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I dedicate my doctoral degree to my beloved father, Fauzi Nawawi, who passed away in the last year of my study. May this achievement be my best gift to you father, that makes you smile upthere in heaven. And last but not least, I wish to thank my mother Ratna Fauzi, my lovely wife Novini Nilakusumah, my children Difa Abdussalam and Fatma Raihana, who have supported me with so much love and care. codes constructions, and generating algorithms. Therefore, it lies in two scientific domains: combinatorics and computer science. We consider three major classes of restricted words, in which the restrictions are applied subject to their growth, to avoidance of a factor or a set of patterns. Our Gray code constructions are induced by order relations, and they are derived from the original Binary Reflected Gray Code introduced by Frank Gray in his 1953 patent [START_REF] Gray | Pulse code communication[END_REF]. We call them Reflected Gray Code based order relations. All the considered generating algorithms we present here are efficient, that is, they have time complexity proportional to the number of the generated objects, independent of the size of the object.

1.1/ MOTIVATIONS AND OBJECTIVES

1.1.1/ IN RELATION TO COMBINATORICS

There are several ad-hoc techniques to define Gray codes for combinatorial classes.

However, those techniques lack of generality, in the sense they work only for the very specific combinatorial classes for which such Gray codes are defined. More general designs that work for a wide range of combinatorial classes tend to grow in recent years.

Among them are, for example, ECO-based Gray codes (ECO was defined formally in the context of enumeration [START_REF] Barcucci | ECO: A methodology for the enumeration of combinatorial objects[END_REF]), Gray codes for Gray structures [START_REF] Bernini | A general exhaustive generation algorithm for Gray structures[END_REF], for strictly prefix (or suffix) partitioned list of words [START_REF] Walsh | Generating Gray codes in O(1) worst-case time per word[END_REF], for reflectable languages [START_REF] Li | Gray codes for reflectable languages[END_REF], and for bubble languages [RW09, RSW12].

Our research is within this spirit. Our Gray code definitions are based on order relations.

More precisely, we propose the original Reflected Gray Code (RGC) order relation as "the base" of our Gray code constructions. Indeed, some variations of the original RGC order relation induce Gray codes for some combinatorial classes. In some cases, our techniques can be applied when other techniques, like reflectable languages, do not work (i.e., for the sets which are not reflectable). Some important questions might arise, such as: under what conditions a class, when listed in an RGC-based order, is a Gray code? If a restriction is applied to such a Gray code list, does the obtained sublist still remain a Gray code? What kind of restrictions that yield Gray codes? How to apply these restrictions into efficient generating algorithms? It seems there is no general answer for the first question, since the existence of Gray code for a particular class, with respect to an RGC-based order, depend on how the class and the order relation are defined. This relates to the answer "it depends" to the remaining questions. In addition, there is no general Gray code construction that works for every class. Nevertheless, it remains a scientific challenge for combinatorists to design more general Gray code constructions.

At first, the RGC-based order relations technique was used implicitly, for example in compositions [START_REF] Klingsberg | A Gray code for compositions[END_REF][START_REF] Walsh | Loop-free sequencing of bounded integer compositions[END_REF]. Later on, it was developed systematically as a general method in order to define Gray codes (and corresponding generating algorithms) for various classes such as Fibonacci words [START_REF] Vajnovszki | A loopless generation of bitstrings without p consecutive ones[END_REF], Lucas words [START_REF] Baril | Minimal change list for Lucas strings and some graph theoretic consequences[END_REF], Lyndon words and relatives [START_REF] Vajnovszki | Gray code order for Lyndon words[END_REF][START_REF] Vajnovszki | More restrictive Gray codes for necklaces and Lyndon words[END_REF], and restricted compositions and permutations [START_REF] Vajnovszki | Restricted compositions and permutations: from old to new Gray codes[END_REF]. In relation to classes of restricted words, some literatures propose Gray codes for restricted growth sequences, such as those given in [START_REF] Mansour | Loop-free Gray code algorithm for the e-restricted growth functions[END_REF][START_REF] Mansour | Efficient generation of restricted growth words[END_REF]; for factor avoiding words [START_REF] Squire | Gray codes for A-free strings[END_REF]; and for pattern avoiding permutations [START_REF] Dukes | Combinatorial Gray code for classes of pattern avoiding permutations[END_REF][START_REF] Baril | More restrictive Gray codes for some classes of pattern avoiding permutations[END_REF].

An order relation induces a unique list for a set of combinatorial objects. In particular, once a Gray code is defined for a class by means of RGC order, we can use all 'knowledge' of RGC order such as: ranking and unranking objects, random generation, and listing for a particular subclass. By applying restrictions to the list, the obtained restricted list (that is, the objects that do not satisfy the restrictions are excluded from the list) is a (possibly scattered) sublist of the original one; it is uniquely defined, and it still maintains the same order relation.

A classical example is the list of length-n binary words with respect to RGC order (the Binary Reflected Gray Code); and below is this list for n = 4 (see Table 2.5 for complete list): G = (0000, 0001, 0011, 0010, 0110, 0110, . . . , 1011, 1001, 1000).

If we restrict this list to contain only binary words having exactly two 1s, then we obtain a 2-Gray code, which is a scattered sublist of G, and for n = 4 is: G = (0011, 0110, 0101, 1100, 1010, 1001).

More generally, restricting BRGC to binary words having exactly k 1s will also produce a Gray code (Nijenhuis and Wilf called this Gray code the revolving door code [START_REF] Nijenhuis | Combinatorial Algorithms for Computers and Calculators[END_REF]).

Extending this idea, our research considers some other restrictions which preserve the Graycodeness, with respect to some RGC-based orders. In particular, we consider three classes of restricted words, that are: restricted growth sequences, factor avoiding words, and pattern avoiding permutations. The variations of RGC order relation are considered in the first and the second mentioned classes. It might happen that, for a combinatorial class, a variation of RGC order induces more restrictive Gray code than that of the original one (as in the case of restricted growth sequences); or the original RGC order does not induce Gray code, but a variation of it induces one (as in the case of factor avoiding words). In the case of pattern avoiding permutations, we use the classical Steinhaus-Johnson-Trotter order (that is, the order relation induced by Steinhaus-Johnson-Trotter Gray code for permutations), and consider some patterns that preserve the Graycodeness. In fact, SJT order is implicitly in connection with the original RGC order; since the list of permutations in SJT order is order isomorphic to the list of their corresponding inversion tables in RGC order.

1.1.2/ IN RELATION TO COMPUTER SCIENCE

The field of combinatorial algorithm includes some recent notable books of references. Donald Knuth's The Art of Computer Programming, Vol. 4A -Combinatorial Algorithm [START_REF] Knuth | The Art of Computer Programming[END_REF], is entirely devoted to the generation of some classical combinatorial classes, such as: n-tuples, permutations, combinations, partitions, set partitions, and trees. Combinatorial Generation, a monograph by Frank Ruskey [Rus03], provides generating algorithms for many combinatorial classes, and analyze the their time and space complexity.

"Efficient", that is the keyword in developing algorithms. The amount of calculations per generated object should be constant (either in the worst case or in amortized sense), and independent of the object size. Gray codes can be considered as an efficient arrangement for combinatorial objects since two successive objects only differ in a (bounded) small amount of changes, independent of the object size. Thus, generating objects in Gray code manner can be a way to obtain efficient generating algorithms.

We provide efficient generating algorithms for each combinatorial class considered in this thesis. The task for restricting the generated words is done by 'restriction procedures', that are called from the main generating algorithm. By designing restriction procedures that define a particular class, the algorithm generates the objects of the desired class. This makes the algorithms more flexible and applicable for a wider range of combinatorial classes.

1.2/ OUTLINE OF THE THESIS

After Introduction in the current chapter, the rest of the thesis is presented in the following outline.

Chapter 2 gives some introductions to combinatorics, in context of our research. First, we explain what the combinatorial objects are, and also their representations. We explain some aspects of enumerative combinatorics involved in our research, that are, counting, exhaustive generation, and bijection between combinatorial objects. In addition, we give explanations about two other aspects: random generation and ranking/unranking combinatorial objects, even though we will not be using them later.

Chapter 3 explains each of the involved aspect in more details. We introduce formal definitions of the three considered combinatorial classes of words, where two of them belong to product sets, and the other belongs to permutations. Those considered classes are, respectively: restricted growth sequences, factor avoiding words, and pattern avoiding permutations. The notions of Gray code and the particular well-known Gray code constructions (Reflected Gray Code and Steinhaus-Johnson-Trotter Gray Code) are introduced and explained.

The algorithm section explains the concept of "efficient generating algorithms". Among such algorithms are: Constant Amortized Time (CAT) algorithm and loopless algorithm.

Whenever possible, obtaining an efficient algorithm is a primary goal in designing algorithm for exhaustive generation of combinatorial objects.

Chapter 4 presents contemporary results in context of our research. The contemporary results are divided into four parts: that of Gray codes, of restricted growth sequences, of factor avoiding words, and of pattern avoiding permutations.

Chapter 5 presents our results on Gray code for restricted growth sequences. We consider four classes that satisfy our prescribed properties; they are subexcedant sequences, ascent sequences, restricted growth functions, and staircase words. In the first part, we

give the results about their Graycodeness and generating algorithms, with respect to the original RGC order. The second part of this chapter gives similar results, with respect to Co-RGC order (a variation of the original RGC order). As by product of our results, we investigate the Graycodeness of the restricted ascent sequences.

Chapter 6 presents our results on Gray code for factor avoiding words. We consider words over alphabet A q = {0, 1, . . . , q -1}, and introduce the notion "zero periodicity property" as sufficient (but not necessary) condition for a set of words to be Gray code, when listed in RGC order. To deal with that property, we apply the original RGC order for even q, and its variation called Dual RGC order for odd q. The Graycodeness of factor avoiding words are categorized according to whether q is even or odd, and whether the forbidden factor induces zero periodicity or not. We also investigate the Graycodeness for particular cases, that are, for certain forbidden factors that do not induce zero periodicity. In the algorithm section, we provide an efficient algorithm for generating factor avoiding words. It applies an efficient factor matching technique adapted from that of Knuth-Morris-Pratt. At the end of the chapter, we give the implementation of our results to define the Gray code and, as an application, provide a CAT generating algorithm for cross-bifix-free words.

Chapter 7 presents our results on Gray codes for some classes of pattern avoiding permutations. We begin by presenting Steinhaus-Johnson-Trotter algorithm, that produces the list of all permutations of a given length (an "SJT-list"), and each generated permutation is obtained by an adjacent transposition to the previous one; so the list is actually a 2adjacent Gray code. To investigate the Graycodeness, we use the classical bijection from inversion tables to permutations and introduce the notion of "restriction functions". Our restrictions to the permutations are subjected to avoid one of the four sets of regular patterns, that are {312, 321}, {321, 3412, 4123}, {312, 4321, 3421}, and {p12 . . . (p -1), 321, 231}, where the last is the set of p-generalized Fibonacci patterns. The reverse of the first, of the second, and the inverse of the fourth mentioned patterns, are also considered. By using bijective approach, we show that the SJT-list of permutations avoiding one of those sets of patterns remains Gray code (possibly less restricted). The generating algorithm section provides an efficient generating algorithm for permutations avoiding one of those sets of patterns. The algorithm generates and lists the permutations according to their relative order in SJT-list, so it can be considered as SJT-list with 'restriction'. In addition, we give the graph theoretic consequence of our results.

Finally, in the Appendix we give the SAGE implementations of our generating algorithms.

PRELIMINARIES

2.1/ COMBINATORICS

Combinatorics can be considered simply as mathematics of counting. More specifically, it is the mathematics of the enumeration, existence, construction, and optimization questions concerning finite sets satisfying a predefined configuration [START_REF] Mazur | Combinatorics: A Guided Tour[END_REF].

2.1.1/ A BRIEF HISTORY

Some classical combinatorics problems such as Tower of Hanoi, tiling problems, magic or Latin squares, or works that related to combinatorics such as Murasaki diagrams of the Tale of the Genji, the 64 Hexagrams of the Fu Hsi ordering, show that human has already dealt with problems related to combinatorics since a long time ago.

Biggs [START_REF] Biggs | The roots of combinatorics[END_REF] pointed out that the basic rules for counting have been taken for granted at least since Egyptian civilizations, as shown in the Rhind papyrus (ca. 1650 BC). It is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased the discovered papyrus in 1858 in Luxor, Egypt. Problem 79 therein appears to deal with the summation of a series of powers of 7. Ancient Chinese were also interested in combinatorial calculations. The famous Book of Change, or I Ching, seems to be a compilation of material, some of which dates from the 7th century BC. The only relevance of the I Ching for combinatorics concerns the question about ordering the hexagrams. However, their standard ordering seems has no significance impact with the development of combinatorics. Apart from that, perhaps the most well-known Chinese contribution to this field is the subject of magic squares [START_REF] Biggs | The roots of combinatorics[END_REF].

Perhaps the first mention of a combinatorics problem occured in an ancient

The Italian mathematician Leonardo Fibonacci (ca. 1170-1250), with his book Liber Abaci, influenced by Arabian and Indian ideas, perhaps might be considered as one who introduced combinatorics in Europe in 13th century. Classes of Fibonacci numbers are strongly related to many aspects in combinatorics.

In 18th century, Leonhard Euler gave the solution of the K önigsberg Bridge problem.

His published results marked the birth of graph theory and modern combinatorics, and perhaps since then combinatorics emerged as a formal branch of mathematics.

Today, combinatorics has expanded into branches such as enumerative combinatorics, optimization, analysis, and algebraic combinatorics. It plays important roles in pure mathematics, such as algebra, probability theory, topology, and geometry. Its applications spread into many science domains such as bioinformatics, cryptography, electrical engineering, and many more.

2.1.2/ COMBINATORIAL CLASS

'Combinatorial class' is a primitive notion, and roughly speaking, it is a set of objects endowed with some combinatorial properties. The term 'combinatorial object' can refer either to a single object belonging the class, or to the class itself [START_REF] Williams | Shift Gray Codes[END_REF]. A particular set of combinatorial objects is a subclass, with certain properties are fixed. For example, the class of permutations consists of sets P n , the sets of permutations of length n ≥ 0. By fixing n = 5, we have P 5 , the set of permutations of length 5.

Ruskey proposed an intuitive definition that a class of combinatorial object is elementary if it satisfies a simple recurrence relation [Rus03]. Permutations, combinations, set or number partitions, binary trees and labeled graphs are some well-known elementary combinatorial objects.

2.1.3/ REPRESENTATIONS OF COMBINATORIAL OBJECT

A combinatorial object can be represented in various ways. For example, some ways to represent a permutation are by one line notation, by cycle notation, or by inversion 1 2 3 (1 

)(2)(3) 0 0 0 1 3 2 (1)(2 3) 0 0 1 2 1 3 (1 2)(3) 0 1 0 2 3 1 (1 2 3) 0 1 1 3 1 2 (1 3 2) 0 0 2 3 2 1 (1 3)(2) 0 1 2

Set

Binary word Obviously, there is one-to-one correspondence between each representation within the same class. Which one is used depends on what aspects to be investigated in that class.

{1, 2, 3} 1 1 1 0 0 {1, 2, 4} 1 1 0 1 0 {1, 3, 4} 1 0 1 1 0 {2, 3, 4} 0 1 1 1 0 {1, 2, 5} 1 1 0 0 1 {1, 3, 5} 1 0 1 0 1 {2, 3, 5} 0 1 1 0 1 {1, 4, 5} 1 0 0 1 1 {2, 4, 5} 0 1 0 1 1 {3, 4, 5} 0 0 1 1 1

2.2/ ENUMERATIVE COMBINATORICS

Enumerative combinatorics is a branch of combinatorics specialized in counting and generating combinatorial objects under specified constraints. In addition, the generation of combinatorial object is a method to produce a particular object in the class. To obtain all combinatorial objects under particular parameters, the task is called the exhaustive generation of combinatorial objects. Since in this thesis we only consider exhaustive generation, for the brevity we use the term "generation" to refer "exhaustive generation". 

Set partition Restricted growth function

{1, 2, 3, 4} 0 0 0 0 {1, 2, 3},{4} 0 0 0 1 {1, 2, 4},{3} 0 0 1 0 {1, 2},{3, 4} 0 0 1 1 {1, 2},{3},{4} 0 0 1 2 {1, 3, 4},{2} 0 1 0 0 {1, 3},{2, 4} 0 1 0 1 {1, 3},{2},{4} 0 1 0 2 {1, 4},{2, 3} 0 1 1 0 {1},{2, 3, 4} 0 1 1 1 {1},{2, 3},{4} 0 1 1 2 {1, 4},{2},{3} 0 1 2 0 {1},{2, 4},{3} 0 1 2 1 {1},{2},{3, 4} 0 1 2 2 {1},{2},{3},{4} 0 1 2 3

2.2.1/ COUNTING COMBINATORIAL OBJECTS

Stanley [START_REF] Stanley | Enumerative Combinatorics[END_REF] stated that the basic problem of enumerative combinatorics is how to find the cardinality of a given finite set (i.e., counting the number of objects of a finite set), by using the appropriate counting formula. For example, n! counts the number of n-permutations. Counting formula can be given in several standard algebraic methods, those are: explicit formula, recurrence relation, asymptotic formula, and generating function (see Table 2.4 for examples). A relatively more recent method called ECO [START_REF] Barcucci | ECO: A methodology for the enumeration of combinatorial objects[END_REF] is suitable to enumerate most of combinatorial classes.

Combinatorial class

Counting formula Type of formula

n-permutations n! Explicit formula n-permutations √ 2πn n e n Asymptotic formula (large n) Dyck words 1- √ 1-4x 2x

Generating function of length 2n

Fibonacci words

f (0) = 0, f (1) = 1, Recurrence relations of length n f (n) = f (n -1) + f (n -2)
Table 2.4: Some combinatorial classes with their counting formulas.

If the counting formula for a set is not known, or it is too complicated to deal with, then a solution is to design a 'counting algorithm'. In this case, the algorithm efficiency is crucial.

Alternatively, one can use bijection between combinatorial classes.

2.2.2/ EXHAUSTIVE GENERATION

Exhaustive generation of combinatorial objects is a way to generate with no omissions nor repetitions all the combinatorial objects in a given class of a fixed object size. It can be used to test hypotheses about a class of objects, to solve some NP-complete problems, to analyze or prove programs, and often to exhibit new combinatorial properties of the class being considered. It can also be used to count the object in the class.

In combinatorial optimization, where every possible object is associated with a value, it might be necessary and feasible to evaluate all the possibilities under a particular condition, to find which one gives the optimality.

The exhaustive generation can be obtained by a generating algorithm, and the objects are generated according to a particular order, usually the lexicographic order or its generalizations, or bounded change orders. For that purpose, it is more convenient to have objects represented by tuples.

LEXICOGRAPHIC ORDER AND ITS GENERALIZATIONS

Lexicographic order is a formalization of the idea of ordering the words alphabetically, as in the dictionary. In lexicographic order, a word a 1 a 2 . . . a n is less than (i.e., is ordered before) a word b 1 b 2 . . . b n if, for some k, a k is less than b k , and a i = b i for i = 1, 2, . . . , k -1.

There are variations of lexicographic order derived from the original one, such as reverse lexicographic (relex) order, co-lexicographic (colex) order, or combinations of both relex and colex order. Note that in lexicographic order, two successive words can differ in arbitrary number of positions, and there are possibilities that they differ in all positions.

Chase introduced the generalization of lexicographic order, called the Graylex order [START_REF] Chase | Combination generation and Graylex ordering[END_REF]. Graylex order, like the lexicographic order and its variations, produces a list of words which is either prefix partitioned or suffix partitioned (all the words having the same prefix/suffix are contiguous). A Graylex order simultaneously generalizes lexicographical and Reflected Gray Code order.

BOUNDED CHANGE ORDER

In bounded change order, the succeeding object is obtained by applying a number of changes to the previous one, and this number is bounded independently in the size of objects. However, such order does not necessarily exist for a given combinatorial class.

In addition, if the bound is proven to be minimal, then we say such an order as a minimal change order.

A Graylex order might also be a bounded change order for a particular class. For example, Lexicographic Number of Bounded change Number of order changes order changes 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 1 0 2 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 3 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 2 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 4 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 2 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 3 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 2 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 Table 2.5:
The list of binary words with respect to lexicographic order and to a bounded change order. The column "Number of changes" shows the amount of changes applied to the previous words to obtain the next one. Generally, for a set of length-n binary words, its list in lexicographic order yields n changes between successive words in the worst case; while in this particular bounded change order, the number of change is 1.

Reflected Gray Code order is a bounded (and also minimal) change order for the set of binary words. Ordering rules proposed in [BGPP07, [START_REF] Walsh | Generating Gray codes in O(1) worst-case time per word[END_REF][START_REF] Li | Gray codes for reflectable languages[END_REF] give minimal change order for Gray structures, strictly prefix/suffix partitioned list, or reflectable languages, respectively (explained later in Chapter 4).

Table 2.5 shows the lists of binary words of length 4, with respect to lexicographic order and a bounded change order (in this case it is given by Reflected Gray Code order). In general, lexicographic order gives the amount of changes equals to the word length (in the worst case), and in this example is 4; and in the bounded change order, the amount of change is 1, which is minimal (independent of the word length). The similar example is also shown in Table 2.6

2.2.3/ BIJECTION BETWEEN COMBINATORIAL OBJECTS

A function f : A → B is called a bijection if f satisfies both of the following properties:

• f is injective (one-to-one), that is, for any a 1 , a 2 ∈ A, if f (a 1 ) = f (a 2 ), then a 1 = a 2 ,

and

• f is surjective (onto), that is, for any b ∈ B, there exists some a ∈ A such that

f (a) = b.
Lexicographic Number of Bounded change Number of order changes order changes 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 1 0 2 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 3 0 1 1 0 1 0 1 0 1 1 0 1 0 1 2 0 1 1 0 2 0 1 0 0 1 1 0 0 0 4 1 1 0 0 1 1 0 0 1 1 1 0 1 0 2 1 0 1 0 2 1 0 0 1 2 1 1 0 0 2 1 0 0 0 1 Table 2.6:
The list of length-4 binary words having at most two 1s, with respect to lexicographic order and to a bounded change order. Note that these lists are sublists of those in Table 2.5. Generally, for a set of length-n binary words, its list in lexicographic order yields n changes between successive words in the worst case; while in this particular bounded change order, the number of changes are bounded by 2.

Clearly, two finite sets A and B have the same cardinality if and only if there exists a bijection from one set to the other. In this case, we say that A and B are isomorphic.

Moreover, if A and B are the sets of combinatorial objects and are isomorphic, it follows that generating objects in A is equivalent to generating objects in B (for example, when

A is the set of inversion tables and B is the set of permutations, since the two sets are isomorphic). By using bijective proof, the properties of a class (such as the Graycodeness of the class) usually can be investigated by using the properties of its isomorphic class.

It might happen that the counting formula for a combinatorial class is not known yet. However, if there exists a bijection to such a class from a class with known counting formula, then the problem is solved; since the isomorphic classes have the same cardinality, so they share the same counting formula.

2.2.4/ RANDOM GENERATION

Random generation consists of designing an algorithm that chooses randomly and with uniform probability an object in a certain class. Apart from the theoretical interest, random generation is used principally for producing objects of large size, when the exhaustive generation is inefficient. It has applications in: the estimation of the average complexity of algorithms which deal with combinatorial objects; verification of combinatorial conjectures and assistance to one intuition (random generation is therefore associated with Monte-Carlo method); modeling (in Computer Science, Physics, Statistics, etc.) In these application areas, one needs to generate objects of very large size, which justifies the desire to achieve very low computational complexities, ideally linear in the size of the object to be constructed. One among methods for random generation is by using object grammar given by Dutour and F édou in [START_REF] Dutour | Object grammars and random generation[END_REF].

2.2.5/ RANKING AND UNRANKING

Often it may be desirable to predetermine the position of a given object in a generated list without generating the whole list. This requires a ranking algorithm, and the inverse problem, determine the object with a given rank, requires an unranking algorithm.

