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Abstract

Interactive virtual environments pose a wide variety of challenges for intel-
ligent agents, especially to make decisions in order to reach their goals. The
difficulty of decision making tasks rises quickly when introducing continuous
space and real time. It also becomes increasingly harder to build intelligent
agents that can meaningfully interpret and act in unknown situations. In
this thesis, we take inspiration from cognitive science, specifically from how
humans perform mental simulation to anticipate events in the world around
them, with the aim of obtaining an autonomous agent that makes decisions
and adapts itself to novel situations. The mental simulation paradigm enjoys
significant interest from the cognitive science community, but computational
approaches to mental simulation rely on specialized simulators for a given task
and thus are limited to specific scenarios. Our contribution is a generic agent
architecture (ORPHEUS) which supports decision-making based on the sim-
ulation of functional models of the world ahead of time, inspired from how
humans imagine the outer world and the outcomes of their actions based on
the state of the real environment. The novelty of our approach consists in its
ability to integrate both physical and behavioural predictions into the same
framework, based on heterogeneous mental models which are used to evolve
internal, imaginary scenarios within the agent. We apply our generic architec-
ture to different contexts, including artificial intelligence competitions, which
require the agent using our approach to perform physical and behavioural
anticipation in continuous space and time. We evaluate the applicability of
our approach to realistic conditions such as noisy perception, decision time
constraints and imperfect world models. Results demonstrate the genericness
of our approach from one scenario to another without modifying the agent ar-
chitecture, and highlight the possible uses of the proposed mental simulation
framework.
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Chapter 1

Introduction
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This chapter introduces the goals and objectives of this thesis and
the approach we take in order to achieve them. Within this work,
we propose to model the decision mechanisms of an artificial agent by
drawing inspiration from studies in cognitive science on mental simu-
lation. Our focus is on the human’s anticipation ability and capability
to adapt while interacting. Herein, the reader is provided with insight
on the dynamic context to which we apply our approach and the ef-
forts that have been made by cognitive science research in studying
the mechanisms behind human decision making. We discuss mental
simulation and its applicability to intelligent agents, and provide an
overview of what can be achieved via mental simulation, therefore pre-
senting our motivation to implement an agent that functions based on
this paradigm. Extrapolating on what is expected to be achievable
through mental simulation, the objectives to be achieved in this work
are outlined. Finally, the structure of the remainder of this thesis is
introduced.

The research conducted in this thesis is situated within the field of ar-
tificial intelligence and focuses on autonomous agent cognition in dynamic
environments. Our work aims to bridge concepts from cognitive science with
computational techniques towards building an intelligent agent that is capable
of more than it has been programmed to do.

The objective is to obtain an agent that can adapt to the changing condi-
tions in its environment and that can do so in a timely manner. More precisely,
our agent should anticipate events and interactions that happen in its world,
and take the necessary actions depending on the context.

Our approach to this problem consists in taking inspiration from cogni-
tive science studies on mental simulation, a mechanism central to decision
making in humans, and formulating a computational approach to this concept.

September 4th, 2015 1



CHAPTER 1. INTRODUCTION

1.1 Cognitive Approach Towards Computational
Decision Making

To affirm that an artificial intelligence system reasons like a human, we are
required to know how humans think by acquiring insight of the mechanisms
of the mind. There are several ways to achieve this: by introspection, psy-
chological experiments on behaviour and brain imaging. This work can help
to formalise a mental simulation architecture that is clear enough to make
it possible to be expressed in the form of a computer program. The inter-
disciplinary field of cognitive science advances in this direction by combining
experimental psychology techniques and computer models of computational
intelligence. In this context, mental simulation is a mechanism that appears
to be a particularly interesting approach to modelling the process of decision
making [Hesslow (2002); Berthoz (1997, 2003)].

1.1.1 Mental Simulation: a Common Framework

Evidence of mental simulation has been studied in humans [Buckner and
Carroll (2007); Decety and Grèzes (2006)] where similar brain regions have
been observed to become activated when individuals perform remembering,
prospection and Theory of Mind [Premack and Woodruff (1978)] tasks. Hu-
mans have the ability to remember past events in a rich, contextual way, that
allows them to revisit those memories and apply gained knowledge to novel
scenarios. Planning generally takes the form of prospection in humans, where
future scenarios are visualised in one’s mind, enabling the individual to choose
what actions to perform based on their imagined utility. When in a social con-
text, theorising and reasoning about what others think and feel – i.e. Theory
of Mind – are crucial skills for successful interaction with other people.

Research also extends into how people use this type of simulation to men-
tally represent mechanical systems [Hegarty (2004)] and to reason on how
these will evolve in various conditions. It was suggested that the prediction
ability of this approach can be limited by the perceptual capability of the
individual and that, in complex situations, subjects cannot accurately predict
the precise motion trajectories, but can evaluate within a reasonable margin
of error what the effects would be.

From a computational perspective, studies on mental simulation in humans
suggest that this paradigm offers a common framework for reasoning about
one’s environment as a whole and therefore aid the creation of an architecture
that would enable an agent to reach a higher level of adaptability.

1.1.2 Assessing the Applicability of Mental Simulation

Advances in cognitive science suggest the need of a unified framework of hu-
man cognition, while mental simulation and the theory of mind receive much

2 PhD thesis — Mihai Polceanu



1.1. COGNITIVE APPROACH TOWARDS COMPUTATIONAL
DECISION MAKING

attention as fundamental human traits for social reasoning. In the field of
artificial intelligence, a variety of cognitive architectures have been proposed
[Langley et al. (2009)], but only few feature mental simulation. Moreover,
those that do include mental simulation make use of it within localised con-
texts and by using models of the environment and human psychology which
are constructed by human experts, and not by the agent itself.

Mental models allow an individual to anticipate certain aspects of the
future state of the environment. From the way humans can, in some way, vi-
sualise scenarios through mental imagery, there is reason to believe that such
models should be executable, so that an agent can apply them to the current
state of the environment and obtain the next state as a result. This simulation
process provides a version of the future that can be used to make decisions.
Executable knowledge has been tackled in some cognitive architecture imple-
mentations [Kennedy et al. (2009)] that use sets of production rules that apply
to certain preconditions and yield a new state of the system. However, these
approaches require world models which must be developed beforehand making
their usability cumbersome and restricted to specific problems.

Through the means of mental simulation, an agent can have access to an
image of the future. Hence, the agent can compute a strategy to cope with
the imagined situation before the future state is reached and therefore act in
a timely manner when the event occurs. Deciding when to apply the strat-
egy may depend on time, if the anticipated event is time-dependent (such
as a moving object) or precondition-dependent (an expected event that is
known to happen if certain cues occur in the environment). An example of
such precondition-dependent anticipation would be avoiding passing cars while
crossing a street, where it is expected that cars will pass but the precondi-
tion for avoidance is the recognition of a car. Clearly, after a car has been
recognised, its trajectory can be anticipated.

Aiming to obtain an intelligent agent which can act autonomously in a
complex environment, this thesis consists in a novel mental simulation based
approach, without relying classical production rule based paradigms which
generally require human intervention to formally describe problems which need
to be solved. This does not imply however to completely remove the human
from the process, but to allow the design of an agent that can function without
intervention in an environment where humans can participate.

September 4th, 2015 3



CHAPTER 1. INTRODUCTION

1.2 Objectives

The main purpose of this thesis is to obtain an agent that makes decisions in
various dynamic environments, based on the paradigm of mental simulation.
An intermediary aim is to minimise the set of assumptions that are used to
achieve the agent’s behaviour, in order to maintain genericness. Therefore,
the objectives of this work can be summarised as follows:

• Develop a generic approach which can be used in a variety of environ-
ments. Most implementations of cognitive architectures are suscepti-
ble to difficulties when the application scenario is modified or radically
changed.

• Design for autonomy. More generic implementations tend to be highly
difficult to use in scenarios that are more complex, requiring much con-
tribution from domain experts who must model the problem for the
agent to reason on. Therefore minimum expert intervention is highly
desirable in such approaches.

• Focus on online anticipation and learning. To be able to autonomously
function within a more complex and dynamic environment, the agent
must be able to adapt to new conditions and learn while acting.

• Finally, achieve behaviour believability. The property of being believ-
able grants the agent a higher level of interaction potential with human
users. While the concept of believability is a subjective matter, similar-
to-human behavioural traits have been shown to favour the perception
of the agent as a human, by other humans.
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1.3. MANUSCRIPT ORGANIZATION

1.3 Manuscript Organization

This section aims to give an overview of what is discussed and the reason
behind each study.

Chapter 2 is dedicated to the current state of the art. It studies
how concepts from psychology, cognitive science and neuroscience have been
implemented into agents and what the capabilities of these agents are. This
survey is important to identify both the shortcomings and strong points of
these approaches, in an attempt to obtain an improved architecture that can
allow an agent to anticipate and reason within its environment.

A framework proposal is described in Chapter 3 which aims to satisfy
the previously stated objectives. Due to the complexity of human cognition, it
may not be possible to achieve a computational replica without reconstructing
all mechanisms that make it possible. However, by identifying the fundamental
paradigms which enable such high level of cognition, attempts can be made
to create a generic architecture which would allow a wide range of similar
functionality.

Within Chapter 4 the proposed framework is analysed and tested within
different scenarios in order to evaluate its applicability. The choice for sce-
narios aims to target relevant situations in which the capabilities of the ap-
proach can be assessed, while avoiding over-specialization.

Finally, our work is concluded in Chapter 5 by stating what the approach
can provide, what it cannot and how it may be improved in further work.
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This chapter is dedicated to the study of existing approaches that
explicitly use mental simulation to achieve anticipation and decision
making. Current implementations of the mental simulation paradigm
in related works, taken together, computationally address many as-
pects suggested by cognitive science research. Agents are able to find
solutions to non-trivial scenarios in virtual or physical environments.
Existing systems also learn new behaviour by imitation of others simi-
lar to them and model the behaviour of different others with the help of
specialised models, culminating with the collaboration between agents
and humans. Approaches that use self models are able to mentally
simulate interaction and to learn about their own physical properties.
Multiple mental simulations are used to find solutions to tasks, for
truth maintenance and contradiction detection. However, individual
approaches do not cover all of the contexts of mental simulation and
they rely on techniques which are only suitable for subsets of obtain-
able functionality. This paper spans through four perspectives on the
functionality of state of the art artificial intelligence applications, while
linking them to cognitive science research results. Finally, an overview
identifies the main gaps in existing literature on computational mental
simulation.
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Interactive virtual environments pose a wide variety of challenges for in-
telligent agents, especially to make decisions in order to reach their goals.
The difficulty of decision-making tasks rises quickly by introducing continuous
space and real time into question [Doya (2000)]. It also becomes increasingly
harder to build intelligent agents that can meaningfully interpret and act in
unknown situations.

Classical approaches to decision making, such as production systems [An-
derson (1993); Laird (2012)], semantic networks and other formal knowledge
representation frameworks [Negnevitsky (2005)] require domain experts to
provide descriptions of the agents’ environments, the types of objects to be
used and entities to interact with [Castillo (1997)]. Upon these approaches,
learning algorithms have been used to learn new rules [Fürnkranz (1999);
Kavšek and Lavrač (2006)] and policies [Sutton and Barto (1998)] that tell
the agent how to behave in various situations.

However, their application is limited when dynamic environments are con-
sidered [Brooks (1990)], where agents must assess multiple interactions be-
tween entities and their environment, such as the effects of collision, object
shape, action timing and visual occlusion on behaviour. Research efforts have
been made to address the issues posed by dynamic environments and have
yielded important results, such as in robotics [Visser and Burkhard (2007)],
but challenges still remain that span over several research fields. Concurrently,
cognitive architectures have been proposed to integrate multiple techniques
into autonomous agents that are better suited for dynamic environments, but
some significant aspects such as anticipation and adaptation are still weakly
integrated [Vernon et al. (2007)] in existing approaches.

For intelligent agents to interact with their environment and other agents,
they must have an understanding of how the world around them functions,
what effects their actions will have and what decisions are optimal in given
scenarios. With the aim to achieve the implementation of such an agent, the
approach taken in this thesis relies on mental simulation based anticipation.
This paradigm has received moderate attention by other researchers, but in-
sufficiencies exist and a generic approach that can function in both simple and
complex scenarios has not yet been proposed.

The mental simulation paradigm enjoys significant interest from the cog-
nitive science community [Kahneman and Tversky (1981); Berthoz (1997);
Grezes and Decety (2001)]. It is used to explain how humans make cer-
tain predictions for making decisions, imagining “what if” scenarios (multiple
worlds) and revisiting past events in novel ways [Moulton and Kosslyn (2009)].
Moreover, there exists evidence that mental simulation is not strictly a hu-
man capability, but that some animals may also be able to perform it for
goal-oriented decision making [Chersi et al. (2013)]. The principle of mental
simulation consists in constructing an imaginary world that can function on its
own, based on which various future states of the environment can be inferred
and decided upon, resulting in an individual’s behaviour.
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This chapter aims to identify and classify existing approaches in literature
that rely on the mental simulation paradigm or that make use of it to enhance
the functionality of an agent. The technique of using computational mental
simulation in decision making can be applied in various contexts depending on
the type of environment, whether simulation targets are objects or intelligently
behaving entities and the level of realism the simulations reflect.

Consequently, this study is structured based on four questions about the
application of mental simulation in an artificial intelligence system:

• Where is the mental simulation based system used ?
(Section 2.1)

• What is mental simulation used for within these systems ?
(Section 2.2)

• Why is mental simulation useful in a given case ?
(Section 2.3)

• How do these systems implement computational mental simulation ?
(Section 2.4)

To answer these questions, we analyse the properties of existing approaches
from each point of view. Hence, to answer where these systems are used, we
compare approaches that are applied to virtual reality and those which have
a robotic implementation. Thereafter we investigate what these systems are
able to anticipate by making use of their mental simulation capabilities, by
surveying their ability to predict physical phenomena and behavioural traits
of other agents. From the point of view of cognitive science, we are also
interested in why they require mental simulation – i.e. which of the cognitive
functions, namely prospection, navigation, Theory of Mind and counterfactual
reasoning, are accomplished through this mechanism. Finally, we look into
how these systems are built, where we classify approaches based on three
major schools of thought in artificial intelligence: symbolic, sub-symbolic and
analogical representation systems.

This structure allows a clearer analysis of existing approaches that use
the simulation paradigm and shows how various implementations fit into a
generic view of using mental simulation for decision making. Moreover, to the
best of our knowledge, there exists no comprehensive survey on computational
approaches to mental simulation. The remainder of this chapter is structured
into these four aspects of the computational use of mental simulation and their
more specific sub-cases.

Finally, the chapter concludes with an overview (section 2.5) of existing
approaches and how they cover the multiple contexts of using simulation in
decision-making. The techniques used for each context are summarised and
the objectives of this thesis are motivated.
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CHAPTER 2. RELATED WORK

2.1 Environment Type

Artificial intelligence applications, since their advent in the second half of
the twentieth century, have diversified to tackle many areas of human intel-
ligence. Research in this field has led to optimal algorithms on a number of
problems and super-human performance on others such as in the 90s, when
the Deep Blue computer [Hsu (2002)] won against a chess world champion.
However, humans still excel in many quotidian tasks such as vision, physical
interaction, spoken language, environmental and behavioural anticipation or
adapting ourselves in the constantly changing conditions of the natural world
in which we live. To this end, hard problems have often been idealised in
computer simulations (virtual reality) where research could focus on the es-
sentials of the artificial agents’ intelligence without the need to solve low-level
problems like noisy perception, motor fatigue or failure to name a few. Once
matured in virtual reality, such agents would be ready for embodiment into
a robotic implementations where, only few prove to be feasible. From this
point of view, we can categorise existing approaches through the prism of en-
vironment complexity, namely those that have been implemented in virtual
environments (Subsection 2.1.1) and those that have a robotic embodiment
(Subsection 2.1.2)

2.1.1 Virtual World

The challenge for an intelligent agent in a virtual world is to cope with poten-
tially complex behaviour, but in an accessible sandbox context. The virtual
world is a controlled environment where observing events and object prop-
erties is simplified so that agent development can focus on behaviour while
neglecting problems that arise from interfacing with the world. An example
of such simplicity is given by the trajectory of an object moving under the
effects of gravity, whose exact coordinates can be directly sampled by the
agent without requiring to capture, segment and analyse an image. The main
characteristic that describes this environment type is the focus on behaviour,
but this brings the drawback of possible poor scaling of developed methods
towards the real environment due to noise, uncertainty and interface issues.

Regarding computational approaches to mental simulation, most existing
works have been evaluated in virtual environments of varying complexity. Dis-
crete environments provide a simple but informative view of the behaviour of
an agent [Ustun and Smith (2008)], under controllable circumstances. As
complexity rises, namely the transition from discrete to continuous space, the
challenge for intelligent agents to perform tasks increases significantly, but it
also enables a wider range of behaviour. Only now does the use of mental
simulation begin to find its applications, and advantages over traditional
methods, in agent decision-making. Literature provides mental simulation
approaches to constrained 2-dimensional continuous space [Kennedy et al.
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(2008, 2009); Svensson et al. (2009); Buche et al. (2010)] which focus on de-
veloping models to cope with the increased complexity of the environment.
Other works go even further, to continuous 3-dimensional space where
trajectories are more dynamic as human users intervene [Buche and De Loor
(2013)] and collisions [Kunze et al. (2011a)] or occlusions [Gray and Breazeal
(2005)] take place.

A recent trend that relates to the paradigm of mental simulation is the
application of Monte Carlo Tree Search (MCTS) to real time video games, as
an enhancement to its history of success in turn-based games. Succinctly, if
given the capability to simulate the outcomes of its actions, an agent can rely
on MCTS planning algorithms such as UCT [Kocsis and Szepesvári (2006)]
to perform more efficiently in real-time strategy (RTS) games [Balla and Fern
(2009); Churchill and Buro (2013)] or similar scenarios. We note that MCTS
consists in planning algorithms reliant on a simulator – i.e. a way to obtain
the effects of performed actions – while mental simulation encompasses
the mechanisms for constructing such a simulator, which could even-
tually be used together with heuristic planning techniques.

2.1.2 Real World

In the real world, agents require a physical embodiment (or interface) in order
to interact with the environment. The challenge of performing mental simula-
tion within a real setup is to anticipate the behaviour of real entities which are
perceived through noisy and fault-prone sensory input. In addition to issues
that exist in virtual worlds, reality poses further obstacles to object detection
and recognition, and therefore can be viewed as a significantly more com-
plex version of a continuous 3-dimensional virtual world. Systems that aim
to achieve functionality in the real world must also solve interface problems in
order to exhibit their behaviour. Interface issues include acquiring adequate
information from sensors and effectors, the possibility of externally caused
damage to the system and environment noise.

Several systems using mental simulation have been developed as dually-
compatible with both virtual environments and robotic embodiments. This
allowed the authors to evaluate the cognitive process of their approach [Gray
and Breazeal (2005); Breazeal et al. (2009)] in virtual reality where the agent
can perform more dexterous actions that its robotic counterpart. Computer
simulations were also used by Kennedy et al. (2008, 2009) to evaluate their
approach to improving a robot’s performance within a team.

