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Résumé en français

L’optomécanique, qui traite des effets mécaniques exercés par la lumière sur
des objets matériels, est en premier lieu gouvernée par les lois de conservation
telles que celles de l’impulsion, du moment angulaire et de l’énergie. Par exemple,
lorsqu’un objet redirige ou absorbe la lumiére, la modification de l’impulsion du
champ résultant de l’interaction lumière-matière se manifeste par l’apparition
d’une force optique appliquée à cet objet, qui peut alors être déplacé. De manière
analogue, un couple optique apparâıt dés lors que l’interaction lumière-matière
modifie le moment angulaire du champ, offrant la possibilité de mettre en rotation
la matière par voie optique. De manière originale, cette thèse vise à établir la
possibilité d’exploiter les degrés de liberté angulaire de la lumière afin de contrôler
les degrés de liberté de translation d’un système matériel. Nous avons ainsi mis
en évidence (à la fois expérimentalement et théoriquement), et exploité à des
fins applicatives, le fait que le moment angulaire de spin associé à un champ
lumineux peut être utilisé pour contrôler les forces optiques appliquées à un
système matériel.

Pour cela, nous avons exploité une propriété fondamentale de la matière et
de la lumière: la chiralité. Un système est dit chiral si son image dans un miroir
n’est pas superposable à celui-ci via des translations ou rotations d’espace. Un
exemple typique correspond à nos mains, droite et gauche, qui images dans un
miroir mais ne sont pas superposables. En pratique, on associera à un milieu
chiral droit ou gauche le paramètre χ, qui prend respectivement la valeur +1 ou −1
selon que le milieu est droit ou gauche. La lumière peut elle aussi être dotée de la
propriété de chiralité. L’exemple qui nous intéresse est celui des ondes lumineuses
polarisées circulairement gauche et droite, qui sont respectivement associées à une
structuration spatiale en hélice gauche et droite du champ électrique à laquelle
on réfère grâce au paramètre Λ, qui vaut respectivement +1 ou −1. Ce paramètre
est appelé hélicité et trouve son origine dans la description corpusculaire de la
lumière. En effet, Λ correspond (en unités de h̵, la constante de Planck réduite)
à la projection du moment angulaire du photon sur la direction associée à son
impulsion.

Le résultat principal sur lequel repose l’ensemble des résultats de ce travail de
thèse est que l’amplitude de la force optique exercée sur un objet chiral dépend
de l’hélicité de la lumière. Autrement dit, la force appliquée sur objet chiral
dépend du produit Λχ. Notre travail, à vocation expérimentale, a donc nécessité
la mise en place d’un système lumière-matière permettant une mise en évidence
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expérimentale quantitative de notre proposition fondamentale. Notre choix s’est
tourné vers l’utilisation de gouttelettes sphériques d’un cristal liquide nématique
chiral (i.e. un cristal liquide cholestérique) dont le diamètre typique est de l’ordre
d’une dizaine de microns et qui sont immergées dans un fluide visqueux isotrope
(en pratique un mélange eau/glycérol). L’intérêt de ces objets est qu’ils sont
susceptibles de se déplacer sans entrave, qu’ils sont suffisamment petit donner
facilement accés à l’observation quantitative d’un mouvement induit par la lu-
mière, qu’ils peuvent être fabriqués aisément, et en fin qu’ils présentent dans
certaines conditions une réponse optomécanique résonante. Ainsi, non seulement
nous avons pu valider le concept de force optique contrôlée par le spin du photon
mais aussi apporter des démonstrations de principe de différentes applications
qui en découlent et qui nous ont permis de jeter les bases d’une “optomécanique
chirale”. En particulier, nous avons démontré le tri de la chiralité matérielle par
voie optique et réalisé une pince optique capable de piéger sélectivement un objet
chiral en fonction de sa chiralité. Le manuscrit se compose de quatre chapitres
qui sont brièvement détaillés dans ce qui suit.

Le chapitre 1 introduit le matériau constituant le système d’étude, les cristaux
liquides cholestériques, qui sont caractérisés par un arrangement hélicöıdal de
l’orientation moyenne locale des molécules auquel est associée une distance car-
actéristique, le pas de l’hélice. Ces matériaux sont principalement connus pour
le phénomène de la réflexion de Bragg circulaire. Ce phénomène correspond au
fait que l’un des deux états de polarisation circulaire ne peut pas se propager
dans le matériau pour une certaine gamme de longueur d’onde qui dépend du
pas cholestérique, de la biréfringence du cristal liquide et de l’angle d’incidence.
Ainsi, on peut se retrouver dans une situation où un champ lumineux de po-
larisation circulaire donné est totalement réfléchi alors que l’état de polarisation
orthogonale est transmis. Ce phénomène de réflexion résonante peut se produire
que lorsque la chiralité matérielle χ et l’hélicité de la lumière Λ sont de signes
opposés, soit Λχ = −1. On parle alors de la réflexion dite de Bragg et par opposi-
tion, on parlera du cas où Λχ = +1 comme de la situation anti-Bragg. Dans notre
cas, nous avons formé des gouttelettes sphériques de cristal liquide cholestérique
dont le pas est ajusté pour correspondre à la réflexion de Bragg pour la longueur
d’onde de travail (532 nm, la source utilisée étant un laser continu). De plus,
nous avons choisi des conditions aux limites (l’interface sphérique entre la goutte
et le fluide dans lequel elle est immergée) qui correspondent à une orientation
moléculaire paralléle à la surface de la goutte. On obtient alors une goutte
cholestérique dite radiale à la quelle est associée une distribution radiale pour
l’axe de l’hélice cholestérique. Pour un faisceau incident centré sur la goutte,
cela permet d’obtenir une réflexion de Bragg sur une fraction de l’hémisphère
illuminée définie par l’intersection de la sphère avec un cone ayant pour som-
met le centre de la goutte et caractérisé par un demi-angle noté θB. C’est ce
paramètre qui va déterminer l’importance de la dépendance de la force optique
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du spin du photon. En pratique, l’angle θB est déterminé expérimentalement
par deux méthodes indépendantes, l’une spectrométrique, l’autre d’imagerie de
transmission. Une fois le système matériel présenté et caractérisé, on introduit
les différents types de champs lumineux qui seront utilisés par la suite, à savoir
les champs Gaussiens et Laguerre-Gaussiens. Nous avons alors en main tous
les éléments nécessaires à l’exposé du modèle qui permettra de décrire quantita-
tivement toutes les observations effectuées. Le modèle proposé est basé sur une
approche de type optique géométrique qui se justifie par les tailles de gouttes util-
isées, qui sont typiquement au moins dix fois plus grande que la longueur d’onde.
On suppose aussi que les champs lumineux sont paraxiaux, une hypothèse bien
vérifiée en pratique. On évalue alors la force élémentaire exercée sur un élément
de surface quelconque de la goutte et on intègre sur toute la surface de celle-ci.
Le phénomène de Bragg est pris en compte en supposant que la zone qui cor-
respond au cône de Bragg mentionné plus haut se comporte comme un miroir
parfait et qu’en dehors de cette zone, la goutte se comporte comme un diélec-
trique isotrope ayant pour indice de réfraction l’indice moyen du cristal liquide.
Enfin, nous montrons que l’absorption résiduelle du cristal liquide et du fluide
environnant joue un rôle négligeable dans les effets optomécaniques mis en jeu.

Le chapitre 2 présente la validation expérimentale du concept clé de cette
thèse qui peut se résumer de la façon suivante: une goutte cholestérique radi-
ale subie une pression de radiation optique qui dépend fortement de l’hélicité
du champ incident. En pratique nous avons choisi un faisceau laser Gaussien
d’extension spatiale bien plus large que le diamètre des gouttes afin de pouvoir
considérer le champ incident comme étant une onde plane. Dans ce cas, on ob-
tient une formulation analytique des forces optiques exercées sur la goutte et
des vitesses de déplacement qui en résultent. Dans notre cas, le mouvement des
gouttes dans le cas Bragg est environ trois fois plus rapide que dans le cas anti-
Bragg, et ce contraste de vitesse est indépendant de la taille de la goutte. Tout
ceci est effectivement prédit par notre modèle et les vitesses obtenues sont en
accord quantitatifs avec les simulations. Dans un deuxième temps nous avons
cherché à optimiser ce contraste de vitesse entre les cas Bragg et anti-Bragg.
Pour cela, nous avons proposé l’utilisation de deux faisceaux coaxiaux, contra-
propageants, de diamètre et de puissance identiques et de polarisation circulaire.
On obtient alors une compensation parfaite de la contribution anti-Bragg de
chacun des deux faisceaux à l’extérieur de la zone de la goutte qui correspond
à la réflexion de Bragg. Ainsi, en modifiant l’hélicité d’un des deux faisceaux,
la goutte subie une force ou pas. On obtient ainsi une discrimination totale
de la force optique appliquée sur la goutte, dont les dépendances en fonction
de la puissance lumineuse et du rayon de la goutte ont été obtenues et validées
théoriquement. Les deux chapitres suivants visent à exploiter cette sélectivité op-
tomécanique dans le but de trier (chapitre 3) ou piéger (chapitre 4) des particules
chirales selon leur chiralité.
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Le chapitre 3 est consacré au tri passif de la chiralité matérielle par la lumière
chirale dont les enjeux sont immenses en termes dès lors qu’on envisage d’étendre
ce principe à l’échelle moléculaire, où les besoins industriels sont très importants
(e.g. industries chimiques, pharmaceutiques, agroalimentaires). Dans le but de
réaliser la première démonstration expérimentale de principe, nous avons choisi
une situation où des gouttes sont advectées par un écoulement du fluide dans
lequel elles sont plongées et dont la trajectoire est perpendiculaire à la direc-
tion de deux faisceaux Gaussien coaxiaux, contra-propageants, de diamètre et de
puissance identiques et d’hélicité opposée. Une goutte non-chirale étant soumise
à des forces optiques provenant des deux faisceaux qui s’annulent mutuellement,
sa trajectoire rectiligne initiale n’est pas perturbée. Au contraire, la trajectoire
d’une goutte chirale sera déviée vers la source du faisceau anti-Bragg, qui exerce
sur celle-ci une force moindre que le faisceau Bragg. Le signe de la déviation de
la trajectoire de la goutte dépend donc du signe du produit Λχ. La démonstra-
tion expérimentale utilise des gouttes cholestériques radiales droites ou gauches
comme objets chiraux et des gouttes de fluide isotrope ou de cristal liquide non
chiral pour le cas d’objets non chiraux. Une étude expérimentale paramétrique de
l’amplitude de la déviation et de la forme de la trajectoire en fonction de la puis-
sance lumineuse et de la vitesse initiale des gouttes est effectuée. Les résultats
obtenus sont tous décrits quantitativement par notre modèle dont l’extension
à deux faisceaux est effectuée. De plus, nous montrons que ce principe de tri
optofluidique de la chiralité matérielle par de la lumière chirale fonctionne in-
dépendamment du phénomène de Bragg. L’avantage de ce dernier est d’avoir une
réponse optomécanique résonante et donc de faciliter les observations, cependant
nous soulignons l’importance de s’en affranchir. En effet, cela permet d’envisager
l’utilisation de la démarche proposée à un matériau chiral quelconque. Enfin, le
chapitre se conclut par une discussion de la réalisation d’un trieur chiral optique
passif basé sur l’utilisation d’une puce opto-microfluidique.

Le chapitre 4 décrit quant à lui l’utilisation de forces optiques qui dépen-
dent de l’hélicité de la lumière pour le piégeage optique tridimensionnel sélectif
en fonction de la chiralité de l’objet d’étude. A nouveau on utilise les gouttes
cholestériques radiales et on met en place un système à deux faisceaux coaxiaux,
contra-propageants, de diamètre et de puissance identiques, mais cette fois-ci avec
une hélicité identique. L’utilisation de faisceaux modérément focalisés ayant des
plans focaux distincts permet alors de piéger tri-dimensionnellement des gouttes
sur l’axe des faisceaux. Ici, on a l’étude théorique à précéder les expériences, ce
qui a permis de déterminer les paramètres géométriques pertinents du système
lumière-matière. Nous avons ainsi montré le signe de Λχ, la taille des gouttes,
la divergence des faisceaux et la distance interfocale sont autant de paramètre
essentiels à prendre en considération. Des simulations numériques exhaustives,
incluant le cas de faisceaux Gaussiens ou Laguerre-Gaussiens, ont permis de pro-
poser différents designs expérimentaux. Les expériences ont été réalisées et les
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différents comportements prévus théoriquement ont été retrouvés en pratique. De
plus, nous avons mis en place un protocole de mesure du champ de force optique,
ce qui a permis de valider quantitativement nos résultats de simulations.

Le manuscrit se termine par une conclusion résumant les principaux résul-
tats obtenus et offrant un bref aperçu des perspectives du travail réalisé. En
particulier, l’extension à l’échelle moléculaire du principe de tri de la chiralité
matérielle par voie optique, démontré ici à l’échelle micrométrique, est un défi
majeur méritant qu’on y prête attention.
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Introduction

Optical radiation forces have a huge area of application - from biochemistry and
medicine to micromachining and laser cooling - wherever is a need for contact-
less manipulation of inert or living entities ranging from nano- to submillimeter
scale [1]. Such forces are the mechanical manifestation of the transfer of lin-
ear momentum from light to matter, which basically occurs when light is ab-
sorbed, reflected, refracted or scattered in the course of its propagation (see the
sketches in Fig. 1, where pin and pout stand for the input and output photon lin-
ear momenta). For instance, discontinuity of the refractive index at the interface
between two transparent and homogeneous dielectric media leads to optical ra-
diation pressure that enables the displacement of solids [2, 3] or the deformation
of fluid interfaces [4].

c dba

pin pin
pin

pin pout

pout

pout

p  = 0out

Figure 1: Change of linear momentum of light due to (a) absorption, (b) re-
flection, (c) refraction or (d) scattering results in the optical radiation pressure
on the illuminated interface. The photon linear momentum before and after the
light-matter interaction is labeled as pin and pout, respectively. Arrows indicate
the direction of propagation for the corresponding photons.

According to the first principle of mechanics, the light-induced force exerted
on the illuminated material object is

F = (pin − pout)
dN

dt
, (1)

where dN is the number of photons hitting the object during the time dt. As
one can see from this expression, the optical force can be controlled either by the
photon linear momentum difference (for example, by tuning the incidence angle
or refractive indices), or by the photon flux, which is the number of photons per
unit area per unit time. The main question addressed in this thesis is following:
is there an alternative way for optical manipulation of the linear momentum of
matter besides “shaping” of the linear momentum of light?
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z z

z z
x x

y y

1 1

Left-handed circular polarization Right-handed circular polarization

Helicity: Helicity:

a cb d

x x

y y

Figure 2: A plane circularly polarized electromagnetic wave propagates along the
z axis of the Cartesian coordinate system (x, y, z). (a, b) Left-handed circular
polarization state corresponds to counter-clockwise (if the wave approaches the
observer) rotation of the electric field vector tip in the plane z = const (a) and to
the right-screwed instant image of the electric field vector (b). The photon spin
projection on the z axis equals +1. (c, d) In contrast, the right-handed circular
polarization state is characterized by the clockwise electric field rotation in the
plane z = const (c), left-screwed instant image of the electric field vector (d) and
z-projection of the photon spin equal to −1. The photon helicity Λ, which is the
projection of the photon spin on its propagation direction, equals to ±1 for the
left/right-handed circular polarization.

Our answer is: yes, if another degree of freedom of a photon is involved,
namely, its spin angular momentum. The photon spin refers to rotation of the
electric field vector in an electromagnetic wave. If the vector length does not
change in time, such a wave is said to be circularly polarized with right or left
handedness depending on the sense of the rotation, as sketched in Fig 2 in accor-
dance with the convention commonly used in electrodynamics [5]. In this study,
when referring to photons in circularly polarized beams, we use the parameter Λ
called “helicity” and defined as the projection of the spin angular momentum of
an elementary particle on its propagation direction [6]. Helicity is expressed in
the units of h̵, which is the reduced Planck constant.

Circular polarization is a manifestation of the chirality of light. In general,
chirality refers to the lack of mirror symmetry and plays a fundamental role in

Mirror

Left Right

 

Figure 3: Human hands as an example of mirror-imaged chiral entities.
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physics, chemistry and life sciences. A system whose mirror images cannot be
superimposed by rotations and translations in space is said to be chiral. A basic
example is our two hands (see Fig. 3), just like the Greek etymology (“kheir”)
recalls. Quite naturally, two mirror images of a chiral entity are referred to as
right- and left-handed versions of it. Following the general convention (see for
instance [7]), in this work we assign the chirality χ = ±1 to the right/left-handed
entities, as shown in Fig. 3.

Our proposal towards the control of optical radiation forces is based on the
interplay between the chirality of light and chirality of matter. We aim at an un-
ambiguous demonstration of the photon helicity’s potential as a tool for enhanced
optical manipulation of material chiral objects.

To this aim, we have performed quantitative experimental study organized
in four coherent projects, each of them being dedicated to a single well-defined
scientific problem. The material of this manuscript is organized into four chapters
according to the following structure:

Chapter 1 - Materials, fields and methods

This chapter introduces the chiral light-matter system under study and describes
our approach towards modeling of the dynamics of the chosen chiral object driven
by the used chiral light field.

Chapter 2 - Helicity-controlled optical radiation force

In this chapter we demonstrate experimentally that light-induced displacement
of chiral microparticles can be addressed via the photon helicity. The full control
of the particle displacement is achieved by means of a scheme with two counter-
propagating plane-wave-like fields, each of them corresponding to a pure photon
helicity state.

Chapter 3 - Optofluidic sorting of material chirality by chiral light

This chapter sets forth an application of the helicity-controlled optical manipu-
lation principle to passive optical separation, in a fluidic environment, of mirror-
imaged chiral microparticles that differ only by opposite handedness, by using chi-
ral light fields. The quantitative experimental study of light-induced trajectories
of chiral microparticles is supported by the appropriate theoretical description.
Importantly, the proposed optofluidic strategy does not require chiral-shaped
microparticles and actually relies on the chirality of the medium, in contrast to
previous experimental demonstrations of chiral sorting based on hydrodynamical
effects.