Formally, the ranking function for the class A n of the objects of size n of a given type is a function which assigns a unique integer in the range [0, card(A n ) -1] to each of the card(A n ) objects of size n. The corresponding unranking function is the inverse: given an integer between 0 and card(A n ) -1, the value of the function is the object having this rank, and generally, the unranking algorithm is more complicated than the ranking one

The traditional approach to this problem is to first define an ordering of the set of combinatorial objects and then find ranking and unranking functions relative to that ordering.

For example, in lexicographic order, the rank of an object is simply the number of objects that precede it in lexicographic order. Naive implementations of ranking and unranking functions in lexicographic order are not linear and require arithmetic over large integers, but by not insisting on lexicographic order one may obtain efficient ranking and uranking algorithms. Such algorithms can be used for random generation or data compression.

NOTATIONS AND DEFINITIONS

We consider the following classes of restricted words: restricted growth sequences, factor avoiding words, and pattern avoiding permutations. Each object in those classes is represented by tuple (i.e., an ordered list of elements). In particular, for n > 0, a length-n sequence, word, or permutation is represented as an n-tuple, and we adopt the convention that a lower case bold letter represents an n-tuple, for example: a = a 1 a 2 . . . a n . The empty (the length-0) sequence, word, or permutation is denoted by .

In this chapter, we give notions and definitions in relation with our considered classes of words, Gray codes, and efficient generating algorithm.

3.1/ OUR CONSIDERED CLASSES OF WORDS

We define the three classes of restricted words below with respect to their parental classes, that are product sets and permutations. In general, all these classes belong to the classes of words. 

A q = {0, 1, . . . , q -1}.
A n denotes the set of words of length n over A, A * = ∪ n≥0 A n , and

A + = ∪ n≥1 A n . The word f ∈ A * is a factor of a ∈ A * ∪ A ∞ if there are b ∈ A * and c ∈ A * ∪ A ∞ such that a = b f c; when b = (resp. c = )
, then f is a prefix (resp. suffix) of a; and in this case, the prefix or the suffix is proper if f a and f .

For a ∈ A * ∪ A ∞ and X ⊂ A * ∪ A ∞ we denote by a | X the set of words in X having the prefix a, and by X(a) the set of words in X that avoiding a. Clearly A * (a) = ∪ n≥0 A n (a).

By the previously defined notions, we have the following definition:

Definition 2: Factor avoiding q-ary word For a given word f , the word a = a 1 a 2 . . . a n is said to avoid f if a does not contain f as its factor. We denote by A n q ( f ) the set of q-ary words of length n that avoids factor f . A bifix (or border) of a word is a factor which is both a prefix and a suffix. A word is said to be bifix-free if it does not contain any bifix [START_REF] Nielsen | A note on bifix-free sequences[END_REF].

Definition 3: Cross-bifix-free word

A set of bifix-free words is cross-bifix-free if, given any two words, any prefix of the first one is not a suffix of the second one.

3.1.2/ PERMUTATIONS

A permutation of a finite set S is an arrangement of all elements in S . In a permutation, the order of arrangement is considered; for example, if S = {1, 2, 3}, a permutation 132 is different from 231. We denote by P n the set of all permutations of S n = {1, 2, . . . , n}.

Alternatively, a permutation of a set S is a bijection from S onto itself.

Restrictions to a set of permutation yield a set of restricted permutations. In literature, there are various ways to restrict permutations. Among them, the well-known class of restricted permutations is the class of pattern avoiding permutations.

PATTERN AVOIDING PERMUTATIONS

Let P n be the set of length-n permutations. We say that π ∈ P n contains a pattern τ ∈ P k if there is a subsequence

1 ≤ i 1 < i 2 < • • • < i k ≤ n such that π i 1 . . . π i k is order isomorphic to τ.

Definition 4: Pattern avoiding permutation

For a given permutation τ, a permutation π is said to avoid τ if π does not contain subsequence that is order isomorphic to τ. We denote by P n (τ) the set of permutations that avoids τ. Similarly, for a set T of permutations, P n (T ) is the set of permutations in P n avoiding each permutation in T

3.2/ GRAY CODE

In 1947, Frank Gray, an engineer at Bell Laboratories, invented an analog-to-digital signal conversion method so that spurious output from electromechanical switches can be prevented. His method was based on a binary numerical system, which at that moment had as yet no recognized name, and just referred as "reflected binary code". Not until 1953 when finally this code was named as Gray Code, or to be more specific, Binary Reflected Gray Code (BRGC). However, the code itself had been studied and applied long before. For example, a French engineer named Emile Baudot used it in telegraphy in 1878. Briefly, for an integer n, BRGC is a list of all length n binary words (or sequences), ordered so that the successive words differ only in one position, and by +1 or -1 in this position. The term "reflected" refers to the reflection technique used in the construction.

The amount of position(s) where two distinct words differ is called the Hamming distance.

In BRGC, the Hamming distance between any two successive words is 1.

In combinatorics context, Gray code has come through a less restrictive definition (which sometimes called as combinatorial Gray code). Here we adopt the definition from Walsh [START_REF] Walsh | Generating Gray codes in O(1) worst-case time per word[END_REF].

Definition 5: Gray code

A Gray code is an infinite set of word-lists with unbounded word-length such that the Hamming distance between any two successive words in any list is bounded independently of the word-length.

Through this thesis, we will often use the notions defined below to describe Gray code more specifically: 

3.2.1/ REFLECTED GRAY CODE

In the following we provide the construction rules for BRGC, followed by that for Reflected Gray Code (RGC), that is, the generalization of BRGC to q-ary words. For n > 1, construct the n-bit Gray code by first appending 0 to each element of the (n -1)-bit Gray code, then list the (n -1)-bit Gray code in reverse, appending 1 to each element. The following recursive relations represent this technique:

B n =        if n = 0, 0B n-1 , 1B n-1 , if n > 0, (3.2) 
where is the empty word, B n-1 is the reverse of B n-1 . See Table 3.2 for the list of BRGC of length 5, generated by relation (3.2). Now, let G n q be the set of length-n q-ary words s 1 s 2 . . . s n with s i ∈ {0, 1, . . . , q -1}; or 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 10 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 equivalently, G n q is the product set {0, 1, . . . , q -1} n . The Reflected Gray Code for the set G n q , denoted by G n q , is the natural extension of the Binary Reflected Gray Code to this set. The list G n q is defined recursively by the following relation [START_REF] Er | On generating the n-ary reflected Gray code[END_REF]:

G n q =        if n = 0, 0G n-1 q , 1G n-1 q , 2G n-1 q , . . . , (q -1) G n-1 q if n > 0, (3.3) 
where is the empty word, G n-1 q is the reverse of G n-1 q , and G n-1 q is G n-1 q or G n-1 q according to q is odd or even.

In G n q , two successive words differ in a single position and by +1 or -1 in this position.

ORDER RELATION INDUCING REFLECTED GRAY CODE

The Reflected Gray Code can also be constructed by using order relation. The order relation defined in the following induces the Reflected Gray Code on G n q .

Definition 7: Reflected Gray Code order

The Reflected Gray Code order on G n q is defined as:

s = s 1 s 2 . . . s n is less than t = t 1 t 2 . . . t n , denoted by s ≺ t, if either • k-1 i=1 s i is even and s k < t k , or • k-1 i=1 s i is odd and s k > t k ,
where k is the leftmost position where s and t differ.

We denote the RGC order by ≺ order. Table 3.3 shows the list of sequences in G 3 3 ordered by ≺ order. It is easy to see this list is equal to G 3 3 .

0 0 0 1 2 2 2 0 0 0 0 1 1 2 1 2 0 1 0 0 2 1 2 0 2 0 2 0 1 2 1 1 0 2 1 2 0 1 1 1 1 1 2 1 1 0 1 0 1 1 2 2 1 0 0 2 0 1 0 2 2 2 0 0 2 1 1 0 1 2 2 1 0 2 2 1 0 0 2 2 2
Table 3.3: The list of 3-ary sequences of length 3, G 3 3 , ordered by ≺ order. The changed symbols to obtain the next sequence are underlined. The list is equal to G 3 3 .

THE REFLECTED-GRAY-CODE-BASED ORDER RELATIONS

The RGC-based order relations are variations of RGC order relation. They are obtained by some slight modifications to the original relations in Definition 7. As we mentioned earlier, it might happen that a variation of RGC order induces more restrictive Gray code than that of the original one; or the RGC order does not induce Gray code, but a variation of it induces one; or else, a variation might give the properties that we want to investigate. The RGC-based order relations we consider through this thesis are Co-Reflected Gray Code order and Dual Reflected Gray Code order (we will define them later in the subsequent chapters).

3.2.2/ STEINHAUS-JOHNSON-TROTTER GRAY CODE

A classical exhaustive generation technique for unrestricted permutations was given independently by Johnson [START_REF] Johnson | Generation of permutations by adjacent transposition[END_REF] and Trotter [START_REF] Trotter | Algorithm 115[END_REF]; while previously in 1958 Steinhaus had posed a puzzle related to generating permutations and solved it in the similar way [START_REF] Steinhaus | One Hundred Problems in Elementary Mathematics[END_REF].

Their method, known as Steinhaus-Johnson-Trotter (SJT) algorithm, lists all permutations of length n so that any successive permutations differ by an adjacent transposition. The obtained list is a 2-adjacent Gray code, so it is also called the Steinhaus-Johnson-Trotter

Gray code. See Table 3.4 for permutations of length 4 listed by this method.

3.3/ EFFICIENT GENERATING ALGORITHM

An exhaustive generating algorithm is an algorithm to generate exhaustively all objects belong to a class of combinatorial objects. For the brevity, we will use the shorter term 4 1 2 3 3 2 1 4 4 1 3 2 2 3 1 4 1 4 3 2 2 3 4 1 1 3 4 2 2 4 3 1 1 3 2 4 4 2 3 1 3 1 2 4 4 2 1 3 3 1 4 2 2 4 1 3 3 4 1 2 2 1 4 3 4 3 1 2 2 1 3 4 Table 3.4: The list of permutations of length 4 generated by SJT algorithm. The transposed symbols to obtain the next permutation is underlined. The list is 2-adjacent Gray code.

"generating algorithm". Usually the output of such algorithm is presented in a list form, arranged according to a certain order, such as lexicographic order or Gray code order.

Every generating algorithm is also an enumeration algorithm, since each object can be counted when it is generated. From the computer science point of view, it is necessary to have an efficient generating algorithm to do this task.

The time complexity indicates the worst-case running time of an algorithm, regardless which computer is used to execute it. We denote the time complexity by using Big O notation. Let f : N → R and g : N → R; then, we denote by f = O(g) if there is a constant c and an integer n 0 such that f (n) ≤ cg(n) for n > n 0 . If f and g both describe the number of computations required for two algorithms given input size n, then f = O(g) means that f is 'not worse' than g when the problem size is large (see [START_REF] Keller | Applied Combinatorics[END_REF]). Generally, we say f has time complexity O(g), or alternatively, f runs in O(g) worst-case time.

For a generating algorithm, the time complexity is very crucial since the number of generated objects (the cardinality of the set) is, generally, an exponential function of the size of the generated objects. In terms of performance, the primary goal in developing a generating algorithm is to obtain an algorithm whose running time is proportional to the number of generated objects [RS03]. For that purpose, we need the algorithm that runs in constant time per generated object. It can be constant in average, or constant in the worst case, regardless the length of the object. In both cases, we consider such algorithm as efficient.

3.3.1/ CONSTANT AMORTIZED TIME ALGORITHM

A generating algorithm runs in Constant Amortized Time (CAT) if there is a constant c such that for any size of the objects we have: A recursive algorithm runs in CAT if it satisfies the following properties:

1. Every call results in the output of at least one object.

2.

Excluding the computation done by recursive calls, the amount of computation of any call is proportional to the degree of a call (the number of immediate recursive calls initiated by the current call).

3.

The number of calls of degree one, if they exist, is O(N) (where N is the number of generated objects).

The three properties above are called the CAT principle [Rus03]. Alternatively, based on the second property above, if a recursive generating algorithm satisfies the total amount of calls number of generated objects ≤ c,

then it runs in CAT, and we call such algorithm a CAT algorithm.

3.3.2/ LOOPLESS ALGORITHM

A generating algorithm is loopless (or loop-free) if, after the initial object is generated, each succeeding object may be obtained by O(1) worst-case time (see [START_REF] Ehrlich | Loopless algorithm for generating permutations, combinations, and other combinatorial configurations[END_REF]). A loopless generating algorithm is considered an efficient algorithm.

A loopless generating algorithm produces a Gray code list. The converse is not true: Gray codes can be generated by algorithms that are not loopless. Essentially, there are two techniques to design loopless generating algorithms: Ruskey's method by finished and unfinished lists and Ehrlich's 'e' array [START_REF] Ehrlich | Loopless algorithm for generating permutations, combinations, and other combinatorial configurations[END_REF] which was generalized by Walsh [START_REF] Walsh | Generating Gray codes in O(1) worst-case time per word[END_REF]. words is prefix-partitioned, then for any positive integer i < n the interval of words (that is, sublist containing consecutive words) with the same prefix of length i -1 is partitioned into sub-intervals with the same prefix of length i, so that in this interval the i-th letter follows a sequence of values, depending on the prefix, such that all the copies of the same value are contiguous in the sequence. The subsequence of distinct values assumed by the i-th letter is called the defining sequence of the prefix Bitner, Ehrlich, and Reingold [START_REF] Bitner | Efficient generation of the Binary Reflected Gray Code and its applications[END_REF] presented a loopless algorithm to generate the BRGC. Walsh [START_REF] Walsh | Generating Gray codes in O(1) worst-case time per word[END_REF] applied the concept of defining sequences to their algorithm, which he call BER algorithm, and showed that it works on any prefix (or suffix) partitioned wordlist satisfying the condition that every defining sequence has at least two values. In this case, the list is said to be strictly prefix (or suffix) partitioned.

STATE OF THE ART

4.1.4/ GRAY CODES FOR REFLECTABLE LANGUAGES

Reflectable language was introduced by Li and Sawada [START_REF] Li | Gray codes for reflectable languages[END_REF]. A language (i.e., class of words) L over the alphabet A is said to be reflectable if for every word w 1 w 2 . . . w n and i > 1 there exists two distinct symbols x i and y i in A such that if w 1 w 2 . . . w i-1 is a prefix of a word in L then both w 1 w 2 . . . w i-1 x i and w 1 w 2 . . . w i-1 y i are also prefixes of words in L.

For any combinatorial class satisfying such conditions, there exist construction yielding Gray code. Combinatorial classes such as binary and k-ary words, restricted growth functions and tails, binary and k-ary trees, are proven to be reflectable; thus, they can be listed in a Gray code manner.

Roughly, the previous three techniques are equivalent, but expressed and motivated in different way. Further, the RGC order relation technique has been developed systematically as a general method to define Gray codes for various classes. In this direction, RGC-based Gray codes and some of its variations (called RGC-based order relations) are worth to be mentioned, such as: Gray codes for Fibonacci and Lucas words, which are given in, respectively, [START_REF] Vajnovszki | A loopless generation of bitstrings without p consecutive ones[END_REF] and [START_REF] Baril | Minimal change list for Lucas strings and some graph theoretic consequences[END_REF]; for Lyndon words and relatives in [START_REF] Vajnovszki | Gray code order for Lyndon words[END_REF][START_REF] Vajnovszki | More restrictive Gray codes for necklaces and Lyndon words[END_REF]; and for restricted compositions and permutations in [START_REF] Vajnovszki | Restricted compositions and permutations: from old to new Gray codes[END_REF].

Our Gray codes techniques are within this category.

4.2/ RESTRICTED GROWTH SEQUENCES

Literatures about restricted growth sequences mostly focus on four particular mainstream classes: subexcedant sequences, ascent sequences, restricted growth functions, and staircase words. Wilf in [START_REF] Nijenhuis | Combinatorial Algorithms[END_REF]: "is it possible to arrange all partitions of an n-set so that each partition is obtained from its immediate predecessor by changing the class of exactly one object?". There is no strong Gray code for restricted growth functions, that is, where two successive restricted growth functions differ in a single position and by 1 or -1 in this position.

The subexcedant sequences are mostly used as an alternative way to represent permuta-tions and also for their exhaustive generation. A technique using subexcedant sequences to encode permutations were introduced in 1888 [START_REF] Laisant | Sur la num ération factorielle, application aux permutations[END_REF]. About 70 years later, this technique was reintroduced by Lehmer [START_REF] Lehmer | Teaching combinatorial tricks to a computer[END_REF] and such sequence is now known as Lehmer code. Another well known technique is by using inversion table [START_REF] Stanley | Enumerative Combinatorics[END_REF], which is the Lehmer code for the inverse permutation. Dijkstra [START_REF] Dijkstra | On a gauntlet thrown by David Gries[END_REF] proposed an efficient algorithm to generate n! permutations by using their inversion tables, implicitly ordered in RGC order, which eventually generates Steinhaus-Johnson-Trotter list for permutations.

In Vajnovszki and Vernay [START_REF] Vajnovszki | Restricted compositions and permutations: from old to new Gray codes[END_REF] proved that the list for the set of even (or odd) permutations, as well as the set of permutations with an even (or odd) number of cycles, are Gray codes when their corresponding inversion tables are listed with respect to RGC order. 

4.3/ FACTOR AVOIDING WORDS

Perhaps the most challenging task in generating factor avoiding words is to find efficiently the occurrence of a given factor in the word. Knuth, Morris, and Pratt introduced, in their joint paper, the algorithm to find the occurrence of a word factor f within a given word w [START_REF] Knuth | Fast pattern matching in strings[END_REF]. They employed the notions period (a shift that causes the word to match over itself) so that if a mismatch occurs, the beginning of the next possible occurrence of f in w can be determined. In [START_REF] Guibas | Periods in strings[END_REF] Guibas and Odlyzko introduced the notion correlation of two words (the representation of how the second word can overlap into the first), and used the generating function to enumerate the words with a given correlation.

In their subsequent work [START_REF] Guibas | String overlaps, pattern matching, and nontransitive games[END_REF], they provided a generating function that enumerates the q-ary words of length n avoiding a given factor (for various types of words avoiding a pattern, see [START_REF] Heubach | Combinatorics of compositions and words[END_REF]). The notion 'correlation' was then modified to border in [Lot05, p.

8]. However, in the worst case there is no algorithm that can check for the occurrence of a given factor without examining essentially all symbols of the word. A systematic construction and enumeration results for particular factor avoidance in binary case are considered in [START_REF] Bilotta | A construction for a class of binary words avoiding 1 j 0 i[END_REF] for 1 j 0 i -avoiders, and in [START_REF] Bilotta | Pattern 1 j+1 0 j avoiding binary words[END_REF] for 1 j+1 0 j -avoiders.

In Gray code context, Squire [START_REF] Squire | Gray codes for A-free strings[END_REF] investigated whether there exists strong Gray code for q-ary words avoiding a given factor, so that successive words differ in only one position, and by 1 or -1 in this position. He proved such Gray codes exist if there is no parity problem induced by the employed forbidden factor. The parity of the word w = w 1 w 2 . . . w n is even (resp. odd) if w i is even (resp. odd). In particular, a Gray code for such set exists only if the numbers of words having even and odd parity differ by at most one. He also provided Gray codes construction for those words with q even. However, no generating algorithm was provided.

Vajnovszki [START_REF] Vajnovszki | A loopless generation of bitstrings without p consecutive ones[END_REF] gave Gray codes and generating algorithm for the set of length-n binary words avoiding p consecutive 1s (which equal to the set of length n Fibonacci words of order p). The Gray codes are based on the RGC order relation, and the sets are enumerated by Fibonacci numbers of order p. The results in [START_REF] Vajnovszki | A loopless generation of bitstrings without p consecutive ones[END_REF] was recently generalized in [START_REF] Bernini | Two Gray codes for qary k-generalized Fibonacci strings[END_REF] where two Gray codes (one prefix partitioned and the other trace partitioned)

for q-ary words avoiding a factor constituted by p consecutive equal symbols were given.

One of the variations of factor avoiding words is cross-bifix-free words (recall Definition 3). The term cross-bifix-free appeared for the first time in [START_REF] Bajic | On construction of cross-bifix-free kernel sets[END_REF]. Cross-bifix-free sets are involved in the study of distributed sequences for frame synchronization [START_REF] De Lind Van Wijngaarden | Frame synchronization using distributed sequences[END_REF].

The problem of determining the set of cross-bifix-free words is also related to several other scientific applications, for instance in pattern matching [START_REF] Crochemore | Algorithms on Strings[END_REF] and automata theory [START_REF] Berstel | Codes and Automata (Encyclopedia of Mathematics and its Applications)[END_REF]. Moreover, in some applications, listing a cross-bifix-free set in Gray code manner can be of a particular interest.

Several methods for constructing cross-bifix-free sets have been recently proposed as in [START_REF] Bajic | A simple suboptimal construction of cross-bifix-free codes[END_REF][START_REF] Bilotta | A new approach to cross-bifix-free sets[END_REF][START_REF] Chee | Cross-bifix-free codes within a constant factor of optimality[END_REF]. For a fixed cardinality of the alphabet and of the length of the words, the construction giving the cross-bifix-free set having the largest cardinality is the one proposed in [START_REF] Chee | Cross-bifix-free codes within a constant factor of optimality[END_REF].

4.4/ PATTERN AVOIDING PERMUTATIONS

The study of pattern avoiding permutations began in 1968 when Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF] worked on the stack-sorting problem. He showed that a permutation is stack sortable (i.e., it can be sorted by a stack) if it avoids pattern 231; and the enumeration of such permutations for a fixed length n is given by n-th Catalan number. Early combinatorics developments to this field were given by Simion and Schmidt [START_REF] Simion | Restricted permutations[END_REF] and a group of mathematicians called Lothaire [START_REF] Lothaire | Combinatorics on Words (Encyclopedia of Mathematics and its Applications)[END_REF]. In [START_REF] Simion | Restricted permutations[END_REF] was given the enumeration of permutations avoiding R, the set of patterns of length 

F (k-1)
(n-1) (that is, (n -1)-th Fibonacci number of order (p -1)). Barcucci, Bernini, and Poneti [START_REF] Barcucci | From Fibonacci to Catalan permutations[END_REF] showed the connections of several well-known classes of permutations having cardinality between the Fibonacci and Catalan numbers.

There are many algorithms for generating permutations. An earlier survey in 1977 by Sedgewick [START_REF] Sedgewick | Permutation generation methods[END_REF] revealed about thirty of them had been published then. A natural way to permute an array of symbols efficiently is to exchange two of its symbols. The fastest permutation algorithms operate in this way. Some classical and well-known among them are that of Knuth [Knu73], Wells [START_REF] Wells | Generation of permutations by transposition[END_REF], Heap [START_REF] Heap | Permutations by interchanges[END_REF], Johnson [START_REF] Johnson | Generation of permutations by adjacent transposition[END_REF], and

Trotter [START_REF] Trotter | Algorithm 115[END_REF]. The last two authors, independently gave the equivalent methods, which then widely recognized as Steinhaus-Johnson-Trotter algorithm; and they were the first to introduce permutation generating algorithm by adjacent transposition between symbols.

The output of Steinhaus-Johnson-Trotter (SJT) algorithm is a 2-adjacent Gray code, which is the minimal Gray code for permutations. As mentioned in Section 4.2, an SJT-list is the image (under a bijection) of the list of subexcedant sequences (i.e., the inversion tables) with respect to RGC order, as shown in [START_REF] Dijkstra | On a gauntlet thrown by David Gries[END_REF].

Many studies have been made on Gray codes and generating algorithms for restricted permutations. A CAT generating algorithm for up-down permutations was given by Ruskey and van Baronaigien [START_REF] Van Baronaigien | Generating permutations with given ups and downs[END_REF], while later Korsh [START_REF] Korsh | Loopless generation of up-down permutations[END_REF] gave the loopless one.

