language Reference Manual 2009, IEEE Std.
ISBN 978-0-7381-6854-8, 2009.

[17] “HTML by the internet engineering task force (IETF).” [Online].
Available: http://tools.ietf.org/html/

[18] “Matrix laboratory by mathworks. [latest ac-
cess on 06/11/2014 0344 hrs].” [Online]. Available:
http://www.mathworks.com/products/matlab/

[19] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. New York, NY, USA: John Wiley & Sons, Inc., 2002.

[20] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006.

[21] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedicke, “Viewpoints: A framework for integrating mul-
tiple perspectives in system development.” International Journal
of Software Engineering and Knowledge Engineering, vol. 2,
no. 1, pp. 31–57, 1992. [Online]. Available: http://dblp.uni-
trier.de/db/journals/ijseke/ijseke2.html#FinkelsteinKNFG92

[22] D. Alonso, C. Vincent-Chicote, F. Ortiz, J. Pastor, and B. lvarez,
“V3CMM: a 3-view component meta-model for model-driven robotic
software development,” Journal of Software Engineering for Robotics –
JOSER, vol. 1, pp. 3–17, January 2010.

[23] WWW, “Internet of Things. [latest access on 06/11/2014 0344 hrs].”
[Online]. Available: http://www.rfidjournal.com/articles/view?4986

BIBLIOGRAPHY 181

[24] ——, “Web of Things. [latest access on 06/11/2014 0344 hrs].” [Online].
Available: http://www.webofthings.org/

[25] “Rosbridge applications layer network protocol specification [lat-
est access on 06/11/2014 0344 hrs].” [Online]. Available:
http://www.rosbridge.org/

[26] “ROS the robot operating system [latest access on 06/11/2014 0344
hrs].” [Online]. Available: http://www.ros.org/

[27] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.
Kong, A. Kumar, K. D. Meng, and G. W. Kit, “DAvinCi: A cloud
computing framework for service robots,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, 2010, pp. 3084–3089.

[28] “Rosjava [latest access on 06/11/2014 0344 hrs].” [Online]. Available:
http://wiki.ros.org/rosjava

[29] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. M. M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“RoboEarth,” Robotics Automation Magazine, IEEE, vol. 18, no. 2, pp.
69–82, 2011.

[30] “GostaiNet [latest access on 06/11/2014 0344 hrs].” [Online]. Available:
http://www.gostai.com/

[31] S. Candido and J. Kuffner, “Cloud-based robot grasping with the google
object recognition engine,” in IEEE Intl Conf. on Robotics and Automa-
tion, 2013, p. 8.

[32] “Google goggles [latest access on 06/11/2014 0344 hrs].” [Online].
Available: http://www.google.com/mobile/goggles/

[33] “The point cloud library (PCL) [latest access on 06/11/2014 0344
hrs].” [Online]. Available: http://www.pointclouds.org/

[34] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[35] P. Noriega, Agent mediated auctions: the fishmarket metaphor. Institut
d’Investigació en Intel· ligència Artificial, 1999.

[36] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds., Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software
Engineering Handbook. Springer US, 2004, no. ISBN 978-1-4020-8057-9.

[37] H. Aldewereld, J. Vazquez-Salceda, F. Dignum, and J.-J. C.
Meyer, “Norm compliance of protocols in electronic institutions,”
in Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, ser. AAMAS ’05. New

182 BIBLIOGRAPHY

York, NY, USA: ACM, 2005, pp. 1291–1292. [Online]. Available:
http://doi.acm.org/10.1145/1082473.1082738

[38] F. L. Y. Lopez, “Social power and norms: Impact on agent behaviour,”
Tech. Rep., 2003.

[39] V. Dignum, “A model for organizational interaction: based on agents,
founded in logic,” Ph.D. dissertation, Universiteit Utrecht, 2004.

[40] E. Muntaner-Perich and J. Rosa Esteva, “Using Dynamic Electronic
Institutions to Enable Digital Business Ecosystems,” in Coordination,
Organizations, Institutions, and Norms in Agent Systems II, ser. Lecture
Notes in Computer Science, P. Noriega, J. Vzquez-Salceda, G. Boella,
O. Boissier, V. Dignum, N. Fornara, and E. Matson, Eds. Springer
Berlin Heidelberg, 2007, vol. 4386, pp. 259–273.

[41] ——, “Towards a formalisation of dynamic electronic institutions,” in
Coordination, Organizations, Institutions, and Norms in Agent Systems
III, ser. Lecture Notes in Computer Science, J. Sichman, J. Padget,
S. Ossowski, and P. Noriega, Eds. Springer Berlin Heidelberg, 2008,
vol. 4870, pp. 97–109.

[42] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Redwood City, CA, USA: Addison Wesley Longman Pub-
lishing Co., Inc., 2004.

[43] A. S. Rao and M. P. Georgeff, “BDI Agents: From Theory to Practice,”
in In Proceedings of the first international conference on multi-agent
systems (ICMAS-95, 1995, pp. 312–319.

[44] S. D. Ramchurn, D. Huynh, N. R. Jennings et al., “Trust in multi-agent
systems,” The Knowledge Engineering Review, vol. 19, no. 1, pp. 1–25,
2004.

[45] M. P. Singh, “An ontology for commitments in multiagent systems,”
Artificial Intelligence and Law, pp. 97–113, 1999.

[46] “Abstract Types [latest access on 06/11/2014 0344 hrs].” [Online]. Avail-
able: http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

[47] O. M. Group, “OMG Unified Modeling Language (OMG UML),
Infrastructure, V2.1.2,” Tech. Rep., Nov. 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

[48] G. Booch, Software Components With Ada: Structures, Tools, and Sub-
systems, ser. The Benjamin/Cummings Series in Ada and Software En-
gineering. Benjamin-Cummings Publishing Company, 1987.