Chapter 4 - Helicity-dependent 3D optical trapping of chiral micro-
spheres

In this chapter we address the localization of chiral objects by chiral light fields.
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The helicity-dependent optical trapping of chiral spherical microparticles is demon-
strated, both experimentally and theoretically, using chiral light fields with either
bell- or doughnut-shaped transverse intensity distribution. The reported results
allow considering on-demand selective trapping of chiral particles whatever the
photon helicity and the particle size, thereby circumventing the inherent limita-
tions associated with the use of single-beam optical tweezers.



C H A P T E R 1

Materials, fields and methods

In this chapter we present the working environment of the study. Namely, in
section 1.1 we describe the investigated chiral object and the physical mechanism
at the origin of the reported optomechanical effects mediated by the photon
helicity. Then, section 1.2 introduces the chiral light field, which is applied for
optical trapping and manipulation of the above chiral object. The model used
to describe the optical radiation forces in the investigated light-matter system is
set forth in section 1.3, where all key assumptions are identified and discussed.

1.1 Chiral object of study

In this work we investigate optical radiation forces that depend on the chirality
of light and matter. Typical optical forces exerted on matter are generally of
a small magnitude. Namely, if one considers the force F exerted on a perfect
mirror by a light beam, one finds F = 2P /c, where P is the beam power and
c the speed of light. This gives F ∼ 1 nN for P ∼ 100 mW. Such a modest
force value implies to deal with small size objects if one aims at observing vivid
optomechanical effects such as light-induced displacements. Consequently, in
principle, the desired chiral object should:

• be free to move;

• be sufficiently small to give access to observable light-induced motion;

• exhibit strong helicity-dependent interaction with light;

• be easy to fabricate and align in the driving light field.

In practice we found that a radial microscopic droplet of cholesteric liquid crystal
(i. e. a chiral nematic mesophase) perfectly meets all the above requirements.
Indeed, such a droplet can be easily made by mechanical stirring of a small
amount of cholesteric liquid crystal in water or whatever immiscible fluid that
provides planar alignment of the liquid crystal orientation at the interface. Such
a boundary condition may lead to formation of a liquid crystal droplet with
radially symmetric bulk ordering responsible for resonant optomechanical effects
that are highly sensitive to the chirality of the material. In addition, a droplet
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is free to move in the fluid where it is immersed, and an overall radial symmetry
formally saves us from the necessity to align such microscopic chiral objects in
the optical system.

In what follows, we present the cholesteric liquid crystal material and its key
optical properties on which is based the study reported in this manuscript. Then
we focus on the particular case of radial cholesteric droplets that have been used
all along our investigation.

1.1.1 Cholesteric liquid crystal

Cholesteric is an optically anisotropic dielectric medium obtained from a nematic
liquid crystal mixed with a chiral dopant, as sketched in Fig. 1.1. The resultant
mesophase is described by a director n (a unit vector directed along the average
local molecular orientation, n and −n being equivalent) rotating by 2π around
the axis of a supramolecular helix over a distance p called the cholesteric pitch.
Such a chiral ordering can be left- or right-handed, which corresponds to the
chirality χ = +1 or χ = −1, respectively.

n
p

n

nematic cholesteric

chiral
dopant+ =

 = 1

Figure 1.1: Mixing a nematic liquid crystal (having parallel volumetric alignment
of the director n) with a chiral dopant results in the cholesteric mesophase, which
is characterized by helical supramolecular ordering with a well-defined pitch p.

Then, in order to present the applied in this work fundamental feature of
cholesterics, let us consider a planar film of a cholesteric liquid crystal with
chirality χ and planar alignment of the molecules at both sides of the film. In
that case, axes of supramolecular helices are oriented perpendicularly to the plane
of the film, as sketched in Fig. 1.2(a), where the helix axes are shown as thin
solid lines. Then, let us assume that the film is illuminated by unpolarized (see
“UNPOL” in panel (a)) light at normal incidence. In practice, the incident light
can be described by two equally-intense circularly polarized fields with opposite
photon helicities.

The field with helicity ΛB = −χ (“B” standing for “Bragg”) can “read” the
effective periodicity of the refractive index (schematically shown by the gradient
gray-scale fill on the sketch), which appears in the film due to the helical distribu-
tion of the optical anisotropy (see for instance [8]). The constructive interference
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Figure 1.2: (a) A planar film of cholesteric liquid crystal with pitch p, chirality
χ and uniform alignment of helical axes (thin solid lines) along the normal to
the film is illuminated by an unpolarized light at normal incidence (wavelength
lays between λ− and λ+, see the text). The gradient gray-scale fill expresses
the effective multilayer structure associated with the helical distribution of the
optical anisotropy. Due to the circular Bragg phenomenon, the film strongly
reflects the photons having Λ = −χ, whereas photons with Λ = +χ are transmitted.
(b) Unpolarized transmission spectrum of a 10 µm thick film of the right-handed
cholesteric mixture MDA-02-3211. The circular photonic bandgap associated
with 50% transmission due to Bragg reflection of the right-handed circularly
polarized part of the incident light is shown in gray color.

of light reflected from this effective multilayer structure results in the well-known
Bragg phenomenon [9], which expresses itself by the photonic bandgap appear-
ing in the transmission spectrum of the structure, as shown by the gray area in
Fig. 1.2(b).

On the other hand, the field component with helicity ΛAB = +χ (“AB”standing
for “anti-Bragg” in order to emphasize the absence of Bragg reflection) and is
transmitted through the film. As a result, the unpolarized transmission spectrum
of the film exhibits only 50 % of attenuation within the bandgap due to the
selective resonant reflection of Bragg-polarized part of the incident light.

Quantitatively, the bandgap in the spectrum of a planar cholesteric film is
described by the wavelength range

∆λ = λ+ − λ− = p(n∥ − n⊥) = p∆n , (1.1)

where n∥,⊥ are the refractive indices parallel and perpendicular to the director
n [8]. This range is centered on the wavelength

λB = λ+ − λ−
2

= pn (1.2)

with n = (n∥ + n⊥)/2 the average refractive index of the liquid crystal. In this
study we use the right-handed cholesteric mixture MDA-02-3211 (from Merck)
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or 

Figure 1.3: (a) Bragg-polarized light is completely reflected if its incident an-
gle falls within the cone having the half-apex angle θB,ext. (b) Circular Bragg
reflection is absent either if the incidence angle exceeds θB,ext and the light is
Bragg-polarized, or for any incidence angle if the polarization is anti-Bragg.

having pitch p = 347 nm and refractive indices n∥ = 1.7013 and n⊥ = 1.5064 (hence
n ≈ 1.6) at 589.3 nm wavelength and temperature 20○C 1. As follows from the
spectrum shown in Fig. 1.2b, circular Bragg reflection band of MDA-02-3211 is
centered at λB ≈ 555 nm and ranges from λ− ≈ 524 nm to λ+ ≈ 588 nm 2.

As we known from the theory of multilayer Bragg reflectors [9], resonant
reflection occurs when the phase delay between light waves reflected from two
successive layers is a multiple of π. In the case of oblique incidence, the phase
delay is proportional to cos θint with θint the refraction angle counted from the
normal to the cholesteric interface, as shown in Fig. 1.3. Consequently, at oblique
incidence the circular Bragg reflection band experiences a blue-shift with respect
to the spectrum at normal incidence. The shifted circular photonic bandgap will
is centered at the wavelength

λ′B = λB cos θint. (1.3)

At fixed incident wavelength λ0, resonant reflection thus occurs for Bragg-polarized
light over a range of refraction angles 0 ≤ θint ≤ θB(Fig. 1.3a), where θB refers to
the “intrinsic Bragg angle”. In fact, θB corresponds to the situation when λ0

exceeds the blue-shifted upper limit λ+. Using Eqs. (1.1), (1.2) and Eq. (1.3)
with θint ≡ θB, we get

(λ+ −
p∆n

2
) cos θB = λ0 −

p∆n

2
. (1.4)

1Within the visible range, if the wavelength varies by a few tens of nanometers, refractive
indices of a liquid crystal can change due to the chromatic dispersion typically within 1% [10],
which we neglect here.

2The edges are defined as the global minimum and maximum of the differentiated trans-
mission spectrum.
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Accounting for p∆n/2 ≪ λ0,+, this gives

θB = arccos(λ0/λ+) . (1.5)

In accordance with the Snell-Descartes law, the “extrinsic” Bragg angle θB,ext

corresponding to θint ≡ θB, equals

θB,ext = arcsin[(n/next) sin θB] , (1.6)

where next is the refractive index of the surrounding medium.
On the other hand, light with anti-Bragg circular polarization state (Λχ = +1)

is scattered by the cholesteric film as if it was a usual dielectric slab of refractive
index n (Fig. 1.3b) for all incidence angles 0 ≤ θext ≤ π/2. Propagation of light in
this case follows the Fresnel’s equations [11]. The same behavior occurs for the
Bragg-polarized light impinging at θB,ext < θext ≤ π/2.

1.1.2 Radial cholesteric droplets

Radial cholesteric droplets of typical radius R ∼ 10µm ≫ p by mechanical stirring
of MDA-02-3211 in an aqueous solution of glycerol. Such a mixture is chosen for
immersion of cholesteric droplets since (i) its density can be easily tuned via the
glycerol fraction and (ii) it provides planar alignment of liquid crystal molecules
at the interface. Different types of the structure are obtained depending on the
ratio between the droplet radius R and pitch p [12]. In the particular case of
R≫ p, one gets onion-like droplets that behave as omnidirectional circular Bragg
reflectors. Such a radial cholesteric droplet is sketched in Fig. 1.4.

As we discussed above, the circular Bragg effect occurs in cholesteric films
within the Bragg cone having the apex angle 2θB. In the case of spherical
droplets, radial arrangement of the helix axes makes the incident light tilted to
the local supramolecular structure, unless the incidence is normal to the droplet
surface. If a radial cholesteric droplet of chirality χ is illuminated by a beam
with a planar wavefront, wavelength λ− < λ0 < λ+ and helicity Λ = −χ, the
droplet completely reflects the photons impinging on the spherical interface at

p <   R

helix axis

<

n

1

Figure 1.4: A radial cholesteric droplet represents an onion-like effective multi-
layer structure with the pitch p. Thin solid lines indicate orientation of axes of
supramolecular helices.
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Figure 1.5: A radial cholesteric droplet illuminated by a plane wave-like beam.
(a) The Bragg-polarized light is completely reflected if impinging the droplet
interface at the angle 0 ≤ θext ≤ θB,ext. (b) Circular Bragg reflection is absent for
the opposite polarization handedness, regardless of θext.

angles 0 ≤ θext ≤ θB,ext, whereas the other photons are scattered without Bragg
reflection as shown in Fig. 1.5a (thin lines represent helix axes). Intersection of
the Bragg cone with the droplet surface is a circle of radius

RB = R sin θB,ext . (1.7)

In the case of anti-Bragg polarization state (Λ = +χ, see Fig. 1.5b), the incident
photons are scattered as if the droplet was a uniform dielectric sphere, for all
incidence angles, similar to the situation sketched in Fig. 1.3b.

The above statements are confirmed by the microscopic analysis of a ra-
dial droplet of MDA-02-3211 (radius R = 25 µm, in a 26 wt. % aqueous glyc-
erol solution) over the visible range of light, namely, under red (633 nm), green
(532 nm), blue (488 nm) and white light illumination (colored light was provided
by appropriate interference filters). Fig. 1.6 compiles the transmission images
obtained by the means of a microscope objective (Nikon M Plan ELWD, mag-
nification ×40, numerical aperture NA= 0.5) and a complementary metal-oxide-
semiconductor (CMOS) camera (DCC1645C from Thorlabs). The snapshots are
taken under unpolarized (“UNPOL”), left- and right-handed circular polarized
(“LHCP” and “RHCP”, respectively) illumination, and between crossed linear
polarizers (“XPOL”).

The fourfold intensity patterns in the “XPOL” panels indicate the radially
symmetric optical anisotropy of supramolecular organization within the cholesteric
droplet [12]. The dark radial line seen in most of the snapshots (for instance, it
is indicated by the white arrow in panel “LHCP” for wight light), it is the radial
defect, which is typical for cholesteric droplets with planar alignment of the di-
rector at the spherical surface and radius R ≫ p [13, 14] 3. The circular Bragg

3According to the hairy ball theorem of algebraic topology [15], the director field at the
spherical interface must contain at least one point with homeotropic alignment. The radial
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UNPOL

633

532

488

white
light

 (nm)
LHCP RHCP XPOL

Figure 1.6: Transmission of a radial droplet of MDA-02-3211 under illumination
at various wavelength and polarization conditions. The droplet is immersed in
a 26 wt. % aqueous glycerol solution within a glass capillary having 1 × 1 mm
square cross-section. Glycerol fraction for the best density matching has been
selected experimentally from direct observations of the droplet motion at rest.
Unpolarized white light from a halogen source OSL1-EC (Thorlabs, Inc.) is
directed at the sample through a convex lens with 35 mm focal length. Colored
illumination is obtained via interference filters introduced before the lens. A
linear polarizer and a wide-band quarter-wave plate provide the two circular
polarization states. Dashed circles in the XPOL panels indicate the droplet
contour, white arrow shows the radial defect (only on one panel, as an example).
Scale bar is 20 µm.
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Figure 1.7: In situ characterization of the Bragg cone angle of radial droplets
of MDA-02-3211. (a) Analysis of the intensity distribution in the transmission
images of radial cholesteric droplets in glycerol observed under uniform illumina-
tion at λ0 = 532 nm and Bragg incident circular polarization state (three typical
droplets of different sizes are presented). The intensity at every pixel captured
by the used 8-bit CMOS camera ranges from 0 to 255. (b) Data show the radius
RB of the zero-transmission area as a function of the droplet radius R. Solid line
is the best linear fit.

reflection expresses itself by the dark disk mostly visible under green RHCP illu-
mination. In the case of white light, the reddish zone around the droplet center
in the RHCP snapshot confirms the complete reflection in the green spectral
region.

In the reported experimental studies of the helicity-dependent optomechani-
cal effects, we use a diode-pumped solid state laser Millennia Xs (from Spectra-
Physics, Inc.) which emits monochromatic light at λ0 = 532 nm wavelength with
optical power grater than 5 W in the continuous wave regime. High power fa-
cilitates observation of the optomechanical effects, while the wavelength is close
enough to λ− (the lower limit of the Bragg range of the chosen cholesteric liquid
crystal) for providing a larger Bragg cone angle, which is facilitating our exper-
imental demonstrations. Using Eq. (1.5), we estimate the intrinsic Bragg angle
of MDA-02-3211 as θB = 25.1○.

The dark disk of radius RB (Fig. 1.5a) visible under the Bragg-polarized
transmission (Fig. 1.6, green under RHCP) gives access to the Bragg angle of the
radial cholesteric droplets in situ. In order to estimate the Bragg angle, we have
measured R and RB for various spherical droplets of MDA-02-3211 dispersed in

defect of the supramolecular structure starts at this point and is inevitably present in every
cholesteric droplet.
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pure glycerol. The droplets were imaged by means of the Olympus IX71 inverted
microscope through the objective Thorlabs LMH-20X-532 (magnification ×20,
numerical aperture NA= 0.4) and captured via a CMOS camera. The droplet
radius R and the Bragg cone radius RB are measured via numerical analysis of
the recorded image. The intensity at every pixel captured by this 8-bit digital
camera ranges from 0 to 255.

The analysis protocol consists in azimuthal averaging of the image intensity
distribution by fixing the origin at the center of the droplet and differentiat-
ing the obtained intensity profile. Then, the radii are easily and precisely de-
termined by locating the corresponding maxima of the differentiated intensity
profile. Fig. 1.7a shows the results of data analysis for three different droplets
(relatively small, medium and large), I being the normalized azimuthally aver-
aged intensity distribution, dI/dr - its first derivative by the radial coordinate r.

The measured radii for the analyzed collection of droplets are presented in
Fig. 1.7b, where the solid line is the best linear fit of RB as a function of R.
As follows from Eq. (1.7), the slope of the fit equals sin θB,ext, from which, using
Eq. (1.6), we derive the intrinsic Bragg angle θB = 25.8○ - in a good agreement
with the spectroscopic characterization presented above.

1.2 Chiral light fields

Chirality of the optical fields applied in this study is expressed by the pho-
ton helicity Λ = ±1, which corresponds to left- and right-handed circular polar-
ization states. For the purpose of optical trapping and manipulation of chiral
microspheres we use laser beams having axially-symmetric spatial intensity dis-
tributions described by the Laguerre-Gaussian modes LG0,` with ` the azimuthal
index. These modes are solutions of the wave equation for electromagnetic fields
under the paraxial approximation, which considers the transverse dimensions of
the beam being much smaller than its typical longitudinal dimension [16].

Electric field amplitude in the LG0,` mode is commonly presented in the
cylindrical coordinate system (r, ϕ - radial and azimuthal coordinates, z indicates
the beam propagation direction) as follows

E(r,ϕ, z) = C
w0

w(z)
( r

√
2

w(z)
)
∣`∣

exp(− r2

w2(z)
)

× exp(− ikr2z

2(z2 + z2
R)

) exp(i(∣`∣ + 1) tan−1 z

zR

) exp(i`ϕ) , (1.8)

where the parameters are: normalization constant C, beam waist w0, beam radius
w(z) = w0

√
1 + (z/zR)2, Rayleigh range zR = πw2

0/λ (with λ the wavelength) and
Gouy phase shift tan−1 z

zR
.
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The case ` = 0 corresponds to the Gaussian mode - the fundamental transverse
mode TEM00 of laser resonators. Gaussian beams have bell-shaped transverse
intensity profiles and are widely used in optical tweezers, where gradient of inten-
sity gives rise to restoring optical forces allowing to trap absorbing or scattering
high-index (with respect to the environment) microparticles by light around the
beam waist (z = 0). Besides the ease of generation, these beams have the axially
symmetrical intensity distribution, which facilitates modeling and realization of
the optical manipulation schemes.