Other researchers have directly approached reality with robots that use
mental simulation to support their natural language skills [Roy et al. (2004)],
reasoning [Cassimatis et al. (2004)] and resilience [Bongard et al. (2006)].
We note that these are difficult problems in robotics, and it is interesting
that mental simulation is able in these cases to decrease complexity of
the original tasks and allow robots to perform better in the real world.
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2.2 Mental Simulation Targets

Depending on what the agent encounters in its environment, the use of mental
simulation in existing research can be divided into two categories: inanimate
objects and entities which exhibit some form of behaviour. In the following,
we explore what existing approaches use mental simulation for, namely the
environmental (Subsection 2.2.1) and behavioural (Subsection 2.2.2) aspects
of their environment.

2.2.1 Environmental Aspects

One aspect of mental simulation is represented by anticipating how insentient
systems evolve based on a model of the laws that govern their behaviours.
Such systems can be composed objects that move according to the laws of
physics or deterministic mechanisms such as, for example, a light switch that
can be used to turn a light bulb on and off. Such systems are “simple”
in the sense that the underlying rules are deterministic and exhibit little or
no change over time, for example applying a force to an object will always
trigger a mass-dependent acceleration on that object; this does not exclude
the potential complexity of such system.

Possessing a mental model of physical phenomena allows humans to an-
ticipate the consequences of actions that are performed in the environment
[Hegarty (2004)]. Having a representation of properties such as mass, grav-
ity, elasticity and friction are necessary in successful predictions of mechanical
outcomes. Humans tend to construct a mental image of a given scenario, as it
would visually appear in reality, in order to reason in certain contexts [Bergen
(2005)]. The ability of humans to analyse environmental information has been
linked to their capability of focusing on relatively small sets of data, through
the process of attention management [Gross et al. (2004)], due to not being
able to process the entire depth of the observable world. Nevertheless, humans
are proficient at high precision tasks such as anticipating and counterbalancing
weights using body movements [Dufossé et al. (1985)].

A wide range of approaches have been proposed to control an agent’s be-
haviour in complex physical environments, with arguably one of the most
successful being those based on Reinforcement Learning (RL) [Sutton and
Barto (1998); Kormushev et al. (2013)]. While particularly well suited for
noisy, real world data, these approaches usually assume a direct function be-
tween the agent’s sensors and effectors, which can ultimately lead to limited
scalability of their adaptiveness [Atkeson and Santamaria (1997)] in novel sce-
narios. In this sense, our focus turns to adaptability using internal model
based approaches Pezzulo et al. (2013).

From the perspective of anticipating environmental aspects, existing re-
search on computational mental simulation makes use of this paradigm to
predict object trajectories [Buche and De Loor (2013)] and eventual collision
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between them [Kunze et al. (2011b)]. Mental models can also serve to repre-
sent objects that exit the perception field Roy et al. (2004); Cassimatis et al.
(2004) and enable an agent to maintain a consistent world view in the ab-
sence of direct input. Representing collisions between objects allows agents
to evaluate their actions [Kunze et al. (2011b)], determine their own appear-
ance [Bongard et al. (2006)] or interact with objects of interest [Buche et al.
(2010)].

2.2.2 Behavioural Aspects

The second use case of mental simulation is represented by anticipating be-
haviours of more complex, autonomous entities. This class of entities is com-
prised of systems (both artificial and natural) that exhibit some form of non-
determinism, free will or high behaviour complexity. Characteristics of envi-
ronmental mental simulation are inherited and extended in anticipating com-
plex entities and if the assumption is made that these entities are also able to
make inferences on others, several levels of anticipation arise. For example,
in the scenario where John knows that Mary falsely thinks that Joe has a toy
car, John has a two-level mental image of his friends which allows him to know
that Joe does not own a toy car (level 1) but Mary thinks he does (level 2).

Three types of behavioural mental simulation can be distinguished based
on which entity is considered for such reasoning, namely entities which have
a high degree of resemblance (Subsection 2.2.2.1), those which do not (Sub-
section 2.2.2.2) and one’s own self (Subsection 2.2.2.3).

2.2.2.1 Agents with Similar Structure

The context of anticipating and learning from the behaviour of other entities
which are similar in structure is considered a special case due to the possibility
of using one’s own internal structure to achieve such inference. In its simple
form, one can consider for example two identical robots (with identical internal
states) that when put in exactly the same conditions will behave in the same
manner.

One of the requirements for understanding similar others is recognizing
what they intend to do. The challenge in this context is to anticipate goals
and actions based on the fact that the other entity is similar or identical in
structure and reasoning mechanisms.

Humans are not only able to reproduce behaviour [Rochat and Passos-
Ferreira (2009)] but can also understand the underlying goals of another’s
actions [Rao et al. (2004)]. Experiments showed that intention recognition can
be achieved from both successful and failed attempts to perform an action,
given the performer was a human and not a mechanical device [Meltzoff (1995);
Meltzoff et al. (2002)].
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To mentally simulate the actions of other entities that closely resemble
themselves, agents in existing approaches use their own mechanisms to infer
useful information about chosen targets (examples in Figure 2.1). Body map-
ping techniques are used, generally based on simplified skeleton structures
[Buchsbaum et al. (2005)], to create the gestural information link between
agents. Once mapped, motion patterns are matched against the agent’s in-
ventory of actions in order to infer intentions [Gray and Breazeal (2005);
Breazeal et al. (2009)].

Max T Mouse described in
Buchsbaum et al. (2005),
using a skeleton to map
movements of other mouse
on its own.

Leonardo from Gray and
Breazeal (2005), using its own
body model to infer human
intentions.

Figure 2.1: Excerpts from works using mental simulation in understanding
similar agents.

Due to the fact that mental simulation targets have similar behaviour
mechanisms and embodiments, the need for additional specialised models for
others’ behaviour is avoided. Unfortunately, when differences increase, this
technique leads to the occurrence of the correspondence problem [Daut-
enhahn and Nehaniv (2002); Alissandrakis et al. (2002)]. Moreover, current
implementations are limited to a predefined inventory of actions, based on
a specific model of self and others, restricting them from more flexible be-
haviour.

Subsequent to identifying the intentions of a similar other, the challenge is
to extend one’s knowledge by learning from observed actions. Learning com-
plexity in this context is still relatively reduced because, in this case, novelty
is expressed as different utilizations of the same underlying mechanisms.

In a close relation with understanding intention, humans are able to learn
novel methods of achieving the intended goal. The phenomenon of imitation
in humans and animals is covered in a wide range of research, clustered into
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two main contexts by Rizzolatti (2005): the capacity to replicate an observed
action and to learn new behaviour through observation.

Depending on their implementation, current approaches have mechanisms
to extend their knowledge base by observing other agents or human-experts
performing actions (examples in Figure 2.2). An example of such mecha-
nism are behaviour trees, branches of which can be extended with new nodes
[Buchsbaum et al. (2005)]. Prototypic fuzzy cognitive maps have been em-
ployed to learn by imitation without modifying the structure of the prototypes
themselves [Buche et al. (2002, 2010)]. Software images [Costa and Botelho
(2013)] have been proposed as a framework for enabling agents to identify
similar others and to learn by imitation.

Imitation in a maze environ-
ment from Rao et al. (2004).

Virtual agent in Buchsbaum
et al. (2005) can learn new be-
haviour from its peer.

Figure 2.2: Excerpts from works performing imitation learning with the aid
of mental simulation.

The use of one’s own mechanisms to reason about others provides a fast
and convenient way to learn new behaviour. However, the occurrence of
the correspondence problem still imposes limitations on agents. Knowledge
extension is not performed when the internal structure does not correspond
between agents.

2.2.2.2 Agents with Different Structure

The general case of understanding other entities, involving anticipation and
learning, requires the capability to formulate theories about how structurally-
different others behave. Using one’s own mechanisms for this purpose is fun-
damentally limited and therefore the challenge is to obtain a generic method
of representing others.

The general challenge in the interaction with a heterogeneous agent envi-
ronment is to anticipate complex entities which may be dissimilar to oneself
and to predict what they believe and how they will act. In this case, predic-
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tion of environmental changes should also be taken into account, as behaviour
generally depends on changes in the agent’s surroundings.

Whether implicit or explicit, a certain level of anticipation is required by
any autonomous entity for it to function in its environment. The phenomenon
of anticipation has been studied in a variety of domains such as biology, neuro-
science, cognitive science and artificial intelligence [Poli (2010)].

The predominant approach in existing implementations is represented by
the use of custom theories or models of other entities (examples in Figure
2.3). Agents place themselves “in the shoes of others” and mentally simulate
what their intentions and beliefs are [Ustun and Smith (2008)] based on the
information they have available.

Quakebot in Laird (2001)
which can simulate what other
players will do.

Mental simulation of intruder from
Ustun and Smith (2008), within a
physical security scenario.

Figure 2.3: Excerpts from works performing mental simulation based be-
haviour prediction on agents with different structure.

Existing approaches use simplified models to predict essential aspects of
the behaviour of other entities. Some agents use feedback to improve their
models, in order to more accurately anticipate behaviour. The drawback of
current methods is that a general-purpose approach for anticipation has not
been proposed. Models are tailored by domain-experts for specific scenarios,
which fail when faced with novel contexts.

Understanding other entities leads to the challenge of being able to col-
laborate and form teams. Anticipating team members becomes important
towards the achievement of common goals. As with other forms of complex
anticipation, this context includes both environmental and behavioural simu-
lation.

Human interaction within a collaborative context relies on several aspects
of social cognition such as role-taking and empathy. Being able to understand
others, thereby developing a theory of mind, enriches the cognitive ability of
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individuals to perform social interaction Meltzoff (2002).

By adding models of humans in a collaborative context, existing approaches
(examples in Figure 2.4) make simulations to determine the intentions of other
members to improve team performance [Kennedy et al. (2008)], by adopting
others’ point of view [Roy et al. (2004)]. Research using simulation techniques
in this context is focused on collaboration within human teams [Kennedy et al.
(2009)], while the agents have the role of helpful companions. There exist,
however, implementations that allow agent-to-agent collaboration [Hanratty
et al. (2007)].

Robot in Roy et al. (2004)
takes human’s perspective to
communicate.

Team robot from Kennedy et al.
(2009) uses cognitive model to
anticipate human decisions.

Figure 2.4: Excerpts from works using mental simulation for collaboration
with humans or other robots.

Team-oriented approaches can make decisions based on simulations of
others’ behaviour. They are capable of taking the perspective of other team
members in order to understand requests and act accordingly, but this is cur-
rently done using expert-tailored cognitive models of the team-mates (either
human or artificial). These implementations function in relatively simplified
scenarios, and require further configuration in case of scenario changes. More-
over, the agent’s emotional system, seen as responses to an examination of
self, others and environment, is not approached.

2.2.2.3 The Self

Once capable of simulating the evolution of the environment and other enti-
ties, the challenge is to achieve introspection and include the self into these
simulations. This context requires a functional model of self and information
about possible interactions with the surroundings.

Recent studies suggest that common mechanisms are responsible for the
accounts of theory of mind and awareness of self mental states or “theory of
own mind” [Frith and Happé (1999); Happé (2003); Williams (2010)].
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Robot described in Bongard
et al. (2006) that uses contin-
uous self-modelling to recover
from damage.

Approach from Kunze et al.
(2011b) using a self model to
simulate actions.

Figure 2.5: Excerpts from works performing mental simulation of the agent’s
own self.

Existing implementations approach this case using either preassigned phys-
ical selves or by creating their own models based on interactions with the en-
vironment (examples in Figure 2.5). Physical-engine based approaches enable
agents to emulate themselves carrying out an action [Kunze et al. (2011b)]
and leverage mental simulation results to make decisions in reality. Such
mental simulations allow agents to evaluate strategies in advance and choose
the optimal course of action [Buche et al. (2010)]. This can be done without a
predefined model of the agent, by using primitives to automatically construct
simplistic models of themselves, using sensory data [Bongard et al. (2006)].

Virtual physics models help agents to interact with the environment.
Updating the self model during interaction makes such systems more robust
to changes such as unexpected damage. By automatically creating the models,
expert intervention is minimised. Even though virtual selves may conflict
with reality, errors can be used to improve the current model. However, a
trade-off occurs between model simplicity and accuracy as faster simple
models may lack details while slower complex ones lead to erroneous mental
simulation. Currently, self models do not have adaptable levels of detail and
approaches are generally limited to the physical self. Moreover, few approaches
consider the need for a detailed representation of the self.
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2.3 Cognitive Function

From the point of view of cognitive science, we investigate why existing ap-
proaches use mental simulation. Research [Buckner and Carroll (2007)] sug-
gests that mental simulation can be regarded as a common mechanism – i.e.
overlapping areas of brain activity – in the brain for remembering events,
performing prospection (Subsection 2.3.1), navigation (Subsection 2.3.2) and
accounting for a Theory of Mind (Subsection 2.3.3). More recent studies
[Van Hoeck et al. (2012)] also connect counterfactual reasoning (Subsection
2.3.4) – thinking about “what could have been” – to related brain regions used
by the previously mentioned cognitive functions. Each of the four cognitive
functions discussed in this section is illustrated in Figure 2.6.

Figure 2.6: Birthday present example: in order to arrive in the position to
hand the gift, the agent was required to (a) reason on which type of gift would
be most suitable, (b) find which way through town would be best to go to the
store, (c) have an understanding of what the other wishes for a gift and (d)
imagine that not bringing a present would have had undesirable results.

2.3.1 Prospection

Prospection is a form of self-projection into the future, through which one
anticipates future events to find actions which are most favourable towards
achieving a certain goal. Great emphasis is placed on the role of mental simu-
lation on this ability in cognitive science research [Taylor et al. (1998)], while
computational approaches have recently begun to make use of the paradigm
in artificial intelligence systems [Kunze et al. (2011a); Buche and De Loor
(2013)].

Planning has been one of the first research directions since the advent of
artificial intelligence (for an in-depth review see [Wilkins (2014)]). With the
development of novel Monte Carlo Tree Search (MCTS) variants (for survey
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see [Browne et al. (2012)]), efficient algorithms have been proposed for more
complex environment conditions such as real time strategy games [Churchill
and Buro (2013)]. Existing approaches using MCTS show promise in pro-
viding an efficient way to make decisions in complex scenarios, but all such
approaches rely on the assumption that a simulator is provided which
can compute future states of the environment on demand. For simpler sce-
narios like games, this simulator can be developed as the game mechanics are
known and accessible, but generally this is not the case for agents that interact
with the real world, where such a simulator does not exist.

In this sense, mental simulation is a candidate mechanism for enabling the
prospection ability required by general purpose planners. Existing approaches
make use of the mental simulation paradigm to make predictions of the
behaviour of other entities [Buche et al. (2010)] in order to reach their
goals, to evaluate their own actions [Kunze et al. (2011b)] and also as a
medium for estimating which actions can provide more information about
an unknown state of the agent’s embodiment in the world [Bongard et al.
(2006)].

2.3.2 Navigation

The ability of humans to recall places for navigation purposes differs from
map-like artificial systems in that it also elicits contextual information based
on previous visits of the location in question. Intuitively, it is not difficult to
imagine why prospection would be beneficial to our ability as humans to nav-
igate efficiently: when performing navigation, memories [Byrne et al. (2007)]
and emotional information associated to certain places that we visited in the
past can make us prefer or avoid them. If our memory had not provided us
with a location related context, we would not be able to perform goal-oriented
navigation.

Navigation itself does not refer only to large scale movement. Within the
meaning of navigation, we identify multiple nuances that depend primarily
on scale and the individual who is performing it. Using mental simulation,
an agent can move its arm towards an object using different perspectives
than its own [Roy et al. (2004)]. Similarly, one can take the perspective of
another to infer a navigation plan [Laird (2001); Ustun and Smith (2008);
Kennedy et al. (2008, 2009)]. Larger scale self navigation – i.e. where
the agent itself moves from one location to another – can also be evaluated
[Buche et al. (2010)] and anticipated [Svensson et al. (2009)] through mental
simulation based prospection.

2.3.3 Theory of Mind

The capability of an individual to assign mental states to oneself and others
is known in the literature as Theory of Mind (ToM) [Premack and Woodruff
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(1978)]. Functionally, possessing a model of others’ decision process which
takes observations as input enables the individual to determine goals, antic-
ipate actions and infer the causes of certain observed behaviours. The two
predominant approaches to how the decision process is represented are the
Theory-Theory [Carruthers (1996)], which relies on a “folk psychology” that
is used to reason about others in a detached way, and the Simulation Theory
[Goldman (2005)] which claims that the individual’s own decision mechanism
is used for inference (simulation), using pretend input based on observations.

Simulation Theory has received enthusiasm from artificial intelligence re-
searchers, arguably because it provides an interesting and computationally
feasible mechanism for reasoning about other individuals. The “like me”
approach [Meltzoff (2007)] has been adopted in various social agents that
interact with others in virtual [Buchsbaum et al. (2005)] and real [Gray and
Breazeal (2005); Breazeal et al. (2009)] environments. It has also been used
in team scenarios to enable a robot to take the predicted behaviour of
its team mates into account to improve its own plan [Kennedy et al. (2008,
2009)]. Theory Theory based approaches are less common, but show that
“objectively” reasoning on the behaviour of others can lead to comparable
results [Laird (2001); Ustun and Smith (2008)].

2.3.4 Counterfactual Reasoning

Whether expressing the regret that things could have been better if only ac-
tions were taken, feeling relieved that the worst scenario did not happen or
simply imagining what would have happened if past events were different, hu-
mans often think in a counterfactual manner Roese (1997). Counterfactual
reasoning has been thoroughly documented in psychology [Roese and Olson
(1995)] throughout the development of children and adults. This type of in-
ference has been studied within the more general problem of causation [Pearl
(2009)].

Interestingly, works that implement forms of counterfactual reasoning into
autonomous agents are scarce. Examples include making use of this mecha-
nism for minimizing regret in games with incomplete information [Risk and
Szafron (2010)]. Mental simulation has also been discussed as a mechanism
for counterfactual reasoning [Markman et al. (1993)]. However, computational
approaches to inference about what could have been, via mental simulation,
are limited, focusing on relatively simple cases of object continuity [Cassi-
matis et al. (2004)] under the form of integrating new knowledge into past
events.
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2.4 Computational Implementation

Based on how computational mental simulation has been approached in lit-
erature, we identify three main perspectives on modelling the paradigm.

The first type of approach is given by traditional symbolic systems which
model the process of mental simulation through sets of rules and logical in-
ference. This category is characterised by a coarse level of granularity in
prediction, as the rules they use are abstracted away from low-level informa-
tion such as the detailed geometry of the environment, collisions or location
of obstacles. The majority of existing computational approaches to men-
tal simulation are, at least to some extent, symbolic systems. Some of the
most relevant examples of such agents [Laird (2001); Cassimatis et al. (2004);
Kennedy et al. (2008, 2009)] are constructed on top of well known cogni-
tive architectures such as ACT-R [Anderson (1983)] and Soar [Laird et al.
(1987)]. Focus is placed on goal recognition through mentally simulating oth-
ers’ actions using the agent’s own reasoning model [Buchsbaum et al. (2005);
Gray and Breazeal (2005); Breazeal et al. (2009)] and on evaluating the
outcomes of actions [Kunze et al. (2011a)]. Using a symbolic approach, an
agent would be able to perform mental simulation on high level information
like beliefs and annotated actions, but would require other, low-level tasks to
be modelled separately and abstracted so that it can be used as a black box.

