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Introduction

Context and Motivation

Along with the emergence of services based computing and Web 2.0, the Web has become a development platform for building "software as a service". The notion of service abstracts an application that can be accessible on the network and which can be used as a building block for constructing more complex applications. The principle is based on the idea that software can be developed by coordinating calls to operations exposed by services without worrying about distribution problems (e.g., services location, message communication, execution environment).

Current standards implement services' coordinations by combining different languages and protocols. For instance, WSDL, SOAP and BPEL are example of languages used for describing (i) the operations exported by a service, (ii) the message exchange patterns (i.e., protocols) supported by a service in order to call one of its operations and (iii) the order among the services' operations calls (respectively). However, sometimes calling a service' operation requires to address complex non-functional properties (NFP) before accessing its functionality (e.g., authentication, access control, and data encryption protocols). In consequence, these properties must be weaved within a services' coordination logic for achieving an operation call.

The selection of the adequate strategies for adding a specific NFP to a services' coordination (e.g., security, transactional behavior and adaptability) is responsibility of a programmer. In consequence, the development of a services' coordination can be a complex and a time-consuming task, which is opposed to the philosophy of services that aims at facilitating the integration of distributed applications.

Problem Statement and Objectives

We believe that it is possible to provide solutions that can keep the simplification principle of services oriented programming by separating services calls from the strategies that can be used for interacting with services.

The problem is that the whole business logic underlying a services' coordination is expressed as a monolithic block, namely the process specification. Consider for instance that a programmer wants to develop a coordination called Status Updater that (i) estimates the mood of people based on the music they are listening and (ii) updates a user social net-works status with the song information and the user estimated mood (e.g., if we consider that people listening to pop-music are happy and most songs listened by a person are pop-music, then the coordination estimates that the person is happy and updates the person status with the name of the song and the string "happy"). Let us suppose that, for developing this application, the programmer has to coordinate calls to the following services' operations:

• Music Services like LastFM that export methods for obtaining information about the music a given user is listening to. For instance, the operation:

get-Last-Song (userID) : String gets the string representation of the last song that the user identified by userID has listen to.

• Facebook and Twitter services that export methods for getting and updating the status of a given user. For instance, the operations:

get-Status (userID) : String update-Status (userID, new-status) : String get and update the string representation of the status of a user identified by userID in a social network.

• Mood Service that export methods for estimating the mood of a user. For instance, the operation:

get-Mood (userID) : String abstracts a complex process that uses a log of the music listened by the user in LastFM during some period of time, and then according to the classification of each song, it will determine the string representing the user mood.

The corresponding services' coordination is depicted in figure 1.1 using the Business Process Management Notation (BPMN). As shown in the figure, the process Status Updater is represented as a workflow composed of a set of activities, each activity in charge of calling a service' operation. The workflow works as follows: first it contacts the music service LastFM for retrieving the last song a user has listen to. Then this information is sent to the Mood service in order to calculate the mood of the user. Finally, the Twitter and Facebook services are contacted in parallel for updating the status of the user with the song and the user's mood. Now consider that the developer wishes to ensure the following NFPs:

• Authentication management: only registered users can access the information provided by the services.

• Exception management: since the 3 services are accessible via an unreliable network, if the network is not available, the coordination must try to contact the service several times after a certain delay before stopping and notifying the failure.

Each NFP that must be enforced throughout the process has to be expressed in terms of activities that must be integrated to the process specification. Thus, the resulting modified process is complex and hard to maintain because of the lack of modularity (i.e., since all the business logic is defined in one unit, it is difficult to reuse parts of it). Another problem is the lack of flexibility due to the fact that process-oriented languages assume that services' coordinations are predefined and do not evolve. Thus, the only way to accommodate changes is by modifying processes definitions (i.e., there is no support for dynamic changes for adding NFPs to a process).

We believe that the lack of flexibility is tightly related to the lack of modularity. In consequence, if we can break down the business logic underlying the composition into several parts or modules, the composition becomes more flexible since each of these parts can evolve independently of the rest. 

Problem Statement

The problem we address is providing NFPs to services' coordinations implemented as workflows. NFPs describe how to execute services' coordinations with respect to observable properties (e.g., reliability, security, adaptability). Adding NFPs to services' coordinations implies:

• Determining the elements concerned with these properties (e.g., activities, workflow' control flow, interaction of an activity with a service, data exchanged among workflow' activities and between an activity and a service).

• Modeling and expressing the strategies that implement the NFPs (e.g., security, exception handling, transactions, persistency, etc.).

• Associating such strategies to the service' coordination elements.

• Defining execution strategies that can specify how to synchronize the execution of a service' coordination with NFPs maintaining their separation. 

Status Updater

Objectives

The objective of our work is to propose a model and associated execution strategies for adding NFPs to services' coordinations ensuring:

• The independence of the specification of NFPs and services' coordination in order to facilitate its maintenance and reuse.

• The dynamic reinforcement of NFP at execution time.

Besides, our work aims at providing a system (proof of concept) to show the feasibility of the model:

• Showing how to enact the services' coordination with NFPs.

• Specifying a general architecture of an engine able of executing a service' coordination with non-functional properties.

Approach and Main Contributions

Our work is inspired in the philosophy of separation of concerns adopted in the construction of middleware, where the NFPs and the business logic of an application are defined independently of each other. Thus, this thesis presents an approach for observing and reacting on the execution of data services' coordinations in order to ensure NFPs specified by the coordination designer. Instead of weaving different NFPs within the services' coordination logic, we propose to define active policies that contain the strategies implementing NFPs and then allow their use when executing a services' coordination. Such an approach (i) encourages a modular and flexible construction of applications and eases their maintenance if such strategies change and (ii) makes possible to associate a personalized behaviors to coordinations (e.g., using policies it is possible to associate an atomic behavior to the way data is retrieved and update from different social network services).

Our approach is based on the notion of active policy-based workflows. A policy-based workflow is a workflow composed of an ordered set of activities that implement a services' coordination and which has active policies associated to it. Activities represent programs implementing a call to a service' operation. The order among the activities specifies in which order services' operation has to be called. Active policies represent the conditions in which an activity or a set of activities must be executed and what to do if such conditions are not satisfied.

The following list summarizes the main contribution of this work:

• Data Oriented Services Taxonomy that classifies services according to the operations they export regarding the access to the data they "hide". The taxonomy allows to understand the differences between so called "business services" that are in fact applications exporting their functions as services, and data services that are centered in manipulation and retrieval of data collections.

• Active Policy Model (AP Model) and its associated Active Policy Language (AP Language) for developing active policy-based workflows with associated NFPs. The model provides a general pattern for defining different policy types that address security, persistence, exception handling, and atomic behavior. Using these specialized policy types, a programmer can specify concrete policies according to the coordination requirements and associate them to a target workflow.

• AP Execution Model and the execution strategies that we propose for executing active policy-based workflows. Based on the AP Model, the AP Language and the AP execution strategies we designed an active policy-based workflow engine for executing ensuring NFPs in the context of data services' coordination.

Document Organization

The reminder of the document is organized as follows:

• Chapter 2 presents the background and state of the art related to our work. It first introduces the taxonomy of data oriented services that we propose. Then it details the models used for characterizing services coordinations an their execution. Finally the chapter classifies and analyzes the main approaches used for adding NFPs to services' coordinations.

• Chapter 3 describes our AP Model and its associated language for expressing active policies and associating them to workflows implementing services' coordinations. The chapter introduces the main concepts of the model and the target workflow model to which policies can be associated.

• Chapter 4 describes the execution of an active policy-based workflows that provides the dynamic aspect of our contribution. It introduces the execution strategies that we propose for synchronizing the execution of active policies with coordination workflows (i.e., workflows implementing services' coordinations).

• Chapter 5 presents the definition of reliable service coordination using the concepts proposed in our AP Model. A reliable service coordination includes exception management and state management policies for making a services' coordination fault tolerant with atomicity and persistency properties. The chapter shows how to use the AP Model for defining such policies and then how to associate them to a target workflow.

• Chapter 6 describes the general architecture of our policy engine that can execute active policy-based workflows according to the proposed strategies. The chapter also describes the experiment we conducted in order to validate our approach in the context of data services coordination. The use cases focus on the use of service coordinations for implementing queries that can have associated NFPs. Queries are executed without the need of an underlying full-fledged DBMS.

• Chapter 7 concludes this document and discusses perspectives of our work, underlining some challenges that remain open.

NFPs in Service's Coordinations

This chapter proposes a state of the art of approaches modeling and providing nonfunctional properties (NFP) for service's coordinations. Adding NFP to service's coordinations implies (i) characterizing the type of services building a coordination; (ii) modeling the coordination and the NFP; (iii) determining the type of NFP that can be associated to coordinations and how they can be reinforced.

