
HAL Id: tel-01203339
https://theses.hal.science/tel-01203339

Submitted on 22 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gray codes and efficient exhaustive generation for
several classes of restricted words

Ahmad Sabri

To cite this version:
Ahmad Sabri. Gray codes and efficient exhaustive generation for several classes of restricted words.
Other [cs.OH]. Université de Bourgogne, 2015. English. �NNT : 2015DIJOS007�. �tel-01203339�

https://theses.hal.science/tel-01203339
https://hal.archives-ouvertes.fr

Thèse de Doctorat

n

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E B O U R G O G N E

Gray codes and efficient exhaustive
generation for several classes of
restricted words

AHMAD SABRI

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E B O U R G O G N E

THÈSE présentée par

AHMAD SABRI

pour obtenir le

Grade de Docteur de
l’Université de Bourgogne

Spécialité : Informatique

Gray codes and efficient exhaustive generation for
several classes of restricted words

Unité de Recherche :
Laboratoire Electronique, Informatique et Image (LE2I)

Soutenue publiquement le 10 Avril 2015 devant le Jury composé de :

JEAN-MARC FÉDOU Rapporteur Professeur à l’Université de Nice Sophia - Antipolis

VLADY RAVELOMANANA Rapporteur Professeur à l’Université Paris Diderot - Paris 7

JEAN-LUC BARIL Examinateur Professeur à l’Université de Bourgogne - Dijon

ENRICA DUCHI Examinateur Maitre de Conference à l’Université Paris Diderot - Paris 7

OLIVIER TOGNI Examinateur Professeur à l’Université de Bourgogne - Dijon

VINCENT VAJNOVSZKI Directeur de thèse Professeur à l’Université de Bourgogne - Dijon

ACKNOWLEDGEMENTS

Praise to Allah for His blessing and for giving me this beautiful achievement. It is im-
possible for me to do the research and to pass my doctoral study without the support,
involvement and help from other people.

First of all, I would like to express my sincere gratitude to my supervisor, Professor Vincent
Vajnovszki, who gave me a lot of guidance, knowledge and insight during my doctoral
study and research.

Thank you to all the jury members for reviewing and giving constructive suggestions on
my thesis, as well as grading my thesis defense.

Thank you to the Directorate General of Higher Education (DIKTI), Ministry of Education
Republic of Indonesia, for financing my study.

Thank you to Prof. Dr. E.S. Margianti, Prof. Suryadi Harmanto, Dr. Eri Prasetyo, Dr.
Ernastuti, and Dr. Asep Juarna from Gunadarma University, Indonesia, where I work for.

I would like also to thank the administration people in Ecole Doctoral SPIM and in the
laboratory LE2I, who facilitate me with the required things so that my research could go
well.

Thank you to all my friends in the laboratory, with whom I interacted, had discussions, or
just had a fun talk with cups of coffee in our hands.

I dedicate my doctoral degree to my beloved father, Fauzi Nawawi, who passed away
in the last year of my study. May this achievement be my best gift to you father, that
makes you smile upthere in heaven. And last but not least, I wish to thank my mother
Ratna Fauzi, my lovely wife Novini Nilakusumah, my children Difa Abdussalam and Fatma
Raihana, who have supported me with so much love and care.

Finally, thank you to all the people that involved in my study and research, whose names
are impossible for me to mention here one by one. It is wonderful to have met you all.

Dijon, April 2015

v

CONTENTS

I Problems and Context 1

1 Introduction 3

1.1 Motivations and objectives . 3

1.1.1 In relation to combinatorics . 3

1.1.2 In relation to computer science . 5

1.2 Outline of the thesis . 5

2 Preliminaries 9

2.1 Combinatorics . 9

2.1.1 A brief history . 9

2.1.2 Combinatorial class . 10

2.1.3 Representations of combinatorial object 10

2.2 Enumerative combinatorics . 11

2.2.1 Counting combinatorial objects . 12

2.2.2 Exhaustive generation . 13

2.2.3 Bijection between combinatorial objects 14

2.2.4 Random generation . 15

2.2.5 Ranking and unranking . 16

3 Notations and Definitions 17

3.1 Our considered classes of words . 17

3.1.1 Product sets . 17

3.1.2 Permutations . 19

3.2 Gray code . 19

3.2.1 Reflected Gray Code . 20

3.2.2 Steinhaus-Johnson-Trotter Gray code 22

vii

viii CONTENTS

3.3 Efficient generating algorithm . 22

3.3.1 Constant Amortized Time algorithm 23

3.3.2 Loopless algorithm . 24

4 State of the Art 25

4.1 Gray codes . 25

4.1.1 ECO-based Gray codes . 25

4.1.2 Gray codes for Gray structures . 26

4.1.3 Gray codes for strictly prefix (or suffix) partitioned word-list 26

4.1.4 Gray codes for reflectable languages 26

4.1.5 Cool-lex order and bubble languages 27

4.1.6 Gray codes induced by RGC order relation or its variations 27

4.2 Restricted growth sequences . 28

4.3 Factor avoiding words . 29

4.4 Pattern avoiding permutations . 30

II Our Contributions 33

5 Gray codes for restricted growth sequences 35

5.1 Additional notions . 35

5.2 The Reflected Gray Code order for the set Xn 38

5.2.1 The Graycodeness of the list Xn . 38

5.2.2 Generating algorithm for the list Xn 40

5.3 The Co-Reflected Gray Code order for the set Xn 43

5.3.1 Additional notions . 43

5.3.2 Suffix expansion of sequences in the set Xn 46

5.3.3 The Graycodeness of the list X̃n . 50

5.3.4 Generating algorithm for the list X̃n 54

5.4 Additional result: Gray codes for restricted ascent sequences 59

5.5 Summary . 60

6 Gray codes for factor avoiding q-ary words 63

CONTENTS ix

6.1 Additional notions . 63

6.2 Periodicity . 66

6.2.1 Forbidden factor ending with 0 and not inducing zero periodicity . . . 69

6.2.2 Forbidden factor ending with q − 1 and not inducing zero periodicity . 72

6.2.3 Forbidden factor inducing zero periodicity 74

6.3 The Gray codes . 76

6.3.1 Factors inducing zero periodicity . 77

6.3.2 Particular cases . 79

6.3.3 Factors preventing Graycodeness 81

6.3.4 Obtaining Gray code if f does not induce zero periodicity and is not
one of the particular cases . 83

6.4 Algorithmic considerations . 84

6.4.1 Initial generating algorithm . 84

6.4.2 Improved generating algorithm . 86

6.5 Implementation on cross-bifix-free set . 90

6.5.1 The Gray code . 91

6.5.2 Generating algorithm . 93

6.6 Summary . 93

7 Gray codes for some pattern avoiding permutations 95

7.1 Steinhaus-Johnson-Trotter algorithm . 95

7.2 Additional notions . 96

7.2.1 The sites of a permutation . 96

7.2.2 Bijection from S En to Pn . 97

7.2.3 Regular pattern and succession function 99

7.2.4 The restricted inversion tables . 99

7.3 The Gray codes . 101

7.3.1 The results for regular patterns . 101

7.3.2 The results for some reverse and inverse regular patterns 104

7.4 Algorithmic considerations . 107

7.5 Graph theoretic consequences . 109

x CONTENTS

7.6 Summary . 112

III Conclusion 113

8 Conclusion and future works 115

Bibliography 117

IV Appendices 131

A Software Implementation 133

A.1 Generating restricted growth sequences . 133

A.1.1 With respect to ≺ order: Algorithm GEN1 133

A.1.2 With respect to ≺c order: Algorithm GEN2 134

A.2 Generating factor avoiding q-ary words . 137

A.2.1 Algorithm GENAVOID . 137

A.2.2 Algorithm GENJ . 139

A.3 Generating pattern avoiding permutations 141

A.3.1 Algorithm GENPAP . 141

B Our publications 145

I
PROBLEMS AND CONTEXT

1

1

INTRODUCTION

Our research consists of three connecting parts, which are: combinatorial classes, Gray
codes constructions, and generating algorithms. Therefore, it lies in two scientific do-
mains: combinatorics and computer science. We consider three major classes of re-
stricted words, in which the restrictions are applied subject to their growth, to avoidance
of a factor or a set of patterns. Our Gray code constructions are induced by order re-
lations, and they are derived from the original Binary Reflected Gray Code introduced
by Frank Gray in his 1953 patent [Gra53]. We call them Reflected Gray Code based
order relations. All the considered generating algorithms we present here are efficient,
that is, they have time complexity proportional to the number of the generated objects,
independent of the size of the object.

1.1/ MOTIVATIONS AND OBJECTIVES

1.1.1/ IN RELATION TO COMBINATORICS

There are several ad-hoc techniques to define Gray codes for combinatorial classes.
However, those techniques lack of generality, in the sense they work only for the very
specific combinatorial classes for which such Gray codes are defined. More general
designs that work for a wide range of combinatorial classes tend to grow in recent years.

Among them are, for example, ECO-based Gray codes (ECO was defined formally in the
context of enumeration [BLPP99]), Gray codes for Gray structures [BGPP07], for strictly
prefix (or suffix) partitioned list of words [Wal08], for reflectable languages [LS09], and for
bubble languages [RW09, RSW12].

Our research is within this spirit. Our Gray code definitions are based on order relations.
More precisely, we propose the original Reflected Gray Code (RGC) order relation as
“the base” of our Gray code constructions. Indeed, some variations of the original RGC
order relation induce Gray codes for some combinatorial classes. In some cases, our
techniques can be applied when other techniques, like reflectable languages, do not work

3

4 CHAPTER 1. INTRODUCTION

(i.e., for the sets which are not reflectable).

Some important questions might arise, such as: under what conditions a class, when
listed in an RGC-based order, is a Gray code? If a restriction is applied to such a Gray
code list, does the obtained sublist still remain a Gray code? What kind of restrictions that
yield Gray codes? How to apply these restrictions into efficient generating algorithms? It
seems there is no general answer for the first question, since the existence of Gray code
for a particular class, with respect to an RGC-based order, depend on how the class and
the order relation are defined. This relates to the answer “it depends” to the remaining
questions. In addition, there is no general Gray code construction that works for every
class. Nevertheless, it remains a scientific challenge for combinatorists to design more
general Gray code constructions.

At first, the RGC-based order relations technique was used implicitly, for example in com-
positions [Kli81, Wal00]. Later on, it was developed systematically as a general method
in order to define Gray codes (and corresponding generating algorithms) for various
classes such as Fibonacci words [Vaj01], Lucas words [BV05], Lyndon words and rel-
atives [Vaj07, Vaj08a], and restricted compositions and permutations [VV11]. In relation
to classes of restricted words, some literatures propose Gray codes for restricted growth
sequences, such as those given in [MNV11, MV13]; for factor avoiding words [Squ96];
and for pattern avoiding permutations [DFMV08, Bar09].

An order relation induces a unique list for a set of combinatorial objects. In particular, once
a Gray code is defined for a class by means of RGC order, we can use all ‘knowledge’
of RGC order such as: ranking and unranking objects, random generation, and listing for
a particular subclass. By applying restrictions to the list, the obtained restricted list (that
is, the objects that do not satisfy the restrictions are excluded from the list) is a (possibly
scattered) sublist of the original one; it is uniquely defined, and it still maintains the same
order relation.

A classical example is the list of length-n binary words with respect to RGC order (the
Binary Reflected Gray Code); and below is this list for n = 4 (see Table 2.5 for complete
list):

G = (0000, 0001, 0011, 0010, 0110, 0110, . . . , 1011, 1001, 1000).

If we restrict this list to contain only binary words having exactly two 1s, then we obtain a
2-Gray code, which is a scattered sublist of G, and for n = 4 is:

G′ = (0011, 0110, 0101, 1100, 1010, 1001).

More generally, restricting BRGC to binary words having exactly k 1s will also produce a
Gray code (Nijenhuis and Wilf called this Gray code the revolving door code [NW78]).

Extending this idea, our research considers some other restrictions which preserve the
Graycodeness, with respect to some RGC-based orders. In particular, we consider three

1.2. OUTLINE OF THE THESIS 5

classes of restricted words, that are: restricted growth sequences, factor avoiding words,
and pattern avoiding permutations. The variations of RGC order relation are considered
in the first and the second mentioned classes. It might happen that, for a combinatorial
class, a variation of RGC order induces more restrictive Gray code than that of the origi-
nal one (as in the case of restricted growth sequences); or the original RGC order does
not induce Gray code, but a variation of it induces one (as in the case of factor avoiding
words). In the case of pattern avoiding permutations, we use the classical Steinhaus-
Johnson-Trotter order (that is, the order relation induced by Steinhaus-Johnson-Trotter
Gray code for permutations), and consider some patterns that preserve the Graycode-
ness. In fact, SJT order is implicitly in connection with the original RGC order; since
the list of permutations in SJT order is order isomorphic to the list of their corresponding
inversion tables in RGC order.

1.1.2/ IN RELATION TO COMPUTER SCIENCE

The field of combinatorial algorithm includes some recent notable books of references.
Donald Knuth’s The Art of Computer Programming, Vol. 4A - Combinatorial Algorithm
[Knu11], is entirely devoted to the generation of some classical combinatorial classes,
such as: n-tuples, permutations, combinations, partitions, set partitions, and trees. Com-
binatorial Generation, a monograph by Frank Ruskey [Rus03], provides generating algo-
rithms for many combinatorial classes, and analyze the their time and space complexity.

“Efficient”, that is the keyword in developing algorithms. The amount of calculations per
generated object should be constant (either in the worst case or in amortized sense), and
independent of the object size. Gray codes can be considered as an efficient arrangement
for combinatorial objects since two successive objects only differ in a (bounded) small
amount of changes, independent of the object size. Thus, generating objects in Gray
code manner can be a way to obtain efficient generating algorithms.

We provide efficient generating algorithms for each combinatorial class considered in this
thesis. The task for restricting the generated words is done by ‘restriction procedures’,
that are called from the main generating algorithm. By designing restriction procedures
that define a particular class, the algorithm generates the objects of the desired class.
This makes the algorithms more flexible and applicable for a wider range of combinatorial
classes.

1.2/ OUTLINE OF THE THESIS

After Introduction in the current chapter, the rest of the thesis is presented in the following
outline.

6 CHAPTER 1. INTRODUCTION

Chapter 2 gives some introductions to combinatorics, in context of our research. First,
we explain what the combinatorial objects are, and also their representations. We explain
some aspects of enumerative combinatorics involved in our research, that are, counting,
exhaustive generation, and bijection between combinatorial objects. In addition, we give
explanations about two other aspects: random generation and ranking/unranking combi-
natorial objects, even though we will not be using them later.

Chapter 3 explains each of the involved aspect in more details. We introduce formal
definitions of the three considered combinatorial classes of words, where two of them be-
long to product sets, and the other belongs to permutations. Those considered classes
are, respectively: restricted growth sequences, factor avoiding words, and pattern avoid-
ing permutations. The notions of Gray code and the particular well-known Gray code
constructions (Reflected Gray Code and Steinhaus-Johnson-Trotter Gray Code) are in-
troduced and explained.

The algorithm section explains the concept of “efficient generating algorithms”. Among
such algorithms are: Constant Amortized Time (CAT) algorithm and loopless algorithm.
Whenever possible, obtaining an efficient algorithm is a primary goal in designing algo-
rithm for exhaustive generation of combinatorial objects.

Chapter 4 presents contemporary results in context of our research. The contemporary
results are divided into four parts: that of Gray codes, of restricted growth sequences, of
factor avoiding words, and of pattern avoiding permutations.

Chapter 5 presents our results on Gray code for restricted growth sequences. We con-
sider four classes that satisfy our prescribed properties; they are subexcedant sequences,
ascent sequences, restricted growth functions, and staircase words. In the first part, we
give the results about their Graycodeness and generating algorithms, with respect to the
original RGC order. The second part of this chapter gives similar results, with respect to
Co-RGC order (a variation of the original RGC order). As by product of our results, we
investigate the Graycodeness of the restricted ascent sequences.

Chapter 6 presents our results on Gray code for factor avoiding words. We consider words
over alphabet Aq = {0, 1, . . . , q − 1}, and introduce the notion “zero periodicity property” as
sufficient (but not necessary) condition for a set of words to be Gray code, when listed
in RGC order. To deal with that property, we apply the original RGC order for even q,
and its variation called Dual RGC order for odd q. The Graycodeness of factor avoiding
words are categorized according to whether q is even or odd, and whether the forbidden
factor induces zero periodicity or not. We also investigate the Graycodeness for particular
cases, that are, for certain forbidden factors that do not induce zero periodicity. In the
algorithm section, we provide an efficient algorithm for generating factor avoiding words. It
applies an efficient factor matching technique adapted from that of Knuth-Morris-Pratt. At
the end of the chapter, we give the implementation of our results to define the Gray code
and, as an application, provide a CAT generating algorithm for cross-bifix-free words.

1.2. OUTLINE OF THE THESIS 7

Chapter 7 presents our results on Gray codes for some classes of pattern avoiding permu-
tations. We begin by presenting Steinhaus-Johnson-Trotter algorithm, that produces the
list of all permutations of a given length (an “SJT-list”), and each generated permutation
is obtained by an adjacent transposition to the previous one; so the list is actually a 2-
adjacent Gray code. To investigate the Graycodeness, we use the classical bijection from
inversion tables to permutations and introduce the notion of “restriction functions”. Our
restrictions to the permutations are subjected to avoid one of the four sets of regular pat-
terns, that are {312, 321}, {321, 3412, 4123}, {312, 4321, 3421}, and {p12 . . . (p − 1), 321, 231},
where the last is the set of p-generalized Fibonacci patterns. The reverse of the first, of
the second, and the inverse of the fourth mentioned patterns, are also considered. By
using bijective approach, we show that the SJT-list of permutations avoiding one of those
sets of patterns remains Gray code (possibly less restricted). The generating algorithm
section provides an efficient generating algorithm for permutations avoiding one of those
sets of patterns. The algorithm generates and lists the permutations according to their
relative order in SJT-list, so it can be considered as SJT-list with ‘restriction’. In addition,
we give the graph theoretic consequence of our results.

Finally, in the Appendix we give the SAGE implementations of our generating algorithms.

2

PRELIMINARIES

2.1/ COMBINATORICS

Combinatorics can be considered simply as mathematics of counting. More specifically,
it is the mathematics of the enumeration, existence, construction, and optimization ques-
tions concerning finite sets satisfying a predefined configuration [Maz10].

2.1.1/ A BRIEF HISTORY

Some classical combinatorics problems such as Tower of Hanoi, tiling problems, magic
or Latin squares, or works that related to combinatorics such as Murasaki diagrams of the
Tale of the Genji, the 64 Hexagrams of the Fu Hsi ordering, show that human has already
dealt with problems related to combinatorics since a long time ago.

Biggs [Big79] pointed out that the basic rules for counting have been taken for granted
at least since Egyptian civilizations, as shown in the Rhind papyrus (ca. 1650 BC). It
is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased the dis-
covered papyrus in 1858 in Luxor, Egypt. Problem 79 therein appears to deal with the
summation of a series of powers of 7.

Perhaps the first mention of a combinatorics problem occured in an ancient Indian lit-
erature called Bhagabati Sutra, written around 300 BC. It posed a problem about how
many ways one could take six tastes one, two, or three tastes at a time. Several ideas
of combinatorics were developed by ancient Indian mathematicians in this period. It is
worth mentioning that some of these developments are related to finding binomial coef-
ficients, Fibonacci numbers, permutations, and combinations. Later on, the Middle East
mathematicians also learned about binomial coefficients from Indian works, and found
the connection to polynomial expansion. Abu Bakr ibn Muhammad ibn al Husayn Al-
Karaji (ca. 953–1029) wrote on the binomial theorem and the geometrical arrangement
of binomial coefficient, which is now well known as Pascal triangle. In a now lost work
known only from subsequent quotation by Al-Samaw’al, Al-Karaji introduced the idea of

9

10 CHAPTER 2. PRELIMINARIES

argument by mathematical induction.

Ancient Chinese were also interested in combinatorial calculations. The famous Book of
Change, or I Ching, seems to be a compilation of material, some of which dates from
the 7th century BC. The only relevance of the I Ching for combinatorics concerns the
question about ordering the hexagrams. However, their standard ordering seems has no
significance impact with the development of combinatorics. Apart from that, perhaps the
most well-known Chinese contribution to this field is the subject of magic squares [Big79].

The Italian mathematician Leonardo Fibonacci (ca. 1170–1250), with his book Liber
Abaci, influenced by Arabian and Indian ideas, perhaps might be considered as one who
introduced combinatorics in Europe in 13th century. Classes of Fibonacci numbers are
strongly related to many aspects in combinatorics.

In 18th century, Leonhard Euler gave the solution of the Königsberg Bridge problem.
His published results marked the birth of graph theory and modern combinatorics, and
perhaps since then combinatorics emerged as a formal branch of mathematics.

Today, combinatorics has expanded into branches such as enumerative combinatorics,
optimization, analysis, and algebraic combinatorics. It plays important roles in pure math-
ematics, such as algebra, probability theory, topology, and geometry. Its applications
spread into many science domains such as bioinformatics, cryptography, electrical engi-
neering, and many more.

2.1.2/ COMBINATORIAL CLASS

‘Combinatorial class’ is a primitive notion, and roughly speaking, it is a set of objects
endowed with some combinatorial properties. The term ‘combinatorial object’ can refer
either to a single object belonging the class, or to the class itself [Wil09b]. A particular
set of combinatorial objects is a subclass, with certain properties are fixed. For example,
the class of permutations consists of sets Pn, the sets of permutations of length n ≥ 0. By
fixing n = 5, we have P5, the set of permutations of length 5.

Ruskey proposed an intuitive definition that a class of combinatorial object is elemen-
tary if it satisfies a simple recurrence relation [Rus03]. Permutations, combinations, set
or number partitions, binary trees and labeled graphs are some well-known elementary
combinatorial objects.

2.1.3/ REPRESENTATIONS OF COMBINATORIAL OBJECT

A combinatorial object can be represented in various ways. For example, some ways
to represent a permutation are by one line notation, by cycle notation, or by inversion
table (see Table 2.1); a combination can be represented by set notation or by binary

2.2. ENUMERATIVE COMBINATORICS 11

word (see Table 2.2); a number partition by Young diagram; a set partition by set notation
or restricted growth function (see Table 2.3); a labeled graph by diagram or adjacency
matrix, and many more.

One-line Cyclic Inversion
notation notation table

1 2 3 (1)(2)(3) 0 0 0
1 3 2 (1)(2 3) 0 0 1
2 1 3 (1 2)(3) 0 1 0
2 3 1 (1 2 3) 0 1 1
3 1 2 (1 3 2) 0 0 2
3 2 1 (1 3)(2) 0 1 2

Table 2.1: Some representations for permutations of the set {1, 2, 3}.

Set Binary
word

{1, 2, 3} 1 1 1 0 0
{1, 2, 4} 1 1 0 1 0
{1, 3, 4} 1 0 1 1 0
{2, 3, 4} 0 1 1 1 0
{1, 2, 5} 1 1 0 0 1
{1, 3, 5} 1 0 1 0 1
{2, 3, 5} 0 1 1 0 1
{1, 4, 5} 1 0 0 1 1
{2, 4, 5} 0 1 0 1 1
{3, 4, 5} 0 0 1 1 1

Table 2.2: Some representation for combinations of 3 objects taken from the set {1, 2, 3, 4, 5}.

Obviously, there is one-to-one correspondence between each representation within the
same class. Which one is used depends on what aspects to be investigated in that class.

2.2/ ENUMERATIVE COMBINATORICS

Enumerative combinatorics is a branch of combinatorics specialized in counting and gen-
erating combinatorial objects under specified constraints. In addition, the generation of
combinatorial object is a method to produce a particular object in the class. To obtain
all combinatorial objects under particular parameters, the task is called the exhaustive
generation of combinatorial objects. Since in this thesis we only consider exhaustive
generation, for the brevity we use the term “generation” to refer “exhaustive generation”.

12 CHAPTER 2. PRELIMINARIES

Set partition Restricted growth
function

{1, 2, 3, 4} 0 0 0 0
{1, 2, 3},{4} 0 0 0 1
{1, 2, 4},{3} 0 0 1 0
{1, 2},{3, 4} 0 0 1 1
{1, 2},{3},{4} 0 0 1 2
{1, 3, 4},{2} 0 1 0 0
{1, 3},{2, 4} 0 1 0 1
{1, 3},{2},{4} 0 1 0 2
{1, 4},{2, 3} 0 1 1 0
{1},{2, 3, 4} 0 1 1 1
{1},{2, 3},{4} 0 1 1 2
{1, 4},{2},{3} 0 1 2 0
{1},{2, 4},{3} 0 1 2 1
{1},{2},{3, 4} 0 1 2 2
{1},{2},{3},{4} 0 1 2 3

Table 2.3: Some representation for partitions of the set {1, 2, 3, 4}.

2.2.1/ COUNTING COMBINATORIAL OBJECTS

Stanley [Sta97] stated that the basic problem of enumerative combinatorics is how to
find the cardinality of a given finite set (i.e., counting the number of objects of a finite
set), by using the appropriate counting formula. For example, n! counts the number of
n-permutations. Counting formula can be given in several standard algebraic methods,
those are: explicit formula, recurrence relation, asymptotic formula, and generating func-
tion (see Table 2.4 for examples). A relatively more recent method called ECO [BLPP99]
is suitable to enumerate most of combinatorial classes.

Combinatorial class Counting formula Type of formula
n-permutations n! Explicit formula
n-permutations √

2πn
(

n
e

)n
Asymptotic formula

(large n)
Dyck words 1−

√
1−4x

2x
Generating function

of length 2n
Fibonacci words f (0) = 0, f (1) = 1, Recurrence relations

of length n f (n) = f (n − 1) + f (n − 2)

Table 2.4: Some combinatorial classes with their counting formulas.

If the counting formula for a set is not known, or it is too complicated to deal with, then a
solution is to design a ‘counting algorithm’. In this case, the algorithm efficiency is crucial.
Alternatively, one can use bijection between combinatorial classes.

2.2. ENUMERATIVE COMBINATORICS 13

2.2.2/ EXHAUSTIVE GENERATION

Exhaustive generation of combinatorial objects is a way to generate with no omissions nor
repetitions all the combinatorial objects in a given class of a fixed object size. It can be
used to test hypotheses about a class of objects, to solve some NP-complete problems,
to analyze or prove programs, and often to exhibit new combinatorial properties of the
class being considered. It can also be used to count the object in the class.

In combinatorial optimization, where every possible object is associated with a value, it
might be necessary and feasible to evaluate all the possibilities under a particular condi-
tion, to find which one gives the optimality.

The exhaustive generation can be obtained by a generating algorithm, and the objects
are generated according to a particular order, usually the lexicographic order or its gen-
eralizations, or bounded change orders. For that purpose, it is more convenient to have
objects represented by tuples.

LEXICOGRAPHIC ORDER AND ITS GENERALIZATIONS

Lexicographic order is a formalization of the idea of ordering the words alphabetically, as
in the dictionary. In lexicographic order, a word a1a2 . . . an is less than (i.e., is ordered
before) a word b1b2 . . . bn if, for some k, ak is less than bk, and ai = bi for i = 1, 2, . . . , k − 1.

There are variations of lexicographic order derived from the original one, such as reverse
lexicographic (relex) order, co-lexicographic (colex) order, or combinations of both relex
and colex order. Note that in lexicographic order, two successive words can differ in
arbitrary number of positions, and there are possibilities that they differ in all positions.

Chase introduced the generalization of lexicographic order, called the Graylex order
[Cha89]. Graylex order, like the lexicographic order and its variations, produces a list of
words which is either prefix partitioned or suffix partitioned (all the words having the same
prefix/suffix are contiguous). A Graylex order simultaneously generalizes lexicographical
and Reflected Gray Code order.

BOUNDED CHANGE ORDER

In bounded change order, the succeeding object is obtained by applying a number of
changes to the previous one, and this number is bounded independently in the size of
objects. However, such order does not necessarily exist for a given combinatorial class.
In addition, if the bound is proven to be minimal, then we say such an order as a minimal
change order.

A Graylex order might also be a bounded change order for a particular class. For example,

14 CHAPTER 2. PRELIMINARIES

Lexicographic Number of Bounded change Number of
order changes order changes

0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 1 1
0 0 1 0 2 0 0 1 1 1
0 0 1 1 1 0 0 1 0 1
0 1 0 0 3 0 1 1 0 1
0 1 0 1 1 0 1 1 1 1
0 1 1 0 2 0 1 0 1 1
0 1 1 1 1 0 1 0 0 1
1 0 0 0 4 1 1 0 0 1
1 0 0 1 1 1 1 0 1 1
1 0 1 0 2 1 1 1 1 1
1 0 1 1 1 1 1 1 0 1
1 1 0 0 3 1 0 1 0 1
1 1 0 1 1 1 0 1 1 1
1 1 1 0 2 1 0 0 1 1
1 1 1 1 1 1 0 0 0 1

Table 2.5: The list of binary words with respect to lexicographic order and to a bounded change
order. The column “Number of changes” shows the amount of changes applied to the previ-
ous words to obtain the next one. Generally, for a set of length-n binary words, its list in lexico-
graphic order yields n changes between successive words in the worst case; while in this particular
bounded change order, the number of change is 1.

Reflected Gray Code order is a bounded (and also minimal) change order for the set of
binary words. Ordering rules proposed in [BGPP07, Wal08, LS09] give minimal change
order for Gray structures, strictly prefix/suffix partitioned list, or reflectable languages,
respectively (explained later in Chapter 4).

Table 2.5 shows the lists of binary words of length 4, with respect to lexicographic order
and a bounded change order (in this case it is given by Reflected Gray Code order). In
general, lexicographic order gives the amount of changes equals to the word length (in
the worst case), and in this example is 4; and in the bounded change order, the amount
of change is 1, which is minimal (independent of the word length). The similar example is
also shown in Table 2.6

2.2.3/ BIJECTION BETWEEN COMBINATORIAL OBJECTS

A function f : A→ B is called a bijection if f satisfies both of the following properties:

• f is injective (one-to-one), that is, for any a1, a2 ∈ A, if f (a1) = f (a2), then a1 = a2,
and

• f is surjective (onto), that is, for any b ∈ B, there exists some a ∈ A such that
f (a) = b.

2.2. ENUMERATIVE COMBINATORICS 15

Lexicographic Number of Bounded change Number of
order changes order changes

0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 1 1
0 0 1 0 2 0 0 1 1 1
0 0 1 1 1 0 0 1 0 1
0 1 0 0 3 0 1 1 0 1
0 1 0 1 1 0 1 0 1 2
0 1 1 0 2 0 1 0 0 1
1 0 0 0 4 1 1 0 0 1
1 0 0 1 1 1 0 1 0 2
1 0 1 0 2 1 0 0 1 2
1 1 0 0 2 1 0 0 0 1

Table 2.6: The list of length-4 binary words having at most two 1s, with respect to lexicographic
order and to a bounded change order. Note that these lists are sublists of those in Table 2.5.
Generally, for a set of length-n binary words, its list in lexicographic order yields n changes between
successive words in the worst case; while in this particular bounded change order, the number of
changes are bounded by 2.

Clearly, two finite sets A and B have the same cardinality if and only if there exists a
bijection from one set to the other. In this case, we say that A and B are isomorphic.
Moreover, if A and B are the sets of combinatorial objects and are isomorphic, it follows
that generating objects in A is equivalent to generating objects in B (for example, when
A is the set of inversion tables and B is the set of permutations, since the two sets are
isomorphic). By using bijective proof, the properties of a class (such as the Graycodeness
of the class) usually can be investigated by using the properties of its isomorphic class.

It might happen that the counting formula for a combinatorial class is not known yet. How-
ever, if there exists a bijection to such a class from a class with known counting formula,
then the problem is solved; since the isomorphic classes have the same cardinality, so
they share the same counting formula.

2.2.4/ RANDOM GENERATION

Random generation consists of designing an algorithm that chooses randomly and with
uniform probability an object in a certain class. Apart from the theoretical interest, ran-
dom generation is used principally for producing objects of large size, when the exhaus-
tive generation is inefficient. It has applications in: the estimation of the average com-
plexity of algorithms which deal with combinatorial objects; verification of combinatorial
conjectures and assistance to one intuition (random generation is therefore associated
with Monte-Carlo method); modeling (in Computer Science, Physics, Statistics, etc.) In
these application areas, one needs to generate objects of very large size, which justifies
the desire to achieve very low computational complexities, ideally linear in the size of the
object to be constructed. One among methods for random generation is by using object

16 CHAPTER 2. PRELIMINARIES

grammar given by Dutour and Fédou in [DF98].