Walsh [START_REF] Walsh | Gray codes for involutions[END_REF] designed Gray codes for all length-n involutions and fixed-point free involutions. Gray code and CAT generating algorithm for derangements (permutations with no fixed points) were given by Baril and Vajnovszki [START_REF] Baril | Gray code for derangements[END_REF]; and those for permutations with a fixed number of cycles (resp., with a fixed number of left-to-right minima) were given by Baril [START_REF] Baril | Gray code for permutations with a fixed number of cycles[END_REF] (resp., [START_REF] Baril | Gray code for permutations with a fixed number of left-to-right minima[END_REF]). Vajnovszki [START_REF] Vajnovszki | A loopless algorithm for generating the permutations of a multiset[END_REF] gave Gray code and loopless generating algorithm for multiset permutations. Ko and Ruskey [START_REF] Ko | Generating permutations of a bag by interchanges[END_REF] gave CAT generating algorithm for bag permutation (a class derived from multiset permutation). Gray codes for wide classes of pattern avoiding permutations were given in [START_REF] Dukes | Combinatorial Gray code for classes of pattern avoiding permutations[END_REF], and the results were refined in [START_REF] Baril | More restrictive Gray codes for some classes of pattern avoiding permutations[END_REF].

II OUR CONTRIBUTIONS

GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

In this chapter, we consider Gray codes for sets belonging to the class of st-restricted growth sequences (defined in Definition 1), and give efficient exhaustive generating algorithms for them. In particular, we consider four statistic st that satisfies relations (5.1) and (5.2) below.

5.1/ ADDITIONAL NOTIONS

If st is one of the statistics len, asc, m, and lv, then st satisfy the following:

st(s 1 s 2 . . . s n ) ≤ n -1, (5.1) 
and

if s n = st(s 1 s 2 . . . s n-1 ) + 1, then s n = st(s 1 s 2 . . . s n-1 s n ). (5.2) 
Accordingly, through this thesis we will consider only the four statistics above. However, as we will point out, some of the results presented here are also true for arbitrary statistics satisfying relations (5.1) and (5.2).

Remark 1:

If st is a statistic satisfying relations (5.1) and (5.2), then:

1. max{st(s 1 s 2 . . . s n ) | s 1 s 2 . . . s n is an st-restricted growth sequence} = n -1; 2. if s 1 s 2 . . . s n is an st-restricted growth sequence, then for any k, 1 ≤ k < n, s k+1 = st(s 1 s 2 . . . s k ) + 1 implies s k+1 = st(s 1 s 2 . . . s k s k+1 ).
It is routine to check that the sets of st-restricted growth sequences, where st is one of the statistics len, asc, m, and lv, satisfy additional properties above. In the following we define those sets.

SUBEXCEDANT SEQUENCES

The set S E n of subexcedant sequences of length n is defined as:

S E n = {s 1 s 2 . . . s n | s 1 = 0 and 0 ≤ s k+1 ≤ len(s 1 s 2 . . . s k ) + 1 for 1 ≤ k < n}.
S E n is trivially in bijection with the set of length n permutations; and so, it is counted by n!. Notice that alternatively, S E n = {0} × {0, 1} × . . . × {0, 1, . . . , n -1}.

ASCENT SEQUENCES

The set A n of ascent sequences of length n is defined as:

A n = {s 1 s 2 . . . s n | s 1 = 0 and 0 ≤ s k+1 ≤ asc(s 1 s 2 . . . s k ) + 1 for 1 ≤ k < n}.
A n is in one-to-one correspondence with Stoimenow's diagrams, certain upper triangular matrices and some pattern-avoiding permutations (see Section 3.2 in [START_REF] Kitaev | Patterns in Permutations and Words[END_REF]).

The generating function for the sequence counting A n is shown in [START_REF] Bousquet-M Élou | 2 + 2)-free posets, ascent sequences and pattern avoiding permutations[END_REF] to be

n≥0 n i=1 (1 -(1 -x) i ).

RESTRICTED GROWTH FUNCTIONS

The set R n of restricted growth functions of length n is defined as:

R n = {s 1 s 2 . . . s n | s 1 = 0 and 0 ≤ s k+1 ≤ m(s 1 s 2 . . . s k ) + 1 for 1 ≤ k < n}.
R n is in bijection with the partitions of the set {1, 2, . . . n} (see for instance [RS94]) and is counted by the Bell numbers b n , with the exponential generating function e e x -1 .

STAIRCASE WORDS

The set S n of staircase words of length n is defined as: .

S n = {s 1 s 2 . . . s n | s 1 = 0 and 0 ≤ s k+1 ≤ lv(s 1 s 2 . . . s k ) + 1 for 1 ≤ k < n}.
Remark 2:

S n ⊂ R n ⊂ A n ⊂ S E n ⊂ G n n
, where G n n is the set of n-ary words of length n.

Below we give examples to illustrate Remark 2.

Example 1:

• If s = 010145, then s ∈ S E 6 , but s A 6 , s R 6 and s S 6 .

• If s = 010103, then s ∈ S E 6 , s ∈ A 6 , but s R 6 and s S 6 .

• If s = 010102, then s ∈ S E 6 , s ∈ A 6 , and s ∈ R 6 , but s S 6 .

• If s = 010101, then s ∈ S E 6 , s ∈ A 6 , s ∈ R 6 and s ∈ S 6 .

Table 5.1 shows the sets S 5 , R 5 , and A 5 listed in ≺ order.

Sequence S 5 R 5 A 5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 0 0 0 1 1 0 0 0 1 0 0 0 1 2 3 0 0 1 2 2 0 0 1 2 1 0 0 1 2 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 2 0 0 1 0 2 0 0 1 0 1 0 0 1 0 0 0 1 2 3 0 0 1 2 3 1 0 1 2 3 2

Sequence We denote by

S 5 R 5 A 5 0 1 2 3 3 0 1 2 3 4 0 1 2 2 3 0 1 2 2 2 0 1 2 2 1 0 1 2 2 0 0 1 2 1 0 0 1 2 1 1 0 1 2 1 2 0 1 2 1 3 0 1 2 0 3 0 1 2 0 2 0 1 2 0 1 0 1 2 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 2 0 1 1 1 2 Sequence S 5 R 5 A 5 0 1 1 1 0 1 1 1 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
• X n the list for the set X n in ≺ order;

• succ X (s), s ∈ X n , the successor of s in the set X n listed in ≺ order (recall Definition 7 for ≺ order); that is, the smallest sequence in X n larger than s with respect to ≺ order;

• first(L) the first sequence in the list L;

• last(L) the last sequence in the list L.

Without another specification, X n generically denotes a set of st-restricted growth sequences, with st being one of the statistic len, asc, m, and lv. In other words, X n is either the set S E n , A n , R n , or S n .

5.2/ THE REFLECTED GRAY CODE ORDER FOR THE SET X n

For general purpose, we denote by X n the lists SE n , A n , R n , or S n .

5.2.1/ THE GRAYCODENESS OF THE LIST X n

Lemma 1:

If s = s 1 s 2 .
. . s n and t = t 1 t 2 . . . t n are two sequences in X n with t = succ X (s) and k is the leftmost position where they differ, then

s k = t k + 1 or s k = t k -1.
Proof. Let t = succ X (s) and k be the leftmost position where they differ. Let us suppose that s k < t k and s k t k -1 (the case s k > t k and s k t k + 1 being similar).

It is easy to check that u = s 1 s 2 . . . s k-1 (s k + 1)0 . . . 0 belongs to X n , and considering the definition of ≺ order relation, it follows that s ≺ u ≺ t, which is in contradiction with t = succ X (s), and the statement holds.

If a = a 1 a 2 . . . a k ∈ X k , then for any n > k, a is the prefix of at least one sequence in X n , and we denote by a | X n the sublist of X n of all sequences having the prefix a. Clearly, a list in ≺ order for a set of sequences is a prefix partitioned list (all sequences with same prefix are contiguous), and for any a ∈ X k and n > k, it follows that a | X n is a contiguous sublist of X n .

For a given a ∈ X k , the set of all x such that ax ∈ X k+1 is called the defining set of the prefix a, and obviously ax is also a prefix of some sequences in X n , for any n > k. We denote by

ω X (a) = max{x | ax ∈ X k+1 } (5.3)
the largest value in the defining set of a. And if we denote ω X (a) by M, then by Remark 1

we have M = st(a) + 1 = st(aM).

And consequently, ω X (aM) = st(aM) + 1 = M + 1.

(5.4)

The next two propositions give the form of

s ∈ X n , if s = last(a | X n ) or s = first(a | X n ).

Proposition 1:

Let k < n and a = a 1 a 2 . . . a k ∈ X k . If s = last(a | X n ), then the form of s is given by:

• if k i=1 a i is odd, then s = a0 . . . 0;

• if k i=1 a i is even and M is odd, then s = aM0 . . . 0;

• if k i=1 a i is even and M is even, then s = aM(M + 1)0 . . . 0;

where M denotes ω X (a).

Proof. Let s = a 1 a 2 . . . a k s k+1 . . . s n = last(a | X n ).
If k i=1 a i is odd, then by considering the definition of ≺ order, it follows that s k+1 is the smallest value in the defining set of a, and so s k+1 = 0, and finally s = a0 . . . 0, and the first point holds. Now let us suppose that k i=1 a i is even. In this case s k+1 equals ω X (a) = M, the largest value in the defining set of a. When in addition M is odd, so is the summation of aM, the length k + 1 prefix of s, and thus s = aM0 . . . 0, and the second point holds.

Finally, when M is even, then s k+2 is the largest value in the defining set of aM, which by relation (5.4) is M + 1. In this case M + 1 is odd, and thus s = aM(M + 1)0 . . . 0, and the last point holds.

With the similar proof, the following proposition holds:

Proposition 2: Let k < n and a = a 1 a 2 . . . a k ∈ X k . If s = first(a | X n ),
then the form of s is given by:

• if k i=1 a i is even, then s = a0 . . . 0; • if k i=1 a i is odd and M is odd, then s = aM0 . . . 0; • if k i=1 a i is odd and M is even, then s = aM(M + 1)0 . . . 0;
where M denotes ω X (a).

By Proposition 1 and 2 above, we have the following result:

Theorem 1:

The lists A n , R n and S n are 3-adjacent Gray codes.

Proof. Let t = succ X (s), and k be the leftmost position where s and t differ. Let us also denote by a the length k prefix of s and a that of t; so, Now we show the adjacency, that is, if k + 2 ≤ n and s k+1 = t k+1 implies s k+2 = t k+2 . If s k+1 = t k+1 , by Lemma 1, it follows that the summation of the length k prefix of s and that of t have different parity, and two cases can occur:

s = last(a | X n ) and t = first(a | X n ). If k + 3 ≤ n,
• s k+1 = t k+1 = 0, and by Proposition 1 and 2, it follows that s k+2 = t k+2 = 0; or

• s k+1 = t k+1 0, and thus s k+1 = t k+1 = ω(a) = ω(a ). In this case, ω(a) either is odd and so s k+2 = t k+2 = 0, or is even and so s k+2 = t k+2 = ω(a) + 1.

In both cases, s k+2 = t k+2 .

It is well known that the restriction of G n q defined in relation (3.3) to any product space remains a 1-Gray code, see for example [START_REF] Vajnovszki | Restricted compositions and permutations: from old to new Gray codes[END_REF]. In particular, for S E n = {0} × {0, 1} × . . . × {0, 1, . . . , n -1} we have the next proposition. Its proof is simply based on Lemma 1, Proposition 1 and 2, and on the additional remark: for any a ∈ S E k , k < n, it follows that ω S E (a) = k.

Proposition 3:

The list SE n is 1-Gray code.

It is worth mentioning that, for any statistic st satisfying relations (5.1) and (5.2), the list in ≺ order for the set of st-restricted growth sequences of length n is an at most 3-Gray code.

Actually, the lists SE n , A n , R n and S n are circular Gray codes, that is, the last and the first sequences in the list differ in the same way. Indeed, by the definition of ≺ order, it follows that:

• last(X n ) = 010 . . . 0; • first(X n ) = 000 . . . 0.
where X n is one of the lists SE n , A n , R n and S n .

5.2.2/ GENERATING ALGORITHM FOR THE LIST X n

Procedure GEN1 in Figure 5.1a is a general procedure generating exhaustively the list of st-restricted growth sequences with respect to ≺ order. Notice that st does not necessarily satisfy relations (5.1) and (5.2). According to particular instances of the function OMEGA X (and so, of the statistic st) called by it, GEN1 produces specific st-restricted growth sequences, and in particular the lists SE n , A n , R n , and S n (see Figure 5.1b for particular instances of OMEGA X). From the length one sequence 0, GEN1 constructs recursively increasing length st-restricted growth sequences: for a given prefix s 1 s 2 . . . s k it produces all prefixes s 1 s 2 . . . s k i, with i covering (in increasing or decreasing order) the defining set of s 1 s 2 . . . s k ; and eventually all length n st-restricted growth sequences. It has the following parameters:

• k, the position in the sequence s which is updated by the current call;

• x, belongs to the defining set of s 1 s 2 . . . s k-1 , and is the value to be assigned to s k ;

• dir, the direction (ascending for dir mod 2 = 0 and descending for dir mod 2 = 1) to cover the defining set of s 1 s 2 . . . s k-1 ;

• v, the value of the statistic of the prefix s 1 s 2 . . . s k-1 from which the value of the statistic of the current prefix s 1 s 2 . . .

s k is computed. Remark that v = ω X (s 1 s 2 . . . s k-1 ) -1.
Function OMEGA X computes ω X (s 1 s 2 . . . s k ) (see relation (5.3)), and the main call is GEN1(1,0,0,0).

One can see that every recursive call to GEN1 will either:

• be a terminal call (and so, a sequence belongs to the set is generated), or

• produce subsequent calls.

Function OMEGA X returns a positive integer, since ω X (s 1 s 2 . . . s k ) > 0. This means that every non-terminating calls will produce at least two subsequent calls. As long as OMEGA X is done in O(1) time, each of calls will have the amount of computations proportional to the degree of the call. In this case, GEN1 satisfies the CAT principle stated in Section 3.3.1, and so it is an efficient generating algorithm.

The computational tree of GEN1 producing the list A 4 is given in Figure 5. In the previous chapter, we considered RGC order, which induces RGC for the set G n q , namely G n q . Now we give a variation of G n q . Let s = s 1 s 2 . . . s n be a sequence in G n q . The complement of s i ,

1 ≤ i ≤ n, is (q -1 -s i ),
and the reverse of s 1 s 2 . . . s n is

s n s n-1 . . . s 1 .
Let G n q be the list obtained by transforming each sequence s in G n q as follows:

• complementing each digit in s if q is even, or complementing only digits in odd positions if q is odd, then

• reversing the obtained sequence.

Clearly, G n q is also a Gray code for G n q , and the sequences therein are listed in Co-Reflected Gray Code order, as defined formally below. Table 5.2 shows the list for G 3 3 and G 4 4 , with respect to RGC and Co-RGC order. The second column in each table is obtained by applying two steps of transformation above. 

Rank G 3 3 G 3 3 0 0 0 0 2 0 2 1 0 0 1 1 0 2 2 0 0 2 0 0 2 3 0 1 2 0 1 2 4 0 1 1 1 1 2 5 0 1 0 2 1 2 6 0 2 0 2 2 2 7 0 2 1 1 2 2 8 0 2 2 0 2 2 9 1 2 2 0 2 1 10 1 2 1 1 2 1 11 1 2 0 2 2 1 12 1 1 0 2 1 1 13 1 1 1 1 1 1 14 1 1 2 0 1 1 15 1 0 2 0 0 1 16 1 0 1 1 0 1 17 1 0 0 2 0 1 18 2 0 0 2 0 0 19 2 0 1 1 0 0 20 2 0 2 0 0 0 21 2 1 2 0 1 0 22 2 1 1 1 1 0 23 2 1 0 2 1 0 24 2 2 

Definition 8: Co-Reflected Gray Code order

The Co-Reflected Gray Code order ≺ c on G n q is defined as: s = s 1 s 2 . . . s n is less than t = t 1 t 2 . . . t n , denoted by s≺ c t, if either

• n i=k+1 s i + (n -k) is even and s k > t k , or • n i=k+1 s i + (n -k) is odd and s k < t k ,
where k is the rightmost position where s and t differ.

Although this definition sounds somewhat arbitrary, as we will see in Section 5.3.3, it Sequence S 5 R 5 A 5 0 1 2 3 4 0 1 2 3 3 0 1 0 2 3 0 0 1 2 3 0 1 1 2 3 0 1 2 2 3 0 1 2 1 3 0 1 0 1 3 0 1 2 0 3 0 1 2 0 2 0 1 1 0 2 0 0 1 0 2 0 1 0 0 2 0 1 0 1 2 0 0 0 1 2 0 0 1 1 2 turns out that ≺ c order gives suffix partitioned Gray codes for some sets of restricted growth sequences. Obviously, the restriction of G n q (resp. G n q ) to a set of sequences is simply the list of sequences in the set listed in ≺ (resp. ≺ c ) order. In this section we will consider, as in the previous one, the sets S E n , A n , R n and S n , but listed in ≺ c order.

0 1 1 1 2 0 1 2 1 2 Sequence S 5 R 5 A 5 0 1 2 2 2 0 1 1 2 2 0 0 1 2 2 0 1 0 2 2 0 1 2 3 2 0 1 2 3 1 0 1 0 2 1 0 0 1 2 1 0 1 1 2 1 0 1 2 2 1 0 1 2 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 Sequence S 5 R 5 A 5 0 1 1 0 0 1 2 0 0 1 2 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 2 1 0 1 2 2 0 1 1 2 0 0 1 2 0 1 0 2 0 1 2 3
Our main goal is to prove that the obtained lists are Gray codes as well, and to develop generating algorithms for those sets, based on ≺ c order.

Recall that X n generically denotes one of the sets S E n , A n , R n , or S n ; and let X n denote their corresponding list in ≺ c order, that are, SE n , A n , R n , or S n . Clearly, a set of sequences listed in ≺ c order is a suffix partitioned list, that is, all sequences with same suffix are contiguous, and such are the lists we consider here.

For a set X n and a sequence b = b k+1 b k+2 . . . b n , we call b an admissible suffix in X n if there exists at least a sequence in X n having suffix b. For example, 124 is an admissible suffix in A 6 , because there are sequences in A 6 ending with 124, namely 012124 and 010124. On the other hand, 224 is not an admissible suffix in A 6 ; indeed, there is no length-6 ascent sequence ending with 224.

We denote by X n | b the sublist of X n of all sequences having suffix b, and clearly, X n | b is a contiguous sublist of X n . The set of all x such that xb is also an admissible suffix in X n is called the defining set of the suffix b.

For ≺ order discussed in Section 5.2, the characterization of prefixes is straightforward: a 1 a 2 . . . a k is the prefix of some sequences in X n , n > k, if and only if a 1 a 2 . . . a k is in X k . And the defining set of the prefix a 1 a 2 . . . a k is {0, 1, . . . , st(a 1 a 2 . . . a k ) + 1}. In the case of ≺ c order, it turns out that similar notions are more complicated: for example, 13 is an admissible suffix in A 5 , but 13 is not in A 2 ; and the defining set of the suffix 13 is {0, 2}, because 013 and 213 are both admissible suffixes in A 5 , but 113 is not. See Table 5.3 for the sets A 5 , R 5 , and S 5 listed in ≺ c order.

5.3.2/ SUFFIX EXPANSION OF SEQUENCES IN THE SET X n

For a suffix partitioned list, we need to build st-restricted growth sequences under consideration from right to left, i.e., by expanding their suffix. For this purpose, we need the notions defined below.

Definition 9: α X (b) and µ X (b) Let b = b k+1 b k+2 . . . b n , 1 ≤ k < n, an admissible suffix in X n .
• α X (b) is the set of all elements in the defining set of the suffix b. Formally:

α X (b) = {x | xb is an admissible suffix in X n },
and for the empty suffix , α X ( ) = {0, 1, . . . , n -1}.

• µ X (b) is the minimum required value of the statistic defining the set X n , and provided by a length (k + 1) prefix of a sequence in X n having suffix b.

Formally:

µ X (b) = min{st(s 1 s 2 . . . s k b k+1 ) | s 1 s 2 . . . s k b ∈ X n }. Notice that µ X (xb) ∈ {µ X (b) -1, µ X (b), x} for x ∈ α X (b).

Remark 3:

Let st be one of statistics asc, m or lv, and s = s 1 s 2 . . . s n be an st-restricted growth sequence. If there is a k < n such that s k+1 = k, then s i = i -1 for all i,

1 ≤ i ≤ k. Proof. If s k < k -1, then in each case for st, st(s 1 s 2 . . . s k ) < k -1, which is in contradiction
with s k+1 = k, and so s k = k -1. Similarly, s k-1 = k -2, . . . , s 2 = 1, and s 1 = 0.

Under the conditions in the previous remark, s k+1 = k imposes that all values at the left of k + 1 in s are uniquely determined. As we will see later, in the induced tree of the generating algorithm, all descendants of a node with s k+1 = k have degree one, and we will eliminate the obtained degree-one path in order not to alter the algorithm efficiency.

It is routine to check the following propositions. (Actually, Proposition 4 is a consequence of Remark 1.)

Proposition 4:

Let X n be one of the sets The following propositions give the values for α X (b) and µ X (xb), if X n is one of the sets S E n , A n , R n , or S n . We do not provide the proofs for Propositions 6, 7, 12, and 13, because they are obviously based on the definition of the corresponding sequences. Clearly, µ A (b), the minimum number of ascents in a prefix s 1 s 2 . . . s 5 b 6 such that

S E n , A n , R n , or S n . If b = b k+1 b k+2 . . . b n , 1 ≤ k < n, is an admissible suffix in X n , then b k+1 ≤ µ X (b).
s 1 s 2 . . . s 5 b ∈ A 9 , is 4.
In this case, denoting s 5 by x, we have

• the set α A (b) of all possible values for x is {0, 1, , . . . , b k+1 -1} ∪ {k -1} = {0, 1} ∪ {4}. • µ A (xb) = µ A (b) -1 = 4 -1 = 3, if x ∈ {0, 1}; or µ A (xb) = µ A (b) = 4, if x = 4.
Proposition 10: 

Let b = or b = b k+1 b k+2 . . . b n be an admissible suffix in R n . Then α R (b) =              {0, 1, . . . , n -1} if b = , {k -1} if µ R (b) = k, or µ R (b) = k -1 and b k+1 < k -1, {0, 1, . . . , k -1} if µ R (b) = k -1 and b k+1 = k -1, or µ R (b) < k -1.
• µ R (xb) = µ R (b) = k -1,
and as above, this implies x = k -1;

• µ R (xb) = µ R (b) -1 = k -2, which implies x ∈ {0, 1, . . . , k -2}. Finally, if µ R (b) < k -1, then x can be any value in {0, 1, . . . , k -1}.
Proposition 11:

Let b = b k+1 b k+2 . . . b n be an admissible suffix in R n and x ∈ α R (b). Then µ R (xb) =              x if x ≥ µ R (b), µ R (b) if b k+1 ≤ x < µ R (b) or x < b k+1 < µ R (b), µ R (b) -1 if x < b k+1 = µ R (b).
Proof. The case x ≥ µ R (b) is analogous with the similar case in Proposition 9.

The next case is equivalent with x < µ R (b) and b k+1 < µ R (b), and since R n corresponds to the statistic m, the result holds. 

Finally, if x < b k+1 = µ R (b), then µ R (b) = µ R (xb) + 1, and so µ R (xb) = µ R (b) -1.
α S (b) =              {0, 1, . . . , n -1} if b = , {k -1} if b k+1 = k, {C, C + 1, . . . , k -1} if 0 ≤ b k+1 ≤ k -1,

5.3.3/ THE GRAYCODENESS OF THE LIST X n

Now we show that the Hamming distance between two successive sequences in the mentioned lists is bounded from above by a constant, which implies that the lists are Gray codes. These results are embodied in Theorems 2, 3 and 4.

THE LIST SE n

Theorem 2:

The list SE n is 1-Gray code.

Proof. The result follows from the fact that the restriction of the 1-Gray code list G n n to any product space remains a 1-Gray code (see [START_REF] Vajnovszki | Restricted compositions and permutations: from old to new Gray codes[END_REF]), in particular to the set

V n = ϑ 1 × ϑ 2 × . . . × ϑ n ,
where

• ϑ i = {0, 1, ..., n -i}, if n is odd and i is even, or • ϑ i = {i -1, i, ..., n -1}, if n
is even, or n and i are both odd.