Accordingly, the remainder of the chapter is organized as follows. Section 2.1 introduces a taxonomy proposed in this work for classifying services. The taxonomy characterizes services in terms of the type of operations they export: those devoted for processing and managing data, and those providing functions ready to use. Services are building units that can be used for implementing application. This is done be coordinating calls to their operations. Thus, Section 2.2 describes existing coordination models. Applications can have associated NFP for addressing aspects complementary to their application logic. Section 2.3 synthetizes approaches for classifying and modeling NFP. And Section 2.4 analyses strategies for adding NFP to service's coordinations. Section 2.5 concludes the chapter.

Service Taxonomy

Services are software or hardware units that export operations over a network (e.g., Internet), and that play a growing part in business-to-business interactions. An Application Programming Interface (API) expressed in an Interface Description Language (IDL) describes the operations exported by a service. Current proposals assume that a service provider implements the service. Using a service implies calling a provider operation, via a protocol, and (eventually) waiting for execution results under a client-server interaction. Services are registered in a name service that provides look up functions so that applications can find services. For example in the Web, a typical IDL example is WSDL (Web Services Description Language) [Wc00a] an XML based standard [Oasi04a] for defining web services as a set of methods that can be bound using the SOAP protocol [Wc00b]. The services approach enables the construction of new applications out of existing services by merely ordering calls to their operations. These new application can be wrapped themselves as services.

Figure 2.1 shows the overview of the service taxonomy that we propose. The taxonomy identifies three families of services according to the role of the functions they export within an application: business oriented, application oriented and data oriented. The data oriented family is further classified into data processing, data administration, data provision and data querying ser-vices. Finally, data provision services according to the mode in which they deliver data they can be on-demand and stream services. The following sections describe these service families and give concrete examples.

Business Oriented

Business oriented services provide «ready to use» functions for final users. There is no standard API to be exported and, operations are related to the objective of the service. Specific purpose applications are wrapped as business services and provide ad-hoc operations, for instance, hotel reservation services, online stores like e-Bay or Amazon. They can correspond to the notion of Software as a Service (SaaS) introduced by service oriented cloud architectures. Business Oriented methods specialized for managing files within a storage space and eventually for managing the storage space size.

Application Support Oriented

Application support oriented services provide operations for managing platform systems. They are used by other applications or services as building blocks. There is no standard API to be exported and the exported API is related to the objective of the service. Examples of these services are Virtual Machines, message services like Message Queues, or full fledged DBMS exported as services (Data as Service), as shown in figure 2.3.

Figure 2.3 Application Support Oriented Services

This type of service can correspond to the "Platform as a Service" (PaaS) family identified in cloud architectures. Examples of providers of this type of services are Amazon Web services and Windows Azure.

Data Oriented Services

Data oriented services are used for exchanging (receiving and sending) data collections (see figure 2.4). This family of services is specialized into data processing, data administration and data provision services described in the following lines. 

Data Processing Service

This type of service exports a set of operations for processing data of a given collection (filtering, grouping by, counting elements of collections of elements see figure 2.5). The LINQ service of the .NET platform is an example of such type of service. It provides a language for expressing declarative/imperative programs for manipulating data. Coupled with a parallel execution service like Dryad, this data processing service is able to execute data processing tasks in parallel. 

Data Querying Service

As shown in figure 2.6, this type of service exports operations for expressing and processing queries on collections of data. A service of this type evaluates query expressions and returns the corresponding results expressed according to a specific data model (e.g., relational, semi-structured). For example, the service YQL in figure 2.6, accesses a data collection stored in a given address, (e.g. a collection of photos in Flickr). It receives YQL expressions, for example for selecting the photos in Flickr where the caption contains the string "San Francisco". The result is a collection of JSON elements. 

Data Administration Service

This type of service exports operations for manipulating collections and their elements. As shown in figure 2.7, the interface provides methods for updating, inserting and deleting elements of a collection. For example, updating information about the contacts list of a user account in Facebook or inserting songs to the LastFM profile of a user. 

Data Provision Service

A service of this type exports operations for giving read access to a data collection (for example a play list). As shown in figure 2.8, according to the rate in which data is provided, this type of service is specialized into on demand and continuous services. • On demand services produce data in response to a given request that returns results of a given type, for example a tuple or a collection of tuples. An on demand service works under a Request -Response Communication Protocol. Thus, the client calling an operation for getting a collection will block until the complete collection is retrieved (see figure 2.9).

Data Administration

Offers operations for manipulating typed collections and their elements • Continuous service produces data streams 1 once a consumer has subscribed to it.

The subscription is performed via a subscription operation exported by the service.

The operation call includes parameters such as the destination address for the data stream and the time interval during which the subscription will be valid or until an event happens (an unsubscription explicit demand). A continuous data service produces tuples at a certain rate (e.g. 10 tuples/sec), which may vary in time. The client specifies a callback for receiving the data. 1 A stream is a continuous (and possibly "infinite") sequence of tuples. Each of these tuples has a temporal timestamp attribute denoting the time at which it was produced. 

Service Composition

Service composition is a concept used to design and develop applications on the basis of existing services [START_REF] Dustdar | A survey on web services composition[END_REF]. Thus, a service composition consists of a set of services, each of which realizes a process activity. In order to do this, composite applications invoke enterprise applications exported as services directly using standardized protocols (REST and WSDL). The order of these activities can be specified using a process model. Service composition is a recursive concept: each service composition can be specified as a service. Therefore, each service composition can participate as a building block in other, higherlevel service compositions. Web services composition is a realization of these concepts [Wesk07].

Figure 2.11 Workflow example

The diversity of systems [BDSN02, CIJK00, LASS00, MGKS96], and languages [LCRS01] that have been recently proposed shows the potential and the relevance of service composition for building applications. Generally speaking, two complementary techniques are used for building and composing services: wrapping [CIJK00] and coordination [BDSN02]. Using the wrapping technique, pre-existing applications are wrapped to provide an entry point for activating the service. Wrapped services are then orchestrated by a workflow that is executed by an engine. For example, BMPL [Bpmi04] is a workflow based language that is used for specifying the orchestration of web services. Approaches proposed in [GeHS95, Wmc96] can be used for specifying and automating services orchestration

. Coordination [ADHW02]

describes the automated arrangement (i.e., coordination) and management of complex computer systems, consisting of services. Service coordination can be modeled using 2 We define an orchestrator as the entity that manages complex cross-domain (system, enterprise, firewall) processes and handle exceptions. Certain parts of a business process can be enacted by workflow technology. A workflow management system (see Appendix A) can make sure that the activities of a business process are performed in the order specified, and that the information systems are invoked to realize the business functionality. A workflow realizes a part of a business process, with regard to the types of activity; system activities are associated with workflows.

Models can be classified, from our point of view, into those adopting the notion of composition based on the notion of activity; and those focusing on the control flow, that is, the way in which services operations are called for defining an application logic. The following describes both approaches.

Activity Oriented Workflow Model

A business process model consists of a set of activity models and execution constraints among them. A business process model defines the ways in which operations are carried out to accomplish the intended objectives of an organization. Such a model remains an abstraction and depends on the intended use of the model. It can describe the workflow or the integration between business processes. It can be constructed in multiple levels. According to the UML business process model, a business process consists of activities whose coordinated execution realizes some business goal. These activities can be system activities, user interaction activities, or manual activities. Manual activities are not supported by information systems. User interaction activities go a step further: these are activities that knowledge workers perform, using information systems. There is no physical activity involved. Since humans use information systems to perform these activities, applications with appropriate user interfaces need to be in place to allow effective work. These applications need to be connected to back-end application systems that store the entered data and make it available for future use. Some activities that are conducted during the enactment of a business process are of manual nature, but state changes are entered in a business.

System activities are executed by information systems assuming that the actual parameters required for the invocation are available. If a human user provides this information, then it is a user interaction activity. Both types of activities require access to the respective software systems.

Business process modeling tools are used for expressing implementing and executing business processes. Some business process modeling tools are: Business Process Model and Notation (BPMN); Cognition enhanced Natural language Information Analysis Method (CogNIAM); Extended Business Modeling Language (xBML); Event-driven process chain (EPC); ICAM DEFinition (IDEF0); Unified Modeling Language (UML), extensions for business process such as Eriksson-Penker's. 

Orchestration

Orchestration is the process that controls the interactions among services. Provided a set of services their interactions are ordered with respect to a given application specification, defining a control flow. The following lines describe a general overview of patterns that can be used for defining a control flow from two points of view: a centralized approach through orchestration and a "distributed" approach through choreography.