[49] C. Szyperski, D. Gruntz, and S. Murer, Compo-
nent Software: Beyond Object-oriented Programming, ser.
ACM Press Series. ACM Press, 2002. [Online]. Available:
http://books.google.co.in/books?id=U896iwmtiagC

BIBLIOGRAPHY 183

[50] “Xtext, an open-source framework for development of programming
langauges and domain-specific languages. [latest access on 06/11/2014
0344 hrs].” [Online]. Available: http://www.eclipse.org/xtext

[51] “Xtend, a general-purpose high-level programming language for the
JAVA virtual machine. [latest access on 06/11/2014 0344 hrs].”
[Online]. Available: http://www.eclipse.org/xtend

[52] “PlantUML, an open-source tool that uses simple textual
descriptions to draw UML diagrams.” [Online]. Available:
http://plantuml.sourceforge.net/

[53] “GraphViz, Graph Visualization Software: A package of open-source
tools initiated by AT&T labs research for drawing graphs.” [Online].
Available: http://www.graphviz.org/

[54] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” SIGPLAN Not., vol. 35, no. 6, pp. 26–36, Jun.
2000. [Online]. Available: http://doi.acm.org/10.1145/352029.352035

[55] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domain-specific languages,” ACM Comput. Surv.,
vol. 37, no. 4, pp. 316–344, Dec. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1118890.1118892

[56] “Open Office DRAW, Graphics editing software included as part
of the Open Office Suite. [Official Website].” [Online]. Available:
http://www.openoffice.org/product/draw

[57] V. Nagrath, F. Meriaudeau, A. S. Malik, and O. Morel, “Agent
relation charts (ARCs) for modeling cloud based transactions,” in
Proceedings of the 2012 International Conference on Communication
Systems and Network Technologies, ser. CSNT ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 704–709. [Online]. Available:
http://dx.doi.org/10.1109/CSNT.2012.156

[58] V. Nagrath, F. Meriaudeau, A. Malik, and O. Morel, “Introducing the
concept of hyperactivity in multi agent systems,” in Communication
Systems and Network Technologies (CSNT), 2013 International Con-
ference on, 2013, pp. 542–546.

[59] V. Nagrath, O. Morel, A. Malik, N. Saad, and F. Meriaudeau, “HTM5-
Trade model for relationship based trade modelling in multi agent sys-
tems,” in Science and Information Conference (SAI), 2013, 2013, pp.
188–196.

[60] ——, “5-View Hyperactive Transaction Meta-Model for Agent-Oriented
Cloud Robotic Systems ”Manuscript submitted for publication”.”

[61] D. C. North, “Economics and Cognitive Science,” Econ-
WPA, Economic History 9612002, Dec. 1996. [Online]. Available:
http://ideas.repec.org/p/wpa/wuwpeh/9612002.html

184 BIBLIOGRAPHY

[62] H. E. Pattison, D. D. Corkill, and V. R. Lesser, “Instantiating descrip-
tions of organizational structures,” in Distributed Artificial Intelligence,
ser. Research Notes in Artificial Intelligence, M. N. Huhns, Ed. Pitman,
1987, ch. 3, pp. 59–96.

[63] E. Werner, “Cooperating agents: A unified theory of communication
and social structure,” in Distributed Artificial Intelligence (Vol. II),
L. Gasser and M. N. Huhns, Eds. San Mateo, CA: Kaufmann, 1989,
pp. 3–36.

[64] “VisualBots Simulator [latest access on 06/11/2014 0344 hrs].” [Online].
Available: http://www.visualbots.com/

[65] “Visual Basic for Applications. [latest access on 06/11/2014 0344 hrs]
[Official Website].” [Online]. Available: http://excelvbatutor.com

[66] “TurtleBOTs. [latest access on 06/11/2014 0344 hrs] [Official Website].”
[Online]. Available: http://www.turtlebot.com/

[67] “Dynamic Electronic Institutions, Digital Business Ecosystem and
Peer to Peer Cloud Robotics Simulation Videos.” [Online]. Available:
https://sites.google.com/site/deidbep2psimulations/

[68] F. Panzieri, z. Babaoglu, S. Ferretti, V. Ghini, and M. Marzolla, “Dis-
tributed computing in the 21st century: Some aspects of cloud comput-
ing.” in Dependable and Historic Computing, ser. Lecture Notes in Com-
puter Science, C. B. Jones and J. L. Lloyd, Eds., vol. 6875. Springer,
2011, pp. 393–412.

[69] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, and M. Parashar,
“Peer-to-peer cloud provisioning: Service discovery and load-balancing,”
in Cloud Computing, ser. Computer Communications and Networks,
N. Antonopoulos and L. Gillam, Eds. Springer London, 2010, pp.
195–217.

Appendices

185

Appendix A

Full page version of intricate
images.

187

Appendix B

A Detailed explanation for
Object Miner project

The object miner project is designed as a model project to demonstrate the
computation independent design process in HTM5. The project is used in
the thesis to draw sample ARC diagrams and associated DSL code in HTM5-
DSL. Section 3.3 gives details of the Machines, Network clouds, HTM5-
Components, Items in Trade, External actors and Data items associated
with the trade items. In Figures 3.4 till 3.11 (inclusive) the ARC, T-ARC,
H-ARC and two examples each of U-ARC and S-ARCs are presented. In this
appendix we will provide some more details about the project for the read-
ers benefit. After the textual explanation, the appendix contains the whole
set of ARC diagrams with all behavioural models (Use case and Sequence
ARCs) for the project. The text followed by the complete set of ARC
diagrams should enable the reader have a better understanding of
the project and the ARC based design methodology.

The Object miner project simulates a real life mining operation. There
are a number of miners which are equipped to search the mine for specific
minerals. Each miner has an ID and an initial location. In the beginning
of the ecosystem, all miners are affiliated to the agency with simulates a
job agency in real life. The miners cannot be hired directly. The miners
are assigned to specific traders (employers for miners) based on the criteria
specified by the miner and the trader. The criteria that the agency utilises
to match miners to traders is based on a miners expected salary, miners
availability and the salaries offered by a particular trader.

Traders hire miners for their mining operations. Traders have access to a
search space within the mine (the complete mine area is subdivided between
several traders) and the trader chooses the number and kind of miners based
on its requirements. The trader directs the miners that are hired by the
trader to search of specific minerals. The choice of target minerals keeps on
changing with the changing prices of the minerals in the market (here the
market is the collector). The trader regularly checks the mineral prices and
adjusts its mining and staffing parameters accordingly. When a miner finds
a mineral, it is directed to deposit it to the trader. The trader holds the
mineral till a favourable price is available in the market (collector). The load
of minerals sold to the collector by the trader is termed as the cargo and

205

206APPENDIX B. A DETAILED EXPLANATION FOR OBJECT MINER PROJECT

the trader is paid for the cargo as per the prices advertised by the collector.
The trader has to pay the miners their predefined salaries irrespective of the
market situations and the amount of profits made. The trader may leave a
miner when its profits are low, or hire more miners when it has enough funds
to expand its mining operations.