Due to the exp(i`ϕ) factor, phase of the LG0,` field varies by 2π` along
the closed loop around the axis of the beam in the transverse plane. Con-
sequently, the Poynting vector describing the radiation energy propagation is
spiraling around the beam axis, forming so-called optical vortex of topological
charge ` [17]. A spiraling phase front in a vortex beam implies on-axis phase sin-
gularity (i. e. local indefiniteness), which forbids the field existence on the beam
axis. Hence, the transverse intensity distribution of a LG0,` has a doughnut-
shaped profile. Vortex beams have been successfully applied for optical trapping
of low-index particles around the beam axis [18].

Let us express the normalization constant from Eq. (1.8) as a function of
radiation power P , which can be measured experimentally for the given laser
beam, and thus gives access to the beam intensity at every point. In a medium
of refractive index n0, an electromagnetic wave with the electric field amplitude
E(r,ϕ, z) has the time-averaged intensity

I(r,ϕ, z) = cn0ε0
2

∣E(r,ϕ, z)∣2 = C2 cn0ε0w2
0

2w(z)2
( r

√
2

w(z)
)

2∣`∣

exp(− 2r2

w2(z)
) , (1.9)

where c is the speed of light in vacuum, ε0 is the vacuum permittivity. No-
ticeably, the local intensity is independent of the azimuthal coordinate ϕ, hence
such beams have axially symmetric spatial intensity distribution I(r, z). By def-
inition, the intensity at (r,ϕ, z) equals the radiation power transmitted trough
the elementary surface dS(r,ϕ, z) normal to the local wavevector [9]. Under the
plane-wave approximation (valid if the beam divergence θ0 = λ/(πw0) ≪ 1), the
wavevector at (r,ϕ, z) can be considered perpendicular to the beam cross-section
at z, and in view of dS(r,ϕ, z) = rdrdϕ the radiation power of the beam is

P = ∫ ∫
S
IdS = ∫

2π

0
∫

∞

0
Irdrdϕ

= C2 2∣`∣πcn0ε0w2
0

w(z)2∣`∣+2 ∫
∞

0
r2∣`∣+1 exp(− 2r2

w2(z)
)dr , (1.10)

which gives

C2 = 4P

πcn0ε0w2
0`!

. (1.11)
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Substituting Eq. (1.11) into (1.9), we get the following expression linking the
local intensity I(r, z) with the power P of the LG0,` beam:

I(r, z) = 2∣`∣+1P

π`!w2(z)
( r

w(z)
)

2∣`∣

exp(− 2r2

w2(z)
) . (1.12)

1.3 Modeling optomechanics of Bragg cholesteric

droplets

Rigorous treatment of light propagation in cholesteric films is not an easy task,
though literature is available on this topic since a long time [19]. Nevertheless,
in principle, this can be done numerically [20]. It becomes even trickier when
considering curved cholesteric structures including droplets. In particular, scat-
tering of light by a chiral particle is an issue that has started to be addressed
only recently [21, 22]. Moreover, Maxwell stress tensor formalism for inhomoge-
neous, chiral and anisotropic optical media should be included as well as possible
light-induced deformation of the shape of the droplet [23]. However, a simple
but accurate physical picture of the problem can be handled from the following
assumptions.

1.3.1 Main assumptions

(i) The working wavelength λ0 = 532 nm is much smaller than the droplet radius
R ∼ 10 µm. Therefore, we describe light scattering in a ray-optics approach.

(ii) Within ray-optics description, the net force exerted on the cholesteric droplet
is evaluated by calculating the net change of linear momentum of the light field
as it interacts with the droplet. For this purpose, we attribute the Minkowski
linear momentum h̵k per photon pointing along each geometrical ray, where k
is the wavenumber in the considered medium. Such a procedure has indeed
been validated experimentally [24, 25] and demonstrated theoretically [26] for
the problem of optical radiation pressure exerted on a mirror immersed in a
dielectric fluid.

(iii) Since the circular polarization photonic bandgap has relatively sharp edges
(see the spectrum in Fig. 1.2b and the zero-transmission disks in Fig. 1.7), a radial
cholesteric droplet is considered as a perfectly reflecting mirror for incident angles
θext ≤ θB,ext

4 in the Bragg case and as a usual dielectric sphere of refractive index

4The incident angle 0 ≤ θext ≤ π/2 counts from the perpendicular to the droplet surface at
the hitting point for the geometrical ray.
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n = (n∥ + n⊥)/2 otherwise (i.e. when θB,ext < θext ≤ π/2 in the Bragg case and
0 ≤ θext ≤ π/2 in the anti-Bragg case).

(iv) Since the optical radiation pressure (ΠR) is much smaller than the Laplace
pressure (ΠL), we neglect droplet deformation. Indeed, ΠR ∼ P /(w2

0c) ∼ 10−2 Pa ≪
ΠL ∼ γ/R ∼ 103 Pa, with γ the surface tension of the interface between cholesteric
and host fluid, and typical droplet radius R ∼ 10 µm.

(v) We neglect the light absorption by cholesteric droplets, as well as by the host
fluid (see subsection 1.3.3 for details).

1.3.2 Elementary optical force

Let us consider a spherical particle of radius R surrounded by a uniform medium
of refractive index next and illuminated by a beam with intensity distribution I.
Interaction of the particle with a single incident ray impinging on the surface
element dS at the incidence angle θi is sketched in Fig. 1.8.

According to the first principle of mechanics, the light-induced elementary
force exerted on dS equals

dF(θi) = (pin − peff
out)

dN

dt
, (1.13)

where pin is the incident photon linear momentum, whereas peff
out is the corre-

sponding average linear momentum per photon after interaction with the parti-
cle, dN is the number of photons hitting dS during dt. Following the definition
of the radiation intensity, we rewrite the elementary force as

dF(θi) = (pin − peff
out)

I cos θi dS

h̵ω
= f(θi)

next

c
I cos θi dS (1.14)

dS

next

2
R

incident
ray

pin

d F

i

Figure 1.8: A spherical particle illuminated by a geometrical ray. The light
falling on the surface element dS at the incidence angle θi exerts on the particle
the elementary optical force dF.
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Figure 1.9: (a) Coordinate systems introduced for the analysis of an incident
ray after impinging a surface element dS of a spherical particle. (b) Ray-tracing
in the incidence plane.

with ω the angular frequency of light, f(θi) = (pin − pout) /∣pin∣ the dimensionless
vector expressing the relative change of the photon linear momentum due to
interaction with the particle, which leads to the redistribution of the incident
light into the reflected and scattered parts.

Aiming for a detailed consideration of the mechanical effect caused by reflec-
tion and scattering from the particle, we introduce the orthonormal Cartesian
coordinate system (x, y, z) originating at the particle center and having the axis
z parallel to the incident ray, and the spherical coordinate system with the same
origin as (x, y, z) and the polar and azimuthal angles θ and φ, as shown in
Fig. 1.9a. Since θ is defined from the axis z, the incidence angle θi in Fig. 1.8
and Fig. 1.9a corresponds to θi = π − θ, hence cos θi = − cos θ. Since the surface
element equals dS = R2 sin θdθdφ, the elementary force (Eq. (1.14)) is eventually
written as

dF(θ, φ) = −f(θ)nextR2

c
I(θ, φ) cos θ sin θ dθdφ . (1.15)

According to the law of conservation of energy, once the ray impinges on
the particle, its effective radiation power Pi = ∣I(θ, φ) cos θ dS(θ, φ)∣ becomes
apportioned between the reflected ray of power RiPi and an infinite series of
scattered rays of power TiT0Pi, TiR1T1Pi, TiR1R2T2Pi, ... , where Ri and Ti =
1−Ri are the reflectance and transmittance of the droplet interface at the point of
the ray incidence, Tα=0,1,2,... are the interface transmittances for the ray leaving the
droplet after α internal reflections, R1,2,... are the reflectances for the successive
internal reflections. Using the notations introduced in Fig. 1.9b, we express the
vector f as follows

f(θ) = ui(θ) −Ri(θ)ur(θ) − Ti(θ)
∞

∑
α=0

Tα(θ)
α

∏
β=0

Rβ(θ)uα(θ) , (1.16)
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where ui, ur, u0 and uα are the unit vectors pointing along the incident (index
“i”), reflected (“r”) and the successive scattered rays, respectively, with Rβ=0 = 1
by construction.

In this thesis we are dealing with circularly polarized light, for which, accord-
ing to Fresnel’s formulae [11], the reflectance associated with the incident hitting
point is

Ri(θ) = [Ri,∥(θ) +Ri,⊥(θ)] /2 , (1.17)

where

Ri,∥(θ) = [tan(θ − θt)
tan(θ + θt)

]
2

and Ri,⊥(θ) = [sin(θ − θt)
sin(θ + θt)

]
2

(1.18)

are reflectances for the plane waves polarized parallel and perpendicular to the
incidence plane, θt = sgn(cos(θ)) arcsin[(next/n) sin θ] is the angle of refraction
with “sgn” the sign function. In general, the reflectances Rβ differ from Ri, since
the polarization of light changes every time it meets the interface. However,
this difference is usually neglected 5 when modeling optical radiation forces on
transparent scattering spheres [27, 28, 29].

From these considerations, Eq. (1.16) reduces to

f(θ) = ui(θ) −Ri(θ)ur(θ) − [Ti(θ)]2
∞

∑
α=0

[Ri(θ)]α uα(θ) . (1.19)

Accounting for

f(θ) = f⊥(θ)x′′ + f∥(θ)z (1.20)

with

x′′ = cosφx + sinφy (1.21)

and following the ray-tracing sketched in Fig. 1.9b, we write the axial (i. e.
parallel to z and denoted by f∥) and transverse (i. e. parallel to x′′ and denoted
by f⊥) components of f(θ) as follows:

f∥(θ) = 1 +Ri(θ) cos 2θ − [Ti(θ)]2
∞

∑
α=0

[Ri(θ)]α cos(θtt + αθrtt) , (1.22)

f⊥(θ) = Ri(θ) sin 2θ − [Ti(θ)]2
∞

∑
α=0

[Ri(θ)]α sin(θtt + αθrtt) , (1.23)

where the angles θtt = 2(π − θ − θt) and θrtt = π − 2θt indicate the ray propagation
directions after interaction with the droplet interface (see Fig. 1.9b).

5In the context of this work, accounting for the projection of the incident polarization state
to the local incidence frame would be an irrelevant refinement recalling the crude approxima-
tion that a cholesteric droplet in the non-Bragg regime is considered as an optically isotropic
dielectric sphere of refractive index n (assumption (iii)).
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G. Roosen and C. Imbert [27] have shown that the sums of the mixed series
in Eqs. (1.22), (1.23) can be simplified by means of the Euler’s formula exp(iq) =
cos q + i sin q valid for any real q. Application of this method to our framework
gives

f∥(θ) = 1 +Ri(θ) cos 2θ − [Ti(θ)]2 cos(2θ − 2θt) +Ri(θ) cos 2θ

1 + [Ri(θ)]2 + 2Ri(θ) cos 2θt
, (1.24)

f⊥(θ) = Ri(θ) sin 2θ − [Ti(θ)]2 sin(2θ − 2θt) +Ri(θ) sin 2θ

1 + [Ri(θ)]2 + 2Ri(θ) cos 2θt
. (1.25)

We eventually rewrite Eq. (1.15) for the elementary optical radiation force as
follows

dF(θ, φ) = −nextR2

2c
I(θ, φ)[f⊥(θ)(cosφx + sinφy) + f∥(θ)z] sin 2θ dθdφ . (1.26)

If the conditions required for the circular Bragg reflection are met (see the as-
sumption (iii)), then Ri(θ) = 1 and the above expression simplifies to

dFBragg ray(θ, φ) = nextR2

2c
I(θ, φ)

× [ sin 2θ(cosφx + sinφy) + (1 + cos 2θ)z] sin 2θ dθdφ .(1.27)

In the next chapters the net optical radiation force is obtained by integrating
the elementary force over the illuminated area of the droplet, accounting for the
ray-tracing regime (namely, we use Eq. (1.27) in the Bragg case, and Eq. (1.26)
otherwise) and the appropriate intensity distribution.

1.3.3 Absorption issue

As could be seen from Fig. 1.9b, the incident ray covers the distance 2R cos θt
inside the particle till the first internal reflection. If now we take the absorp-
tion into account, the transmitted power should be reduced by the factor A =
exp (−2aR cos θt) with a the absorption coefficient of the particle material. Since
the particle is spherical, the output light experiencing α = 0,1,2, ... internal re-
flections is attenuated by a factor Aα+1. Implementing the absorption induced
attenuation into Eq. (1.19), we get in presence of absorption:

fa(θ) = ui(θ) −Ri(θ)ur(θ) − [Ti(θ)]2
A

∞

∑
α=0

[Ri(θ)A]α uα(θ) . (1.28)

The previously applied method for the series simplification gives the following
expressions for the axial and transverse components of fa(θ):

f∥,a(θ) = 1 +Ri(θ) cos 2θ − [Ti(θ)]2
A

cos(2θ − 2θt) +Ri(θ)A cos 2θ

1 + [Ri(θ)A]2 + 2Ri(θ)A cos 2θt
, (1.29)
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Figure 1.10: Calculated relative contributions of absorption into the photon
linear momentum changes for axial and transverse components of f(θ).

f⊥,a(θ) = Ri(θ) sin 2θ − [Ti(θ)]2
A

sin(2θ − 2θt) +Ri(θ)A sin 2θ

1 + [Ri(θ)A]2 + 2Ri(θ)A cos 2θt
. (1.30)

The cholesteric material under study has typical absorption coefficient a ≲ 10 m−1 [30].
With the typical parameters of the light-matter system (namely, R = 10µm,
n = 1.6 and next = 1.367 for a host fluid represented by 27 wt. % aqueous glycerol
solution [31]), calculated relative contributions of absorption into the linear mo-
mentum changes, ∣f∥ − f∥,a∣ /f∥ and ∣f⊥ − f⊥,a∣ /f⊥ (using Eqs. (1.24), (1.25), (1.29),
(1.30)), do not exceed 0.6 % for all θ (see Fig. 1.10), and thus are safely neglected
in this work.

Another important issue is the absorption of light by the host fluid. As shown
in section 1.2.1 of [32], the absorption-induced bulk flow has a typical velocity
vfluid ∼ afluidP /(ηc), where afluid and η are the absorption coefficient and the
dynamic viscosity of the host fluid, respectively. In our case the host fluid is a
aqueous glycerol solution, which has the absorption coefficient between that of
pure water (awater ≈ 0.035 m−1 at 25○C and 532 nm wavelength [33]) and pure
glycerol (roughly 35 % larger than awater [34]), therefore vfluid ∼ 0.1 µm s−1 W−1.
When the light-driven velocity of cholesteric droplets (see next subsection) is
sufficiently larger than vfluid, the absorption-induced bulk flows can therefore be
neglected. Noticeably, two-beam schemes applied in the projects reported in
the next three chapters are formally free from bulk flow, since the effects of the
counterpropagating coaxial beams of equal power on the host fluid are mutually
compensated.
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1.3.4 Light-induced velocity

Optical radiation force F exerted by a laser beam on a cholesteric droplet sets
it into a motion with respect to the surrounding viscous fluid assumed to be
initially at rest. In general, such a viscous dynamics is described by the Navier-
Stokes equations [35]. Since we deal with a spherical droplet of radius R ∼ 10µm
and viscosity ηd ∼ 30 mPa s at room temperature [36, 37, 38] moving at the
light-induced velocity v ≲ 1 mm s−1 in the host fluid of viscosity η = 2 mPa s [39]
and density ρ = 1.065 g cm−3 equal to that of the droplet, the Reynolds number
that characterizes the flow around the droplet is

Re = 2Rρv

η
≲ 10−2 ≪ 1 . (1.31)

This means that viscous forces acting on the droplet are much more important
than inertial forces in the investigated system, and thus the relationship between
the viscous force Fvisc exerted on the droplet and the corresponding speed of
motion v is given by the Stokes’ law [40]

Fvisc =
2 + 3ηd/η
1 + ηd/η

2πηRv . (1.32)

In our case, we thus get to a good approximation

Fvisc ≃ 6πηRv . (1.33)

Considering an isodense solution (which is used in the next chapters, except for
the last one, where gravity is at work) the third principle of mechanics implies
that the optical radiation force on a droplet, F, is balanced by the viscous force,
Fvisc. Therefore, the light-induced linear velocity of the droplet equals

v = 1

6πηR
F . (1.34)

Since optical forces are typically in order of piconewtons, Eq. (1.34) gives an
expected velocity of the order of 10µm s−1, the Reynolds number associated with
the optically displaced droplet thus fully justifies the use of the Stokes’ law.
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Helicity-controlled optical
radiation force

In this chapter we report on helicity-dependent optical force exerted on chiral
particles. The phenomenon is quantitatively retrieved experimentally and suc-
cessfully compared with simulations performed by means of our model. First,
general features of the experimental approach and some basic qualitative pre-
dictions are presented in section 2.1. The details of the optical set-up and the
experimental proof-of-principle using laser-driven radial cholesteric droplets are
then given in section 2.2. Next, in section 2.3 we derive the theoretical expressions
for the light-induced velocities of the droplets. These results are then used for a
quantitative description of the measurements, which allows for the in situ esti-
mation of a key material parameter – the Bragg angle. Section 2.4 then presents
a method to achieve the full helicity control of the light-induced displacement of
a chiral particle, whereas its quantitative study is set forth in section 2.5.

2.1 Principle of the study

Our approach to the control of optical radiation forces via the photon helicity is
outlined in Fig. 2.1. Let us consider a particle with chirality χ = ±1 illuminated
by a circularly polarized plane wave with helicity +Λ or −Λ, as respectively
sketched in panels (a) and (b). Recent theoretical studies have predicted that
optomechanical properties of chiral matter depend on helicity of the incident
light [41, 21, 22]. Therefore, in general, the optical radiation forces exerted on
the considered chiral particle by light with +Λ or −Λ are expected to be unequal,
i. e. F+Λ ≠ F−Λ. This formally allows one to change the light-driven velocity of
the particle between v+Λ ∼ F+Λ and v−Λ ∼ F−Λ by controlling the photon helicity.