2.2.5/ RANKING AND UNRANKING

Often it may be desirable to predetermine the position of a given object in a generated
list without generating the whole list. This requires a ranking algorithm, and the inverse
problem, determine the object with a given rank, requires an unranking algorithm.
Formally, the ranking function for the class An of the objects of size n of a given type is
a function which assigns a unique integer in the range [0, card(An) − 1] to each of the
card(An) objects of size n. The corresponding unranking function is the inverse: given
an integer between 0 and card(An) − 1, the value of the function is the object having this
rank, and generally, the unranking algorithm is more complicated than the ranking one
The traditional approach to this problem is to first define an ordering of the set of combi-
natorial objects and then find ranking and unranking functions relative to that ordering.
For example, in lexicographic order, the rank of an object is simply the number of objects
that precede it in lexicographic order. Naive implementations of ranking and unranking
functions in lexicographic order are not linear and require arithmetic over large integers,
but by not insisting on lexicographic order one may obtain efficient ranking and urank-
ing algorithms. Such algorithms can be used for random generation or data compression.

3

NOTATIONS AND DEFINITIONS

We consider the following classes of restricted words: restricted growth sequences, fac-
tor avoiding words, and pattern avoiding permutations. Each object in those classes is
represented by tuple (i.e., an ordered list of elements). In particular, for n > 0, a length-n
sequence, word, or permutation is represented as an n-tuple, and we adopt the conven-
tion that a lower case bold letter represents an n-tuple, for example: a = a1a2 . . . an. The
empty (the length-0) sequence, word, or permutation is denoted by ε.

In this chapter, we give notions and definitions in relation with our considered classes of
words, Gray codes, and efficient generating algorithm.

3.1/ OUR CONSIDERED CLASSES OF WORDS

We define the three classes of restricted words below with respect to their parental
classes, that are product sets and permutations. In general, all these classes belong
to the classes of words.

3.1.1/ PRODUCT SETS

Given n finite sets S i, 1 ≤ i ≤ n, the product set S 1 × S 2 × . . . × S n is the set of n-tuples
s = s1s2 . . . sn, where si ∈ S i for all i, 1 ≤ i ≤ n. In particular, if S i = {0, 1, . . . , (i − 1)} for all
i = 1, 2, . . . , n, then the product set is called the set of subexcedant sequences of length n.

RESTRICTED GROWTH SEQUENCES DEFINED BY MEANS OF STATISTICS

A statistic on a set of sequences is an association of an integer to each sequence in the
set. For a sequence s1s2 . . . sn, its length minus one, numbers of ascents/levels/descents,
maximal value, and last value are classical examples of statistics. Table 3.1 shows the
definitions for such statistics.

17

18 CHAPTER 3. NOTATIONS AND DEFINITIONS

Statistics Symbols and definitions Examples
len len(s1s2 . . . sn) = n − 1 len(00213) = 4

ascent asc(s1s2 . . . sn) = card{i | 1 ≤ i < n and si < si+1} asc(45012) = 3
maximum m(s1s2 . . . sn) = max{s1, s2, . . . , sn} m(21573) = 7
last value lv(s1s2 . . . sn) = sn lv(31254) = 4

level lev(s1s2 . . . sn) = card{i | 1 ≤ i < n and si = si+1} lev(10003) = 2
descent des(s1s2 . . . sn) = card{i | 1 ≤ i < n and si > si+1} des(62101) = 3

Table 3.1: The definition of several statistics

Definition 1: st-restricted growth sequence

For a given statistic st, an st-restricted growth sequence s1s2 . . . sn is a sequence
with s1 = 0 and

0 ≤ sk+1 ≤ st(s1s2 . . . sk) + 1 for 1 ≤ k < n, (3.1)

and the set of st-restricted growth sequences is the set of all sequences
s1s2 . . . sn satisfying relation (3.1).

Briefly, an st-restricted growth sequence s1s2 . . . sn is a sequence where, for 1 ≤ k < n,
the value range for sk+1 are restricted by st(s1s2 . . . sk). From this definition, it follows that
any prefix of an st-restricted growth sequence is also (a shorter) st-restricted growth
sequence.

FACTOR AVOIDING WORDS

Words over a finite alphabet are special cases of product sets, where S 1 = S 2 = . . . S n = A;
in this case the product sets are denoted by An [Com74, p. 3], and A is called an alphabet,
which is generally a set of distinct symbols. Alternatively, a word of length n over the
alphabet A is an n-tuple a = a1a2 . . . an, where ai ∈ A for all i, 1 ≤ i ≤ n, and a can be seen
as function {1, 2, . . . , n} → A. A q-ary word is simply a word over the particular alphabet
Aq = {0, 1, . . . , q − 1}.

An denotes the set of words of length n over A, A∗ = ∪n≥0An, and A+ = ∪n≥1An. The word
f ∈ A∗ is a factor of a ∈ A∗ ∪ A∞ if there are b ∈ A∗ and c ∈ A∗ ∪ A∞ such that a = b f c;
when b = ε (resp. c = ε), then f is a prefix (resp. suffix) of a; and in this case, the prefix
or the suffix is proper if f , a and f , ε.

For a ∈ A∗ ∪ A∞ and X ⊂ A∗ ∪ A∞ we denote by a | X the set of words in X having the prefix
a, and by X(a) the set of words in X that avoiding a. Clearly A∗(a) = ∪n≥0An(a).

By the previously defined notions, we have the following definition:

3.2. GRAY CODE 19

Definition 2: Factor avoiding q-ary word

For a given word f , the word a = a1a2 . . . an is said to avoid f if a does not contain
f as its factor. We denote by An

q(f) the set of q-ary words of length n that avoids
factor f .

A bifix (or border) of a word is a factor which is both a prefix and a suffix. A word is said
to be bifix-free if it does not contain any bifix [Nie73].

Definition 3: Cross-bifix-free word

A set of bifix-free words is cross-bifix-free if, given any two words, any prefix of
the first one is not a suffix of the second one.

3.1.2/ PERMUTATIONS

A permutation of a finite set S is an arrangement of all elements in S . In a permutation,
the order of arrangement is considered; for example, if S = {1, 2, 3}, a permutation 132
is different from 231. We denote by Pn the set of all permutations of S n = {1, 2, . . . , n}.
Alternatively, a permutation of a set S is a bijection from S onto itself.

Restrictions to a set of permutation yield a set of restricted permutations. In literature,
there are various ways to restrict permutations. Among them, the well-known class of
restricted permutations is the class of pattern avoiding permutations.

PATTERN AVOIDING PERMUTATIONS

Let Pn be the set of length-n permutations. We say that π ∈ Pn contains a pattern τ ∈ Pk

if there is a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1 . . . πik is order isomorphic
to τ.

Definition 4: Pattern avoiding permutation

For a given permutation τ, a permutation π is said to avoid τ if π does not con-
tain subsequence that is order isomorphic to τ. We denote by Pn(τ) the set of
permutations that avoids τ. Similarly, for a set T of permutations, Pn(T) is the set
of permutations in Pn avoiding each permutation in T

3.2/ GRAY CODE

In 1947, Frank Gray, an engineer at Bell Laboratories, invented an analog-to-digital sig-
nal conversion method so that spurious output from electromechanical switches can be
prevented. His method was based on a binary numerical system, which at that moment

20 CHAPTER 3. NOTATIONS AND DEFINITIONS

had as yet no recognized name, and just referred as “reflected binary code”. Not until
1953 when finally this code was named as Gray Code, or to be more specific, Binary Re-
flected Gray Code (BRGC). However, the code itself had been studied and applied long
before. For example, a French engineer named Emile Baudot used it in telegraphy in
1878. Briefly, for an integer n, BRGC is a list of all length n binary words (or sequences),
ordered so that the successive words differ only in one position, and by +1 or −1 in this
position. The term “reflected” refers to the reflection technique used in the construction.
The amount of position(s) where two distinct words differ is called the Hamming distance.
In BRGC, the Hamming distance between any two successive words is 1.

In combinatorics context, Gray code has come through a less restrictive definition (which
sometimes called as combinatorial Gray code). Here we adopt the definition from Walsh
[Wal08].

Definition 5: Gray code

A Gray code is an infinite set of word-lists with unbounded word-length such that
the Hamming distance between any two successive words in any list is bounded
independently of the word-length.

Through this thesis, we will often use the notions defined below to describe Gray code
more specifically:

Definition 6: d-(adjacent) Gray code

A d-Gray code is a Gray code where the Hamming distance is bounded by a
constant d. In addition, if the positions where two successive words differ are
always adjacent, then such lists are called a d-adjacent Gray code.

3.2.1/ REFLECTED GRAY CODE

In the following we provide the construction rules for BRGC, followed by that for Reflected
Gray Code (RGC), that is, the generalization of BRGC to q-ary words. For n > 1, construct
the n-bit Gray code by first appending 0 to each element of the (n− 1)-bit Gray code, then
list the (n − 1)-bit Gray code in reverse, appending 1 to each element. The following
recursive relations represent this technique:

Bn =

 ε if n = 0,

0Bn−1, 1Bn−1, if n > 0,
(3.2)

where ε is the empty word, Bn−1 is the reverse of Bn−1. See Table 3.2 for the list of BRGC
of length 5, generated by relation (3.2).

Now, let Gn
q be the set of length-n q-ary words s1s2 . . . sn with si ∈ {0, 1, . . . , q − 1}; or

3.2. GRAY CODE 21

0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 0 0 1
0 0 0 1 1 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0
0 0 1 1 0 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0 1
0 0 1 0 0 1 1 1 0 0
0 1 1 0 0 1 0 1 0 0
0 1 1 0 1 1 0 1 0 1
0 1 1 1 1 1 0 1 1 1
0 0 1 1 0 1 0 1 1 0
0 1 0 10 1 0 0 1 0
0 1 0 1 1 1 0 0 1 1
0 1 0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0 0 0

Table 3.2: The columnwise list B5, the BRGC of length 5. The symbol that differs with that of the
next sequence is underlined.

equivalently, Gn
q is the product set {0, 1, . . . , q − 1}n. The Reflected Gray Code for the set

Gn
q, denoted by Gn

q, is the natural extension of the Binary Reflected Gray Code to this set.
The list Gn

q is defined recursively by the following relation [Er84]:

Gn
q =

 ε if n = 0,

0Gn−1
q , 1Gn−1

q , 2Gn−1
q , . . . , (q − 1)Ĝn−1

q if n > 0,
(3.3)

where ε is the empty word, Gn−1
q is the reverse of Gn−1

q , and Ĝn−1
q is Gn−1

q or Gn−1
q according

to q is odd or even.

In Gn
q, two successive words differ in a single position and by +1 or −1 in this position.

ORDER RELATION INDUCING REFLECTED GRAY CODE

The Reflected Gray Code can also be constructed by using order relation. The order
relation defined in the following induces the Reflected Gray Code on Gn

q .

Definition 7: Reflected Gray Code order

The Reflected Gray Code order on Gn
q is defined as: s = s1s2 . . . sn is less than

t = t1t2 . . . tn, denoted by s ≺ t, if either

•
∑k−1

i=1 si is even and sk < tk, or

•
∑k−1

i=1 si is odd and sk > tk,

where k is the leftmost position where s and t differ.

22 CHAPTER 3. NOTATIONS AND DEFINITIONS

We denote the RGC order by ≺ order. Table 3.3 shows the list of sequences in G3
3 ordered

by ≺ order. It is easy to see this list is equal to G3
3.

0 0 0 1 2 2 2 0 0
0 0 1 1 2 1 2 0 1
0 0 2 1 2 0 2 0 2
0 1 2 1 1 0 2 1 2
0 1 1 1 1 1 2 1 1
0 1 0 1 1 2 2 1 0
0 2 0 1 0 2 2 2 0
0 2 1 1 0 1 2 2 1
0 2 2 1 0 0 2 2 2

Table 3.3: The list of 3-ary sequences of length 3, G3
3, ordered by ≺ order. The changed symbols

to obtain the next sequence are underlined. The list is equal to G3
3.

THE REFLECTED-GRAY-CODE-BASED ORDER RELATIONS

The RGC-based order relations are variations of RGC order relation. They are obtained
by some slight modifications to the original relations in Definition 7. As we mentioned
earlier, it might happen that a variation of RGC order induces more restrictive Gray code
than that of the original one; or the RGC order does not induce Gray code, but a variation
of it induces one; or else, a variation might give the properties that we want to investi-
gate. The RGC-based order relations we consider through this thesis are Co-Reflected
Gray Code order and Dual Reflected Gray Code order (we will define them later in the
subsequent chapters).

3.2.2/ STEINHAUS-JOHNSON-TROTTER GRAY CODE

A classical exhaustive generation technique for unrestricted permutations was given inde-
pendently by Johnson [Joh63] and Trotter [Tro62]; while previously in 1958 Steinhaus had
posed a puzzle related to generating permutations and solved it in the similar way [Ste64].
Their method, known as Steinhaus-Johnson-Trotter (SJT) algorithm, lists all permutations
of length n so that any successive permutations differ by an adjacent transposition. The
obtained list is a 2-adjacent Gray code, so it is also called the Steinhaus-Johnson-Trotter
Gray code. See Table 3.4 for permutations of length 4 listed by this method.

3.3/ EFFICIENT GENERATING ALGORITHM

An exhaustive generating algorithm is an algorithm to generate exhaustively all objects
belong to a class of combinatorial objects. For the brevity, we will use the shorter term

3.3. EFFICIENT GENERATING ALGORITHM 23

1 2 3 4 4 3 2 1
1 2 4 3 3 4 2 1
1 4 2 3 3 2 4 1
4 1 2 3 3 2 1 4
4 1 3 2 2 3 1 4
1 4 3 2 2 3 4 1
1 3 4 2 2 4 3 1
1 3 2 4 4 2 3 1
3 1 2 4 4 2 1 3
3 1 4 2 2 4 1 3
3 4 1 2 2 1 4 3
4 3 1 2 2 1 3 4

Table 3.4: The list of permutations of length 4 generated by SJT algorithm. The transposed
symbols to obtain the next permutation is underlined. The list is 2-adjacent Gray code.

“generating algorithm”. Usually the output of such algorithm is presented in a list form,
arranged according to a certain order, such as lexicographic order or Gray code order.
Every generating algorithm is also an enumeration algorithm, since each object can be
counted when it is generated. From the computer science point of view, it is necessary to
have an efficient generating algorithm to do this task.

The time complexity indicates the worst-case running time of an algorithm, regardless
which computer is used to execute it. We denote the time complexity by using Big O
notation. Let f : N→ R and g : N→ R; then, we denote by f = O(g) if there is a constant
c and an integer n0 such that f (n) ≤ cg(n) for n > n0. If f and g both describe the number
of computations required for two algorithms given input size n, then f = O(g) means that
f is ‘not worse’ than g when the problem size is large (see [KT12]). Generally, we say f

has time complexity O(g), or alternatively, f runs in O(g) worst-case time.

For a generating algorithm, the time complexity is very crucial since the number of gener-
ated objects (the cardinality of the set) is, generally, an exponential function of the size of
the generated objects. In terms of performance, the primary goal in developing a gener-
ating algorithm is to obtain an algorithm whose running time is proportional to the number
of generated objects [RS03]. For that purpose, we need the algorithm that runs in con-
stant time per generated object. It can be constant in average, or constant in the worst
case, regardless the length of the object. In both cases, we consider such algorithm as
efficient.

3.3.1/ CONSTANT AMORTIZED TIME ALGORITHM

A generating algorithm runs in Constant Amortized Time (CAT) if there is a constant c

such that for any size of the objects we have:

24 CHAPTER 3. NOTATIONS AND DEFINITIONS

the total amount of computations
number of generated objects

≤ c. (3.4)

In other words, such algorithm generates each object in O(1) time in amortized sense,
and the time complexity is independent to the size of the object [Rus03]. With this con-
sideration, a generating algorithm that runs in CAT (a CAT algorithm) is considered an
efficient algorithm.

A recursive algorithm runs in CAT if it satisfies the following properties:

1. Every call results in the output of at least one object.

2. Excluding the computation done by recursive calls, the amount of computation of
any call is proportional to the degree of a call (the number of immediate recursive
calls initiated by the current call).

3. The number of calls of degree one, if they exist, is O(N) (where N is the number of
generated objects).

The three properties above are called the CAT principle [Rus03]. Alternatively, based on
the second property above, if a recursive generating algorithm satisfies

the total amount of calls
number of generated objects

≤ c, (3.5)

then it runs in CAT, and we call such algorithm a CAT algorithm.

3.3.2/ LOOPLESS ALGORITHM

A generating algorithm is loopless (or loop-free) if, after the initial object is generated,
each succeeding object may be obtained by O(1) worst-case time (see [Ehr73]). A loop-
less generating algorithm is considered an efficient algorithm.

A loopless generating algorithm produces a Gray code list. The converse is not true: Gray
codes can be generated by algorithms that are not loopless. Essentially, there are two
techniques to design loopless generating algorithms: Ruskey’s method by finished and
unfinished lists and Ehrlich’s ‘e’ array [Ehr73] which was generalized by Walsh [Wal08].

4

STATE OF THE ART

4.1/ GRAY CODES

The classical Binary Reflected Gray Code (BRGC), after its formal introduction in 1953
[Gra53], came through implementations on many combinatorial classes, including per-
mutations and combinations. Later on, the term combinatorial Gray code was introduced
in 1980 to refer to any method for listing combinatorial objects such that successive ob-
jects differ in some pre-specified small way [JJW80]. This generalized the notions of the
original Gray code, in which successive binary words differ in one position, and by 1 or −1

in this position.

The study about combinatorial Gray codes was popularized by Wilf in late 1980s [Wil88,
Wil89], and has been developing rapidly since then. In the beginning, many literatures
propose ad hoc Gray codes, which means they only work for very specific combinatorial
class. The comprehensive survey on such Gray codes were given in [Sav97]. More
general designs that fit to many combinatorial classes tend to grow in recent years. Such
designs utilize the common properties among combinatorial classes. Here we give briefly
some notable contemporary results among them.

4.1.1/ ECO-BASED GRAY CODES

Introduced by Barcucci et al. [BLPP99], ECO (Enumerating Combinatorial Objects) origi-
nally was a technique to enumerate combinatorial objects, and it is based on succession
rules method. This technique uses generating trees (or ECO operators) and usually
objects are encoded by their corresponding path in the generating tree; and often it is
possible to translate the obtained codes into codes for objects. In the context of ECO-
based Gray codes, a (k) or (k) labeled node in the generating tree corresponds to a word
with k successors; and the successors of a (k) labeled node are the same as for (k), but in
reverse order. In particular, this technique can induce Reflected Gray Code. Vajnovszki
[Vaj08b] used this technique to construct Gray codes for combinations, Dyck and grand

25

26 CHAPTER 4. STATE OF THE ART

Dyck words. The results were extended to Gray codes for Motzkin and Schröeder words
in [Vaj12a]. The implementation on several classes of pattern avoiding permutations was
given in [DFMV08]. The generation for p-generalized Fibonacci and Lucas permutations
were given by Baril and Do [Bar06], and they posed an open problem for Gray codes
considerations.

4.1.2/ GRAY CODES FOR GRAY STRUCTURES

This technique was introduced by Bernini et al. [BGPP07]. It is also based on succes-
sion rules. Moreover, the Gray code obtained by this technique can be generalized to
all succession rules with the stability property, that is, each labeled node (k) has in its
successors two labeled nodes c1 and c2, always in the same position, regardless of k.
The sets of combinatorial objects whose construction can be encoded by a succession
rule with the stability property are called Gray structures, and in [BGPP07] was shown
that there always exist Gray codes for them.

4.1.3/ GRAY CODES FOR STRICTLY PREFIX (OR SUFFIX) PARTITIONED WORD-
LIST

The defining sequence concept was introduced by Walsh [Wal08]. If a list of length-n
words is prefix-partitioned, then for any positive integer i < n the interval of words (that is,
sublist containing consecutive words) with the same prefix of length i−1 is partitioned into
sub-intervals with the same prefix of length i, so that in this interval the i-th letter follows
a sequence of values, depending on the prefix, such that all the copies of the same value
are contiguous in the sequence. The subsequence of distinct values assumed by the i-th
letter is called the defining sequence of the prefix

Bitner, Ehrlich, and Reingold [BER76] presented a loopless algorithm to generate the
BRGC. Walsh [Wal08] applied the concept of defining sequences to their algorithm, which
he call BER algorithm, and showed that it works on any prefix (or suffix) partitioned word-
list satisfying the condition that every defining sequence has at least two values. In this
case, the list is said to be strictly prefix (or suffix) partitioned.

4.1.4/ GRAY CODES FOR REFLECTABLE LANGUAGES

Reflectable language was introduced by Li and Sawada [LS09]. A language (i.e., class
of words) L over the alphabet A is said to be reflectable if for every word w1w2 . . .wn and
i > 1 there exists two distinct symbols xi and yi in A such that if w1w2 . . .wi−1 is a prefix of
a word in L then both w1w2 . . .wi−1xi and w1w2 . . .wi−1yi are also prefixes of words in L.

For any combinatorial class satisfying such conditions, there exist construction yielding

4.1. GRAY CODES 27

Gray code. Combinatorial classes such as binary and k-ary words, restricted growth
functions and tails, binary and k-ary trees, are proven to be reflectable; thus, they can be
listed in a Gray code manner.

Roughly, the previous three techniques are equivalent, but expressed and motivated in
different way.

4.1.5/ COOL-LEX ORDER AND BUBBLE LANGUAGES

In 2005, Ruskey and Williams presented a new method for generating combinations
[RW05]. The combinations are represented as binary words with s 0s and t 1s, and
are generated by a technique called prefix shifts, with a remarkably simple rule: identify
the shortest prefix ending in 010 or 011 (or the entire word if no such prefix exists) and
then rotate (shift) it by one position to the right. This technique implies that successive
combination can be generated by transposing only one or two pairs of bits (which induces
Gray code); and another important result that such a technique induces a new order re-
lation, which they call cool-lex order. Cool-lex order also induces Gray code for multiset
permutations [Wil09a].

A bubble language (introduced in 2012 by Ruskey, Sawada, and Williams) is a set of
binary words with a simple closure property: The first 01 of any word can be replaced
by 10 to obtain another word in the set. Bubble language can represent a wide range
of combinatorial classes, such as: combinations, necklaces, k-ary Dyck words, Lyndon
words, and interval graphs. The words in any bubble language are proven to be a Gray
code when listed in cool-lex order [RSW12].

4.1.6/ GRAY CODES INDUCED BY RGC ORDER RELATION OR ITS VARIATIONS

RGC order relation was used implicitly by Knuth, when he defined Gray codes for inte-
ger compositions in his unpublished answer to a question of Nijenhuis and Wilf, around
late 1970s. Knuth’s Gray code was then implemented to an efficient algorithm by Klings-
berg [Kli81]. Later on, Walsh gave an efficient algorithm for generating a Gray code for
bounded compositions of an integer, based on Knuth’s Gray code [Wal00].

Further, the RGC order relation technique has been developed systematically as a gen-
eral method to define Gray codes for various classes. In this direction, RGC-based Gray
codes and some of its variations (called RGC-based order relations) are worth to be
mentioned, such as: Gray codes for Fibonacci and Lucas words, which are given in, re-
spectively, [Vaj01] and [BV05]; for Lyndon words and relatives in [Vaj07, Vaj08a]; and for
restricted compositions and permutations in [VV11].

Our Gray codes techniques are within this category.

28 CHAPTER 4. STATE OF THE ART

4.2/ RESTRICTED GROWTH SEQUENCES

Literatures about restricted growth sequences mostly focus on four particular mainstream
classes: subexcedant sequences, ascent sequences, restricted growth functions, and
staircase words.

Ascent sequences were introduced in joint work of Bousquet-Mélou, Claesson, Dukes,
and Kitaev [BMCDK10]. By constructing bijections, they showed that ascent sequences
are equinumerous with three other combinatorial classes: unlabeled (2 + 2)-free posets,
Stoimenows involutions, and permutations avoiding 31524. Duncan and Steingrı́msson
introduced the study about pattern avoiding ascent sequences in [DS11]. Among the
involved patterns, they exhibited a connection between ascent sequences and restricted
growth functions. Further study by Chen, Dai, Dokos, Dwyer, and Sagan [CDD+13] estab-
lished a bijection which led to the equidistribution of the pair of statistics (asc; rmin) over
021-avoiding ascent sequences and over 132-avoiding permutations, where rmin is the
right-to-left minima statistic; and these results confirmed one of the conjectures posed in
[DS11]. In [MS14], Mansour and Shattuck gave the enumerative results for 1012-avoiding
and 0123-avoiding ascent sequences; while Pudwell did that for 0021-avoiding ascent se-
quences [Pud14]. Those enumerative results confirmed the three conjectures posed in
[DS11]. However, so far there are no studies specifically dedicated to Gray codes for
restricted ascent sequences.

The restricted growth functions encode the partitions of an n-set. The subject of Gray
codes for restricted growth functions was triggered by a question posed by Nijenhuis and
Wilf in [NW75]: “is it possible to arrange all partitions of an n-set so that each partition is
obtained from its immediate predecessor by changing the class of exactly one object?”.
Knuth gave the affirmative answer in his unpublished work, which became the first Gray
code in recursive form for such set. Alternatively, the non recursive construction was
given by Kaye [Kay76]. Later on, Ruskey and Savage generalized Ehrlich’s 1973 results
[Ehr73] (where he introduced loopless generating algorithms for several combinatorial
classes) to obtain Gray codes for restricted growth functions [RS94]. This technique was
also reconsidered in [Rus93].

Another Gray code and loop-free generating algorithm for restricted growth functions
was given by adopting plane tree techniques in [MN08]. In 2011, Mansour, Nassar, and
Vajnovszki gave Gray codes for generalized restricted growth functions called e-restricted
growth functions [MNV11]. Gray codes for several classes belong to st-restricted growth
sequences (i.e., restricted growth sequences defined by statistics) were considered in
[MV13].

There is no strong Gray code for restricted growth functions, that is, where two successive
restricted growth functions differ in a single position and by 1 or −1 in this position.

The subexcedant sequences are mostly used as an alternative way to represent permuta-

4.3. FACTOR AVOIDING WORDS 29

tions and also for their exhaustive generation. A technique using subexcedant sequences
to encode permutations were introduced in 1888 [Lai88]. About 70 years later, this tech-
nique was reintroduced by Lehmer [Leh60] and such sequence is now known as Lehmer
code. Another well known technique is by using inversion table [Sta97], which is the
Lehmer code for the inverse permutation. Dijkstra [Dij76] proposed an efficient algorithm
to generate n! permutations by using their inversion tables, implicitly ordered in RGC
order, which eventually generates Steinhaus-Johnson-Trotter list for permutations.

In 2000, Babson and Steingrı́msson [BS00] introduced the notion of what is now known
as vincular patterns in permutations. Vajnovszki [Vaj12b] gave several bijections between
subexcedant sequences which, when applied to Lehmer code, yield new permutation
codes which count occurrences of some vincular patterns. In recent years, Foata and
Han introduced two new permutation codings, one of which is based on Lehmer code
[FH09].

Vajnovszki and Vernay [VV11] proved that the list for the set of even (or odd) permutations,
as well as the set of permutations with an even (or odd) number of cycles, are Gray codes
when their corresponding inversion tables are listed with respect to RGC order.

Stanley introduced the class of sequences defined in [Sta97, exercise (u), p. 222], which
referred as staircase words in [MV13]. The cardinality for this class follows Catalan num-
bers.

In relation to Gray codes, the constructions provided by Bernini et.al. [BGPP07], Walsh
[Wal08], Li and Sawada [LS09], Mansour and Vajnovszki [MV13] work on those four
classes of restricted growth sequences mentioned above. However, no literature pro-
poses Gray codes for those classes using RGC-based order technique.

4.3/ FACTOR AVOIDING WORDS

Perhaps the most challenging task in generating factor avoiding words is to find efficiently
the occurrence of a given factor in the word. Knuth, Morris, and Pratt introduced, in their
joint paper, the algorithm to find the occurrence of a word factor f within a given word
w [KMP77]. They employed the notions period (a shift that causes the word to match
over itself) so that if a mismatch occurs, the beginning of the next possible occurrence
of f in w can be determined. In [GO81a] Guibas and Odlyzko introduced the notion
correlation of two words (the representation of how the second word can overlap into the
first), and used the generating function to enumerate the words with a given correlation.
In their subsequent work [GO81b], they provided a generating function that enumerates
the q-ary words of length n avoiding a given factor (for various types of words avoiding a
pattern, see [HM09]). The notion ‘correlation’ was then modified to border in [Lot05, p.
8]. However, in the worst case there is no algorithm that can check for the occurrence

30 CHAPTER 4. STATE OF THE ART

of a given factor without examining essentially all symbols of the word. A systematic
construction and enumeration results for particular factor avoidance in binary case are
considered in [BPP12a] for 1 j0i-avoiders, and in [BMPP12] for 1 j+10 j-avoiders.

In Gray code context, Squire [Squ96] investigated whether there exists strong Gray code
for q-ary words avoiding a given factor, so that successive words differ in only one position,
and by 1 or −1 in this position. He proved such Gray codes exist if there is no parity
problem induced by the employed forbidden factor. The parity of the word w = w1w2 . . .wn

is even (resp. odd) if
∑

wi is even (resp. odd). In particular, a Gray code for such set exists
only if the numbers of words having even and odd parity differ by at most one. He also
provided Gray codes construction for those words with q even. However, no generating
algorithm was provided.

Vajnovszki [Vaj01] gave Gray codes and generating algorithm for the set of length-n bi-
nary words avoiding p consecutive 1s (which equal to the set of length n Fibonacci words
of order p). The Gray codes are based on the RGC order relation, and the sets are enu-
merated by Fibonacci numbers of order p. The results in [Vaj01] was recently generalized
in [BBPV13] where two Gray codes (one prefix partitioned and the other trace partitioned)
for q-ary words avoiding a factor constituted by p consecutive equal symbols were given.

One of the variations of factor avoiding words is cross-bifix-free words (recall Definition
3). The term cross-bifix-free appeared for the first time in [Baj07]. Cross-bifix-free sets
are involved in the study of distributed sequences for frame synchronization [dLvWW00].
The problem of determining the set of cross-bifix-free words is also related to several
other scientific applications, for instance in pattern matching [CHL07] and automata the-
ory [BPR09]. Moreover, in some applications, listing a cross-bifix-free set in Gray code
manner can be of a particular interest.

Several methods for constructing cross-bifix-free sets have been recently proposed as in
[Baj14, BPP12b, CKPW13]. For a fixed cardinality of the alphabet and of the length of the
words, the construction giving the cross-bifix-free set having the largest cardinality is the
one proposed in [CKPW13].

4.4/ PATTERN AVOIDING PERMUTATIONS

The study of pattern avoiding permutations began in 1968 when Knuth [Knu68] worked
on the stack-sorting problem. He showed that a permutation is stack sortable (i.e., it can
be sorted by a stack) if it avoids pattern 231; and the enumeration of such permutations
for a fixed length n is given by n-th Catalan number. Early combinatorics developments to
this field were given by Simion and Schmidt [SS85] and a group of mathematicians called
Lothaire [Lot83]. In [SS85] was given the enumeration of permutations avoiding R, the set
of patterns of length 3, for each |R| ∈ {2, . . . , 5}. In particular, permutations avoiding either

4.4. PATTERN AVOIDING PERMUTATIONS 31

{123, 132}, {123, 213}, {231, 321}, or {312, 321}, are enumerated by 2n−1 (this covers Rotem’s
result previously in [Rot81]); and those avoiding {123, 132, 213} or {231, 312, 321} are enu-
merated by (n + 1)-th Fibonacci numbers. Egge and Mansour [EM05] generalized the
results in [SS85] to pattern avoiding permutations counted by k-generalized Fibonacci
numbers. They showed that permutations avoiding {12 . . . k, 132, 213}, for a k ≥ 3, are
counted by F(k−1)

(n−1) (that is, (n − 1)-th Fibonacci number of order (p − 1)). Barcucci, Bernini,
and Poneti [BBP06] showed the connections of several well-known classes of permuta-
tions having cardinality between the Fibonacci and Catalan numbers.

There are many algorithms for generating permutations. An earlier survey in 1977 by
Sedgewick [Sed77] revealed about thirty of them had been published then. A natural
way to permute an array of symbols efficiently is to exchange two of its symbols. The
fastest permutation algorithms operate in this way. Some classical and well-known among
them are that of Knuth [Knu73], Wells [Wel61], Heap [Hea63], Johnson [Joh63], and
Trotter [Tro62]. The last two authors, independently gave the equivalent methods, which
then widely recognized as Steinhaus-Johnson-Trotter algorithm; and they were the first to
introduce permutation generating algorithm by adjacent transposition between symbols.
The output of Steinhaus-Johnson-Trotter (SJT) algorithm is a 2-adjacent Gray code, which
is the minimal Gray code for permutations. As mentioned in Section 4.2, an SJT-list is the
image (under a bijection) of the list of subexcedant sequences (i.e., the inversion tables)
with respect to RGC order, as shown in [Dij76].

