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Foreword

This manuscript provides a mathematical study of the multiple testing problem in settings motivated
by modern applications, for which the number of variables is much larger than the sample size. As we
will see, this problem highly depends on the nature of the data and of the desired interpretation of
the results.

Chapter 1 is a wide introduction to the multiple testing theme which is intended to be accessible for
a possibly non-specialist reader and which includes a presentation of some high-dimensional genomic
data. The necessary probabilistic materials are then introduced in Chapter 2, while Chapters 3, 4, 5
and 6 are guided by the findings [P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P15, P16] listed
page 81. Nevertheless, compared to the original papers, I have tried to simplify and unify the studies
as much as possible. An effort has also be done for presenting self-contained proofs when possible. Let
us also mention that, as an upstream work, I have proposed a survey paper in [P13]. Nevertheless,
the overlap between that work and the present manuscript turns out to be only minor.

The publications [P1, P2, P3, P6, P7, P14] correspond to a research (essentially) carried
out during my PhD period at the Paris-Sud University and INRA1. The papers [P15, P11] are
related to my postdoctoral position at the VU University Amsterdam. I have elaborated the work
[P4, P5, P8, P9, P10, P12, P13, P16] afterwards, as a “maître de conférences” at the Pierre et Marie
Curie University in Paris.

Throughout this manuscript, we will see that while the multiple testing problem occurs in various
practical and concrete situations, it relies on an astonishingly wide variety of theoretical concepts, as
combinatorics, resampling, empirical processes, concentration inequalities, positive dependence, among
others. This symbiosis between theory and practice explains the worldwide success of the multiple
testing research field, which has become a prominent research area of contemporary statistics.

1Institut National de la Recherche Agronomique.
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Notation

• m: number of null hypotheses to be tested (number of variables);

• n: sample size (number of individuals);

• H0,i (resp. H1,i), 1 ≤ i ≤ m, the null (resp. alternative) hypotheses to be tested;

• θ ∈ {0, 1}m: underlying configuration of true/false nulls hypotheses, i.e., θi = 0 if and only if
H0,i is true;

• H0(θ) (resp. H1(θ)): index set corresponding to true (resp. false) nulls;

• m0(θ) (resp. m1(θ)): number of true (resp. false) nulls;

• π0: depending on the context, π0 can denote the value of m0(θ)/m (non-asymptotic setting),
the limit value of m0(θ)/m (asymptotical setting), or the probability that θi = 0 (random effects
setting);

• {pi(X), 1 ≤ i ≤ m}: family of p-values;

• Ĝm: empirical distribution function of the p-values;

• τ`, 1 ≤ ` ≤ m: sequence of critical values;

• R ⊂ {1, . . . ,m}: multiple testing procedure;

• SU(τ) (resp. SD(τ), SUDλ(τ)): step-up (resp. step-down, step-up-down) procedure with critical
values τ`, 1 ≤ ` ≤ m.

• µ (resp. Γ): mean (resp. covariance matrix) of the observed random variable X when X ∈ Rm

is multivariate Gaussian;

• ∆: common value of the alternative means when they are assumed to be all equal and positive;

• ‖y‖q =
(
m−1

∑m
i=1 |yi|q

)1/q for q ∈ [1,∞) and ‖y‖∞ = sup1≤i≤m |yi|, for y ∈ Rm;

• Φ(·): upper-tail function of a standard Gaussian distribution, i.e., Φ(z) = P(Z ≥ z), Z ∼ N (0, 1);

• D(Z): distribution of Z;

• B: number of resamples in randomized quantities.
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Chapter 1

Introduction

This introduction is intended for statisticians who are not specialist of the multiple testing research
field. It is deliberately informal and oriented towards simple illustrations. A rigorous formulation
will be proposed in Chapter 2. The examples presented in this section have been inspired by several
readings, e.g., [143, 90, 31] and by the talks of Christopher Genovese (2004) [58] and Yoav Benjamini
(2013) [6].

1.1 From single hypothesis testing ...

Let us first introduce basic notions of single hypothesis testing. Hypothesis testing is a statistical
inference that has been conceptualized in the early 20th century by Karl Pearson [102] and then
Ronald A. Fisher [52, 53]1. A test aims at deciding whether a prior hypothesis (null hypothesis) is
true or not from repeated observations of a single phenomenon. More formally, a test is a 0/1 decision,
based on a random variable X (possibly a sample) that should determine whether the distribution P
of X satisfies the null hypothesis, generally denoted by H0. In case of a rejection, a test chooses an
alternative hypothesis, generally denoted by H1. Each hypothesis formally corresponds to a certain
family of possible distributions for P . Two types of errors can occur: rejecting H0 (“1” decision)
while it is true (type I error); or accepting H0 (“0” decision) while it is false (type II error). The
originality of the testing approach is that these two errors are not equivalent; a test primarily focus
on bounding the probability of type I error by some α ∈ (0, 1), called the level (of significance) of the
test. From an intuitive point of view, this means that the “0” decision is favored: when the sample is
uninformative, and H0 being indifferently true or false, a test of level α cautiously chooses to accept
H0 with probability larger than 1−α. In this regards, a test is considered as “finding something” only
when it rejects H0.

The probably most common illustration is the case of a n-normal sample X = (X1, . . . , Xn) where
the variables of the sample are i.i.d. and all follow a N (µ, 1) distribution, for an unknown µ ∈ R. If
the problem is to test H0: “µ ≤ 0” against H1: “µ > 0”, the classical Neyman-Pearson test of level α
rejects the null H0 when n1/2Xn = n−1/2

∑n
i=1Xi exceeds Φ−1(α), where Φ(·) denotes the upper-tail

function of a standard Gaussian distribution. Since the choice of α is quite arbitrary (why considering
α = 5% and not α = 3.14259%?), an interesting way to measure the significance of a test is to consider
the largest α for which the test rejects H0 at level α, called the p-value of the test. Here, we can merely
check that the p-value of the above test is p(X) = Φ

(
n1/2Xn

)
. It satisfies the following important

stochastic domination property:

when P satisfies H0, for all t ∈ [0, 1], PX∼P (p(X) ≤ t) ≤ t, (1.1)
1For an historical context, we refer the reader to [105] (among others).

7
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which comes from the fact that under the null, the event “p(X) is smaller than α” (i.e., “H0 is rejected
at level α”) occurs with a probability smaller than α, because the test is of level α. By nature, the
p-value gives the decision of the test at all possible levels. More intuitively, the p-value measures the
“plausibleness” of H0 measured by the test. A “small” p-value provides evidence against H0 and thus
tends to show that a “discovery” is made by the test.

1.2 ... to multiple hypothesis testing

To analyze a given complex phenomenon, a researcher rarely asks only one question; he/she looks at
his/her data from different angles in order to gets a wider idea of what is the trueness behind the data.
This raises the problem of assessing statistical significance for many features simultaneously, which
can be set as the issue of multiple hypothesis testing. Historically, the earliest appearance of multiple
inference seems to go back to Carlo E. Bonferroni [22], while John W. Tukey’s ideas [136] were seminal
for multiple inference, as reported in [7]. For additional historical notes and references, we refer the
interested reader to [38], [73], [90], [126] and [31]. Compared to earlier work, contemporary multiple
hypothesis testing deals with an higher resolution: several recent technological jumps have made the
potential number of desired inferences grows from dozens to several thousands or even millions. This
appears for instance in practical fields where a massive amount of data can be collected, as microarray
analysis [138, 37], neuro-imaging [9, 101] and source detection [96], among others. As we will see in
Section 1.3, this makes the issue of multiplicity even more crucial.

The problem of simultaneous significance is, by essence, frustrating: to take fully advantage of the
data, it is tempting to perform many inferences simultaneously and to neglect the multiplicity issue.
However, this is incorrect. Simple paradoxical situations can be employed to illustrate the latter. A
first instance is that most clinical trials can be made significant; suppose that we have at hand data
coming from clinical trials, with some characteristics for the patients (say, sex, age and geographical
location). If the test using the whole sample is not significant, certainly a part of it should be significant,
at least by looking carefully enough. For this, we can subdivide the sample in many subgroups by
using the patients characteristics. At the end, we should find that, say, Scandinavian women aged
51-60 are significantly affected by a drug. This way to add “chances of winning” is referred to as the
“Munchhausen’s Statistical Grid” by Dr. Graham Martin, see Appendix I of [143]. A similar humorous
story is provided in the comic strips at the beginning of each chapter (source: http://xkcd.com).

The above “data snooping” processes are inappropriate because they generate items that are de-
clared wrongly significant, often referred to as a false discoveries or false positives. At this point, it is
useful to recall the Young’s False Positive Rules, see [143] page 7:

(i) With enough testing, false positives will occur.

(ii) Internal evidence will not contradict a false positive result.

(iii) Good investigators will come up with a possible explanation.

(iv) It only happens to the other persons.

An elementary probabilistic argument supporting item (i) is that, if m tests are performed simultane-
ously and if Ai is the event “make a false positive for the i-th null hypothesis”, then the probability
that this multiple decision makes at least one false positive is

P

(
m⋃

i=1

Ai

)
, (1.2)

http://xkcd.com
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which is a potentially much larger probability than each individual errors P(Ai), 1 ≤ i ≤ m. The value
of the probability (1.2) is displayed in Figure 1.1 (left), in the independent case.
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Figure 1.1: Graphical representations of m 7→ 1−(1−0.05)m (left) and m 7→ 1−(1−0.05/m)m (right).

The consequence is that the level at which each individual test is performed should be considerably
reduced. This idea, going back to Tukey, is now commonly referred to as the “Higher criticism”, see [32],
or simply by “multiple testing correction” or “multiple testing adjustment”. The most simple example
is the Bonferroni correction, which is simply to take α/m instead of α in the individual tests. This
stabilizes the probability (1.2), see Figure 1.1 (right), in the independent case. Hence, the probability
to make at least one false discovery, called the family-wise error rate (FWER), is ensured to be
below α. However, this approach might be unsatisfactory in practice, because applying the correction
reduces considerably the quantities of discoveries, especially when m is large. Furthermore, with the
development of new high-throughput technologies, for which m goes far beyond several thousands (see
Section 1.3), this problem became an increasing cause of concern.

A renewed interest in multiple testing correction indisputably occured after the paper [10] of Yoav
Benjamini and Yosef Hochberg (1995). They introduced a new simple procedure, baptized later “the
BH procedure”, which can be seen as filling the gap between an uncorrected procedure (too many
discoveries) and the Bonferroni procedure (too few discoveries), while controlling a global error rate
called the false discovery rate (FDR). The latter is defined informally as the average of the (random
and unknown) quantity

FDP =
number of false discoveries

number of discoveries
.

The idea is that, in an exploratory research, making a few more false discoveries may be tolerated
if this yields a substantial increase in the total number of discoveries. For instance, making 4 false
discoveries out of 10 discoveries (FDP = 0.4) can be viewed as less acceptable than making 7 false
discoveries out of 100 discoveries (FDP = 0.07). This more optimistic view on the total amount of
false discoveries made the multiple testing correction more appealing for the practitioner, because it
allows to make much more discoveries while still keeping an overall statistical guarantee.

The philosophical difference between FWER control (with Bonferroni procedure) and FDR control
(with BH procedure) is illustrated on Figure 1.2 on a toy example. On a two dimensional grid, the signal
lies in a disk (in gray, with a strength linearly decreasing from the center to the border of the disk) and
the observations simply are i.i.d. Gaussian perturbations of the signal. For each method, the rejected
items are marked by black dots. FWER control ensures that no detection will be made outside the
disk (with probability at least 0.95), while FDR control ensures that the number of detections outside
the disk out of the number of total detections is, on average, less than 0.05. A consequence is that BH
procedure automatically adapts to the “amount of detectable signal” contained in the data: for weak
signal and a small circle (topleft), BH behaves like a Bonferroni procedure, while for a strong signal
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Low signal strength Strong signal strength

FWER FDR Uncorrected FWER FDR Uncorrected

Figure 1.2: Discoveries for FWER (left), FDR (middle) or without correction (right) at level 0.05 in
an independent two-dimensional setting where m = 1282 items are tested. See text.

and a large circle (bottomright), BH acts more like a non-corrected procedure. Hence, FDR control
allows (many) more true detections than FWER control, at the price of an amount of false positives
that looks appropriate in all situations.

To get an idea of the impact of the FDR in the scientific landscape, Figure 1.3 provides the citations
of the paper [10] between 1996 and 2013 as reported by “the web of science”. In addition to the number
of citations, which is considerable for a statistical paper, the most noteworthy fact might be lying in
the variety of the impacted fields of research.

1.3 Multiple testing in genomic data

One of the most emblematic situations where a large number of tests should be performed simultane-
ously arises with the analysis of genomic data that comes from high-throughput technologies (microar-
rays or more recently next generation sequencing). In a typical exploratory research, the practitioner
wants to relate a given type of cellular information (e.g., gene expression, copy number alterations
or genotype) to some phenotype (e.g., a type of disease). This involves thousands or even hundreds
of thousands underlying items for which a decision should be inferred (e.g., genes, probes or SNPs).
While individual tests can be often easily built, the question of providing an overall error rate control
is central in such high-dimensional contexts. Some examples of genomic data are given below.
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Figure 1.3: Statistics for the 13,427 papers citing [10] from 1996 to 2013 and according to “the web of
science”. Left: per year. Right: per research field.

Gene expressions Figure 1.4 (bottom) displays an instance of data resulting from microarray ex-
periments. Each spot corresponds to a gene (or a portion of it), and its color codes for a level of
expression. Typically, the latter is obtained via RNA measurements which have been transformed
into a real number by using standard normalization steps. Hence, from a mathematical point of
view, the data-set is a huge real-valued n ×m matrix with m � n, that is, with many variables (m
genes) and only few repetitions (n individuals). For instance, m = 11, 169 and n = 42 in the data
set of [97]. Additionally, there are potentially many dependencies between gene expressions, because
some genes may activate/inhibit others (along so-called “pathways”). Many data source are available
on the web, see for instance http://strimmerlab.org/data.html; http://www.ncbi.nlm.nih.gov/geo/;
http://bioconductor.org.

DNA copy number alterations Typically, while normal cells have 2 copies of each chromosome,
tumor cells often have chromosomal alterations at some positions of the genome. Such abberations
can correspond either to a deletion (< 2 copies) or to a gain (> 2 copies). Studying how these copy
number alterations (CNAs2 in short) are related to some phenotype can be useful to study various type
of cancers (e.g., to find the genome positions related to the cancer development process). The common
technology used to measure CNAs is the array Comparative Genomic Hybridization (CGH) which is
a special type of microarray. It compares the DNA quantity of the test sample to a reference sample
at each location (probe) along the genome via a fluorescence device. After some transformations, this
array can be loosely encoded as loss, normal and gain (< 2, = 2 or > 2). Such a resulting data set
is displayed in Figure 1.4 (top); white (resp. black) codes for loss (resp. gain). Many CNA data are
available on the web, see, e.g., http://cancergenome.nih.gov/. Again, the chromosomal aberrations are
measured along the genome via a huge number of probes, which naturally entails a multiplicity issue.
Among many available methods, Section 5.3 will provide a solution for analysing CNA data.

Genome-wide association studies Markedly, while most the bases of the genome are identical
across a given human population, some specific (tiny) genomic regions vary among individuals. Typical
such regions are the single nucleotide polymorphisms (SNPs), for which the variation is only carried
by one basis. For each SNP, the pair of values (e.g., (a,t)) taken at that location (one value for
each chromosome) is a characteristic of interest, that can be summarized as a copy number variation

2Also sometimes called copy number variations (CNVs). Here, we distinguish copy number alterations (CNAs) and
copy number variations (CNVs). While the CNAs are expected to happen in some tissues (often tumor cells), the second
are expected to occur in all the cells of the individuals (typically inherited from parents).

http://strimmerlab.org/data.html
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org
http://cancergenome.nih.gov/
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Figure 1.4: Two types of microarray data, see text. 500 probes taken along the genome. 42 individuals
having a lymphoma cancer under specific conditions, see [97].

(CNV) of a reference basis (say, a). Across the genome, these CNVs can be used as a genetic marker to
explain some phenotype (e.g., obesity, diabetes, anorexia). Nowadays, a massive amount of such data
sets are provided by giant consortium of scientists, e.g., “The Wellcome Trust Case Control Consortium”
http://www.wtccc.org.uk/, “The International HapMap Project” http://hapmap.ncbi.nlm.nih.gov/ or
“The 1000 Genomes Project” http://www.1000genomes.org/, typically involving a number m of SNPs
that can reach several millions. Moreover, underlying biological processes can imply dependencies
between the genetic markers.

1.4 Big data?

In this section, we briefly situate our work with respect to the recent “big data” phenomenon. The most
general definition of “big data” science is the treatment of massive amount of data. This admittedly
vague definition makes the work investigated here part of this trendy concept. However, this might be
wrong. A more accurate definition for “big data” is data that are so massive that we cannot upload it
onto a standard computer. Hence, applying solely a statistical method is irrelevant and a task at the
border of algorithmics, informatics and statistics should be investigated. This task is not explored in
this manuscript.

Nevertheless, by somehow anticipating the future work that could be investigated in these “big
data” research field, it is hard to believe that the multiple testing issue will disappear. Actually, it
should be even more crucial. For more details, we refer the reader to the interview of Michael Jordan
by Lee Gomes [66] and in particular to the discussion around “Why Big Data Could Be a Big Fail”.

In conclusion, while the work investigated here is notmade for “big data analysis” (with the accurate
definition), we can safely argue that some of the tools developed here are likely to be useful for future
work in that area.

http://www.wtccc.org.uk/
http://hapmap.ncbi.nlm.nih.gov/
http://www.1000genomes.org/
http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts#qaTopicThree


Chapter 2

Probabilistic preliminaries

· · ·

This chapter presents a general mathematical background which will be used throughout the
manuscript.

2.1 General statistical setting

Let X be a random variable valued in an observation space (X ,X) and coming from an underlying
measurable space (Ω,F). The distribution of X on (X ,X) is denoted by P and is assumed to belong to
some set P, which is called the model. For each P ∈ P, we assume that there exists a distribution on
(Ω,F) for whichX ∼ P ; it is referred to as PX∼P or simply by P when unambiguous. The corresponding
expectation operator is denoted EX∼P or E for short.

Let m ≥ 2 be the number of null hypotheses to be tested. For i ∈ {1, . . . ,m}, let H0,i be a null
hypothesis for P , that corresponds to some subset P0,i of P. The goal of a multiple testing decision is
to infer from X whether P is in P0,i, for each i ∈ {1, . . . ,m}. Hence, the parameter of interest is the
underlying “configuration”

θ(P ) ∈ {0, 1}m, where θi = 0 if and only if P ∈ P0,i. (2.1)

Conversely, for each configuration θ ∈ {0, 1}m, we can define Pθ the subset of the distributions of P that
are compatible with the configuration θ, that is, Pθ = {P ∈ P : θ(P ) = θ} (possibly empty). Hence,
choosing P ∈ P is equivalent to first choose a configuration θ ∈ {0, 1}m and then to choose P ∈ Pθ.
Separating θ from P ∈ Pθ is sometimes convenient, so this distinction should be kept in mind. We
also denote H0(θ) = {1 ≤ i ≤ m : θi = 0}, m0(θ) =

∑m
i=1(1 − θi) and H1(θ) = {1 ≤ i ≤ m : θi = 1},

m1(θ) =
∑m

i=1 θi the set/number of true and false null coordinates, respectively.
As a first illustration, let X = (X1, X2) be a vector of m = 2 independent variables with Xi ∼

N (µi, 1), i ∈ {1, 2}, and consider the test of H0,i: “µi = 0” against H1,i: “µi 6= 0”, for any i ∈ {1, 2}.
There is 2m = 4 possible configurations: θ = (0, 0) (µ1 = µ2 = 0); θ = (1, 0) (µ1 6= 0, µ2 = 0);
θ = (0, 1) (µ1 = 0, µ2 6= 0); θ = (1, 1) (µ1, µ2 6= 0). The aim of a multiple testing decision is to choose
among these four configurations. This inference does not concern the values of the non-zero µi’s (that
is, does not concern which distribution P ∈ Pθ is followed by X), at least not directly.

In the sequel, we will focus on decisions based upon p-values. Hence, a basic assumption is that
for each i ∈ {1, . . . ,m}, there is a random variable pi(X), called p-value, satisfying the following
assumption

∀P ∈ P0,i, we have ∀t ∈ [0, 1], PX∼P (pi(X) ≤ t) ≤ t, (pvalueprop)

or, equivalently, ∀θ ∈ {0, 1}m with θi = 0, ∀P ∈ Pθ, we have ∀t ∈ [0, 1], PX∼P (pi(X) ≤ t) ≤ t. We
will sometimes denote pi(X) simply by pi for short. Property (pvalueprop) means that each p-value of

13
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(pi(X), i ∈ H0(θ)) must be stochastically lower-bounded by a uniform variable. Hence, (pvalueprop)
can be seen as a generalization of Assumption 1.1 to the case of multiple null hypotheses. In many
cases, the p-values under the null are exactly uniformly distributed, that is, for all i ∈ {1, . . . ,m},

∀P ∈ P0,i, we have ∀t ∈ [0, 1], PX∼P (pi(X) ≤ t) = t. (pvaluepropunif)

This is slightly less general than (pvalueprop). Furthermore, a specificity of the (multiple) testing
setting is that, while it requires a strong assumption on the distribution of pi(X) under the null,
no such assumption is made in general under the alternative P /∈ P0,i. However, in addition to
(pvalueprop), specific dependency structures can be assumed for the p-value family, see Section 2.4.
Alone, the assumption (pvalueprop) is often referred to as general dependence.

A canonical example is the case where we test whether the coordinates of the mean of a multivariate
Gaussian vector are zero or not. Let X be a multivariate Gaussian vector of mean µ ∈ Rm and
covariance Γ, assumed to satisfied Γi,i = 1 for simplicity. Typically, two different multiple testing
problems can be investigated:

- one-sided: H0,i: “µi ≤ 0” against H1,i: “µi > 0” , 1 ≤ i ≤ m;

- two-sided: H0,i: “µi = 0” against H1,i: “µi 6= 0” , 1 ≤ i ≤ m;

Also, simpler one-sided nulls can be considered with H0,i: “µi = 0” against H1,i: “µi > 0” , 1 ≤ i ≤ m,
which implicitly assumes that µ has nonnegative coordinates. In the one-sided (resp. two-sided) case,
classical p-values are given by pi(X) = Φ(Xi) (resp. pi(X) = 2Φ(|Xi|)), 1 ≤ i ≤ m. We can merely
check that (pvalueprop) is satisfied. In addition, when H0,i is “µi = 0” for all i (one-sided or two-sided),
the p-values also satisfy the stronger condition (pvaluepropunif).

While the dependence parameter Γ is generally unknown, it can be known in some specific multiple
testing situations. A simple example is provided by the regular Gaussian linear model with a full rank
design matrix. In high dimension, this is also the case when testing marginal associations, see [44]. In
some cases1, Γ can also come from external experiments.

Finally, note that the Gaussian modeling can also be useful to approximate some non-Gaussian
multiple testing situations, see [26].

2.2 Global p-value thresholding

In the above multivariate Gaussian example, Neyman-Pearson’s lemma indicates that the best indi-
vidual decision when testing H0,i against H1,i is to reject H0,i when pi is smaller than a threshold.
Hence, a compatible multiple testing decision will reject the nulls corresponding to p-values smaller
than some thresholds. However, since the tests are performed simultaneously, these thresholds should
be conveniently adjusted to take into account the multivariate aspect of the distribution of the p-value
family.

Figure 2.1 provides a useful graphical scheme of the multiple testing problem in the p-value-based
setting. The data are generated in the one-sided Gaussian framework form = 100,m0 = 50, µi ∈ {0, 1}
and Γ = I (independence between the tests). Also, for each pi = p(`), the associated θi is marked by
“0” if θi = 0 (comes from a null) or by “ × ” if θi = 1 (comes from an alternative). Since we aim at
rejecting nulls corresponding to “small” p-values, it is natural to order them as follows:

p(1) ≤ p(2) ≤ · · · ≤ p(m),

1For instance, in Genome-wide association studies, the dependency structure can be related to the linkage disequilib-
rium phenomenon, see Chapter 9 in [31].
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Figure 2.1: Pictorial representation of the multiple testing issue based on p-value ordering, see text.

and to reject the corresponding nulls until some “suitable” rank. For the realization reported in
Figure 2.1, it is not totally clear what is the most desirable decision to make, even if we knew the
label: while rejecting the 14 first null hypotheses (first dashed vertical line) certainly ensures no false
discovery, maybe rejecting the 21 first nulls, or even the 32 first nulls (second and third dashed vertical
lines) is better in order to include more true discoveries, up to make few additional false discoveries.
This points out the need of choosing an appropriate criterion.

