
HAL Id: tel-01203438
https://theses.hal.science/tel-01203438v1
Submitted on 23 Sep 2015 (v1), last revised 17 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Structured prediction for sequential data
Rémi Lajugie

To cite this version:
Rémi Lajugie. Structured prediction for sequential data. Machine Learning [cs.LG]. Ecole Normale
Supérieure, 2015. English. �NNT : �. �tel-01203438v1�

https://theses.hal.science/tel-01203438v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


École Doctorale de Sciences Mathématiques de Paris Centre

THÈSE DE DOCTORAT

présentée à

l’ÉCOLE NORMALE SUPÉRIEURE

par Rémi LAJUGIE

Pour obtenir le grade de docteur
Spécialité : Informatique

Prédiction structurée pour l’analyse de données
séquentielles

Structured prediction for sequential data

Directeurs de thèse : Sylvain ARLOT et Francis BACH
Rapporteurs : Florence D’ALCHÉ-BUC et Fei SHA

Soutenance prévue le 18 septembre 2015 devant la
commission d’examen composée de :

Mme Florence D’ALCHÉ-BUC Télecom ParisTech rapporteur
M. Sylvain ARLOT École normale supérieure directeur
M. Francis BACH École normale supérieure directeur
M. Arshia CONT IRCAM examinateur
M. Jean PONCE École normale supérieure examinateur
M. Stéphane ROBIN Agro ParisTech examinateur



2

Équipe SIERRA
INRIA
23 avenue d’Italie
75 013 PARIS

Département d’Informatique
École normale supérieure
45 rue d’Ulm
F-75230 PARIS CEDEX 5



Remerciements

À tous seigneurs, tous honneurs, je souhaite remercier Sylvain et Francis de
m’avoir dirigé au cours de ces trois années de thèse. La qualité, tant humaine que
scientifique, de leur encadrement me laissera un souvenir impérissable. Les mots
ne sont pas suffisants pour vous dire à quel point je vous suis reconnaissant.

Je tiens à remercier Florence d’Alché-Buc et Fei Sha d’avoir accepté de rédiger
les rapports de ce manuscrits. J’en ai été fort honoré.

Je veux aussi remercier vivement Florence d’Alché-Buc, Arshia Cont, Jean Ponce
et Stéphane Robin qui m’ont fait l’honneur d’accepter de participer à mon jury de
thèse.

Durant ces trois années de thèse de doctorat, j’ai bénéficié au sein de l’équipe
SIERRA de conditions de travail exceptionnelles. Les différents séminaires, confé-
rences et retraites (à Bandol puis à Bêlleme) m’ont laissé des souvenirs mémorables
et m’ont énormémement enrichi sur le plan scientifique. Ma thèse doit beaucoup à
cet environnement stimulant. Je voudrais remercier tous les membres de l’équipe
que j’ai eu la chance de côtoyer. J’ai beaucoup appris de vous tous et j’ai aussi
apprécié les bons moments passés en votre compagnie. Je tiens ici à particulière-
ment remercier mon complice de bureau durant presque deux ans, Damien. Nos
discussions et longs débats au bureau ont toujours été très stimulants intellectuel-
lement. Je suis certain que nous continuerons à avoir ces discussions pendant de
nombreuses années autour de boissons garanties sans caféine.

Je tiens à remercier les enseignants du cours d’apprentissage statistique : Fran-
cis Bach, Guillaume Obozinski, Olivier Catoni la première année puis Francis Bach
et Simon Lacoste-Julien la deuxième qui m’ont permis de donner des travaux diri-
gés et pratiques à des étudiants motivés autour de thèmes qui me sont chers.

Même si j’étais officiellement membre de l’équipe Sierra, j’ai passé de nom-
breuses heures à collaborer avec des personnes de l’équipe Willow, et je tiens ici
à les remercier chaleureusement. Travailler avec des personnes d’une telle qua-
lité scientifique a été une véritable chance. Je voudrais en particulier remercier les
étudiants avec qui j’ai collaboré dans cette équipe : Piotr et Guillaume. Vous êtes
devenus infiniment plus que de simples collègues. Je dois aussi remercier les cher-
cheurs de cette équipe qui nous ont beaucoup apporté : tout d’abord Josef et Ivan
pour leur immense maîtrise de l’état de l’art en vision artificielle. Je dois encore
plus remercier Jean qui nous a encadrés minutieusement durant nos projets de vi-
sion, nous faisant remettre notre ouvrage sur le métier à tisser pour l’améliorer
encore et toujours. Tant d’exigence nous a fait réellement comprendre le sens du
mot perfectionnisme.



4

Mais je n’oublie pas aussi les rencontres que j’ai pu faire à l’extérieur l’enceinte
confinée du laboratoire. Que serait la recherche sans collaboration avec l’extérieur ?
L’environnement parisien de recherche est tellement dense en qualité que ce serait
une erreur de ne pas regarder ce qui se fait ailleurs, dans d’autres disciplines. Fran-
cis et Sylvain, vous m’avez poussé à aller voir dans des laboratoires externes et à
collaborer autour du thème passionnant du traitement de la musique. Cela a été
une des aventures les plus passionnantes de ma thèse. Confronter des idées, des
méthodes avec d’autres manières de penser m’a beaucoup apporté. Je tiens à re-
mercier Arshia Cont et Philippe Cuvillier avec qui j’ai eu la chance de collaborer à
l’IRCAM autour de la musique.

Ce travail n’aurait pas été possible sans le soutien financier de différents or-
ganismes de recherche et fondation. Mon travail a été financé par une allocation
de la fondation EADS, devenue depuis la fondation Airbus. J’ai également été fi-
nancé par le conseil Européen de la recherche via l’allocation ERC Sierra ainsi que
l’agence nationale de la recherche qui a financé mon stage au sein de l’équipe Sierra
via le projet DETECT (ANR-09-JCJC-0027-01).

Je ne peux pas ne pas remercier les amis de longue date qui m’ont soutenu
durant ces années de thèse : Pierre, Laurène, Simon, Claire, Joran (mention spéciale
à toi pour m’avoir supporté en collocation), Thibault, Yoann, Laurent, Caroline,
Francois-Xavier, Wladimir.

Mes remerciements vont également à ma famille qui, pendant trois ans, m’a
soutenu sans jamais véritablement entrevoir quelle était la nature de la tâche qui
m’a occupée ces années.



5

Résumé

Dans cette thèse nous nous intéressons à des problèmes d’apprentissage au-
tomatique dans le cadre de sorties structurées dans le cas particulier impliquant
une structure séquentielle.

D’une part, nous considérons le problème de l’apprentissage de mesure de sim-
ilarité pour deux tâches impliquant une telle structure: (i) la détection de rupture
dans des signaux multivariés et (ii) le problème de déformation temporelle en-
tre des paires de signaux. Les méthodes généralement utilisées pour résoudre ces
deux problèmes dépendent fortement d’une mesure de similarité afin de comparer
les points composant les signaux à chaque instant, par exemple la distance Eucli-
enne. Nous proposons d’apprendre une mesure de similarité à partir de données
totalement étiquettées, c’est à dire des signaux segmentés ou des paires de sig-
naux pour lesquels la déformation optimale est connue. En nous appuyant sur des
méthodes précédemment développées pour la prédiction structurée, nous présen-
tons des moyens algorithmiquement efficaces pour effectuer l’apprentissage. Ces
méthodes permettent notamment l’utilisation de fonctions de pertes spécifique-
ment adaptées aux tâches considérées. Nous validons notre approche sur des don-
nées réelles venant de divers domaines : vision, musique et bioinformatique.

D’autre part, nous nous intéressons au problème de la faible supervision où les
données séquentielles ne sont pas totalement étiquetées. Nous nous intéressons
au problème d’alignement d’une séquence sur sa représentation symbolique, en
nous focalisant en particulier sur le problème d’alignement d’un enregistrement
musical sur la partition jouée. Nous considérons la représentation symbolique
comme donnant (i) une information complète sur l’ordre des symboles ou notes
et (ii) une information approximative sur la forme de l’alignement attendu. Nous
proposons une approche discriminative à ce problème utilisant ces deux types
d’informations et apprenons, à partir de ces données faiblement supervisées, un
classifieur pour chaque note. Nous développons une méthode d’apprentissage
fondée sur l’optimisation d’une fonction de coût convexe qui tire profit de la faible
supervision et de la structure séquentielle des données. Nous démontrons la va-
lidité de l’approche sur des données musicales.
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Abstract

In this manuscript, we consider structured machine learning problems and con-
sider more precisely the ones involving sequential structure.

In a first part, we consider the problem of similarity measure learning for two
tasks where sequential structure is at stake: (i) the multivariate change-point de-
tection problem and (ii) the time warping of pairs of time series problem. The
methods generally used to solve these problems crucially rely on a good similarity
measure to compare points at different timestamps, e.g., the Euclidean distance.
We propose to learn a similarity measure from fully labelled data, i.e., signals al-
ready segmented or pairs of signals for which the optimal time warping is known.
Based on techniques coming from the structured prediction field, we present algo-
rithmically efficient ways for learning. These methods allows us to use loss func-
tions that we specifically designed for the tasks considered. We eventually validate
our approach on real-world vision, bioinformatics and musical data.

In a second part, we focus on the problem of weak supervision, in which sequen-
tial data are not totally labeled. We conduct our study on the problem of aligning a
time series to its symbolic representation, using as a leading example the problem
of aligning an audio recording with the score or partition played. We consider the
symbolic representation as two fold: (i) it gives a complete information about the
order of events or notes played and (ii) it gives an approximate idea about the ex-
pected shape of the alignment. We propose a discriminative approach taking into
account these two kinds of information and we learn, from these weakly labeled
data, classifiers for each of the possible notes. Our learning problem is based on
the optimization of a convex cost function that takes advantage of the weak super-
vision and of the sequential structure of data. Our approach is validated through
experiments on the task of audio-to-score on real musical data.



Contents

Contributions and outline of the thesis 9

1 Introduction and Related Work 15
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 The classical binary classification problem . . . . . . . . . . . . . . . . 19
1.3 Classification in discrete output spaces . . . . . . . . . . . . . . . . . . 26
1.4 The standard structured SVM framework . . . . . . . . . . . . . . . . 32
1.5 Differences between binary and structured prediction . . . . . . . . . 38
1.6 Tools from convex optimization . . . . . . . . . . . . . . . . . . . . . . 41

2 Tractable Multi-label Classification Using Quadratic Priors 51
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Structured prediction for multi-label classification . . . . . . . . . . . 53
2.3 Performance measures and losses for multi-label tasks . . . . . . . . . 57
2.4 Loss-augmented decoding . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Optimization in y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Optimization in W and A . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Sequential Structures in Real World Data and Mahalanobis Similarity
Measure Learning 75
3.1 Problems involving sequential structure . . . . . . . . . . . . . . . . . 76
3.2 Change-point detection problem . . . . . . . . . . . . . . . . . . . . . 78
3.3 Time warping and alignment problems . . . . . . . . . . . . . . . . . 83
3.4 Similarity measure learning . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Similarity Measure Learning for Constrained Partitioning Problems 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Partitioning through matrix factorization . . . . . . . . . . . . . . . . 99
4.3 Structured prediction for similarity measure learning . . . . . . . . . 105
4.4 Learning a metric for change-point detection tasks . . . . . . . . . . . 109
4.5 Experiments for change-point detection . . . . . . . . . . . . . . . . . 111
4.6 Extension: general similarity measure learning for partitioning al-

gorithms based on Euclidean distortions . . . . . . . . . . . . . . . . . 117
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



8 CONTENTS

5 Similarity Measure Learning for Warping Temporal Sequences 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Matrix formulation of warping problems . . . . . . . . . . . . . . . . 125
5.3 Learning the quasimetric . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Large margin approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 A Weakly-Supervised Framework for Structured Prediction With Sequen-
tial Structure 143
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 Alignment as a weakly-supervised structured prediction task . . . . 149
6.3 Convexification using the square surrogate . . . . . . . . . . . . . . . 154
6.4 Weakly supervised approach for the audio-to-score problem . . . . . 159
6.5 Experiments: Monophonic case . . . . . . . . . . . . . . . . . . . . . . 164
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Conclusion and perspectives 173
7.1 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography 179



Contributions and outline of the
thesis

Chapter 1: In this first introductory chapter, we present the core of this thesis:
the structured prediction framework. It is a supervised classification framework
for labels belonging to a structured set. Such a set is generally finite of big car-
dinality, preventing for performing an exhaustive search in it. It can be made of
complex or composite outputs such as graphs or sequences. We present the usual
large-margin approach to deal with it: the structured support vector machines. We
stress the need to be able to solve the loss-augmented decoding efficiently. We also
present the convex optimization tools that are needed in the following chapters.

Chapter 2: In this contribution, we present a structured prediction approach for
multi-label classification that goes beyond the binary relevance approach which
consists in learning a classifier for each possible label and then doing prediction
independently. We propose an approach that takes into account interactions be-
tween labels in the form of pairwise affinities or repulsions. These can be encoded
through an affinity matrix that we learn directly from the data while learning clas-
sifiers for each label. We cast the learning as a structured prediction one with losses
properly designed for the task: the F1 and the Hamming loss. We show that, de-
pending on the sign of the entries of the affinity matrix, the structured prediction
problem should be addressed in different ways. If this matrix only encodes affini-
ties, the problem reduces to a standard structured prediction objective that can be
solved approximately using graph cut techniques. If the matrix encodes affinities
and repulsions, the loss-augmented decoding is not tractable and is related to the
max-cut problem. We provide algorithmically efficient semidefinite and spectral
relaxations for this case. Eventually, we demonstrate on real-world dataset the
benefits of the proposed approach.

Chapter 3: In this second introductory chapter, we present the sequential struc-
ture. We present the dynamic programming framework that let us deal with it
computationally. We focus on three applications: (i) the change-point detection that
is the segmentation of a time series, (ii) the alignment problem that is the building
of a mapping between a time series and a reference signal, (iii) the time warping
that puts in correspondence pairs of timestamps in two different time series with a
contiguity constraint. In the second part of this chapter, we present the similarity
measure learning problem by focusing on the learning of Mahalanobis quasimetric.
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Chapter 4: In this contribution, we propose to learn a similarity measure
for the specific task of change-point detection and more generally for partitioning
problems where potential constraints are involved. We consider methods that rely
on a Mahalanobis quasimetric. We propose a formulation that turns out to cast
the partitioning problem as linear in the matrix B associated to the Mahalanobis
quasimetric. We cast the learning of B as a large-margin structured prediction
problem and show that the loss-augmented decoding can be solved efficiently. We
then improve our approach by going beyond fully-supervised datasets and pro-
pose an extension of our technique that can learn a quasimetric from partially la-
beled datasets. For general segmentation problems, we propose a way to relax the
structured prediction optimization problem into a tractable one using a spectral
relaxation. Eventually, we demonstrate the benefits of our approach, on video seg-
mentation and segmentation of genomic time series tasks as well as on a real-world
image segmentation task.

Chapter 5: In this contribution, we consider the learning of a Mahalanobis
quasimetric for another task where sequential structure is at stake: the time warp-
ing problem that puts in correspondence pairs of time series. This problem is
ubiquitous in many applications, for instance in music: we can think to two in-
terpretations of the same musical piece that share the global structure but with
local tempo differences. We consider the case where the problem rely on a Maha-
lanobis pairwise similarity measure. We propose to learn it from pairs of signals
for which the optimal warping is known. To that extent, we propose a represen-
tation of warpings as binary matrices and build a new loss between these objects.
We also propose a new approach to deal with large-margin structured prediction
by relaxing the set of binary matrices into its convex hull and derive an efficient
conditional algorithm to solve the optimization problem associated. We eventually
apply our approach on real musical data coming from artificially warped data as
well as the Bach’s chorales dataset.

Chapter 6: In this contribution we propose to make use of weakly supervised
sequential data at training time and focus on the task of aligning a time series (e.g,
a musical recording) to a symbolic representation (e.g, the partition). Indeed, in
applications, manually timestamped data on which the approaches of the two pre-
vious chapters are built are rarely available. But it is often easy to gather partial
information, for instance the musical score for a music. Alignment uses a similarity
measure between timestamps of the time series and symbols of the representation.
We propose to learn it using only weakly-supervised data. We cast this problem as
a structured prediction task using the Hamming loss and use a square surrogate
to it to derive a convex relaxation of the empirical loss minimization problem that
we can efficiently solve. We then apply our generic approach on the audio-to-score
task. We show that it is possible to use the score specifically and to include mu-
sically meaningful penalties directly in the empirical loss minimization problem.
We eventually provide experiments on real-world audio-to-score datasets. Our
first results, on monophonic data show that our approach let us learn good simi-
larity measure between symbols of the partition and musical recordings by making



CONTRIBUTIONS AND OUTLINE OF THE THESIS 11

use of only few supervision.

We list there the publications related to this manuscript:
– Chapter 2 is based on our preprint: Semidefinite and Spectral Relaxations for

Multi-Label Classification, R. Lajugie, P. Bojanowski, S. Arlot, F. Bach 1.
– Chapter 4 is based on the article: Large-margin Metric Learning for Con-

strained Partitioning Problems, R. Lajugie, S. Arlot, F. Bach, In Proc. ICML
2014.

– Chapter 5 is based on the article: Metric Learning for Temporal Sequence
Alignment, R. Lajugie, D. Garreau, In Proc. NIPS 2014.

– The core material Chapter 6 is a joint work with Piotr Bojanowski, Philippe
Cuvillier, Sylvain Arlot and Francis Bach. It is under submission.

– In Chapter 6, we briefly recall the main results of our ECCV paper: Weakly
Supervised Action Labelling in Videos Under Ordering Constraints, P. Bo-
janowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, J.Sivic, In. Proc.
ECCV, 2014. However the results of this paper as well as the ones of our
preliminary report: Weakly-Supervised Alignment of Video With Text, P.
Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev, J. Ponce, C. Schmid 2

are not discussed in this manuscript and will be extensively detailed in the
manuscript of P. Bojanowski.

1. Available on arXiv: http://arxiv.org/abs/1506.01829.
2. Available on arXiv: http://arxiv.org/abs/1505.06027.





Notations

Mathematical notations

(e1, . . . , ep) canonical basis of Rp

EX[ f (X)] expectation of the function f under the distribution of X

Idp Identity matrix of dimension p

〈 · , · 〉 Euclidean dot product for real vector spaces, namely Frobe-
nius dot product for matrices: ∀X, X′ ∈ Rp×K , 〈X, X′〉Tr(X>X)
and standard dot product for vectors ∀x, x′ ∈ Rp, 〈x, x′〉 =
x>x′

1p vector of Rp made of all ones, that is 1p = ∑
p
i=1 ei

Rp×k space of real matrices of p rows and k columns

Rp real vector space of dimension p

� partial order on the set of symmetric matrices,
∀A, B ∈ Sp, A � B if, and only if B− A is positive semidef-
inite

AB For two sets A and B, set of functions from B to A

IC Convex indicator of the set C, that is ∀x ∈ C, IC(x) = 0,
and +∞ otherwise

S++
p set of symmetric positive matrices of size p× p

S+
p set of symmetric semidefinite positive matrices of size p×

p

Sp set of symmetric matrices of size p× p

X upper case letters denote matrices

x lower case letters denote vectors

xi i-th component of a vector

X.,j j-th column of a matrix

Xi,. i-th row of a matrix
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Abbreviations

a.k.a also known as

e.g. exampli gratia, for instance

i.e. id est, meaning

Conventions

N number of training instances

w or W denotes the parameter to learn of a method

x or X denotes the input of an algorithm

xi Superscripts refer to the position of a training instance in
the sample

y or Y denotes the output of an algorithm



Chapter 1

Introduction and Related Work

In a very broad perspective, our work addresses some issues coming from ma-
chine learning. This field of research aims at extracting meaningful rules from
observed data that can be further generalized to interpret new data. We focus in
this thesis on the specific problems induced by structured outputs, when the object
involved in a machine learning task has a complex shape. We start our presenta-
tion by a first structured machine learning problem: the multi-class classification
problem where the goal is to predict several outputs from some set to an instance.
This can typically take the form of image tagging, that is to describe all the ob-
jects present in an image. Then we emphasize over a specific kind of structure:
the sequential one which is ubiquitous in signal processing and more generally
in all data-dependent fields. We present our two structured machine learning ap-
proaches to learn specific similarity measures for the change-point detection and
the time warping problems. However the approaches we develop suffer from the
fact they require fully-supervised data which are in practice hard to get, even if
they exist in some specific cases we present in the corresponding chapters. To
overcome this issue, we propose to go beyond existing approaches. To that extent,
we consider musical data for which it is easy to gather weak-supervision thanks to
the partition. We propose to only make use of this little amount of information to
build a model for each of the possible notes.

In this introductory chapter, we introduce the notations used in this manuscript
as well as the major concepts we use.

1.1 Background

Notations. Throughout this manuscript, lower case letters denote vectors, up-
per case ones matrices. When working with a generic Euclidean space, we refer
to its standard dot product using the notation 〈 · , · 〉 . These finite dimensional
spaces are always real and they can be either vector space of dimension p, that
we denote Rp or space of matrices of dimension p1 lines and p2 columns that
we denote Rp1×p2 . For vector spaces, the dot product between x, x′ in Rp cor-
responds to 〈x, x′〉 = x>x′. For a matrix space, this dot product corresponds to
〈X, X′〉 = Tr(X>X′) for two matrices X, X′ ∈ Rp1×p2 .



16 CHAPTER 1. INTRODUCTION AND RELATED WORK

The norm associated to this dot product is denoted using the symbol ‖ · ‖2. Train-
ing instances are indexed by the superscript i. Subscripts refers to indices within
a vector or a matrix. Namely, for a vector x, xj denotes its j-th component. For a
matrix X, Xj,k is the element indexed by the j-th row and the k-th column. For a
square matrix W ∈ Rp×p, we use the symbol� to denote the partial order induced
by the semidefinite cone. That is, if W and W ′ are two semidefinite positive matri-
ces, we note W � W ′ if W −W ′ is positive semidefinite. For a matrix W � 0, we
also make use of the notation W ∈ S+. If moreover, W is positive definite (if W has
no eigenvalue equals to 0), we use the notation W � 0 or W ∈ S++. For matrices,
we adopt also the following conventions: X.,k is the vector corresponding to the
k-th column of X and Xk,. the vector corresponding to the k-th row.
The p-dimensional vector composed of ones is noted 1p. The dependency in p
might be omitted when it is clear from the context. For a finite set Y , the symbol
|Y| stands for the cardinality of the set.
Let A and B be two sets, we denote by AB, the set of functions from B to A.

1.1.1 Definitions and concepts

Let us now describe some of the major concepts that are at stake in this thesis.
A fundamental dichotomy in machine learning lies in the difference between

supervised and unsupervised learning (see e.g, [Hastie et al., 2009]).
Supervised learning aims at learning a decision function f in some generic function
set F . This associates an input instance x in some input set X to an output y
in some output set Y(x). It is important to notice that the output set Y(x) can
depend on the training input. To avoid cumbersome notations, we introduce Y =⋃

x∈X Y(x), the set of all possible outputs.
A decision function is learned using N training pairs composed of one input signal
xi ∈ X together with the associated response yi ∈ Y . To set an analogy with
human learning, we can think to some teacher showing pairs of one object xi with
the corresponding label yi. Depending on the set Y , different problems, or tasks,
can be considered:

– If Y is a finite set of categorical variables (for example labels), the problem is
known as classification. To fix ideas, let us consider X = R+ the set of all pos-
sible light intensities recorded by some sensor and Y(x) = “day′′, “night′′.
The output of a classification algorithm is a binary-valued function that, to
an illumination x, associates f (x) ∈ Y , corresponding to “day” or “night”.
In this setting, the decision function is often referred to as the classifier.

– If Y is a continuous space, the problem is known as the one of regression.
With the previous example, if we take Y = [0, 24] representing the time of
the day, the goal of regression is to build a function that, to an illumination x
associates the time of the day. 1

On the opposite, unsupervised learning aims at extracting rules from data with no
exterior knowledge given by any teacher or expert. That is, there is no training

1. In this toy example, the regression problem might be very hard to solve, since at dawn and
twilight, the illumination is the same.
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output example yi anymore. Such an algorithm outputs a transformation of the
data like a partition of them, a projection of these on a lower dimensionnal space
and so on.
In this manuscript, we mainly consider supervised classification.

Batch supervised classification. More precisely, we assume to be given N train-
ing pairs (xi, yi) composed of one input and the corresponding output. Moreover,
we assume that all the N pairs can be accessed at any stage during the machine
learning procedure for learning a classifier. This is known as the batch or offline set-
ting: a prediction function is learned once for all and is never modified afterwards.
So, there is two stages clearly defined:

1. the training stage in which a classifier is learned from data,
2. the testing stage in which the classifier is used on new data.

The batch setup is opposed to the online in which data comes sequentially. In this
setting, testing and training stages are mixed: an input xi is presented, the current
classifier makes a prediction, the output yi is revealed, the machine learning pro-
cedure modifies the classifier based on this feedback and then applies it on a new
input xi+1.

Input representation. In this thesis, we always assume that, in a pair (x, y) ∈
X × Y , the input x belongs to some finite dimensional real vector space. There ei-
ther exists some p such thatX ⊂ Rp or p and q such thatX ⊂ Rp×q. The inputs are
thus denoted by x or X, depending whether we consider a vector or a matrix. We
do not provide specific attention to the design of inputs. This is however a central
topic in the signal processing literature, since the good representation of inputs,
a.k.a. the design of features, has a major impact over the performances of machine
learning techniques. Roughly speaking, if the descriptors we use for represent-
ing inputs miss a crucial aspect of a problem, it is hopeless to solve it. Imagine
that, rather than building a day/night classifier, we want to build a dawn/twilight
one. The use of light intensity alone will not allow us to build a better classifier
than a random one. But, if we include the crucial aspect of the dynamic of the
light intensity in our input, such a classifier will be easy to build. Beyond this toy
example, in computer vision, the scale-invariant feature transform (SIFT) descrip-
tors [Lowe, 1999] and their variants has drastically improved the performance of
object classification tasks during the 2000’s [Mikolajczyk and Schmid, 2005] 2. Fine
engineering of features followed by the use of these as input of a standard classifi-
cation technique is a very common way to address object recognition. This leads to
state-of-the-art results on most of the benchmark datasets in computer vision such
as PASCAL [Everingham et al., 2010] or ImageNet [Russakovsky et al., 2015]. In
music, for genre classification of songs, the representation of the signal has a high
impact over the accuracy. For a fixed machine learning technique, different feature
representation of musical signals can lead to very different classification perfor-
mances [Li et al., 2003]. Engineering of inputs is thus very important in machine

2. Nowadays, the standard state-of-the-art features are built using neural networks.
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learning and in all data-oriented fields.
Nevertheless, the central topic of the manuscript is outputs. More precisely, we fo-
cus on finite outputs sets Y with a complex underlying structure. For example Y
can be a set of sequences, alignments or graphs.

Output sets and loss functions. The structure of an output set Y(x) is encoded
through a loss function that measures how far two elements y, y′ ∈ Y(x) are. That
is, for each x ∈ X , there exists a function

`x : Y(x)×Y(x)→ R+.

For simplicity and since it is always the case in the rest of the manuscript, we
assume that if

y, y′ ∈ Y(x) and y, y′ ∈ Y(x′),

then
`x(y, y′) = `x′(y, y′).

That way, we can extend the family of losses (`x)x∈X to a loss over the whole set
Y . We define:

` : Y × Y → R+

`(y, y′) =

{
`x(y, y′) if ∃x, y ∈ Y(x), y′ ∈ Y(x),
+∞ otherwise.

(1.1)

For the classifier between day and night we have seen so far, one can imagine to
define a loss that is equal to 1 if y 6= y′ and to 0 otherwise. The loss function is of
crucial importance for machine learning tasks since it allows us to compare a true
output yi with a prediction made by a decision function.

1.1.2 Standard approaches to the supervised batch classification
problem

In this work, we follow the discriminative (a.k.a conditional) approach to the
classification problem. We assume that the N training pairs (xi, yi) ∈ X ×Y are the
independent and identically distributed realizations of random variables (X, Y) 3

that have some probability distribution p over X × Y . Classifiers are built in the
following way:

1. we find a model p̂ for the conditional probabilities p(Y|X) using training
data,

2. the classifier is the function associating to an input x, the output y that maxi-
mizes the model p̂(y|x).

3. In this paragraph, and only in this, the upper case letters do not denote matrices but the
random variable as opposed to its realization which is in lower case.
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Intuitively, step 1 corresponds to building a function that scores all the possible
outputs y ∈ Y for a given input x ∈ X 4, and step 2 corresponds to taking the
highest scored output as the prediction of the classifier. Note that this approach
is opposed to the generative one that tries to build a model for the joint probability
p(X, Y) [Ng and Jordan, 2002].

Two discriminative approaches. In the discriminative setting, there are two ma-
jor ways to build such a model. The first one builds a conditional model of prob-
abilities using the maximum likelihood principle. The second one learns a param-
eter by minimizing some empirical loss undergone over the training instances. It
turns out that, in the case where the training pairs are assumed to be independent
and identically distributed 5 using the maximum likelihood principle is equivalent
to minimizing a specific empirical loss. See Sec. 1.2.7 for more details.

Assessing the quality of classifiers. Once a classifier has been learned, it is im-
portant to measure its quality. The standard way to do so is to consider new data,
the test data, that have the same distribution as the train data and to use them to
estimate the mean loss using the classifier. Namely, if f : X → Y is a classifier, the
performance of a classifier is assessed by:

E(X,Y)

[
`( f (X), Y)

]
,

which should be as small as possible. Generally, since we have only access to a
finite number of test data 6, we assess the quality of the classifier by computing the
empirical loss over the NT test data (xN+1, yN+1), . . . , (xN+NT , yN+NT):

1
NT

NT

∑
i=1

`
(

f (xN+i), yN+i).
1.2 The classical binary classification problem

To fix ideas, let us present the simplest machine learning problem: the binary
classification [Bishop et al., 2006, Hastie et al., 2009].

1.2.1 Parameterization of the problem

Let Y be an output set with two elements that may consist of two mutually
exclusive labels. We parametrize it by the injection:

P : Y → {−1, 1}

4. In the rest of the manuscript such a function is called a discriminative function.
5. This is always implicitly the case in this manuscript.
6. That are pairs of data (xi , yi).
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that sends one of the label to 1 and the other to−1. To avoid heavy notations, in the
rest of the section, we identify Y to P(Y) = {−1, 1} 7. The input set X is included
in a vector space of dimension d, namely X ⊂ Rd. The goal of binary classification
is to learn a decision function f ∈ F ⊂ {−1, 1}X . Equivalently, we can assume that
f is the sign of a discriminative function, f (x) = sign(F(x)), for some F : X → R

(here to avoid problems of definition, we consider that sign(0) = 1).
Moreover, let us consider the following parametric linear model for F, we con-

sider that there exists some w in Rp such that:

∀x ∈ Rp, F(x) = F(x; w) = 〈w, x〉. (1.2)

Our overall model for the decision function is thus 8

f (x) = f (x; w) = sign(F(x; w)). (1.3)

Note that most of the techniques we present in this manuscript can be extended
to the case where w is a parameter of arbitrary dimension using the theory of ker-
nels [Schölkopf and Smola, 2002]. However, we stick the presentation to the finite
dimensional case as it is the only relevant in this manuscript.

In the subsequent sections, we propose to learn the parameter w. Suppose that
we are given N pairs of training instances (x1, y1) . . . (xN , yN) ∈ Rp × {−1, 1}.
These instances are supposed to be drawn independently with a common distri-
bution p over Rp ×Y .

Now let us see to what corresponds the building of conditional probabilities
and the empirical loss minimization framework, in that case.

1.2.2 The logistic regression model

Logistic regression [Hastie et al., 2009] learns a probabilistic model based on a
discriminative function. In the binary case, the conditional probabilities are of the
following form:

p(y = 1|x; w) =
exp
(
〈w,x〉

2

)
exp
(
− 〈w,x〉

2

)
+exp

(
〈w,x〉

2

) = 1
1+exp

(
−〈w,x〉

) ,

p(y = −1|x; w) =
exp
(
〈w,x〉)

2

)
exp
(
〈w,x〉

2

)
+exp

(
〈w,x〉

2

) = 1
1+exp

(
〈w,x〉

) .

Thus we have the following compact expression for the conditional probabili-
ties:

7. Note however that this injection is arbitrary and that we could have chosen an other one, for
instance by sending one input on 0 and the other on 1.

8. Following the standard notation of Tsochantaridis et al. [2005], when a function over the input
space X depends on a parameter w, we separate parameters from variables using a semicolon.



1.2. THE CLASSICAL BINARY CLASSIFICATION PROBLEM 21

p(y|x; w) =
1

1 + exp(−y〈w, x〉) . (1.4)

The idea is then to adjust w in this model using the maximum likelihood prin-
ciple over the training instances, that is, to maximize the conditional probabilities
of the observed training labels given the training inputs, i.e.,

maximize
w∈Rp

ΠN
i=1p(yi|xi; w). (1.5)

This principle has been popularized by Fisher [Fisher, 1915] and can be traced back
to Laplace and Bernoulli 9. The usual way to solve the problem of Eq. (1.5), is to
consider the log-likelihood, that is, in the case of logistic regression, to maximize:

N

∑
i=1

log
(

p(yi|xi)
)
=

N

∑
i=1

log
(

p(yi|xi)
)
= −

N

∑
i=1

log
(

1 + exp
(
−yi〈w, xi〉

))
. (1.6)

Efficient algorithms exist to optimize this quantity. When data are low-dimensional,
i.e., p is small, they are based on the Newton-Raphson method and called itera-
tively reweighted least squares in that case. They make use of the Hessian ma-
trix of the expression (1.6) 10 and require its inversion. Thus, one iteration of the
Newton-Raphson method is of complexity O(p3). In high dimension, this itera-
tion cost is prohibitive, and we can only afford the computation of a gradient of
the expression of Eq. (1.6) which is of complexity O(p). In this situation, gradient
descent methods are privilegied (see Sec. 1.6 for further details).

1.2.3 The 0− 1 loss

Now, let us consider the 0− 1 loss minimization approach. To learn the param-
eter w of the discriminative function, the intuition is to do so by minimizing the
resulting error. Such an error should be 0 when the predicted label agrees with
the actual training one and greater than 0 in other cases. The most natural notion
of error in the binary classification problem is the 0 − 1 loss. This corresponds
to counting the number of mistakes done over the training examples. Between a
prediction f (xi; w) and the actual label, we consider the following loss function:

`
(
yi, f (xi; w)

)
= 1yi 6= f (xi;w).

Asymmetric losses. Note that this loss is, up to a scaling, the only loss that is
symmetric 11 over {−1, 1}. However, if predicting 1 instead of −1 (false positive)
is different from predicting −1 instead of 1 (false negative) we can define asym-

9. See [Stigler et al., 2007] for the whole history.
10. The Hessian is the matrix of second order partial derivatives.
11. We recall that a function g : Y × Y → R is symmetric if, and only if,

∀y1, y2 ∈ Y , g(y1, y2) = g(y2, y1).
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metric losses [Viola and Jones, 2001, Masnadi-Shirazi and Vasconcelos, 2010]. For
instance, in biomedicine the cost of false detection of a disease is usually smaller
than a missing detection. Asymmetric classifiers have for instance been success-
fully applied to the detection of prostate cancers [Artan et al., 2010] with a signif-
icantly better accuracy than when using a symmetric loss function. However, if
asymmetric cost functions are at stake, tuning the ratio between false positive cost
and false negative is of crucial importance. This can be done using an exhaustive
procedure [Masnadi-Shirazi and Vasconcelos, 2010] or directly when learning a
classifier [Bach et al., 2006]. In this manuscript, we only consider symmetric losses.

1.2.4 Minimization of the empirical loss

Learning the optimal parameter w can be done by minimizing the empirical
loss over the training examples. This is the approach proposed by Vapnik [1998].
In the binary classification setting, this corresponds to finding w in such a way that
it minimizes the following quantity:

1
N

N

∑
i=1

1yi 6= f (xi;w). (1.7)

This quantity is known as the empirical 0− 1 loss. If the pairs (xi, yi) are i.i.d, and
if m = E[`(yi, f (xi; w))] exists, then the law of large numbers guarantees that the
empirical loss converge to m when N → ∞.

1.2.5 Preventing overfitting

Let us assume that there exists some computationally efficient way to deal with
the minimization of Eq. (1.7). We will face an issue known as the problem of over-
fitting. This phenomenon occurs when we have learned “too well” on our training
data and when the decision rule learned is so complex that it does not have good
performance on new data. Indeed, we are not actually interested in having a small
loss over the training examples. Instead, our goal is to have a small error on data
that we have never seen before. Such data are commonly referred to as test data.
Namely, the criterion we would really like to minimize would be the following
expected loss:

Ey,x
[
1y 6= f (x;w)

]
.

We would like to find a parameter w such that the expected error is minimal on
data that are drawn according to the same distribution than training instances.
The minimization of Eq. (1.7) does not lead to good generalization performances,
especially when the number of dimension of w is large. The issue is that, if the
class of possible discriminative functions is too rich, it will be possible to stick
to the training data. This phenomenon is what we call the overfitting problem.
On the opposite, if the class of possible discriminative functions is too small, the

In the binary case, keep in mind that a loss ` is totally defined by the values `(−1, 1) and `(1,−1).
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prediction function learned will be too far from the data. This problem is known
as the underfitting problem. Therefore, we have to adjust the tradeoff between too
simple discriminative functions and too complex ones [Vapnik, 1998, Bishop et al.,
2006, Hastie et al., 2009]. For the loss minimization method we have presented so
far, the usual way to prevent overfitting is to penalize vectors w that have a large
norm. The idea is thus to replace the minimization of the empirical loss by the
minimization of the regularized empirical loss:

1
N

N

∑
i=1

1yi 6= f (xi;w) + λΩ( f ). (1.8)

The function Ω is called the regularizer and the parameter λ ∈ R+ is called the
regularization parameter. We refer to the term 1

N ∑N
i=1 1yi 6= f (xi;w) of Eq. (1.8) as the

data fitting term.

Choosing Ω . The most commonly used choice for the penalization function Ω is
the squared L2 norm (by abuse of language, we simply talk about the L2 regular-
ization). As stated in Eq. (1.3), the prediction function is the sign of some discrimi-
native function F which is linearily parameterized by a parameter w belonging to
some vector space. The L2 regularization in that setup corresponds to penalizing
the empirical loss minimization by the quantity λ‖w‖2

2 [Hoerl and Kennard, 1970].
This is a special case 12 of the control of the “complexity” of a function through L2
norm in reproducing kernel Hilbert spaces [Schölkopf and Smola, 2002].
Indeed, the speed of variation of the discriminative function can be seen as a good
measure of the complexity of the classifier in our case. If we let the discriminative
function vary a lot, it will be possible for it to stick very well to training data, sim-
ply because it will be possible for it to change its sign quickly. The penalization by
the norm of w enforces to have discriminative functions that do not vary too fast.
To check that, let x, x′ ∈ Rp. Then using Eq. (1.2), we have that:

|F(x; w)− F(x′; w)| ≤ ‖w‖2(x− x′).

Thus ‖w‖ quantifies the regularity of the function F. In our work, we generally
use the L2 regularization. However, a lot of work has been done about choosing
Ω. To enforce sparsity in the learned vector w (roughly speaking this means that
the vector w has a lot of zeros), the L1 penalization is commonly used. For in-
stance, for regression task, this yields to the Lasso (or basis pursuit) [Tibshirani,
1996, Chen et al., 1998, Zhao and Yu, 2006] methods. Some other approaches to
promote group sparsity have been recently designed. They make use of structured
norms like Bach et al. [2012] or combine L1 and L2 regularization for the “elastic
net” method [Zou and Hastie, 2005]. These approaches allow us to enforce task-

12. When we use a parametric model for F such as the one introduced in Eq. (1.2), we are im-
plicitly working in a Hilbert space of finite dimension. In the kernel literature point of view, our
setup corresponds to the “linear kernels”[Shawe-Taylor and Cristianini, 2000, Schölkopf and Smola,
2002].
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dependent sparsity patterns in the parameter to learn. For instance, for the analysis
of functional magnetic resonance imaging (fMRI) data, group sparsity is a way to
induce the selection of predictive regions of the brain at different scales. This has
improved the performance for the task of brain reading, that consists in inferring
what a person is thinking about from active brain regions [Jenatton et al., 2012].

Choosing λ. Once the penalization function is chosen, we need to adjust the reg-
ularization parameter λ. It intuitively allows us to control the tradeoff between
the regularization term (that leads to underfitting) and the data-fitting term (that
leads to overfitting). This can be done by using a validation procedure [Hastie
et al., 2009]:

1. among our data, we select a fraction of these that we left aside, these are
called the validation data, the rest of the data are training data,

2. for each possible λ, we minimize the regularized empirical loss on the train-
ing data,

3. we select the λ that have the smallest loss over validation data.

However data are often scarce and we cannot really afford to set aside a certain
amount of data for the validation. We would like to put as few instances as possi-
ble in the validation set. Ideally, we would like to be able to train using all the data
without loosing the benefits of the validation procedure. This concern has led to
a smarter way to do this validation procedure. This is the so-called cross-validation
that has received a large interest since its introduction in the seventies [Stone, 1974,
Geisser, 1975] approach. Instead of cutting the data in one train/validation split,
we can split data into K folds (generally K = 5 or K = 10 is enough [Hastie et al.,
2009, Arlot and Lerasle, 2012]). Successively, we select one of the K folds as a val-
idation set. For each λ we compute the value of the regularized empirical loss.
Then, we aggregate the results obtained for each of the K folds and select our pa-
rameter λ.

Now, let us move on more algorithmic concerns.

1.2.6 Convexification of the loss minimization problem

Our goal is now to solve the regularized empirical loss minimization problem.
As suggested before, we consider now the regularization function Ω to be set as
the squared L2 norm. So, the problem we aim at solving is to:

minimize
w∈Rp

1
N

N

∑
i=1

1yi 6= f (xi;w) + λ‖w‖2
2. (1.9)

This problem is known to be NP-hard [Zhang, 2004b]. It is also known that convex
problems are solvable in polynomial time using for instance the ellipsoid method [Nes-
terov et al., 1994]. Thus a way to deal with the minimization of Eq. (1.9) is to ap-
proximate it by a convex relaxation.
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Figure 1.1: Some possible surrogates to the 0− 1 classification loss as functions of
the confidence score y〈w, x〉.