Control Flow Patterns

Control flow patterns express process orchestrations (workflows). Basic control flow patterns include sequence, and-split, and and-join, as well as exclusive or-split, and exclusive or-join [AHKB03].

• Sequence: An activity in a workflow process is enabled after the completion of a preceding activity in the same process.

• And-split (parallel split): The divergence of a branch into two or more parallel branches each of which execute concurrently. This pattern allows a single thread of execution to be split into two or more branches that can execute activities concurrently. These branches may or may not be re-synchronized at some future time.

• And-join: The convergence of two or more branches into a single subsequent branch such that the thread of control is passed to the subsequent branch when all input branches have been enabled. And-join provides a means of re-converging the execution threads of two or more parallel branches. In general, these branches are created from an And-split construct earlier in the process model. The thread of control is passed to the activity immediately following the synchronizer once all of the incoming branches have completed.

• Xor-split (exclusive choice): The divergence of a branch into two or more branches.

When the incoming branch is enabled, the thread of control is immediately passed to precisely one of the outgoing branches based on the outcome of a logical ex-pression associated with the branch. This pattern allows the thread of control to be directed to a specific activity depending on the outcome of a preceding activity, the values of elements of specific data elements in the workflow or the results of a user decision. The routing decision is made dynamically allowing it to be deferred to the latest possible moment at runtime.

• Xor-join (simple merge): The convergence of two or more branches into a single subsequent branch. Each enablement of an incoming branch results in the thread of control being passed to the subsequent branch.

Any process meta-model supports these control flow patterns that are referred to as simple control flow patterns in [START_REF] Russell | Workflow control-flow patterns: a revised view[END_REF]. In this work in fact authors refer to twenty basic control flow patterns expressed using Coloured Petri Nets. More recently, authors have identified a number of additional scenarios. As a consequence twenty three new patterns, some of them new and some based on specializations of existing patterns have been proposed: advanced branching and synchronization, structural, multiple instance, state based, cancellation, loop and recursive variations with blocking and non-blocking activities. In this thesis we assumed workflow models addressing the simple patterns, so we will not further describe these advanced patterns.

Choreography

The interactions of a set of business processes can be also specified in a choreography. The term choreography indicates the absence of a central agent that controls the activities in the business processes involved. Sending and receiving messages achieves interaction. Service choreography is a form of service composition in which the interaction protocol between several partner services is defined from a global perspective. At run-time each participant in a service choreography executes its part of it (i.e. its role) according to the behavior of the other participants [Pelt03]. A role specifies the expected messaging behavior of the participants that will play it in terms of the sequencing and timing of the messages that they can consume and produce 

Service Composition Languages

Business Process Administration languages:

• BPML (Business Process Modeling Language) is a meta-language for describing business processes. A business process is described as a set of simple activities representing the invocation of a service operation, the sending and reception of the parameters of the invocation and optional, sequential and parallel activities.

• BPEL4WS (Business Process Execution Language for Web Services) specifies the control-flow and the logic of a services' coordination. BPEL4WS specifies a service as an interface described in WSDL.

• YAWL (Yet Another Workflow Language) is a workflow language based on workflow patterns. The formal semantics of YAWL is defined as a system of labeled transactions. YAWL considers the patterns or-join, cancellation sets and multi-instance activities. YAWL adds syntactic elements to reflect patterns such as xorsplit, xor-join and or-split.

Web Services Flow Language can be considered an XML serialization of Flow Definition Language. This script language was used in IBM's workflow product, enhanced with concepts to access Web services. It is based on a graph-based process language, where activities are ordered in an acyclic form by control flow links. Data dependencies are specified by a data flow among activities. Process behavior is specified by transition conditions attached to control flow links. This means that there is no explicit split and join behavior defined. However, by attaching conditions, any splitting behavior can be realized.

[That01] is a block structured language that was used in BizTalk, Microsoft's enterprise application integration software focusing the integration of heterogeneous back-end systems using processes. In block-structured languages, a strict nesting of control flow blocks is used to structure business processes. As a result, for instance, the paths following an "and-split" can never be combined by a join other than an "and-join". Coordination models and languages are used for expressing and implementing application logics that user services. Yet, software systems, aside from implementing all the desired functionality, must also cope with non-functional properties (NFP) such as: reliability, security, accuracy, safety, and performance. The following section defines these properties and presents strategies for specifying them, when they are intended to be associated to services' coordinations.

The standard in

Non-Functional Properties

A non-functional property (NFP) specifies criteria about the behavior of a system. These criteria are related to the conditions in which they are executed and to its performance. Non-functional properties are also referred as "constraints", "quality attributes", "quality goals", "quality of service requirements" and "non-behavioral requirements" [StGr05]. In the case of service-based applications, non-functional requirements concern the application itself as well as its component services.

The majority of the work on NFPs uses a product-oriented approach, which is concerned with measuring how much a software system is in accordance with the set of NFPs that it should satisfy [BBKL78, FePf96, KiDa96, Lyu96, MuIO90]. We are interested also in approaches that provide means for implementing NFP and reinforcing them at execution time.

Classifying NFPs

[Souz12] proposes a classification of NFP as a result of a study concerning software methodologies for the construction of service-oriented systems. The classification is shown in Figure 2.13 and it is organized in three layers representing: application modeling, services composition and services. The service composition layer serves as an integration layer between the services layer that exports methods and has associated constraints and characteristics; and the application layer that expresses requirements (NFP in the Figure ). At the application layer NFP can refer to business rules (e.g., only the user can publish data on her/his wall) and values for example, the email address is a string containing an "@" and a ".". A value NFR expresses constraints about the way data and functions can be accessed and executed. For example accessing methods under security protocols.

Business NFP at the service layer concerns properties that are associated to services and defines how to call their exported operations (business properties). For example, response time, storage capacity (e.g., Dropbox service provides 5Giga free storage). Value constraints concern more on the conditions in which services can be used. For example, accessing to a function within an authentication protocol.

Finally, at the service composition layer gives an abstract view of the kind of properties exported by services that can be combined for providing NFP for a composition. For example, confidentiality, authentication, privacy and access control can provide security at the service composition layer.

[ScCM10] proposes concepts and requirements for characterizing and analyzing existing approaches addressing NFP for service coordinations. Therefore they propose:

• A meta-model that introduces for characterizing NFP according to the entity to which they are associated: attribute, concern, action, and activity. • Seven requirements for studying NFP enforcement approaches: separation of concerns, transparent integration of functional and NFP, quantification, superimposition, integration of NFP with distributed Web service, programming language independence, Web service composition support.

NFP concepts are close to those defined by [Souz12] but they are not organized into layers. They correspond essentially to the service and service composition layers. The enforcement requirements describe the way NFP are weaved to service coordinations. Exiting works respect all or a subset of these requirements. The chosen requirements have an impact in the way NFP are enforced at execution time.

Specifying NFPs

Extensions to UML are proposed to express NFPs. NFPs can be integrated into the Class, Sequence, and Collaboration Diagrams [CyPr04]. The performance engineering [DiSD02] annotates quantitative performance constraints to UML diagrams such as actoruse case communication, message in the sequence diagram, and state in the state machine diagram. The UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms [Omg04] describes a set of QoS characteristics such as throughput, latency, integrity, dependability, among others. The characteristics can also be parameterized with for example the type of keys or types of encryption algorithms in case of the security characteristics. For all UML profiles based approaches it is generally possible to apply the stereotypes and its tagged values to arbitrary UML meta-classes, e.g. Class or Operation. The ordering of stereotypes cannot be expressed but composition-related requirements can theoretically be realized through behavioral diagrams like activity diagrams or state diagrams. [OrHe07] incorporate extra-functional properties into UML models by the use of UML stereotypes. For instance, there are stereotypes for encryption, decryption and logging which can be added to classes or operations that are representing services.

Design patterns help in documenting and communicating proven design solutions to recurring problems. Design patterns not only describe how to solve design problems but also document the designers' intentions -why the solution is chosen over others and what tradeoffs are made. [GrYu01] observe that non-functional properties (NFPs) are pervasive in the descriptions of design patterns and propose their systematic treatment in descriptions of patterns and when applying patterns during design.