2.3 Criteria and decisions

A general way to define a multiple testing procedure is to describe the index set of the null hypotheses
that it rejects. Formally, a multiple testing procedure is a function

R : ω ∈ Ω 7→ R(ω) ⊂ {1, . . . ,m}

such that, for all i ∈ {1, . . . ,m}, the event {ω ∈ Ω : i ∈ R(ω)} is measurable, that is, lies in F . As
mentioned above, it is of interest to consider the class of p-value thresholding-based multiple testing
procedures, which are of the form

R =
{

1 ≤ i ≤ m : pi(X) ≤ t̂
}
, (2.2)

where t̂ ∈ [0, 1] is some random variable (itself possibly depending on the family of the pi(X)’s). The
default choice in this manuscript is to use (2.2) with a non-strict inequality. However, in some specific
cases, using it with a strict inequality is more convenient, in which case we will explicitly mention
it in the text. For instance, the form (2.2) includes the non-corrected procedure and the Bonferroni
procedure that use t̂ = α and t̂ = α/m, respectively. For short, we will sometimes say that t̂ is itself a
multiple testing procedure.
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2.3.1 Family-wise error rates

For a multiple testing procedure R, the set of the false discoveries corresponds to R ∩ H0(θ). Various
type I error rates have been proposed in the literature to measure the “size” of this set. We focus in
this manuscript only on those commonly used. The probably earliest one is the family-wise error rate
(FWER), which is defined as follows: for all P ∈ P,

FWER(R,P ) = P(|R ∩H0(θ)| ≥ 1). (2.3)

Hence, when controlling the FWER at level α, it is asked that, with a probability larger than 1−α, we
have |R∩H0(θ)| = 0, that is, no false discovery is made. As an illustration, the event “|R∩H0(θ)| = 0”
occurs in Figure 2.1, provided that R only contains items “×” (e.g., when R rejects the 14 first nulls).
We merely check that the Bonferroni procedure controls the FWER under general dependence:

P(∃i ∈ H0(θ) : pi(X) ≤ α/m) ≤
m∑

i=1

(1− θi)P(pi(X) ≤ α/m) ≤ m0α/m ≤ α,

by combining (pvalueprop) and an union bound argument. When the union bound is accurate (e.g.,
under independence, when α is small and m0 ' m), controlling the FWER with Bonferroni procedure
is satisfactory in the sense that the error rate will be close to α. However, under “strong” dependence,
Bonferroni procedure has an FWER that can be far below α and a more accurate control can be
obtained by circumventing the union bound argument: for a thresholding based procedure R of the
form (2.2),

FWER(R,P ) = P
(

inf
i∈H0(θ)

{pi(X)} ≤ t̂
)
. (2.4)

In other words, for controlling the FWER, we should consider t̂ according to the quantile of the
distribution of the smallest p-value among those under the null (i.e., the distribution of the first point
labeled “0” in Figure 2.1). This raises several questions related to the distribution of this infimum,
especially the issue of obtaining a conservative estimate of t̂ while “learning” both the dependence and
the set H0(θ) from the data. This issue will be investigated in Section 5.1.

While the FWER control has a clear interpretation, it might be too strict, especially when m is
large. Several criteria aim at relaxing it. Going back to Figure 2.1, a fair idea seems to tolerate the first
“0” in order to make the next 6 true discoveries. This motivates the introduction of the k-family-wise
error rate (k-FWER) (see, e.g., [73, 115, 89]): for all P ∈ P,

k-FWER(R,P ) = P(|R ∩H0(θ)| ≥ k), (2.5)

where k ∈ {1, ...,m} is a pre-specified “tolerance” parameter. Note that for k = 1, the k-FWER reduces
to the FWER. When controlling the k-FWER at level α, it is asked that, with a probability larger
than 1− α, the rejection set contains less than k− 1 false discoveries, that is, |R ∩H0(θ)| ≤ k− 1. As
one might expect, the techniques involved while controlling the k-FWER are quite similar than those
related to FWER, because, loosely, the infimum has simply to be replaced by the k-th infimum. Note
however that it might add some difficulties when “learning” the set H0(θ), see [116].

2.3.2 False discovery rate

The main drawback of k-FWER is that the choice of k should be prescribed a priori, so seems arbitrary:
for instance, choosing k = 6 provides that, with high probability, there is at most k − 1 = 5 errors in
R. While this seems fair for |R| = 100 (say), it is less relevant for |R| = 10 (say). The latter example
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relies on a seminal idea: we should use a criterion that relates the quantity of tolerated false discoveries
to the number of discoveries. To this end, the false discovery proportion (FDP) is defined as follows:
for all P ∈ P,

FDP(R,P ) =
|R ∩H0(θ)|
|R| ∨ 1

, (2.6)

where “∨” denotes the maximum operator (hence FDP(R,P ) = 0 if |R| = 0). The latter unobservable
quantity is not an error rate, because it is random. An error rate can be built out of it by taking its
expectation: the false discovery rate (FDR) is defined as follows: for all P ∈ P,

FDR(R,P ) = E[FDP(R,P )]. (2.7)

While the underlying idea leading to the FDR criterion has several early occurrences in statistical
literature, see [125, 123, 128], it has been formalized in [10] and becomes popular afterwards. Now,
deriving an FDR control of the form FDR(R,P ) ≤ α means that, on average, there are less than α|R|
errors among the discoveries of R. For instance, for α = 0.05, |R| = 1000 means that R contains at
most 20 false discoveries (on average). The FDR control has thus a clear and attractive interpretation.
Another explanation of the FDR success is that there is a simple procedure that controls it (see
Figure 2.2, left, for an illustration):

Algorithm 2.1. [BH procedure at level α]

- Order the p-values as p(1) ≤ p(2) ≤ · · · ≤ p(m) and let p(0) = 0;

- consider the rank ̂̀= max{` ∈ {0, 1, . . . ,m} : p(`) ≤ α`/m};

- choose t̂ = α̂̀/m and rejects the nulls with a p-value smaller than the threshold t̂, or, equivalently,
the ̂̀nulls corresponding to the smallest p-values.
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Figure 2.2: Left: illustration for Algorithm 2.1 for m = 10 p-values. The stopping rule appears as
a “last right crossing point” between the ordered p-values ` 7→ p(`) and the solid line ` 7→ α`/m.
The p-values colored in black are those corresponding to rejected nulls. Right: equivalent formulation
according to the empirical distribution function Ĝm of the p-values, see (2.8) below.
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Theorem 2.2 ([10, 14]). Assume (pvalueprop). For any P ∈ P satisfying (Indep) or (wPRDS), the
BH procedure R defined by Algorithm 2.1 satisfies FDR(R,P ) ≤ αm0(θ)/m. Moreover, by assuming
(pvaluepropunif), the latter becomes an equality for any P ∈ P satisfying (Indep).

The distributional assumptions (Indep) (independence) and (wPRDS) (positive dependence) will
be further discussed in Section 2.4. To give more intuition behind Theorem 2.2, Figure 2.3 displays
9 realizations of the BH procedure together with the corresponding (unobservable) FDP value in the
independence case. Theorem 2.2 ensures in this case that the FDR of the BH procedure is equal to
α/2 = 0.125. Hence, from a more intuitive point of view, this result implies that, if we repeat these
experiments infinitely (for the same values of the parameters), the average of the realized values of
FDP(BH) would converge to 0.125. We already see at this point that the variations of the FDP around
its expectation is a key property for providing a correct interpretation of the BH procedure (here, the
strong variability is only due to the fact that m is small).
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Figure 2.3: False discoveries of BH procedure (α = 0.25) for 9 simulations in the Gaussian one-
sided model with m = 20, m0 = 10, means µi ∈ {0, 2} and Γ = I (independence). Same labeling
as Figure 2.1. The realized FDP is reported in the topleft box. The solid lines are ` 7→ `/m and
` 7→ α`/m.

We finally illustrate a scale invariance property of the BH procedure as m grows to infinity, which
shows that it somehow avoids the “curse of dimensionality”, provided that the proportion of signal
stays the same. For this, we use the same setting as above, except that we consider increasing values of
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m while π0 = m0/m stays equal to 0.5, see Figure 2.4. We observe that, when m grows, the proportion
of rejected hypotheses stays away2 from zero. Specifically, this holds because the BH procedure is
related to the asymptotic behavior of the empirical distribution function of the p-values through the
equation (see Figure 2.2, right)

t̂ = max{t ∈ [0, 1] : Ĝm(t) ≥ t/α}. (2.8)

As we will see in Sections 5.2, 6.2 and 6.3, the formulation (2.8) is convenient for asymptotical studies
(as the number m of tests tends to infinity).

m = 100, m0 = 50 m = 1000, m0 = 500 m = 10000, m0 = 5000
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Figure 2.4: Scale invariance property of BH procedure, see text. Gaussian one-sided model with means
µi ∈ {0, 2} and Γ = I. Same labeling as Figure 2.1.

2.3.3 Power issue

Following the Neyman-Pearson paradigm, provided that the chosen type I error rate is below α, we
would like to maximize the quantity of true discoveries, that is the “power” of the multiple testing
procedure. Formally, a simple and standard choice for the power is

Pow(R) = C−1E [|R ∩H1(θ)|] , (2.9)

the (rescaled3) averaged number of true discoveries made by R. Hence, similarly to the “Uniformly
Most Powerful” theory for single testing, an optimal multiple procedure maximizes Pow(R) under the
constraint that it controls the type I error rate at level α.

In multiple testing theory, assessing optimality is a difficult task and only few results exist, see
[130, 133, 16, 114, 95]. While no general answer to that challenging problem will be provided in this
manuscript, a partial solution is proposed in Section 4.2 via an optimal p-value weighting.

2.4 Model assumptions

The probabilistic properties of multiple testing procedures usually rely on specific assumptions on
the model P, or, equivalently, on the distribution P of X. We loosely separate in this section the
assumptions concerning the dependency structure from the assumptions concerning the signal.

2Note that this would not be the case with an FWER controlling procedure, as the distribution of the infimum would
tend to zero.

3The normalizing constant C > 0 can be for instance m1(θ) or m.
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2.4.1 Dependence assumptions

Dependence assumptions rarely correspond to realistic situations. However, they are often unavoidable
to get accurate and rigorous controlling results, as in Theorem 2.2.

First, a strong but useful assumption on P is the independence between the individual tests: more
specifically,

(pi(X), i ∈ H0(θ)) is a family of mutually independent variables
and (pi(X), i ∈ H0(θ)) is independent of (pi(X), i ∈ H1(θ)).

(Indep)

This assumption encompasses the classical case where the whole p-value family is assumed to be
mutually independent:

(pi(X), 1 ≤ i ≤ m) is a family of mutually independent variables. (Full-Indep)

However, (Indep) is not restricted to (Full-Indep) since the joint distribution of (pi(X), i ∈ H1(θ)) is
let arbitrary in (Indep).

Second, an assumption weaker than (Indep) is the positive regression dependency on each one from
a subset (PRDS) property, a notion that can be traced back to Erich L. Lehmann (1966) [88] in the
bivariate case. First, let us define a subset D ⊂ [0, 1]m as nondecreasing if for all q, q′ ∈ [0, 1]m such
that ∀i ∈ {1, ...,m}, qi ≤ q′i, we have q′ ∈ D when q ∈ D. Then, the weak PRDS property is as follows.

For any i0 ∈ H0(θ) and any measurable nondecreasing set D ⊂ [0, 1]m,
the function u 7→ P ((pi(X), 1 ≤ i ≤ m) ∈ D | pi0(X) ≤ u)

is nondecreasing on the set {u ∈ [0, 1] : P(pi0(X) ≤ u) > 0}.
(wPRDS)

Assumption (wPRDS) is slightly different than the PRDS property, as defined in [14]:

For any i0 ∈ H0(θ) and any measurable nondecreasing set D ⊂ [0, 1]m,
the function u 7→ P ((pi(X), 1 ≤ i ≤ m) ∈ D | pi0(X) = u) is nondecreasing. (PRDS)

To be completely rigorous, since the function u 7→ P ((pi(X), 1 ≤ i ≤ m) ∈ D | pi0(X) = u) is defined
up to some pi0(X)-negligible set, (PRDS) assumes that this function coincides pi0(X)-a.s. with a
nondecreasing function. We can check that (wPRDS) is weaker than (PRDS) (see, e.g., Proposition 3.6
in [P6]). Hence, Theorem 2.2 also holds under (PRDS)4.

As an illustration, in the one-sided Gaussian testing framework, the PRDS assumptions (regular
and thus also weak) are satisfied whenever Γi,j ≥ 0 for all i, j, see Section 3.1 in [14]. Hence, by
applying Theorem 2.2, the FDR control holds for the BH procedure in that case. Note that the two-
sided case is more delicate because the p-values lose the (wPRDS) property, even when Γi,j ≥ 0 for all
i, j (see [107]). However, obviously, the FDR control is maintained in the two-sided case when Γ = I
because (Indep) holds.

A stronger notion of positive dependence is the multivariate total positivity of order 2 (MTP2), as
introduced by Tapan K. Sarkar (1969) [121]. It requires that the joint distribution of the p-values has
a density f that satisfies

for all q, q′ ∈ Rm, f(q)f(q′) ≤ f(q ∧ q′)f(q ∨ q′), (MTP2)

where “ ∧ ” (resp. “ ∨ ”) denotes the infimum (resp. supremum) operator, that should be considered
component-wise. Provably, (MTP2) implies (PRDS) and thus (wPRDS) (and also positive association
of the p-values), see, e.g., Theorems 4.1 and 4.2 in [84]. In the one-sided Gaussian setting, (MTP2) is

4The original results in [14] are stated with the PRDS property.
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satisfied if and only if the off-diagonal elements of −Γ−1 are all nonnegative5. For instance, a special
case of interest is the equi-correlated case:

Γi,j = ρ, for all i 6= j, where ρ ∈ [−(m− 1)−1, 1]. (Gauss-ρ-equi)

When ρ ≥ 0, the latter model can be realized via the well known decomposition

Xi − EXi = ρ1/2 W + (1− ρ)1/2 ξi, (2.10)

whereW and the ξi’s are all i.i.d. N (0, 1). In this case,W can be interpreted as an overall “disturbing”
factor that affects equally all the measurements. Hence, a useful function is the distribution function
of pi(X) conditionally on W = w (under the null), which is given by

f(t, w) = Φ
(

(Φ−1(t)− ρ1/2 w)/(1− ρ)1/2
)
. (2.11)

Finally, in the two-sided Gaussian setting but only when m0 = m, (MTP2) holds if and only if
there exists a diagonal matrix D with diagonal elements in {−1, 1} such that the off-diagonal elements
of −DΓ−1D are all nonnegative, see [85]. This includes the case (Gauss-ρ-equi) with ρ ≥ 0, for which
the distribution function of pi(X) conditionally on W = w (under the null) is given by

f(t/2, w) + f(t/2,−w). (2.12)

Note that establishing (MTP2) in the two-sided case whenm0 < m requires in general some restrictions
on µ ∈ Rm, see [45].

2.4.2 Signal assumptions

Loosely, we can consider two kinds of assumptions related to the “signal”: first, assumptions on the
amount of signal, which concerns m0. Second, assumptions on the strength of the signal, that can
be measured by the “distance” between the distributions of the alternative p-values and the uniform
distribution (e.g., via the value of the alternative means when testing EX).

For m0, a standard assumption is to consider that, as m grows to infinity, m0/m tends to some
quantity6 π0 which lies in (0, 1), see Figure 2.4, and also Sections 5.2 and 6.2. This means that the
proportion of signal is asymptotically of the order of m, which is optimistic but convenient. At the
opposite side, the sparsity assumption supposes that m0/m tends to 1 as m grows to infinity, which
typically arises when the dimension of the data grows faster than the number of entities of interest.
For instance, a common assumption is that 1 −m0/m ∼ m−β for some β ∈ (0, 1]. This case will be
examined in Section 6.3.

Now, for the signal strength, a useful assumption is that it is maximal:

for all i ∈ H1(θ), pi(X) = 0 a.s. (Dirac)

The alternative distribution given by (Dirac) can be seen as the most optimistic: in that case, the
alternatives are perfectly separated from the nulls (a.s.). Hence, there is no multiple testing problem
in that case. However, this special configuration remains interesting, because it often has the property
to be the distribution under which the type I error rate is the largest, in which case it is called “least
favorable configurations” (LFC). This generally requires that the multiple testing procedure at hand
has special monotonic properties, see Section 3.3. Hence, perhaps surprisingly, (Dirac) turns out to be
a useful assumptions for proving type I error rate controls.

5Note that Γ is invertible by the existence of the density.
6Here, π0 is not denoting m0/m but rather its limit when m grows to infinity.
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2.4.3 Random effects relaxation

As introduced in [43], a Bayesian-like layer can be proposed for the general model of Section 2.1. It is
usually referred to as the random effects model. It will be useful at several points of this manuscript,
see Sections 3.3, 4.2 and 6.3.

Remember that from (2.1), part of the true underlying distribution P is contained in the vector
θ = θ(P ) ∈ {0, 1}m. In the general framework, θ is fixed and arbitrary valued in all the possible
true/false configurations, hence the type I error rate control should be established in any of these
configurations. A less constrained framework is to consider a “fairly averaged” configuration for θ, by
assuming that the θi’s have been generated previously and independently of the data as i.i.d. Bernoulli
variables:

θ is a random vector composed of m i.i.d. Bernoulli variables B(1− π0). (Mixture)

Formally, it means that the parameters of this model become π0 ∈ [0, 1] and (Pθ)θ∈{0,1}m with Pθ ∈ Pθ
for all θ ∈ {0, 1}m 7. The model is thus built by first generating θ according to the distribution of
(Mixture) and then X ∼ Pθ. Note that under Assumption (Mixture), m0(θ) is random and follows a
binomial distribution of parameters m and π0.

The random effects assumption (Mixture) is often used with the independent assumption
(Full-Indep) while assuming that the alternative p-values have the same distribution function F1.
In that case, unconditionally on θ, the pi(X), 1 ≤ i ≤ m, are i.i.d. with common distribution function
G(t) = π0 t+ π1F1(t), t ∈ [0, 1], where π1 = 1− π0 stands for the probability of generating an alterna-
tive. The parameters of the model are thus simply π0 ∈ [0, 1] and F1 ∈ F , where F is some space of
distribution functions. For instance, in the one-sided Gaussian case, when the alternative means are
all equal to some ∆ > 0, F1(t) is of the form Φ(Φ−1(t)−∆) and the parameters of the model are given
by π0 ∈ [0, 1] and ∆ > 0.

2.5 Classes of procedures

2.5.1 Step-wise procedures

The BH procedure is a thresholding-based procedure t̂ built by taking the “last crossing point” between
the sequence of ordered p-values p(1) ≤ p(2) ≤ · · · ≤ p(m) and the sequence τ` = α`/m, ` = 1, . . . ,m,
see Algorithm 2.1. However, many other choices are possible for the values τ`, ` = 1, . . . ,m. Namely,
considering any sequence of non-decreasing constants τ`, ` = 1, . . . ,m (with the convention τ0 = 0),
we can consider the procedure t̂ = τˆ̀ with

̂̀= max{` ∈ {0, . . . ,m} : p(`) ≤ τ`}, (2.13)

that is called the step-up procedure with critical values τ`, ` = 1, . . . ,m, which is denoted by SU(τ).
Hence, according to Algorithm 2.1, the BH procedure is step-up with critical values τ` = α`/m,
1 ≤ ` ≤ m.

Next, if the ordered p-values and the sequence of the τ`’s have several crossing points, the right-
most crossing point is not the only choice that can be made. For instance, the most-left crossing point
is called “step-down”: in this case,

̂̀= max{` ∈ {0, . . . ,m} : ∀`′ ∈ {0, . . . , `}, p(`′) ≤ τ`′}, (2.14)

7In particular, the Pθ’s are all assumed non empty and thus form a partition of the model P.
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and the corresponding procedure is called step-down procedure with critical values τ`, ` = 1, . . . ,m and
is denoted by SD(τ). Figure 3.1 illustrates the difference between a step-down and a step-up procedure.
While SD(τ) = SU(τ) if there is only one crossing point, SD(τ) ⊂ SU(τ) holds in general. A counterpart
is that the additional constraints of the step-down algorithm can be useful to get additional controlling
results, see, e.g., [113, 57] and Section 5.1.

Figure 2.5: Pictorial view of a step-down (first crossing point) and a step-up (last crossing point)
algorithms.

In a more general manner, we can think to consider intermediate crossing points. To this end,
step-up-down procedures have been introduced by Tamhane et al. [135] (see also [118]): for an extra
parameter λ ∈ {1, . . . ,m}, if p(λ) > τλ, a step-up procedure is run in the left direction; if p(λ) ≤ τλ,
a step-down procedure is run in the right direction, see Figure 2.6. More formally, the step-up-down
(SUD) procedure of order λ ∈ {1, ...,m} and with critical values τ`, ` = 1, . . . ,m, is denoted by
SUDλ(τ), and is defined as t̂ = τˆ̀, with

̂̀=
{

max{` ∈ {λ, . . . ,m} : ∀`′ ∈ {λ, . . . , `}, p(`′) ≤ τ`′} if p(λ) ≤ τλ;
max{` ∈ {0, . . . , λ} : p(`) ≤ τ`} if p(λ) > τλ.

(2.15)

We merely check that choosing λ = m (resp. λ = 1) reduces (2.15) to the step-up case (2.13) (resp.
to the step-down case (2.14)). Also, the set of rejected nulls is nondecreasing with respect to λ. From
an historical point of view, the step-up-down procedures were initially introduced for improving the
detection that at least λ out of m null hypotheses are false while controlling the FWER, see [135].
A more modern use of such procedures is made in [49] for finding an asymptotical optimal rejection
curve (AORC) while controlling the FDR. In this manuscript, SUD procedures will be considered in
Section 3.3.

2.5.2 Adaptive procedures

While establishing a type I error rate control, it can be of interest to try to improve the power of
the procedure by incorporating in it a part ϑ of the underlying distribution P . For instance, in the
Gaussian multivariate framework, we can study adaptation w.r.t. ϑ = π0 (proportion of true null),
ϑ = (µi)i∈H1 (values of the alternative means), or ϑ = Γ (dependence structure). Since ϑ is often
unknown, a procedure using the true value of ϑ is generally referred to as oracle. Loosely, a procedure
that aims at approaching the oracle is said adaptive with respect to ϑ, or ϑ-adaptive in short. Classical
examples include procedures that explicitly use an estimator ϑ̂ of ϑ, often referred to as “plug-in”. In
addition, with some abuses, the oracle version will be sometimes called “adaptive” in the manuscript.
However, we should keep in mind that it is only usable when ϑ is known.
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Figure 2.6: Pictorial view of step-up-down procedures for two choices of λ. Left: λ = m/2. Right:
λ = 2m/3.

When studying adaptive procedures, the major issue is to show that the type I error rate control
is maintained, while the power is (significantly) improved. Building and studying adaptive procedures
is an important part of the work presented in this manuscript, see Chapters 4 and 5.



Chapter 3

Consolidating and extending the theory

· · · · · ·

In this chapter, we first aim at controlling the FDR, that is, given α, we want to build critical
values τ`, ` = 1, . . . ,m, such that FDR(SUDλ(τ), P ) ≤ α under some assumptions on P . Section 3.1
presents a general methodology for controlling the FDR that allows several generalizations of former
results in an unified manner. In addition, this method can be naturally extended to the case where
a “continuous amount” of null hypotheses is tested, which is investigated in Section 3.2. Finally, in
Section 3.3, we investigate a task that can be seen as the converse of FDR control: given the critical
values τ`, ` = 1, . . . ,m, we aim at calculating FDR(SUDλ(τ), P ), or, more generally, the distribution of
FDP(SUDλ(τ), P ). As an application, we contribute to the theory of “least favorable configurations”
for the FDR criterion.

3.1 Two simple conditions for controlling the FDR [P6]

We present here contributions of the work [P6] that aims at identifying essential arguments implying
FDR control.

3.1.1 Main idea

Let β : R+ → R+ be a nondecreasing function with β(0) = 0, to be chosen further on. An elementary
fact is that the FDR, defined by (2.7), can be upper-bounded as follows (by using the convention
0/0 = 0):

FDR(R,P ) = E
[ |R ∩H0|
|R|

]
=

∑

i∈H0(θ)

E
[
1{i ∈ R}
|R|

]

≤
∑

i∈H0(θ)

E
[
1{pi(X) ≤ αβ(|R|)/m}

|R|

]
≤ αm0(θ)/m. (3.1)

Above, two conditions are assumed: the first inequality is implied by the following algorithmic condi-
tion, called self-consistency,

R ⊂ {1 ≤ i ≤ m : pi(X) ≤ αβ(|R|)/m}. (SC(β))

The second inequality is implied by a probabilistic condition, called dependency control condition: for
any i ∈ H0(θ), the random variable couple (U, V ) = (pi(X), |R|) satisfies

∀c > 0, E
[
1{U ≤ cβ(V )}

V

]
≤ c . (DC(β))

25
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Lemma 3.1. Let β : R+ → R+ be any nondecreasing function with β(0) = 0 such that (DC(β)) holds
(for the underlying distribution P ) and R be any multiple testing procedure satisfying (SC(β)). Then
FDR(R,P ) ≤ αm0(θ)/m.