Many studies have been made on Gray codes and generating algorithms for restricted
permutations. A CAT generating algorithm for up-down permutations was given by
Ruskey and van Baronaigien [vBR92], while later Korsh [Kor01] gave the loopless one.
Walsh [Wal01] designed Gray codes for all length-n involutions and fixed-point free involu-
tions. Gray code and CAT generating algorithm for derangements (permutations with no
fixed points) were given by Baril and Vajnovszki [BV04]; and those for permutations with
a fixed number of cycles (resp., with a fixed number of left-to-right minima) were given
by Baril [Bar07] (resp., [Bar13]). Vajnovszki [Vaj03] gave Gray code and loopless gener-
ating algorithm for multiset permutations. Ko and Ruskey [KR92] gave CAT generating
algorithm for bag permutation (a class derived from multiset permutation). Gray codes for
wide classes of pattern avoiding permutations were given in [DFMV08], and the results
were refined in [Bar09].

II
OUR CONTRIBUTIONS

33

5

GRAY CODES FOR RESTRICTED

GROWTH SEQUENCES

In this chapter, we consider Gray codes for sets belonging to the class of st-restricted
growth sequences (defined in Definition 1), and give efficient exhaustive generating algo-
rithms for them. In particular, we consider four statistic st that satisfies relations (5.1) and
(5.2) below.

5.1/ ADDITIONAL NOTIONS

If st is one of the statistics len, asc, m, and lv, then st satisfy the following:

st(s1s2 . . . sn) ≤ n − 1, (5.1)

and
if sn = st(s1s2 . . . sn−1) + 1, then sn = st(s1s2 . . . sn−1sn). (5.2)

Accordingly, through this thesis we will consider only the four statistics above. However,
as we will point out, some of the results presented here are also true for arbitrary statistics
satisfying relations (5.1) and (5.2).

Remark 1:

If st is a statistic satisfying relations (5.1) and (5.2), then:

1. max{st(s1s2 . . . sn) | s1s2 . . . sn is an st-restricted growth sequence} = n − 1;

2. if s1s2 . . . sn is an st-restricted growth sequence, then for any k, 1 ≤ k < n,
sk+1 = st(s1s2 . . . sk) + 1 implies sk+1 = st(s1s2 . . . sksk+1).

It is routine to check that the sets of st-restricted growth sequences, where st is one of
the statistics len, asc, m, and lv, satisfy additional properties above. In the following we
define those sets.

35

36 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

SUBEXCEDANT SEQUENCES

The set S En of subexcedant sequences of length n is defined as:

S En = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ len(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

S En is trivially in bijection with the set of length n permutations; and so, it is counted by
n!. Notice that alternatively, S En = {0} × {0, 1} × . . . × {0, 1, . . . , n − 1}.

ASCENT SEQUENCES

The set An of ascent sequences of length n is defined as:

An = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ asc(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

An is in one-to-one correspondence with Stoimenow’s diagrams, certain upper trian-
gular matrices and some pattern-avoiding permutations (see Section 3.2 in [Kit11]).
The generating function for the sequence counting An is shown in [BMCDK10] to be∑

n≥0
∏n

i=1(1 − (1 − x)i).

RESTRICTED GROWTH FUNCTIONS

The set Rn of restricted growth functions of length n is defined as:

Rn = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ m(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

Rn is in bijection with the partitions of the set {1, 2, . . . n} (see for instance [RS94]) and is
counted by the Bell numbers bn, with the exponential generating function eex−1.

STAIRCASE WORDS

The set S n of staircase words of length n is defined as:

S n = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ lv(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

S n is counted by Catalan numbers (see [Sta99, exercise u, p. 222]) with the generating
function 1−

√
1−4x

2x .

Remark 2:

S n ⊂ Rn ⊂ An ⊂ S En ⊂ Gn
n, where Gn

n is the set of n-ary words of length n.

Below we give examples to illustrate Remark 2.

5.1. ADDITIONAL NOTIONS 37

Example 1:

• If s = 010145, then s ∈ S E6, but s < A6, s < R6 and s < S 6.
• If s = 010103, then s ∈ S E6, s ∈ A6, but s < R6 and s < S 6.
• If s = 010102, then s ∈ S E6, s ∈ A6, and s ∈ R6, but s < S 6.
• If s = 010101, then s ∈ S E6, s ∈ A6, s ∈ R6 and s ∈ S 6.

Table 5.1 shows the sets S 5, R5, and A5 listed in ≺ order.

Sequence S 5 R5 A5

0 0 0 0 0 X X X
0 0 0 0 1 X X X
0 0 0 1 2 X X X
0 0 0 1 1 X X X
0 0 0 1 0 X X X
0 0 1 2 3 X X X
0 0 1 2 2 X X X
0 0 1 2 1 X X X
0 0 1 2 0 X X X
0 0 1 1 0 X X X
0 0 1 1 1 X X X
0 0 1 1 2 X X X
0 0 1 0 2 X X
0 0 1 0 1 X X X
0 0 1 0 0 X X X
0 1 2 3 0 X X X
0 1 2 3 1 X X X
0 1 2 3 2 X X X

Sequence S 5 R5 A5

0 1 2 3 3 X X X
0 1 2 3 4 X X X
0 1 2 2 3 X X X
0 1 2 2 2 X X X
0 1 2 2 1 X X X
0 1 2 2 0 X X X
0 1 2 1 0 X X X
0 1 2 1 1 X X X
0 1 2 1 2 X X X
0 1 2 1 3 X X
0 1 2 0 3 X X
0 1 2 0 2 X X
0 1 2 0 1 X X X
0 1 2 0 0 X X X
0 1 1 0 0 X X X
0 1 1 0 1 X X X
0 1 1 0 2 X X
0 1 1 1 2 X X X

Sequence S 5 R5 A5

0 1 1 1 1 X X X
0 1 1 1 0 X X X
0 1 1 2 0 X X X
0 1 1 2 1 X X X
0 1 1 2 2 X X X
0 1 1 2 3 X X X
0 1 0 2 3 X X
0 1 0 2 2 X X
0 1 0 2 1 X X
0 1 0 2 0 X X
0 1 0 1 0 X X X
0 1 0 1 1 X X X
0 1 0 1 2 X X X
0 1 0 1 3 X
0 1 0 0 2 X X
0 1 0 0 1 X X X
0 1 0 0 0 X X X

Table 5.1: The sets S 5, R5, and A5 listed in ≺ order.

We denote by

• Xn the list for the set Xn in ≺ order;

• succX(s), s ∈ Xn, the successor of s in the set Xn listed in ≺ order (recall Definition
7 for ≺ order); that is, the smallest sequence in Xn larger than s with respect to ≺
order;

• first(L) the first sequence in the list L;

• last(L) the last sequence in the list L.

Without another specification, Xn generically denotes a set of st-restricted growth se-
quences, with st being one of the statistic len, asc, m, and lv. In other words, Xn is either
the set S En, An, Rn, or S n.

38 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

5.2/ THE REFLECTED GRAY CODE ORDER FOR THE SET Xn

For general purpose, we denote by Xn the lists SEn, An, Rn, or Sn.

5.2.1/ THE GRAYCODENESS OF THE LIST Xn

Lemma 1:

If s = s1s2 . . . sn and t = t1t2 . . . tn are two sequences in Xn with t = succX(s) and k

is the leftmost position where they differ, then sk = tk + 1 or sk = tk − 1.

Proof. Let t = succX(s) and k be the leftmost position where they differ. Let us suppose
that sk < tk and sk , tk − 1 (the case sk > tk and sk , tk + 1 being similar).
It is easy to check that

u = s1s2 . . . sk−1(sk + 1)0 . . . 0

belongs to Xn, and considering the definition of ≺ order relation, it follows that s ≺ u ≺ t,
which is in contradiction with t = succX(s), and the statement holds. �

If a = a1a2 . . . ak ∈ Xk, then for any n > k, a is the prefix of at least one sequence in Xn, and
we denote by a | Xn the sublist of Xn of all sequences having the prefix a. Clearly, a list in
≺ order for a set of sequences is a prefix partitioned list (all sequences with same prefix
are contiguous), and for any a ∈ Xk and n > k, it follows that a | Xn is a contiguous sublist
of Xn.

For a given a ∈ Xk, the set of all x such that ax ∈ Xk+1 is called the defining set of the prefix
a, and obviously ax is also a prefix of some sequences in Xn, for any n > k. We denote by

ωX(a) = max{x | ax ∈ Xk+1} (5.3)

the largest value in the defining set of a. And if we denote ωX(a) by M, then by Remark 1
we have

M = st(a) + 1

= st(aM).

And consequently,
ωX(aM) = st(aM) + 1

= M + 1.
(5.4)

The next two propositions give the form of s ∈ Xn, if s = last(a | Xn) or s = first(a | Xn).

5.2. THE REFLECTED GRAY CODE ORDER FOR THE SET XN 39

Proposition 1:

Let k < n and a = a1a2 . . . ak ∈ Xk. If s = last(a | Xn), then the form of s is given
by:

• if
∑k

i=1 ai is odd, then s = a0 . . . 0;

• if
∑k

i=1 ai is even and M is odd, then s = aM0 . . . 0;

• if
∑k

i=1 ai is even and M is even, then s = aM(M + 1)0 . . . 0;

where M denotes ωX(a).

Proof. Let s = a1a2 . . . aksk+1 . . . sn = last(a | Xn). If
∑k

i=1 ai is odd, then by considering the
definition of ≺ order, it follows that sk+1 is the smallest value in the defining set of a, and
so sk+1 = 0, and finally s = a0 . . . 0, and the first point holds.

Now let us suppose that
∑k

i=1 ai is even. In this case sk+1 equals ωX(a) = M, the largest
value in the defining set of a. When in addition M is odd, so is the summation of aM, the
length k + 1 prefix of s, and thus s = aM0 . . . 0, and the second point holds.
Finally, when M is even, then sk+2 is the largest value in the defining set of aM, which by
relation (5.4) is M + 1. In this case M + 1 is odd, and thus s = aM(M + 1)0 . . . 0, and the
last point holds.

�

With the similar proof, the following proposition holds:

Proposition 2:

Let k < n and a = a1a2 . . . ak ∈ Xk. If s = first(a | Xn), then the form of s is given
by:

• if
∑k

i=1 ai is even, then s = a0 . . . 0;

• if
∑k

i=1 ai is odd and M is odd, then s = aM0 . . . 0;

• if
∑k

i=1 ai is odd and M is even, then s = aM(M + 1)0 . . . 0;

where M denotes ωX(a).

By Proposition 1 and 2 above, we have the following result:

Theorem 1:

The lists An, Rn and Sn are 3-adjacent Gray codes.

Proof. Let t = succX(s), and k be the leftmost position where s and t differ. Let us
also denote by a the length k prefix of s and a′ that of t; so, s = last(a | Xn) and t =

40 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

first(a′ | Xn). If k + 3 ≤ n, then by Proposition 1 and 2, it follows that sk+3 = sk+4 = · · · =

sn = 0 and tk+3 = tk+4 = · · · = tn = 0. So s and t differ in position k, and possibly in position
k + 1 and in position k + 2.

Now we show the adjacency, that is, if k + 2 ≤ n and sk+1 = tk+1 implies sk+2 = tk+2. If
sk+1 = tk+1, by Lemma 1, it follows that the summation of the length k prefix of s and that
of t have different parity, and two cases can occur:
• sk+1 = tk+1 = 0, and by Proposition 1 and 2, it follows that sk+2 = tk+2 = 0; or
• sk+1 = tk+1 , 0, and thus sk+1 = tk+1 = ω(a) = ω(a′). In this case, ω(a) either is odd and
so sk+2 = tk+2 = 0, or is even and so sk+2 = tk+2 = ω(a) + 1.

In both cases, sk+2 = tk+2.

�

It is well known that the restriction of Gn
q defined in relation (3.3) to any product space

remains a 1-Gray code, see for example [VV11]. In particular, for S En = {0} × {0, 1} ×

. . . × {0, 1, . . . , n − 1} we have the next proposition. Its proof is simply based on Lemma 1,
Proposition 1 and 2, and on the additional remark: for any a ∈ S Ek, k < n, it follows that
ωS E(a) = k.

Proposition 3:

The list SEn is 1-Gray code.

It is worth mentioning that, for any statistic st satisfying relations (5.1) and (5.2), the list in
≺ order for the set of st-restricted growth sequences of length n is an at most 3-Gray code.

Actually, the lists SEn, An, Rn and Sn are circular Gray codes, that is, the last and the first
sequences in the list differ in the same way. Indeed, by the definition of ≺ order, it follows
that:

• last(Xn) = 010 . . . 0;

• first(Xn) = 000 . . . 0.

where Xn is one of the lists SEn, An, Rn and Sn.

5.2.2/ GENERATING ALGORITHM FOR THE LIST Xn

Procedure GEN1 in Figure 5.1a is a general procedure generating exhaustively the list
of st-restricted growth sequences with respect to ≺ order. Notice that st does not nec-
essarily satisfy relations (5.1) and (5.2). According to particular instances of the function
OMEGA X (and so, of the statistic st) called by it, GEN1 produces specific st-restricted

5.2. THE REFLECTED GRAY CODE ORDER FOR THE SET XN 41

growth sequences, and in particular the lists SEn, An, Rn, and Sn (see Figure 5.1b for
particular instances of OMEGA X). From the length one sequence 0, GEN1 constructs
recursively increasing length st-restricted growth sequences: for a given prefix s1s2 . . . sk

it produces all prefixes s1s2 . . . ski, with i covering (in increasing or decreasing order) the
defining set of s1s2 . . . sk; and eventually all length n st-restricted growth sequences. It
has the following parameters:

• k, the position in the sequence s which is updated by the current call;

• x, belongs to the defining set of s1s2 . . . sk−1, and is the value to be assigned to sk;

• dir, the direction (ascending for dir mod 2 = 0 and descending for dir mod 2 = 1) to
cover the defining set of s1s2 . . . sk−1;

• v, the value of the statistic of the prefix s1s2 . . . sk−1 from which the value of the statis-
tic of the current prefix s1s2 . . . sk is computed. Remark that v = ωX(s1s2 . . . sk−1) − 1.

Function OMEGA X computes ωX(s1s2 . . . sk) (see relation (5.3)), and the main call is
GEN1(1,0,0,0).

One can see that every recursive call to GEN1 will either:

• be a terminal call (and so, a sequence belongs to the set is generated), or

• produce subsequent calls.

Function OMEGA X returns a positive integer, since ωX(s1s2 . . . sk) > 0. This means
that every non-terminating calls will produce at least two subsequent calls. As long as
OMEGA X is done in O(1) time, each of calls will have the amount of computations pro-
portional to the degree of the call. In this case, GEN1 satisfies the CAT principle stated in
Section 3.3.1, and so it is an efficient generating algorithm.

The computational tree of GEN1 producing the list A4 is given in Figure 5.2. Each node
at level k, 1 ≤ k ≤ 4, represents prefixes s1s2 . . . sk, and leaves sequences in A4.

42 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

1 procedure GEN1(k, x, dir, v)
2 global: n, s;
3 sk := x;
4 if k = n then PRINT(s);
5 else u :=OMEGA X(v, k);
6 if dir mod 2 = 0
7 then for i := 0 to u do
8 GEN1(k + 1, i, i, u − 1);
9 else for i := u to 0 do

10 GEN1(k + 1, i, i + 1, u − 1);
11 end.

(a)

(i) 1 function OMEGA SE(w, p)
2 return p;
3 end.

(ii) 1 function OMEGA A(w, p)
2 if p > 1 and sp > sp−1
3 then return w + 2;
4 else return w + 1;
5 end.

(iii) 1 function OMEGA R(w, p)
2 if p > 1 and sp > w
3 then return w + 2;
4 else return w + 1;
5 end.

(iv) 1 function OMEGA S(w, p)
2 return sp + 1;
3 end.

(b)

Figure 5.1: (a) Algorithm GEN1, generating the list Xn; (b) Particular function OMEGA X called by
GEN1, and returning the value for ωX(s1s2 . . . sk), if Xn is one of the sets: (i) S En, (ii) An, (iii) Rn, and
(iv) S n.

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 43

0

01

010
0100
0101
0102

011
0112
0111
0110

012

0120
0121
0122
0123

00

001
0010
0011
0012

000 0001
0000

Figure 5.2: The tree induced by the initial call GEN1(1, 0, 0, 0) for n = 4 and particular function
OMEGA A, generating the list A4.

5.3/ THE CO-REFLECTED GRAY CODE ORDER FOR THE SET Xn

5.3.1/ ADDITIONAL NOTIONS

In the previous chapter, we considered RGC order, which induces RGC for the set Gn
q,

namely Gn
q. Now we give a variation of Gn

q. Let s = s1s2 . . . sn be a sequence in Gn
q. The

complement of si, 1 ≤ i ≤ n, is
(q − 1 − si),

and the reverse of s1s2 . . . sn is
snsn−1 . . . s1.

Let G̃n
q be the list obtained by transforming each sequence s in Gn

q as follows:

• complementing each digit in s if q is even, or complementing only digits in odd
positions if q is odd, then

• reversing the obtained sequence.

Clearly, G̃n
q is also a Gray code for Gn

q, and the sequences therein are listed in Co-
Reflected Gray Code order, as defined formally below.

Table 5.2 shows the list for G3
3 and G4

4, with respect to RGC and Co-RGC order. The
second column in each table is obtained by applying two steps of transformation above.

44 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

Rank G3
3 G̃3

3

0 0 0 0 2 0 2
1 0 0 1 1 0 2
2 0 0 2 0 0 2
3 0 1 2 0 1 2
4 0 1 1 1 1 2
5 0 1 0 2 1 2
6 0 2 0 2 2 2
7 0 2 1 1 2 2
8 0 2 2 0 2 2
9 1 2 2 0 2 1
10 1 2 1 1 2 1
11 1 2 0 2 2 1
12 1 1 0 2 1 1
13 1 1 1 1 1 1
14 1 1 2 0 1 1
15 1 0 2 0 0 1
16 1 0 1 1 0 1
17 1 0 0 2 0 1
18 2 0 0 2 0 0
19 2 0 1 1 0 0
20 2 0 2 0 0 0
21 2 1 2 0 1 0
22 2 1 1 1 1 0
23 2 1 0 2 1 0
24 2 2 0 2 2 0
25 2 2 1 1 2 0
26 2 2 2 0 2 0

(a)

Rank G4
4 G̃4

4

0 0 0 0 0 3 3 3 3
1 0 0 0 1 2 3 3 3
2 0 0 0 2 1 3 3 3
3 0 0 0 3 0 3 3 3
4 0 0 1 3 0 2 3 3
5 0 0 1 2 1 2 3 3
6 0 0 1 1 2 2 3 3
7 0 0 1 0 3 2 3 3
8 0 0 2 0 3 1 3 3
9 0 0 2 1 2 1 3 3
...

...
...

99 1 1 0 3 0 3 2 2
100 1 1 1 3 0 2 2 2
101 1 1 1 2 1 2 2 2
...

...
...

199 3 3 1 0 3 2 0 0
200 3 3 2 0 3 1 0 0
201 3 3 2 1 2 1 0 0
...

...
...

249 3 0 1 1 2 2 3 0
250 3 0 1 2 1 2 3 0
251 3 0 1 3 0 2 3 0
252 3 0 0 3 0 3 3 0
253 3 0 0 2 1 3 3 0
254 3 0 0 1 2 3 3 0
255 3 0 0 0 3 3 3 0

(b)

Table 5.2: The list for (a) G3
3, and (b) G4

4 (shown partially), with respect to RGC and Co-RGC order.
The last column in each table is obtained by applying two steps of transformation: complementing
only digits in odd positions for sequences in G3

3, or in all positions for sequences in G4
4, then

reversing the obtained sequence.

Definition 8: Co-Reflected Gray Code order

The Co-Reflected Gray Code order ≺c on Gn
q is defined as:

s = s1s2 . . . sn is less than t = t1t2 . . . tn, denoted by s≺c t, if either

•
∑n

i=k+1 si + (n − k) is even and sk > tk, or

•
∑n

i=k+1 si + (n − k) is odd and sk < tk,

where k is the rightmost position where s and t differ.

Although this definition sounds somewhat arbitrary, as we will see in Section 5.3.3, it

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 45

Sequence S 5 R5 A5

0 1 2 3 4 X X X
0 1 2 3 3 X X X
0 1 0 2 3 X X
0 0 1 2 3 X X X
0 1 1 2 3 X X X
0 1 2 2 3 X X X
0 1 2 1 3 X X
0 1 0 1 3 X
0 1 2 0 3 X X
0 1 2 0 2 X X
0 1 1 0 2 X X
0 0 1 0 2 X X
0 1 0 0 2 X X
0 1 0 1 2 X X X
0 0 0 1 2 X X X
0 0 1 1 2 X X X
0 1 1 1 2 X X X
0 1 2 1 2 X X X

Sequence S 5 R5 A5

0 1 2 2 2 X X X
0 1 1 2 2 X X X
0 0 1 2 2 X X X
0 1 0 2 2 X X
0 1 2 3 2 X X X
0 1 2 3 1 X X X
0 1 0 2 1 X X
0 0 1 2 1 X X X
0 1 1 2 1 X X X
0 1 2 2 1 X X X
0 1 2 1 1 X X X
0 1 1 1 1 X X X
0 0 1 1 1 X X X
0 0 0 1 1 X X X
0 1 0 1 1 X X X
0 1 0 0 1 X X X
0 0 0 0 1 X X X
0 0 1 0 1 X X X

Sequence S 5 R5 A5

0 1 1 0 1 X X X
0 1 2 0 1 X X X
0 1 2 0 0 X X X
0 1 1 0 0 X X X
0 0 1 0 0 X X X
0 0 0 0 0 X X X
0 1 0 0 0 X X X
0 1 0 1 0 X X X
0 0 0 1 0 X X X
0 0 1 1 0 X X X
0 1 1 1 0 X X X
0 1 2 1 0 X X X
0 1 2 2 0 X X X
0 1 1 2 0 X X X
0 0 1 2 0 X X X
0 1 0 2 0 X X
0 1 2 3 0 X X X

Table 5.3: The sets S 5, R5, and A5 listed in ≺c order.

turns out that ≺c order gives suffix partitioned Gray codes for some sets of restricted
growth sequences. Obviously, the restriction of Gn

q (resp. G̃n
q) to a set of sequences is

simply the list of sequences in the set listed in ≺ (resp. ≺c) order. In this section we
will consider, as in the previous one, the sets S En, An, Rn and S n, but listed in ≺c order.
Our main goal is to prove that the obtained lists are Gray codes as well, and to develop
generating algorithms for those sets, based on ≺c order.

Recall that Xn generically denotes one of the sets S En, An, Rn, or S n; and let X̃n denote
their corresponding list in ≺c order, that are, S̃En, Ãn, R̃n, or S̃n. Clearly, a set of se-
quences listed in ≺c order is a suffix partitioned list, that is, all sequences with same
suffix are contiguous, and such are the lists we consider here.

For a set Xn and a sequence b = bk+1bk+2 . . . bn, we call b an admissible suffix in Xn if there
exists at least a sequence in Xn having suffix b. For example, 124 is an admissible suffix
in A6, because there are sequences in A6 ending with 124, namely 012124 and 010124. On
the other hand, 224 is not an admissible suffix in A6; indeed, there is no length-6 ascent
sequence ending with 224.

We denote by X̃n | b the sublist of X̃n of all sequences having suffix b, and clearly, X̃n | b is
a contiguous sublist of X̃n. The set of all x such that xb is also an admissible suffix in Xn

is called the defining set of the suffix b.

For ≺ order discussed in Section 5.2, the characterization of prefixes is straightforward:
a1a2 . . . ak is the prefix of some sequences in Xn, n > k, if and only if a1a2 . . . ak is in Xk.
And the defining set of the prefix a1a2 . . . ak is {0, 1, . . . , st(a1a2 . . . ak) + 1}. In the case of

46 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

≺c order, it turns out that similar notions are more complicated: for example, 13 is an
admissible suffix in A5, but 13 is not in A2; and the defining set of the suffix 13 is {0, 2},
because 013 and 213 are both admissible suffixes in A5, but 113 is not. See Table 5.3 for
the sets A5, R5, and S 5 listed in ≺c order.

5.3.2/ SUFFIX EXPANSION OF SEQUENCES IN THE SET Xn

For a suffix partitioned list, we need to build st-restricted growth sequences under con-
sideration from right to left, i.e., by expanding their suffix. For this purpose, we need the
notions defined below.

Definition 9: αX(b) and µX(b)

Let b = bk+1bk+2 . . . bn, 1 ≤ k < n, an admissible suffix in Xn.

• αX(b) is the set of all elements in the defining set of the suffix b. Formally:

αX(b) = {x | xb is an admissible suffix in Xn},

and for the empty suffix ε, αX(ε) = {0, 1, . . . , n − 1}.

• µX(b) is the minimum required value of the statistic defining the set Xn,
and provided by a length (k + 1) prefix of a sequence in Xn having suffix b.
Formally:

µX(b) = min{st(s1s2 . . . skbk+1) | s1s2 . . . skb ∈ Xn}.

Notice that µX(xb) ∈ {µX(b) − 1, µX(b), x} for x ∈ αX(b).

Remark 3:

Let st be one of statistics asc, m or lv, and s = s1s2 . . . sn be an st-restricted
growth sequence. If there is a k < n such that sk+1 = k, then si = i − 1 for all i,
1 ≤ i ≤ k.

Proof. If sk < k−1, then in each case for st, st(s1s2 . . . sk) < k−1, which is in contradiction
with sk+1 = k, and so sk = k − 1. Similarly, sk−1 = k − 2, . . . , s2 = 1, and s1 = 0. �

Under the conditions in the previous remark, sk+1 = k imposes that all values at the left
of k + 1 in s are uniquely determined. As we will see later, in the induced tree of the
generating algorithm, all descendants of a node with sk+1 = k have degree one, and we
will eliminate the obtained degree-one path in order not to alter the algorithm efficiency.

It is routine to check the following propositions. (Actually, Proposition 4 is a consequence
of Remark 1.)

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 47

Proposition 4:

Let Xn be one of the sets S En, An, Rn, or S n. If b = bk+1bk+2 . . . bn, 1 ≤ k < n, is an
admissible suffix in Xn, then bk+1 ≤ µX(b).

Proposition 5:

Let Yn be one of the sets An, Rn, or S n. If b = bk+1bk+2 . . . bn, 1 ≤ k < n, is an
admissible suffix in Yn, then

1 if b = bn, that is, a length one admissible suffix, then µY (b) = bn;

2 µY (b) = k if and only if bk+1 = k;

3 if xb is also an admissible suffix in Yn (i.e., x ∈ αY (b)) and x ≥ bk+1, then

µY (xb) = max{x, µY (b)}.

The following propositions give the values for αX(b) and µX(xb), if Xn is one of the sets
S En, An, Rn, or S n. We do not provide the proofs for Propositions 6, 7, 12, and 13, because
they are obviously based on the definition of the corresponding sequences.

Proposition 6:

Let b = ε or b = bk+1bk+2 . . . bn be an admissible suffix in S En. Then

αS E(b) =

 {0, 1, , . . . , n − 1} if b = ε,

{0, 1, . . . , k − 1} otherwise.

Proposition 7:

Let b = bk+1bk+2 . . . bn be an admissible suffix in S En and x ∈ αS E(b). Then

µS E(xb) = µS E(b) − 1.

Obviously, for a length one suffix b = bn, it follows that µS E(b) = n − 1.

Example 2:

If b = ε, and n = 10, then αS E(b) = {0, 1, . . . , 9};
and for b = b10, b10 ∈ {0, 1, . . . , 9}, it follows that µS E(xb) = 9 − 1 = 8, for all
x ∈ αS E(b).

48 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

Proposition 8:

Let b = ε or b = bk+1bk+2 . . . bn be an admissible suffix in An. Then

αA(b) =

{0, 1, . . . , n − 1} if b = ε,

{k − 1} if µA(b) = k, or µA(b) = k − 1 and bk+1 = 0,

{0, 1, . . . , bk+1 − 1} ∪ {k − 1} if µA(b) = k − 1 and 0 < bk+1 < k,

{0, 1, . . . , k − 1} if µA(b) < k − 1.

Proof. If b = ε, the result is obvious.
For b , ε, let x ∈ αA(b).
If µA(b) = k, by Proposition 5 point 2, bk+1 = k and by Remark 3 we have x = k − 1.
If µA(b) = k − 1 and bk+1 = 0, then asc(xbk+1) = 0, and so µA(xb) = µA(b) = k − 1, and again
by Proposition 5 point 2 we have x = k − 1.
If µA(b) = k − 1 and 0 < bk+1 < k, then there are two possibilities for µA(xb):

• µA(xb) = µA(b) = k − 1, if asc(xbk+1) = 0, and as above x = k − 1;

• µA(xb) = µA(b) − 1 = k − 2, if asc(xbk+1) = 1. In this case x ∈ {0, 1, . . . , bk+1 − 1}.

If µA(b) < k − 1 (and consequently 0 ≤ bk+1 < k), then there are two possibilities for µA(xb):

• µA(xb) = µA(b), if asc(xbk+1) = 0, and we have x ∈ {bk+1, bk+1 + 1, . . . , k − 1};

• µA(xb) = µA(b) − 1, if asc(xbk+1) = 1, and we have x ∈ {0, 1, . . . , bk+1 − 1}.

�

Proposition 9:

Let b = bk+1bk+2 . . . bn be an admissible suffix in An and x ∈ αA(b). Then

µA(xb) =

x if x ≥ µA(b),

µA(b) if bk+1 ≤ x < µA(b),

µA(b) − 1 if x < bk+1.

Proof. If x ≥ µA(b), by Proposition 4 it follows that x ≥ bk+1, and by Proposition 5 point 3,
that µA(xb) = max{x, µA(b)} = x.
If bk+1 ≤ x < µA(b), then, again by Proposition 5 point 3, it follows that µA(xb) =

max{x, µA(b)} = µA(b).
If x < bk+1, then asc(xbk+1) = 1, so µA(xb) = µA(b) − 1. �

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 49

Example 3:

Let k = 5, n = 9, and b = b6b7b8b9 = 2050 be an admissible suffix in A9.
Clearly, µA(b), the minimum number of ascents in a prefix s1s2 . . . s5b6 such that
s1s2 . . . s5b ∈ A9, is 4.
In this case, denoting s5 by x, we have

• the set αA(b) of all possible values for x is {0, 1, , . . . , bk+1 − 1} ∪ {k − 1} =

{0, 1} ∪ {4}.

• µA(xb) = µA(b) − 1 = 4 − 1 = 3, if x ∈ {0, 1}; or µA(xb) = µA(b) = 4, if x = 4.

Proposition 10:

Let b = ε or b = bk+1bk+2 . . . bn be an admissible suffix in Rn. Then

αR(b) =

{0, 1, . . . , n − 1} if b = ε,

{k − 1} if µR(b) = k, or µR(b) = k − 1 and bk+1 < k − 1,

{0, 1, . . . , k − 1} if µR(b) = k − 1 and bk+1 = k − 1, or µR(b) < k − 1.

Proof. If b = ε, the result is obvious.
For b , ε, let x ∈ αR(b).
If µR(b) = k, by Proposition 5 point 2, bk+1 = k and by Remark 3 we have x = k − 1.
If µR(b) = k − 1 and bk+1 < k − 1, then the maximal value of the statistic m (defining the set
Rn) of a length k + 1 prefix ending with bk+1 < k−1 is k−1, and it is reached when x = k−1.
If µR(b) = k − 1 and bk+1 = k − 1, then there are two possibilities for µR(xb):

• µR(xb) = µR(b) = k − 1, and as above, this implies x = k − 1;

• µR(xb) = µR(b) − 1 = k − 2, which implies x ∈ {0, 1, . . . , k − 2}.

Finally, if µR(b) < k − 1, then x can be any value in {0, 1, . . . , k − 1}. �

Proposition 11:

Let b = bk+1bk+2 . . . bn be an admissible suffix in Rn and x ∈ αR(b). Then

µR(xb) =

x if x ≥ µR(b),

µR(b) if bk+1 ≤ x < µR(b) or x < bk+1 < µR(b),

µR(b) − 1 if x < bk+1 = µR(b).