Convex surrogates. The most popular approach to replace the 0 − 1 loss by a
convex approximation is to consider a quantity, that we call the margin [Cortes
and Vapnik, 1995]. This gives a confidence score for a generic output pair (x, y) ∈
X ×Y . It is defined for binary classification as y〈w, x〉. The convex approximation
C to the loss is usually set as a convex function of the margin and satisfies the two
following properties:

– ∀y, w, x, C
(
y〈w, x〉

)
≥ 1y 6=sign(〈w,x〉),

– C is differentiable in 0 and C′(0) < 0.
Such a function C is generally referred to as a convex surrogate to the 0− 1 loss.
Figure 1.1 depicts some of the more common surrogates. This leads to the follow-
ing convexified empirical loss minimization problem:

minimize
w∈Rp

N

∑
i=1

C
(
y〈w, x〉

)
+ λ‖w‖2

2, (1.10)

which is now a convex problem.
Replacing the 0− 1 loss by a surrogate satisfying the two aforementioned prop-

erties has been shown to be statistically consistent [Zhang, 2004b, Bartlett et al.,
2006]. This means that if we consider the case where λ = 0 in the problem of
Eq. (1.10) and let N tend towards infinity, the minimizer of the regularized loss
minimization problem of Eq. (1.7) and the one of Eq. (1.10) converges to the same
values.

1.2.7 Standard examples

Following the approach previously described, several surrogates to the 0− 1
loss have been designed. Some of these are depicted in Fig. 1.1.

Smooth surrogates. Two smooth surrogates functions are widely used: the lo-
gistic surrogate and the squared one. The square surrogate replaces the 0− 1 loss
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by (
1− y〈w, x〉

)2,

whereas the logistic one replace it by

1
log(2)

log
(

1 + exp
(
−y〈w, x〉

))
.

The latter function is sometimes called the soft-max. Note that the empirical loss
minimization problem associated to this loss is exactly the problem of Eq. (1.6).
The logistic surrogate is the pink curve in Fig. 1.1. The square one corresponds to
the green curve.

Non-smooth surrogate: the hinge loss. The hinge loss surrogate replaces the
0 − 1 loss by the quantity max

(
0, 1 − y〈w, x〉

)
. This is the dashed blue curve in

Fig. 1.1. This loss is very popular since it gave birth to the technique of sup-
port vector machines (SVMs) [Vapnik, 1998, Shawe-Taylor and Cristianini, 2000,
Schölkopf and Smola, 2002, Steinwart and Christmann, 2008]. These are nowadays
widespread in applications. In computer vision they are used for image classifi-
cation and are the state-of-the-art method on some standard benchmark datasets
including the ImageNet challenge [Russakovsky et al., 2015]. In biomedicine, they
are used for protein classification [Leslie et al., 2004] or for gene expression classi-
fication [Rapaport et al., 2007].

Let us now move to the case where the output set Y is not binary anymore but
is a big space with a potential structure to take into account.

1.3 Classification in discrete output spaces

The leading example for this section is an instance of the sequence labelling
problem. We consider an optical character recognition (OCR) task [Taskar et al.,
2003]. OCR aims at automatically recognizing characters in handwritten text. Given
a text string of T characters, the goal is to find the sequence of characters that have
been written. Assigning the sequence of recognized characters to the input data
corresponds to what we call later the decoding of our structured model. This ex-
ample has a natural structure. Indeed, not all sequences of characters are possible.
For instance, sentences should be sequences of words in a dictionary and in a natu-
ral language some strings are impossible or very unlikely. In English “bnd” never
occurs whereas “and” occurs very often.

We can then imagine two different but unsatisfying approaches to this prob-
lem:
(i) The first one casts the decoding as solving T successively independent single
character recognition tasks. This is not the optimal way to do because we have a
strong prior that finding the character that is at some position t heavily depends
on the character at position t− 1 and the one at position t + 1.
(ii) The second one is to encode each word of the dictionary as a specific output,
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Figure 1.2: An example of a chain typically used for dealing with the OCR
model [Taskar et al., 2003]. It is a good compromise between (i) the multiclass
approach of Fig. 1.3 that becomes quickly intractable due to the huge set on which
decoding is done and (ii) the independent model which does the predictions inde-
pendently for each characters of the sequence, corresponding removing the hori-
zontal arrows in that figure.

namely to consider the problem as a multiclass classification one with D classes,
where D is the size of the vocabulary considered. This leads to a computationally
intractable multiclass classification problem consisting in learning one prediction
function for each of the possible word in the dictionnary. This model would corre-
spond to the model depicted in Fig. 1.3.

Beyond the independent and the purely multiclass approches, properly mod-
eling the OCR problem requires to take the sequential structure of the data into
account. Practitionners generally consider an output model that is depicted in
Fig. 1.2.
In the following sections, using this real life example we see how structure can be
exploited to derive efficient machine learning techniques to address this kind of
problems.

1.3.1 Notion of structured output space

In this section, we describe the structured prediction framework. For simplicity
all variables x and parameters w are supposed to be vectorial. Given an input
xi ∈ Rp, we recall that we define the corresponding structured output space as a
pair (Y(xi), `xi). The output set Y(xi) is finite and `xi : Y(xi)× Y(xi) → R is the
corresponding loss function. We recall that this output set depends a priori on the
input. For instance, for OCR, the space of possible output words is not the same
if a word has 4 characters or 11. Following the convention we have established in
previous sections, we can however consider the setY as the union of all theY(xi) 13

13. To avoid any problem and keep |Y| finite, we do not consider unbounded sequences of char-
acters assume that we have a prior over the maximal length of elements in Y , for instance the size
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Figure 1.3: Example of the output model behind a purely multiclass approach to
the OCR problem.

and extend the losses `xi in a single loss ` over Y as in Eq. (1.1). In what follows,
we consider that the set Y does not depend on the input x anymore since, using
the same trick as the one we used for the loss, we can always reduce a structured
prediction problem to this case.

Prediction and discriminative functions. Following the standard framework of
structured prediction [Tsochantaridis et al., 2005, Taskar et al., 2003], we extend the
notions of prediction and discriminative functions used implicitly or explicitly in
the binary case. We consider a structured output set Y and a loss ` on it. Given
input data x ∈ X ⊂ Rp, we consider the task of building a prediction function

f : X → Y .

Following Tsochantaridis et al. [2005], Taskar et al. [2003], we assume that this
function f is of the form:

f (x) ∈ argmax
y∈Y

F(x, y). (1.11)

The function F is usually called the discriminative function. Intuitively, this func-
tion scores all possible outputs in Y given a certain x. In our OCR example, for
a sequence of T characters, we can see this function F as scoring all the possible
T-uples of characters. In most applications, F is assumed to be linearly param-
eterized by some w ∈ Rd and some joint feature map φ : Rp × Y → Rd. This
corresponds to modelizing the discriminative function as:

F(x, y; w) = 〈w, φ(x, y)〉. (1.12)

of the longest word of the dictionnary.
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Recall that the goal of the learning procedure is to learn w.

Decoding problem. For a given input x, and a given parameter w, the decoding
is the task of evaluating the function f of Eq. (1.11) 14. The name might be sur-
prising at first sight but can be justified for at least one historical reason. One of
the first approaches to structured prediction, the max-margin-Markov networks
of Taskar et al. [2003], were considering a probabilistic model for the joint feature
map φ(x, y). This was decomposable over some graph with pairwise interactions
(for instance the chain of letters depicted in Fig. 1.2). Mathematically, this means
that, assuming an element of the set Y can be decomposed into T variables, namely
y = (y1, . . . , yT), the function φ has some decomposition:

∀x, y, φ(x, y) =
T

∑
t=1

T

∑
t1=1

φt,t1(x, yt, yt1) (1.13)

Thus, the task of finding the argmax of F consists in finding the maximum of
some potential function that can be decomposed over a graph. In the graphical
models literature, this is referred to as decoding [Wainwright and Jordan, 2008]. In-
deed, it can be interpreted in a communication setting as the decoding of the some
information that is sent over a communication channel [Shannon, 1948]. Note that
in the literature, some people use the term of “inference” for the operation we call
decoding. In this manuscript we reserve this name for another operation that will
be described later.

1.3.2 Two examples of structured outputs sets

Let us now look at two important examples of structured output spaces, and
the corresponding joint feature maps.

Binary classification as degenerate case of the structured setting. Note that the
previous derivation extends the one done in Sec. 1.2. Indeed, binary classification
falls into the structured setting. It suffices to consider a feature function φ(x, y) = x
if y = 1, −x if y = −1.

Feature map and the OCR example. A natural way to deal with the OCR exam-
ple [Taskar et al., 2003] is to represent the outputs on a chain. A word of length T
is represented by T variables yt, each of these corresponding to one character. For
a given input word x, the joint feature map is supposed to be organized on a chain
built over the variables yt

15. In other words, there is a decomposition of the joint

14. This corresponds to the evaluation of the argmax over Y of Eq. (1.11).
15. Such a chain is depicted in Fig. 1.2.
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feature map φ(x, y) of the following form:

∀y ∈ Y , φ(x, y) =
T−1

∑
t=1

φt(x, yt, yt+1). (1.14)

Performing the decoding task, for a given parameter of the discriminative func-
tion is the decoding of a chain graphical model that can be done using the standard
Viterbi algorithm [Viterbi, 1967]. Note that, if we had chosen a more complex struc-
ture for the graph over which the joint feature map φ decomposes, such as the one
depicted in Fig. 1.3, the decoding in the underlying graphical model would have
been more difficult.

Learning w. Like for binary classification, there are two main ways to learn such
a parameter w given N pairs of training examples (xi, yi). The first one is to build
a model for the probabilities p(y|x) using the maximum likelihood principle. The
second one requires to build a loss function over the structured set Y . Note that,
contrary to the binary classification setting, there is a lot of freedom to design such
a loss.

The first method we present is a generalization of the logistic regression model
and does not require any loss to compare elements of Y . That is why we postpone
the design of a suitable loss function to further sections.

1.3.3 The conditional random field (CRF) model

The conditional random field model [Lafferty et al., 2001] is one of the first
techniques to address structured prediction that have been proposed. This is an
extension of the logistic regression model in the case where the output y is not in
a set of classes but belongs to some structured set. Indeed, in the case of binary
outputs, this model reduces exactly to logistic regression.

CRF model. Like logistic regression, the CRF model aims at building a condi-
tional model of the output p(y|x) of the following form:

p(y|x) ∝ exp
(
〈w, φ(x, y)〉

)
, (1.15)

where φ is a joint feature map of inputs and outputs. The computational tractabil-
ity of the CRF model heavily depends upon the form of this function φ. More
precisely, the crucial point is to define on which kind of graph the joint feature
map can be decomposed. For a better understanding of this question, we invite
the reader to have a look at Fig. 1.2 and Fig. 1.3. They both depicts an OCR task,
but make two different models concerning the graphical representation of the joint
feature functions. The second figure depicts the output model that casts the predic-
tion task as a single multiclass problem over a pretty big output space whereas the
first one depicts the case where outputs can be decomposed over a chain. Namely
in the latter case, we consider the building of a conditional probability model based
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on the joint feature map of the same form as in Eq. (1.14). In the rest of this section,
we present the CRF model in the case where outputs y have naturally a sequen-
tial structure. Namely, we assume that elements y of Y can be represented as a
T-uple of individual variables (y1 . . . yT). In the specific case where the structure
is a chain, the conditional probabilities are of the following form:

p(y|x; w) ∝ exp
(T−1

∑
t=1

〈
wt, φt(x, yt, yt+1)

〉)
. (1.16)

Link with the discriminative function. Like in the binary case, once w has been
learned, one gets a classifier f : X → Y :

∀x ∈ X , f (x) ∈ argmax
y∈Y

p(y|x).

This is equivalent 16 to:

∀x ∈ X , f (x) ∈ argmax
y∈Y

〈
w, φ(x, y)

〉
. (1.17)

This classifier is exactly of the form of the one associated to Eq. (1.12).
From an algorithmic point of view, there are two important steps when we deal

with a conditional random field: the training and the decoding. Given annotated
training pairs (xi, yi), training aims at learning the best parameters wk of the model.
Decoding consists, once the parameter w is learned, to associate to a novel input x
the corresponding output y ∈ Y .

Decoding in a CRF. Decoding is the task of evaluating, for some given x, f (x)
defined by Eq. (1.17). Due to the remark made in the previous paragraph, this no-
tion corresponds to the decoding notion that we have seen in the previous section
for general classifiers built on discriminative functions.
Computationally, the decoding in a CRF model is as hard as the decoding in the
graphical model associated to the output. In the specific case of a chain CRF, the
decoding can be thus performed using the Viterbi algorithm [Viterbi, 1967].

Training of a CRF. Imagine that we are given N training pairs (xi, yi), the train-
ing of a CRF consists in minimizing the training negative log-likelihood of the
graphical model of Eq. (1.15), that is to minimize over the parameter w:

1
n

N

∑
i=1
− log

(
p(y|xi; w)

)
+ λΩ(w), (1.18)

where Ω is typically a convex regularizer (generally the L2 squared norm) to avoid
overfitting.

16. We take the log, which is an increasing function, of the previous equation.
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This optimization program is convex and is typically solved using quasi-Newton
algorithms [Wallach, 2002, Sha and Pereira, 2003] or stochastic gradient methods [Vish-
wanathan et al., 2006]. The state-of-the-art technique [Schmidt et al., 2015] opti-
mizes this objective using a slightly modified version of stochastic average gradi-
ent [Roux et al., 2012].

Let us mention some fields in which conditional random fields have received
attention: (i) computer vision [Kumar and Hebert, 2006, Nowozin and Lampert,
2011] where they can be used in various settings, especially for image segmenta-
tion [Kolesnikov et al., 2014] and (ii) natural language processing where they can
be used for topic modelling [Zhu and Xing, 2010], semantic role labelling [Cohn
and Blunsom, 2005], named-entity recognition [Settles, 2004] or shallow parsing [Sha
and Pereira, 2003].

The CRF model however does not take into account at any moment the struc-
ture of the space, that can be given by a loss. Let us now move to another approach
for building a classifier that takes explicitly the loss ` over Y into account.

1.4 The standard structured SVM framework

Following the same ideas that have led us to the formulation of the regularized
loss minimization problem of Eq. (1.8), we can derive an analogous optimization
objective for the structured prediction case.

1.4.1 Empirical loss minimization.

We consider the learning of a parameter w for the discriminative function F
involved in Eq. (1.11) by minimizing the following empirical loss:

1
N

N

∑
i=1

`
(
yi, f (xi; w)

)
+

λ

2
‖w‖2

2. (1.19)

This is equivalent to minimizing:

1
N

N

∑
i=1

`
(
yi, argmax

y∈Y
F(xi, y; w)

)
+

λ

2
‖w‖2

2.

This minimization problem generalizes the one of Eq. (1.7).

1.4.2 Convexification of the empirical loss minimization

In the binary classification setting, when Y = {−1, 1} and the loss is the 0− 1
loss, the minimization of Eq. (1.19) for w ∈ Rp is NP-hard [Zhang, 2004b]. So, this
problem is also hard for general sets Y and losses ` and we have to find a tractable
approximation of it.
Following the same approach than for binary classification, we replace the non-
convex function w → `(y, f (x; w)) by a convex surrogate C. The most popular
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of these in the structured setting is the structured hinge loss. It has received a
lot of interest [Taskar et al., 2003, Tsochantaridis et al., 2005, Yu and Joachims,
2009, Nowozin and Lampert, 2011] and extends the binary hinge loss presented
in Sec. 1.2.7. The idea is to extend the concept of margin of Sec. 1.2. Given a train-
ing pair (xi, yi) and an output y ∈ Y , we define the margin between y and yi as the
difference of the two scores of the discriminative function, that is:

m(xi, yi, y; w) =
〈
w, φ(xi, yi)− φ(xi, y)

〉
.

The intuition behind structured SVM 17 is to build a convex surrogate that general-
izes the binary hinge loss. Two approaches have been proposed by Tsochantaridis
et al. [2005] to generalize the Hinge loss:

– the slack rescaling approach that replaces `(yi, f (xi; w)) by:

max
y∈Y

{
`(yi, y)

(
1−

〈
w, φ(xi, yi)− φ(xi, y)

〉)}
,

– the margin rescaling approach that replaces `(yi, f (xi; w)) by:

max
y∈Y

{
`(yi, y)−

〈
w, φ(xi, yi)− φ(xi, y)

〉}
.

Both of these approaches reduce to the binary SVM when the output set is made
of two outputs 18. We focus more on the second approach since in this thesis, due
to computational issues, this is the only one we can consider.

1.4.3 Loss-augmented decoding

From now on, we consider that we replace the non convex loss ` by its margin
rescaling surrogate. We want to minimize with respect to w ∈ Rp: 19

HN(w) =
1
N

N

∑
i=1

max
y∈Y

{
`(yi, y)−

〈
w, φ(xi, yi)− φ(xi, y)

〉}
+

λ

2
‖w‖2

2. (1.20)

To be able to minimize this function we need at least, to be able to evaluate
it for any w ∈ Rp. Contrary to the binary SVM, the maximization in the sum of
Eq. (1.20) is not necessarily easy to solve. It depends on the structure of φ (like the
decoding) but also on the loss ` over Y . The task of maximizing with respect to
y ∈ Y ,

`(yi, y)− 〈w, φ(xi, yi)− φ(xi, y)
〉
,

17. Or structural SVM.
18. If with Y = {−1,+1}, and φ(x, y) = y x

2 , we recover exactly the hinge loss max(0, 1− y〈w, x〉)
for both margin rescaling and slack rescaling approaches.

19. Note that to have the formulation of Eq. (1.20) well defined, we need to extend the feature
map φ(x, y) in a similar way we extended the loss from Y(x) to Y in Eq. (1.1), by defining φ(x, y) =
−∞ if y /∈ Y(x) Moreover we need to take the convention +∞−∞ = 0.



34 CHAPTER 1. INTRODUCTION AND RELATED WORK

is called the loss-augmented decoding.
Let us see in the case of OCR how we can build a loss that leads to a tractable

loss-augmented decoding by reducing it to a simple decoding.

Loss over the set of outputs: the example of OCR. Now, let us build a loss func-
tion over the set Y for the OCR task. The most standard loss in that context is the
natural loss from information theory: the Hamming loss [Hamming, 1950]. Let y
and y′ be two possible outputs for OCR. The Hamming loss counts the number
of characters that differ between y and y′. Formally, this is the sum of individ-
ual errors done over each character. For two output words y = (y1, . . . yT) and
y′ = (y′1, . . . y′T) of the same length T, the Hamming loss is defined by:

`(y, y′) =
T

∑
t=1

1yt 6=y′t
. (1.21)

Recall that this loss is not used by the CRF model we have seen in Sec. 1.3.3.
It is a sum over each node of the graph of Fig. 1.2. Therefore we can write the

loss-augmented decoding for a pair of training example (xi, yi), using the same
notations as in Eq. (1.13) as the maximization over Y of:

T−1

∑
t=1

〈
wt, φt(xi, yt, yt+1)− φt(xi, yi

t, yi
t+1)

〉
+

T

∑
t=1

1yt 6=y′t
. (1.22)

The maximization of this quantity can be done by a decoding in the graphical
model of Fig. 1.2 where pairwise potentials are

〈
wt, φt(xi, yt, yt+1)−φt(xi, yi

t, yi
t+1)

〉
and unary ones 1yt 6=y′t

. Therefore the loss-augmented decoding can be performed
through a decoding step over a graph whose potentials are slightly modified as
noted by Taskar et al. [2003].

1.4.4 Optimization of the structured SVM

For background material about optimization and further references we refer
the reader to Sec. 1.6. Our goal in this section is to explain how it is possible to
optimize the structured SVM minimization problem. We consider the algorithmic
problem of reaching the minimum of the function of Eq. (1.20) for w ∈ Rp.

Plain and stochastic subgradient techniques. The first idea might be to com-
pute a subgradient of the function to minimize (the structured hinge loss is not
differentiable). Then we make a step using a stepsize decaying in O(1/k) (if k
is the iteration counter) in the opposite of the direction of the subgradient. This
procedure is known to converge to the optimum of the function. For SVM this
algorithm is often called Pegasos [Shalev-Shwartz et al., 2011]. More details about
convergence are in Sec. 1.6. However, due to the need of carefully tuning the step-
size, these techniques are empirically slow compared for instance to cutting plane
or Frank-Wolfe methods.
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Cutting plane techniques. One of the most popular procedures to optimize struc-
tured SVM is the one proposed by Tsochantaridis et al. [2005] and Joachims et al.
[2009]. This technique is known as the “cutting-plane method” and is currently
implemented in the popular package SVMstruct. The idea is to minimize at each
iteration, a more and more accurate surrogate to the objective function.
Iteratively, given the objective of minimizing the function HN of Eq. (1.20), a cut-
ting plane method:

1. finds a subgradient g of the function at the current point wk ∈ Rp,

2. gets an affine lower bound to the objective function by

hk : w→ g>w + H(wk),

item builds a convex lower bound to HN by

Lk = max
j≤k

hj(w),

3. minimizes Lk to get a new point wk+1.

Dual of the structured SVM problem. After having reviewed algorithms that
perform the minimization of the structured SVMs in the primal, let us now derive
a dual problem. We recall that the primal problem of structured SVM is:

minimize
w∈Rp

1
N

N

∑
i=1

max
ȳi∈Y

{
`(ȳi, yi)−

〈
w, φ(xi, yi)− φ(xi, ȳi)

〉}
+

λ

2
‖w‖2

2.

This problem is a convex optimization problem. Let us introduce a parametriza-
tion for the output space. We embed each y ∈ Y on the extreme points of the |Y|
dimensional simplex. Namely, each element y ∈ Y is mapped to a vector of dimen-
sion |Y|with exactly one non-zero entry equal to one. In the rest of this paragraph,
we identify y to its vectorial representation in the corresponding output space of
dimension |Y|. This representation allows us to see also `(ȳi, yi) as a dot product
in the |Y| dimensional space: let us stack all the possible loss `(ȳi, yi) into a single
vector Li. We then have that:

`(ȳi, yi) = 〈ȳi, Li〉.

Similarly, we stack all the possible vectors φ(xi, yi)− φ(xi, ȳi) in a matrix ∆φi of size
p× |Y| whose columns correspond to a φ(xi, yi)− φ(xi, ȳi). Thus the the output
set Y can be identified to extreme points of the |Y| simplex, namely

|Y| = {0, 1}|Y|, 〈ȳi, 1|Y(xi)|〉 = 1.
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Using these notations, we get the following equivalent formulation of the primal
problem:

minimize
w∈Rp

1
N

N

∑
i=1

max
ȳi∈Y

{
〈ȳi, Li〉 − 〈w, ∆φi ȳi〉

}
+

λ

2
‖w‖2

2.

We introduce the vector Z ∈ {0, 1}N|Y| as the vertical concatenation of all the
ȳi. To avoid cumbersome notations, we denote by Z the set where authorized
Z lies 20, L the concatenation of the Li and the matrix ∆φ ∈ RNp×N|Y| the block-
diagonal matrix whose blocks are the ∆φi . All these transformations allow us to
see the structured SVM problem as involving only one training example. With
these notations, the primal can be compactly written as:

minimize
w∈Rp

max
Z∈Z

{ 1
N
〈Z, L〉 − 〈w, ∆φZ〉

}
+

λ

2
‖w‖2

2.

Note that, with respect to Z, the inner loop is the maximization of a linear form
over extremal points of a huge cartesian product of simplices. By the so-called
“fundamental theorem of linear programming”, this is equivalent to:

minimize
w∈Rp

max
Z∈Z

{ 1
N
〈Z, L〉 − 1

N
〈w, ∆φZ〉

}
+

λ

2
‖w‖2

2, (1.23)

where Z is the convex hull of Z . This problem is already in its primal/dual form.
Since we are in a situation where we can use a saddle-point theorem (Prop. 5.5.7
(3) of [Bertsekas, 2015]), we get the dual by switching the maximization and the
minimization. Now let us call ȳi the individual block of variables of Z correspond-
ing to the simplex associated to example i. Setting the gradient with respect to w
to 0 yields to the following relation between primal and dual variables:

w =
1

λN

N

∑
i=1

∆φZ =
1

λN

N

∑
i=1

∆φi yi. (1.24)

And the dual program can be written in the following form:

maximize
(ȳ1,...ȳN)∈Y×...×Y

− 1
2λN2‖

N

∑
i=1

∆φi ȳi‖2
2 +

1
N

N

∑
i=1
〈ȳi, yi〉. (1.25)

We recover the dual of structured SVM in the form it is usually cast [Taskar et al.,
2003, Lacoste-Julien et al., 2013]. However, the way we derived it, using a saddle-
point theorem is different from the usual way that makes use of Lagrange multi-
pliers [Lagrange, 1811].

Now, let us derive some optimization techniques directly from this dual 21.

20. That corresponds in fact the Cartesian products of the N |Y| dimensional simplices.
21. Note that, historically, the first optimization techniques for structured SVMs started from the

saddle-point form of the problem of Eq. (1.23) and makes use the dual extragradient method of
Nesterov [2009]. More details can be found in [Taskar et al., 2006].
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Frank-Wolfe techniques in the dual. The dual program of structured SVMs is
the maximization of a concave quadratic function over a compact set Z . It is thus a
convex problem. However the number of variables involved can be big. It is N|Y|.
This dual seems thus hard to deal with. However, Frank-Wolfe methods [Frank
and Wolfe, 1956, Jaggi, 2013] allows us to cope with this dual thanks to a little
trick. First, let us briefly recall the principle of the algorithm.
Roughly speaking, Frank-Wolfe algorithm minimizes convex differentiable func-
tions over compact and convex sets (that is the case for Z) by iteratively 22:

1. computing a linear approximation to the function using its gradient,
2. minimizing this linear approximation, getting a point zs of the optimization

set, here Z ,
3. doing a convex combination between the current point and zs using some

combination parameter γ.
The key insight allowing us to use Frank-Wolfe technique for the dual problem of
Eq. (1.25) is that performing one Frank-Wolfe step is exactly equivalent to solving
loss-augmented decoding for all the examples as shown by [Lacoste-Julien et al.,
2013]. Indeed, for each example i, we recall that we denote the block of variables in
Z as ȳi. The corresponding entries in the gradient of the objective of the problem
of Eq. (1.25) are:

gi(ȳi) = − 1
λN2

N

∑
j=1

∆φ>j ∆φi ȳj +
1
N

N

∑
i=1

yi, (1.26)

But since we have the primal/dual relation between variables, this can be rewritten
as:

gi(ȳi) = − 1
N

N

∑
j=1

∆φj>w +
1
N

N

∑
i=1

yi. (1.27)

For each block i, a Frank-Wolfe step corresponds to maximizing the linear form
〈y, gi(ȳi)〉 over y belonging in the i-th simplex. Due to the form of Eq. (1.27), this
is exactly a loss-augmented decoding step. More details can be found in Sec. 2 of
[Lacoste-Julien et al., 2013].

Because the optimization set Z is a Cartesian product of simplices, each corre-
sponding to one training example, a natural extension of the Frank-Wolfe method
have been to do the Frank-Wolfe updates in a block-coordinate manner 23 [Lacoste-
Julien et al., 2013]. This has led to state-of-the-art results concerning optimization
of structured SVMs. This is due to the fact that the dual objective of structural
SVM is quadratic. Indeed, when dealing with a quadratic program, Frank-Wolfe
techniques have a major advantage over others like stochastic gradient: there is no
need to adjust any internal parameter of the algorithm. In practice, tuning the pa-
rameters of stochastic gradient techniques requires high-level knowledge and ex-
perience [Bottou, 2012]. Frank-Wolfe techniques in this specific case are parameter-
free.

22. This algorithm is described more in details in Sec. 1.6.
23. That is, the gradient is updated for only one of the simplices corresponding to a block of

variables ȳi at each time.
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1.5 Differences between binary and structured predic-
tion

We have already seen, on the OCR example, that there are several ways to rep-
resent the output space Y for structured prediction, contrary to the case of binary
classification 24. All the representations are not equally relevant. In this section we
describe formally what makes the quality of a representation.

1.5.1 Parametrization of output spaces

In Sec 1.4.2, we have seen that the key ingredient for being able to solve the
structured SVM problem is the ability to efficiently solve the loss-augmented de-
coding. This is a major difference with binary classification where this is an obvi-
ous step. To address this issue, we need to build a good parametrization (or embed-
ding) of the output set, i.e., to find an injective mapping: P : Y → Rp. We illustrate
this section using the running OCR example.

Simplest embedding. In the previous section, to derive the dual of the structured
SVM problem, we built such a mapping. To this end, we defined the injection P
which associates to an element y ∈ Y , a corner of the |Y|-dimensional simplex.
This is an indicator vector which has |Y| entries, all component equals to 0 except
one which is equal to 1.
However, for most applications, this parametrization is not informative. For the
OCR example this embedding would correspond to embed each of the possible
sequence of T characters in a KT dimensional space, where K is the number of
characters in the considered alphabet. This approach to the OCR problem corre-
sponds to the one that is depicted in Fig. 1.3.

Properties of a good embedding. Embeddings should allow us to formulate the
loss-augmented decoding in a computationally tractable way. Namely, this means
that the loss can be expressed in a natural way in this space. In general the embed-
ding presented in the previous paragraph does not let us formulate the loss in a
simple and tractable manner.

Natural embedding for the OCR example. For the OCR example, instead of con-
sidering a KT-dimensional space, a natural way to encode Y is to consider the TK
dimensional concatenation of the individual indicator vectors for each character.
In practice this is what is done [Taskar et al., 2003]. As we have seen before, and as
depicted by Fig. 1.2, we can represent each character yt in the sequence, by its indi-
cator vector. The cartesian product of such vectors gives a natural representation
for any sequence of T characters. From now on, we consider that yt is the indicator

24. For binary classification, we always have Y equivalent to take Y = {−1, 1}.
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vector of character yt and y refers to the concatenation of these vectors. Using this
embedding, the Hamming loss can be expressed in a simple way:

`(y, y′) =
T

∑
t=1

1yt 6=y′t
= ‖y− y′‖2

2. (1.28)

This allows us to express the OCR problem in a tractable way. In particular, as
seen in Sec. 1.4.3 the loss-augmented decoding [Taskar et al., 2003] can be naturally
expressed in that space.

1.5.2 Notion of weak supervision

All that we have presented so far, sticking to the previous approaches to struc-
tured prediction [Tsochantaridis et al., 2005, Taskar et al., 2003], is based upon the
assumption of full supervision. We assume that we are provided training pairs of
input x together with a corresponding exact output y. However, in structured pre-
diction, it is possible to have data that are weakly-supervised, to have only access
to partial information about the actual label. For instance, in the case of OCR, we
can imagine to only know a few characters of the sequence. We can also imagine
to know the order of characters occuring in the sequence, for instance that a “r”
comes after a “t” but that there might be other characters in between. This infor-
mation, however not complete, should be taken into account during learning. In
this thesis, to handle weak supervision, we propose to see this kind of partial in-
formation as an uncertainty over the label. The training instances are not pairs of
input/outputs but pairs (xi,Y i) of an input together with the subset Y i of Y which
is the set of all possible outputs that satisfy the conditions given by the available
partial information. For instance, for OCR, if we know that a sequence starts by the
character “a”, Y i is the subset of all words starting by this character. Obviously this
cannot happen for binary classification since |Y| = 2: either we know yi exactly,
either we do not it at all.

Empirical loss minimization In this setting, it is natural to consider a variant
of the empirical loss minimization of Eq. (1.19), that is to consider the following
problem:

minimize
w∈Rp

min
yi∈Y i

1
N

N

∑
i=1

`
(
yi, f (x; w)

)
. (1.29)

If we introduce the set of all subset of the finite set Y and denote it by 2Y ,
this is equivalent to considering the loss ˜̀ : Y × 2Y → R defined by ˜̀(y,Y i) =
infyi∈Y i `(yi, y′) and to look for minimizing the empirical loss using this loss. The
intuition is to jointly find a decision rule together with the most likely label. Such
a weakly-supervised approach is depicted in Fig. 1.4.
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Fully-supervised

Weakly-supervised

Uncertainty about the label

Figure 1.4: A cartoon figure depicting the idea of weak supervision and the dif-
ference with full supervision. In a structured prediction task, it is possible to have
partial information about a label. In the bottom figure this is represented through
a circle corresponding to the subset Yi. In a weakly supervised setting, the goal
is to minimize the loss between the prediction f (xi) and the subset of labels cor-
responding to the weak supervision. The point realizing the infimum between a
prediction and the corresponding set Yi is the rounded solution.
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1.6 Tools from convex optimization

Most of the machine learning algorithms derived in this manuscript involve the
minimization of some function. In this section, we consider the minimization of a
generic real-valued function defined on Rd, namely: f : Rd → R. All the functions
used in this section are convex.

1.6.1 Elements of convex analysis

Convex set. A subset S of Rd is said convex if:

∀x, y ∈ S, ∀t ∈ [0, 1], (1− t)x + ty ∈ S. (1.30)

Convex functions. Intuitively, a convex function is a function whose graph is,
for each pair of points (xi, xj) ∈ Rp ×Rp, under the chord [ f (xi), f (xj)]. More for-
mally, a convex function is a function f defined on a convex set C ⊂ Rp satisfying:

∀x, y ∈ C, ∀α ∈ [0, 1], f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y).

The function is strictly convex if the following property holds:

∀x, y ∈ C, ∀α ∈]0, 1[, f (αx + (1− α)y) < α f (x) + (1− α) f (y).

In all this section, we assume that the set C is the whole space Rd. This as-
sumption is not restrictive, because if we introduce the convex indicator function
IC which is equal to 0 over C and +∞ on the rest of the space, we can extend the
function f to a convex function f + IC over the whole space [Boyd and Vanden-
berghe, 2004]. This extended function whose values are on the extended real line
R has the same minimum than the original one.
Note also that a function f is said to be concave if − f is convex.

Convex functions are common in mathematics. For instance, in this thesis we
use the functions defined by ∀x ∈ R, f (x) = (x − 1)2 or f (x) = max(0, 1 − x)
which are convex. These two functions are depicted in Fig. 1.1.

Subgradient, gradient and Hessian. We say that g is in the subgradient to the
convex function f at x, if the following holds:

∀y ∈ Rd, f (y)− f (x) ≥ 〈g, y− x〉.

The subgradient is a set generally denoted by ∂ f (x). One of the key properties of
convex functions is that they always admit a non-empty subgradient set [Rockafel-
lar, 1970].

Assume that f : Rd → R is a continuously differentiable function. We denote
by ∇ f (x) the d dimensional column vector whose i-th component is the partial
derivative ∂ f (x)

∂xi
of f at x along the i-th vector of the canonical basis. This vector is

called the gradient of f at x. The gradient of f at x can be thought as the steepest
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ascent direction of f around x. Note that if a convex function f is differentiable
at x, ∂ f (x) = {∇ f (x)}.

For a twice differentiable function f , we call the matrix Hx whose (i, j)-th com-

ponent is equal to ∂2 f (x)
∂xi∂xj

the Hessian of f at x. If f is twice continuously differen-
tiable, this matrix is symmetric.

Note that for a function f twice continuously differentiable at x, we have the
following Taylor expansion around any point x:

f (y) = f (x) +∇ f (x)>(y− x) + (y− x)>Hx(y− x) + o(‖y‖2
2).

Note also that in that case, a function is convex if, and only if, Hx is positive
semidefinite for all x in Rd.

Minimum of convex functions. The fundamental fact about convex function [Rock-
afellar, 1970, Boyd and Vandenberghe, 2004, Bertsekas, 1999], is that any local min-
imum is a global one. This property is crucial for practitioners since any minimiza-
tion algorithm will always converge to a global minimizer of the function.

In terms of subgradients, x is a minimum of a convex function f if and only if
0 ∈ ∂ f (x).

Fenchel conjugate. For a function f , we can define its Fenchel conjugate f ∗ [Fenchel,
1949], a.k.a its Legendre transform, by:

f ∗(x) = sup
w∈Rd

〈w, x〉 − f (w). (1.31)

Note that f ∗ is always a convex function, as a supremum of affine functions. In-
tuitively, this corresponds to encoding a function through its tangent hyperplanes.
Let us consider the simplest case: a one-dimensional convex function f , differ-
entiable, whose derivative function f ′ is bijective from R to R. In this case, the
Fenchel conjugate of f at x corresponds graphically to the intercept of the line tan-
gent to f with slope x (bijectivity of f ′ guarantees existence of such a point where
the derivative of f is x). This is depicted in Fig. 1.5. More formally, the Fenchel con-
jugate is found over one fundamental idea: a convex function is a function whose
epigraph 25 is convex. The convex conjugate encodes this convex set in terms of its
supporting hyperplanes.
Under mild conditions 26, that are always met in that manuscript, the biconjugate
of a convex function is the function itself.

25. See Fig. 1.5 for an intuition about epigraph. This is the zone in blue above the graph of a
function

26. That is, if the function f is proper and closed. A convex function is proper if it is never equals
to −∞ and if it is finite for at least one x. See e.g, Th. 12.2 of [Rockafellar, 1970]. A convex function
is closed if its epigraph is closed or equivalentally if the level sets Lα =

{
x ∈ Rd, f (x) ≤ α

}
are

closed for every α ∈ R.
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Figure 1.5: Representation of a convex function from R to R. The convex conjugate
value f ∗(x) can be read as the intercept of the tangent to f whose slope is x. The
blue zone corresponds to the “epigraph” of f that is convex for convex functions.

Convex problems. A problem is convex if it is the minimization of a convex func-
tion f over a convex set C ∈ Rd:

minimize
x∈C

f (x). (1.32)

The function to minimize is generally referred to the objective function of the op-
timization problem. As mentioned earlier, this can always be extended over the
whole space Rd by introducing the convex indicator of C.

The formulation of Eq. (1.32) means that we aim at finding x ∈ C such that the
value of f is minimal. The function f is called the objective function of the minimiza-
tion problem. We have to stress the difference between the problem of Eq. (1.32)
and the expression

min
x∈C

f (x),

which denotes the minimal value of f . If the function f to minimize is an affine
function and if the optimization domain C is a polytope, then the optimization
problem is referred to as a linear program (LP). When f is quadratic, this is a quadratic
program.
Note that we also call a problem convex if it is the maximization of a concave func-
tion over a convex set C.

Optimization problems in machine learning. Recall that machine learning prob-
lems generally come from the convexification of the empirical loss minimization
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as seen in Sec. 1.4.2. Thus the objective function f has some structure. In this
manuscript, we always consider the case where f is the sum of a data-fitting term
g and a convex regularizer Ω. Namely, the generic form of minimization problems
we consider is:

minimize
x∈Rd

g(x) + Ω(x). (1.33)

Note that the regularizer Ω is (almost) always a convex increasing function of the
norm ‖ · ‖2 in our work.

Dual of a convex problem. A central notion in convex optimization is duality.
The idea is to find a non-trivial and informative lower bound to the minimal value
of the problem that we are solving. We want this lower bound to be as tight as
possible. The problem of Eq. (1.33) is referred to as the primal problem. A corre-
sponding dual problem is a maximization problem of a concave function whose
values are always lower or equal to the ones of the primal. There are two ma-
jor ways to find a dual problem to a primal one: using Lagrangian duality [Boyd
and Vandenberghe, 2004] 27 or using Fenchel conjugate [Rockafellar, 1970]. We de-
scribe the latter approach since it is specifically well-suited in the case of problems
in composite form like in Eq. (1.33).

The dual problem of Eq. (1.33) is:

maximize
y∈Rd

−g∗(y)−Ω∗(y), (1.34)

where Ω∗ and g∗ are the Fenchel conjugate of Ω and g respectively. The dual
objective function is thus: −g∗−Ω∗. It is easy to see that for all pairs (x, y) ∈ Rd×
Rd, we have the following relation (that is often called the weak duality relation):

− g∗(y)−Ω∗(y) ≤ g(x) + Ω(x). (1.35)

This holds for any pair (x, y), thus we have

∀x, y ∈ Rd − g∗(y)−Ω∗(y) ≤ min
z∈Rd

{
g(z) + Ω(z)

}
≤ g(x) + Ω(x).

Thus for all pairs of primal/dual variables (x, y), we have that

g(x) + Ω(x) + g∗(y) + Ω∗(y) ≥ g(x) + Ω(x)−min
z∈Rd

{
g(z) + Ω(z)

}
≥ 0.

The quantity g(x) + Ω(x) + g∗(y) + Ω∗(y) is called the duality gap associated to
the primal/dual pair (x, y). It is always a majorizer to the gap between the value
of the function g + Ω at x and the value of its minimum. For convex functions, the
duality gap satisfies also an other appealing property. Indeed, if Ω is a proper con-

27. This duality comes from the techniques of Lagrange multiplier that have been introduced to
deal originally with mechanical problems and can be traced back to Lagrange [1811].
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vex function 28, the dual satisfies the strong Fenchel duality theorem [Rockafellar,
1970], that is, the reverse inequality:

min
x∈Rd

{
g(x) + Ω(x)

}
= max

y

{
−g∗(y)−Ω∗(y)

}
. (1.36)

This is much harder to prove than the inequality (1.35) and holds only in some
cases 29 whereas weak duality is always true for any problem. This means that the
dual optimal value and the primal one are the same. That is, if the primal has a
minimizer x∗ and the dual a maximizer y∗, then the duality gap associated to these
is equal to 0. That way, if we use a minimization algorithm to solve Eq. (1.33) that
produces a sequence of iterates x1, . . . , xk, and that in parallel we run the same
algorithm to maximize the dual and get a sequence y1, . . . , yk, the duality gaps
associated to the pair (xi, yi) provides us a good way to monitor the convergence
of the algorithm since the gap between the optimal primal and dual value is 0.

1.6.2 Algorithmic approaches

We now focus on the algorithmic way to minimize convex functions. This prob-
lem has been shown to be solvable in polynomial time [Nesterov et al., 1994] and
many polynomial time algorithms have been designed. Among these we can dis-
tinguish several trends:

– second-order methods that make use of the Hessian, like Newton-based algo-
rithms [Boyd and Vandenberghe, 2004, Nesterov, 2004]. They are well-suited
for problems in small dimension (d small),

– first-order methods that only makes use of the gradient or of subgradients
that scale to large d,

– zero-th order methods that only makes use of function values (see chapter 9
of [Nemirovskii]) and that a priori can scale to huge d.

Machine learning tasks involve large-dimensional parameters. Algorithms need
to be memory efficient and computationally cheap. For instance, we cannot afford
to compute the Hessian of our objective function. This prevents us from using
Newton-like or interior point techniques. We thus focus on the first-order methods
that only make use of gradient or subgradient of the function to minimize.

Batch first-order techniques. first-order techniques only make use of the gradi-
ent of the function to optimize. A gradient algorithm [Cauchy, 1847] is generally
of the form of Alg. 1. The idea is, at each iteration, to do a step from the current
point in the opposite of the direction of the gradient (which is the steepest descent
direction). The length of this step, that is called the stepsize, has to be set carefully.
We stop the descent as soon as we have completed some terminating condition E.
This can be, for instance, a maximum number of iterations.

28. This is always the case in the problems we consider.
29. That include most convex problems in general and all the one we consider in this manuscript

in particular.
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Algorithm 1 Generic gradient algorithm to minimize f (x)

Input: x0 ∈ Rd, ∀t ∈N∗, stepsize αt, a terminating condition E
t = 0
repeat

xt+1 = xt − αt∇ f (xt)
t = t + 1

until E = true
Output: a minimizer x∗

In the case where the function is not differentiable, we can replace the gradi-
ent by a subgradient of the function f . In that case, we speak of a subgradient
technique.