Then by applying to each sequence s in the list V n the two transforms mentioned before Definition 8, namely:

• complementing each digit in s if n is even, or only digits in odd positions if n is odd, then

• reversing the obtained sequence, the desired 1-Gray code for the set S E n in ≺ c order is obtained. If s k = 0, then considering the definition of ≺ c order we have either

• s = first( Y n | b) and n i=k+1 b i + (n -k) is odd, or • s = last( Y n | b) and n i=k+1 b i + (n -k) is even.
For the first case, again by the definition of ≺ c order, it follows that s k-1 must be the largest value in α Y (0b), and so s k-1 = k -2, and by Remark 3, s = 012 . . . (k -2)0b. Similarly, the same result is obtained for the second case.

A direct consequence of the previous proposition is that ≺ c order gives a more restrictive Gray codes than those given by ≺ order for the sets A n and R n . This is formalized in the next theorem.

Theorem 3:

The lists A n and R n are 2-adjacent Gray codes. For the last case, as above, s k = max{0, b k+1 -1}, and considering b k+1 > 0 and even, it

• if b k+1 = k or n i=k+1 b i + (n -k) is odd, then s = 012 . . . (k -2)(k -1)b; • if b k+1 < k and n i=k+1 b i + (n -k) is even,
follows that s k = b k+1 -1 is odd. Thus s k-1 is the minimal value in α S (s k b), that is b k+1 -2,
which in turns is even, and the last case holds.

The proof for the case s = first( S n | b) is similar.

Theorem 4:

The list S n is 3-adjacent Gray codes. Considering all valid combinations for s and t as given in Proposition 15, the proof of the adjacency is routine, and based on the following: s k t k if and only if s k-1 t k-1 . It follows that s and t differ in one position, or three positions which are adjacent.

In addition, the lists A n , R n , and S n , are circular Gray codes. This is a consequence of the following remarks based on Propositions 14 and 15:

• first( Y n ) = 012 . . . (n -2)(n -1); • last( Y n ) = 012 . . . (n -2)0;
where Y n is one of the lists A n , R n , or S n .

5.3.4/ GENERATING ALGORITHM FOR THE LIST X n

Here we explain algorithm GEN2 in Figure 5.3 which generates suffix partitioned Gray codes for restricted growth sequences; according to particular instances of the functions called by it, GEN2 produces the list SE n , A n , R n , or S n . Actually, for convenience, GEN2 produces length (n + 1) sequences s = s 1 s 2 . . . s n+1 with s n+1 = 0, and so, neglecting the last value in each sequence s the desired list is obtained. Notice that with this dummy value for s n+1 we have µ X (s k s k+1 . . . s n ) = µ X (s k s k+1 . . . s n 0), for k ≤ n, and similarly for α X .

In GEN2, the sequence s is a global variable, and initialized by 01 . . . (n -1)0, which is the first length n sequence in ≺ c order, followed by a 0; and the main call is GEN2(n + 1, 0, 0, 0). Procedure GEN2 has the following parameters (the first three of them are similar with those of procedure GEN1):

• k, the position in the sequence s which is updated by the current call;

• x, the value to be assigned to s k ;

• dir, gives the direction in which s k-1 covers α X (s k s k+1 . . . s n 0), the defining set of the current suffix;

• v, the value of µ X (s k+1 . . . s n 0).

The functions called by GEN2 are given in Figures 5.4 and 5.5. They are principally based on the evaluation of α X and µ X for the current suffix of s, and are as follows: 

function MU A(m, i, w) if i ≥ w then return i; else if i ≥ s m+1 then return w; else return w -1; end. function ISDEGREEONE A(m, v) if v = m -1 or (v = m -
1 function MU R(m, i, w) 2 if i ≥ w then return i; 3 else if s m+1 < w 4
then return w; 5 else return w -1; 6 end. Here we show some of those restrictions still yield Gray code with respect to ≺ order. We point out that these restrictions can cancel the reflectable property (see [START_REF] Li | Gray codes for reflectable languages[END_REF]), and this implies Gray code construction provided by [START_REF] Li | Gray codes for reflectable languages[END_REF] and [START_REF] Walsh | Generating Gray codes in O(1) worst-case time per word[END_REF] might not work for A n (T ).

7 function ISDEGREEONE R(m, v) 8 if v = m -1 or 9 (v = m -
Notice that, for convenience, the patterns use non-negative integers since ascent sequence is defined over non-negative integers. This causes a slight different representation with that for permutations (discussed in Chapter 6), which uses positive integers. For example, 012 represents the same pattern with 123, as well as 201 with 312.

Theorem 5:

Let T ∈ {011, 101, 021, 201}. Then, the list A n (T ) is a 3-adjacent Gray code.

Proof. Let t = succ A (s), and k be the leftmost position where s and t differ. Let a be the length k prefix of s and a that of t; so, s = last(a | A n (T )) and t = first(a | A n (T )).

Let M = ω(a) (recall relation 5.3). Let also T ∈ {01, 10, 02, 20}, that is, a pattern obtained by removing the last symbol of pattern T . If M is odd (resp. even), a contains pattern T and k i=1 a i is even, then s = aM0 . . . 0 (resp. s = aM(M + 1)0 . . . 0), since M is larger than any symbol in a, so s does not contain pattern T .

If a contains pattern T , one of the following two cases holds:

• If k-1 i=1 a i + a k is even, then t = a 0 . . . 0. • If k-1 i=1 a i + a k is odd, then t = a M 0 . . . 0 (resp. t = a M (M + 1)0 . . . 0), where M = ω(a ).
It is easy to check that in both cases, t does not contain pattern T .

Any possible pairings of s and t differ in at most 3 adjacent position.

The proof is similar for k i=1 a i being odd.

Theorem 6:

The list A n (012) is a 1-Gray code.

Proof. All ascents in A n (012) are only created by 01. It is easy to see that A n (012) is the BRGC of length n that begins by 0.

5.5/ SUMMARY

We conclude this chapter by comparing for each of the sets S E n , A n , R n and S n the prefix partitioned Gray codes induced by ≺ order and the suffix partitioned one induced by ≺ c order. This can be done by comparing the Hamming distance between all pairs of successive sequences either in the worst case or in average. For a list L of sequences, the average Hamming distance is defined as

d(s, t) N -1 ,
where the summation is taken over all s in L, except its last element, t is the successor of s in L, d is the Hamming distance, and N the number of sequences in L.

Surprisingly, despite ≺ c order has same or better performances in terms of worst case

Hamming distance, if we consider the average Hamming distance, numerical evidences show that ≺ order is 'more optimal' than ≺ c order on A n , R n (n ≥ 5), and S n (n ≥ 6). And this phenomenon strengthens for large n; see Table 5.5.

Algorithmically, ≺ c order has the advantage that its corresponding generating algorithm, GEN2, is more appropriate to be parallelized than its ≺ order counterpart, GEN1. Indeed, the main call of GEN2 produces n recursive calls (compared to two recursive calls produced by the main call of GEN1), and so we can have more parallelized computations; n ≺ (RGC) order ≺ c (Co-RGC) order and this is more suitable for large n. See Figure 5.2 and 5.6 for examples of computational trees.

SE n A n R n S n SE n A n R n S n 4 
It will be of interest to explore order relation based Gray codes for restricted growth sequences defined by statistics other than those considered in this paper. In this vein we suggest the following conjecture, checked by computer for n ≤ 10, and concerning descent sequences (defined similarly with ascent sequences in Section 2).

Conjecture 1:

The set of length n descent sequences listed in ≺ c order is a 4-adjacent Gray code.

Finally, we extend the result of Duncan and Steingri ḿsson [START_REF] Duncan | Pattern avoidance in ascent sequences[END_REF] concerning ascent sequences avoiding a patterrn of length 3 or 4. We investigate the Graycodeness of

A n (T ), and show that A n (T ) is a 1-Gray code if T = {012}, and is a 3-Gray code if T ∈ {011, 101, 021, 201}.

GRAY CODES FOR FACTOR AVOIDING

q-ARY WORDS 6.1/ ADDITIONAL NOTIONS Through this chapter, we use the notions defined in Section 3.1.1, and some additional ones defined here. Recall that the set A n is the set of words of length n over alphabet A.

For a ∈ A * , |a| denotes the length of a, or equivalently, the number of symbols in a; and when 0 ∈ A, |a| 0 denotes the number of non-zero symbols in a (the alphabets we will be using contain the symbol 0).

An infinite word is a function N → A, and A ∞ is the set of infinite words. For a ∈ A * , a i is the word obtained by i copies of a, with i = 0 denotes , and a ∞ is the infinite periodic word aaa . . .. The word a ∈ A ∞ is ultimately periodic if there are b, c ∈ A * such that a = bc ∞ , and we say that a has ultimate period c. Incidentally, we will make use of left infinite words, which are infinite words a of the form a = . . . a -3 a -2 a -1 . Left infinite words are the reverse of infinite words, and formally a left infinite word is a function {. . . , -3, -2, -1} → A, and for a ∈ A * , a -∞ is the left infinite word . . . aaa.

The set A n q is the set of words of length n over alphabet A = {0, 1, . . . q -1}. Our constructions of Gray codes for factor avoiding q-words are based on two order relations on A n q . One of them is the original RGC order, already introduced in Definition 7; and the other one is a variation of it, as we will define below. It follows that A n q listed in ≺ order yields precisely the q-ary Reflected Gray Code (see [START_REF] Er | On generating the n-ary reflected Gray code[END_REF][START_REF] Williamson | Combinatorics for computer science[END_REF]), where two consecutive words differ in one position and by 1 or -1 in this position. For a set of same length words X, we refer to ≺-first (resp., ≺-last) word in X for the first (resp., last) word in X with respect to ≺ order.

In the binary case (q = 2), the Reflected Gray Code order can alternatively be defined as follows (see Definition 7 for the original definition): Let s = s 1 s 2 . . . s n , t = t 1 t 2 . . . t n be two words in A n 2 , and k is the leftmost position where s, t differ. Let also v be the number of

• when q is odd, the parity of a is the parity of the integer n i=1 a i + |a| 0 .

For example, if a = 0222, then

• considering a ∈ A * 4 , the parity of a is even, and is given by 0 + 2 + 2 + 2 = 6, and

• considering a ∈ A * 5 , the parity of a is odd, and is given by 0 + 2 + 2 + 2 + 3 = 9.

Now, we introduce a critical concept for our purposes: we say that the forbidden factor f ∈ A * q induces zero periodicity on A ∞ q if for any p ∈ A * q ( f ) the first and the last (as mentioned previously, with respect to ≺ order for even q, or ¡ order for odd q) words in p|A ∞ q ( f ) both have ultimate period 0. Consequently, if f ∈ A * q does not induce zero periodicity on A ∞ q , it follows that there exists a p ∈ A * q ( f ) such that the first and/or the last word in p|A ∞ q ( f ) do not have ultimate period 0.

Whether or not f induces zero periodicity on A ∞ q depends on q; and q will often be understood from the context. For example, f = 3130 induces zero periodicity on A ∞ 6 but not on A ∞ 4 . Indeed, the first word in ≺ order in A ∞ 6 ( f ) and having prefix 313 is 3135000 . . ., and the last one is 3131500 . . .; whereas the last word in ≺ order in A ∞ 4 ( f ) and with the same prefix is the periodic word 31313 . . .. In Section 6.3, it is shown that the Graycodeness of the set A n q ( f ) listed in the appropriate order is intimately related to the property that f induces zero periodicity.

OUTLINE OF THE CHAPTER

Avoiding a factor of length 1 is equivalent to shrinking the underlying alphabet, but for the sake of generality, we will consider most of the time forbidden factors of any positive length.

In the next section, we will characterize the forbidden factors f inducing zero periodicity on A ∞ q . By means of three sets U q , V, W q ⊂ A + q , these factors are characterized in Corollary 1. The non-zero ultimate periods produced by forbidden factors that do not induce zero periodicity have the form 1(q -1)0 m , 10 m or (q -2); see Propositions 16, 18 and 20.

Theorems 10 to 12 and Proposition 27 in Section 6.3 prove that the property of f to induce zero periodicity guarantees the set A n q ( f ) listed in the appropriate order to be a Gray code. However, this property of f is not a necessary condition: there are two 'special' forbidden factors, namely f = 0 and f = (q -1)0 belonging to U q (and thus they do not induce zero periodicity) but A n q ( f ) listed in ≺ order is still a Gray code. These two cases are discussed in Section 6.3.2. Table 6.2 summarizes the Graycodeness for the set A n q ( f ) if f does not induce zero periodicity. Section 6.3 ends by showing that simple transformation of forbidden factors f , which do not induce zero periodicity, make it possible to obtain Gray code for the set A n q ( f ).

Finally, we present in Section 6.4 an efficient generating algorithm for the obtained Gray codes.

6.2/ PERIODICITY

As stated above, without restriction, the set A n q listed in ≺ order is a 1-Gray code for any q ≥ 2, and listed in ¡ order is a 2-Gray code for odd q ≥ 3. Roughly, it is due to the fact that for any p ∈ A * q the first and the last words-with respect to ≺ order for any q ≥ 2, or ¡ order for odd q ≥ 3-in the set p|A ∞ q are among the three infinite words: p0 ∞ , p(q -1)0 ∞ , and p(q -1) ∞ . This phenomenon is no longer true if an arbitrary factor f is forbidden. For example, if f = 130, then the ≺-last word in 03|A ∞ 4 ( f ) is 0300000 . . ., and the ≺-first one in 13|A ∞ 4 ( f ) is 1313131 . . .; and 0300000 and 1313131 are consecutive words in A 7 4 ( f ), in ≺ order. Or, for f = 223, the ≺-last word in 123|A ∞ 4 ( f ) is 123300 . . . and the ≺-first one in 122|A ∞ 4 ( f ) is 122222 . . .; and 123300 and 122222 are consecutive words in A 6 4 ( f ), in ≺ order. However, the next remark is easy to understand.

Remark 5:

If f ∈ A *
q is a forbidden factor ending with a symbol other than 0 or q -1, then for any p ∈ A * q ( f ), q ≥ 2 and even (resp., q ≥ 3 and odd), the set formed by the ≺-first and the ≺-last (resp., the ¡-first and the ¡-last) words in p|A ∞ q ( f ) is {p0 ∞ , p(q -1)0 ∞ }.

In other words, the previous remark says that any factor ending with a symbol other than 0 or q -1 induces zero periodicity. However, there exist forbidden factors ending with 0 or q -1 that do induce zero periodicity. For example, with f = 120, the ≺-first and ≺-last words in 12|A ∞ 4 ( f ) are 1230000 . . . and 1213000 . . .. In what follows, we will use (often implicitly) the next straightforward remark which provides the form of the words on the right of a fixed prefix p ∈ A * q ( f ), with respect to the appropriate order. It is obtained from the following observation: the first/last word in p|A n q ( f ) is the appropriate prefix of the first/last word in p|A ∞ q ( f ). Table 6.1: The list of words in (a) A 3 3 , and (b) A 4 4 (shown partially), with respect to Dual RGC order. The Hamming distance column shows the number of differences between a particular sequence and its predecessor. In general, the list for A n q in ¡ order is a 2-Gray code for odd q, but it is not Gray code for even q.

Rank A 3 3 , Hamming ¡ order distance 0 0 0 0 0 1 0 0 1 1 2 0 0 2 1 3 0 1 0 2 4 0 1 1 1 5 0 1 2 1 6 0 2 2 1 7 0 2 1 1 8 0 2 0 1 9 1 0 0 2 10 1 0 1 1 11 1 0 2 1 12 1 1 0 2 13 1 1 1 1 14 1 1 2 1 15 1 2 2 1 16 1 2 1 1 17 1 2 0 1 18 2 2 0 1 19 2 2 1 1 20 2 2 2 1 21 2 1 2 1 22 2 1 1 1 23 2 1 0 1 24 2 0 2 2 25 2 0 1 1 26 2 0 0 1 (a) Rank A 4 4 , Hamming ¡ order distance 0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 0 2 1 3 0 0 0 3 1 4 0 0 1 0 2 5 0 0 1 1 1 6 0 0 1 2 1 7 0 0 1 3 1 8 0 0 2 3 1 9 0 0 2 2 1 . . . . . . . . .

Remark 6:

Let q be even, f ∈ A * q be a forbidden factor, p, r ∈ A * q ( f ), and let p have even (resp., odd) parity such that pr ∈ A * q ( f ). Then:

• If pr is a prefix of the ≺-first (resp., ≺-last) word in p|A ∞ q ( f ), then r is the smallest word, in ≺ order, with this property; that is, if s ∈ A * q with |s| = |r| and s r is such that ps is the prefix of some word in p|A ∞ q ( f ), then r ≺ s.

• If pr is a prefix of the ≺-last (resp., ≺-first) word in p|A ∞ q ( f ), then r is the largest word, in ≺ order, with this property; that is, if s ∈ A * q with |s| = |r| and s r is such that ps is the prefix of some word in p|A ∞ q ( f ), then s ≺ r.

Similar results hold when q is odd by replacing ≺ by ¡ and considering the words parity as in the definition given after Remark 4.

Remark 7 below specifies the form of the first and last words in A n q , subject to the additional constraint that they do not begin by 0 or q -1. Later on we will see that when f does not induce zero periodicity, then the possible non-zero periods of the first or the last word in p|A * q ( f ) is related to those words. This remark will be used in the proofs of Propositions 16, 18 and 20.

Remark 7:

• For q even, the first word in A n q , with respect to ≺ order, which does not begin by 0 is 1(q -1)0 n-2 .

• For q odd, the first word in A n q , with respect to ¡ order, which does not begin by 0 is 10 n-1 .

• For q ≥ 2 (even or odd), the last word in A n q , with respect to the appropriate order, which does not begin by a q -1 is

(q -2)(q -1)0 n-2 .
In what follows, we need the technical lemma below.

Lemma 2:

Let u, g ∈ A * q and v ∈ A + q be such that g is a suffix of both u and uv. Then there exist a j ≥ 0 and a (possibly empty) suffix w of v such that g = wv j (or equivalently, g is a suffix of the left infinite word v -∞ ).

Proof. We prove the statement by induction on k = |g| |v| . When k = 0, since the length of g is less than that of v, and g is a suffix of uv, the statement follows by considering j = 0 and w = g. Now, let k = |g| |v| > 0. In this case the length of g is greater than that of v, and it follows that v is a suffix of both g and u. By considering u and g such that 

• u = u v • g = g v

6.2.1/ FORBIDDEN FACTOR ENDING WITH 0 AND NOT INDUCING ZERO

PERIODICITY

We will determine, according to the parity of q, the form of the first and the last words in p|A ∞ q ( f ) having no ultimate period 0 for f ending with 0, and consequently the form of the forbidden factors f that do not induce zero periodicity. q EVEN Proposition 16:

Let q ≥ 2 be even and f ∈ A + q be a forbidden factor ending with 0 and not inducing zero periodicity. Also, let p ∈ A * q ( f ) be such that one of the ≺-first or the ≺-last word in p|A ∞ q ( f ) does not have ultimate period 0, and let a be this word. Then a is ultimately periodic; more precisely, there is an m ≥ 0 such that either

(i) a = p0 i (1(q -1)0 m ) ∞ , for some i ≤ m, or (ii) a = p((q -1)0 m 1) ∞ .
Proof. We will show that when p has even (resp., odd) parity, then either 1. a is the ≺-first (resp., ≺-last) word in p|A ∞ q ( f ), and in this case a has the form given in point (i) above, or 2. a is the ≺-last (resp., ≺-first) word in p|A ∞ q ( f ), and in this case a has the form given in point (ii) above.

For the point 1, considering the parity of p, since a does not have ultimate period 0, there is an i ≥ 0 such that p0 i+1 contains the factor f , but p0 i does not. Now, by Remark 7, since f ends by a 0, it follows that there is an m ≥ 0 such that p0 i 1(q -1)0 m is a prefix of a, but p0 i 1(q -1)0 m+1 is not. Thus, the longest 0 suffix of f is 0 m+1 , and reasoning in the same way, it follows that there is an m ≥ 0 such that p0 i 1(q -1)0 m 1(q -1)0 m is a prefix of a, but p0 i 1(q -1)0 m 1(q -1)0 m +1 is not. Since 0 m+1 is the longest 0 suffix of f , necessarily m = m, and the statement holds by iterating this construction.

Similarly, point 2 holds considering that p(q -1) is a prefix of a and there is an m ≥ 0 such that p(q -1)0 m+1 contains the factor f . Now we characterize the forbidden factors f ∈ A + q ending with 0, for even q ≥ 2, and not inducing zero periodicity.

For even q ≥ 2, we define the set U q ⊂ A + q as

U q = m≥0 {b0 | b a suffix of (1(q -1)0 m ) -∞ }. (6.1) 
Alternatively, U q is the set of words of the form b0, where b is either empty, or for some m ≥ 0, a factor of (1(q -1)0 m ) ∞ ending with 0 m if m > 0 and ending with q -1 elsewhere. Clearly, U q contains exactly n words of length n, for example, U 4 ∩ A 5 4 = {00000, 30000, 13000, 01300, 13130}.

Proposition 17:

For even q ≥ 2, if a forbidden factor f ∈ A + q ending with 0 does not induce zero periodicity, then f ∈ U q .

Proof. If f is such a factor, then by Proposition 16 there is a p ∈ A * ( f ) and an m ≥ 0 such that, a, the ≺-first or the ≺-last word in p|A ∞ q ( f ) is

• a = p0 i (1(q -1)0 m ) ∞ , for some i ≤ m, or • a = p((q -1)0 m 1) ∞ .
Let g be the word obtained from f after erasing its last 0. In the first case it follows that g is a suffix of both p0 i 1(q-1)0 m and p0 i 1(q-1)0 m 1(q-1)0 m , and by Lemma 2 the statement holds. For the second case, the proof is similar.

Remark 8:

If f ∈ U q and q is even, then f does not induce zero periodicity. For example, let f = b0 with b a suffix of (1(q -1)0 m ) -∞ be as in relation (6.1). Then either the first word in b|A ∞ q ( f ) when b has even parity, or the last word in b|A ∞ q ( f ) when b has odd parity, has ultimate period 1(q -1)0 m . When q = 2, the ultimate (q -2) period of a in Proposition 20 becomes 0 period, and so, for q = 2 any forbidden factor f ∈ A + q ending with q -1 = 1 induces zero periodicity. Thus, below we will consider only factors ending with q -1 and not inducing zero periodicity only for q ≥ 3 (even or odd).

For q ≥ 3, we define the set W q as W q = ≥0 {(q -2) (q -1)}. (

With the previous terminology, W q is the set of words of the form b(q -1) with b a suffix of (q -2) -∞ . Clearly, W q contains exactly one word of each length, and for example,

W 4 = {3, 23, 223, 2223, 22223, . . .}.

Proposition 21:

For q ≥ 3 (even or odd), if the forbidden factor f ∈ A + q ending with q -1 does not induce zero periodicity, then f ∈ W q .

Proof. Let f be such a factor, and p ∈ A * q ( f ) such that, with respect to the appropriate order, the first word in p|A ∞ q ( f ) does not have ultimate period 0 (the case of the first word being similar). Also, let g be the (possibly empty) word obtained from f after erasing its last symbol q -1. By Proposition 20, g is a suffix of both p(q -2) and p(q -2)(q -2), and by Lemma 2 the statement holds.

Remark 10:

If f ∈ W q , then f does not induce zero periodicity. Indeed, let for example b = (q -2) , for some ≥ 0, and f = b(q -1) be as in relation (6.3). Then the last word in b|A ∞ q ( f ) has ultimate period (q -2).

Example 8:

Let f = 223 ∈ W 4 be a forbidden factor and consider the prefix

p = 2322 ∈ A * 4 . The ≺-first word in p|A ∞ 4 ( f ) is p2 ∞ . And when f = 12 ∈ W 3 and p = 01 ∈ A * 3 , the ¡-last word in p|A ∞ 3 ( f ) = p1 ∞ .
Combining Proposition 21 and Remark 10, we have the following theorem.

Theorem 9:

For q ≥ 3 (even or odd), the forbidden factor f ∈ A + q ending with q -1 does not induce zero periodicity if and only if f ∈ W q .

Even though we will not use the following remark later, it is worthwhile to mention it.

The proof of the next proposition is similar to that of Proposition 22.