Business rules provide means for expressing, managing and updating pieces of business domain knowledge independent of the rest of the application. According to the Business Rules Group [Hay00], a business rule is a statement that defines or constrains some aspect of the business. It is intended to assert business structure or to control the behavior of the business [Hay00]. Business rules are usually expressed either as constraints or in the form if conditions then action. The conditions are also called rule premises. The business rule approach encompasses a collection of terms (definitions), facts (connection between terms) and rules (computation, constraints and conditional logic) [START_REF] Halle | Business rules applied: building better systems using the business rules approach[END_REF]. Terms and Facts are statements that contain sensible business relevant observations, whereas rules are statements used to discover new information or guide decision-making. A business rule system is a system in which the rules are separated logically and perhaps physically from the other parts [ChMe04]. [ChMe04] investigate a hybrid approach, which combines business processes as known e.g., from BPEL with business rules [Hay00].

[ChLa09] proposed a generative framework to address NFPs for web service compositions. As part of the framework they separate the orchestration meta-model from other non-functional meta-models. They propose a non-functional meta-model for security where concepts exist for requirements and how these requirements are ensured. The NFPs are then added to the composition model by adding annotations. KAOS [DaLF93, Lams01] is a goal-oriented framework for addressing functional requirements with a formal temporal logic that requirements engineer can use to precisely specify NFPs, such as performance, as part of attribute specification of functional requirements.

The AO4BPEL [CSHM06] deployment descriptor (DD) is used for specifying nonfunctional requirements for BPEL processes. First the service (one of logging, security, transactions and reliable messaging) is selected. Then the class (e.g. authentication or confidentiality for security) can be specified. The type (e.g. encryption or decryption for confidentiality) is then the concrete action that must be executed in order to enforce the requirement. Then a selector can be defined such as for a certain BPEL activity. Each selector can be mapped to a requirement. The W3C proposes a set of languages and protocols for specifying the NFP of a services' coordination. 

Communication Protocols

Communication gives basic support for communicating a given number of services. The principle is based in messages exchange, where a message contains the information necessary for invoking a method exported by a service. Therefore, a set of protocols for specifying and sending messages must be specified. For example, a communication protocol defines a naming model for locating a service and eventually, as shown later the protocol can be extended with security elements for ensuring data integrity exchanged among services. In the context of W3C the communication protocols SOAP, WS-Addressing and WS-Reliability have been proposed.

• SOAP (Simple Object Access Protocol) is a communication protocol based on XML for invoking a method of a remote service. The important concepts in SOAP are (i)

the envelope containing the message information and (ii) a data model defining the format of the message to be transmitted.

• WS-Addressing defines a mechanism for adding information about the services location into a SOAP message. WS-Addressing defines two constructors for integrating the information of transport protocols and, an application based on messages. The constructor also homogenizes the information by using a common format that can be processed independently of the transport protocol or the application.

• WS-Reliability combines the HTTP protocol with some security protocols for adding reliability when exchanging messages in a services' coordination. WS-Reliability also guarantees the reception of messages using acknowledgments.

Transaction Management

The Web services transaction protocol (WS-Tx) [Oasi09a] provides strict and semantic atomicity to services coordination. It adds a transactional behavior to a services' coordination using WS-AtomicTransaction and WS-BussinessActivity. WS-Tx is layered over the Web services coordination specification (WS-C

3 ) [LiWe03, Oasi09b]. WS-Transaction describes the types of services' coordination that can be used with WS-Coordination e.g., coordinations having an atomic behavior are described using the concept of AtomicTransaction and coordinations having a long duration are described using the concept of BussinessActivity.

Ws-Tx extends WS-C to create a transactional coordination context offering two types of atomicity:

• Atomic transaction (AT). It is used to coordinate activities with strict atomicity-like behavior. WS-AtomicTransaction defines 3 types of protocols: completion, volatile twophase commit and durable two-phase commit. These protocols are used for assuring the property "all or nothing" when executing the activities of a services' coordination.

• Business activity (BA). It is used to coordinate activities with a semantic atomicitylike behavior. In this protocol business activities can be subdivided into small ones called scopes. A scope is a collection of operations that can be nested to arbitrary degrees.

3 WS-C describes an extensible framework that provides protocols for coordinating actions in distributed applications that require to ensure certain policies. The WS-Coordination framework enables a service to create a context to propagate an activity to other services and, to register a service as participant in a services' coordination.

WS-Tx has defined five protocols for committing based on classic 2PC: Completion, Com-pletionWithAck, Phase zero, 2PC, and Outcomenotification.

The business transaction protocol (BTP) [Oasi02] is a protocol for coordinating processes with strict and semi-atomicity behavior. A BTP coordination protocol is a set of well-defined messages that are exchanged between participants to address a transactional behavior. BTP defines two coordination protocols to provide transactional behavior:

• Atom protocol implements a strict atomicity behavior.

• Cohesion protocol enables the definition of semi atomicity, where some participants commit and others cancel based on some pre-defined business rules. A cohesion protocol commits using the rules that users define.

Atom and cohesion protocols use a modified two phase commit protocol (2PC) that cannot be adapted or extended to new requirements. During the second phase of 2PC protocol, the coordinator uses the set of rules for deciding whether to commit or abort.

[BoCR05] extends BTP by means of an ontology expressed in OWL-S. The ontology categorizes services according to three aspects:

• The functionality of the service.

• How it is accessible the service.

• How the service works.

Regarding atomicity a service is classified as unprotected, semi-protected, protected, negotiable, and real. This classification is used for implementing the atom, cohesion, and atomic transactions of BTP on top of the transactional properties that a service can provide. In such a way, it is possible to provide strict and semi-atomicity behavior to a given services coordination.

[TMWD04] proposes a policy based transactional model implemented on top of WS-Coordination, WS-Transaction, and WS-ReliableMessaging protocols. A policy is used to advertise and to match three types of atomicity:

• Direct transaction processing provides atomicity based on the 2PC protocol.

• Queued transaction processing provides atomicity using a non-blocking 2PC protocol.

• Compensation-based transaction processing provides atomicity using the notion of compensation that relaxes the notion of atomicity.

Using such transaction models it is possible to provide strict and semi-atomicity behavior.

[DFDB05] introduces a protocol for dynamic composition of services based on the tentative hold protocol that enables the definition of an atomic behavior for activities. The tentative hold protocol adds a phase to 2PC protocol where participants can request tentative reservations on the resources that they want to use in following phases. This new phase can be seen as an exchanging of messages prior to the transaction for minimizing compensation actions.

In this kind of approaches, atomicity is implemented within the coordination by using pre-defined protocols (e.g., extensions of the two phase commit protocol4 and advanced transactional models5 , see [Port06a]). When using a protocol at least two assumptions are considered:

• The service operations participating in a transaction have a homogeneous behavior with respect to transactional requirements (e.g., all operations accept reservation for committing). Therefore the protocol can define the way in which a transaction will be committed or undone.

• Services and the execution infrastructure export operations for supporting the execution of atomicity protocols (e.g., the compensation capability).

Security

WS-Security [Oasi04b] (Web Services Security, short WSS) is an OASIS extension to SOAP to apply security to web services. The protocol specifies how integrity and confidentiality can be enforced on messages and allows the communication of various security token formats, such as SAML, Kerberos, and X.509. Its main focus is the use of XML Signature and XML Encryption to provide end-to-end security. WS-Security describes three mechanisms for:

• Signing SOAP messages to assure integrity. Signed messages also provide nonrepudiation.

• Encrypting SOAP messages to assure confidentiality.

• Attaching security tokens to ascertain the sender's identity.

In general, WSS by itself does not provide any guarantee of security. It is up to the programmer to ensure that the result is not vulnerable. Key management, trust bootstrapping, federation and agreement on the technical details (ciphers, formats, algorithms) are outside the scope of WS-Security. The following specifications are associated with WS-Security:

WS-Policy, WS-SecureConversation, WS-Trust and ID-WSF.

WS-Trust is a language based on WS-Security for defining rules for sending, exchanging and diffusing security tokens [START_REF]OASIS: WS-Trust[END_REF]. WS-Trust also defines the rules for granting and disseminating credentials within domains of trust. For example, for assuring the communications between two services, both services have to send their security credentials to determinate if they can trust each other.

WS-Federation is based on WS-Trust and defines mechanisms for federating (sharing) attributes and information about services within domains of trust. WS-Federation characterizes services as passive and active services that can interact with service providers.

Adaptability Web Services Policy

6 (WS-Policy) is a machine-readable language for representing these Web service capabilities and requirements as policies in a machine-readable form. Service providers use WS-Policy to represent combinations of behaviors (capabilities and requirements).

Web service developers use policy-aware clients that understand policy expressions and engage the behaviors represented by providers automatically. These behaviors may include security, reliability, transaction, message optimization, etc. WS-Policy allows web services to use XML to advertise their policies (on security, quality of service, etc.) and for web service consumers to specify their policy requirements.