Standard stochastic first-order techniques. Stochastic optimization techniques
are particularly well-suited for minimizing functions that are finite sums [Robbins
and Monro, 1951, Bottou, 1998], and have thus received a lot of interest in the
machine learning literature. They tackle an optimization problem of the form:

minimize
x∈Rd

f (x) =
1
N

N

∑
i=1

fi(x).

They rely on the very simple idea of replacing the full gradient of f by an approx-
imation given by the gradient of one of the fi. If the sampling of the fi is uniform,
the gradient of fi yields to an unbiased estimate of the actual gradient of f .
In machine learning because of the very nature of the empirical loss minimization
problem of Eq. (1.19), most of the optimization problems we meet are in the form of
finite sums. To go from a batch method like the one of Alg. 1 to a stochastic version,
one has just to replace by the gradient of one of the fi taken uniformly at random.
These techniques are widely used in practice due to their scalability [Bousquet and
Bottou, 2008].

Projected version of gradient techniques. All the previous derivations assume
that the optimization is conducted over the whole space Rd (that is we are in the
unconstrained setup) and that the gradient could be computed for any point in
Rd. However, it is often that the function f is properly defined only over a convex
subset C ⊂ Rd (the function might have been extended over the whole space but
f takes finite values only on the subset C). The most natural way to handle this
problem is to add to Alg. 1, a projection step. This leads to Alg. 2. The projection
step is typically a minimization problem of the form:

minimize
x∈C

‖xt+1 − x‖2
2. (1.37)

This optimization problem is quadratic and might be hard to solve: it is very likely
that the projection step is as expensive as the original optimization program. In
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Algorithm 2 Generic projected gradient algorithm to minimize f (x) over a com-
pact domain C

Input: x0 ∈ C, ∀t ∈N∗, stepsize αt, a terminating condition E
t = 0
repeat

xt+1 = xt − αt∇ f (xt)
Project back onto C and set xt+1 to be this projection
t = t + 1

until E = true
Output: a minimizer x∗

Algorithm 3 Generic Frank-Wolfe algorithm to minimize f (x) over a convex and
compact domain C

Input: x0 ∈ C, ∀t ∈ N∗, convex combination parameters γt , a terminating con-
dition E
t = 0
repeat

Compute gradient of f at xt, ∇ f (xt)
Compute xs ∈ argminx∈C

〈
∇ f (xt), x

〉
.

Set xt+1 = (1− γt)xt + γtxs
t = t + 1

until E = true

such situations, it might be possible that we can only afford to minimize linear
forms over C (we assume C to be convex and compact for simplicity). Such a linear
minimization can be used instead of the projection step. This is the idea behind the
Frank-Wolfe algorithm, also called the conditional gradient algorithm.

The Frank-Wolfe algorithm. The Frank-Wolfe [Frank and Wolfe, 1956, Jaggi, 2013]
algorithm is a first-order method to minimize convex objectives over compact sets.
The idea is to iteratively approximate the function f by its linear approximation at
the current point x. Then we minimize this linear approximation over the compact
set, yielding to some point xs. Using a convex combination parameter γk (set for
instance using the universal step-size γk = 2

k+2 where k is the iteration counter),
this algorithm converges to a minimum of the convex function. Pseudo code is
provided in Alg. 3. For the simplicity of notations, we consider that the function to
optimize is differentiable.

1.6.3 Some convergence results for standard first-order techniques

In this section, we mention some of the speeds of standard first-order optimiza-
tion algorithms. Let us fix the vocabulary.
Let A be a generic iterative algorithm for solving Eq. (1.32). This algorithm pro-
duces a sequence of iterates (xt)t∈N. We define the accuracy at time t as the differ-
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ence between f (xt) and the minimal value f ∗ of f . The speed can be given in two
ways: (i) given a target accuracy ε, saying that the convergence is in O(g(ε)) means
that we need O(g(ε) iterations of the algorithm to get the accuracy ε, (ii) given a
fixed number of iterations k, saying that convergence is O(g(k)) means that after k
iteration, accuracy is of order O(g(k)). The convergence rates we give here are of
the second form. Generally, a rate is said to be slow if it is slower than O(1

k ) and
fast if it is above.

Lipschitz continuity, smoothness and strong convexity. For the analysis of con-
vex optimization methods, two standard different assumptions have a drastic in-
fluence over the convergence results:

1. the first one is the smoothness (or Lipschitz gradient 30) assumption, namely if
f is differentiable at every point, f is β-smooth if and only if,

∃β > 0, ∀x, y ∈ Rd, ‖∇ f (x)−∇ f (y)‖2 ≤ β‖x− y‖2.

For a twice differentiable function, this corresponds to having a uniform up-
per bound over the eigenvalues of the Hessian,

2. the second one is the strongly convex assumption. We say that f is α-strongly
convex if and only if

∃α > 0, ∀x, y ∈ Rp, ‖ f (x)− f (y)‖2 ≥ α‖x− y‖.

For a twice differentiable function, this corresponds to having a uniform
lower bound over the eigenvalues of the Hessian.

Convergence rates of convex optimization techniques. We recall in Table 1.1
some of the major convergence results concerning first-order batch optimization
techniques for the minimization problem (1.32). Stochastic rates are in Table 1.2.
More precise results can be found in the relevant litterature [Bertsekas, 1999, Bubeck,
2014].

We recall that the convergence rates in Tables 1.2 and 1.1 correspond to the
order of magnitude of the error at iteration k during an optimization procedure.
For instance and for a batch method, a convergence rate in O(1/k) means that after
k iterations, the difference f (xk)− f ∗ is of order O(1/k). For a stochastic method,
a O(1/k) convergence rate means that after k iterations, the expected difference
E
[

f (xk)− f ∗
]
.

It is interesting to note that the smoothness does not help in the stochastic case.
Fast rates for smooth functions do not transfer from the batch to the stochastic
case. This problem has recently received a lot of attention. Several algorithms

30. We recall that a function f is smooth if there exists a constant L > 0 such that,

∀x, y ∈ Rd, ‖ f (x)− f (y)‖2 ≤ L‖x− y‖2

.
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Assumptions Method Convergence rate

convex subgradient descent O( 1√
k
)

convex projected subgradient O( 1√
k
)

smooth subgradient descent O(1
k )

strongly convex subgradient descent O(1
k )

strongly convex projected subgradient O(1
k )

differentiable gradient descent O(1
k )

differentiable projected gradient O(1
k )

smooth Frank-Wolfe O(1
k )

smooth accelerated gradient descent O( 1
k2 )

smooth + strongly convex accelerated gradient descent O(exp(−k))

Table 1.1: Some convergence results for batch optimization methods. “convex”
stands for functions that are convex with no other assumption, “smooth” for
smooth functions and “strongly convex” for strongly convex ones. In this table,
all functions are supposed to be convex.

have been designed to try to bridge this gap, by using the specific structure of
machine learning problems. State-of-the-art achieves exponential rates for smooth
and strongly convex functions:

1. The stochastic average gradient descent (SAG) [Roux et al., 2012] that keeps
track of the gradients previously seen to build a more robust stochastic esti-
mate of it. Some variants have been recently designed [Defazio et al., 2014].
They are as fast as SAG but their theoretical analysis is easier.

2. The stochastic variance reduced gradient method (SVRG) [Johnson and Zhang,
2013] achieves the same fast rates as SAG. The idea is to adjust the bias/variance
tradeoff of the gradient estimate to converge faster to the optimal value.

3. The stochastic descent algorithm (SDCA) [Shalev-Shwartz and Zhang, 2013]
is built explicitely on the assumption of strong convexity 31. The idea is thus
to solve the problem in the dual. Then, the authors manage to derive an
efficient coordinate ascent technique in the dual. This method also has the
fast rates of SAG and SVRG.

31. On the opposite, SAG or SVRG can easily be used in non-strongly convex cases but without
the guarantee of achieving a fast convergence rate.
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Assumptions Method Convergence rate

convex subgradient descent O( 1√
k
)

smooth subgradient descent O( 1√
k
)

convex projected subgradient O( 1√
k
)

strongly convex subgradient descent O(1
k )

strongly convex projected subgradient O(1
k )

smooth accelerated gradient O( 1√
k
)

smooth + strongly convex projected subgradient O(1
k )

smooth + strongly convex SAG/SVRG/SDCA O(exp(−k))

Table 1.2: Some convergence results for stochastic methods. In this table, all func-
tions are supposed to be convex.



Chapter 2

Tractable Multi-label Classification
Using Quadratic Priors

Abstract

In this chapter, we address the problem of multi-label classification
which can take, for instance, the form of the automatic tagging of im-
ages. We propose to learn a prior over the space of labels to directly
improve the performance of these methods. This prior takes the form
of a quadratic function of the labels indicator vector and is able to en-
code both attractive and repulsive relations between labels. We cast this
problem as a structured prediction one, aiming at optimizing either the
accuracies of the predictors or directly the F1-score. This leads to an
optimization problem closely related to the max-cut problem, which
leads to semidefinite and spectral relaxations. Experiments on standard
benchmarks demonstrate the benefits of the proposed approach.

This work is based on our preprint: Semidefinite and Spectral Relax-
ations for Multi-Label Classification, R. Lajugie, P. Bojanowski, S. Arlot,
F. Bach 1.

2.1 Introduction

Multi-label classification is an extension of multiclass classification where sev-
eral labels can be affected to the same example [Tsoumakas and Katakis, 2007,
Zhang and Zhou, 2013]. This setting is ubiquitous in real-world applications. For
example, it can take the form of image or text tagging, where the goal is to assign
instances to categories [Joachims, 1998]. One also can think to a similar problem to
the one of Xiao et al. [2010], who proposes to consider the problem of labelling
scenes in which several objects appear. The goal is there to predict which ob-
jects, among several possible are present in the image. In the multi-label setup
we consider a label set V of cardinal V. Multi-label classification techniques aim at

1. Available on arXiv: http://arxiv.org/abs/1506.01829.



52 CHAPTER 2. MULTI-LABEL CLASSIFICATION WITH QUADRATIC PRIORS

predicting a subset of V . Namely they perform a classification task over the set of
subsets of V , that we denote 2V . Elements of this set are called labellings. One of the
main difficulties of this problem lies in the fact that the space of potential labellings
Y is exponentially bigger than the set of labels V . Doing an exhaustive search over
the space of labellings is thus not tractable. A first approach that is broadly used
consists in training one classifier per possible label and to predict independently
the presence or the absence of each label depending of the scores given by classi-
fiers. This setting is often referred to as the binary relevance approach [Tsoumakas
and Katakis, 2007, Zhang and Zhou, 2013]. This approach, however, does not take
into account the structure of the space of potential labellings Y = 2V . Indeed,
some labels might have affinities or repulsions. Moreover these affinities or repul-
sions can be induced by some context or latent variables. For instance, in image
tagging, if it is very likely to see a zebra and a lion in the same image, it is rather
not probable to see a reindeer with a lion. A prior over labels could have, for in-
stance, penalized the joint prediction of a reindeer with the lion. On the opposite,
if a zebra and a lion are detected in an image, it is very likely that the context label
“savana” should be detected as well. Thus labels can have affinities or repulsions.
This intuition suggests it is possible to go beyond the simple approach of training
independently V classifiers.
Including structure into the label set can be done a priori by assuming labels are
organized in a certain hierarchy [Rousu et al., 2006, Bi and Kwok, 2011, Deng et al.,
2014]. Hariharan et al. [2010] proposes to use prior knowledge when training the
classifiers, leading to the learning of correlated classifiers. However this prior is
not used at testing time and thus does not affect the way predictions are done on
new data.

Our goal is to learn a prior over labels directly from data, at the same time
that classifiers are learned. This idea has already been tackled by Petterson and
Caetano [2011] who restricted their study to the specific case of positive affinities
between labels. We go beyond this approach and propose a model allowing to
take into account affinities and incompatibilities between labels.

Related work. A large part of the recent literature considers the case where the
number of different labels v ∈ V is moderately large (order of hundreds). In this
setting it is possible to learn a specific classifier for each label separately but the
space of labellings Y (of cardinal 2V) is too large to considering the learning of
one classifier for each labelling. One way to train such classifiers is the well-
known one-versus-rest technique (a.k.a. binary relevance technique [Tsoumakas
and Katakis, 2007]).

Within this setting, some approaches make use of the structured prediction
framework of Taskar et al. [2003], Tsochantaridis et al. [2005] as we do. This corre-
sponds to consider the task of prediction as a task over the huge output space Y .
For instance, Lampert [2011], Dembczynski et al. [2013] have proposed to plug a
structured prediction model to directly optimize a multi-label performance mea-
sure within a structured SVM, but consider the prior knowledge between labels as
fixed a priori, whereas we aim at learning it. The loss used by Lampert [2011] is
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called the “max loss” and is closely related to what we call the Hamming loss in
this chapter, whereas Dembczynski et al. [2013] optimize what we call the F1-loss,
which is a tradeoff between precision (number of labels correctly predicted) and
recall (number of labels correctly retrieved). They manage to tackle the standard
bottlenecks of structured SVMs presented in chapter 1 such as loss-augmented de-
coding, avoiding an exhaustive search over the power set Y .
Another trend in the recent literature dealing with multi-label classification is to
consider the case where the space of labels V itself is huge [Hsu et al., 2009, Bi and
Kwok, 2013]. In these papers, the goal is to use the fact that only few labels are
present in an instance. This allows to reduce the dimension of the prediction space
and reduces the multi-label problem as a prediction problem over a low dimen-
sional space. The approach we propose in this chapter could be combined with
these approaches.

Contributions. The contributions of this chapter are four-fold:

1. we propose a model with priors for multi-label classification allowing attrac-
tive as well as repulsive weights,

2. we cast the learning of this model into the framework of structured predic-
tion using either Hamming of F1 losses and propose an approach for solving
exactly the loss-augmented decoding using the F1 loss,

3. we propose semidefinite and spectral relaxations to efficiently solve the re-
sulting structured prediction problem,

4. we show on real datasets how the learning of such a general prior can im-
prove the multi-label prediction over the models where no prior is learnt or
when only attractive weights are allowed.

2.2 Structured prediction for multi-label classification

In this section, we review several classical ways to perform the multi-label clas-
sification task when a prior over the labels is fixed. In this chapter, following the
terminology introduced in Chapter 1, we refer to the decoding as the task of assign-
ing potentially several labels to a data point belonging to some feature space. We
then discuss how to learn the parameters of the predictive function. In the rest of
the chapter we denote our feature space by X ⊂ Rp.

2.2.1 The multi-label classification problem

Let us consider a set of possible labels V of cardinal V. The set of labellings, can
be identified to the set of binary vectors Y = {−1, 1}V . This set Y is the one on
which we perform our structured prediction.

Let us assume that for each possible label v, we are given a linear classifier
parametrized by wv ∈ Rp. We denote by W ∈ Rp×V , the matrix whose columns
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are the vectors wv. In the multi-label setting, the decoding problem is often cast as:

ŷ(x; W) ∈ argmax
y∈Y

D(x, y; W) := y>W>x. (2.1)

This is usually referred to as the binary relevance method for multi-label learn-
ing [Tsoumakas and Katakis, 2007].
The aforementioned approach does not take into account any dependency between
the different labels. A way to do so is to consider a decoding model which is a
sum of a term corresponding to independent predictions and one that couples the
labels. The latter term can be seen as a penalty F depending on the subset of pre-
dicted labels and the input data. The decoding in this chapter is thus the task of
finding

ŷ ∈ argmax
y∈Y

D(x, y; W, F), (2.2)

where
D(x, y; W, F) = y>W>x− F(y, x).

However, not all functions F are admissible. We can only use the ones that lead to
a tractable decoding in Eq. (2.2) (we recall that |Y| = 2V).

Penalization functions. A class of penalization functions F that is well-suited
for our problem is the class of submodular functions [Petterson and Caetano, 2011,
Bach, 2013].
When F is submodular, the decoding becomes the maximization of a supermodu-
lar function, that is the maximization of a modular 2 minus a submodular function.
This is known to be tractable, and solvable in polynomial time in V [Fujishige,
2005]. In this chapter, we focus on a specific family of submodular functions: the
ones based on graph-cuts.

Graph-cut based penalty. Following Petterson and Caetano [2011] we first pro-
pose in this chapter a graph-cut based penalty F. Such a penalty is typically sub-
modular although we do not need to use this general fact to deal with this penalty.
The idea is to consider an undirected graph G whose V nodes are the individual
labels. Between each node, there is an edge with a weight. These weights can be
included in a matrix C with non-negative entries such that Ci,j is the weight of the
edge between i and j. The matrix C is the adjacency matrix of the graph.
It is often more convenient to consider the Laplacian matrix associated to the graph,

A = Diag(C>1V)− C.

Due to its spectral properties 3, this matrix is used for spectral clustering or graph
based image segmentation [Shi and Malik, 1997, Von Luxburg, 2007].
A labelling y can be seen as splitting the set of labels in two subsets: the set of

2. Any linear function of y is a modular function.
3. This matrix is positive semidefinite since it is a diagonal dominant matrix.
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labels present P = {i, yi = 1} and the one of labels not present N = {i, yi = −1}.
The graph cut penalty of Petterson and Caetano [2011] is defined by:

∑
i∈P ,j∈N

Ci,j.

As underlined by Bach [2013], such a cut is submodular as a function of the binary
variable y and can be written using only the Laplacian matrix and the vector y ∈
{−1, 1}V that represents the labelling as:

y>Ay.

Adding a linear term in y does not change the fact that the decoding is tractable
since such a term is submodular as noted by Bach [2013]. From a graph-cut point
of view, it corresponds to adding weights not only on edges but also on vertices.
These graphs are often considered in computer vision [Greig et al., 1989, Boykov
and Kolmogorov, 2004]. Thus we can consider penalty functions of the form:

F(y) = y>Ay− y>d,

where d ∈ RV and A has negative off-diagonal entries. We do not impose any
constraint on the diagonal terms since these are constant for all y ∈ {−1, 1}V ans
our major concern is to minimize this penalty with respect to such a binary y.

General quadratic penalties. Laplacian matrices are only defined for non-negative
weights, that is, for A with non-positive off-diagonal entries. However, penalties
of this form are unsatisfactory in practice because they do not let us make use of
repulsions between labels. In this chapter, we are also interested in the case where
the matrix A can be any matrix, yielding to considering penalties of the form

F(y) = y>Ay− y>d

where d ∈ RV and A ∈ RV×V .

Like in the previous paragraph, such a matrix would have a graph interpreta-
tion as encoding not only affinities (the negative off-diagonal entries) between the
labels but also repulsions (the positive off-diagonal entries). When A has positive
off-diagonal entries, we can write

A = A+ − A−

where
A+ = max(A, 0)

pointwise and
A− = max(−A, 0).
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Thus the decoding problem can be cast as maximizing over y:

y>W>x− y>A+y + y>A−y.

As mentioned earlier, we do not impose any constraint on the diagonal of A. In
the previous paragraph y>A+y was equal to 0. But now it is not. The problem of

minimize
y∈{−1,1}

y>A+y

is known as the max-cut problem, see e.g, Eq. (8) of Aspremont and Boyd [2003].
This problem is NP-hard [Johnson, 1982]. It is even APX-hard, meaning that it is
even hard to approximate [Papadimitriou and Yannakakis, 1988]. In top of that, if
the unique games conjecture is true, it is not possible to get a better approximation
ratio for this problem than 0.878 [Khot et al., 2007]. This ratio is reached by the
approximation of Goemans and Williamson [1995]. In Sec. 2.5.2 we review this
convex relaxation as well as a cheaper one to approximate this problem.

Using these general quadratic penalties, our decoding becomes:

ŷ(x; W, A, b) ∈ argmax
y∈Y

{
y>W>x + y>d− y>Ay

}
. (2.3)

As mentioned in the two previous paragraphs, when A has all its off-diagonal
entries non-positive, such a function can be optimized in polynomial time. We
detail the optimization procedure in Sec. 2.5. In the general case, the decoding task
is as hard as a max-cut problem. We provide in Sec. 2.5 efficient relaxations to deal
with this. For now, let us focus on how to learn the parameters W, A and d.

2.2.2 Learning the parameters W, d and A

In the previous section we have assumed that we are given V linear classifiers

wv ∈ Rp, v ∈ {1, . . . , V},

a linear prior d ∈ RV and a matrix A ∈ RV×V . Thus, the discussed decoding
problem can be seen as parametrized by W, d and A. Its difficulty depends on the
subset A of RV×V in which A lies.

Suppose that we are given N examples (xi, yi) ∈ X × Y , i = 1, . . . , N, and
consider a loss function between two labellings ` : Y ×Y → R+. Ideally, given this
loss, we would like to minimize the following regularized empirical loss over W ∈
Rp×V , A ∈ A and d ∈ RV . For now, we do not precise the optimization set A ⊂
RV×V in which A lies. We consider the minimization of

1
N

N

∑
i=1

`
(
ŷ(xi; W, A, d), yi)+ λΩ(W, A), (2.4)
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where Ω is a convex regularizer 4 over the parameter space. This is a hard com-
binatorial problem that thus needs to be relaxed. Following Taskar et al. [2003],
Tsochantaridis et al. [2005], Nowozin and Lampert [2011], we define the structural
hinge loss H as:

H(xi, yi, W, A, d) = max
y∈Y

{
`(y, yi) + D(xi, y; W, A, d)− D(xi, yi, W, A, d)

}
.

Finding the maximizer y, i.e, finding

y ∈ argmax
y∈Y

{
`(y, yi) + D(xi, y; W, A, d)− D(xi, yi, W, A, d)

}
in the aforementioned definition is what we refer to as the loss-augmented decoding.
Note that this loss is a generalization of the standard hinge loss as we have seen in
Chapter 1. Indeed, one can notice that if we take

Y = {−1, 1},

this loss reduces to the standard hinge loss of SVMs up to a rescaling of the data.
We estimate parameters W∗, d∗ and A∗ by solving the following problem:

minimize
W∈RV×p ,A∈A,d∈RV

1
N

N

∑
i=1

H(xi, yi; W, A, d) + λΩ(W, A). (2.5)

2.3 Performance measures and losses for multi-label
tasks

In order to set up our problem, we need to define a suitable loss function `.
Following the classical approaches to multi-label classification, several choices are
possible [Tsoumakas and Katakis, 2007, Petterson and Caetano, 2011, Zhang and
Zhou, 2013]. Let us review two of the most widely used losses.

Normalized Hamming loss. The simplest loss we can think about is based on
accuracy, which is defined as:

a(y, yi) =
V + y>yi

2V
∈ [0, 1],

The loss associated to accuracy is the so-called Hamming loss [Hamming, 1950,
Zhang and Zhou, 2013]. It is defined as a linear function of the binary label vector

4. In this Chapter we always consider a weighted version of the squared `2-norm, that allows
us to weight differently the parameters A and W but keep in mind that some others can be used
for instance depending on some sparsity patterns that are wanted. Note also that in practice, we
do not regularize the bias of the model b as commonly done [Hastie et al., 2009].
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y by:

`(y, yi) =
1

2V
(
V − yi>y

)
= 1− a(y, yi) ∈ [0, 1], .

Since y is in {−1, 1}V , we have the following equivalent formulation:

`(y, yi) =
∥∥ 1

2
√

V
(1− y)− 1

2
√

V
(1− yi)

∥∥2
2,

where 1 is the V-dimensional vector with ones. This loss is proportional to the
cardinality of the symmetric difference between two sets

A∆B = (A ∪ B) \ (A ∩ B).

Note also that, if we consider that not all the errors are equivalent, one can use a
weighted version instead.

F1 loss. A common choice in the multi-label learning literature is the Fβ loss [Tsoumakas
and Katakis, 2007, Petterson and Caetano, 2011]. Let us introduce the two perfor-
mances measures on which the Fβ score is based: the precision p and the recall r.
These are respectively defined, with respect to a training labelling yi ∈ Y as:

p =
(1 + yi)>(1 + y)
(1 + y)>(1 + y)

, r =
(1 + yi)>(1 + y)
(1 + yi)>(1 + yi)

.

Then, for every β > 0, the general Fβ score is defined as

Fβ(y, yi) =
(1 + β2) p r
β2 (p + r)

∈ [0, 1] .

The most widely used is the F1 score (which turns out to be the harmonic mean
of precision and recall), and the associated loss is `(y, yi) = 1 − F1(y, yi). More
precisely:

`(y, yi) =
V − y>yi

2V + yi>1 + y>1
∈ [0, 1] . (2.6)

Note the non linear dependency of this loss in y.

This loss is a function of precision and recall and has some important advan-
tages over the Hamming loss. In the common situations where each instance has
only few labels among all the ones that are possible, the Fβ loss penalizes a lot the
solution (−1, . . . ,−1)> while the Hamming does not 5.

5. For instance, with five possible labels, the Hamming loss between (−1, 1,−1,−1,−1) and
(1,−1,−1,−1,−1) is 2

5 whereas the F1 loss of Eq. (2.6) is 1.
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2.4 Loss-augmented decoding

We propose to derive a structured-SVM-like optimization objective, follow-
ing Tsochantaridis et al. [2005]. As mentioned earlier, we want to learn the pa-
rameters of our predictive function using annotated data. Following the definition
of H, we can write the complete optimization problem (2.5) as:

minimize
W∈RV×p ,A∈A,b∈RV

1
N

N

∑
i=1

[
max
y∈Y

{
`(yi, y) + y>W>xi + y>d− y>Ay

}
−yi>W>xi − yi>d + yi>Ayi

]
+

λW

2
‖W‖2

2 +
λA

2
‖A‖2

2. (2.7)

Note that the objective function of the optimization is jointly convex in A and W
but not smooth.

To solve this convex optimization problem, we need to be able to solve the
inner sum maximization, that is the loss-augmented decoding. Let us now see
what these problems become when we consider the two losses introduced so far.

Using the Hamming loss. If we use the Hamming loss for `, i.e.,

`(yi, y) =
1

2V

(
V − y>yi

)
,

then the loss augmented decoding problem is equivalent to:

max
y∈Y

{
y>
(
W>xi + d− 1

2V
yi)− y>Ay

}
. (2.8)

This is the maximization of a quadratic function in y.

Using the F1 loss. If in turn we decide to use the F1 loss, the loss-augmented prob-
lem becomes harder because of the vector y in the denominator. For one training
instance the loss augmented decoding amounts at solving:

maximize
y∈Y

{ V − y>yi

2V + yi>1 + y>1
+ y>W>xi + y>d− y>Ay

}
. (2.9)

To derive a unified view over the loss-augmented decodings using the F1 and the
Hamming loss, let us now reduce this loss-augmented decoding problem as a se-
quence of maximization of quadratic problems over the labellings y. We define the
set Yk as the set of labellings such that k entries are positive:

∀k ∈ {0, . . . V}, Yk =
{

y ∈ Y , y>1 = 2k−V
}

.

As is often done when optimizing the F1 score, which is a contingency-table based
loss [Joachims, 2005], we can divide the initial problem into V + 1 subproblems by
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replacing y>1 by 2k−V. To this end we define the function ζi(y, k) as follows:

ζi(y, k) = y>
( yi

V + yi1 + 2k
+ W>xi + d

)
− y>Ay. (2.10)

The loss-augmented decoding problem is then equivalent to:

max
k∈{0,...,V}

[ V
V + yi1 + 2k

+ max
y∈Yk

ζi(y, k)
]
. (2.11)

That way we have cast the latter decoding as the maximization of a finite sequence
of quadratic problems in y.

Solving the loss-augmented decoding. The loss-augmented decoding problems
of Eq. (2.8) and Eq. (2.9) as well as the decoding problem of Eq. (2.3) require us
to be able to solve quadratic optimization problems for y ∈ Y under the potential
constraint that y ∈ Yk. This heavily depends on the sets A to which A belongs. In
the following we consider two different cases:

– when A belongs to a set A that is made of matrices with non-positive off-
diagonal entries, that is when A is the Laplacian of a graph, we show that
quadratic minimization problems can be solved using graph cuts and that
the loss augmented decoding problem can be solved exactly for the Hamming
loss and approximately for the F1-loss,

– in the general case, that is when A ∈ RV×V , we propose an efficient way to
relax the loss-augmented decoding, and solve exactly this relaxation.

In the following section, we propose relaxations of these problems leading to a
tractable loss-augmented decoding with no restriction over the matrix A.

2.5 Optimization in y

So far, we have written problems that we may not be able to solve efficiently.
The first one is the general decoding of Eq. (2.3). The other ones are the subprob-
lems of Eq. (2.8) and Eq. (2.11). All of these are quadratic boolean optimization
problems and are closely linked to the max-cut problem 6. These can be written in
the following canonical form:

maximize
u∈{−1,1}V

L(u)=0

u>b− u>Au, (2.12)

where A ∈ RV×V , b ∈ RV and L is an affine function:

L(u) = u>α− β,

6. See, e.g., Boyd and Vandenberghe [2004, Sec. 5.1.5]
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where α ∈ RV and β ∈ R. The additional constraint L(u) = 0 is only needed for
the problem mentioned in Eq. (2.11). For the two other problems, one can simply
ignore it. Eq. (2.12) allows us to tackle three problems in a unified framework.

2.5.1 First case: A has negative off-diagonal entries

We first investigate the case where A has negative off-diagonal entries. This
is exactly the case considered by Petterson and Caetano [2011]. However our ap-
proach is slightly different since, for the F1-loss, we propose an exact technique to
solve the loss-augmented decoding.

Let us now see that the problem of Eq. (2.11), in the case where there is no linear
constraint, is a variant of the min-cut problem which is known to be solvable in
polynomial time using a min-cut/maximum-flow algorithm [Edmonds and Karp,
1972].

Links with graph-cuts Let us consider a graph G with V nodes V = {1, . . . , V}
and a set of edges E that is a collection of pairs

e = (v1, v2) ∈ V × V ,

where v1 6= v2. We assume that each edge is associated to a weight cv1,v2 . The adja-
cency matrix C of the undirected graph G is thus the matrix such that Cv1,v2 = cv1,v2

if there exists an edge, meaning that (v1, v2) ∈ E . Moreover, we assume that each
node of the graph is associated to a real-valued capacity that is encoded in a capac-
ity vector c ∈ RV .
The canonical min-cut problem [Ford and Fulkerson, 1956, Edmonds and Karp,
1972, Cormen et al., 2001, Boykov and Kolmogorov, 2004, Bach, 2013] can be writ-
ten as the following optimization problem:

minimize
z∈{0,1}V

V

∑
j=1

j−1

∑
i=1

Ci,j|zi − zj|+ c>z, (2.13)

where C ∈ RV×V
+ and c ∈ RV . By making the change of variables z = y+1

2 and
carrying on some calculations, we get the following equivalent min-cut problem:

minimize
y∈{−1,1}V

2y>c− y>Cy. (2.14)

The key observation is that these optimization programs over discrete sets can be
relaxed on the convex hulls of the optimization sets, by considering their Lovasz
extension (see e.g, Bach [2013]). That is, the min-cut problem is equivalent to solv-
ing the following convex optimization programs over [0, 1]V :

minimize
z∈[0,1]V

V

∑
j=1

j−1

∑
i=1

Ci,j|zi − zj|+ c>z,
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or {−1, 1}V = [−1, 1]V :
minimize
y∈[−1,1]V

2y>c− y>Cy. (2.15)

Note also that when the matrix A has negative off-diagonal entries, the problem
formulated in Eq. (2.12) with no linear constraints can be solved using min-cut /
max-flow with standard toolboxes by providing the matrix C = −A and c = 1

2 b.

Approximately solving the constrained problem of Eq. (2.12) with graph cuts.
When dealing with the problem of Eq. (2.12) with a linear constraint in the vari-
able u ∈ Y , a classical trick to reduce this problem to an unconstrained one is to
dualize the constraint L(u) = 0, that is to introduce a Lagrange multiplier associ-
ated to it [Lagrange, 1811, Boyd and Vandenberghe, 2004]. Thus the constrained
problem of Eq. (2.12) is equivalent to:

minimize
u∈[−1,1]V

max
µ∈R

u>Au− u>b + µL(u). (2.16)

This problem is still hard to solve. However, we can relax it by switching the min
and the max:

maximize
µ∈R

min
u∈[−1,1]V

u>Au− u>b + µL(u). (2.17)

Note that the optimal value of the problem of Eq. (2.17) is always a lower bound to
the optimal one of the problem of Eq. (2.16), this is known as weak duality [Bert-
sekas, 1999, Boyd and Vandenberghe, 2004]. When strong duality holds, for in-
stance when the problem is convex, we have equality of the optima. However,
for arbitrary A the strong Lagrangian duality theorem does not hold thus solving
problem of Eq. (2.17) only yields to an approximate problem of the constrained
problem of Eq. (2.12).

Problem (2.17) is the maximization of a unidimensional function of µ whose
evaluation is a graph-cut. It can be done using the dichotomy method for in-
stance [Boyd and Vandenberghe, 2004]. Such a method is described in Alg. 4. At
the optimum µ∗, the u that

minimize
u∈[−1,1]V

u>Au− u>b + µ(β− u>α)

is exactly the solution of the relaxed problem of Eq. (2.17) we are looking for.

Other approach to solve the constrained problem of Eq. (2.12) for negative A. In
this paragraph, we show how we can solve the constrained problem of Eq. (2.17)
by relating it to the well-studied total variation denoising problem [Chambolle and
Darbon, 2009, Bach, 2013].
Here, we consider that the constraint of Eq. (2.12) is simply a cardinality con-



2.5. OPTIMIZATION IN y 63

Figure 2.1: An illustration of the key observation of the dichotomy. Among the four
points that are kept during Alg. 4 to minimize a convex function, there will always
be three among {ak, bk, ck, dk}, let us say (u, v, w), in such a way that (i) u < v < w,
(ii) f (u) > f (v) and f (v) < f (w) and w− u < ck − ak.

straint 7, namely that the constraint is of the form u>1V = β for a certain β = 2k−V
and k ∈ {1 . . . V}. We start from Eq. (2.17).

By considering the variable z = 1+u
2 ∈ [0, 1]V we get that problem (2.17) is

equivalent to the following problem:

maximize
µ∈R

µ(−β−V) + min
z∈[0,1]V

{
4z>Az− z>(4A1V + 2b) + 2µz>1V

}
. (2.18)

The problem of Eq. (2.18) is a separable submodular optimization problem [Bach,
2013]. Thus, solving it can be done by considering the associated proximal prob-
lem. More precisely, if we introduce the Choquet integral 8 of the cut J(u) (which
is in this case often referred to as the “co-area formula” [Chambolle and Darbon,
2009]), the generic proximal problem associated to any cut problem is:

minimize
u∈RV

1
2
‖u− g‖2

2 + J(u). (2.19)

where g in our case is exactly 4A1V + 2b.
This problem is the well known total variation denoising problem. There exists

several efficient algorithms to deal with it, especially the ones relying on para-
metric max-flow techniques. Once problem (2.19) has been solved and that we
recovered its solution u∗ 9, we get all the candidates for being a solution of (2.18)
by considering the families of indicator vector (1u≥−µ)u∈R [Bach, 2013]. This fam-
ily is finite and has V elements at most since u is of dimension V and µ is a real.
Then, we just have to compute the V values associated to the objective function

7. This is always the case in this manuscript.
8. Or Lovasz extension, see e.g, Bach [2013].
9. Note that this solution is unique if α is non-negative [Chambolle and Darbon, 2009].
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Algorithm 4 Binary search algorithm to find the optimum of a convex function f
on R. For simplicity, we assume the function to have a unique optimum x∗. The
key of the approach is that it is always possible to do the core step. For an intuition
of it, have a look at Fig. 2.1.

Input Target precision ε, function f
Find a segment [a0, c0] such that x∗ ∈ [a0, c0]
Find b0 ∈ (a0, c0) such that f (b0) < f (c0) and f (b0) < f (a0)

d0 = a0+b0
2 ,

while ck − ak > ε do
core step: Find ak+1 < bk+1 < ck+1 among {ak, dk, bk, ck} such that (a) f (ak+1) >
f (bk+1), f (bk+1) < f (ck+1) and (b) ck+1 − ak+1 < ck − ak
k = k + 1

end while
Output: bk

and pick the best one. Note however that we did not use this approach yet in our
experiments.

2.5.2 Classical semidefinite relaxation for max-cut

Now, let us consider the general case where A can be any matrix.
The family of problems presented in Eq. (2.12) is known as the two-way parti-

tioning problems. They are a generalization of the max-cut problem, with poten-
tially negative entries in A. This problem is known to be NP-complete [Johnson,
1982].

There exists a classical semidefinite relaxation that is known to reach the opti-
mal approximation ratio if P 6= NP and the unique games conjecture is true [Khot
et al., 2007]. Let us describe it. Following Boyd and Vandenberghe [2004] or
Aspremont and Boyd [2003], we use the relaxation introduced by Goemans and
Williamson [1995] to approximate the max-cut problem. We introduce a new vari-
able

U = uu> ∈ RV×V ,

that we refer to as the equivalence matrix associated to the labelling u ∈ Y . Us-
ing this notation we can re-write the term u>Au as Tr (AU). Then, using a set of
constraints that is equivalent to U = uu>, the problem (2.12) can be cast as:

maximize
u∈Y

U∈RV×V

u>b− Tr(AU) such that


Diag(U) = 1,
Rank(U) = 1,
U � uu>,
L(u) = 0.

(2.20)

Following Boyd and Vandenberghe [2004], the convex relaxation of this problem
is obtained by removing the rank constraint. We use the Schur complement trick
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(see, e.g., Boyd and Vandenberghe [2004]) and define a matrix M as:

M =

(
U u
u> 1

)
.

Using eV+1, the V + 1-th vector of the canonical basis of RV+1, our relaxed problem
of (2.12) can be re-written as:

maximize
M∈RV×V

Tr
[

M
(
−A 1

2 b
1
2 b 0

)]
such that


Diag(M) = 1,
M � 0,
α>MeV+1 = β.

(2.21)

Problem (2.21) can be solved using any standard semidefinite programming solver
at least for small V (< 100). When V is large, one can use specific techniques rely-
ing explicitly on the fact the solution is expected to be low-rank; see, e.g., Journée
et al. [2010] and references therein.

The vector u is not a vector of {−1, 1}V anymore and, at testing time 10 we need
to get such a solution. That is why we need a rounding scheme.

Rounding scheme. We follow Boyd and Vandenberghe [2004] to round the re-
laxed solution, i.e., get back to some admissible solution of (2.12). We notice that
for the optimal pair (u, U) solving Eq. (2.21), U � uu> implies that U− uu> is pos-
itive semidefinite and can be seen as a covariance matrix. Therefore, we (i) sample
several

v ∼ N
(
u, U − uu>

)
from a normal distribution, (ii) round the solution by taking the signs and choose
the best one in terms of the objective function. This procedure leads to good feasi-
ble points in our experiments.

2.5.3 Spectral relaxation

Now, let us see another relaxation possible. It is computationally less costly
than the SDP relaxation 11. The generic problem in Eq. (2.12) can be relaxed by
replacing the boolean constraint u ∈ Y with a quadratic equality u>u = V. Please
note this makes the problem of Eq. (2.12) non-convex. Using the same expression
for L(u) as in the previous section leads to the following optimization problem:

maximize
u∈RV

{
u>b− u>Au

}
such that

{
u>u = V
u>α = β.

(2.22)

Note that when optimizing the Hamming loss or when we are not subject to

10. That is when the problem of Eq. (2.12) is the decoding of Eq. (2.3).
11. The SDP relaxation typically do not scale when the label set becomes large, of order of hun-

dred. Such an SDP can be solved using interior point methods [Overton and Wolkowicz, 1997].
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the constraint u>α = β, this problem is just a generalized eigenvalue problem 12.
Let us see two approaches to solve this problem when the linear constraint is

present.

Binary search approach. As in Sec. 2.5.1, we can deal with the linear constraint
by dualizing it, yielding the following problem:

minimize
µ∈R

{
µβ + max

u∈RV

u>u=V

u> (b− µα)− u>Au
}

. (2.23)

Note that this problem is not equivalent to the original one for the same reason than
in Sec. 2.5.1. This can be solved by performing a binary search, a.k.a. a dichotomy
method, over µ. Such an algorithm is described in Alg. 4.

The inner loop maximization problem is classical in optimization, in particular
in trust-region methods [Forsythe and Golub, 1965, Spjøtvoll, 1972]. It reduces—
using the Lagrange multiplier technique—to solving a quadratic eigenvalue prob-
lem [Tisseur and Meerbergen, 2001]. Solving the inner maximization problem of
Eq. (2.23) is equivalent to finding the minimal eigenvalue of the problem:(

λ2IdV − 2λA + A2 − 1
4V (b− µα)(b− µα)>

)
u = 0, (2.24)

where IdV denotes the V×V identity matrix. Following [Tisseur and Meerbergen,
2001], the problem above is solved efficiently by performing the eigendecomposi-
tion of the matrix S:

S =

(
A −IdV

− 1
4V (b− µα)(b− µα)> A

)
. (2.25)

Once this is done, we get the desired solution by taking

u =
1
2
(A− λIdV)

−1(b− µα),

where λ is the smallest non-zero eigenvalue of S.
So, we are able to evaluate the function

γ(µ) = µβ + max
u∈RV

u>u=V

u> (b− µα)− u>Au.

We can thus solve the problem by binary search.

12. This can be seen by admitting the fact that this problem satisfies strong duality although it is
non-convex [Boyd and Vandenberghe, 2004]. Thus, we can introduce a Lagrange multiplier for the
constraint u>u = V and obtain the equivalent unconstrained problem:

minimize
u∈RV , λ∈R

u>b− u>Au− λ(u>u−V),

that can be solved by considering the generalized eigenvalue problem associated to A and b.
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However the use of the dichotomy method is costly in practice. We show in
Sec. 2.5.4 how we can deal with the problem of Eq. (2.22) in a more efficient way.

2.5.4 Solving the spectral relaxation subject to equality constraint
with a single eigenvalue decomposition.

In this section we present an other way to deal with the spectral relaxation,
inspired by Gander et al. [1989]. The proposed method is (i) more efficient compu-
tationally than the one of the previous section since it gets rid of the binary search
problem over the Lagrange multiplier µ and (ii) an exact approach.

We start from the problem of Eq. (2.22). By the change of variables v =

(
u
1

)
and

B =

(
−A b/2
b/2 0

)
and by introducing D =

(
IdV 0

0 0

)
(IdV is the V dimensional

identity matrix) we can write the problem as:

max
v∈RV+1

v>Bv

such that v>Dv = V and v>
(

α 0
0 1

)
=

(
β
1

)
. (2.26)

Following Gander et al. [1989], let us introduce the QR factorization of the ma-
trix (

α 0
0 1

)
,

that is

Q>
(

α 0
0 1

)
=

(
R
0

)
,

where Q ∈ R(V+1)×(V+1) is an orthogonal matrix and R ∈ R2×2 is an upper trian-

gular matrix, nonsingular since
(

α 0
0 1

)
has full rank. Let us now introduce

U =

(
U1
U2

)
= Q>V.