The experimental framework to implement the above ideas is presented in
Fig. 2.1(c). A radial cholesteric droplet of radius R is immersed in a fluid with
refractive index next and located on the axis of a circularly polarized Gaussian
beam having waist radius w0 ≫ R (in practice, our experiments have been carried
out in the range 10 < w0/R < 80) and wavevector k that defines z the axis. From
Eq. (1.12) with ` = 0 and accounting for w(z) = w0 (since the Rayleigh range
zR = πw2

0/λ0 ≫ R), the light intensity on the droplet could be considered as a
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Figure 2.1: (a, b) The concept of helicity-controlled optical force. A plane wave
with helicity ±Λ exerts on a particle with chirality χ the force F±Λ. In general,
the forces for opposite helicities are unequal, as well as the corresponding light-
induced velocities of the particle. (c) Scheme of the experimental situation where
w0 ≫ R.

constant that corresponds to the maximum intensity I0 of the Gaussian beam.
Namely,

I0 =
2P

πw2
0

. (2.1)

The above approximation is used in this chapter when comparing experimen-
tal data to the predictions of our model. The assumed axial symmetry of the
“beam + droplet” system implies the absence of transverse optical forces on the
droplet. Therefore we expect the illuminated droplet to move along the z axis
at a constant linear velocity. Since the elementary force scales as R2I/c, see
Eqs. (1.26), (1.27), whereas the drag force is proportional to ηRv (see Eq. (1.33)),
the velocity scales (up to a dimensionless constant that will be determined in sec-
tion 2.5) as

v± ∝
PR

cηw2
0

z . (2.2)

2.2 Experimental demonstration

The experimental the experimental set-up is outlined in Fig 2.2. A collimated
circularly-polarized Gaussian-like laser beam with waist radius w0 = 505 µm,
vacuum wavelength λ0 = 532 nm and helicity ±Λ propagates at normal inci-
dence through a rectangular quartz cell (from Hellma Analytics), as sketched
in panel (a). The cell contains radial droplets of the cholesteric liquid crystal
MDA-02-3211 (see sections 1.1, 1.1.2 for details) immersed in a host fluid chosen
as a ≈ 25.2 wt. % aqueous glycerol solution with refractive index next ≈ 1.365
and dynamic viscosity η ≈ 2 mPa s. A cholesteric droplet with radius R≪ w0 is
centered on the beam axis z by displacing the cell using a translational stage. Ge-
ometry of the experimental sample is shown schematically in panels (b, c). White
light (labeled as “WL” on panel (a) from a halogen source OSL1-EC (Thorlabs,
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Figure 2.2: (a) Sketch of the experimental setup. Bragg- or anti-Bragg polarized
laser beam illuminates a radial cholesteric droplet immersed in a host fluid inside
a quartz cell. Elements of the imaging system: white light (WL) source, con-
vex lens (L), microscope objective, CMOS camera, red filter (F) and (optional)
crossed linear polarizers (P1, P2). (b, c) Schematic side views of the sample.

Inc.) illuminates the droplet through a convex lens L with 35 mm focal length.
Imaging of the droplet motion is performed by means of a microscope objective
(Olympus SLMPLN, magnification ×20, numerical aperture NA= 0.25) and a
CMOS camera (DCC1645C from Thorlabs) through a red filter F, which absorbs
the green laser illumination scattered by the sample towards the camera. The
crossed linear polarizers P1 and P2 are used when checking the radial symmetry
of the droplet supramolecular organization.

A typical experimental result for the scheme described above is summarized
in Fig. 2.3. Without laser illumination, the droplet is at rest. When the laser is
turned on, the droplet almost immediately starts moving along the beam propa-
gation direction at a constant velocity. When the laser is turned off, the droplet
motion almost instantly stops since viscous forces overcome the inertial ones (see
subsection 1.3.4). The droplet velocities corresponding to the Bragg and anti-
Bragg polarization states of the laser beam are respectively labeled as vB and
vAB. As can be seen from panel (a), the Bragg droplet velocity is a few times
larger than the anti-Bragg one. This demonstrates experimentally the proposed
concept of the helicity-controlled optical radiation force. Using this approach,
one can switch the velocity of a chiral droplet between two different values, thus
achieving a partial control of the light-induced motion.

Noteworthy, the radial structure of the droplet is unaltered during its dis-
placement, as demonstrated by the optical transmission image sequences at the
early, intermediate and final stages of its laser-induced motion in the Bragg case,
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Figure 2.3: (a) Droplet velocity as a function of reduced time τ = (t− ton)/(toff −
ton) for Bragg (vB, solid curves) and anti-Bragg (vAB, dashed curves) laser beam
illumination conditions, where ton and toff refer to switch on and off times of
the laser beam, respectively. Different curves refer to independent experiments
performed at power P = 0.97 W, waist w0 = 505 µm and the droplet radius
R ≈ 28 µm. (b-d) Direct transmission snapshots of the droplet at τ = 0,0.5,1
for the Bragg case. White arrow on panel (b) indicates the characteristic ra-
dial defect of the droplet. (e-g) Transmission images (captured at the time
set τ = 0,0.5,1) of the droplet viewed between crossed linear polarizers, whose
orientation is indicated on panel (g). Scale bar is 30 µm.
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Figure 2.4: The markers represent the measured droplet velocity ratio vAB/vB

as a function of droplet radius R. Power of the beam is P = 0.78 W. Horizontal
dashed line refers to the mean value equal to 0.38, whereas gray area shows the
standard deviation range of ±0.075.

see Figs. 2.3(b–d) (direct images) and Figs. 2.3(e–g) (taken between crossed po-
larizers). The radial defect is observed in the former case, see white arrow in
Fig. 2.3(b), whereas the unchanged dark cross pattern confirms preservation of
radial symmetry within the droplet.

As follows from Eq. (2.2), both velocities vAB and vB are expected to be
proportional to the droplet radius R. Therefore, the ratio vAB/vB is expected
to be independent on the size of the droplet. In order to verify this statement,
we have measured the velocity ratio vAB/vB for 38 distinct droplets with radii
ranging from 7 to 35µm (this is the typical size range obtained with the stirring
technique). The obtained dataset is summarized in Fig. 2.4, where the markers
show the measured velocity ratio as a function of the droplet radius R. The
average value of the experimental points is indicated by the horizontal dashed
line, whereas the standard deviation range is shown by the gray area.

2.3 Light-induced forces and velocities

Towards a quantitative analysis of the obtained experimental statistics regarding
the velocity ratio vAB/vB, we model optical radiation forces exerted on a Bragg
cholesteric droplet under plane-wave-like illumination using the approach pre-
sented in section 1.3. We apply the coordinate systems introduced in Fig. 1.9,
assuming every incident ray parallel to the z axis, hence θ ranging from π/2 to π.

In the Bragg case, a ray impinging on the droplet surface within the Bragg
cone (i. e. at 0 ≤ π − θ ≤ θB,ext) exerts the elementary force given by Eq. (1.27).
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Since the light intensity is considered to be a constant (see Eq. (2.1)), the ele-
mentary optical radiation force becomes

dFBragg ray(θ, φ) = −nextPR2

πcw2
0

× [ sin 2θ(cosφx + sinφy) + (1 + cos 2θ)z] sin 2θ dθdφ . (2.3)

On the other hand, the elementary force associated with a non-Bragg ray, namely
for an incident angle θB,ext < π − θ ≤ π/2 in the Bragg case (Λχ = −1) and any
incident angle in the anti-Bragg case (Λχ = +1), is written as

dFnon−Bragg ray(θ, φ) = −nextPR2

πcw2
0

× [f⊥(θ)(cosφx + sinφy) + f∥(θ)z] sin 2θ dθdφ . (2.4)

The net force exerted on the droplet is then obtained by integrating the
elementary force over the illuminated surface of the droplet. Noteworthy, the
transverse (i. e. perpendicular to the z axis) components of the net optical force
vanishes due to the axial symmetry of the light-matter system, which formally
comes from the fact that ∫

2π

0 sinφdφ = ∫
2π

0 cosφdφ = 0. For the Bragg case
(labeled as “B”), the axial component of the net optical force is written as

FB
z = ∫

π−θB,ext

π/2
z ⋅ dFnon−Bragg ray + ∫

π

π−θB,ext

zdFBragg ray , (2.5)

whereas for the anti-Bragg case (labeled as “AB”) one has

FAB
z = ∫

π

π/2
z ⋅ dFnon−Bragg ray . (2.6)

After calculations one gets

FB = 2nextPR2

cw2
0

[1 − cos4 θB,ext − ∫
π−θB,ext

π/2
sin 2θf∥(θ)dθ] , (2.7)

FAB = −2nextPR2

cw2
0
∫

π

π/2
sin 2θf∥(θ)dθ . (2.8)

Substituting FB and FAB into Eq. (1.34),vB and vAB can be obtained, from which
we get the velocity ratio

vAB

vB

= FAB

FB

=
−∫

π

π/2 sin 2θf∥(θ)dθ

1 − cos4 θB,ext − ∫
π−θB,ext

π/2
sin 2θf∥(θ)dθ

. (2.9)

This quantity is independent of the droplet size, but depends on the material pa-
rameters, namely, refractive index of the host fluid (next), average refractive index
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Figure 2.5: Dashed curve shows the measured unpolarized transmission spec-
trum of a planar film of the applied cholesteric MDA-02-3211 (same plot as in
Fig. 1.2(b)). Solid line represents our theoretical approach to the Bragg and
non-Bragg behavior of this material.

of the cholesteric (n) and its intrinsic Bragg cone angle (θB), which appear in
Eqs. (1.6), (1.24). Using the known refractive indices and the measured average
velocity ratio (see the caption of Fig. 2.4), and taking the intrinsic Bragg angle
as the only adjustable parameter, we find θB = 15.3○(+3.1○/ − 2.3○). This value
is smaller than the ones obtained from the spectroscopic and direct microscopic
measurements reported in section 1.1.2. However, this is actually expected re-
calling that our model assumes an ideal rectangular bandgap, which is illustrated
in Fig. 2.5, where the modeled transmission spectrum is depicted.

We thus conclude to a fair theoretical description of our observations, thereby
validating that: (1) the physical picture is properly grasped and (2) the unavoid-
able scattering of light by the droplet prevents the full control of the optical
radiation pressure by the photon helicity.

2.4 Full control by helicity: two-beam strategy

Aiming to the full control of the light-induced velocity of a Bragg cholesteric
droplet, one has to get rid of the unwanted non-Bragg rays. To this purpose, we
implement the scheme presented in Fig. 2.6(a,b). The idea is to use two coaxial,
collimated, circularly polarized and counterpropagating beams with equal power
and waist, one being either Bragg- or anti-Bragg-polarized (helicity ΛB or ΛAB),
whereas the other is anti-Bragg polarized (helicity ΛAB).

When both beams are anti-Bragg (see Fig. 2.6(a)), their individual contribu-
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Figure 2.6: Full control of the light-induced droplet velocity shall be achieved
by means of two counterpropagating beams with identical intensity profiles and
independently switchable helicities. As in Fig. 2.1(a,b), here ΛBχ = −1 and
ΛABχ = +1. (a) If both beams are anti-Bragg, optical forces are mutually com-
pensated and the droplet stays at rest, i. e. the light induced velocity vAB+AB = 0.
(b) When one of the beams is Bragg-polarized, the optical force it exerts wins
and thus the droplet gains a generally non-zero velocity vB+AB. (c) Measured
velocity ratio vAB+AB/vB+AB as a function of droplet radius R in the two-beam
experiment. Power of each beam is P = 0.78 W. Dashed line and gray area refer
to the mean value and the standard deviation range.

tions to the net optical force perfectly cancel each other. Indeed, in that case

FAB+AB = −2nextPR2

cw2
0

[∫
π

π/2
sin 2θf∥(θ)dθ + ∫

π/2

0
sin 2θf∥(θ)dθ] = 0 . (2.10)

On the other hand, when one beam is Bragg-polarized (see Fig. 2.6(b)), one
gets

FB+AB = 2nextPR2

cw2
0

[1 − cos4 θB,ext − ∫
π−θB,ext

π/2
sin 2θf∥(θ)dθ − ∫

π/2

0
sin 2θf∥(θ)dθ]

= 2nextPR2

cw2
0

[1 − cos4 θB,ext − ∫
θB,ext

0
sin 2θf∥(θ)dθ] , (2.11)

which is non-zero if θB,ext ≠ 0.
The proposed two-beam strategy is experimentally implemented by using the

same setup as in Fig. 2.2, but adding a second beam. The two counterpropagating
beams are aligned by means of a pair of pin-holes. Equality of the beam waists
is ensured by identical beam paths, provided by a couple of mirrors. Circular
polarization state of one beam is controlled by using two preset quarter-wave
plates placed on flip mounts.

The experimental results obtained for 41 distinct droplets are presented in
Fig. 2.6(c), where the markers show the measured velocity ratio as a function of
the droplet radius R. The dashed line indicates the mean velocity ratio equal
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to −0.008 ± 0.055, the standard deviation range being colored in gray. This
successfully demonstrates the availability of the full control of optical radiation
forces by the photon helicity.

2.5 Quantitative analysis under the two-beam

strategy

Let us consider the light-induced velocity vB+AB in more details. The net optical
force given by Eq. (2.11) contains two terms, namely:

• −2nextPR2

cw2
0

[∫
θB,ext

0 sin 2θf∥(θ)dθ], caused by non-Bragg rays falling into the

angular range 0 ≤ θ < θB,ext;

• 2nextPR2

cw2
0

[1 − cos4 θB,ext], which refers to the contribution of Bragg rays.

The ratio between these two terms expresses as

ε = ∫
θB,ext

0 sin 2θf∥(θ)dθ
1 − cos4 θB,ext

(2.12)

and depends on n, next and θB,ext. Using the actual values for the refractive
indices, ε is calculated for 0 < θB,ext < π/2, see Fig. 2.7. As one can see from this
plot, the fact that θB,ext < 30○ in practice allows to neglect, within an error less
than 2 %, the contribution of the non-Bragg rays to the net optical force exerted
on a Bragg cholesteric droplet in the two-beam scheme.

Hence, Eq. (2.11) can be simplified to

FB+AB ≃
2nextPR2 (1 − cos4 θB,ext)

cw2
0

, (2.13)

that gives

vB+AB ≃
nextPR (1 − cos4 θB,ext)

3πηcw2
0

. (2.14)

In order to verify this theoretical prediction, we have measured the light-
induced velocities of five droplets with radii 10.6, 15.0, 17.7, 28.7 and 35.8 µm in
the two-beam scheme with the power up to 1.4 W in each beam. The results are
summarized in Fig. 2.8, where the markers show the measured droplet velocity
vB+AB divided by the corresponding radius R. The quantity vB+AB/R is measured
in s−1 and thus can be interpreted as the inverse characteristic time associated
with the droplet motion.
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Figure 2.7: Calculated ratio between the contributions of non-Bragg and Bragg
rays to the net optical force exerted on a Bragg cholesteric droplet in the two-
beam scheme, versus the extrinsic Bragg cone angle of the cholesteric material.
The values used for the refractive indices n and next are these of the experiment.
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Figure 2.8: The ratio vB+AB/R is plotted as a function of total beam power P
of one beam for various values of the droplet radius R. Dashed curve refers to
the best linear fit. Inset: solid line is the theoretical ratio vB+AB/(PR) vs. θB,ext

whereas dashed line and gray area refer to the mean value and the standard de-
viation range of the experimental dataset vB+AB/(PR), respectively. This allows
the experimental determination of the precision of θB, see vertical dotted lines.
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Figure 2.9: Calculated Bragg angle θB obtained by fitting of experimental data
shown in Fig. 2.8 using Eq. (2.14) as a function of the dynamical viscosity η of
the host fluid, θB,ext being the only adjustable parameter.

As expected from Eq. (2.14), the experimental data lie along a straight line,
whose slope is predicted to be next (1 − cos4 θB,ext) / (3πηcw2

0). The best linear
fit using θB,ext as the only adjustable parameter gives θB = 21.5○ ± 1.9○, and the
result is shown in Fig. 2.8 by the dashed line. The standard deviation range
for the experimental data is represented by the gray area determined from the
standard deviation range of the dataset for vB+AB/(PR), see inset of Fig. 2.8.
The solid curve in this inset figure is the result of simulations with various θB,ext.
The precision of θB,ext is given by the range of intersection between the simulated
curve and the experimental standard deviation range (see the vertical dotted
lines in the inset). The precision for θB is derived using Eq. (1.6).

We notice that, regarding the estimation of θB, the one-beam scheme (see
Eq. (2.9) and Fig. 2.4) is expected to be more precise than the two-beam ap-
proach. Indeed, the fitting procedure in the latter case involves additional param-
eters, namely η and w0, as follows from Eq. (2.14). The beam waist is measured
directly (by means of a CCD Camera Beam Profiler BC106-VIS from Thorlabs,
Inc.) whereas the viscosity is taken from tabulated data without measuring it for
our actual aqueous glycerol solution and temperature. As shown in Fig. 2.9, in
the two-beam experiment, the Bragg angle θB calculated from the experimental
data exhibits a non-negligible dependence on η. This could explain the difference
of 6○ between the θB values obtained from one-beam and two-beam experiments.
We nevertheless conclude that our model gives an overall satisfying description
of observations in all explored situations presented in this chapter.

2.6 Outlook

A straightforward anticipated application of the reported helicity-controlled opti-
cal radiation forces is the development of chiral optical sorting, which would bring
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enhanced functionality to optical chromatography [42] by enabling the photon
helicity as a tool for separation of material chirality. This allows us to envision
applications for the pharmaceutical industry related to the ability to sort materi-
als with different chiralities. Nanoactuation driven by optical radiation forces [43]
is another topic that may benefit from such a polarization control, as discussed
in the few dedicated theoretical studies reported so far [21, 41]. Finally, at a
larger spatial scale, our findings emphasize the spin angular momentum of light
as a possible control parameter for driving solar sails [44].