Now, to prove FDR control, it is sufficient to check these two conditions (SC(β)) and (DC(β)). To
this end, the choice of β is pivotal.

3.1.2 Study of the two conditions

Self-consistency An illustration of self-consistency is given in Figure 3.1 by following the p-value
ordering representation: the blue area indicates the rejections numbers ` such that the procedure
rejecting the ` smallest p-values satisfies (SC(β)). In particular, by considering the critical values
τ` = αβ(`)/m, 1 ≤ ` ≤ m, it is easy to check that the corresponding step-down, step-up and even
step-up-down procedures all satisfy (SC(β)). Also, we can easily check that the step-up procedure
SU(τ) is the less conservative of the multiple testing procedure R satisfying (SC(β)), that is, if R
satisfies (SC(β)), then R ⊂ SU(τ).

Figure 3.1: Pictorial view of self-consistent stopping rules (light blue), containing step-down, step-up
and step-up-down rules. Ordered p-values p(`) (dots) and critical values τ` = αβ(`)/m (solid line) in
function of `.

Dependency control condition In [P6], the following is proved:

(i) assuming (pvalueprop) and (wPRDS) and if |R| is a component-wise nonincreasing function of
the p-value family, then (DC(β)) holds with β(x) = x;

(ii) assuming (pvalueprop) (and no assumption on the dependence), then (DC(β)) holds with β of
the following special form:

β(x) =
∫ x

0
udν(u), x ≥ 0, (3.2)

where ν is any distribution on (0,∞).

Note that β(x) ≤ x for all x ≥ 0 whenever β is of the form (3.2).
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3.1.3 Applications

Application 1: extending classical FDR controls Since the BH procedure corresponds to the
step-up procedure with critical values τ` = αβ(`)/m and β(x) = x, if we assume (wPRDS), then
both (SC(β)) and (DC(β)) hold and Lemma 3.1 implies that the BH procedure controls the FDR.
In particular, this entails the classical result stated in Theorem 2.2 (with ≤). Now, under arbitrary
dependence, Lemma 3.1 provides an FDR control for any step-up procedure with critical values τ` =
αβ(`)/m, with β of the form (3.2). Several choices of β are possible by tuning the parameter ν, see
Figure 3.2. In particular, this allows to recover several other results of the literature:

• β(`) = `/
(∑

1≤i≤m 1/i
)
with ν({k}) proportional to 1/k, k ∈ {1, . . . ,m}. The resulting step-up

procedure is classically called the BY procedure, see [14];

• β(`) = `(`+ 1)/2m with ν uniformly distributed on {1, . . . ,m}, see [120];

• β(`) = bγmc1{` ≥ bγmc} with ν = δbγmc for some γ ∈ (0, 1), see [94].

On the intuitive point of view, ν can be interpreted as a prior distribution on the number of rejections,
as argue in [18], which presented a previous version of this work in another context. To this respect,
the BY procedure “favors” the small number of rejections.

Finally, for τ` = αβ(`)/m with β of the form (3.2), we have τ` ≤ α`/m and thus SU(τ) is more
conservative than the BH procedure. Hence, there is a price to pay to get an FDR control valid under
arbitrary dependence. This seems fair since the critical values τ` are not “learning” the dependence
so they are adjusted to the “worst dependent case”. Note that procedures learning the dependency
structure will be investigated in Chapter 5.

Application 2: shape constraints A property similar to (SC(β)) appeared independently in [49],
named as (T2) therein. It uses “= ” instead of “⊂ ”. Actually, using “⊂ ” can be useful to accommodate
external constraints on the shape of the rejection set R that prevent the equality into (SC(β)). In our
paper [P6], we mentioned the case of a convex constraint in a two dimensional hypothesis testing
framework for instance. Actually, another illustration came very recently in [68], in which the null
hypotheses are ordered according to some a priori preference. Precisely, while the null hypotheses are
not necessarily assumed to be nested, the decision is constrained to be of the form R = {1, 2, . . . , k̂},
for some k̂ to be chosen (by convention, R = ∅ if k̂ = 0). Note the difference with a step-up procedure,
for which the ordered is necessarily prescribed by the p-values. Here, the order is previously decided,
and allows situations for which p1(X) = 0.9, p2(X) = 0.1 and p10(X) = 10−9 for instance. We merely
check that taking R = {1, 2, . . . , k̂} of maximum size such that (SC(β)) holds gives

k̂ = max
{

1 ≤ k ≤ m : max
1≤i≤k

{pi(X)} ≤ αβ(k)/m
}
.

Hence, Lemma 3.1 implies an FDR control for this type of stopping rule (under appropriate dependence
assumptions).

Application 3: weighting In multiple testing literature, there has been some interest in adding
weights to null hypotheses to favor some tested items more than others. Two different ways to use
weighting have been proposed:

- weighted FDR [11, 9]: let Λ be some measure on {1, . . . ,m}, called a volume measure. The
relative importance of false discoveries can be adjusted according to Λ by replacing FDP(R,P )
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Fig 2. For the standard Λ-weighting and m = 1000 hypotheses, this figure shows several
(normalized) shape functions m−1β associated to different distributions ν on R+ (accord-
ing to expression (6)): Dirac distribution: ν = δµ, with µ > 0. (Truncated-) Gaussian
distribution: ν is the distribution of max(X,1), where X ∼ N (µ,σ2) . Power distribu-

tion: dν(r) = rγ1{r ∈ [1, m]}dr/
∫ m

1
uγdu, γ ∈ R. (Truncated-) Exponential distribution:

dν(r) = (1/λ)exp(−r/λ)1{r ∈ [0,m]}dr, with λ > 0. On each graph, for comparison pur-
poses we added the threshold function for Holm’s step-down m−1β(x) = 1/(m − x + 1) ,
(small dots), and the linear thresholds β(x) = x (large dots) and β(x) = (

∑
i≤m

i−1)−1x

(solid – also corresponding to the power distribution with γ = −1), corresponding to the
standard linear step-up and to the distribution-free linear step-up of Benjamini and Yekutieli
(2001), respectively.

On Figure 2, we plotted the shape functions corresponding to different choices
of distributions ν (which are actually continuous, i.e., without applying the
discretization procedure mentioned above). It is clear that the choice of ν has
a large impact on the final number of rejections of the procedure. However,

Figure 3.2: Plot of m−1β associated to different ν according to expression (3.2): Dirac: ν = δµ,
with µ > 0. Gaussian: ν is the distribution of max(X, 1), where X ∼ N (µ, σ2) . Power : dν(u) =
uγ1{u ∈ [1,m]}du/

∫m
1 tγdt, γ ∈ R. Exponential : dν(u) = (1/λ) exp(−u/λ)1{u ∈ [0,m]}dr, with λ >

0. On each graph: Holm’s choice is m−1β(x) = 1/(m− x+ 1) (small dots); BH choice β(x) = x (large
dots); BY choice β(x) = x/

(∑
1≤i≤m 1/i

)
(solid).



3.2. EXTENSION TO A CONTINUOUS SPACE 29

by

FDP(R,P ) =
Λ(R ∩H0(θ))

Λ(R)
1{Λ(R ∩H0(θ)) > 0}, (3.3)

that is, by replacing the standard counting measure | · | by the volume measure Λ.

- weighted procedure [11, 60]: any multiple testing procedure can be “weighted” by replacing each
p-value pi(X) by its weighted counterpart p′i(X) = pi(X)/wi, for some weight vector (wi)1≤i≤m ∈
(R+)m (by convention 0/0 = 0). The condition (SC(β)) simply becomes

R ⊂ {1 ≤ i ≤ m : pi(X) ≤ αwiβ(Λ(R))/m}. (SC(w, β))

Note the difference between the two types of weighting: the first one is a modification of the criterion
(so changes the aim and the final interpretation) while the second one is a manner to use a wider range
of procedures. The presented methodology directly accomodate to these two weighting types1. As in
(3.1), under (SC(w, β)) and (DC(β)), the (Λ-weighted) FDR is upper bounded by

α
∑

i∈H0(θ)

Λ({i})wi/m. (3.4)

Hence, to control the Λ-weighted FDR at level αm0/m, the choice wi = 1/Λ({i}) seems to be ap-
propriate. In particular, for Λ being the counting measure, taking any weight vector (wi)1≤i≤m with∑m

i=1wi = m can be used to control the (original) FDR. This defines a the so-called family of “weighted
BH procedures”, which will be useful in Section 4.2. Many other choices are possible by tuning the
bound (3.4), that potentially combines the two types of weighting.

3.1.4 A conclusion

This “two conditions-based” methodology has the benefit to prove a great variety of FDR controls, so
avoid to reinvent a proof devoted to each particular configuration.

To provide a summarized illustration of the potential benefit that brings this methodology, let
us consider the following (exaggeratingly-)complex procedure: the step-up-down procedure of order
λ = bm/3c using the critical values τ` = α`(` + 1)(2` + 1)/(3m2(m + 1)) and the p-value p′i = pi/2
for half of the tested nulls and p′i = 2pi for the rest. Then, it controls the FDR at level αm0/m
under general dependence, that is, under (pvalueprop). While starting to write-down a devoted proof
seems difficult and tedious, (3.4) indicates a simple way to prove this result: first, (DC(β)) holds for
β(`) = `(`+ 1)(2`+ 1)/(3m(m+ 1)) because it is of the form (3.2) (by choosing ν({k}) proportional
to k). Second, (SC(w, β)) holds with suitably chosen weights wi ∈ {1/2, 2} (satisfying

∑m
i=1wi = m)

and with Λ({i}) = 1 for all i. This shows the result in an admittedly short manner.
Finally, let us emphasize that the task of adding complexity in FDR controlling procedures is not

only investigated for generality: it is often the first step when one wants to accurately adapt to a
specific feature of the underlying distribution P of the data, see Chapter 4.

3.2 Extension to a continuous space [P4]

1Note that it is the original setting of the paper [P6].
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3.2.1 Motivation

The standard framework of multiple testing is to consider a finite number of tests. However, when
the data can be modeled as depending on an underlying continuously-indexed parameter, it can be
desirable to make a decision for each t ∈ [0, 1] (say). We provide below two simple examples:

(i) A first example is the case where we observe

X(t) = µ(t) + ε(t), t ∈ [0, 1], (3.5)

where ε is a Gaussian process that is assumed to have continuous paths with E(ε(t)) = 0 and
Var(ε(t)) = 1 for all t ∈ [0, 1], while µ ∈ [0, 1] 7→ µ(t) = E[X(t)] is some (measurable) mean
function. This model is the analogue of the Gaussian framework of Section 2.1 in a continuous
setting. The process ε corresponds to the “noise”. For instance, it can be chosen as a (normalized)
Ornstein-Uhlenbeck process ε(t) = e−ct(We2ct−1 +ε(0)), whereW is a Wiener process and ε(0) ∼
N (0, 1) is independent of W . For the latter process, the covariance function in (s, t) is e−c|t−s|

hence c ∈ (0,∞) corresponds intuitively to the “strength” of the local dependence (c→∞ would
be independence while c → 0 would give a constant process). In this context, it is of interest
to test the null hypothesis H0,t : “µ(t) ≤ µ0(t)” against H1,t : “µ(t) > µ0(t)” for each location
t ∈ [0, 1], where µ0 contains some benchmark values. This gives rise to the p-value process

pt(X) = Φ(X(t)), t ∈ [0, 1]. (3.6)

(ii) As a second instance, let us consider a Poisson process X = (Nt)t∈[0,1] with intensity λ : [0, 1]→
R+ ∈ L1(dΛ), where Λ denotes the Lebesgue measure. In practice, this model can be used to
describe the (non-overlapping) word occurrence process in DNA sequences, see [122, 109]. Doing
so, a goal can be region detection, that is, finding the locations “t” that correspond to regions
“significantly richer” than a reference. Another example is the modeling of the read process in
next generation sequences (NGS), where regions with many reads are of interest, see [104]. A
setting is therefore to test the null hypothesis H0,t : “λ(t) ≤ λ0(t)” against H1,t : “λ(t) > λ0(t)”
in each location t ∈ [0, 1], where λ0 is some benchmark intensity. This gives rise to the p-value
process

pt(X) = Gt
(
N(t+η)∧1 −N(t−η)∨0

)
, t ∈ [0, 1]. (3.7)

where for any k ∈ N, Gt(k) denotes P(Z ≥ k) for Z following a Poisson distribution of parameter
δt,η = ((t+ η)∧ 1− (t− η)∨ 0)(λ0(t) +Lη). Here, η can be chosen arbitrary, and Lη is an upper
bound on sups,t:|s−t|≤η |λ(t)− λ(s)|.
Let us mention another option which avoids the bias term Lη into the p-value process: consider
the windows Iη(t) = [0, 1]∩ [t− η, t+ η] for t ∈ [0, 1] for some bandwidth η ∈ (0, 1) (to be chosen
by the user). Now, (3.7) is a p-value process for testing H0,t : “λ(s) ≤ λ0(s) for all s ∈ Iη(t)”
against H1,t : “∃s ∈ Iη(t) : λ(s) > λ0(s)” in each location t ∈ [0, 1], by simply choosing δt,η =∫
Iη(t) λ0(s)ds.

3.2.2 Continuous versions of FDR, step-up and PRDS

The problems raised above both concern the simultaneous test of a “continuous amount” of null hy-
potheses. Interestingly, the methodology described in Section 3.1 has already paved the way for the
case where the set of null hypotheses is continuous.

To start with, the setting described in Section 2.1 can be extended straightforwardly by supposing
that H0(θ), the set containing the elements t ∈ [0, 1] corresponding to a true null H0,t, is a measurable
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set of [0, 1] (with respect to the Borel σ-field). Also, as it was already proposed in [103, 9], the FDR can
be generalized to the continuous case directly by using the form (3.3), where Λ is some finite positive
measure on [0, 1], for instance the Lebesgue measure. Nevertheless, other multiple testing notions are
more difficult to generalize and require to solve specific issues, as we discuss below.

The first difficulty arises when considering a continuously-indexed p-value family (pt(X), t ∈ [0, 1]),
as in (3.6) or (3.7) in the above examples. Since our reasoning in (3.1) to establish FDR control relied
on a Fubini-type argument, the application (ω, t) 7→ pt(X(ω)) should be assumed (jointly) measurable
(with respect to the product σ-field). A primary consequence is that it precludes the possibility that
the p-values of (pt(X), t ∈ [0, 1]) are mutually independent (see, e.g., [108] page 36). This is a major
difference with the case where a finite number of null hypotheses are tested, for which independence is
generally considered as the standard case. By contrast, this measurability condition requires regularity
conditions on the paths of the observed process. It is satisfied in particular in the common case where
pt(X(ω)) is a càdlàg process, as in the two leading examples (i) and (ii) of Section 3.2.1 (see [P4] for
more details).

Second, we loose in general the definition of the step-up procedure via p-value ordering. We
considered the following alternative definition:

R(ω) = {t ∈ [0, 1] : pt(X(ω)) ≤ α r̂(X(ω))} (3.8)
r̂(X(ω)) = max{r ≥ 0 : Λ({t ∈ [0, 1] : pt(X(ω)) ≤ αr}) ≥ r}.

Again, we should check that ω 7→ r̂(X(ω)) is measurable, which comes from the joint measurability of
pt(X(ω)). While the formulation is more abstract than in the finite case, we have shown that we can
recover a traditional p-value ordered definition when the p-value process is a.s. piecewise constant (as
for Example (ii) of Section 3.2.1).

Third, the weak PRDS property should be adapted to the continuous context. To this end, the
p-value process (pt(X), t ∈ [0, 1]) is said finite dimensional weak PRDS on H0(θ) if for any finite
subset S ⊂ [0, 1], the finite p-value family (pt(X), t ∈ S) is weak PRDS on H0(θ) ∩ S in the sense of
(wPRDS). As a consequence, this notion of positive dependence is a property on the finite dimensional
distribution of the p-value process, which is convenient. For instance, in the context of Example (i)
of Section 3.2.1, the p-value process (3.6) is finite dimensional weak PRDS (on any subset) as soon as
the covariance function C of ε is such that C(s, t) ≥ 0 for all s, t ∈ [0, 1] (as for an Ornstein-Uhlenbeck
process for instance). We have also established the finite dimensional weak PRDS property for the
p-value process (3.7) of Example (ii), see the appendix of [P4].

3.2.3 Result

We can prove the following result.

Theorem 3.2. In the above continuous multiple testing setting, the (generalized) step-up procedure R
defined by (3.8) controls the (continuous) FDR at level α, provided that the p-value process is finite
dimensional weak PRDS on H0(θ).

The proof relies on an argument similar to (3.1). The crucial step is to establish that the (general-
ized) condition (DC(β)) holds if the p-value process is finite dimensional weak PRDS, which requires an
appropriate finite approximation of (generalized) step-up procedures. A consequence of Theorem 3.2
is that FDR controlling procedures can be derived both in Examples (i) and (ii) of Section 3.2.1.
Figure 3.3 provides an illustration for Example (ii) in the case where λ(t) is a truncated triangular
signal.

In conclusion, continuous testing is possible with FDR control, to the price of more abstract concepts
(e.g., for step-up procedure). However, one could argue that a practitioner would maybe prefer to
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Figure 3.3: Left: λ(t) (solid) and λ0 (dashed) versus t ∈ [0, 1]. Right: p-value process pt(X) defined by
(3.7) versus t ∈ [0, 1]. η = 0.015, α = 0.4. The grey areas indicate regions where the null hypotheses
are true.

discretize the set of null hypotheses and apply a standard BH procedure on the so-obtained finite
number of nulls. It would certainly lead to a similar rejection set at the end. Nevertheless, an
important property of a statistical modeling is to respect the deep nature of the data: if it is felt to be
continuous, it is more appropriate to consider a continuum of null hypotheses. This work has sowed
seeds in that direction.

3.3 Exact formulas for FDP with applications to LFCs [P16, P5]

In order to evaluate the type I/II error rate of a given procedure of interest, it is common to use a
simulation study. However, the noisy variation due to Monte-Carlo approximation can be undesirable,
especially when one wants to infer whether a probability is below a small quantity, say 0.05. Exact
formulas provide a suitable alternative, although we should take care of the combinatorial complexity
when m grows.

This section gathers some results of the papers [P16, P5], that investigate exact formulas for the
distribution of the FDP (2.6) of any step-up-down procedure (2.15), under independence of the p-values,
both with and without random effects (Mixture). This work follows a series of studies [132, 118, 48, 27],
in particular [51] and [30], tackling the cases m0 = m and (Dirac), respectively. Several applications of
these formulas are provided in [P16, P5], and we will present some of them at the end of the section.

3.3.1 Exact formulas

Our formulas rely on the following multidimensional distribution functions of order statistics: for any
t1, . . . , t` ∈ [0, 1], let us consider the probability

P(U(1) ≤ t1, . . . , U(`) ≤ t`), (3.9)

depending on the joint distribution of (Ui)1≤i≤` (the variables U(1) . . . U(`) being increasingly ordered).
When (Ui)1≤i≤` is a sequence of i.i.d. random variables uniformly distributed on (0, 1), the value
of (3.9) is denoted by Ψ`(t1, . . . , t`); when (Ui)1≤i≤` is a sequence of independent random variables,
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with (Ui)1≤i≤`0 uniformly distributed on (0, 1), and (Ui)`0+1≤i≤` having the distribution function F on
[0, 1] (two-population model), the value of (3.9) is denoted by Ψ`,`0,F (t1, . . . , t`). In the latter, ` ≥ 0,
0 ≤ `0 ≤ `, and Ψ0(·) = Ψ0,0,F (·) ≡ 1 by convention. The function Ψ`(·) can be evaluated by using
Steck’s recursion [127, p. 366–369], while computing Ψ`,`0,F (·) can be done by using another more
complex recursion, as we have shown in Proposition 1 of [P5]. The next result is the main contribution
of this section.

Theorem 3.3. Let R = SUDλ(τ) be a step-up-down procedure of order λ ∈ {1, ...,m} with critical
values τ`, ` = 1, . . . ,m. Assume that the p-value family (pi(X), 1 ≤ i ≤ m) satisfies (Full-Indep)
and (pvaluepropunif) and that the p-values of (pi(X), i ∈ H1) have a common distribution function F .
Then, the following holds:

(i) Under assumption (Mixture), for any π0 ∈ [0, 1], 0 ≤ ` ≤ m, 0 ≤ j ≤ `,

P(|R ∩H0| = j, |R| = `) =
{ Pm,π0,F (τ ∧ tλ, `, j) for ` < λ,
P̃m,π0,F (τ ∨ tλ, `, j) for ` ≥ λ. (3.10)

where Pm,π0,F (t1 · · · tm, `, j) and P̃m,π0,F (t1 · · · tm, `, j) are given by
(
m

j

)(
m− j
`− j

)
πj0π

`−j
1 (t`)j(F (t`))`−jΨm−`(1−G(tm), . . . , 1−G(t`+1)); (3.11)

(
m

j

)(
m− j
`− j

)
πj0π

`−j
1 (1−G(t`+1))m−`Ψ`,j,F (t1, . . . , t`), (3.12)

respectively, by letting G(t) = π0t+ (1− π0)F (t).

(ii) Without assumption (Mixture), for any m0 ∈ {0, . . . ,m}, 0 ≤ ` ≤ m, 0 ∨ (` −m + m0) ≤ j ≤
m0 ∧ `,

P(|R ∩H0| = j, |R| = `) =
{ Qm,m0,F (τ ∧ tλ, `, j) for ` < λ,
Q̃m,m0,F (τ ∨ tλ, `, j) for ` ≥ λ. (3.13)

where Qm,m0,F (t1 · · · tm, `, j) and Q̃m,m0,F (t1 · · · tm, `, j) are given by
(
m0

j

)(
m−m0

`− j

)
(t`)j(F (t`))`−jΨm−`,m0−j,F (1− tm, . . . , 1− t`+1); (3.14)

(
m0

j

)(
m−m0

`− j

)
(1− t`+1)m0−j(1− F (t`+1))m−m0−`+jΨ`,j,F (t1, . . . , t`), (3.15)

respectively, by letting F (t) = 1− F (1− t).

The above formulas provide the full (joint) distribution of (|R ∩ H0|, |R|) and therefore also the
distribution of the FDP (2.6). Obviously, this also implies explicit expressions for the FDR (2.7) by
taking the expectation. These computations were found to be numerically tractable up to m of the
order of several hundreds.

Let us provide a brief sketch of proof for these formulas. First, by definition of SUD procedures, it
is sufficient to look at SD and SU procedures separately. Second, a crucial property is exchangeability:
item (i) is obtained by using that the variable couples (pi, θi), 1 ≤ i ≤ m, are i.i.d. under (Mixture),
while item (ii) uses that both pi, i ∈ H0(θ), and pi, i ∈ H1(θ), are i.i.d. (the common distribution
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being uniform and F respectively). For instance, for a SD procedure and under assumption (Mixture),
the combinatoric argument is as follows:

P[|H0(θ) ∩ SD(τ)| = j, |SD(τ)| = `]

=
(
`

j

)(
m

`

)
P[SD(τ) = {1, ..., `}, Ej,`]

=
(
`

j

)(
m

`

)
P
[
∀`′ ≤ `,

∑̀

i=1

1{pi ≤ τ`′} ≥ `′, ∀i ≥ `+ 1, pi > τ`+1, Ej,`
]

=
(
`

j

)
πj0π

`−j
1 P

[
∀`′ ≤ `,

∑̀

i=1

1{pi ≤ τ`′} ≥ `′
∣∣∣∣ Ej,`

](
m

`

)
(1−G(τ`+1))m−`

= P̃m,π0,F (τ1 · · · τm, `, j),

where Ej,` denotes the event “θ1 = ... = θj = 0, θj+1 = ... = θ` = 1”. This leads to (3.12).

Going back to Theorem 3.3, Assumption (Mixture) allows a markedly simple expression for the
distribution of the FDP of a step-up procedure, only depending on functions Ψm−`(·), 1 ≤ ` ≤ m.
As a matter of fact, formula (3.10) relies on the striking fact that, conditionally on |SU(τ)| = `,
the number of false discoveries |SU(τ) ∩ H0(θ)| follows a binomial distribution of parameters ` and
π0τ`/G(τ`). For a step-down procedure, we can show that such a property is not true in general.
However, further investigations show that the FDR of a step-down procedure can still be derived only
in function of the Ψ`’s (and not the Ψ`,j,F ’s), see Theorem 3.2 in [P16].