The collector is the market where the traders sell their cargo. The col-
lector is also the owner of the mine, and gives several traders different parts
of the mine for their mining operations. Based on their performance, the
collector may reduce or expand the region of the mine where the trader is
allowed to carry out its mining operations.

For easy implementation and operation of such a system, certain hyper-
activity controls are added. The trader has the hyperactive control over
removing a miner or stop a miners operation without the miners will. This
may be required when a miner is required to be stopped or when it deviates
from the predefined area of the mine where the trader is allowed to carry out
its mining operations. The M4 merge can access the actual number of min-
ers (cumulative miner count) from the miner as this will allow M4 to check
the number of miners requesting to join the mining operation. This simple
hyperactive data access to traders internal knowledge saves the M4 merge
performing a number of additional checks whenever a new miner requests to
join the trader as an employee. A similar hyperactive data access is also given
to M3 merge to keep tract of the total number of miners in the ecosystem.
The collector is given a hyperactive access over trader to set the frequency
by which the trader is allowed to check the mineral prices in the market.
This is to avoid excessive pinging by a trader to access the market prices
(and probably blocking the access to the market data to other traders). The
collector may force stop a trader is the trader expands its mining operations
beyond the permissible area.

OBJECT MINERS PROJECT
ARC

Collector

R1
M
1

Agency

R2

Miner

M
3

x Nc

1

TraderM
4

R4

… x Nb2

1 2

TraderM
4

R4
1 2

TraderM
4

R4
1 2

TraderM
4

R4
1 2

… x Na

1

1

2

2

R3

1

2

M
2

2

2

Miner

Miner

Miner

… x Nb1

Miner

Miner

Miner

… x Nb4

Miner

Miner

Miner

… x Nb3

Miner

Miner

Miner

1

1

1

1

Collector Server

Agency
Server

Trader Machine 1

Trader Machine 2

Trader Machine 3

Trader Machine 4

A R C

OBJECT MINERS PROJECT
ARC (Normalized)

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4
1 2

x Na

1

1

2

2

R3

1

2

M
2

2

x N-miners

N-miners = Nc +
(Nb1 + Nb2 … NbNa)

Miner

2

1

1

Collector Server

Agency
Server

Trader Machine

A R C

OBJECT MINERS PROJECT

TARC (Normalized)

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

DLT SLT

DCM SCM
DEMAND

Target Minerals

Target Minerals

Search Space

Sub Search Space

Search Space

 Sub Space Hit

 Sub Space Hit

Sub Search Space

Mine Coordinates

Mine Coordinates

Cargo

Cargo

Cargo Payment

Cargo Payment

Miner Salary

Miner Salary

Trader ID

Initial Location

Trader ID

Initial Location

Miner ID(s)

Miner ID(s)

Trader ID | #Miner

Trader ID | Salary

Miner ID

Miner ID | Min. Salary

Trader ID | CargoMineral | Price

SERVICE

Location | Mineral ID

Mineral ID

Mineral ID | Hz

T-ARC

Trader ID | Coordinates

Miner ID | Salary

Initial Coordinates

Initial Coordinates

Mined Area %

Miner ID | Job Status

Pipeline: Trader ID | Salary

Search Space

Search Space

OBJECT MINERS PROJECT
HARC (Normalized)

Collector

R1M
1

Agency

R2

M
3

TraderM
4 R4

R3

M
2

Miner

H-ARC

Force Stop

Cumulative
Miner Count

Remove Miner Unilaterally

Set Message Frequency
Force Stop

Miner Count

OBJECT MINERS PROJECT
UARC 001 : Trader Gets Search Space

U-ARC
OBJECT MINERS PROJECT

UARC 002 : Trader Requests Miners
U-ARC

OBJECT MINERS PROJECT
UARC 003 : Miners Register With Agency

U-ARC
OBJECT MINERS PROJECT

UARC 004 : Trader is Allocated Miners
U-ARC

OBJECT MINERS PROJECT
UARC 005 : Collector Publishes Mineral Prices

U-ARC
OBJECT MINERS PROJECT

UARC 006 : Miners Registers With Trader
U-ARC

OBJECT MINERS PROJECT
UARC 007 : Active Miner Looking For Switching Jobs

U-ARC
OBJECT MINERS PROJECT
UARC 008 : Mining Process

U-ARC

OBJECT MINERS PROJECT
UARC 009 : Trader Initiates Trade With Collector

U-ARC
OBJECT MINERS PROJECT

UARC 010 : Collector Accepts Cargo
U-ARC

OBJECT MINERS PROJECT
UARC 011 : Trader Re-accesses Production

U-ARC
OBJECT MINERS PROJECT

UARC 012 : Trader Releases Miners
U-ARC

OBJECT MINERS PROJECT
UARC 013 : Trader Requests Additional Miners

U-ARC
OBJECT MINERS PROJECT

UARC 014 : Agency Releases Additional Miners
U-ARC

OBJECT MINERS PROJECT
UARC 015 : Agency Pipelines Trader Request For Miners

U-ARC
OBJECT MINERS PROJECT

UARC 016 : Miner Leaves Trader
U-ARC

OBJECT MINERS PROJECT
UARC 017 : Agency Manages Pipeline

U-ARC
OBJECT MINERS PROJECT

UARC 018 : Collector Redefines Minerals And Prices
U-ARC

OBJECT MINERS PROJECT
UARC 019 : Trader Dispatches Miner Salaries

U-ARC

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 001 : Trader Gets Search Space

U-ARC

Communicates
The Mine boundaryCommunicates

Trader's Search
Space

Communicates
Search Space, Initial Location &

Communication
Coordinates

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 002 : Trader Requests Miners

U-ARC

Trader Creates / Modifies
Its Row in the

“Trader ID | #Miner”
“Trader ID | Coordinates”

“Trader ID | Salary”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 003 : Miners Register With Agency