It provides a set of specifications that describe the capabilities and constraints of security (and other business) policies on intermediaries and end points (for example, required security tokens, supported encryption algorithms, and privacy rules) and how to associate policies with services and end points.

The general principle for adding NFPs to a services' coordination is to define protocols for controlling its execution. Associating non-functional properties to services composition can help to ensure that the resulting application is compliant to the user requirements and also with the characteristics of the services it uses. As services are independent components, ensuring non-functional properties is a challenge. Programming non-functional properties is not an easy task and different studies [AgLS09, BaKS10, ChLa09, GuRF09, JeCL09, MaZN10, TsNA12, XCZB08] associate non-functional requirements and services using different approaches. In the following section we describe methods that can be used for weaving NFP and services' coordinations.

Weaving NFPs to a Services' Coordination

A strategy for weaving NFP to service coordinations is to define them explicitly within the application logic. Adding sequences of activities that implement well-known protocols, for example advanced transactional models. This technique has been used particularly in works adding transactional properties (atomicity) to service coordinations. The challenge is to determine the composition pattern that will include NFP. Another strategy for defining NFP is to separate their specification and the services coordination. This captures the interactions that are necessary to provide a given behavior by enforcing NFP. The following sections describe works adopting these approaches.

Modularizing NFP

Aspect-oriented programming (AOP) is an approach for modularizing the implementation of business rules and thereby allowing the separation of crosscutting concerns. The principle is breaking down program logic into distinct parts (so-called concerns, cohesive areas of functionality). The implementation of the business rules tends to cut across several activities of a process definition; AOP provides means to modularize crosscutting concerns and has already been found valuable for modularizing business rules of object-oriented software [Dhon04]. The integration of aspect behavior into the functional behavior can be done without changing the functional code by means of pointcuts. Pointcuts can be under-stood as a facility to query over join points. Join points on the other hand are well-defined points during the execution of a program (e.g. an execution of an operation). In a single query, multiple join points can be selected and multiple aspects can point to the same join point.

[HeBW06] use AOP technology, namely AspectJ [Ladd03] to implement QoS monitoring without changing the existing service implementation. They have written a performance aspect that measures the execution time by defining two join points, one at the beginning and one at the end of a method call. The advice captures the time when the request arrives at the service and when the response is returned by the service. Further, they implemented a cost aspect that counts the types of service invocations and cumulates them to calculate the monetary total cost of usage. The reliability aspect logs every invocation that ends with an exception.

[MSMR08] introduce the Web Service Aspect Language (WSAL) providing aspects that can be freely specified, implemented, deployed and executed as loosely coupled web services. Weaving is realized at network level by Web intermediary technology. Supported join point types are message part, service name, service operation, service location, client location and combinations of them. Advice elements are implemented by Web service operations and the following types are allowed: before request, upon request, after response, upon response, after exception, upon exception, and around. Additional context information like the intercepted message or the service location can be passed to the advice implementation operation. The context information can be used to restrict the information that is transmitted to the advice Web service. Some advice types, e.g., before and after can be executed in parallel with the join point. Aspects are specified by a XML syntax and contain a set of join point and advice elements. The aspect weaver is implemented by using IBM WBI [Ibm00a] intermediary technology.

[VeVJ06] propose the Web Services Management Layer (WSML) for the dynamic integration, selection, composition, and client-side management of web services in Service-Oriented Architectures (SOA). There are different aspect types. Service Redirection Aspects specify the communication logic to swap from a web service to an alternative one or to a web service composition implementing the same logic by calling multiple services. Service Selection Aspects enforce a certain selection policy which can be of one of the types Client-initiated selection, Non-functional service property based selection, Service behavior-based selection and Service-initiated selection. Service Management Aspects modularize concerns like encryption, billing, reliable messaging, transactions, etc. which can be enforced per service type, per composition or per web service. The aspects are implemented by JAsCo [VSVC05]. JAsCo is an adaptive programming approach that supports Superimposition by Combination Strategies. Combination Strategies is an imperative approach that allows for employing the full expressiveness of Java. AO4BPEL [ChMe07] is an aspect-oriented extension to WS-BPEL for defining aspects that enforce NFPs such as security, reliable messaging and transactions. An aspect in AO4BPEL is a container for multiple point-cuts and advice constructs and can be activated at runtime. The point-cut language is XPath [Wc00c] for selecting arbitrary BPEL activities. When a point-cut matches a certain join-point, its corresponding advice is executed. An advice is defined in BPEL and can be used to call dedicated middleware services in order to enforce NFPs. A security, reliable messaging and transaction middleware services are provided. Besides, predefined aspects for integrating NFP into BPEL processes exist and they are generated from a deployment descriptor.

The second alternative for modularizing the implementation of business rules expressing NFP is to combine the process-based specification of service composition with dedicated approaches to declarative specification of business rules, such as Java Expert System Shell Jess [Frie12] and JRules [Ibm00b].

Contract Driven Programming

Contracts are behavioral descriptions of Web services Code Contracts provide a language-agnostic way to express coding assumptions in .NET programs [FaLo10]. The contracts take the form of preconditions, post-conditions, and object invariants. Contracts act as checked documentation of your external and internal APIs. The contracts are used to improve testing via runtime checking, enable static contract verification, and documentation generation. Code Contracts bring the advantages of design-by-contract programming to all .NET programming languages. Contracts are expressed using static method calls at method entries. Tools take care to interpret these declarative contracts in the right places. A precondition must be true on entry to the method. It is the caller's responsibility to make sure the pre-condition is met. A post-condition must be true at all normal exit points of the method. It is the implementation's responsibility that the post-condition is met.

[CaGP09] proposes a theory of contracts that formalizes the compatibility of a client with a service, and the safe replacement of a service with another service. Contracts are used to ensure that interactions between clients and services will always succeed. Intuitively, this happens if whenever a service offers some set of actions, the client either synchronizes with one of them (i.e., it performs the corresponding coaction) or it terminates. The service contract allows to determine the set of clients that comply with it, that is to say that will successfully terminate any session of interaction with the service [CaGP09].

The use of contracts statically ensures the successful completion of every possible interaction between compatible clients and services. The technical device that underlies the theory is the filter, which is an explicit coercion preventing some possible behaviors of services and, in doing so, make services compatible with different usage scenarios.

Policy Driven Programming

The main objective of a policy driven system is to enable a flexible and adaptable management by defining strategies that can be defined and modified without having to recompile the system. Policies are used for defining constraints on the behavior of the systems for ensuring that the system complies with its objectives [Slom94].

Policy driven programming is a computer-programming paradigm based on an idiom for C++ known as policies. The main idea is to use commonality-variability analysis to divide the type into the fixed implementation and interface, the policy-based class, and the different policies. The central idiom in policy-based design is a class template (called the host class), taking several type parameters as input, which are instantiated with types selected by the user (called policy classes), each implementing a particular implicit interface (called a policy), and encapsulating some orthogonal (or mostly orthogonal) aspect of the behavior of the instantiated host class.

KaOS [UBJS03] is a collection of agent services based on components for executing mobile agents. One of the components of the KaOS platform is based on policies for the specification, management, conflicts resolution, and policies execution. Policies are expressed using DAML [Darp00]. Policies are of two types authorization and obligation and they can be specialized for addressing application requirements. KaOS has been used for managing Web services deployed on Grid architectures. Security Policy Language (SPL) [RiGu99] is a security language for expressing policies that can help to decide on the validity of events according to their properties (e.g., author, destination, action, etc.), the conditions in which they were produced and also the properties of previous events. A policy consists of targets and rules. Targets are the entities using policies and rules (simple and compound), implement decision making about the acceptance of events. Compound rules implement the behavior of the policy it is associated to. Policies can be compound using an algebra.

Conclusions

This chapter proposed a classification of services that organizes them into families according to their exported operations. It mainly identifies services that provide operations that do not imply the management of data collections (i.e., business services) and those that provide different types of data management and processing operations. Since services are used for implementing applications by coordinating calls to their operations, the chapter described coordination models. A service's coordination defines the business logic of an application. Yet, NFPs must be also defined and associated to the application logic in order to address some application requirements. The chapter analyzed the principles adopted by different approaches for expressing NFPs intended to be associated to services' coordinations. It showed that since NFPs are associated to the coordination, it is important to consider the way they are modeled to determine to which entities of the services' coordination they can be added. Finally, the chapter described techniques that can be used for adding NFPs to services' coordinations. We showed that the strategies for adding NFPs can imply expressing them as protocols and weaving them within the coordination by adding activities. The second strategy is defining NFPs separately together with reinforcement actions and synchronization points for associating them to service coordinations. This approach enables loosely coupled approaches for adding NFP, which can modularize NFP and ease the maintenance of the coordination. Our work adheres to this strategy because it does not «pollute» the coordination specification, it considers different types of services and it can be handled separately thereby facilitating service coordination maintenance and evolution.