Proposition 23:

Let q ≥ 3 be odd, f ∈ A + q \ V be a forbidden factor ending with 0, ≥ 1 be the length of the maximal 0 suffix of f , and p ∈ A * q ( f ). If a is the ¡-first or the ¡-last word in p|A ∞ q ( f ), then a has the form pr0 ∞ , where

1. r = or r = 0 i 1 for some i, 0 ≤ i ≤ -1, if a is the ¡-first (resp., ¡-last)
word in p|A ∞ q ( f ) and p has even (resp., odd) parity, or 2. r = q -1 or (q -1)0 -1 1 if a is the ¡-first (resp., ¡-last) word in p|A ∞ q ( f ) and p has odd (resp., even) parity.

It is routine to check the next two propositions.

Proposition 24:

Let q ≥ 3, f ∈ A + q \ W q be a forbidden factor ending with q -1, and p ∈ A * q ( f ). If a is the first or the last word in p|A ∞ q ( f ) with respect to the appropriate order, then a has the form pr0 ∞ , where r is either , or q -1, or (q -2)(q -1).

As mentioned in Remark 5, forbidden factors ending with symbol other than 0 or q -1 induce zero periodicity, and we have the following proposition.

Proposition 25:

If f ∈ A *
q is a forbidden factor that does not end by 0 nor by q -1, then for any p ∈ A * q ( f ), with respect to the appropriate order, both the first and the last word in p|A ∞ q ( f ) have the form: pr0 ∞ , where r is either or q -1.

We will see later that Propositions 22 to 25 above describe sufficient (but not necessary) conditions for the Graycodeness of A n q ( f ).

We conclude this section by the next corollary which summarizes the results in Remark 5 and Theorems 7, 8 and 9, and we will refer to it later.

Proof. If f ends by 0, we assume that b k < a k -1. It follows that f is a suffix of a 1 a 2 . . . (a k -1), so a k -1 = 0 and thus b k < 0, which is a contradiction. The proof when b k > a k + 1 or when f ends by q -1 is similar.

6.3.1/ FACTORS INDUCING ZERO PERIODICITY

We show that for factors f as in Corollary 1 the set A n q ( f ) listed in ≺ or ¡ order is a Gray code.

Proposition 27:

If q is even (resp., odd) and f ∈ A + q does not end by 0 nor q -1, then A n q ( f ), n ≥ 1, listed in ≺ (resp., ¡) order is a 2-adjacent Gray code.

Proof. Let a, b ∈ A n q ( f ), a = a 1 a 2 . . . a n and b = b 1 b 2 . . . b n be two consecutive words with respect to the appropriate order, and k be the leftmost position where they differ. Since f does not end by 0 nor by q -1, it follows that q ≥ 3, and considering the definitions of ≺ and ¡ order, we have in both cases (see Remark 4) {a k+1 , b k+1 } ⊂ {0, q -1} and 

Theorem 10:

If q ≥ 2 is even, f ∈ A + q \ U q ends by 0, and is the length of the maximal 0 suffix of f , then A n q ( f ), n ≥ 1, listed in ≺ order is an at most ( + 2)-close 3-Gray code. with x and y being the nk prefixes of r0 ∞ and of r 0 ∞ , where {r, r } ⊂ {(q -1), (q -1)0 -1 1(q -1)}. Thus a and b differ in position k and possibly in positions k + + 1 and In any case, a and b differ in at most three positions which are at most + 2 apart from each other.

Proof. Let a, b ∈ A n q ( f ), a =
k + + 2 if k + + 1 ≥ n.

Example 9:

The words 00230130 and 00330000 are consecutive in A 8 4 (2300) listed in ≺ order. They differ in 3 positions which are 4-close, and are in the worst case since the list is a 4-close 3-Gray code.

Considering the possible values of r in Proposition 23 it is easy to see that for f V ending with 0 and q odd, the set A n q ( f ) listed in ¡ order is a 4-Gray code. The next theorem gives a more restrictive result.

Theorem 11:

If q ≥ 3 is odd, f ∈ A + q \ V ends by 0, and is the length of the maximal 0 suffix of f , then A n q ( f ), n ≥ 1, listed in ¡ order is an at most ( + 1)-close 3-Gray code. with x and y being the nk prefixes of r0 ∞ and of r 0 ∞ , where {r, r } ⊂ { , 0 i 1, (q -1), (q -1)0 -1 1}, for some i, 0 ≤ i ≤ -1. The statement holds by showing that {r, r } ⊂ {0 i 1, (q -1)0 -1 1} is not possible. Indeed, let us suppose that r = 0 i 1 for some i, 0 ≤ i ≤ -1, and r = (q -1)0 -1 1 (the case r = (q -1)0 -1 1 and r = 0 i 1 being similar). This happens when both a and b have both odd parity. By Proposition 26, b k = a k + 1 or b k = a k -1, and since a 1 a 2 . . . a k-1 = b 1 b 2 . . . b k-1 it follows that a k = 1 and b k = 0. Since r = (q -1)0 -1 1, the factor f must end by (q -1)0 and since a k = 1 it follows that r = , which leads to a contradiction.

Proof. Let a, b ∈ A n q ( f ), a =
• the ≺-first (resp., ≺-last) word in p|A n q (0 ) is pv if p has an odd (resp., even) parity, where v is the length nk prefix of v;

• if p does not end by 0, then the ≺-first (resp., ≺-last) word in p|A n q (0 ) is pu if p has an even (resp., odd) parity, where u is the length nk prefix of u. Now let q ≥ 3 and odd, ≥ 1, and define the infinite words:

s = 0 -1 1(q -1) ∞ , t = (q -1) ∞ . (6.5)
It is easy to see that s and t have similar property as u and v for q odd and with same ≺ order.

THE CASE f = 0 Proposition 28:

For q ≥ 2 (even or odd), and , n ≥ 1, the set A n q (0 ) listed in ≺ order is a Gray code where two consecutive words differ in one position and by 1 or -1 in this position.

Proof. Let a and b be two consecutive words, in ≺ order, in A n q (0 ), a = a 1 a 2 . . . Similarly, when q is odd, with s and t the length (nk) prefix of s and t defined in relation (6.5), we have

• a = a t and b = b t if a has an even parity (given by k i=1 a i );

• a = a s and b = b s (since, a k 0 and b k 0 ), elsewhere.

In both cases, a and b differ only in position k.

THE CASE f = (q -1)0 FOR q EVEN Let q ≥ 2 be even, 1 ≤ k ≤ n, and v be the nk prefix of v defined in relation (6.4). For any p ∈ A k q ((q -1)0 ) with ≥ 1 and 1 ≤ k ≤ n

• the ≺-first (resp., ≺-last) word in p|A n q ((q -1)0 ) is pv if p has odd (resp., even) parity;

• if p does not end by 0 nor by q-1, then the ≺-first (resp., ≺-last) word in p|A n q ((q-1)0 ) is p0 n-k if p has even (resp., odd) parity.

Proposition 29:

For q ≥ 2 even, and , n ≥ 1, the set A n q ((q -1)0 ) listed in ≺ order is a Gray code where two consecutive words differ in one position and by 1 or -1 in this position.

Proof. Let a and b be two consecutive words, in ≺ order, in A n q ((q -1)0 ), a = a 1 a 2 . . . In both cases, a and b differ only in position k.

6.3.3/ FACTORS PREVENTING GRAYCODENESS

A consequence of the next remark and proposition, is Corollary 2 below. Proposition 30 is similar to Remark 11 and says that if f , | f | ≥ 2 (| f | = 1 being trivial), does not induce zero periodicity (see Corollary 1), and it is not in one of the two particular cases above, then consecutive words, with respect to the appropriate order, in A n q ( f ) can differ in arbitrarily many positions for large enough n. One of these particular cases is explained below.

Remark 12:

For q ≥ 3 and odd, ≥ 2 and f = 0 , the set A n q ( f ) listed in ¡-order is not a Gray code. Indeed, for example, the words 02z and 1z are consecutive in ¡-order in A n q ( f ), where z and z are appropriate length prefixes of (0 -1 1) ∞ , and they differ in arbitrarily many positions for large enough n.

Proposition 30:

Let f ∈ A + q , q ≥ 2 and | f | ≥ 2, be a forbidden factor not inducing zero periodicity, other than 0 or (q -1)0 , ≥ 1. Also, let a and b be two consecutive words, in appropriate order, in A n q ( f ), n ≥ 1, and let k be the leftmost position where a and b differ. If • a and b are, respectively, the last word in a |A ∞ q ( f ) and the first word in b |A ∞ q ( f ), in appropriate order, then at most one among a and b does not have ultimate period 0.

Proof. Since f does not induce zero periodicity, we prove the statement according to whether f belongs to U q , V or W q (see Corollary 1), and supposing that a does not have ultimate period 0 (the corresponding case for b being similar).

If f ∈ U q , q ≥ 2 and f does not have the form 0 nor (q -1)0 :

• When a has odd parity, since a k must be a symbol of f , it follows that a k ∈ {0, 1, q-1}.

From the parity of a , it follows that a k = 0 implies that b k = a k -1, and a k = q -1 that b k = a k + 1, which are not possible, and necessarily a k = 1. Thus, either a = a 0 ∞ (which is a contradiction with the non-zero periodicity of a) or b = b 0 ∞ .

• When a has even parity, then a = a v and since b k a k , b = b (q -1)0 ∞ , with v defined in relation (6.4).

If f ∈ V, q ≥ 3 and odd, and f does not have the form 0 :

• a can not have even parity, otherwise a = a (q -1)0 ∞ , which is a contradiction with the non-zero periodicity of a;

• When a has odd parity, the symbol a k must be a symbol in the forbidden factor, so a k ∈ {0, 1}. But a k = 0, implies b k = a k -1, which again is not possible; and a k = 1 implies b k = 0, and so b = (q -1)0 ∞ , which does not contain the factor f if it is different from 0 .

Finally, when f ∈ W q , q ≥ 3 (even or odd) then a = a (q -2) ∞ and b is either b 0 ∞ (this can occur if q is odd) or b (q -1)0 ∞ . Table 6.2 summarizes the cases occurring in Proposition 30.

A consequence of Remark 12, Propositions 28 to 30 and Corollary 1, is the corollary below.

Corollary 2:

• For even q ≥ 2 and | f | ≥ 2, the set A n q ( f ) listed in ≺ order is a Gray code for any n ≥ 1 if and only if f ∈ {0 , (q -1)0 } ≥1 ∪ W 2 ∪ (A * q \ (U q ∪ W q )).

• For odd q ≥ 3 and | f | ≥ 2, the set A n q ( f ) listed in ¡ order is a Gray code for any n ≥ 1 if and only if

f ∈ A * q \ (V ∪ W q ).
q Order relation

The set for forbidden factor f

The set of ultimate periods of the last word in a|A ∞ q ( f ) and the first one in b|A ∞ q ( f )

Graycodeness of A n q ( f ) even ≺ U q \ {0 , (q -1)0 } ≥1 {1(q -1)0 -1 , 0} Not Gray code even ≺ {0 , (q -1)0 } ≥1 {1(q -1)0 -1 } 1-Gray code odd ≺ {0 } ≥1 {(q -1)} 1-Gray code odd ¡ V \ {0 } ≥1 {10 -1 , 0} Not Gray code odd ¡ {0 } ≥2 {10 -1 } Not Gray code q ≥ 3 even (resp., odd) ≺ (resp., ¡)
W q ∩ A ≥2 q {(q -2), 0} Not Gray code Table 6.2: The Graycodeness of A n q ( f ) listed in appropriate order together with the ultimate periods of the last word in a|A ∞ q ( f ) and the first word in b|A ∞ q ( f ), when at least one of them does not have ultimate period 0, and a and b are consecutive words; and A ≥2 q is the set of words on A q of length at least two. These summarize Propositions 28 to 30, and Corollary 2.

6.3.4/ OBTAINING GRAY CODE IF f DOES NOT INDUCE ZERO PERIODICITY AND IS NOT ONE OF THE PARTICULAR CASES

According to the previous results, if the forbidden factor f does not induce zero periodicity, then the set A n q ( f ) listed in ≺ or ¡ order is not a Gray code, except for the two particular cases in Section 6.3.2. Now we show how a simple transformation makes it possible to define Gray codes, with the same Hamming distance and closeness properties as for factors that induce zero periodicity, when f does not have this property. By Theorems 7, 8 and 9, the last symbol of a factor that does not induce zero periodicity is either 0, or q -1 when q ≥ 3.

We define the transformation φ : A q → A q depending on f as:

• When the last symbol of f is 0, then φ(0) = 1, φ(1) = 0, and φ(x) = x if x {0, 1}; and

• When the last symbol of f is q-1 (and so, q ≥ 3), then φ(q-2) = q-1, φ(q-1) = q-2, and φ(x) = x if x {q -2, q -1}.

In both cases, φ is an involution, that is, φ -1 = φ. By abuse of notation, for w ∈ A * q , φ(w) is the word obtained from w by replacing each of its symbols x by φ(x), and for a list L of words, φ(L) is the list obtained from L by replacing each word w in L by φ(w).

If f is a forbidden factor that does not induce zero periodicity, then φ( f ) does not end by 0 nor by q -1, and so it induces zero periodicity, see Remark 5. In this case φ(L) is a Gray code for the set A n q ( f ), where L is the set A n q (φ( f )) listed in ≺ order for q even, and in ¡ order for q odd.

6.4/ ALGORITHMIC CONSIDERATIONS

We design the efficient generating algorithm by first introducing the initial algorithm (a "naive" algorithm), in which the factor matching procedure is not efficient; then we improve the algorithm by applying efficient factor matching procedure.

6.4.1/ INITIAL GENERATING ALGORITHM

To generate factor avoiding words, a factor matching procedure is needed in the generating algorithm. Figure 6.1 shows a "naive" factor matching function FACTORMATCH, which returns true if the factor f = f 1 f 2 . . . f is equal to the suffix of a given word w = w 1 w 2 . . . w k , or returns f alse otherwise. One can easily see that the worst case complexity for FAC-TORMATCH is given by O(k ).

This function is applied in the generating procedure GENAVOID in Figure 6.2. GENAVOID recursively expands the current generated prefix w 1 w 2 . . . w k-1 (k being the first parameter of GENAVOID) to w 1 w 2 . . . w k-1 j, with j covering the alphabet A q in increasing or decreasing order, according to the value of dir ∈ {0, 1}, the second parameter of the procedure, which is the parity of the word w 1 w 2 . . . w k-1 . The restriction is given by function call FACTORMATCH(k) in line 8 and 14, in order to avoid generating the words containing the given factor. Since FACTORMATCH runs in O(k ) time, one can easily conclude that GENAVOID is not efficient.

Actually, if function call FACTORMATCH(k) in line 8 and 14 are removed, GENAVOID generates efficiently (i.e., in CAT) the list for the set A n q in ≺ order or in ¡ order, depending whether q is even or odd. To improve the algorithm, we modify GENAVOID to apply the efficient factor matching technique. skipped for j in order not to produce the forbidden factor. To do this efficiently, the third parameter, i, of procedure GENAVOID is the length of the maximal prefix of the forbidden factor f which is also a suffix of the current generated word w 1 w 2 . . . w k-1 ; and h in this procedure is the length of the maximal suffix of w 1 w 2 . . . w k-1 j which is also a prefix of f , and it is given by M i, j . So, when h is equal to (the length of the forbidden factor), the current value of j is skipped for the prefix expansion. Now, we explain in more detail the array M used by algorithm GENAVOID. For a forbidden factor f = f 1 f 2 . . . f ∈ A q , the • q size two dimensional array M is defined as: for i ∈ {0, 1, . . . , -1} and j ∈ {0, 1, . . . , q -1} = A q , M i, j is the length of the maximal suffix of f 1 f 2 . . . f i j which, is also a prefix f . For instance, for q = 4 and f = 012011 ∈ A 6 4 , we have

M =                                  1 0 0 0 1 2 0 0 1 0 3 0 4 0 0 0 1 5 0 0 1 6 3 0                                  ,
and, for example (see the entries in boldface in M),

• M 2,0 = 1, since the length of the longest suffix of f 1 f 2 0 = 010 which is a prefix of f is 1,

• M 2,1 = 0, since there is no suffix of f 1 f 2 1 = 011 which is a prefix of f ,

• M 2,2 = 3, since f 1 f 2 2 = 012 (of length 3) is a prefix of f .
The array M is initialized, in an O( •q) time preprocessing step, by procedure MAKEARRAY in Figure 6 

ALGORITHM ANALYSIS

Before analyzing the time complexity of the generating algorithm GENAVOID we show that, if in the underlying tree induced by recursive calls of GENAVOID there are degree-one successive calls, then q = 2 and the forbidden factor has the form 00 . . . 01 or 11 . . . 10. See Figure 6.6 for words in A n 2 (001) produced by degree-one consecutive calls of GENAVOID. For length ≥ 2 forbidden factor f let w ∈ A * q ( f ) and i, j ∈ A q such that wi j ∈ A * q ( f ) and:

• wk ends by f for any k ∈ A q , k i, and

• wik ends by f for any k ∈ A q , k j.

In other words, when the current word is w as above, then the call of GENAVOID is a degree-one call (producing wi) which in turn produces a degree-one call (producing wi j).

By the two conditions above, it follows that q = 2 and i = j. When i = j = 0, the length -1 suffix of w is equal to the -1 suffix of w0, which in this case must be 0 -1 , and finally f = 0 -1 1. Similarly, when i = j = 1, it follows that f = 1 -1 0.

Let now f be a length ≥ 2 forbidden factor, and either q ≥ 3 or q = 2 and f is not 0 -1 1 nor 1 -1 0. In this case, by the previous considerations, each recursive call of GENAVOID is either:

• a terminal call, or

• a call producing at least two recursive calls, or

• a call producing one recursive call, which in turn is in one of the two cases above, and by Ruskey's CAT principle in [Rus03], it follows that, with the previous restrictions on q and f , GENAVOID runs in constant amortized time, and so is an efficient generating algorithm.

Nevertheless, for the particular factors above, when = 2, A n 2 (1 -1 0) is trivially the set {0 n , 0 n-1 1, 0 n-2 11, . . . , 1 n }, and A n 2 (0 -1 1) the set {0 n , 10 n-1 , 110 n-2 , . . . , 1 n }. And for ≥ 3, both sets A n 2 (1 -1 0) and A n 2 (0 -1 1) can be generated efficiently in Gray code order. Indeed, for A n 2 (1 -1 0) with ≥ 3 it is enough to generate (efficiently) the Gray code for A n 2 (01 -1 ) (see Theorem 12) and then reverse each generated word; and for A n 2 (0 -1 1) it is enough to generate the Gray code for A n 2 (1 -1 0) as previously, then complement each symbol in each word. The following scheme describes this method (see the example in Table 6.3):

A n 2 (01 -1 ) Reverse -------→ A n 2 (1 -1 0) Complement ----------→ A n 2 (0 -1 1).
Finally, notice that the generating order (≺ or ¡ in our case) does not affect the efficiency of the generating algorithm, which can obviously be modified to produce same set of factor avoiding words in lexicographical order. , the cross-bifix-free set we consider here is denoted by S (k) n,q . It is formed by length n words over the q-ary alphabet A q = {0, 1, . . . , q -1} containing a particular sub-word avoiding k consecutive 0s. Now we briefly summarize its definition and we refer the reader to [START_REF] Chee | Cross-bifix-free codes within a constant factor of optimality[END_REF] for more details about its features.

A 4 2 (011) A 4 2 (110) A 4 2 (001) (a) (b) (c) 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 Table 6.

Definition 11:

Let n ≥ 3, q ≥ 2 and 1 ≤ k ≤ n -2. The cross-bifix-free set S (k) n,q is the set of all length n words s 1 s 2 • • • s n over A q satisfying:

• s 1 = • • • = s k = 0; • s k+1 0; • s n 0;
• the sub-word s k+2 . . . s n-1 does not contain k consecutive 0s.

Below we recall the cardinality of S (k) n,q : let

f (k) n,q =              q n if 0 ≤ n < k, (q -1) f (k) n-1,q + f (k) n-2,q + . . . + f (k) n-k,q if n ≥ k, (6.6) 
be the sequence enumerating the words of n length words over A q avoiding k consecutive zeros [START_REF] Ludman | Gray code generation for MPSK signals[END_REF][START_REF] Schork | The r-generalized Fibonacci numbers and Polynomial coefficients[END_REF] (observe that in the particular case of q = 2, the well known kgeneralized Fibonacci sequences [Knu73] are obtained). It is not difficult to realize that, from the above description of S (k) n,q we have:

|S (k) n,q | = (q -1) 2 f (k) n-k-2,q . (6.7)
For the sake of clearness we would like to point out that the cardinality of these sets depends on n, q and k. For any fixed n and q, the largest size of |S (k) n,q |, denoted by S (n, q), is obtained by a particular value of k which, at the present, is given by the following empirical expression as in [START_REF] Chee | Cross-bifix-free codes within a constant factor of optimality[END_REF]:

S (n, q) = max{(q -1) 2 f (k) n-k-2,q : 2 ≤ k ≤ n -2}. (6.8) 
In Table 6.4 the values of S (n, q) are shown, for 2 ≤ q ≤ 5 and 4 ≤ n ≤ 20. The values of k giving S (n, 2) increase with the growth of n. The value of k giving the remaining columns S (n, 3), S (n, 4) and S (n, 5) is 2 all the times: this is the reason why we do not show the respective columns with the values of k (which are expected to increase for some n > 20).

6.5.1/ THE GRAY CODE

For constructive reasons we give the Gray code for the set S (k) n+k,q starting from particular list of length n words, then prepending a 0 k prefix to each word in the set. We denote the obtained Gray code by S (k) n+k,q . Our strategy in order to obtain S (k) n+k,q is the following:

1. restrict the list in ≺ order for A n q (0 k ) such that for w 1 w 2 . . . w n ∈ A n q (0 k ), w 1 0 and w n 0. We denote the obtained list as J (k) n,q .

2. prepend a 0 k prefix to each word in J (k) n,q , so that the desired Gray code S (k) n+k,q is obtained.

It is easy to check that J (k) n,q is the Gray code for the set of q-ary words with no 0 k factors which begin and end by a non-zero symbol, as formalized in the following proposition:

Proposition 31:

The list J (k) n,q is a 1-Gray code for the set of q-ary words with no 0 k factors which begin and end by a non-zero symbol.

Proof. The proof is straightforward, since if we restrict a symbol in any position, then the resulting list is still a Gray code. Since 0 k • J (k) n,q = S (k) n+k,q , we have the following:

Corollary 3:

The list S (k) n+k,q is a 1-Gray code.

6.5.2/ GENERATING ALGORITHM

Cross-bifix-free words are more restrictive factor avoiding q-ary words. In order to obtain the generating algorithm for them, some modifications are applied to the algorithm GENAVOID already given in Figure 6.4.

First, we remove line 8, 9, 15, and 16 in GENAVOID, since the words are only generated with respect to RGC order (applying those lines will generate the words in RGC order for even q, and in Dual RGC order for odd q). Next, we insert in line 3 and 4 two statements to prevent assigning zero to w 1 and w n . The resulting algorithm is GENJ, as shown in Figure 6.7.

1 procedure GENJ(k, dir, i) Removing line 8, 9, 15, and 16 in GENAVOID does not change its CAT complexity, since those lines contain statements running in O(1). And the statements in line 3 and 4 in GENJ are obviously run in O(1). These modifications implies GENJ to remain CAT.

2 if k = n + 1 then TYPE; 3 else low = 0; 4 if k = 1 or k = n then low = 1; 5 if dir = 0 then 6 for j := low to q -1 do 7 h := M[i,

6.6/ SUMMARY

We introduce two order relations on the set of length n q-ary words, and show that the set of words avoiding any from among the q factors of length ≥ 2, except -1 or of them according to the parity of q, when listed in the appropriate order is an (at most) 3-Gray code. For each of the factors listed as exceptions, we give a simple transformation makes it possible to eventually obtain similar Gray codes. An efficient generating algorithm for the derived Gray codes is given.

Finally, we investigate the Graycodeness of the set of cross-bifix-free words S (k) n+k,q , and give an efficient generating algorithm.

Table 7.1: The steps in generating all length-4 permutations according to SJT algorithm. The initial permutation is 1234. The active integers are marked by arrows according to their directions, and the largest among them are marked by a dot. To obtain the next permutation, the dotted integer is transposed to its adjacent integer within its direction. The steps terminate when there are no active integers.