Proof. The case x ≥ µR(b) is analogous with the similar case in Proposition 9.
The next case is equivalent with x < µR(b) and bk+1 < µR(b), and since Rn corresponds to

50 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

the statistic m, the result holds.
Finally, if x < bk+1 = µR(b), then µR(b) = µR(xb) + 1, and so µR(xb) = µR(b) − 1. �

Example 4:

Let k = 4, n = 7, and b = b5b6b7 = 241 be an admissible suffix in R7. It follows that
bk+1 = 2, µR(b) = 3 and

• αR(b) = {k − 1} = {3};

• µR(xb) = x = 3.

Proposition 12:

Let b = ε or b = bk+1bk+2 . . . bn be an admissible suffix in S n. Then

αS (b) =

{0, 1, . . . , n − 1} if b = ε,

{k − 1} if bk+1 = k,

{C,C + 1, . . . , k − 1} if 0 ≤ bk+1 ≤ k − 1,

where C = max{0, bk+1 − 1}.

Since µS (b) = bk+1, the next result follows:

Proposition 13:

Let b = bk+1bk+2 . . . bn be an admissible suffix in S n and x ∈ αS (b). Then

µS (xb) = x.

Example 5:

Let k = 6, n = 9, and b = b7b8b9 = 457 be an admissible suffix in S 9. So we have
µS (b) = 4, C = max{0, bk+1 − 1} = max{0, 3} = 3, and

• αS (b) = {C,C + 1, . . . , k − 1} = {3, 4, 5};

• µS (xb) = x, where x ∈ {3, 4, 5}.

5.3.3/ THE GRAYCODENESS OF THE LIST X̃n

Now we show that the Hamming distance between two successive sequences in the
mentioned lists is bounded from above by a constant, which implies that the lists are
Gray codes. These results are embodied in Theorems 2, 3 and 4.

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 51

THE LIST S̃En

Theorem 2:

The list S̃En is 1-Gray code.

Proof. The result follows from the fact that the restriction of the 1-Gray code list Gn
n to any

product space remains a 1-Gray code (see [VV11]), in particular to the set

Vn = ϑ1 × ϑ2 × . . . × ϑn,

where

• ϑi = {0, 1, ..., n − i}, if n is odd and i is even, or

• ϑi = {i − 1, i, ..., n − 1}, if n is even, or n and i are both odd.

Then by applying to each sequence s in the list Vn the two transforms mentioned before
Definition 8, namely:

• complementing each digit in s if n is even, or only digits in odd positions if n is odd,
then

• reversing the obtained sequence,

the desired 1-Gray code for the set S En in ≺c order is obtained. �

THE LISTS Ãn AND R̃n

The next proposition describes the form of s = last(Ỹn | b) and s = first(Ỹn | b), where
Ỹn is one of the lists Ãn or R̃n.

Proposition 14:

Let Yn be one of the sets An or Rn, and b = bk+1bk+2 . . . bn be an admissible suffix
in Yn. If s = last(Ỹn | b) or s = first(Ỹn | b), then s has one of the following
forms:

• s = 012 . . . (k − 2)(k − 1)b, or

• s = 012 . . . (k − 2)0b.

Proof. Let s = s1s2 . . . skbk+1bk+2 . . . bn. Since s = last(Ỹn | b) or s = first(Ỹn | b), accord-
ing to αY (b) given in Propositions 8 and 10, it follows that sk ∈ {0, k − 1}. In other words, sk

52 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

is either the smallest or the largest value in αY (b).
If sk = k − 1, then by Remark 3 we have s = 012 . . . (k − 2)(k − 1)b.

If sk = 0, then considering the definition of ≺c order we have either

• s = first(Ỹn | b) and
∑n

i=k+1 bi + (n − k) is odd, or

• s = last(Ỹn | b) and
∑n

i=k+1 bi + (n − k) is even.

For the first case, again by the definition of ≺c order, it follows that sk−1 must be the largest
value in αY (0b), and so sk−1 = k − 2, and by Remark 3, s = 012 . . . (k − 2)0b. Similarly, the
same result is obtained for the second case. �

A direct consequence of the previous proposition is that ≺c order gives a more restrictive
Gray codes than those given by ≺ order for the sets An and Rn. This is formalized in the
next theorem.

Theorem 3:

The lists Ãn and R̃n are 2-adjacent Gray codes.

Proof. Let s, t ∈ Yn, with t = s̃uccY (s). If k + 1 is the rightmost position where s and t differ,
then there are admissible suffixes b = bk+1bk+2 . . . bn and b′ = b′k+1bk+2 . . . bn in Yn such that
s = last(Ỹn |b) and t = first(Ỹn |b′).

By Proposition 14, s has form

012 . . . (k − 2)(k − 1)b, or

012 . . . (k − 2)0b;

and t has form
012 . . . (k − 2)(k − 1)b′, or

012 . . . (k − 2)0b′.

And in any case, s and t differ in position k + 1 and possibly in position k. �

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 53

THE LIST S̃n

The next proposition gives the form of last(S̃n | b) and first(S̃n | b) for an admissible
suffix b in S n.

Proposition 15:

Let b = bk+1bk+2 . . . bn be an admissible suffix in S n. If s = last(S̃n | b), then the
form of s is given by:

• if bk+1 = k or
∑n

i=k+1 bi + (n − k) is odd, then

s = 012 . . . (k − 2)(k − 1)b;

• if bk+1 < k and
∑n

i=k+1 bi + (n − k) is even, and either bk+1 = 0 or bk+1 is odd,
then

s = 012 . . . (k − 2)(max{0, bk+1 − 1})b;

• if bk+1 < k and
∑n

i=k+1 bi + (n − k) is even, and bk+1 > 0 is even, then

s = 012 . . . (k − 3)(bk+1 − 2)(bk+1 − 1)b.

Similar results hold for s = first(S̃n | b) by replacing ‘odd’ by ‘even’, and vice
versa, for the parity of

∑n
i=k+1 bi + (n − k).

Proof. Let s = s1s2 . . . skbk+1 . . . bn = last(S̃n | b).
If bk+1 = k or

∑n
i=k+1 bi + (n − k) is odd, then sk is the largest value in αS (b), so sk = k − 1,

and by Remark 3, si = i − 1 for 1 ≤ i ≤ k. So the first case holds.
If

∑n
i=k+1 bi + (n − k) is even and bk+1 < k, then sk is the smallest value in αS (b), namely

max{0, bk+1 − 1}, which is even if bk+1 = 0 or bk+1 is odd. Thus, by the definition of ≺c order,
sk−1 is the largest value in αS (skb), which is k − 2, and by Remark 3, the second case
holds.
For the last case, as above, sk = max{0, bk+1 − 1}, and considering bk+1 > 0 and even, it
follows that sk = bk+1 − 1 is odd. Thus sk−1 is the minimal value in αS (skb), that is bk+1 − 2,
which in turns is even, and the last case holds.
The proof for the case s = first(S̃n | b) is similar. �

Theorem 4:

The list S̃n is 3-adjacent Gray codes.

Proof. Let t = s̃uccS (s), and k + 1 be the rightmost position where s and t differ. Let

54 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

us denote by b the length (n − k) suffix of s and b′ that of t; so, s = last(b | Sn) and
t = first(b′ | Sn). It follows from Proposition 15, that si = ti = i − 1 for all i ≤ k − 2, and so
the other differences possibly occur in position k and in position k − 1.

Considering all valid combinations for s and t as given in Proposition 15, the proof of the
adjacency is routine, and based on the following: sk , tk if and only if sk−1 , tk−1. It follows
that s and t differ in one position, or three positions which are adjacent.

�

In addition, the lists Ãn, R̃n, and S̃n, are circular Gray codes. This is a consequence of
the following remarks based on Propositions 14 and 15:

• first(Ỹn) = 012 . . . (n − 2)(n − 1);

• last(Ỹn) = 012 . . . (n − 2)0;

where Ỹn is one of the lists Ãn, R̃n, or S̃n.

5.3.4/ GENERATING ALGORITHM FOR THE LIST X̃n

Here we explain algorithm GEN2 in Figure 5.3 which generates suffix partitioned Gray
codes for restricted growth sequences; according to particular instances of the functions
called by it, GEN2 produces the list S̃En, Ãn, R̃n, or S̃n. Actually, for convenience, GEN2
produces length (n + 1) sequences s = s1s2 . . . sn+1 with sn+1 = 0, and so, neglecting the
last value in each sequence s the desired list is obtained. Notice that with this dummy
value for sn+1 we have µX(sksk+1 . . . sn) = µX(sksk+1 . . . sn0), for k ≤ n, and similarly for αX.

In GEN2, the sequence s is a global variable, and initialized by 01 . . . (n − 1)0, which is the
first length n sequence in ≺c order, followed by a 0; and the main call is GEN2(n+1, 0, 0, 0).
Procedure GEN2 has the following parameters (the first three of them are similar with
those of procedure GEN1):

• k, the position in the sequence s which is updated by the current call;

• x, the value to be assigned to sk;

• dir, gives the direction in which sk−1 covers αX(sksk+1 . . . sn0), the defining set of the
current suffix;

• v, the value of µX(sk+1 . . . sn0).

The functions called by GEN2 are given in Figures 5.4 and 5.5. They are principally based
on the evaluation of αX and µX for the current suffix of s, and are as follows:

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 55

• MU X(k, x, v) returns the value of µX(sksk+1 . . . sn0), with x = sk.

• ISDEGREEONE X(k) stops the recursive calls when αX(sksk+1 . . . sn0) has only one
element, namely k − 2. In this case, by Remark 3 the sequence is uniquely deter-
mined by the current suffix, and this prevents GEN2 to produce degree one calls. In
addition, ISDEGREEONE X(k) sets appropriately d−1 values at the left of sk, where d

is the upper bound of the Hamming distance in the list (changes at the left of s1 are
considered with no effect). This can be considered as a Path Elimination Technique
or PET (see [Rus03]).

• LOWEST X(k) is called when ISDEGREEONE X returns false, and gives the lowest
value in αX(sksk+1 . . . sn0).

• SECLARGEST X(k, u), is called when ISDEGREEONE X returns false, and gives the
second largest value in αX(sksk+1 . . . sn0) (the largest value being always k − 2).

By this construction, algorithm GEN2 has no degree one calls and it satisfies the CAT
principle. Figure 5.6 shows the tree induced by the algorithm when generates Ã4.

1 procedure GEN2(k, x, dir, v)
2 global n,s;
3 sk := x;
4 u :=MU X(k, x, v);
5 if ISDEGREEONE X(k, u) then PRINT(s);
6 else c:=LOWEST X(k);
7 d:=SECLARGEST X(k, u);
8 if dir mod 2 = 1 then
9 for i := c to d do

10 GEN2(k − 1, i, i, u);
11 GEN2(k − 1, k − 2, k − 1 − (dir mod 2), u);
12 if dir mod 2 = 0 then
13 for i := d downto c do
14 GEN2(k − 1, i, i + 1, u);
15 end.

Figure 5.3: Algorithm GEN2, generating the list X̃n.

56 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

1 function MU A(m, i,w)
2 if i ≥ w then return i;
3 else if i ≥ sm+1
4 then return w;
5 else return w − 1;
6 end.

7 function ISDEGREEONE A(m, v)
8 if v = m − 1 or
9 (v = m − 2 and sm = 0)

10 then sm−1 := m − 2;
11 return true;
12 else return f alse;
13 end.

14 function LOWEST A(m)
15 return 0;
16 end.

17 function SECLARGEST A(m,w)
18 if w = m − 2 and sm > 0
19 and sm < m − 1
20 then return sm − 1;
21 else return m − 3;
22 end.

1 function MU R(m, i,w)
2 if i ≥ w then return i;
3 else if sm+1 < w
4 then return w;
5 else return w − 1;
6 end.

7 function ISDEGREEONE R(m, v)
8 if v = m − 1 or
9 (v = m − 2 and sm < m − 2)

10 then sm−1 := m − 2;
11 return true;
12 else return f alse;
13 end.

14 function LOWEST R(m)
15 return 0;
16 end.

17 function SECLARGEST R(m,w)
18 return m − 3;
19 end.

(a) (b)

Figure 5.4: Particular functions called by GEN2, generating the lists: (a) Ãn, and (b) R̃n.

5.3. THE CO-REFLECTED GRAY CODE ORDER FOR THE SET XN 57

1 function MU S(m, i,w)
2 return i;
3 end.

4 function ISDEGREEONE S(m, v)
5 if sm = m − 1
6 then sm−1 := m − 2;
7 sm−2 := m − 3;
8 return true;
9 else return f alse;

10 end.

11 function LOWEST S(m)
12 if sm > 1 and sm ≤ m − 2
13 then return sm − 1;
14 else return 0;
15 end.

16 function SECLARGEST S(m,w)
17 return m − 3;
18 end.

1 function MU SE(m, i,w)
2 if m = n then return n − 1;
3 else return w − 1;
4 end.

5 function ISDEGREEONE SE(m, v)
6 if m = 2 then return true;
7 else return f alse;
8 end.

9 function LOWEST SE(m)
10 return 0;
11 end.

12 function SECLARGEST SE(m,w)
13 return m − 3;
14 end.

(a) (b)

Figure 5.5: Particular functions called by GEN2, generating the lists: (a) S̃n, and (b) S̃En.

58 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

ε

0123

2

0102

12
0012
0112

0122

1

0121

11
0111
0011

01
0001
0101

0

00
0100
0000

10
0010
0110

0120

Figure 5.6: The generating tree induced by initial call GEN2(1, 0, 0, 0), in this case to generate Ã4.

5.4. ADDITIONAL RESULT: GRAY CODES FOR RESTRICTED ASCENT SEQUENCES59

5.4/ ADDITIONAL RESULT: GRAY CODES FOR RESTRICTED AS-
CENT SEQUENCES

The study about restricted ascent sequences was initiated by Duncan and Steingriḿsson
[DS11]. They investigate the cardinality of the set An avoiding pattern T , denoted by An(T),
where T is one of the patterns 001, 010, 011, 012, 102, 101, 021, 000, 100, 110, 120,
201, 210, 0102, 0112, 0101, 0123, 0021, or 1012. Their conjectures for the cardinality of
An(1012) and An(0123) were then affirmed by Mansour and Shattuck [MS14], and later of
An(0012) were affirmed by Pudwell [Pud14]. However, none of them provide Gray code
for An(T).

Here we show some of those restrictions still yield Gray code with respect to ≺ order. We
point out that these restrictions can cancel the reflectable property (see [LS09]), and this
implies Gray code construction provided by [LS09] and [Wal08] might not work for An(T).

Notice that, for convenience, the patterns use non-negative integers since ascent se-
quence is defined over non-negative integers. This causes a slight different representa-
tion with that for permutations (discussed in Chapter 6), which uses positive integers. For
example, 012 represents the same pattern with 123, as well as 201 with 312.

Theorem 5:

Let T ∈ {011, 101, 021, 201}. Then, the list An(T) is a 3-adjacent Gray code.

Proof. Let t = succA(s), and k be the leftmost position where s and t differ. Let a be the
length k prefix of s and a′ that of t; so, s = last(a | An(T)) and t = first(a′ | An(T)).

Let M = ω(a) (recall relation 5.3). Let also T ′ ∈ {01, 10, 02, 20}, that is, a pattern obtained
by removing the last symbol of pattern T . If M is odd (resp. even), a contains pattern T ′

and
∑k

i=1 ai is even, then s = aM0 . . . 0 (resp. s = aM(M + 1)0 . . . 0), since M is larger than
any symbol in a, so s does not contain pattern T .

If a′ contains pattern T ′, one of the following two cases holds:

• If
∑k−1

i=1 ai + a′k is even, then t = a′0 . . . 0.

• If
∑k−1

i=1 ai + a′k is odd, then t = a′M′0 . . . 0 (resp. t = a′M′(M′ + 1)0 . . . 0), where
M′ = ω(a′).

It is easy to check that in both cases, t does not contain pattern T .

Any possible pairings of s and t differ in at most 3 adjacent position.

The proof is similar for
∑k

i=1 ai being odd.

�

60 CHAPTER 5. GRAY CODES FOR RESTRICTED GROWTH SEQUENCES

Theorem 6:

The list An(012) is a 1-Gray code.

Proof. All ascents in An(012) are only created by 01. It is easy to see that An(012) is the
BRGC of length n that begins by 0. �

5.5/ SUMMARY

We conclude this chapter by comparing for each of the sets S En, An, Rn and S n the
prefix partitioned Gray codes induced by ≺ order and the suffix partitioned one induced
by ≺c order. This can be done by comparing the Hamming distance between all pairs of
successive sequences either in the worst case or in average.

Table 5.4 summarizes Theorems 1, 3, and 4, and Proposition 3, and gives the upper
bound of the Hamming distance (that is, the worst case Hamming distance) for the two
order relations. It shows that for the sets S En and S n these relations have same perfor-
mances, and for the sets An and Rn, ≺c order induces more restrictive Gray codes.

Set ≺ (RGC) ≺c (Co-RGC)
order order

S En 1 1
An 3 2
Rn 3 2
S n 3 3

Table 5.4: The bound of the Hamming distance between two successive sequences in ≺ and ≺c

orders.

For a list L of sequences, the average Hamming distance is defined as

∑
d(s, t)

N − 1
,

where the summation is taken over all s in L, except its last element, t is the successor
of s in L, d is the Hamming distance, and N the number of sequences in L.

Surprisingly, despite ≺c order has same or better performances in terms of worst case
Hamming distance, if we consider the average Hamming distance, numerical evidences
show that ≺ order is ‘more optimal’ than ≺c order on An, Rn (n ≥ 5), and S n (n ≥ 6). And
this phenomenon strengthens for large n; see Table 5.5.

Algorithmically, ≺c order has the advantage that its corresponding generating algorithm,
GEN2, is more appropriate to be parallelized than its ≺ order counterpart, GEN1. Indeed,
the main call of GEN2 produces n recursive calls (compared to two recursive calls pro-
duced by the main call of GEN1), and so we can have more parallelized computations;

5.5. SUMMARY 61

n
≺ (RGC) order ≺c (Co-RGC) order

SEn An Rn Sn S̃En Ãn R̃n S̃n

4 1 1.21 1.21 1.31 1 1.14 1.14 1.15
5 1 1.13 1.12 1.29 1 1.19 1.18 1.24
6 1 1.09 1.07 1.27 1 1.23 1.20 1.31
7 1 1.06 1.06 1.26 1 1.25 1.22 1.35
8 1 1.04 1.04 1.25 1 1.26 1.23 1.37
9 1 1.03 1.03 1.24 1 1.28 1.24 1.39
10 1 1.02 1.03 1.23 1 1.28 1.24 1.41

Table 5.5: The average Hamming distance for ≺ order and ≺c order.

and this is more suitable for large n. See Figure 5.2 and 5.6 for examples of computational
trees.

It will be of interest to explore order relation based Gray codes for restricted growth se-
quences defined by statistics other than those considered in this paper. In this vein we
suggest the following conjecture, checked by computer for n ≤ 10, and concerning de-
scent sequences (defined similarly with ascent sequences in Section 2).

Conjecture 1:

The set of length n descent sequences listed in ≺c order is a 4-adjacent Gray
code.

Finally, we extend the result of Duncan and Steingriḿsson [DS11] concerning ascent
sequences avoiding a patterrn of length 3 or 4. We investigate the Graycodeness of
An(T), and show that An(T) is a 1-Gray code if T = {012}, and is a 3-Gray code if T ∈

{011, 101, 021, 201}.

6

GRAY CODES FOR FACTOR AVOIDING

q-ARY WORDS

6.1/ ADDITIONAL NOTIONS

Through this chapter, we use the notions defined in Section 3.1.1, and some additional
ones defined here. Recall that the set An is the set of words of length n over alphabet A.
For a ∈ A∗, |a| denotes the length of a, or equivalently, the number of symbols in a; and
when 0 ∈ A, |a|,0 denotes the number of non-zero symbols in a (the alphabets we will be
using contain the symbol 0).

An infinite word is a function N → A, and A∞ is the set of infinite words. For a ∈ A∗, ai is
the word obtained by i copies of a, with i = 0 denotes ε, and a∞ is the infinite periodic word
aaa The word a ∈ A∞ is ultimately periodic if there are b, c ∈ A∗ such that a = bc∞, and
we say that a has ultimate period c. Incidentally, we will make use of left infinite words,
which are infinite words a of the form a = . . . a−3a−2a−1. Left infinite words are the reverse
of infinite words, and formally a left infinite word is a function {. . . ,−3,−2,−1} → A, and for
a ∈ A∗, a−∞ is the left infinite word . . . aaa.

The set An
q is the set of words of length n over alphabet A = {0, 1, . . . q − 1}. Our construc-

tions of Gray codes for factor avoiding q-words are based on two order relations on An
q.

One of them is the original RGC order, already introduced in Definition 7; and the other
one is a variation of it, as we will define below.

It follows that An
q listed in ≺ order yields precisely the q-ary Reflected Gray Code (see

[Er84, Wil85]), where two consecutive words differ in one position and by 1 or −1 in this
position. For a set of same length words X, we refer to ≺-first (resp., ≺-last) word in X for
the first (resp., last) word in X with respect to ≺ order.

In the binary case (q = 2), the Reflected Gray Code order can alternatively be defined as
follows (see Definition 7 for the original definition): Let s = s1s2 . . . sn, t = t1t2 . . . tn be two
words in An

2, and k is the leftmost position where s, t differ. Let also v be the number of

63

64 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

non-zero symbols in the length k − 1 prefix of s and of t. Then s ≺ t if either

• v is even and sk < tk, or

• v is odd and sk > tk.

Now, by ‘adding’ u in Definition 7 and v defined above, we obtain a new order relation as
follows:

Definition 10:

Let s = s1s2 . . . sn and t = t1t2 . . . tn be two words in An
q, k be the leftmost position

where s, t differ, u =
∑k−1

i=1 si =
∑k−1

i=1 ti, and v be the number of non-zero symbols
in the length k − 1 prefix of s. We say that s is less than t in Dual Reflected Gray
Code order, denoted by s � t, if either

• u + v is even and sk < tk, or

• u + v is odd and sk > tk.

Clearly, listing a set of words in ≺ or in � order gives a prefix partitioned list, in the sense
that words with the same prefix are contiguous.

For a set of same length words X, we refer to �-first (resp., �-last) word in X for the first
(resp., last) word in X with respect to � order. In the following, unless the contrary is
explicitly stated otherwise, we will consider ≺ order on A∗q when q is even and � order
when q is odd.

The next remark states that � order yields a Gray code when q is odd, but generally for q

even, An
q listed in � order is not a Gray code.

Remark 4:

For any odd q ≥ 3 and n ≥ 1, the set An
q listed in � order is a Gray code where

two consecutive words differ in at most two adjacent positions. In addition, if s
and t are two consecutive words in this list and k is the leftmost position where
they differ, then

• sk = tk ± 1, and

• if sk+1 , tk+1, then {sk+1, tk+1} = {0, q − 1}.

Table 6.1 shows the list in � order, for the sets A3
3 and A4

4. One can conclude that the list
for A3

3 is a 2-Gray code, but for A4
4 is not a Gray code.

We define the parity of the word a = a1a2 . . . an ∈ An
q according to two cases:

• when q is even, the parity of a is the parity of the integer
∑n

i=1 ai, and

6.1. ADDITIONAL NOTIONS 65

• when q is odd, the parity of a is the parity of the integer
∑n

i=1 ai + |a|,0.

For example, if a = 0222, then

• considering a ∈ A∗4, the parity of a is even, and is given by 0 + 2 + 2 + 2 = 6, and

• considering a ∈ A∗5, the parity of a is odd, and is given by 0 + 2 + 2 + 2 + 3 = 9.

Now, we introduce a critical concept for our purposes: we say that the forbidden factor f ∈
A∗q induces zero periodicity on A∞q if for any p ∈ A∗q(f) the first and the last (as mentioned
previously, with respect to ≺ order for even q, or � order for odd q) words in p|A∞q (f) both
have ultimate period 0. Consequently, if f ∈ A∗q does not induce zero periodicity on A∞q , it
follows that there exists a p ∈ A∗q(f) such that the first and/or the last word in p|A∞q (f) do
not have ultimate period 0.

Whether or not f induces zero periodicity on A∞q depends on q; and q will often be under-
stood from the context. For example, f = 3130 induces zero periodicity on A∞6 but not on
A∞4 . Indeed, the first word in ≺ order in A∞6 (f) and having prefix 313 is 3135000 . . ., and the
last one is 3131500 . . .; whereas the last word in ≺ order in A∞4 (f) and with the same prefix
is the periodic word 31313

In Section 6.3, it is shown that the Graycodeness of the set An
q(f) listed in the appropriate

order is intimately related to the property that f induces zero periodicity.

OUTLINE OF THE CHAPTER

Avoiding a factor of length 1 is equivalent to shrinking the underlying alphabet, but for
the sake of generality, we will consider most of the time forbidden factors of any positive
length.

In the next section, we will characterize the forbidden factors f inducing zero periodicity
on A∞q . By means of three sets Uq,V,Wq ⊂ A+

q , these factors are characterized in Corollary
1. The non-zero ultimate periods produced by forbidden factors that do not induce zero
periodicity have the form 1(q − 1)0m, 10m or (q − 2); see Propositions 16, 18 and 20.

Theorems 10 to 12 and Proposition 27 in Section 6.3 prove that the property of f to induce
zero periodicity guarantees the set An

q(f) listed in the appropriate order to be a Gray code.
However, this property of f is not a necessary condition: there are two ‘special’ forbidden
factors, namely f = 0` and f = (q−1)0` belonging to Uq (and thus they do not induce zero
periodicity) but An

q(f) listed in ≺ order is still a Gray code. These two cases are discussed
in Section 6.3.2. Table 6.2 summarizes the Graycodeness for the set An

q(f) if f does
not induce zero periodicity. Section 6.3 ends by showing that simple transformation of
forbidden factors f , which do not induce zero periodicity, make it possible to obtain Gray
code for the set An

q(f).

66 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

Finally, we present in Section 6.4 an efficient generating algorithm for the obtained Gray
codes.

6.2/ PERIODICITY

As stated above, without restriction, the set An
q listed in ≺ order is a 1-Gray code for any

q ≥ 2, and listed in � order is a 2-Gray code for odd q ≥ 3. Roughly, it is due to the fact
that for any p ∈ A∗q the first and the last words—with respect to ≺ order for any q ≥ 2, or �
order for odd q ≥ 3— in the set p|A∞q are among the three infinite words: p0∞, p(q − 1)0∞,
and p(q− 1)∞. This phenomenon is no longer true if an arbitrary factor f is forbidden. For
example, if f = 130, then the ≺-last word in 03|A∞4 (f) is 0300000 . . ., and the ≺-first one
in 13|A∞4 (f) is 1313131 . . .; and 0300000 and 1313131 are consecutive words in A7

4(f), in
≺ order. Or, for f = 223, the ≺-last word in 123|A∞4 (f) is 123300 . . . and the ≺-first one in
122|A∞4 (f) is 122222 . . .; and 123300 and 122222 are consecutive words in A6

4(f), in ≺ order.

However, the next remark is easy to understand.

Remark 5:

If f ∈ A∗q is a forbidden factor ending with a symbol other than 0 or q − 1, then
for any p ∈ A∗q(f), q ≥ 2 and even (resp., q ≥ 3 and odd), the set formed by
the ≺-first and the ≺-last (resp., the �-first and the �-last) words in p|A∞q (f) is
{p0∞, p(q − 1)0∞}.

In other words, the previous remark says that any factor ending with a symbol other than
0 or q − 1 induces zero periodicity. However, there exist forbidden factors ending with 0
or q − 1 that do induce zero periodicity. For example, with f = 120, the ≺-first and ≺-last
words in 12|A∞4 (f) are 1230000 . . . and 1213000

In what follows, we will use (often implicitly) the next straightforward remark which pro-
vides the form of the words on the right of a fixed prefix p ∈ A∗q(f), with respect to the
appropriate order. It is obtained from the following observation: the first/last word in
p|An

q(f) is the appropriate prefix of the first/last word in p|A∞q (f).

6.2. PERIODICITY 67

Rank A3
3, Hamming

� order distance
0 0 0 0 0
1 0 0 1 1
2 0 0 2 1
3 0 1 0 2
4 0 1 1 1
5 0 1 2 1
6 0 2 2 1
7 0 2 1 1
8 0 2 0 1
9 1 0 0 2
10 1 0 1 1
11 1 0 2 1
12 1 1 0 2
13 1 1 1 1
14 1 1 2 1
15 1 2 2 1
16 1 2 1 1
17 1 2 0 1
18 2 2 0 1
19 2 2 1 1
20 2 2 2 1
21 2 1 2 1
22 2 1 1 1
23 2 1 0 1
24 2 0 2 2
25 2 0 1 1
26 2 0 0 1

(a)

Rank A4
4, Hamming

� order distance
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 0 2 1
3 0 0 0 3 1
4 0 0 1 0 2
5 0 0 1 1 1
6 0 0 1 2 1
7 0 0 1 3 1
8 0 0 2 3 1
9 0 0 2 2 1
...

...
...

15 0 0 3 3 1
16 0 1 0 0 3
...

...
...

63 0 3 3 3 1
64 1 0 0 0 4
...

...
...

247 3 3 1 3 1
248 3 3 2 3 1
249 3 3 2 2 1
250 3 3 2 1 1
251 3 3 2 0 1
252 3 3 3 0 1
253 3 3 3 1 1
254 3 3 3 2 1
255 3 3 3 3 1

(b)

Table 6.1: The list of words in (a) A3
3, and (b) A4

4 (shown partially), with respect to Dual RGC order.
The Hamming distance column shows the number of differences between a particular sequence
and its predecessor. In general, the list for An

q in � order is a 2-Gray code for odd q, but it is not
Gray code for even q.

68 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

Remark 6:

Let q be even, f ∈ A∗q be a forbidden factor, p, r ∈ A∗q(f), and let p have even
(resp., odd) parity such that pr ∈ A∗q(f). Then:

• If pr is a prefix of the ≺-first (resp., ≺-last) word in p|A∞q (f), then r is the
smallest word, in ≺ order, with this property; that is, if s ∈ A∗q with |s| = |r|
and s , r is such that ps is the prefix of some word in p|A∞q (f), then r ≺ s.

• If pr is a prefix of the ≺-last (resp., ≺-first) word in p|A∞q (f), then r is the
largest word, in ≺ order, with this property; that is, if s ∈ A∗q with |s| = |r| and
s , r is such that ps is the prefix of some word in p|A∞q (f), then s ≺ r.

Similar results hold when q is odd by replacing ≺ by � and considering the words
parity as in the definition given after Remark 4.

Remark 7 below specifies the form of the first and last words in An
q, subject to the addi-

tional constraint that they do not begin by 0 or q−1. Later on we will see that when f does
not induce zero periodicity, then the possible non-zero periods of the first or the last word
in p|A∗q(f) is related to those words. This remark will be used in the proofs of Propositions
16, 18 and 20.

Remark 7:

• For q even, the first word in An
q, with respect to ≺ order, which does not

begin by 0 is 1(q − 1)0n−2.

• For q odd, the first word in An
q, with respect to � order, which does not

begin by 0 is 10n−1.

• For q ≥ 2 (even or odd), the last word in An
q, with respect to the appropriate

order, which does not begin by a q − 1 is (q − 2)(q − 1)0n−2.

In what follows, we need the technical lemma below.

Lemma 2:

Let u, g ∈ A∗q and v ∈ A+
q be such that g is a suffix of both u and uv. Then

there exist a j ≥ 0 and a (possibly empty) suffix w of v such that g = wv j (or
equivalently, g is a suffix of the left infinite word v−∞).

Proof. We prove the statement by induction on k = b
|g|
|v| c. When k = 0, since the length of

g is less than that of v, and g is a suffix of uv, the statement follows by considering j = 0

and w = g.

6.2. PERIODICITY 69

Now, let k = b
|g|
|v| c > 0. In this case the length of g is greater than that of v, and it follows

that v is a suffix of both g and u. By considering u′ and g′ such that

• u = u′v

• g = g′v

we have that g′ is a suffix of both u′ and u = u′v. Since |g′| = |g| − |v|, we have that
b
|g′ |
|v| c = k − 1 and the statement follows by induction on k. �

6.2.1/ FORBIDDEN FACTOR ENDING WITH 0 AND NOT INDUCING ZERO

PERIODICITY

We will determine, according to the parity of q, the form of the first and the last words in
p|A∞q (f) having no ultimate period 0 for f ending with 0, and consequently the form of the
forbidden factors f that do not induce zero periodicity.

q EVEN

Proposition 16:

Let q ≥ 2 be even and f ∈ A+
q be a forbidden factor ending with 0 and not inducing

zero periodicity. Also, let p ∈ A∗q(f) be such that one of the ≺-first or the ≺-last
word in p|A∞q (f) does not have ultimate period 0, and let a be this word. Then a
is ultimately periodic; more precisely, there is an m ≥ 0 such that either

(i) a = p0i(1(q − 1)0m)∞, for some i ≤ m, or

(ii) a = p((q − 1)0m1)∞.