U-ARC

Miner Creates / Modifies
Its Row in the

“Miner ID”
“Miner ID | Min. Salary”
“Miner ID | Job Status”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 004 : Trader is Allocated Miners

U-ARC

Agency Reads
“Trader ID | #Miner”

“Trader ID | Coordinates”
“Trader ID | Salary”

Agency Reads
“Miner ID”

“Miner ID | Min. Salary”
“Miner ID | Job Status”

Allocates Trader ID
&

Initial Location and
Communication

coordinates

Allocates List
of Miner IDs

Updates
“Miner ID | Salary”

Reads “Miner ID” of
“Miner ID | Salary”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 005 : Collector Publishes Mineral Prices

U-ARC

Reads Updated
“Mineral | Price”

Collector Updates
“Mineral | Price”

Trader Updates
“Mineral ID”

Reads Updated
“Mineral ID”

Sends New Target
Mineral IDs

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 006 : Miners Registers With Trader

U-ARC

Communicates
 Sub search space

&
Target Mineral IDs

Sends “Ping” on initial
communication coordinates

on arrival to
Initial Location

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 007 : Active Miner Looking For Switching Jobs

U-ARC

Miner Regularly reads the “Pipeline”
And Updates Its Row in the

“Miner ID | Min. Salary”
While “Miner ID | Status” is still EMPLOYED

Assumption: The miner may / may not have loyalty to any one Trader.
Depending on its Personality Program. It may stay with the trader or leave as soon as a better job is offered by another trader.

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 008 : Mining Process

U-ARC

Reports Locations Mined
& Positive Hits

Updates
“Location | Mineral ID”

“Mineral ID| Hz”
“Mined Area %”

Mine Field
Sensor Data on
One Location

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 009 : Trader Initiates Trade With Collector

U-ARC

Reads
“Location | Mineral ID”

Updates
“Trader ID | Cargo”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 010 : Collector Accepts Cargo

U-ARC

Reads
“Trader ID | Cargo”

Cargo Payment

Cargo Dispatch

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 011 : Trader Re-accesses Production

U-ARC

Reads
“Mineral ID | Hz”
“Mined Area %”

“Miner ID | Salary”

Reads
“Mineral | Price”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 012 : Trader Releases Miners

U-ARC

Deletes Rows From
“Miner ID | Salary”

Reads
“Miner ID | Salary”

Miner Modifies
Its status in

“Miner ID | Job Status”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 013 : Trader Requests Additional Miners

U-ARC

Trader Modifies
Its Row in the

“Trader ID | #Miner”

OBJECT MINERS PROJECT
UARC 014 : Agency Releases Additional Miners

U-ARC

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

Agency Reads
“Trader ID | #Miner”

“Trader ID | Coordinates”
“Trader ID | Salary”

Agency Reads
“Miner ID”

“Miner ID | Min. Salary”
“Miner ID | Job Status”

Allocates Trader ID
&

Initial Location and
Communication

coordinates

Allocates List
of Miner IDs

Updates
“Miner ID | Salary”

Reads “Miner ID” of
“Miner ID | Salary”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 015 : Agency Pipelines Trader Request For Miners

U-ARC

Returns Miner ID
as NULL

On receiving a NULL Miner ID, an active Trader may Increase the offered Salary based on its Business logic.

Updates
“Pipeline: Trader ID : Salary”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 016 : Miner Leaves Trader

U-ARC

Miner Modifies
Its status in

“Miner ID | Job Status”

Deletes Rows From
“Miner ID | Salary”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 017 : Agency Manages Pipeline

U-ARC

Reads
“Miner ID | Job Status”

Reads
“Trader ID | #Miner”

“Trader ID | Min. Salary”

Updates Pipeline:
“Trader ID | Salary”

The Pipeline Updates are the trigger for Miners to switch their current job with a new one.
Assumption: A Miner cannot switch to a new job offered by its current Trader. Hence it will not react to jobs

In the pipeline from its current Trader. [Though this scenario can be explored]

Stories of human like Agent behaviour can be published. What if Miners stop
working for a Trader is offering too much to new Miners, will there be a Strike?
(Means employed but not working for a salary hike)

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 018 : Collector Redefines Minerals And Prices

U-ARC

Updates
“Mineral | Price”

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
UARC 019 : Trader Dispatches Miner Salaries

U-ARC

Reads
“Miner ID | Salary”

Salary Payment

A retirement Scenario can be explored where after saving enough money a Miner decides to Retire.

OBJECT MINERS PROJECT
SARC 001 : Trader Gets Search Space

S-ARC
OBJECT MINERS PROJECT

SARC 002 : Trader Requests Miners
S-ARC

OBJECT MINERS PROJECT
SARC 003 : Miners Register With Agency

S-ARC
OBJECT MINERS PROJECT

SARC 004 : Trader is Allocated Miners
S-ARC

OBJECT MINERS PROJECT
SARC 005 : Collector Publishes Mineral Prices

S-ARC
OBJECT MINERS PROJECT

SARC 006 : Miners Registers With Trader
S-ARC

OBJECT MINERS PROJECT
SARC 007 : Active Miner Looking For Switching Jobs

S-ARC
OBJECT MINERS PROJECT
SARC 008 : Mining Process

S-ARC

OBJECT MINERS PROJECT
SARC 009 : Trader Initiates Trade With Collector

S-ARC
OBJECT MINERS PROJECT

SARC 010 : Collector Accepts Cargo
S-ARC

OBJECT MINERS PROJECT
SARC 011 : Trader Re-accesses Production

S-ARC
OBJECT MINERS PROJECT

SARC 012 : Trader Releases Miners
S-ARC

OBJECT MINERS PROJECT
SARC 013 : Trader Requests Additional Miners

S-ARC
OBJECT MINERS PROJECT

SARC 014 : Agency Releases Additional Miners to Trader
S-ARC

OBJECT MINERS PROJECT
SARC 015 : Agency Pipelines Trader Request For Miners

S-ARC
OBJECT MINERS PROJECT

SARC 016 : Miner Leaves Trader
S-ARC

OBJECT MINERS PROJECT
SARC 017 : Agency Manages Pipeline

S-ARC
OBJECT MINERS PROJECT

SARC 018 : Collector Redefines Minerals And Prices
S-ARC

OBJECT MINERS PROJECT
SARC 019 : Trader Dispatches Miner Salaries

S-ARC

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 001 : Trader Gets Search Space

S-ARC

Fetches out the boundary
coordinates from the memory

1

Sends boundary coordinates
to M1

2

Receives boundary coordinates
from Collector

3

Equally divides the mine into
Trader's search spaces

4

Sends search spaces
To different traders

5

Receives Search space6

Computes Ideal Initial Location7

Computes Unique communication
Coordinates for M4-Miner comm. 8

Sends Search Space and
Coordinates to M49

Receives Search Space and
Coordinates to M410

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 002 : Trader Requests Miners

S-ARC

Fetches out the default # miners &
 Miner Salary from the memory.