C H A P T E R 3

Optofluidic sorting of material
chirality by chiral light

Harnessing material handedness is a topical challenge for many industries since
it is a basic requirement towards the synthesis of drugs, additives, or pesticides,
to name a few. This implies the development of chiral sorting strategies that
correspond to the ability to separate two entities that only differ by their hand-
edness. Established chiral separation techniques at molecular scale are mostly
based on the recognition of material chirality by another material that is de-
signed to distinguish between the left- and right-handed versions of the entity to
be sorted [45, 46]. Instead, passive approaches free from such chiral recognition
may also be considered, for instance by relying on transport phenomena, as dis-
cussed in the early 70s [47]. More recently, several options based on the coupling
between translational and rotational mechanical degrees of freedom in fluid flows
have been proposed [48, 49, 50, 51, 52, 53, 54] and realized down to the micron
scale by using various kinds of chiral-shaped microparticles made of non-chiral
media [55, 56, 57]. In addition, hydrodynamic propeller effects driven by rotating
electric fields have also been considered theoretically [58, 59]. This principle has
been demonstrated only recently by using screw-shaped micrometer-sized parti-
cles made of non-chiral medium subjected to the action of a rotating magnetic
field [60]. Merging microfluidic and field-induced options into an optofluidic chiral
sorting scheme may offer new possibilities for a technology that arouses interest
regarding present achievements and promising developments (see Ref. [61] and
corresponding Focus Issue). Despite a few theoretical proposals of photoinduced
chiral separations [62, 63, 64, 65, 66, 67], the realization of an optical chiral sorter
is however missing so far.

In this chapter, we experimentally demonstrate the passive optical separation,
in a fluidic environment, of mirror-imaged spherical chiral microparticles that
differ only by opposite handedness by using chiral light fields. Importantly, the
proposed optofluidic strategy does not require chiral-shaped microparticles and
actually relies on the chirality of the medium, in contrast to previous experimental
demonstration of chiral sorting based on hydrodynamical effects [55, 56, 57, 60].
Indeed, our method enables to sort material chirality by exploiting the depen-
dence of optical radiation forces on the intrinsic handedness of matter and light.

The chapter is organized as follows. First, we present the principle of the
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proposed sorting strategy (section 3.1) and the set-up used for the experimental
demonstration (section 3.2). Then, in section 3.3, we unambiguously demon-
strate the proposed chiral sorting technique using spherical cholesteric droplets
exhibiting circular Bragg reflection. This demonstration is further generalized
to the case of non-resonant chiral microspheres. Modeling part is presented in
section 3.4, then the derived theoretical predictions are compared with our ob-
servations (section 3.5). Finally, we discuss in section 3.6 the outcome of our
approach and describe a proposed optofluidic sorter enabling the separation of
nanometer-sized or molecular-scale entities of chiral or non-chiral nature.

3.1 Principle of optical chiral sorting

The proposed concept is demonstrated in Fig. 3.1. It relies on the use of two
counterpropagating circularly polarized collimated beams with opposite helicity
Λ = ±1 but equal power and waist. In this figure the shaded area represents the
spatial distribution of the optical field intensity and we consider spherical mi-
croparticles flowing at a velocity V0 perpendicularly to the beam axes, say along
the x axis. For a non-chiral material (χ = 0), the net optical force component
exerted on the object along the propagation direction of the beams, say the z
axis, is zero by virtue of cancellation of the individual contributions of the two
beams. In the absence of additional external forces exerted on the particle, its
trajectory is thus straight. On the other hand, if the material is chiral (χ = ±1),

01 1

 z

x

chiral particles
flowing at V0

z z

Figure 3.1: Principle of the optical chiral sorting by chiral light: spherical
particles, which differ only by their material chirality χ, travel with a velocity V0

across a chiral light field consisting of two counterpropagating coaxial collimated
beams of identical intensity distribution, represented by the shaded area. The
beams are circularly polarized with opposite helicities ±Λ. Dashed lines show
trajectories of the particles, which are spatially separated by the chiral field
depending on their chirality.
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Figure 3.2: A transparent spherical droplet is immersed in a uniform host fluid
within a glass capillary. (a) Top view. (b) Side view on the sample, where g
refers to gravitational acceleration. The sample can be moved vertically (along
the x axis) so that the droplet crosses two circularly polarized coaxial collimated
counterpropagating Gaussian-like laser beams with opposite helicities (+Λ and
−Λ), equal power, waist and wavelength. The imaging system is the same as
described in section 2.2.

the force balance does not hold anymore and a non-zero net force, which either
originates from circular birefringence or circular dichroism, is now exerted on the
particle. This consequently leads to a curved trajectory in the (x, z) plane. As
it passes through the beams, the particle with χ = ±1 is optically displaced along
z by ∆z, as depicted in Fig. 3.1. Noteworthy, the sign of ∆z is expected to be
reversed by changing the sign of either Λ or χ.

3.2 Experimental set-up

In practice we built the set-up sketched in Fig. 3.2. The sorting optical field
is provided by two circularly polarized coaxial collimated counterpropagating
Gaussian laser beams with opposite helicities (+Λ and −Λ), equal power P ∼
10 − 100 mW, waist w0 ≈ 50 µm and vacuum wavelength λ0 = 532 nm. The
experimental sample consists of a glass capillary filled with an isotropic host fluid
(aqueous glycerol solution with refractive index next and dynamic viscosity η),
in which spherical microscopic droplets are immersed. If densities of the droplet
and the host fluid perfectly match, the motion of the droplet depends only on the
controlled displacement of the sample, light-induced forces and ensuing viscous
forces. The sample is displaced at a uniform velocity V0 along the x axis in the
(x, z) plane across the laser beams by means of a linear translation stage driven
by a direct current micromotor. Both trajectories and velocities of the sorted
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droplets are quantitatively retrieved by direct imaging procedure, as previously
described in section 2.2.

For the purpose of thorough demonstration of the proposed concept we have
used different types of chiral and non-chiral spherical droplets. The corresponding
experimental studies are detailed in the following section.

3.3 Experimental proof-of-principle

3.3.1 Optomechanically resonant chiral sorting

Following the accomplishments of chapter 2, here we use radial optomechani-
cally resonant cholesteric droplets of MDA-02-3211 (see section 1.1.2 for details)
in order to experimentally demonstrate the proposed concept of chiral sorting
concept. Such droplet is sketched in Fig. 3.3(a), where radial lines refer to the
axes of supramolecular helices, n being the liquid crystal director. Panels (b–d)
represent transmission images of a radial droplet of MDA-02-3211 immersed in
a host fluid (≈ 25 wt% aqueous glycerol solution) viewed under various polar-
ization conditions at λ0 = 532 nm wavelength illumination. The overall radial
ordering of the droplet is verified by the characteristic fourfold pattern viewed
between crossed linear polarizers (XPOL). Images obtained under left- and right-
handed circular polarized illumination (LHCP and RHCP) are shown in panels
(c, d). Circular Bragg reflection from this right-handed (i. e. χ = +1) cholesteric
manifests itself by the dark disk of diameter 2RB clearly seen in the RHCP case.

As demonstrated in section 2.5, radial droplets of MDA-02-3211 in the two-
beam scheme are strongly pushed along the wavevector of the Bragg-polarized
beam. Since the direction of this light-induced deviation of the droplet trajectory
is defined by the product Λχ, both directions can be obtained with the same
material by changing the sign of the helicity of the two beams. We realize this
experimentally by using two preset quarter-wave plates on flip mounts.

The experimental demonstration of optical chiral sorting is performed using
an immersed MDA-02-3211 droplet of radius R ≈ 7µm, being displaced together
with the capillary at the velocity V0 ≈ 12 µm s−1 along the x axis through the
chiral optical field formed by the two laser beams with power P = 170 mW.
Fig. 3.3(e,f), compile snapshots of the droplet dynamics for Λχ = −1 and Λχ = +1,
respectively, which leads to the droplet deviation with the opposite sign. Due
to the bounded nature of the light beams, a chiral droplet experiences a finite
displacement along z, namely ∆z = z+∞−z−∞, where z±∞ refers to the z coordinate
of the droplet center of mass at time t = t±∞, with t = 0 when the droplet crosses
the beam axis at x = 0. The fact that ∆z ∝ Λχ demonstrates the ability to sort
objects with different chirality by chiral light.
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Figure 3.3: Experimental demonstration of chiral optical sorting concept by
means of optomechanically resonant radial cholesteric droplets. (a) Sketch of
the used droplet, where radial lines refer to the axes of supramolecular helices
and n is the liquid crystal director. (b) Image of the droplet between crossed
linear polarizers (XPOL) at λ0 = 532 nm wavelength. The dashed circle refers
to the contour of the droplet. (c, d) Transmission images under left- and right-
handed circularly polarized illumination at λ0 confirming the presence of helicity
dependent circular Bragg reflection (see section 1.1.2 for details) (e, f) A Bragg
cholesteric droplet is displaced by external means at a constant velocity V0 along
the x axis through the laser beams having opposite helicities (+Λ and −Λ). Owing
to the circular Bragg reflection, the droplet experiences a non-zero deviation
∆z ∝ Λχ along the direction of propagation of the beam having a helicity that
satisfies Λχ = −1. The pictures are obtained by superimposing snapshots taken
at a discrete set of time. Parameters: power of one beam is P = 170 mW, beam
waist is w0 ≈ 50 µm, droplet radius is R ≈ 7µm, driving velocity is V0 ≈ 12 µm s−1,
host fluid is a ≈ 25 wt% aqueous glycerol solution.
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3.3.2 Generalization of chiral optical sorting

Importantly, the proposed optical chiral sorting strategy is not restricted to op-
tomechanically resonant chiral interaction as is the case for Bragg chiral droplets.
In fact, our method is expected to work for non-resonant chiral spheres as well.
In order to prove it, we have tested radial cholesteric droplets prepared by mix-
ing a (non-chiral) nematic liquid crystal E7 (from Merck) with ≈ 5 wt.% of
chiral dopant S811 or R811 (both from Merck), which respectively gives the left-
handed or right-handed supramolecular helices with a pitch p ≈ 2 µm - roughly 6
times larger than the pitch of MDA-02-3211. According to the tabular dataset,
E7 has the average refractive index n ≈ 1.6 and anisotropy ∆n ≈ 0.2. Using
Eqs. (1.1), (1.2), we estimate the Bragg wavelength for the above E7-based
cholesteric materials as pn ≈ 3.2µm, while the circular Bragg reflection band-
width is expected to be p∆n ≈ 400 nm wide. Therefore, these materials are
considered as non-Bragg at the used wavelength λ0 = 532 nm.

Radially ordered droplets are obtained via mechanical stirring of the cholesteric
material in the host fluid, which in this case is a ≈ 15 wt% aqueous glycerol solu-
tion (the right percentage has been determined in situ by observing the droplet
motion inside the capillary in the absence of laser illumination). Radial droplets
of right-handed (E7 doped with R811) and left-handed (with S811) are sketched
in Fig. 3.4(a,b), respectively. The investigated cholesteric droplets viewed be-
tween crossed linear polarizers (panels (c, f)) demonstrate a signature of the
four-fold pattern, which confirms the overall radial ordering. Chirality of the
droplets reveals itself as spiraling texture clearly visible in panels (c–h). The
absence of the circular Bragg reflection at λ0 is seen from the almost identical
transmission images of the droplets obtained under left-handed (panels (d, g))
and right-handed (panels (e, h)) circularly polarized illumination. It is interest-
ing to note that Λ-sensitivity of light scattering is seen from these images. Also
we see the inversion when changing the sign of χ.

The chirality-dependent optomechanical effect is demonstrated by the snap-
shots compilations in Figs. 3.4(i,j). However, the light-induced deviation of the
droplet is typically 20 times smaller than the one obtained in the Bragg case when
considering identical optical power, driving velocity and droplet radius. This im-
pressive difference results from the fact that the helicity-dependent scattering
of light by non-Bragg chiral microspheres is not a resonant process, in contrast
to circular Bragg reflection, which was at work in the experiments reported in
subsection 3.3.1.

We notice that the helicity-dependent optomechanical effect (i. e. the light-
induced axial deviation ∆z) obtained in the non-Bragg case is opposite to the
one reported in Fig. 3.3 for the Bragg case. This is explained recalling that
optical force exerted on a chiral microsphere does not depend solely on the hand-
edness of the material, but also on its chirality “strength”, which characterizes
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Figure 3.4: Sorting chiral radial cholesteric droplets by chiral light without re-
lying on circular Bragg reflection phenomenon. Upper panels: sketches of right-
handed (a) and left-handed (b) radial cholesteric droplets obtained by mixing the
nematic E7 with ≈ 5 wt.% of chiral dopant R811 or S811, respectively. Notations
are the same as in Fig. 3.3. (c, f) XPOL images demonstrate the signature of
radial ordering in such long-pitch (p ≈ 2 µm) cholesteric droplets. The transmis-
sion images under LHCP (d, g) and RHCP (e, h) illumination at λ0 = 532 nm
show no sign of circular Bragg reflection. Bottom panels: optical sorting experi-
ment for right-handed ( i) and left-handed ( j) droplets. The sign of the optically
induced deviation along the z axis depends on the material chirality at fixed
optical field, thereby extending the proposed optofluidic chiral sorting scheme to
non-Bragg chiral microspheres. Parameters: P = 540 mW, w0 ≈ 50 µm, R ≈ 9µm,
V0 ≈ 12 µm s−1.
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the cross-coupling between the magnetic and electric field in chiral media (see
for instance [68]). For example, as shown by theoretical curves in Fig. 4 of [69],
the difference of optical radiation forces exerted on a chiral sphere by RHCP
and LHCP Gaussian beams can be positive as well as negative, even if the ma-
terial chirality does not change sign. Therefore, the reversed light-induced dis-
placement observed for non-Bragg droplets emphasizes the role of the chirality
strength when dealing with optomechanics of chiral media.

Put together, all the observations reported in subsections 3.3.1, 3.3.2 demon-
strate the generality of the proposed optical sorting technique, that may be ex-
tended into a microfluidic environment. Indeed, as shown in Fig. 3.3, one easily
gets ∆z ≫ R within a few seconds and with 100% efficiency. Typically, we have
∆z ∼ R in one second using P ∼ 10 mW and V0 ∼ 10 µm s−1.

Moreover, the obtained dependencies of ∆z on (i) optical chirality at fixed
material chirality (see Fig. 3.3) and (ii) material chirality at fixed optical chirality
(see Fig. 3.4) fully demonstrate an optofluidic chiral sorting basically associated
with light-induced separation that scales as ∆z ∝ Λχ.

3.3.3 “Null” experiment: the non-chiral case

3.3.3.1 Optically isotropic non-chiral microspheres

A “null” experimental test has been performed in order to verify that trajectories
of non-chiral particles are unaffected by the chiral field in the considered sorting
scheme, as depicted in Fig. 3.1 by the straight line corresponding to χ = 0.
For this purpose, we have initially used isotropic spherical droplets of PDMS
(polydimethylsiloxane fluid, from Clearco Products Co., Inc.). Spherical droplets
of have been produced by mechanical stirring of PDMS in pure water, which
serves as a host fluid in this case.

In practice, the test was realized with a PDMS droplet having R ≈ 9µm. The
compilation of snapshots of the chosen droplet taken at a discrete set of time is
presented in Fig. 3.5. As expected, in contrast to the chiral microspheres, the
isotropic droplet’s trajectory is a straight line along x, regardless of the helicities
of the laser beams.

3.3.3.2 Optically anisotropic non-chiral microspheres

The case of non-chiral optically anisotropic particles has also been tested in
order to unambiguously demonstrate that it is the material chirality and not its
anisotropy that is responsible for the chiral optical separation. For this purpose,
we have chosen the nematic E7, whose refractive indices are very close to those
of MDA-02-3211.
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Figure 3.6: “Null” sorting experiment with a non-chiral optically anisotropic
radially ordered nematic liquid crystal droplet. (a) Sketch of the director field,
where radial lines refer to the director orientation. (b) Image of the droplet
viewed between crossed linear polarizers, where the dashed circle refers to the
contour of the droplet. (c,d) Images of the droplet under left- and right-handed
circularly polarized illumination. The imaging is performed at 532 nm wave-
length. (e) Compilation of the snapshots demonstrating the straight trajectory
of a radial nematic droplet across the chiral field. Parameters: P = 170 mW,
w0 ≈ 50 µm, R ≈ 7.5µm, V0 ≈ 12 µm s−1.
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Radial nematic droplets were obtained by dispersing E7 in a quasi-isodense
aqueous glycerol solution1 with a small fraction (0.2 g/L) of surfactant CTAB
(cetyltrimethylammonium bromide, from Sigma-Aldrich) that promotes a per-
pendicular alignment of the director n at the droplet interface and subsequent
radial director ordering in the bulk, as sketched in Fig. 3.6(a).

The radial symmetry of the director field is identified by a four-fold intensity
pattern when observing a radial nematic droplet between crossed linear polarizers
(see Fig. 3.6(b)). As shown in the images under LHCP and RHCP illumination
(panels (c) and (d) in Fig. 3.6, respectively), optical properties of a radial ne-
matic droplet do not depend on the photon helicity of the incident light. The
panel (e) compiles successive snapshots (taken at a discrete set of time) of the
radial nematic droplet with radius R ≈ 7.5µm driven through the chiral light field
at the velocity V0 ≈ 12 µm s−1 along x axis. The resultant trajectory is straight,
regardless of the helicities of the beams, which concludes our demonstration.

3.4 Model

Optomechanics of a Bragg 2 radial cholesteric droplet illuminated by the applied
two-beam chiral field is modeled within the ray-optics approach, as described in
section 1.3. The key difference between the sorting environment and the light-
matter system considered in section 2.4 consists in axial symmetry breaking of
the system in the sorting case once the droplet does not lie on the beam axis.
Therefore, in general, there are non-zero transverse components of the net optical
force exerted on the droplet. Moreover, gradient of the field intensity over the
beam cross-section implies the dependance of light-induced forces and velocities
on the droplet location.