3.3.2 Application to least favorable configurations

Now that we have at hand these new formulas, we can examine the issue of assessing whether the
configuration (Dirac) (i.e., F ≡ 1) maximizes the FDR, or, in other words, whether this configuration
is a “least favorable configuration” (LFC) for the FDR. For a step-up procedure SU(τ), this holds
provided that ` 7→ τ`/` is nondecreasing, see [14]. By using the new formulas, Theorem 4.1 in [P16]
contributes to solve the question for a step-down procedure: under (Mixture), it shows that F ≡ 1 is
an LFC for the FDR of SD(τ) (over the set of concave F ) if the following function is nondecreasing:

` ∈ {1, ...,m} 7→
m−∑̀

i=0

τ`
`+ i

(
m− `
i

)(
1− τ`+i+1

1− τ`

)m−`−i
Ψi

((
τ`+j − τ`

1− τ`

)

1≤j≤i

)
.

For instance, after some calculations, we can check that the latter condition is satisfied for the critical
values τ` = α`/m, 1 ≤ ` ≤ m.

Now, still for τ` = α`/m, 1 ≤ ` ≤ m, since F ≡ 1 is an LFC for the FDR both for SD(τ) and SU(τ),
it is natural to conjecture that this assertion can be extended to the case of a general step-up-down
procedure SUDλ(τ) which is neither step-up nor step-down (i.e., λ /∈ {1,m}). While Theorem 1 in [67]
validates the latter asymptotically (when m → ∞), our exact formulas can be used to disprove the
conjecture numerically.

Let us consider the one-sided Gaussian model fulfilling (Full-Indep) and (Mixture). The alternative
means are supposed constant, with common value ∆. Figure 3.4 exhibits a case where the FDR is not
maximal in the case F ≡ 1 (corresponding to “∆ = ∞” on the graph). This striking fact has been
studied in detail in [P5]: the amplitude of the violation has been upper bounded by a quantity that
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Figure 3.4: FDR of SUDλ(τ) for τ` = α`/m as a function of the order λ ∈ {1, . . . ,m}. α = 0.5. One-
sided Gaussian model under (Full-Indep) and (Mixture) with an alternative mean ∆ and π0 = 0.7.
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Figure 3.5: Exact probability P(FDP(BH, P ) ∈ [i/50, (i + 1)/50)) for 0 ≤ i ≤ 50. The value of
FDR(BH, P ) = π0α is displayed by the vertical dashed line. α = 0.5, m = 100. One-sided Gaussian
model under (Full-Indep) and (Mixture) with an alternative mean ∆.

converges to 0 at a specific rate as m grows to infinity. Let us also mention that [P5] provides an
asymptotical study of step-up-down procedures which is of independent interest.
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Finally, let us go back to our initial motivation with Figure 3.5. It displays the distribution of
FDP(BH, P ) on the basis of the formulas of Theorem 3.3 under (Mixture) for some values of ∆ and π0.
Let us emphasize that this distribution is exact and does not rely on any Monte-Carlo approximation.
This puts forward the lack of concentration of the FDP around the FDR when either ∆ is small (low
signal strength) or π0 is close to 1 (sparsity). A consequence is that, even if the BH procedure has
a FDR below α, its true underlying FDP is not necessarily near π0α. An elementary explanation is
that only few rejections are made in that case (i.e., |R| is small): this prevents the FDP to be close2

to some arbitrary quantity.

2let us also mention that we will see in Section 5.2 that such a lack of concentration can also be met for a large
rejection number if there are important dependencies between the p-values. This is much more problematic.



Chapter 4

Adaptive procedures under independence

· · · · · ·

This chapter presents two studies that aim at building adaptive procedures in the context of
independence between the p-values. While the first study looks at adaptation w.r.t. the proportion of
true null hypotheses, the second one deals with an adaptation w.r.t. the marginal distribution of the
p-values under the alternative. Both work aim at building FDR controlling procedures more powerful
than the BH procedure.

4.1 Adaptation to the proportion of true nulls [P7]

4.1.1 Background

In Theorem 2.2, the FDR control is provided at level π0α instead of α, for π0 = m0/m. Hence, when
π0 is not close to 1, this gap entails an inevitable loss of power. If π0 is known, a simple way to solve
this issue is to use the BH procedure at level α/π0 instead of α, that is, to use the step-up procedure
with critical values π−1

0 α`/m, ` ∈ {1, . . . ,m}. The latter is classically called the oracle BH procedure.
By Theorem 2.2, it controls the FDR under an independence or PRDS assumption. However, π0 is
often unknown and we should estimate π0, or more precisely

ϑ = π−1
0

(with the notation of Section 2.5.2) and then incorporate this estimator in the critical values in a way
that still provides FDR control.

The question of estimating π0 is a wide and rich research field of independent interest, which started
with the work of Tore Schweder and Emil Spjøtvoll (1982) [123] and has undertaken developments of
various natures, including histogram estimators [25], kernel estimators [99], Fourier transform [82, 81]
and optimality results [23, 100]. The problem of finding π0-adaptive procedures is slightly different in
the sense that we should focus on estimators simple enough to have a convenient behavior when used
in combination with a step-up procedure. This issue has been initially proposed in [12], and has been
followed by many work, either asymptotic [59, 134, 98, 49, 99], or nonasymptotic, e.g., [17, 13, 119].
Our contribution [P7] lies in the last category and is the topic of this section.

4.1.2 One-stage adaptive procedures

A first class of adaptive procedures is the class of one-stage adaptive procedures. Such procedures
perform a single round of step-wise adjustment and are based on particular deterministic critical

37
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values that render them adaptive. A contribution of [P7] was to introduce a new one-stage adaptive
procedure. For λ ∈ (0, 1), consider the step-up procedure SU(τ) using the critical values

τ` = min
(

(1− λ)
α`

m− `+ 1
, λ

)
, 1 ≤ ` ≤ m, (4.1)

which we denote by BR-1S-λ (or simply BR-1S). We have proved the following FDR control.

Theorem 4.1. Let λ ∈ (0, 1). Assume that the p-value family satisfies (pvalueprop) and (Full-Indep),
then BR-1S-λ controls the FDR at level α.

Compared to the critical values of the BH procedure, those in (4.1) include an implicit “step-wise”
estimation of π−1

0 by the quantity (1−λ)m/(m− `+ 1) (up to the λ-capping), where ` is the “current”
number of rejections. For comparison purpose, we have displayed these critical values on Figure 4.1,
together with those coming from the asymptotically optimal rejection curve (AORC): α`/(m−(1−α)`),
1 ≤ ` ≤ m, which defines a one-stage step-up procedure which is shown to be asymptotically optimal,
see [49]. Here, the BR-1S critical values, although dominated, are admittedly close to the AORC
critical values (before the capping). The capping by λ into (4.1) is required to prevent the estimator
of π−1

0 to be too large and thus to provide the desired FDR control. Also note that the AORC does
not control the FDR as it is, because the largest critical value is equal to 1; hence the corresponding
step-up procedure always rejects all the nulls. Several modifications have been proposed in [49] in order
to control the FDR asymptotically, the simplest one being to take min

(
α`/(m− (1− α)`), η−1α`/m

)
,

1 ≤ ` ≤ m, for some parameter η ∈ (0, 1). It is denoted by FDR09-η in Figure 4.1. Let us also mention
that the step-down version of the AORC controls the FDR nonasymptotically (up to add “+1” in the
denominator) as proved by [57]. We also refer the reader to [50] for recent developments on AORC
modifications.

BLANCHARD AND ROQUAIN

prove that this correction is suitable as well for the linear step-up procedure, in the framework of
FDR control.

If r denotes the final number of rejections of the new one-stage procedure, we can interpret
the ratio (1−α)m

m−r+1 between the adaptive threshold and the LSU threshold at the same point as an a
posteriori estimate for π−10 . In the next section we propose to use this quantity in a plug-in, two-
stage adaptive procedure.

As Figure 1 illustrates, our procedure is generally less conservative than the (non-adaptive)
linear step-up procedure (LSU). Precisely, the new procedure can only be more conservative than
the LSU procedure in the marginal case where the factor (1−α)m

m−i+1 is smaller than one. This happens
only when the proportion of null hypotheses rejected by the LSU procedure is positive but less
than α+ 1/m (and even in this region the ratio of the two threshold collections is never less than
(1−α) ). Roughly speaking, this situation with only few rejections can only happen if there are few
false hypotheses to begin with (π0 close to 1) or if the false hypotheses are very difficult to detect
(the distribution of false p-values is close to being uniform).

In the interest of being more specific, we briefly investigate this issue in the next lemma, con-
sidering the particular Gaussian random effects model (which is relatively standard in the multiple
testing literature, see, for example, Genovese and Wasserman, 2004) in order to give a quantitative
answer from an asymptotical point of view (when the number of tested hypotheses grows to infinity).
In the random effect model, hypotheses are assumed to be randomly true or false with probability
π0 , and the false null hypotheses share a common distribution P1 . Globally, the p-values then are
i.i.d. drawn according to the mixture distribution π0U [0,1]+ (1−π0)P1 .
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Figure 1: For m = 1000 null hypotheses and α = 5%: comparison of the new threshold collection
BR-1S-λ given by (4) to that of the LSU, the AORC and FDR09-η .
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Figure 4.1: Comparison of critical values (4.1) to that of the BH (denoted LSU), the AORC and
FDR09-η, see text. m = 1000, α = 0.05.
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4.1.3 Two-stage adaptive procedures

A second class of adaptive procedures is the class of plug-in adaptive procedures, which use the critical
values

τ` = ϑ̂ α`/m, 1 ≤ ` ≤ m, (4.2)

where ϑ̂ is an estimator of π−1
0 , taken as a function of the p-value family (pi(X), 1 ≤ i ≤ m). For

instance, this estimator can be obtained via a first round of multiple testing procedure R0, in which
case the plug-in procedure is said two-stage. The next result is an unified reformulation of the results
presented in [13].

Theorem 4.2. Assume that the p-value family satisfies (pvalueprop) and (Full-Indep). Consider an
estimator ϑ̂ which is a coordinate-wise nonincreasing function of the p-value family (pi(X), 1 ≤ i ≤ m).
Then the step-up procedure SU(τ) with τ given by (4.2) has an FDR smaller than or equal to αbm,
where

bm = max
1≤u≤m

{ u
m

EDU(m,u−1)

(
ϑ̂
)}

, (4.3)

in which DU(m, j) denotes the configuration where the j first p-values are i.i.d. U(0, 1) and the m− j
others are equal to 0. Furthermore, the following estimators are such that bm ≤ 1 and thus entails an
FDR bounded by α:

[Storey-λ] ϑ̂1 =
(1− λ)m∑m

i=1 1{pi > λ}+ 1
;

[Quant-k0/m] ϑ̂2 =
(1− p(k0))m
m− k0 + 1

;

[BKY06-λ] ϑ̂3 =
(1− λ)m

m− |R0|+ 1
, where R0 is the standard BH procedure at level λ ;

[BR-2S-λ] ϑ̂4 =
(1− λ)m

m− |R′0|+ 1
, where R′0 is BR-1S-λ,

in which λ ∈ (0, 1) and k0 ∈ {1, . . . ,m} are fixed parameters.

The first part of Theorem 4.2 can be proved by using the methodology developed in Section 3.1. In
addition, the monotonic property of ϑ̂ implies that the DU(m,m0−1) configuration is least favorable,
which leads to the bound (4.3). The second part of Theorem 4.2 mainly uses that for k ≥ 2, q ∈ (0, 1],
a binomial random variable Y with parameter (k − 1, q) satisfies E((1 + Y )−1) = 1/(kq), as already
shown in [13].

The estimators defining “Storey-λ”, “Quant-k0m ” and “BKY06-λ” have been introduced in [132], [12]
and [13]1, respectively. “BR-2S-λ” is a new two-stage adaptive procedure which uses in the first stage
the new adaptive procedure “BR-1S-λ”.

4.1.4 Robustness to dependence

Which adaptive procedures should be used in practice? To address this issue, a possible angle is to
find a procedure which is both powerful under independence and robust to dependence, for instance in
the one-sided Gaussian ρ-equicorrelated case (Gauss-ρ-equi). First, standard calculations when ρ = 1
suggest to use λ = α in the above procedures. Second, an extensive simulation study making varying
the alternative mean, π0 and ρ shows that the adaptive plug-in procedure Storey-α seems to be a good
power/robustness tradeoff and so we recommend it in priority. This recommendation is noticeably

1More precisely, the estimator in [13] does not use the “+1” in the denominator.
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different than the standard choice λ = 1/2 of [131], which substantially lacks of robustness in our
simulations (as already reported in [13]), because of the variance of the corresponding π−1

0 -estimator.
In addition, let us note that an asymptotic study of some of these adaptive procedures has been

made in [98]. Interestingly, while connections between BKY06 and BR-1S are proposed, it is also
proved that BR-1S is asymptotically more powerful than BKY06 for π0 large enough.

Finally, let us mention that we have also2 provided in this work an adaptive two-stage procedure
that controls the FDR at level α under (PRDS). It uses the critical values

τ` =
α`

2m

(
1− (2|R0|/m− 1)1/2

+

)−1
, 1 ≤ ` ≤ m,

where R0 is the BH procedure at level α/4. Although this is among the first results that provide
adaptiveness under dependence, it is shown to improve the standard BH procedure only over a narrow
range where π0 has very small values. The reason is that the underlying π−1

0 -estimator is built upon
Markov’s inequality, which is not very accurate. Interestingly, a way to improve the power of our
procedure has been recently proposed in [71], by incorporating the values of the pairwise correlation
between the test statistics (e.g., the value of ρ under (Gauss-ρ-equi)).

4.2 Adaptation to the alternative structure [P15]

4.2.1 Motivation

In this section, we consider the case where the null hypotheses are not “equally treated” in the data,
because the alternative p-value marginal distributions are heterogeneous. This is the case when the
sample size available to test each null varies across the null hypotheses. Let us provide below two such
examples.

• Adequate yearly progress (AYP) data3 collect the academic performance of California high schools
and have been presented as reference data for the multiple testing problem by Bradley Efron
[41, 42]. These data report the academical performances of students together with several char-
acteristics, as the socioeconomic status. One issue is then to detect the schools where the perfor-
mance difference between economically advantaged and disadvantaged students is significantly
larger than a reference. This can be studied by using a multiple testing procedure, for which the
m tested items are the schools. In [24], it is pointed out that “the number of scores reported by
each school varies from less than a hundred to more than ten thousands”. Hence, ignoring the
school size would inevitably advantage the large schools, because they have more experiments at
hand to detect a signal of a given strength.

• In typical microarray experiments, we want to find the genes that are differentially expressed
between two groups (see Section 1.3). Now, assume that the groups are built according to a
binary covariate which characterizes the gene (e.g., the DNA copy number alteration “normal”
or “amplified”), which makes the group sizes different across the genes. Then, a two-sample test
will be more able to discover an effect when the group sizes are balanced (e.g., n vs n more
favorable than 2 vs 2n−2). Here, again, performing a multiple test that ignores this information
would inevitably give more “detection chance” to genes related to balanced groups, just because
the corresponding individual tests are more efficient, and not because the signal is stronger.

2Additional results were provided in [P7], including a procedure controlling the FDR under general dependence which
is based on β-functions (3.2).

3Data mandated by the “No Child Left Behind Act of 2001”; available at http://www.cde.ca.gov/ta/ac/ay/

http://www.cde.ca.gov/ta/ac/ay/
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4.2.2 Optimal p-value weighting

The examples above show that it is desirable to incorporate the heterogeneous structure in our multiple
testing decision. For this, a natural approach is the p-value weighting: before applying the multiple
testing procedure, we replace each initial p-value pi(X) by its weighted counterpart p′i(X) = pi(X)/wi,
for some weight vector w = (wi)1≤i≤m ∈ (R+)m, with the conventions 0/0 = 0, 1/0 = ∞. One major
issue is then to find the weight vector w? that is the most suitable for the heterogeneous structure,
which is called the optimal weight vector.

For FWER control and by using the weighted Bonferroni procedure, the optimal weighting has
been found in [117, 142, 110]. For the FDR, however, while it is shown that “informative” weighting
can improve the BH procedure [60], no such optimal weighting were derived. The goal of our study
[P15] is to provide such an optimality result.

For simplicity, let us consider the one-sided Gaussian framework under assumptions
(pvaluepropunif), (Full-Indep) and (Mixture)4. In that case, the p-values are independent and for
each i = 1, . . . ,m, the variable pi(X) has (unconditionally) for distribution function

Gi(t) = π0t+ π1Φ(Φ−1(t)− µi), t ∈ [0, 1], (4.4)

for some overall vector µ = (µi)1≤i≤m of candidate (positive) alternative means. The optimization
problem can be set as follows (with the notation of Section 2.5.2): given

ϑ = µ,

what is the optimal weight vector w? that maximizes the power (2.9) of the weighted BH procedure?
Unfortunately, this maximization problem seems intractable, because the BH threshold is both data
dependent and defined by a self-referring condition. The solution we have chosen is based on the
following simple observation, based on [117, 142, 110]:

Lemma 4.3. Consider the set W = {w = (wi)1≤i≤m ∈ (R+)m :
∑m

i=1wi = m} containing all the pos-
sible weight vectors. For each u ∈ [0, 1], the function

w ∈ W 7→ Powu(w) = (π1/m)
m∑

i=1

Φ
(

Φ−1(wiαu)− µi
)

(4.5)

attains its maximum in w?(u) given by

w?i (u) = (αu)−1Φ
(
µi
2

+
c(u)
µi

)
, 1 ≤ i ≤ m, (4.6)

where c(u) is the unique element of R such that
∑m

i=1w
?
i (u) = m.

Above, Powu(w) is the power of the procedure R = {1 ≤ i ≤ m : pi(X) ≤ wiαu}, which intuitively
corresponds to the “weighted BH procedure at rejection proportion u”. Figure 4.2 displays the shape
of w?i (u), 1 ≤ i ≤ m. Interestingly, for a given u, the weighting w?(u) favors the nulls in a “moderate
regime” of alternative means. An explanation is that, in order to maximize Powu(w), this weighting
“sacrifizes” the µi’s “too small” because they will not entail a small p-value (with high probability)
and thus would not contribute into Powu(w) anyway. At the opposite side, this weighting does not
“help” the µi’s “too large” because they will generate a small p-value (with high probability) and thus
would contribute into Powu(w) anyway. Additionally, observe that, as expected, the range of this
moderate regime is strongly affected by the value of u. This indicates that a strategy focusing on a
prescribed single weight vector w?(u0) (say u0 = 1) is certainly suboptimal. Hence, we propose to use
simultaneously all the weighting vectors with the following new procedure:

4Different alternative distributions can be used; sufficient conditions are given in [P15]
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Fig 1. Plot of the optimal weights (W !
i (u))i in function of the alternative means (µi)i, for u =

1/m (solid), u = 10/m (dashed-dotted), u = 100/m (dotted), u = 1 (dashed). Unconditional
model and Gaussian one-sided case with m = 1000, α = 0.05, µi = 5i/m for i = 1, ...,m.
Each curve is normalized to have a maximum equal to 1.

which may depend on u. For this, we extend the definition of weighted linear
procedures to the case of multi-weighted procedures.

First, we define the threshold collection ∆ = (∆i(u))i,u associated to a given
weight function W(·) = (Wi(·))i by ∀i ∈ {1, ..., m}, ∀u ∈ [0, 1],

∆i(u) := α Wi(u) u if u > 0 and ∆i(0) := 0.

Conversely, given any threshold collection ∆ = (∆i(u))i,u such that each ∆i is
nonnegative, nondecreasing on [0, 1] and such that ∀u ∈ (0, 1], m−1

∑
i ∆i(u) =

αu, we define the weight function W = (Wi(u))i,u associated to ∆ by ∀i ∈
{1, ..., m}, ∀u ∈ (0, 1], Wi(u) := ∆i(u)/(αu). As a consequence, the threshold
collection ∆ and the weight function W are one to one associated.

Definition 3.3. Consider a weight function W(·) = (Wi(·))i and its associ-
ated threshold collection ∆. The multi-weighted step-up procedure with weight
function W, denoted by SU(W), rejects the i-th null hypothesis if pi ≤ ∆i(û),
where

û = I(ĜW), (12)

and where we denoted ĜW(u) := m−1
∑m

i=1 1{pi ≤ ∆i(u)} for all u ∈ [0, 1].

In particular, in the case where for all u, Wi(u) = wi is independent of u, the
procedure SU(W) reduces to LSU(w). More generally, the above definition of
SU(W) allows to choose thresholding ∆i(u) not linear in u.

As for LSU(w), the multi-weighted procedure SU(W) can also be derived
from a re-ordering based algorithm. The main difference is that the original p-
values are ordered in several ways, because several weighting are used. Namely,
if for r ≥ 1, qr denotes the r-th smallest W(r/m)-weighted p-value i.e. is equal

imsart-ejs ver. 2007/09/18 file: RW2009EJS.tex date: July 2, 2009

Figure 4.2: Plot w?i (u) in function of µi = 5i/m, 1 ≤ i ≤ m for several values of u; u = 1/m (solid),
u = 10/m (dashed-dotted), u = 100/m (dotted), u = 1 (dashed). m = 1000, α = 0.05. Each curve is
normalized to have a maximum equal to 1.

Algorithm 4.4. [Optimal multi-weighted BH procedure at level α]

- Compute the weighting vectors w?(`/m), for ` ∈ {1, . . . ,m} according to (4.6);

- For each ` ∈ {1, . . . ,m}, compute q`(X) the `-th smallest w?(`/m)-weighted p-value, i.e., q`(X) =
p′(`)(X) where p′(1)(X) ≤ · · · ≤ p′(m)(X) are the ordered values of p′i(X) = pi(X)/w?i (`/m),
1 ≤ i ≤ m. Let also q0 = 0 by convention;

- consider the integer ̂̀= max{` ∈ {0, 1, . . . ,m} : q` ≤ α`/m};

- finally let R =
{

1 ≤ i ≤ m : pi(X) ≤ w?i (̂̀/m)α̂̀/m
}
.

The main innovation of this procedure is that the p-values are ordered in several ways, sequentially
and according to the weight vector that suits the best to each considered rejection number. It is
therefore a good candidate to outperform all the weighted BH procedures.

4.2.3 Results

Unfortunately, we can show that, in general, the multiple testing procedure defined by Algorithm 4.4
looses the finite sample FDR control at level α (even in this independent setting). This comes from
the additional variations generated by the term w?(̂̀/m). Instead, we have proved that replacing the
weighting w?i (u) by w?i (u)/(1+αw?i (1)) into Algorithm 4.4 ensures the finite sample FDR control. Also,
we have stated the finite sample optimality of Algorithm 4.4 (up to some remainder terms) by using
concentration inequalities. For the sake of simplicity we report below only the asymptotic counterparts
of these results in the case where the signal strengths, i.e., the µi’s, are “grouped”5.

Let us consider the case where the values of µ are structured into D ≥ 2 clusters A(m)
d , 1 ≤ d ≤ D,

that is, where for all d and i ∈ A
(m)
d , µi = ∆d, for some fixed positive values ∆d, 1 ≤ d ≤ D, not

depending on m. Further assume that |A(m)
d |/m is converging to some value as m tends to infinity, for

all d. Here, note that the clusters are assumed to be known and given a priori. For instance, in AYP
data of Section 4.2.1, the clusters can be built according to small, medium and large schools.

To study the asymptotic behavior of the weighted BH procedure in that grouped context, it is
natural to introduce the class of grouped weight vector sequences (w(m))m, which contains weight

5In [P15], the asymptotic optimality is also shown for µi of the form ψ(i/m) for some continuous function ψ.
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vectors with values w(m)
i , 1 ≤ i ≤ m that are constant on each cluster (also these values are supposed

to converge as m tends to infinity). Then the following result holds.

Theorem 4.5. In the above grouped setting, let us denote by R?m the optimal multi-weighted BH
procedure defined by Algorithm 4.4 and by BHm(w(m)) the w(m)-weighted BH procedure, for some given
weight vector w(m). Then, as m grows to infinity, we have

(i) limm FDR(R?m) ≤ π0 α;

(ii) limm Pow(R?m) ≥ max(w(m))m

{
limm Pow

(
BHm

(
w(m)

))}
, where the maximum is taken over all

the grouped weight vector sequences.

Let us underline that the potential benefit of the new procedure has been evaluated by using
simulations in [P15]: the obtained graphs are satisfactory: compared to the (uniformly weighted) BH
procedure, the new optimal procedure can make more than 0.15 × m1 additional true discoveries.
Hence, taking into account the heterogeneity of the alternatives is definitely useful to increase power.

In addition, let us go back to the real data microarray motivation (second example in Section 4.2.1).
We have applied the optimal multi-weighted procedure on the data [97] (displayed in Figure 1.4) and
it overall increases the number of rejections w.r.t. a standard BH procedure, see [P15] for more details.
Nevertheless, in this data analysis, the µi’s are chosen from the sample sizes by using an estimator
of a “global effect size”. Strictly speaking, this makes the µi’s data-depend which is not allowed in
our theoretical investigations. Hence, the corresponding statistical analysis is not fully theoretically
supported. More generally, the investigations made in this section mainly concern the oracle part of
the adaptation, because the optimal weighting depends on the true alternative means, which are often
unknown.