The second category consists in using sub-symbolic techniques to make
predictions in the form of mental simulations. Granularity of the mental
simulations is, in this case, finer as trajectories are continuously taken into
account [Buche et al. (2010)]. Likewise, sensory information can also be pre-
dicted [Svensson et al. (2009)] which leads to a plausible approach to implicit
anticipation. However, using only low-level controllers narrows the use of
mental simulation to specific targets.

Finally, the category of systems based on analogical representations
[Shepard and Cooper (1986); Kosslyn (1980)] consists in approaches which
model their environment as an internal virtual world [Buche and De Loor
(2013)]. This allows agents to change perspective [Roy et al. (2004)], antic-
ipate behaviour [Ustun and Smith (2008)] and generate scenarios that
help them obtain useful information about the world and themselves [Bon-
gard et al. (2006)]. Using analogical representations [Rumelhart and Norman
(1983)] provides a natural approach on mental simulation, similar to mental
imagery in humans [Grezes and Decety (2001)]. Nonetheless, existing com-
putational approaches use specific models to perform this type of mental
simulation.
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2.5 Discussion

Within this chapter, we examined related works in various contexts of using
mental simulation for decision-making by anticipating events in the environ-
ment and behaviours of entities that populate it. The study was divided into
four main sections, each reviewing the state of the art through the prism of
where, for what, why and how mental simulation was used. Hence, relevant
approaches from literature have been discussed and analysed, to identify their
strong and feeble characteristics, within the context of the type of environ-
ment they aim for, which phenomena they are able to predict, which cognitive
functions they achieve and finally, the techniques used for their implementa-
tion. The approaches that explicitly use mental simulation are compiled in
Table 2.1 for a complete view of the level to which they address the aspects
of this paradigm as suggested by the cognitive science community. Addition-
ally, we investigate the way in which they achieved their functionality and
also whether or not their authors provided testable proof-of-concepts or open
source code.

Taken together, existing approaches cover all areas of interest in using
mental simulation as an anticipation and decision-making technique, however
there exists no implementation that addresses all of them on its own. Neither
does any approach propose a generic way that makes it extensible over all
examined features simultaneously.

The majority of implementations have begun in virtual reality, but fewer
have taken the leap to robotic embodiments due to dependencies on specific
information about their environment. Those that do however pass into the
real world are either limited in the actions they can perform or rely heavily
on repositories of actions that are abstracted for the use within a higher-level
framework.

Focus is placed on solving only a subset of the cognitive functions asso-
ciated with mental simulation, and this is done using specific models of the
task at hand. Hence, not many elements are taken into account into mental
simulation, for example anticipating trajectories but not collisions, or focusing
on only one of the environmental and behavioural aspects of the environment,
although they are generally interdependent. One of the cognitive abilities
linked with the paradigm of mental simulation – counterfactual reasoning –
has been scarcely approached, and only in a relatively simplistic fashion.

We have also discussed three trends in implementing computational mental
simulation, namely those using symbolic, sub-symbolic and analogical repre-
sentations. These approaches vary in mental simulation granularity, i.e. the
space and time scale to which an agent can perform a mental simulation of its

1Virtual world categories in Table 2.1: Discrete / Continuous, 2Dimensional /
3Dimensional

2Partial source code, such as providing only the main architecture sources but not the
full implementation of the approach, is marked with ∼ in Table 2.1
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Laird (2001) C3D 3 3 3 3 3 ∼
Roy et al. (2004) 3 3 3 3 3 3

Cassimatis et al. (2004) 3 3 3 3 3 3

Buchsbaum et al. (2005) C3D 3 3 3 3

Gray and Breazeal (2005) C3D 3 3 3 3 3 3 3

Bongard et al. (2006) 3 3 3 3 3 ∼
Ustun and Smith (2008) D3D 3 3 3 3 3

Kennedy et al. (2008) C2D 3 3 3 3 3 3 3 ∼
Breazeal et al. (2009) C3D 3 3 3 3 3 3 3

Kennedy et al. (2009) C2D 3 3 3 3 3 3 3 ∼
Svensson et al. (2009) C2D 3 3 3

Buche et al. (2010) C2D 3 3 3 3 3 3 3

Kunze et al. (2011b) C3D 3 3 3 3 3

Buche and De Loor (2013) C3D 3 3 3 3 3

Churchill and Buro (2013) C2D 3 3 3 3

Table 2.1: Overview of areas of interest covered by relevant existing ap-
proaches.

environment. In essence, coarse granularity leads to faster computation of ab-
stract knowledge, while fine granularity can cope with highly detailed models
of reality. The advantages and drawbacks of these approaches are illustrated
in Table 2.2.

Approach Pros Cons

“Like-me” ♦ Mechanism for goal inference
� Correspondence problem
� Specific

Different (unknown)
♦ Independent of other’s structure
♦ No assumptions

� More difficult to learn

Symbolic
♦ High-level inference
♦ Direct rules

� Actions abstracted away
� Can miss details

Sub-symbolic
♦ Low-level control
♦ Precise movement

� Specific controllers
� Difficult to model interactions

Analogical
♦ Intrinsic ability to generate scenarios
♦ Multi-scale interaction

� Construction difficulty

Table 2.2: Pros and Cons of approaches to computational mental simulation.

Furthermore, as Table 2.2 also shows, the two major ways of addressing
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anticipating the actions of other presumably intentional entities in the envi-
ronment – “Like-me” and Different/unknown structure – stem from the two
dominant theories of how Theory of Mind is performed by humans: Simulation
Theory and Theory Theory, respectively. In effect, this led to implementations
that are constructed to resemble humans (or other entities they may interact
with) and use these models in mental simulation, while the others attempt to
create abstract models of others’ behaviour for prediction.

Overall, specific implementations are often preferred due to convenience.
However, this leads to limited functionality when the environment and the
behaviour of simulated agents change significantly. One example of technique
which is only used in few implementations is automatic model creation. This
enables the agent to infer its own body structure, but it is not currently used
for other physical entities. Another example is represented by production
rule systems which have relatively high expressive power, but are not used in
complex scenarios due to the difficulty of problem formalization. Connection-
ist approaches also exhibit high performance in creating efficient controllers,
but learning rate drastically decreases with the size of the network and are
therefore only used for specific tasks.

Finally, we investigated the availability of functional software support for
the computational approaches to mental simulation. Few researchers have
published runnable demonstrations of their work (including videos, test cases
and open source code). For some works, only the cognitive architecture used
is provided, but not the actual extension of the architecture to the mental
simulation paradigm.

To conclude the study of existing works that use the simulation paradigm
for anticipation and decision-making, several shortcomings which motivate the
objectives of this thesis are identified and listed in the following:

• Current approaches are constrained to function in relatively specific se-
tups, with few exceptions which do not provide access to the details of
their implementation. Such exceptions that do aim to be more generic
rely heavily on models created by experts which tend to be difficult to
obtain for contexts with higher degree of complexity.

• Existing implementations are generally used in controlled scenarios and
are not designed to be fully autonomous.

• Although approaches exist that function in real time, online learning is
used only for specific tasks. The mechanism of the simulation paradigm,
such as continuous imagination-reality comparison in complex environ-
ments and imaginative behaviour, are not yet fully exploited.

• Due to either context simplicity or specific functionality, believability
is only achieved to a relatively low level.
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In the following chapter, we introduce and discuss our approach to com-
putational mental simulation that uses an analogical representation system
but with the possibility of heterogeneously modelling various entities in the
environment within a multi-agent imaginary world. We thereby aim to ob-
tain a generic agent architecture that enables mental simulation in real time
continuous environments with dynamic interactions between entities.
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This chapter introduces our contribution: a generic mental simula-
tion agent architecture – Orpheus – which provides an answer to the
shortcomings identified in the current state of the art. Herein, we pro-
vide a detailed conceptual description of our architecture, followed by
its implementation in the C++ programming language. The conceptual
description is structured into three main aspects: perception, imagi-
nary world for mental simulation and an abstract world for learning. It
explains how the agent observes the environment and constructs its in-
ner imaginary analogue of the world which functions based on a variety
of abstract models. We also discuss how our architecture can enable an
agent to perform mental simulation in virtual and real environments
with the purpose of achieving the discussed cognitive functions and
managing both environmental and behavioural anticipation simultane-
ously. The implementation section then delves into greater detail of
how the conceptual framework is integrated within the software ar-
chitecture, resulting in a generic approach to building autonomous
agents capable of online learning and believable behaviour.
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3.1 Generic Agent Architecture

Our contribution is an agent architecture that provides a generic approach to
the paradigm of mental simulation, as support for decision-making. Accord-
ing to this paradigm, an individual owns an imaginary space which is built by
sensing reality and functions on its own to predict what outcomes are to be
expected in reality in various situations. From the computational standpoint,
we consider the “real world” as the environment from which our system takes
its input and upon which it acts. In the general sense, the “real world” could
be the physical reality. However, the “real world” can also be modelled as a
virtual environment in which entities can behave autonomously and perceive
each other. In addition, we refer to an “imaginary world” as a completely
separate virtual space, which is proprietary to the agent(s) using the archi-
tecture, where mental simulations and system decision making are performed.
Finally, for the imaginary world to function, the agent requires knowledge and
the ability to acquire it from observing how itself and other entities interact
within the environment, hence an “abstract world”.

Figure 3.1: Conceptual overview of the “simulation within the simulation”
framework [Buche et al. (2010); Buche and De Loor (2013)].

This approach was first suggested by Buche et al. (2010); Buche and De
Loor (2013) as a novel means of creating adaptive virtual agents (Fig. 3.1).
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However, the suggested conceptual framework does not describe how “simu-
lation within the simulation” should be constructed, nor provides a general-
ization of this approach to multiple scenarios.

The agent architecture proposed in this chapter – Orpheus: Reasoning
and Prediction with Heterogeneous rEpresentations Using Simulation – pro-
vides a description of mechanisms that allow the application of the mental
simulation paradigm into agents in various contexts.

Taking inspiration from cognitive science literature and building upon the
three conceptual layers suggested before, we constructed a functional overview
of the mental simulation paradigm (Fig. 3.2). The functionality of the archi-
tecture is illustrated with the present time as reference, stemming into the past
and future. We note that as time passes, the same process can be applied:
continuous perception, learning from and interpreting the past, predicting the
future and acting based on predictions.

Figure 3.2: Functionality of our architecture at an arbitrary time t: the state
of the real environment r(t) is transformed into a mental image s(t+1) through
perception, from which alternative futures (s(t+n), s′(t+n)) can be obtained,
past events s(t−m) can be reenacted or changed to produce “what if” scenarios
(s′). Decisions can be based on evaluating alternative futures.

The following subsections break down the architecture functionality into
its main components: perception (Subsection 3.1.1), mental simulation (Sub-
sections 3.1.2.1 - 3.1.2.3), decision-making (Subsection 3.1.2.4), imagination
(Subsection 3.1.2.5) and learning (Subsection 3.1.3). Here, we introduce con-
cepts that are used in the architecture and explain how an agent would utilise
it. Thereafter, we focus on the structure and functionality of imaginary world,
after which we describe the importance of the abstract world for an agent’s
capability to adapt.
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3.1.1 Perception

First, by definition, an agent must perceive its environment to be able to
perform any meaningful actions within it. Research in computer vision – the
field focusing on how machines process and interpret visual information from
sensors – provides an extensive range of algorithms for object detection and
recognition, depth perception and scene reconstruction.

Our approach is based on the classic discretisation of the real environment
evolution into time-dependent states; i.e. r(t) is the state (value) of the real
world evolution process (function) r at an arbitrary time t (Fig. 3.3).

Figure 3.3: Visual perception of the real world evolution – r(t) – as a series
of timestamped images.

The next step is to create an analogous imaginary world by mirroring the
real world evolution. We start the construction at the present time, let it be t,
with the agent’s perception of the real world which results in an representation
s(t) which we refer to as a “mental image”. Images are of course static, they
only represent the configuration of the environment at a given moment in
time. The aim is to obtain novel configurations from acquired ones, which can
represent what would happen at a future time, or what could have happened
if the past were different. Therefore, a process that transforms these mental
images is required: “mental simulation”.

3.1.2 Imaginary World

Our approach to constructing the imaginary layer of the architecture is to use
mental images as the building blocks of mental simulation. Because mental
images are originally obtained through perception as previously mentioned,
using them to describe the state of the imaginary world leads to direct trans-
lation between reality and imagination.

In the following, we elaborate on how mental images can be constructed,
and how they can be transformed through mental simulations for different
purposes within the proposed architecture.
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3.1.2.1 Mental Images

In humans, representations of reality seem to be built from sensory and per-
ceptual information (Moulton and Kosslyn (2009)) such as shapes, colours,
textures, sounds or movement patterns, which form aggregates which we ab-
stractly consider as objects. If we follow this intuition, then the inner imagi-
nary world of an individual could be described as a collage of real world data.
Additionally, to account for behaviour, this collage has the ability to evolve
into other configurations that represent other states of reality. Hence, one way
of constructing an imaginary world for our agent is to use a type of represen-
tation that is easily translatable from perceptual input and which can later
be evolved into different states.

We define a mental image as a configuration that statically describes the
state of the imaginary world at an arbitrary time t. The structure of this
element determines the representation capabilities of the agent architecture.
For example, on the one hand, traditional logic-based systems are proficient
at manipulating discrete elements which have robust rules that govern them
but on the other hand are limited in representing raw data from sensors. In
contrast, connectionist approaches such as neural networks perform well in
noisy environments using direct sensory input, but are not meant to be able
to construct and reason on conceptual knowledge. Therefore, for our approach
to be generic, we must consider a variety of possible representations of reality.

One of the oldest such representations is obtained by considering that a
world state can be described as a collection of entities, each of which has a set
of properties (Fig. 3.4). This approach can be used for a large subset of real
phenomena, especially for describing their physical state. Hence, we could
assume that the world, at a given moment, is composed of a list of entities
such as rocks, birds, ants, people or droplets of water, each described by a
given set of properties such as position, rotation, shape, linear and angular
velocity.

Figure 3.4: Belief representation using entities with properties approach.
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This may appear to be a superficial world view, because it only describes
directly observable information. However, the approach can be extended to
represent hidden information by creating strictly imaginary analogues for
them. For example, imaginary properties such as taste or smell can be at-
tributed to entities even if they do not exist as separate elements in reality.
The beliefs of entities can also be represented by mental images that describe
what they perceive about the world around them.

Another approach could be to replace rigidly delimited entities with prob-
abilistic structures (Battaglia et al. (2013)). While decreasing the accuracy of
inference results in perfect perception scenarios, probabilistic representations
can be more robust to perception errors where more deterministic approaches
fail to give accurate predictions. Other representations could include lower
level structures such as raw sensor data maps, however the high complexity
may not be scalable to higher level reasoning.

In this thesis we focus on rigid bodies for the physical aspect of prediction,
however the architecture could support different structures as mental images.
Henceforth, we describe the second component of the imaginary world of our
agent, which enables the evolution of mental images into different configura-
tions, as a function of time.

3.1.2.2 Mental Simulation

Analogous to how the real world evolution is a process that changes the envi-
ronment state, we consider mental simulation as a process that computes the
evolution of a mental image into a future one. Two factors that influence the
real future r(t+1) can be identified, from the system’s perspective: prediction
errors and system-generated actions.

Inaccurate prediction can be caused by faulty knowledge acquisition due to
noisy sensor data for instance, or by the intrinsic stochastic nature of the real
world, leading the agent to observe a discrepancy between its imagination
and the world state. Stochastic processes govern the real world and have
received significant attention from the research community. The inability (or
impossibility) to observe the exact state of the environment prompts the need
to consider more than one possible outcome of an event (Fig. 3.5).

The agent’s own actions can also influence the future state of the environ-
ment by interacting with other entities. Performing an action may change the
state of the environment, therefore leading to a different outcome than that
which would have occurred if the action had not been fulfilled. This type of
alternative future generation can be considered controllable as it is internally
decided by the agent (Fig. 3.6).

Hence, for the agent to account for these expected discrepancies between
reality and imagination, the symmetry between the two worlds has to be bro-
ken by allowing multiple alternative futures. We consider this functionality in
our architecture by branching and altering the evolution of mental simulations
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Figure 3.5: Uncontrollable alternative futures.

Figure 3.6: Controllable alternative futures.

resulting in sets of mental images that correspond to arbitrary future times.
For the agent to be capable of decision making, given that the number of
possibly conceivable futures is virtually infinite, it must be able to control its
mental simulations, as discussed in Subsection 3.1.2.4, to avoid intractability
of the search through possible outcomes.

Analogous to how the future could be obtained from the present, so could
the present be obtained from the past. It is conceivable that the agent can
apply the same process to a past event to obtain subsequent but known states.
Because now the “future” state is available (already observed), the agent can
perform learning in order to improve the overall accuracy of its mental simu-
lations, as discussed in Section 3.1.3: the abstract world.

In addition to evaluating the future, controlling mental simulations al-
lows the agent to arbitrarily construct imaginary pasts from which potentially
important information can be extracted, known as “what if” scenarios (Sub-
section 3.1.2.5). Such alternative series of events could also be placed outside
of real time (i.e. not requiring an real moment of time as an anchor, but still
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depending on a virtual time scale to evolve), which brings the functionality
closer to the human ability of imagination.

An important aspect of mental simulation, from the computational point
of view, is how effects from different sources can be interwoven within the
same framework. Physical reality and behaviour of living things is clearly
interrelated but have traditionally been treated separately due to the different
laws that govern them. For example, it comes natural to describe a wooden
stick as having a position, material properties and possibly a trajectory if in
free fall or thrown. An animal using it to retrieve unreachable food (Seed
and Byrne (2010)) may however be described as a cognitive system that has
beliefs, desires and intentions and can act upon its environment for its own
benefit. Although differently modelled, these entities do interact, and it is
plausible to represent and reason about them within the same system. In
the following we discuss our approach to integrating different mental models
within the same framework of mental simulation.

3.1.2.3 Interweaving Effects

Based upon the premises that a single monolithic world model that could ex-
plain the entire environment evolution is, to say the least, difficult to achieve,
we adopt a hybrid approach for knowledge representation in our agent ar-
chitecture. Herein, we consider that the behaviours of separate entities may
be best approximated via different models. This approach however requires a
means of interweaving the effects of several evolutions into a single framework.

Central to our approach is the process of merging effects from different
sources (physics, behaviour) into the evolution of the imaginary world as a
whole. In order to combine the effects of multiple entities on the environment,
each entity is assigned mental models, from an available pool, that dictate the
way it behaves. The model assignment for each entity can be based on the
estimated error between mental simulation and reality, using an error mea-
surement of choice. Within our architecture, a model can be viewed as a
function that takes a state of the world (the assigned entity and its percep-
tions) as input, and computes a time-dependent change in this state (details
in Section 3.1.3). In this sense, the proposed imaginary world falls into the
category of multi-agent systems. The process of merging consists in applying
a pool of models to their assigned entities in a mental image and accumulating
their effects to obtain the subsequent mental image.