3.4.1 Optical forces

The laboratory coordinate system with unit vectors x, y and z has been intro-
duced in section 3.2. The Cartesian basis (x′, y′, z′) is obtained by the parallel
translation of the laboratory basis to the droplet center located at (x,0, z), as
shown in Fig. 3.7. A spherical coordinate system with polar and azimuthal angles
θ and φ originates at the droplet center and serves for deriving the elementary
optical force dF(x, θ, φ) exerted on the droplet by a single ray impinging on a
surface element dS(θ, φ) = R2 sin θdθdφ (see subsection 1.3.2). Note that in the
considered light-matter system the elementary force does not depend of the axial

1Density of the nematic E7 at room temperature is about 1.03 g cm−3 [70]. Thus isodense
conditions correspond to ≈13 wt% aqueous glycerol solution [31]

2We do not report here neither modeling nor experimental statistics for non-Bragg droplets.
If one would consider the latter case, the helicity-dependent chiral scattering issue has to be
taken into account (see for instance [69]).



3.4 Model 47

incident

ray

beam
axis

dS 



0
0

x

xx

y 

y 

z 

z 

z

R sin

y
z

z

x 

x 
x  ba

  R



x

incidence
planedS

next

n

y

x  



 

Figure 3.7: (a) Sketch of a spherical droplet (with χ = −Λ) interacting with
the considered two-beam chiral optical field. A single ray impinging on a surface
element dS of the droplet is depicted. (b) Distance ρ between the surface element
and the beam axis z can be easily derived using the projection on the (x, y) plane
(dS′ represents the projection of dS).

coordinate z, since the incident beams are collimated and thus have identical in-
tensity distribution in any plane perpendicular to the z axis. Panel (a) in Fig. 3.7
illustrates the interaction of a spherical droplet with a single incident ray in three
dimensions. The projection on the (x, y) plane sketched in panel (b) helps to
derive the useful distance between the beam axis z and the considered surface
element dS, namely

ρ(x, θ, φ) =
√
x2 + 2xR sin θ cosφ +R2 sin2 θ . (3.1)

Indeed, ρ(x, θ, φ) unambiguously defines the optical field intensity at the loca-
tion of the surface element dS. In the present case of collimated coaxial Gaussian
beams with equal power P and waist w0, Eq. (1.12) gives the local optical inten-
sity

I(ρ, z) = I(x, θ, φ) = 2P

πw2
0

exp [−2ρ2

w2
0

] . (3.2)

Then, using the listed notations and Eq. (1.26), we write the elementary
optical force on the droplet as follows

dF(x, θ, φ) = −nextR2

2c
I(x, θ, φ)

× [f⊥(θ)(cosφx + sinφy) + f∥(θ)z] sin 2θ dθdφ , (3.3)

where the coefficients f∥(θ) and f⊥(θ) are given by Eqs. (1.24), (1.25).
As in section 2.4, we consider the wavevector of the Bragg-polarized (Λχ =

−1) beam pointing along z, whereas the anti-Bragg (Λχ = +1) beam propagates
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towards z < 0, in agreement with the sketch shown in Fig. 3.3(e,f). The net
optical force exerted on the droplet is thus obtained by integrating dF(x, θ, φ)
over the whole irradiated surface of the droplet. Namely, over

• {π/2 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} for the Bragg beam;

• {0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π} for the anti-Bragg beam.

Since the light-matter system is characterized by the mirror symmetry relative
with respect to the (x, z) plane, the net optical force acting on a radial droplet
along the y axis is zero. The other components of the net optical force are

Fx(x) = −
nextPR2

πcw2
0
∫

2π

0
∫

π

0
exp [−2ρ2(x, θ, φ)

w2
0

] f⊥(θ) sin 2θ cosφdθ dφ (3.4)

and

Fz(x) = −
nextPR2

πcw2
0
∫

2π

0
∫

π

0
exp [−2ρ2(x, θ, φ)

w2
0

] f∥(θ) sin 2θ dθ dφ . (3.5)

The key feature of the proposed sorting scheme is the light-induced spatial
separation of the sorted chiral spheres along the beam axis z (see the principle
sketch in Fig. 3.1). Noticeably,

• the contribution made by non-Bragg rays into the z-component of the net
optical force exerted on a radial cholesteric droplet in the considered two-
beam light field is negligible if compared with the contribution made by
Bragg rays (this is supported by the results of section 2.5);

• the cross-section of the Bragg-reflecting area of the droplet surface has the
radius RB = R sin θB,ext < R/2 for θB,ext < 30○ 3. Using the parameters of our
experiments reported in section 3.5, RB < 7.5µm, which is about 6.5 times
less than the beam waist w0 ≈ 50µm. Thus we neglect variations of the
optical intensity within the Bragg-reflecting area of the droplet. In other
words, we assume ρ ≃ x.

Under these two approximations, Eq. (3.5) can be simplified as follows:

Fz(x) ≃
2nextPR2(1 − cos4 θB,ext)

cw2
0

exp [−2x2

w2
0

] . (3.6)

3Note that the maximum value of θB obtained in chapter 2 via fitting of the experimental
data corresponds to θB,ext ≈ 25.4○.
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Figure 3.8: Simulated ratio between the exact and approximate expressions for
the z-component of the net optical force exerted on a Bragg cholesteric droplet
in the chiral sorting scheme. Parameters: n = 1.6, next = 1.365, θB,ext = 25○,
R = 15µm, 5µm ≤ w0 ≤ 500µm. Dashed line indicates the value R sin θB,ext/w0 ≈
0.125, which we have in practice (w0 ≈ 50 µm).

The validity of such an approximation has been numerically checked by showing
that with our actual experimental parameters we have

Fz,exact(x)
Fz,approx(x)

=
−∫

2π

0 ∫
π

0 exp [−2ρ2(x,θ,φ)

w2
0

] f∥(θ) sin 2θ dθ dφ

2π(1 − cos4 θB,ext) exp [−2x2

w2
0
]

≃ 1 , (3.7)

where Fz,exact(x) and Fz,approx(x) respectively refer to the exact (Eq. (3.5)) and
approximate (Eq. (3.6)) expressions for the z-component of net optical force ex-
erted on a Bragg cholesteric droplet. Indeed, in practice we have R sin θB,ext/w0 ≈
0.125, which corresponds to the maximum error of 2 % appearing from the above
approximation, as one can see in Fig. 3.8, where the ratio Fz,exact(x)/Fz,approx(x)
has been simulated as a function of the parameter R sin θB,ext/w0 for various
droplet locations x.

Therefore, we use the analytical Eq. 3.6 when deriving the trajectory, z(x),
and total light-induced deviation, ∆z, of a Bragg cholesteric droplet (see next
subsection). Unlike the z-component of the net optical force, the x-component
is expected to have a minor contribution to ∆z, thus we do not derive any
approximate expressions for Fx(x).
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3.4.2 Velocities and trajectories

As discussed in subsection 1.3.4, the balance between the viscous force exerted
by the surrounding fluid on the moving droplet and the driving optical force gives
the light-induced droplet velocity. Its components along the x and z axes equal

vj(x) =
Fj(x)
6πηR

(3.8)

with j = x, z and Fx,z(x) given by Eqs. (3.4), (3.6). We notice that the total
droplet velocity along x has also a non-optical component, V0, and expresses as
Vx(x) = V0 + vx(x).

Once velocities of the droplet at every point are known, the droplet trajectory
can be retrieved. This is done by noting that Vx(x) = dx/dt and vz(x) = dz/dt,
which leads to dz = [vz(x)/(vx(x) + V0)]dx. Integration of dz along the x axis
thus gives access to the droplet trajectory z(x) and total deviation ∆z. Namely,

z(x) = ∫
x

−∞

vz(x)
vx(x) + V0

dx , (3.9)

∆z = ∫
+∞

−∞

vz(x)
vx(x) + V0

dx . (3.10)

In particular, when Eq. (3.6) is valid and under the approximation vx ≪ V0, one
gets

∆z ≃ 1

V0
∫

+∞

−∞

vz(x)dx ≈
nextPR (1 − cos4 θB,ext)

3πηcw2
0V0

∫
+∞

−∞

exp [−2x2

w2
0

]dx ; (3.11)

∆z ≈
nextR (1 − cos4 θB,ext)

3
√

2πηcw0

P

V0

, (3.12)

and thus the droplet trajectory simplifies to

z(x) ≈ ∆zΦ(2x

w0

) , (3.13)

where Φ is the normal cumulative distribution function,

Φ(β) = 1√
2π
∫

β

−∞

exp (−α2/2) dα

with α and β being real-valued variables.
By introducing the reduced coordinates x̃ = x/w0 and z̃ = (z − z−∞)/∆z, the

droplet trajectory adopts a universal expression

z̃(x̃) = Φ(2x̃) , (3.14)
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Figure 3.9: Simulation of reduced trajectories of a Bragg cholesteric droplet
moving across the chiral light field. (a) The larger is ξ = δ/δc < 1 (see text for
details), the larger is the deviation of the droplet from the universal behavior
(dashed curve). (b) At ξ ≥ 1, the droplet is eventually trapped in 2D and guided
along the beam axis. (c) Deviations from the universal behavior in the regimes
of sorting and 2D trapping, where x̃mid is the reduced distance of the droplet
from the beam axis at z̃ = 0.5, here plotted as a function of ξ.

which is valid in our case if vx ≪ V0.

This universal trajectory is shown by the dashed line in Fig. 3.9(a). The other
three trajectories have been simulated using Eqs. (3.8) and (3.9) with the net
optical force components given by Eqs. (3.4) and (3.5). Parameters of the light-
matter system were the same as the experimental ones, except for the quantity
δ = P /V0 that varies typically from 1 to 10 kN. As follows from the simulations,
the larger is δ, the larger is the deviation of the droplet trajectory from the
universal one.

In particular, when P /V0 exceeds a certain critical value δc, the droplet is
trapped in two dimensions (2D) by light at x = xtrap and is consequently guided
along the z axis towards the ±z direction depending on the sign of Λχ, whereas
the transverse location of the droplet center x̃ = x̃trap is constant (see Fig. 3.9(b)).
Using actual experimental parameters and R = 15 µm (as in section 3.5, where the
quantitative study is reported), we numerically find δc ≈ 9.66 kN, which typically
corresponds to P = 100 mW and V0 = 10 µm s−1. The transition between sorting
and 2D trapping regimes is presented in Fig. 3.9(c) that displays the reduced
distance x̃ = x̃mid corresponding to z̃ = 0.5, as a function of ξ = δ/δc.

3.5 Quantitative experimental study

Dynamics of a typical Bragg droplet has been experimentally investigated for
various laser beam power P and the driving velocity V0. The set of data re-
ported in this chapter comprises 48 independent experiments performed with a
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Figure 3.10: Typical trajectories of a Bragg cholesteric droplet moving across
the chiral light field, measured: (a) at fixed driving velocity V0 ≈ 17 µm s−1 and
variable laser beam power P , (b) at fixed power P ≈ 95 mW and variable velocity
V0. (c) Measured droplet deviation along the z axis, ∆z, as a function of the
parameter δ = P /V0 for 48 independent realizations. Solid line is the best linear
fit passing through the origin.

single droplet of radius R ≈ 15µm for 19 mW ≤ P ≤ 95 mW and 17 µm s−1 ≤
V0 ≤ 43 µm s−1. Trajectories and velocities of the droplet are retrieved from
videos of its motion recorded by means of the imaging system (see Fig. 3.2) and
analyzed frame by frame using the MATLAB software environment. Namely,
the initial droplet location in the (x, z) plane was identified in the first frame by
cropping a representative piece of the droplet image. Then, using this piece as
a reference, the relative droplet locations in the next frames were determined by
cross-correlation.

Then, the known frame rate gives access to the time-dependent displacement
of the droplet. Assuming that the velocity for two successive frames is constant
(which is reasonable since our model describes light-induced forces by smooth
functions), we derive the time and coordinate dependence of the droplet velocity.
As for the driving velocity V0, it was preset by calibrating the micromotor rotation
rate as a function of the applied direct voltage. However, accounting for possible
instability of mechanical friction or other sources of systematic errors, we also
measured V0 in situ as the droplet velocity in the parts of the trajectory where
the light field intensity was close to zero (for ∣x̃∣ ≥ 1.2 in practice).

3.5.1 Light-induced droplet displacement

Typical measured trajectories are presented in Fig. 3.10(a,b). We have found
that the total deviation of the droplet, ∆z, increases with the increase of P at
fixed V0 and reduces with the increase of V0 at fixed P . The complete set of
experimental realizations is summarized in panel (c), where the total deviation is
plotted as a function of the generalized parameter δ = P /V0. As one can see, the
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experimental dataset exhibits a linear dependence on δ, as indicated by straight
solid line ∆z = aδ, that refers to the best linear fit with a = 31.8 nm N−1.

The observed linear dependence is actually predicted by Eq. (3.12), where we
recognize the prefactor

a =
nextR(1 − cos4 θB,ext)

3
√

2πηcw0

. (3.15)

Substituting of the experimentally found value into Eq. (3.15), we obtain θB,ext =
25.1 ± 1.1○, hence θB = 21.3 ± 0.9○, which fairly agrees with our previous direct
(see section 1.1.2) and indirect (see section 2.5) measurements.

3.5.2 Light-induced droplet trajectories

The reduced trajectories measured for the 48 experimental realizations intro-
duced in subsection 3.5.1 are shown in Fig. 3.11. In agreement with the predic-
tions of our model, the trajectories demonstrate a deviation from the universal
behavior, that increases with δ (see the zoomed central parts in panels (a, b).
A more quantitative assessment of this trend is presented in panel (c), where
the experimental dataset of x̃mid (markers) is superimposed with the results of
simulations (solid curve).

We also conclude that the predictions regarding the 2D trapping regime (see
Fig. 3.9(b,c)) agree with our observations since the experimental data corresponds
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Figure 3.11: (a,b) Reduced trajectories of the radial cholesteric droplet in the
coordinate system (x̃, z̃) = (x/w0, (z−z−∞)/∆z) when P is varied at fixed velocity
V0 ≈ 17 µm s−1 (a) and when V0 is varied at fixed power P ≈ 95 mW (b).
Enlargement windows point out the trend as the parameter δ = P /V0 increases:
the larger is δ, the larger is the deviation from the universal trajectory given by
Φ(2x̃) and represented here by dashed curves. (c) Measured reduced distance
x̃ = x̃mid at z̃ = 0.5, as a function of the reduced parameter ξ = δ/δc with δc ≈
9.66 kN. Solid line refers to simulation. Parameters: beam waist is w0 ≈ 50 µm
and droplet radius is R ≈ 15 µm.
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Figure 3.12: Demonstration of the 2D trapping and ensuing continuous guiding
of a Bragg cholesteric droplet (radius R ≈ 15 µm). Transition from the sorting
regime to 2D trapping occurs when the dimensionless parameter ξ = δ/δc exceeds
unity. With the actual geometry of the light-matter system, refractive indices
and host fluid viscosity, simulation gives δc ≈ 9.66 kN. Here the experiment is
realized at δ ≈ 10.8 kN, which corresponds to ξ ≈ 1.1.

to the range 0.1 < ξ < 0.6, hence dealing with the chiral sorting regime without
trapping. Even though optical trapping of chiral droplets is out of the scope
of the present chapter, we have made a few qualitative experimental tests that
confirm the existence of 2D trapping regime when the dimensionless parameter ξ
exceeds unity. This is illustrated in Fig. 3.12 that demonstrates the motion of a
Bragg cholesteric droplet of radius R ≈ 15µm at δ ≈ 10.8 kN, which corresponds
to ξ ≈ 1.1.

3.5.3 Light-induced droplet velocities

The reliability of our experimental approach and its quantitative description are
further emphasized by looking at the droplet dynamics in the sorting regime.
Its statistical analysis is presented in panels (a) and (b) in Figs. 3.13, where
the longitudinal and the transverse light-induced droplet velocity components,
vz and vx, divided by P for the sake of universalization, are presented for the
experimental dataset shown in Fig. 3.10(c). The standard deviation range was
determined independently for every x̃ location, then the corresponding dataset
has been smoothed by a polynomial fit. On the other hand, the dashed curves
display the light-induced velocities of the Bragg cholesteric droplet simulated by
means of Eq. (3.8) using the actual experimental parameters, without additional
fitting procedures.
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Figure 3.13: Droplet dynamics in the sorting regime. Experimental longitudi-
nal (a) and transverse (b) light-induced droplet velocity components (divided by
P ) during the optical chiral sorting dynamics for the 48 independent realizations
presented in Fig. 3.10(c). Markers are experimental data, solid curves outline the
experimental standard deviation range and dashed curves refer to simulations.

3.6 Discussion and outlook

The demonstrated quantitative agreement between our observations and the pre-
dictions of our model without need for adjustable parameters eliminates the
possibility that thermal effects are at the origin of the reported results. Also,
this agreement proves that the proposed optical sorting scheme is immune to
the influence of radial defects, which unavoidably present in radial cholesteric
droplets [13, 14] and formally break their spherical symmetry. Predictable real-
izations of the chiral optical sorting strategy has been demonstrated with both
Bragg (Fig. 3.3) and non-Bragg (Figs. 3.4) chiral droplets. This emphasizes the
generality of the reported results on optofluidic sorting of chiral microspheres by
chiral light.

A natural extension of the present work would consist in the spatial down-
scaling from the micron scale to molecular scale. Indeed, despite an obvious
practical interest, there are only a few theoretical works dealing with electro-
magnetic field-induced mechanical separation of nanometer sized chiral enti-
ties [58, 59, 62, 63, 64, 65, 66, 67] while no experimental realization has been
reported so far. To this aim, we stress that it is however not relevant to consider
sub-micrometric Bragg droplets since their formation requires a droplet diame-
ter sufficiently larger than the pitch, which scales as wavelength if one wants to
ensure circular Bragg reflection and the consequent optomechanically resonant
effect. Outside resonance, optomechanical effects are obviously less efficient, as
experimentally reported in Fig. 3.4, and are thus expected to be more sensitive
to thermal noise.
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Figure 3.14: Illustration of microfluidic optical chiral sorting concept and its
application to the sorting of molecular scale entities. It relies on a random
sequence of left-handed and right-handed Bragg chiral microspheres (χ = ±1)
used as “chiral conveyers” that can be separated with 100% efficiency owing to
a reliable optomechanically resonant optical chiral sorting scheme. When mixed
with small scale entities to be sorted, chiral conveyers with appropriate func-
tionalization may selectively bind their (chiral or non-chiral) target in the fluidic
environment, then be sorted by light and eventually collected in two different
output microchannels.