Since our work, some advances have been done to incorporate data-driven weighting in the case of
grouped nulls: while a way to incorporate the possible heterogeneity structure of the proportion of true
nulls has been proposed in [76], the issue left open in our work has been investigated in [144]. The latter
work provides one-stage and two-stage data-driven weighted procedures and both an asymptotical FDR
control and an asymptotical improvement over the BH procedure are proved. However, obtaining an
asymptotical optimal procedure with data-driven weights seems yet to be an unsolved issue.
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Chapter 5

Adaptation to the dependence structure

· · · · · ·

This chapter deals with adaptation with respect to the dependence structure. In Section 5.1, we
first present the method of Joseph P. Romano and Michael Wolf (2005) [115], which provides a general
solution to the problem of adaptive FWER control via randomized p-values. This method, which can
be used with any randomization tool, is then applied with a sign-flipping technique. By contrast,
the case of FDR/FDP control is more puzzling. Section 5.2 contributes to address the oracle part
of the problem (i.e., when the dependence is known), by exploring a general heuristic proposed by
Joseph P. Romano and Michael Wolf (2007) [116]. Finally, in Section 5.3, the adaptation to the
unknown dependence structure is investigated by exploring another type of solution, that combines
the dependence structure estimation (via clustering) with the hierarchical FWER control. The basic
tool is the sequential rejection principle developed in [63].

5.1 Adaptive FWER control [P3]

This section presents a first1 contribution of our work [P3], which is to provide a new application of
the general approach of [115] (called RW’s method below) in combination with a specific randomization
technic, often referred to as “symmetrization”. It can be seen as a variation of Example 5 in [115] which
was investigated in the permutation case. Sections 5.3 and 6.1 will rely on similar arguments.

5.1.1 Reformulating Romano-Wolf’s general method

In a nutshell, the FWER control corresponds to control the infimum of p-values; more formally, for a
multiple testing procedure R rejecting nulls with a p-value pi(X) such that pi(X) < t̂,2 we have

FWER(R,P ) = P(|R ∩H0(θ)| ≥ 1) = P(∃ i ∈ H0(θ) : pi(X) < t̂) = P
(

inf
i∈H0(θ)

{pi(X)} < t̂

)
.

Hence, the ideal threshold t̂ is sup
{
t : P

(
infi∈H0(θ){pi(X)} < t

)
≤ α

}
, the α-quantile3 of the distri-

bution of infi∈H0(θ){pi(X)}. While the latter depends on the joint distribution of the p-values under
the null, it also primarily involves the unknown set H0(θ). Hence, a step of H0(θ) “localization” is
needed.

1A second contribution of [P3] will be presented in Section 6.1.
2Here, by contrast with (2.2), the inequality is taken strict.
3Note that this corresponds to use the standard definition of the quantile function on the test statistic scale: for any

one-to-one decreasing function ψ, we have bt = ψ−1(bs), where bs = inf
n
s : P

“
supi∈H0(θ){ψ(pi(X))} ≤ s

”
≥ 1− α

o
.
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Let us consider t̂ = t̂H0(θ) as a member of a subset-indexed threshold collection {t̂C , C ⊂ {1, . . . ,m}},
with the property

∀P ∈ P, for C = H0(θ(P )), P
(

inf
i∈C
{pi(X)} < t̂C

)
≤ α. (5.1)

While an union bound would yield tC = α/|C|, more accurate thresholds learning the dependence
structure can be provided via randomized tests, as we will investigated in Section 5.1.3 in the Gaussian
case. Now, the RW method provides an FWER control from (5.1), by only assuming a monotonic
assumption on the family of thresholds: namely,

∀C, C′ ⊂ {1, . . . ,m} such that C ⊂ C′, we have t̂C ≥ t̂C′ (pointwise). (5.2)

Let us mention that a benefit of the RW approach is that (5.2) replaces the quite undesirable “subset
pivotality condition”, roughly supposing the presence of an “overall least favorable null distribution”,
see [143] and [31].

Single step procedure By using successively (5.2) and (5.1), an FWER controlling procedure can
be easily derived by taking C = {1, . . . ,m}, that is,

R1 = {1 ≤ i ≤ m : pi(X) < t̂{1,...,m}}.

Indeed, the FWER of R1 is upper bounded by the quantity

P
(

inf
i∈H0(θ)

{pi(X)} < t̂{1,...,m}

)
≤ P

(
inf

i∈H0(θ)
{pi(X)} < t̂H0(θ)

)
≤ α.

The procedure R1 is generally called single step, because only t̂{1,...,m} is used. However, the latter can
be too conservative w.r.t. the ideal threshold t̂H0(θ), especially when the set H0(θ) is “small” or when
t̂C is inaccurately designed when C exceeds H0(θ)4.

Step-down procedure To improve over R1, consider the following iterative approach: take the set
Rc1 corresponding to the nulls that are not rejected by R1 and then apply the single step procedure
in restriction to Rc1, i.e., use the threshold t̂Rc1 ≥ t̂{1,...,m}. This gives a new rejection set R2 ⊃ R1.
Now, iteratively repeat this operation and stop the first time that no new null is rejected, say for Rbk.
Finally reject Rbk.

Quite strikingly, this way to increase the number of discoveries maintains the FWER control, as
the following result shows.

Theorem 5.1 ([115]). Consider any threshold collection {t̂C , C ⊂ {1, . . . ,m}} satisfying (5.1) and
(5.2). Consider the iterative sequence of rejection sets starting with R0 = ∅ and such that for all k ≥ 1,

Rk = {1 ≤ i ≤ m : pi(X) < t̂Rck−1
},

with the stopping rule k̂ = min{k ≥ 1 : Rk = Rk−1}. Then the multiple testing procedure Rbk controls
the FWER at level α.

4This can be due to randomization technics generating a “bad H0 distribution”. An instance is given in Section 6.1.4
in a Gaussian setting.
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Markedly, a “one-line proof” can be built for Theorem 5.1 by using the following acceptance func-
tional

A(C) = {1 ≤ i ≤ m : pi ≥ t̂C},
which is nondecreasing, that is, ∀C, C′ such that C ⊂ C′, A(C) ⊂ A(C′), by (5.2). Now, the argument is
that on the event Ω0 = {H0 ⊂ A(H0)}, we have for all C ⊂ {1, . . . ,m},

H0 ⊂ C implies A(H0) ⊂ A(C) and thus H0 ⊂ A(C).

Hence, on the event Ω0, all the procedures Rk described in Theorem 5.1 do not make false discoveries.
The proof is finished because Ω0 holds with probability at least 1− α by (5.1).

As a first instance, we apply Theorem 5.1 with the threshold family defined by tC = α/|C|, which
satisfies both (5.1) and (5.2). The resulting procedure turns out to be the standard procedure of [75],
that is, the step-down procedure SD(τ) with critical values τ` = α/(m − ` + 1), 1 ≤ ` ≤ m. This
equivalence is illustrated on Figure 5.1. The left picture is the classical step-down representation (the
filled points represent p-values that correspond to the rejected nulls). The right picture illustrates the
algorithm of Theorem 5.1 by displaying the k̂ = 3 thresholds α/10 (step 1), α/7 (step 2) and α/5 (step
3) (for i ∈ {1, 2}, the points filled with the symbol “i” are rejected at the i-th step of the algorithm).
Both pictures use the same realization of the p-values for m = 10 and α = 0.5.
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Figure 5.1: Illustration of the two equivalent definitions of Holm’s procedure, see text.

However, notice that Holm’s procedure does not take into account the dependencies. As an extreme
instance, if all the p-values are equal, Holm’s procedure ignores it and use tC = α/|C| instead of tC = α.
This results in a huge loss of power. This raises the question of finding a better threshold collection
{t̂C , C ⊂ {1, . . . ,m}} that incorporates the dependence.

5.1.2 Oracle adaptive FWER control

In this section, we consider the case where the dependencies between the p-values is known. From
now, let us focus on the two-sided Gaussian setting defined in Section 2.1, in which X ∼ N (µ,Γ) and
pi = 2Φ(|Xi|). For any distribution Q on Rm, we let

qα(C, Q) = sup
{
t ∈ [0, 1] : PZ∼Q

(
inf
i∈C
{2Φ(|Zi|)} < t

)
≤ α

}
(5.3)
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the α-quantile of the distribution of infi∈C{2Φ(|Zi|)} whenever Z ∼ Q.
Conveniently, in the Gaussian case, (5.1) is satisfied by taking t̂C equal to qα(C, Q0), with Q0 =

N (0,Γ) and where qα(C, ·) is defined by (5.3). Since this threshold family also satisfies (5.2), applying
Theorem 5.1 directly yields an adaptive FWER controlling procedure.

To evaluate the potential benefit of the above threshold collection, let us consider the case of
equi-correlation (Gauss-ρ-equi). First, by exchangeability, tC only depends on |C| so that RW’s pro-
cedure reduces to a simple step-down algorithm SD(τ) in a sense of (2.14). Second, by contrast with
Holm’s procedure, for each `, the critical value τ` is equal to the α-quantile of the distribution of
inf1≤i≤m−`+1{2Φ(|Zi|)}, with Z ∼ N (0,Γ), so take into account Γ. For instance, if ρ = 1, we have
τ` = α for all `, which means that no multiple testing correction is performed (as desired in that
situation). For ρ ∈ [0, 1), by using (2.12), we can obtain τ` as the value t ∈ [0, 1] solving the equation :

∫ 1

0
(1− f(t/2, w)− f(t/2,−w))m−`+1φ(w)dw = 1− α,

where f is defined by (2.11) and φ is the standard Gaussian density. Figure 5.2 displays the resulting
critical values for different values of ρ. While they appear close to Holm’s critical values for ρ = 0, we
notice that they increase as ρ increases (to end up at τ` = α when ρ = 1, as mentioned above).

Outside the equi-correlated case, the thresholds tC can simply be adjusted from Γ via Monte-
Carlo simulations. Overall, this indicates that procedures less conservative than Holm’s procedure
(or Bonferroni procedure) can be used to control the FWER by incorporating appropriately Γ (i.e.,
ρ under equi-correlation). However, note that this adaptive procedure is only oracle because it uses
explicitly Γ (i.e., the true value of the parameter ϑ = Γ with the notation of Section 2.5.2).
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Figure 5.2: Illustration of oracle RW’s critical values for FWER control in the two-sided (Gauss-ρ-equi)
case. m = 100, α = 0.2.

5.1.3 Randomized adaptive procedure

To “learn” the distribution of a multivariate vector without using the knowledge of the covariance Γ,
a classical requirement is that n ≥ 2 copies X(1), . . . , X(n) of the vector are at hand. Let us assume
that the data are of the following form

X = (X(1) . . . X(n)) =




X
(1)
1 . . . X

(n)
1

...
...

X
(1)
m . . . X

(n)
m


 , (5.4)
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where the vectors X(1), . . . , X(n) are i.i.d. of common (multivariate) distribution N (µ,Γ). Since we
deal with high dimensional data, note that m is typically much larger than n. The p-values are given
by pi(X) = 2Φ(|Si(X)|), where the statistic S(X) is

S(X) = n1/2(Xi)1≤i≤m = n−1/2




n∑

j=1

X
(j)
i




1≤i≤m

. (5.5)

Note that the sample induces a different scaling on the mean of the alternatives: the joint distribution
of the test statistics Si(X), 1 ≤ i ≤ m, is now N (n1/2µ,Γ), instead of N (µ,Γ) as above.

Now, we turn to find thresholds t̂C satisfying (5.1) by using a randomization technic. Let us consider
the algebraic group G = ({−1, 1}n,×) of “sign vector” acting on the vector X in the following way: for
any sign vector ε ∈ {−1, 1}n,

X〈ε〉 = (ε1X
(1) . . . εnX

(n)) =




ε1X
(1)
1 . . . εnX

(n)
1

...
...

ε1X
(1)
m . . . εnX

(n)
m


 . (5.6)

A key property to establish (5.1), called the randomization hypothesis in [115], is that the joint distri-
bution of the test statistics under the null are invariant under the transformations of G, that is, for
any sign vector ε ∈ {−1, 1},

D
(

(Si(X〈ε〉))i∈H0

)
= D ((Si(X))i∈H0) . (5.7)

Note that (5.7) is also true for any random sign vector. In the sequel, it will be appropriate to consider
random sign vectors uniformly distributed on G. Now, a remarkable fact is that, while (5.1) holds
with t̂C = qα(C, Q0) and Q0 = N (0,Γ) from the previous section, (5.1) still holds when replacing the
unknown distribution Q0 = N (0,Γ) by the observable randomized distribution

Q̂(X) =
1

B + 1

(
δS(X) +

B∑

b=1

δ
S(X〈ε(b)〉)

)
, (5.8)

where ε(1), . . . , ε(B) are i.i.d. uniformly distributed on G, for some B ≥ 1.

Lemma 5.2. Consider the threshold collection given by t̂C = qα(C, Q̂(X)), where Q̂(X) is given by
(5.8) and qα(C, ·) by (5.3). Then the two requirements of RW’s method (5.1) and (5.2) both hold.

Proof. First note that (5.2) is trivial and let us prove (5.1). Denote ψ(X) = infi∈H0(θ){pi(X)} for short.
By definition of qα, for any distribution Q, any t such that t < qα(H0, Q) satisfies Q((−∞, t]) ≤ α.
Hence, we have

P
(
ψ(X) < qα(H0, Q̂(X))

)
≤ P

(
1 +

B∑

b=1

1{ψ(X〈ε
(b)〉) ≤ ψ(X)} ≤ bα(B + 1)c

)
.

≤ P

(
B∑

b=0

1{Yb ≤ Y0} ≤ bα(B + 1)c
)
, (5.9)

where we let Y0 = ψ(X) and Yb = ψ(X〈ε
(b)〉), b = 1, . . . , B. Now,

(Y0, Y1, . . . , YB) = (ψ(X), ψ(X〈ε
(1)〉), . . . , ψ(X〈ε

(B)〉))

∼ (ψ(X〈ε
(0)〉), ψ(X〈ε

(0)ε(1)〉), . . . , ψ(X〈ε
(0)ε(B)〉))

∼ (ψ(X〈ε
(0)〉), ψ(X〈ε

(1)〉), . . . , ψ(X〈ε
(B)〉)),



50 CHAPTER 5. ADAPTATION TO THE DEPENDENCE STRUCTURE

by using (5.7), the group properties of G, and by considering ε(0) uniformly distributed on G (and being
independent of all the other variables). This entails that the vector (Y0, Y1, . . . , YB) is exchangeable (but
not independent in general). Thus, the random variable

∑B
b=0 1{Yb ≤ Y0} is the rank of Y0 within the

exchangeable sample (Y0, Y1, . . . , YB) and is thus stochastically lower bounded5 by a variable uniformly
distributed on {0, . . . , B}. Hence, the probability (5.9) is smaller than or equal to bα(B+1)c/(B+1) ≤
α.

Interestingly, combining Lemma 5.2 with Theorem 5.1 entails a new adaptive FWER control, with
an easily computable thresholding collection, not relying on the knowledge of Γ. It is worth to note
that, while the FWER control holds whatever B is, the achieved FWER is below bα(B+ 1)c/(B+ 1),
so the control is inaccurate when B is too small. Typical choices are B = 1, 000 or B = 10, 000.

The new threshold collection t̂C = qα(C, Q̂(X)) is more appropriate than the Holm threshold
collection. For instance, if all the lines in (5.4) are equal (perfect equi-correlation), the threshold
collection is

qα(C, Q̂(X)) = sup

{
t ∈ [0, 1] :

1
B + 1

(
1{2Φ(|S1(X)|) < t}+

B∑

b=1

1{2Φ(|S1(X〈ε
(b)〉)|) < t}

)
≤ α

}
,

which would correspond to the threshold of a single randomized test. More generally, simulations
made in [P3] have shown that the new procedure is close to the oracle procedure of Section 5.1.2 in a
particular setting with local dependencies. Finally, let us note that when the signal strength varies in
a “wide dynamic range”, this procedure can be accelerated by reducing the number of steps in RW’s
step-down method, see Section 6.1.4.

5.2 Adaptive FDP control [P9]

As explained in Chapter 1, using the FWER control might be too stringent for an exploratory
research and a user might prefer to control the FDR (i.e., the mean of the FDP), or, more precisely,
might prefer to ensure that the FDP is near or below the targeted level α with a large probability.
The BH procedure presented in Algorithm 2.1 is widely used to that respect. However, we would like
to emphasize the following trivial fact:

FDR = E[FDP] ≤ α does not provide FDP ≤ α or even FDP ' α (with high probability).

In other words, FDR control does not imply FDP control. This is the starting point of our work [P9],
from which we report some results below.

5.2.1 BH procedure and FDP control

Under weak dependence6, it is well known that the BH procedure has an FDP that converges in
probability to π0α, where π0 is the limit of the proportion of true nulls m0/m (under mild conditions
implying π0 < 1), see, e.g., our Lemma 4.1 in [P9]. This tends to show that the BH procedure provides
a correct control of the FDP when the dependence is weak.

However, as already noted in [86], the distribution of the FDP of BH procedure can be af-
fected by strong dependence. We illustrate further this phenomenon in Figure 5.3. In the case

5Note that ties may appear into the vector (Y0, Y1, . . . , YB). For instance, the same sign vector can be generated twice
with a positive probability.

6The notion of weak dependence used here is simply the convergence in probability of the empirical distribution
function of the p-values towards a deterministic distribution function on [0, 1].
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Figure 5.3: Fitted density of the FDP of BH procedure when increasing the dependence. α = 0.2,
m = 1000, m0 = 800, 104 simulations, model (Gauss-ρ-equi).

(Gauss-ρ-equi) (with ρ = 0.1), the latter suggests that the BH procedure is much too optimistic
for a 95%-quantile control of the FDP. This suggests that FDR control is not necessarily meaningful
for the underlying FDP when the latter varies too much. This can lead to an erroneous interpretation
of the quantity of false discoveries.

One way to solve this issue is to control the (1 − ζ)-quantile of the FDP distribution at level α,
that is, to find a multiple testing procedure R such that for all P ∈ P,

P(FDP(R,P ) > α) ≤ ζ. (5.10)

Here, ζ is an extra parameter that has to be fixed by the user (small in practice). In this section, we
will also consider the asymptotic FDP control:

lim sup
m

{P (FDP (R,P ) > α)} ≤ ζ, (5.11)

where P = P (m) lies in an appropriate sequence of models.
The FDP control has been introduced in [59, 103, 89] and it has received a considerable attention

in the last decades, see for instance [111, 112, 70, 37, 27, 69] (among others).

5.2.2 Study of RW’s heuristic

The heuristic proposed in [116], called RW’s heuristic from now on, builds FDP controlling proce-
dure from a family of k-FWER controlling procedures Rk, 1 ≤ k ≤ m, by choosing7 k̂ such that
(k̂ − 1)/|Rk̂| ≤ α. In the context of step-wise procedures (see Section 2.5.1), this heuristic can be
reformulated as follows: choose critical values τ`, 1 ≤ ` ≤ m, such that for all `, we have that
V ′m(τ`) ≥ bα`c+ 1 with a probability less than ζ, where for t ∈ [0, 1],

V ′m(t) �
m∑

i=1

(1− θi)1{pi(X) ≤ t}, (5.12)

where the symbol � means stochastically larger (or equal). Above, RW’s critical values depend on the
distribution of the majoring process V ′m(t). For instance, in the Gaussian case, we can build V ′m(t)

7In the original formulation, bk was constrained to be chosen such that any k′ with k′ < bk should also satisfy
(k′ − 1)/|Rk′ | ≤ α, which corresponds to a step-down approach. Here the step-up approach is also considered.
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upon the distribution of the vector N (0,Γ) (i.e., under the “full null”). Other choices for V ′m(t) can be
done by assuming m0 = m− `+ 1 in (5.12), for instance under (Gauss-ρ-equi) (adaptive RW’s critical
values), see [P9] for more details.

The rationale behind RW’s heuristic is that, by using a step-down or a step-up procedure R with
such critical values and ̂̀= |R| rejections, if the random variable ̂̀was deterministic, we would have

P(FDP(R,P ) > α) = P
(
|R ∩H0(θ)| > α ̂̀

)
≤ P(V ′m(τˆ̀) ≥ bα̂̀c+ 1) ≤ ζ, (5.13)

because for all `, the probability P(V ′m(τ`) ≥ bα`c + 1) is below ζ. Obviously, (5.13) is not rigorous
because it neglects the fluctuations due to the randomness of ̂̀.

This heuristic has been theoretically justified (for the step-down form) in settings where the p-
values under the null are independent of the p-values under the alternative (full independence in [70];
alternative p-values all equal to 0 in [116]). However, while the FDP is particularly interesting under
dependence, these situations all rely on an independence assumption. Therefore, a first task of [P9] is
to study the precise behavior of this method in “simple” dependent cases. We found the two following
results:

• under weak-dependence8, we have proved that RW’s method controls the FDP asymptotically, in
the sense of (5.11). The idea is that the reasoning behind RW’s heuristic can be made rigorous
in that case, because the fluctuations of ̂̀/m asymptotically disappear. However, note that the
interest of this result is of limited scope, because the simple BH procedure also asymptotically
controls the FDP in that case.

• under (Gauss-ρ-equi), for the (adaptive) critical values derived from RW’s heuristic, we have
identified parameters (namely α = 0.1; ζ = 0.05; π0 = 0.9; ρ = 0.2, m ∈ {200, 1000, 5000})
for which the probability that the FDP of SD(τ) exceeds α is (slightly but indubitably) above
ζ. This annihilates any hope of finding a general finite sample proof of FDP control for RW’s
heuristic, even in the step-down case and for a very simple form of positive dependence.

5.2.3 New FDP controlling procedures under strong dependence

Finite sample control As the above counter-example shows, establishing (5.10) for RW’s method
is not possible in the finite sample case. Hence, this heuristic should be modified in order to be valid.
Importantly, many existing results in FDP controlling methodology can be recast as modifications of
RW’s heuristic: the “diminution” principle starts with an upper bound on the exceedance probability
and then reduces the critical values to make the bound below ζ, see [111, 112, 69]; the “augmentation”
principle starts with an FWER (=1-FWER) controlling procedure R1 at level ζ and then enlarges the
rejection set in a way that maintains the FDP below α whenever R1 makes no false discovery, see
[139, 47]; the “simultaneous” k-FWE control is another strategy which takes RW’s critical values but
with ζ replaced by ζ/m, see [61].

Two new modifications have been proposed in our work, which incorporate part of the dependencies
and that provably control the FDP for a fixed value of m. Also, in our simulations, the proposed
procedures are shown to improve the state-of-the-art methods in most standard situations. While we
refer the reader to the paper [P9] for more details, let us mention that there is still some loss when
performing this modifications and thus there is overall a price to pay for getting rigorous finite sample
FDP control.

8For this result, we need a functional central limit theorem for the empirical distribution function of the p-values.
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Asymptotical control in a factor model Let us consider the relaxed FDP control (5.11) in a
particular sequence of strongly dependent multiple testing models. For the sake of simplicity, we
restrict our attention to models that can be written as follows:

Xi = µi + ciW + ζi, 1 ≤ i ≤ m, (facmodel)

where ci, 1 ≤ i ≤ m, are i.i.d., ζi, 1 ≤ i ≤ m, are i.i.d., W is a random variable and (ci)1≤i≤m,
(ξi)1≤i≤m and W are independent. In model (facmodel), we consider the (one-sided) testing problem

H0,i: “µi = 0” against H1,i: “µi > 0” , 1 ≤ i ≤ m,

and we assume that µi = ∆θi for 1 ≤ i ≤ m, with ∆ > 0 and (θi)1≤i≤m ∈ {0, 1}m, for convenience.
Hence, p-values can be built by taking pi(X) = F (Xi) where F is the upper-tail distribution function
of c1W + ζ1. Note that we implicitly assume here that the distributions of c1, W and ζ1 are known.

Model (facmodel) induces a strong dependence between the Xi’s, which is carried by the factor W .
The latter is classically referred to as “one factor model” in the literature (see, e.g., [87, 55, 44]). Here,
the ci’s are unknown and taken random with a prescribed distribution. From an intuitive point of
view, (facmodel) is modeling situations where some of the measurements Xi’s have been deteriorated
by unknown nuisance factors ciW , 1 ≤ i ≤ m. For instance, we can simultaneously deteriorate the
measurements of some unknown (random) sub-group of {1, . . . ,m} by taking

Xi = µi + ρ1/2δiW + (1− ρ)1/2ξi, 1 ≤ i ≤ m, (partial-Gauss-ρ-equi)

where ρ ∈ [0, 1] is a parameter, where W and the ξi’s are all i.i.d. N (0, 1) and independent of the δi’s
i.i.d. with common distribution B(a), a ∈ [0, 1]. Obviously, model (Gauss-ρ-equi) can be recovered by
taking a = 1 in (partial-Gauss-ρ-equi).