Chapter 3 introduces our AP model devoted for adding NFP to service coordinations based on an activity oriented model. It also provides concepts for specifying different NFP protocols in a reactive way.

Active Policy Model

This chapter describes the Active Policy Model (AP Model), for representing services' coordinations with non-functional properties as a collection of types. In our model, a services' coordination is represented as a workflow composed of an ordered set of activities, each activity in charge of implementing a call to a service' operation. We use the type Activity for representing a workflow and its components (i.e., the workflow' activities and the order among them). A non-functional property is represented as one or several Active Policy types, each policy composed of a set of event-condition-action rules in charge of implementing an aspect of the property. Instances of active policy and activity types are considered in the model as entities that can be executed. We use the Execution Unit type for representing them as entities that go through a series of states at runtime. When an active policy is associated to one or several execution units, its rules verify whether each unit respects the implemented non-functional property by evaluating their conditions over their execution unit state, and when the property is not verified, the rules execute their actions for enforcing the property at runtime.

The chapter is organized as follows. Section 3.1 introduces the types composing the AP Model and a scenario used for describing the types. Section 3.2 defines the types in which the model is built on: data type and service type. Sections 3.3, 3.4, 3.5 describe respectively the Activity type, the Execution Unit type and, the Active Policy type. Section 3.6 introduces the AP language and illustrates how to use it for defining AP types and thereby specifying nonfunctional properties. Section 3.7 concludes the chapter.

Introduction

The AP Model is based on the notions of type and instance. A type represents a collection of objects that have the same properties, behavior and semantics. An instance represents a specific object that can get concrete values at runtime. We use the UML class diagrams for representing types. For instance, the diagram of figure 3.1 shows the types composing the AP Model as classes. They are grouped according to the concept they describe:

• The classes used for representing a services' coordination (i.e., Activity, Atomic Activity, Workflow Activity and Control Flow Activity). All possible objects considered in the model can be represented as an instance of one of these types. For example, figure 3.2 illustrates some examples of active policy instances.

Instances ap 1 and ap 2 are examples of objects belonging to the Basic policy type (i.e., they conform to the properties, behavior and semantics described by the type). Instance ap 3 is an example of an object belonging to the type OAuth policy. Instance ap 4 is an example of an object of type Exception Management policy.

Figure 3.2 also shows that the AP Model types can be specialized in subtypes. The type Active Policy type represents all policy instances that can exist in the universe, no matter what non-functional property they deal with. In contrast, the type Authentication policy type represents policy instances that deal with authentication aspects (i.e. a specific nonfunctional property). When a type T 1 is a subtype of T 2 all the instances of T 1 are also instances of T 2 (i.e., a instance can belong to more than one type). For instance, since the Basic and OAuth policy types are subtypes of the Authentication type (see figure 3.2), instances ap 1 , ap 2 and ap 3 are also instances of the authentication policy type. In the same way, even if ap 3 and ap 4 belong to different types, they are examples of instances of the Active Policy type. • Reads information about the song a user is currently listening to (e.g., song title and artist name) using the LastFM1 service.

• Computes the mood of the user using the history of played songs and a custom algorithm.

• Posts song information and user mood into the user's Facebook and Twitter accounts (e.g., the string "Sting -Fields of Gold ☺") using the Facebook2 and Twitter3 services.

Figure 3.4 illustrates a workflow implementing the Status Updater coordination by ordering calls to the operations exported by the LastFM, Facebook and Twitter services. In the diagram, services are represented as rectangles containing the name of the operation used by the workflow. Activities are represented as rounded rectangles connected to a service' operation. Order among activities (i.e., execution flow) is represented as solid arrows connecting activities.

The Status Updater workflow is composed of 4 activities:

• Get Song calling the operation getLastSong from the LastFM service. This activity receives a user id as input and outputs the song information. • Compute Mood represents the algorithm that computes the user mood based on the music listened by a user during some period of time. This information is saved in a log.

• Update Twitter and Update Facebook calling the operations updateStatus of the Facebook and Twitter services. Both activities receive as input a user id and some text (in this case the song information) and produce no result as output. These activities are ordered according to the following criteria:

• Since the output of Get Song is needed by activities Compute Mood, Update Twitter and Update Facebook the activity Get Song has to be executed before the others (i.e., in sequence).

• Since the output of Compute Mood is needed by activities Update Twitter and Update Facebook, the activity Compute Mood has to be executed before the other two activities.

• Since there is non-dependency among Update Twitter and Update Facebook the activities can be executed in parallel.

• Since the workflow has to run while the user listens music, the activities have to be executed iteratively.

Now let us assume that the developer wants to extend the Status Updater workflow for addressing the following non-functional requirements (see figure 3.5):

• Authentication. Due to privacy protection Twitter and Facebook implement authentication protocols that control access to user' information (e.g., only authorized ap- plications can read and/or update users information). For instance, Twitter uses a basic authentication protocol based on username and password for preventing applications of updating the user status. In contrast, Facebook uses the OAuth4 protocol, a protocol based on third-party authentication for the same purpose.

• Network unavailability. Due to network unreliability services can be unavailable at certain periods of time. This can cause exceptions that must be handled by the workflow (e.g., by retrying the calls to the services or by compensating the activities).

In the AP approach these non-functional requirements are addressed by defining A-Policy types and by associating these types to a target workflow. For example, a developer can define an Authentication A-Policy type for addressing the authentication requirements of workflows. Then, as shown in figure 3.6 the developer can specialize this type for defining policy types defining Basic and OAuth protocols. These new types can be associated to the Update Twitter and Update Facebook activities of the Status Updater workflow. These policy types will be used for adding the basic and OAuth protocols (respectively) required by each service associated to the workflow activities (see figure 3.6).

At execution time, the policies can execute some code before and after the execution of an activity in order to implement an authentication protocol. As shown in figure 3.7, this can be equivalent of adding activities to the Status Updater workflow before and after the activities Update Twitter and Update Facebook of the workflow. Yet, thanks to policies the authentication issues are maintained separated to the workflow. Thus, in the AP approach A-Policy types are defined independently of concrete workflows (i.e., in orthogonal way). Indeed, it is possible to keep separated the logic implementing a services' coordination from the implementation of its non-functional requirements, simplifying the maintenance process. For example, if one of the services changes its authentication protocol, the change remains transparent to the coordination because the A-Policy can be modified without touching the coordination implementation. Composite types represent instances that are composed of other values (i.e. instances of other types). The composite types considered in the model are the types Set, N-Tuple and Attribute. These types conform to the following rules:

• If A 1 ... A n are different attribute names (i.e., A i A j , i, j [1…n]), and T 1 ... T n are type names, the expression <A 1 : T 1 , …, A n : T n > represents a type N-Tuple. For example, the expression:

< name: String, value: Type > represents the type Variable as a binary tuple composed of (i) a name attribute of type

String representing the variable' name and (ii) a value attribute (of any type) representing the variable value.

• If T is a type name then the expression Set <T> represents a typed collection where all the elements in the collections are of type T. For example, Set <String> represents a collection containing only elements of type String.

Service Type

The AP Model is also based on the notion of service. As shown in figure 3.9, we use the type Service for representing a service as an autonomous entity that exports a collection of operations via a network.

Figure 3.9 Service type UML class diagram

The type Service is defined as follows:

< address: String, operations: Set <Operation> > Its attributes are interpreted as follows:

• address represents the URL where the service can be located.

• operations represents the set of operations exported by a service, each operation represented as an Operation type.

The type Operation has the following form:

< name: String, input: Set<Variable>, output: Type> Its attributes are interpreted as follows: • name represents the name of the operation.

• input represents the set of variables that an operation receives.

• output represents the type of the value produced by the execution of the operation.

Consider for instance the LastFM service of the Status Updater scenario. This service exports a single operation: the GetLastSong operation. Figure 3.10 shows how we represent this service using the type LastFM, a subtype of the type Service. The figure also shows how we add constraints to the attributes of a type in order to represent a concept. For instance, the LastFM type defines constraints for all the attributes of the Service type in order to represent the specific LastFM service:

1. Since we know in advance the location of the service, we constraint the address attribute to a single possible value (i.e., the value "http://www.lastfm.com/").

2. Since the service only exports one operation, we constraint the cardinality of the operations attributes to 1. Besides, we specify the operation type contained by the attribute operations (i.e., the Get Last Song type).