To overcome this limitation, one might consider an alternative strategy that
combines robustness and efficiency of the optomechanically resonant Bragg ap-
proach with material chiral recognition applied in standard separation techniques,
as sketched in Fig. 3.14. In that case, chiral microparticles act as “conveyers”
whose appropriate surface functionalization allows sorting chiral or non-chiral
nanometer-sized or molecular scale entities. Of course, solid Bragg chiral mi-
croparticles would be desirable for this purpose and protocols actually exist to
fabricate them [71]. In addition, large-scale accurate fabrication of microscopic
photopolymerized Bragg chiral conveyers can be considered by exploiting already
developed microfluidic preparation protocols [72].

To conclude, the reported results represent the first-time experimental demon-
stration of passive optical sorting of material chirality. Since chiral sorting strate-
gies have a huge application potential, we anticipate that this study will promote
further developments of the existing optofluidic toolbox [1, 73]. This work may
also contribute to the emergence of other kinds of field-induced chiral sorting
strategies more generally based on the use of angular momentum of light, be it
of spin or orbital nature.
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Helicity-dependent 3D optical
trapping of chiral microspheres

Four decades after the first steps in optical trapping and manipulation, optome-
chanical effects are nowadays widely used for contact-free handling of inert or
living entities from nanometric to submillimetric scale. Three-dimensional (3D)
optical trapping of an object implies the use of either bell-shaped (i.e. Gaussian)
or doughnut-shaped (i.e. Laguerre-Gaussian) light beams depending on (i) the
relationship between the refractive indices of the object and its environment,
(ii) the relationship between the object size and the beam waist, and (iii) the
spatial structure of the light field itself, see the review papers [74, 75, 76, 77].
Noteworthy, neither the spin angular momentum carried by circularly polar-
ized beams nor the orbital angular momentum carried by Laguerre-Gaussian
beams are usually considered as basic ingredients for optical trapping. Indeed,
the angular momentum of light has been merely used so far as a tool for ad-
dressing the rotational degrees of freedom of optically trapped transparent or
absorbing objects, which may either be set into spinning and/or orbiting mo-
tions [78, 79, 80, 81, 82, 83].

In this chapter we show that chirality of light-matter interaction can act
as an optomechanical trigger for the optical trapping of microparticles. More
precisely we demonstrate the capability of the photon helicity Λ as a tool for
selective optical trapping of transparent spherical microparticles depending on
their chirality.

4.1 Concept

The proposed concept is illustrated in Fig. 1, where a transparent object of
chirality χ = ±1 interacts with an axisymmetric light field. When the given object
is located at the point O, the net optical force exerted on it is zero, which refers
to an equilibrium position. Helicity-dependent optical trapping implies that the
light field exerts, depending on its helicity, either a non-restoring or restoring force
on the chiral object displaced from the trapping location O, which in these cases
corresponds to either unstable of stable equilibrium, as respectively shown in
Fig. 4.1(a,b). In addition, symmetry considerations imply that the phenomenon
is invariant under the simultaneous flipping of both the photon helicity and the
material chirality, see Fig. 4.1(c,d).
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Figure 4.1: Principle of helicity-dependent 3D optical trapping. A chiral object
with chirality χ = ±1 is trapped, or not, at the location O, by a light field with
helicity Λ = ±1. The non-restoring (a, d) or restoring (b, c) nature of the optical
force F±Λ, hence the stability of the optical trap, depends on the sign of the
product of the helicity of light and the chirality of matter.

Towards a practical implementation of this helicity-driven optomechanical
behavior, we use chiral liquid crystal spherical droplets (see sections 1.1, 1.1.2
for details), and our choice is not incidental. Indeed, such prototypical chiral sys-
tems have stimulated a significant interest in the context of optical manipulation
during the last decade [84, 85, 86] and, recently, the idea that the polarization
state of light can be used as a control parameter for mechanical actions has
emerged. Namely, polarization-controlled attractive-repulsive dynamics [71, 29]
and polarization-controlled optical radiation pressure (see chapter 2 and [87])
have been experimentally demonstrated. Then, latter studies have respectively
led to polarization-dependent angular manipulation in optical tweezers [88] and
to the realization of an optofluidic sorter of material chirality driven by chiral
light (see chapter 3 and [89]). Although the chirality-sensitive optical trapping
remains in its infancy, yet we notice that (i) 2D trapping has been predicted (see
Fig. 3.9(b,c)) and demonstrated (see Fig.3.12) in a two-beam configuration asso-
ciated with a light field having mixed helicities and (ii) polarization-dependent
3D trapping in single-beam tweezers has been mentioned in [88].

In this chapter, we report on a quantitative experimental and theoretical
study of 3D optical trapping of Bragg cholesteric droplets by circularly polarized
Gaussian or Laguerre-Gaussian-like laser beams using a two-beam technique. In
particular, this allows to consider on-demand selective trapping of chiral parti-
cles that satisfy Λχ = +1, Λχ = −1 or Λχ = ±1 whatever the particle size, thereby
overcoming the stringent limitations associated with the use of single-beam opti-
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cal tweezers [88]. Indeed, in [88], chiral particles that satisfy Λχ = +1 are always
trapped, whereas particles satisfying Λχ = −1 can be trapped only when their
radii are small enough. Namely, chiral microspheres exhibiting circular Bragg re-
flection escape from the beam if the radius R is a few times larger than the pitch
p that characterizes the intrinsic helical structure of the material. In contrast,
our results show that all types of chiral particles can be selectively 3D-trapped
using an appropriate light field whatever their sizes.

4.2 Experimental approach

Our proposal for helicity-driven selective 3D optical trapping of transparent chiral
particles exploits a two-beam technique allowing optical trapping at much longer
working distances than those accessible to optical tweezers [74, 75, 76, 77, 78, 79,
80, 81, 82, 83]. This technique has been introduced in 1970 in order to capture
transparent solid glass microspheres by a pair of counterpropagating moderately
focused Gaussian beams [90, 27].

Counterpropagating schemes with high-order optical modes such as Laguerre-
Gaussian beams (also known as “vortex”beams) have been proposed for trapping
and manipulation of absorbing particles [91, 92]. Here we consider both options
by using circularly polarized Laguerre-Gaussian beams having identical helicity
Λ and either bell-shaped (fundamental mode) or doughnut-shaped (higher-order
modes) transverse intensity profile. This is illustrated in Fig. 4.2(a), where the
set-up is sketched and the upper and lower parts in (a) represent simulated spatial
intensity distributions. Two continuous-wave laser beams with wavelength λ0 =
532 nm are focused by means of two identical microscope objectives Thorlabs
LMH-20X-532 (magnification ×20, numerical aperture NA= 0.4) used in under-
filling conditions. This gives the divergence angle measured as θ0 ≈ 5○ for both
beams (see Appendix A for details), hence a beam waist radius w0 = λ/(πθ0) ≈
2 µm in the focal plane with D ≈ 500 µm the distance between the two focal
planes.

By construction, the light-matter system possesses point symmetry when the
particle is located on the beam axis at half the distance between the two focal
planes, which defines the origin of the Cartesian coordinate system (x, y, z). In
practice, we investigate the 3D optical trapping of transparent spherical chiral
liquid crystal droplets of radius R located at the origin, where the beam waist
radii are w1 = θ0D/2 ≈ 20 µm (see Fig. 4.2(a)). The non-vortex beams corre-
spond to the output of a single-mode optical fiber (P1-460A-FC-2 with a pair of
collimation lenses F220FC-A, Thorlabs, Inc.) used as a spatial filter for the laser
light, whereas the vortex beams are obtained by inserting an appropriate optical
element in the path of the beam (see Appendix B for the description of the used
vortex beam generator). Experimental bell-shaped and doughnut-shaped trans-
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Figure 4.2: The set-up consists of two counterpropagating moderately focused
non-vortex (bell-shaped) or vortex (doughnut-shaped) beams with identical di-
vergence angle, wavelength, helicity and power. D is the distance between the two
focal planes where beam waist radius is w0. (a) Optical trapping of a transparent
spherical chiral liquid crystal droplet of radius R at the origin (x, y, z) = (0,0,0)
is considered in all cases. (b–d) Experimental bell- and doughnut-shaped trans-
verse intensity distributions are shown in panels (b,c), whereas their azimuth-
averaged radial profiles (thick gray lines in (d)) are described by the fundamental
and the first-order Laguerre-Gaussian profiles (thin solid lines in (d)).

verse intensity profiles are respectively displayed in Fig. 4.2(b,c). In practice,
these beams can be considered as members of the family of Laguerre-Gaussian
modes LG0` with ` the topological charge of the on-axis optical phase singularity
carried by the beam (see section 1.2). As shown in Fig. 4.2(d), the azimuth-
averaged radial intensity profiles of the non-vortex and vortex beams measured
at the entrance of the microscope objectives are well described by Eq. (1.12)
with ` = 0 and ∣`∣ = 1, respectively. Consequently, we will use these analytical
expressions when modeling optical fields in the considered trapping scheme.

For the purpose of demonstration, the spherical microparticles used in this
work are obtained by dispersing the cholesteric liquid crystal MDA-02-3211 in an
isodense 27 wt% 1 aqueous glycerol solution with refractive index next = 1.367.
Based on the characterization reported in section 1.1.2, we consider the half-apex
angle of the Bragg cone θB ≈ 25○.

1The previously used concentration of 25% was corrected in order to reduce the slight
density mismatch, which is hard to avoid experimentally. In contrast to the studies reported
in chapters 2 and 3, this mismatch is quite important in the trapping framework
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4.3 Model

Following the experimental framework discussed above, the description of optical
3D trapping of a radial cholesteric droplet with chirality χ is handled by consider-
ing the interaction between two paraxial counterpropagating Laguerre-Gaussian
beams LG0` and a non-deformable transparent sphere of radius R endowed with
helicity-dependent light scattering properties and immersed in a lossless viscous
fluid with refractive index next and dynamical viscosity η. Basic features of our
theoretical approach are presented in section 1.3.

Unlike the optical sorting framework (see Fig. 3.7), the study of 3D trap-
ping implies the analysis of optical radiation forces exerted on the droplet at an
arbitrary point of the (x, y, z) coordinate system. Since the spatial intensity dis-
tribution is axisymmetric, we introduce the coordinate system (ur,uϕ,uz) that
refers to the orthonormal Cartesian coordinates basis (ux,uy,uz) rotated by an
angle ϕ around the z axis, as shown in Fig. 4.3. Following these notations, the
elementary optical radiation force exerted on the droplet by light impinging the
surface element dS is expressed as

F(r,ϕ, z, θ, φ) = −nextI(ρ, ξ) cos θ

c
× [f⊥(θ) (cos(φ − ϕ)ur + sin(φ − ϕ)uϕ) + f∥(θ)z]dS(θ, φ) , (4.1)

where θ and φ are the polar and azimuthal angles in the spherical coordinate
system originating at the droplet center,

I(ρ, ξ) = 2∣`∣+1P

π∣`∣!w(ξ)2
( ρ

w(ξ)
)

2∣`∣

exp [− 2ρ2

w(ξ)2
] , (4.2)

x x 

dS 

yz

z  x 



u r

u

r







Figure 4.3: Coordinate systems introduced in order to evaluate the helicity-
dependent net optical force exerted on a droplet in the two-beam optical trapping
scheme depicted in Fig. 4.2(a).
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is the spatial intensity distribution of a LG0` beam (see Eq. (1.12)), with ξ the
distance from its focal plane and ρ the distance from its axis, P its total power,
w(ξ) = w0

√
1 + (ξ/z0)2, w0 the beam waist and z0 = πw2

0/λ0 the Rayleigh range.
In addition, we have

ρ = [r2 + 2rR sin θ cos(φ − ϕ) +R2 sin2 θ]1/2
, (4.3)

ξ = D/2 −R cos θ − sgn(cos θ)z , (4.4)

with sgn the sign function.
The net optical force F = Frur+Fϕuϕ+Fzz exerted on the droplet is obtained

by integrating Eq. (4.1) over the spherical surface:

Fr(r,ϕ, z) = −nextR2

2c ∫
2π

0
∫

π

0
I(ρ, ξ)f⊥(θ) sin 2θ cos(φ − ϕ)dθdφ , (4.5)

Fϕ(r,ϕ, z) = 0 , (4.6)

Fz(r,ϕ, z) = −nextR2

2c ∫
2π

0
∫

π

0
I(ρ, ξ)f∥(θ) sin 2θ dθdφ . (4.7)

Noticeably, the above equations lead to ∂Fr/∂ϕ = 0 and ∂Fz/∂ϕ = 0, as expected
for an axisymmetric intensity distribution, and thus we are left with

F = Fr(r, z)ur + Fz(r, z)z . (4.8)

4.4 Simulations

Owing to the symmetry of the light-matter system, the optical force exerted on
the droplet vanishes at the origin (r = 0, z = 0) whatever are the parameters
values. In weightless conditions, which is roughly the case in our experiments,
the origin thus corresponds to the point where the droplet may be optically
trapped in 3D. This occurs if both conditions ∂Fz/∂z < 0 and ∂Fr/∂r < 0 are
fulfilled. These conditions are numerically investigated from Eqs. (4.5), (4.7) as
a function of the beam divergence angle θ0 and of the ratio w1/R between the
beam waist radius at origin and the droplet radius, for Λχ = ±1 and non-vortex
(` = 0) or vortex (` ≠ 0) beams. The results for ∣`∣ = 0,1,2,3 are summarized
in Figs. 4.4(a–d), where the existence criterion of 3D trapping in the plane of
parameters (w1/R, θ0) is identified as colored/hatched areas. In addition, the role
played by the photon helicity is emphasized by the distinction made between 3D
trapping for Λχ = +1 alone, Λχ = −1 alone, and Λχ = ±1 simultaneously.

It appears from simulations that 3D trapping under both Λχ = −1 (that is,
for chiral Bragg particles) and Λχ = +1 (that is, for chiral particles considered
as non-chiral dielectric spheres) may be allowed whatever is ` depending on the
used parameters. The trapping existence region, however, tends to reduce as ∣`∣
increases as shown in Figs. 4.4(a–d). Moreover, when 3D trapping is expected to
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Figure 4.4: Simulations for the helicity-dependent 3D optical trapping. (a–
d) Existence of 3D trapping in the plane of parameters (w1/R, θ0) depending on
the photon helicity for w1 = 20 µm and ∣`∣ = 0, 1, 2 and 3, where the material
parameters values are those of our experiments. Three different colored/hatched
regions refer to trapping existence for the cases Λχ = +1 alone, Λχ = −1 alone,
and Λχ = ±1 simultaneously. Letters A, B, C, D and E correspond to the values
w1/R ≈ 0.8, 1.43, 0.59, 0.74 and 1.43. (e–h) Partial derivatives of the optical
force components at origin per unit power for a beam divergence angle θ0 = 5○.

occur simultaneously for Λχ = ±1, we note that there is a significant dependence
of the trap features on the photon helicity. Indeed, the longitudinal (along z) and
transverse (perpendicular to z) stiffness of the optical trap both depend on Λχ.
This is illustrated in Figs. 4.4(e–h), where the partial derivatives of the optical
force components per unit power, ∂κFκ/P with ∂κ(⋅) ≡ ∂(⋅)/∂κ and κ = (r, z),
are shown for θ0 = 5○, which corresponds to the beam divergence used in the
experiments.

4.5 Experimental validation of the model

In practice, the demonstration of helicity dependent 3D optical trapping is achieved
by studying the behavior of radial cholesteric liquid crystal droplets exhibiting
circular Bragg reflection at 532 nm wavelength within the introduced two-beam
configuration. The demonstration consists in testing whether the optical field
can trap a droplet of radius R at the origin and, if the trapping is achieved, in
observing the droplet behavior after the helicity is flipped from Λ to −Λ. Two
identical electrically-addressed liquid crystal variable retarders (Meadowlark Op-
tics, Inc.) placed in the path of each of the two beams allowed us to perform the
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required fast remote manipulation of the circular polarization states.

Qualitative comparison between experiments and simulations is summarized
in Fig. 4.5 where the upper row displays initial trapping situations for cases
A, B, C, D and E, see Fig. 4.4(a, b), which are representative of all possible
predicted situations for non-vortex and vortex beams. Then, flipping the helicity
of the beams from Λ to −Λ, we observe that the droplet is no longer trapped
in cases A, C and E whereas it remains trapped at origin in cases B and D. All
these observations agree with theoretical expectations inferred from Fig. 4.4(a,
b), thereby validating the main features of the optical force field at the origin.

Since our model has been derived in a general framework, the net optical force
exerted on the droplet can be evaluated for any location (r, z). This is illustrated
in Fig. 4.6, where panels (a–j) correspond to the experimental situations reported
in Fig. 4.5(a–j). For each situation we have calculated the net optical force which
would be exerted on the droplet if it was located at a point around the origin
with −3R < r < 3R and −3R < z < 3R. As one can see, the theoretical vector
plots in Fig. 4.6 confirm the practically observed behavior of the tested droplets.
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Figure 4.5: Observations of the helicity-dependent 3D optical trapping. (a–
e) Snapshots of radial cholesteric droplets optically trapped at origin under power
P ≈ 50 mW in situations tagged by the letters A, B, C, D and E in Fig. 4.4(a,b),
which respectively correspond to w1/R ≈ 0.8, 1.43, 0.59, 0.74 and 1.43. Situations
A and B correspond to Gaussian beams with Λχ = +1 (a,b) whereas C, D and
E refer to first-order Laguerre-Gaussian beams with Λχ = −1 (c–e). For ` = 0,
helicity flip leads to detrapping of the larger droplet (f), whereas the smaller
one is kept trapped at the origin (g). For ∣`∣ = 1, helicity flip leads to detrap-
ping for both the larger and the smaller droplets (h,j) whereas the droplet with
intermediate size remains trapped at the origin ( i).