A key aspect in the effect merging process in our approach is its granu-
larity. Traditionally, abstract rules are used to describe the evolution of an
environment, such as for example: “If [Pencil is not held] Then [new location
of Pencil is on Floor]”. This type of environment evolution description does
not include what happens to the pencil while it falls (obstacles in trajectory),
why it falls (gravity), nor what the effects of such process would be, unless
specified through a complex array of other rules. In contrast, our approach is
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to simulate the falling pencil, and therefore naturally represent its interactions
with other entities such as the table that may be between the pencil and the
floor, or the cat lying on the floor which will run away after the pencil nudges
it. In consequence, it is important for this simulation to occur in small time
steps, as it is not feasible to combine large effects in the context of complex
interactions between entities and their environment. In addition, operations
that are not commutative and require an order, such as rotations, can be
forced to behave in a nearly commutative way by using small time steps.

We integrate granularity into mental simulations by constructing them
from a series of successive steps (Fig. 3.7). This way, the mental simulation
is divided into n steps where, at the ith step, each mental model (M j where
j is the model identifier) takes the ith mental image as input and computes
a small change (δj) that is accumulated with the rest of the effects to obtain
the (i+ 1)th mental image.

Figure 3.7: The mechanism through which a mental image is evolved in one
step (i ∈ [0, n− 1]), by interweaving effects from models.

We note however that fine granularity is not a constraint in our architec-
ture, but rather a capability to account for interaction effect merging. There
are cases in which using large steps to perform a mental simulation may be
more efficient, especially when a well known event is reasoned up for which
the effects had been learned in advance. For example, with the flick of a light
switch, it is not efficient to mentally simulate the internal mechanism of the
switch, the electrons that flow through the circuit and the internal design
of the light bulb, but it is enough to take a much faster route directly from
switching on to the lighting of the bulb. However, it is desirable that the agent
can take the longer path as well, in the case where, for example, the light does
not turn on as expected after flicking the switch. In this exceptional case,
the agent could refine the granularity of its mental simulations to evaluate
whether the malfunction is caused by the switch, the circuit or the light bulb
itself.

The step-based approach to constructing mental simulations also allows
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their evolution to be controlled by integrating different courses of actions for
entities and for the agent’s mental self, as follows.

3.1.2.4 Decisions and Control

From the perspective of the imaginary world layer, we view mental models as
black boxes that contribute to the evolution of mental simulations. In order to
control the course of a mental simulation, we consider that these black boxes
offer an interface that can change their behaviour. Specifically, the mental
models that are assigned to entities can take parameters that control how
they generate an entity’s behaviour during a mental simulation, feature which
we refer to in this work as an “action interface” (Fig. 3.8).

Figure 3.8: Mental model seen as a black box, controllable through an action
interface.

The possibility of having an action interface on a mental model gives a
generic way to apply decisions into mental simulations. This is a fundamental
feature of the agent’s self model, which can be controlled directly by system, as
previously illustrated in Figure 3.6 (Controllable alternative futures). Addi-
tionally, other directly non-controllable entities can be mentally controlled to
some extent in order to evaluate various possible turns of events, as previously
mentioned in Figure 3.5 (Uncontrollable alternative futures).

An important aspect of utilizing this design is that, for simplicity and
computational efficiency, the interface should be shared between the imagi-
nary world and reality. Let us suppose that this would not be the case and
the commands issued for the mental models are different than those sent to the
motor system of the agent, then a translation would be necessary so that imag-
ined actions are transformed into motor commands and vice versa. Therefore,
it is computationally more efficient for the commands issued to the mental and
real selves to coincide. This constraint also offers another advantage: in the
context in which the imaginary world is populated and animated with infor-
mation from reality, the common command constraint also facilitates learning
the effects of one’s actions. The mechanism behind this feature is that when
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the agent issues a motor command, let it be C, it can learn the effects it pro-
duces in reality in direct association with C. Commands need not be discrete,
but can be represented by values in the continuous domain. As such, other
model-specific parameters can also be specified, if required.

Conceptually, the action interface consists in a link between reality and
the imaginary world. However, for it to function, it requires a control module
that issues commands through it. In our approach, we refer to these elements
as “simulation controllers”. Controllers may also directly contribute to the
agent’s decision-making process by issuing commands to the imaginary repre-
sentation of self, commands which can then be applied to reality via the motor
system, or they can simulate the decision process of other entities within the
imaginary world. Simulation controllers are part of the abstract world of our
architecture, and will be detailed in Subsection 3.1.3.

Decision-making depends on goals; in our approach, goals are attached
to mental simulations and are evaluated at each step. We define goals as
conditions that apply to one or more mental images, so that the imaginary
environment configuration is evaluated. For instance, considering a scenario
where the agent has to position itself in a certain location, the goal can be
defined as the condition that the imaginary self representation finds itself
into the given area, case in which the evaluation of the mental simulation’s
goal satisfaction would give a higher value. Goal satisfaction levels can have
continuous values, so that partial success can be represented. In effect, the
agent can be given a desired situation/configuration as a goal, for which it
must find a way to arrive in. Within the architecture, goals can be provided
by a human by specifying the constraints on the environment’s configuration,
but we also envisage the possibility of system-generated goals based on long-
term learning.

Mental simulations and actions that are performed inside them also embed
the notion of the corresponding real time, so that synchronization can be
done correctly when the agent performs the actions in the real environment.
When a mental simulation is created and run, its results will be available
after a time delay which is dependant on the complexity of the process being
computed. This way, to make a decision, the agent can perform one or a set
of parallel mental simulations, wait for them to finish computing and then
select a course of action which best suits its goals. However, we identify
an important issue with this approach: with the assumption that mental
simulations will be subject to error (which is generally the case in complex
environment situations), this discrete manner of “thinking and then acting” is
bound to fail if the period of time is sufficiently large that errors accumulate
beyond the point where decisions remain valid. To this end, our approach
allows the agent to continuously perform mental simulations and constantly
update the set of actions it is about to perform.

The main challenge of maintaining the validity of mental simulations re-
sides in guaranteeing that the system’s real actions are not different from those
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which are being simulated, during the time it takes to compute the predic-
tion. The time interval that corresponds to mental simulation processing time
must be fixed inside the prediction, because otherwise actions simulated in
that interval would not be executable before the mental simulation result is
available, and therefore action synchronization would be broken.

Figure 3.9: Action synthesis from multiple mental simulation results.

Figure 3.9 illustrates the process of continuously updating the agent’s
course of actions using successive mental simulations. We resolve this challenge
by including the currently planned actions into the new mental simulations, so
that they maintain their validity regarding the previously mention issue. The
process consists in evaluating a sequence of overlapping mental simulations to
construct the future course of actions that the agent will take, based on the
expected goal satisfaction. This way the action plan, in analogy to figure 3.9,
would first consist in the decision from the red mental simulation; while the
agent is performing these actions, the green mental simulation is being com-
puted and as soon as the result is available, the decision can be included in
the future action plan. This process can be repeated continuously, and allows
the agent to maintain a more robust imagination-reality decision correspon-
dence, while also allowing it to integrate novel, unpredicted information into
the decision-making process and therefore increase its adaptability.

3.1.2.5 Imagination

Humans are capable of altering reality in their minds, towards various pur-
poses. Children engage in pretend play, while adults often root alternative
pasts into reality to generate outcomes that might have been more desirable.
Altering the past to obtain “what might have been” is referred to as coun-
terfactual reasoning. From a functional point of view, this ability is used by
humans for various purposes (Byrne (2002)) such as to improve their future
performance (“if I had studied more, I would have received better scores”) or
to manage guilt attribution (“if only I knew about the traffic jam on street
X, I would have taken another route to work”). However, such alternative
scenarios need not be fixed in time and space like counterfactuals, but can be
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purely a result of one’s imagination, where real and/or fictional elements can
be assembled in novel ways.

Within our architecture, the mental simulation process can also be applied
to past mental images, obtaining results in the past or present, or can be a
timeless assembly of elements that evolve according to previously learned rules.
This way, the agent has the ability to mimic the creative reasoning process of
humans within its own imaginary world.

Using this paradigm, when confronted with the question “why did you per-
form action A ?”, the agent would have the mechanisms to provide answers
such as “because if I had not, event E would have occurred which does not
satisfy my goal” or “because actions B and C would have led to undesirable
outcomes”. This type of answers resembles how humans generate explana-
tions for their actions, and has the potential to increase the agent’s level of
believability.

3.1.3 Abstract World

For mental simulations in our approach to function, the agent requires a means
of representing the processes that give the evolution of the environment and
the entities that populate it. In the following we discuss the details of how
our architecture represents this type of knowledge, how the agent can acquire
new knowledge and how available mental models can be evaluated.

3.1.3.1 Structure

Humans can make decisions without a complete understanding of how every-
thing works; instead, our brains represent partial information which is neces-
sary to perform tasks. Moreover, people can extrapolate certain knowledge
to diverse scenarios and recombine the effects of each element in the environ-
ment to obtain novel knowledge of previously unseen outcomes. Our agent
architecture aims to achieve this flexibility by providing a means of represent-
ing knowledge of how entities behave through a heterogeneous pool of mental
models. This way, multiple behavioural aspects of an entity can be modelled
separately, through possibly different mechanisms, which are then brought to-
gether within the mental simulation. As previously described, the effects of
each mental model are thus interweaved (Subsection 3.1.2.3), producing larger
scale outcomes. This approach is inspired from how systems following simple
rules can exhibit emergent behaviour, through simulation.

In our architecture, each mental model follows a common template: it
considers an aspect of the real world as a function that takes the environment
configuration at time t as input, performs changes on it, and provides a new
configuration as output which corresponds to time t+δt. These configurations
are proprietary to the agent, and are represented as mental images in its
imaginary world. For simple behaviours, such as physical phenomena, where
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a given state depends only on the previous environment configuration, the
model can function only with one mental image as input. In the case of more
complex behaviours, such as other autonomous entities, models must contain
internal states in order to correctly predict their behaviour, and therefore
the input consists in a series of mental images, so that its internal states are
synchronised with the simulated context.

From a technical point of view, the purpose of a mental model is to reenact
and predict a time series. The evolution of a given entity’s behaviour or sub-
behaviour is considered as a time-varying signal which is to be reconstructed
in the agent’s imaginary world.

Figure 3.10: Functionality expected from a mental model within our agent
architecture.

Figure 3.10 illustrates the functionality that a mental model should pro-
vide in order for the mental simulation process to function. Within a mental
simulation, at each step, a mental model will receive the current state of the
imaginary world (a mental image) as input. The model can build its own in-
ternal state based on one or more input images which constitute the “known
states”. Based on its internal state, if any, the mental model produces a pre-
diction that represents the state which corresponds to the next time step in
the mental simulation, given a step size. Optionally, in the case where the
entity to which the model is assigned represents the agent’s self or is in any
way controllable by the agent, the mental model’s action interface can be used
to change its behaviour.

An important aspect of mental simulations is that they are self-contained;
i.e. they evolve separately from the real environment and each other. As
previously described, the models in a mental simulation are given the current
imaginary state as input but, because of this self-containment, the current
state is in fact a prediction made at the previous step. Therefore, mental
models must be able to process their own output throughout the evolution of
the imaginary scenario, without exhibiting divergence.

In the following, we describe how learning can be performed within our
architecture and the system can evaluate the accuracy of its mental models.
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3.1.3.2 Model Training and Evaluation

Online learning is a critical requirement for an agent that must act in an
autonomous fashion and adapt to changes in its environment. The learning
process must be continuous to improve the accuracy of short term predictions
which prove vital for humans and animals alike. However, the agent should
also be able to learn about processes that exhibit patterns over a wider time
length. Long term learning allows the agent to optimise its overall behaviour
to meet its goals, and enables it to perform predictions over longer periods of
time such as planning.

Our agent architecture allows mental models to learn continuously from the
agent’s perception data. Learning is performed in a way similar to how mental
simulations function: at each perception step, two environment configurations
(mental images) are paired, representing the time dependent transition (initial
state and expected output) to be learned by a mental model. At this level, the
purpose of the models is to describe reality as accurately as possible, with the
aim of predicting its evolution. This leads to a supervised learning context,
where the sequence of mental image pairs constitute the sample dataset on
which a mental model is to be trained using a wide range of contemporary
algorithms.

Such as with mental simulations, the granularity of learning can be varied
to obtain models that learn short and long term patterns in the data. By
allowing multiple levels of abstraction to be learned for a given process, the
agent can first perform mental simulations with lower granularity which can
be computed faster but at lower resolution and then elaborate on details using
high granularity mental models.

The abstract world is separated into a parallel learning loop which asyn-
chronously receives input from the perception layer and can provide the latest
available mental models to the imaginary world on demand, to perform mental
simulations. Based on the assumptions that (1) certain learning algorithms
perform better than others in given situations and (2) the evolution of the en-
vironment can be broken down into a set of interdependent processes, training
is organised into learning sessions, each containing a set of models that learn
together. First, attempting to learn the same process using different algo-
rithms within separate learning sessions allows the agent to prefer one set
of algorithms over another, depending on how accurate the model is on the
given learning target. In addition to exploiting performance niches, sessions
allow integrating the effects of each model into the training; for example, given
two mental models, one that describes the laws of physics and another that
describes the behaviour of a bird, the latter can be trained using the data re-
sulted from subtracting the effects of physics (gravity, inertia, friction). This
approach can allow the agent to use mental simulation to extrapolate the ef-
fect of a given behaviour to hypothetical scenarios such as, for example, the
impossibility for the bird to fly in the absence of air friction or how it may
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behave in zero gravity, without explicitly witnessing these effects.

Accuracy measurement is important for choosing mental models that best
describe the process to be predicted. During training, at each step, prediction
error can be computed locally using the difference between a model’s output
and the expected configuration. Based on the local error of each mental model
in a session, an overall accuracy of a training session can be computed which
describes how well the model set predicts a given process for one step. In
addition to per-step error measurement, the training session is to be evaluated
in isolation over multiple time steps, to compute the confidence that the mental
simulation can be accurate enough for at least a given period of time. This
way, locally accurate models can be used for short predictions, while more
robust models can be used in longer term mental simulations.

3.2 Implementation

Orpheus was implemented in C++ with multi-thread support. The C++ pro-
gramming language was chosen to allow the agent to achieve high performance
in dynamic real-time scenarios, while also providing a straightforward way
of implementing the conceptual framework through object-oriented program-
ming techniques.

Memory management becomes critical for an agent that performs multiple
parallel mental simulations, which require separate resources for each execu-
tion thread. We simplify this aspect in Orpheus by using the shared pointer
implementation, along with multi-threading and other tools from the Boost1

library.

Representing entities in a mental image requires storing their positions,
rotations, velocities and other values that describe its state. These data are to
be processed within mental simulations to replicate their real world evolution.
As this process represents a central part of our system, computation speed is
critical and therefore we make use of the efficient matrix implementation from
the Eigen2 template library.

3.2.1 Software Architecture

The functionality of the proposed agent architecture is organised into a se-
ries of interconnected packages. Its core consists in the ability to perform and
manage mental simulations - the SimulationEngine. The remaining packages
serve as encapsulated functionalities on which the core depends (Fig. 3.11)
to represent (Metamodel), compute (Models), learn (ModelTraining) and dis-
tribute (Communication) the evolution of the environment, allowing the agent
to reach a desirable situation (GoalSystem).

1http://www.boost.org/
2http://eigen.tuxfamily.org/
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Figure 3.11: Packages of the Orpheus agent architecture and their interde-
pendency.

The main components of the SimulationEngine package consist in the
Simulation class with its network-related derivatives and the SimulationCon-
trollers that control the Models within a given mental simulation (Fig. 3.12).

Figure 3.12: Class diagram - principal components of the SimulationEngine

package.
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The SimulationEngine class, which shares its name with the package, plays
a management role for all mental simulations performed by the agent. This
management consists in easy access to any of the mental simulations, either
running or finished, and a parallel garbage collection system for simulations
with heavy resource use. It allows mental simulations to be accessed via net-
work, using the Communication package, by external Graphical User Interfaces
(GUI) that enable the visualization (Subsection 3.2.2) of the agent’s decision
making process.

The paradigm of mental simulation is implemented into the Simulation
class, which provides a set of operations to control their use. Mental simula-
tions each contain a Boost thread object and once started, the entire simula-
tion process is run on a separate thread until a goal has been met or the max-
imum simulation time has expired. Mental simulations can asynchronously
provide information about their state (running or finished), final or interme-
diary mental images that reflect the current evolution state of the world being
emulated, and can also feed this information to remote subscribers.

Each mental simulation executes Algorithm 1 within a separate thread.
The initial mental image can represent the current state of the real environ-
ment, or an arbitrary imaginary situation. This image is sequentially updated
by applying the assigned mental models which perform the changes that con-
tribute to its evolution.

Algorithm 1 Mental simulation

Prerequisites: Initial mental image (I), Mental model list
if not models initialised then

for each model as Mi do
Mi.initialise(I)

while maxRunTime− totalRunTime < ε do
Iorig ← I
for each model as Mi do

Mi.step(stepSize, Iorig, I) /* I is modified */
if passedT ime > subscriberFeedInterval then

feedImageToSubscribers(I)
for each simulationcontroller as Ci do

Ci.mutateModelParameters(I, actionsAllowed())
if hasgoal then

goal.update(I)

If controllers are assigned to any of the entities within the mental simu-
lation, the algorithm verifies whether the virtual time exceeds the total esti-
mated time required to compute the simulation. This is important because the
imaginary actions which are performed before the mental simulation would
finish computing cannot be applied to the real environment, and therefore
renders the simulation results invalid. Hence, the influence of simulation con-
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trollers must be postponed until the simulation virtual time corresponds to
a moment after the real processing has finished, using the actionsAllowed()
function illustrated in Algorithm 2.

Algorithm 2 Estimating computation time

Function actionsAllowed()
estimatedTotalRuntime← maxRunTime∗timeSinceStart

totalRunT ime
if virtualT imeSinceStart > estimatedTotalRuntime then

return true
else

return false

Mental simulations produce the evolution of imaginary scenarios to be
evaluated according to system goals, but can also provide the history of ac-
tions taken by the controllers it contains. Subsequent mental simulations will
result in interleaved action sequences to perform by the agent, as previously
illustrated in Figure 3.9. The SimulationEngine package of Orpheus pro-
vides the means of managing the results of mental simulations through the
ActionSynthesizer class (Fig. 3.13).

Figure 3.13: Class diagram - action synthesis in the SimulationEngine pack-
age.

Action synthesis consists in the management of a set of mental simulations
with the aim to collect their results for constructing the agent’s subsequent
actions based on the highest goal satisfaction level. The ActionSynthesizer
will constantly verify which mental simulations have finished processing and
for those who have, it will search for a simulation that maximises the goal sat-
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isfaction level. If such a mental simulation is found, it will apply the available
policy. This will result in a positive response if the policy has been applied
and negative otherwise. In the case where the policy is applied and hence the
agent’s subsequent actions are modified, concurrent mental simulations will
become invalid due to the fact that they no longer take into account novel
changes (Algorithm 3).