Proof. We will show that when p has even (resp., odd) parity, then either

1. a is the ≺-first (resp., ≺-last) word in p|A∞q (f), and in this case a has the form given
in point (i) above, or

2. a is the ≺-last (resp., ≺-first) word in p|A∞q (f), and in this case a has the form given
in point (ii) above.

For the point 1, considering the parity of p, since a does not have ultimate period 0, there
is an i ≥ 0 such that p0i+1 contains the factor f , but p0i does not. Now, by Remark 7,
since f ends by a 0, it follows that there is an m ≥ 0 such that p0i 1(q − 1)0m is a prefix of
a, but p0i1(q − 1)0m+1 is not. Thus, the longest 0 suffix of f is 0m+1, and reasoning in the

70 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

same way, it follows that there is an m′ ≥ 0 such that p0i 1(q− 1)0m 1(q− 1)0m′ is a prefix of
a, but p0i 1(q − 1)0m 1(q − 1)0m′+1 is not. Since 0m+1 is the longest 0 suffix of f , necessarily
m′ = m, and the statement holds by iterating this construction.

Similarly, point 2 holds considering that p(q− 1) is a prefix of a and there is an m ≥ 0 such
that p(q − 1)0m+1 contains the factor f .

�

Now we characterize the forbidden factors f ∈ A+
q ending with 0, for even q ≥ 2, and not

inducing zero periodicity.

For even q ≥ 2, we define the set Uq ⊂ A+
q as

Uq =
⋃
m≥0

{b0 | b a suffix of (1(q − 1)0m)−∞}. (6.1)

Alternatively, Uq is the set of words of the form b0, where b is either empty, or for
some m ≥ 0, a factor of (1(q − 1)0m)∞ ending with 0m if m > 0 and ending with q − 1

elsewhere. Clearly, Uq contains exactly n words of length n, for example, U4 ∩ A5
4 =

{00000, 30000, 13000, 01300, 13130}.

Proposition 17:

For even q ≥ 2, if a forbidden factor f ∈ A+
q ending with 0 does not induce zero

periodicity, then f ∈ Uq.

Proof. If f is such a factor, then by Proposition 16 there is a p ∈ A∗(f) and an m ≥ 0 such
that, a, the ≺-first or the ≺-last word in p|A∞q (f) is

• a = p0i(1(q − 1)0m)∞, for some i ≤ m, or

• a = p((q − 1)0m1)∞.

Let g be the word obtained from f after erasing its last 0. In the first case it follows that g
is a suffix of both p0i 1(q−1)0m and p0i 1(q−1)0m 1(q−1)0m, and by Lemma 2 the statement
holds. For the second case, the proof is similar. �

Remark 8:

If f ∈ Uq and q is even, then f does not induce zero periodicity. For example, let
f = b0 with b a suffix of (1(q−1)0m)−∞ be as in relation (6.1). Then either the first
word in b|A∞q (f) when b has even parity, or the last word in b|A∞q (f) when b has
odd parity, has ultimate period 1(q − 1)0m.

6.2. PERIODICITY 71

Example 6:

Let f = 301300 ∈ U4 be a forbidden factor and consider the prefix p = 0021301 ∈

A∗4. The ≺-first word in p|A∞4 (f) is p30(130)∞.

Combining Proposition 17 and Remark 8 we have the following theorem.

Theorem 7:

For even q ≥ 2, the forbidden factor f ∈ A+
q ending with 0 does not induce zero

periodicity if and only if f ∈ Uq.

q ODD

Now, we give the odd q counterpart of the previous results.

Proposition 18:

Let q ≥ 3 be odd and f ∈ A+
q be a forbidden factor ending with 0 and not inducing

zero periodicity. Also, let p ∈ A∗q(f) be such that one of the �-first or the �-last
word in p|A∞q (f) does not have ultimate period 0, and let a be this word. Then a
is ultimately periodic; more precisely, there is an m ≥ 0 such that either

• a = p0i(10m)∞, for some i ≤ m, or

• a = p(q − 1)(0m1)∞.

Proof. The proof is similar to that of Proposition 16 except that the second point of Re-
mark 7 is used instead of the first point. �

Now we characterize the forbidden factor f ∈ A+
q ending with 0, for odd q ≥ 3, and not

inducing zero periodicity.

For q ≥ 3, we define the set V ⊂ A+
q as

V =
⋃
m≥0

{b0 | b a suffix of (10m)−∞}. (6.2)

Alternatively, V is the set of words of the form b0, where b is either empty, or for some
m ≥ 0, a factor of (10m)∞ ending with 0m if m > 0 (and ending with 1 elsewhere). Notice
that V does not depend on q, i.e. V ⊂ A+

q for any q ≥ 2. Clearly, V contains exactly n words
of length n, for example, V ∩ A5

q = {00000, 10000, 01000, 10100, 11110}, for any q ≥ 2.

Considering Proposition 18 and the definition of � order relation, with the same argu-
ments as in the proof of Proposition 17 we have the next result.

72 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

Proposition 19:

For odd q ≥ 3, if a forbidden factor f ∈ A+
q ending with 0 does not induce zero

periodicity, then f ∈ V.

Remark 9:

If f ∈ V and q ≥ 3 is odd, then f does not induce zero periodicity on A∞q (f).
Indeed, let for example f = b0 with b a suffix of (10m)−∞ be as in relation (6.2).
Then either the first word in b|A∞q (f) when b has even parity, or the last word in
b|A∞q (f) when b has odd parity, has ultimate period 10m.

Example 7:

Let f = 0100010000 ∈ V be the forbidden factor and consider the prefix p =

430100010 ∈ A∗5. The �-last word in p|A∞5 (f) is p00(1000)∞.

Combining Proposition 19 and Remark 9, we have the following theorem.

Theorem 8:

For odd q ≥ 3, the forbidden factor f ∈ A+
q ending with 0 does not induce zero

periodicity if and only if f ∈ V.

6.2.2/ FORBIDDEN FACTOR ENDING WITH q − 1 AND NOT INDUCING ZERO

PERIODICITY

The next proposition holds for q ≥ 3 (even or odd), and the case for q = 2 is stated in the
remark that follows it.

Proposition 20:

Let q ≥ 3 (even or odd) and f ∈ A+
q be a forbidden factor ending with q − 1 and

not inducing zero periodicity. Also, let p ∈ A∗q(f) be such that one of the first or
the last word in p|A∞q (f), with respect to the appropriate order, does not have
ultimate period 0, and let a be this word. Then a = p(q − 2)∞.

Proof. Neither p0 nor p(q − 1) can be a prefix of a; otherwise, in the first case a = p0∞

and in the second one a = p(q − 1)0∞. By the third point of Remark 7 and since f ends
by a q − 1, it follows that p(q − 2) is a prefix of a, but p(q − 2)(q − 1) is not (otherwise
a = p(q − 2)(q − 1)0∞). Again, p(q − 2)(q − 2) is a prefix of a, but p(q − 2)(q − 2)(q − 1) is not;
and finally a = p(q − 2)∞. �

6.2. PERIODICITY 73

When q = 2, the ultimate (q − 2) period of a in Proposition 20 becomes 0 period, and so,
for q = 2 any forbidden factor f ∈ A+

q ending with q − 1 = 1 induces zero periodicity. Thus,
below we will consider only factors ending with q−1 and not inducing zero periodicity only
for q ≥ 3 (even or odd).

For q ≥ 3, we define the set Wq as

Wq =
⋃
`≥0

{(q − 2)`(q − 1)}. (6.3)

With the previous terminology, Wq is the set of words of the form b(q − 1) with b a suffix
of (q − 2)−∞. Clearly, Wq contains exactly one word of each length, and for example,
W4 = {3, 23, 223, 2223, 22223, . . .}.

Proposition 21:

For q ≥ 3 (even or odd), if the forbidden factor f ∈ A+
q ending with q − 1 does not

induce zero periodicity, then f ∈ Wq.

Proof. Let f be such a factor, and p ∈ A∗q(f) such that, with respect to the appropriate
order, the first word in p|A∞q (f) does not have ultimate period 0 (the case of the first word
being similar). Also, let g be the (possibly empty) word obtained from f after erasing its
last symbol q − 1. By Proposition 20, g is a suffix of both p(q − 2) and p(q − 2)(q − 2), and
by Lemma 2 the statement holds. �

Remark 10:

If f ∈ Wq, then f does not induce zero periodicity. Indeed, let for example b =

(q − 2)`, for some ` ≥ 0, and f = b(q − 1) be as in relation (6.3). Then the last
word in b|A∞q (f) has ultimate period (q − 2).

Example 8:

Let f = 223 ∈ W4 be a forbidden factor and consider the prefix p = 2322 ∈ A∗4.
The ≺-first word in p|A∞4 (f) is p2∞. And when f = 12 ∈ W3 and p = 01 ∈ A∗3, the
�-last word in p|A∞3 (f) = p1∞.

Combining Proposition 21 and Remark 10, we have the following theorem.

Theorem 9:

For q ≥ 3 (even or odd), the forbidden factor f ∈ A+
q ending with q − 1 does not

induce zero periodicity if and only if f ∈ Wq.

Even though we will not use the following remark later, it is worthwhile to mention it.

74 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

Remark 11:

For q even (resp., odd), if f , | f | ≥ 2, does not have the form 0` nor (q−1)0` (resp.,
the form 0`) for some ` ≥ 1, then for any p ∈ A∗q(f), at least one among the ≺-first
and the ≺-last word in p|A∞q (f) (resp., the �-first and the �-last word in p|A∞q) has
ultimate period 0.

6.2.3/ FORBIDDEN FACTOR INDUCING ZERO PERIODICITY

Here we characterize the first and the last words in p|A∞q (f) when the forbidden factor f
induces zero periodicity; the resulting ultimate 0 periodic words will be used in the next
section.

Proposition 22:

Let q ≥ 2 be even, f ∈ A+
q \ Uq be a forbidden factor ending with 0, ` ≥ 1 be the

length of the maximal 0 suffix of f , and p ∈ A∗q(f). If a is the ≺-first or the ≺-last
word in p|A∞q (f), then a has the form

pr0∞,

where

1. r = ε or r = 0i1(q−1) for some i, 0 ≤ i ≤ `−1, if a is the ≺-first (resp., ≺-last)
word in p|A∞q (f) and p has even (resp., odd) parity, or

2. r = q− 1 or (q− 1)0`−11(q− 1) if a is the ≺-first (resp., ≺-last) word in p|A∞q (f)

and p has odd (resp., even) parity.

Proof. We prove the first point, the second one being similar. Let a be the ≺-first (resp.,
≺-last) word in p|A∞q (f) with p having even (resp., odd) parity. Also suppose that r does
not have the form described in point 1. Reasoning as in the proof of Proposition 16 it
follows that 0i1(q− 1)0`−11(q− 1)0`−1 is a prefix of r, for some i, 0 ≤ i ≤ `− 1, and finally, by
Lemma 2 that f ∈ Uq, which leads to a contradiction. �

6.2. PERIODICITY 75

The proof of the next proposition is similar to that of Proposition 22.

Proposition 23:

Let q ≥ 3 be odd, f ∈ A+
q \ V be a forbidden factor ending with 0, ` ≥ 1 be the

length of the maximal 0 suffix of f , and p ∈ A∗q(f). If a is the �-first or the �-last
word in p|A∞q (f), then a has the form

pr0∞,

where

1. r = ε or r = 0i1 for some i, 0 ≤ i ≤ ` − 1, if a is the �-first (resp., �-last)
word in p|A∞q (f) and p has even (resp., odd) parity, or

2. r = q − 1 or (q − 1)0`−11 if a is the �-first (resp., �-last) word in p|A∞q (f) and
p has odd (resp., even) parity.

It is routine to check the next two propositions.

Proposition 24:

Let q ≥ 3, f ∈ A+
q \Wq be a forbidden factor ending with q − 1, and p ∈ A∗q(f). If a

is the first or the last word in p|A∞q (f) with respect to the appropriate order, then
a has the form

pr0∞,

where r is either ε, or q − 1, or (q − 2)(q − 1).

As mentioned in Remark 5, forbidden factors ending with symbol other than 0 or q − 1

induce zero periodicity, and we have the following proposition.

Proposition 25:

If f ∈ A∗q is a forbidden factor that does not end by 0 nor by q − 1, then for any
p ∈ A∗q(f), with respect to the appropriate order, both the first and the last word
in p|A∞q (f) have the form:

pr0∞,

where r is either ε or q − 1.

We will see later that Propositions 22 to 25 above describe sufficient (but not necessary)
conditions for the Graycodeness of An

q(f).

We conclude this section by the next corollary which summarizes the results in Remark
5 and Theorems 7, 8 and 9, and we will refer to it later.

76 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

Corollary 1:

The forbidden factor f ∈ A∗q induces zero periodicity if and only if either:

• f does not end by 0 nor by q − 1, or

• q = 2 and f < U2, or

• q ≥ 4 is even and f < Uq ∪Wq, or

• q ≥ 3 is odd and f < V ∪Wq.

6.3/ THE GRAY CODES

In this section we show that for forbidden factors f inducing zero periodicity on A∞q (as
stated in Corollary 1) consecutive words—in ≺ order for q even, or � order for q odd—in
An

q(f), beyond the common prefix, have all symbols 0, except the first few of them; and
this ensures that the set An

q(f) listed in an appropriate order is a Gray code.

Nevertheless, the property of f to induce zero periodicity is not a necessary condition.
Indeed, listing the set An

q(f) in ≺ order with:

• f = 0` for any q (not necessarily even), or

• f = (q − 1)0` for q even,

where ` ≥ 1, yields a 1-Gray code, despite f ∈ Uq (and so, f does not induce zero
periodicity for q even). These particular cases are discussed in Section 6.3.2, and we
show that such factors f , f ≥ 2, are the only ones giving Gray codes for forbidden factors
not inducing zero periodicity. In particular, the Gray code obtained for An

q(0`) is one of
those defined in [BBPV13] as a generalization of a Gray code in [Vaj01]. Finally, for
forbidden factors f for which ≺ nor � does not produce Gray codes on An

q(f), we give
simple transformations of f , and eventually obtain Gray codes for An

q(f) (in an order other
than ≺ or �).

We will make use later of the following property of forbidden factors ending with 0 or q−1:
for any q ≥ 2, if f ends by 0 or q − 1, then any two consecutive words in An

q(f), in both ≺
and � order, differ by 1 or −1 in the leftmost position where they differ.

Proposition 26:

Let q ≥ 2 and f ∈ A+
q be a forbidden factor ending with 0 or q−1, and a = a1a2 . . . an

and b = b1b2 . . . bn be two words in An
q(f), consecutive with respect to ≺ or �

order. If k is the leftmost position where a and b differ, then bk = ak + 1 or
bk = ak − 1.

6.3. THE GRAY CODES 77

Proof. If f ends by 0, we assume that bk < ak−1. It follows that f is a suffix of a1a2 . . . (ak−

1), so ak − 1 = 0 and thus bk < 0, which is a contradiction. The proof when bk > ak + 1 or
when f ends by q − 1 is similar. �

6.3.1/ FACTORS INDUCING ZERO PERIODICITY

We show that for factors f as in Corollary 1 the set An
q(f) listed in ≺ or � order is a Gray

code.

Proposition 27:

If q is even (resp., odd) and f ∈ A+
q does not end by 0 nor q− 1, then An

q(f), n ≥ 1,
listed in ≺ (resp., �) order is a 2-adjacent Gray code.

Proof. Let a, b ∈ An
q(f), a = a1a2 . . . an and b = b1b2 . . . bn be two consecutive words with

respect to the appropriate order, and k be the leftmost position where they differ. Since
f does not end by 0 nor by q − 1, it follows that q ≥ 3, and considering the definitions
of ≺ and � order, we have in both cases (see Remark 4) {ak+1, bk+1} ⊂ {0, q − 1} and
ak+2 . . . an = bk+2 . . . bn = 0n−k−1. In any case, a and b differ in position k and possibly in
position k + 1. �

Theorem 10:

If q ≥ 2 is even, f ∈ A+
q \ Uq ends by 0, and ` is the length of the maximal 0 suffix

of f , then An
q(f), n ≥ 1, listed in ≺ order is an at most (` + 2)-close 3-Gray code.

Proof. Let a, b ∈ An
q(f), a = a1a2 . . . an and b = b1b2 . . . bn be two consecutive words with

respect to the appropriate order, and k be the leftmost position where a and b differ.
By Proposition 26, bk = ak + 1 or bk = ak − 1 and so the prefixes a′ = a1a2 . . . ak and
b′ = b1b2 . . . bk have different parity. Two cases arise according to the parity of a′.

• a′ has even parity, and so b′ has odd parity. By point 2 of Proposition 22

a = a′x,

and
b = b′y,

with x and y being the n − k prefixes of r0∞ and of r′0∞, where {r, r′} ⊂ {(q − 1), (q −

1)0`−11(q − 1)}. Thus a and b differ in position k and possibly in positions k + ` + 1 and
k + ` + 2 if k + ` + 1 ≥ n.

• a′ has odd parity, and so b′ has even parity. By point 1 of Proposition 22 either

78 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

(i) ak+1ak+2 . . . an = bk+1bk+2 . . . bn = 0n−k, or

(ii) at least one of ak+1ak+2 . . . an or bk+1bk+2 . . . bn is the n − k prefix of a word of the form
0i1(q − 1)0∞.

In case (i), a and b differ only in position k. And in case (ii) we suppose that ak+1ak+2 . . . an

is the length n − k prefix of 0i1(q − 1)0∞ (the corresponding case for bk+1bk+2 . . . bn being
similar). Considering that bk = ak + 1 or bk = ak −1 it follows that bk+1bk+2 . . . bn is the length
n − k prefix of 0∞ and so a and b differ in positions k, and (possibly) k + i + 1 and k + i + 2.

In any case, a and b differ in at most three positions which are at most ` + 2 apart from
each other. �

Example 9:

The words 00230130 and 00330000 are consecutive in A8
4(2300) listed in ≺ order.

They differ in 3 positions which are 4-close, and are in the worst case since the
list is a 4-close 3-Gray code.

Considering the possible values of r in Proposition 23 it is easy to see that for f < V

ending with 0 and q odd, the set An
q(f) listed in � order is a 4-Gray code. The next

theorem gives a more restrictive result.

Theorem 11:

If q ≥ 3 is odd, f ∈ A+
q \ V ends by 0, and ` is the length of the maximal 0 suffix

of f , then An
q(f), n ≥ 1, listed in � order is an at most (` + 1)-close 3-Gray code.

Proof. Let a, b ∈ An
q(f), a = a1a2 . . . an and b = b1b2 . . . bn be two consecutive words, in �

order, and k be the leftmost position where a and b differ. If a′ and b′ are the length k

prefix of a and b, by Proposition 23
a = a′x,

and
b = b′y,

with x and y being the n − k prefixes of r0∞ and of r′0∞, where {r, r′} ⊂ {ε, 0i1, (q − 1), (q −

1)0`−11}, for some i, 0 ≤ i ≤ ` − 1. The statement holds by showing that {r, r′} ⊂ {0i1, (q −

1)0`−11} is not possible. Indeed, let us suppose that r = 0i1 for some i, 0 ≤ i ≤ ` − 1, and
r′ = (q − 1)0`−11 (the case r = (q − 1)0`−11 and r′ = 0i1 being similar). This happens when
both a′ and b′ have both odd parity. By Proposition 26, bk = ak + 1 or bk = ak − 1, and
since a1a2 . . . ak−1 = b1b2 . . . bk−1 it follows that ak = 1 and bk = 0. Since r′ = (q − 1)0`−11,
the factor f must end by (q − 1)0` and since ak = 1 it follows that r = ε, which leads to a
contradiction. �

6.3. THE GRAY CODES 79

Example 10:

By Theorem 11, the sets A9
5(31000) and A9

5(24000) listed in � order are 4-close 3-
Gray codes. However, it is easy to check that in particular, A9

5(31000) is a 3-close
3-Gray code, and A9

5(24000) is 4-close 2-Gray code. For example:

• the words 001304000 and 001310010 are consecutive in A9
5(31000) when

listed in � order; they differ in 3 positions which are 3-close; and

• the words 001140000 and 001240010 are consecutive in A9
5(24000) when

listed in � order; they differ in 2 positions which are 4-close.

Theorem 12:

If q is even (resp., odd) and f ∈ A+
q \Wq ends by q− 1, then An

q(f) listed in ≺ order
(resp., � order) is a 2-close 3-Gray code (that is, a 3-adjacent Gray code).

Proof. Let k be the leftmost position where two consecutive words a = a1a2 . . . an and
b = b1b2 . . . bn, in An

q(f) differ. By considering all the possible values of ak and bk, and
since f < Wq ends by q − 1, we conclude that ai = bi = 0 for all i > k + 2 (see also
Proposition 24). �

6.3.2/ PARTICULAR CASES

As mentioned before, there are two cases when f ∈ Uq, q ≥ 2 and even, but An
q(f) listed

in ≺ order is a Gray code; these are f = 0` and f = (q − 1)0`, ` ≥ 1. Moreover, it turns out
that An

q(0`), q ≥ 3 and odd, also gives Gray code if listed in ≺ order. A similar phenomenon
does not occur for f ∈ V, i.e., the set An

q(f) listed in � order is not a Gray code for any
f ∈ V, | f | ≥ 2 and q ≥ 3 odd, see for example Remark 12.

Before discussing these particular forbidden factors we introduce some notations.

Let q ≥ 2, ` ≥ 1, and define the infinite words:

u = (0`−11(q − 1))∞,

v = ((q − 1)0`−11)∞.
(6.4)

Note that u and v are suffixes of each other, and they are related with the infinite words
occurring in Proposition 16. It is easy to see that u and v are, respectively, the ≺-first and
≺-last word in A∞q (0`) for even q; and thus the length n prefix of u and v are, respectively,
the ≺-first and ≺-last word in An

q(0`).

Moreover, for any p ∈ Ak
q(0`) with 1 ≤ k ≤ n and q even

80 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

• the ≺-first (resp., ≺-last) word in p|An
q(0`) is pv′ if p has an odd (resp., even) parity,

where v′ is the length n − k prefix of v;

• if p does not end by 0, then the ≺-first (resp., ≺-last) word in p|An
q(0`) is pu′ if p has

an even (resp., odd) parity, where u′ is the length n − k prefix of u.

Now let q ≥ 3 and odd, ` ≥ 1, and define the infinite words:

s = 0`−11(q − 1)∞,

t = (q − 1)∞.
(6.5)

It is easy to see that s and t have similar property as u and v for q odd and with same ≺
order.

THE CASE f = 0`

Proposition 28:

For q ≥ 2 (even or odd), and `, n ≥ 1, the set An
q(0`) listed in ≺ order is a Gray

code where two consecutive words differ in one position and by 1 or −1 in this
position.

Proof. Let a and b be two consecutive words, in ≺ order, in An
q(0`), a′ = a1a2 . . . ak and

b′ = b1b2 . . . bk be the length k prefix of a and b, with k the leftmost position where a and b
differ.

When q is even, with u′ and v′ the length (n − k) prefix of u and v defined in relation (6.4),
we have

• a = a′v′ and b = b′v′ if a′ has an even parity (and so, by Proposition 26, b′ has odd
parity);

• a = a′u′ and b = b′u′, elsewhere, since ak , 0 and bk , 0 by considering the parity
of the common length k − 1 prefix of a and b.

Similarly, when q is odd, with s′ and t′ the length (n − k) prefix of s and t defined in
relation (6.5), we have

• a = a′ t′ and b = b′ t′ if a′ has an even parity (given by
∑k

i=1 ai);

• a = a′s′ and b = b′s′ (since, ak , 0 and bk , 0), elsewhere.

In both cases, a and b differ only in position k. �

6.3. THE GRAY CODES 81

THE CASE f = (q − 1)0` FOR q EVEN

Let q ≥ 2 be even, 1 ≤ k ≤ n, and v′ be the n − k prefix of v defined in relation (6.4). For
any p ∈ Ak

q((q − 1)0`) with ` ≥ 1 and 1 ≤ k ≤ n

• the ≺-first (resp., ≺-last) word in p|An
q((q−1)0`) is pv′ if p has odd (resp., even) parity;

• if p does not end by 0 nor by q−1, then the ≺-first (resp., ≺-last) word in p|An
q((q−1)0`)

is p0n−k if p has even (resp., odd) parity.

Proposition 29:

For q ≥ 2 even, and `, n ≥ 1, the set An
q((q − 1)0`) listed in ≺ order is a Gray code

where two consecutive words differ in one position and by 1 or −1 in this position.

Proof. Let a and b be two consecutive words, in ≺ order, in An
q((q − 1)0`), a′ = a1a2 . . . ak

and b′ = b1b2 . . . bk be the length k prefix of a and b with k the leftmost position where a
and b differ.

If a′ has even parity (and so, by Proposition 26, b′ has odd parity), then by the above
considerations a = a′v′ and b = b′v′.

If a′ has odd parity, by considering the parity of the common length k − 1 prefix of a and b
it follows that ak , q − 1 and bk , q − 1, and again, by the above considerations we have
a = a′0n−k and b = b′0n−k.

In both cases, a and b differ only in position k. �

6.3.3/ FACTORS PREVENTING GRAYCODENESS

A consequence of the next remark and proposition, is Corollary 2 below. Proposition 30 is
similar to Remark 11 and says that if f , | f | ≥ 2 (| f | = 1 being trivial), does not induce zero
periodicity (see Corollary 1), and it is not in one of the two particular cases above, then
consecutive words, with respect to the appropriate order, in An

q(f) can differ in arbitrarily
many positions for large enough n. One of these particular cases is explained below.

Remark 12:

For q ≥ 3 and odd, ` ≥ 2 and f = 0`, the set An
q(f) listed in �-order is not a Gray

code. Indeed, for example, the words 02z′ and 1z′′ are consecutive in �-order in
An

q(f), where z′ and z′′ are appropriate length prefixes of (0`−11)∞, and they differ
in arbitrarily many positions for large enough n.

82 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

Proposition 30:

Let f ∈ A+
q , q ≥ 2 and | f | ≥ 2, be a forbidden factor not inducing zero periodicity,

other than 0` or (q − 1)0`, ` ≥ 1. Also, let a and b be two consecutive words, in
appropriate order, in An

q(f), n ≥ 1, and let k be the leftmost position where a and
b differ. If

• a′ = a1a2 . . . ak and b′ = b1b2 . . . bk are, respectively, the length k prefix of a
and b, and

• a′′ and b′′ are, respectively, the last word in a′|A∞q (f) and the first word in
b′|A∞q (f), in appropriate order,

then at most one among a′′ and b′′ does not have ultimate period 0.

Proof. Since f does not induce zero periodicity, we prove the statement according to
whether f belongs to Uq, V or Wq (see Corollary 1), and supposing that a′′ does not have
ultimate period 0 (the corresponding case for b′′ being similar).

If f ∈ Uq, q ≥ 2 and f does not have the form 0` nor (q − 1)0`:

• When a′ has odd parity, since ak must be a symbol of f , it follows that ak ∈ {0, 1, q−1}.
From the parity of a′, it follows that ak = 0 implies that bk = ak − 1, and ak = q− 1 that
bk = ak + 1, which are not possible, and necessarily ak = 1. Thus, either a′′ = a′0∞

(which is a contradiction with the non-zero periodicity of a) or b′′ = b′0∞.

• When a′ has even parity, then a′′ = a′v and since bk , ak, b′′ = b′(q − 1)0∞, with v
defined in relation (6.4).

If f ∈ V, q ≥ 3 and odd, and f does not have the form 0`:

• a′ can not have even parity, otherwise a′′ = a′(q−1)0∞, which is a contradiction with
the non-zero periodicity of a;

• When a′ has odd parity, the symbol ak must be a symbol in the forbidden factor, so
ak ∈ {0, 1}. But ak = 0, implies bk = ak − 1, which again is not possible; and ak = 1

implies bk = 0, and so b′′ = (q − 1)0∞, which does not contain the factor f if it is
different from 0`.

Finally, when f ∈ Wq, q ≥ 3 (even or odd) then a′′ = a′(q − 2)∞ and b′′ is either b′0∞ (this
can occur if q is odd) or b′(q − 1)0∞. �

Table 6.2 summarizes the cases occurring in Proposition 30.

6.3. THE GRAY CODES 83

A consequence of Remark 12, Propositions 28 to 30 and Corollary 1, is the corollary
below.

Corollary 2:

• For even q ≥ 2 and | f | ≥ 2, the set An
q(f) listed in ≺ order is a Gray code for

any n ≥ 1 if and only if f ∈ {0`, (q − 1)0`}`≥1 ∪W2 ∪ (A∗q \ (Uq ∪Wq)).

• For odd q ≥ 3 and | f | ≥ 2, the set An
q(f) listed in � order is a Gray code for

any n ≥ 1 if and only if f ∈ A∗q \ (V ∪Wq).

q
Order
rela-
tion

The set for forbidden
factor f

The set of
ultimate periods

of the last word in
a|A∞q (f) and the

first one in
b|A∞q (f)

Graycodeness of
An

q(f)

even ≺ Uq \ {0`, (q − 1)0`}`≥1 {1(q − 1)0`−1, 0} Not Gray code

even ≺ {0`, (q − 1)0`}`≥1 {1(q − 1)0`−1} 1-Gray code

odd ≺ {0`}`≥1 {(q − 1)} 1-Gray code

odd � V \ {0`}`≥1 {10`−1, 0} Not Gray code
odd � {0`}`≥2 {10`−1} Not Gray code

q ≥ 3
even

(resp.,
odd)

≺

(resp.,
�)

Wq ∩ A≥2
q {(q − 2), 0} Not Gray code

Table 6.2: The Graycodeness of An
q(f) listed in appropriate order together with the ultimate periods

of the last word in a|A∞q (f) and the first word in b|A∞q (f), when at least one of them does not have
ultimate period 0, and a and b are consecutive words; and A≥2

q is the set of words on Aq of length
at least two. These summarize Propositions 28 to 30, and Corollary 2.

6.3.4/ OBTAINING GRAY CODE IF f DOES NOT INDUCE ZERO PERIODICITY AND

IS NOT ONE OF THE PARTICULAR CASES

According to the previous results, if the forbidden factor f does not induce zero periodicity,
then the set An

q(f) listed in ≺ or � order is not a Gray code, except for the two particular
cases in Section 6.3.2. Now we show how a simple transformation makes it possible
to define Gray codes, with the same Hamming distance and closeness properties as for
factors that induce zero periodicity, when f does not have this property. By Theorems 7,
8 and 9, the last symbol of a factor that does not induce zero periodicity is either 0, or
q − 1 when q ≥ 3.

We define the transformation φ : Aq → Aq depending on f as:

• When the last symbol of f is 0, then φ(0) = 1, φ(1) = 0, and φ(x) = x if x < {0, 1}; and

84 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

• When the last symbol of f is q−1 (and so, q ≥ 3), then φ(q−2) = q−1, φ(q−1) = q−2,
and φ(x) = x if x < {q − 2, q − 1}.

In both cases, φ is an involution, that is, φ−1 = φ. By abuse of notation, for w ∈ A∗q, φ(w)

is the word obtained from w by replacing each of its symbols x by φ(x), and for a list L of
words, φ(L) is the list obtained from L by replacing each word w in L by φ(w).

If f is a forbidden factor that does not induce zero periodicity, then φ(f) does not end by 0

nor by q − 1, and so it induces zero periodicity, see Remark 5. In this case φ(L) is a Gray
code for the set An

q(f), where L is the set An
q(φ(f)) listed in ≺ order for q even, and in �

order for q odd.

6.4/ ALGORITHMIC CONSIDERATIONS

We design the efficient generating algorithm by first introducing the initial algorithm (a
“naive” algorithm), in which the factor matching procedure is not efficient; then we improve
the algorithm by applying efficient factor matching procedure.

6.4.1/ INITIAL GENERATING ALGORITHM

To generate factor avoiding words, a factor matching procedure is needed in the generat-
ing algorithm. Figure 6.1 shows a “naive” factor matching function FACTORMATCH, which
returns true if the factor f = f1 f2 . . . f` is equal to the suffix of a given word w = w1w2 . . .wk,
or returns f alse otherwise. One can easily see that the worst case complexity for FAC-
TORMATCH is given by O(k`).