Note that U1 ∈ R2 and U2 ∈ RV−1. We can think about U1 as the variables corre-
sponding to the subspace that is “fixed” by the equality constraint.

Eq. (2.26) can be rewritten as:

maximize
U∈RV+1

U>Q>BQU

such that U>DU = V and U>1 R =

(
β
1

)
. (2.27)
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Note that the last constraint allows us to set the variable U>1 = R−1
(

β
1

)
.

Let us define QTBQ =

(
∆ Γ/2

Γ>/2 C

)
, with ∆ ∈ R2×2 , Γ ∈ RT×2 and C ∈

R(V−1)×(V−1). Using the previous notations, we get:

U>Q>BQU = UT
2 CU2 + U>1 ΓU2 + U>1 ∆U1.

Let us also introduce S = V −U>1 U1. Since U1 is entirely determined, the prob-
lem of Eq. (2.26) is equivalent to:

maximize
U2∈RV−1

U>2 CU2 + R>
(

β
1

)
ΓU2

such that U>2 DU2 = S. (2.28)

This problem is equivalent to a generalized eigenvalue problem and can be
solved in O

(
(2V)3).

We slightly abuse notations since D is restricted to its lower corner right V − 1
corner.

Now, we have all the tools that we need to properly relax the structured pre-
diction objective of Eq. (2.5) and get a solution of it.

2.6 Optimization in W and A

Let us go back to the optimization of Eq. (2.7) with stochastic subgradient de-
scent. We have to consider at least two cases.

First case: A has only non-positive off-diagonal entries. In this case, we have
seen that the loss-augmented decoding could be solved efficiently exactly in the
case of the Hamming loss, and approximately using the Lagrange multiplier relax-
ation of Sec. 2.5.1 in the F1 loss case. This allows us to find the maximizer of the
inner sum maximization of Eq. (2.7) exactly. That is we are able to compute a ele-
ment of the subgradient set of our objective function that we call g for simplicity.
If yi is the solution of the loss-augmented decoding for training instance i, such a
subgradient is:

∂W g(W, A, d) = λWW +
1
N

N

∑
i=1

xi(ȳi − yi)>,

∂dg(W, A, d) =
1
N

N

∑
i=1

(ȳi − yi),

∂Ag(W, A, d) = λA A +
1
N

N

∑
i=1
−ȳiȳi> + yiyi>.
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Second case: A has general values. When we relax the inner optimization prob-
lem in y ∈ Y we change the optimization set for the loss-augmented decoding.

For the SDP relaxation, we are working on

U = {(u, U), U ∈ RV×V , u ∈ RV , U � uu>, Diag(U) = 1V},

this changes the objective function into:

1
N

N

∑
i=1

[
max

u,U∈U

{
u>
(

W>xi + d− 1
2V

yi
)
− Tr(AU)

}
− yi>W>xi − yi>d + yi>Ayi

]
+

λW

2
‖W‖2

2 +
λA

2
‖A‖2

2,

for the Hamming loss, and:

1
N

N

∑
i=1

[
max

k∈{0,...,V}
max

(u,U)∈Uk

{
u>
(

W>xi + d− yi

2V + yi1 + k

)
− Tr(AU)

}
− yi>W>xi − yi>d + yi>Ayi

]
+

λW

2
‖W‖2

2 +
λA

2
‖A‖2

2, (2.29)

for the F1 loss. Note that we have defined

Uk = {(u, U), U ∈ RV×V , u ∈ RV , U � uu>, Diag(U) = 1V u>1V = 2k−V}.

For the spectral relaxation, the optimization set becomes the sphere of radius V
of RV , i.e, the set {u ∈ RV , uTu = V}. The objective function becomes:

1
N

N

∑
i=1

[
max

u,u>u=V

{
u>
(

W>xi + d− 1
2V

yi
)
− u>Au

}
− yi>WTxi − yi>d + yi>Ayi

]
+

λW

2
‖W‖2

2 +
λA

2
‖A‖2

2, (2.30)

and

1
N

N

∑
i=1

[
max

k∈{0,...,V}
max
u∈Uk

{
u>
(

W>xi + d− yi

2V + yi1 + k

)
− u>Au)

}
− yi>W>xi − yi>d + yi>Ayi

]
+

λW

2
‖W‖2

2 +
λA

2
‖A‖2

2, (2.31)

for the F1 loss.

Once we have solved the loss-augmented decoding and get a pair (u, U) in
the SDP case, or a vector u and set the matrix U = uu>, we get elements of the
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subgradient by the following relations:

∂W g(W, A, d) = λWW +
1
N

N

∑
i=1

xi(u− yi)>,

∂dg(W, A, d) =
1
N

N

∑
i=1

(u− yi),

∂Ag(W, A, d) = λA A +
1
N

N

∑
i=1
−U + yiyi>.

To summarize, when A has negative off-diagonal entries, we solve approxi-
mately the objective of Eq. (2.5) whereas in the general case, we solve exactly the
objective of Eq. (2.29)–(2.31).

2.7 Experimental Evaluation

We now assess the performances of the proposed approach on some standard
benchmarks.

Baselines. We compare our approaches to the one of Petterson and Caetano [2011]
and to an approach that we call one-versus-rest. For the latter method:

– during the training step, we use the N training pairs (xi, yi) to learn one
classifier for each of the V classes,

– during the testing step, we stack all the individual classifiers in a matrix W
and we predict using the binary relevance decoding technique of Eq. (2.1).

In this experimental section we first describe the used datasets and discuss the
baselines to which we compare them.

2.7.1 Datasets.

We validate our approach on four datasets. Following Petterson and Caetano
[2011], we picked our datasets from the mulan 13 repository. We picked the yeast
[Elisseeff and Weston, 2001], enron, medical [Pestian et al., 2007] and bibtex [Katakis
et al., 2008] datasets. The datasets are of various sizes and natures: yeast only has 14
labels while bibtex has 159. All of them also present different challenges (different
structures, label occurrence patterns, etc.).

These datasets are given with a training / testing split. We further split the
training set to generate a validation set. We select all relevant parameters by plain
validation on this set. We report all performances on the actual test set as given in
the dataset. Characteristics of these datasets are given in Table 2.1.

13. http://mulan.sourceforge.net/datasets.html
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Instances Features (p) Labels (V)

yeast 2417 103 14
enron 1702 1001 53

medical 978 1449 45
bibtex 7395 1836 159

Table 2.1: Standard characteristics of the datasets used.

2.7.2 Binary relevance results.

In Table 2.2 we report the performance of the one-versus-rest approach for all
the datasets. For every label, we train a linear classifier using a standard SVM tool-
box [Fan et al., 2008]. We select the parameters of the SVM method by validation
on a held-out part of the training set. We compare three criteria for choosing the
optimal set of regularization parameters. We can either select a common regular-
ization parameter for all classes (“Single λ” column), chosen with the Hamming
loss (which decouples over classes), or one per class (“Multiple λ” column). When
choosing a common λ for all classes, one can choose it according to the F1 or Ham-
ming loss on the validation set.

Single λ Multiple λ

F1 Hamming Hamming

yeast 0.39 0.40 0.54
enron 0.48 0.49 0.46

medical 0.29 0.29 0.28
bibtex 0.61 0.66 0.66

Table 2.2: Linear SVM performance on the considered datasets. We report the
average F1 loss for various schemes for choosing the regularization parameter λ.
The first row indicates if validation is performed with one common λ to all classes
or if the λ can be different, the second corresponds to the validation performance
measure to select this λ.

Table 2.2 shows that on the bibtex dataset, it is important to use the relevant
loss as a criterion to select hyperparameter. This corresponds to a case where the
number of labels V is big. In that case, as discussed in Sec. 2.3, the Hamming loss
behaves more and more differently from the F1 loss.

One would also expect that picking one parameter per label would lead to bet-
ter performance. But the benefits from selecting a specific parameter per class is
offset by the fact that one cannot use the F1 loss in this case. In all our remaining
simulations, we use a single λ for all classes.
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2.7.3 Our model and comparison to Petterson and Caetano [2011].

We run our algorithm—with ` equal to the Hamming loss—on all four datasets
and compare to the available implementation of Petterson and Caetano [2011]. For
all methods we select all hyper-parameters based on the performance in terms of
F1 loss on the validation set. Because of the challenging number of labels, for bibtex,
we were able to run neither the code from Petterson and Caetano [2011], nor the
SDP, in reasonable time.

SDP Spectral

OvR P. et al. MC A 6 0 A > 0 Any A A 6 0 A > 0 Any A

yeast 0.39 0.36 0.40 0.40 0.39 0.39 0.39 0.37 0.37
enron 0.48 0.45 0.47 0.47 0.47 0.45 0.48 0.49 0.49

medical 0.29 0.33 0.29 0.31 0.29 0.24 0.30 0.21 0.24
bibtex 0.61 N/A 0.61 N/A N/A N/A 0.62 0.57 0.60

Table 2.3: Comparison between Petterson and Caetano [2011] and different vari-
ants of our method. OvR denotes the one-versus-rest approach. MC is our algo-
rithm with the inner loop solved using min-cut / max-flow. SDP is the semidefinite
relaxation of the inner loop. Spectral is the spectral relaxation of the inner loop. All
methods optimize the Hamming loss except P. et al. which optimizes the F1 loss.
Results are all F1 loss.

Table 2.3 compares the one-versus-rest approach, the approach described in
Petterson and Caetano [2011] and variants of our method. We compare the two
relaxations we proposed while optimizing the Hamming loss. Please recall that
the min-cut (MC) solution implies that A 6 0 (non-positive entries).

When A 6 0, we can measure the tightness of the proposed relaxations. We see
that the various relaxations, SDP then spectral, do not degrade performances over
the exact approach MC (which cannot be run for general A).

We also notice that using a negative matrix A is a strong limitation. The perfor-
mance observed when A is unconstrained or non-negative is better. This motivates
our formulation and shows that repulsive weights between labels are relevant.

OvR Our Hamming Our F1

yeast 0.39 0.43 0.43
enron 0.48 0.47 0.47

medical 0.29 0.28 0.28
bibtex 0.61 0.60 0.60

Table 2.4: Comparison of F1 losses when optimizing the F1 loss versus the Ham-
ming loss.
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2.7.4 The Hamming loss and the F1 loss.

In this experiment we do not make use of the quadratic prior, so A = 0. Ta-
ble 2.4 gives the F1 loss we obtain by optimizing either the F1 loss or the Hamming
loss. We compare the implementation of the F1 score minimization in [Petterson
and Caetano, 2011] (carried out using a greedy technique). In that table, “Our F1”
is our own implementation of the support vector technique for F1-loss [Joachims,
2005] using the optimization described in Section 2.4. This is an exact optimization
technique. We also report the results obtained by training SVMs, using the one-
versus-rest scheme. It appears that, on these standard datasets of medium size
(V ≈ 10− 50), optimizing the F1 loss does not yield to better performances than
optimizing the Hamming loss.

2.8 Conclusion

We have proposed a framework to learn a prior for improving the performances
of multi-label classification tasks. This prior takes the form of a quadratic function
over the space of labels and allows us to use both affinities and repulsions. Exist-
ing work [Petterson and Caetano, 2011] only takes into account positive affinities
between labels. We provide semidefinite and spectral relaxations of the learning
problem, yielding to an efficient optimization scheme. In particular the spectral
relaxation permits to deal computationally with datasets rather large (V > 150)
whereas existing algorithms cannot (since the loss-augmented decoding problems
have to be solved many times).

It would be interesting to see how it is possible to leverage the range of ap-
plicability of the semidefinite relaxations which is, for now, limited to multi-label
problems for which V is of the order of hundreds. To that extent, we could use
techniques from matrix optimization theory, taking into account the fact that the
solution we aim at finding has low rank [Journée et al., 2010].

Recent theoretical advances [Dembczynski et al., 2013] have suggested that in-
cluding dependence in data directly in the non linear part of the penalty could
drastically improve the performance of the multi-label classification task. In our
case this can be done pretty easily by considering a non-linear part of the penalty
of the form:

∑
i

xiy>Aiy,

where xi is some 1-dimensional data dependent feature, for instance the projection
on the first dimension obtained by doing a PCA on data.
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Chapter 3

Sequential Structures in Real World
Data and Mahalanobis Similarity
Measure Learning

In this thesis, we focus on problems where sequential structure is involved. We
consider data that come with a natural order. To fix ideas let us start by presenting
two major examples of sequences.

Spatial sequences. The first kind of sequences are spatial ones. These can be met
in various fields of science. For instance, in computational biology, a very large
source of data comes from the study of the number of replications of genes or nu-
cleotides along DNA. They are called arrays of comparative genomic hybridization
(aCGH) [Kallioniemi et al., 1992, du Manoir et al., 1995] and are used for the detec-
tion or classification of cancers [Schleiermacher et al., 2010, Hocking et al., 2013].
These data have a spatial sequential structure given by the order along the DNA.
These data can thus been represented as a vector x ∈ RT where xi is the number
of copies of DNA at location i. The example of OCR that have driven us through
structured prediction in Chapter 1 has also an obvious sequential structure. Char-
acters are naturally ordered on a sheet of paper.

Temporal sequences. Another large class of sequential data comes from tempo-
ral signals. They are ubiquitous in many applications. For instance, in audio,
sounds, music, speeches come with a temporal order which is the one of the record-
ing. These temporal signals are of two kinds: either they are naturally indexed
by discrete times, like financial series [Bai and Perron, 1998, Bolton and Hand,
2002], either they are recordings of natural phenomena such as audio signals in
speech [Gold and Morgan, 2000] or music [Downie, 2008]. In the latter case, time
is continuous and need to be sampled. That way, we can represent the signal in a
computer. There is a whole literature about conditions for a sampling to preserve
all the information in the signal during the discretization process. The most fa-
mous result is the one of Shannon [Shannon, 1948] and Nyquist [Nyquist, 1928]. It
states that, for a of a signal whose maximal frequency is f , it is necessary to sample
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it at rate 2 f to have a non-ambiguous representation of it. In our work, we con-
sider that time has been discretized in a proper manner. In all our applications,
we assume to have sampled uniformly the continuous time into T temporal inter-
vals. All sampling points are thus evenly distributed over the continuous time. In
this manuscript, we always assume that T, the temporal horizon, of the sequence is
finite.

Note that our vocabulary is driven by the temporal case for the sake of simplic-
ity. A temporal sequence as well as a spatial sequence is referred to as a time series.
Each element t ∈ {1, . . . , T} corresponds to a timestamp or index of the time series.

3.1 Problems involving sequential structure

Two main families of problems involve sequential structures: the first ones are
offline. We suppose that the whole sequence has been observed and that the task
at hand is solved afterwards. For instance, for detecting cancers, “aCGH” are of-
ten considered as batch sequences in which breakpoints should be detected retro-
spectively. Indeed, types of cancers and their prognosis are closely related to the
number of alterations along the DNA sequence [Schleiermacher et al., 2010, Hock-
ing et al., 2013]. However, due to the long length of the sequence, change-points 1

in the number of replicates along the DNA cannot be manually found and the se-
quence have to be processed automatically. This leads to a computational problem
we detail in Sec. 3.2.
The second ones are online or real-time in which the task should be performed
“on the fly”. Namely, observations are done sequentially and so is the task. For
instance, this can be the score-following task which aims at synchronizing online
an interpreter to a recorded accompaniment [Cont, 2010]. In this thesis, we only
consider the batch setting.

In this manuscript, we mainly focus on problems involving the underlying se-
quential structure of the data. To fix ideas, let us briefly introduce the three of these
we deal with in this thesis:

1. the change-point detection, which aims at finding the best piecewise-constant
fit to a time series such as the best segmentation in K segments of a noisy
audio recording of a succession of K successive notes,

2. the alignment that aims at aligning a signal on a reference template such as an
audio recording to a partition,

3. the warping that aims at building correspondences between two signals that
might differ in speed, such as two audio recordings of the same musical
pieces.

More formally, let T be the temporal horizon. In this chapter, we define an
atomic sequential problem as:

1. In this work, we mainly use the term change-point. However, in many applications these are
called breakpoints.
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1. a set of authorized decisions Yt, for each timestamp t. We call Y the Cartesian
product of individual authorized decisions Y1×, . . .×Yt. If Yt depends upon
others sets, it must only depends on the past Yt′ then t′ < t.

2. a terminating payoff function VT : YT → R and, ∀t ∈ {1, . . . , T} payoffs
functions Vt : Yt ×Yt+1 → R.

3. an objective of the form:

maximize
y∈Y

T−1

∑
t=1

Vt(yt, yt+1) + VT(yT). (3.1)

For these, we define, for every t < T the value functions restricted to timestamp
t0 by vt0 : Yt0 → R which is such that vt0(yt0)

maximize
y∈{Yt0+1×...×YT}

T−1

∑
t=t0

Vt(yt, yt+1) + VT(yT), (3.2)

and for t0 = T, we define vT = 0. These kind of problems can be solved using the
generic dynamic programming framework of Bellman [1956]. We present there
a more restrictive setup but that is sufficient for the applications we met in this
manuscript.

3.1.1 Dynamic programming algorithm

Dynamic programming algorithms provide a general framework for solving
a problem by recursively dividing it into smaller ones [Bellman, 1956, Bertsekas,
1995, Cormen et al., 2001, Carlier, 1997]. Contrary to other approaches such as
divide-and-conquer, the subproblems recursively solved are not disjoint but over-
lap.

Principle of optimality. When the problem has a sequential structure as before,
the key observation for deriving the dynamic programming technique is the fol-
lowing principle of optimality [Bellman, 1956, Bertsekas, 1995]:

Principle. If the sequence of decisions (y1, . . . , yT) ∈ Y is optimal for the problem
of Eq. (3.1), then for any t ∈ {1, . . . , T− 1}, (yt, . . . , yT) is optimal for the restricted
objective

maximize
Yt×,...,×YT

T−1

∑
t′=t

Vt(yt′ , yt′+1) + VT(yT).

This is rather intuitive, suppose (yt, . . . , yT) were not optimal for a certain t for
Eq. (3.2). Let us call the optimal solution (y′t, . . . , y′T). Then (y1, . . . , yt−1, y′t, . . . , yT)
would have a greater objective value than (y1, . . . , yt, yt+1, . . . , yT) for Eq. (3.1). Let
us now introduce

∀yt ∈ Yt, vt(yt) = max
Yt+1×,...,×YT

Vt(yt, yt+1) +
T−1

∑
t′=t+1

Vt(yt′ , yt′+1) + VT(yT),
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the value of the restricted objective starting at timestamp t with the action yt. Using
the aforementioned principle, it is possible to show [Bellman, 1956, Carlier, 1997]
that the optimal solution of the problem of Eq. (3.2) satisfies the following recursion
called the Bellman update equation:

vt(yt) = max
yt+1∈Yt+1

Vt(yt, yt+1) + vt+1(yt+1). (3.3)

Generic dynamic programming algorithm. The recursive formulation allows us
to use a generic algorithm to solve this problem. It operates in two steps:

1. we compute all the possible values for the value functions vt using the Bell-
man update equation of Eq. (3.3),

2. we find the optimal sequence of decisions (y1, . . . , yT) by tracking back the
solutions and find at each timestamp t ∈ {1, . . . , T − 1},

yt+1 ∈ argmax
y∈Yt+1

{
Vt(yt, y) + vt+1(y)

}
.

If we take as unity of complexity the evaluation of our payoff function, the
complexity of the first step is ∑T

t=1 |Yt|, the sum of the cardinalities of the sets of
authorized decisions Yt at time t. The second step has the same time complexity.

Dynamic programming let us thus deal with problems of the form of the ones of
Eq. (3.1) in polynomial time. Note that without the sequential underlying structure
of the problem, a brute-force algorithm would have led to an algorithm exponen-
tial in time 2.

3.2 Change-point detection problem

Now, let us move to our first sequential problem: the change-point detection.
We start by presenting it using the standard statistical approach before introducing
more algorithmic aspects and casting it as a sequential problem.

Change-point detection is the problem of detecting abrupt changes in the mean
of time series 3of finite temporal horizon T [Basseville and Nikiforov, 1993]. Time
series are assumed to be the realization of some noisy process whose mean is
piecewise-constant during time, but with K abrupt changes. Since time has been
discretized, the notion of a piecewise-constant mean might be fuzzy. Let us be
more precise about this notion. A function of discrete time µ : {1, . . . , T} → Rp is
said piecewise-constant with K segments if∣∣{t ∈ {1, . . . , T − 1}, µ(t) 6= µ(t + 1)}

∣∣ = K− 1.

2. Let us suppose that at each timestamp K decision are possible and the horizon is T, exploring
the space of solution with an exhaustive search approach is of size KT .

3. More generally, change-point detection problems aim at looking for changes in the distribu-
tions of time series, but in our work we restrict to the commonly met case of change-point detection
in the mean.
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The function changes of value K − 1 times. In Fig. 3.1, in the upper right corner,
such a piecewise-constant function is depicted for K = 3. Note that it is equivalent
to say that the function is a K piecewise-constant signal or has K − 1 breakpoints
or change-points. The set of such piecewise-constant functions with exactly K seg-
ments, is referred to asMK. We also denote by

M =
⋃

K∈{0,...,T}
MK.

This problem is ubiquitous in many real-world applications. For instance in
bioinformatics, it is of high importance to be able to detect breakpoints along the
DNA copy number. Indeed, as mentioned earlier, the number of copies along the
DNA (also known as CGH profiles) are heavily linked to cancer prognosis [Picard
et al., 2005, Shah et al., 2007, Hocking et al., 2013]. In finance, detecting abrupt
changes among temporal series have been somehow studied, especially for detect-
ing fraud [Bai and Perron, 1998, Bolton and Hand, 2002].

3.2.1 Statistical approach

In this section, we assume a multivariate time series is given. This can be seen
as p unidimensional time series of temporal horizon T. Thus, we can represent it
by a matrix X ∈ RT×p.

Underlying model. The change-point detection problem is based on the follow-
ing observation model:

Xt = µ∗(t) + εt, (3.4)

where εt are independent and identically distributed noise variables with zero
mean. The function µ∗ : {1, . . . , T} → Rp is a piecewise-constant function of the
time {1, . . . , T} with exactly K segments.

The model is depicted by Fig. 3.1. The change-point detection problem aims at
recovering the piecewise-constant function µ∗. WithMK is the set of all possible
piecewise functions µ with K segments, the output µ̂ is found using a least-squares
approach:

µ̂ ∈ argmin
µ∈MK

T

∑
t=1
‖Xt,. − µ(t)‖2

2. (3.5)

Model selection. Considering the change-point detection problem leads to a ma-
jor concern: the choice of the number of breakpoints or segments of the function µ.
In other words, how do we chooseMK? The minimization problem (3.5) naturally
enforces µ̂ to lie in a set MK with the highest possible number K − 1 of change-
points. In the extreme case, where we consider to minimize the least-squares cri-
terion of Eq. (3.5) over all the setM =

⋃
K∈{1,...T}MK, the function µ̂ selected will

be the one that associates Xt,. to t ∈ {1 . . . T}. This is a case of overfitting. To
circumvent this issue, some works assume the number of changes to be given in
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Figure 3.1: An example of change-point detection problem in dimension 1, the
upper right plot is the mean function µ we aim to find.

advance and thus constrain the model to be chosen in a subset ofM [Picard, 1985,
Harchaoui et al., 2009].
However, this approach might not be totally satisfactory in practice since the num-
ber of change-points is not always known. This is why the question can be adressed
using the theory of model selection [Schwarz, 1978, Lebarbier, 2005, Massart, 2007].
The idea is to replace the criterion of Eq. (3.5) by the following penalized one:

T

∑
t=1
‖Xt,. − µ(t)‖2

2 + pen(µ), (3.6)

and to minimize this criterion over the whole set M. Several penalty functions
have been proposed. We denote by K(µ) the function, that to a piecewise-constant
function µ ∈ M associates the number of different segments in it. The simplest ap-
proach is the one based on the Akaike Information Criterion (AIC) [Akaike, 1973]
that sets pen(µ) to be equal to κK(µ) for some κ > 0.

It has been shown [Lebarbier, 2005] that, for a temporal horizon T and in the
case where the noise εt is Gaussian with variance σ2, a good penalty leading to an
oracle inequality is of the form:

κσ2K + ησ2 log(
T
K
).

More details about this penalty can be found in Proposition 2.4.1 of Lebarbier
[2002].

The problem of adjusting these parameters η and κ is however challenging and
is of high practical importance [Hocking et al., 2013]. Some heuristics and tech-
niques exist to directly tune these [Lebarbier, 2005] but they are not really fully
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satisfactory in practice. In Chapter 4, we propose a way to adjust the parameter κ
of the AIC criterion in a specific case: the one where we are provided supplemen-
tary information in the form of manually segmented training data.

3.2.2 Algorithmic approach

From now on, we only consider the problem when the number of segments K
is set in advance. In this section, we cast the problem of change-point detection as
a partitioning problem.

We call partitioning problem any problem that aims at finding a partition of the
T datapoints into K subsets that are often referred to as clusters. Typically a parti-
tioning problem consists in finding an assignment matrix Y ∈ {0, 1}T×K such that
Yi,k = 1 if and only if datapoint number i is belongs to cluster k. For a partition
of 5 datapoints (1, 2, 3, 4, 5) into the two clusters (1, 2, 4), (3, 5), the corresponding
assignment matrix Y is: 

1 0
1 0
0 1
1 0
0 1

 .

Parametrization of µ. Please keep in mind that µ is a piecewise-constant function
from {1, . . . , T} to Rp, with K segments. It can be represented using the assignment
matrix Y ∈ {0, 1}T×K and a mean matrix µ ∈ RK×p whose k-th row µk,. is exactly
the vector corresponding to the µ(t). That way µ can be identified to the product
Yµ which is a p-dimensional matrix such that its t-th row is equal to the mean vec-
tor µ(t)>. Thus, we have cast the change-point detection problem as a partitioning
one. It aims at clustering the data into K subsets under a temporal constraint that
enforces the contiguity of the segments. Let us denote by Ek the subset of assign-
ment matrices that respect the contiguity constraints. For instance, the matrix of
the previous paragraph does not satisfy the contiguity constraints, but the matrix:

1 0
1 0
0 1
0 1
0 1

 ,

does. The constraints defining the matrices Y of the set Ek can be summarized as
follows:

1. Y is binary: Y ∈ {0, 1}T×k,
2. Y is stochastic: Y1k = 1T (rows sum to one),
3. Y is of rank k (no empty clusters),
4. if Yi,j = 1 then Yi′ ,j′ = 0 for all j′ > j, i′ ≤ i.
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Figure 3.2: An example of the quantity Ind maintained during Alg. 5. this matrix
contains the index of the last change-point detected, in that example, at timestamp
6, the optimal segmentation with one change-point partitions data between times-
tamps 1,2,3 and 4,5,6.

With these notations, the problem of finding the optimal segmentation of the signal
can be seen as the following matrix factorization problem:

minimize
Y∈Ek ,µ∈RK×p

‖X−Yµ‖2
2.

The general problem of partitioning data according to a least-squares criterion
into K clusters is known to be NP-hard in the general case [Aloise et al., 2009]. This
leads to several possible approximation algorithms based either on the K-means
technique [Steinhaus, 1957] or spectral clustering [Ng et al., 2002, Bach and Jor-
dan, 2003, Von Luxburg, 2007]. However, for change-point detection, the temporal
structure reduces the number of authorized partitionings. A dynamic program-
ming algorithm allows us to recover the best possible segmentation in O(T2K)
where T is the length of the time series and K the number of segments. This algo-
rithm is extended in Chapter 4 to deal with the case where the number segments K
is not known in advance and where we optimize the penalized criterion of Eq. (3.6).

Algorithm for change-point detection when the number of clusters is known.
In Alg. 5, we present a classical algorithm (see, e.g, Guthery [1974]) in O(T2K) al-
lowing us to recover the optimal piecewise-constant function µ. The idea is to com-
pute recursively a cost matrix C of dimension K× T whose (k, t)-th element corre-
sponds to the cost of the optimal segmentation with k segments that stops at time t.
Alongside with this matrix, we keep track of the timestamps that have led to the
minimum of the elements of C 4. Then, we perform a backtracking step. Namely,
starting from the end of the time series, we find the timestamp corresponding to
the beginning of the last segment, and we iterate until having recovered the whole
segmentation.

In Chapter 4, we present an other way of looking at the change-point detection
algorithm. Some refinements (based on the iterative pruning of solutions) lead to a
drastically faster algorithm in practice [Rigaill, 2010, Killick et al., 2012]. The mean

4. The matrix Ind is the matrix such that Indk,t is the timestamp corresponding to the last jump
leading to the value Ck,t. See Fig. 3.2
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Algorithm 5 Dynamic programming algorithm to solve the change-point detection
problem with a fixed number of K− 1 change-points

Input X ∈ RT×p, K ∈ {2, . . . , T}
Set C ∈ RK×T, Ind ∈ RK×T

Initialize ∀j, C1,j =
1
j ∑

j
i=1 ‖Xi,. − 1

j ∑
j
t=1 Xt,.‖2

2, Ind(1, j) = 1,
for k = 2, . . . , K do

for t = 1, . . . T do
for j = k, . . . t do

Set α(j) = C(k− 1, j− 1) + 1
t+1−j ∑t

i=j ‖Xi,. − 1
t+1−j ∑t

i=j Xi,.‖2
2

end for
C(k, t) = min(α)
Ind(k, t) = argmin(α)

end for
end for
Backtracking step: Set ∆(K) = T
for i = K, . . . , 2 do

∆(i− 1) = Ind(i− 1, ∆(i))
end for
Output: ∆

complexity of these refinements is in O(KT) but the worst case is quadratic in time.
However in this manuscript we do not make use of these improvements.

Link with dynamic programming. The algorithm we have presented in the pre-
vious paragraph is the dynamic programming one of Sec. 3.1.1 applied to a specific
function value. More formally, let us define Yk as the set of authorized localizations
for change-point k. These decision sets can thus be identified to the sets of times-
tamps {k, . . . , T− (K− k)} (the k-th segment cannot start before the k-th timestamp
and a symmetric condition holds concerning the end of the segment). The payoffs
functions are the negative intra-segment variances, namely:

∀k < K, ∀(i, j) ∈ Yk×Yk+1, Vk(i, j) = − 1
j + 1− i

j

∑
t=i

∥∥Xt,.−
1

j + 1− i

j

∑
t′=i

Xt′ ,.
∥∥2

2− Ij≥i,

and for k = K,
VK(i) = IT(i),

where IC is the convex indicator of the set C. The K-th change-point is in fact a
“dummy” change-point since it is always put at the end of the time series.

3.3 Time warping and alignment problems

Let us detail two problems with sequential structure: time warping and alignment.
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Figure 3.3: An alignment can be seen as an increasing mapping m from {1 . . . T}
to {1, . . . K} such that m(t + 1) = m(t) or m(t + 1) = m(t) + 1. The only moves
llowedin the matrix of size T×K depicted here are the horizontal and the diagonal.

3.3.1 The alignment problem

We first describe the alignment problem. This is a specific instance of the time
warping (TW) problem that will be exposed in Sec. 3.3.2, when one of the signals
is taken as a “reference”. Namely, it is the problem of aligning a time series with
an ordered template that may be, for instance, a symbolic ordered sequence rep-
resenting events occuring in the signal. This problem is ubiquitous: for instance
in computer vision, it is used to localize temporally actions in videos [Bojanowski
et al., 2014]; in music information retrieval, a major problem is the score following
one (or audio-to-partition problem) where the goal is to align an interpretation to
the partition that has been played [Dannenberg, 1984, Vercoe, 1985, Cont, 2010].
Keep in mind throughout this section that the template signal consists in an or-
dered list of symbolic events.

Mathematically, the goal is to find a non-decreasing mapping m from the set of
indexes of the reference signal to set of the indices (timestamps) of the other one.
An example of such an alignment is depicted in Fig. 3.3.

Due to the asymmetry in the roles between the two signals, we propose to de-
note the reference template by XA ∈ RK×p1 and the signal to align by XB ∈ RT×p2 .
The term timestamp thus only applies to the temporal elements of the second signal.
Elements of the first signal are just called elements. Aligning is finding a mapping

m : {1, . . . , T} → {1, . . . , K}

that respects the following constraints:

1. ∀t ∈ {1, . . . , T}, m(t + 1) = m(t) (horizontal move in Fig. 3.3) or m(t + 1) =
m(t) + 1 (diagonal move in Fig. 3.3),

2. m(1) = 1, ( alignment of the two beginnings of sequences)

3. m(T) = K (alignment of the end of the two sequences).

Note that an alignment between a signal of length T and a reference of length
K can be represented by an indicator matrix Y ∈ {0, 1}T×K such that Yij = 1 if
and only if m(i) = j of the other signal. This indicator matrix can be visualized
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in Fig. 3.3. It corresponds to a graphical representation of the mapping m. Note
that the parameterization through Y is the same as the one we have proposed for
the segmentation outputed by the change-point detection algorithm of Sec. 3.2.
Indeed, aligning a signal on a symbolic sequence of length K is purely equivalent to
segmenting this signal into K segments while respecting the contiguity constraints
of Sec. 3.2. However, in the context of alignment, this matrix Y is referred to as an
alignment matrix rather than an assignment one (this term denotes an other object).
The set of possible alignments has thus the same cardinality as the set of possible
segmentations with K segments. This is the number of possibilities to choose K− 1
breakpoints among T − 1 timestamps, that is (T−1

K−1).

Pairwise affinities. Alignment is done by considering pairwise similarities be-
tween elements XA

i,. and XB
j,.. Such a similarity can be measured through

S : Rp1 ×Rp2 → R.

We represent pairwise affinities in a matrix C such that Cij = S(XA
i,., XB

j,.). These
affinities are often non-positive in applications [Müller, 2007]. Note however that
we do not enforce the similarity measure S to produce non-positive affinities. The
goal of the alignment procedure is to recover a mapping m : {1, . . . , T} → {1, . . . , K}
respecting the constraints of the previous paragraph while maximizing the affinity
cost defined by:

T

∑
t=1

Ct,m(t).

Finding this mapping is thus exactly maximizing the value function ∑T
t=1 Ct,m(t)

while having m respecting temporal contiguity constraints. This leads to an effi-
cient dynamic programming algorithm to deal with the temporal structure.

Algorithmic approach. Alignment is generally performed using the technique
described in Alg. 6 Note that its complexity is O(TK). This means in particular
that the comlexity is linear in the time series length TA This algorithm is a dynamic
programming one. Indeed, let IC(x) be the convex indicator 5 of the set C and
define the set of authorized decisions for all t ∈ {1, . . . , T} as Yt = {1, . . . , K}. We
also define the payoff functions ∀t ∈ {1, . . . , T}, ∀yt ∈ Yt, yt+1 ∈ Yt+1:

Vt(yt, yt+1) = −It≥yt + max(Ct,yt − Iyt+1−1(yt), Ct,yt − Iyt+1(yt)),

and for t = T, we define the function

∀yT ∈ YT , VT(yT) = CT(T, yT)− Iyt(K).

5. That is IC(x) = 0 if x ∈ C and +∞ elsewhere.
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Algorithm 6 Dynamic programming algorithm for aligning temporal sequence. It
recovers m the mapping corresponding to the alignment and that maximizes the
similarity criterion.

Input: C the cost matrix associated to the temporal signals to align.
Set D ∈ RT×K, m ∈ RT

for t = 1, . . . , T do
for k = 1, . . . , K do

Dkt = max(Dk−1,t−1 + Ck,t, Dk,t−1 + Ck,t)
end for

end for
Recover m by backtracking: m(TA) = K
while m(t) > 1 or t > 1 do

if m(t) = t then
m(t− 1) = t− 1

else
v = argmaxi∈{m(t),m(t)−1}(Di,t−1)

m(t− 1) = v
end ift = t− 1

end while
Output: Optimal mapping m.

Thus, the goal of the alignment procedure is exactly to maximize the cost:

T−1

∑
t=1

Vt(yt, yt+1) + VT(yT).

Doing so using the generic dynamic programming algorithm presented in Sec. 3.1.1,
leads to Alg 6.

3.3.2 The general time warping problem

Time warping problem is at stake when there is no signal of reference and we
want to build a correspondence between elements of two different time series. This
occurs in music, where two audio interpretations of the same piece need to be
aligned as a front-end task of any audio editor [Müller, 2007]. It also occurs in
video, where two video samples can depict the same action and need to be put
in correspondence. The original time warping problem has been introduced for
spoken word recognition in speech processing [Sakoe and Chiba, 1978]. More gen-
erally, finding a warping of time can be a way to find patterns in time series im-
proving the understanding we have of them, and allows us to extract meaningful
information [Berndt and Clifford, 1994, Noma, 2002, Cuturi et al., 2007].

Let us suppose we are given two temporal series XA ∈ RTA×pA
and XB ∈

RTB×pB
. Thus, both of these are sequences of timestamps. The dynamic time

warping problem aims at finding pairs of indexes (tA, tB) that are in correspon-
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Figure 3.4: Example of a warping between indices of two time series. Note that,
contrary to alignment we authorize vertical moves. Thus, a warping is a path from
(1, 1) to (TA, TB) with horizontal, diagonal and vertical moves.

dence while respecting a certain underlying temporal constraint of contiguity of
the successive pairs. The approach to tackle this problem is very similar to the one
of alignment. The only difference lies in the fact that one actually does not want is
an alignment (that is a mapping between timestamps and an order set of symbolic
events) but rather a warping (or warp). This object can be thought as a bidirectional
deformation of the indexes of the two temporal series. More formally, we look for a
common temporal abscissa for re-indexing the time series. Namely, we are looking
for T such that max(TA, TB) ≤ T ≤ TA + TB and a mapping

m : {1, . . . , T} → R2,
m(t) = (α(t), β(t)),

such that:

1. m(1) = (1, 1), (first timestamps of the temporal series are warped together)

2. m(T) = (TA, TB), (last timestamps of the temporal series are warped)

3. ∀t ∈ {1, . . . , T − 1}, m(t + 1) = m(t) + (1, 1) (diagonal move) or m(t + 1) =
m(t) + (0, 1) (vertical move) or m(t + 1) = m(t) + (1, 0) (horizontal move).

An example of warping is depicted in Fig. 3.4.

Warping and pairwise affinities. As in the alignment case, we assume to have
some similarity measure S : RTA × RTB → R. The comparison scores between
each indexes tA and tB of the two time series are encoded in a pairwise affinity
matrix C. These scores are often non-positive, for instance in music where S is
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often set to be the negative Euclidean distance between timestamps [Müller, 2007].
However, except when we explicitly say it, we never assume non-positivity of the
entries of C. The standard dynamic time warping problem aims to maximize:

T

∑
t=1

Cm(t).

Note that this is really close to the criterion maximized for alignments. Like for
alignments, there is an efficient algorithm letting us able to solve this problem is
O(TATB). Note that this complexity is linear in the respective lengths of the first
time series. This algorithm is detailed more in details in Chapter 5.

Further refinements. We can often have a strong prior concerning the shape of
the warping because of the task at hand. For instance, the “diagonal” warping that
corresponds to an uniform warping 6 of the two temporal series is widely used in
speech [Myers and Rabiner, 1981]. To favor such solutions, it has been proposed
to constrain the space of possible warpings so that a warping path cannot be too
far from the diagonal. Practically this corresponds to only authorize paths within
the so-called “Sakoe and Chiba band” [Sakoe and Chiba, 1978] or the “Itakura
parallelogram” [Itakura, 1975].

The shape of the output of the alignment algorithm 6 and DTW algorithm 8
depends upon the matrix C that encodes pairwise affinities. This matrix is set using
the similarity measure S yet. However the choice of S has not been discussed in
this section. It is of crucial practical importance since different S might lead to
totally different outputs for the algorithm. Tuning such a similarity measure by
hand is often hard and requires a lot of expert knowledge. The need for adjusting
similarity measures goes far beyond the cases of alignment, change-point detection
or time warping. A whole field of machine learning is dedicated to design good
algorithms to learn similarity measures for various tasks. The next section reviews
some of the common ways to address the problem of learning such a similarity
measure.

3.4 Similarity measure learning

Similarity measures are fundamental tools for machine learning, data mining
and signal processing. Given an input set X in which datapoints lie, these mea-
sures can be seen as functions S : X × X → R that score pairs of inputs. Indeed,
the need for comparing datapoints or events happening at different timestamps is
ubiquitous. For instance, clustering tasks rely on minimizing a similarity measure
between points [Jain and Dubes, Berkhin, 2006]. For example, given T datapoints
xi ∈ Rp, the K-means algorithm aim at finding subsets of data C1, C2, . . . , CK such

6. This alignment is the one that is the closest of the straight line from (1, 1) to (TA, TB) in
Fig. 3.4.



3.4. SIMILARITY MEASURE LEARNING 89

that:
K

∑
k=1

∑
xi ,xj∈Ck

‖xi − xj‖2
2,

is minimal. The similarity underlying K-means is thus the squared L2 distance
between datapoints. The choice of an other similarity measure yields to other al-
gorithms. For instance using the L1 distance leads to the K-medians [Bradley et al.,
1997].

For multiclass classification, the widely used K-Nearest neighbour classifier
[Fix and Hodges Jr, 1951, Cover and Hart, 1967] heavily relies on the choice of
a good similarity measure.

In information retrieval, the need for similarity measure arises everywhere.
Given a query and D documents, we need to score the relative relevance between
these. Generally this problem is addressed using ranking algorithms [Baeza-Yates
and Ribeiro-Neto, 1999, Liu, 2009].

These crucially depends on the similarity measure used to compare objects. We
could find a lot of other examples in various areas of science and signal processing.
In the two next chapters, we will focus on the design of these for the change-point
detection task, the warping and alignment problems. We can then wonder if it
is possible to design automatically such similarity measures. A large amount of
work have been done in that direction. In the next section we propose to detail
some underlying principles of the similarity measure learning field.

3.4.1 General setting

In this section, we describe formally how it is possible to learn a similarity mea-
sure from data. Before going further, let us describe some mathematical vocabulary
that we will stick to in the rest of this chapter.

Some definitions. In the similarity measure learning litterature, the word metric
is often used to name the similarity measure learned. However, in some important
cases the similarity measure learned is not a metric strictly speaking. To avoid any
confusion, we propose here to fix the vocabulary we use in this manuscript. Let S
be a function from X ×X to R, where X is the input space. We call S :

– a similarity measure if S is symmetric, i.e.,

∀x, y ∈ X , S(x, y) = S(y, x),

– a non-negative similarity measure if S(x, y) is symmetric, non-negative for all
pairs (x, y),

– a quasimetric if S is non-negative, symmetric, and satisfy triangle inequality.
Namely if

∀x, y, z, S(x, z) ≤ S(x, y) + S(y, z),

– a semimetric if S is non-negative, symmetric and satisfy the separation axiom:
S(x, y) = 0 if and only if x = y,
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– a metric if S is both a quasimetric and a semimetric (if S is a distance).
Most of the so-called metric learning algorithms learn in fact a quasimetric,

which satisfies all the axioms of the definition of a distance except the separation
one: two distinct points can have similarity 0.