7.2/ ADDITIONAL NOTIONS

We denote by P n the set of length-n permutations, P n the SJT-list for P n . For a set of patterns T , P n (T ) denotes the set of length-n permutations that avoid T . P n (T ) is the (possibly scattered) sublist of P n , and it consists of permutations avoiding any pattern in T (recall Definition 4 for pattern avoiding permutations).

For further discussion, we will be using some notions already defined in Chapter 5: S E n , the set of length-n subexcedant sequences; and SE n , the list for S E n with respect to RGC order. The reader is suggested to recall Definition 7 about RGC order and the ≺ notation.

7.2.1/ THE SITES OF A PERMUTATION

The sites of π ∈ P n are the positions between two adjacent symbols in π, including those before the first and after the last symbol; and they are numbered, from right to left, from 1 to n + 1, as described in the following: More precisely, it initally generates length-n sequence 0 . . . 0, which mapped to the initial permutation 12 . . . n; and to obtain the next permutation, the change between two successive subexcedant sequences is converted as transposition between two successive permutations. With this scheme, the output is exactly the same as that from SJT algorithm. Although it was not stated explicitly, actually the Dijkstra's list for P n is induced by bijection ψ(S E n ), according to RGC order.

In other words, the list in RGC order for the set S E n corresponds with the SJT-list for P n .

That is, if all sequences in S E n is mapped by ψ according to RGC order, then the result is SJT-list for P n . See Table 7.2 for example with n = 4. Table 7.2: The list for S E n in RGC order, and its corresponding permutation ψ(S E n ). The list for ψ(S E n ) is actually an SJT-list for P 4 .

Remark 13:

If two sequences s, t ∈ S E n differ in one position, and by +1 or -1 in this position, then ψ(s) and ψ(t) differ by one transposition (i.e., they differ in two positions).

children of s's parent (i.e., π and its siblings), and k = 2 if n = 1 (recall that k is defined analogously in the context of succession function χ T (i, k)). Although it might happen that for some T , θ T does not depend on k, and for the reason of generality, we keep k being function parameter of such θ T .

The restriction function θ T (u, k) is obtained from its corresponding succession function χ T (i, k) by replacing i by u, and subtract all the assigned values by 1 (this due to the property that the site numbers in the permutation start from 1, while the symbols in the inversion table start from 0). See Table 7.4 for restriction functions for our considered S E n (T ). Figure 7.1 shows the scheme we use to generate P n (T ), that is by restricting S E n subject to θ T , and then mapping S E n (T ) to P n (T ) by ψ.

Set of patterns

Restriction function T θ T (u, k)

T 1 = {312, 321} θ T 1 (u, k) = 1.
T 2 = {321, 3412, 4123} θ T 2 (u, k) = 2 if u = 0, 1 otherwise. ; and since a circular Gray code is associated with a Hamiltonian cycle in a transposition graph, it follows that the following transposition graphs are Hamiltonian:

T 3 = {312, 3421, 4321} θ T 3 (u, k) = 2 if u = 1, 1 otherwise. 
• the transposition graphs of permutations P n (T 1 ),

• the third power of the transposition graphs of permutations P n (T ), where T is either (3) 4 ), respectively. Their Hamiltonian cycles are obtained according to the Gray codes shown in Table 7 

CONCLUSION AND FUTURE WORKS

We investigate the RGC-based order relations on restricted classes of words and permutations as the generalization of the original RGC order. The variations of RGC order we consider in our work might have the advantage that they induce more restrictive Gray codes and more performable generating algorithms than those produced by the original RGC order. Even in some cases, the RGC based order might yield Gray code for a combinatorial class when other techniques fail to do so (such as, for example, the reflectable languages technique). In the case of statistics-defined restricted growth sequences, the Co-RGC order induces a more restrictive Gray code for ascent sequences and restricted growth functions, compared to that induced by the classical RGC order. It also allows the possibility for designing faster generating algorithm (for instance, by parallelization). In the case of factor avoiding q-ary words, the application of both RGC order for even q and Dual RGC order for odd q yield Gray codes for them; and for factors belonging to a few particular cases, the desired Gray code is obtained by applying a simple transformation technique to such factors.

In the same spirit, we use the bijective approach to define Gray code for pattern avoiding permutations. By representing permutations as inversion tables, the Steinhaus-Johnson-Trotter list of permutations of a given length can be viewed as a list of subexcedant sequences with respect to RGC order. In particular, our technique applies for some regular patterns. The main ingredients we are using in the investigation of the Graycodeness are the restriction function, the classical bijection from inversion tables to permutations, and the list of inverison tables with respect to RGC order. The subject of defining Gray code with respect to the RGC-based order relations remains widely open. Some of the contemporary results are already given in a brief state of the art. Further works can be established such as defining Gray code for other classes of statistics-defined restricted growth sequences (for instance, for statistics 'level' or 'descent'; or even other combinatorial classes) by using existing RGC-based order as we present in this thesis, or else by introducing new variations of RGC order if considered necessary. Some alternative further directions are to investigate other aspects of enumerative combinatorics (such as ranking/unranking objects, random generation, and object 
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  Indian literature called Bhagabati Sutra, written around 300 BC. It posed a problem about how many ways one could take six tastes one, two, or three tastes at a time. Several ideas of combinatorics were developed by ancient Indian mathematicians in this period. It is worth mentioning that some of these developments are related to finding binomial coefficients, Fibonacci numbers, permutations, and combinations. Later on, the Middle East mathematicians also learned about binomial coefficients from Indian works, and found the connection to polynomial expansion. Abu Bakr ibn Muhammad ibn al Husayn Al-Karaji (ca. 953-1029) wrote on the binomial theorem and the geometrical arrangement of binomial coefficient, which is now well known as Pascal triangle. In a now lost work known only from subsequent quotation by Al-Samaw'al, Al-Karaji introduced the idea of 10 CHAPTER 2. PRELIMINARIES argument by mathematical induction.

Definition 6 :

 6 d-(adjacent) Gray code A d-Gray code is a Gray code where the Hamming distance is bounded by a constant d. In addition, if the positions where two successive words differ are always adjacent, then such lists are called a d-adjacent Gray code.

the total amount of computations number of generated objects ≤ c. ( 3 . 4 )

 34 In other words, such algorithm generates each object in O(1) time in amortized sense, and the time complexity is independent to the size of the object[Rus03]. With this consideration, a generating algorithm that runs in CAT (a CAT algorithm) is considered an efficient algorithm.

4. 1

 1 / GRAY CODESThe classical Binary Reflected Gray Code (BRGC), after its formal introduction in 1953[START_REF] Gray | Pulse code communication[END_REF], came through implementations on many combinatorial classes, including permutations and combinations. Later on, the term combinatorial Gray code was introduced in 1980 to refer to any method for listing combinatorial objects such that successive objects differ in some pre-specified small way[START_REF] White | Combinatorial Gray codes[END_REF]. This generalized the notions of the original Gray code, in which successive binary words differ in one position, and by 1 or -1 in this position.The study about combinatorial Gray codes was popularized by Wilf in late 1980s[START_REF] Wilf | Generalized Gray codes[END_REF][START_REF] Wilf | Combinatorial Algorithms: an Update[END_REF], and has been developing rapidly since then. In the beginning, many literatures propose ad hoc Gray codes, which means they only work for very specific combinatorial class. The comprehensive survey on such Gray codes were given in[START_REF] Savage | A survey of combinatorial Gray codes[END_REF]. More general designs that fit to many combinatorial classes tend to grow in recent years. Such designs utilize the common properties among combinatorial classes. Here we give briefly some notable contemporary results among them.4.1.1/ ECO-BASED GRAY CODESIntroduced by Barcucci et al.[START_REF] Barcucci | ECO: A methodology for the enumeration of combinatorial objects[END_REF], ECO (Enumerating Combinatorial Objects) originally was a technique to enumerate combinatorial objects, and it is based on succession rules method. This technique uses generating trees (or ECO operators) and usually objects are encoded by their corresponding path in the generating tree; and often it is possible to translate the obtained codes into codes for objects. In the context of ECObased Gray codes, a (k) or (k) labeled node in the generating tree corresponds to a word with k successors; and the successors of a (k) labeled node are the same as for (k), but in reverse order. In particular, this technique can induce Reflected Gray Code. Vajnovszki[START_REF] Vajnovszki | Simple Gray codes constructed by ECO method (extended abstract)[END_REF] used this technique to construct Gray codes for combinations, Dyck and grand CHAPTER 4. STATE OF THE ART Dyck words. The results were extended to Gray codes for Motzkin and Schr öeder words in [Vaj12a]. The implementation on several classes of pattern avoiding permutations was given in [DFMV08]. The generation for p-generalized Fibonacci and Lucas permutations were given by Baril and Do [Bar06], and they posed an open problem for Gray codes considerations. 4.1.2/ GRAY CODES FOR GRAY STRUCTURES This technique was introduced by Bernini et al. [BGPP07]. It is also based on succession rules. Moreover, the Gray code obtained by this technique can be generalized to all succession rules with the stability property, that is, each labeled node (k) has in its successors two labeled nodes c 1 and c 2 , always in the same position, regardless of k. The sets of combinatorial objects whose construction can be encoded by a succession rule with the stability property are called Gray structures, and in [BGPP07] was shown that there always exist Gray codes for them. 4.1.3/ GRAY CODES FOR STRICTLY PREFIX (OR SUFFIX) PARTITIONED WORD-LIST The defining sequence concept was introduced by Walsh [Wal08]. If a list of length-n

4. 1 . 5 /

 15 COOL-LEX ORDER AND BUBBLE LANGUAGES In 2005, Ruskey and Williams presented a new method for generating combinations [RW05]. The combinations are represented as binary words with s 0s and t 1s, and are generated by a technique called prefix shifts, with a remarkably simple rule: identify the shortest prefix ending in 010 or 011 (or the entire word if no such prefix exists) and then rotate (shift) it by one position to the right. This technique implies that successive combination can be generated by transposing only one or two pairs of bits (which induces Gray code); and another important result that such a technique induces a new order relation, which they call cool-lex order. Cool-lex order also induces Gray code for multiset permutations [Wil09a]. A bubble language (introduced in 2012 by Ruskey, Sawada, and Williams) is a set of binary words with a simple closure property: The first 01 of any word can be replaced by 10 to obtain another word in the set. Bubble language can represent a wide range of combinatorial classes, such as: combinations, necklaces, k-ary Dyck words, Lyndon words, and interval graphs. The words in any bubble language are proven to be a Gray code when listed in cool-lex order [RSW12]. 4.1.6/ GRAY CODES INDUCED BY RGC ORDER RELATION OR ITS VARIATIONS RGC order relation was used implicitly by Knuth, when he defined Gray codes for integer compositions in his unpublished answer to a question of Nijenhuis and Wilf, around late 1970s. Knuth's Gray code was then implemented to an efficient algorithm by Klingsberg [Kli81]. Later on, Walsh gave an efficient algorithm for generating a Gray code for bounded compositions of an integer, based on Knuth's Gray code [Wal00].

  Ascent sequences were introduced in joint work of Bousquet-M élou, Claesson, Dukes, and Kitaev[START_REF] Bousquet-M Élou | 2 + 2)-free posets, ascent sequences and pattern avoiding permutations[END_REF]. By constructing bijections, they showed that ascent sequences are equinumerous with three other combinatorial classes: unlabeled (2 + 2)-free posets, Stoimenows involutions, and permutations avoiding 31524. Duncan and Steingrímsson introduced the study about pattern avoiding ascent sequences in[START_REF] Duncan | Pattern avoidance in ascent sequences[END_REF]. Among the involved patterns, they exhibited a connection between ascent sequences and restricted growth functions. Further study by Chen, Dai, Dokos, Dwyer, and Sagan [CDD + 13] established a bijection which led to the equidistribution of the pair of statistics (asc; rmin) over 021-avoiding ascent sequences and over 132-avoiding permutations, where rmin is the right-to-left minima statistic; and these results confirmed one of the conjectures posed in[START_REF] Duncan | Pattern avoidance in ascent sequences[END_REF]. In[START_REF] Mansour | Some enumerative results related to ascent sequences[END_REF], Mansour and Shattuck gave the enumerative results for 1012-avoiding and 0123-avoiding ascent sequences; while Pudwell did that for 0021-avoiding ascent sequences[START_REF] Pudwell | Ascent sequences and the binomial convolution of Catalan numbers[END_REF]. Those enumerative results confirmed the three conjectures posed in[START_REF] Duncan | Pattern avoidance in ascent sequences[END_REF]. However, so far there are no studies specifically dedicated to Gray codes for restricted ascent sequences.The restricted growth functions encode the partitions of an n-set. The subject of Gray codes for restricted growth functions was triggered by a question posed byNijenhuis and 

  2000, Babson and Steingrímsson [BS00] introduced the notion of what is now known as vincular patterns in permutations. Vajnovszki [Vaj12b] gave several bijections between subexcedant sequences which, when applied to Lehmer code, yield new permutation codes which count occurrences of some vincular patterns. In recent years, Foata and Han introduced two new permutation codings, one of which is based on Lehmer code [FH09].

  Stanley introduced the class of sequences defined in [Sta97, exercise (u), p. 222], which referred as staircase words in [MV13]. The cardinality for this class follows Catalan numbers. In relation to Gray codes, the constructions provided by Bernini et.al. [BGPP07], Walsh [Wal08], Li and Sawada [LS09], Mansour and Vajnovszki [MV13] work on those four classes of restricted growth sequences mentioned above. However, no literature proposes Gray codes for those classes using RGC-based order technique.

S n is counted

  by Catalan numbers (see [Sta99, exercise u, p. 222]) with the generating function 1

  then by Proposition 1 and 2, it follows that s k+3 = s k+4 = • • • = s n = 0 and t k+3 = t k+4 = • • • = t n = 0. So s and t differ in position k, and possibly in position k + 1 and in position k + 2.

(iv) 1 Figure 5 . 1 :Figure 5 . 2 :

 15152 Figure 5.1: (a) Algorithm GEN1, generating the list X n ; (b) Particular function OMEGA X called by GEN1, and returning the value for ω X (s 1 s 2 . . . s k ), if X n is one of the sets: (i) S E n , (ii) A n , (iii) R n , and (iv) S n .

Proposition 5 :

 5 Let Y n be one of the setsA n , R n , or S n . If b = b k+1 b k+2 . . . b n , 1 ≤ k < n, is an admissible suffix in Y n , then 1 if b = b n , that is, a length one admissible suffix, then µ Y (b) = b n ; 2 µ Y (b) = k if and only if b k+1 = k;3 if xb is also an admissible suffix in Y n (i.e., x ∈ α Y (b)) and x ≥ b k+1 , then µ Y (xb) = max{x, µ Y (b)}.

Proposition 6 :{0, 1 , 7 : 1 . 2 :

 61712 Let b = or b = b k+1 b k+2 . . . b n be an admissible suffix in S E n . Then α S E (b) , . . . , n -1} if b = , {0, 1, . . . , k -1} otherwise. Proposition Let b = b k+1 b k+2 . . . b n be an admissible suffix in S E n and x ∈ α S E (b). Then µ S E (xb) = µ S E (b) -1. Obviously, for a length one suffix b = b n , it follows that µ S E (b) = n -Example If b = , and n = 10, then α S E (b) = {0, 1, . . . , 9}; and for b = b 10 , b 10 ∈ {0, 1, . . . , 9}, it follows that µ S E (xb) = 9 -1 = 8, for all x ∈ α S E (b).

Example 3 :

 3 Let k = 5, n = 9, and b = b 6 b 7 b 8 b 9 = 2050 be an admissible suffix in A 9 .

Proof. 1 .

 1 If b = , the result is obvious. For b , let x ∈ α R (b). If µ R (b) = k, by Proposition 5 point 2, b k+1 = k and by Remark 3 we have x = k -If µ R (b) = k -1 and b k+1 < k -1, then the maximal value of the statistic m (defining the set R n ) of a length k + 1 prefix ending with b k+1 < k -1 is k -1, and it is reached when x = k -1. If µ R (b) = k -1 and b k+1 = k -1, then there are two possibilities for µ R (xb):

Example 4 :

 4 Let k = 4, n = 7, and b = b 5 b 6 b 7 = 241 be an admissible suffix in R 7 . It follows that b k+1 = 2, µ R (b) = 3 and• α R (b) = {k -1} = {3}; • µ R (xb) = x = 3.Proposition 12: Let b = or b = b k+1 b k+2 . . . b n be an admissible suffix in S n . Then

5 :

 5 where C = max{0, b k+1 -1}. Since µ S (b) = b k+1 , the next result follows: Proposition 13: Let b = b k+1 b k+2 . . . b n be an admissible suffix in S n and x ∈ α S (b). Then µ S (xb) = x. Example Let k = 6, n = 9, and b = b 7 b 8 b 9 = 457 be an admissible suffix in S 9 . So we have µ S (b) = 4, C = max{0, b k+1 -1} = max{0, 3} = 3, and • α S (b) = {C, C + 1, . . . , k -1} = {3, 4, 5}; • µ S (xb) = x, where x ∈ {3, 4, 5}.

  THE LISTS A n AND R n The next proposition describes the form of s = last( Y n | b) and s = first( Y n | b), where Y n is one of the lists A n or R n . Proposition 14: Let Y n be one of the sets A n or R n , and b = b k+1 b k+2 . . . b n be an admissible suffix in Y n . If s = last( Y n | b) or s = first( Y n | b), then s has one of the following forms: • s = 012 . . . (k -2)(k -1)b, or • s = 012 . . . (k -2)0b. Proof. Let s = s 1 s 2 . . . s k b k+1 b k+2 . . . b n . Since s = last( Y n | b) or s = first( Y n | b), according to α Y (b) given in Propositions 8 and 10, it follows that s k ∈ {0, k -1}. In other words, s k is either the smallest or the largest value in α Y (b). If s k = k -1, then by Remark 3 we have s = 012 . . . (k -2)(k -1)b.

Proof.

  Let s, t ∈ Y n , with t = succ Y (s). If k + 1 is the rightmost position where s and t differ, then there are admissible suffixes b = b k+1 b k+2 . . . b n and b = b k+1 b k+2 . . . b n in Y n such that s = last( Y n |b) and t = first( Y n |b ). By Proposition 14, s has form 012 . . . (k -2)(k -1)b, or 012 . . . (k -2)0b; and t has form 012 . . . (k -2)(k -1)b , or 012 . . . (k -2)0b . And in any case, s and t differ in position k + 1 and possibly in position k. THE LIST S n The next proposition gives the form of last( S n | b) and first( S n | b) for an admissible suffix b in S n . Proposition 15: Let b = b k+1 b k+2 . . . b n be an admissible suffix in S n . If s = last( S n | b), then the form of s is given by:

  and either b k+1 = 0 or b k+1 is odd, then s = 012 . . . (k -2)(max{0, b k+1 -1})b; • if b k+1 < k and n i=k+1 b i + (nk) is even, and b k+1 > 0 is even, then s = 012 . . . (k -3)(b k+1 -2)(b k+1 -1)b. Similar results hold for s = first( S n | b) by replacing 'odd' by 'even', and vice versa, for the parity of n i=k+1 b i + (nk). Proof. Let s = s 1 s 2 . . . s k b k+1 . . . b n = last( S n | b). If b k+1 = k or n i=k+1 b i + (nk) is odd, then s k is the largest value in α S (b), so s k = k -1, and by Remark 3, s i = i -1 for 1 ≤ i ≤ k. So the first case holds. If n i=k+1 b i + (nk) is even and b k+1 < k, then s k is the smallest value in α S (b), namely max{0, b k+1 -1}, which is even if b k+1 = 0 or b k+1 is odd. Thus, by the definition of ≺ c order, s k-1 is the largest value in α S (s k b), which is k -2, and by Remark 3, the second case holds.

Proof.

  Let t = succ S (s), and k + 1 be the rightmost position where s and t differ. Let us denote by b the length (nk) suffix of s and b that of t; so, s = last(b | S n ) and t = first(b | S n ). It follows from Proposition 15, that s i = t i = i -1 for all i ≤ k -2, and so the other differences possibly occur in position k and in position k -1.

2

 2 and s m = 0) then s m-1 := m -2; return true; else return f alse; end. function LOWEST A(m) return 0; end. function SECLARGEST A(m, w) if w = m -2 and s m > 0 and s m < m -1 then return s m -1; else return m -3; end.

2 Figure 5 . 4 :Figure 5 . 5 :Figure 5 . 6 :

 2545556 Figure 5.4: Particular functions called by GEN2, generating the lists: (a) A n , and (b) R n .

  we have that g is a suffix of both u and u = u v. Since |g | = | g| -|v|, we have that |g | |v| = k -1 and the statement follows by induction on k.

  a k+2 . . . a n = b k+2 . . . b n = 0 n-k-1 . In any case, a and b differ in position k and possibly in position k + 1.

  a 1 a 2 . . . a n and b = b 1 b 2 . . . b n be two consecutive words with respect to the appropriate order, and k be the leftmost position where a and b differ. By Proposition 26, b k = a k + 1 or b k = a k -1 and so the prefixes a = a 1 a 2 . . . a k and b = b 1 b 2 . . . b k have different parity. Two cases arise according to the parity of a . • a has even parity, and so b has odd parity. By point 2 of Proposition 22 a = a x, and b = b y,

•

  a has odd parity, and so b has even parity. By point 1 of Proposition 22 either (i) a k+1 a k+2 . . . a n = b k+1 b k+2 . . . b n = 0 n-k , or (ii) at least one of a k+1 a k+2 . . . a n or b k+1 b k+2 . . . b n is the nk prefix of a word of the form0 i 1(q -1)0 ∞ .In case (i), a and b differ only in position k. And in case (ii) we suppose that a k+1 a k+2 . . . a n is the length nk prefix of 0 i 1(q -1)0 ∞ (the corresponding case for b k+1 b k+2 . . . b n being similar). Considering that b k = a k + 1 or b k = a k -1 it follows that b k+1 b k+2 . . . b n is the length nk prefix of 0 ∞ and so a and b differ in positions k, and (possibly) k + i + 1 and k + i + 2.

  a 1 a 2 . . . a n and b = b 1 b 2 . . . b n be two consecutive words, in ¡ order, and k be the leftmost position where a and b differ. If a and b are the length k prefix of a and b, by Proposition 23 a = a x, and b = b y,

  a k and b = b 1 b 2 . . . b k be the length k prefix of a and b, with k the leftmost position where a and b differ. When q is even, with u and v the length (nk) prefix of u and v defined in relation (6.4), we have • a = a v and b = b v if a has an even parity (and so, by Proposition 26, b has odd parity); • a = a u and b = b u , elsewhere, since a k 0 and b k 0 by considering the parity of the common length k -1 prefix of a and b.

  a k and b = b 1 b 2 . . . b k be the length k prefix of a and b with k the leftmost position where a and b differ. If a has even parity (and so, by Proposition 26, b has odd parity), then by the above considerations a = a v and b = b v . If a has odd parity, by considering the parity of the common length k -1 prefix of a and b it follows that a k q -1 and b k q -1, and again, by the above considerations we have a = a 0 n-k and b = b 0 n-k .

• a = a 1

 1 a 2 . . . a k and b = b 1 b 2 . . . b k are, respectively, the length k prefix of a and b, and

. 5 ,Figure 6 . 6 :

 566 Figure 6.6: In boldface a 'branch' of words produced by consecutive degree-one calls in the generating tree of A n 2 (001).

  3: (a) The set A 4 2 (011) listed in ≺ order, inducing 3-adjacent Gray code; (b) the reverse of the list in (a), giving Gray code for A 4 2 (110); (c) the complement of the list in (b), giving Gray code for A 4 2 (001). The changed symbols are in bold. 6.5/ IMPLEMENTATION ON CROSS-BIFIX-FREE SET If necessary, the readers are advised to recall Definition 3 for general definitons of crossbifix-free set and Section 4.3 for some related contemporary results. Following the authors of [CKPW13]

Figure 6 . 7 :

 67 Figure 6.7: Algorithm GENJ, producing J (k) n,q .

  Dij76]. Dijkstra's algorithm generates looplessly S E n according to RGC order. Each generated sequence is converted into the corresponding permutation.