Algorithm 3 Action synthesis

Prerequisites: Mental simulation list (S), Policy (P ), Agent actions
(A)
while not interrupted do

bestScore← 0.0
bestSimulation← null
for i← 0...S.size() do

if Si.isRunning() and not Si.isInvalid() then
continue

if not Si.isInvalid() then
if Si.hasGoal() and Si.getGoal().getSatisfaction() > bestScore
then

bestScore← Si.getGoal().getSatisfaction()
bestSimulation← Si

toRemove.add(Si)
S.remove(i)
i← i− 1

actionsChanged← false
if exists bestSimulation then

actionsChanged← P.apply(bestSimulation,A)
for each toRemove as r do

SimulationEngine.removeSimulation(r)
if actionsChanged then

for i← 0...S.size() do
Si.setInvalid(true)

The application of a policy to the best mental simulation consists in re-
covering the action history within that simulation and modifying the agent’s
current course of action using that history. The default policy (Algorithm 4)
replaces the agent’s actions beginning at the virtual time corresponding to
the start of the mental simulation. Depending on context, additional policies
may be added, which perform other operations on the agent’s action plan, by
deriving the SynthesizerPolicy class and overloading its apply method.

The real-imaginary loop is therefore closed: the agent perceives the envi-
ronment, performs mental simulations and an action plan is synthesised and
applied back to the real environment. The action plan is accessible via the
getActionsToPerform method of the ActionSynthesizer class.
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Algorithm 4 Applying the default SynthesizerPolicy

Function apply(simulation, agentActions)
actionHistory ← simulation.getSimulationControllerHistory()
if actionHistory is empty then

return false
satisfactionLevel← simulation.getGoal().getSatisfaction()
startT ime← actionHistory[0].getT imestamp()
index← 0
while index < agentActions.size() and

agentActions[index].getT imestamp() < startT ime do
index← index+ 1

if index < agentActions.size() then
if agentActions[index].getSatisfaction() < satisfactionLevel then

agentActions.erase(index, end)
else

return false
for i← 0...agentActions.size() do

copy ← actionHistory[i]
agentActions.add(copy)

return true

Additional to prediction, mental simulations also constitute a basis for
evaluating imaginary scenarios. Whether a scenario is favourable can be mea-
sured through the prism of system goals (Fig. 3.14).

Figure 3.14: Class diagram - creating system goals.

If a goal is assigned to a mental simulation, the current state of the imagi-
nary evolution of the environment is communicated to the goal system for eval-
uation. Depending on the agent’s requirements, system goals can be added by
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extending the Goal class and implementing its update method. The paradigm
used for the goal system consists in the evaluation of one or more mental im-
ages and identifying whether a certain configuration is reached and to what
extent.

In our approach, a mental image is a collection of entities, each charac-
terised by a set of physical attributes such as shape, position, rotation and
velocity (Fig. 3.15). Mental images are assigned a moment of time which
corresponds to the beginning of the mental simulation to which they belong
and a time difference that gives how far in virtual time the image is located.
This relation to time is especially important in future action synchronization,
as predictive mental simulations run ahead of real time.

Figure 3.15: Class diagram - the Metamodel package: mental images and their
structure.

To achieve effect interweaving in mental simulations, we implement two
operations - addition and subtraction - in mental images. This allows mental
images to be obtained from a sum of small effects brought by each partici-
pating mental model. Given a finite number of models Mj , j = 1, 2, . . . ,m,
we compute each model’s effect defined by δj := Ioutj − Iin, i.e. the difference
between the mental image outputted by Mj and the original input. Starting
from input mental image Iin, corresponding to time t, the step result (time
t+1) is computed by adding the effects of each model to the input mental im-
age: Iout := Iin+δ1+δ2+...+δm. The order in which the effects of the models
are applied to compute the resulting image would be neutral if the operations
on mental images were commutative. Although combining rotations break
commutativity, when the time step of the simulation is significantly small, the
rotation given by the quaternion evolves slowly enough for the quaternion dot
operator to behave in a nearly commutative fashion, because the associated
rotations have nearly the same axis. We could define the linear approximation
of the quaternion dot in order to impose commutativity, if needed.
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Orpheus manages mental models through the Model abstract class (Fig.
3.16). The functionality provided by all models consists in initialization, learn-
ing, reenacting (step) and copying itself.

Figure 3.16: Class diagram - mental model abstraction and on-demand cre-
ation.

Upon initialization, the mental model object should allocate its necessary
memory space; models are initialised at the beginning of each mental simula-
tion. Learning consists in receiving a flux of mental images from the agent’s
perception (input mental image) and updating the model’s inner structure in
order to predict the target’s evolution (expected mental image). During learn-
ing, the mental model also receives the actions which have been performed by
the agent at the given time, so that the sensory-motor link can be learned, if
the model provides this functionality. Applying the learned knowledge to the
evolution of mental simulations is performed through the step method which is
called at each simulation step. Given the time interval dt and the input mental
image, the step method is responsible for computing the following state of the
target and apply the change to the resulting mental image. Finally, models
must implement the copy method which constructs an identical deep copy of
the object (all its resources are duplicated), that can be used within another
mental simulation (i.e. on separate execution threads, that evolve differently).

Mental model heterogeneity is a design principle of Orpheus. Hence,
we consider them as separate from the main architecture, but allow them
to be dynamically linked at runtime, so that loading them does not develop
into a performance bottleneck. Dynamic library loading is implemented in
the createModel method of the ModelFactory class (Listing 3.1), and uses
the libdl. This way, each mental model can be implemented separately and
compiled into a shared library which can then be loaded at runtime by an
agent using the Orpheus architecture.
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Listing 3.1: ModelFactory class, createModel method (C++ code).

boost : : shared ptr<Model>
ModelFactory : : createModel ( std : : s t r i n g type )
{

// check if dynamic library was not loaded before

if ( handleMap . f i n d ( type ) == handleMap . end ( ) )
{

//try to load dynamic library with this name

std : : s t r i n g libName = "./lib" + type + ".so" ;

//load library

void ∗handle=dlopen ( libName . c s t r ( ) ,RTLD LAZY) ;
if ( handle )
{

handleMap [ type ] = handle ;
}
else

{
std : : c e r r << "Failed to load lib"

<< type << ".so ! Reason: "

<< d l e r r o r ( )
<< std : : endl ;

}
}

// check if dynamic library exists in memory

if ( handleMap . f i n d ( type ) != handleMap . end ( ) )
{

// found handle ! create and deliver the object

void ∗sym=dlsym ( handleMap [ type ] , "createObject" ) ;
if (sym)
{

Model ∗(∗ f n c t ) ( ) ;
f n c t=reinterpret_cast<Model ∗(∗)()>( sym ) ;
return boost : : shared ptr<Model>( f n c t ( ) ) ;

}
else

{
std : : c e r r << "Failed to create instance of "

<< type
<< " ! Reason: "

<< d l e r r o r ( )
<< std : : endl ;

}
}

return boost : : shared ptr<Model>() ; //null

}
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Dynamic library loading not only provides an elegant encapsulation solu-
tion for the core architecture and the mental model implementations, but also
allows Orpheus to interface with a wider range of languages in which models
can be written (Fig. 3.17). Moreover, agents that use the architecture can
have their model repository updated seamlessly, without requiring changes to
their global logic.

Figure 3.17: Mental model abstraction - integration of a heterogeneous (both
structurally and functionally) collection of models at runtime.

In addition to seamless mental model replacement, Orpheus provides the
tools for training and providing models as the agent evolves in its environment
(Fig. 3.18). Perception data, in the form of mental images are fed into the
ModelTrainer via its addEvidence method, where it is buffered for training.
Learning takes place in parallel sessions in which sets of mental models are
trained collectively.

Figure 3.18: Class diagram - mental model training and caching.

This feature is based on the assumption that isolated models may not be
able to reproduce all aspects of the evolution of the real environment, and
therefore a collection of different models are used for learning each particu-
larity of the data. This training method is consistent with the way mental

September 4th, 2015 53



CHAPTER 3. PROPOSITION: ORPHEUS

simulations are performed in Orpheus, where multiple models are applied at
each step to produce the overall outcome of an imaginary scenario.

The procedure of a training session is illustrated by Algorithm 5. Given
a list of mental models and perceptual data for training, a training session
consists in a separate execution thread which iterates over the training data
and selects pairs successive mental images which are given as input to each
model’s learn method. Mental model evaluation occurs at each step, and
provides a measurement of error for selection purposes. The remaining effects
to be learned are determined by performing a mental simulation step on each
model and subtracting its effects from the expected configuration used in
subsequent learning.

Algorithm 5 Training session

Prerequisites: Mental model list, Evidence data (mental images,
agent actions)
if not models initialised then

for each model as Mi do
Mi.initialise(I)

while not interrupted do
if evidenceQueue.size() > 1 then

imgBegin← evidenceQueue[0]
imgEnd← evidenceQueue[1]
paramsBegin← evidenceParamsQueue[0]
evidenceQueue.remove(0)
evidenceParamsQueue.remove(0)

if has imgBegin and imgEnd then
dt← imgEnd.getZeroT ime()− imgBegin.getZeroT ime()
modifiedImg ← imgBegin.copy()
remainingImg ← imgEnd.copy()
for each model as Mi do

Mi.learn(imgBegin, imgEnd, paramsBegin)
Mi.step(stepSize, imgBegin,modifiedImg)
remainingImg ← imgBegin.plus(imgEnd.minus(modifiedImg))

The agent can make use of its models for mental simulations even though
these models are still in training. This way, the best performing mental models
can be requested asynchronously to the ModelTrainer, trading off accuracy for
availability. Using mental models which are still in training requires making
a copy of the model object and of its resources and may therefore be a slow
process. To ameliorate this issue, parallel caching is used for making copies of
heavily used mental models. By specifying the model, the training session it
is participating in and the number of copies to be stored, the ModelCaching
singleton will construct a pool of readily available cached copies, which can
then be instantly accessed and used in mental simulations.
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3.2.2 Distributed Processing and Visualization

In situations where searching the entire state space generated via mental sim-
ulation exceeds the computation capabilities of the agent, Orpheus provides
the Communication package (Fig. 3.19) that can interconnect multiple agents
together. The purpose of this approach is to enable sharing the mental simula-
tion workload throughout a network of agents; i.e. an agent can make requests
to other agents to help with computing one or several mental simulations for
its own use.

Figure 3.19: Class diagram - Communication package.

The CommunicationManager class is implemented as a multiton, i.e. static
key-based access to its instances. The multiton implementation allows agents
to manage multiple networks, as each server can be set to listen to a differ-
ent network interface. Each CommunicationManager instance creates a TCP
server that starts listening for connections on a free network port. The server
asynchronously establishes and handles connections with the clients which
connect to it, and decodes incoming requests. Additionally, the communica-
tion manager also provides the functionality to connect to other servers, by
providing their IP address and port number. In this situation, the manager
establishes and maintains the asynchronous communication channel until one
of the participants is disconnected, or the connection is explicitly interrupted.
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With this approach, two main network architectures are possible (Fig.
3.20): 1) a group of fully functional agents that share their computational
resources, which can be used to those that require it most, and 2) one “master”
agent that makes use of a group of “slave” instances of the framework which
serve as a processing cluster.

Figure 3.20: Resource management for mental simulations over a network of
agents. Letters A-F signify simulated scenarios for which computation can be
done by other agents in the network. Example: the orange agent computes
scenario E for the blue agent.

By using these architectures, the agent is able to enhance its cognitive
abilities by utilising the spare computational resources of other agents (either
robots or regular computers). This is especially useful when an embodied
agent finds itself in a critical situation that requires superior decision making
capabilities which take into account multiple scenarios. In effect, the agent
is able to receive aid from its peers and perform mental simulations in a
distributed fashion.

In addition to computational distribution over the network, the Commu-
nicationManager also allows broadcasting the state of mental simulations to
subscribing Graphical User Interfaces (GUI). A GUI consists in a 3D visual-
ization environment which is updated from information contained in mental
images (Fig. 3.21). The GUI may use the CommunicationManager to connect
as a client to an agent performing mental simulations, which in turn returns
a stream of mental images from a chosen simulation that is in progress.

3Robocanes team (University of Miami, FL, USA), http://robocanes.cs.miami.edu/
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Figure 3.21: Network-based Graphical User Interface (GUI) for the agent’s
decision-making process. Left: Orpheus agent in virtual environment
(Roboviz renderer by Stoecker and Visser (2012)); Right: visualization of
decision-making mental simulations of the Orpheus agent which controls the
goalkeeper. Context: Virtual Nao goalkeeper for the RoboCup 3D Simula-
tion League, in collaboration with the RoboCanes team3.

An advantage of using mental simulation as a decision making mechanism
is its intrinsic decision explanation ability. Classic logic-based systems also
have this quality, but are not well suited for complex environments which we
target using our approach. Moreover, newer approaches in literature are gen-
erally regarded as black-boxes which provide reasonable decisions but cannot
provide an explanation on how they came to their conclusion. Our mental sim-
ulation based approach provides the human user with a comprehensive chain
of events, communicated via the GUI, from which the reason for a certain
decision becomes visible, although not explicitly specified within the system.

3.3 Discussion

In light of the difficulty of decision-making in complex dynamic virtual en-
vironments, we have proposed a generic mental simulation architecture that
allows the agent it controls to simulate the behaviours of itself and others in
different contexts. Our aim was to exploit the advantages of simulation as a
mechanism to make predictions but also as a learning tool, using the imag-
inary outcomes of mental simulations and comparing them to reality. This
way the agent can learn and perfect its mental models of the reality which it
inhabits.

Our agent architecture consists in three layers of abstraction which can
be regarded as asynchronous processes, as suggested by Buche et al. (2010);
Buche and De Loor (2013). In contrast to previous works, the novelty of
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our approach resides in its genericness. Orpheus extends the functionality of
existing approaches, details on the mechanisms required by the mental simula-
tion paradigm in a computational context, and provides a common framework
for physical and behavioural anticipation. From the theoretical point of view,
we have provided a conceptual overview of how mental simulation can be
beneficial for decision-making in an intelligent agent and discussed the core
mechanisms that enable reasoning within this framework, from perception, to
cognition and finally to action. Thereafter, we illustrated the system architec-
ture in detail, along with an algorithmic approach to the previously identified
mechanisms.

Orpheus was implemented in C++ with multi-threading support, with the
aim for computation speed and portability. The complete implementation of
our agent architecture has been published as open source, and can be freely
accessed at https://bitbucket.org/polceanum/orpheus, in the hope that
it will be used as support for agent decision making in open, dynamic environ-
ments. The architecture is compiled into a dynamic library, so that agents can
make use of its functionality, with or without integrating it with third-party
infrastructures. Compatibility has been validated with various Linux-based
systems (of both low and high performance) and also on the Nao humanoid
robot from Aldebaran Robotics4.

4Aldebaran website: https://www.aldebaran.com
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This chapter presents the instantiations of the generic agent architec-
ture that was proposed in this thesis. Three applications are discussed,
in the order of increasing complexity. First, an agent that solves puz-
zles in the complex 2-dimensional virtual environment of the “Angry
Birds” game. Here, the agent receives input from the game in the
form of snapshot images of the scene, being required to extract knowl-
edge about the objects composing the scene and take the appropriate
actions to win the game. Evaluation consists in three participations
in an international competition, resulting in 8th and 4th place against
other autonomous agents, and 1st place (best agent) in a “man versus
machine” event. Second, we subject our proposed architecture to an
adaptability experiment that includes environmental and behavioural
aspects inside a dynamic 3-dimensional virtual environment. Here, our
agent is able to adapt its behaviour based on changes in its environ-
ment and exhibits believable behaviour such as hiding behind obstacles,
without any semantic knowledge of its real counterpart or any strat-
egy. Finally, we increase the complexity of the environment and the
agent’s embodiment and introduced noisy perception, in the context
of the “RoboCup 3D Simulation” competition. Our agent plays the
role of the goalkeeper of a humanoid robot soccer team, obtaining im-
proved results in comparison to another approach that was used in the
competition.

September 4th, 2015 61



CHAPTER 4. APPLICATIONS

4.1 Introduction

The challenge addressed in this chapter is to show that our contribution –
Orpheus – meets the requirements identified in our study of related works on
computational mental simulation. More precisely, the goal is to demonstrate
the genericness of Orpheus and its effectiveness in dynamic environments
of various levels of complexity, and to assess the environment characteris-
tics where it can function, the types of targets it is able to include in its
predictions and the cognitive functions it is able to perform.

To this end, we propose three test cases (Table 4.1), in increasing order
of complexity, where we instantiate Orpheus into agents which are required
to achieve a set of goals, without changing their architecture from one
scenario to another. The properties of the three environments used for the
evaluation emerge from the study performed in Chapter 2 where we analysed
the conditions in which existing approaches to computational mental simula-
tion are deployed.

Orpheus agents
Angry Birds

Agent
Section 4.2

Orphy
the Cat

Section 4.3

Nao Robot
Goalkeeper
Section 4.4

Space complexity 2D 3D 3D
Time complexity real time real time real time
Time constraints 3 3

Embodiment complexity low medium high
Physics challenge 3 3 3

Behaviour challenge 3 3

Table 4.1: Challenges in each proposed evaluation scenario of Orpheus.

In the following three sections (4.2, 4.3 and 4.4), we present the context
of each test scenario and discuss the characteristics of each Orpheus based
agent with emphasis on how perception was constructed, the contents of
the agent’s abstract world, the functionalities of the imaginary world and
how the agent makes decisions. Additionally, we evaluate the extent to which
each agent is able to achieve its goal in the given environment conditions. The
final section (4.5) of this chapter analyses how the three applications satisfy
the criteria based on which we evaluated related works, and demonstrates the
genericness and effectiveness of our agent architecture.
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4.2 Angry Birds Agent

For the first evaluation of our proposed architecture, we implemented a mini-
malistic instance of our mental simulation framework within an agent designed
to play the Angry Birds game.

Angry Birds1 by Rovio Entertainment Ltd. is a popular game in which
the player is in the control of various types of birds, each with special abilities,
and goal is to help these birds seek revenge on their pig enemies (Figure 4.1).
The game is based on a 2-dimensional physics simulation in which pigs are
placed in structures built from blocks of various shapes, sizes and materials.
The challenge of Angry Birds is to anticipate the effects of shooting birds
towards the pigs and their buildings so that all pigs are destroyed before the
player runs out of birds to shoot.

Figure 4.1: Annotated in-game view of Angry Birds.

The AIBirds contest2 is an artificial intelligence competition that chal-
lenges researchers and AI enthusiasts alike to build an autonomous agent that
can play Angry Birds as well as possible. In the 2013 edition of the AIBirds
contest, which was organised as a symposium in the International Joint Con-
ference on Artificial Intelligence (IJCAI), a naive agent [Ge et al. (2013)] was
made available to the participants, which contains a set of tools to detect the
locations of objects in the Angry Birds scene, and a simple decision algorithm
that consists in randomly choosing a pig and shooting the bird on the trajec-
tory that intersects the chosen pig. Object detection is limited to acquiring
the bounding boxes, or minimal bounding rectangles (MBR), that are aligned
to the game coordinate system.

1Angry Birds official website: https://www.angrybirds.com/
2AIBirds contest website: http://www.aibirds.org
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Figure 4.2 illustrates how the instantiated agent fits into the specifications
of the original conceptual framework by Buche and De Loor (2013).