1

Computes Unique communication
Coordinates for M4-Miner comm.

2

Sends #Miners, Miner Salary
 and Coordinates to R23

Receives #Miners, Miner Salary
 and Coordinates from Traders

Updates #Miner in
“Trader ID | #Miner”

Updates coordinates in
“Trader ID |Coordinates”

Updates Salary in
“Trader ID | Salary”

4

5

6

7

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 003 : Miners Register With Agency

S-ARC

Generates Miner ID from its
MAC address

1

Fetches out the default
Min. Salary from the memory

2

Sends Miner ID, Min. Salary
And Job Status to R34

Sets Job Status to NULL3

Receives Miner ID, Min. Salary
And Job Status to R35

Sends Miner ID, Min. Salary
And Job Status to R36

Adds Miner ID in
“Miner ID”

7

Adds new row in
“Miner ID | Min. Salary”

8

Adds new row in
“Miner ID | Job Status”

9

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 004 : Trader is Allocated Miners

S-ARC

Sends Read request to R2
For “Trader ID | #Miner”

1

Receives “Trader ID | #Miner”4

Identifies Candidate Miners
(Assuming there is at least one)9

Sends Read request to R3
For “Miner ID | Job Status”

5

Sends Read request to R3
For “Miner ID | Min. Salary”

10

Sends Read request to R2
For “Trader ID | Salary”

14

Receives “Miner ID | Min. Salary”13

Receives “Trader ID | Salary”17

Prepares List of Miner IDs
(NULL LIST if no match found)18

Sends list of Miner IDs to Trader19

Sends Updated values to R2
For “Trader ID | #Miner”

28

Sends Trader ID & Coordinates
to Miners

35

Sends Read request to R2
For “Trader ID | Coordinates”

31

Receives
“Trader ID | #Coordinates”

34

Prepares Job Status value of
Miner based on Trader ID

39

Sends Updated values to R3
For “Miner ID | Job Status”

40

Receives Read request
For “Trader ID | #Miner”

2

Sends “Trader ID | #Miner” to
Agency

3

Receives Read request
For “Miner ID | Job Status”

6

Sends “Miner ID | Job Status” to
Agency

7

Receives “Miner ID | Job Status”8

Receives Read request
For “Miner ID | Min. Salary”

11

Sends “Miner ID | Min. Salary” to
Agency

12

Receives Read request
For “Trader ID | Salary”

15

Sends “Trader ID | Salary” to
Agency

16

Receives list of Miner IDs20

Sends all the values for
“Miner ID | Salary” to R4

21

Receives all the values for
“Miner ID | Salary”

22

Creates
“Miner ID | Salary”

23
Sends Read request for Miner ID
From “Miner ID | Salary” to R4'

24

Receives Miner ID list from R427 Receives Read request for Miner ID
From “Miner ID | Salary”

25

Sends Miner ID list to M426

Receives Updated values
For “Trader ID | #Miner”

29

Updates “Trader ID | #Miner”30

Receives Read request
For “Trader ID | Coordinates”

32

Sends “Trader ID | Coordinates”
to Agency

33

Receives
Trader ID & Coordinates

36

Saves the communication
Coordinates (Unique for Trader)

37

Moves to Initial location
coordinates

38

Receives Updated values
For “Miner ID | Job Status”

41

Updates
“Miner ID | Job Status”

42

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 005 : Collector Publishes Mineral Prices

S-ARC

1

Receives Update request
For “Mineral | Prices”

3

4

Updates “Mineral | Price”

4

Calculates New Prices based
On already received Cargo

1

Sends Update request to R1
For “Mineral | Prices”

2

4

Sends Read request to R1
For “Mineral | Prices”

5

Receives Read request
For “Mineral | Prices”

6

Sends “Mineral | Price”
To Trader

7

Receives
“Mineral | Prices”

8

Generates new list of target
Minerals based on new Prices.

9

Sends Update request to R4
For “Mineral ID”

10
Receives Update request

For “Mineral ID”
11

Updates “Mineral ID”12

Sends Read request to R4
For “Mineral ID”

13

Receives
“Mineral ID”

16

Receives Read request
For “Mineral ID”

14

Sends “Mineral ID”
To M4

15

Sends New Mineral Ids to
Miners

17

Receives New Mineral IDs
from M4

18

Starts Mining for New Mineral IDs19

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 006 : Miners Registers With Trader

S-ARC

Receives Miner ID5

Verifies Miner ID with the
Miner ID list

6

Sends the list of target
Mineral Ids to Miner

7

Receives the list of target
Miner IDs

8

Reaches Initial location
coordinates

1

Reads the communication
Coordinates from memory

2

Connects to M4 using the
Communication coordinates

3

Sends its Miner ID to M44

Sends the coordinates for The
Sub Search Space to Miner

9

Receives the coordinates for
The Sub Search Space

10

Reaches Sub Search Space11

Starts mining for Target Minerals
At Sub Search Space

12

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 007 : Active Miner Looking For Switching Jobs

S-ARC

Assumption: The miner may / may not have loyalty to any one Trader.
Depending on its Personality Program. It may stay with the trader or leave as soon as a better job is offered by another trader.