This function is applied in the generating procedure GENAVOID in Figure 6.2. GENAVOID

recursively expands the current generated prefix w1w2 . . .wk−1 (k being the first parameter
of GENAVOID) to w1w2 . . .wk−1 j, with j covering the alphabet Aq in increasing or decreas-
ing order, according to the value of dir ∈ {0, 1}, the second parameter of the procedure,
which is the parity of the word w1w2 . . .wk−1. The restriction is given by function call
FACTORMATCH(k) in line 8 and 14, in order to avoid generating the words containing
the given factor. Since FACTORMATCH runs in O(k`) time, one can easily conclude that
GENAVOID is not efficient.

Actually, if function call FACTORMATCH(k) in line 8 and 14 are removed, GENAVOID gen-
erates efficiently (i.e., in CAT) the list for the set An

q in ≺ order or in � order, depending
whether q is even or odd. To improve the algorithm, we modify GENAVOID to apply the
efficient factor matching technique.

6.4. ALGORITHMIC CONSIDERATIONS 85

1 function FACTORMATCH(k)
2 while i ≤ k and j ≤ ` do
3 if w[i] = f [j] then
4 i := i + 1; j := j + 1;
5 else i := i − j + 1;
6 j := 1;
7 return i = `

8 end.

Figure 6.1: Algorithm for checking if factor f match to the suffix of word w.

1 procedure GENAVOID(k, dir)
2 if k = n + 1 then PRINT(w);
3 else if dir = 0 then
4 for j := 0 to q − 1 do
5 w[k] := j;
6 m := (dir + j) mod 2;
7 if q is odd and j , 0 then m := (m + 1) mod 2;
8 if FACTORMATCH(k)= f alse then
9 GENAVOID(k + 1, m);

10 else for j := q − 1 downto 0 do
11 w[k] := j;
12 m := (dir + j) mod 2;
13 if q is odd and j , 0 then m := (m + 1) mod 2;
14 if FACTORMATCH(k)= f alse then
15 GENAVOID(k + 1, m);
16 end.

Figure 6.2: Algorithm producing the set An
q(f), listed in ≺ order if q is even or in � order if q is odd.

The initial call is GENAVOID(1, 0).

86 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

6.4.2/ IMPROVED GENERATING ALGORITHM

EFFICIENT FACTOR MATCHING TECHNIQUE

Given two words w and f , the overlap of w over f is the longest proper suffix of w that
is also a proper prefix of f . The border of a non empty word w is the overlap of w and
itself (see for instance [Lot05]). Thus it is the longest word u which is both a proper prefix
and a proper suffix of w. The overlap of w over f is denoted by overlap(w, f). Notice
that overlap(w, f) is not necessarily equal to overlap(f ,w). The border of w is denoted by
border(w). Thus, border(w) = overlap(w,w).

1 procedure MAKEBORDER()
2 b[0] := −1;
3 i := 0;
4 for j := 1 to (` − 1)
5 b[j] := i;
6 while (i ≥ 0 and f [j + 1] , f [i + 1])
7 i := b[i];
8 i := i + 1;
9 b[`] := i;

10 end.

Figure 6.3: Procedure computing the border array b of length ` forbidden factor f , and used by
MAKEARRAY.

Procedure MAKEBORDER in Figure 6.3, initializes array b = b0b1b2 . . . b`, the border array
of f = f1 f2 . . . f`, and by convenience b0 = −1. For example if ` = 8 and f = 01001010,
then b0b1 . . . b8 = −100112323; and for instance, b5 = 2 since 01 is the longest proper prefix
which is also a suffix of f1 f2 . . . f5 = 01001. Actually, the border array b is a main ingredient
for Knuth-Morris-Pratt word matching algorithm in [KMP77] and it is initialized by an O(`)

time complexity preprocessing step, see again [Lot05].

GENERATING ALGORITHM WITH EFFICIENT FACTOR MATCHING TECHNIQUE

Here we give a generating algorithm for the set An
q(f), n ≥ 1, for any forbidden factor

f ∈ A`q, ` ≥ 2 (the case ` = 1 being trivial). This generating algorithm recursively produces
prefixes of words in An

q(f), in ≺ order if q is even, or in � order if q is odd, and in particular, it
generates the previously discussed Gray codes for An

q(f). We will show that this algorithm
is efficient, except for the trivial factors of the form 00 . . . 01 or 11 . . . 10, for which a simple
transformation of them makes the generating algorithm efficient.

When the length (` − 1) prefix of f = f1 f2 . . . f` is a suffix of w1w2 . . .wk−1, the value f` is

6.4. ALGORITHMIC CONSIDERATIONS 87

skipped for j in order not to produce the forbidden factor. To do this efficiently, the third
parameter, i, of procedure GENAVOID is the length of the maximal prefix of the forbidden
factor f which is also a suffix of the current generated word w1w2 . . .wk−1; and h in this
procedure is the length of the maximal suffix of w1w2 . . .wk−1 j which is also a prefix of f ,
and it is given by Mi, j. So, when h is equal to ` (the length of the forbidden factor), the
current value of j is skipped for the prefix expansion.

Now, we explain in more detail the array M used by algorithm GENAVOID. For a forbidden
factor f = f1 f2 . . . f` ∈ A`q, the ` · q size two dimensional array M is defined as: for i ∈

{0, 1, . . . , ` − 1} and j ∈ {0, 1, . . . , q − 1} = Aq, Mi, j is the length of the maximal suffix of
f1 f2 . . . fi j which, is also a prefix f . For instance, for q = 4 and f = 012011 ∈ A6

4, we have

M =

1 0 0 0

1 2 0 0

1 0 3 0

4 0 0 0

1 5 0 0

1 6 3 0

,

and, for example (see the entries in boldface in M),

• M2,0 = 1, since the length of the longest suffix of f1 f20 = 010 which is a prefix of f is
1,

• M2,1 = 0, since there is no suffix of f1 f21 = 011 which is a prefix of f ,

• M2,2 = 3, since f1 f22 = 012 (of length 3) is a prefix of f .

The array M is initialized, in an O(`·q) time preprocessing step, by procedure MAKEARRAY

in Figure 6.5, which in turn uses array b = b0b1b2 . . . b`, the border array of f initialized by
procedure MAKEBORDER in Figure 6.3.

88 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

1 procedure GENAVOID(k, dir, i)
2 if k = n + 1 then PRINT(w);
3 else if dir = 0 then
4 for j := 0 to q − 1 do
5 h := M[i, j];
6 if h , ` then
7 w[k] := j;
8 m := 0;
9 if q is odd and j , 0 then m := 1;

10 GENAVOID(k + 1, (dir + j + m) mod 2,h);
11 else for j := q − 1 downto 0 do
12 h := M[i, j];
13 if h , ` then
14 w[k] := j;
15 m := 0;
16 if q is odd and j , 0 then m := 1;
17 GENAVOID(k + 1, (dir + j + m) mod 2,h);
18 end.

Figure 6.4: Algorithm producing the set An
q(f), listed in ≺ order if q is even or in � order if q is

odd. The initial call is GENAVOID(1, 0, 0), and it uses array M, initialized in a preprocessing step
by MAKEARRAY; and S is the list of symbols in the alphabet Aq in increasing or decreasing order.

1 procedure MAKEARRAY()
2 for j := 0 to q − 1
3 for i := 0 to ` − 1
4 if f [i + 1] = j then M[i, j] := i + 1;
5 else if i > 0 then M[i, j] := M[b[i], j];
6 else M[i, j] := 0;
7 end.

Figure 6.5: Algorithm initializing the array M.

6.4. ALGORITHMIC CONSIDERATIONS 89

· · · 110
1101

· · ·

· · ·
1100 1100 11000 110000 · · ·

Figure 6.6: In boldface a ‘branch’ of words produced by consecutive degree-one calls in the
generating tree of An

2(001).

ALGORITHM ANALYSIS

Before analyzing the time complexity of the generating algorithm GENAVOID we show
that, if in the underlying tree induced by recursive calls of GENAVOID there are degree-one
successive calls, then q = 2 and the forbidden factor has the form 00 . . . 01 or 11 . . . 10. See
Figure 6.6 for words in An

2(001) produced by degree-one consecutive calls of GENAVOID.

For length ` ≥ 2 forbidden factor f let w ∈ A∗q(f) and i, j ∈ Aq such that wi j ∈ A∗q(f) and:

• wk ends by f for any k ∈ Aq, k , i, and

• wik ends by f for any k ∈ Aq, k , j.

In other words, when the current word is w as above, then the call of GENAVOID is a
degree-one call (producing wi) which in turn produces a degree-one call (producing wi j).
By the two conditions above, it follows that q = 2 and i = j. When i = j = 0, the length
`−1 suffix of w is equal to the `−1 suffix of w0, which in this case must be 0`−1, and finally
f = 0`−11. Similarly, when i = j = 1, it follows that f = 1`−10.

Let now f be a length ` ≥ 2 forbidden factor, and either q ≥ 3 or q = 2 and f is not 0`−11

nor 1`−10. In this case, by the previous considerations, each recursive call of GENAVOID

is either:

• a terminal call, or

• a call producing at least two recursive calls, or

• a call producing one recursive call, which in turn is in one of the two cases above,

and by Ruskey’s CAT principle in [Rus03], it follows that, with the previous restrictions on
q and f , GENAVOID runs in constant amortized time, and so is an efficient generating
algorithm.

Nevertheless, for the particular factors above, when ` = 2, An
2(1`−10) is trivially the set

{0n, 0n−11, 0n−211, . . . , 1n}, and An
2(0`−11) the set {0n, 10n−1, 110n−2, . . . , 1n}. And for ` ≥ 3,

both sets An
2(1`−10) and An

2(0`−11) can be generated efficiently in Gray code order. Indeed,
for An

2(1`−10) with ` ≥ 3 it is enough to generate (efficiently) the Gray code for An
2(01`−1)

(see Theorem 12) and then reverse each generated word; and for An
2(0`−11) it is enough

90 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

to generate the Gray code for An
2(1`−10) as previously, then complement each symbol in

each word. The following scheme describes this method (see the example in Table 6.3):

An
2(01`−1)

Reverse
−−−−−−−→ An

2(1`−10)
Complement
−−−−−−−−−−→ An

2(0`−11).

Finally, notice that the generating order (≺ or � in our case) does not affect the efficiency
of the generating algorithm, which can obviously be modified to produce same set of
factor avoiding words in lexicographical order.

A4
2(011) A4

2(110) A4
2(001)

(a) (b) (c)
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 1 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0 0 1 0 1
0 1 0 0 0 0 1 0 1 1 0 1
1 1 0 0 0 0 1 1 1 1 0 0
1 1 0 1 1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0 1 0
1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 0 0 0 0 1 1 1 1 0

Table 6.3: (a) The set A4
2(011) listed in ≺ order, inducing 3-adjacent Gray code; (b) the reverse of

the list in (a), giving Gray code for A4
2(110); (c) the complement of the list in (b), giving Gray code

for A4
2(001). The changed symbols are in bold.

6.5/ IMPLEMENTATION ON CROSS-BIFIX-FREE SET

If necessary, the readers are advised to recall Definition 3 for general definitons of cross-
bifix-free set and Section 4.3 for some related contemporary results. Following the au-
thors of [CKPW13], the cross-bifix-free set we consider here is denoted by S (k)

n,q. It is
formed by length n words over the q-ary alphabet Aq = {0, 1, . . . , q − 1} containing a partic-
ular sub-word avoiding k consecutive 0s. Now we briefly summarize its definition and we
refer the reader to [CKPW13] for more details about its features.

6.5. IMPLEMENTATION ON CROSS-BIFIX-FREE SET 91

Definition 11:

Let n ≥ 3, q ≥ 2 and 1 ≤ k ≤ n − 2. The cross-bifix-free set S (k)
n,q is the set of all

length n words s1s2 · · · sn over Aq satisfying:

• s1 = · · · = sk = 0;

• sk+1 , 0;

• sn , 0;

• the sub-word sk+2 . . . sn−1 does not contain k consecutive 0s.

Below we recall the cardinality of S (k)
n,q: let

f (k)
n,q =

qn if 0 ≤ n < k,

(q − 1)
(

f (k)
n−1,q + f (k)

n−2,q + . . . + f (k)
n−k,q

)
if n ≥ k,

(6.6)

be the sequence enumerating the words of n length words over Aq avoiding k consecutive
zeros [Lud81, Sch08] (observe that in the particular case of q = 2, the well known k-
generalized Fibonacci sequences [Knu73] are obtained). It is not difficult to realize that,
from the above description of S (k)

n,q we have:

|S (k)
n,q| = (q − 1)2 f (k)

n−k−2,q. (6.7)

For the sake of clearness we would like to point out that the cardinality of these sets
depends on n, q and k. For any fixed n and q, the largest size of |S (k)

n,q|, denoted by S (n, q),
is obtained by a particular value of k which, at the present, is given by the following
empirical expression as in [CKPW13]:

S (n, q) = max{(q − 1)2 f (k)
n−k−2,q : 2 ≤ k ≤ n − 2}. (6.8)

In Table 6.4 the values of S (n, q) are shown, for 2 ≤ q ≤ 5 and 4 ≤ n ≤ 20. The values of k

giving S (n, 2) increase with the growth of n. The value of k giving the remaining columns
S (n, 3), S (n, 4) and S (n, 5) is 2 all the times: this is the reason why we do not show the
respective columns with the values of k (which are expected to increase for some n > 20).

6.5.1/ THE GRAY CODE

For constructive reasons we give the Gray code for the set S (k)
n+k,q starting from particular

list of length n words, then prepending a 0k prefix to each word in the set. We denote the

92 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

n S (n, 2) k S (n, 3) S (n, 4) S (n, 5)
4 1 2 4 9 16
5 2 2 12 36 80
6 3 2 32 135 384
7 5 2 88 513 1 856
8 8 2 240 1 944 8 960
9 13 2 656 7 371 43 264

10 24 3 1 792 27 945 208 896
11 44 3 4 896 105 948 1 008 640
12 81 3 13 376 401 679 4 870 144
13 149 3 36 544 1 522 881 23 515 136
14 274 3 99 840 5 773 680 113 541 120
15 504 3 272 768 21 889 683 548 225 024
16 927 3 745 216 82 990 089 2 647 064 576
17 1 705 3 2 035 968 314 639 316 12 781 158 400
18 3 136 3 5 562 368 1 192 888 215 61 712 891 904
19 5 768 3 15 196 672 4 522 582 593 297 976 201 216
20 10 671 4 41 518 080 17 146 412 424 1 438 756 372 480

Table 6.4: The values of S (n, q), for 2 ≤ q ≤ 5 and 4 ≤ n ≤ 20.

obtained Gray code by S(k)
n+k,q. Our strategy in order to obtain S(k)

n+k,q is the following:

1. restrict the list in ≺ order for An
q(0k) such that for w1w2 . . .wn ∈ An

q(0k), w1 , 0 and
wn , 0. We denote the obtained list as J (k)

n,q.

2. prepend a 0k prefix to each word in J (k)
n,q, so that the desired Gray code S(k)

n+k,q is
obtained.

It is easy to check that J (k)
n,q is the Gray code for the set of q-ary words with no 0k factors

which begin and end by a non-zero symbol, as formalized in the following proposition:

Proposition 31:

The list J (k)
n,q is a 1-Gray code for the set of q-ary words with no 0k factors which

begin and end by a non-zero symbol.

Proof. The proof is straightforward, since if we restrict a symbol in any position, then the
resulting list is still a Gray code. �

Since 0k · J
(k)
n,q = S

(k)
n+k,q, we have the following:

Corollary 3:

The list S(k)
n+k,q is a 1-Gray code.

6.6. SUMMARY 93

6.5.2/ GENERATING ALGORITHM

Cross-bifix-free words are more restrictive factor avoiding q-ary words. In order to ob-
tain the generating algorithm for them, some modifications are applied to the algorithm
GENAVOID already given in Figure 6.4.

First, we remove line 8, 9, 15, and 16 in GENAVOID, since the words are only generated
with respect to RGC order (applying those lines will generate the words in RGC order for
even q, and in Dual RGC order for odd q). Next, we insert in line 3 and 4 two statements
to prevent assigning zero to w1 and wn. The resulting algorithm is GENJ, as shown in
Figure 6.7.

1 procedure GENJ(k, dir, i)
2 if k = n + 1 then TYPE;
3 else low = 0;
4 if k = 1 or k = n then low = 1;
5 if dir = 0 then
6 for j := low to q − 1 do
7 h := M[i, j];
8 if h , ` then
9 w[k] := j;

10 GENJ(k + 1, (dir + j) mod 2,h);
11 else for j := q − 1 downto low do
12 h := M[i, j];
13 if h , ` then
14 w[k] := j;
15 GENJ(k + 1, (dir + j) mod 2,h);
16 end.

Figure 6.7: Algorithm GENJ, producing J (k)
n,q.

Removing line 8, 9, 15, and 16 in GENAVOID does not change its CAT complexity, since
those lines contain statements running in O(1). And the statements in line 3 and 4 in
GENJ are obviously run in O(1). These modifications implies GENJ to remain CAT.

6.6/ SUMMARY

We introduce two order relations on the set of length n q-ary words, and show that the set
of words avoiding any from among the q` factors of length ` ≥ 2, except ` − 1 or ` of them
according to the parity of q, when listed in the appropriate order is an (at most) 3-Gray
code. For each of the factors listed as exceptions, we give a simple transformation makes
it possible to eventually obtain similar Gray codes. An efficient generating algorithm for

94 CHAPTER 6. GRAY CODES FOR FACTOR AVOIDING Q-ARY WORDS

the derived Gray codes is given.

Finally, we investigate the Graycodeness of the set of cross-bifix-free words S(k)
n+k,q, and

give an efficient generating algorithm.

7

GRAY CODES FOR SOME PATTERN

AVOIDING PERMUTATIONS

In this chapter, we will investigate the Graycodeness of certain pattern avoiding permuta-
tions, listed according to Steinhaus-Johnson-Trotter (SJT) algorithm. If the permutations
in an SJT-list are represented by inversion tables (which is actually the subexcedant se-
quences), then we obtain the list of subexcedant sequences with respect to RGC order
(as shown implicitly by Dijkstra [Dij76]). Our approach is based on the idea that restricting
permutations by “avoiding a set of patterns” is equivalent to restricting their correspond-
ing inversion tables to “a restriction rule”. For this purpose, we introduce the notion of
restricted inversion tables. We narrow our study by considering pattern avoiding permu-
tations that can be constructed by succession functions.

7.1/ STEINHAUS-JOHNSON-TROTTER ALGORITHM

SJT algorithm has come through improvement or simpler versions, such as speeding up
version by Even [Eve73], loopless version by Ehrlich [Ehr73]. To give a simpler expla-
nation of the algorithm, in the following we describe a version using ‘directed integer’ by
Dershowitz [Der75]:

1. Generate initial permutation 12 . . . n, and set all integers (except the smallest) to be
active, and to have direction left (i.e., to face left).

2. Transpose the largest active integer L with the adjacent integer where L is facing.
Having done that, if L reach the leftmost or the rightmost position, or L is facing
integer larger than itself, deactivate L.

3. Reverse the direction of all integers larger than L, and activate them.

4. Back to step 2 until there are no active integers.

Table 7.1 illustrates how these steps work on generating length-4 permutations.

95

96 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

1 1
←−
2
←−
3

.
←−
4 13

.
−→
4
−→
3 2 1

2 1
←−
2

.
←−
4
←−
3 14

−→
3

.
−→
4 2 1

3 1
.
←−
4
←−
2
←−
3 15

−→
3 2

.
−→
4 1

4 4 1
←−
2

.
←−
3 16

.
−→
3 2 1 4

5
.
−→
4 1
←−
3
←−
2 17 2

−→
3 1

.
←−
4

6 1
.
−→
4
←−
3
←−
2 18 2

−→
3

.
←−
4 1

7 1
←−
3

.
−→
4
←−
2 19 2

.
←−
4
−→
3 1

8 1
.
←−
3
←−
2 4 20 4 2

.
−→
3 1

9 3 1
←−
2

.
←−
4 21

.
−→
4 2 1 3

10 3 1
.
←−
4
←−
2 22 2

.
−→
4 1 3

11 3
.
←−
4 1
←−
2 23 2 1

.
−→
4 3

12 4 3 1
.
←−
2 24 2 1 3 4

Table 7.1: The steps in generating all length-4 permutations according to SJT algorithm. The
initial permutation is 1234. The active integers are marked by arrows according to their directions,
and the largest among them are marked by a dot. To obtain the next permutation, the dotted
integer is transposed to its adjacent integer within its direction. The steps terminate when there
are no active integers.

7.2/ ADDITIONAL NOTIONS

We denote by Pn the set of length-n permutations, Pn the SJT-list for Pn. For a set of
patterns T , Pn(T) denotes the set of length-n permutations that avoid T . Pn(T) is the
(possibly scattered) sublist of Pn, and it consists of permutations avoiding any pattern in
T (recall Definition 4 for pattern avoiding permutations).

For further discussion, we will be using some notions already defined in Chapter 5: S En,
the set of length-n subexcedant sequences; and SEn, the list for S En with respect to RGC
order. The reader is suggested to recall Definition 7 about RGC order and the ≺ notation.

7.2.1/ THE SITES OF A PERMUTATION

The sites of π ∈ Pn are the positions between two adjacent symbols in π, including those
before the first and after the last symbol; and they are numbered, from right to left, from 1

to n + 1, as described in the following:

(n+1)

π1
(n)

π2
(n-1)

. . .
(2)

πn
(1)

7.2. ADDITIONAL NOTIONS 97

For a permutation π ∈ Pn(T), i is an active site in π if inserting n + 1 into the i-th site of π
yields a permutation in Pn+1(T).

Example 11:

13254 ∈ P5(321) has six sites, but only site number 1 and 2 are active. Here is
the permutation 13254 with all the sites being shown:

(6)

1
(5)

3
(4)

2
(3)

5
(2)

4
(1)

In particular, 132546, 132564 ∈ P6(321). But 132654, 136254, 163254, 613254 <

P6(321), since 654 is order isomorphic to the avoided pattern 321.

In this case, we say that 13254 has two children, that are 132546 and 132564.

7.2.2/ BIJECTION FROM S En TO Pn

For a permutation π = π1π2 . . . πn ∈ Pn, we call (i, j) an inversion if i < j and πi > π j. A
sequence s = s1s2 . . . sn is called the inversion table of a permutation π = π1π2 . . . πn ∈ Pn if
si = card({(i, j)|i < j and πi > π j}). For example, 0102 is the inversion table of permutation
2413. It is easy to check that an inversion table is also a subexcedant sequence; and so,
we denote by S En the set of inversion table of length n. Note that we will use the two
terms interchangeably based on the context.

We use a bijection ψ : S En → Pn, which maps an inversion table to its corresponding per-
mutation. The bijection is defined as: ψ(s1) = ψ(0) = 1, and ψ(s1 . . . sn−1sn) is a permutation
obtained by inserting n to the (sn + 1)-th active site of ψ(s1 . . . sn−2sn−1). The proof is quite
easy: since n is greater than any symbol in permutation π ∈ Pn−1, inserting n to (sn + 1)-th
site of π ∈ Pn−1 implies n to have sn inversions, and vice versa.

For example, the recursive mapping ψ(0102) is described as follows:

• ψ(s1) = ψ(0) = 1 (with 2 sites,
(2)

1
(1)

)

• ψ(s1s2) = ψ(01) = 21 (i.e., 2 is inserted in the (s2 + 1)-th, or the second, site of
permutation 1, the result is permutation 21 with 3 sites,

(3)

2
(2)

1
(1)

)

• ψ(s1s2s3) = ψ(010) = 213 (3 is inserted in the (s3+1)-th, or the first, site of permutation
21, the result is permutation 213 with 4 sites,

(4)

2
(3)

1
(2)

3
(1)

)

• ψ(s1s2s3s4) = ψ(0102) = 2413 (4 is inserted in the (s4 + 1)-th, or the third, site of
permutation 213, the result is permutation 2413).

Dijkstra implicitly used a relation from S En to Pn to design generating algorithm for Pn,
so that the next permutation is obtained by an adjacent transposition to the current gen-

98 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

erated permutation [Dij76]. Dijkstra’s algorithm generates looplessly S En according to
RGC order. Each generated sequence is converted into the corresponding permutation.
More precisely, it initally generates length-n sequence 0 . . . 0, which mapped to the initial
permutation 12 . . . n; and to obtain the next permutation, the change between two suc-
cessive subexcedant sequences is converted as transposition between two successive
permutations. With this scheme, the output is exactly the same as that from SJT algo-
rithm. Although it was not stated explicitly, actually the Dijkstra’s list for Pn is induced by
bijection ψ(S En), according to RGC order.

In other words, the list in RGC order for the set S En corresponds with the SJT-list for Pn.
That is, if all sequences in S En is mapped by ψ according to RGC order, then the result is
SJT-list for Pn. See Table 7.2 for example with n = 4.

Rank S En, ψ(S En) Rank S En, ψ(S En)
RGC order RGC order

0 0 0 0 0 1 2 3 4 12 0 1 2 3 4 3 2 1
1 0 0 0 1 1 2 4 3 13 0 1 2 2 3 4 2 1
2 0 0 0 2 1 4 2 3 14 0 1 2 1 3 2 4 1
3 0 0 0 3 4 1 2 3 15 0 1 2 0 3 2 1 4
4 0 0 1 3 4 1 3 2 16 0 1 1 0 2 3 1 4
5 0 0 1 2 1 4 3 2 17 0 1 1 1 2 3 4 1
6 0 0 1 1 1 3 4 2 18 0 1 1 2 2 4 3 1
7 0 0 1 0 1 3 2 4 19 0 1 1 3 4 2 3 1
8 0 0 2 0 3 1 2 4 20 0 1 0 3 4 2 1 3
9 0 0 2 1 3 1 4 2 21 0 1 0 2 2 4 1 3

10 0 0 2 2 3 4 1 2 22 0 1 0 1 2 1 4 3
11 0 0 2 3 4 3 1 2 23 0 1 0 0 2 1 3 4

Table 7.2: The list for S En in RGC order, and its corresponding permutation ψ(S En). The list for
ψ(S En) is actually an SJT-list for P4.

Remark 13:

If two sequences s, t ∈ S En differ in one position, and by +1 or −1 in this position,
then ψ(s) and ψ(t) differ by one transposition (i.e., they differ in two positions).

7.2. ADDITIONAL NOTIONS 99

7.2.3/ REGULAR PATTERN AND SUCCESSION FUNCTION

Definition 12: Regular pattern

A set of patterns T is said to be regular if it satisfies all of the following consider-
ations:

1. P1(T) = {1} and P2(T) = {12, 21}.

2. All active sites are right justified (i.e., all the sites to the right of an active
sites are also active).

3. For any π ∈ Pn(T), the number of active sites of π can be determined by
χT (i, k), where:

• k is the number of children of π’s parent (i.e., π and its siblings), and

• i is the position (from the right) of the largest symbol in π.

Equivalently, χT (i, k) is the number of π’s children. We say that χT (i, k) is a succession
function.

We consider the set of regular patterns presented in Table 7.3 along with their correspond-
ing succession functions. Note that some of these succession functions (particularly for
T being T1, T2, or T3) do not depend on k, and for the generality, we keep k being the
parameter of the function in those cases .

Set of patterns Succession function Cardinality
T χT (i, k) of Pn(T)

T1 = {312, 321} χT1(i, k) = 2 2n−1

T2 = {321, 3412, 4123} χT2(i, k) =

{
3 if i = 1,
2 otherwise.

n-th Pell
number

T3 = {312, 3421, 4321} χT3(i, k) =

{
3 if i = 2,
2 otherwise.

n-th Pell
number

T4 = {p12 . . . (p − 1), 321, 231}
χT (p)

4
(i, k) =

k + 1 if i = 1 and
k < p − 1,

k if i = 1 and
k = p − 1,

1 otherwise.

(n + p − 2)-th
Fibonacci
number
of order
(p − 1)

Table 7.3: Succession functions χT (i, k) for the considered set of patterns T .

7.2.4/ THE RESTRICTED INVERSION TABLES

We denote by S En(T) the set of inversion tables of Pn(T). Also, we denote by θT (u, k)

the restriction function of S En(T) such that for any s = s1s2 . . . sn−1u ∈ S En(T), we have
sx ∈ S En+1(T) for any x, 0 ≤ x ≤ θT (u, k). The parameter k represents the number of

100 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

children of s’s parent (i.e., π and its siblings), and k = 2 if n = 1 (recall that k is defined
analogously in the context of succession function χT (i, k)). Although it might happen that
for some T , θT does not depend on k, and for the reason of generality, we keep k being
function parameter of such θT .

The restriction function θT (u, k) is obtained from its corresponding succession function
χT (i, k) by replacing i by u, and subtract all the assigned values by 1 (this due to the
property that the site numbers in the permutation start from 1, while the symbols in the
inversion table start from 0). See Table 7.4 for restriction functions for our considered
S En(T). Figure 7.1 shows the scheme we use to generate Pn(T), that is by restricting S En

subject to θT , and then mapping S En(T) to Pn(T) by ψ.

Set of patterns Restriction function
T θT (u, k)

T1 = {312, 321} θT1(u, k) = 1.

T2 = {321, 3412, 4123} θT2(u, k) =

{
2 if u = 0,
1 otherwise.

T3 = {312, 3421, 4321} θT3(u, k) =

{
2 if u = 1,
1 otherwise.

T (p)
4 = {p12 . . . (p − 1), 321, 231} θT (p)

4
(u, k) =

k + 1 if u = 0 and k < p − 2
k if u = 0 and k = p − 2
0 otherwise.

Table 7.4: Restriction functions for the set of patterns T .

S En S En(T)

Pn Pn(T)

subject to θT

ψ

subject to χT

ψ

Figure 7.1: Our scheme for generating Pn(T) (shown by thick arrows), that is, by restricting S En

subject to θT , and then mapping S En(T) to Pn(T) by ψ.

7.3. THE GRAY CODES 101

7.3/ THE GRAY CODES

7.3.1/ THE RESULTS FOR REGULAR PATTERNS

RGC order induces a prefix partitioned list, that is, the sequences having the same prefix
are contiguous; and we denote by last(s1s2 . . . sm | L) (resp. first(s1s2 . . . sm | L)) the last
(resp. the first) sequence having prefix s1s2 . . . sm in the list L. Recall that SEn denotes the
list of length-n subexcedant sequences with respect to RGC order. Now, we consider T

being either T1, T2, T3, or T (p)
4 . If s and t, with s ≺ t, are successive sequences in SEn(T)

having the longest common prefix s1s2 . . . sm−1, then |sm− tm| = 1, and for all i, m+1 ≤ i ≤ n,
we have the following property

• s = last(s1s2 . . . sm−1sm | SEn(T)), where si =

 θT (si−1, k) if
∑i−1

j=1 s j is even,

0 otherwise;

• t = first(t1t2 . . . tm−1tm | SEn(T)), where ti =

 θT (ti−1, k) if
∑i−1

j=1 t j is odd,

0 otherwise;
Note that s1s2 . . . sm−1 = t1t2 . . . tm−1.

The property above determines the form of two successive sequences s and t in SEn(T),
according to a particular restriction function θT (u, k) considered in Table 7.4. Remark
14, 15, and 16 in the following give the form of s and t in SEn(T2), SEn(T3), SEn(T (p)

4),
respectively. In SEn(T (p)

4), there are several possible forms for the pair of s and t; and
in this case we only consider the worst case form (i.e., that give the largest Hamming
distance).

In particular, first(00 | SEn(T)) = 00 . . . 0 and last(01 | SEn(T)) = 010 . . . 0; and by Remark
13, it follows that the first and the last permutations in Pn(T) differ in one transposition
(which are, respectively, 123 . . . n and 2134 . . . n). Thus, if Pn(T) is a Gray code, then it is
also a circular Gray code.

In general, our strategy to investigate the Graycodeness are done in two steps: firstly by
determining the worst case form of successive sequences s, t ∈ SEn(T); and then find
the form of their corresponding permutations. By finding the latter, the Graycodeness of
Pn(T) can be determined. In the upcoming explanation, we will be using notation a∞,
which denotes the infinite copy of symbol a, i.e., a∞ = aaa

PERMUTATIONS AVOIDING T1 = {312, 321}

Proposition 32:

SEn(T1) is a 1-Gray code.

Proof. SEn(T1) is equal to the list of length-n binary sequences that begin with 0, with
respect to RGC order. So that two successive sequences in SEn(T1) differ in one position

102 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

(and by 1 or −1 in this position). �

Combining Proposition 32 and Remark 13, we have the following proposition.

Proposition 33:

Pn(T1) is a 2-Gray code.