3. Since we know in advance the signature of the GetLastSong operation, we constraint the values of the Get Last Song type attributes as follows: the name attribute has only one possible value: the string "GetLastSong". The input attribute contains a single variable (of type UserID) that represents the user id. The output attribute is constraint to any valid String.

For the sake of simplicity we will not explicitly describe the constraints added by subtypes in the rest of the document. The reader should infer them from the UML class diagrams describing the types. 

Activity Type

We use the Activity 5 type for representing the concepts abstracting a services' coordination (i.e., workflow, workflow' activities and the order relationship among the workflow' activities). As shown in the figure 3.11, the Activity type has the following structure:

< name: String, input: Set<Variable>, local: Set<Variable>, output: Type> Its attributes are interpreted as follows:

• name uniquely identifies an activity type participating in a workflow.

• input contains the variables received as input of the activity.

• output represents the value produced by the execution of the activity.

• local contains the set of local variables used for computing the activity output. • Workflow activity type that represents a workflow.

• Atomic activity type that represents a workflow' activity.

• Control Flow activity type that represents the order relationship among the workflow' activities.

Since these types are subtypes of the Activity type, they all share the same structure i.e., every possible activity considered in the model (i) receives a set of variables as input (possible empty), (ii) produces a single variable as output and (iii) have a set of local variables used internally for computing its output. 

Atomic Activity

The Atomic Activity type represents the logic handling a call to a service' operation. As shown in figure 3.12, the Atomic Activity type has the following structure 6 :

< calls: Operation, operationResult: Type > Its attributes are interpreted as follows:

• calls represents a reference to a service' operation. As shown in figure 3.12, an atomic activity can be associated (i.e., calls) to maximum one service' operation.

• operationResult contains the result of a service' operation call. Note that attribute can contain a value of any type.

When executed, an instance of type Atomic Activity uses the service' address, the operation' name and the activity input variables for calling the service' operation. Then, once the operation completes, the activity stores the operation result in the operationResult attribute. Finally, the activity uses the operationResult value for computing the activity output.

As an example, consider the Get Song activity of the Status Updater scenario. Recall that this activity calls the Get Last Song operation of the LastFM service. Figure 3.13 shows the representation of this activity as a subtype of the Atomic Activity type. Note that this representation uses the types defined in section 3.2.2. 

Control Flow Activity

The Control Flow Activity type represents the logic implementing an order relationship 

Sequence Activity

The Sequence Activity type represents the logic implementing a sequential execution. For instance, let us assume that sequence (A, B) represents a sequence activity that relates activity types A and B. Now assume that seq (a 1 , b 1 ) represents an instance of sequence (A, B) where a 1 and b 1 are instances of A and B (respectively). This relationship implies that, when executed, instance seq will execute a 1 until completion before executing b 1 . More formally, if a 1 .ends is an integer representing the time when a 1 ends its execution, and b 1 .starts is an integer representing the time when b 1 starts its execution, instance seq will respect the relationship a 1 <b 1 at runtime. • leftside represents the activity operand that is first executed.

• rightside represents the activity operand that is executed next.

As an example consider the Get Song and Compute Mood activities of the Status Updater scenario. According to the scenario these activities have to be executed in sequence. Figure 3.15 illustrates the use of the Sequence Activity type for implementing this order relationship. In the figure, Get Song and Compute Mood activities are represented as Atomic Activity types. When executed, an instance of the sequence type will execute first an instance of the Get Song type (i.e., the lefside operand) and then an instance of the Compute Mood type (i.e., the rightside operand).

IF Activity

The If Activity type represents the logic implementing a conditional execution. For instance, let us assume that IF (Θ, A, B) represents an if activity that relates condition expression Θ and activity types A and B. Now assume that if (Θ 1 , a 1 , b 1 ) represents an instance of IF (Θ, A, B) where Θ 1 , a 1 and b 1 are instances of String, A and B (respectively). This relationship implies that, when executed, instance if will execute a 1 if and only if Θ 1 is evaluated to true. 

Sequence

• condition contains a string representing a boolean expression.

• evaluationResult contains the result of the evaluation of the activity condition.

• true represents the activity operand that is executed when the activity condition is evaluated to true.

• false represents the activity operand that is executed when the activity condition is evaluated to false.

As an example consider an extended version of the Status Updater scenario where the songs listened by a user can be retrieved from two different services: the LastFM and the Deezer7 services. Also consider that the Status Updater coordination decides which service to call by evaluation the condition "useLastFM == true". Figure 3.16 illustrates the use of the If Activity type for implementing this decision by relating the activity types Get Song From LastFM and Get Song From Deezer. When executed, an instance of the if type will evaluate whether the value associated to useLastFM variable is true. In that case it will execute an instance of the Get Song From LastFM activity (i.e., the true operand). Otherwise it will execute an instance of the Get Song From Deezer activity (i.e., the false operand). 

While Activity

The While Activity type represents the logic implementing an iterative execution. For instance, let us assume that While (Θ, A) represents a while activity that relates condition expression Θ and activity type A. Now assume that while (Θ 1 , a 1 ) represents an instance of While (Θ, A) where Θ 1 and a 1 are instances of String and A (respectively). The relationship while (Θ 1 , a 1 ) implies that, when executed, instance while will execute a 1 if and only if Θ 1 is evaluated to true. Otherwise it will execute nothing. In case if Θ 1 is evaluated to true, instance while will re-instantiate activity type A for preparing a new iteration e.g., obtaining the instance represented by the expression while (Θ 1 , a 2 ), and then it will re-evaluate Θ 1 for deciding whether a 2 has to be executed or not. Note that an instance of the While Activity type may interact with multiple instances of other activity type at runtime. For instance, in the While (Θ, A) example, instance while can interact with a 1 , a 2 … a n where a i represents the i th iteration. < condition: String, evaluationResult: Boolean, do: Activity > Its attributes are described as follows:

Get Song From Deezer Get Song From LastFM

• condition contains a string representing a boolean expression.

• evaluationResult contains the result of the evaluation of the activity condition (i.e. either true or false).

• do represents the activity operand that is executed when the activity condition is evaluated to true.

As an example consider the Get Song activity of the Status Updater scenario. As you may recall this activity has to be executed several times in order to obtain the last song played by a user. Also recall that we represent this activity using the Get Song Atomic Activity type (cf. section 3.3.1). Figure 3.17 illustrates the use of the While Activity type for implementing the required iterative behavior over the Get Song activity. As shown in the figure, the expression "isUserListeningMusic()==true" is used for deciding whether a new iteration has to be executed (i.e., the condition). If the user is listening music, an instance of the while activity will evaluate this expression to true and then it will execute an instance of the activity type Get Song (i.e. the do operand). Otherwise the while activity will complete its execution. • The leaf nodes represent the Atomic Activity types composing the workflow (i.e., activities Get Song, Compute Mood, Update Facebook and Update Twitter).

• The internal nodes represent the Control Flow Activity types representing the order among activities (e.g., the fact that the Get Song activity must be executed before the Compute Mood activity).

• The root node represents the Control Flow Activity type containing a workflow implementation (e.g., the While activity containing the logic that specifies what to do for each song listen by a user).

Since the AP Model is based on the same concepts as the Object Oriented Model (i.e., type, instance of a type, inheritance), we can use an object-oriented language for defining instances of Workflow Activity types (e.g., C++, Java, C#). For instance, listing 3.1 shows the C# expression used for creating an instance of the Status Updater Workflow Activity type 8 . The expression is interpreted as follows: 8 The example assumes that all the AP Model types were previously defined as C# classes. • Line 1 creates an instance of the Status Updater Workflow Activity type called myWorkflow.

• Line 2 assigns the name of the workflow. Recall that this name uniquely identifies an activity type participating in a workflow.

• Lines 3 and 6 create instances of the type Variable and assign them to the input and local attributes of the workflow (respectively).

• Line 9 creates the instance of the While Activity type that implements the workflow' control flow. Recall that this instance represents the root of the workflow' control flow (see figure 3.18).

• Lines 10, 15 and 20 create the activity instances composing the control flow. Recall that these instances represent the internal nodes of the control flow (see figure 3.18).

• Lines 11, 16, 21 and 22 create the instances of the Atomic Activity types participating in the workflow. Recall that these instances represent the leaf nodes of the control flow (see figure 3.18).