  Rank S E n , ψ(S E n ) Rank S E n , ψ(S E n )

T (p) 4 = 4 (k + 1 Table 7 . 4 :Figure 7 . 1 :

 4417471 Figure 7.1: Our scheme for generating P n (T ) (shown by thick arrows), that is, by restricting S E n subject to θ T , and then mapping S E n (T ) to P n (T ) by ψ.

7. 5 /

 5 GRAPH THEORETIC CONSEQUENCESThe k-th power transposition graph of a set of permutation P n is a graph whose vertices represent permutations in P n , and edges connecting the vertices for permutations differing by at most k transposition. Particularly for k = 1, we refer the first power transposition graph of a set of permutation P n simply as the transposition graph, that is, a graph whose vertices represent permutations in P n , and edges connecting the vertices for permutations differing by a transposition.A circular Gray code is associated with a Hamiltonian cycle in a transposition graph. If a list of permutations (π 1 , π 2 , . . . , π N ) is a circular k-Gray code, then the Hamiltonian cycle in their corresponding k-th power transposition graph is given by π1 π 2 . . . π N π 1 .It is routine to check that if two permutations s and t differ in k position, then it needs at most k -1 transposition for transforming s to t. Recall the third paragraph of Section 7.3.1 and the paragraph after the proof of Proposition 41, that P n (T ) is a circular Gray code for T being either T 1 , T 2 , T 3 , T

T 2 , T 3 , 4 (

 234 with p ≥ 3), and• the (2 • p 2 -1)-th power (with p ≥ 4) of the transposition graphs of permutations P n

Figure 7 .

 7 Figure 7.4 and 7.7 show the transposition graphs of P 4 (T 1 ) and P 5 (T(3) 4 ), respectively. Their Hamiltonian cycles are obtained according to the Gray codes shown in Table7.5.

Figure 7 . 4 :

 74 Figure 7.4: Transposition graph of P 4 (312, 321), with Hamiltonian cycle.

Figure 7 . 5 :

 75 Figure 7.5: Transposition graph of P 5 (312, 321, 231).

Figure 7 . 6 :

 76 Figure 7.6: 2nd power transposition graph of P 5 (312, 321, 231).

Figure 7 . 7 :

 77 Figure 7.7: 3rd power transposition graph of P 5 (312, 321, 231), with Hamiltonian cycle.
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#

  Generating cross-bifix-free set reset() n=3 # length of the sequences, changeable q=4 # -arity, changeable factor=[0,0,0] # forbidden factor, changeable # prepend it with a 0 # ex: if f=00, then factor=[0,0type(): t=factor[1:len(factor)]+(Sequence(b[1:n+1])) L.append(t) else: for k in reversed [lowest..q-1range(n+1): s.append(0) #initial inversion table L=[] #initial list of inversion tables perm=[] for i in range(n+1): perm.append(0) [0:n]) perm1=Permutation(perm2).reverse() P.append(perm1) print P.index(perm1)+1,perm1

table ( see

 ( Table 2.1); a combination can be represented by set notation or by binary word (see Table 2.2); a number partition by Young diagram; a set partition by set notation or restricted growth function (see Table 2.3); a labeled graph by diagram or adjacency matrix, and many more.

	One-line	Cyclic	Inversion
	notation notation	table

Table 2 .

 2 

1: Some representations for permutations of the set {1, 2, 3}.

Table 2 .

 2 

2: Some representation for combinations of 3 objects taken from the set {1, 2, 3, 4, 5}.

Table 2 .

 2 

3: Some representation for partitions of the set {1, 2, 3, 4}.

  3.1.1/ PRODUCT SETSGiven n finite sets S i , 1 ≤ i ≤ n, the product set S 1 × S 2 × . . . × S n is the set of n-tuples s = s 1 s 2 . . . s n , where s i ∈ S i for all i, 1 ≤ i ≤ n. In particular, if S i = {0, 1, . . . , (i -1)} for all i = 1, 2, . . . , n, then the product set is called the set of subexcedant sequences of length n.Briefly, an st-restricted growth sequence s 1 s 2 . . . s n is a sequence where, for 1 ≤ k < n, the value range for s k+1 are restricted by st(s 1 s 2 . . . s k ).Words over a finite alphabet are special cases of product sets, where S 1 = S 2 = . . . S n = A; in this case the product sets are denoted by A n [Com74, p. 3], and A is called an alphabet, which is generally a set of distinct symbols. Alternatively, a word of length n over the alphabet A is an n-tuple a = a 1 a 2 . . . a n , where a i ∈ A for all i, 1 ≤ i ≤ n, and a can be seen as function {1, 2, . . . , n} → A. A q-ary word is simply a word over the particular alphabet

		CHAPTER 3. NOTATIONS AND DEFINITIONS
	Statistics	Symbols and definitions	Examples
	len	len(s 1 s 2 . . . s n ) = n -1	len(00213) = 4
	ascent	asc(s 1 s 2 . . . s n ) = card{i | 1 ≤ i < n and s i < s i+1 } asc(45012) = 3
	maximum	m(s 1 s 2 . . . s n ) = max{s 1 , s 2 , . . . , s n }	m(21573) = 7
	last value	lv(s 1 s 2 . . . s n ) = s n	lv(31254) = 4
	level	lev(s 1 s 2 . . . s n ) = card{i | 1 ≤ i < n and s i = s i+1 } lev(10003) = 2
	descent	des(s 1 s 2 . . . s n ) = card{i | 1 ≤ i < n and s i > s i+1 } des(62101) = 3
		Table 3.1: The definition of several statistics	
	Definition 1: st-restricted growth sequence	
	For a given statistic st, an st-restricted growth sequence s 1 s 2 . . . s n is a sequence
	with s 1 = 0 and		
		0 ≤ s k+1 ≤ st(s 1 s 2 . . . s k ) + 1 for 1 ≤ k < n,	(3.1)
	and the set of st-restricted growth sequences is the set of all sequences
	s 1 s 2 . . . s n satisfying relation (3.1).	
		From this definition, it follows that
	any prefix of an st-restricted growth sequence is also (a shorter) st-restricted growth
	sequence.		
	FACTOR AVOIDING WORDS	
	RESTRICTED GROWTH SEQUENCES DEFINED BY MEANS OF STATISTICS
	A statistic on a set of sequences is an association of an integer to each sequence in the
	set. For a sequence s 1 s 2 . . . s n , its length minus one, numbers of ascents/levels/descents,
	maximal value, and last value are classical examples of statistics. Table 3.1 shows the
	definitions for such statistics.	

Table 3 .

 3 2: The columnwise list B 5 , the BRGC of length 5. The symbol that differs with that of the next sequence is underlined.

  {123, 213}, {231, 321}, or {312, 321}, are enumerated by 2 n-1 (this covers Rotem's result previously in [Rot81]); and those avoiding {123, 132, 213} or {231, 312, 321} are enumerated by (n + 1)-th Fibonacci numbers. Egge and Mansour[START_REF] Egge | Restricted permutations, Fibonacci numbers, and k-generalized Fibonacci numbers[END_REF] generalized the results in[START_REF] Simion | Restricted permutations[END_REF] to pattern avoiding permutations counted by k-generalized Fibonacci numbers. They showed that permutations avoiding {12 . . . k, 132, 213}, for a k ≥ 3, are counted by

3, for each |R| ∈ {2, . . . , 5}. In particular, permutations avoiding either {123, 132},

Table 5 .

 5 

1: The sets S 5 , R 5 , and A 5 listed in ≺ order.

  2. Each node at level k, 1 ≤ k ≤ 4, represents prefixes s 1 s 2 . . . s k , and leaves sequences in A 4 .

			(i) 1 function OMEGA SE(w, p)
	1 procedure GEN1(k, x, dir, v) 2 global: n, s;	2 3 end. return p;
	3	s (a)	(ii) 1 function OMEGA A(w, p) 2 if p > 1 and s p > s p-1 3 then return w + 2; 4 else return w + 1; 5 end.

k := x; 4 if k = n then PRINT(s); 5 else u :=OMEGA X(v, k); 6 if dir mod 2 = 0 7 then for i := 0 to u do 8 GEN1(k + 1, i, i, u

-1)

; 9 else for i := u to 0 do 10 GEN1(k + 1, i, i + 1, u -1); 11 end. (iii) 1 function OMEGA R(w, p) 2 if p > 1 and s p > w 3 then return w + 2; 4 else return w + 1; 5 end.

Table 5 .

 5 

	2: The list for (a) G 3 3 , and (b) G 4 4 (shown partially), with respect to RGC and Co-RGC order. The last column in each table is obtained by applying two steps of transformation: complementing
	only digits in odd positions for sequences in G 3 3 , or in all positions for sequences in G 4 4 , then reversing the obtained sequence.

Table 5 .

 5 

3: The sets S 5 , R 5 , and A 5 listed in ≺ c order.

Table 5 .

 5 [START_REF] Sabri | Restricted Steinhaus-Johnson-Trotter list[END_REF] summarizes Theorems 1, 3, and 4, and Proposition 3, and gives the upper bound of the Hamming distance (that is, the worst case Hamming distance) for the two order relations. It shows that for the sets S E n and S n these relations have same performances, and for the sets A n and R n , ≺ c order induces more restrictive Gray codes.

	Set ≺ (RGC) ≺ c (Co-RGC)
		order	order
	S E n	1	1
	A n	3	2
	R n	3	2
	S n	3	3

Table 5 . 4

 54 

: The bound of the Hamming distance between two successive sequences in ≺ and ≺ c orders.

Table 5 .

 5 5:The average Hamming distance for ≺ order and ≺ c order.

		1	1.21 1.21 1.31	1	1.14 1.14 1.15
	5	1	1.13 1.12 1.29	1	1.19 1.18 1.24
	6	1	1.09 1.07 1.27	1	1.23 1.20 1.31
	7	1	1.06 1.06 1.26	1	1.25 1.22 1.35
	8	1	1.04 1.04 1.25	1	1.26 1.23 1.37
	9	1	1.03 1.03 1.24	1	1.28 1.24 1.39
	10	1	1.02 1.03 1.23	1	1.28 1.24 1.41

Table 6 .

 6 4:The values of S (n, q), for 2 ≤ q ≤ 5 and 4 ≤ n ≤ 20.

	n	S (n, 2) k	S (n, 3)	S (n, 4)	S (n, 5)
	4	1 2	4	9	16
	5	2 2	12	36	80
	6	3 2	32	135	384
	7	5 2	88	513	1 856
	8	8 2	240	1 944	8 960
	9	13 2	656	7 371	43 264
	10	24 3	1 792	27 945	208 896
	11	44 3	4 896	105 948	1 008 640
	12	81 3	13 376	401 679	4 870 144
	13	149 3	36 544	1 522 881	23 515 136
	14	274 3	99 840	5 773 680	113 541 120
	15	504 3	272 768	21 889 683	548 225 024
	16	927 3	745 216	82 990 089	2 647 064 576
	17	1 705 3	2 035 968	314 639 316	12 781 158 400
	18	3 136 3	5 562 368	1 192 888 215	61 712 891 904
	19	5 768 3 15 196 672	4 522 582 593	297 976 201 216
	20 10 671 4 41 518 080 17 146 412 424 1 438 756 372 480

Table 7 .

 7 .5. 5: The list P 4 (T 1 ) and P 5 (T(3) 4 ), which is a 2-Gray code and a 4-Gray code, respectively.

	P 4 (T 1 ) P 5 (T (3) 4 )
	1234	12345
	1243	12354
	1342	12435
	1324	13254
	2314	13245
	2341	21435
	2143	21354
	2134	21345

Proof. If b = , the result is obvious.

For b , let x ∈ α A (b). If µ A (b) = k -1 and 0 < b k+1 < k, then there are two possibilities for µ A (xb):

) = 0, and as above x = k -1; • MU X(k, x, v) returns the value of µ X (s k s k+1 . . . s n 0), with x = s k .

• ISDEGREEONE X(k) stops the recursive calls when α X (s k s k+1 . . . s n 0) has only one element, namely k -2. In this case, by Remark 3 the sequence is uniquely determined by the current suffix, and this prevents GEN2 to produce degree one calls. In addition, ISDEGREEONE X(k) sets appropriately d-1 values at the left of s k , where d is the upper bound of the Hamming distance in the list (changes at the left of s 1 are considered with no effect). This can be considered as a Path Elimination Technique or PET (see [Rus03]).

• LOWEST X(k) is called when ISDEGREEONE X returns false, and gives the lowest value in α X (s k s k+1 . . . s n 0).

• SECLARGEST X(k, u), is called when ISDEGREEONE X returns false, and gives the second largest value in α X (s k s k+1 . . . s n 0) (the largest value being always k -2).

By this construction, algorithm GEN2 has no degree one calls and it satisfies the CAT principle. Figure 5.6 shows the tree induced by the algorithm when generates A 4 .

1 procedure GEN2(k, x, dir, v) 2 global n,s; 3 s k := x; 4 u :=MU X(k, x, v); 5 if ISDEGREEONE X(k, u) then PRINT(s); 6 else c:=LOWEST X(k); CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS non-zero symbols in the length k -1 prefix of s and of t. Then s ≺ t if either • v is even and s k < t k , or

• v is odd and s k > t k . Now, by 'adding' u in Definition 7 and v defined above, we obtain a new order relation as follows:

Definition 10: Let s = s 1 s 2 . . . s n and t = t 1 t 2 . . . t n be two words in A n q , k be the leftmost position where s, t differ, u = k-1 i=1 s i = k-1 i=1 t i , and v be the number of non-zero symbols in the length k -1 prefix of s. We say that s is less than t in Dual Reflected Gray Code order, denoted by s ¡ t, if either

• u + v is even and s k < t k , or

Clearly, listing a set of words in ≺ or in ¡ order gives a prefix partitioned list, in the sense that words with the same prefix are contiguous.

For a set of same length words X, we refer to ¡-first (resp., ¡-last) word in X for the first (resp., last) word in X with respect to ¡ order. In the following, unless the contrary is explicitly stated otherwise, we will consider ≺ order on A * q when q is even and ¡ order when q is odd.

The next remark states that ¡ order yields a Gray code when q is odd, but generally for q even, A n q listed in ¡ order is not a Gray code.

Remark 4:

For any odd q ≥ 3 and n ≥ 1, the set A n q listed in ¡ order is a Gray code where two consecutive words differ in at most two adjacent positions. In addition, if s and t are two consecutive words in this list and k is the leftmost position where they differ, then

• if s k+1 t k+1 , then {s k+1 , t k+1 } = {0, q -1}. Table 6.1 shows the list in ¡ order, for the sets A 3 3 and A 4 4 . One can conclude that the list for A 3 3 is a 2-Gray code, but for A 4 4 is not a Gray code. We define the parity of the word a = a 1 a 2 . . . a n ∈ A n q according to two cases:

• when q is even, the parity of a is the parity of the integer n i=1 a i , and

Example 6:

Let f = 301300 ∈ U 4 be a forbidden factor and consider the prefix p = 0021301 ∈

Combining Proposition 17 and Remark 8 we have the following theorem.

Theorem 7:

For even q ≥ 2, the forbidden factor f ∈ A + q ending with 0 does not induce zero periodicity if and only if f ∈ U q .

q ODD Now, we give the odd q counterpart of the previous results.

Proposition 18:

Let q ≥ 3 be odd and f ∈ A + q be a forbidden factor ending with 0 and not inducing zero periodicity. Also, let p ∈ A * q ( f ) be such that one of the ¡-first or the ¡-last word in p|A ∞ q ( f ) does not have ultimate period 0, and let a be this word. Then a is ultimately periodic; more precisely, there is an m ≥ 0 such that either

Proof. The proof is similar to that of Proposition 16 except that the second point of Remark 7 is used instead of the first point. Now we characterize the forbidden factor f ∈ A + q ending with 0, for odd q ≥ 3, and not inducing zero periodicity.

For q ≥ 3, we define the set

Alternatively, V is the set of words of the form b0, where b is either empty, or for some m ≥ 0, a factor of (10 m ) ∞ ending with 0 m if m > 0 (and ending with 1 elsewhere). Notice that V does not depend on q, i.e. V ⊂ A + q for any q ≥ 2. Clearly, V contains exactly n words of length n, for example, V ∩ A 5 q = {00000, 10000, 01000, 10100, 11110}, for any q ≥ 2.

Considering Proposition 18 and the definition of ¡ order relation, with the same arguments as in the proof of Proposition 17 we have the next result.

Proposition 19:

For odd q ≥ 3, if a forbidden factor f ∈ A + q ending with 0 does not induce zero periodicity, then f ∈ V.

Remark 9:

If f ∈ V and q ≥ 3 is odd, then f does not induce zero periodicity on A ∞ q ( f ). Indeed, let for example f = b0 with b a suffix of (10 m ) -∞ be as in relation (6.2).

Then either the first word in b|A ∞ q ( f ) when b has even parity, or the last word in b|A ∞ q ( f ) when b has odd parity, has ultimate period 10 m .

Example 7:

Let f = 0100010000 ∈ V be the forbidden factor and consider the prefix p =

Combining Proposition 19 and Remark 9, we have the following theorem.

Theorem 8:

For odd q ≥ 3, the forbidden factor f ∈ A + q ending with 0 does not induce zero periodicity if and only if f ∈ V.

6.2.2/ FORBIDDEN FACTOR ENDING WITH q -1 AND NOT INDUCING ZERO

PERIODICITY

The next proposition holds for q ≥ 3 (even or odd), and the case for q = 2 is stated in the remark that follows it.

Proposition 20:

Let q ≥ 3 (even or odd) and f ∈ A + q be a forbidden factor ending with q -1 and not inducing zero periodicity. Also, let p ∈ A * q ( f ) be such that one of the first or the last word in p|A ∞ q ( f ), with respect to the appropriate order, does not have ultimate period 0, and let a be this word. Then a = p(q -2) ∞ .

Proof. Neither p0 nor p(q -1) can be a prefix of a; otherwise, in the first case a = p0 ∞ and in the second one a = p(q -1)0 ∞ . By the third point of Remark 7 and since f ends by a q -1, it follows that p(q -2) is a prefix of a, but p(q -2)(q -1) is not (otherwise a = p(q -2)(q -1)0 ∞ ). Again, p(q -2)(q -2) is a prefix of a, but p(q -2)(q -2)(q -1) is not; and finally a = p(q -2) ∞ .

Remark 11:

For q even (resp., odd), if f , | f | ≥ 2, does not have the form 0 nor (q -1)0 (resp., the form 0 ) for some ≥ 1, then for any p ∈ A * q ( f ), at least one among the ≺-first and the ≺-last word in p|A ∞ q ( f ) (resp., the ¡-first and the ¡-last word in p|A ∞ q ) has ultimate period 0.

6.2.3/ FORBIDDEN FACTOR INDUCING ZERO PERIODICITY

Here we characterize the first and the last words in p|A ∞ q ( f ) when the forbidden factor f induces zero periodicity; the resulting ultimate 0 periodic words will be used in the next section.

Proposition 22:

Let q ≥ 2 be even, f ∈ A + q \ U q be a forbidden factor ending with 0, ≥ 1 be the length of the maximal 0 suffix of f , and

word in p|A ∞ q ( f ) and p has even (resp., odd) parity, or 2. r = q -1 or (q -1)0 -1 1(q -1) if a is the ≺-first (resp., ≺-last) word in p|A ∞ q ( f ) and p has odd (resp., even) parity.

Proof. We prove the first point, the second one being similar. Let a be the ≺-first (resp., ≺-last) word in p|A ∞ q ( f ) with p having even (resp., odd) parity. Also suppose that r does not have the form described in point 1. Reasoning as in the proof of Proposition 16 it follows that 0 i 1(q -1)0 -1 1(q -1)0 -1 is a prefix of r, for some i, 0 ≤ i ≤ -1, and finally, by Lemma 2 that f ∈ U q , which leads to a contradiction.

Corollary 1:

The forbidden factor f ∈ A * q induces zero periodicity if and only if either:

• f does not end by 0 nor by q -1, or

• q = 2 and f U 2 , or

• q ≥ 4 is even and f U q ∪ W q , or

• q ≥ 3 is odd and f V ∪ W q .

6.3/ THE GRAY CODES

In this section we show that for forbidden factors f inducing zero periodicity on A ∞ q (as stated in Corollary 1) consecutive words-in ≺ order for q even, or ¡ order for q odd-in A n q ( f ), beyond the common prefix, have all symbols 0, except the first few of them; and this ensures that the set A n q ( f ) listed in an appropriate order is a Gray code.

Nevertheless, the property of f to induce zero periodicity is not a necessary condition.

Indeed, listing the set A n q ( f ) in ≺ order with:

• f = 0 for any q (not necessarily even), or

• f = (q -1)0 for q even, where ≥ 1, yields a 1-Gray code, despite f ∈ U q (and so, f does not induce zero periodicity for q even). These particular cases are discussed in Section 6.3.2, and we show that such factors f , f ≥ 2, are the only ones giving Gray codes for forbidden factors not inducing zero periodicity. In particular, the Gray code obtained for A n q (0 ) is one of those defined in [START_REF] Bernini | Two Gray codes for qary k-generalized Fibonacci strings[END_REF] as a generalization of a Gray code in [START_REF] Vajnovszki | A loopless generation of bitstrings without p consecutive ones[END_REF]. Finally, for forbidden factors f for which ≺ nor ¡ does not produce Gray codes on A n q ( f ), we give simple transformations of f , and eventually obtain Gray codes for A n q ( f ) (in an order other than ≺ or ¡).

We will make use later of the following property of forbidden factors ending with 0 or q -1:

for any q ≥ 2, if f ends by 0 or q -1, then any two consecutive words in A n q ( f ), in both ≺ and ¡ order, differ by 1 or -1 in the leftmost position where they differ.

Proposition 26:

Let q ≥ 2 and f ∈ A + q be a forbidden factor ending with 0 or q-1, and a = a 1 a 2 . . . 

Example 10:

By Theorem 11, the sets A 9 5 (31000) and A 9 5 (24000) listed in ¡ order are 4-close 3-Gray codes. However, it is easy to check that in particular, A 9 5 (31000) is a 3-close 3-Gray code, and A 9 5 (24000) is 4-close 2-Gray code. For example:

• the words 001304000 and 001310010 are consecutive in A 9 5 (31000) when listed in ¡ order; they differ in 3 positions which are 3-close; and

• the words 001140000 and 001240010 are consecutive in A 9 5 (24000) when listed in ¡ order; they differ in 2 positions which are 4-close.

Theorem 12:

If q is even (resp., odd) and f ∈ A + q \ W q ends by q -1, then A n q ( f ) listed in ≺ order (resp., ¡ order) is a 2-close 3-Gray code (that is, a 3-adjacent Gray code).

Proof. Let k be the leftmost position where two consecutive words a = a 1 a 2 . . .

By considering all the possible values of a k and b k , and since f W q ends by q -1, we conclude that a i = b i = 0 for all i > k + 2 (see also Proposition 24).

6.3.2/ PARTICULAR CASES

As mentioned before, there are two cases when f ∈ U q , q ≥ 2 and even, but A n q ( f ) listed in ≺ order is a Gray code; these are f = 0 and f = (q -1)0 , ≥ 1. Moreover, it turns out that A n q (0 ), q ≥ 3 and odd, also gives Gray code if listed in ≺ order. A similar phenomenon does not occur for f ∈ V, i.e., the set A n q ( f ) listed in ¡ order is not a Gray code for any f ∈ V, | f | ≥ 2 and q ≥ 3 odd, see for example Remark 12.

Before discussing these particular forbidden factors we introduce some notations.

Let q ≥ 2, ≥ 1, and define the infinite words:

Note that u and v are suffixes of each other, and they are related with the infinite words occurring in Proposition 16. It is easy to see that u and v are, respectively, the ≺-first and ≺-last word in A ∞ q (0 ) for even q; and thus the length n prefix of u and v are, respectively, the ≺-first and ≺-last word in A n q (0 ).