Now, let us suppose to have at hand some task and data on which we want
to perform it. We also assume to have some information about which datapoints
should be close and which ones should not. We assume throughout this section
our data lies in some vector space. Namely, X ⊂ Rp.

Vocabulary and data. In similarity measure learning, we can be provided several
kind of data:

1. The first one are fully labelled datasets for the task at hand. In the case of
nearest neighbours for instance, this can be whole multiclass datasets. For
ranking, it can be a whole dataset with fully ranked objects etc.

2. The must-link constraints set S is the set of all pairs of inputs (x1, x2) that
should be close according to the similarity learned. Such a constraint is de-
noted by x1 ∼ x2.

3. The cannot-link constraints set D is the set of pairs that should be dissimi-
lar.We denote such a constraint by x1 � x2.

4. The set R is the set of triplets such that (x1, x2, x3) such that x1 should be
more similar to x2 than x3. These are often called the relative constraints [Bellet
et al., 2013].

Note that must-link/cannot-link constraints are different in essence from la-
beled data for the task at hand. From labeled data, it is often possible to build sets
S and D, but there is often more in the fully labeled data. For instance, for the
alignment problem seen in the previous section, a fully time-stamped time series
provides must-link/cannot-link constraints, but this information loses the sequen-
tial aspect of data.

Among the standard similarity measure algorithms, we can distinguish two
major families depending on the input data they require.

Generic similarity measure learning techniques. The first ones are agnostic to
the task at hand. They only make use of the sets of D, R, S . These methods
learn a metric by adjusting a cost that jointly enforces must link pairs to be similar
and cannot-link to be dissimilar. Among these, we can mention the approach of
information theoretical metric learning (ITML) [Davis et al., 2007] or the relevant
component analysis of [Bar-Hillel et al., 2005, Shental et al., 2002].

Task-dependent similarity measure learning. The second ones are specifically
designed for learning a task-specific similarity measure. They thus make use of
fully labeled datasets for the task at hand in top of the sets D, R, S . Some spe-
cific techniques have been designed for instance for the K-means algorithm [Xing
et al., 2002], the K-nearest neighbours [Goldberger et al., 2004, Weinberger and
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Saul, 2009], and ranking ones [Mcfee and Lanckriet, 2010, McFee et al., 2012]. The
approaches that we propose in Chapters 4 and 5 fall in that category.

3.4.2 Mahalanobis (quasi)metric learning

As underlined by recent and comprehensive surveys about similarity measure
learning like Bellet et al. [2013] or Kulis [2012], among the several forms of sim-
ilarity measure, the most widely learned is the Mahalanobis similarity measure.
In this manuscript, we focus on this specific case. For two datapoints x and x′ in
Rp, the Mahalanobis similarity measure parametrized by the semidefinite positive
matrix W � 0 is the function:

S(x, x′; W) =
√
(x− x′)>W(x− x′).

Note that in this context we are thus learning either a quasinorm or a norm. If we
introduce the matrix L as the semidefinite positive square root of W, we can see
the use of the Mahalanobis differently. It is equivalent to taking the standard Eu-
clidean distance after having applied to the original data x, x′ the linear mapping
corresponding to L. Mahalanobis learning measure can be seen as the learning of
the optimal linear transformation of data for the task at hand.

In the following, we describe generic algorithms for learning such a quasimet-
ric that do not depend of the task at hand. Then we will move on task-specific
examples and present some approach to deal with the K-nearest neighbours classi-
fication. Note that all the algorithms we describe in this section learns the squared
Mahalanobis quasimetric

(x− x′)>W(x− x′),

which is linear in W leading to tractable convex optimization problems.

Some general similarity measure learning algorithms.

Given sets S ,D,R defined as in Sec. 3.4.1, there are algorithms that, indepen-
dently from any task at hand, can learn a Mahalanobis quasimetric. We propose to
explore two of the most famous ones: the relevant component analysis (RCA) [Bar-
Hillel et al., 2005, Shental et al., 2002] and the original information-theoretic simi-
larity measure learning (ITML) [Davis et al., 2007, Jain et al., 2012].

RCA. The original RCA algorithm [Shental et al., 2002, Bar-Hillel et al., 2005]
only makes use of must-link equivalence relations, that is the only input is the set
S . From the must-link constraints, RCA starts by building K subsets of data called
chunklets (C1, . . . , CK) from the must-link constraints. These are the transitive clo-
sure of the relations (if x1 ∼ x2 and x2 ∼ x3 then x1, x2 and x3 are in the same
chunklet). Then the algorithm computes the sum of within chunklet variance, that
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is, if mk is the mean vector of the k-th chunklet:

Σ =
1
N

K

∑
k=1

∑
xi∈Ck

(xi −mk)(xi −mk)
>.

The semidefinite positive matrix associated to the metric of RCA is then just the
inverse of Σ (W = Σ−1, or the pseudo inverse in the case where Σ is not invert-
ible). This matrix can be interpreted as the maximum likelihood estimate of the
inverse covariance matrix in a Gaussian model in which each chunklet would be
one class and in which all the covariance matrices are equal. In practice, RCA
is used for dimensionality reduction [Bar-Hillel et al., 2005] since it allows us to
use task-dependent knowledge, in the form of must-link constraints to define the
chunklets and thus build a notion of “relevant variability” for the task. RCA has
been extended to handle must-not link constraints. However this algorithm is less
used than the standard RCA one due to its practical cost [Yeung and Chang, 2006].

ITML. Given sets S andD, the idea behind this algorithm is to consider the prob-
lem of learning a squared Mahalanobis quasimetric by solving an optimization
problem of the form:

minimize
W�0,ξi,j≥0

∑i,j ξi,j + λΩ(W, W0) (3.7)

s.t. (xi − xj)>W(xi − xj) ≤ u + ξi,j, ∀(xi, xj) ∈ S
(xi − xj)>W(xi − xj) ≥ v− ξi,j, ∀(xi, xj) ∈ D

where parameters λ, u and v have to be set carefully. The u parameter tunes the be-
haviour of the pairs of datapoints that should be similar whereas the v one makes
sure that dissimilar pairs are far away according to the similarity measure induced
by W. The main contribution of [Davis et al., 2007], have been to consider for the
regularizer Ω the log-det divergence. This Bregman divergence is defined, for a
semidefinite positive matrix W � 0, and a positive definite matrix W0 � 0 7 as:

Ω(W, W0) = Tr(WW−1
0 )− log det(WW−1

0 ).

This divergence justify the name Information Theoretic Metric Learning (ITML).
The log-det divergence corresponds to the Kullback-Leibler divergence between
two multivariate Gaussian probability distributions of the same mean but one with
covariance W0 and the other one W. This divergence encodes a prior knowledge
about the form of the Mahalanobis quasimetric to learn. It keeps the quasimetric
“not far” from the metric induced by the matrix W0

8. In many applications, taking
W0 close to the identity of Rp is sounded when data are not too noisy [Davis et al.,

7. The matrix W0 is thus associated to an actual metric.
8. Simply taking the matrix gradient of this divergence to 0 yields to see that this divergence is

minimal for W = W0.
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2007].
Let us now describe how a similarity measure learning can be specifically de-

signed for a task. We focus in the next section on an historical and important
example: the nearest-neighbour classification problem.

Important example: the nearest neighbours classification

For the sake of completeness, we recall here the standard algorithm of K-nearest
neighbours classification. We are given training instances (xi, yi). To classify a new
instance x, the idea is to predict by doing a majority vote. The new datapoint x
will receive the same label as the majority label among its K-nearest neighbours
the (x1, . . . , xN). The notion of neighbourhood crucially depends on the similarity
measure at stake. Neighbours are generally computed according to the standard
Euclidean norm ‖ · ‖2. In case of equality in the votes, we predict randomly one of
the majority labels.

In this algorithm, there is a need for adjusting the similarity measure. For char-
acters recognition [Simard et al., 1993, Belongie et al., 2002] it has been shown
that fine engineering of a similarity measure can drastically improve the perfor-
mance of nearest neighbours classifiers. Classification depends on the geometry
of the space. The idea behind algorithms that learns the similarity measure it is
to replace the standard Euclidean metric by a Mahalanobis (quasi)one of the form
∀x, y ∈ Rp, S(x, y) =

√
(x− y)>W(x− y). Different approaches have been pro-

posed for this learning problem. Two of the most used ones are the large-margin
nearest neighbour (LMNN) [Weinberger and Saul, 2009] approach and the neigh-
borhoud component analysis (NCA) [Goldberger et al., 2004]. Recent works try to
go beyond these approach, especially by learning local similarity measure for dif-
ferent regions of the space [Weinberger and Saul, 2008, Zhan et al., 2009, Shi et al.,
2014].

The RCA as well as LMNN proposes to learn a square root of the semidefinite
positive matrix W ∈ Rp×p rather than W directly (leading to a non-convex pro-
gram but allowing to control the rank r of the semidefinite positive matrix). Let us
call L ∈ Rp×r one of the minimal rank matrices such that W = LL>.

Large-margin nearest neighbours (LMNN). The first method tries to learn L in
such a way that for each training input xi and associated label yi, its K nearest
neighbours have the same label. The intuition is depicted in Fig. 3.5. This intuition
can be formalized mathematically by considering the two following sets of must-
link/relative constraints:

– S = {(xi, xj), yi = yj}.
– R = {(xi, xj, xk), (xi, xj) ∈ S, yi 6= yk}.
Using these notations, [Weinberger and Saul, 2009] proposes to learn L using a

non-convex 9 objective function that realizes a compromise between one grouping
term for the “target neighbours” of the training instances and a margin term trying

9. Note that, however, the formulation using W is.
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Figure 3.5: An example of how a typical metric learning algorithm works. We con-
sider there the large-margin nearest neighbours one. In this examples the training
data are in dimension 2 and there are two labels: green squares and blue points.
The goal is to change the geometry of the space so that similar examples are close
according to the distance. On the left, we have the original space, and on the right
the space after the linear transformation induced by L, the output of LMNN.

to pull away the examples that have not the same label. This leads to the following
large-margin minimization program:

minimize
L∈Rp×r

λ ∑i,j,k ξijk + (1− λ)∑(xi ,xj∈S)(xi − xj)>L>L(xi − xj),

(xi − xk)>L>L(xi − xk)− ξijk ≥ 1− (xi − xj)>L>L(xi − xj).

Neighbourhood component analysis. The second method, the neighbourhood
component analysis [Goldberger et al., 2004], seeks to optimize the following pro-
gram:

maximize
L∈Rp×r ∑

i
∑

j,yj=yi

exp(−‖Lxi − Lx‖2
2)

∑k 6=i exp(−‖Lxi − Lxk‖2
2)

.

We can interpret this nonconvex objective as looking for a linear transformation of
the space that minimizes the classification error using a stochastic classifier 10 of
the form of the one in the cost function.

Note also that more generic similarity measure learning techniques such as
RCA one or ITML can also be used to learn a Mahalanobis similarity measure in
that context.

In Chapter 4, we focus on a specific type of task where the need for a good
similarity measure arises: partitioning ones. Namely, the goal is to group the data
into clusters such that the sum of some intra-class similarities is the lowest. For the
specific cases of change-point detection and K-means distortion (see e.g, [Hastie
et al., 2009]), we propose to learn a metric in a fully supervised way.

In Chapter 5, we focus on the way to learn a good similarity measure for the
time warping problem

10. That is a classifier, that gives to a new instance x the same label as a training instance xi drawn

according to px(xi) =
exp(−‖Lxi−Lx‖2

2)

∑k 6=i exp(−‖Lxi−Lxk‖2
2)

.



Chapter 4

Similarity Measure Learning for
Constrained Partitioning Problems

Abstract

We consider unsupervised partitioning problems based explicitly or
implicitly on the minimization of Euclidean distortions, such as clus-
tering, image or video segmentation, and other change-point detection
problems. We emphasize on cases with specific structure, which in-
clude many practical situations ranging from mean-based change-point
detection to image segmentation problems. We aim at learning a Ma-
halanobis metric for these unsupervised problems, leading to feature
weighting and/or selection. This is done in a supervised way by as-
suming the availability of several (partially) labeled datasets that share
the same metric. We cast the similarity measure learning problem as
a large-margin structured prediction problem, with proper definition
of regularizers and losses, leading to a convex optimization problem
which can be solved efficiently. Our experiments show how learning
the metric can significantly improve performance on bioinformatics,
video or image segmentation problems.

Most of the material of this chapter is based on the conference paper:
R. Lajugie, S. Arlot, F. Bach, Large-Margin Metric Learning for Con-
strained Partitioning Problems, In Proc. ICML, 2014.

4.1 Introduction

Unsupervised partitioning problems are ubiquitous in machine learning and
other data-oriented fields such as computer vision, bioinformatics or signal pro-
cessing. Their goal is to produce a partition of the data such that the subsets 1 have
some high-level interpretation. They include:

1. That are often referred to as clusters.
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1. traditional unsupervised clustering problems, with the classical K-means al-
gorithm, hierarchical linkage methods [Gower and Ross, 1969] and spectral
clustering [Ng et al., 2002],

2. unsupervised image segmentation problems where two neighbouring pixels are
encouraged to be in the same cluster, with mean-shift, techniques [Cheng,
1995] or normalized cuts [Shi and Malik, 1997],

3. change-point detection problems adapted to multivariate sequences (such as
video) where segments are composed of contiguous elements, with typical
window-based algorithms [Desobry et al., 2005] and various methods look-
ing for a change in the mean of some features [Chen and Gupta, 2011].

All the algorithms mentioned above rely on a specific distance (or more gen-
erally a similarity measure) on the space of configurations. Using a good dis-
tance is crucial to their performance, especially in high-dimensional settings where
many dimensions may be irrelevant to the partitioning task. Its choice is heavily
problem-dependent. While the design of such a similarity measure has originally
been tackled manually (often by trial and error), recent work has considered learn-
ing such similarity measure directly from data. Without any supervision, the prob-
lem is ill-posed and methods based on generative models may learn a metric or
reduce dimensionality (see, e.g., [De la Torre and Kanade, 2006]), but in general
with no guarantees that they lead to better partitions. In this chapter, we consider
the same goal as Bar-Hillel et al. [2005], Xing et al. [2002] ,Finley and Joachims
[2005] and , Bach and Jordan [2006] that is learning a similarity measure for one
or several partitioning problems sharing a common geometry, assuming that one
or several fully (or partially) labeled partitioned datasets are available during the
learning phase. While such labeled datasets are expensive to produce, there are
several scenarios where those datasets have already been built, often for evalua-
tion purposes. These occur for video segmentation tasks (see Section 4.5.4), image
segmentation tasks (Section 4.6.2) as well as change-point detection tasks in bioin-
formatics (see [Hocking et al., 2013] and Section 4.4.2). This global framework is
sometimes referred to as supervised clustering [Finley and Joachims, 2005, 2008].

Related work. The need for similarity measure learning goes far beyond unsu-
pervised partitioning problems. Weinberger et al. [2006] proposed a large-margin
framework for learning a quasimetric 2 specifically designed for nearest-neighbours
algorithms based on sets of must-link/cannot-link constraints, while Goldberger
et al. [2004] considered a probability-based non-convex formulation. For these
frameworks, a single dataset is fully labeled and the goal is to learn a metric lead-
ing to good testing performance on unseen data. Similarity measure learning has
also been considered in semi-supervised clustering of a single dataset, where some
partial constraints are given. This includes the works of Bar-Hillel et al. [2005] and
the non-convex approach of Xing et al. [2002]. As shown in Section 5.5, these can be
used in our setting as well by stacking several datasets into a single one. However,

2. A quasimetric satisfies all the axioms of a distance except the separation one. Please note that
the vocabulary of similarity measure learning is recalled in Sec. 3.4.1 of chapter 3.
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our discriminative large-margin approach outperforms these, because we consider
explicitly the clustering performance, for each dataset. Moreover, these approaches
cannot readily use additional prior knowledge on the partitions such as its poten-
tial sequential structure.

The task of learning how to partition has also been tackled by Bach and Jor-
dan [2006] for spectral clustering. The problem set-up is the same (availability of
several fully partitioned datasets). However, their formulation is non-convex and
relies on the unstable optimization of eigenvectors.

Finley and Joachims [2005] considered the same convex large-margin set-up
as ours but for correlation clustering, a clustering method based on greedy algo-
rithms or convex relaxations. This approach can be seen as special case of our
work, when the number of subsets of the partition is known in advance and when
the optimization is conducted in an approximate manner 3.

Other approaches do not require any supervision [De la Torre and Kanade,
2006], and perform simultaneous dimensionality reduction and clustering, by al-
ternating between the computation of a low-rank matrix and clustering of the data
using the corresponding metric. However, they cannot take advantage of the la-
beled information that we use.

Our approach can also be related to the work of Szummer and Hoiem [2008]:
given a small set of labeled instances, they use a similar large-margin framework,
inspired by Tsochantaridis et al. [2005] and Taskar et al. [2003], to learn parameters
of Markov random field, using graph cuts for solving the loss-augmented decoding
problem of structured prediction. However, their segmentation framework does
not apply to unsupervised segmentation, which is one of the goals of this chapter.
In this chapter, we present a supervised learning framework aiming at learning
how to perform an unsupervised task.

Structured SVM have been used to solve other learning problems, for instance
to learn weights for graph matching [Caetano et al., 2009] or a metric for ranking
tasks [Mcfee and Lanckriet, 2010]. In computer vision, it has also been used to
build task-driven image representations [Kim et al., 2013].

Beyond existing approaches. The existing approaches for learning the metric for
unsupervised partitioning problems in a supervised way have two main draw-
backs:

1. they are unable to deal clearly with the common case in which the number
of clusters in the data is unknown a priori except in the case of Finley and
Joachims [2005] for which unknown number of cluster is indirectly taken into
account,

2. they cannot make use of any prior knowledge concerning the shape of parti-
tions, which is a significant limitation because in most applications, such an
extra prior information 4 is available.

3. See Sec. 4.6.2 for a more detailed comparison
4. For instance, in image segmentation this can be the spatial contiguity of the subsets, and

for detecting changes in the distribution of time series, such a prior is the sequential contiguity of
subsets.
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Dealing with unknown number of clusters. None of the aforementioned meth-
ods is suited for learning a penalty term for selecting the number of clusters, as
they do not include any model selection term. However, the scenario where the
number of clusters is unknown is in practice very common. For instance in bioin-
formatics for a-CGH segmentation [Hocking et al., 2013], it is unrealistic to assume
to know a priori in how many segments a sequence should be split. The same
remark holds for the segmentation of long videos: at test time, it is not realistic
to assume the number of segments is known. We explore these applications in
Sections 4.5.4 and 4.5.5.

Hard priors. A common prior is the sequential structure that can be found ev-
erywhere in signal processing, from audio [Gillet et al., 2007] to bioinformatics
with a-CGH or EEG segmentation [Hocking et al., 2013, Brodsky and Darkhovsky,
1993]. Our work focuses on hard-coding such a prior by restricting the set of au-
thorized partitions. This leads to the well-known change-point detection problem.
In particular, we show that in this case and using a similar structured SVM as in
Finley and Joachims [2008], the loss-augmented decoding problem can be solved
exactly in polynomial time using a dynamic programming algorithm.

Soft priors. A popular application of clustering is image segmentation. Unfortu-
nately, simple K-means-based algorithms do not take into account the two-dimensional
structure and do not lead to meaningful partitions. In this chapter, we consider
adding a Laplacian-based penalty term that takes into account the spatial struc-
ture, for which the similarity measure can be learned efficiently.

Summary. We make the following contributions:
– We propose an efficient algorithm, based on the large-margin framework for

structured prediction of Tsochantaridis et al. [2005] that learns a similarity
measure for some commonly used partitioning problem. To that extent, we
assume to be given several labeled datasets sharing the same metric. Our
algorithm chooses automatically the number of clusters at test time, and can
deal with hard or soft structural priors about the partitions. We first focus on
a structural sequential prior, that is closely related to the standard mean-based
change-point detection problem. Then, we consider a structural spatial prior
that we apply to an image segmentation problem. Experiments in Section 4.5
show that our algorithm leads to a metric that significantly improves the per-
formance over the Euclidean one. We support our claim by experiments as
well on synthetic examples as well as on real-world ones.

– When imposing that subsets of the partition should have some sequential
contiguity (change-point detection), we propose a dynamic programming al-
gorithm that can solve the loss-augmented decoding problem in polynomial
time (Algorithm 7).

– We try to leverage our approach to a much broader setting by going beyond
full supervision. We propose an extension of our algorithm that can learn a
similarity measure from partially labeled datasets (Section 4.4.2).
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– We show in Section 4.4.2 how our approach can help in detecting changes in
the full distribution of univariate time series, rather than only in the mean.
We propose an application to the segmentation of genomics data in bioinfor-
matics.

4.2 Partitioning through matrix factorization

In this section, we consider T multi-dimensional observations x1, . . . , xT ∈ Rp,
which may be represented in a design matrix X ∈ RT×p. Partitioning the T obser-
vations into K clusters or subsets is equivalent to finding an assignment matrix

Y ∈ {0, 1}T×K ,

such that Yij = 1 if the i-th observation is assigned to cluster j and Yi,j = 0 oth-
erwise. For general partitioning problems, no additional constraints are used, but
for change-point detection problems, it is assumed that the subsets are contiguous
and with increasing labels. That is, the matrix Y is block-diagonal with each block
equals to 1Tj , where 1Tj ∈ RTj is the Tj-dimensional vector with constant compo-
nents equal to one, and Tj is the number of elements in cluster j. For any partition,
we may re-order the data points so that the assignment matrix has the same form;
this is useful for the understanding of partitioning problems. For instance, for a
change-point detection task, an authorized assignment matrix for a partition in
K = 3 contiguous subsets can be:

Y =

1T1 0 0
... 1T2

...
0 0 1T3

 ,

4.2.1 Distortion measure

In this chapter, we consider partitioning problems where each datapoint in clus-
ter j is modeled by a vector (often called a centroid or a mean) cj ∈ Rp, the overall
goal being to find a partition and a set of means so that the distortion measure

T

∑
i=1

K

∑
j=1

Yij‖xi − cj‖2 =
T

∑
i=1

K

∑
j=1

Yij‖Xi,. − cj‖2

is as small as possible. 5. By considering the Frobenius norm defined for A ∈ RT×p

through ‖A‖2
F = Tr(AA>) = ∑T

i=1 ∑
p
j=1 A2

ij, this is equivalent to minimizing

‖X−YC‖2
F (4.1)

5. Recall that here ‖ · ‖ is the Euclidean norm of Rp.
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with respect to assignment matrices Y and centroid matrix C ∈ RK×p. This is a
matrix factorization problem where the goal is to represent X more compactly.

4.2.2 Representing partitions

Following Bach and Jordan [2006], the quadratic minimization problem in C
can be solved in closed form, with solution 6

C = (Y>Y)−1Y>X.

So, the partitioning problem that aims to minimize Eq. (4.1) when the number K of
clusters is set by advance, is equivalent to:

minimize
Y∈{0,1}T×K , Y1K=1p

‖X−Y(Y>Y)−1Y>X‖2
F . (4.2)

Thus, the problem is naturally parameterized by the T×T-matrix M = Y(Y>Y)−1Y>.
The output of any algorithm aiming at solving this problem can thus be repre-
sented as such a matrix. This, which we refer to as a rescaled equivalence matrix, has
a specific structure. The matrix Y>Y is diagonal, with i-th diagonal element equal
to the number of elements in the i-th cluster. Thus, Mij = 0 if i and j are in differ-
ent clusters, otherwise Mi,j equals to 1/Tj where Tj is the number of elements in
the cluster containing the i-th data point. If the points are re-ordered so that the K
subsets have a contiguity structure 7, then M is block-diagonal with blocks 1

Tj
11>,

j = 1, . . . , K. For instance M can have the following form

M =


1
T1

11> 0 . . . 0

0 . . . . . . ...
... . . . . . . 0
0 . . . 0 1

TK
11>

 . (4.3)

In this chapter, we represent partitions through this rescaled equivalence matrix.
Note its difference with alternative representations such as the equivalence matrix
YY> which has the same non-zero entries but whose values are in {0, 1}. This is a
commonly used representation for image segmentation [Joulin et al., 2010].

We denote byMK the set of rescaled equivalence matrices with K clusters, i.e.,
matrices M = Y(Y>Y)−1Y> ∈ RT×T for some assignment matrix Y ∈ RT×K. For

6. This can be found by computing the gradient with respect to C of the distortion measure of
Eq. (4.1) and setting it to zero. This gradient is indeed g(C) = 2Y>YC− 2Y>X.

7. Formally, for a given partition in K subsets, let us call c : {1, . . . , T} → {1, K} the mapping
that assigns each index i of a datapoint xi to the index of the subset of the partition to which it is
assigned. Thus, reordering means that we find a permutation π of {1, . . . , T} such that

∀k ∈ {1, . . . , K}, {t, c(π(t)) = k}

is a contiguous subset of {1, . . . , T}.
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situations where the number of clusters is unspecified, we denote byM the union
of allMK for K ∈ {1, . . . , T}.

Note that the number of clusters may be obtained from M, since for every M ∈
MK

Tr(M) = Tr
(
Y(Y>Y)−1Y>

)
= Tr

(
(Y>Y)−1Y>Y

)
= K.

This can also be seen by noticing that M2 = Y(Y>Y)−1Y>Y(Y>Y)−1Y> = M, i.e.,
M is a projection matrix, with eigenvalues in {0, 1}, and the number of eigenvalues
equal to one is exactly the number of clusters. Thus,

MK =
{

M ∈ M, Tr M = K
}

.

Learning the number of clusters K. Given the number of clusters K, we have
seen from Eq. (4.2) that the partitioning problem consists in

minimize
M∈MK

‖X−MX‖2
F, . (4.4)

which is equivalent to:

minimize
M∈MK

Tr
[
XX>(I −M)

]
.

Note that in change-point detection problems, an extra constraint of contiguity of
subsets is added (see Section 4.2.3).

In the common situation where the number of clusters K is unknown, it may
be estimated directly from data by penalizing the distortion measure with a term
proportional to the number of clusters. This is an usual approach in the change-
point detection literature [Lavielle, 2005], and can be traced back to the AIC crite-
rion [Akaike, 1974]. Given that the number of clusters for a rescaled equivalence
matrix M is Tr M, this leads to the following penalized formulation:

minimize
M∈M

{
Tr
[
XX>(I −M)

]
+ λ Tr M

}
. (4.5)

The extra-parameter λ has to be finely tuned. Some approaches do it a priori [Lebar-
bier, 2005], without using any supplementary data. The similarity measure learn-
ing algorithm of Section 4.3 learns this extra parameter λ, but makes use of anno-
tated data.

Thus, the two types of partitioning problems (with fixed or unknown num-
ber of clusters) can be cast as the problem of maximizing a linear function of the
form Tr(AM) with respect to M∈M, with the potential constraint that Tr M = K.
In general, such optimization problems can not be solved in polynomial time. In
Section 4.2.3, we present a polynomial-time dynamic programming approach that
can solve the problem with additional hard contiguity constraint. For general sit-
uations, the K-means algorithm, although not exact, can be used to get a good
partitioning in polynomial time when A is positive semidefinite. In Section 4.2.4,
we provide a spectral relaxation, which can be used when adding a soft constraint.
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We now consider two variants of the Euclidean distortion model for partition-
ing that we have presented so far by including in it some knowledge directly com-
ing from the precise partitioning task at hand. We also introduce two algorithmic
ways to deal with the problem of recovering the partition that minimizes the dis-
tortion. This task is called in what follows the decoding of the partitioning algo-
rithm.

4.2.3 Hard prior : change-point detection by dynamic program-
ming

The change-point detection problem is a restriction of the general partitioning
problem where the subsets are composed of contiguous elements. In that case we
often talk about segments. We denote by Mseq the set of all rescaled equivalence
matrices satisfying the contiguity structure of the change-point detection problem,
andMseq

K its restriction to partitions with K segments.
The problem is thus solving Eq. (4.4) (known number of clusters) or Eq. (4.5)

(unknown number of clusters) with the extra constraint that M ∈ Mseq. This may
be cast as maximizing Tr(AM) with respect to Mseq

K or MK, for a certain matrix
A. For the case where M ∈ MK, and when A is positive definite with a known
square root we have seen in Alg. 5 of Chapter 3 that it was possible to solve the
problem exactly using a polynomial-time algorithm based on dynamic program-
ming (see, e.g., Rigaill [2010], Killick et al. [2012]). However, both for Eq. (4.5) and
more generally for all loss-augmented decoding problems in Section 4.3, we need
to maximize Tr(AM) where A can be any matrix.

Algorithm 7 solves maxM∈Mseq Tr(AM) for any matrix A, potentially with neg-
ative eigenvalues. This algorithm is a dynamic programming one for an analogu-
ous reason as Alg. 5 of chapter 3. It has complexity O(T2).

Algorithm 7 only requires some preprocessing of the input matrix A, namely
computing its summed area table I (or image integral [Crow, 1984]), defined to
have the same size as A and such that Iij = ∑i′≤i, j′≤j Ai′ j′ (i.e., the sum of the
elements of A which are above i and to the left of j). A similar algorithm can
be derived in the case where M ∈ Mseq

K , with complexity O(KT2). It has been
described in details in Alg. 5 in Chapter 3.

4.2.4 Soft priors: Laplacian based penalty

We recall that the so-called K-means problem aims at finding a partition of T
datapoints in K subsets or clusters in which the intra-class variance is minimal.
Thus this is the problem of minimizing the distortion of Eq. (4.4).

K-means distortion with structural spatial prior. Many real-life partitioning tasks
come with a strong prior about the shape of the partition that should be outputed.
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Algorithm 7 Dynamic programming for maximizing Tr(AM) such that M ∈ Mseq

Input: Cost matrix A ∈ RT×T and its image integral I
(Ik,j = ∑p1≤k,p2≤j Ap1,p2)

∀i ∈ [[1 . . . T]], initialize C(1, i) = I(i, i)/i.
for t = 1 to T − 1 do

m = maxi≤t C(i, t)
for u = t + 1 to T do

C(t + 1, u) = I(t,t)+I(u,u)−I(u,t)+I(t,u)
u−t + m

end for
end for
Backtracking step:
j = 1, Tc(1) = T
repeat

j = j + 1
Tc(j + 1) = argmaxi<Tc(j) C(i, Tc(j))

until Tc(j) > 1
Output: Time of changes Tc

In some cases, the prior can be encoded through affinities of a graph 8. This spatial
prior can be encoded in a soft manner very easily as a penalization of the K-means
objective. Namely, this corresponds to optimizing the following penalized model,
where L is the Laplacian matrix of a certain graph:

minimize
M∈MK

{
‖X−MX‖2

F + µ Tr(LM)

}
⇔ maximize

M∈MK
Tr
(
(XX> − µL)M

)
. (4.6)

Since the problem (4.6) is NP-hard [Aloise et al., 2009], we need to approximately
solve it. A first idea could be to use the popular K-means algorithm. However,
K-means can only be cast as solving linear programs of the form

maximize
M∈MK

Tr(AM)

where A is positive semidefinite. In our case, due to the Laplacian penalty, we need
to solve such LPs with A an arbitrary symmetric matrix. Thus, instead of using
K-means, we propose to relax the K-means distortion. Following Shi and Malik
[1997] and Ng et al. [2002], we now present a spectral relaxation of this problem.
This is done by relaxing the setM to the set of matrices that satisfy M2 = M (i.e.,
removing the constraint that M takes a finite number of distinct values). When the
number of clusters is known, this leads to the classical spectral relaxation. We have
indeed that:

max
M∈M, Tr M=K

Tr(AM) 6 max
M2=M, Tr M=K

Tr(AM),

8. In computer vision, the graph of pixels is a very common manner to set priors over segmen-
tations and that way to enforce spatial contiguity [Shi and Malik, 1997].
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which is equal to the sum of the K largest eigenvalues of A. The optimal matrix M
of the spectral relaxation is the orthogonal projector on the span of the eigenvectors
of A with K largest eigenvalues.

When the number of clusters is unknown, we can penalize the distortion cost
in Eq. (4.6) by the same term as in Eq. (4.5) and consider the whole setM. Then
we have

max
M∈M

Tr(AM) 6 max
M2=M

Tr(AM) = Tr(A)+,

where Tr(A)+ is the sum of positive eigenvalues of A. The optimal matrix M of
the spectral relaxation is the orthogonal projector on the span of the eigenvectors
of A with positive eigenvalues. Note that in the formulation from Eq. (4.5), this
corresponds to thresholding all eigenvalues of XX> which are less than λ.

We denote by
Mspec = {M ∈ RT×T , M2 = M},

and
Mspec

K = {M ∈ RT×T , M2 = M, Tr M = K},
the relaxed sets of rescaled equivalence matrices.

Spectral decoding. From the relaxed solution M ∈ Mspec
K , it can sometimes be of

interest to get M′ ∈ MK. This problem is closely related to spectral clustering [Ng
et al., 2002], and one way to obtain an hard assignment is to run K-means over the
K leading eigenvectors of the spectral solution.

4.2.5 Similarity measure learning

In this chapter, we consider the learning of a Mahalanobis quasimetric 9, which
may be parameterized by a positive definite matrix B ∈ Rp×p. Using a similarity
measure given by B is equivalent to replacing the dot-products x>i xj by x>i Bxj, and
XX> by XBX>. In the general case, this corresponds to replacing Eq. (4.4) by:

minimize
M∈MK

Tr
(
XBX>(I −M)

)
. (4.7)

Thus, in the case of the sequential hardcoded prior of Section 4.2.3, this corre-
sponds to:

minimize
M∈Mseq

Tr
(
XBX>(I −M)

)
. (4.8)

When the number of segments is unknown, we penalize by adding λ Tr M:

minimize
M∈Mseq

K

Tr
(
XBX>(I −M)

)
+ λ Tr(M).

9. For more details about these, please refer to chapter 3.
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In this case, note that replacing B by λB and dividing the equation by λ, we can
use an equivalent formulation with λ = 1, that is:

minimize
M∈Mseq

Tr
(
XBX>(I −M)

)
+ Tr(M). (4.9)

For the soft prior of Section 4.2.4, the corresponding minimization problem be-
comes

minimize
M∈Mspec

K

Tr
(
XBX>(I −M) + µLM

)
, (4.10)

when the number of clusters is known and

minimize
M∈Mspec

Tr
(
XBX>(I −M) + µLM

)
+ Tr(M), (4.11)

when it is not. The key aspect of the partitioning problem is that it is formulated
as optimizing with respect to M a function linearly parametrized by B. The linear
parametrization in M will also be useful when defining proper losses and efficient
loss-augmented decoding in Section 4.3.

Note that we may allow B to be just positive semi-definite. In that case, the zero-
eigenvalues of the quasi-metric correspond to irrelevant directions. This means in
particular that we have performed dimensionality reduction on the input data. We
propose a simple way to encourage this desirable property in Section 4.3.3. The
associated similarity measure is not a metric anymore but a quasimetric.

4.3 Structured prediction for similarity measure learn-
ing

We want to learn a matrix B to maximize the performance of the structured
output algorithm that solves the minimization problems of Eq. (4.8), Eq. (4.9),
Eq. (4.10) or Eq. (4.11). All these partitioning problems can be cast as

maximize
M∈N

〈W, ϕ(X, M)〉,

where 〈A, B〉 = Tr(A>B) is the Frobenius dot product for any A and B with com-
patible dimensions and N is a set amongM,Mspec,Mseq,MK,Mspec

K ,Mseq
K

For the general case (N = Mseq
K ) and the one corresponding to change-point

detection (N =Mseq
K ), when the number of segments is known, then Eq. (4.7) and

Eq. (4.8) corresponds to {
ϕ(X, M) = X>MX
W = B

.

If the number of segments is unknown (case N =M or N =Mseq) then Eq. (4.9)
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as well as the general case can be dealt with:{
ϕ(X, M) = Diag(X>MX, M)

W = Diag(B,−I)
.

For the model corresponding to the spatial prior for partitioning (Eq. (4.10)), when
the number of clusters is known (N =Mspec

K ), we get{
W = Diag(B,−I)
ϕ(X, M) = Diag(X>MX, µL)

,

and if the number is unknown (Eq. (4.11)), (N =Mspec){
W = Diag(B,−I)
ϕ(X, M) = Diag(X>MX, M + µL)

.

4.3.1 Large-margin structured output learning

Let F denote the set where the above-defined W lies. Our goal is to esti-
mate W ∈ F from N pairs of observations (Xi, Mi) ∈ X ×M. This is exactly
what large-margin structured prediction [Tsochantaridis et al., 2005] does. In the
margin-rescaling framework of Tsochantaridis et al. [2005], using a loss

` : N ×N → R+

between elements of N (here partitions), the learning is performed by minimizing
with respect to W ∈ F ,

1
N

N

∑
i=1

`
(

argmax
M∈N

〈
W, ϕ(Xi, M)

〉
, Mi

)
+ Ω(W),

where Ω is any (convex) regularizer. This framework is standard in machine learn-
ing in general and similarity measure learning in particular (see, e.g, Jain et al.
[2012]). The loss function

W 7→ `
(

argmax
M∈N

〈
W, ϕ(Xi, M)

〉
, Mi

)
is not convex in W, and can be replaced by the convex surrogate

Li(W) = max
M∈N

{
`(M, Mi) + 〈W, ϕ(Xi, M)− ϕ(Xi, Mi)〉

}
,
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leading to an estimator Ŵ minimizing

1
N

N

∑
i=1

Li(W) + Ω(w). (4.12)

In order to apply this framework, several elements are needed:

1. a regularizer Ω,

2. a loss function `,

3. the associated efficient algorithm for computing Li, i.e., solving the loss-augmented
decoding problem

maximize
M∈N

{
`(M, Mi) +

〈
W, ϕ(Xi, M)− ϕ(Xi, Mi)

〉}
.

Optimization in W. Given that the objective function is not smooth, we have
used projected subgradient descent (stochastic and non-stochastic), with conver-
gence rates of O(1/t) after t iterations [Shalev-Shwartz et al., 2007]. However, this
method relies on the fine tuning of the decaying stepsize at each iteration. The last
implementation we have done and which we used for the experiments of Sec. 4.6.1
makes use of the stochastic block-coordinate Frank-Wolfe algorithm for structured
SVM [Lacoste-Julien et al., 2013]. This allows us to get rid of the problem of tuning
the subgradient descent parameter that plagues stochastic subgradient techniques.

Now, we need to find a suitable loss for our large-margin objective.

4.3.2 Loss between partitions

The Rand index. When comparing two partitions [Hubert and Arabie., 1985], a
standard way to measure how different they are is to use the Rand index [Rand,
1971]. Let us consider two partitions P and Q of the same set of T elements
{x1, . . . , xT}. These partitions are collections of subsets P1, . . . , PK and Q1, . . . , QL.
The Rand index is the agreement score between the two partitions. Let us define
the concordant pairs as the number of pairs of elements which either (a) both belong
to the same subset in P and Q or (b) are in different subsets both in P and Q. The
Rand Index is the ratio of the number of concordant pairs over the total number of
pairs. In matrix terms, if we represent the partition P by an assignment matrix 10 YP
and the partition Q by YQ, the Rand index is

Rand(P, Q) = 1− 1
T(T − 1)

∥∥YPY>P −YQY>Q
∥∥2

2.

10. For completeness, we recall that the assignment matrix is a T × K binary matrix such that
Yt,k = 1 if, and only if, element xt is in cluster j of the partition.
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From this index, it is easy to build a loss

dRand(P, Q) = 1− Rand(P, Q) =
1

T(T − 1)

∥∥YPY>P −YQY>Q
∥∥2

2.

The Rand loss is proportional to the Frobenius square norm between the equiva-
lence matrices YPY>P and YQY>Q . An equivalence matrix is a T × T matrix whose
(i, j) coefficient is 1 if i and j are in the same subset of the partitions and 0 oth-
erwise. In comparison with the rescaled equivalence matrix of Eq. (4.3), up to a
permutation of rows and columns, it has the same form but with diagonal blocks
non rescaled. Namely it is a matrix of the form:

1T11>T1
0 . . . 0

0 . . . . . . ...
... . . . . . . 0
0 . . . 0 1TK 1>TK

 .

Frobenius loss between partitions. In this chapter, we make an extensive use of
the following loss, based on rescaled equivalence matrices:

`F(M, N) = ‖M−N‖2
F = Tr(M) + Tr(N)− 2 Tr(MN). (4.13)

This, that we refer to as the Frobenius loss is practical (it is a bilinear function of
M and N) and corresponds to a well-known loss between partitions [Hubert and
Arabie., 1985, Bach and Jordan, 2006]. If the partitions encoded by M and N are
collections of clusters P1, . . . , PK and Q1, . . . , QL, then

`F(M, N) = K + L− 2 ∑
k,l

|Pk ∩Ql|2
|Pk| |Ql|

.

This loss is equal to zero if and only if the partitions are equal, always larger than
|K− L| and smaller than K + L.

Note that the Frobenius loss is to rescaled equivalence matrices, up to a scaling,
what the Rand loss is to equivalence matrices [Hubert and Arabie., 1985, Finley
and Joachims, 2005]. Note however that the Rand index/loss is not necessarily
well suited to our problem, since intuitively it does not treat similarly large and
small clusters. Our concern is to optimize intra-class variance which is a rescaled
indicator and for which each cluster (independently on its size) should have the
same importance. 11

11. This is a similar intuition than the one behind the difference between cuts and normalized
cuts in graph, that are widely used in computer vision [Shi and Malik, 1997].
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4.3.3 Regularizers and diagonal variant.

With a slight abuse of notation, we refer there to B as the upper p× p corner of
the parameter W to learn. Since what we really want to regularize is B and not W,
in this section we note WB instead of W. Let us now consider several regularizers Ω
for B. The most popular choice for Ω is the Frobenius norm (see, e.g, Tsochantaridis
et al. [2005]).

Low-rank quasimetric. A desirable property for the matrix is to be interpretable.
Ideally, we would like to have the quasimetric associated to the matrix W learned
with a small rank. That is W selects only few but meaningful variables. The classi-
cal relaxation of the rank is the sum of the singular values, that is, Ω(WB) = Tr(B)
since B is symmetric positive semi-definite.

Diagonal quasimetric. Considering only diagonal matrices B = Diag(b) for some
b ∈ Rp with b > 0 limits the number of parameters to learn, and reduces the sim-
ilarity measure learning problem to reweighing the coordinates of the data. Then,
the two regularizers seen so far can be written ‖b‖2

2 for the Frobenius one and
‖b‖1 = 1>p b for the low-rank, the latter leading to variable selection.

Now, let us more precisely see how we can address the loss-augmented decod-
ing problem. In the next section, we focus on the change-point detection case since
it is possible to solve exactly the problem.