Figure 4.2: Conceptual overview for the Angry Birds bot.

We consider that the AIBirds contest represents an opportunity to test
and evaluate our architecture in the context of a physical environment with
moderately stochastic results which are due to the unavailability of the game’s
inner mechanisms. In this section we describe the implementation of this
agent, with regard to the proposed architecture.

4.2.1 Perception

The game state is obtained by the agent through an extension for the Google
Chrome browser which returns 2-dimensional images of the game, identical to
what a human user would see when playing the game. The challenge for the
agent is to extract useful information from these images in order to play the
game.

An approach to extracting general solid rectangles (GSR) from MBRs
was proposed by Ge and Renz (2013), and consists in defining an algebra
to describe the GSRs and computing all possible contact combinations and
finding a stable configuration that satisfies all the requirements. Using an
algebra to reason directly on MBRs does not require further analysis of the
original image. However, due to the assumption that the MBRs are correct,

64 PhD thesis — Mihai Polceanu



4.2. ANGRY BIRDS AGENT

the case in which one object is not detected can trigger a significantly different
result, as it may have played an important role in the scene configuration.
Furthermore, in the rare situation where MBRs are vertically aligned, there
may exist two mirrored possibilities to represent the GSRs.

In order for the mental simulation to reflect the game environment, one
must take into account boxes that are rotated either as result of collision or
that being their initial state. Our approach to this problem was to improve
the existing algorithm by taking into account the already calculated positions
for each object, computing the set of pixels that make up the object using a
filling algorithm, and fitting the minimum rectangle onto the convex hull of
each pixel set by iterating over all edges of the hull. Results of this approach
are illustrated in Figure 4.3, where (c) represents an overlay of the detected
pixels (white) and the points of the convex hull (black), and (d) shows the
minimum rectangles fitted on the convex hulls, which also represent the mental
entities (image taken from a rendering of our virtual scene).

Figure 4.3: Obtaining correct object positions: (a) original scene image, (b)
default bounding boxes, (c) improved algorithm, (d) obtained virtual recon-
struction.

Additional to this detection process, the dimensions of detected rectangles
are equalised with similar instances, based on the fact that the game uses fixed
size objects. Furthermore, because it is possible for the reconstruction to be
unstable, objects may fall without being touched. To avoid such scenarios, the
agent makes the assumption that the configuration in which the environment
is found before a shot is a stable one. Therefore, objects are held in place
within the mental simulation, and must become “active” in order to move.
At the start of the mental simulation, only the shooting bird is active, then
it activates other objects upon collision. In other words, each object becomes
active if a collision happened between itself and an already active object.

Using original image analysis to compute GSRs is arguably more compu-
tationally expensive, but it allows to limit detection errors to a local scope.
Moreover, by using a convex hull to determine the rectangles, the number of
points of the hull can be used to decide, with an acceptable accuracy, which
objects are rectangular and which are circular (i.e. circular objects have more
hull vertices than rectangular objects).
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4.2.2 Abstract world

Once detected, objects are reconstructed inside the agent’s imaginary world.
All objects in the mental simulation are animated by a two-dimensional physics
engine, which corresponds to a mental model within the proposed framework.
Each type of bird (red, yellow, blue, black and white) is modelled separately,
depending on its special ability. These mental models allow the agent to
imagine the effects of performed actions and the environment evolution in
time.

This representation allows different behaviours to be easily assigned to
sets of instances. In the case of this application, the values of attributes are
empirical in origin and not automatically learned, for convenience. However,
this will be the ultimate goal of the proposed framework.

4.2.3 Imaginary World

Once the environment structure is interpreted, the agent will use its imaginary
world to create a number of simulations that differ by a small shooting angle
(Figure 4.4).

Figure 4.4: Mental simulation tree with two levels: trajectories and tap times.

The depth of the mental simulation tree can be increased, by adding the
“tap” function which triggers special behaviour in some types of birds. For
each shooting angle, the agent is able to choose a time to perform the tap
which consists in another array of possibilities, therefore adding another level
in the tree (Figure 4.4). This is done similarly to the first level, through
duplication. This method proves to be computationally inexpensive, as the
initial object recognition and mapping are not remade, but their results are
copied and simulated in another way (different angles or tap times, but with
the same initial scene configuration). In the mental simulations, a special
bird behaviour triggers similar effects as in the real game, for example blue
birds spawn new instances at different angles, yellow birds gain a speed boost,
black birds explode and white birds shoot projectiles downwards. This way,
the model can be modified to better fit the game without changing the decision
making process.
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4.2.4 Decision and Control

Based on the results of mental simulations, the agent will choose one which
best suits its goal: to destroy pigs. However, the mere evaluation of how many
imaginary pigs are killed does not prove to give the most successful results.
This issue is not because the selection process is incorrect, but because the
model of the environment is not completely accurate. This causes mental
simulations to give similar but not precise outcomes compared to the actual
game scenario. For example, it may happen that in one mental simulation,
conditions are just right for a record number of pigs to be killed, although it
is not the same case in the real game; this leads to a erroneous score record,
and therefore the actions from this mental simulation are incorrectly chosen
as the final decision.

Coping with uncertainty caused by a partially correct model can be ad-
dressed by considering in advance that results are stochastic in nature, and
therefore taking into account a range of results instead of isolated cases. In
other words, instead of evaluating each mental simulation by its final result,
one can evaluate a set of results from minimally different imaginary scenarios
to obtain a probabilistically good decision. This way, isolated cases of false
success can be pruned out by the selection algorithm, leaving higher chances
for the agent to take a truly efficient decision.

Once the Orpheus agent has made its decision, it will trigger the sling-
shot with the imagined shooting angle, by communicating it to the browser
extension.

4.2.5 Preliminary Results

Our implementation creates a number of 106 mental simulations which differ
by a shooting angle of 0.01 radians from each other. Normal computation time
is approximately 15 seconds, however the mental simulations are executed at
three times the normal speed, in accordance to the time limitation imposed
by the contest rules.

We compare our implementation with the default “naive” agent provided
by the competition organisers. This choice for benchmark was made due to
the fact that the current default agent is an extension of the winning agent
of the 2012 edition of the contest, that provides an improvement of the visual
recognition module.

Because the default agent is based on a random target selection, and this
may influence the resulted scores, we limited the levels used in our compar-
ison to the first 9 levels of the freely available “Poached Eggs” episode of
Angry Birds, which only feature red birds that do not have any special ability.
Level difficulty is generally directly proportional with its number, while the
maximum obtainable score depends on the number of pigs in the scene.
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Lvl Trial 1 Trial 2 Trial 3 Trial 4 Avg

1 30090 28960 28970 28970 29247.5

2 42650 34160 34160 43180 38540.0

3 31670 40730 40260 40260 38230.0

4 28470 18870 28160 28330 25957.5

5 65140 64500 64710 63510 64465.0

6 34010 24450 25630 24490 27145.0

7 20020 29390 27680 22910 25000.0

8 38280 36170 58010 38650 42777.5

9 32870 31770 32930 29090 31665.0

tot. 323200 309000 340520 319390 323027.5

Table 4.2: Scores of the default naive agent.

After evaluating the naive agent that was provided by the competition
organisers (Table 4.2), we found it to fail a total of 22 times while playing 4
trials of 9 levels each. In comparison, the scores of the agent proposed in this
thesis are shown in Table 4.3 and exhibit a 10.9% average improvement over
the naive agent, and only 4 total failures to finish a level.

Lvl Trial 1 Trial 2 Trial 3 Trial 4 Avg

1 32350 32350 32330 32330 32340.0

2 60820 52070 60630 51530 56262.5

3 42630 42630 41820 42630 42427.5

4 28120 28120 28430 28120 28197.5

5 64330 69100 63520 58070 63755.0

6 24470 33510 26270 33510 29440.0

7 33200 22660 23300 31940 27775.0

8 34710 47520 39120 44820 41542.5

9 24370 40010 40920 41440 36685.0

tot. 345000 367970 356340 364390 358425

Table 4.3: Scores of the mental simulation agent

The most failures of the naive agent were on the 7th level (10 failures)
and the second most on the 4th level (4 failures). Our implementation also
experienced difficulty in level 7 but with only 3 failures, and on level 9 with
only one failure.

During the trials, the situation occurred where our agent obtained the
same score on two or more attempts. Identical scores are due to the same
decision taken more than once, as the visual recognition of the objects in the
scene returned the same results. It is important to note that most of these
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situations occurred when the agent solved the level using one bird (levels 1, 3
and 4). An exception to this rule was level 6, where due to the lower number of
objects, the scene tends to give the same results after the first shot. However,
this shows that given exactly the same conditions, the mental simulations are
stable enough to output the same decision for the agent.

Tests show that errors in the model are bound to make the agent take less
efficient decisions, because mental simulations do not correctly reflect the game
reality. However, when the reconstruction has a higher level of correctness,
the agent is able to find the most effective strategy to complete the game, as
shown in Figure 4.5 which illustrates the second level of the freely available
“Poached Eggs” episode of Angry Birds.

Figure 4.5: Best solution for Level 2 of “Poached Eggs” episode, found by our
implementation (overlaid original state and highlighted trajectory)

These results indicate that it is possible to take good decisions even if the
model of the environment does not perfectly match the game environment.
However, to achieve such good results in the majority of scenes, further efforts
must be made to improve the model.

4.2.6 Competition Results

In the AIBirds competition, our agent has obtained 8th place in 2013 (score-
board in Table 4.4), 4th place in 2014 (Table 4.5) and 1st place (best agent)
in the Man versus Machine Challenge at the Australian National University
“Open Day” in 2013, with score 243480, followed by HungryBirds with 173510
and TeamWisc with 135230. Over 50 humans participated at the ANU Open
Day to compete against the qualified agents from AIBirds 2013. Only 3 of the
humans could obtain a higher score than our mental simulation based agent,
with a small margin.
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Qualification Quarter Final 1

1. Angry-HEX 584600 1. Angry Hex 283970

2. Luabab 570530 2. Beau Rivage 179730

3. Beau-Rivage 537380 3. Naive 93090

4. Angry Concepts 532310 4. IHSEV 85560

5. Naive Agent 506070

6. Hungry Birds 474810 Quarter Final 2:

7. Team Wisc 452110 1. Team Wisc 209170

8. IHSEV 435950 2. Angry Concepts 207300

9. A. Wang 416530 3. Luabab 190310

10. Dan 396400 4. Hungry Birds 151480

Table 4.4: AIBirds 2013 competition results of top 10 entries (from 20 total),
including our agent (IHSEV).

Qualification Quarter Final 1

1. DataLab Birds 423280 1. DataLab Birds 346260

2. PlanA+ 372810 2. Angry BER 224860

3. s-Birds Avengers 361770 3. Impact Vactor 173710

4. Angry Dragons 317300 4. s-birds Avengers 167860

5. Naive Agent 302710

6. Impact Vactor 298390

7. Angry-HEX 294170

8. IHSEV 292380 Quarter Final 2:

9. Angry BER 253820 1. PlanA+ 360920

10. BeauRivage 238080 2. IHSEV 277530

11. RMIT Redbacks 188890 3. Angry-HEX 129610

12. Auto Lilienthal 0 4. Angry Dragons 78970

Semi Final Grand Final

1. DataLab Birds 232790 1. DataLab Birds 406340

2. Angry BER 206680 2. Angry Dragons 243880

3. PlanA+ 206620

4. IHSEV 93100

Table 4.5: AIBirds 2014 competition results, including our agent (IHSEV).
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4.3 Orphy the Cat

In this second test scenario, we validate our proposed architecture by instan-
tiating it in an autonomous agent which is given a goal in an environment
that has the following properties: continuous 3D space, real time, physics
(collisions, visual occlusions) and variable behaviour of other entities. In com-
parison to the previous scenario, the space complexity is now increased, other
autonomous entities have been added in the environment which must be taken
into account by our agent in its predictions and also, the embodiment of the
agent is more complex, with a larger set of possible actions to perform.

Based on the previously mentioned environment property requirements,
we chose a scenario (Fig. 4.6, left) inspired from the predatory behavior of
the Felinae subfamily, which consists mostly in small to medium sized cats. It
is common for their prey, such as birds, to have wide fields of sight and to be
capable of predator detection and avoidance over a distance.

Figure 4.6: Instantiation of the “real world” (3D environment) featuring the
cat and autonomous birds (left), and the “imaginary world” of the cat with
examples of mental simulations where it evaluates different action sequences
(right).

In the natural world, hunting behaviours of cats can be categorised into
“mobile” and “stationary”, the former being applied in areas abundant in
prey while the latter, which consists in ambushing, when the cat is located in
areas of interest [Dennis C. Turner (2000)]. Cats generally employ a stealthy
approach followed by a short rush before striking [Kleiman and Eisenberg
(1973)]. In the following, we discuss the instantiation of the generic archi-
tecture (Fig. 3.2) within the context of the chosen test scenario (Fig. 4.6),
aiming to obtain adaptive behaviour from the agent through mental simula-
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tion, without hard-coding any strategies of its real counterpart; i.e. the agent
has no information/semantics that it represents a cat.

In the test environment, the Orpheus agent architecture is instantiated
in the cat character. Here, birds have boid-like behaviour [Reynolds (1987)]
and are also able to see the cat at an arbitrary distance, given that their vision
is not obstructed by an obstacle (birds cannot see through obstacles). A bird
that can see the cat will flee (turn away), making it more difficult for the cat
to catch it. Figure 4.7 shows how this agent fits into the original conceptual
framework by Buche and De Loor (2013).

Figure 4.7: Conceptual overview for Orphy the cat.

4.3.1 Perception

We configured the agent to observe the environment (i.e. extract a mental
image) at an arbitrary interval of 0.5 seconds to account for real time percep-
tion. Perception consists in obtaining the list of entities from the environment
and creating mental images to be used in predictions. As with the other test
environments in this chapter, each entity within a mental image has a set
of properties assigned, including position (3D), rotation, velocity (linear and
angular), shape and size.

While in this test scenario the agent’s perception does not include noise,
the behaviour of birds in the environment is non-deterministic and thus will
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lead to some level of prediction error with which Orpheus must cope.

4.3.2 Abstract world

The agent using our architecture is supplied with three models to evolve men-
tal simulations (Fig. 4.8). First, a physics model, implemented using Bullet
Physics, that applies collision effects and linear and angular velocities on enti-
ties. Second, a model that closely approximates the behaviour of “real” birds
with any of the three possible view distance values. Third, a cat model with
parameters which acts only as a control interface. These parameters are a set
of possible actions: run forward (values: yes/no), turn (values: left/no/right)
and jump (values: yes/no). Model to entity assignments are managed by the
agent, so that the error between the behaviour of imaginary birds and reality,
computed in this application using the Mean Absolute Deviation [Konno and
Yamazaki (1991)], is minimised.

Figure 4.8: Models assigned to each entity in the imaginary world and action
controller for the system’s self model (cat). All models contribute to the
evolution of the mental simulation at each step.

The agent can also automatically learn the trajectory of the birds in real
time using a mental model based on the Kernel Recursive Least Squares [Engel
et al. (2003)] algorithm. The mental model can seamlessly replace the specific
model for birds, using the model abstraction capability of Orpheus.

4.3.3 Imaginary World

The mental images obtained through perception are then used to branch an
arbitrary number of 20 parallel mental simulations (Fig. 4.6, right) of vary-
ing time lengths (1 to 15 simulated seconds) so as to predict the outcomes
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of different courses of action into the future. On the test configuration, we
obtained a speed ratio of ∼13x; i.e. 15 seconds of mental simulation take
∼1.15 real seconds to compute. When each mental simulation has finished, it
is replaced by a new one based on the currently perceived state of the world.
A mental simulation will finish when it reaches its time limit or it leads to goal
achievement. If there are no mental simulations that lead to goal achievement,
the agent will rest still until a solution is found. The number and duration
of mental simulations can be varied to increase/decrease chances of a valid
solution and to find a near/far solution, respectively.

Using the ability of Orpheus to interweave the effects of several models
within mental simulations, our agent is able to anticipate both environmental
and behavioural aspects of the environment, and to use them to predict the
effects of its actions.

4.3.4 Decision and Control

If at any time the distance between the cat and a bird falls below a threshold
value (the cat is required to jump), the bird disappears and is considered
caught and the cat’s goal is achieved. Once the goal has been satisfied in
a mental simulation from the cat’s imaginary world, the history of actions
performed within it, which correspond to the list of parameter values, are
applied in the real world. To avoid any bias from “cleverly chosen” strategies
as used by Buche et al. (2010), the cat’s mental simulations include uniformly
distributed random parameter values (action sequences). The goal of this
application does not rest in the random action generation itself, as this could
be replaced by heuristic search or similar methods, but in illustrating the use
of the proposed generic architecture.

Once the Orpheus agent has made a decision, which consists of the imag-
ined set of actions to perform, it will execute these actions through its em-
bodiment, while synchronizing the virtual time of the imagined actions with
the corresponding real time of the environment.

Our hypothesis is that through the use of mental simulation, the cat,
which is controlled by our system, will adapt its behaviour in function of the
distance at which birds are able to perceive the danger. By having obstacles
in the environment, we hope that the cat will use them to improve its success
rate in catching birds, as this behaviour is not explicitly specified.

4.3.5 Results

The architecture and resulting agent were implemented in C++ with multi-
thread support and the tests in this work were run on a Intel R© Xeon R©

2.80GHz, Ubuntu 12.04 machine with 8GB RAM. We have also tested the
system on less powerful machines, where expectedly less simultaneous mental
simulations were possible.
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The experiment consists in six test cases that are constructed by varying
obstacle shape (with or without corners) and bird view distance (0 units, 50
units and 100 units). In the extreme case (100 units) the cat is not able to
catch birds if no obstacles are present in the environment.

Each of the six test cases (Figures 4.9 and 4.10) consists of 4 symmetrically
placed obstacles and 10 birds which fly in fairly regular circular patterns unless
the cat is seen and avoided. Amongst test cases, distances at which the birds
can spot the cat are varied and the obstacle shape is also subtly changed.

Results show that the increase in the view distance of birds significantly
influences the frequency of locations for the cat, regarding available obstacles.
As a general rule, the increase in bird sight determines values in the histograms
for the cat (Figures 4.9 and 4.10, Subfigures “b”) to shift left towards lesser
distance from obstacles, and bird catching location frequencies (Figures 4.9
and 4.10, Subfigures “c”) to invert slope as obstacles prevent birds to see the
cat. That is, the agent’s behavior consistently adapts to the variation of bird
view distance, resulting in a set of distinguishable emerging techniques (Fig.
4.11) that increase the believability of the agent’s behaviour.

The application of these observed hunting techniques conforms with in-
tuition; namely the cat simply chases (Fig. 4.11.a) birds with no sight, but
when the view distance is increased, it resorts to ambush (Fig. 4.11.b), hide
and chase (Fig. 4.11.c) and, the strongest example of anticipation observed in
the experiment, the blockade (Fig. 4.11.d) where the agent uses the predicted
collision of the bird with an obstacle to catch it.