Now, in (facmodel), we can modify RW’s heuristic in an asymptotical manner, which leads to
consider critical values satisfying

F0(τ`, qζ) = α`/m, 1 ≤ ` ≤ m, with qζ s.t. P(W ≥ qζ) ≤ ζ, (5.14)

where F0(t, w) is the distribution function of pi(X) conditionally on W = w (under the null). The
rationale behind this is that, by the law of large number (taken conditionally on W ), the probability
P(Vm(τ`) > α`) is asymptotically “close” to P(F0(τ`,W ) > α`/m) = P(F0(τ`,W ) > F0(τ`, qζ)) ≤
P(W ≥ qζ) ≤ ζ, if we assume that F0(t, ·) is increasing.

The following result states that this asymptotic view of RW’s heuristic entails a rigorous asymptotic
FDP control under appropriate assumptions.

Theorem 5.3. Consider model (facmodel) with m0/m tending to π0 ∈ (0, 1) and additionally assume:

(i) c1 is a random variable with a finite support in R+;

(ii) the distribution function of W is continuous;

(iii) the function x ∈ R 7→ F ξ(x) = P(ξ1 ≥ x) is continuous increasing and is such that, for all y ∈ R,
as x→ +∞, F ξ(x− y)/F ξ(x) tends to +∞ if y > 0 and to 0 if y < 0.

Consider the step-up procedure associated to the critical values τ`, ` = 1, . . . ,m satisfying (5.14). Then
the asymptotic FDP control (5.11) holds for R = SU(τ).
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In Theorem 5.3, (i) can typically be interpreted as a positive dependence assumption. As for (iii),
it is satisfied for several distributions, for instance when ξ1 has a Subbotin density (including the
Gaussian case), defined by (6.24) further on.

The proof of Theorem 5.3 relies on a very simple idea: if τˆ̀ converges to some (non-deterministic)
random variable T , the exceedance probability P(Vm(τˆ̀) > αˆ̀) should be asymptotically close to
P(F0(T,W ) > F0(T, qζ)). Now, since F0(t, ·) is increasing, the latter is below P(W ≥ qζ) ≤ ζ.

Let us now apply Theorem 5.3 in model (partial-Gauss-ρ-equi) for ρ ∈ [0, 1). This gives rise to
a new step-up FDP controlling procedure with critical values given by the equation (1 − a)f(τ`, 0) +
af (τ`, qζ) = α`/m, 1 ≤ ` ≤ m, where f is given by (2.11) and qζ = Φ−1(ζ). In particular, in model
(Gauss-ρ-equi), this gives the explicit new critical values

τ` = Φ
(
ρ1/2Φ−1(ζ) + (1− ρ)1/2Φ−1(α`/m)

)
, 1 ≤ ` ≤ m. (5.15)

Note that the latter reduce to the BH critical values when ρ = 0, but are markedly different when
ρ > 0, as illustrated on Figure 5.4.
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Figure 5.4: Left: plot of the critical values (5.15) in function of `. Right: same as Figure 5.3 but only
for ρ = 0.1 and by adding the new step-up procedure using (5.15).

5.2.4 Qualitative comparison with FWER and FDR controls

To give further intuition behind Theorem 5.3, let us now provide a qualitative comparison of
FWER, FDR and FDP controls under strong dependence by coming back to the two-dimensional
representation scheme used in Figure 1.2 of Chapter 1. While the signal is carried by a disk (with a
signal stronger at the center of the disk), the errors follow the factor model (partial-Gauss-ρ-equi).
Hence, each realization corresponds to a specific value of the factor W . Figure 5.5 displays9 the
observed discoveries of several procedures: the (oracle and single step) FWER controlling procedure
of Section 5.1.1, the FDR controlling BH procedure and the new FDP controlling procedure of
Theorem 5.3. First note that the procedures are particularly sensitive to the sign of W when |W | is
large: when W = −2.1, all the procedures look conservative. By contrast, the case W = 1.6 allows
many discoveries but also entails situations where the quantity of false discoveries is “too large”.
Next, the picture seems in accordance with the respective roles of FWER, FDR and FDP controls:
the FWER controlling procedure ensures no false discovery (except for one realization); the FDR
controlling procedure yields FDP values with an empirical mean close to α, but it does not prevent
the FDP from taking values exceeding α, which can arise when W is a bit large. By contrast, the
(1 − ζ)-FDP quantile controlling procedure is more cautious: from an intuitive point of view, it is

9Since there are only 6× 2 realizations here, this picture is only illustrative and the conclusion is only qualitative.
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“prepared” to face the fluctuations of W in the range (−∞, qζ). This means that, roughly, the only
realizations for which the FDP can exceed α arise when W ≥ qζ .

Equi-correlation Partial-equi-correlation

FWER control FDR control FDP control FWER control FDR control FDP control

Figure 5.5: For each model (Gauss-ρ-equi) or (partial-Gauss-ρ-equi) (with a = 1/2): discoveries on
6 realizations for FWER (left), FDR (middle) or 0.95-FDP quantile (right) at level α = 0.05 in a
two-dimensional setting where m = 1282 items are tested. W is the factor of (facmodel) (same value
along each line) and ρ = 0.3, see text.
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5.3 Adaptation to a clustered dependence structure [P11]

At the opposite side of model (facmodel), let us consider the case where strong local dependencies
appear between the tests. In that case, we might ask whether testing groups of items is not more
appropriate than testing the individual items. This raises the delicate issue of choosing an appropriate
testing resolution, not necessarily related to the precision of the underlying measuring device.

5.3.1 Motivation

This problem is motivated by the analysis of CNA data (described in Section 1.3) and more specifically
the analysis of the data of [28], concerning breast cancer with 96 ER-positive individuals and 49 ER-
negative individuals. The goal is to identify the parts of the genome for which the chromosomal
aberration due to the breast cancer is significantly different between the two samples. The data have
been discretized10 via standard pre-processing steps (segmentation and calling, see [137]) which give
an array with −1 (deletion), 0 (normal) or 1 (gain). Finally, we reduce the dimension of the array with
the method of [138] that collapses the (essentially) equal probe profiles.

We obtained m = 383 “regions” of the genome, see Figure 5.6 (b). We consider the latter as our
input data. In particular, the region level is the basic testing resolution that we will consider. Markedly,
even with the collapsing, Figure 5.6 (a) shows that the local dependency between the regions can still
be high. This suggests that the regions are maybe not the only relevant items to test. A cluster family,
as the one appearing on the left part of Figure 5.6 (b), might also be worth to examine.

This is a motivation for combining clustering and testing. The latter task has been only scarcely
studied in the literature, at least from a theoretical point of view: in [9], the clusters are inferred from
independent experiments, which is an assumption that we do not want to consider here. In [103], the
clustering is made on the basis of the p-values, which inter-relates the testing and clustering phases
and renders meaningful clusters from a testing perspective only. Another option is sample splitting.
However, the potential loss of power is huge, while the output can depend substantially on the splitting.

More generally, the problem emerging behind making testing on clusters coming from the same
data set is the validity of testing random null hypotheses H0,i(X). Note that even if the approach is
theoretically valid, the final interpretation of the test is also an issue. The main idea of our work is to
use independent parts of the data X to make the two phases: while the clustering will use the CGH
array without the group labels and will be permutation invariant, the testing will be made by using
the group labels and permutation techniques.

5.3.2 Model and p-values

Let us model the CGH array and the phenotype information by an i.i.d. sample

X = (X(1), . . . , X(n)) where X(1) = (Z(1), Y (1)) ∈ {−1, 0, 1}m × {1, 2}.

Here, while Z(j)
i ∈ {−1, 0, 1} codes for the chromosomal aberration status (deletion, normal or gain,

respectively) for region i and individual j, Y (j) denotes the group label of individual j (say, 1 for
ER-positive, 2 for ER-negative). The m × n array formed by the Z(j)

i ’s is denoted by Z. It does not
contain the label information.

We assume that there exists a clustering method, only using Z (and not Y ), which formally corre-
sponds to a family A(Z) = {Ad(Z), 1 ≤ d ≤ D(Z)} of non-empty and contiguous parts of {1, . . . ,m}

10While the raw data are continuous, we choose here to pay the variability of the discretization in order to use data
under a form better reflecting the underlying nature of the considered biological process.
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Figure 5.6: Left: Kendall’s τ heatmap for the (transformed) data of [28], see text. Regions are plotted
according to the chromosomal position; colors represent correlations from −1 (cyan) to 1 (pink). Right:
status −1 (red), 0 (black) or 1 (green) of the individuals (X-axis) in function of the genome region
(Y -axis), as resulting from the pre-processing steps (see text). The regions are ordered according to
chromosomal position from bottom to top. The clustering at the most-left part of the right display
(depicted alternately in blue and yellow) comes from a clustering algorithm via a log linear model, see
[P11].

that form a partition of {1, . . . ,m}. From a technical point of view, we should also assume that D(Z)
and 1{i ∈ Ad(Z)} are measurable for all i, d. Now, let us make the following assumption, which will
be crucial in the sequel:

A(·) is permutation invariant, that is, for any realization of the array Z,
for any permutation σ of {1, . . . , n}, A(Zσ) = A(Z), (PermutInv)

where Zσ denotes the matrix formed by the Zσ(j)
i ’s, that is, the matrix Z in which the permutation

σ has been applied to the columns. A clustering method satisfying (PermutInv) has been proposed in
[P11], by using a log linear model on the distribution Z(1) and a likelihood maximization algorithm.
More generally, any (reasonable) model-based clustering will satisfies (PermutInv) because it will rely
on the fact that (Z(1), . . . , Z(n)) is an i.i.d. sample.

Conditionally on A(Z), we consider the problem of testing the independence between the chromo-
somal aberration and the group label. According to Section 5.3.1, we would like to make testing both
on the region and cluster levels. Hence, p-values should be defined for both levels. We consider the
following null hypotheses: for i ∈ {1, . . . ,m} and A ∈ A(Z),

H ′0,i : “Z
(1)
i is independent of Y (1) conditionally on A(Z)”; (5.16)

H ′0,A : “
(
Z

(1)
i

)
i∈A

is independent of Y (1) conditionally on A(Z)”. (5.17)

Let us consider some test statistic S(Zi, Y ) for testing the individual regions (5.16), for instance a
standard χ2 statistic. Appropriate p-values can be built by generating random i.i.d. uniform permu-
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tations σ1, . . . , σB of the labels, by following an approach similar to Section 5.1.3. More precisely, we
let for i ∈ {1, . . . ,m} and A ∈ A(Z),

pi(X) = (B + 1)−1

(
1 +

B∑

b=1

1{S(Zi, Y σb) ≥ S(Zi, Y )}
)

; (5.18)

pA(X) = (B + 1)−1

(
1 +

B∑

b=1

1{max
i∈A
{S(Zi, Y σb)} ≥ max

i∈A
{S(Zi, Y )}}

)
, (5.19)

respectively11, where Y σb denotes (Y (σb(j)))1≤j≤n, that is, the label vector whose components have
been permuted according to σb. Then, similarly to Lemma 5.2, we have the following result.

Lemma 5.4. Let us consider the above model with a clustering method A(Z) satisfying (PermutInv).
Consider the p-values pi(X) (5.18) testing H ′0,i (5.16), 1 ≤ i ≤ m, and the p-values pA(X) (5.19)
testing H ′0,A (5.17), A ∈ A(Z), for B ≥ 1 i.i.d. (and uniformly distributed) permutations σ1, . . . , σB

of {1, . . . ,m}. Then, for any distribution of X(1) = (Z(1), Y (1)), we have

(i) for i ∈ {1, . . . ,m} such that H ′0,i holds, we have P (pi(X) ≤ t | A(Z)) ≤ t for all t ∈ [0, 1];

(ii) for A ∈ A(Z) such that H ′0,A holds, we have P (pA(X) ≤ t | A(Z)) ≤ t for all t ∈ [0, 1].

In other words, Lemma 5.4 states that the fundamental property (pvalueprop) is satisfied both on
the region and cluster levels. The proof is a variation of the proof of Lemma 5.2 that appropriately
combines (PermutInv) with the conditioning.

Proof. Let us prove (ii) (the proof for (i) is similar). Let A be any realization of A(Z) and consider any
A ∈ A. Let ψ(ZA, Y ) = maxi∈A{S(Zi, Y )} where ZA = (Z(j)

i )i∈A,1≤j≤n. From (5.19) and following the
proof of Lemma 5.2, it is sufficient to prove that the vector (ψ(ZA, Y ), ψ(ZA, Y σ1), . . . , ψ(ZA, Y σB )) is
exchangeable conditionally on A(Z) = A. For this, let us note that for any deterministic permutation
σ, we have under H ′0,A,

D((ZA, Y ) | A(Z) = A) = D(ZA | A(Z) = A)⊗D(Y | A(Z) = A)
= D(ZA | A(Z) = A)⊗D(Y σ | A(Zσ) = A)
= D(ZA | A(Z) = A)⊗D(Y σ | A(Z) = A)
= D((ZA, Y σ) | A(Z) = A),

where we used (PermutInv). This entails that, if σ0 is a random permutation (uniformly distributed
and independent of the remaining variables), conditionally on A(Z) = A, we have

(ψ(ZA, Y ), ψ(ZA, Y σ1), . . . , ψ(ZA, Y σB )) ∼ (ψ(ZA, Y σ0), ψ(ZA, Y σ1◦σ0), . . . , ψ(ZA, Y σB◦σ0))
∼ (ψ(ZA, Y σ0), ψ(ZA, Y σ1), . . . , ψ(ZA, Y σB )),

because (σ0, σ1 ◦ σ0, . . . , σB ◦ σ0) ∼ (σ0, σ1, . . . , σB). This implies the result.

11More precisely, in [P11], the test chosen for cluster A rejects H ′0,A if mini∈A{pi(X)} is small enough. Here, we choose
(5.19) for clarity.
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5.3.3 Method

Now that we have at hand two resolutions of tests, how should we combine the corresponding p-values?
Again, we face the problem of choosing a convenient global error rate. In this multi-resolution setting,
an overall FDR or FDP control over the two levels seems not appropriate, because it would consider
equally a false positive coming from a cluster and a false positive coming from a region. Also, whithin
the cluster level, the FDP device might be too sophisticated, because the clustering stage is expected
to generate only few clusters. Finally, rejecting a region and not the cluster containing it would make
the final decision somewhat difficult to interpret, which tends to show the presence of an underlying
hierarchy in the desired decision.

To solve this issue, we consider the problem of controlling a “joint” family-wise error rate (FWER),
both on the cluster and region levels. Hence, in this setting, a multiple testing procedure is a family
R of rejected items, each item being either a region i ∈ {1, . . . ,m} or a cluster A ∈ A(Z). The FWER
of R can then be rewritten as

FWER(R) = P
({
∃i ∈ R : H ′0,i is true

}
∪
{
∃A ∈ R : H ′0,A is true

} ∣∣A(Z)
)
, (5.20)

where H ′0,i and H ′0,A are defined by (5.16) and (5.17), respectively. By denoting H0 the set of true
nulls for regions and clusters, that is,

H0 =
{
i ∈ {1, . . . ,m} : H ′0,i is true

}
∪
{
A ∈ A(Z) : H ′0,A is true

}
,

the quantity FWER(R) can be rewritten as P(|R ∩ H0| ≥ 1 | A(Z)), as in the initial definition of
Chapter 2. To control (5.20) at level α, we follow the method proposed in [64] (itself generalizing
an approach of [93]), that allows to produce an hierarchical testing of null hypotheses following a tree
structure. Although the tree structure is given a priori in [64], their argument can be generalized to our
context of “cluster→region” structure, because the p-value property (pvalueprop) is true conditionally
on the clusters, thanks to Lemma 5.4. The seminal idea is the very general “sequential rejection
principle” of [63], which provides sufficient conditions under which an iterative procedure controls the
FWER12. In our two-level context, this gives rise to the following algorithm, depending on thresholding
functions TA(R) and Ti(R) to be chosen later.

Algorithm 5.5. - Step 0: compute the p-values given by (5.18) and (5.19) and set R0 = ∅;
- Step k (k ≥ 1): compute TA(Rk−1) and Ti(Rk−1) for 1 ≤ i ≤ m, A ∈ A(Z) and put

Rk = {A ∈ A(Z) : pA(X) ≤ TA(Rk−1)} ∪ {1 ≤ i ≤ m : pi(X) ≤ Ti(Rk−1)}.
If Rk = Rk−1, stop and reject R = Rk−1. Otherwise, go to step k + 1.

Now, Theorem 1 of [63] provides two sufficient conditions on TA(R) and Ti(R) to ensure that the
above procedure controls the FWER (5.20) at level α. The first condition is that TA(R) and Ti(R) are
nondecreasing when the set R grows. The second condition is the Bonferroni-Shaffer inequality:

∑

A∈A(Z)

TA(Hc0) +
∑

A∈A(Z)

∑

i∈A
Ti(Hc0) ≤ α. (5.21)

While several threshold choices are possible for satisfying (5.21), it seems appropriate to weigh the
clusters equally, because small clusters might be as relevant as large ones in our application. We
propose the following thresholds:

{
TA(R) = α

D(Z)−|{A′∈A(Z)}| :A′⊂R}| for all A ∈ A(Z)

Ti(R) = TA(R)1{A∈R}
|A|−|{i′∈A : i′∈R}| for all i ∈ {1, . . . ,m}, (5.22)

12As a matter of fact, this principle generalizes the step-down argument stated in Theorem 5.1.
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Figure 5.7: Toy example illustrating Algorithm 5.5 with the thresholding functions (5.22).

with the conventions 0/0 = 0 and 1/0 = +∞ (also remember that D(Z) = |A(Z)| is the number of
clusters).

Overall, by combining Lemma 5.4 with Theorem 1 of [63], we obtain the following result.

Theorem 5.6. Let us consider the model of Section 5.3.2 with a clustering method A(Z) satisfying
(PermutInv). Consider the multiple testing procedure R defined by Algorithm 5.5, used with the thresh-
olding functions (5.22). Then the (conditional) FWER of R given by (5.20) is smaller or equal to
α.

This method is illustrated in Figure 5.7 with a “toy” hierachical structure (3 clusters and 7 regions).
Note that for a trivial clusteringA(Z) = {{i}, 1 ≤ i ≤ m}, it simply reduces to Holm’s procedure. For a
general A(Z), the procedure proposes another detection level with the clusters, which is a substantial
advantage. Typically, even if no region is significant (which can be the case when the number of
replicates is small), Algorithm 5.5 can still detect something at the cluster level. A counterpart is that
we should test conditional null hypotheses, which leads to a different interpretation than the traditional
unconditional testing. Namely, an interpretation can be that, when repeating the experiments, among
experiments that lead to the same observed clustering A(Z), no cluster/region under the null will
be rejected by R with probability at least 1 − α. Hence, an important issue is to choose a “stable”
clustering in the first round, for instance, a clustering (essentially) invariant when a small part of the
individuals is removed. We refer the reader to [P11] for more details on these issues and for outputs
of the method on real-data sets.

Finally, let us mention that this hierarchical testing (combined with the clustering of Figure 5.6
(b)) has been implemented in the R-package “dnaCplusT”, by Kyung In Kim and Mark A. van de
Wiel (it is available on the homepage of Mark A. van de Wiel).



Chapter 6

Connections with other statistical issues

· · · · · ·

This chapter aims at building bridges between multiple testing theory and other statistical prob-
lems. We focus here on confidence regions, functional central limit theorems and classification.

6.1 Multivariate confidence regions [P2, P3]

In this section, we first emphasize that, while some links exist between controlling the FWER
and building confidence regions, the two tasks are not equivalent and building confidence regions is
a more general aim, which has an interest in its own right. Then, we present a result of [P2] which
provides confidence regions for the mean of a Gaussian multivariate vector whose dependence structure
is unknown. Here, the regions are adaptive, which means that they learn implicitly the dependence
structure. To this end, we use randomization techniques close to the spirit of the bootstrap and that
turn out to be the same sign-flipping operation as in Section 5.1.3, except that the data are empirically
recentered. Finally, we discuss the performance of the FWER controlling procedures resulting from
these confidence regions.

6.1.1 Confidence regions and FWER control: same goal?

For a single null hypothesis, it is well known that single testing is intrinsically related to confidence
regions. In the case of a multiple inference, similar correspondences can be outlined by using the
FWER criterion.

For the sake of simplicity, let us consider a two-sided multiple testing problem where we test
H0,i(µ0): “µi = µ0

i ” against H1,i(µ0): “µi 6= µ0
i ” , 1 ≤ i ≤ m, for the mean µ of a statistic T (X) ∈ Rm,

and for some arbitrary reference vector µ0 ∈ Rm. The following result is adapted from Theorem 1.1 of
[31]:

Proposition 6.1. The following correspondence holds between a family of FWER controlling procedures
and a multivariate confidence region:

(i) Let {R(µ0), µ0 ∈ Rm} be a family of multiple testing procedures such that for any µ0 ∈ Rm,
the FWER of R(µ0) is controlled at level α (for testing the nulls H0,i(µ0) against H1,i(µ0),
1 ≤ i ≤ m). Then the set

C(X) = {z ∈ Rm : R(z) = ∅} (6.1)

is a (1− α)-confidence region for µ.

61
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(ii) Conversely, let C(X) be a (1− α)-confidence region for µ. Then, for all µ0 ∈ Rm, the procedure

R(µ0) = {i ∈ {1, . . . ,m} : {z ∈ Rm : zi = µ0
i } ∩ C(X) = ∅} (6.2)

has an FWER controlled at level α (for testing the nulls H0,i(µ0) against H1,i(µ0), 1 ≤ i ≤ m).

Proof. For (i), we have for all µ0 ∈ Rm, Pµ=µ0(µ0 /∈ C(X)) = Pµ=µ0(R(µ0) 6= ∅) ≤ α. For (ii), we have
for all µ0 ∈ Rm and µ ∈ Rm, Pµ(∃i ∈ R(µ0) s.t. µi = µ0

i ) ≤ Pµ(µ /∈ C(X)) ≤ α.

With words, item (i) states that a confidence region can be built upon the fact that, with probability
at least 1− α, none of the nulls H0,i(µ), 1 ≤ i ≤ m, are rejected by the FWER controlling procedure
R(µ). Conversely, item (ii) means that, in order to control the FWER, we can reject the null H0,i(µ0)
for each i such that all the vectors z ∈ Rm with zi = µ0

i fall outside the confidence region C(X).
As a simple illustration of Proposition 6.1, given a test statistic T (X) ∈ Rm, there is a one to one

correspondence between a confidence region of the form C(X) = {z ∈ Rm : ‖T (X) − z‖∞ ≤ r(X)}
and the family of multiple testing procedure R(µ0) = {1 ≤ i ≤ m : |T (X)i − µ0

i | > r(X)}. However,
in general, the correspondence outlined in Proposition 6.1 is not one to one (this can be easily seen by
considering m = 2 and ‖·‖2 instead of ‖·‖∞ in the example above).

In addition, in general, building a confidence region on the basis of (6.1) requires to test each
point z of Rm, which is intractable (even with a discretization when m is large). Hence, except in
some specific situations, multivariate confidence regions do not come directly from FWER controlling
procedures.

Finally, while Proposition 6.1 involves single-step FWER controlling procedures, RW’s method
described in Section 5.1.1 shows that a step-down FWER controlling procedure can be deduced from
a family of (1− α)-confidence regions of the form:

C(X, C) =
{
z ∈ Rm : sup

i∈C
|T (X)i − zi| ≤ r(X, C)

}
, C ⊂ {1, . . . ,m}, (6.3)

where r(X, C) is non-decreasing w.r.t. C. For this, {t̂C , C ⊂ {1, . . . ,m}} should be chosen according1

to r(X, C) and we easily check that (5.1) and (5.2) both hold, so that an algorithm similar to the one
of Theorem 5.1 can be employed.

6.1.2 Oracle confidence regions

Consider the n-sample Gaussian multivariate setting defined in Section 5.1.3 (and the notation therein),
see (5.4). We search a confidence region for the multivariate parameter µ ∈ Rm of the following form:

C(X) =
{
z ∈ Rm : ‖√n(X − z)‖q ≤ r(X)

}
, (6.4)

where q ∈ [1,∞] and r(X) is some possibly data-dependent threshold. Sometimes, for convenience,
(6.4) will be rewritten as the set of z such that ‖S(X− z)‖q ≤ r(X), where S(·) is the “empirical mean
operator” defined by (5.5) and X− z denotes the recentered sample (X(1)− z, . . . ,X(n)− z). The goal
is thus to find r(X) = rα(X) such that the following holds:

P
(
‖√n(X − µ)‖q ≤ rα(X)

)
≥ 1− α. (6.5)

Let us recall that the point of view developed here is non-asymptotic, in the sense that (6.5) must hold
when n and m are kept fixed (hence it covers the case where m is much larger than n).