Sends Read request for “Pipeline:
Trader ID | Salary” to R3

1

Calculates the new Min. Salary
Based on the Pipeline Status

5

Sends update request for
“Miner ID | Min. Salary” to R3

6

Receives Read request for
“Pipeline:Trader ID | Salary”

2

Sends the “Pipeline” data to
Miner

3

Receives update request for
“Miner ID | Min. Salary”

7

Receives “Pipeline:
Trader ID | Salary” from R3

4

Updates
“Miner ID | Min. Salary”

8

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 008 : Mining Process

S-ARC

Mine Field

Reaches a location in the
Miner's Sub-Search Space1

Records sensor data2

Makes a list of positive matches
(Hits) with the Target IDs

3

Sends the list of Positive Hits
To M44

Receives the list of Positive Hits
To M45

Combines the positive Hits lists
From all the miners6

Sends update request for
“Location | Miner ID” to R47

Calculates Positive Hit
Frequencies for all Mineral IDs10

Sends update request for
“Mineral ID | Hz” to R411

Calculates the percentage of
area mined14

Receives update request for
“Location | Miner ID”8

Updates
“Location | Miner ID”9

Receives update request for
“Miner ID | Hz”12

Updates
“Miner ID | Hz”13

Sends update request for
“Mined Area %” to R415

Receives update request for
“Mined Area %”16

Updates
“Mined Area %”17

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 009 : Trader Initiates Trade With Collector

S-ARC

Sends read request for
“Location | Mineral ID” to R4

1

Receives read request for
“Location | Mineral ID”2

Sends “Location | Mineral ID”
to Trader3

Receives “Location | Mineral ID”4

Prepares Cargo Information
(Cargo size and contents)

5

Sends update request for
“Trader ID | Cargo” to R1

6

Receives update request for
“Trader ID | Cargo”

7

Updates
“Trader ID | Cargo”

8

SYSTEM

Collector

R1M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 010 : Collector Accepts Cargo

S-ARC

Sends read request for
“Trader ID | Cargo” to R1

1

Receives “Trader ID | Cargo”4

Selects the Cargo to buy5

Receives read request for
“Trader ID | Cargo”2

Sends
“Trader ID | Cargo” to Collector

3

Sends payment to Trader
For the selected Cargo

6

Receives payment for a
Particular Cargo

7

Sends Cargo (Locations and
Mineral IDs) to Collector

8

Receives Cargo
(Locations and Mineral IDs)

9

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 011 : Trader Re-accesses Production

S-ARC

Sends read request for
“Mineral ID | Hz” to R4

1

Receives
“Mineral ID | Hz”4Receives read request for

“Mineral ID | Hz”
2

Sends
“Mineral ID | Hz” to Trader3

Sends read request for
“Mined Area %” to R45

Receives
“Mined Area %”8Receives read request for

“Mined Area %”
6

Sends
“Mined Area %” to Trader

7

Receives read request for
“Miner ID | Salary”

10

Sends
“Miner ID | Salary” to Trader

11

Sends read request for
“Miner ID | Salary” to R49

Receives
“Miner ID | Salary”12

Sends read request for
“Mineral | Price” to R113

Receives
“Mineral | Price”

16
Receives read request for

“Mineral | Price”
14

Sends
“Mineral ID | Price” to Trader

15
Re accesses Production17

Decides whether to drop existing
Or hire additional Miners

18

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 012 : Trader Releases Miners

S-ARC

Sends delete request(s) for rows
In “Miner ID | Salary” to R4

1

Sends read request for
“Miner ID | Salary” to R4

4

Receives “NULL”7

Receives delete request(s) for
Rows In “Miner ID | Salary”2

Receives delete request(s) for
Rows In “Miner ID | Salary”3

Receives read request for
“Miner ID | Salary”

5

Sends “NULL” to Miner who's
Row has been deleted

6

Sends update request for
“Miner ID | Job Status” to R3

8

Receives update request for
“Miner ID | Job Status”

9

Updates
“Miner ID | Job Status” as NULL

10

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 013 : Trader Requests Additional Miners

S-ARC

Sends update request for
“Trader ID | # Miner” to R21

Receives update request for
“Trader ID | # Miner”

2

Updates
“Trader ID | # Miner”

3

OBJECT MINERS PROJECT
SARC 014 : Agency Releases Additional Miners to Trader

S-ARC

SYSTEM

Collector

R1M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

Sends Read request to R2
For “Trader ID | #Miner”

1

Receives “Trader ID | #Miner”4

Identifies Candidate Miners
(Assuming there is at least one)9

Sends Read request to R3
For “Miner ID | Job Status”

5

Sends Read request to R3
For “Miner ID | Min. Salary”

10

Sends Read request to R2
For “Trader ID | Salary”

14

Receives “Miner ID | Min. Salary”13

Receives “Trader ID | Salary”17

Prepares List of Miner IDs
(NULL LIST if no match found)18

Sends list of Miner IDs to Trader19

Sends Updated values to R2
For “Trader ID | #Miner”

28

Sends Trader ID & Coordinates
to Miners

35

Sends Read request to R2
For “Trader ID | Coordinates”

31

Receives
“Trader ID | #Coordinates”

34

Prepares Job Status value of
Miner based on Trader ID

39

Sends Updated values to R3
For “Miner ID | Job Status”

40

Receives Read request
For “Trader ID | #Miner”

2

Sends “Trader ID | #Miner” to
Agency

3

Receives Read request
For “Miner ID | Job Status”

6

Sends “Miner ID | Job Status” to
Agency

7

Receives “Miner ID | Job Status”8

Receives Read request
For “Miner ID | Min. Salary”

11

Sends “Miner ID | Min. Salary” to
Agency

12

Receives Read request
For “Trader ID | Salary”

15

Sends “Trader ID | Salary” to
Agency

16

Receives list of Miner IDs20

Sends all the values for
“Miner ID | Salary” to R4

21

Receives all the values for
“Miner ID | Salary”

22

Creates
“Miner ID | Salary”

23
Sends Read request for Miner ID
From “Miner ID | Salary” to R4'

24

Receives Miner ID list from R427 Receives Read request for Miner ID
From “Miner ID | Salary”

25

Sends Miner ID list to M426

Receives Updated values
For “Trader ID | #Miner”

29

Updates “Trader ID | #Miner”30

Receives Read request
For “Trader ID | Coordinates”

32

Sends “Trader ID | Coordinates”
to Agency

33

Receives
Trader ID & Coordinates

36

Saves the communication
Coordinates (Unique for Trader)

37

Moves to Initial location
coordinates

38

Receives Updated values
For “Miner ID | Job Status”

41

Updates
“Miner ID | Job Status”

42

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 015 : Agency Pipelines Trader Request For Miners

S-ARC

On receiving a NULL Miner ID, an active Trader may Increase the offered Salary based on its Business logic.