4.4 Learning a metric for change-point detection tasks

From now on, the loss used is set to be ` = `F introduced in the previous
section. To fix ideas, we recall the large-margin objective based on Eq. (4.12) in the
case of change-point detection 12

1
N

N

∑
i=1

max
M∈N

{
Tr
(

Mi + M− 2Mi M
)
+
〈
W, φ(Xi, M)− φ(Xi, Mi)

〉}
+ Ω(W). (4.14)

Efficient minimization with respect to W ∈ F is key to the applicability of
large-margin structured prediction. The bottleneck of the method lies in the loss-
augmented decoding that is the evaluation of the quantity

max
M∈N

{
Tr
(

Mi + M− 2Mi M
)
+
〈
W, φ(Xi, M)− φ(Xi, Mi)

〉}
.

12. Note that the sets N here can be eitherMseq orMseq
K .
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4.4.1 Loss-augmented decoding problem for change-point detec-
tion

In the case of change-point detection, the cardinality of N is exponential in T,
a brute force approach is thus unrealistic in our case. However, our choice for the
loss `F leads to considering a loss-augmented decoding problem of the form:

maximize
M∈N

Tr(Ai M),

where
Ai = (XiBXi> − 2Mi + Id),

if the number of clusters is known, and

Ai = (XiBXi> − 2Mi),

otherwise. Thus, the loss-augmented problem can be performed exactly for the
change-point problems.

Thus, the problem of minimizing the loss-augmented decoding within the sum
of Eq. (4.14) can be solved in polynomial time thanks to Alg. 7.

We now present two variants of the approach presented so far which make our
similarity measure learning slightly more practical.

4.4.2 Variants

Partial labellings. The large-margin convex optimization framework we use re-
lies on fully labeled datasets (Xi, Mi)i=1,...,N where Xi is a time series and Mi the
corresponding rescaled equivalence matrix. In many situations however, only par-
tial information is available about the partition associated to each Xi. We might
only know parts of the segments. For instance we may know that timestamp i is in
the same segment than j > i (and thus that all the timestamps in between are in the
same segment) and that timestamps i′ > j and j′ > i′ are in the same segment, but
with no precise idea of what is happening between timestamps j and i′. To deal
with these cases, we propose the following heuristic:

1. we start from the PCA Mahalanobis quasimetric 13,
2. we label all datasets by doing a decoding step using the current quasimetric

and respecting the constraints imposed by the partial labels, that is we com-
plete the annotations by optimizing over the subsets ofMseq that correspond
to segmentations respecting the partial annotation,

3. we learn a metric using our fully-supervised approach,
4. we alternate between the two last steps.

We propose a simulated example in Section 4.5.3.

13. Or any other “good guess”. The choice of initialization is crucial since the method is not
convex anymore. The PCA quasimetric is obtained by doing a PCA of the data and keeping only
some eigenvectors.
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Detecting changes in the distribution of temporal signals. The approach to
change-point detection presented in Section 4.4.1 can only detect changes in the
mean of the distribution of the xj. Indeed, it only makes use of the distortion mea-
sure of Section 4.2.1, which is the sum of intra-class variances of each segment.
Nevertheless, in the literature, change-point detection refers to the more general
problem of finding changes in the whole distribution of the xj [Basseville and Niki-
forov, 1993]. One can be interested in detecting change-points in other features of
the distribution like the variance or the kurtosis. In order to tackle this problem
when the observation matrix is a 1-dimensional time series X ∈ RT, we propose
to apply our approach by considering the multiple time series ( fi(xj))i=1...r ∈ Rr,
j = 1 . . . T, where the fi are well-chosen functions so that changes in the distribu-
tion of xj appear through changes in the mean of fi(xj). For instance, in order to
detect changes in the first moments of the distribution, a naive choice is fi(x) = xi,
but the xi

j explode when i grows 14. A way to prevent this explosion is to use the
robust Hermite moments [Welling, 2005], that is, to take

fi(x) = Hi(x) = e
x2
2

di

dxi

(
e
−x2

2

)
,

the i-th Hermite polynomial. See an application in Section 4.5.5. We recall there
that the first five Hermite polynomials are:

H0(x) = 1,
H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3.

These polynomials are an orthonormal basis of the space of polynomials, and thus
there is no lack of information when using these Hermite moments rather than
the classical ones. In Fig. 4.1, we represent the Hermite polynomial of order 4
as an example. We see that these polynomials have a better behaviour than sim-
ple monomials since they send large values to infinity less quickly than the plain
monomials, and in the neighbourhood of 0, values are not stuck to 0.

4.5 Experiments for change-point detection

We have conducted a series of experiments to demonstrate the interest of our
approach for learning a similarity measure for change-point detection problems

14. Little values are stuck to 0 and large ones sent to infinity and this leads to computational
issues quickly.
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Figure 4.1: On this figure, we depict the Hermite polynomial of order 4, x →
x4− 6x2 + 3 with the function x → x4. Note that the Hermite polynomial goes less
fast to infinity and around 0 does not push values to 0.

4.5.1 Toy example: similarity measure learning quality

In this section, we show a case in which our similarity measure approach suc-
ceed in learning an interpretable Mahalanobis qusimetric and where usual meth-
ods based on side-information in the form of must-link or cannot-link constraints
fail. In this section, we consider to assess the quality of the Mahalanobis quasimet-
ric by looking at its coefficients in small dimension. So implicitely, we are looking
at a feature selection task.

In this experiment, we consider N = 10 time series of length 350 in dimension
three. In this experiments, the groundtruth segmentation has two change-points at
timestamps 150 and 225. Only the first coordinate has relevant change-points (that
is the groundtruth is obtained by performing a change-point detection algorithm
using the first coordinate only), the second one is pure white noise, and the third
one has a change-point that is irrelevant. See Fig. 4.2 for an illustration. Note also
that the first coordinate has first and third segments with the same mean.

We ran three standard metric learning algorithms on these data: our approach
where we assumed the number of segments to be known in advance and with
λ = 0 (no regularization for this experiment), the RCA approach with groundtruth
segments as chunklets and the approach of Xing et al. [2002] with must-link and
cannot link constraints corresponding to the groundtruth segmentation. In this
experiment, we consider the shape of the resulting matrix. A good similarity mea-
sure learning algorithm for this task is expected to provide a matrix that is close
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Figure 4.2: An example of the data we used in the experiment of Sec. 4.5.1.
The time series is three dimensional, the relevant change-points (segmentation in
colour) are only on the first coordinate, the two others are only noise or worse,
with a change-point we do not want to detect.

to: 1 0 0
0 0 0
0 0 0

 .

That is, the matrix that we have in output should have a meaningful interpretation.
The matrix given by our method is the following 15: 0.9421 0.2269 −0.044

0.2269 0.1108 0.0389
−0.0144 0.0389 0.0617

 .

The one given by RCA is: 0.0348 0.0087 0.007
0.0087 0.9999 0.0026
0.0007 0.0026 0.010

 .

The matrix learned by RCA puts a lot of weight on a coordinate that is not relevant
for the task and just pure noise. Note however that the RCA quasimetric puts a
little weight on the coordinate that has a change we do not want to detect.

15. All matrices are rescaled to have unit Frobenius norm.
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The Mahalanobis matrix corresponding to the quasimetric learned by Xing et al.
[2002] is: 0.2504 0.4328 0.007

0.4328 0.7483 0.0320
0.0185 0.0320 0.014

 .

Since this matrix is less easy to interpret than the two previous ones, let us have a
look at its eigendecomposition. The first eigenvector, corresponding to more than
99% of eigenvalues is 0.5004

0.8650
0.0370

 .

Thus the matrix associated to the metric learned by the method of Xing et al. [2002]
puts also a high weight on the irrelevant second coordinate which is noise and can
only disturb the change-point process.

4.5.2 Synthetic example

We consider synthetic time series of dimension p = 50 and length T = 600
with K = 4 relevant changes in the mean of a few coordinates for which we know
the groundtruth optimal segmentation 16. The non-relevant coordinates are ∼ 45
noisy random series, either with no changes in their global mean (pure noise like
in the second coordinate of the time series depicted in Fig. 4.2) or changes which
are not aligned with the ones we aim at detecting (irrelevant changes like in the
third coordinate of the time series depicted in Fig. 4.2). By learning a metric, we
hope to obtain high weights on the relevant coordinates and small weights on the
others.

Given N = 30 instances of such time series sharing the same relevant coordi-
nates, we compare the performance of our algorithm to

1. the Euclidean metric that is, the penalized formulation of Eq. (4.5) with B =
αI and α > 0 learned on a validation set,

2. the PCA metric (obtained by performing a PCA, keeping the four leading
eigenvectors),

3. the RCA approach of Bar-Hillel et al. [2005], for which we stack all datasets
into a single one with the corresponding supervision, note that this approach
only makes use of must-link constraints,

4. the learning algorithm of [Xing et al., 2002] which makes use of both must-
link and cannot-link constraints. Note that all algorithms except ours are
given the exact true number of change-points K?.

All Mahalanobis quasimetrics are learned on the same data. Performance mea-
sure reported there is assessed through the Frobenius loss `F. For our similarity

16. We call a change relevant if it is consistent with the groundtruth. On Fig. 4.2, the first coordi-
nate has this property.
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measure algorithm, we validate parameters on a validation set of 50 validation in-
stances that shares the same relevant coordinate than the training examples. We
test the performances by plugging the learned similarity measure in the change-
point detection algorithm. For our approach and for the Euclidean metric, since
we considered the penalized model of Eq. (4.5), we used Alg. 7 for decoding. For
the others baselines, since they cannot learn the extra-penalization parameter, we
used Alg. 5 of Chapter 3. Results are shown on Figure 4.3 (points at the extreme
right of the graph), illustrating the interest of learning a metric (Euclidean is bad
and PCA only slightly better), and showing our approach does better than RCA.
The results are measured using the loss `F on a test set of 50 time series sharing
the same metric as the one of training instances. Note that RCA or the method of
Xing et al. [2002] are not specifically designed for change-point detection and have
a wider applicability domain than our method.

4.5.3 Robustness to partial labeling

Using the same training/validation and testing data as for the above experi-
ment, we tried the approach of Section 4.4.2 to deal with the problem of partial an-
notations. Indeed, it is really uncommon to have fully supervised and segmented
temporal series. Results are presented on Figure 4.3. The x-axis represents the
fraction of the labels M1, . . . , MN available to the two existing semi-supervised
clustering methods as well to our algorithm. When the fraction of annotated data
is large enough, our algorithm performs better since it takes into account for the
underlying structure of the segmentation task at hand. But, when the fraction of
supervised data is small (less than 10%) 17 our approach performed poorly com-
pared to the other ones.

4.5.4 Video segmentation

We applied our method to data coming from old TV shows where some speak-
ing passages alternate with singing ones. The videos are from 60 up to 90 minutes
long so the temporal horizon T is of order of thousands, around 5400 in mean,
with 60 to 120 change-points in each of these. We aim at recovering the segmenta-
tion induced by the speaking parts and the musical ones. Following the approach
of Arlot et al. [2012], we use GIST features for the video part and MFCC features
for the audio (13 leading coefficients). We rescaled the videos frames to small size
(64 by 64) before computing these GIST with 4 prefilters, 4 different scales (with 8
orientations at each scale and thus 32 filters in total). In the end each image was
represented by a vector of length 512. The features were aggregated every sec-
ond leading to temporal horizons of time series which are still computationally
tractable using Algorithm 7. Using N = 4 shows for training, 3 for validation, 3
for test, we report below the test errors for each test show with the loss `F (smaller
is better).

17. Note that the first point of Fig. 4.3 is not for 0 supervision, but for a small ε, otherwise we
could not have ran the baselines as well as our method.
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Figure 4.3: Performances on synthetic data vs. the quantity of information avail-
able in the time series, measured in terms of the loss `F defined by Eq. (4.13). Note
the small error bars (90% quantiles). We compare ourselves against the Euclidean
metric (‘No learning’), a metric learned by RCA (with 3 components), PCA and
Xing et al. [2002].

Method Audio Video Both
No similarity measure learning 29 48 33 59 55 47 40 48 36
PCA 23 41 34 40 55 25 29 53 37
Our algorithm 6.1 9.3 7 10 14 11 8.7 9.6 7.8

We consider three different settings: using only the image stream, only the au-
dio stream or both. In these three cases, we consider using the Euclidean metric
(no learning), PCA, or our approach. In all settings, similarity measure learning
improves performance. Note that the performance is best with the audio stream
only; our similarity measure learning, given both streams, manages to do almost
as well as with only the audio stream, thus illustrating the robustness of using
similarity measure learning in this context where the video stream is not useful.

4.5.5 Bioinformatics application

Detection of change-points in DNA sequences for cancer prognosis provides a
natural testbed for the approach to detect changes in distribution of Section 4.4.2.
Indeed, researchers from this field face data which are linked to the number of
copies of each gene along the DNA (a-CGH data as used by Hocking et al. [2013]).
The presence of such changes is generally related to the development of certain
types of cancers. On data coming from the Neuroblastoma dataset [Hocking et al.,
2013], N = 30 caryotypes with changes of distribution were manually annotated.
These time series are of temporal horizon T around some hundreds. We consider



4.6. EXTENSION: GENERAL SIMILARITY MEASURE LEARNING FOR PARTITIONING
ALGORITHMS BASED ON EUCLIDEAN DISTORTIONS 117

the approach of Section 4.4.2 and compare the Euclidean and a learned metric on
the five first Hermite moments of the data. For this experiment, we evaluate us-
ing the loss suggested by Hocking et al. [2013]. The dataset have been annotated
by medical experts. For each time series, these experts have defined pretty large
contiguous sets of timestamps in which they are sure that a breakpoint occur, and
others in which it does not. The loss proposed by Hocking et al. [2013] counts
the number of missed change-points (that is, the number of regions that are an-
notated in the dataset as having a change-point and for which we did not recover
the change-points) as well as the falsely detected ones (change-points located in
regions that are not supposed to have one).

Without any similarity measure learning, just by adjusting the AIC criterion by
trial and error, we reach a global error rate in change-point identification of 12%.
By learning a diagonal metric over Hermite features, we reach a rate of 6.9%, thus
improving the performance. Note that, in this application it is irrelevant to run
standard similarity measure learning like RCA, since they are unable to do model
selection and learn the parameter λ of penalization of Eq. (4.5). Note that λ can be
seen as the expected level of noise in the series, see Lebarbier [2005].

After having reviewed how our approach has allowed us to tackle the prob-
lem of change-point detection, let us now consider what we can do with a similar
approach for the case of general partitioning problems.

4.6 Extension: general similarity measure learning for
partitioning algorithms based on Euclidean distor-
tions

In this section, we consider the general penalized partitioning problem of Eq. (4.6).

4.6.1 Similarity measure learning algorithm

To keep the presentation clear, and since we have not conducted experiments
in the general case, we restrict our presentation to the case where the number K
of clusters in the partition is known. Assuming that we are provided N pairs of
observation from (Xi, Mi), our approach aims at minimizing the following large-
margin objective:

1
N

N

∑
i=1

max
M∈MK

{
Tr
(

Mi −M− 2Mi M
)
+
〈
W, φ(Xi, M)− φ(Xi, Mi)

〉}
+ Ω(W).

(4.15)
As in the previous section, the bottleneck of the method lies in the evaluation

of the loss-augmented decoding.

Relaxation of the structured SVM objective for similarity measure learning. Un-
fortunately, contrary to the case of change-point detection, the inner sum maxi-
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mization, in Eq. (4.15), which is an LP over MK, is NP-hard [Aloise et al., 2009].
One first approach could be to minimize (4.15) using K-means to approximately
solve the loss-augmented decoding. This is the approach of Finley and Joachims
[2008]. However, this technique does not have any computational guarantee and
all the optimization certificates that could be used as a stopping criterion in convex
optimization cannot apply with this approach. This is why, we used another one.
We have seen in Sec. 4.2.4 that, if we replaceMK by the set of orthogonal projec-
tion matrices of rank K, minimizing an LP overMspec

K is affordable. That is why
we propose to replace our large-margin objective by another one, that is tractable
in polynomial time:

1
N

N

∑
i=1

max
M∈Mspec

K

{
Tr
[
Mi −M− 2Mi M

]
+ 〈W, φ(Xi, M)− φ(Xi, Mi)〉

}
. (4.16)

We just relax the set on which we perform decoding. Evaluation of the loss-
augmented decoding indeed reduces to the computation of the K leading eigen-
values as seen in Sec. 4.2.4, which can be efficiently done using for instance the
power method [Von Mises and Pollaczek-Geiringer, 1929].

4.6.2 Application to image segmentation

In this section, we present a way to apply our method to the image segmenta-
tion problem. We can see foreground/background image segmentation as the task
of finding a partition of the pixels in two subsets.

Most of popular image segmentation algorithms are not explicitly based on
minimizing Euclidean distortions 18. Indeed, such methods suffer from the fact
that they do not push pixels which are close to belong to the same cluster which
is known to be a crucial aspect for accurate image segmentation since works of
Gestalt psychologists [Wertheimer, 1923].

On the opposite, approaches based on the minimization of some energy de-
fined on a graph are able to enforce spatial consistency [Rother et al., 2004]. The
normalized cuts framework [Shi and Malik, 1997], which is popular for segment-
ing images, has some relationship with our framework, since it can be cast as

maximize
M∈Mspec

K

[
Tr
(
∆M

)]
where ∆ is some variant of the normalized Laplacian [Bach and Jordan, 2006,
Von Luxburg, 2007] of the graph of pixels.

Inspired by this connection, we propose a simple foreground/background seg-
mentation model which consists in adding a prior term to K-means distortion, as
proposed in Eq. (4.6). Namely we cast image segmentation as a decoding of the

18. Even if sometimes the use of simple K-means, for instance over colors features, can lead to
very accurate segmentations, see, e.g, Forsyth and Ponce [2002].
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Table 4.1: Test performance on the Horses dataset according to our loss. Lower is
better.

Loss used Constrained Unconstrained Ncuts
similarity measure learning similarity measure learning

`F 1.47 1.65 1.81
Rand loss 0.35 0.40 0.48

Table 4.2: Test performance on the Flowers dataset according to our loss.

Loss used Constrained Unconstrained Ncuts
similarity measure learning similarity measure learning

`F 1.2 1.4 1.59
Rand loss 0.29 0.35 0.44

type of the one of Eq. (4.10)

maximize
M∈MK=2

Tr(XBX>M)− Tr(LM)

where L is the unnormalized Laplacian of the graph underlying the image. 19. In
our experiments the use of the different versions of the Laplacian did not lead to
significantly different performances. This second term permits to give to spatially
contiguous clusters the preference over non contiguous ones. Note that in our
experiments, we simply consider the graph associated to the 4-connected grid.

4.6.3 Image segmentation experiments

We consider the task of segmenting images of the Weizmann horses dataset
[Borenstein and Ullman, 2004], using N = 60 training images with colour and
dense SIFT features. Results are presented in Table 4.1, where we used both nor-
malized cuts and an our approach for similarity measure learning with no spatial
prior 20 as baselines. In Table 4.2, we present analogous results for the Oxford
flowers [Nilsback and Zisserman, 2006] dataset, for which the training set size is
bigger: 100 images. Note that the parameter λ of the structured SVM is adjusted
using a validation set. We report results using the Frobenius loss between partition
that is the performance measure that we explicitly optimize. We also gives some
qualitative results in Fig. 4.4 and 4.5.

19. We recall that, for a graph with non-negative weights and of adjacency matrix A, the Lapla-
cian is defined by Diag(A1)− A, the normalized version are respectively Id− D−1 A for the asym-
metric version and Id− D−

1
2 AD−

1
2 for the symmetric one.

20. That corresponds to setting µ = 0 in Eq. (4.6).
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Figure 4.4: From left to right: original image, groundtruth segmentation, image
segmented with our learned metric, Ncuts with tuned parameters for colors and
position features.

Figure 4.5: The images are in the same order as in Fig.4.4

In these image segmentation experiments, the approach based on unconstrained
similarity measure learning leads to inferior performance while our approach based
on appropriately constrained similarity measure learning leads to improvements.

4.7 Conclusion

In this chapter we have addressed the problem of learning a metric in a su-
pervised way for improving the performances of unsupervised partitioning algo-
rithms. We have focused on the practically important case in which a prior over
the resulting partition is available. More precisely we have demonstrated that, for
the temporal sequential prior, such a metric can be learned in an efficient way us-
ing a structured SVM. Our formulation allowed us to solve exactly all the classical
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bottlenecks of the structured prediction approach. For the general case, we provide
an efficient relaxation of the structured SVM objective that leads to a tractable con-
vex optimization learning problem that we solve using off-the-shelf solvers. We
have explored several applications, in particular the detection of change-points in
video streams or DNA sequences and the problem of image segmentation, with
a significant improvement in partitioning performance. Then, driven by the case
in which the prior is given through a graph Laplacian, we have proposed a soft
model based on Euclidean distortion that we plugged into a structured SVM. We
have demonstrated that our approach is well founded with experiments on image
segmentation datasets.

For future works, following recent trends in image segmentation (see, e.g., Joulin
et al. [2010]), it would be interesting to extend our change-point framework so
that it allows unsupervised co-segmentation of several videos: each segment could
then be automatically labeled so that segments from different videos but with the
same label correspond to the same action. Another extension would be to gener-
alize our algorithm to kernel learning. Indeed, some recent work [Jain et al., 2012]
proved links between similarity measure learning and kernel learning, allowing to
kernelize any Mahalanobis distance learning problem.

The two major drawbacks of our approach are (i) the fact that we require fully
timestamped annotations which are in practice hard to obtain and (ii) the compu-
tational slowness due to the non-smoothness of the objective of structured support
vector machines. In Sec. 4.4.2, we propose an heuristic to leverage our algorithm
and require full supervision. However, this is not fully satisfactory, and we might
be able to reuse in our setting some ideas coming from recent works about weak
supervision when temporal structure is at stake, like the ones presented on chap-
ter 6.





Chapter 5

Similarity Measure Learning for
Warping Temporal Sequences

Abstract

In this chapter, we propose to learn a Mahalanobis quasimetric to per-
form warping of multivariate time series. The learning examples for
this task are time series for which the true warping is known. We cast
the warping problem as a structured prediction task. We propose a re-
alistic loss between warpings and a proper convex optimization proce-
dure built on the ideas of large-margin structured prediction [Tsochan-
taridis et al., 2005]. We provide experiments on real data for the audio-
to-audio task, where we show that the learning of a similarity measure
leads to improvements in the warping performance. We also propose
to use this metric learning framework to perform feature selection and,
from basic audio features, build a combination of these that yields to
better warping performance.

The material of this chapter is based on our article:
R.Lajugie*, D.Garreau*, S.Arlot, F.Bach, Metric Learning for Temporal
Sequences warping, In Proc. NIPS, 2014.
*equal contributions

5.1 Introduction

The problem of aligning temporal sequences or more generally to warp them
is ubiquitous in applications ranging from bioinformatics [Thompson et al., 1999,
Aach and Church, 2001, Cuturi et al., 2007] to audio processing [Dixon and Wid-
mer, 2005, Cont et al., 2007]. Warping is also used in the community of speech
recognition since the pioneering work of Sakoe and Chiba [1978]; for instance it
can be used for the task of alignment of phonemes to some template. The goal is
to warp two similar time series that share the same global structure, but with local
temporal differences. Most warping algorithms rely on local similarity measures.
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Having a good one is crucial, especially in the high-dimensional setting where
some features of the signals can be irrelevant to the warping task. The goal of this
chapter is to show how to learn this similarity measure from annotated examples
in order to improve the relevance of the warping task on new data.

For example, in the context of music information retrieval, warping is used in
two different cases: (1) audio-to-audio warping and (2) audio-to-score alignment.
In the first case, the goal is to match two audio interpretations of the same piece
that are potentially different in rhythm, whereas audio-to-score alignment focuses
on matching an audio signal to a symbolic representation of the score or the par-
tition [Dannenberg, 1984, Vercoe, 1985, Cont, 2010] 1. In the second case, there has
been some attempts to learn from annotated data a similarity measure for perform-
ing the alignment. Joder et al. [2013] propose to fit a random field model to perform
the task, and Keshet et al. [2007] learn this measure in a discriminative setting.

Similarly to Keshet et al. [2007], we use a discriminative loss to learn the simi-
larity measure, but our work focuses on audio-to-audio warping. In that context,
the set of authorized warpings is much larger. Moreover, contrary to Keshet et al.
[2007] we explicitly cast the problem as a structured prediction task, that we solve
using off-the-shelf stochastic optimization techniques [Lacoste-Julien et al., 2013]
but with proper and significant adjustments, in particular in terms of losses.

The need for similarity measure learning goes far beyond warping problems.
Weinberger and Saul [2009] proposed a large-margin framework for learning a
quasimetric 2 for nearest-neighbour algorithms based on sets of must-link/cannot
link constraints. Lajugie et al. [2014a] 3 proposed the same large-margin similar-
ity measure learning as ours to learn a Mahalanobis quasimetric for partitioning
problems based the minimization of an Euclidean distortion.

Note also that structured support vector machines (structured SVM) can be
applied to tackle various problems, beyond similarity measure learning. Since
their proposition by Taskar et al. [2003] and Tsochantaridis et al. [2005], structured
SVM have successfully been used to solve many learning problems, for instance
to learn weights for graph matching [Caetano et al., 2009] or a metric for rank-
ing tasks [Mcfee and Lanckriet, 2010]. They have also been used to learn graph
structures using graph cuts [Szummer and Hoiem, 2008].

In this chapter, we make the following five contributions:

1. We cast the learning of a Mahalanobis quasimetric for warping temporal se-
quences as a structured prediction problem.

2. We show that, on real musical datasets, this similarity measure improves
the performance of warping algorithms that uses high-level handcrafted fea-
tures.

3. We propose to use the similarity measure learning framework to learn com-
binations of basic audio features and get good warping performances.

1. For a deeper explanation of the differences between warpings and alignment, please have a
look at Sec. 3.3.1 of Chapter 3.

2. We recall that, in this manuscript, we call a quasimetric a function satisfying all axioms of a
distance except the separation one.

3. See also Chapter 4.
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4. We show experimentally that the standard Hamming loss, although tractable
computationally, does not let us learn a relevant similarity measure in some
real world settings.

5. We propose a new loss, closer to the evaluation loss used by practitioners to
compare warpings, leading to a tractable learning task. We derive an efficient
Frank-Wolfe-based algorithm to deal with this new loss. That loss solves
some issues that plague the Hamming loss.

5.2 Matrix formulation of warping problems

In this chapter, we consider the problem of warping two multivariate time se-
ries sharing the same number of dimensions p, but possibly of different temporal
horizons TA and TB. Namely A ∈ RTA×p and B ∈ RTB×p. We refer to the rows of
A as a1, . . . , aTA ∈ Rp and those of B as b1, . . . , bTB ∈ Rp. From now on, we denote
by X the pair of signals (A, B).

5.2.1 Warping using pairwise affinities

Let C(X) ∈ RTA×TB be an arbitrary pairwise affinity matrix associated to the pair
X, that is, C(X)i,j encodes the affinity or similarity between ai and bj. 4 The goal of
the warping task is to find two non-decreasing sequences of timestamps α and β
of common length u ≥ max(TA, TB) such that

u

∑
i=1

C(X)α(i),β(i) (5.1)

is maximal. Moreover the sequence α of timestamps of A and β, the sequence of
timestamps of B satisfy:

α(1) = β(1) = 1 (warp beginnings)
α(u) = TA, β(u) = TB (warp endings)

∀i,
(
α(i + 1), β(i + 1)

)
−
(
α(i), β(i)

)
∈
{
(1, 0), (0, 1), (1, 1)

}
(three moves)

Any pair of sequences (α, β) satisfying the three aforementioned properties is a
warping, or warp between time series. The warping task or dynamic time warp-
ing problem consists is finding the optimal warping according to the quantity of
Eq. (5.1).

Parametrization of warpings. For a given warping (α, β), we can define the bi-
nary matrix Y ∈ {0, 1}TA×TB such that Yα(i),β(i) = 1 for every i ∈ {1, . . . , u} and
0 otherwise. We denote by Y(X) the set of such matrices, which is uniquely de-
termined by TA and TB. An example is given in Fig. 5.1. A vertical move in the Y

4. Note that our framework can be extended to the case where A and B are multivariate signals
of different dimensions, as long as C(X) is well-defined.
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Figure 5.1: Example of two valid warpings encoded by matrices Y1 and Y2. Red
upper triangles show the (i, j) such that Y1

i,j = 1, and the blue lower ones show the
(i, j) such that Y2

i,j = 1. The grey zone corresponds to the sum of the δt, that we
have defined as being proportional to δabs(Y1, Y2).

matrix means that the signal B is waiting for A, whereas an horizontal one means
that A is waiting for B, and a diagonal move means that they move together. In
this sense the time reference is “warped”.

When C(X) is known, the warping task can be cast as the following linear pro-
gram (LP) over the set Y(X):

maximize
Y∈Y(X)

Tr
(
C(X)>Y

)
. (5.2)

Our goal is to learn a way to build the affinity matrix. Our approach do it di-
rectly using data for which the optimal warping is known. Once C(X) is fixed, the
warping is obtained from Eq. (5.2). The optimization problem in Eq. (5.2) will be
referred to as the decoding of our model.

5.2.2 Dynamic time warping

Given the affinity matrix C(X) associated with the pair of signals X = (A, B),
finding the warping that solves the LP of Eq. (5.2) can be done efficiently in O(TATB)
using a dynamic programming algorithm. It is often referred to as the dynamic
time warping problem [Cuturi et al., 2007, Müller, 2007]. This algorithm is de-
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scribed in Alg. 8. Various additional constraints may be used in the dynamic time
warping algorithm [Müller, 2007]. The most widespread ones are the Sakoe-Chiba
band [Sakoe and Chiba, 1978] and the Itakura parallelogram [Itakura, 1975] which
both reduce the set of authorized warpings by forbidding some moves. These re-
finements can be easily added to Alg. 8, but we do not make use of these in practice.

The cardinality of the set Y(X) is huge and is in fact exponential in the length of
time series. It corresponds to the number of paths on a rectangular grid similar to
the one of Fig. 5.1 from the northhwest (1, 1) to the southeast corner (TA, TB) with
vertical, horizontal and diagonal moves allowed. This is the definition of the De-
lannoy numbers [Delannoy, Banderier and Schwer, 2005]. As noted in Torres et al.
[2003], when t = TA = TB goes to infinity, and one can show that the cardinality of
Y(X) satisfies

|Y(X)| ∼ (3 + 2
√

2)t

√
πt
√

3
√

2− 4
.

5.2.3 Mahalanobis quasimetric

In many applications (see, e.g., [Dixon and Widmer, 2005]), for a pair X =
(A, B), the affinity matrix is defined by

C(X)i,j = C(A, B)i,j = −‖ai − bj‖2
2.

In this chapter we propose to learn a quasimetric to compare ai and bj instead of
using the plain Euclidean metric. That is, we consider that C(X) is parametrized
by a matrix W ∈ W , whereW ⊂ Rp×p can be, for instance ,the set of semi-definite
positive matrices of size p× p, and we use the corresponding Mahalanobis quasi-
metric to compute the pairwise affinity between ai and bj:

C(X; W)i,j = −(ai − bj)
>W(ai − bj).

Note that the decoding of Eq. (5.2) is the maximization of a linear function in the
parameter W:

maximize
Y∈Y(X)

Tr
(
C(X; W)>Y

)
, (5.3)

which is equivalent to
maximize

Y∈Y(X)
Tr
(
W>φ(X, Y)

)
.

If we define the joint feature map φ by

φ(X, Y) = −
TA

∑
i=1

TB

∑
j=1

Yi,j(ai − bj)(ai − bj)
> ∈ Rp×p. (5.4)
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Algorithm 8 Dynamic programming algorithm for warping temporal sequences.
It aims at maximizing Tr(CM) where C is an arbitrary affinity matrix in TB × TA.

Input: Affinity matrix C ∈ RTB×TA

Computing the cumulative affinity matrix D:
TA, TB ← size(C)
D ← zeros(TA + 1, TB + 1)
Indices of D goes from 0 to TA and 0 to TB
for i = 1 to TA do

D(i, 0)← −∞
end for
for j = 1 to TB do

D(0, j)← −∞
end for
for i = 1 to TA do

for j = 1 to TB do
D(i, j)← C(i, j) + max

{
D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)

}
end for

end for
Backtracking:
Y ← zeros(TA, TB)
i← TA
j← TB
while i > 1 or j > 1 do

Y(i, j)← 1
if i = 1 then

j← j− 1
else if j = 1 then

i← i− 1
else

m← max
{

D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)
}

if D(i− 1, j) = m then
i← i− 1

else if D(i, j− 1) = m then
j← j− 1

else
i← i− 1
j← j− 1

end if
end if

end while
Y(1, 1)← 1
Output: Y
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5.3 Learning the quasimetric

From now on, we assume that we are given N pairs of training instances 5

(Xi, Yi) =
(
(Ai, Bi), Yi) ∈ RTi

A×p ×RTi
B×p × {0, 1}Ti

A×Ti
B ,

for i = 1, . . . , N. Our goal is to find a matrix W such that the predicted warpings
are close to the groundtruth on unseen examples. To that extent, we need to be able
to measure how far two warpings are. We first define a loss between warpings.

5.3.1 Losses between warpings

In our work, the warpings are encoded by matrices in Y(X), thus we are inter-
ested in functions

` : Y(X)×Y(X)→ R+.

Hamming loss. A simple loss between matrices is the squared Frobenius norm of
their difference 6. This turns out to be the unnormalized Hamming loss [Hamming,
1950] for binary-valued matrices 7. For two matrices Y1, Y2 ∈ Y(X), it is defined
as:

`H(Y1, Y2) = ‖Y1 −Y2‖2
F = Tr(Y>1 Y1) + Tr(Y>2 Y2)− 2 Tr(Y>1 Y2)

= Tr(Y11TB 1>TA
) + Tr(Y21TB 1>TA

)− 2 Tr(Y>1 Y2), (5.5)

where 1T is the vector of RT with all coordinates equal to 1. The last line of Eq. (5.5)
comes from the fact that the Yi are 0/1-valued; that makes the Hamming loss affine
in Y1 and Y2. This loss is often used in other structured prediction tasks [Lacoste-
Julien et al., 2013]; in the audio-to-score setting, Keshet et al. [2007] uses a modified
version of this loss, which is the average number of times the difference between
the two warpings is greater than a fixed threshold.

This loss leads to a computationally tractable learning procedure because it
is linear in our parametrization of the alignment problem. However, it is not a
good loss for audio-to-audio warping. Indeed, a major drawback of the Ham-
ming loss is that, for warpings of fixed length, it depends only on the number
of “crossings” between warping paths: one can easily find Y1, Y2, Ygt such that

5. We will see that it is necessary to have fully labeled instances, which means that for each
pair Xi we need an exact warping Yi between Ai and Bi. Partial warping might be dealt with by
alternating between similarity measure learning and constrained warping following the approach
of Sec. 4.4.2 of Chapter 4.

6. We recall that the Frobenius norm of a matrix M ∈ RI×J is defined by ‖M‖2
F = ∑i∈I,j∈J M2

i,j.
7. The Hamming loss between two binary matrices M and M′ is defined as the sum of disagree-

ments, that is ∑i∈I,j∈J |Mi,j −M′i,j|. Due to the fact that M and M′ are binary this quantity is equal
to

∑
i∈I,j∈J

|Mi,j −M′i,j|2,

that is exactly the definition of the Frobenius squared distance.
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Alignement 1

Alignement 2

Figure 5.2: This figure depicts three different warpings: the groundtruth Ygt and
two warpings Y1 and Y2. Y1 and Y2 both cross the groundtruth only twice (at the
beginning and at the end). Thus we have `(Y1, Ygt) = `(Y2, Ygt). However in an
intuitive view, Y1 seems much closer to Ygt than Y2 because the local deformations
of time are more similar.

`H(Ygt, Y2) = `H(Y2, Ygt) but Y2 seems intuitively much closer to Ygt than Y2 (see
Fig. 5.2). It is important to notice this is often the case when the length of the signals
grows.

Area loss. A more natural loss seems to be the “mean” distance between the
paths depicted by two matrices Y1, Y2 ∈ Y(X). This corresponds to the area be-
tween the paths of two matrices Y, as represented by the grey zone on Fig. 5.1 or
the coloured area in Fig. 5.2.

Formally, as in Fig. 5.1, for each t ∈ {1, . . . , TB} we set δt as

|max
{

k, Y1
k,t = 1

}
−max

{
k, Y2

k,t = 1
}
|.

Then the area between the warpings is the sum of the δt over t ∈ {1, . . . , TB}. In
the audio literature [Kirchhoff and Lerch, 2011], this loss is generally rescaled by
dividing by the length of TB and is called the “mean absolute deviation” loss and
is noted δabs(Y1, Y2).

Unfortunately, for the general warping problem, δabs cannot be expressed lin-
early in the matrices Y. However it is in the case of alignment of a time series
on a reference signal or template, that is, when the index sequence α defined in
Eq. (5.2.1) is increasing 8. This situation includes some important practical cases
such as the audio-to-partition alignment problem [Joder et al., 2013]. This corre-
sponds to a warping situation in which vertical moves are forbidden. In that case
the loss δabs turns out to be linear in each of its arguments.

8. For a more detailed description of alignments as objects, please have a look at Sec. 3.3.1 of
Chapter 3.
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More precisely, if we introduce the matrix LTA ∈ RTA×TA which is lower trian-
gular with ones (including on the diagonal), we can define a loss as

`O(Y1, Y2) = ‖LTA(Y
1 −Y2)‖2

F (5.6)

= Tr(L>TA
LTAY11TB 1>TA

) + Tr(L>TA
LTAY21TB 1>TA

)− 2 Tr(LTAY1Y2>L>TA
).

We now prove that this loss corresponds exactly to the δabs up to a multiplicative
factor in this special case.

Proof. Let Y be an alignment, then it is easy to see that

(LTAY)i,j = ∑
k
(LTA)i,kYk,j =

i

∑
k=1

Yk,j.

Since Y does not have vertical moves, i.e., for each j there is an unique k j such that
Ykj ,j = 1, we have that (LTAY)i,j = 1 if i ≥ k j and 0 otherwise. Thus since LTA and
LTB are binary matrices,

‖LTA(Y1 −Y2)‖2
F = ∑

i,j
|(LTAY)i,j − (LTBY)i,j|.

Thus, ‖LTA(Y1 − Y2)‖2
F is the sum of the δl on Fig. 5.3, this turns out to be exactly

the sum of δt which is equal to TBδabs(Y1, Y2).

In all our experiments, we use δabs for evaluation but not for training.

Approximation of the area loss: the symmetric area loss. In many real world
applications [Kirchhoff and Lerch, 2011], a meaningful loss to assess the quality of
a warping is the area loss. As shown by our experiments, if the Hamming loss is
sufficient in some simple situations and allows to learn a Mahalanobis quasimetric
that leads to good warping performance in terms of area loss, on more challenging
datasets it does not work at all (see Sec. 5.5). This is due to the fact that two warp-
ings that are very close in terms of the loss δabs (or equivalently in terms of area)
can suffer a big Hamming loss (cf. Fig. 5.2). However, directly using δabs for learn-
ing would lead to an intractable problem. However, this problem can be make
tractable if we use the loss `O of Eq. (5.6). In the previous paragraph, we have seen
that this loss was exactly proportional to δabs for alignments. Thus, we propose
to use formulation of Eq. (5.6) to matrices in Y(X) as an approximation for δabs in
the general case. In the general case, the formulation of Eq. (5.6) penalizes vertical
moves too much. To limit this effect, we first make the formulation of Eq. (5.6)
symmetric so that vertical and horizontal moves are surpenalized in the same way.
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Figure 5.3: Illustration of the proof of the equivalence between the δabs and our `O.
In the case of alignments, `O sums the quantities δl whereas δabs is proportional to
the sum of δt.

We define, for any couple of binary matrices (Y1, Y2),

`S(Y1, Y2) =
1
2
(
‖LTA(Y1 −Y2)‖2

F + ‖(Y1 −Y2)LTB)‖
2
F
)

(5.7)

=
1
2

[
Tr(Y>1 L>TA

LTAY1) + Tr(Y>2 L>TA
LTAY2)− 2 Tr(Y>2 L>TA

LTAY1)

+ Tr(Y1LTB L>TB
Y>1 ) + Tr(Y2LTB L>TB

Y>2 )− 2 Tr(Y2LTB L>TB
Y>1
)]

.

We call this loss the symmetric area loss (SAL).

Other expressions for the symmetric area loss. For now, the symmetric area
loss is only defined on the binary matrices of the set Y(X). However, this set is
parametrized through elements of a matrix space. It is natural to wonder how to
extend this loss between points of the discrete set Y(X) to the whole matrix space.
The expression of Eq. (5.7) is well defined over the whole space.

Since matrices Y ∈ Y(X) ∈ {0, 1}TA×TB are binary, for any diagonal matrix
DTA ∈ RTA , we have that

Tr(Y>DTAY) = Tr(Y>DTA 1>TA
1TA).

Let DTA be a diagonal matrix of size TA × TA and DTB be a diagonal matrix of size
TB × TB, then for any matrix Y of the set Y(X), we have the following formulation
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for the loss `S :

`S(Y1, Y2) =
1
2

[
Tr(Y>1 (L>TA

LTA − DTA)Y1) + Tr(DTAY11TB 1>TA
) (5.8)

+ Tr(Y>2 (L>TA
LTA − DTA)Y2) + Tr(DTAY21TB 1>TA

)− 2 Tr(Y>2 (L>TA
LTA − DTA)Y1)

+ Tr(Y1(LTB L>TB
− DTB)Y

>
1 ) + Tr(Y1DTB 1TB 1>TA

) + Tr(Y2(LTB L>TB
− DTB)Y

>
2 )

+ Tr(Y2DTB 1TB 1>TA
)− 2 Tr(Y2LTB L>TB

Y>1 )
]
.

Due to this fact, it is possible to extend the loss `S in infinitely many ways.
Let us choose the more convenient for us: for computational tractability, we need
indeed this loss to be concave. This is the crucial step of our approach.

A concave extension of the symmetric area loss. Equation (5.8) is the sum of a
linear part in the first argument Y1 and of a quadratic part of Y1. For computational
tractability, we need to have a formulation which is concave in Y1. By a fine selec-
tion of the matrices DTA and DTB , the expression (5.8) allows us to make `S concave
over the convex hull of Y(X) that we denote from now on Y(X) For T = TA and
T = TB, a simple choice for the diagonal matrices

DT = λmax(L>T LT)IdT

with λmax(U) the largest eigenvalue of U. This is the matrix we used the most in
our experiments. Note that any diagonal matrix DT � L>T LT would have been a
suitable choice. Thus, for completeness, in our experiments, we also try to set the
matrices DT to the minimal trace matrix that dominates L>T LT in the SDP sense by
solving a semidefinite program (SDP). We report the associated result in Fig 5.7.
Note also that other matrices could have been chosen. In particular, since our
matrices LT are pointwise positive, the matrix

Diag(L>T LT)− L>T LT

makes `S concave. With these choices for DTA and DTB , we can extend `S to a
concave function over the whole space and thus in the convex hull Y(X).