4.6 3D optical force field quantitative analysis 65

00 0.61.4

0

0

3

3
-3

-3
z /R

r 
/R

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

r 
/R

r 
/R

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

r 
/R

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)

z /R

0

0

3

3
-3

-3

F/ P (pN/mW)



 =

 
1

 

|| = 1 = 0

A B C D E



 =

 
1

 

Photon helicity flip (  )

0 0 06.4 4.7 0.6



 =

 
1

 



 =

 
1

 

00 1.23.8

f g
0 0 01.4 0.9 0.2

h i j

trappeddetrapped detrapped detrappedtrapped

edcba

Figure 4.6: (a–j) Theoretical plots corresponding to the experimental situations
presented in Fig. 4.5(a–j). Absolute values of the net optical force (divided by
optical power P ) at every point is expressed by the surface plots with colorbars.
Each arrow indicates the direction of the optical force which would be exerted
on the droplet if it was located at that point.

4.6 3D optical force field quantitative analysis

Quantitative analysis is done for two representative cases – one for non-vortex
and one for vortex beams – that lead to stable 3D trapping at the origin, namely:

• {` = 0,Λχ = +1,w1/R = 2/3} and

• {∣`∣ = 1,Λχ = −1,w1/R = 1},

with θ0 = 5○ and w1 = 20 µm. These situations actually correspond to cases A
and D in Fig. 4.4. The results of simulations are presented in Fig. 4.7(a,b), where
arrows indicate the direction of the optical force, while color maps refer to the
force magnitude.

That said, we note that the setting up of a quantitative assessment may
benefit from the symmetries of the light-matter system, which imply Fr(0, z) = 0
and Fz(r,0) = 0. Indeed, this allows the independent study of (i) the axial force
Fz along the z axis and (ii) the radial force Fr in a direction perpendicular to z
passing through the origin.

In practice, the force field is retrieved by recording the motion of the droplet.
In the limit of small Reynolds number, as is the case in our experiments, the
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Figure 4.7: Quantitative analysis of 3D optical force fields. (a,b) Spatial dis-
tribution of the magnitude (colormap) and orientation (vector plot) of the cal-
culated optical force exerted on a droplet located around the origin, namely
−3R < z < 3R and −3R < r < 3R, for {` = 0,Λχ = +1,w1/R = 2/3} and
{∣`∣ = 1,Λχ = −1,w1/R = 1}, with θ0 = 5○ and w1 = 20 µm. (c,d) Experimen-
tal data for the longitudinal component of the force along the z axis, Fz(0, z).
e,f Experimental data for the transverse component of the force along the axis
r that passes through the origin, Fr(r,0). Experimental conditions: the experi-
mental data set (dot markers) corresponds to 40 independent realizations, whose
standard deviation range is indicated by solid curves whereas dashed curves are
the results of simulations without adjustable parameters. Upper panels corre-
spond to P ≈ 20 mW and R = 29 µm whereas bottom panels refer to P ≈ 70 mW
and R = 20 µm. The constant drag velocity for radial force measurements is
V0 = 36 µm s−1, see text for details.

expression for the light-induced droplet velocity is obtained from the balance
between the viscous force exerted by the surrounding fluid on the moving droplet
and the driving optical force. Namely Fκ(r, z) = 6πηRvκ(r, z) with η = 2 mPa s.
In addition, we apply different strategies for the measurements of Fz and Fr.

On one hand, concerning Fz, a droplet initially trapped at the origin is opti-
cally displaced along z by turning off one of the two beams. When being restored,
the optical field guides the droplet back to the origin where it is trapped again.
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The recorded droplet motion gives access to the velocity vz along the z axis,
hence to the force Fz(0, z). The reverse procedure then completes the analysis.

On the other hand, motivated by the fact that there is no all-optical way to
displace at will the droplet in a direction perpendicular to z with the two trapping
beams, we use an alternative approach to measure Fr(r,0). It consists in using a
droplet as an optomechanical probe in order to map the force field. Namely, the
capillary is dragged at a constant velocity V0 along r at z = 0 so that the immersed
droplet moves in a direction perpendicular to z passing through the origin. The
recorded motion of the droplet thus gives the net velocity Vr(r,0) = V0 + vr(r,0),
from which we extract Fr(r,0) = 6πηRvr(r,0).

Following the above protocols, data have been collected for 40 independent
realizations. The results for Fz(0, z) are shown in Figs. 4.7(c,d) for ` = 0 and
∣`∣ = 1 whereas those for Fr(r,0) are shown in Figs. 4.7(e,f) for ` = 0 and ∣`∣ = 1,
see dot markers. Recalling that there is no adjustable parameters in our model,
the comparison with simulations (dashed curves) gives a satisfying agreement
with the data, whose standard deviation range is indicated by solid curves.

4.7 Discussion and outlook

As shown above, our weightless model provides an appropriate description of
the experimental data. However, we stress that the isodense framework has
been merely chosen in order to ease the practical implementation rather than
being a necessary condition to observe helicity-dependent 3D optical trapping.
To prove it, we have calculated the equilibrium position of the droplet for the
two situations presented in Fig. 4.7 but accounting for a mismatch between the
density of the particle, ρpart and that of the external fluid, ρext. The gravitational
acceleration is taken along x as is the case in practice. The results are presented
in Fig. 4.8, where the dependence of the magnitude of the x coordinate of the
equilibrium positions (xeq,0) is shown as a function of the density mismatch
∣∆ρ∣ = ∣ρpart − ρext∣ per unit power. Solid curves refer to 3D optical trapping
whereas dotted ones correspond to 2D trapping, the equilibrium position being
unstable in the z direction.

The above analysis emphasizes that chiral Bragg particle can be easily trapped
in 3D by contra-propagating vortex beams over a wide range of ∣∆ρ∣. For instance,
a pair of LG01 beams with P = 1 W should trap a Bragg-reflecting sphere with
density up to 1.3 g cm−3 in the air. This might be explored by using solidified ra-
dial cholesteric microspheres [71] instead of liquid ones. In contrast, the Gaussian
beam trapping of usual non-Bragg particles is characterized with more stringent
density mismatch restrictions. Indeed, for ` = 0 and present beam parameters,
a non-Bragg particle could be 3D trapped if ∣∆ρ∣/P < 0.04 g cm−3 W−1. Such a
condition is easily fulfilled in practice since the host fluid density can be tuned
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Figure 4.8: Simulated equilibrium position of a chiral microparticle irradiated
by two counterpropagating beams as a function of density mismatch between
the particle and the host medium. Optical and material parameters (except
for the actual droplet density) are those used in the experiments. Solid curves
correspond to 3D optical trapping whereas dotted ones refer to 2D trapping of
the particle in the z = 0 plane and unstable trapping along z.

with 10−3 g cm−3 accuracy by adjusting the glycerol concentration.
To conclude, in this chapter we demonstrated both experimentally and the-

oretically that the photon helicity can be used as a trigger to optically trap,
in three dimensions and in a selective manner, chiral particles with non-chiral
morphology. The driving mechanism consists in actuation of the material trans-
lational degrees of freedom by the intrinsic rotational ones of light. Present
concept, whose demonstration addresses the case of spherical chiral particles,
might be extended to non-chiral material objects endowed with chiral morphol-
ogy by using orbital angular momentum instead of spin angular momentum of
light as a control parameter. To this aim, the orbital counterpart of the circular
Bragg reflection phenomenon might be worth considering, see [93] and references
therein.

Moreover, although present results concern a given chiral material system
explored at the 1 − 100µm scale, combination of our experimental results with
several recent theoretical studies on helicity-dependent optomechanics at the sub-
micrometer scale [66, 67, 94, 95] should motivate the development of optomechan-
ical strategies for selective optical trapping and manipulation of chiral objects
whose application potential is multidisciplinary by nature.



Conclusions and perspectives

The rule of thumb of tailored optical forces consists in the control of linear mo-
mentum exchange between light and matter. This may be done by appropriate
selection of the interaction geometry, optical modes or environmental character-
istics. In this thesis we have revealed that the interplay of the helicity of light
and the chirality of matter turns the photon spin angular momentum into an ef-
ficient tool for controllable trapping and manipulation of chiral material objects
by light.

We have successively demonstrated the helicity-controlled displacement, spa-
tial separation and selective three-dimensional trapping of transparent chiral mi-
crospheres by chiral light. These results have led to the publication of three
articles, namely [87, 89] and [96](in press). In the reported experimental schemes
we have used the circular Bragg phenomenon in order to enhance the chiral light-
matter interaction benefiting from the optomechanical resonance. However, as
we have shown experimentally in the context of optical chiral sorting, the pro-
posed concepts are not restricted to optomechanically resonant chiral interaction.
In fact, we believe that the principle of helicity-controlled optical manipulation is
applicable to any kind of chiral objects. For instance, to circularly birefringent or
circularly dichroic solids or fluids, as well as material systems with morphological
chirality.

Our findings, though providing comprehensive resolution of the assigned tasks,
are quite fruitful in terms of new ideas for future research projects. One of them
concerns the photon’s orbital angular momentum, which is also a manifestation
of the chirality of light and may be used as a control parameter for realization of
chiral sorting and trapping strategies.

Another interesting issue not addressed in this thesis is related to the possible
actuation of the rotational degree of freedom of a chiral microparticle interact-
ing with chiral light. Indeed, the circular Bragg phenomenon widely applied in
our studies is famous for flipping the spin angular momentum of the photons
experiencing the resonant reflection from a helically-structured anisotropic ob-
ject. According to the law of conservation of angular momentum, the object
acquires a light-induced torque. Therefore, if the object is free to rotate, it will
be set into a spinning motion, similar to the already realized situations when
an object is optically spun due to transformation of the photon spin angular
momentum as a result of absorption [79] or transmission through a birefringent
medium [97, 78]. Light induced rotation of a chiral object exhibiting the circular
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Bragg phenomenon thus completes the picture by using the spin transformation
by reflection of light.

In order to realize this idea, one could suggest to trap a radial cholesteric
droplet using a doughnut-shaped optical field as discussed in chapter 4. How-
ever, the experiments presented there deal with counterpropagating beams with
identical geometrical parameters, helicity and power. This prevents from a non-
zero net deposition of spin angular momentum since any contribution of one
beam is balanced by the contribution of the second beam, although each beam
independently deposits spin angular momentum when circular Bragg reflection
takes place. Regarding the transfer of orbital angular momentum from light to
matter, it vanishes when the droplet lies on the beam axes by virtue of axisym-
metry. Consistently, we found no experimental indication of neither spinning
nor orbiting motion for all studied trapping events. Instead, we think that a
single-beam scheme, where a Bragg-reflecting droplet is levitated by a divergent
vortex beam, is a good option for realization of the idea of a tangible object
optically spun by reflection of light. Actually, preliminary experimental studies,
not reported in this manuscript, have already been made in that direction.

Moreover, in the work reported in this manuscript, radial cholesteric droplets
have been used as a convenient tool for experimental demonstrations of the pro-
posed optomechanical strategies, whereas the physical properties of such a natu-
ral helically-structured supramolecular system are expected to offer a playground
for the demonstration of novel optical phenomena. In particular, the presence
of a characteristic radial defect in radial cholesteric droplets may cause some
unexpected optomechanical effects or singular beam transformations.

To sum up, the results presented in this thesis not only bring a new twist
to the existing optomechanical toolbox, but also suggest prospective research
directions in the field of optical manipulation of chiral matter.



APPENDIX A

Beam divergence estimation
The parameters of the Gaussian and Laguerre-Gaussian beams used in this study
were measured via numerical analysis of the beam spots captured by a CCD
Camera Beam Profiler BC106-VIS from Thorlabs, Inc. The obtained images were
analyzed using the MATLAB software environment, which allows to measure
the relative optical intensity, ranging from 0 to 255 units, for every pixel. Then
azimuthally averaged radial intensity distribution of was fitted using Eq. (1.12)
with the corresponding geometrical parameters and the topological charge.

Fig. A.1 demonstrates the result of measurements of the beam divergence
θ0 for one of the vortex beams used in the trapping set-up (see Fig. 4.2(a)).
The z coordinate was determined by the translational stage on which the beam
profiler was fixed, whereas the beam radius w(z) was obtained from the fit of
the intensity profile by means of Eq. (1.12) with ∣`∣ = 1.
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Figure A.1: Estimation of the divergence angle θ0 of a vortex beam used in
the set-up desctibed in chapter 4. (a) Measured (markers) and fitted (solid
lines) azimuthally average intensity distributions for various relative z coordinate.
(b) The fitted beam radii versus the relative z coordinate, plotted at an equal
scale so that one could see the actual divergence angle.



APPENDIX B

Generation of vortex beams

Optical vortex beams used in chapter 4 are obtained from Gaussian beams by
using space-variant birefringent elements that consist of transparent planar slabs
having a homogeneous birefringent phase retardation of π (half-wave) and az-
imuthally varying orientation of the optical axis lying in the slab plane. This
orientation is characterized by the angle

α(r,ϕ) =mϕ, (B.1)

where r,ϕ are polar coordinates in the plane of the slab and m is half-integer.
Let us consider the effect of such an optical element on a circularly polarized
plane wave. The input electric field can be described by the Jones vector [98]

Ein = E0 (
1
σi

) , (B.2)

where E0 is the field amplitude, σ = ±1 corresponds to left/right-handed cir-
cular polarization state. The output light is then obtained by considering the
Jones matrix M that characterizes the propagation through the plate. Up to an
unimportant overall phase factor, the latter matrix expresses as

M = ( cos 2α sin 2α
cos 2α − sin 2α

) . (B.3)

This gives an output light field of the form (up to an unimportant overall phase
factor):

Eout = MEin = E0ei2α ( 1
−σi ) = E0ei2σmϕ ( 1

−σi ) . (B.4)

Consequently, the output wave carries the phase singularity of the topological
charge ` = 2σm and has opposite helicity with respect to the input one.

In practice, we used space-variant birefringent optical vortex generators from
Altechna R & D that are represented by nanostructured glass plates fabricated
by direct femtosecond laser writing of the form birefringence. Fig. B.1 demon-
strates the anisotropy distribution (panels (a–c), local orientation of the optical
axis is indicated by line bars) and XPOL images (panels (d–f), where orientation
of linear polarizers at the input and output of the plate are shown by the crossed
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m = 1/2 m = 1 m = 3/2

Polarizers:
in

out

Figure B.1: (a–c) Anisotropy of q-plates from Altechna R & D. (d–f) Transmis-
sion images between crossed polarizers (“in”and“out”) demonstrate characteristic
4m-fold patterns.

arrows) of the plates having m = 1/2, 1, 3/2. In our experiments the plate with
m = 1/2 was centered on the axis of a normally incident circularly polarized colli-
mated Gaussian beam, which led to generation of a vortex beam with topological
charge ` = ±1.
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3, 1269 (2002).

[60] D. Schamel, M. Pfeifer, J. G. Gibbs, B. Miksch, A. G. Mark, and
P. Fischer, “Chiral Colloidal Molecules And Observation of The Propeller
Effect”, J. Am. Chem. Soc. 135, 12353 (2013).

[61] Editorial, “Fluidic vision”, Nature Photon. 5, 567 (2011).

[62] Y. Li, C. Bruder, and C. Sun, “Generalized Stern-Gerlach effect for
chiral molecules”, Phys. Rev. Lett. 99, 130403 (2007).

[63] B. Spivak and A. Andreev, “Photoinduced Separation of Chiral Isomers
in a Classical Buffer Gas”, Phys. Rev. Lett. 102, 063004 (2009).

[64] X. Li and M. Shapiro, “Spatial separation of enantiomers by coherent
optical means”, J. Chem. Phys. 132, 041101 (2010).

[65] X. Li and M. Shapiro, “Theory of the spatial separation of racemic mix-
tures of chiral molecules”, J. Chem. Phys. 132, 194315 (2010).

[66] A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W.
Ebbesen, “Mechanical separation of chiral dipoles by chiral light”, New J.
Phys. 15, 123037 (2013).

[67] R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory
optical force for chiral molecules Robert P”, New J. Phys. 16, 013020 (2014).

[68] A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “Reflection of
plane waves at planar achiral-chiral interfaces: independence of the reflected
polarization state from the incident polarization state”, Opt. Express 7, 1654
(1990).

[69] Q.-C. Shang, Z.-S. Wu, T. Qu, Z.-J. Li, L. Bai, and L. Gong,
“Analysis of the radiation force and torque exerted on a chiral sphere by a
Gaussian beam”, Opt. Express 21, 8677 (2013).
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Titre : Le piégeage et la manipulation optique de microsphères chiraux contrôlées 
par l'hélicité du photon 

Résumé : Exploiter le degré de liberté angulaire de la lumière pour contrôler les 
forces optiques ouvre une nouvelle voie pour la manipulation optique de systèmes 
matériels. Dans ce contexte, notre travail porte sur l’interaction lumière-matière en 
présence de chiralité, qu’elle soit matérielle ou ondulatoire. Expérimentalement, nous 
avons utilisé des gouttes de cristaux liquides cholestériques interagissant avec un ou 
plusieurs champs lumineux polarisés circulairement et nous avons apporté une 
description quantitative de nos observations. Notre principal résultat correspond à la 
démonstration que la pression de radiation optique peut être contrôlée par l’hélicité 
du photon. Ce phénomène est ensuite utilisé, d’une part pour faire une 
démonstration de principe du tri de la chiralité matérielle via une approche 
optofluidique et d’autre part pour réaliser un piège optique tridimensionnel sensible à 
la chiralité de l’objet piégé. 
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Title :  Optical trapping and manipulation of chiral microspheres controlled by the 
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Abstract :  Exploiting the angular momentum degree of freedom of light to control 
the mechanical effects that result from light-matter exchanges of linear momentum is 
an intriguing challenge that may open new routes towards enhanced optical 
manipulation of material systems. In this context, our work addresses the interplay 
between the chirality of matter and the chirality of optical fields. Experimentally, this is 
done by using cholesteric liquid crystal droplets interacting with circularly polarized 
light and we provide with theoretical developments to quantitatively support our 
observations. Our main result is the demonstration of optical radiation force 
controlled by the photon helicity. This phenomenon is then used to demonstrate the 
optofluidic sorting of material chirality and the helicity-dependent three-dimensional 
optical trapping of chiral liquid crystal microspheres. 
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