PERMUTATIONS AVOIDING T2 = {321, 3412, 4123}

Remark 14:

Let s, t be two successive sequences in SEn(T2). Let a be the longest common
prefix of both s and t. Then, we have {s, t} = {au, av}, where u and v are prefixes
of appropriate length of 0210∞ and 1100∞, respectively.

Proposition 34:

Pn(T2) is a 4-Gray code.

Proof. Let s, t be two successive sequences in SEn(T2), and s ≺ t. It follows that σ = ψ(s)

and τ = ψ(t) are successive permutations in Pn(T2). Let m be the leftmost position where
s, t differ; this implies ψ(s1s2 . . . sm−1) = ψ(t1t2 . . . tm−1) = σ1σ2 . . . σm−1. We suppose that∑m−1

i=1 si is even. By Remark 14, we have:
• σ = ψ(s1s2 . . . sm−10210 . . . 0) = σ1σ2 . . . σm−2(m + 1)σm−1(m + 2)(m)(m + 3)(m + 4) . . . n, and
• τ = ψ(t1t2 . . . tm−1110 . . . 0) = σ1σ2 . . . σm−2(m)(m + 1)σm−1(m + 2)(m + 3)(m + 4) . . . n.
It follows that σ and τ differ in at most 4 positions.

The case when
∑m−1

i=1 si being odd is proven analogously by exchanging the form of σ and
τ. �

PERMUTATIONS AVOIDING T3 = {312, 4321, 3421}

Remark 15:

Let s, t be two successive sequences in SEn(T3). Let a be the longest common
prefix of both s and t. Then, we have {s, t} ∈ {au, av}, where u and v are prefixes
of appropriate length of 1210∞ and 0100∞, respectively.

Proposition 35:

Pn(T3) is a 4-Gray code.

7.3. THE GRAY CODES 103

Proof. Let s, t be two successive sequences in SEn(T3) and s ≺ t. It follows that σ = ψ(s)

and τ = ψ(t) are successive permutations in Pn(T3). Let m be the leftmost position where
s, t differ; this implies ψ(s1s2 . . . sm−1) = ψ(t1t2 . . . tm−1) = σ1σ2 . . . σm−1. We suppose that∑m−1

i=1 si is even. By Remark 15, we have:
• σ = ψ(s1s2 . . . sm−10100 . . . 0) = σ1σ2 . . . σm−2σm−1(m + 1)(m)(m + 2)(m + 3)(m + 4) . . . n, and
• τ = ψ(t1t2 . . . tm−11210 . . . 0) = σ1σ2 . . . σm−2(m + 1)(m)(m + 2)σm−1(m + 3)(m + 4) . . . n.
It follows that σ and τ differ in at most 4 positions.

The case when
∑m−1

i=1 si being odd is proven analogously by exchanging the form of σ and
τ. �

PERMUTATIONS AVOIDING T (p)
4 = {p12 . . . (p − 1), 321, 231}

By the definition of θT (p)
4

(u, k) we have the fact that s = s1s2 . . . sn−1u ∈ S En(T (p)
4) has several

children if u = 0, otherwise s has only one child. It follows that if s and t are successive
sequences in SEn(T (p)

4), then their longest common prefix is ended by 0. To investigate
the Graycodeness of P(T (p)

4), we priorly need the form of s and t for p = 3 and p ≥ 4.

Remark 16:

Let s, t be two successive sequences in SEn(T (3)
4). Let a be the longest common

prefix of both s and t. Then, we have {s, t} = {au, av}, where u and v are prefixes
of appropriate length of 1010∞ and 0100∞, respectively.

Remark 17:

Let s, t be two successive sequences in SEn(T (p)
4), for a fixed p ≥ 4. Let a be the

longest common prefix of both s and t. Then, their largest Hamming distance
happens when {s, t} = {au, av}, where u and v are, respectively, prefixes of ap-
propriate length of 0(p − 2)010∞ and 10100∞ if p ≥ 4 and even, or 0(p − 3)010∞

and 10100∞ if p ≥ 5 and odd.

Proposition 36:

Pn(T (3)
4) is a 4-Gray code.

Proof. Let s, t be two successive sequences in SEn(T (3)
4) and s ≺ t. It follows that σ = ψ(s)

and τ = ψ(t) are successive permutations in Pn(T (3)
4). Let m be the leftmost position where

s, t differ; this implies ψ(s1s2 . . . sm−1) = ψ(t1t2 . . . tm−1) = σ1σ2 . . . σm−1. We suppose that∑m−1
i=1 si is even. By Remark 16, we have:
• σ = ψ(s1s2 . . . sm−10100 . . . 0) = σ1σ2 . . . σm−2σm−1(m + 1)(m)(m + 2)(m + 3)(m + 4) . . . n, and
• τ = ψ(t1t2 . . . tm−11010 . . . 0) = σ1σ2 . . . σm−2(m)σm−1(m + 2)(m + 1)(m + 3)(m + 4) . . . n.

104 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

It follows that σ and τ differ in at most 4 positions.

The case when
∑m−1

i=1 si being odd is proven analogously by exchanging the form of σ and
τ. �

Proposition 37:

For p ≥ 4, Pn(T (p)
4) is a 2 · b p

2 c-Gray code.

Proof. Let s, t be two successive sequences in SEn(T (p)
4) and s ≺ t. It follows that σ = ψ(s)

and τ = ψ(t) are successive permutations in Pn(T (p)
4). Let m be the leftmost position where

s, t differ; this implies ψ(s1s2 . . . sm−1) = ψ(t1t2 . . . tm−1) = σ1σ2 . . . σm−1. We suppose that∑m−1
i=1 si is even, and that p ≥ 4 and p is even. By Remark 17, we have:
• σ = ψ(s1s2 . . . sm−10(p−2)010 . . . 0) = σ1σ2 . . . σm−(p−2)(m+1)σm−(p−2)−1 . . . σm−2σm−1(m)(m+

3)(m + 2)(m + 4) . . . n, and
• τ = ψ(t1t2 . . . tm−11010 . . . 0) = σ1σ2 . . . σm−(p−2)σm−(p−2)−1 . . . σm−2(m)σm−1(m + 2)(m + 1)(m +

3)(m + 4) . . . n.
Based on the worst case form above, σ and τ differ in at most p positions if p ≥ 4 and p

is even.

Now, we will prove the case when p ≥ 5 and p is odd. Let p = q + 1, where q ≥ 4

and q is even; let s, t be two successive sequences in SEn(T (p)
4) and s ≺ t; and let σ,

τ, m be defined analogously as in the first paragraph of this proof. We suppose that∑m−1
i=1 si is even. By Remark 17, we have σ = ψ(s1s2 . . . sm−10(p − 3)010 . . . 0) and τ =

ψ(t1t2 . . . tm−11010 . . . 0). Since p = q + 1, we can express σ in terms of q, that is, σ =

ψ(s1s2 . . . sm−10(q − 2)010 . . . 0). It follows that σ and τ have the same form as described in
the first paragraph; and so, they differ in at most q positions. This confirms that σ and τ
differ in at most p − 1 positions if p ≥ 5 and p is odd.

The case when
∑m−1

i=1 si being odd is proven analogously by exchanging the form of σ and
τ. �

7.3.2/ THE RESULTS FOR SOME REVERSE AND INVERSE REGULAR PATTERNS

Firstly, we denote by T rev the set of patterns obtained by reversing the patterns in T , and
by T inv that obtained by inversing the patterns in T . More precisely, T rev

1 = {213, 123},
T rev

2 = {123, 2143, 3214}, and T (p)inv
4 = {312, 321, 23 . . . p1}. In this section, we will show that

permutations avoiding either T rev
1 , T rev

2 , or T (p)inv
4 also yield Gray code.

Since the active sites in permutations avoiding T1 or T2 are right justified (recall Definition
12), it follows that reversing T1 or T2 produces active sites which are left justified. Based
on this property, the form of successive sequences in SEn(T rev) is given by complementing
the form of s and t in SEn(T) provided in Section 7.3.1.

7.3. THE GRAY CODES 105

Formally, if s and t, with s ≺ t, are successive sequences in SEn(T rev) having the longest
common prefix s1s2 . . . sm−1, then we have the property that |sm − tm| = 1, and
• s = last(s1s2 . . . sm−1sm | SEn(T rev)),

where si =

 i − 1 if
∑i−1

j=1 s j is even,

i − 1 − θT ((i − 1) − si−1, k) otherwise;
• t = first(t1t2 . . . tm−1tm | SEn(T rev)),

where ti =

 i − 1 if
∑i−1

j=1 t j is odd,

i − 1 − θT ((i − 1) − ti−1, k) otherwise;
for all i, m + 1 ≤ i ≤ n.

The property above determines the form of two successive sequences s and t in SEn(T rev
1)

and SEn(T rev
2), as shown in Remark 18 and 19, respectively.

In [Bar06] was shown that Pn(T (p)inv
4) correspond with the set of length-(n−1) binary words

avoiding p − 1 consecutive ones (see also earlier result in [Vaj01]). If we prepend such
binary words by a 0, then we obtain the set of length-n binary words beginning by 0

and avoiding p − 1 consecutive ones, which are identical with S En(T (p)inv
4), the inversion

tables of Pn(T (p)inv
4). Based on this restriction, we can easily determine the form of two

successive sequences in SEn(T (p)inv
4), as shown in Proposition 40. The set Pn(T (p)inv

4) is
enumerated by (n + p − 2)-th Fibonacci number of order (p − 1).

PERMUTATIONS AVOIDING T rev
1 = {213, 123}

The following proposition gives the forms of any two successive words in S En(T rev
1) listed

in RGC order.

Remark 18:

Let s, t be two successive sequences in SEn(T rev
1), and m is the leftmost position

where they differ. Let a be the longest common prefix of both s and t. Then, we
have {s, t} = {a(m − 1)u, a(m − 2)u}, where u is the prefix of appropriate length of
(m − 1)m(m + 1)(m + 2)

Combining Remark 18 and Remark 13, we have the following proposition.

Proposition 38:

Pn(T rev
1) is a 2-Gray code.

PERMUTATIONS AVOIDING T rev
2 = {123, 2143, 3214}

The following proposition gives the forms of any two successive words in S En(T rev
2) listed

in RGC order.

106 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

Remark 19:

Let s, t be two successive sequences in SEn(T rev
2), and m is the leftmost position

where they differ. Let a be the longest common prefix of both s and t. Then,
we have {s, t} = {au, av}, where u and v are prefixes of appropriate length of
(m − 1)(m − 2)(m + 1)w and (m − 2)(m − 1)(m)w, respectively. In addition, w =

(m + 2)(m + 1)(m + 4)(m + 3)(m + 6)(m + 5)

Proposition 39:

Pn(T rev
2) is a 4-Gray code.

Proof. Let s, t be two successive sequences in SEn(T rev
2) and s ≺ t. It follows that σ = ψ(s)

and τ = ψ(t) are successive permutations in Pn(T rev
2). Let m be the leftmost position where

s, t differ; this implies ψ(s1s2 . . . sm−1) = ψ(t1t2 . . . tm−1) = σ1σ2 . . . σm−1. We suppose that
n = m + 2 and

∑m−1
i=1 si is even. By Remark 19, we have:

• σ = ψ(s1s2 . . . sm−1(m − 2)(m − 1)(m)) = σ1(m + 2)(m + 1)(m)σ2 . . . σm−1, and
• τ = ψ(t1t2 . . . tm−1(m − 1)(m − 2)(m + 1)) = (m + 2)(m)σ1(m + 1)σ2 . . . σm−1.
Based on the worst case form above, σ and τ differ in at most 4 positions. It is routine
to check that if n > m + 2, the the two successive permutations differ also in at most 4
positions. �

PERMUTATIONS AVOIDING T (p)inv
4 = {312, 321, 23 . . . p1}

The following proposition gives the forms of any two successive words in S En(T (p)inv
4) listed

in RGC order.

Proposition 40:

Let s, t be two successive sequences in SEn(T (p)inv
4). Let a be the longest com-

mon prefix of both s and t. The worst case form of s, t is given by {s, t} = {au, av},
where u and v are prefixes of appropriate length of 1010∞ and 0100∞, respec-
tively.

Proof. Suppose that
∑|a|

i=1 ai is even. Clearly, s = last(a | SEn(T (p)inv
4)) = a0100 . . . 0, and

t = first(a | SEn(T (p)inv
4)). Since the sequence avoids p − 1 consecutive ones, there are

two possibilities for t: if 1p−3 is the suffix of a, then t = a1010 . . . 0, otherwise t = a110 . . . 0.
It is routine to check that 1p−2 can not be suffix of a, since in this case, a will be no longer
the longest common prefix of s and t. �

The forms of two successive sequences in SEn(T (p)inv
4) are exactly the same with those of

SEn(T (3)
4) (see Remark 16). This similarity implies the following proposition, whose proof

7.4. ALGORITHMIC CONSIDERATIONS 107

is similar with that of Proposition 36.

Proposition 41:

For a p ≥ 3, Pn(T (p)inv
4) is a 4-Gray code.

It is easy to check that first(00 | SEn(T (p)inv
4)) = 00 . . . 0 and last(01 | SEn(T)) = 010 . . . 0;

and this property implies Pn(T (p)inv
4) being also a circular Gray code.

7.4/ ALGORITHMIC CONSIDERATIONS

The algorithm GENRSE (GENerate Restricted SubExcedant sequences) in Figure 7.2a
generates S Ek(T) (the inversion tables of permutations in Pk(T)), with k goes from 1 to n,
with respect to RGC order. GENRSE is actually a slight modification of GEN1 (see Figure
5.1 in Chapter 5). The main difference is that GENRSE uses particular function THETA X

(line 6), instead of OMEGA X as that in GEN1. We have shown that GEN1 is efficient as
long as OMEGA X runs in O(1). In the current case, all the particular functions THETA T1,
THETA T2, THETA T3, and THETA T4 presented in Figure 7.2b runs in O(1). Analogously,
as long as THETA X runs in O(1), one can verify that GENRSE satisfies the CAT principle
stated in Section 3.3.1, and so it is an efficient generating algorithm.

The algorithm GENPAP (GENerate Pattern Avoiding Permutations) in Figure 7.3 is actu-
ally GENRSE with some additional commands so that the output is the SJT-list for Pn(T).
This is done by adding line 4, 11, and 14. The current generated inversion table is mapped
by function PSI (works as function ψ defined in Section 7.2.2) to its corresponding permu-
tation. The function UNDOPSI is needed, since the insertion of an integer (done by PSI)
in a particular site (thus, a particular permutation is generated) must be undone before
the same integer is inserted in the next site (in order to generate the next permutation).
Skipping UNDOPSI will generate permutations having the same integer appearing more
than once, which is forbidden. GENPAP remains CAT as long as the functions PSI and
UNDOPSI runs in O(1).

The main call of both algorithms are, respectively, GENRSE(1, 0, 0, 0) and
GENPAP(1, 0, 0, 0).

108 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

1 procedure GENRSE(k, x, dir, v)
2 global: n, s;
3 sk := x;
4 if k = n then PRINT(s);
5 else if k = 1 then u := 2;
6 else u :=THETA X(x, v);
7 if dir mod 2 = 0
8 then for i := 0 to u do
9 GENRSE(k + 1, i, i, u);

10 else for i := u downto 0 do
11 GENRSE(k + 1, i, i + 1, u);
12 end.

(a)

(i) 1 function THETA T1(s, k)
2 return 1;
3 end.

(ii) 1 function THETA T2(s, k)
2 if s = 0 then u := 1;
3 else u := 0;
4 return u;
5 end.

(iii) 1 function THETA T3(s, k)
2 if s = 1 then u := 2;
3 else u := 1;
4 return u;
5 end.

(iv) 1 function THETA T4(s, k)
2 if s = 0 and k < p − 2
3 then u := k + 1;
4 else if s = 0 and
5 k = p − 2
6 then u := k;
7 else u := 0;
8 return u;
9 end.

(b)

Figure 7.2: (a) Algorithm GENRSE, generating the list SEn(T); (b) Particular function THETA X
called by GENRSE, and returning the value for θT (sn, k), if T is one of the sets of patterns: (i) T1,
(ii) T2, (iii) T3, and (iv) T (p)

4 . The initial call is GENRSE(1, 0, 0, 0).

1 procedure GENPAP(k, x, dir, v)
2 global: n, s, p;
3 sk := x;
4 p :=PSI(sk, k);
5 if k = n then PRINT(p);
6 else if k = 1 then u := 2;
7 else u :=THETA X(x, v);
8 if dir mod 2 = 0
9 then for i := 0 to u do

10 GENPAP(k + 1, i, i, u);
11 p :=UNDOPSI(sk+1);
12 else for i := u downto 0 do
13 GENPAP(k + 1, i, i + 1, u);
14 p :=UNDOPSI(sk+1);
15 end.

Figure 7.3: Algorithm GENPAP, generating the list Pn(T). The initial call is GENPAP(1, 0, 0, 0).

7.5. GRAPH THEORETIC CONSEQUENCES 109

7.5/ GRAPH THEORETIC CONSEQUENCES

The k-th power transposition graph of a set of permutation Pn is a graph whose vertices
represent permutations in Pn, and edges connecting the vertices for permutations differing
by at most k transposition. Particularly for k = 1, we refer the first power transposition
graph of a set of permutation Pn simply as the transposition graph, that is, a graph whose
vertices represent permutations in Pn, and edges connecting the vertices for permutations
differing by a transposition.

A circular Gray code is associated with a Hamiltonian cycle in a transposition graph. If a
list of permutations (π1,π2, . . . ,πN) is a circular k-Gray code, then the Hamiltonian cycle in
their corresponding k-th power transposition graph is given by π1π2 . . . πNπ1.

It is routine to check that if two permutations s and t differ in k position, then it needs at
most k−1 transposition for transforming s to t. Recall the third paragraph of Section 7.3.1
and the paragraph after the proof of Proposition 41, that Pn(T) is a circular Gray code
for T being either T1, T2, T3, T (p)

4 , or T (p)inv
4 ; and since a circular Gray code is associated

with a Hamiltonian cycle in a transposition graph, it follows that the following transposition
graphs are Hamiltonian:

• the transposition graphs of permutations Pn(T1),

• the third power of the transposition graphs of permutations Pn(T), where T is either
T2, T3, T (3)

4 , or T (p)inv
4 (with p ≥ 3), and

• the (2 · b p
2 c − 1)-th power (with p ≥ 4) of the transposition graphs of permutations

Pn(T (p)
4).

Figure 7.4 and 7.7 show the transposition graphs of P4(T1) and P5(T (3)
4), respectively.

Their Hamiltonian cycles are obtained according to the Gray codes shown in Table 7.5.

P4(T1) P5(T (3)
4)

1234 12345
1243 12354
1342 12435
1324 13254
2314 13245
2341 21435
2143 21354
2134 21345

Table 7.5: The list P4(T1) and P5(T (3)
4), which is a 2-Gray code and a 4-Gray code, respectively.

110 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

1234 1243

13421324

2314 2341

21432134

Figure 7.4: Transposition graph of P4(312, 321), with Hamiltonian cycle.

12345 12354

12435

13254

1324521435

21354

21345

Figure 7.5: Transposition graph of P5(312, 321, 231).

7.5. GRAPH THEORETIC CONSEQUENCES 111

12345 12354

12435

13254

1324521435

21354

21345

Figure 7.6: 2nd power transposition graph of P5(312, 321, 231).

12345 12354

12435

13254

1324521435

21354

21345

Figure 7.7: 3rd power transposition graph of P5(312, 321, 231), with Hamiltonian cycle.

112 CHAPTER 7. GRAY CODES FOR SOME PATTERN AVOIDING PERMUTATIONS

7.6/ SUMMARY

We use the inversion tables to investigate the Graycodeness of an SJT-list of pattern
avoiding permutations. Our approach works for some regular patterns and some of their
reverse or inverse. More precisely, we show the Graycodeness of the SJT-list for Pn(T),
where T is either T1, T2, T3, T (p)

4 , T rev
1 , T rev

2 , or T (p)inv
4 . For this purpose we introduce

the notion “restricted inversion tables”, which is an alternative representation of pattern
avoiding permutations. The results are resumed in Table 7.6.

Set of patterns Graycodeness Cardinality
T of Pn(T) of Pn(T)

T1 = {312, 321} 2-Gray code 2n−1

T2 = {321, 3412, 4123} 4-Gray code n-th Pell number
T3 = {312, 3421, 4321} 4-Gray code n-th Pell number
T (3)

4 = {312, 321, 231} 4-Gray code (n + 1)-th Fibonacci
T (p)

4 = {p12 . . . (p − 1), 321, 231}, 2 · b p
2 c-Gray code (n + p − 2)-th Fibonacci

p ≥ 4 of order (p − 1)
T rev

1 = {213, 123} 2-Gray code 2n−1

T rev
2 = {123, 2143, 3214} 4-Gray code n-th Pell number

T (p)inv
4 = {312, 321, 23 . . . p1}, 4-Gray code (n + p − 2)-th Fibonacci

p ≥ 3 of order (p − 1)

Table 7.6: The Graycodeness of Pn(T).

We also provide two efficient generating algorithms: GENRSE, that generates permuta-
tions represented by inversion tables; and GENPAP that generates permutations repre-
sented by one line notations. The two algorithms are based on efficient algorithm GEN1
discussed previously in Chapter 5.

Finally, we show the graph theoretic consequence for T being either T1, T2, T3, T (p)
4 , or

T (p)inv
4 . More precisely, if Pn(T) is a k-Gray code and circular, then the (k − 1)-th power

transposition graph of Pn(T) is Hamiltonian.

III
CONCLUSION

113

8

CONCLUSION AND FUTURE WORKS

We investigate the RGC-based order relations on restricted classes of words and per-
mutations as the generalization of the original RGC order. The variations of RGC order
we consider in our work might have the advantage that they induce more restrictive Gray
codes and more performable generating algorithms than those produced by the original
RGC order. Even in some cases, the RGC based order might yield Gray code for a com-
binatorial class when other techniques fail to do so (such as, for example, the reflectable
languages technique). In the case of statistics-defined restricted growth sequences, the
Co-RGC order induces a more restrictive Gray code for ascent sequences and restricted
growth functions, compared to that induced by the classical RGC order. It also allows the
possibility for designing faster generating algorithm (for instance, by parallelization). In
the case of factor avoiding q-ary words, the application of both RGC order for even q and
Dual RGC order for odd q yield Gray codes for them; and for factors belonging to a few
particular cases, the desired Gray code is obtained by applying a simple transformation
technique to such factors.

In the same spirit, we use the bijective approach to define Gray code for pattern avoiding
permutations. By representing permutations as inversion tables, the Steinhaus-Johnson-
Trotter list of permutations of a given length can be viewed as a list of subexcedant se-
quences with respect to RGC order. In particular, our technique applies for some regular
patterns. The main ingredients we are using in the investigation of the Graycodeness are
the restriction function, the classical bijection from inversion tables to permutations, and
the list of inverison tables with respect to RGC order.

The subject of defining Gray code with respect to the RGC-based order relations remains
widely open. Some of the contemporary results are already given in a brief state of the
art. Further works can be established such as defining Gray code for other classes of
statistics-defined restricted growth sequences (for instance, for statistics ‘level’ or ‘de-
scent’; or even other combinatorial classes) by using existing RGC-based order as we
present in this thesis, or else by introducing new variations of RGC order if considered
necessary. Some alternative further directions are to investigate other aspects of enumer-
ative combinatorics (such as ranking/unranking objects, random generation, and object

115

116 CHAPTER 8. CONCLUSION AND FUTURE WORKS

searching) based on the obtained Gray code, and their implementations to other research
domains.

BIBLIOGRAPHY

[Baj07] D. Bajic. On construction of cross-bifix-free kernel sets. In 2nd MCM COST
2100, TD(07)237, Lisbon, Portugal, February 2007.

[Baj14] D. Bajic. A simple suboptimal construction of cross-bifix-free codes. Crypt.
and Communications, 6(1):27–37, 2014.

[Bar06] J.-L. Baril. ECO generation for p generalized Fibonacci and Lucas permuta-
tions. J. Pure Math. and Applications (Pu.M.A.), 17:19–37, 2006.

[Bar07] J.-L. Baril. Gray code for permutations with a fixed number of cycles. Discr.
Mathematics, 30(13):1559–1571, 2007.

[Bar09] J.-L. Baril. More restrictive Gray codes for some classes of pattern avoiding
permutations. Inf. Proc. Letters, 109(14):799–804, 2009.

[Bar13] J.-L. Baril. Gray code for permutations with a fixed number of left-to-right
minima. Ars Combinatoria, 111:225–239, 2013.

[BBP06] E. Barcucci, A. Bernini, and M. Poneti. From Fibonacci to Catalan permuta-
tions. Pu.M.A., 17(1–2):1–17, 2006.

[BBPV13] A. Bernini, S. Bilotta, R. Pinzani, and V. Vajnovszki. Two Gray codes for q-
ary k-generalized Fibonacci strings. In ICTCS13, Palermo, Italy, September
2013.

[BER76] J.R. Bitner, G. Ehrlich, and E.M. Reingold. Efficient generation of the Binary
Reflected Gray Code and its applications. Comm. of the ACM, 19:517–521,
1976.

[BGPP07] A. Bernini, E. Grazzini, E. Pergola, and R. Pinzani. A general exhaustive
generation algorithm for Gray structures. Acta Informatica, 44(5):361–376,
2007.

[Big79] N.L. Biggs. The roots of combinatorics. Historia Mathematica, 6:109–136,
1979.

[BLPP99] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: A methodology
for the enumeration of combinatorial objects. J. of Diff. Eq. and Applications,
5:435–490, 1999.

117

118 BIBLIOGRAPHY

[BMCDK10] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. (2 + 2)-free
posets, ascent sequences and pattern avoiding permutations. J. of Comb.
Theo. Ser. A, 7:884–909, 2010.

[BMPP12] S. Bilotta, D. Merlini, E. Pergola, and R. Pinzani. Pattern 1 j+10 j avoiding
binary words. Fundamenta Informaticae, 117:35–55, 2012.

[BPP12a] S. Bilotta, E. Pergola, and R. Pinzani. A construction for a class of binary
words avoiding 1 j0i. Pu.M.A., 23(2):81–102, 2012.

[BPP12b] S. Bilotta, E. Pergola, and R. Pinzani. A new approach to cross-bifix-free
sets. IEEE Trans. on Inf. Theory, 58:4058–4063, 2012.

[BPR09] J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata (Encyclo-
pedia of Mathematics and its Applications). Cambridge University Press,
Cambridge, 2009.

[BS00] E. Babson and E. Steingrı́msson. Generalized permutation patterns and a
classification of the Mahonian statistics. Sém. Lothar. de Combinatoire, 44,
2000.

[BV04] J.-L. Baril and V. Vajnovszki. Gray code for derangements. Discr. App. Math-
ematics, 140:207–221, 2004.

[BV05] J.-L. Baril and V. Vajnovszki. Minimal change list for Lucas strings and some
graph theoretic consequences. Theor. Comp. Science, 346:189–199, 2005.

[CDD+13] W.Y.V. Chen, A.Y.L. Dai, T. Dokos, T. Dwyer, and B.E. Sagan. On 021-
avoiding ascent sequences. Electr. J. of Combinatorics, 20:P76, 2013.

[Cha89] P.J. Chase. Combination generation and Graylex ordering. Congr. Numer.,
69:215–242, 1989.

[CHL07] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cam-
bridge University Press, Cambridge, 2007.

[CKPW13] Y.M. Chee, H.M. Kiah, P. Purkayastha, and C. Wang. Cross-bifix-free codes
within a constant factor of optimality. IEEE Trans. on Inf. Theory, 59:4668–
4674, 2013.

[Com74] L. Comtet. Advanced Combinatorics, The Art of Finite and Infinite Expan-
sions. D. Reidel, Dordrecht, Netherlands, 1974.

[Der75] N. Dershowitz. A simplified loop-free algorithm for generating permutations.
Nordisk Tidskr. Informationsbehandling (BIT), 15(2):158–164, 1975.

[DF98] I. Dutour and J.-M. Fédou. Object grammars and random generation. Discr.
Math. and Theor. Comp. Science, 2:47–61, 1998.

BIBLIOGRAPHY 119

[DFMV08] W.M.B. Dukes, M.F. Flanagan, T. Mansour, and V. Vajnovszki. Combinato-
rial Gray code for classes of pattern avoiding permutations. Theor. Comp.
Science, 396:35–49, 2008.

[Dij76] E.W. Dijkstra. On a gauntlet thrown by David Gries. Acta Informatica, 6:357–
359, 1976.

[dLvWW00] A.J. de Lind van Wijngaarden and T.J. Willink. Frame synchronization us-
ing distributed sequences. IEEE Trans. on Communications, 48:2127–2138,
2000.

[DS11] P. Duncan and E. Steingrı́msson. Pattern avoidance in ascent sequences.
Electr. J. of Combinatorics, 18:P226, 2011.

[Ehr73] G. Ehrlich. Loopless algorithm for generating permutations, combinations,
and other combinatorial configurations. J. ACM, 20(3):500–513, 1973.

[EM05] E.S. Egge and T. Mansour. Restricted permutations, Fibonacci numbers,
and k-generalized Fibonacci numbers. Integers: Electr. J. of Comb. Numb.
Theory, 5:A1, 2005.

[Er84] M.C. Er. On generating the n-ary reflected Gray code. IEEE Trans. on Com-
puters, 33(8):739–741, 1984.

[Eve73] S. Even. Algorithmic Combinatorics. Macmillan, New York, 1973.

[FH09] D. Foata and G.-N. Han. New permutation coding and equidistribution of
set-valued statistics. Theor. Comp. Science, 410(38–40):3743–3750, 2009.

[GO81a] L.J. Guibas and A.M. Odlyzko. Periods in strings. J. of Comb. Theo. Ser. A,
30:19–42, 1981.

[GO81b] L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching, and non-
transitive games. J. of Comb. Theo. Ser. A, 30:183–208, 1981.

[Gra53] F. Gray. Pulse code communication. U.S. Patent 2632058, 1953.

[Hea63] B.R. Heap. Permutations by interchanges. The Comp. Journal, 6:293–294,
1963.

[HM09] S. Heubach and T. Mansour. Combinatorics of compositions and words.
Chapman & Hall/CRC an imprint of Taylor & Francis LLC, 2009.

[JJW80] D. E. White J. Joichi and S. G. Williamson. Combinatorial Gray codes. SIAM
J. on Computing, 9:130–141, 1980.

[Joh63] S.M. Johnson. Generation of permutations by adjacent transposition. Math.
Comp., 17:282–285, 1963.

120 BIBLIOGRAPHY

[Kay76] R. Kaye. A Gray code for set partitions. Inf. Proc. Letters, 5(6):171–173,
1976.

[Kit11] S. Kitaev. Patterns in Permutations and Words. Springer-Verlag, Berlin,
2011.

[Kli81] P. Klingsberg. A Gray code for compositions. J. of Algorithms, 3(1):41–44,
1981.

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM J. on Computing, 6:323–350, 1977.

[Knu68] D.E. Knuth. The Art of Computer Programming, Volume 1. Addison-Wesley,
1968.

[Knu73] D.E. Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley,
1973.

[Knu11] D.E. Knuth. The Art of Computer Programming, Volume 4A. Addison Wesley,
2011.

[Kor01] J.F. Korsh. Loopless generation of up-down permutations. Discr. Mathemat-
ics, 240(1–3):97–122, 2001.

[KR92] C.W. Ko and F. Ruskey. Generating permutations of a bag by interchanges.
Inf. Proc. Letters, 41(5):263–269, 1992.

[KT12] M.T. Keller and W.T. Trotter. Applied Combinatorics. Georgia Institute of
Technology, 2012.

[Lai88] C.-A Laisant. Sur la numération factorielle, application aux permutations.
Bulletin de la Soc. Math. de France, 16:176–183, 1888.

[Leh60] D.H. Lehmer. Teaching combinatorial tricks to a computer. Proc. Sympos.
Appl. Math. Combinatorial Analysis, Amer. Math. Soc., 10:179–193, 1960.

[Lot83] M. Lothaire. Combinatorics on Words (Encyclopedia of Mathematics and its
Applications). Addison-Wesley, Reading, Massachussets, 1983.

[Lot05] M. Lothaire. Applied Combinatorics on Words. Cambridge University Press,
New York, 2005.

[LS09] Y. Li and J. Sawada. Gray codes for reflectable languages. Inf. Proc. Letters,
109(5):296–300, 2009.

[Lud81] J.E. Ludman. Gray code generation for MPSK signals. IEEE Trans. on Com-
munications, 29:1519–1522, 1981.

BIBLIOGRAPHY 121

[Maz10] D.R. Mazur. Combinatorics: A Guided Tour. The Mathematical Association
of America, Washington DC, USA, 2010.