5.3.2 Empirical loss minimization

Recall that we are given N examples (Xi, Yi)1≤i≤N of one pair of time series and
the corresponding warping. For the loss `S, we consider learning the Mahalanobis
quasimetric by solving the following minimization problem in W:

minimize
W∈W

{ 1
N

N

∑
i=1

`S
(
Yi, argmax

Y∈Y(Xi)

Tr(C(Xi; W)>Y)
)
+ λΩ(W)

}
, (5.9)
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where Ω = λ
2 ‖W‖2

F is a convex regularizer preventing from overfitting, with λ ≥ 0. 9

5.4 Large margin approach

In this section we describe a large margin approach to deal with the problem of
Eq. (5.9), which is intractable. As shown in Eq. (5.3), the decoding task is the maxi-
mization of a linear function in the parameter W and aims at predicting an output
over a large and discrete space (the space of potential warpings with respect to
the constraints in Eq. (5.2.1)). Learning W thus falls into the structured prediction
framework [Tsochantaridis et al., 2005, Taskar et al., 2003]. Thus, we can replace
the loss minimization problem by a convex version of it by introducing a proper
surrogate to the function

W → `S

(
Yi, argmax

Y∈Y(X)

Tr
(
C(Xi; W)>Y

))
.

5.4.1 Convex surrogate to the empirical loss

We define the hinge loss, a convex surrogate to the empirical loss function, as

L(X, Y; W) = max
Y′∈Y(X)

{
`S(Y, Y′)− Tr

(
W>

[
φ(X, Y)− φ(X, Y′)

])}
. (5.10)

The evaluation of L is usually referred to as loss-augmented decoding, see [Tsochan-
taridis et al., 2005]. We now aim at solving the following problem, sometimes
called the margin-rescaled problem:

minimize
W∈W

λ

2
‖W‖2

F +
1
N

N

∑
i=1

max
Y′∈Y(X)

{
`S(Y′, Yi)−Tr

(
W>

[
φ(Xi, Yi)−φ(Xi, Y′)

])}
.

(5.11)
In order to use the large-margin structured prediction framework, we need to

be able to solve the associated loss-augmented decoding. We address this issue in
the following subsections, for the two losses we have introduced so far.

5.4.2 Hamming loss case

Among the aforementioned losses, the Hamming loss `H is the only one leading
directly to a tractable loss-augmented decoding problem and thus that falls directly
into the structured prediction framework. Indeed, plugging Eq. (5.5) into (5.10)
leads to a loss-augmented decoding that is an LP over the set Y(X). If we define Ŷi

as the argmax in Eq. (5.10) when (X, Y) = (Xi, Yi), then elementary computations

9. Note that others regularizers could be used to enforce some sparsity patterns.
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show that
Ŷi = argmax

Y∈Y(X)

Tr
((
−U> + 2Yi> + C(Xi; W)>

)
Y
)

,

where U = 1TA 1>TB
∈ RTA×TB . Thus, the loss-augmented decoding is the maxi-

mization of a linear function over the spaces Y(X) that we can solve efficiently
using the dynamic programming algorithm 8.

That way, plugging the Hamming loss (Eq. (5.5)) in the objective function of
Eq. (5.11) leads to a structured prediction problem for which we know how to
solve the loss-augmented decoding. This problem can be solved using standard
techniques such as cutting plane methods [Joachims et al., 2009], stochastic gradi-
ent descent [Shalev-Shwartz et al., 2011], or block-coordinate Frank-Wolfe in the
dual [Lacoste-Julien et al., 2013]. 10

5.4.3 Symmetric area loss case

For the symmetric area loss, we do not know how to perform the loss-augmented
decoding efficiently. Thus, the standard off-the-shelf solvers for structured predic-
tion cannot be used directly. In this paragraph, we show, how, by relaxing the set
of matrices Y(X) into its convex hull Y(X), we manage to get a tractable optimiza-
tion problem.
Instead of the problem of Eq. (5.11), we consider the following relaxed one:

minimize
W∈W

λ

2
‖W‖2

F +
1
N

N

∑
i=1

max
Y∈Y(X)

{
`S(Y, Yi)− Tr

(
W>

[
φ(Xi, Yi)− φ(Xi, Y)

])}
.

(5.12)
We just have relaxed the optimization sets, and are thus performing the loss-augmented
decoding on a much bigger set (which is not even finite anymore). Since, by
Eq. (5.8) we have extended the symmetric area loss in a concave function in its
first argument over Y(X), the problem of Eq. (5.12) is in min/max form. We can
derive a dual using the same argument as in Sec. 1.4.4 of Chapter 1.

Let us briefly recall the major steps. For simplicity we consider the case where
N = 1, that is we have a single training pair (X1, Y1). Starting from the problem of
Eq. (5.12), we are in a situation in which we can apply a saddle-point there like the
one of Prop. 5.5.7 of [Bertsekas, 2015]. Thus we can switch the min and the max to
get a dual problem that is

maximize
Y∈Y(X)

{
min

W∈W

λ

2
‖W‖2

F +

{
`S(Y, Y1)− Tr

(
W>

[
φ(X1, Y1)− φ(X1, Y)

])}}
.

By setting the matrix gradient with respect to W to 0, we get a relation between Y

10. Please note that these techniques are designed for learning parameters W that lie in the whole
space Rp×p. Thus, we have adapted the standard unconstrained optimization methods to our
setting, where W � 0.
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and W:
W =

1
λ

φ(X1, Y1)− φ(Xi, Y).

Plugging back this expression and using the expression of Eq. (5.4) yields to the
following dual program

minimize
Z∈Y(X)

1
2λ

∥∥∥∑
j,k
(Y1 − Z)j,k(aj − bk)(aj − bk)

>
∥∥∥2

F
− `S(Y1, Z),

More generally, when considering N training instances (Xi, Yi), if we call Y the
Cartesian product of the Y(Xi), the dual has the following form:

minimize
(Z1,...,ZN)∈Y

{
1

2λN2

∥∥∥∑n
i=1 ∑j,k(Yi − Zi)j,k(aj − bk)(aj − bk)

>
∥∥∥2

F
(5.13)

− 1
N

n

∑
i=1

`S(Z, Zi)

}
, (5.14)

where we denote by Y(Xi) the convex hull of the sets Y(Xi), and by Y the carte-
sian product over all the training examples i of such sets. Note that we recover
a similar result as [Lacoste-Julien et al., 2013]. Since the SAL loss is concave, the
aforementioned problem is convex. Note also that, for any N-uple of dual vari-
ables (Z1, . . . , ZN), we can get the corresponding primal variable by the relation

W =
1

λN

N

∑
i=1

(
φ(Xi, Yi)− φ(Xi, Y)

)
.

Optimization procedure. The problem of Eq. (5.13) is a quadratic program over
the compact set Y . However, this convex set is hard to describe in terms of in-
equalities and even if it is possible, the number of these would prohibit the use of
standard quadratic programming solvers. However, on the set Y , we are able to
solve any linear program thanks to the dynamic programming algorithm 8. Since
Y is the convex hull of Y , being able to solve an LP over Y yields us to a solution
of the LP over Y 11. Thus we can use a Frank-Wolfe [Frank and Wolfe, 1956] algo-
rithm to solve problem of Eq. (5.13). This algorithm minimizes a convex program
by iteratively

1. minimizing the linear approximation of the objective function given by its
gradient at the current point,

2. solving an LP over the set, yielding to a new point,

3. making a convex combination between the current point and the new point 12.

11. See [Bertsekas, 1999].
12. Note that in the case of quadratic functions, the combination parameter that makes the ob-

jective decrease the most can be computed in closed form. For general objective functions, the
universal stepsize 2

k+2 , where k is the iteration counter, guarantees the convergence of the proce-
dure [Jaggi, 2013].
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Figure 5.4: We depict the typical behaviour of a Frank-Wolfe algorithm on the
polytope Y . At the current point, we compute a gradient, we minimize the linear
form associated to the linearization of objective function, this yields to an extremal
point of the polytope, we do a convex combination between the current point and
this extremal point.

This algorithm is described more precisely in Sec. 1.6 of Chapter 1. An illustration
is provided in Fig. 5.4.

5.5 Experiments

First, we conduct an experiment on a synthetic example to see if the quasimetric
learning is able to recover relevant dimensions among noisy or irrelevant ones.

5.5.1 Synthetic data

In order to demonstrate the validity of our approach, we first consider N = 100
synthetic examples (Ai, Bi, Yi)1≤i≤N. The Ai, Bi are time series in dimension p = 11
and of respective lengths TA = 500 and TB = 600. For each dimension the two time
series are piecewise affine functions whose slope values are 1, 2, and 3. The loca-
tion of the changes of slopes vary across the dimensions. Moreover, we add some
Gaussian noise of variance σ2 = 0.01 at each timestamp and independently on each
coordinate. The warping matrix Yi is obtained by matching Ai and Bi according to
the quasimetric induced by the matrix depicted on the left of Fig. 5.5 13.

We use these examples as training instances to learn a quasimetric W using the
optimization problem (5.13). For this experiment, we only looked at the resulting

13. The affinity matrix C(Ai , Bi) from which we compute the warping using Alg. 8 is thus com-
puted as C(Ai , Bi)t1 ,t2 = ai

t2>Wai
t1

, where W is the aforementioned matrix.
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Figure 5.5: W matrix after optimization (Right) compared to the matrix associated
to the quasimetric that have generated the groundtruth warping (Left). Best seen
in colour.

matrix associated to the Mahalanobis similarity measure learned. On the left of
Fig. 5.5, the groundtruth matrix, the one that have been used for building the cost
matrix for warping the temporal series. On the right, we present the matrix that
we recover in the end of our optimization procedure. It is interesting to notes that
only the relevant dimensions are selected by our method. This assess the validity
of our approach.

5.5.2 Dataset of Kirchhoff and Lerch [2011]

We applied our method to the task of learning a good similarity measure for
aligning audio signals. In this field researchers have spent a lot of efforts in de-
signing well-suited and meaningful features [Joder et al., 2013, Cont et al., 2007].
But the problem of combining these features for aligning temporal sequences is still
challenging. For simplicity, we use a diagonal variant of our learning algorithm.
We restrict the optimization setW in Eq. (5.11) to the set of diagonal matrices for
our experiments. This reduces to learning a vector rather than a full matrix.

Dataset description. First, we applied our method on the dataset of Kirchhoff
and Lerch [2011]. In this dataset, pairs of aligned examples (Ai, Bi) are artificially
created by stretching an original audio signal. That way, the groundtruth warping
Yi is known and thus the data falls into our setting. A more precise description of
the dataset can be found in [Kirchhoff and Lerch, 2011].

The N = 60 pairs are stretched along two different tempo curves. Each signal
is made of 30s of music divided in half-overlapping frames of 46ms, thus with
a hop of 23ms between frames, thus leading to a typical length of the signals of
T ≈ 1300 in our setting. We keep p = 11 features that are simple to implement
and known to perform well for warping tasks [Kirchhoff and Lerch, 2011]. Those
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were: five mel frequency cepstral coefficients (MFCC) [Gold et al., 2011] (labeled
M1, . . . , M5 in Fig. 5.6), the spectral flatness (SF), the spectral centroid (SC), the
spectral spread (SS), the maximum of the envelope (Max), and the power level
of each frame (Pow), see [Kirchhoff and Lerch, 2011] for more details about the
computation of the features. We normalize each feature by subtracting the median
value and dividing by the standard deviation to the median. Note that we use the
median since audio data are subject to outliers.

Experiments. We have conducted the following experiment: for each individual
feature, we perform warping using dynamic time warping algorithm and evaluate
the performance of this single feature in terms of the loss δabs that is typically used
to assess performance in this setting [Kirchhoff and Lerch, 2011]. In Fig. 5.6, we
report the results of these experiments.

Then, we apply our approach on these data, using the Hamming loss to learn a
linear non-negative diagonal combination of these features. The result is reported
in Fig. 5.6. Thus, combining these features on this dataset yields to better perfor-
mances than only considering a single feature.

For completeness, we also conducted the experiments using the standard 13
first MFCCs coefficients and their first and second order derivatives as features.
These results competed with the best learned combination of the handcrafted fea-
tures. Namely, in terms of the δabs loss, they perform at 0.046 seconds. Note that
these results are slightly worse than the best single handcrafted feature, but better
than the best single MFCC coefficient used as a feature.

As a baseline, we also compared ourselves against the uniform combination
of handcrafted features (the metric being the identity matrix). The results are off
the charts on Fig. 5.6 with δabs at 4.1 seconds (individual values ranging from 1.4
seconds to 7.4 seconds).

5.5.3 Chorales dataset

Dataset description. The Bach 10 dataset 14 consists in ten J. S. Bach’s Chorales 15.
For each monophonic voice, we are provided a MIDI reference file corresponding
to the “score”, or a representation of the partition. We have converted these MIDI
files into audio following a standard musical approach (see e.g, [Hu et al., 2003]) 16.
That way, we fall into the audio-to-audio framework in which we can apply our
technique. Each piece of music is approximately 25s long, leading to time series of
temporal horizon T ≈ 1300.

Experiments. We use the same features as in Sec. 5.5.2. As depicted in Fig. 5.7,
the optimization with Hamming loss performs poorly on this dataset. In fact,
the best individual feature performance is far better than the performance of the

14. http://music.cs.northwestern.edu/data/Bach10.html.
15. These are small quadriphonic pieces. They are the harmonic superposition of four mono-

phonic voices.
16. Thus we know exactly the groundtruth warpings.

http://music.cs.northwestern.edu/data/Bach10.html
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Figure 5.6: Comparison of performance between individual features and the
learned quasimetric. The error bar for the performance of the learned quasimetric
are determined by the best and the worst performance on 5 different experiments.
W denotes the learned combination using our method, and M the best MFCC com-
bination.

learned W. Thus similarity measure learning with the computationally practical
Hamming loss performs much worse than the best single feature.

Then, we conduct the same learning experiment with the symmetric area loss
`S. The resulting learned parameter is far better than the one learned using the
Hamming loss. We get a performance that is similar to the one of the best feature.
Note that these features were handcrafted and reaching their performance on this
hard task with only a few training instances is already challenging.

5.5.4 Feature building by combination of low-level features

Last, we conduct feature selection experiments over the same dataset. Starting
from low level features, namely the 13 leading MFCCs coefficients and their first
two derivatives, we learn a linear combination of these using our approach. Re-
sults corresponds to (3), (4), and (5) on Fig. 5.7. This combination achieves good
warping performance in terms of the area loss. Note that very little musical prior
knowledge is put into these features. In the case of the Chorales dataset, we do not
improve on the best handcrafted feature but our learned combination of MFCC
performs similarly. 17.

17. However, on the dataset of [Kirchhoff and Lerch, 2011] our combination of low level MFCCs
outperforms the best single handcrafted feature.
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Figure 5.7: Performance of our algorithms on the Chorales dataset. From left to
right: (1) Best single feature, (2) Best learned combination of features using the
symmetric area loss `S, (3) Best combination of MFCC using SAL and DT obtained
via SDP (see footnote in section 5.3) (4) Best combination of MFCC and deriva-
tives learned with `S, (5) Best combination of MFCCs and derivatives learned with
Hamming loss, (6) Best combination of features of [Kirchhoff and Lerch, 2011] us-
ing Hamming loss.
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5.6 Conclusion

In this chapter, we have presented a structured prediction framework for learn-
ing the similarity measure for temporal warping problems. We are able to combine
hand-crafted features, as well as building automatically new state-of-the-art fea-
tures from basic low-level information with little expert knowledge. Technically,
this is made possible by considering a loss beyond the Hamming loss which is
typically used because it is “practical” within a structured prediction framework
(linear in the output representation).

Our technical approach can be extended to many structured prediction prob-
lems. As soon as elements of a structured set Y can be represented using some
extremal points of the d-dimensional hypercube and if the loss can naturally be
expressed as function twice differentiable whose Hessian has bounded eigenval-
ues over the whole d-dimensional space, then it is possible to make it concave and
thus to derive the same optimization problem than the one we used, and solve it
efficiently using a Frank-Wolfe algorithm.

This work may be extended in several ways, the main one being to consider
cases where only partial information about the warpings is available. This is of-
ten the case in music [Cont et al., 2007] or bioinformatics applications. Note that,
similarly to Lajugie et al. [2014a] and to Sec. 4.4.2 of Chapter 4 a simple alternating
optimization between similarity measure learning and constrained warping pro-
vides a simple first solution, which could probably be improved upon. This is the
goal of the next chapter.



Chapter 6

A Weakly-Supervised Framework for
Structured Prediction With
Sequential Structure

Abstract

In this chapter, we present a framework to deal with weakly-supervised
sequential data for the specific task of classifying each timestamp of
a time series into classes. We consider in particular the problem of
audio-to-score that is to classify each timestamp of an audio record-
ing in some vocabulary of events D that may be notes or combination
of these. For this task, getting fully timestamped audio recordings, or
equivalently a large collection of individual samples to train classifiers
is time-consuming. On the opposite, it is easy to get audio recordings
with the corresponding score that has been played. However, the score
is not a timestamped annotation and only gives the order of notes that
are played and an idea about their relative duration. Due to the free-
dom let to the interpret, many local or global distortions can occur.
However the temporal order of the audio recording and of the score
are the same. We propose an abstract model to deal with such data,
that are pairs of one temporal signal X and of a list of events that we
call a template. In that case we show that the classification task can be
seen as an alignment problem. We cast the learning of classifiers as a
structured prediction task using a cost function based on the Hamming
loss. As suggested in Chapter 1, we use the order of events as an un-
certainty about actual groundtruth timestamps labels. We also show
how it is possible to include further information given by the score in
the case of audio-to-score. We consider the score as giving an expected
shape about the alignment and cast this information as penalties that
we include directly in our cost function. We eventually demonstrate
our approach on a comprehensive study with data coming from the
Finnish folk song dataset.
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This work is a joint work with Piotr Bojanowski, Philippe Cuvilier,
Sylvain Arlot and Francis Bach. It is under submission to a peer-reviewed
conference. It is also linked to the publications:

P. Bojanowski, R. Lajugie, F. Bach, Ivan Laptev, Jean Ponce, Cordelia
Schmid, Josef Sivic, Weakly Supervised Action Labeling in Videos Un-
der Temporal Ordering Constraints, In Proc. ECCV, 2014.

P. Bojanowski, R. Lajugie, E. Grave, F. Bach, Ivan Laptev, Jean Ponce,
Cordelia Schmid, Weakly-Supervised Alignment of Video With Text,
arXiv Preprint, 2015.

The results of these papers will be extensively detailed in the PhD
dissertation of P. Bojanowski.

6.1 Introduction

General motivation. As we have seen in chapters 1, 4 and 5, data are often scarce.
In the case of sequential structure we have considered so far, this is due to the dif-
ficulty to have fully timestamped annotated data. For instance, in Chapter 5, we
were provided with pairs of time series that have been manually warped by some
human expert. In Chapter 4, we made use of exactly located change-points and
delimitation of segments which are in practice hard or unrealistic to get. For ex-
ample, in bioinformatics, “aCGH” arrays [Hocking et al., 2013] often come with
an approximate segmentation. This takes the form of zones that have been manu-
ally selected as containing a change-point. In image segmentation also, gathering
pixelwise information is generally hard and time-consuming; thus most of state-of-
the-art techniques for image segmentation have to make use of very few informa-
tion or very coarse annotations that may take the form of bounding boxes [Kuettel
et al., 2012].

A first way to deal with this kind of partial annotations without drastically
changing the approaches proposed in Chapters 4 and 5 is to use the non-convex ex-
tension of the fully supervised setting we have proposed in Sec. 4.4.2 of Chapter 4.
This is an alternating optimization scheme that iterates between predicting labels
and learning a Mahalanobis metric. More precisely, starting from an initial simi-
larity measure (for instance the one induced by the identity matrix), we complete
the partial annotation so that we have fully timestamped annotated data. Then we
iterate between learning a similarity measure using these data and completing the
partial annotations using this measure.

In this chapter, we propose to overcome the issue of partial supervision in the
case of sequential structure in an other way and on an alignment task. Using the
idea of weak supervision that we have quickly presented in Sec. 6.2 of Chapter 1,
we propose to use partial annotations as a weak information directly into the learn-
ing procedure.

Classification of a time series into events. Time series are often recordings of
natural or human phenomena. Such signals have generally some high-level in-
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terpretation, e.g., a video can show someone opening a door, an audio recording
can be the succession of notes EEFGGFEDC in a piano recording. They are the
succession of meaningful events that belongs to a finite dictionary D. Facing such
a recording of temporal horizon T, it is natural to look for classifying each times-
tamp to an element of the dictionary D. This is a multiclass classification task and
can be cast as the search for an assignment mapping:

n : {1, . . . , T} → {1, . . . , |D|}.

Alignment tasks. When sequential structure is at stake, we generally have some
high-level knowledge about the shape of the assignment mapping n. A signal X
of T timestamps often comes with a template of E events. The template is a symbolic
and ordered representation of the signal. Formally it is a list of E elements of D
ordered by time, that is, event 1 occurs before event 2, and so on. A template can
be the score 1 of a music piece, the script for a video, the text of a speech recording
and so on. With this additional information, we have some knowledge about the
mapping n: we know that it will respect the order of events of the template. But
we do not know necessarily about the temporal extent of each of these events 2. In
this chapter, we call an alignment task the task of classifying a time series when we
are provided a template. The goal of such a task is to provide an alignment mapping
m from X to its template. As seen in Chapter 3, this is a non-decreasing mapping
m from {1, . . . , T} to {1, . . . E} such that:

1. m(1) = 1,

2. m(T) = E,

3. m(t + 1) = m(t) + 1 or m(t + 1) = m(t).

Note that, from the alignment mapping m, it is straightforward to get the assign-
ment n since the template gives the information necessary: a template can be seen
as a mapping τ : {1, . . . , E} → D, so that n = τ ◦ m. To make the connection
with Chapter 3, let us introduce a matrix C of size T × E. The alignment tasks we
perform there will look for an alignment mapping m such that the cost:

T

∑
t=1

Ct,m(t)

is maximal. In our case, Ct,e should be thought as the score of a classifier associated
to the element of dictionary corresponding to event e used at timestamp t.

Alignment tasks arise in various domains of signal processing. Let us describe
more formally two examples: the first one has been tackled in Bojanowski, Lajugie,
Bach, Laptev, Ponce, Schmid, and Sivic [2014], and the second one will be described
in this chapter.

1. Note that the score is much more than a simple ordered list of notes or chords. But for now
we do not consider the information about the temporal extent of notes.

2. For instance, by reading the score we know the order in which notes (A,B,C) will be played
in an audio recording but this do not gives the exact temporal extent of each note.
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6.1.1 Examples

Example 1: localization of actions in videos. The first example comes from com-
puter vision and we have deeply detailed it in Bojanowski, Lajugie, Bach, Laptev,
Ponce, Schmid, and Sivic [2014]. The goal is to perform action recognition of K
actions belonging to a dictionary D. Note that, in this application, for simplicity,
the possibility that several actions occur simultaneously is not considered.

In previous works, action recognition is generally cast as a classification prob-
lem for which training instances of one action are provided in the form of short
video samples during training [Laptev et al., 2008, Liu et al., 2011, Wang et al.,
2011]. In Bojanowski et al. [2014], we assume to be given a video stream with an
ordered list of several actions actually occuring in the video in the given order. For
example, this can be a video of someone going to the restaurant, sitting at a table,
eating and then leaving for which we have a list of the form “sit down”, “eat”,
“stand up”. These data can come from the shooting script of the movie. They are
a pretty accurate description of what happens in the video.

However, the temporal localization as well as the temporal extent of actions are
missing because scripts do not include any information about the localization of
what is described. Bojanowski, Lajugie, Bach, Laptev, Ponce, Schmid, and Sivic
[2014] cast this problem as a weakly-supervised localization task using a square
loss cost. This turns out to be a special case of the approach described in this
chapter.

Example 2: audio-to-score problem. In this chapter, we focus on another exam-
ple: the audio-to-score task. The goal is to align an audio interpretation to the score
(a.k.a known as partition or music sheet) that is supposed to be played. This is also
called the score-following task [Orio et al., 2003, Cont et al., 2007] in a real-time con-
text. This has an interest in itself for the tracking of live performances for instance.
But it is also a front-end task for some important applications in music such as
the query-by-humming [Ghias et al., 1995], which corresponds to recognize a song
approximately hummed by someone or for audio editing [Dannenberg, 2007].

We focus on the offline setting, namely when the whole temporal signal has
been observed and that the task is performed offline. Note however, that alignment
need often to be performed online or in real-time. The approach presented there
is offline for the training stage, but can be used at testing time in the online setting
thanks to some algorithmic advances designed to bridge the gap between online
and offline audio-to-score [Dixon and Widmer, 2005].

6.1.2 Contributions of this chapter

In this chapter, we make the following contributions:

1. we propose a weakly-supervised structured prediction model based on reg-
ularized empirical loss minimization for the problem of alignment of a time
series to a predefined template. Our approach uses two information: (i) an
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exact list of events, (ii) an approximate information about duration about du-
rations of events,

2. we define a proper loss for this task,

3. we propose a convex relaxation of this loss that lead to a tractable convex
optimization problem that we solve using a Frank-Wolfe algorithm,

4. as a minor contribution, we relate the model for aligning videos and actions
of Bojanowski, Lajugie, Bach, Laptev, Ponce, Schmid, and Sivic [2014] to
structured prediction,

5. in the specific case of the audio-to-score task, we propose an easy way to use
the prior knowledge about the durations of events given by the score and
include this directly in the convexified loss minimization problem.

6.1.3 Notations

For now, let us describe an abstract model that allows us to deal with these two
applicative cases.

Let us consider a temporal signal X of temporal horizon T. Each timestamp is
assumed to be the observation of p features, that is, X ∈ RT×p. We recall that our
aim is to align X with a template that may consist in a list of actions or a list of
successive musical events played. Let us see how we encode such a template.

Representation of templates. A template is a list of E symbols called events. An
event is an element of a dictionaryD. We suppose that each event is a combination
of classes of a certain setA of cardinal K. The dictionary is the set of all subsets ofA
that we denote 2A and which has cardinal 2|A|. Thus each event can be represented
by a binary vector Φe ∈ {0, 1}K , e = {1, . . . , E} such that Φe

i = 1 if class i is present
in the event. A template is an ordered list of E successive events. It can thus be
identified to as a sequence of E binary vectors, that we stack in a binary matrix
Φ ∈ {0, 1}E×K. Note that two settings can be distinguished.
First, the exclusive one where only one element per row of Φ can be non-zero. In the
case of music, we can think about the monophonic setting where one note is played
at a time. Second, the inclusive one where several elements per row of Φ can be
non-zero. In the inclusive setting, one event is a superposition of several atomic
elements of the vocabulary. In music, this is the case of chords and this is referred
to the polyphonic setting. This is a multi-label classification problem we have seen
in Chapter 2 with K possible labels. The classes used to make the elements of the
dictionary D can take the form of actions labels in the context of videos or of notes
in the context of music.

Parametrization of alignments. Recall that the goal of the alignment procedure
between a signal X and a template of length E is to find a non-decreasing map-
ping m satisfying time contiguity constraints. For more details about this object,
we refer to Sec. 3.3.1 of Chapter 3. Such an alignment can be represented through
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Figure 6.1: Illustration of the relation between the assignment matrix Zi and the
corresponding alignment one Yi.

an alignment matrix Y. Figure 6.1 shows that Y can be thought as the graphical rep-
resentation of the function m. The matrix Y is binary of dimension T × E and Yt,e
is equal to 1 if m(t) = e and 0 otherwise. The set of all alignments matrices corre-
sponding to an alignment of a template Φ of E events with a temporal signal X of
length T is denoted by Y(Φ, X). As we did in previous chapters, to avoid cumber-
some notation, we omit this dependence in the data Φ and X when it is clear from
the context.

From alignments to assignments. Because a template is a sequence of subsets
of {1, . . . , K}, alignments can also be represented using an assignment matrix Z
which is the binary indicator membership of timestamps. Roughly speaking, if
we see Y as the graphical representation of the alignment mapping m, Z is the
representation of the corresponding assignment mapping n : {1, . . . , T} → D.
The matrix Z is binary of size T× K and such that Zi,j = 1 if and only class j of the
template is present at timestamp i. The set of assignment matrices Z corresponding
to assignments associated to elements of Y(Φ, X) is denoted by Z(Φ, X). We have

Z = YΦ.

Note that the mapping Y → YΦ is bijective from Y(Φ, X) to Z(Φ, X). The relation
between Z and Y is depicted by Fig. 6.1. In the next sections, depending on our
needs, we will switch between these two representations.
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6.2 Alignment as a weakly-supervised structured pre-
diction task

In this section we show how the task of finding an alignment between a signal
X and its template Φ can be seen as a weakly supervised version of classification
and we relate our approach to structured prediction

6.2.1 Fully-supervised setting

First, let us recall how we can cast multiclass classification using the notations
of structured prediction.

Classification task. Let X ∈ RT×p be a time series. Let us assume that we want to
learn one affine discriminative function dk : Rp → R for each class k ∈ {1, . . . , K}.
The goal is then to classify each timestamp t ∈ {1, . . . , T} using the associated
prediction function fk(x) = sign(dk(x)). That is, we aim at learning for each k ∈
{1, . . . , K} a mapping

dk : Rp → R

such that there exists (wk, bk) ∈ Rp ×R such that

∀x ∈ Rp, dk(x) = w>k x + bk.

Note that bk is usually not regularized during the learning process for square loss
based discriminative models [Bach and Harchaoui, 2008] as well for the standard
support vector machine formulation [Cortes and Vapnik, 1995]. We need to stress
that, to get more compact notations and as is usually done in practice [Hastie et al.,
2009], we deal with the constant term by adding a constant column of value α to
the matrix X and learn a linear mapping fk on the p relevant features augmented
with this additional one 3. Thus, fk is of the form

∀x ∈ Rp fk(x) = w>k x.

We stack the p classifiers in a matrix W ∈ Rp×K. Using these, our goal is to predict
a classification mapping n that we represent through its assignment matrix Z.

Following the approach described in Chapter 1, we consider a prediction model

3. Since our learning algorithms are based on the minimization of a data fitting term plus a
regularizer that is the sum of the squared norms of each discriminative function ‖wk‖2

2, this trick
makes the bias regularized. So typically we set α = 10000 so that regularization does not have
influence on the learning of the constant term. Note also that we cannot get rid of the constant term
in practice since the constant term allows us to adjust the threshold of the linear part of f̃k.
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based on the following discriminative function

F(X, Z; W) = Tr(Z>XW)

=
T

∑
t=1

K

∑
k=1

zt,kw>k Xt,..

For now, we do not make use of any template and consider prediction to be
done using by finding f (X, Φ; W) such that

f (X, Φ; W) ∈ argmax
Z∈{0,1}T×K

Tr(Z>XW), (6.1)

or equivalently

f (X, Φ; W) ∈ argmax
zt,k∈{0,1}

T

∑
t=1

K

∑
k=1

zt,kw>k Xt,..

Note that this corresponds to considering one multi-label classification problem
at each timestamp. Since the zt,k are binary, this quantity is maximal for zt,k =
1w>k Xt,.≥0. Thus, for each timestamp t, predictions are done independently and the
predictions are also independent across labels.

Alignment task. We consider the alignment problem, in which predictions are
not independent anymore. This means that the set where Z lies is constrained. Let
us assume to be given a pair (X, Φ). Finding an alignment is similar to what we
have done in Eq. (6.1) but we perform the argmax on the subset Y(Φ, X) of binary
indicator matrices authorized by the template Φ. The prediction function f is thus
defined by:

f (X, Φ; W) ∈ argmax
Y∈Y(Φ,X)

Tr(Φ>Y>XW),

or equivalently using the assignment matrices Z = ΦY:

f (X, Φ; W) ∈ argmax
Z∈Z(Φ,X)

Tr(Z>XW). (6.2)

Let us now see how to learn the parameter W of this function.

Full-supervision. Let us consider that we are given N training triplets of data

(Xi, Φi, Yi),

or
(Xi, Φi, Zi),

where Yi corresponds to the groundtruth alignment mapping mi. The goal is to
learn W that is used in Eq. (6.2) directly from data. To learn W, we adopt the
standard regularized empirical loss minimization setting that minimizes the dis-
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agreement between predictions and training examples plus a regularization term.
Assuming that we are given a loss ` between assignment matrices, we ideally solve
the following optimization problem:

minimize
W∈Rp×K

{ 1
N

N

∑
i=1

`
(

f (Xi, Φi; W), Zi)}+
λ

2
‖W‖2

2. (6.3)

Input and output. There are two ways of looking at the problem depending on
what we call input and output among the N data triplets

(Xi, Φi, mi)1≤i≤N.

If Xi is the input and the pair (Φi, mi) the output, we are addressing a multi-label
classification problem. For music, this means that we see the audio recording as
our only input and that the output is a classification mapping that assigns to each
timestamp one event. If we consider the input data to be the pair (Xi, Φi) and
the output to be the alignment mapping 4, then we are considering the problem
as a structured prediction one whose goal is to find a correspondence between
two input signals. These two views are different and give rise to several possible
interpretations of the task we are performing.

At test time, we consider to be provided as input a pair (Xi, Φi), thus we adopt
the point of view of prediction of an alignment mapping. However, at training
time we adopt the classification point of view. Namely our inputs are time series
Xi and our outputs are (Φi, Zi). We consider we have only a partial information
about our outputs.

Our major concern comes from the fact that in real applications, the triplets
(Xi, Φi, mi) are very rarely available. We generally only have access to pairs (Xi, Φi).
In the following section, we propose to handle this lack of supervision starting
from the fully supervised case.

6.2.2 Weakly-supervised setting

Starting from Eq. (6.3), we need to derive a counterpart to the fully-supervised
empirical loss minimization problem when the groundtruth alignment Yi is not
present anymore. However we are still provided the Φi of the output pair (Φi, Yi).
That is, we only have access to a partial supervision, that we call in the following
weak supervision. The template Φi still gives us a strong knowledge about what the
classification mapping should look like. The idea is thus to minimize the empir-
ical loss not only over the parameter of the discriminative function but also with
respect to the alignments, and to solve a minimization program of the form:

minimize
W∈Rp×K

1
N

N

∑
i=1

min
Zi∈Z i

`
(

f (Xi, Φi, W), Zi)+ λ

2
‖W‖2

2, (6.4)

4. This corresponds to having the same kind of inputs than the one we had in Chapter 5. That
is, we have two input signals that we want to align.
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where we denote the sets Z i = Z(Φi, Xi). 5 An intuition about this objective is
given in Sec. 1.5.2 of Chapter 1 and in Fig. 1.4. The goal is to minimize the loss
between prediction and the set of outputs authorized by the weak supervision.
In other words, if we denote the set of all subsets of Z by 2Z , we consider the
empirical loss minimization problem with the loss

˜̀ : Z × 2Z → R

defined by
∀Z ∈ Z , ∀Z̃ ∈ 2Z `(Z, Z̃) = inf

Z′∈Z̃
`(Z, Z′).

Unsupervised view. The approach of Eq. (6.4) can also be interpreted in an other
manner if we see our training data as pairs of one time series and a template
(Xi, Φi). In that case, we see Eq. (6.4) as a (non-convex) discriminative cluster-
ing objective [Guo and Schuurmans, 2007, Bach and Harchaoui, 2008]. Imagine
that we are given pairs of audio recordings Xi with a template Φi which is the or-
der of notes. Equation (6.4) seeks to jointly finding the optimal correspondence Zi

between signals and templates while learning a classifier for each note. If λ = 0
and if the loss function has non-negative value and such that ∀Z, `(Z, Z) = 0, this
cost is minimal and equals to 0 in a situation where it is possible to find Zi ∈ Z i

such that there exists classifiers that allow us to recover exactly this alignment Zi.
Thus, seeing things that way, what we called a weakly-supervised objective is an
unsupervised objective making use of data pairs (Xi, Φi).

6.2.3 Losses over alignments

Now, let us discuss the possible choices for the loss between the elements of Z .

Area loss of Lajugie et al. [2014b] and Chapter 5. In Chapter 5, we have seen
that a very appealing loss between warpings is the area between them. On Fig. 6.2,
this loss is represented as the area between the two depicted alignments. This loss
is also very attractive for alignments. Let Y1 and Y2 be two alignment matrices.
The area as defined in Chapter 5 and in Lajugie et al. [2014b] corresponds to the
sum over each event of the difference of the ending timestamps of events in the
two alignment. That is, for each event e corresponding to a row e of Y1 and Y2, we
define

δe
l = |max

{
t, Y1

t,e = 1
}
−max

{
t, Y2

t,e = 1
}
|,

and thus the area is

`end(Y1, Y2) =
E

∑
e=1

δe
l .

On Fig. 6.2, we give an illustration of the quantity δe
l .

5. Similarly for alignment matrices, we denote the set by Y i = Y(Φi , Xi).
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Figure 6.2: An illustration of the onset loss and the delay between onsets of events.
The events there are music notes. The formula of Eq. (6.5) corresponds to summing
the δt whereas the delay between onsets is the sum of the δe

on. These two quantities
are the same for alignments.

Onset loss. However, in several applications and especially in music, one is more
interested in the delay between the onsets that are the beginnings of events. If we
introduce

δe
on = |min

{
t, Y1

t,e = 1
}
−min

{
k, Y2

t,e = 1
}
|,

the sum of the delays between onsets is:

`on(Y1, Y2) =
E

∑
e=1

δe
on.

This quantity is exactly the loss that is used for assessing the quality of audio-to-
score alignment [Cont et al., 2007] and is depicted in Fig. 6.2. More formally, the
onset loss between two alignments depicted by their alignment matrices Y1 and Y2

can be written as:
`on(Y1, Y2) = ‖Y1LE −Y2LE‖2

2, (6.5)

where LE is the lower triangular matrix of dimension E made of ones including
on the diagonal 6. On the figure, the difference between onsets is the sum over all
rows of the quantities δon, and the loss defined by Eq. (6.5) corresponds to the sum
over all columns t ∈ {1, . . . , T} of the quantities δt. In the case of alignments, these
two quantities are equal.

Note also that this loss is closed to the symmetric area loss defined in Chapter 5.

Link between area loss and onset loss. In the case of alignments, for the same
reason that the onset loss can be expressed easily with matrices the area loss of La-

6. This quantity is exactly the sum of the δt in Fig. 6.2 which turns out to be also the sum of δe
on,

the sum of differences between onsets.
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jugie et al. [2014b] and Chapter 5 can be expressed as:

`end(Y1, Y2) =
E

∑
e=1

δe
l = ‖Y

1 L̃E −Y2 L̃E‖2
F,

where L̃E is the E-dimensional lower triangular matrix filled with ones and with
zeros on the diagonal. Namely, L̃E = LE − IdE. This equality can be understood
as the equality between the sum over all columns t′ ∈ {1, . . . , T} of the quantities
δend

t′ and the sum over all rows of the δe′
l in Fig. 6.2. Note that, for t fixed, we have

that δt = δend
t , thus the area loss and the onset loss are the same quantities for

alignments.

The Hamming loss. In Chapter 5, we have seen that the Hamming loss is not a
good way to measure the difference between the alignment matrices of Y . How-
ever, in our case, it is reasonable to consider the Hamming loss over the assign-
ment matrices. Recall that our fundamental problem is a multiclass classification
one. The matrices Z can be thus considered as binary indicator matrices of class
membership at each timestamp. For the multiclass setting, the Hamming loss has
attracted a lot of attention because of its computational tractability and simplicity
to analyze [Allwein et al., 2001, Hastie et al., 2009]. We recall that the Hamming
loss is defined for two assignments Z and Z′ by:

`H(Z, Z′) =
T

∑
t=1

E

∑
e=1

1Zt,e 6=Z′t,e
. (6.6)

Since Z and Z′ are binary matrices, we have the following expression for the Ham-
ming loss:

`H(Z, Z′) = ‖Z− Z′‖2
F.

Equivalently, for the alignment matrices coming with corresponding templates, we
define:

`H(Y, Φ, Y′, Φ′) = ‖ΦY−Φ′Y′‖2
F. (6.7)

In this work, due to its computational simplicity, we use the Hamming loss. From
now on, ` = `H. However, note that the onset loss will be used in Sec. 6.4.1.

6.3 Convexification using the square surrogate

As seen in Chapter 1, the problem of Eq. (6.4) is NP-hard in the general case.
A common way to address this issue in the fully-supervised setting is to use a
convex approximation of the functions involved in the empirical loss minimization
problem (6.4), that are defined for each instance i ∈ {1, . . . , N}, by

gi : W → `
(

f (Xi, Φi; W), Zi).
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We propose to use a similar approach. Due to the joint minimization over the
labels Z and the classifiers W, the logistic surrogate or the SVM would lead to a
non-convex formulation. Indeed, replacing ` by the margin rescaling surrogate
used for structured SVMs [Tsochantaridis et al., 2005] would lead to:

minimize
W∈Rp×K

N

∑
i=1

min
Zi∈Z i

max
Z∈Z

{
‖Zi − Z‖2

F − Tr
(
(Z− Zi)WX

)}
+ λ‖W‖2

2. (6.8)

This is in general the minimization of a non-convex function and there is no obvi-
ous way to make it convex. An approach to deal with this cost could be to iterate
between optimizing in (Z1, . . . , ZN) and in W. 7

However, we can easily find a square surrogate to the objective of the prob-
lem of Eq. (6.8), we will see that in this case, it is possible to get a convex relax-
ation. Minimization of a square loss based criterion have been studied for a long
time [Legendre, 1805, Gauss, 1809]. When such a square loss criterion is penal-
ized using a square regularizer (originally for dealing with numerical issues), we
talk about ridge regression [Hoerl, 1959, 1962] or ridge classification for multiclass
classification.

6.3.1 Convexification of the empirical loss minimization objec-
tive

Recall that we consider N training examples made of one time series

Xi ∈ RTi×p

with the associated template Φi. We use the structured decoding model of Eq. (6.1).
We use the Hamming loss to measure the discrepancy between elements of our
structured set of assignments:

`H
(
Z, f (X, Φ; W)

)
=

T

∑
t=1

1Zt 6= f (X,Φ;W)t .

We extend the convexification strategy using the square surrogate to the 0− 1
loss we have seen in Chapter 1. Namely, we replace each 1Zt 6= f (X,Φ;W)t by (Zt −
(WX)t)2. This yields replacing `H by:

T

∑
t=1

(
Zt − (WX)t

)2
2 = ‖Z−WX‖2

F.

