Matter waves in reduced dimensions : dipolar-induced resonances and atomic artificial crystals - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2014

Matter waves in reduced dimensions : dipolar-induced resonances and atomic artificial crystals

Ondes de matière en dimensions réduites : resonances dipolaires et cristaux atomiques artificiels

Nicola Bartolo

Résumé

The experimental achievement of Bose-Einstein condensation and Fermi degeneracy with ultracold gases boosted tremendous progresses both in theoretical methods and in the development of new experimental tools. Among them, intriguing possibilities have been opened by the implementation of optical lattices: periodic potentials for neutral atoms created by interfering laser beams. Degenerate gases in optical lattices can be forced in highly anisotropic traps, reducing the effective dimensionality of the system. From a fundamental point of view, the behavior of matter waves in reduced dimensions sheds light on the intimate properties of interparticle interactions. Furthermore, such reduced-dimensional systems can be engineered to quantum-simulate fascinating solid state systems, like bidimensional crystals, in a clean and controllable environment. Motivated by the exciting perspectives of this field, we devote this Thesis to the theoretical study of two systems where matter waves propagate in reduced dimensions.The long-range and anisotropic character of the dipole-dipole interaction critically affects the behavior of dipolar quantum gases. The continuous experimental progresses in this flourishing field might lead very soon to the creation of degenerate dipolar gases in optical potentials. In the first part of this Thesis, we investigate the emergence of a single dipolar-induced resonance in the two-body scattering process in quasi-one dimensional geometries. We develop a two-channel approach to describe such a resonance in a highly elongated cigar-shaped harmonic trap, which approximates the single site of a quasi-one- dimensional optical lattice. At this stage, we develop a novel atom-dimer extended Bose- Hubbard model for dipolar bosons in this quasi-one-dimensional optical lattice. Hence we investigate the T=0 phase diagram of the model by exact diagonalization of a small- sized system, highlighting the effects of the dipolar-induced resonance on the many-body behavior in the lattice.In the second part of the Thesis, we present a general scheme to realize cold-atom quantum simulators of bidimensional atomic crystals, based on the possibility to independently trap two different atomic species. The first one constitutes a two-dimensional matter wave which interacts only with the atoms of the second species, deeply trapped around the nodes of a two-dimensional optical lattice. By introducing a general analytic approach, we investigate the matter-wave transport properties. We propose some illustrative appli- cations to both Bravais (square, triangular) and non-Bravais (graphene, kagomé) lattices, studying both ideal periodic systems and experimental-sized, eventually disordered, ones. The features of the artificial atomic crystal critically depend on the two-body interspecies interaction strength, which is shown to be widely tunable via 0D-2D mixed-dimensional resonances.
La réalisation de condensats de Bose-Einstein et de gaz de Fermi dégénérés ont déclenché d'énormes progrès dans les méthodes théoriques ainsi que dans la mise en place de nouvelles techniques expérimentales. Parmi celles-ci, de fascinantes possibilités viennent de l'implémentation de réseaux optiques : potentiels périodiques pour atomes neutres créés à travers l'interférence de rayons laser. Un gaz dégénéré dans un réseau optique peut être forcé dans des pièges fortement anisotropes, jusqu'à réduire la dimensionnalité du système physique. Du point de vue fondamental, le comportement des ondes de matière en dimensions réduites éclaircit les propriétés intrinsèques des interactions entre particules. En outre, ces systèmes à dimensionnalité réduite peuvent être manipulés afin de créer des simulateurs quantiques de la matière condensée, comme par exemple des réseaux à deux dimensions, dans un environnement pur et contrôlable. Motivés par les passionnantes perspectives de ce domaine, on a consacré cette Thèse à l'étude théorique de deux systèmes dans lesquels une onde de matière se propage en dimensions réduites. L'interaction dipôle-dipôle, à longue portée et anisotrope, affecte fortement le comportement des gaz quantiques. Les progrès expérimentaux dans ce domaine florissant permettront bientôt de piéger dans des réseaux optiques un gaz dégénéré de dipôles. Dans la première partie de cette thèse, on considère l'apparition d'une seule résonance dipolaire dans l'interaction entre deux particules pour différents systèmes quasi-unidimensionnels. On propose une approche à deux canaux qui décrit cette résonance dans un piège harmonique fortement allongé “en forme de cigare”, qui représente l'approximation d'un site d'un réseau optique quasi-unidimensionnel. A` ce stade, on développe un nouveau modèle étendu de Bose-Hubbard atome-dimère, qui est valable pour des bosons dipolaires dans un réseau optique quasi-unidimensionnel. On étudie donc le diagramme de phase du modèle pour T =0 par la diagonalisation exacte de systèmes de petite taille, en soulignant les effets de la résonance dipolaire sur la physique à plusieurs corps dans le réseau. Dans la seconde partie de la thèse, on propose un modèle pour réaliser des simulateurs quantiques de cristaux bidimensionnels avec des atomes froids, basé sur le piégeage indépendant de deux espèces atomiques. La première constitue une onde de matière bidimensionnelle qui interagit exclusivement avec les atomes de la seconde espèce, piégés aux nœuds d'un réseau optique bidimensionnel. En introduisant une approche théorique générale, on examine les propriétés de transport de l'onde de matière. On propose des exemples d'application pour réseaux soit de Bravais (carré, triangulaire), soit de non-Bravais (graphène, kagomé), en étudiant soit des systèmes périodiques idéaux, soit des systèmes de taille expérimentale et désordonnés. Les caractéristiques d'un réseau atomique artificiel dépendent de l'intensité de l'interaction entre les deux espèces, qu'on montre être largement réglable grâce à des résonances à dimensionnalité mixte de type 0D-2D.
Fichier principal
Vignette du fichier
44314_BARTOLO_2014_archivage_cor.pdf (5.29 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01203503 , version 1 (23-09-2015)
tel-01203503 , version 2 (18-10-2018)

Identifiants

  • HAL Id : tel-01203503 , version 2

Citer

Nicola Bartolo. Matter waves in reduced dimensions : dipolar-induced resonances and atomic artificial crystals. Condensed Matter [cond-mat]. Université Montpellier II - Sciences et Techniques du Languedoc; Università degli studi (Trente, Italie). Dipartimento di fisica, 2014. English. ⟨NNT : 2014MON20177⟩. ⟨tel-01203503v2⟩
219 Consultations
149 Téléchargements

Partager

Gmail Facebook X LinkedIn More