[MN08] T. Mansour and G. Nassar. Gray codes, loopless algorithm and partitions. J.
Math. Model Algor., 7:291–310, 2008.

[MNV11] T. Mansour, G. Nassar, and V. Vajnovzski. Loop-free Gray code algorithm for
the e-restricted growth functions. Inf. Proc. Letters, 111:541–544, 2011.

[MS14] T. Mansour and M. Shattuck. Some enumerative results related to ascent
sequences. Discr. Mathematics, 315–316:29–41, 2014.

[MV13] T. Mansour and V. Vajnovszki. Efficient generation of restricted growth words.
Inf. Proc. Letters, 113(17):613–616, 2013.

[Nie73] P.T. Nielsen. A note on bifix-free sequences. IEEE Trans. on Inf. Theory,
29:704–706, 1973.

[NW75] S. Nijenhuis and H.S. Wilf. Combinatorial Algorithms. Academic Press, New
York, 1975.

[NW78] S. Nijenhuis and H.S. Wilf. Combinatorial Algorithms for Computers and
Calculators. Academic Press, New York, 1978.

[Pud14] L.K. Pudwell. Ascent sequences and the binomial convolution of Catalan
numbers. arXiv:1408.6823v1, 2014.

[Rot81] D. Rotem. Stack sortable permutations. Discr. Mathematics, 33:185–196,
1981.

[RS94] F. Ruskey and C. Savage. Gray codes for set partitions and restricted growth
tails. The Austr. J. of Combinatorics, 10:85–96, 1994.

[RS03] F. Ruskey and J. Sawada. An efficient algorithm for generating necklaces
with fixed density. SIAM J. on Computing, 29:107–112, 2003.

[RSW12] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex
order. J. of Comb. Theory, 119(1):155–169, 2012.

[Rus93] F. Ruskey. Simple Gray codes constructed by reversing sublists. 4th ISAAC
(International Symposium on Algorithms and Computation), and Lecture
Notes in Computer Science, 762:201–208, 1993.

[Rus03] F. Ruskey. Combinatorial Generation. Dept. of Computer Science University
of Victoria, Victoria, 2003.

[RW05] F. Ruskey and A. Williams. Generating combinations by prefix shifts. In
International Computing and Combinatorics Conference, LNCS 3595, pages
570–576, Kunming, China, August 2005.

122 BIBLIOGRAPHY

[RW09] F. Ruskey and A. Williams. The coolest way to generate combinations. Discr.
Mathematics, 309:5305–5320, 2009.

[Sag] http://www.sagemath.org/. Accessed: 2014-09-27.

[Sav97] C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–
629, 1997.

[Sch08] M. Schork. The r-generalized Fibonacci numbers and Polynomial coeffi-
cients. Int. J. Contemp. Math. Sciences, 3:1157–1163, 2008.

[Sed77] R. Sedgewick. Permutation generation methods. Computing Survey,
9(2):137–164, 1977.

[Squ96] M. Squire. Gray codes for A-free strings. The Electr. J. of Combinatorics,
3(1), 1996.

[SS85] R. Simion and F.W. Schmidt. Restricted permutations. Europ. J. of Combi-
natorics, 6:383–406, 1985.

[Sta97] R. Stanley. Enumerative Combinatorics, volume 1. Cambridge University
Press, Cambridge, England, 1997.

[Sta99] R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University
Press, New York, 1999.

[Ste64] H. Steinhaus. One Hundred Problems in Elementary Mathematics. Basic
Books, New York, 1964.

[Tro62] H.F. Trotter. Algorithm 115: Perm. Comm. of the ACM, 5(8):434–435, 1962.

[Vaj01] V. Vajnovszki. A loopless generation of bitstrings without p consecutive ones.
Discr. Math. and Theor. Comp. Science, 2001.

[Vaj03] V. Vajnovszki. A loopless algorithm for generating the permutations of a
multiset. Theor. Comp. Science, 307:415–431, 2003.

[Vaj07] V. Vajnovszki. Gray code order for Lyndon words. Discr. Math. and Theor.
Comp. Science, 9(2):145–152, 2007.

[Vaj08a] V. Vajnovszki. More restrictive Gray codes for necklaces and Lyndon words.
Inf. Proc. Letters, 106:96–99, 2008.

[Vaj08b] V. Vajnovszki. Simple Gray codes constructed by ECO method (extended
abstract). In JMIT, Mons, Belgium, August 2008.

[Vaj12a] V. Vajnovszki. ECO-based Gray codes generation for particular classes of
word (extended abstract). In GASCom 2012, Bordeaux, France, June 2012.

http://www.sagemath.org/

BIBLIOGRAPHY 123

[Vaj12b] V. Vajnovszki. Lehmer code transforms and Mahonian statistics on permuta-
tions. In Permutation Patterns, Strathclyde, Scotland, June 2012.

[vBR92] D.R. van Baronaigien and F. Ruskey. Generating permutations with given
ups and downs. Discr. Appl. Mathematics, 36(1):57–65, 1992.

[VV11] V. Vajnovszki and R. Vernay. Restricted compositions and permutations:
from old to new Gray codes. Inf. Proc. Letters, 111:650–655, 2011.

[Wal00] T. Walsh. Loop-free sequencing of bounded integer compositions. J. of
Comb. Math. and Comb. Computing, 33:323–345, 2000.

[Wal01] T. Walsh. Gray codes for involutions. J. Comb. Math. and Comb. Computing,
36:95–118, 2001.

[Wal08] T. Walsh. Generating Gray codes in O(1) worst-case time per word. In 4th

Discrete Mathematics and Theoretical Computer Science Conference, LNCS
2731, pages 71–88, Dijon, France, July 2008.

[Wel61] M.B. Wells. Generation of permutations by transposition. Math. Comp.,
15:192–195, 1961.

[Wik] Sage (mathematics software). http://en.wikipedia.org/wiki/Sage %
28mathematics software%29. Accessed: 2014-09-27.

[Wil85] S. G. Williamson. Combinatorics for computer science. Computer Science
Press, Rockville, Maryland, 1985.

[Wil88] H.S. Wilf. Generalized Gray codes. In SIAM Conference on Discrete Mathe-
matics, 1988.

[Wil89] H.S. Wilf. Combinatorial Algorithms: an Update. SIAM, 1989.

[Wil09a] A. Williams. Loopless generation of multiset permutations by prefix shifts. In
Symposium on Discrete Algorithms (SODA), New York, USA, January 2009.

[Wil09b] A. Williams. Shift Gray Codes. PhD thesis, University of Victoria, 2009.

http://en.wikipedia.org/wiki/Sage_%28mathematics_software%29
http://en.wikipedia.org/wiki/Sage_%28mathematics_software%29

LIST OF FIGURES

5.1 (a) Algorithm GEN1, generating the list Xn; (b) Particular function OMEGA -
X called by GEN1, and returning the value for ωX(s1s2 . . . sk), if Xn is one of
the sets: (i) S En, (ii) An, (iii) Rn, and (iv) S n. 42

5.2 The tree induced by the initial call GEN1(1, 0, 0, 0) for n = 4 and particular
function OMEGA A, generating the list A4. 43

5.3 Algorithm GEN2, generating the list X̃n. 55

5.4 Particular functions called by GEN2, generating the lists: (a) Ãn, and (b) R̃n. 56

5.5 Particular functions called by GEN2, generating the lists: (a) S̃n, and (b) S̃En. 57

5.6 The generating tree induced by initial call GEN2(1, 0, 0, 0), in this case to
generate Ã4. 58

6.1 Algorithm for checking if factor f match to the suffix of word w. 85

6.2 Algorithm producing the set An
q(f), listed in ≺ order if q is even or in � order

if q is odd. The initial call is GENAVOID(1, 0). 85

6.3 Procedure computing the border array b of length ` forbidden factor f , and
used by MAKEARRAY. 86

6.4 Algorithm producing the set An
q(f), listed in ≺ order if q is even or in �

order if q is odd. The initial call is GENAVOID(1, 0, 0), and it uses array
M, initialized in a preprocessing step by MAKEARRAY; and S is the list of
symbols in the alphabet Aq in increasing or decreasing order. 88

6.5 Algorithm initializing the array M. 88

6.6 In boldface a ‘branch’ of words produced by consecutive degree-one calls
in the generating tree of An

2(001). 89

6.7 Algorithm GENJ, producing J (k)
n,q. 93

7.1 Our scheme for generating Pn(T) (shown by thick arrows), that is, by re-
stricting S En subject to θT , and then mapping S En(T) to Pn(T) by ψ. 100

125

126 LIST OF FIGURES

7.2 (a) Algorithm GENRSE, generating the list SEn(T); (b) Particular function
THETA X called by GENRSE, and returning the value for θT (sn, k), if T is
one of the sets of patterns: (i) T1, (ii) T2, (iii) T3, and (iv) T (p)

4 . The initial call
is GENRSE(1, 0, 0, 0). 108

7.3 Algorithm GENPAP, generating the list Pn(T). The initial call is
GENPAP(1, 0, 0, 0). 108

7.4 Transposition graph of P4(312, 321), with Hamiltonian cycle. 110

7.5 Transposition graph of P5(312, 321, 231). 110

7.6 2nd power transposition graph of P5(312, 321, 231). 111

7.7 3rd power transposition graph of P5(312, 321, 231), with Hamiltonian cycle. . 111

LIST OF TABLES

2.1 Some representations for permutations of the set {1, 2, 3}. 11

2.2 Some representation for combinations of 3 objects taken from the set
{1, 2, 3, 4, 5}. 11

2.3 Some representation for partitions of the set {1, 2, 3, 4}. 12

2.4 Some combinatorial classes with their counting formulas. 12

2.5 The list of binary words with respect to lexicographic order and to a
bounded change order. The column “Number of changes” shows the
amount of changes applied to the previous words to obtain the next one.
Generally, for a set of length-n binary words, its list in lexicographic order
yields n changes between successive words in the worst case; while in this
particular bounded change order, the number of change is 1. 14

2.6 The list of length-4 binary words having at most two 1s, with respect to
lexicographic order and to a bounded change order. Note that these lists
are sublists of those in Table 2.5. Generally, for a set of length-n binary
words, its list in lexicographic order yields n changes between successive
words in the worst case; while in this particular bounded change order, the
number of changes are bounded by 2. 15

3.1 The definition of several statistics . 18

3.2 The columnwise list B5, the BRGC of length 5. The symbol that differs with
that of the next sequence is underlined. 21

3.3 The list of 3-ary sequences of length 3, G3
3, ordered by ≺ order. The

changed symbols to obtain the next sequence are underlined. The list
is equal to G3

3. 22

3.4 The list of permutations of length 4 generated by SJT algorithm. The trans-
posed symbols to obtain the next permutation is underlined. The list is
2-adjacent Gray code. 23

5.1 The sets S 5, R5, and A5 listed in ≺ order. 37

127

128 LIST OF TABLES

5.2 The list for (a) G3
3, and (b) G4

4 (shown partially), with respect to RGC and
Co-RGC order. The last column in each table is obtained by applying two
steps of transformation: complementing only digits in odd positions for se-
quences in G3

3, or in all positions for sequences in G4
4, then reversing the

obtained sequence. 44

5.3 The sets S 5, R5, and A5 listed in ≺c order. 45

5.4 The bound of the Hamming distance between two successive sequences
in ≺ and ≺c orders. 60

5.5 The average Hamming distance for ≺ order and ≺c order. 61

6.1 The list of words in (a) A3
3, and (b) A4

4 (shown partially), with respect to
Dual RGC order. The Hamming distance column shows the number of
differences between a particular sequence and its predecessor. In general,
the list for An

q in � order is a 2-Gray code for odd q, but it is not Gray code
for even q. 67

6.2 The Graycodeness of An
q(f) listed in appropriate order together with the

ultimate periods of the last word in a|A∞q (f) and the first word in b|A∞q (f),
when at least one of them does not have ultimate period 0, and a and b are
consecutive words; and A≥2

q is the set of words on Aq of length at least two.
These summarize Propositions 28 to 30, and Corollary 2. 83

6.3 (a) The set A4
2(011) listed in ≺ order, inducing 3-adjacent Gray code; (b) the

reverse of the list in (a), giving Gray code for A4
2(110); (c) the complement

of the list in (b), giving Gray code for A4
2(001). The changed symbols are in

bold. 90

6.4 The values of S (n, q), for 2 ≤ q ≤ 5 and 4 ≤ n ≤ 20. 92

7.1 The steps in generating all length-4 permutations according to SJT algo-
rithm. The initial permutation is 1234. The active integers are marked by ar-
rows according to their directions, and the largest among them are marked
by a dot. To obtain the next permutation, the dotted integer is transposed
to its adjacent integer within its direction. The steps terminate when there
are no active integers. 96

7.2 The list for S En in RGC order, and its corresponding permutation ψ(S En).
The list for ψ(S En) is actually an SJT-list for P4. 98

7.3 Succession functions χT (i, k) for the considered set of patterns T 99

7.4 Restriction functions for the set of patterns T 100

LIST OF TABLES 129

7.5 The list P4(T1) and P5(T (3)
4), which is a 2-Gray code and a 4-Gray code,

respectively. 109

7.6 The Graycodeness of Pn(T). 112

IV
APPENDICES

131

A

SOFTWARE IMPLEMENTATION

Sage (previously SAGE, System for Algebra and Geometry Experimentation) is mathe-
matical software with features covering many aspects of mathematics, including algebra,
combinatorics, numerical mathematics, number theory, and calculus [Wik]. Sage is a free
open-source mathematics software system licensed under the GPL. It builds on top of
many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP,
FLINT, R and many more. Its mission: Creating a viable free open source alternative to
Magma, Maple, Mathematica and Matlab [Sag].

Sage also provides cloud computing (https://cloud.sagemath.com/) that one can access
freely. All of our efficient algorithms in this thesis have been tested and implemented by
using Sage. In the following we give the Sage code for them.

A.1/ GENERATING RESTRICTED GROWTH SEQUENCES

A.1.1/ WITH RESPECT TO ≺ ORDER: ALGORITHM GEN1

#Generating restricted growth sequences in RGC order

#initialization

reset()

n=6 # length of the sequences, changeable

b=[]

for i in range(n+1): b.append(0)

L=[]

def type():

t=tuple(b[1:n+1])

L.append(t)

print L.index(t)+1,t

133

134 APPENDIX A. SOFTWARE IMPLEMENTATION

def Omega_SE(w,p):

return p

def Omega_A(w,p):

if p>1 and b[p]>b[p-1]: return w+2

else: return w+1

def Omega_R(w,p):

if p>1 and b[p]>w: return w+2

else: return w+1

def Omega_S(w,p):

return b[p]+1

#Generating procedure, change XX in the function call

#with SE, A, R, or S to generate the desired list

def Gen1(k,x,drc,v):

b[k]=x

if k==n:

type()

else:

u=Omega_XX(v,k)

if drc%2==0:

for i in range(u+1):

Gen1(k+1,i,i,u-1)

else:

for i in range(u,-1,-1):

Gen1(k+1,i,i+1,u-1)

#Main call

Gen1(1,0,0,0)

A.1.2/ WITH RESPECT TO ≺c ORDER: ALGORITHM GEN2

#Generating restricted growth sequences in Co-RGC order

#initialization

reset()

n=5 # length of the sequences, changeable

A.1. GENERATING RESTRICTED GROWTH SEQUENCES 135

b=[]

for i in range(n+2): b.append(i-1) #(i=1;i<=n;i++) b[i]=i-1;

L=[]

#type the sequence

def type():

t=tuple(b[1:n+1])

L.append(t)

print L.index(t)+1,t

#functions on subexcedant sequences

def mu_SE(k,i,w):

if (k==n): return n-1

else: return (w-1)

def DegreeOne_SE(m,v):

if m==2:return 1

else: return 0

def Lowest_SE(m):

return 0

def SecLargest_SE(m,w):

return m-3

#functions on ascent sequences

def mu_A(k,i,w):

if i>=w: return i

elif i>=b[k+1]: return w

elif i< b[k+1]: return w-1

def DegreeOne_A(m,v):

if v==m-1 or (v==m-2 and b[m]==0):

b[m-1]=m-2

return 1

else: return 0

def Lowest_A(m):

return 0

def SecLargest_A(m,w):

136 APPENDIX A. SOFTWARE IMPLEMENTATION

if (w==m-2 and b[m]>0 and b[m]<m-1):

return b[m]-1

else: return (m-3)

#functions on restricted growth functions

def mu_R(k,i,w):

if i>=w: return i

elif b[k+1]<w: return w

else: return w-1

def DegreeOne_R(m,v):

if (v==m-1) or (v==m-2 and b[m]<m-2):

b[m-1]=m-2

return 1

else: return 0

def Lowest_R(m):

return 0

def SecLargest_R(m, w):

return m-3

#functions on staircase words

def mu_S(k,i,w):

return i

def DegreeOne_S(m,v):

if b[m]==m-1:

b[m-1]=m-2

b[m-2]=m-3

return 1

else: return 0

def Lowest_S(m):

if b[m]>1 and b[m]<=m-2: return b[m]-1

else: return 0

def SecLargest_S(m,w):

return m-3

A.2. GENERATING FACTOR AVOIDING Q-ARY WORDS 137

#Generating procedure, change XX in the function call

#with SE, A, R, or S to generate the desired list

def Gen2(k,x,drc,v):

b[k]=x

u=mu_XX(k,x,v)

if DegreeOne_XX(k,u)==1:

type()

else:

c=Lowest_XX(k)

d=SecLargest_XX(k,u)

if drc%2==1:

for i in [c..d]:

Gen2(k-1,i,i,u)

Gen2(k-1,k-2,k-1-(drc%2),u)

if drc%2==0:

for i in reversed [c..d]:

Gen2(k-1,i,i+1,u)

#Main call

Gen2(n+1,0,0,0)

A.2/ GENERATING FACTOR AVOIDING q-ARY WORDS

A.2.1/ ALGORITHM GENAVOID

#Generating q-ary words avoiding a given factor f

#initialization

reset()

n=6 # length of the sequences, changeable

q=3 # -arity, changeable

factor=[0,1,1,2] #forbidden factor, changeable

#prepend it with a 0

#ex: if f=112, then factor=[0,1,1,2]

size_f=len(factor)-1

border=[-1]

for i in [1..size_f]:

border.append(0)

M=matrix(size_f,q,0)

b=[]

138 APPENDIX A. SOFTWARE IMPLEMENTATION

for i in range(n+1):

b.append(0)

L=[]

def type():

t=Sequence(b[1:n+1])

L.append(t)

print L.index(t)+1,t

def make_border():

i=0

for j in [1..size_f-1]:

border[j]=i

while i>=0 and factor[j+1]!=factor[i+1]:

i=border[i]

i=i+1

border[size_f]=i

def make_array():

for j in [0..q-1]:

for i in [0..size_f-1]:

if factor[i+1]==j:

M[i,j]=i+1

elif i>0:

M[i,j]=M[border[i],j]

else:

M[i,j]=0

def GenAvoid(j,drc,i):

if(j==n+1):

type()

else:

if i==size_f-1:

u=factor[size_f]

else:

u=-1

if drc==0:

for k in [0..q-1]:

if k!=u:

b[j]=k

m=0

A.2. GENERATING FACTOR AVOIDING Q-ARY WORDS 139

if q%2==1 and k!=0:

m=1

GenAvoid(j+1,(drc+k+m)%2, M[i,k])

else:

for k in reversed [0..q-1]:

if k!=u:

b[j]=k

m=0

if q%2==1 and k!=0:

m=1

GenAvoid(j+1,(drc+k+m)%2, M[i,k])

#Main call

make_border()

make_array()

GenAvoid(1,0,0)

A.2.2/ ALGORITHM GENJ

#Generating cross-bifix-free set

reset()

n=3 # length of the sequences, changeable

q=4 # -arity, changeable

factor=[0,0,0] # forbidden factor, changeable

prepend it with a 0

ex: if f=00, then factor=[0,0,0]

size_f=len(factor)-1

border=[-1]

for i in [1..size_f]:

border.append(0)

M=matrix(size_f,q,0)

b=[]

for i in range(n+1):

b.append(0)

L=[]

def type():

t=factor[1:len(factor)]+(Sequence(b[1:n+1]))

L.append(t)

140 APPENDIX A. SOFTWARE IMPLEMENTATION

print L.index(t)+1,t

def make_border():

i=0

for j in [1..size_f-1]:

border[j]=i

while i>=0 and factor[j+1]!=factor[i+1]:

i=border[i]

i=i+1

border[size_f]=i

def make_array():

for j in [0..q-1]:

for i in [0..size_f-1]:

if factor[i+1]==j:

M[i,j]=i+1

elif i>0:

M[i,j]=M[border[i],j]

else:

M[i,j]=0

def GenJ(j,drc,i):

if(j==n+1):

type()

else:

if i==size_f-1:

u=factor[size_f]

else:

u=-1

if j==1 or j==n:

lowest=1

else:

lowest=0

if drc==0:

for k in [lowest..q-1]:

if k!=u:

b[j]=k

m=0

if q%2==1 and k!=0:

m=1

GenJ(j+1,(drc+k+m)%2, M[i,k])

A.3. GENERATING PATTERN AVOIDING PERMUTATIONS 141

else:

for k in reversed [lowest..q-1]:

if k!=u:

b[j]=k

m=0

if q%2==1 and k!=0:

m=1

GenJ(j+1,(drc+k+m)%2, M[i,k])

#Main call

make_border()

make_array()

GenJ(1,0,0)

A.3/ GENERATING PATTERN AVOIDING PERMUTATIONS

A.3.1/ ALGORITHM GENPAP

#Generating several classes of pattern avoiding permutations

reset()

n=5 # length of the permutations, changeable

s=[]

for i in range(n+1): s.append(0) #initial inversion table

L=[] #initial list of inversion tables

perm=[]

for i in range(n+1): perm.append(0) #initial permutation

P=[] #initial list of permutations

def type_inv_tab():

t=Sequence(s[1:n+1])

L.append(t)

print L.index(t)+1,t

def type_perm():

perm2=Permutation(perm[0:n])

perm1=Permutation(perm2).reverse()

P.append(perm1)

print P.index(perm1)+1,perm1

142 APPENDIX A. SOFTWARE IMPLEMENTATION

def Psi(s,k):

perm.insert(s,k)

def UndoPsi(s):

perm.pop(s)

#T1={312,321}

def theta_T1(s,k):

return 1

#T2={321,3412,4123}

def theta_T2(s,k):

if s==0:

u=2

else:

u=1

return u

#T3={312,3421,4321}

def theta_T3(s,k):

if s==1:

u=2

else:u=1

return u

#T4={p12...(p-1),321,231}

def theta_T4(s,k):

p=5 # changeable

if s==0 and k<p-2: u=k+1

elif s==0 and k==p-2:u=k

else:u=0

return u

#Generating procedure, change XX in the function call

#with T1,T2,T3, or T4 to generate the desired list

def GenPAP(k,x,drc,v):

s[k]=x

Psi(s[k],k)

if k==n:

type_inv_tab() #choose output: inversion tables, or

A.3. GENERATING PATTERN AVOIDING PERMUTATIONS 143

#type_perm() #permutations (uncomment the desired output)

else:

if k==1:u=1

else: u=theta_XX(x,v)

if drc%2==0:

for i in [0..u]:

GenPAP(k+1,i,i,u)

UndoPsi(s[k+1])

else:

for i in reversed[0..u]:

GenPAP(k+1,i,i+1,u)

UndoPsi(s[k+1])

#Main call

GenPAP(1,0,0,0)

B

OUR PUBLICATIONS

Part of the results presented in this thesis have been published in journals or presented
in a conference. Here are the list of our articles related to this thesis.

1. A. Sabri, V. Vajnovszki. Two Reflected Gray Code based orders on some restricted
growth sequences. To appear in The Computer Journal (published online on 18
March 2014, doi:10.1093/comjnl/bxu018).

2. A. Bernini, S. Bilotta, R. Pinzani, A. Sabri, V. Vajnovszki. Gray code orders for q-ary
words avoiding a given factor. To appear in Acta Informatica, (published online on 7
March 2015, doi:10.1007/s00236-015-0225-2).

3. A. Bernini, S. Bilotta, R. Pinzani, A. Sabri, V. Vajnovszki. Prefix partitioned Gray
codes for particular cross-bifix–free sets. Cryptography and Communications,
6(4):359–369, 2014.

4. A. Sabri, V. Vajnovszki. Restricted Steinhaus-Johnson-Trotter list. In 9th Interna-
tional colloquium on graph theory and combinatorics (ICGT), Grenoble, France, 30
June–4 July 2014.

145

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Abstract:

We consider Gray codes and efficient exhaustive generating algorithms for the sets belonging to three major classes
of restricted words, that are: (1) restricted growth sequences, (2) factor avoiding q-ary words, and (3) pattern avoiding
permutations. For the first two classes, our Gray codes (and thus, our generating algorithms) are based on order relations
obtained by specializing known order relations; namely Reflected Gray Code (RGC) order and its variations, and we call
them Reflected Gray Code based orders. The Gray code and the generating algorithm for the third class are based on
Steinhaus-Johnson-Trotter order, that is, order relation induced by Steinhaus-Johnson-Trotter Gray code for permutations.
In the first results, we define Gray codes and give efficient generating algorithms for the class of restricted growth sequences
that satisfy our prescribed properties. In particular, we focus on four mainstream subclasses: subexcedant and ascent
sequences, restricted growth functions and staircase words. The results are given in two parts: by using original RGC
order and Co-RGC order, which generates prefix (and suffix, respectively) partitioned Gray codes; and we give comparison
between the two results. In addition, we investigate the Graycodeness of the restricted ascent sequences.
In the second results, we define Gray codes and give an efficient generating algorithm for the class of factor avoiding q-ary
words. Among the involved tools, we make use of original RGC order for even q and Dual RGC order for odd q, the zero
periodicity property, and word matching techniques adapted from that of Knuth-Morris-Pratt. We give the implementation
of these results to define Gray code and generating algorithm for cross-bifix-free sets.
In the third results, we define Gray codes and give efficient generating algorithms for the class of pattern avoiding
permutations. In particular, we show that the Steinhaus-Johnson-Trotter Gray code for permutations, when restricted by
avoiding some set of patterns, still remains a (possibly less restricted) Gray code. The main ingredients we are using in the
investigation of the Graycodeness are: succession functions, the classical bijection from inversion tables to permutations,
and the list of inversion tables with respect to RGC order. We give additional results on graph theoretic consequences.

Keywords: Gray code, generating algorithm, order relation, restricted words

Résumé :

Nous introduisons des codes de Gray et des algorithmes efficaces de génération exhaustive pour trois classes de mots: (1) suites à
croissance restreinte, (2) mots évitant un facteur spécifié, (3) permutations à motif exclus.
Pour les deux premières classes, nos codes de Gray (et les algorithmes de génération qui en découlent) sont basés sur des relations
d’ordre obtenues par la spécialisation de l’ordre du code de Gray réfléchi.
Pour la troisième classe, les codes de Gray et les algorithmes de génération correspondants sont basés sur l’ordre induit par l’algorithme
de Steinhaus-Johnson-Trotter pour la génération des permutations.
Concernant les suites à croissance restreinte, nous définissons un code de Gray et donnons un algorithme de génération exhaustive pour
ce code. En particulier, nous considérons les suites sous-excédantes et ascendantes, les fonctions à croissance restreinte et les mots
‘escalier’. Les relations d’ordre considérées sont RGC et Co-RGC, qui sont des relations partitionnant les listes selon, respectivement, le
préfixe et le suffixe. De plus, nous explorons la possibilité pour l’obtention des codes de Gray pour les suites ascendantes restreintes.
Pour les mots de q-aires à facteur interdit nous donnons deux codes de Gray et les algorithmes de génération correspondants. Les
relations d’ordre considérées sont RGC, pour q pair, et Dual RGC pour q impair. Parmi les notions utilisées, citons la périodicité zéro
et un algorithme classique de recherche de motif du à Knuth, Morris et Pratt. Comme application, nous considérons les ensembles
‘cross-bifix-free’.
Finalement, des résultats similaires sont obtenus pour certaines classes de permutations à motif interdit. Plus précisément, nous montrons
que la restriction du code de Gray de Steinhaus-Johnson-Trotter aux ensembles de permutations évitant certains motifs reste un code
de Gray (moins restrictif). Parmi les techniques utilisées, nous mentionnons la fonction de succession et une bijection classique entre
permutations et tableaux d’inversions, et donnons quelques conséquences en théorie des graphes.

Mots-clés : Code de Gray, algorithme de génération, relation d’ordre, croissante restreinte

	I Problems and Context
	1 Introduction
	1.1 Motivations and objectives
	1.1.1 In relation to combinatorics
	1.1.2 In relation to computer science

	1.2 Outline of the thesis

	2 Preliminaries
	2.1 Combinatorics
	2.1.1 A brief history
	2.1.2 Combinatorial class
	2.1.3 Representations of combinatorial object

	2.2 Enumerative combinatorics
	2.2.1 Counting combinatorial objects
	2.2.2 Exhaustive generation
	2.2.3 Bijection between combinatorial objects
	2.2.4 Random generation
	2.2.5 Ranking and unranking

	3 Notations and Definitions
	3.1 Our considered classes of words
	3.1.1 Product sets
	3.1.2 Permutations

	3.2 Gray code
	3.2.1 Reflected Gray Code
	3.2.2 Steinhaus-Johnson-Trotter Gray code

	3.3 Efficient generating algorithm
	3.3.1 Constant Amortized Time algorithm
	3.3.2 Loopless algorithm

	4 State of the Art
	4.1 Gray codes
	4.1.1 ECO-based Gray codes
	4.1.2 Gray codes for Gray structures
	4.1.3 Gray codes for strictly prefix (or suffix) partitioned word-list
	4.1.4 Gray codes for reflectable languages
	4.1.5 Cool-lex order and bubble languages
	4.1.6 Gray codes induced by RGC order relation or its variations

	4.2 Restricted growth sequences
	4.3 Factor avoiding words
	4.4 Pattern avoiding permutations

	II Our Contributions
	5 Gray codes for restricted growth sequences
	5.1 Additional notions
	5.2 The Reflected Gray Code order for the set Xn
	5.2.1 The Graycodeness of the list Xn
	5.2.2 Generating algorithm for the list Xn

	5.3 The Co-Reflected Gray Code order for the set Xn
	5.3.1 Additional notions
	5.3.2 Suffix expansion of sequences in the set Xn
	5.3.3 The Graycodeness of the list `39`42`"613A``45`47`"603AX"0365Xn
	5.3.4 Generating algorithm for the list `39`42`"613A``45`47`"603AX"0365Xn

	5.4 Additional result: Gray codes for restricted ascent sequences
	5.5 Summary

	6 Gray codes for factor avoiding q-ary words
	6.1 Additional notions
	6.2 Periodicity
	6.2.1 Forbidden factor ending with 0 and not inducing zero periodicity
	6.2.2 Forbidden factor ending with q-1 and not inducing zero periodicity
	6.2.3 Forbidden factor inducing zero periodicity

	6.3 The Gray codes
	6.3.1 Factors inducing zero periodicity
	6.3.2 Particular cases
	6.3.3 Factors preventing Graycodeness
	6.3.4 Obtaining Gray code if bold0mu mumu ffVaj2001ffff does not induce zero periodicity and is not one of the particular cases

	6.4 Algorithmic considerations
	6.4.1 Initial generating algorithm
	6.4.2 Improved generating algorithm

	6.5 Implementation on cross-bifix-free set
	6.5.1 The Gray code
	6.5.2 Generating algorithm

	6.6 Summary

	7 Gray codes for some pattern avoiding permutations
	7.1 Steinhaus-Johnson-Trotter algorithm
	7.2 Additional notions
	7.2.1 The sites of a permutation
	7.2.2 Bijection from SEn to Pn
	7.2.3 Regular pattern and succession function
	7.2.4 The restricted inversion tables

	7.3 The Gray codes
	7.3.1 The results for regular patterns
	7.3.2 The results for some reverse and inverse regular patterns

	7.4 Algorithmic considerations
	7.5 Graph theoretic consequences
	7.6 Summary

	III Conclusion
	8 Conclusion and future works
	Bibliography

	IV Appendices
	A Software Implementation
	A.1 Generating restricted growth sequences
	A.1.1 With respect to order: Algorithm Gen1
	A.1.2 With respect to c order: Algorithm Gen2

	A.2 Generating factor avoiding q-ary words
	A.2.1 Algorithm GenAvoid
	A.2.2 Algorithm GenJ

	A.3 Generating pattern avoiding permutations
	A.3.1 Algorithm GenPAP

	B Our publications