Reaches conclusion that no
miners are available for Trader1

Sends NULL as the Miner ID
to Trader

2

Sends update request to R3
for “Pipeline: Trader ID | Salary”

6

Receives NULL as the Miner ID3

Waits for the pipeline to release
Miners

4

Continues production with
Current number of Miners.

5

Receives update request
for “Pipeline: Trader ID | Salary”

7

Updates
“Pipeline: Trader ID | Salary”8

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 016 : Miner Leaves Trader

S-ARC

Sends delete request for its row
In “Miner ID | Salary' to R4

1

Sends NULL as Job status to
R3 for “Miner ID | Job Status”

4

Receives delete request for
Miner's row In “Miner ID | Salary'

2

Deletes miner's row
of “Miner ID | Salary'

3

Receives NULL as Job Status
From miner

5

Updates
“Miner ID | Job Status”

6

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 017 : Agency Manages Pipeline

S-ARC

The Pipeline Updates are the trigger for Miners to switch their current job with a new one.
Assumption: A Miner cannot switch to a new job offered by its current Trader. Hence it will not react to jobs

In the pipeline from its current Trader. [Though this scenario can be explored]

Stories of human like Agent behaviour can be published. What if Miners stop
working for a Trader is offering too much to new Miners, will there be a Strike?
(Means employed but not working for a salary hike)

Sends read request to R2
For “Trader ID | #Miner”1

Receives “Trader ID | #Miner”4

Receives read request
For “Trader ID | #Miner”2

Sends “Trader ID | #Miner”
To Agency

3

Sends read request to R2
For “Trader ID | Min. Salary”

5

Receives “Trader ID | Min. Salary”

8

Receives read request
For “Trader ID | Min. Salary”

6

Sends “Trader ID | Min. Salary”
To Agency

7

8

Sends read request to R3
For “Miner ID | Job Status”9

Receives “Miner ID | Job Status”12

Receives read request
For “Miner ID | Job Status”10

Sends “Miner ID | Job Status”
To Agency

11

Prepares a new entry for the
“Pipeline: Trader ID | Salary”13

7
Sends update request to R3 for

“Pipeline: Trader ID | Salary”14

7

Receives update request for
“Pipeline: Trader ID | Salary”15

Updates
“Pipeline: Trader ID | Salary”

16

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 018 : Collector Redefines Minerals And Prices

S-ARC

Receives update request for
“Mineral | Price”

2

Updates
“Mineral | Price”

3

Sends update request to R1 for
“Mineral | Price”

1

SYSTEM

Collector

R1
M
1

Agency

R2

M
3

TraderM
4

R4

R3

M
2

Miner

OBJECT MINERS PROJECT
SARC 019 : Trader Dispatches Miner Salaries

S-ARC

A retirement Scenario can be explored where after saving enough money a Miner decides to Retire.

Sends read request to R4 for
“Miner ID | Salary”1

Receives “Miner ID | Salary”4

Sends salary to Miner(s)5

Receives read request for
“Miner ID | Salary”

2

Sends “Miner ID | Salary”
To Trader

3

Receives Salary6

Appendix C

Cloud Robotic Workshop at
UTP

251

In order to test the feasibility of ARC based designing, we conducted a project based feasibility study at a
workshop organized at University Technology Petronas, Malaysia in April 2012. A group of 24 students
participated in the study. In total of 6 project ideas were developed using the ARC model, followed by detailed
analysis of the usability of the model. A comparison was made to the traditional methods to represent ideas at the
most abstract level and participant feedback was taken on various usability and functional aspects of the ARC
model.

In order to simulate different levels of technical knowledge of the users of the ARC model, participants were

chosen from various levels of education. The participants had a wide breadth of technical skills and were working
in different domains. This was a crucial component of the participating group as it enabled to test the feasibility of
the ARC model in representing ideas coming from people with different kind of expertise. It was important that
the model was proved useful to all the participants in representing their ideas, but another important aspect of the
study was to see how useful the model is to establish a common standard to represent ideas within the group, and
its communication to the other groups.

A number of robots and devices were used by the participants to form the project ideas (Table. 1). The
inclusion of a wide variety of agent-hosts in idea formation was mainly because of the freedom the participants
had while working at an abstract level, without being influenced by the implementational details. The top layer of
the proposed model (ARCs) is designed for this abstract level idea formation where all project stake holders
(which in this study are simulated by a diversified participant composition Fig. 8) can contribute into the design.

ROBOTS AND OTHER AGENT HOSTS

RESCUE ROBOTS

IP THERMAL SENSORS

WIFI BOTS

PCs

 LAPTOPS

SMART PHONES

TABLET PC

IP SMOKE SENSORS

LEGO MINDSTROM

WEB SERVERS

NAO HUMANOID ROBOT

PROGRAMMABLE IP CAMERAS

AMBIENT INTELLIGENCE RF TAGS

A. Procedings

The 6 teams were given time to brainstorm on their own group project idea. In the first section, they were told
to use any kind of textual or diagrammatical tools to make abstract design documents for their designs. Later in
second section they were trained to use ARCs and then told to use ARCs to make their abstract design documents.
The teams gave presentations of their design ideas twice, once using their own textual/ diagrammatical aids and
once again using the ARCs. In the end the participants gave their feedback on 22 subjective data points. The
feedback target was ranging from their understanding of the tasks given to them, to comparing the tools they used
to make abstract design documents for their ideas. They were also asked about how easy it was for them to use the
different tools and to understand the presentations of other teams when they used those tools. In all, 6 project ideas
were developed and discusses. ARCs were developed for all 6 projects and the workshop provides a number of
pointers to improve and validate the usability of the ARC based modeling.

B. Rating Scale

We used a subjective 5 level scale for all the data points in the feedback form.

Not at All Little Good Very Much Exceptional

C. Findings

Following are other findings which validate the “Need” of an ARC like system to model multi-agent systems

as well as the feasibility of the top layer of the model (ARCs) as a potential solution.

When asked the usefulness of verbal discussions as a tool to
develop the project idea.
Average Rating: between “good” and “very much”.

When asked the usefulness of textual representations as a
tool to develop the project idea.
Average Rating: between “little” and “good”.