Varying obstacle shape also determines subtle adaptation in our agent, an
example of which is illustrated in the 5th test case (Fig. 4.10, Subfigure 5.c)
which features a gap in the cat’s position relative to obstacles. This is caused
by the increased difficulty of hiding behind cylindrical obstacles which also
determines a less prominent use of the ambush technique.

In the following test cases, the simulation paradigm is used to control the
cat, first using cuboid obstacles (Fig. 4.9) and afterwards cylindrical obstacles
(Fig. 4.10).

Figure 4.9 illustrates three cases, in which cuboid obstacles are used, where:
(1) the view distance of birds is 0 units (birds cannot see the cat); (2) the
birds can see the cat up to a distance of 50 units (medium distance, roughly
the gap between two obstacles); (3) the birds can see up to a distance of 100
units. The choice for these values was made so that the ability of the cat to
simply chase and catch the birds, without more complex strategy, gradually
disappears. In these three cases, the obstacles have a cuboid shape and are
represented by four bold squares in the figures.

Results show that the increase in the view distance of birds significantly
influences the frequency of locations for the cat, regarding available obstacles.
As a general rule, the increase in bird sight determines values in the histograms
for the cat (Figs. 4.9:1.b, 4.9:2.b, 4.9:3.b) to shift left towards lesser distance
to obstacles, and bird catching location frequencies (Figs. 4.9:1.c, 4.9:2.c,
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Figure 4.9: Agent behaviour in scenarios with cuboid obstacles (four black
squares). Case (1) corresponds with 0 units view distance for birds, case (2)
with 50 units and case (3) with 100 units. Subfigures (#.a) illustrate cat
(grey) and caught birds (black) traces. Distance histograms are shown for the
cat (#.b) and catches (#.c) relative to the closest obstacle.

4.9:3.c) to invert slope as obstacles prevent birds to see the cat. As follows,
the same general rule also applies when the obstacle shapes are changed to
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Figure 4.10: Agent behavior in scenarios with cylindrical obstacles (four black
circles). Case (4) corresponds with 0 units view distance for birds, case (5)
with 50 units and case (6) with 100 units. Subfigures (#.a) illustrate cat
(grey) and caught birds (black) traces. Distance histograms are shown for the
cat (#.b) and catches (#.c) relative to the closest obstacle.

cylinders.

Figure 4.10 illustrates the following three cases (4), (5) and (6) in which
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Figure 4.11: Examples of solutions found by the system for prey catching:
(a) simple chase, (b) ambush, (c) hide and chase, (d) blockade. Cat traces
shown with grey arrows, and catch locations with directed circles based on
bird orientation.

the conditions are the same as in cases (1), (2) and (3) respectively, with the
exception that now the obstacles are of cylindrical shape, represented as four
black circles. The cylindrical shape leaves less hiding space for the cat and
therefore may trigger different behaviour of the system, due to the increased
difficulty for stealth.

In the following, we examine and discuss each of the six test cases, referring
to which techniques are used more often.

Case (1) (in Fig. 4.9): the cat’s path appears as a gradient with highest
frequency ( 35%) between 20 and 30 units from obstacles, while walking very
close to them only happens in 7% of its trajectory. In these conditions, birds
are caught by chasing (Fig. 4.11:a) in many locations on the map, with greater
ease in the centre where they are more frequently guided by the gaps between
the obstacles.

Case (2) (in Fig. 4.9): the birds’ view distance is high enough to prevent
easy capture. The cat’s behaviour in these conditions adapts to use the ob-
stacles as leverage to catch prey. Frequency of walking very close to obstacles
increases to 14%. Beside still being able to catch a small number of birds with
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the simple chase strategy (Fig. 4.11:a), the hiding behaviour allows the cat to
ambush (Fig. 4.11:b) birds which are unaware of the its location. Moreover,
two additional strategies can be distinguished: first, a variant of the ambush
where the cat is hidden but begins chasing over a short distance to catch the
prey (Fig. 4.11:c) and second, due to the cuboid shape of the obstacles, the
bird can be blockaded by the cat (Fig. 4.11:d) making use of level 1 Theory of
Mind (level 1) to anticipate that the cat’s approach will change the trajectory
of the bird into being blocked by the obstacle and becoming catchable.

Case (3) (in Fig. 4.9): the cat is no longer able to catch prey without
hiding. Results show a significant approach towards obstacles (frequency of
walking very close to obstacles peaks to 26%) and the majority of birds are
caught by ambush (Fig. 4.11:b), while there exist situations where the hide-
chase strategy is also viable (Fig. 4.11:c).

Case (4) (in Fig. 4.10): cuboid obstacles are replaced by cylinders, little
difference can be observed in comparison with case (1), due to the zero view
distance of birds.

Case (5) (in Fig. 4.10): while the distance to the closest object drops, as
in case (2), for both the cat and the caught birds, this happens with less am-
plitude. The effects triggered by cylindrical obstacles become visible, namely
with a predominance of the hide-chase technique (Fig. 4.11:c) over the am-
bush (Fig. 4.11:b). It is notable that the caught bird histogram (Fig. 4.10:5.c)
features a gap, caused by the more prominent use of hide-chase.

Case (6) (in Fig. 4.10): finally, like with case (3), the cat’s possibilities
are reduced to ambushing (Fig. 4.11:b) and less prominent hide-chase (Fig.
4.11:c) techniques. Due to the rounded shapes of the obstacles, the blockade
technique (Fig. 4.11:d) is no longer used.

We note that in the cases where birds have zero view distance, all the four
techniques are applied by the system. The fact that only a subset of tech-
niques are more prominent in more difficult situations is true because in the
cat’s imaginary world, only simulations that lead to a solution are applied.
These results are reproducible with a degree of variation in environment con-
figuration such as number of birds and obstacle number and positions, as
the agent behaves in the way that leads to goal achievement given different
contexts.

4.4 Nao Robot Goalkeeper

With respect to the former two evaluations, this final test scenario further
increases the complexity of the agent’s embodiment and environment physics
in addition to maintaining the 3-dimensional space and continuous time from
the second test case. Moreover, a new challenge for Orpheus is represented by
the time constraints which are far more strict than in the AIBirds competition,
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as the goalkeeper must act in a complex fashion in less than one second from
the time when the ball is shot.

RoboCup3 Robot Soccer is an annual international competition that brings
together researchers in robotics and artificial intelligence towards a common
goal of obtaining robots that will play the game of soccer against humans
by the year 2050. The competition is divided into several leagues, each with
its own rules and regulations. Two of these leagues, 3D Simulation League
and Standard Platform League, use the Nao humanoid robot from Aldebaran
Robotics4 within realistic computer simulations and real world scenarios re-
spectively.

Figure 4.12: Annotated RoboViz [Stoecker and Visser (2012)] visualization
of a RoboCup 3D Simulation League world championship final between the
teams UT Austin Villa and RoboCanes, held in João Pessoa, Brazil, in 2014.

In the RoboCup 3D simulation league, teams of 11 virtual replicas of the
Nao robot play against each other in a virtual game of soccer (Figure 4.12).
Our approach consists in enhancing the team’s goalkeeper with a mental model
of itself that it can simulate ahead of time and make decisions on the efficiency
of its current actions and eventually change its ongoing behaviour.

We first give a brief introduction to the concepts of this approach, the
requirement of more precise velocity estimation and finally how the goalkeeper
can use this cognitive layer to improve its results. Figure 4.13 shows how this
agent fits into the original conceptual framework by Buche and De Loor (2013).

To enable the goalkeeper agent to predict its environment, itself included,
we use our generic agent architecture for mental simulation to evaluate the
outcomes of its actions in accordance with other objects (e.g. ball) and agents
that populate the environment it is placed in. To clarify, the goalkeeper has its
own functional representation of itself and the ball, and is able to manipulate

3RoboCup 2015 website: http://www.robocup2015.org
4Aldebaran website: https://www.aldebaran.com
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Figure 4.13: Conceptual overview for the Nao goalkeeper.

it towards improving its behaviour in the game. Providing the agent with
models of itself and its environment enables it to evolve and evaluate various
courses of actions in its imagination, based on which it can make decisions.
This cognitive layer functions in parallel to the main agent behaviours, which
makes it well suited in the context of robot soccer agents where interruptions
in sending motor instructions cause unwanted results.

Two important aspects lead to a successful use of the mental simulation
paradigm: perception and mental model accuracy. First, due to perception
noise, data of the position and velocity of the ball and robot must be filtered
so that future events can be successfully predicted. Second, the models of
environment physics and the robot’s own body motion must be as accurate as
possible to obtain useful predictions. Hence our focus is on improving velocity
estimation and constructing the mental models for the robot.

4.4.1 Perception

In the robot soccer simulation contest, as well as for real settings, the trajec-
tory of the ball is shaped by damping factors. However, we can safely assume
that, as long as the ball does not collide with any object as it’s travelling,
it will describe a smooth non-linear trajectory. Unlike linear models, using a
curve to approximate the trajectory, even on the X and Y axes where gravity
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does not intervene, can account for the damping factors.
In this approach, we use the Levenberg-Marquardt algorithm as imple-

mented in Dlib-ml [King (2009)] to fit a curve on the raw perception data.
The choice of algorithm was based on its good performance in practice, effi-
ciency on small input datasets and that it allows describing the curve model,
as is the case for the goalkeeper’s perception of the ball trajectory. We de-
velop the damped motion equations xn = xn−1 +vn−1∆t and vn = ζvn−1 over
multiple time steps, resulting in the model to be used in the algorithm:

p1∆t(1− ζn)

1− ζ
+ p0

where ∆t is the time difference between two perception frames, ζ is the damp-
ing factor, n is the step number, p0 and p1 are the position and velocity
parameters respectively. With this approach, we store the ball perception
frames after the kick and refit the model parameters at each step to gradually
improve accuracy (Fig. 4.14).

Figure 4.14: Comparison of ball velocity values for X (left) and Y (right) axes
over time, since the kick.

Similar results to those shown in Figure 4.14 are also obtained for the Z
axis, where the model is extended to account for gravitational acceleration:

p2∆t
2(n− 1− ζn

1− ζ
) +

p1∆t(1− ζn)

1− ζ
+ p0

The obtained velocity estimation enables more accurate prediction of the ball
for default behaviour such as walking towards the ball but also for prediction
using mental simulations.

4.4.2 Abstract world

Once the ball can be predicted, the second step in this approach is to have
the robot learn the effects of its actions and be able to reenact them in its
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imaginary world. This produces a set of mental models which are then used
to perform mental simulations.

To this end, we rely on querying the location of each of the robot’s body
parts which are represented with primitives in the imaginary world. Various
actions can be learned by having the robot perform it, while a model train-
ing module provided by the Orpheus framework distributes the data to the
models which are being trained. For the goalkeeper’s actions, we use the K-
Nearest Neighbors (KNN) algorithm as implemented in MLPack [Curtin et al.
(2013)]. The dataset is constructed with the position, velocity and rotation of
each body part at each time step. The number of learning trials (performed
actions) varies depending on the type of action; simpler actions such as the
long-step (Fig. 4.15) requires as few as three trials while walking or raising
arms towards a given location requires between 30 and 40 trials to properly
generalise.

Figure 4.15: Long step action (left) with associated learned mental model
(right).

Reenactment of each learned action with KNN uses the time and position
of the robot’s body parts and finds the closest corresponding velocities and
rotations. From this point forward, Orpheus can perform mental simulations
on demand, using the learned models through the process briefly described in
the following.

Perception data (robot, body part and ball position, velocity and rotation)
at a given moment in time is submitted to the cognitive layer and compiled
into a mental image. Mental images represent the state of the imaginary world
at a given time. Starting from this initial image, the mental simulation pro-
cess constructs subsequent mental images by employing the available mental
models. This process leads to obtaining a future state of the environment, to
a certain accuracy, ahead of time. By evaluating this future state, the robot
can make a range of decisions, as detailed in the following.
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4.4.3 Imaginary World

There are limiting factors on how the goalkeeper agent can behave to deflect
the ball. The main such factors are the high ball velocity achieved by other
teams in the RoboCup 3D Simulation League, which gives little time to react.
Moreover, the robot does not have the ability to move fast enough to reach
the ball in many situations. There are however situations when extending its
limbs or diving may help deflecting the ball.

Given that some actions can block the robot (such as leg extension or
diving), we intend to tackle the problem of deciding whether or not to perform
an action and if so, which one is more favourable, through self monitoring.

Testing showed that simply moving towards the predicted position of the
ball when it would reach the defence zone performs well, given satisfactory es-
timations of the ball position and velocity. Therefore, starting from a reactive
decision to move towards this location of interest, we use mental simulations
to predict whether or not simply walking would enable the robot deflect the
ball. As soon as the kick is detected, a coarse future location of the ball is
computed and the robot starts moving towards that location. In parallel, it
uses perceptual information to imagine the success or failure of this strategy.

We studied prediction accuracy (Fig. 4.16 with a set of 100 penalty shots
from random locations, 5 to 10 units away from the goal gate. This resulted in
an average available time of ∼0.5 seconds, after subtracting the time required
to obtain reasonable ball velocity accuracy (∼0.1s) and the time required for
mental simulations to finish; in our implementation, mental simulation speed
ratio is ∼3x, i.e. the robot can simulate 1 second of real events in ∼0.33
seconds.

Figure 4.16: Outcome prediction accuracy, with ball Estimated Time of Ar-
rival (ETA).

As shown in Figure 4.16, the accuracy of predicting the outcome of a set of
actions rises above 50% (random choice) as soon as valid data is acquired from
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the environment, and improves with time. Prediction failure is caused by the
difference between mental models and reality, which could be later improved
by learning more accurate models.

Concurrently with self monitoring, the goalkeeper also imagines and evalu-
ates a set of actions that can be performed. This results in a set of solutions in
the case in which it decides the current set of actions will not be effective. The
goalkeeper uses the monitor prediction as a trigger or inhibition of changes
in its behaviour. Therefore, if a failure is predicted, it will choose one of the
previously imagined solutions if it had predicted that it will deflect the ball.
From a cognitive point of view, the agent imagines the answer the question
“what if I am not able to save the goal ?” which is a form of counterfactual
reasoning.

4.4.4 Decision and Control

The decision process of the Orpheus goalkeeper consists in comparing the
default scenario where it does not perform any special movements to the al-
ternate futures where it chose to take action. A score is computed on the
future mental images of each scenario using a distance metric to determine
how close its imagined body pose was to the ball’s location, and based on this
score it selects one scenario which has a larger probability to deflect the ball
(Figure 4.17).

Figure 4.17: The decision process of the Orpheus goalkeeper.

Once a decision has been made, the agent will transfer the action sequence
from its imaginary world to its embodiment, while synchronizing the virtual
time of the chosen mental simulation with the real time of the environment.

This experimental approach is limited by the set of possible actions that
the robot can perform, and the time available to evaluate the outcomes of
these actions. However, more efficient actions can be later added to increase
the success rate. Moreover, more accurate mental models would also increase
correct prediction rates, allowing a research focus on learning rather than
tuning scripted behaviour for various scenarios.
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4.4.5 Results

We empirically evaluated our approach on a range of kick distance intervals.
We developed two versions so that the experimental mental model based pre-
diction (Orpheus) can be evaluated separately. Additionally, we tested the
naive goalkeeper behaviour, used so far by the RoboCanes team in previous
competitions, as a benchmark. The evaluation consists in running a goal-
keeper with an attacker that will kick the ball from a random distance within
a specified interval, at a given angle.

There would be a large variance in the kicks of the striker, even if the
striker kicks from the same distance and angle. Therefore, we reproduce the
exact same kicks by assigning a velocity to the ball in the beginning of the
kick. Thus, we are able to create a random sequence of kicks and repeat the
exact same kicks multiple times using different goalkeepers. Variances in the
results are only caused by variance in the goalkeepers behaviour, but not by
variances in the kicks.

To better estimate the relationship between distance, shot angle and per-
formance, we devised 2 meter intervals starting from 3 meters away (which
is roughly the margin of the goalkeeper’s area) to 15 meters away (midfield).
The obtained results for each interval (Table 4.6) are the success rates for 100
different kicks repeated 30 times and averaged out (3,000 kicks per interval).

The experiment has been performed on an Intel Core i7-5930K machine
with 6 cores, in collaboration with the RoboCanes AI & Robotics Research
Group5, led by Ubbo Visser at the University of Miami, Florida, USA. Re-
sults were also verified on two less powerful machines – a Quad Core Intel
Xeon and a Dual Core Intel Pentium – and replicate the main experiment.
The goalkeeper agent behaviour presented this thesis is an extension to the
framework developed by the RoboCanes research group.

Results of distance-based evaluation (Table 4.6) show that our approach
brings significant improvements over Naive goalkeeper which was used by the
RoboCanes team in previous competitions.

The first important difference between the naive goalkeeper and our ap-
proach presented in this thesis is that previously, the naive keeper was in-
structed to place itself at the middle between the ball position and the goal,
while the proposed goalkeeper’s behaviour uses the goalkeeper’s arc. Midway
positioning can be exploited by shooting the ball over the goalkeeper, resulting
in easy scoring, illustrated by the constant drop in success rates with respect
to distance. This effect is significantly less prominent in the our approach,
due to superior initial positioning of the goalkeeper.

Results of the experimental Orpheus version of the goalkeeper do not
vary in a statistically significant manner from the NR version, which shows
that it is feasible to integrate prediction in the goalkeeper without suffering a
trade-off.

5RoboCanes website: http://robocanes.cs.miami.edu/
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Table 4.6: Goalkeeper success rates for 100 random kicks from different dis-
tances. The kick angles are chosen randomly from -45 to 45 degrees. Each
rate is averaged over 30 repetitions of the 100 kicks (standard deviation shown
in parentheses).

Distance Naive goalkeeper Nonlinear Regression Orpheus

3-5m 29.8% (2.2) 46.1% (2.8) 45.8% (2.3)
5-7m 22.0% (1.9) 50.4% (2.9) 50.2% (2.3)
7-9m 19.5% (1.9) 48.6% (3.0) 48.0% (3.0)
9-11m 17.8% (1.9) 47.5% (3.4) 46.9% (3.6)
11-13m 17.0% (2.4) 45.0% (3.5) 45.1% (3.8)
13-15m 14.8% (2.0) 43.9% (3.5) 44.8% (3.4)

Table 4.7: Average goalkeeper success rates for 100 random kicks as in Table
4.6, here grouped by angle (using the distance 5-7m).

Angle in degrees Naive goalkeeper Nonlinear regression Orpheus

0-20 18.3% (2.1) 43.6% (3.3) 43.4% (2.8)
20-40 21.5% (2.0) 50.0% (2.9) 49.8% (2.7)
40-60 33.1% (2.7) 65.0% (3.3) 64.7% (3.1)
60-80 63.3% (3.6) 76.0% (3.5) 78.1% (3.5)

In order to more extensively evaluate our goalkeepers’ performance, we also
varied the angle from which the ball is shot and measured success rates (Table
4.7). Results show that the increase in success rates is directly proportional
with the shooting angle both our approach and the Naive goalkeeper.
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4.5 Discussion

The agent architecture proposed in this thesis was evaluated in three dynamic
environments. The challenge was to demonstrate that Orpheus is a generic
architecture for computational mental simulation that effectively meets
the requirements identified in out study of existing approaches from liter-
ature. The outcomes of the evaluation of our architecture are compiled in
Table 4.8.