1Note that the quantities are formulated here on the “test statistic scale”, rather than on the “p-value scale”.
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A first idea is to apply the inequality ‖y‖q ≤ ‖y‖∞, y ∈ Rm, and an union bound to get the
Bonferroni threshold

rα,Bonf = Φ−1(α/(2m)), (6.6)

which satisfies (6.5). However, this region becomes too conservative when the dependence is high and
for a large m. At the opposite side, the ideal (unknown) threshold rα(X) is equal to rα,Quant(Q0) where
Q0 = N (0,Γ) and where for any distribution Q on Rm, we denote

rα,Quant(Q) = inf {r ≥ 0 : PZ∼Q (‖Z‖q ≤ r) ≥ 1− α} . (6.7)

Figure 6.1 displays an illustration of the confidence region (6.4) with the oracle threshold when
m = 2 and under (Gauss-ρ-equi), for q ∈ {1, 2,∞}. Interestingly, while the threshold rα,Quant(Q0)
decreases with ρ for q = ∞, it is increasing with ρ when q ∈ {1, 2}. Hence, even in the simple
equi-correlated case and m = 2, various behaviors can appear in the presence of dependence, which
motivates the use of confidence regions that learn the dependence structure.
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Figure 6.1: Illustration of `q-oracle confidence regions in R2 in the two-sided ρ-equi-correlated case.
m = 2, α = 0.1. Here we assume X = 0.

6.1.3 Randomized confidence regions

To build adaptive confidence regions, we follow an idea similar to Section 5.1.3, by replacing into
rα,Quant(Q0) the distribution Q0 by a randomized substitute. However, here, the distribution of (Si(X−
µ))i∈C should be approached on the whole set C = {1, . . . ,m} and not only on C = H0. Thus a different
“recentered” approach should be used.

We follow the spirit of the bootstrap: if Pn is the empirical distribution of the sample X =
(X(1), . . . , X(n)) and P is the distribution of X(1) (here N (µ,Γ)), then the general resampling heuristic
of Bradley Efron [39, 40] is illustrated as follows (ψ(X) being any statistic):

Real world Bootstrap world
P  X

↓
ψ(X)

Pn  X?

↓
ψ(X?)

The rationale behind the above scheme is that the “real world”, where the truth is unknown, can
be mirrored by a “bootstrap world”, where everything is known. The single modification is that the
unknown distribution P has to be replaced by Pn, while all the other operations are unchanged. For
instance, the sampling process (P  ) becomes a resampling process (Pn  ) and the statistic ψ(X)
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should be replaced by ψ(X?). The heuristic is then that the distribution of any function of P and X,
say F (P,X), should be close to the distribution of F (Pn, X?), taken conditionally on X.

Let us transpose this heuristic in our context. Let ε = (ε1, . . . , εn) be a sign2 vector taken uniformly
distributed on {−1, 1}n as in Section 5.1.3, and let us assign the weight Wj = εj + 1 ∈ {0, 2} to each
observation X(j). This gives the following heuristic:

D (‖S(X − µ)‖q) ' D
(∥∥S

(
(X −X)〈W 〉

)∥∥
q

∣∣X
)

(6.8)

= D
(∥∥S

(
(X −X)〈ε〉

)∥∥
q

∣∣X
)
,

where for any vector y ∈ (Rm)n and z ∈ Rn, y〈z〉 = (z1X
(1) . . . znX

(n)) is defined as in formula (5.6).
In addition, remember that the function S(·) is the “empirical mean operator” defined by (5.5) and
X −X denotes the empirically recentered sample (X(1) −X, . . . ,X(n) −X).

When n grows to infinity, approximations of the type (6.8) can be validated by using the results
on the exchangeable weighted bootstrap, e.g., Theorem 3.6.13 in [141]. Meanwhile, the particular
“Rademacher” weightingWj = εj+1 ∈ {0, 2}, 1 ≤ j ≤ n, shares some similarities with the subsampling
process (resampling of the data without replacement), which is known to be appropriate for estimating
quantiles under weak asymptotical conditions, see, e.g., Theorem 2.2.1 in [106].

In a non-asymptotical framework, however, there are only few results validating the use of (6.8) in
the literature (see [56, 3] and the references therein). In the latter, typically, explicit remainder terms
can be derived from concentration inequalities. In that spirit, we can show the following result (which
is a simplified version of Proposition 3.4 in [P2]):

Theorem 6.2. Let Q̂(·) be the resampling distribution operator as in (5.8) for some chosen B ≥ 1, let
rα,Quant(·) be the quantile operator defined by (6.7) and rα,Bonf be the Bonferroni threshold (6.6). Let
α0 ∈ (0, α) and δ ∈ (0, 1). Then, with the above notation, the following threshold satisfies (6.5):

rα(X) = rα0(1−δ),Quant(Q̂(X −X)) +
(

1 ∧ (Cn−1/2)
)
rα−α0,Bonf, (6.9)

where C = {2 log(2/(α0δ − (B + 1)−1)+)}1/2.

The main idea of the proof (given below) is that the unknown threshold r?α = rα,Quant(Q̂(X − µ))
satisfies (6.5) by the symmetry of X(1) − µ and the same exchangeability argument as in the proof of
Lemma 5.2. Then, roughly, we just have to replace µ by X in r?α. The role of the remainder term is
to compensate the “cost” of this operation. Let us also mention that Theorem 6.2 can be extended
outside the Gaussian case by only assuming symmetry, that is, X(1) − µ ∼ µ−X(1), see [P2].

Proof. A crucial but elementary inequality is as follows: for any ε ∈ {−1, 1}n,
∥∥S
(

(X − µ)〈ε〉
)∥∥

q
≤
∥∥S
(

(X −X)〈ε〉
)∥∥

q
+ |εn| × ‖S(X − µ)‖q.

Let us now consider the “unfortunate” event

U =
{
X : rα0(1−δ),Quant(Q̂(X −X)) + Cn−1/2rα−α0,Bonf < rα0,Quant(Q̂(X − µ))

}
,

for which our threshold is “too small”. Let ε0 = 1 and ε, ε(1), . . . , ε(B) be i.i.d. uniformly distributed
on {−1, 1}n and independent of a variable U uniformly distributed on {0, 1, . . . , B} (all these variables

2Other resampling choices are possible, see [P2].
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being taken independent of X). Then, by definition of the quantile function, we have on the event U ,

α0 ≤ P
(∥∥S

(
(X − µ)〈ε

(U)〉
)∥∥

q
≥ rα0,Quant(Q̂(X − µ))

∣∣X
)

≤ P
(∥∥S

(
(X − µ)〈ε

(U)〉
)∥∥

q
> rα0(1−δ),Quant(Q̂(X −X)) + Cn−1/2rα−α0,Bonf

∣∣X
)

≤ α0(1− δ) + (B + 1)−1
(

1 +B × P
(
|εn|‖S(X − µ)‖q > Cn−1/2rα−α0,Bonf

∣∣X
))

,

and thus, on the event U ,

P
(
|εn| × ‖S(X − µ)‖q > Cn−1/2rα−α0,Bonf |X

)
≥ α0δ − (B + 1)−1,

which entails ‖S(X − µ)‖q > rα−α0,Bonf by using Hoeffding’s inequality, see [74]. Finally, we obtain

P
(
‖√n(X − µ)‖q > rα(X)

)
≤ P

(
‖√n(X − µ)‖q > rα0,Quant(Q̂(X − µ))

)
+ P(U)

≤ α0 + P(‖S(X − µ)‖q > rα−α0,Bonf) ≤ α0 + α− α0,

and the result is proved.

First note that Theorem 6.2 corroborates the former asymptotical results, because when n grows
to infinity and m is kept fixed, the remainder term disappears. When both m and n increase, however,
there is a competition between the two terms of (6.9): while the first term is adaptive to dependence,
so potentially improves Bonferroni threshold, the remainder term might be largely over-estimated and
can deteriorate the global confidence region.

To illustrate the latter remark, the quality of the threshold (6.9) has been evaluated through a
simulation study in [P3]. The setting considered there involves a two-dimensional spatial process,
obtained by convolution between a Gaussian white noise and a pseudo-Gaussian convolution filter.
The parameters are n = 1000; m = 1282; B = 1000; α = 0.05. The main conclusions are listed below:

- The remainder term is largely overestimated, because the “raw” threshold rα,Quant(Q̂(X − X))
looks indistinguishable from the ideal threshold rα,Quant(Q0) on the plots.

- The threshold (6.9) nevertheless overcomes Bonferroni threshold when the dependence (here the
bandwidth of the convolution filter) is large enough.

This study provides, to our knowledge, the first nonasymptotic approximation result on resampled
quantile with an unknown distribution mean. However, we suspect that the remainder term can be
made significantly smaller or, possibly, even completely removed in some cases.

6.1.4 Application to adaptive FWER control

Let us go back to the two-sided testing problem ofH0,i: “µi = 0” againstH1,i: “µi 6= 0” , 1 ≤ i ≤ m. By
Proposition 6.1, (single-step) FWER controlling procedures can be derived from the confidence regions
of the previous section. In addition, since Theorem 6.2 still holds by replacing the supremum norm by
the supremum norm over an arbitrary subset C of {1, . . . ,m}, we have at hand a family of confidence
regions of the form (6.3). By Theorem 5.1, this gives rise to a new step-down FWER controlling
procedure (called “recentered”). Below, it is qualitatively compared to the procedure developed in
Section 5.1.3 (called “uncentered”).
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Dependence in µ and “bad H0”: the main advantage of using the empirically recentered distribu-
tion Q̂(X−X) instead of the uncentered distribution Q̂(X) (see (5.8)) is that Q̂(X−X) is translation
invariant: replacing X by X − µ leads to the same final threshold. As a result, the distribution of
(6.9) does not depend on µ anymore. By contrast, the uncentered threshold is affected by the value
of µ, which has some consequences for the resulting step-down FWER controlling procedure, that we
now explain in a qualitative and informal discussion. The threshold of the k-th step of the step-down
algorithm (see Theorem 5.1) is based on the distribution of

sup
i/∈Rk−1

∣∣∣∣∣∣
n−1/2

n∑

j=1

εjX
(j)
i

∣∣∣∣∣∣
= sup

i/∈Rk−1

∣∣∣∣∣∣
n1/2εnµi + n−1/2

n∑

j=1

εj(X
(j)
i − µi)

∣∣∣∣∣∣
,

where ε ∈ {−1, 1}n is random. Hence, the uncentered supremum includes an undesirable term n1/2εnµi.
This term will unfavorably affect the supremum when µi takes large values outside Rk−1. At first
step (k = 1), we have Rk−1 = ∅. Hence, a deterioration of the threshold can occur if µ has some
“moderate” non zero coordinates. Roughly speaking, the uncentered resampling does generate a “bad
H0” distribution for the coordinates under moderate alternative, which inevitably affects the supremum
distribution in the first iteration of the step-down algorithm. Hopefully for the uncentered approach,
this phenomenon vanishes along the step-down iterations, because the large means are precisely weeded
out after each step. Eventually, the above annoying term will become small at the k̂-th step.

This informal discussion has been illustrated on a devoted simulation framework in [P3] (see Sec-
tion 4.4 there), for which the nonzero µi’s are taken exponentially increasing.

Hybrid approach The recentered approach does not suffer from the above “bad H0” phenomenon
and thus already reaches its maximum performance after few iterations. However, it relies on a largely
overestimated remainder term, which makes it far less powerful than the uncentered approach at the
end of the step-down iterations. An interesting fact is that we can provably maintain the FWER
control by combining these two approaches in the following way: given two parameters α0 ∈ (0, α) and
δ ∈ (0, 1),

- first make the recentered thresholding coming from (6.9) (in its single step version, and with
parameters α, α0, δ), and consider its rejection set R0;

- apply the step-down algorithm of Theorem 5.1 that takes R0 as starting rejection set and that
uses the uncentered thresholding collection of Lemma 5.2, but with α replaced by α0.

The interest of this “hybrid” approach is that it can reduce the number of iterations of step-down
algorithm when the non zero µi’s lies in a wide range (up to some negligible loss in the level by taking
α0 close to α).

Let us finally mention that, from the practical point of view, the most relevant procedure is prob-
ably the step-down method based upon the threshold collection using the “raw” recentered threshold
rα,Quant(Q̂(X −X)), without any remainder term. Even if not theoretically justified, we believe that it
should be close to the optimal, at least for n larger than a “moderate” value.

A related work Let us mention that a recent study has brought a complement to our work, see
[26]. The symmetry assumption has been removed by using Gaussian approximations for maxima of
non-Gaussian sums. Also, the Gaussian multiplier bootstrap method has been used instead of our
sign-flipping operation (i.e., with our notation, they use ε1 ∼ N (0, 1) combined with the uncentered
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bootstrap). Then, they showed that the resulting RW’s method controls asymptotically the FWER
control by making moment assumptions and by assuming that m = mn depends on n in such a way
that (logmn)7 = O(n1−c) for some c ∈ (0, 1) that can be arbitrary small.

6.2 Asymptotical study of FDP and a new central limit theorem [P8, P10]

The aim of this section is to find the asymptotic distribution of the FDP of the BH procedure,
denoted below FDPm, when there are weak dependencies between the individual tests. To achieve
this goal, we establish a new functional central limit theorem (FCLT) for the empirical distribution
function of the p-values, which is a result of independent interest. The considered asymptotic is in the
number of hypotheses m, which is compatible with the high-dimensional data setting.

For instance, in model (Gauss-ρ-equi) with ρ = ρm → 0 (one-sided testing), our result will imply
that the convergence rate of FDPm to π0α is of the order {min(m, 1/ρm)}1/2 so potentially much slower
than the standard rate m1/2 holding under independence.

While the work [P8] was restricted to the particular model (Gauss-ρ-equi), this section deals with
the more general framework of [P10].

6.2.1 Setting and aim

Let us consider the one-sided Gaussian setting of Section 2.1, with the random effect relaxation
(Mixture) and a constant mean alternative ∆ > 0. Namely, while θi, 1 ≤ i ≤ m, are i.i.d. B(1 − π0),
the distribution of X conditionally on θ is a multivariate Gaussian vector of mean ∆θ and covariance
matrix Γ(m), where Γ(m)

i,i = 1 for 1 ≤ i ≤ m. The model parameters are thus π0,∆ and Γ(m). In this
setting, also note that π0 is the limit (a.s.) of m0/m as m tends to infinity.

Now, we search a rate rm = rm(Γ(m),∆, π0, α)→ +∞ such that

rm (FDPm − π0α) N (0, 1) , (6.10)

under some simple conditions on the covariance matrix Γ(m). Also, we seek for a rate rm which can be
written explicitly in function of the entries of the matrix Γ(m).

Our approach is based on a fundamental result due to Pierre Neuvial [98] (see also [59, 46]), who
shows that the variable FDPm can be written as an Hadamard differentiable functional of the null and
alternative p-value e.d.f.’s:

F̂0,m(t) =
1

m0(θ)

m∑

i=1

(1− θi)1{Φ(Xi) ≤ t}; F̂1,m(t) =
1

m1(θ)

m∑

i=1

θi1{Φ(Xi) ≤ t} , t ∈ [0, 1]. (6.11)

Hence, by applying the functional delta method (see, e.g., Section 20.2 of [140]), the rate in (6.10) is
directly related to the one given by the FCLT on the p-value e.d.f.’s (6.11).

6.2.2 Partial functional delta method for FDPm

The functional delta method is a classical tool when studying asymptotic properties of statistics that
can be written as a “smooth” function of converging processes. Classical examples include the conver-
gence of quantiles, or of Mann-Whitney statistics. This section shows that FDPm is another example,
by using (and slightly extending) the method of [98]. Let us also recall that the notion of differen-
tiability that suits to functional delta method is Hadamard differentiability (see, e.g., Section 20.2 in
[140]).
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Let us consider the linear space D(0, 1) of càd-làg functions on [0, 1] and the linear space
C(0, 1) of continuous functions on [0, 1]. By using (2.8), the processes (6.11) and Ĝm(t) =
m−1

∑m
i=1 1{Φ(Xi) ≤ t} = m0

m F̂0,m(t) + m1
m F̂1,m(t), we can rewrite FDPm as follows:

FDPm = α
m0
m F̂0,m(T (Ĝm))

T (Ĝm)
= Ψ

(m0

m
F̂0,m,

m1

m
F̂1,m

)
, (6.12)

where we used the following functionals (with the conventions 0/0 = 0 and sup{∅} = 0):

T (H) = sup{t ∈ [0, 1] : H(t) ≥ t/α} for H ∈ D(0, 1); (6.13)

Ψ(H0, H1) = α
H0(T (H0 +H1))
T (H0 +H1)

, for (H0, H1) ∈ D(0, 1)2. (6.14)

Let us denote the expectations of F̂0,m(t) (resp. F̂1,m(t), Ĝm(t)) by F0(t) = t (resp. F1(t) = Φ(Φ−1(t)−
∆), G(t) = π0F0(t)+π1F1(t)). Note thatG is a strictly concave function such that limt→0G(t)/t = +∞
and thus also T (G) ∈ (0, 1). In addition, by Corollary 7.12 of [98], T is Hadamard differentiable on
the space D(0, 1) (endowed with the supremum norm) at G, tangentially to the set C(0, 1). As a
consequence, standard calculations show that Ψ is Hadamard differentiable at (π0F0, π1F1) on the
space D(0, 1)2 (endowed with the supremum norm) tangentially to C(0, 1)2, with derivative

Ψ̇(π0F0,π1F1)(H0, H1) =α
H0(T (G))
T (G)

, for (H0, H1) ∈ C(0, 1)2. (6.15)

Now, by using (6.12), the functional delta method provides the asymptotic behavior of FDPm from
the one of (m0

m F̂0,m,
m1
m F̂1,m).

Proposition 6.3. Consider the setting and notation of Section 6.2.1, with F0, F1 and G defined above
and denote by t? the unique t ∈ (0, 1) such that G(t) = t/α. Assume that the two following distribution
convergences hold (w.r.t. the Skorokhod topology and the corresponding Borel σ-field 3):

am

(m0

m
F̂0,m − π0F0

)
 Z0; am

(m1

m
F̂1,m − π1F1

)
 Z1, (6.16)

for some positive sequence (am)m tending to infinity and where Z0 and Z1 are two processes valued a.s.
in C(0, 1). Then we have

am(FDPm − π0α) α
Z0(t?)
t?

. (6.17)

Proposition 6.3 is a “partial” functional delta method in the sense that (6.16) does not involve
the joint convergence of (m0

m F̂0,m,
m1
m F̂1,m). This simplification is possible because the derivative

Ψ̇(π0F0,π1F1)(H0, H1) given by (6.15) only depends on H0.

3Here, it is important to note that bF0,m and bF1,m are not measurable when endowing D(0, 1) with the Borel σ-field
coming from the ‖·‖∞-topology (the so-called ball σ-field), see Section 18 of [15]. However, the functional delta method
does use the ‖·‖∞-topology. This can appear as incompatible at first sight. As a matter fact, this is not, because Z0 and
Z1 are a.s. in C(0, 1) and because converging to a continuous function w.r.t. the Skorokhod distance is equivalent to the
uniform convergence, see the proof of Proposition S.1.1 in the supplement of [P10] for more details.
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6.2.3 A new functional central limit theorem

Establishing (6.10) with Proposition 6.3 now requires a functional central limit theorem (FCLT) of the
type (6.16). Consider Y ∼ N (0,Γ(m)) and let us study the associated empirical distribution function
F̂m(t) = m−1

∑m
i=1 1{Φ(Yi) ≤ t}, t ∈ [0, 1]. For this, write am(F̂m(t) − t) = Wm + Zm, for some

sequence am and where

Wm(t) = am

(
F̂m(t)− t− φ(Φ−1(t))Y m

)
; Zm(t) = φ(Φ−1(t)) amY m , (6.18)

where φ denotes the standard Gaussian density. Classically, a consequence of Mehler’s formula (see,
e.g., [54]) is that the two processes Wm and Zm are not correlated. Our main idea is to focus on the
case where the effect of the dependence is (asymptotically) only carried by the second process Zm. To
this end, observe that Var(amY m) = a2

m(m−1 + γm), where

γm = m−2
∑

i 6=j
Γ(m)
i,j . (6.19)

Letting am =
(
m−1 + |γm|

)−1/2 and assuming the convergence

mγm → θ, for some θ ∈ [−1,+∞] (6.20)

(which always holds up to take a subsequence), the limit of the covariance function of Zm is (t, s) 7→
1+θ

1+|θ|φ(Φ−1(t))φ(Φ−1(s)). Meanwhile, we can see that under the condition

a2
m

m2

∑

i 6=j

(
Γ(m)
i,j

)2
→ 0, (vanish-secondorder)

the limit of the covariance function of the process Wm is the same as under independence (up to the
rescaling), that is, (t, s) 7→ 1

1+|θ|

(
t ∧ s− ts− φ(Φ−1(t))φ(Φ−1(s))

)
. This entails the following limit

for the covariance function of the whole process am(F̂m(t)− t):

K(t, s) =
1

1 + |θ|(t ∧ s− ts) +
θ

1 + |θ|φ(Φ−1(t))φ(Φ−1(s)). (6.21)

Note that Assumption (vanish-secondorder) can be rewritten as am
m ‖Γ(m)−Im‖ → 0, where ‖·‖ denotes

the Frobenius matrix norm. Hence, this assumption roughly means that Γ(m) lies asymptotically in a
neighborhood of Im.

Obviously, convergence of the covariance function is not sufficient to obtain an FCLT. We should
establish the convergence of finite dimensional laws and show the tightness in the Skorokhod space.
This requires some of the following assumptions on Γ(m):

r4+ε0
m

m2

∑

i 6=j

(
Γ(m)
i,j

)4
→ 0, for some ε0 > 0; (H1)

r2+ε0
m

m2

∑

i 6=j

(
Γ(m)
i,j

)2
= o(1), for some ε0 > 0; (H2)

mγ1+ε0
m →∞, for some ε0 > 0. (H3)
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Theorem 6.4. Let us consider Y ∼ N (0,Γ(m)) and the associated empirical distribution func-
tion F̂m(t) = m−1

∑m
i=1 1{Φ(Yi) ≤ t}, t ∈ [0, 1]. Consider the sequence γm defined by (6.19) and

am =
(
m−1 + |γm|

)−1/2. Assume that Γ(m) satisfies either {(vanish-secondorder), (H1) and (6.20)} or
{(H2) and (H3)}. Then, there exists a continuous Gaussian process (Zt)t∈[0,1] with covariance function
defined by (6.21) and such that the following convergence holds (w.r.t. the Skorokhod topology and the
corresponding Borel σ-field)

am(F̂m − I) Z, as m→∞, (6.22)

where I(t) = t denotes the identity function.

There are two underlying regimes in (6.22):

(i) if mγm → θ < +∞, we have am ∝ m1/2 and the process m1/2(F̂m−I) converges to a (continuous
Gaussian) process with covariance function given by (t, s) 7→ t ∧ s− ts+ θ φ(Φ−1(t))φ(Φ−1(s)).
Hence, the limit process is a standard Brownian bridge when θ = 0, but has a covariance function
smaller (resp. larger) if θ < 0 (resp. θ > 0).

(ii) if mγm → θ = +∞, we have am ∼ (γm)−1/2 � m1/2 and (γm)−1/2(F̂m − I) converge to the
process φ(Φ−1(·))Z for Z ∼ N (0, 1). Hence the “Brownian” part asymptotically disappears.

The regimes (i) and (ii) are illustrated in Figure 6.2: as mγm grows, the influence of the “Brownian”
part decreases while that of the (randomly rescaled) function φ(Φ−1(·)) increases. Also, the scale of
the Y -axis indicates that m1/2 is not a suitable rate for large values of mγm.

mγm = 0 mγm = 2 mγm = 102 mγm = 103
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Figure 6.2: Plot of t 7→ m1/2(F̂m(t)− t) for 4 realizations of Y . These realizations have been generated
in model (Gauss-ρ-equi) and for m = 104.

Let us mention that Theorem 6.4 has an interest in its own right. While the literature on FCLT
is colossal since the first Donsker theorem [34, 33, 36] (see for instance reviews in [2, 29, 35]), only
few results deal with the non-stationary case. We can mention the work [129] making assumptions of
type maxi 6=j Γ(m)

i,j “small enough” and the work [5] assuming that Γ(m)
i,j ≤ r(|i − j|) for all i, j and for

a function r independent of m and vanishing at infinity, so still relying on a stationary structure. By
contrast, our result covers factor models or sample correlation matrix, see [P10] and the next section
for more details. Nevertheless, a price to pay is that our assumptions exclude the case of short-range
stationary correlations, e.g., Γ(m) tridiagonal 1/2-1-1/2.
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6.2.4 Application to FDP convergence

By combining Theorem 6.4 with Proposition 6.3, we obtain the following result:

Corollary 6.5. Consider the setting and notation of Section 6.2.1 and denote by t? = t?(∆, π0, α)
the unique t ∈ (0, 1) such that π0t + (1 − π0)Φ(Φ−1(t) −∆) = t/α. Assume that Γ(m) satisfies either
{(vanish-secondorder) and (H1)} or {(H2) and (H3)}. Then we have the convergence (6.10) with the
rate rm given by

rm(Γ(m),∆, π0, α) =
1
π0α





1
π0m

(
1
t?
− π0

)
+

(
φ(Φ−1(t?))

t?