We consider now a convexified learning problem of the following form:

7. This is the approach of Sec. 4.4.2 of Chapter 4.
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minimize
W∈RK×p

{ 1
N

N

∑
i=1

min
Zi∈Z i

‖Zi − XiW‖2
2

}
+

λ

2
‖W‖2

2. (6.9)

Note that if we define the setZ as the Cartesian product of all the individualZ i,
and if we stack all the Zi into a single matrix Z and all the time series into a single
one, we can consider the problem as if there were only one training example 8:

minimize
W∈RK×p

min
Z∈Z

{ 1
N
‖Z− XW‖2

2 +
λ

2
‖W‖2

2

}
. (6.10)

With this convention our input data can be seen as a single example (X, Φ).
Since the optimization in W is unconstrained, we can set the gradient with re-

spect to this variable to 0 and get W implicitly from Z. This yields the following
relation: ( 1

N
X>X + λIdp

)
W − 1

N
X>Z = 0. (6.11)

We then use this relation to get

W =
(

X>X + NλIdp

)−1
X>Z,

and plug back this expression in the objective function of problem (6.10). We get
the following optimization problem:

minimize
Z∈Z

Tr(Z>BZ). (6.12)

where
B =

1
N

(
IdT − X(X>X + NλIdp)

−1X>
)

,

or equivalently, using the matrix inversion lemma:

B =
1
N

(
IdT − XX>(XX> + NλIdT)

−1
)

,

which can in turn be simplified in:

B = λ(XX> + NλIT)
−1

Note that we recover the fact that the matrix B is positive semidefinite since the
eigenvalues of XX>(XX> + NλIdT)

−1 are smaller than 1. The objective function
of Eq. (6.12) is convex in Z but the overall optimization problem is non-convex
since the set Z is discrete.

8. We also introduce the analogous of Z that is Y as the stacking of all the Yi and the correspond-
ing set Y .
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Convex relaxation strategies. To make the problem convex we can relax the op-
timization problem on the convex hull Z of Z , that is

minimize
Z∈Z

Tr(Z>BZ). (6.13)

This relaxation suffers from two different effects that make it attracted by some
degenerate solutions.

The first one occurs if the convex optimization set Z is “too symmetric”. In-
deed, as noted by Guo and Schuurmans [2007], Bach and Harchaoui [2008], Joulin
et al. [2010], if Z is symmetric by permutation of columns, the matrix Z with con-
stant entries is an optimum of the cost in problem of Eq. (6.13). In our case, thanks
to the sequential structure of the set Z , we are not subject to this effect.

Second, other degenerate solutions are the columnwise constant assignment
matrices. Indeed, let us consider the matrix Z that collapses all classes into one, for
instance such a degenerate Z ∈ R5×3 could be

Z =


1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

 .

Z is such that Tr(Z>BZ) is close to 0 for the objective function of Eq. (6.13) 9. This
columnwise constant solution is not in Z due to the alignment constraint, but if
T is large, elements of Z similar to Z0 are in Z . To prevent these solution to trap
our learning process, we need to go away from these. In general, in the weakly su-
pervised setting, and especially when Z has some sequential structure and when
its temporal horizon is short enough, these solutions are far away from the op-
timization set [Bojanowski et al., 2013, 2014, Joulin et al., 2014]. However, in our
experiments (Sec. 5.5) we show that the bigger our optimization polytope becomes,
the closer to degenerate solution we go.

6.3.2 Optimization

We are now optimizing a convex function over a compact and convex set. How-
ever, the convex set is defined as a convex hull of a finite but huge 10 number of
points. The convex set Z is thus a polytope with many faces. It is not clear if it has
a description using a polynomial number of constraints. However, the dynamic

9. The fact that this Z is a degenerate solution is linked to the important fact that the classifier
matrix W corresponds to affine classifiers. Indeed, we add to our feature matrix X a constant column
of value α with α large, thus our p-th feature is constant equal to α for all timestamps t. Thus the
matrix B = λ(XXT + NλIT)

−1 has an eigenvalue almost equal to 0 associated to a vector very close
to 1T .

10. They are (T
E) if the template has length E.
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programming algorithm 6 presented in Chapter 3 let us

maximize
Z∈Z

Tr(A>Z), (6.14)

given any affinity matrix A ∈ RT×K. So, we are able to solve linear programs over
the set Z . But, due to the fundamental theorem of linear programming 11, this
yields to a solution of any linear program over the set Z .

In other words, we know how to maximize linear forms over our optimization
set. Moreover, the gradient of the objective function of Eq. (6.13) is easy to compute
and is:

g(Z) = BZ.

Thus, we are in a situation where we can use the Frank-Wolfe algorithm we have
described in Sec. 1.6 of Chapter 1.

This optimization procedure yields to a solution Z∗ ∈ Z . We can get back the
corresponding classifiers W∗ using the relation of Eq. (6.11).

For classification purpose, getting W∗ is enough. However, one can be inter-
ested to get an assignment matrix Z ∈ Z .

Need for rounding solutions. Since the mapping from timestamps to elements
of the template is not given in data (X, Φ), we want to recover it as well as the
classifiers. So, from the solution Z∗, we need to find a solution Z which lies in the
set Z . Several strategies exist, let us describe two we use in this chapter and that
have been used by Bojanowski, Lajugie, Bach, Laptev, Ponce, Schmid, and Sivic
[2014]:

1. The rounding in Z consists in rounding the solution Z∗ to the closest point
of Z in the sense of L2 distance, that amounts to minimizing the following
quantity over Z :

‖Z− Z∗‖2
2.

In the very important case where Z has all rows summing to one, a short cal-
culation shows that Tr(ZZ>) is constant over Z ∈ Z and thus this rounding
procedure amounts to finding a minimizer of

Tr(Z>Z∗),

over Z .

2. The rounding using the decoding model of Eq. (6.1). does not use directly the
solution Z∗. It consists in using the classifier to solve the decoding problem
of Eq. (6.1), that is to find a maximizer over Z ∈ Z of:

Tr(Z>XW∗).

11. This theorem guarantees that when solving a linear program over a polytope, one optimal
solution will be on a vertex of the polytope. See e.g Prop B.5.1 of [Bertsekas, 1999].
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Now let us briefly describe a first application of this approach: the temporal
localization of actions in video using a list of action given by the shooting script of
a movie. We have considered this application in Bojanowski, Lajugie, Bach, Laptev,
Ponce, Schmid, and Sivic [2014] and Bojanowski, Lajugie, Grave, Bach, Laptev,
Ponce, and Schmid [2015]. Note that we did not make the link with structured
prediction that we have done in this chapter.

6.3.3 Link with Bojanowski et al. [2014]

The optimization objective of Eq. (6.10) relaxed in Eq. (6.13), is exactly the opti-
mization problem we solved in Bojanowski, Lajugie, Bach, Laptev, Ponce, Schmid,
and Sivic [2014] for aligning a sequence of actions with a video recording. We
considered ∼ 900 video clips stacked in a matrix X ∈ RT×p where T ∼ 70000 and
p ∼ 1000. These clips are provided with a list of actions occuring in the video clips.
Each clip is associated with around 6 to 12 events belonging to a set of 17 classes.
We solve Eq. (6.13) using the Frank-Wolfe algorithm and demonstrate on a chal-
lenging video dataset that the use of the simple temporal order of events was able
to produce classifiers as good at action localization and recognition than classifiers
trained on fully supervised timestamped video.

In Bojanowski et al. [2014], we saw our approach as an instance of discrimina-
tive clustering methods [Guo and Schuurmans, 2007, Bach and Harchaoui, 2008]
using a square loss cost. The previous sections show the deep links between our
approach and structured prediction.

In this chapter, we propose to consider an other applicative case: the audio-to-
score problem.

6.4 Weakly supervised approach for the audio-to-score
problem

In this section, we focus on the audio-to-score problem. This is the task of
aligning an audio recording X ∈ RT×p of temporal horizon T, on a template cor-
responding to the score. As for movie scripts, it is possible to see a score as an
ordered list of E events that are played in the audio recording. Each event is one
or a combination of notes among a set of K. This template is represented through
a matrix Φ ∈ {0, 1}E×K. Thus, as Bojanowski et al. [2014] did for videos, we could
just solve of Eq. (6.13), and test the performance of the resulting classifiers and the
relevance of the alignment.

However, as shown in the experimental section 6.5, this approach is not satis-
factory as soon as the number of events occurring in the recording is too large.

Using additional information. A score is much more than an ordered list of
events. It gives information about the relative duration between them. Indeed,
we know that a quarter note would last around twice less than a half one even if
the interpreter of the score is always free in its interpretation. So, we have a strong
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Figure 6.3: Illustration of the kind of information available for music. We are given
a list of event with an a priori about their duration and we can build an expected
alignment Y.

prior about what the output alignment should look like, even if the score is never
played strictly 12. The standard way to use this knowledge in the musical liter-
ature is to build a hidden semi Markovian model (HSMM) [Raphael, 1999, Orio
et al., 2003]. Our approach to cope with this knowledge is different. We build on
the discriminative approach developed in Sec. 6.2, and propose to use the relative
duration information as a penalty that we include in Eq. (6.13).

From a score, we propose to build an expected alignment matrix Y (or the corre-
sponding assignment matrix Z). The alignment Y is the one that would be obtained
if the score were played strictly or if the recording were produced by a synthetizer.
From now on, we assume to be given N training instances (Xi, Φi, Yi

) where Xi is a
temporal signal, Φi, the template and Yi

is the expected alignment. Note however
that the expected alignment is a much weaker information than a manually fully
timestamped information. To simplify notations, we do in the subsequent sections
as if there were only one training example (X, Φ) 13. In Fig. 6.3, we represent an
example of such an expected alignment.

6.4.1 Duration priors

Global prior. The idea is to penalize the dissimilarity between the alignments
Y outputed by the weakly-supervised optimization procedure and the expected
alignment corresponding to the information we get. We call Y this expected align-
ment. As described in the previous section, a good way to measure the distance
between an alignment Y ∈ Y and Y is to considering the sum of absolute differ-
ences between onsets in the two alignments. As noticed in Sec. 6.2.3, this can be
written, with L the lower triangular matrix of size E× E with ones, as

‖YLE −YLE‖2
F.

12. In top of the variability within an interpretation due to the interpreter, the composer often let
some freedom. For instance, a musical phrase can be marked as having a “moderate” tempo and
an other one as a “fast” tempo.

13. Imagine that we have stacked all the Xi, Yi and Φi in three matrices, respectively X of size

T = ∑N
i=1 Ti by p, Φ of size E = ∑N

i=1 Ei by K and Yi of size T by E.
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We call this term the global prior, it is a global penalization on the shape of the
alignments.

Local prior. Another way to use the prior knowledge given by a score is to con-
sider the mean alignment but not to penalize by the global shape of it. Instead we
penalize individually the discrepancy between the duration of each event in the
outputed alignment and the expected alignment. The idea is thus to penalize by:

1
T

E

∑
e=1

(1>T Y.,e − 1>T Y.,e)
2.

This can be written more compactly as:

1
T
‖1>T Y− 1>T Y‖2

2. (6.15)

Musical interpretation of local and global prior. The global prior is expected
to be more robust when the expected alignment is globally correct but when lots
of local distortions occurs, that is when the global shape of the alignment is close
to the expected one. In music this corresponds to the rubato setting [Kennedy,
1994]. On the contrary, the local prior is more suited for cases where the expected
alignment is not globally correct but locally correct. For instance, in music this
corresponds to fermata setting [Kennedy, 1994]; namely the relative durations of
notes is globally correct except for some notes that correspond to end of musical
phrases and where the interpret can wait as long as he or she wants.

6.4.2 The complete cost function

Adding the priors, which are only functions of Y, into the cost function of
Eq. (6.10) yields to the following minimization problem over the set of binary ma-
trices Y :

minimize
W∈Rp×K ,Y∈Y

1
N

(
‖YΦ− XW‖2

2 + µ‖YLE −YLE‖+ ν‖1>T Y− 1>T Y‖2
2

)
+

λ

2
‖W‖2

2,

(6.16)
where µ, ν and λ are parameters that need to be tuned by proper validation. Equa-
tion (6.16) is exactly the same as Eq. (6.10) with ΦY instead of Z and two priors
term added. Like in the previous section, since W is unconstrained, we can set to
0 the gradient with respect to W, this yields to the following normal equation that
links the optimization variables Y and W:

1
N
(YΦ− XW) = (λIdp + X>X)W. (6.17)
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As in the previous section we can thus write our optimization program as a quadratic
one in the variables Y:

minimize
Y∈Y

{
Tr(Φ>Y>BYΦ) + µ‖YLE −YLE‖2

F + ν‖1TY− 1TY‖2
2)
}

, (6.18)

where
B =

1
N
(
IdT − X(X>X + NλIdp)

−1X>
)
.

6.4.3 Convex relaxation

Due to the discrete nature of the set Y , Eq. (6.18) is a hard discrete combinatorial
problem. As we did in in Sec. 6.3.1, we choose to relax Y into its convex hull Y .
This leads to the following convex optimization problem:

minimize
Y∈Y

{
Tr(Φ>Y>BYΦ) + µ‖YLE −YLE‖+ ν‖1TY− 1TY‖2

2)
}

, (6.19)

On the set Y , as underlined in Chapter 3, we are able to minimize or maximize
any linear form. Indeed, for any matrix A ∈ RE×T we can

maximize
Y∈Y

Tr(AY)

using the dynamic programming algorithm 6 of Chapter 3. As in the previous
section, due to the so-called fundamental theorem of linear programming, mini-
mizing a linear program over Y provides a solution of the LP over Y . We are thus
in a situation where we can use the Frank-Wolfe algorithm that we have described
in Sec. 1.6.2 of Chapter 1.

6.4.4 Rounding procedures

Once the problem (6.19) is solved over the convex set Y , we get a solution Y∗

that is not a valid alignment (which is represented through a binary matrix). Note
that, from Y∗, it is always possible to get classifiers W∗.

However, one can also be interested in the mapping obtained on the train set,
since the exact alignment matrix was not part of the data. For that purpose it is
necessary to round the solution Y∗. We have explored several types of rounding,
let us present them now.

Rounding using the decoding model of Eq. (6.1). The first way to round, which
is the simplest and that gives in our experiments the more accurate results, is to
look at training data as if we were at testing time. That is, we use the optimal
classifiers W∗ associated to the optimum of Eq. (6.19) to solve the structured clas-
sification model of Eq. (6.1) using the template Φ corresponding to the training
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instances. We thus solve the following linear program:

maximize
Y∈Y

Tr(Φ>Y>XW),

that can be done using the dynamic programming algorithm 6.

Rounding with the classifiers W. The rounding using the classifiers W, consists
in using the W∗ corresponding to the solution Y∗ of Eq. (6.19) and to predict from
it a valid assignment by solving the following least-squares criterion:

minimize
Y∈Y

‖ΦY− XW∗‖2
2. (6.20)

This is similar to the rounding in Z, but by replacing ΦY∗ by its square relax-
ation XW.

Expanding the squares and noticing that, in the monophonic case Tr(Y>Φ>ΦY)
is constant for all matrices Y ∈ Y , reduces the minimization problem of Eq. (6.20)
to an LP over Y that we can solve using dynamic programming. It is purely equiv-
alent in this case to the rounding using the decoding model.

In the polyphonic setting, that is when ΦY can have several non-zero entries
per row, Tr(Y>Φ>ΦY) is not constant anymore and expanding the squares yields
to consider the following optimization program:

minimize
Y∈Y

Tr(Y>YΦΦ>)− 2 Tr(Y>Φ>XW). (6.21)

We can notice that Y>Y = Diag(Y>1), thus

Tr(Y>YΦΦ>) = Tr
(
Diag(Y>1)ΦΦ>

)
,

and a simple calculation shows that:

Tr
(
Diag(Y>1)ΦΦ>

)
= Tr(Y>1 Diag(ΦΦ>).

Thus the polyphonic setting can be dealt as the monophonic one by considering a
linear programming problem over the set Y .

Rounding in Z. As Bojanowski et al. [2014] did for videos and as suggested
in Sec. 6.3.2, a natural idea is to round with respect to the assignment matrices.
Namely, the idea is to round Z∗ = ΦY∗ to the closest assignment matrix Z ∈ Z in
terms of the Euclidean squared norm, that is:

minimize
Y∈Y

‖Y∗Φ−YΦ‖2
2. (6.22)

By expanding the squares, we notice that this simply reduces to an LP, in the
monophonic as well as in the polyphonic setting for the same reason than the one
presented in the previous paragraph.
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Rounding with the priors. Given the objective function of Eq. (6.18), one can be
interested, from W∗ to get a Y that minimizes Eq. (6.18):

1
N
(
‖YΦ− XW∗‖2

2 + µ‖YLE −YLE‖2 + ν‖1>T Y− 1>T Y‖2
2
)
+

λ

2
‖W‖2

2.

After expanding the squares, and using the same trick as before, namely that
Y>Y = Diag(Y>1T) one gets that this is equivalent to minimizing:

Tr(YY>∆) + Tr(Y>Γ),

with
∆ = ν1T1>T ,

and
Γ = 1T Diag(ΦΦ> + µLL>)> − 2XWΦ> − 2µLY− 2ν1>T 1TY.

Such a problem is not a linear program over Y . However, this can be solved
using a dynamic programming algorithm. Let us detail how it can be cast in the
framework presented in Sec. 3.1.1 of Chapter 3. Let E be the number of events
associated to Y . We define A1, . . . ,AE as the set of authorized localizations for the
beginnings of event e. We also add a last setAE+1, which is a dummy beginning, to
enforce the E-th event to stop at T. These decision sets can thus be identified to the
sets of timestamps {e, . . . , T − (E− e)} (the e-th action cannot start before the e-th
timestamp and a symmetric condition holds concerning the end of the segment).
The payoffs function are the following:

∀e < E, ∀(t, t′) ∈ Ae ×Ae+1, Ve(t, t′) =
t′

∑
i=t

Γi,e +
t′

∑
i,j=t

∆i,j − It≤t′ ,

and for e = E + 1,
VE+1(t) = IT(t),

where IT is the convex indicator of timestamp T.
This allows us to derive a dynamic programming algorithm that is detailed in

algorithm 9 14.

6.5 Experiments: Monophonic case

For now, we have just conducted experiments in the monophonic setting. That
is, the assignment matrix Z has exactly one nonzero value per row equals to one.

14. This algorithm is very similar to the one presented in Alg. 5. That could be expected since
this algorithm also optimizes a quadratic function of the matrix Y as seen in Chapter 4.
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Algorithm 9 Dynamic programming algorithm to minimize a quadratic program
over Y of the form Tr(YY>∆) + Tr(Y>Γ)

Input: X ∈ RT×p, E ∈ {2, . . . , T}, ∆ ∈ RT×T, Γ ∈ RT×E.
Set C ∈ RE×T, Ind ∈ RE×T

Initialize ∀t, C1,t = ∑t
k=1 Γk,1 + ∑t

k=1,k′=1 ∆k,k′ , Ind(1, t) = 1
for e = 2, . . . , K do

for t = e, . . . T do
for j = e, . . . t do

Set α(j) = C(e− 1, j− 1) + ∑
j
k=1 Γk,1 + ∑t

k=j,k′=j ∆k,k′

end for
C(e, t) = min(α)
Ind(e, t) = argmin(α)

end for
end for
Backtracking step: Set µ(E) = T
for i = E, . . . , 2 do

µ(i− 1) = Ind(i− 1, µ(i))
end for
Output: µ the sequence of the end of events from which we compute Y.

6.5.1 Experimental setting

Dataset and features. Our experiments are conducted on the Finnish folk song
dataset [Eerola and Toiviainen, 2004]. These songs have been collected across all
Finland during the end of the 19-th century. This dataset is made of approximately
48 hours of music available in MIDI format (corresponding to 8614 songs).

We choose to model each of the 44 individual notes that appear in the dataset as
a separate class. We model silences by adding a 45-th “silence” class. Thus we have
K = 45.Note that, whereas the background class we used in Bojanowski, Lajugie,
Bach, Laptev, Ponce, Schmid, and Sivic [2014] for videos had a fuzzy interpretation
and can be seen as a model for noise, a silence has a musical meaning and is very
different from simple noise.

We synthesize the musical interpretation from the available MIDI files by adding
some white noise and modifying the tempo. The MIDI can be seen as a representa-
tion of the score and thus provides us with Y. Since we know how tempo has been
stretched, we have the exact groundtruth for our alignment. Due to the stretching
of tempo, note that the groundtruth alignment Ygt is different from the expected
alignment Y. Because of that, we are able to provide experiments in a strictly con-
trolled setup.

In our experiments, we consider four different kind of stretches of the partition:

1. Non-stretched data: the audio recording is the exact interpretation of the
MIDI score.

2. Rubato performance: we generate tempo curves that alternatively speed up
and slow down the tempo.
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Example of mel−spectrogram
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Figure 6.4: A typical audio signal representation that we use in this work. From
an audio recording sampled at a rate of 44100Hz, we consider at each timestamp
spaced of 0.08s a window centered around the timestamp of 0.16s on which we
compute a discrete Fourier transform of the signal. This gives us a spectrogram.
Then, we bin frequencies using the mel scale.

3. Fermata performance: the notes are in general played for the duration indi-
cated on the MIDI score except for a few which have an increased duration.

4. A combination of settings (2) and (3).

We compute the spectrogram of the audio signal using overlapping windows
of length 160ms and a stride of 80ms. For every window, the resulting spectro-
gram is a vector of dimension 1200. Additionally we compute a 40 dimensional
transformation of the spectrogram by binning the frequencies over the mel-scale.
This is known to be an approximate model of human auditory system (see, e.g.,
chapter 22 of [Gold and Morgan, 2000]). We use these as our final features. We also
tried our method on a complete spectrogram; the results are similar to the ones
presented in the rest of this section. An illustration of the kind of input signals we
have is depicted in Fig. 6.4.

Performance measure. In this chapter, we evaluate our method by computing
the mean delay between onsets of the predicted alignment and the groundtruth.
This corresponds to the mean absolute temporal difference between the beginnings
of notes in the two alignments. This is a common way to report quantitative re-
sults in music information retrieval [Cont et al., 2007]. As stated in Sec. 6.2.3, this
quantity can be computed using alignment matrices and is proportional to

`on(Y, Ygt) = ‖YLE −YgtLE‖2
2.

This difference is divided by the number of events in the template and is in sec-
onds. We average it over all music pieces we used for evaluation.

Train, validation and test splits. We split the available songs into a train, valida-
tion and test sets. Depending on the experiments, we use between 100 and 300 for
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training and between 200 and 500 for both validation and testing. The validation
and test sets are not involved in the optimization of the weakly-supervised model.
The parameters of our method are always adjusting by a grid search: for various
µ and ν, we compute the performance on validation data and select the best µ and
ν. We obtain an alignment Y∗ ∈ Y on validation and testing data by solving the
decoding of the structured model in Eq. (6.2):

maximize
Y∈Y

Tr(Y>XWΦ>).

Two kind of results. For our weakly-supervised approach, two kind of results
can be looked at:

1. First ones are the performance of classifiers. That is, after solving the problem
of Eq. (6.19), we get classifiers W∗ and we can evaluate their performance by
performing the decoding of Eq. (6.2) on test data that where not involved in
the optimization stage.

2. Second ones are similar to the results we report in [Bojanowski et al., 2014,
2015] and that are the training error : after solving Eq. (6.19), we get Y∗ ∈ Y
that we round using a rounding procedure of Sec. 6.4.4 to get Ỹ ∈ Y . We
compare this to the groundtruth.

Note that in all our experiments, we set λ = 0 since we have never seen a
significant effect of this parameter in practice, at least using the mel-spectrogram
features. This is probably due to the fact that our data are 40 dimensional and that
we have a lot of examples for each notes (tenth of events occur in each musical
piece).

6.5.2 Experiment: the need for priors.

In this experiment, we want to exhibit the fact that the proposed priors are in-
deed needed. To this end, we conduct experiments with no duration prior and no
tempo stretching. This corresponds to considering the plain optimization problem
of Eq. (6.13), similar to what was proposed in Bojanowski et al. [2014]. We use
300 full songs that we split into shorter songs of a fixed length k. We want to ob-
serve the variation of performance when the length k changes. Results for various
lengths are presented in Table 6.1 for µ = ν= 0.

We see that our method works best when the number of maximum events is the
smallest and fails for series with a large number of events. Indeed, as we add more
and more events, the set from the optimization problem formulated in Eq. (6.13)
has more and more symmetries. Constant degenerate solutions are not allowed
due to the alignment constraint, but we get a solution that is constant on almost
all the musical piece when we length of time series increase. An example of such a
degenerate solution is depicted in Fig. 6.5.
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k 10 15 20 30 50

mean length 64 93 124 174 224

delay (s) 0.42 0.59 0.68 0.93 1.09

Table 6.1: Effects of the maximal number of events E on the test performance when
µ = ν = 0. Note that when the time series are short with few events occuring, the
performance are the best. As the length of time series increases, the performances
collapse. This is because, the longer the time series are, the more “almost piecewise
constant” matrices like the one in the middle of Fig. 6.5 becomes attractive.

Rubato performance. In this experiment, we compare the separate effect of the
global and the local prior in Eq. (6.18) in the Rubato setting. For this experiment,
we considered 100 Finnish songs for training, 200 for testing and the same amount
for validation purpose. The dashed curves (train MS, val MS and test MS) corre-
spond to the performance of a prediction done using the actual score as a predictor.

In Fig. 6.6 (left), for µ large enough, the rounding in Z (which is the the closest
assignment matrix in the L2 sense) has the same performance as the baseline. On
the contrary, in Fig. 6.6 (right), when ν is large, our method gets above the dashed
baseline. This can be explained by the fact that when µ is large enough, the prob-
lem of Eq. (6.18) is the minimization of a well-conditionned quadratic form. The
optimum of this function is very close to Y, which explains why the black and
dashed red curves meet for large µ. On the opposite, for large ν, the problem is
ill-conditioned (quadratic form of rank one) and therefore has several minima.

In Fig. 6.6 (left), for large µ, for the reasons mentioned above, the optimal Y∗ is
almost equal to the score Y. In that case, using the classifier rounding corresponds
to solving the decoding problem from Eq. (6.2) with a model W learned on Y.
In the rubato setting, this solution gives the best results. We recall that a rubato
setting corresponds to a fluctuation of the tempo around its average. The good
performance can be partially explained by the fact that the average delay between
the score and the recording is low in the rubato setting. Therefore, learning a model
on a slightly faulty alignment provides a good classifier in the end. As expected,
the local prior is not robust to rubato at all, whereas the global prior is.

Fermata performance. In the fermata setting, the performance of our approach
is depicted in Fig. 6.7. This figure shows the same baseline as Fig. 6.6. Note that
we also conducted experiments with respectively µ = 0 and ν = 0. The goal is to
see if we observe a tradeoff between these terms and the discriminative one. Note
that, for the ν parameter a clear tradeoff appears. On the opposite, the global prior
does not seem to help the discriminative term, it just leads the solution to the one
corresponding to the expected alignment Y. As soon as µ is too big, the predicted
Y sticks to the expected alignment Y. Our method with properly adjusted local
prior outperforms all baselines.
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Figure 6.5: In the top, the groundtruth alignment. In the middle, example of a
typical degenerated solution. In the bottom, when the prior is set to 0.015, we see
that the algorithm converges to a non-degenerated solution.

10
−4

10
−3

10
−20

0.5

1

1.5

2

 µ (global)

 M
e
a
n

 a
b
s
o
lu

te
 d

e
la

y
 (

in
 s

e
c
o
n
d
s
)

 

 

 Train err. (Z)
 Train err.
 Val err.
 Test err.
 Train MS
 Val MS
 Test MS

10
−9

10
−8

10
−7

10
−6

0

0.5

1

1.5

2

 ν (local)

 M
e
a
n

 a
b
s
o
lu

te
 d

e
la

y
 (

in
 s

e
c
o
n
d
s
)

Figure 6.6: Individual effects of the local and global prior on data stretched in the
rubato setting. Train MS, Val MS and Test MS is the mean delay between the score
and the groundtruth, that is proportional to ‖Ygt −Y‖2

2.
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Figure 6.7: Individual effects of the local and global priors on data stretched by
random fermata.

Combined performance. In the most general setting (with Fermata and Rubato
present in the dataset), we observe the tradeoff of Fig. 6.8(a-b). In this experiment λ
is fixed to 0 since in our previous experiments it does not seem to have an high im-
pact. We observe that jointly penalizing using the global and the local prior is thus
useful to improve the performance of the learned classifiers. Also, the achieved
performance outperforms the baselines.
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Figure 6.8: Performance of the proposed approach on the combined rubato and
fermata performance. (a-b) Performance as a function of µ and ν on the validation
and testing sets.

Robustness to noise. In this experiment, we consider data that have been stretched
both with Fermata and Rubato, and we consider the robustness of our approach
against a white noise. Namely, we add at each timestamp to all our synthesized
signals white noise whose intensity is controlled through the ratio between the
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Figure 6.9: Robustness to noise and comparision to a change-point detection base-
line (CPD).

standard deviation of the noise σ and the mean absolute value of the signal. We
use our approach on 300 training songs, validate the parameters µ and ν on a vali-
dation set of size 250 and evaluate it on a testing set of the same size. We compare
in Fig. 6.9 our method on testing data to a change-point detection algorithm that
knows the number of notes. This baseline looks for the best segmentation using
the 40-dimensional mel-spectrogram, and does not use learning at all [Bello et al.,
2005].

6.6 Conclusion

In this chapter, we have proposed a way to deal with partial knowledge in the
structured prediction framework for the alignment task. We have defined proper
losses and convex relaxation of the associated empirical loss minimization prob-
lem. We have shown how this approach can be linked to some weakly-supervised
methods based on discriminative clustering. In the case of audio-to-score align-
ment, we have also proposed specific and task dependent priors that can be in-
cluded directly in the empirical loss minimization procedure.

Further, we would like to extend our approach to the mono-instrumental poly-
phonic setting, for instance a piano recording where chords are played. All the
tools to deal with this setting were presented in that chapter. One step further
would be to consider the polyphonic poly-instrumental setting. In this setting, we
would learn for each of the different instruments j ∈ {1, . . . , J}, some classifiers Wj
where Wj stacks all individual classifiers for possible notes played by instrument j.
We would also consider J different alignment matrices Yj and corresponding sets
Yj. A first approach would be to consider the alignment of the score for each in-
strument independently. We would replace the minimization problem of Eq. (6.18)
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by an objective of the form:

minimize
Wj∈Rp×K ,Yj∈Yj

1
N

J

∑
j=1

(
‖YjΦj−XWj‖2

2 +µ‖YjLE−Y jLE‖+ ν‖1>T Yj− 1>T Y j‖2
2
)
+

λ

2
‖Wj‖2

2,

that is the minimization of the cost of Eq. (6.18) for all instruments taken separately.



Chapter 7

Conclusion and perspectives

7.1 Summary of the thesis

In this thesis, we have focused on some specific machine learning tasks that
require to take care about structure.

In a first contribution, we consider the multi-label classification task and present
a structured model that allows us to go beyond the binary relevance approach and
extend the technique of Petterson and Caetano [2011]. Given V possible labels,
our work proposes a way to learn classifiers directly from data as well as repul-
sive or attractive interactions between labels. In the model we consider, these are
encoded through a matrix A ∈ RV×V . We consider the problem of optimizing di-
rectly a multi-label performance measure using a large-margin approach, similar
to the structured support vector machines of Taskar et al. [2003] andTsochantaridis
et al. [2005]. Our approach improves over the previous one of Petterson and Cae-
tano [2011] since we propose to learn affinities as well as repulsion between labels.
Allowing repulsions leads to an optimization problem that is hard to solve. We
propose two ways to relax the hard combinatorial problem that is at stake: one
uses the classical semidefinite relaxation of the max-cut problem [Goemans and
Williamson, 1995], the other one is based on a spectral approach. We then have
applied our approach to real-world multi-label dataset and show that taking into
account for moderately large and large datasets V ∼ 150 allows us to improve over
the binary relevance approach as well as the approach of Petterson and Caetano
[2011].

In a second contribution, we focus on a specific type of structural data: the ones
with sequential structure. We consider the problem of detecting change-points
in multivariate time series. We formulate it as relying linearly on a Mahalanobis
quasimetric. We propose to learn the matrix associated to it with a structured sup-
port vector machine and using fully annotated data, that consists of time series
that have been manually segmented. To that extent, we propose a loss specifically
suited to the evaluation of performance for problems that minimizes some square
Mahalanobis distortion. We propose to use it within a structural support vector
machine. We show that it is possible to solve the loss-augmented decoding prob-
lem associated to our problem thanks to a dynamic programming algorithm. We
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provide experiments on synthetic data as well as on real data to show the benefits
of our approach. The second part of this contribution tries to go beyond change-
point detection and considers the problem of learning a Mahalanobis quasimetric
for the widely-used K-means distortion. We show that our approach to change-
point detection can be extended to this general case and that we can easily include
some spatial consistency prior as a penalty directly in the Mahalanobis distortion.
This allows us to deal with image segmentation problems. From fully partitioned
datasets (for instance images with pixel-level annotations), we propose a way to
learn a similarity measure similar to the one proposed for change-point detection.
However, we face new computational issues since the loss-augmented decoding
can not be solved exactly. We propose thus an efficient spectral relaxation to deal
with it. We show on real-world image segmentation datasets that our approach
allows us to learn a similarity measure for this task.

In a third contribution, we consider a second kind of problem involving se-
quential data: the time warping problem. It aims at finding a warp of time to make
two time series in correspondence. It heavily relies on a good similarity measure
to assess how close datapoints of the two time series are. We cast the time warp-
ing problem as linear in some Mahalanobis quasimetric that we propose to learn
directly from annotated data. We also encode the warpings as binary matrices.
Namely, the warping of a time series XA of length TA on a time series XB of length
TB is represented by Y ∈ {0, 1}TA×TB

such that Yi,j is one if and only if timestamp i
of XA and j of XB are warped together. Like in the previous contribution, we con-
sider a fully-supervised approach. We assume the availability of several pairs of
time series for which we know the optimal correspondence between timestamps.
These can be pairs of musical interpretations of the same musical piece that share a
common shape but differ locally in tempo. We formulate a learning problem based
on a structured SVM, and start by using the Hamming loss that is very common
for structured prediction tasks. However, this loss does not measure the difference
between warpings well. We thus propose another loss that is closer to the one used
by practitioners [Cont et al., 2007]. This loss turns out to be a variant of the area
of the paths between warpings seen as paths. However, this loss does not lead
to a tractable loss-augmented decoding. We relax the set of binary matrices corre-
sponding to warpings into its convex hull and use a saddle point theorem to derive
an efficient conditional gradient algorithm in the dual of our relaxed structured
SVM problem. We then apply our approach to two real-world musical datasets.
Our results show that the Hamming loss is not well-suited for this task and that
using our loss that approximates the one used for evaluation leads to better results.

In a fourth and last contribution, we still consider a problem with sequential
structure. Most of the algorithms we have used in the previous chapters are based
upon the assumption of the availability of fully-supervised data, that may consist in
timestamped warped pairs of time series or in fully segmented time series. Such
datasets have been done manually, often for test purposes. However, these are
pretty scarce, and in practice data naturally come with weak supervision. In the case
of music, that is our leading example us in this chapter, it is common to have an
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audio recording that comes with its musical score. One important task is to align
this audio recording to the score. This is a first step to perform for instance the
live tracking of performances. We propose to tackle this problem with a structured
prediction approach. We consider the task of learning one classifier for each of
the possible notes or chords and see the partition as a weak supervisory signal.
We cast this problem as the minimization of some regularized empirical loss, that
we take to be the Hamming loss, with an uncertainty concerning the output since
the partition only gives us an approximate information about the length and the
localization of notes in the audio recording. We show then that this problem is in-
tractable using the standard structured hinge loss but that, when using the square
loss, we get a problem for which we can derive an efficient convex relaxation that
we can optimize using a Frank-Wolfe algorithm. This problem turns out to be sim-
ilar to the one we have considered in Bojanowski, Lajugie, Bach, Laptev, Ponce,
Schmid, and Sivic [2014] and Bojanowski, Lajugie, Grave, Bach, Laptev, Ponce,
and Schmid [2015] for localization of actions in video, where we explicitly use the
same sequential structure as in this chapter. Beyond sequential structure, simi-
lar approaches include the works of [Joulin et al., 2010] for image cosegmentation
or [Grave, 2014] for named entity classification. Thus, this chapter gives a new
light on these approaches by linking them to the structured prediction framework.
However, due to the specific nature of the score, we can go one step further than
the aforementioned works by directly considering a convex prior over the shape
of the alignment that we can include directly in our cost function. We propose two
such priors: one penalizes local distortions whereas the other one penalizes global
ones. We eventually demonstrate the validity of our approach on real-world data
for the audio-to-partition task.

7.2 Perspectives

Our work has raised several questions that are still opened.

7.2.1 Short-term perspectives

In this section, we focus on the natural questions raised by the work done in
this thesis. The questions we address there seems pretty straightforward extension
of the works presented in this manuscript.

Taking context into account for multi-label classification. In Chapter 2, we have
proposed a model that takes into account pairwise interactions between labels in-
dependently from data. However, we can imagine a more complex model. We
can include, for instance, latent variables that would correspond to the context
of the input data. Such a model would be more suited to deal with large-scale
image classification such as the recently released COCO dataset [Lin et al., 2014].
This dataset is a large collection of real world images that appear in their natural
context. Multi-label classification requires to use the context in which objects can
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appear simultaneously or not. For instance, in a context of “savanna” it is unlikely
to have a reindeer and a lion in the same image and thus, in that context, the two
labels should have repulsive interactions. On the opposite, in a context of “zoo”,
seeing a reindeer and a lion in the same image is less surprising. Using such latent
variables could drastically improve upon the current state-of-the-art.

Using the trick of Chapter 5 for multi-label classification The major drawback
of the convex relaxation we have proposed in Chapter 2 lies in the fact that opti-
mization is very slow when optimizing directly the F1-loss. This is due to the need
of solving iteratively V 1 eigendecompositions of size 2V × 2V or V semidefinite
programs of size V × V. An interesting way to overcome this issue could be to
use the same trick as in Chapter 5. The idea would be to relax the loss-augmented
decoding over the set Y , the convex hull of all the possible labellings. Then, since
Y can be seen as a subset of binary vectors, it is possible to extend the definition of
the F1-loss over Y in a concave function over Y . Thus, the loss-augmented decod-
ing would become the maximization of a concave function and, as in Chapter 5,
we could derive a Frank-Wolfe method to solve this optimization problem. This
would dramatically improve the speed of our approach.

Handling partial supervision. Availability of partial supervision is a major chal-
lenge for structured prediction methods. The original structured support vector
machines that we have used in Chapters 4 and 5 rely on fully annotated data that
are hard to get in the case of sequential structure. The approach we have proposed
in Chapter 6 to go beyond full supervision can be extended in several ways:

– First, we can consider the task of aligning a whole orchestra to the partition
using our method. To that extend, we can consider an additive model for
instruments, letting us handling the polyphonic poly-instrumental setting.

– Second we can extend this to other applications such as the alignment of
phonemes or the alignment of songs with their lyrics.

– Third, the approach proposed in Chapter 6 is only suited for classification
tasks using the Hamming loss. However in many applications this loss is not
well-suited, a challenge is to find a proper square surrogate to more complex
losses such as the ones we used in Chapters 2, 4 or 5.

7.2.2 Long-term perspectives

Statistical challenge: infinite sample consistency In binary classification, it has
been shown that, provided the surrogate to the loss used is an upper bound to
it and has negative derivative in 0, the minimization of the convexification of the
empirical loss is infinite-sample consistent [Zhang, 2004a, Bartlett et al., 2006]. This
means that minimizing the convexified or the original loss minimization problem
yields to the same optimum when the number of training samples tend to infinity.
For structured prediction, the question is still open. Some works consider that in

1. That is the number of labels.
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the more general case of structured prediction task the structured hinge loss is not
infinite sample consistent [McAllester, 2007, Tewari and Bartlett, 2007]. However
we can imagine that for some specific losses, we get consistency.

Theoretical challenge: what makes an output representation good? Another
question raised by the present work is how to build systematically a good em-
bedding for outputs, i.e., given a set of outputs Y finding an injective mapping
f : Y 7→ Rd. We have seen in Chapter 5 that, when the image of Y by f is a sub-
set of the d-dimensional hypercube, and when the loss `(y, y′) can be expressed
as a concave function of f (y), then it is possible to derive an efficient conditional
gradient algorithm to solve the problem. An interesting question is to systematize
this procedure, by defining what make a good representation. Indeed, many em-
bedding functions are generally possible. For instance, if we consider a structured
prediction task whose output is a permutation, or a matching, there is a whole lit-
erature about representing such objects and these ideas have, up to our knowledge,
never been applied to structured prediction.
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Prédiction structurée pour l’analyse de données séquentielles
RÉSUMÉ : Dans cette thèse nous nous intéressons à des problèmes d’apprentissage
automatique dans le cadre de sorties structurées avec une structure séquentielle.
D’une part, nous considérons le problème de l’apprentissage de mesure de simi-
larité pour deux tâches: (i) la détection de rupture dans des signaux multivariés et
(ii) le problème de déformation temporelle entre paires de signaux. Les méthodes
généralement utilisées pour résoudre ces deux problèmes dépendent fortement
d’une mesure de similarité. Nous apprenons une mesure de similarité à partir
de données totalement étiquettées. Nous présentons des algorithmes usuels de
prédiction structuré, efficaces pour effectuer l’apprentissage. Nous validons notre
approche sur des données réelles venant de divers domaines.
D’autre part, nous nous intéressons au problème de la faible supervision pour la
tâche d’alignement d’un enregistrement audio sur la partition jouée. Nous con-
sidérons la partition comme une représentation symbolique donnant (i) une infor-
mation complète sur l’ordre des symboles et (ii) une information approximative
sur la forme de l’alignement attendu. Nous apprenons un classifieur pour chaque
symbole avec ces informations. Nous développons une méthode d’apprentissage
fondée sur l’optimisation d’une fonction convexe. Nous démontrons la validité de
l’approche sur des données musicales.

MOTS-CLEFS : apprentissage, faible supervision, prédiction structurée, apprentis-
sage de métrique, alignement musique sur partition, déformation temporelle

Structured prediction for sequential data
ABSTRACT: In this manuscript, we consider structured machine learning problems
and consider more precisely the ones involving sequential structure.
In a first part, we consider the problem of similarity measure learning for two
tasks where sequential structure is at stake: (i) the multivariate change-point de-
tection and (ii) the time warping of pairs of time series. The methods generally
used to solve these tasks rely on a similarity measure to compare timestamps. We
propose to learn a similarity measure from fully labelled data, i.e., signals already
segmented or pairs of signals for which the optimal time warping is known. Using
standard structured prediction methods, we present algorithmically efficient ways
for learning. We propose to use loss functions specifically designed for the tasks.
We validate our approach on real-world data.
In a second part, we focus on the problem of weak supervision, in which sequential
data are not totally labeled. We focus on the problem of aligning an audio record-
ing with its score. We consider the score as a symbolic representation giving: (i)
a complete information about the order of events or notes played and (ii) an ap-
proximate idea about the expected shape of the alignment. We propose to learn a
classifier for each note using this information. Our learning problem is based on
the optimization of a convex function that takes advantage of the weak supervi-
sion and of the sequential structure of data. Our approach is validated through
experiments on the task of audio-to-score on real musical data.

KEYWORDS: machine learning, weak supervision, structured prediction, metric
learning, music to partition alignment, time warping
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