Orpheus agents
Angry Birds

Agent
Orphy

the Cat
Nao Robot
Goalkeeper

Space complexity 2D 3D 3D
Time complexity real time real time real time
Time constraints 3 3

Embodiment complexity low medium high
Perception noise 3 3

Virtual world 3 3 3

Real world compatible
Environment prediction 3 3 3

Behaviour prediction 3 3

Self prediction 3 3 3

Prospection 3 3 3

Navigation 3 3

Theory of Mind Level 1
Counterfactuals on self
Believability 3

Table 4.8: Challenges identified in our study on related work, that were over-
come by the proposed agent architecture, Orpheus.

Results show that, without modifying the agent architecture, the re-
sulting agents were capable of satisfy the entire range of the competences that
were pursued in the context of the computational use of mental simulation.
Therefore, we are able to conclude that Orpheus is a generic approach which
is suitable for agent cognition in complex, dynamic, real time environments
with time constraints.

The agents obtained by instantiating our architecture were able to adapt
to their environment, imagine solutions to obtain their goals and act accord-
ingly. Their decision making made use of contextual information such as the
interdependency of environmental and behavioural aspects, projections
in counterfactual scenarios and beliefs of other entities.

Finally, in a nature inspired scenario, the agent displayed believable be-
haviour measured by its resemblance to the agent’s biological counterpart.
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This final chapter aims to review the contributions of this thesis, dis-
cuss the level to which objectives have been attained and identify how
the architecture could be coupled with existing algorithms to improve
the resulting agent’s behaviour. Finally, we provide a preliminary plan
regarding near and distant future research on computational mental
simulation, and how we envision building improved agents using our
approach.
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CHAPTER 5. CONCLUSION

The aim of this thesis is to propose a generic agent architecture for compu-
tational mental simulation that is suitable for complex, dynamic environments
in which both physical and behavioural aspects must be taken into account in
the agent’s anticipation.

This thesis began with an introduction of our goals and objectives and the
approach we take in order to achieve them: drawing inspiration from studies
in cognitive science on mental simulation. Our focus has been on the human’s
anticipation ability and capability to adapt while interacting. First, the reader
was provided with insight on the dynamic context to which we apply our
approach and the efforts that have been made by cognitive science research
in studying the mechanisms behind human decision making. We discussed
mental simulation and its applicability to intelligent agents, and provided an
overview of what can be achieved via mental simulation, therefore presenting
our motivation to implement an agent that functions based on this paradigm.

The first result of our research consisted in a survey of computational ap-
proaches to mental simulation. Current implementations of the mental simula-
tion paradigm in related works, taken together, computationally address many
aspects suggested by cognitive science research. Agents are able to find solu-
tions to non-trivial scenarios in virtual or physical environments by treating
decision-making as a search problem in the mental simulation space. Existing
systems also learn new behaviour by imitation of others similar to them and
model the behaviour of different others with the help of specialised models,
culminating with the collaboration between agents and humans. Approaches
that use models of self are able to mentally simulate interaction and to learn
about their own physical properties. Multiple mental simulations are used
to find solutions to tasks, for truth maintenance and contradiction detection.
However, individual approaches do not cover all of the contexts of mental
simulation and they rely on techniques which are only suitable for subsets of
obtainable functionality. The main drawbacks of current approaches are the
inflexibility to context change and the lack of a generic computational
framework for mental simulation. Our survey spanned over four perspec-
tives on the functionality of state of the art artificial intelligence applications,
while linking them to cognitive science research results. Finally, it identified
the main gaps in existing literature on computational mental simulation.

Our answer to the shortcomings identified in the current state of the art
materialised into a generic mental simulation agent architecture: “Orpheus:
Reasoning and Prediction with Heterogeneous rEpresentations Using Simu-
lation”. We provided a detailed conceptual description of our architecture,
followed by its implementation in the C++ programming language. The concep-
tual description was structured into three main aspects: perception, imaginary
world for mental simulation and an abstract world for knowledge representa-
tion and learning. We explained how the agent observes the environment and
constructs its inner imaginary analogue of the world which functions based
on a variety of abstract models. We also discussed how our architecture can
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enable an agent to perform mental simulation in virtual and real environments
with the purpose of achieving the discussed cognitive functions and managing
both environmental and behavioural anticipation simultaneously. Then, the
discussion on the implementation delved into greater detail of how the con-
ceptual framework is integrated within the software architecture, resulting in
a generic approach to building autonomous agents capable of online learn-
ing and believable behaviour. Furthermore, in response to the shortage of
available software resources in literature, we distributed our agent architecture
as Open Source1 along with fully functional demo applications2, to be used
freely in other projects concerning agents with mental simulation capabilities.

Finally we evaluated the genericness our agent architecture by instanti-
ating it into three applications, in the order of increasing complexity. First, an
agent that solved puzzles in the complex 2-dimensional virtual environment
of the “Angry Birds” game. Here, the agent received input from the game in
the form of snapshot images of the scene, being required to extract knowledge
about the objects composing the scene and take the appropriate actions to
win the game. Evaluation consisted in three participations in an international
competition, resulting in 8th and 4th place against other autonomous agents,
and 1st place (best agent) in a “man vs machine” event. Second, we sub-
jected our proposed architecture to an adaptability experiment that included
environmental and behavioural aspects inside a dynamic 3-dimensional vir-
tual environment. Here, our agent was able to adapt its behaviour based on
changes in its environment and exhibited believable behaviour such as hiding
behind obstacles, without any semantic knowledge of its real counterpart or
any strategy. Finally, we increased the complexity of the environment and
the agent’s embodiment and introduced noisy perception, in the context of
the “RoboCup 3D Simulation” competition. Our agent played the role of the
goalkeeper of a humanoid robot soccer team, obtaining improved results in
comparison to another approach that was used in the competition.

5.1 Discussion

Our research focused on a novel approach to computational mental simulation
which extends the current state of the art in this domain. In this section
we discuss how our proposed agent architecture improves upon the existing
approaches (Subsection 5.1.1), and what matters still remain to be addressed
(Subsection 5.1.2).

1Orpheus source code: https://bitbucket.org/polceanum/orpheus
2Orpheus demos: https://bitbucket.org/polceanum/orpheus.demos
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5.1.1 Contributions of Orpheus

This thesis focused on modelling an agent architecture that is able to en-
compass the applications of mental simulation in existing computer science
literature into an unified framework, while remaining a pertinent analogue
through the prism of cognitive science studies on human cognition and brain
functions.

Existing approaches to computational mental simulation found in liter-
ature are constrained to function in relatively specific setups, with few ex-
ceptions which do not provide access to the details of their implementation.
There exists no generic rely heavily on models created by experts which tend
to be difficult to obtain for contexts with higher degree of complexity. Ex-
isting implementations are generally used in controlled scenarios and are not
designed to be fully autonomous. Although approaches exist that function
in real time, online prediction and learning are used only for specific tasks.
The mechanism of the simulation paradigm, such as continuous imagination-
reality comparison in complex environments and imaginative behaviour, are
not yet fully exploited. Due to either context simplicity or specific function-
ality, believability is only achieved to a relatively low level.

The main contribution of our research – Orpheus – provides an agent
with the ability to perform mental simulations in a generic way, based on an
analogical representation system (as opposed to fully symbolic or sub-symbolic
approaches), along with the mechanisms required to manage, synchronise,
learn and apply the actions, emulated within its imaginary world of mental
simulations, to its environment.

The genericness of Orpheus has been demonstrated by subjecting it to
three evaluation scenarios. The first use case of the proposed architecture was
a continuous 2-dimensional environment that featured complex physical inter-
actions between objects with time constraints. Second, we have increased the
environment complexity to three dimensions, continuous actions (performing
a certain action for an arbitrary period of time) and additional environmental
and behavioural challenges. Finally, the complexity of the agent’s embodi-
ment was increased, with stricter time constraints. The results showed that
the cognitive functions provided by Orpheus makes it suitable for complex
environments.

In order for an agent to be autonomous, it must account for a continuous
cycle of perception, cognition and action. One of the main design principles of
Orpheus is to integrate these three aspects into the same framework by using
analogical mental simulations. We envision cognition within our architecture
as an autonomous mentally simulated world of entities that are synchronised
with reality through perception, with which the agent’s imaginary self can
interact in multiple ways, resulting in alternate scenarios that materialise into
the agent’s real actions.

Making online predictions requires high perception frame rate, efficient
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memory management and multiple execution threads so that the available
time can be used to its maximum. Orpheus satisfies all these requirements
and also enables mental models to be trained in real time with perception
input, allowing the agent that uses it to perform online learning.

In this thesis, we assessed the level of believability of our agent based on
behavioural traits of the animal it impersonated. The results (detailed in the
Orphy the Cat application) showed that the agent’s behaviour resembled that
of its biological counterpart in the real world, without having any knowledge
of which animal it was impersonating.

5.1.2 Limitations of Orpheus

Learning: The first, most important aspect that requires further investiga-
tion in our approach is applying online learning. Currently, our architecture
was only tested with offline learning for predicting the effects of body move-
ments and, in an incipient stage, with online learning of cyclical trajectories.
In order for the agents that use Orpheus to improve their adaptability and
decision making process, more effort is required to address the development
of more advanced mental models capable of fast online learning. Additionally,
learning must also be performed in the context of controlling the course of
actions performed in the agent’s mental simulations; i.e. using learning al-
gorithms at the level of the action interfaces of mental models in Orpheus.
This topic has not been addressed in our current approach, but constitutes an
important step to obtaining more efficient and adaptable agents.

Believability evaluation: Second, due to its subjectivity, believability
is generally difficult to assess in controlled contexts. A “strong” believability
test has been proposed by Turing (1950) in his paper “Computing Machinery
and Intelligence” but, to date, no machine has passed the original Turing test.
However, some variants [Arrabales et al. (2012)] of the Turing test showed that
believability can, to some extent, be observed in an objective way. To this
end, Orpheus requires more extensive evaluation before we can determine
that it directly leads to believability in any scenario.

Planning: Third, from the efficiency point of view, more advanced plan-
ning techniques should be coupled with our agent architecture. For instance,
in our applications, we used a naive random technique to sample the men-
tal simulation state space; our agents’ planning abilities could be improved
by integrating general purpose search algorithms and/or heuristics. To this
end, our approach to computational mental simulation appears to fit well with
Monte Carlo Tree Search algorithms which rely on a “simulator” in order to
build plans.
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5.2 Future Work

Based on the results presented in this thesis, one of the directions in which
we have begun to extend our research is towards an evaluation laboratory
for studying robot performance and believability (Section 5.2.1). In addi-
tion, we intend to extend the capabilities of mental simulation enabled agents
by integrating new learning models (Section 5.2.2) and automated planning
techniques (Section 5.2.3). Finally, we envision new applications and possi-
ble extensions of Orpheus, towards agents that are able to create their own
goals (Section 5.2.4) and be able to express emotions and affective behaviour
(Section 5.2.5).

5.2.1 Nao Soccer Lab

As a result of our collaboration with the RoboCanes3 research group at Univer-
sity of Miami in Florida, USA, we have built a smaller scale robot laboratory
(Figure 5.1) intended for research on goalkeeper behaviour embodied in the
physical Nao humanoid robot.

Figure 5.1: Nao Robot Soccer Lab, Centre Européen de Réalité Virtuelle
(CERV), Brest, France. Left: initial tests; Right: goalkeeper evaluation
session.

Additionally to the integration of our proposed architecture on the phys-
ical robot, our research also includes preliminary evaluations, similar to the
approach with the virtual replicas of Nao, aiming to obtain a testing protocol
(Figure 5.2) to compare the performance of different behaviours.

Work on believability evaluation of agent behaviours is also set to begin,
with a PhD thesis proposal supervised by C. Buche, in the context of CIFRE
(Conventions Industrielles de Formation par la REcherche), within the IHSEV

3RoboCanes website: http://robocanes.cs.miami.edu/
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Figure 5.2: Nao goalkeeper evaluation interface by graduate students at the
CERV.

team of the CNRS laboratory Lab-STICC, situated at the European Centre
for Virtual Reality (CERV) in Brest, France.

5.2.2 Learning

Our research now focuses on developing additional mental models that learn
and are more generic. In contrast to existing approaches, our architecture sup-
ports seamless model replacement, therefore the aim is to obtain a repository
of lightweight regression models which can be applied to the majority of enti-
ties in the environment for the agent to use. Non-linear regression algorithms
such as KRLS [Engel et al. (2003)] seem to be well suited for cyclical behaviour
prediction in the context of mental simulations, and reinforcement learning is
a promising approach to improving our agent’s efficiency by informing action
sequence generation in the imaginary world. We aim to extend the repository
of mental models capable of learning, so that the agents that use our architec-
ture include more contextual information into their decision making process.
We have observed in the evaluation scenarios that the quality of decisions is
directly influenced by the capability of the mental models to predict the be-
haviour of observed entities, which was to be expected. Therefore, extending
the current learning capabilities (Figure. 5.3) using our framework is a crucial
step towards more efficient behaviour of our agents.

The process of building the imaginary world – i.e. reconstructing reality
in mental simulations – can be interpreted as an imitation learning problem.
Therefore, we intend to evaluate new mental models that are based on im-
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Figure 5.3: Preliminary real time behaviour learning results in the “Orphy
the Cat” application presented in this thesis. Traces show mental simulations
of the learned trajectory of a bird, after 5 to 10 seconds of observation, in
which three KRLS mental models collectively learn different aspects of the
bird’s behaviour.

itation learning techniques in existing literature [Peters and Schaal (2008);
Grollman and Jenkins (2010); Calinon et al. (2012, 2014)]. Orpheus allows
heterogeneous mental models to be used simultaneously for predictions, and
we expect that this capability will be especially useful as the complexity of the
agent’s environment increases. Imitation learning is particularly interesting
due to its stability in the mental simulation context, which other methods
lack. By stability, we mean that the output state of one step of an imagined
scenario can be reintroduced as input, without having the mental simulation
diverge into chaos. Existing imitation models, similarly to instance based
learning, exhibit a high level of resilience to the mental simulation divergence
problem, and may eventually provide a more robust solution to the creation
of the imaginary world.

5.2.3 Planning

Currently, our agents’ planning capabilities are limited in terms of the strategy
they use to mentally simulate scenarios which are more useful to their goals.
To this end, further research will address the integration of heuristic search
algorithms such as Monte Carlo Tree Search, with the aim of optimizing the
agent’s decision making process.

Another particularly interesting research topic is on what we call “hierar-
chical mental simulation”. By this, we refer to exploiting the fact that our
architecture supports mental simulations with variable scale of space and time
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– i.e. small/large scale physical interaction and small/large time steps – with
the aim of investigating the advantages of performing mental simulations of
an event at multiple scales simultaneously. This could lead to less error-prone
predictions using the large scale models, while still benefiting from the de-
tailed interaction models at the small scale. Moreover, we are interested in
studying whether larger scale models could be obtained automatically through
temporal operations on the small scale models. Additionally, the inverse of
this approach may also lead to improvements, as plans could be “sketched”
at high level and then be broken down into sub-plans which can be solved
through random sampling in mental simulations.

Small scale mental simulations could also enable embodied agents to locally
adapt their movements to novel conditions; i.e. the agent would possess “low-
level creativity”. For example, if the scenario is small enough such as touching
a button with a finger, it may be feasible to perform a local search in the space
of mental simulations to find a solution if there is another object blocking
access to the button.

5.2.4 Agent’s Goals

In decision making, before searching for a way to achieve a goal, one must have
a sense of what the goal is. Most research has been focused on how goals can be
achieved, but the problem of creating goals has been relatively neglected [Oet-
tingen et al. (2001)]. A definition of goal may be formulated as a favourable
state of an individual and its environment. In theory, such a scenario can
be obtained by creating mental simulations of certain elements (“imagina-
tion” mechanism) and finding a configuration which is found favourable to
the individual. However, there is no objective definition of what is favourable
or unfavourable, but most models assume that goals are inputted by human
experts after which the agent searches for a solution to achieve the given
goal. One may assume that the favourableness of a given state may partly
be inherited (through evolution) while the rest can be learned (from previous
experience, or from observing others). In the ideal case, an agent would be
able to formulate its own goals.

5.2.5 Emotions

Much effort has been put into modelling human emotions into agents to achieve
believability. Approaching emotions alone has yielded insight into how facial
expressions, body poses and other cues contribute to expressing and under-
standing emotions. However, from an evolutionary point of view, there should
exist a function of emotions [Plutchik (2001)]. Furthermore, in order to ex-
press such emotions via various cues, the emotions must exist beforehand.
Therefore the emotional system can be interpreted in two interconnected but
differentiated parts: the emotion core represented by how the individual ac-
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tually feels and the communication of emotions, where the first part precedes
the second. The emotion core is also dependent on the characteristics of a
given situation, either external or internal.

One may assume that it is a self-regulatory mechanism which identifies the
state of the system and produces a response that would trigger other processes
to cope with the situation that caused the system to be in the respective state.
Moreover, emotions can manifest themselves without direct sensory input from
the environment but from mental images, which suggests that the supposed
mechanism takes as input the model of the environment, not direct sensory
input. The mental image itself is not required to reflect reality to trigger
emotional response.

Given this description of emotions, an agent that possesses the capabil-
ity of building mental images of real or imaginary scenarios could, through a
certain mechanism, produce emotions in response to what is happening, has
happened or might happen. These emotional responses may afterwards be
communicated to others. It is also interesting to note that emotion communi-
cation can also function in the absence of emotional states, behaviour which
is observable in various types of deception. However, when the emotional con-
tent of communication is truthful, the agent may be able to express affective
behaviour towards more efficient communication with human users.

We have started preliminary research into the field of affective comput-
ing during this thesis, in collaboration with the Affective Social Computing
Laboratory4 at Florida International University, USA, directed by Christine
Lætitia Lisetti.

4ASCL website: http://ascl.cis.fiu.edu/
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5.3 Publications

The research conducted during this thesis generated a number of publications
regarding both conceptual and technical results, as following:

Masterjohn J., Polceanu M., Jarrett J., Seekircher A., Buche C., Visser
U., “Regression and Mental Models for Decision Making on Robotic Biped
Goalkeepers”, RoboCup’2015 Symposium, LNCS/LNAI. Springer, 2015. 5

Polceanu M., Parenthoen M. and Buche C., “ORPHEUS: Mental Simula-
tion as Support for Decision-Making in a Virtual Agent”, 28th International
Florida Artificial Intelligence Research Society Conference (FLAIRS’15), pages
73-78, AAAI Press, 2015.

Polceanu M. and Buche. C., “Towards A Theory-Of-Mind-Inspired Generic
Decision-Making Framework”, International Joint Conference on Artificial In-
telligence (IJCAI), Symposium on AI in Angry Birds, 2013. 6

Polceanu M., “MirrorBot: Using Human-inspired Mirroring Behavior To
Pass A Turing Test”, IEEE Conference on Computational Intelligence in
Games, pp. 201–208, 2013.

5Joint paper with the RoboCanes team at the University of Miami, FL, USA.
6Our AIBirds competition entry obtained 4th place in 2014 and 8th place in 2013.
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