When asked the usefulness of Diagrammatical
representations (Other than ARCs) to develop the project
idea.
Average Rating: between “good” and “very much”.

When asked the usefulness of ARC representations as a
tool to develop the project idea.
Average Rating: between “very much” and “exceptional”.

When asked the readability of the ARC representations
developed by other teams compared to their first
presentation.
Average Rating between “good” and “very much”

When asked about the completeness of the set of ARCs to
represent all the ideas into documents.
Average Rating between “good” and “very much”

Those participants who have already worked with UML, the
rating for the UARC and SARC was between “very good”
and “exceptional”

There was a general comment from most of the participants
that once the initial level of understanding is reached in
making ARCs, it becomes easier and easier to use ARCs
with every usage.

Most of the participants liked the flexibility of ARCs to
represent Agents running on different Agent Hosts.

Another common comment was that having a standard
template greatly helped in the brainstorming session.

All the participants were using the ARCs for the first time. ARCs require some level of training and
experience to be really useful. Despite of limited training and experience the average score for its usability was
between “Very much” and “Exceptional”. This is very encouraging for the further promotion of the model and
provides very necessary pointers for the development of lower layers of the model.

Subjective Data Form

Use Blue/Black Ink.

Use BLOCK LETTERS Workshop ID:

FULL NAME

Team Name and ID

Email (Use BLOCK)

Please first read the complete form before you start answering the questions.

[01] How good you found the concept of the workshop.

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[02] Did you understand the task that was given to you?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[03] Did the team understand the task that was given to you?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[04] Were the background concepts well explained before the task begins?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[05] How useful was the verbal discussion amongst the team members, for Idea development?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[06] How useful were Textual representations (Plain text), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[07] How useful were Diagrammatical representations (Diagrams), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[08] Did you understand the concept behind ARC representations (Agent Relation Chart)?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN ARC:

[09] How useful were ARC representations (Agent Relation Chart), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[10] Did you understand the concept behind TARC representations (Trade Agent Relation Chart)?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN TARC:

[11] How useful were TARC representations (Trade Agent Relation Chart), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[12] Did you understand the concept behind HARC representations (Hyperactivity Agent Relation Chart)?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN HARC and Hyperactivity:

[13] How useful were HARC representations (Hyperactivity Agent Relation Chart), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[14] Have you already worked with UML (Unified Modeling Language)

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

What do you know about UML and its role in Software Development :

[15] Did you understand the concept behind UARC representations (Use Case Agent Relation Chart)?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN UARC:

[16] How useful were UARC representations (Use Case Agent Relation Chart), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[17] Did you understand the concept behind SARC representations (Sequence Agent Relation Chart)?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN UARC:

[18] How useful were SARC representations (Sequence Agent Relation Chart), for expressing the Idea?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Comments:

[19] Were ARCs (All of them) a complete set of representations to convert your ideas into design
documents?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN:

[20] What additional components you would suggest to make ARCs (All of them) a complete set of
representations to express your ideas?

PLEASE EXPLAIN:

[21] How Well were you able to read and understand ARCs made by other teams?

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

PLEASE EXPLAIN:

[22] How useful was the whole workshop in terms of its “Quality” and “Content”.

| Not at all □ | Little □ | Good □ | Very much □ | Exceptional □ |

Feel free to add any suggestions, comments or improvements:
(Add additional Pages if required)

Signature: Date: Place:

Résumé :

Le développement de logiciels pour les robots connectés est une difficulté majeure dans le domaine
du génie logiciel. Les systèmes proposés sont souvent issus de la fusion de une ou plusieurs plates-
formes provenant des robots, des ordinateurs autonomes, des appareils mobiles, des machines
virtuelles, des caméras et des réseaux. Nous proposons ici une approche orientée agent permettant
de représenter les robots et tous les systèmes auxiliaires comme des agents d’un système. Ce
concept de l’agence préserve l’autonomie sur chacun des agents, ce qui est essentiel dans la mise en
oeuvre logique d’un nuage d’éléments connectés. Afin de procurer une flexibilité de mise en oeuvre
des échanges entre les différentes entités, nous avons mis en place un mécanisme d’hyperactivité ce
qui permet de libérer sélectivement une certaine autonomie d’un agent par rapport à ces associés.
Actuellement, il n’existe pas de solution orientée méta-modèle pour décrire les ensembles de robots
interconnectés. Dans cette thèse, nous présentons un méta-modèle appelé HTM5 pour spécifier
la structure, les relations, les échanges, le comportement du système et l’hyperactivité dans un
système de nuages de robots. La thèse décrit l’anatomie du méta-modèle (HTM5) en spécifiant
les différentes couches indépendantes et en intégrant une plate-forme indépendante de toute plate-
forme spécifique. Par ailleurs, la thèse décrit également un langage de domaine spécifique pour la
modélisation indépendante dans HTM5. Des études de cas concernant la conception et la mise en
œuvre d’un système multi-robots basés sur le modèle développé sont également présentés dans
la thèse. Ces études présentent des applications où les décisions commerciales dynamiques sont
modélisées à l’aide du modèle HTM5 confirmant ainsi la faisabilité du méta-modèle proposé.

Mots-clés : Nuage de Robotique, le développement de logiciels utilisant des modèles

Abstract:

Software development for cloud connected robotic systems is a complex software engineering
endeavour. These systems are often an amalgamation of one or more robotic platforms, standalone
computers, mobile devices, server banks, virtual machines, cameras, network elements and ambient
intelligence. An agent oriented approach represents robots and other auxiliary systems as agents in
the system.
Software development for distributed and diverse systems like cloud robotic systems require special
software modelling processes and tools. Model driven software development for such complex
systems will increase flexibility, reusability, cost effectiveness and overall quality of the end product.
The proposed 5-view meta-model has separate meta-models for specifying structure, relationships,
trade, system behaviour and hyperactivity in a cloud robotic system. The thesis describes the
anatomy of the 5-view Hyperactive Transaction Meta-Model (HTM5) in computation independent,
platform independent and platform specific layers. The thesis also describes a domain specific
language for computation independent modelling in HTM5.
The thesis has presented a complete meta-model for agent oriented cloud robotic systems and has
several simulated and real experiment-projects justifying HTM5 as a feasible meta-model.

Keywords: Cloud Robotics, Model driven software development