Moreover, for any p ∈ A k q (0 ) with 1 ≤ k ≤ n and q even 1 function FACTORMATCH(k) 2 while i ≤ k and j ≤ do

i := i + 1; j := j + 1; 5 else i := ij + 1; 6 j := 1; 7 return i = 8 end. procedure GENAVOID(k, dir) if k = n + 1 then PRINT(w); else if dir = 0 then for j := 0 to q -1 do w[k] := j; m := (dir + j) mod 2; if q is odd and j 0 then m := (m + 1) mod 2; if FACTORMATCH(k)= f alse then GENAVOID(k + 1, m); else for j := q -1 downto 0 do w[k] := j; m := (dir + j) mod 2; if q is odd and j 0 then m := (m + 1) mod 2; if FACTORMATCH(k)= f alse then GENAVOID(k + 1, m); end. q ( f ), listed in ≺ order if q is even or in ¡ order if q is odd. The initial call is GENAVOID(1, 0).

6.4.2/ IMPROVED GENERATING ALGORITHM EFFICIENT FACTOR MATCHING TECHNIQUE

Given two words w and f , the overlap of w over f is the longest proper suffix of w that is also a proper prefix of f . The border of a non empty word w is the overlap of w and itself (see for instance [START_REF] Lothaire | Applied Combinatorics on Words[END_REF]). Thus it is the longest word u which is both a proper prefix and a proper suffix of w. The overlap of w over f is denoted by overlap(w, f ). Notice that overlap(w, f ) is not necessarily equal to overlap( f , w). The border of w is denoted by border(w). Thus, border(w) = overlap(w, w). 

GENERATING ALGORITHM WITH EFFICIENT FACTOR MATCHING TECHNIQUE

Here we give a generating algorithm for the set A n q ( f ), n ≥ 1, for any forbidden factor f ∈ A q , ≥ 2 (the case = 1 being trivial). This generating algorithm recursively produces prefixes of words in A n q ( f ), in ≺ order if q is even, or in ¡ order if q is odd, and in particular, it generates the previously discussed Gray codes for A n q ( f ). We will show that this algorithm is efficient, except for the trivial factors of the form 00 . . . 01 or 11 . . . 10, for which a simple transformation of them makes the generating algorithm efficient. q ( f ), listed in ≺ order if q is even or in ¡ order if q is odd. The initial call is GENAVOID(1, 0, 0), and it uses array M, initialized in a preprocessing step by MAKEARRAY; and S is the list of symbols in the alphabet A q in increasing or decreasing order.

When the length

1 procedure MAKEARRAY() 2 for j := 0 to q -1 3

else M[i, j] := 0; 7 end. 

GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

In this chapter, we will investigate the Graycodeness of certain pattern avoiding permutations, listed according to Steinhaus-Johnson-Trotter (SJT) algorithm. If the permutations in an SJT-list are represented by inversion tables (which is actually the subexcedant sequences), then we obtain the list of subexcedant sequences with respect to RGC order (as shown implicitly by Dijkstra [START_REF] Dijkstra | On a gauntlet thrown by David Gries[END_REF]). Our approach is based on the idea that restricting permutations by "avoiding a set of patterns" is equivalent to restricting their corresponding inversion tables to "a restriction rule". For this purpose, we introduce the notion of restricted inversion tables. We narrow our study by considering pattern avoiding permutations that can be constructed by succession functions.

7.1/ STEINHAUS-JOHNSON-TROTTER ALGORITHM

SJT algorithm has come through improvement or simpler versions, such as speeding up version by Even [START_REF] Even | Algorithmic Combinatorics[END_REF], loopless version by Ehrlich [START_REF] Ehrlich | Loopless algorithm for generating permutations, combinations, and other combinatorial configurations[END_REF]. To give a simpler explanation of the algorithm, in the following we describe a version using 'directed integer' by Dershowitz [START_REF] Dershowitz | A simplified loop-free algorithm for generating permutations[END_REF]:

1. Generate initial permutation 12 . . . n, and set all integers (except the smallest) to be active, and to have direction left (i.e., to face left).

2.

Transpose the largest active integer L with the adjacent integer where L is facing.

Having done that, if L reach the leftmost or the rightmost position, or L is facing integer larger than itself, deactivate L.

3.

Reverse the direction of all integers larger than L, and activate them.

4.

Back to step 2 until there are no active integers. Table 7.1 illustrates how these steps work on generating length-4 permutations.

.

.

For a permutation π ∈ P n (T ), i is an active site in π if inserting n + 1 into the i-th site of π yields a permutation in P n+1 (T ).

Example 11:

13254 ∈ P 5 (321) has six sites, but only site number 1 and 2 are active. Here is the permutation 13254 with all the sites being shown:

In particular, 132546, 132564 ∈ P 6 (321). But 132654, 136254, 163254, 613254 P 6 (321), since 654 is order isomorphic to the avoided pattern 321.

In this case, we say that 13254 has two children, that are 132546 and 132564.

7.2.2/ BIJECTION FROM S E n TO P n

For a permutation π = π 1 π 2 . . . π n ∈ P n , we call (i, j) an inversion if i < j and

For example, 0102 is the inversion table of permutation 2413. It is easy to check that an inversion table is also a subexcedant sequence; and so, we denote by S E n the set of inversion table of length n. Note that we will use the two terms interchangeably based on the context.

We use a bijection ψ : S E n → P n , which maps an inversion table to its corresponding permutation. The bijection is defined as: ψ(s 1 ) = ψ(0) = 1, and ψ(s 1 . . . s n-1 s n ) is a permutation obtained by inserting n to the (s n + 1)-th active site of ψ(s 1 . . . s n-2 s n-1 ). The proof is quite easy: since n is greater than any symbol in permutation π ∈ P n-1 , inserting n to (s n + 1)-th site of π ∈ P n-1 implies n to have s n inversions, and vice versa.

For example, the recursive mapping ψ(0102) is described as follows:

)

, 2 is inserted in the (s 2 + 1)-th, or the second, site of permutation 1, the result is permutation 21 with 3 sites,

) 

)

• ψ(s 1 s 2 s 3 s 4 ) = ψ(0102) = 2413 (4 is inserted in the (s 4 + 1)-th, or the third, site of permutation 213, the result is permutation 2413).

Dijkstra implicitly used a relation from S E n to P n to design generating algorithm for P n , so that the next permutation is obtained by an adjacent transposition to the current gen-

7.2.3/ REGULAR PATTERN AND SUCCESSION FUNCTION

Definition 12: Regular pattern

A set of patterns T is said to be regular if it satisfies all of the following considerations:

1. P 1 (T ) = {1} and P 2 (T ) = {12, 21}.

2.

All active sites are right justified (i.e., all the sites to the right of an active sites are also active).

3.

For any π ∈ P n (T ), the number of active sites of π can be determined by χ T (i, k), where:

• k is the number of children of π's parent (i.e., π and its siblings), and

• i is the position (from the right) of the largest symbol in π.

Equivalently, χ T (i, k) is the number of π's children. We say that χ T (i, k) is a succession function.

We consider the set of regular patterns presented in Table 7.3 along with their corresponding succession functions. Note that some of these succession functions (particularly for T being T 1 , T 2 , or T 3 ) do not depend on k, and for the generality, we keep k being the parameter of the function in those cases .

Set of patterns Succession function Cardinality

n-th Pell number

n-th Pell number 

we have the following property

j=1 s j is even, 0 otherwise;

The property above determines the form of two successive sequences s and t in SE n (T ), according to a particular restriction function θ T (u, k) considered in Table 7 In general, our strategy to investigate the Graycodeness are done in two steps: firstly by determining the worst case form of successive sequences s, t ∈ SE n (T ); and then find the form of their corresponding permutations. By finding the latter, the Graycodeness of P n (T ) can be determined. In the upcoming explanation, we will be using notation a ∞ , which denotes the infinite copy of symbol a, i.e., a ∞ = aaa . . ..

Proposition 32:

Proof. SE n (T 1 ) is equal to the list of length-n binary sequences that begin with 0, with respect to RGC order. So that two successive sequences in SE n (T 1 ) differ in one position (and by 1 or -1 in this position).

Combining Proposition 32 and Remark 13, we have the following proposition.

Proposition 33:

Remark 14:

Let s, t be two successive sequences in SE n (T 2 ). Let a be the longest common prefix of both s and t. Then, we have {s, t} = {au, av}, where u and v are prefixes of appropriate length of 0210 ∞ and 1100 ∞ , respectively.

Proposition 34:

Proof. Let s, t be two successive sequences in SE n (T 2 ), and s ≺ t. It follows that σ = ψ(s) and τ = ψ(t) are successive permutations in P n (T 2 ). Let m be the leftmost position where s, t differ; this implies ψ(s 1 s 2 . . . s m-1 ) = ψ(t 1 t 2 . . . t m-1 ) = σ 1 σ 2 . . . σ m-1 . We suppose that m-1 i=1 s i is even. By Remark 14, we have:

It follows that σ and τ differ in at most 4 positions.

The case when m-1 i=1 s i being odd is proven analogously by exchanging the form of σ and τ.

Remark 15:

Let s, t be two successive sequences in SE n (T 3 ). Let a be the longest common prefix of both s and t. Then, we have {s, t} ∈ {au, av}, where u and v are prefixes of appropriate length of 1210 ∞ and 0100 ∞ , respectively.

Proposition 35:

P n (T 3 ) is a 4-Gray code.

Proof. Let s, t be two successive sequences in SE n (T 3 ) and s ≺ t. It follows that σ = ψ(s) and τ = ψ(t) are successive permutations in P n (T 3 ). Let m be the leftmost position where s, t differ; this implies ψ(s 1 s 2 . . . s m-1 ) = ψ(t 1 t 2 . . . t m-1 ) = σ 1 σ 2 . . . σ m-1 . We suppose that m-1 i=1 s i is even. By Remark 15, we have:

It follows that σ and τ differ in at most 4 positions.

The case when m-1 i=1 s i being odd is proven analogously by exchanging the form of σ and τ. 

PERMUTATIONS AVOIDING T

Remark 16:

Let s, t be two successive sequences in SE n (T (3) 4 ). Let a be the longest common prefix of both s and t. Then, we have {s, t} = {au, av}, where u and v are prefixes of appropriate length of 1010 ∞ and 0100 ∞ , respectively.

Remark 17:

Let s, t be two successive sequences in SE n (T (p) 4 ), for a fixed p ≥ 4. Let a be the longest common prefix of both s and t. Then, their largest Hamming distance happens when {s, t} = {au, av}, where u and v are, respectively, prefixes of appropriate length of 0(p -2)010 ∞ and 10100 ∞ if p ≥ 4 and even, or 0(p -3)010 ∞ and 10100 ∞ if p ≥ 5 and odd.

Proposition 36:

P n (T (3) 4 ) is a 4-Gray code.

Proof. Let s, t be two successive sequences in SE n (T (3) 4 ) and s ≺ t. It follows that σ = ψ(s) and τ = ψ(t) are successive permutations in P n (T (3) 4 ). Let m be the leftmost position where s, t differ; this implies ψ(s 1 s 2 . . . s m-1 ) = ψ(t 1 t 2 . . . t m-1 ) = σ 1 σ 2 . . . σ m-1 . We suppose that m-1 i=1 s i is even. By Remark 16, we have:

It follows that σ and τ differ in at most 4 positions.

The case when m-1 i=1 s i being odd is proven analogously by exchanging the form of σ and τ.

Proposition 37: ). Let m be the leftmost position where s, t differ; this implies ψ(s 1 s 2 . . . s m-1 ) = ψ(t 1 t 2 . . . t m-1 ) = σ 1 σ 2 . . . σ m-1 . We suppose that m-1 i=1 s i is even, and that p ≥ 4 and p is even. By Remark 17, we have:

Based on the worst case form above, σ and τ differ in at most p positions if p ≥ 4 and p is even. Now, we will prove the case when p ≥ 5 and p is odd. Let p = q + 1, where q ≥ 4 and q is even; let s, t be two successive sequences in SE n (T (p) 4 ) and s ≺ t; and let σ, τ, m be defined analogously as in the first paragraph of this proof. We suppose that m-1 i=1 s i is even. By Remark 17, we have σ = ψ(s 1 s 2 . . . s m-1 0(p -3)010 . . . 0) and τ = ψ(t 1 t 2 . . . t m-1 1010 . . . 0). Since p = q + 1, we can express σ in terms of q, that is, σ = ψ(s 1 s 2 . . . s m-1 0(q -2)010 . . . 0). It follows that σ and τ have the same form as described in the first paragraph; and so, they differ in at most q positions. This confirms that σ and τ differ in at most p -1 positions if p ≥ 5 and p is odd.

The case when m-1 i=1 s i being odd is proven analogously by exchanging the form of σ and τ. 

7.3.2/ THE RESULTS FOR SOME REVERSE AND INVERSE REGULAR PATTERNS

where

where

The property above determines the form of two successive sequences s and t in SE n (T rev 1 ) and SE n (T rev 2 ), as shown in Remark 18 and 19, respectively. In [START_REF] Baril | ECO generation for p generalized Fibonacci and Lucas permutations[END_REF] was shown that P n (T (p)inv 4

) correspond with the set of length-(n-1) binary words avoiding p -1 consecutive ones (see also earlier result in [START_REF] Vajnovszki | A loopless generation of bitstrings without p consecutive ones[END_REF]). If we prepend such binary words by a 0, then we obtain the set of length-n binary words beginning by 0 and avoiding p -1 consecutive ones, which are identical with S E n (T (p)inv 4

), the inversion tables of P n (T (p)inv 4

). Based on this restriction, we can easily determine the form of two successive sequences in SE n (T (p)inv 4

), as shown in Proposition 40. The set P n (T (p)inv 4) is enumerated by (n + p -2)-th Fibonacci number of order (p -1).

The following proposition gives the forms of any two successive words in S E n (T rev 1 ) listed in RGC order.

Remark 18:

Let s, t be two successive sequences in SE n (T rev 1 ), and m is the leftmost position where they differ. Let a be the longest common prefix of both s and t. Then, we have {s, t} = {a(m -1)u, a(m -2)u}, where u is the prefix of appropriate length of (m -1)m(m + 1)(m + 2) . . .. Combining Remark 18 and Remark 13, we have the following proposition.

Proposition 38:

The following proposition gives the forms of any two successive words in S E n (T rev 2 ) listed in RGC order.

Remark 19:

Let s, t be two successive sequences in SE n (T rev 2 ), and m is the leftmost position where they differ. Let a be the longest common prefix of both s and t. Then, we have {s, t} = {au, av}, where u and v are prefixes of appropriate length of (m -1)(m -2)(m + 1)w and (m -2)(m -1)(m)w, respectively. In addition, w = (m + 2)(m + 1)(m + 4)(m + 3)(m + 6)(m + 5) . . ..

Proposition 39:

P n (T rev 2 ) is a 4-Gray code.

Proof. Let s, t be two successive sequences in SE n (T rev 2 ) and s ≺ t. It follows that σ = ψ(s) and τ = ψ(t) are successive permutations in P n (T rev 2 ). Let m be the leftmost position where s, t differ; this implies ψ(s 1 s 2 . . . s m-1 ) = ψ(t 1 t 2 . . . t m-1 ) = σ 1 σ 2 . . . σ m-1 . We suppose that n = m + 2 and m-1 i=1 s i is even. By Remark 19, we have:

Based on the worst case form above, σ and τ differ in at most 4 positions. It is routine to check that if n > m + 2, the the two successive permutations differ also in at most 4 positions.

PERMUTATIONS AVOIDING T (p)inv 4

= {312, 321, 23 . . . p1}

The following proposition gives the forms of any two successive words in S E n (T (p)inv 4

) listed in RGC order.

Proposition 40:

Let s, t be two successive sequences in SE n (T (p)inv 4

). Let a be the longest common prefix of both s and t. The worst case form of s, t is given by {s, t} = {au, av}, where u and v are prefixes of appropriate length of 1010 ∞ and 0100 ∞ , respectively.

)) = a0100 . . . 0, and t = first(a | SE n (T (p)inv 4

)). Since the sequence avoids p -1 consecutive ones, there are two possibilities for t: if 1 p-3 is the suffix of a, then t = a1010 . . . 0, otherwise t = a110 . . . 0.

It is routine to check that 1 p-2 can not be suffix of a, since in this case, a will be no longer the longest common prefix of s and t.

The forms of two successive sequences in SE n (T (p)inv 4

) are exactly the same with those of SE n (T (3) 4 ) (see Remark 16). This similarity implies the following proposition, whose proof is similar with that of Proposition 36.

Proposition 41:

For a p ≥ 3, P n (T (p)inv 4

) is a 4-Gray code.

It is easy to check that first(00

)) = 00 . . . 0 and last(01 | SE n (T )) = 010 . . . 0; and this property implies P n (T (p)inv 4

) being also a circular Gray code.

7.4/ ALGORITHMIC CONSIDERATIONS

The algorithm GENRSE (GENerate Restricted SubExcedant sequences) in Figure 7.2a generates S E k (T ) (the inversion tables of permutations in P k (T )), with k goes from 1 to n, with respect to RGC order. GENRSE is actually a slight modification of GEN1 (see Figure 5.1 in Chapter 5). The main difference is that GENRSE uses particular function THETA X (line 6), instead of OMEGA X as that in GEN1. We have shown that GEN1 is efficient as long as OMEGA X runs in O(1). In the current case, all the particular functions THETA T 1, THETA T 2, THETA T 3, and THETA T 4 presented in Figure 7.2b runs in O(1). Analogously, as long as THETA X runs in O(1), one can verify that GENRSE satisfies the CAT principle stated in Section 3.3.1, and so it is an efficient generating algorithm.

The algorithm GENPAP (GENerate Pattern Avoiding Permutations) in Figure 7.3 is actually GENRSE with some additional commands so that the output is the SJT-list for P n (T ). This is done by adding line 4, 11, and 14. The current generated inversion table is mapped by function PSI (works as function ψ defined in Section 7.2.2) to its corresponding permutation. The function UNDOPSI is needed, since the insertion of an integer (done by PSI) in a particular site (thus, a particular permutation is generated) must be undone before the same integer is inserted in the next site (in order to generate the next permutation). Skipping UNDOPSI will generate permutations having the same integer appearing more than once, which is forbidden. GENPAP remains CAT as long as the functions PSI and UNDOPSI runs in O(1).

The main call of both algorithms are, respectively, GENRSE(1, 0, 0, 0) and GENPAP(1, 0, 0, 0). 4 . The initial call is GENRSE(1, 0, 0, 0).

then for i := 0 to u do 10 GENPAP(k + 1, i, i, u); 11 p :=UNDOPSI(s k+1 ); 12 else for i := u downto 0 do 13 GENPAP(k + 1, i, i + 1, u); 14 p :=UNDOPSI(s k+1 ); 15 end. 

7.6/ SUMMARY

We use the inversion tables to investigate the Graycodeness of an SJT-list of pattern avoiding permutations. Our approach works for some regular patterns and some of their reverse or inverse. More precisely, we show the Graycodeness of the SJT-list for P n (T ),

. For this purpose we introduce the notion "restricted inversion tables", which is an alternative representation of pattern avoiding permutations. The results are resumed in Table 7.6.

Set of patterns Graycodeness Cardinality T of P n (T ) of P n (T )

Table 7.6: The Graycodeness of P n (T ).

We also provide two efficient generating algorithms: GENRSE, that generates permutations represented by inversion tables; and GENPAP that generates permutations represented by one line notations. The two algorithms are based on efficient algorithm GEN1 discussed previously in Chapter 5.

Finally, we show the graph theoretic consequence for T being either T 1 , T 2 , T 3 , T Generally, for a set of length-n binary words, its list in lexicographic order yields n changes between successive words in the worst case; while in this particular bounded change order, the number of change is 1. . . . . . . . .

2.6

The list of length-4 binary words having at most two 1s, with respect to lexicographic order and to a bounded change order. Note that these lists are sublists of those in Table 2.5. Generally, for a set of length-n binary words, its list in lexicographic order yields n changes between successive words in the worst case; while in this particular bounded change order, the number of changes are bounded by 2. . . . . . . . . . . . . . . . . . . . . (shown partially), with respect to Dual RGC order. The Hamming distance column shows the number of differences between a particular sequence and its predecessor. In general, the list for A n q in ¡ order is a 2-Gray code for odd q, but it is not Gray code for even q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 The Graycodeness of A n q ( f ) listed in appropriate order together with the ultimate periods of the last word in a|A ∞ q ( f ) and the first word in b|A ∞ q ( f ), when at least one of them does not have ultimate period 0, and a and b are consecutive words; and A ≥2 q is the set of words on A q of length at least two. 

Abstract:

We consider Gray codes and efficient exhaustive generating algorithms for the sets belonging to three major classes of restricted words, that are: (1) restricted growth sequences, (2) factor avoiding q-ary words, and (3) pattern avoiding permutations. For the first two classes, our Gray codes (and thus, our generating algorithms) are based on order relations obtained by specializing known order relations; namely Reflected Gray Code (RGC) order and its variations, and we call them Reflected Gray Code based orders. The Gray code and the generating algorithm for the third class are based on Steinhaus-Johnson-Trotter order, that is, order relation induced by Steinhaus-Johnson-Trotter Gray code for permutations.

In the first results, we define Gray codes and give efficient generating algorithms for the class of restricted growth sequences that satisfy our prescribed properties. In particular, we focus on four mainstream subclasses: subexcedant and ascent sequences, restricted growth functions and staircase words. The results are given in two parts: by using original RGC order and Co-RGC order, which generates prefix (and suffix, respectively) partitioned Gray codes; and we give comparison between the two results. In addition, we investigate the Graycodeness of the restricted ascent sequences.

In the second results, we define Gray codes and give an efficient generating algorithm for the class of factor avoiding q-ary words. Among the involved tools, we make use of original RGC order for even q and Dual RGC order for odd q, the zero periodicity property, and word matching techniques adapted from that of Knuth-Morris-Pratt. We give the implementation of these results to define Gray code and generating algorithm for cross-bifix-free sets.

In the third results, we define Gray codes and give efficient generating algorithms for the class of pattern avoiding permutations. In particular, we show that the Steinhaus-Johnson-Trotter Gray code for permutations, when restricted by avoiding some set of patterns, still remains a (possibly less restricted) Gray code. The main ingredients we are using in the investigation of the Graycodeness are: succession functions, the classical bijection from inversion tables to permutations, and the list of inversion tables with respect to RGC order. We give additional results on graph theoretic consequences.

Keywords: Gray code, generating algorithm, order relation, restricted words

R ésum é :

Nous introduisons des codes de Gray et des algorithmes efficaces de g én ération exhaustive pour trois classes de mots: (1) suites à croissance restreinte, (2) mots évitant un facteur sp écifi é, (3) permutations à motif exclus. Pour les deux premi ères classes, nos codes de Gray (et les algorithmes de g én ération qui en d écoulent) sont bas és sur des relations d'ordre obtenues par la sp écialisation de l'ordre du code de Gray r éfl échi. Pour la troisi ème classe, les codes de Gray et les algorithmes de g én ération correspondants sont bas és sur l'ordre induit par l'algorithme de Steinhaus-Johnson-Trotter pour la g én ération des permutations. Concernant les suites à croissance restreinte, nous d éfinissons un code de Gray et donnons un algorithme de g én ération exhaustive pour ce code. En particulier, nous consid érons les suites sous-exc édantes et ascendantes, les fonctions à croissance restreinte et les mots 'escalier'. Les relations d'ordre consid ér ées sont RGC et Co-RGC, qui sont des relations partitionnant les listes selon, respectivement, le pr éfixe et le suffixe. De plus, nous explorons la possibilit é pour l'obtention des codes de Gray pour les suites ascendantes restreintes. Pour les mots de q-aires à facteur interdit nous donnons deux codes de Gray et les algorithmes de g én ération correspondants. Les relations d'ordre consid ér ées sont RGC, pour q pair, et Dual RGC pour q impair. Parmi les notions utilis ées, citons la p ériodicit é z éro et un algorithme classique de recherche de motif du à Knuth, Morris et Pratt. Comme application, nous consid érons les ensembles 'cross-bifix-free'. Finalement, des r ésultats similaires sont obtenus pour certaines classes de permutations à motif interdit. Plus pr écis ément, nous montrons que la restriction du code de Gray de Steinhaus-Johnson-Trotter aux ensembles de permutations évitant certains motifs reste un code de Gray (moins restrictif). Parmi les techniques utilis ées, nous mentionnons la fonction de succession et une bijection classique entre permutations et tableaux d'inversions, et donnons quelques cons équences en th éorie des graphes.

Mots-cl és :

Code de Gray, algorithme de g én ération, relation d'ordre, croissante restreinte