)2

m−2
∑

i 6=j
Γ(m)
i,j





−1/2

, (6.23)

where φ denotes the standard Gaussian density.

Below, we provide some examples for which the assumptions of Corollary 6.5 are satisfied:

- Equi-correlation: Γ(m) is of the form (Gauss-ρ-equi) with ρ = ρm → 0. The rate is rm ∝
{min(m, 1/ρm)}1/2 (as announced at the beginning of the section);

- Alternate equi-correlation: Γ(m)
i,j = (−1)i+jρm for i 6= j with m1+δρ2

m → 0 for some δ > 0. The
rate is rm ∝ m1/2;

- Signed 1-factor model: Γ(m)
i,j = ξ

(m)
i ξ

(m)
j ρm for i 6= j where ξ(m) is m-vector of signs with

ξ
(m)
m ∼ m−D, where 0 ≤ D ≤ 1/2 and assuming m(1+δ)∧(D(4+δ))ρ2

m → 0 for some δ > 0. The rate
is rm ∝ min

(
m1/2,mDρ

−1/2
m

)
. Note that D = 0 encompasses equi-correlation.

- Long-range stationary correlations: Γ(m)
i,j = |j − i|−D for i 6= j and D ∈ (0, 1). The rate is

rm ∝ mD/2;

- Sample correlation matrix: consider Z a nm×m matrix with i.i.d. standard Gaussian entries and
let Γ(m) = D−1SD−1 where S = n−1

m ZTZ is the m×m sample covariance matrix of the columns
of Z (not recentered) and D is the m × m diagonal matrix with diagonal (S1/2

1,1 , · · · , S
1/2
m,m).

Assuming m1+δ/nm → 0 for some δ > 0, the rate is rm ∝ m1/2 (and all the convergences hold in
probability);

In conclusion, (6.23) shows that the convergence rate gets slower when the correlations between the
individual statistical tests are positive and increase. This corroborates what is observed on Figure 5.3
in Section 5.2: correlations can deteriorate the concentration of FDPm around π0α

4. By contrast,
perhaps surprisingly, our study shows that negative correlations help to increase the convergence rate
rm.

4Also observe on Figure 5.3 that ρ = 0.1 falls outside the Gaussian regime. Hence, the asymptotic distribution is not
attained for this “too large” value of ρ. We suspect that the FDP cannot be approximated by a linear function in that
case, which results in a poor accuracy when using the delta method.
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6.3 BH procedure as an optimal classifier [P12]

This section provides connections between FDR control and classification, by studying optimal
classification properties of the BH procedure. More precisely, we show that its mis-classification risk
mimics the Bayes risk for a specific choice of the level αm, as m tends to infinity. A crucial assumption
is sparsity, that is, that the label “0” (no signal) is generated with a probability near to 1. Such an
optimal property is often referred to as adaptation to the unknown sparsity, see [32, 1]. This section
presents results coming from our work [P12], itself extended5 the work of [20]. In addition, to put this
issue in perspective, a comparison with the detection problem is also made.

6.3.1 ζ-Subbotin location model

Let (Xi, θi) ∈ R× {0, 1}, 1 ≤ i ≤ m, be m i.i.d. random pairs such that

(i) we observe X1, . . . , Xm and not the “labels” θ1, . . . , θm;

(ii) the distribution of X1 conditionally on θ1 = 0 has the density d(·) given by (6.24);

(iii) the distribution of X1 conditionally on θ1 = 1 has the density d(·−∆m), for an unknown location
parameter ∆m > 0.

Above, d(·) denotes the ζ-Subbotin density

d(x) = (Lζ)−1e−|x|
ζ/ζ , x ∈ R, with Lζ =

∫ +∞

−∞
e−|x|

ζ/ζdx. (6.24)

Throughout the section, the “shape” parameter ζ is supposed to be known and to belong to (1,∞).
Note that taking ζ = 2 gives the standard Gaussian density.

The goal is to make an inference on the labels θ1, . . . , θm, on the basis of the sample X1, . . . , Xm.
In this section, we will study properties of such inferences when m is large. Hence, we assume that
the model parameters π0,m = P(θ1 = 0) and ∆m both depend on m. Specifically, we assume that the
signal is rare:

1− π0,m = m−β, 0 < β < 1. (Sparsity)

In addition, to balance the sparsity, we will assume that ∆m tends to infinity6, typically ∆m ∝
(logm)1/ζ .

In the above model, X1, . . . , Xm are i.i.d. with a common mixture density equal to x ∈ R 7→
(1−m−β)d(x) +m−βd(x−∆m). The induced distribution on X = (X1, . . . , Xm) is denoted by P (m)

β,∆m

in the sequel.
Finally, note that the above setting corresponds to a typical multiple testing framework, with

Assumption (Mixture). However, it is presented above in a way that is intended to underline the
similarity with the transductive classification model in machine learning theory. More specifically,
this model is close to the semi-supervised novelty detection model, where the user has at hand both
unlabeled data and training data coming from only one nominal class, see [19] and references therein.
Here, while the unlabeled sample would be the Xi’s, the training data would correspond to an infinite
sample under the null (implying the knowledge of d(·)).

5The work [20] was seminal but restricted to a Gaussian scale model and to an asymptotic result of the type of
Theorem 6.9 (i) below. Afterwards, our study [P12] additionally provides non-asymptotic oracle inequalities, deals with
general Subbotin location/scale models and supplies a finite sample choice of αm.

6As we will see, even if ∆m tends to infinity, the signal can still be undetectable. Hence, this setting is sometimes
referred to as “rare/weak” signal by some authors.
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6.3.2 Boundaries for detection and classification risks

In the above model, the two following questions can be asked:

• is there some signal?

• if so, where is the signal?

Detection The first question is classically referred to as detection, see the work [32] of David Donoho
and Jiashun Jin (2004) and the series of work [77, 78, 79, 80] by Yuri Ingster and co-authors. It
corresponds to a single testing of

H0: “X ∼ N (0, Im)” against H(m)
1 : “X ∼ P (m)

β,∆m
”. (6.25)

This testing problem is strongly connected to adaptive testing, for which one null hypothesis is tested
against of family of alternatives hypotheses. Loosely, the family of alternatives is explored here through
the mixture P (m)

β,∆m
.

Obviously, the larger ∆m, the easier the testing problem. This has been formalized in terms of a
separation rate which roughly is the minimum rate at which ∆m should grows to make H0 and H(m)

1

asymptotically separated, see [4]. As a matter fact, the constant matters in the rate. To emphasize
this, let us define the detection risk of a single test ψm(X) ∈ {0, 1} by

RDm(ψm) = PH0(ψm(X) = 1) + P
H

(m)
1

(ψm(X) = 0). (6.26)

Also define ρD : (1/2, 1)→ (0, 1) by

ρD(β) =
{

(21/(ζ−1) − 1)ζ−1(β − 1/2) if 1/2 < β ≤ 1− 2−ζ/(ζ−1);
(1− (1− β)1/ζ)ζ if 1− 2−ζ/(ζ−1) ≤ β < 1.

(6.27)

The following result holds.

Proposition 6.6 ([77, 32]). Consider the model of Section 6.3.1 with (Sparsity) and ∆m =
(ζr logm)1/ζ , for some unknown parameters (β, r) ∈ (1/2, 1)× (0, 1) and the function given by (6.27).
Consider the detection risk defined by (6.26). Then the following holds:

- if r > ρD(β), H0 and H(m)
1 separate asymptotically, that is, there exists a sequence of tests (ψm)m

(possibly depending on β, r) such that RDm(ψm)→ 0 as m tends to infinity;

- if r < ρD(β), H0 and H(m)
1 merge asymptotically, that is, for all sequence of tests (ψm)m (possibly

depending on β, r), we have RDm(ψm)→ 1 as m tends to infinity.

Proposition 6.6 hence puts forward a striking “threshold effect” related to the graph of the function
ρD, which is referred to as the detection boundary.

Classification Compared to assessing whether there exists some signal, it is more demanding to
search where the signal is, because an inference should be done for all the labels θi, 1 ≤ i ≤ m. For
a (measurable) classification rule ĥm : R→ {0, 1}, depending on X1, ..., Xm, the mis-classification risk
is defined by

RCm(ĥm) = E
(
m−1

m∑

i=1

1{ĥm(Xi) 6= θi}
)
/(1− π0,m). (6.28)

Above, the rescaling by 1 − π0,m makes RCm(h0
m) = 1 for the trivial procedure h0

m ≡ 0 that decides
always 0 regardless of the data. The following result can certainly be considered as classical, see, e.g.,
[83].
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Proposition 6.7. Consider the model of Section 6.3.1 with (Sparsity) and ∆m = (ζr logm)1/ζ , for
some unknown parameters (β, r) ∈ (0, 1)×(0, 1). Consider the mis-classification risk defined by (6.28).
Then the following holds:

- if r > β, the classification can be made perfect, that is, there exists a sequence of classification
rules (ĥm)m (possibly depending on β, r) such that RCm(ĥm)→ 0 as m tends to infinity;

- if r < β, the classification problem is impossible, that is, for all sequence of classification rules
(ĥm)m (possibly depending on β, r), we have lim infm{RCm(ĥm)} ≥ 1 as m tends to infinity.

In other words, Proposition 6.7 states that the classification boundary is ρC(β) = β for β ∈ (0, 1).
The classification and detection boundaries are both displayed in Figure 6.3 according to a phase
diagram in the β × r space (for the Gaussian case, i.e., for ζ = 2).
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r

Perfect classification

Perfect detection

Undetectable

Figure 6.3: Phase diagram in the sparsity×signal space for the classification and detection problems in
the Gaussian case. Classification boundary ρC(β) = β and detection boundary ρD(β) given by (6.27)
for β ∈ (1/2, 1) (solid lines). The dashed line corresponds to the detection boundary achieved by the
BH detection rule, see text.

Optimal procedure Now that the phase diagram is established, an issue is to find a procedure that
actually achieves the boundary defined by ρ, that is, a procedure such that for all (β, r) satisfying
r > ρ(β), the corresponding risk is tending to 0 as m grows to infinity. Since such procedure is not
using the true value of β and r, it is said adaptive to the unknown parameters β and r.

For the detection problem, the BH detection rule corresponds to rejecting the null H0 of (6.25)
when at least one rejection is made by the BH procedure. Donoho and Jin (2004) have proved that the
BH procedure does not attain the boundary ρD, see [32] . As a matter of fact, the boundary attained
by the BH procedure is slightly larger on the range 1/2 < β < 3/4, see the dashed line in Figure 6.3.
Roughly, the idea is that in this regime “not too sparse” the signal can be too weak to make one of the
Xi’s large, which makes the BH procedure missing the signal. By contrast, the moderate sparsity can
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be taken into account by considering the cardinals of p-value level sets. This idea, that can be traced
back to Tukey, has been formalized in [32] with the higher-criticism (HC) procedure. They proved that
HC attains the boundary ρD on the full range β ∈ (1/2, 1).

In the rest of the section, the optimality issue is investigated for the classification problem.

6.3.3 Optimality results for the BH classifier

For convenience, let us consider the p-value standardization pi(X) = D(Xi), for 1 ≤ i ≤ m, where
D(u) =

∫∞
u d(x)dx is the upper-tail cumulative distribution of X1 conditionally on θ1 = 0.

Classically, since d(x − ∆m)/d(x) is nondecreasing in x, the solution that minimizes the mis-
classification risk (6.28) is a thresholding rule of the type h?m(x) = 1{D(x) ≤ t?m}, generally referred
to as Bayes’ rule. The BH classifier (at level αm) is defined by ĥBHm (x) = 1{D(x) ≤ t̂BHm (αm)}, where
t̂BHm (αm) is defined by Algorithm 2.1 as usual.

Our first main result states that the BH rule attains the classification boundary when αm is appro-
priately chosen.

Theorem 6.8. Consider the BH rule ĥBHm at a level αm chosen such that

αm → 0 ,
logαm

(logm)1−1/ζ
→ 0, as m→∞. (6.29)

Consider the model of Section 6.3.1 with (Sparsity) and ∆m = (ζr logm)1/ζ for an unknown parameter
couple (β, r) ∈ (0, 1)2, and the mis-classification risk defined by (6.28). Then, whenever r > β, we
have RCm(ĥBHm )→ 0 as m tends to infinity.

Theorem 6.8 shows that the behavior of BH rule is appropriate when the classification task is hope-
less or can be made perfect. However, we might argue that the interesting cases lie in between. Hence,
our second main result explores the optimality property of the BH rule exactly on the classification
boundary. For this, we follow [20] and consider Cm = D(D−1(t?m) − ∆m), which corresponds to the
power of the Bayes rule. We can easily see that (Sparsity) and the assumption

Cm = C ∈ (0, 1) for all m ≥ 2 (BP)

entail that ∆m ∼ (ζβ logm)1/ζ and that RCm(h?m) ∼ 1−C. In particular, under (Sparsity) and (BP), the
part of the phase diagram which is explored lies on the boundary r = β, see Figure 6.3. As a result,
considering the pair of parameters (β,C) instead of (β, r) somewhat “distorts” the sparsity×signal
space and “zooms in” the classification boundary to focus only on interesting balanced situations. In
this framework, the following result can be proved:

Theorem 6.9. Consider the Bayes rule h?m and the BH rule ĥBHm at level αm. Consider the model
of Section 6.3.1 with (Sparsity) and (BP) for an unknown parameter couple (β,C) ∈ (0, 1)2, and the
mis-classification risk defined by (6.28). Then the following holds:

(i) Choosing αm satisfying (6.29) ensures RCm(ĥBHm ) ∼ RCm(h?m) as m tends to infinity;

(ii) Choosing additionally αm ∝ 1/(logm)1−1/ζ ensures

RCm(ĥBHm ) = RCm(h?m)
(

1 +O

(
1

(logm)1−1/ζ

))
. (6.30)
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FIG. 4. Adaptation to sparsity by (B)FDR thresholding in the Gaussian location model relative ex-
cess risks Em for various thresholding procedures (rows) and different values of m (columns). In each
panel, the corresponding risk is plotted as a function of β ∈ [0,1] (horizontal axis) and Cm ∈ [0,1]
(vertical axis). Colors range from white (low risk) to dark red (high risk), as indicated by the color
bar at the bottom. Black lines represent the level set Em = 0.1. The point (β,Cm) = (β0,C0) is
marked by “+.” We chose β0 = 1/2 and C0 = 1/2. See main text for details.
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panel, the corresponding risk is plotted as a function of β ∈ [0,1] (horizontal axis) and Cm ∈ [0,1]
(vertical axis). Colors range from white (low risk) to dark red (high risk), as indicated by the color
bar at the bottom. Black lines represent the level set Em = 0.1. The point (β,Cm) = (β0,C0) is
marked by “+.” We chose β0 = 1/2 and C0 = 1/2. See main text for details.

Figure 6.4: Heatmaps in the β ×C space of the relative excess risks for the procedures “Bayes0” (top)
and “FDR” (bottom) and for increasing values of m (from left to right), see text. For each plot: the
black curve represents the level set where the relative excess risk is equal to 0.1 ; the bottom-left
number is the fraction of configurations (β,C) inside the black curve; the point (β0, C0) = (1/2, 1/2)
is marked by “+”. Finally, for the FDR plots, α is αoptm (1/2, 1/2).

Hence, while Theorem 6.8 states that the BH rule enjoys the same “thresholding effect” as the
Bayes rule in the β × r space, Theorem 6.9 (i) shows that it has an equivalent risk in the finer β × C
space. Here, the explicit convergence rate in Theorem 6.9 (ii) comes from a careful analysis of the
role of αm in our non-asymptotic oracle inequality. Namely, in the sketch of proof provided below, we
found an “optimal” way to choose αm from the parameters β and C, that we denote αoptm (β,C).

To get a computable BH rule, we cannot use αoptm (β,C) because β and C are unknown. However, an
idea is to use the BH rule with αm = αoptm (β0, C0), for some prior values β0, C0 of β,C. In Figure 6.4,
the performance of a classification procedure ĥm is evaluated according to the relative excess risk
(RCm(ĥm) − RCm(h?m))/RCm(h?m)), when (β,C) is varying in the sparsity×signal square (0, 1)2. Two
procedures are considered: first, the BH rule with αm = αoptm (β0, C0) and (β0, C0) = (1/2, 1/2), denoted
by “FDR”. Second, for comparison, we have also considered the plug-in Bayes rule h?m(β0, C0), in which
the unknown values (β,C) are replaced by (β0, C0) = (1/2, 1/2). It is denoted by “Bayes0”. Increasing
values of m are considered from m = 25 to7 m = 106. Interestingly, while Bayes0 performs well when
β ' β0, it performs poorly when β is mis-specified, and increasingly so as m increases. By constrast,
for the FDR method, the configurations with low relative excess risk span (essentially) the whole range
of β. Overall, this illustrates the adaptation w.r.t. the sparsity parameter β of the BH classification
rule on the classification boundary.

Sketch of proof for Theorem 6.8 and Theorem 6.9. Let Ĝm (resp. G) denote the empirical
(resp. theoretical) distribution function of the p-values. The first argument is that, since Ĝm concen-
trates around G, the BH threshold t̂BHm (αm) = max{t ∈ [0, 1] : Ĝm(t) ≥ t/αm} (see (2.8)) should be
close to the deterministic quantity tBHm (αm) = max{t ∈ [0, 1] : G(t) ≥ t/αm}. This guides an optimal

7Since we use here the time consuming exact calculations of Section 3.3 to compute the BH risk, the case m = 106 is
not reported for FDR.
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choice of αm, denoted α
opt
m (β,C), which is such that

tBHm (αoptm (β,C)) = t?m. (6.31)

Interestingly, in the latter relation, αoptm (β,C) can be interpreted as a correction factor that cancels the
difference between t 7→ D(D−1(t)−∆m)/t and t 7→ ∂

∂tD(D−1(t)−∆m) (see [P12] for more details).
The second argument is the following finite-sample oracle inequality, which (essentially) uses the

log concavity of d(·), Bennett’s inequality and exact formulas for the distribution of t̂BHm (coming from
[51]): for αm ∈ (0, 1/2), letting τm = π0,m/π1,m > 1, ε, ν ∈ (0, 1), and for any m ≥ 2 such that
(ζ log τm)1−1/ζ ≥ d(0)

Cm(1−ν)(log(α−1
m /qoptm )− log(νπ0,m(1− ε))), we have

RCm(ĥBHm )−RCm(h?m) ≤
(

αm
1− αm

+ d(0)
(log(α−1

m /qoptm )− log(νπ0,m(1− ε)))+

(ζ log τm)1−1/ζ

)

+
αm/(mπ1,m)

(1− αm)2
+ e−mπ1,mνε2Cm/4, (6.32)

where qoptm = 1/αoptm − 1 > 1. Note that log τm ∼ β logm under (Sparsity) which makes the RHS of
(6.32) becomes small. Namely, since log(α−1

m /qoptm ) ≤ log(α−1
m ), the RHS of (6.32) tends to zero when

αm satisfies (6.29) and thus Theorem 6.8 and Theorem 6.9 (i) follows. Finally, for Theorem 6.9 (ii),
we use that qoptm ∝ (log τm)1−1/ζ under (BP), which comes from (6.31).

An outlook In a specific classification context, this work showed that controlling the FDR is strik-
ingly linked to minimize the standard mis-classification risk. This illustrates that the BH thresholding
allows to adapt to the quantity of signal in the data. Remember that this fact was qualitatively
observed in Figure 1.2 of Chapter 1.

Interestingly, to get the optimality, the choice of αm is not let arbitrary. It should be taken tending
to zero (slowly enough) to produce an appropriate classifier under sparsity. This is markedly different
from situations where the BH procedure is used for model selection, see [1, 8], for which we can choose
αm ∼ α ∈ (0, 1/2) to derive the optimality.
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· · ·

Conclusion

Presented results This manuscript presented an overview of some modern multiple testing problems
and proposed some solutions, that relied on the work listed page 81.

In a nutshell, while the FWER control and the FDP-based controls had both their own interest and
respective interpretation, the methodologies that came into play were not the same. FWER control
required a probabilistic bound on the infimum of the p-values under the null (or, equivalently, on the
supremum of the tests statistics under the null). As a consequence, via an appropriate step-down
algorithm, the problem was reduced to control a single statistic (infimum or supremum). This fact was
extensively used in the resampling-based approaches of Sections 5.1 and 6.1.

By contrast, such a reduction was not possible for the FDR/FDP control, because the involved
procedures was defined by crossing points between the ordered p-values and the critical values. Instead,
the error rates of such procedures depended on the multivariate distribution function of the ordered
p-values, as we have seen in Section 3.3 by using combinatorics.

Markedly, this FDR control could be put in a very simple manner by using two simple sufficient
conditions in Section 3.1, which paved the way for the “continuous” testing of Section 3.2 and the issue
of increasing power via π0-estimators and weighted p-values in Section 4.1 and Section 4.2, respectively.
A counterpart is that strong dependence assumptions were required in the analysis. A second way to
simplify the FDR/FDP controlling issue was to consider an asymptotic situations where the number m
of hypotheses grows to infinity. While Section 6.2 computed the asymptotic distribution of the FDP via
the Delta method for a general (weak) dependent setting, Section 5.2 showed that an asymptotic FDP
control was possible under dependence, either under weak dependence, or in restriction to a particular
family of positively (strongly) dependent factor models. In addition, as an overall summary, FWER,
FDR and FDP controls was compared in Section 5.2.4.

Many mathematical difficulties came while establishing FDR/FDP control. An alternative strategy
was used in Section 5.3 in the case where the p-values share local correlations. The idea was to
combine clustering and multi-scale FWER control, which allows an extra “cluster scale” for signal
detection. However, we emphasized that the interpretation of the testing phase holds conditionally on
the clustering. Hence, the final interpretation of the tests changes.

Open problems While this manuscript solves some issues, it left some others open:

• Two-sided testing: the inferences proposed for FDR/FDP control were often investigated in the
one-sided case. A reason is that the p-values are increasing functions of the errors in that case,
hence positively correlated errors lead to positively correlated p-values, which is a desirable prop-
erty to achieve FDR/FDP control. By contrast, for two-sided testing, such a positive dependence
property is lost. How to make a correct FDR/FDP inference for that specific dependency struc-
ture? A direction could be to derive upper-bounds, by dividing the “two-sided rejection space”
into a collection of “one-sided rejection spaces” plus some remainder terms.

• Data driven weighting: the optimal multi-weighted procedure described in Algorithm 4.4 used
weight vectors (4.6) which depend on the unknown alternative distribution of the data. Could
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we estimate these weight vectors and incorporate them into Algorithm 4.4 to provide both FDR
control and optimality? To investigate this issue, a convenient setting could be the case where
the nulls are grouped in several homogeneous blocks, because the p-value mixture distribution
(4.4) of each block can be well approximated when the size of the block tend to infinity.

• Calibration of β: in Section 3.1, several ways to choose β are proposed according to (3.2).
Under dependence between the p-values, is it possible to choose β according to some resam-
pling/permutation scheme and to still provide an FDR control while improving power? The
key point seems to choose an appropriate “prior” distribution ν on the number of rejections. A
possible direction is to choose ν by sample splitting.

• In Section 6.1, the adaptive confidence region relied on a largely over-estimated remainder term,
which was due to the empirical recentering of the data. What is the minimum value of this term?
Maybe it is simply 0.

• FDP control under unknown dependence: the task of Section 5.2 was investigated under a pre-
viously known dependence (typically Γ known in the Gaussian framework). Is it possible to
provide a rigorous FDP control under unknown dependence via a resampling scheme? A possible
direction is to consider a simple n-sample factor model X(j)

i = µi + ciW
(j) + ζ

(j)
i , 1 ≤ i ≤ m,

1 ≤ j ≤ n and to combine the sign-flipping randomization of Section 5.1.3 with the asymptotical
analysis (when m tends to infinity) of Section 5.2.3.

• FDP control with rate: under weak dependence, we mentioned in Section 5.2 the property
P(FDP(BH) > α) → 0 as m grows to infinity. What is the rate of this convergence? This
problem seems to have been ignored so far in the literature, even under independence.

• p-value correction: in (facmodel), remember that the observations Xi = µi + ciW + ζi are
“disturbed” by the terms ϑi = ciW , which model the dependence structure. Obviously, in this
model, it is desirable to remove the ϑi’s and to consider the test statistics X?

i = Xi−ϑi = µi+ ζi
rather than the original Xi’s. Are there estimates ϑ̂i’s of the ϑi’s such that the new plug-in test
statistics X̂i = Xi−ϑ̂i improve the multiple testing inference? If so, some signal assumptions seem
to be required to avoid the case where the signal vector (µi)i looks “similar” to the disturbance
vector (ciW )i.

Obviously, many other research directions are possible, for instance relying on martingale proofs
[134, 91, 72], post-hoc inference [92, 65], full bayesian approaches [124, 62] and variable selection [8, 21].

All these avenues are both exciting and challenging for future work.
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