Listing 3.1 Example of the definition of a Workflow Activity instance

Listing 3.1 also shows how data flow among activity instances: if a and b are activities of the same workflow, a can access the attributes of b and b can access the attributes of a (i.e., activities share the same memory space). For instance, the expression of line 13: input = this.input [0] copies the value of the workflow UserID input variable (i.e., referenced by this.input[0]) to the Get Song input variable. In the same way the expression line 18: 

1 var myWorkflow = new

Execution Unit Type

We use the Execution Unit type for representing an entity that goes through a series of states at runtime and notifies its progression to the execution environment by producing events. As shown in figure 3.19, the Execution Unit type has the following structure:

< states: Set<State>, notifies: Event > Its attributes are described as follows:

• states represents the set of ordered states through which goes an execution unit when executed (e.g., an activity instance goes first to the initial state and sometime later it arrives to the final state). We use the type State for representing execution unit' states.

• notifies represents the type of events produced by an execution unit (e.g., the execution of an activity produces instances of type ActivityEvent). We use the type Event for representing events.

As shown in figure 3.1, the AP Model classifies execution units into activities, active policies and policy' rules. This implies that the behavior of instances of Activity, Active Policy and Rule types can be described as a series of states and transitions among the states. This will be further described in chapter 4. Its attributes are described as follows:

• timestamp represents the time associated to a state. 9

• values represents the set of values that contained in the variables of an execution unit at time timestamp. • timestamp represents the time at which an event was produced.

• producerID represents a string uniquely identifying the execution unit producing an event. We assume that this identifier is assigned by the system at the moment of instantiating a type. 9 The representation of time can be of different granularities (e.g., hour, day, minute, etc.). We consider that this granularity is determined by the system executing the workflows. We also consider that, independently of its representation, time can be transformed into a positive integer (i.e., a number i ε [0, ]). • delta contains information about the conditions in which an event is produced (i.e., the state of the execution unit producing the event). We represent the delta as a set of pairs of the form variable = value. In the AP Model we assume that an execution unit produces an event every time it enters a state (e.g., when an activity is initialized, it produces an event instance of type Activity-Initialized). Thus, in order to describe the behavior of all the AP Model execution units, we have specialized the Event type into several subtypes (see figure 3.23):

• Activity Life Cycle Event types. They represent the events describing the lifecycle of every activity instance. For instance, the activity has been initialized, completed or failed. 

Event

• Atomic Activity Event types. They represent the events produced by an atomic activity instance during a service' operation call. For instance, the activity is prepared for invoking the operation or the operation has been invoked.

• Control Flow Activity Event types. They represent the events produced during the execution of control flow activity instances. For instance, an if activity has evaluated its associated condition or a sequence activity has executed one of its operands.

• Active Policy Event types. They represent the events describing the lifecycle of an active policy instance. For instance, a policy has been (de) activated or completed.

• Rule Event types. They represent the events describing the lifecycle of a rule instance. For instance, a rule has been triggered or its action has been executed. 

Active Policy Type

We use the Active Policy type for representing the business logic implementing a nonfunctional property. As shown in figure 3.24, the Active Policy type has the following structure:

< rules: Set<Rule>, scope: Set<ExecutionUnit >, variables: Set<Variable> > Its attributes are described as follows:

• rules represents a non-empty set of event-condition-action (ECA) rules that verifies and enforces a non-functional property at runtime. We use the type Rule for representing ECA rules.

• scope represents the association of an active policy with one or several workflow' execution units. When an execution unit eu is associated to a policy ap it is said that "eu belongs to the scope of ap" or that "ap applies to eu". • variables represents the set of local variables composing an active policy and which are accessible to the policy' rules (i.e., rules can read and modify variables' values).

The Rule type represents an ECA rule with the classical semantics: « on the notification of an event of type E, if a condition C is verified, execute an action A ». As shown in figure 3.24, the Rule type has the following structure:

< event: Event, condition: Condition, action: Activity > Its attributes are described as follows:

• event represents a significant happening occurring during the execution of an execution unit at time t.

• condition represents a boolean predicate that is evaluated over the state of a policy (i.e., the values of the policy variables and the state of the scope execution units).

• action represents an activity that can (i) act on the execution of a workflow (e.g., stop, resume, update), (ii) signal an event and (iii) activate (deactivate) the rules of a policy. Consider for instance the Log Active Policy type shown in figure 3.25, which represents policy instances that track the execution of other policies and that save into a log the event produced by these policies. As shown in the figure, the Log policy type (i) can be associated to any number of execution units of type Active Policy (see scope relationship), (ii) has a single variable called log that contains the string representation of the events produced by the execution of units (i.e., the policies belonging to the policy' scope) and (iii) is composed of a single ECA rule named Save Into Log that has the following semantics: on the notification of any event (e.g., instances of ActivityEvent or ActivePolicyEvent), if the event was produced by any of the policies belonging to the policy' scope, execute an instance of the activity EventToString, which transforms the event into a string and save it into the log. .25 also shows that active policies can be applied to any number of execution units as long as they belong to the same type (e.g., if ap is a policy instance that can be ap- plied to activities and a, seq and wf are instances of atomic activity, control flow and workflow activity types, then applying ap to the set {a, seq, wf} is a valid association). However, we have identified two special kinds of associations (see figure 3.26):

• Applying a policy to a single activity. We call this kind of policies activity policies.

They are represented using the A-Policy type.

• Applying a policy to a set of policies of exactly the same type T. We call this kind of policies policy of policies. They are represented using the P-Policy type. applied to activities Update Facebook and Update Twitter. In the same way, p 3 is an example of a P-Policy instance since it applies to policies p 1 and p 2 (i.e., p 3 is a policy of policies). Finally remark that the association of p 3 , p 1 and p 2 can be represented as a tree (see figure 3.27), where leaf nodes represent activities and internal nodes represent active policies. We call this tree an active policy tree.

Figure 3.27 Example of A-Policy and P-Policy instances

Active policy rules are related to each other using the notion of priority. At execution time, priorities are used for scheduling the execution of rules that are triggered at the same time (i.e., triggered by the same event instance). We consider two kinds of priorities (see figure 3.24):

• Priorities among rules. They specify the execution order among the rules of a same policy. For instance, if r 1 and r 2 are rules belonging to policy ap, and r 1 has lower priority than r 2 , when both rules are triggered r 1 has to be executed before r 2 .

• Priorities among policies. They specify the execution order among the rules belonging to different policies. For instance, if r x and r x+1 are rules belonging to policy ap x , r y is a rule belonging to policy ap y and ap x has lower priority than ap y , then rules r x and r x+1 have to be executed before r y when triggered at the same time.

AP Language

We propose the AP Language, for defining active policy types. Figure 3.28 illustrates the informal grammar of the language focusing on the expression used for defining an active policy type. The AP Language, is an extension to the C# language with constructors for (i) defining Active Policy types and (ii) associating these types to a Workflow.

Since the AP Language is based on the C# language, defining a type implies defining a class (i.e., use of the class keyword and definition of the variables and methods composing the class) and: (i) use the policy keyword for declaring a policy type (a class), (ii) specify the rules composing the policy and (iii) specify the scope of the policy. An active policy type defined using the AP Language specializes the types of the AP Model. A new active policy type can represent concrete non-functional properties (e.g., security, exception handling, atomicity, persistence, etc.). The following sections illustrate how to define new Authentication Active Policy types using the AP language for dealing with the authentication requirements of the Status Updater coordination (i.e., the implementation of the OAuth and Basic authentication protocols).

Defining Active Policies

Listing 3.2 illustrates the definition of the Log P-Policy type (cf. figure 3.27). The expression is interpreted as follows:

• Line 1 defines Log as an Active Policy subtype that applies to Authentication policies. For example instances of types OAuth and Basic (see figure 3.27).

• Lines 2 and 3 define the variables composing a log policy: (i) a string called log used for recording the events produced during the execution of an authentication policy, and a workflow used for transforming an event instance into a string.

• Line 4 defines the method producedBy that verifies whether an event e was produced by an execution unit belonging to the scope of a log policy. For instance, if (i) log and auth are instances of types Log and Authentication, (ii) log applies to auth and (iii) e was produced by auth, then log.producedBy(e) will return true.

• Lines 7 to 10 define the single rule composing a log policy. The rule is interpreted as follows: if rule SaveIntoLog receives the notification of an active policy event and this event was produced by the policy scope, the rule transforms the event into a string and stores it into the log.

The AP Language supports the concept of inheritance. Thus, when an active policy type AP 1 is defined as a subtype of the policy type AP 2 we consider that "AP 1 inherits all the properties of AP 2 " (i.e., its variables, methods and rules). For instance, the expression in listing 3.3 defines the type Authentication Log as a special type of Log policy (see listing 3.2) that can be associated to authentication policies only. Since Authentication Log is a subtype of the Log type, it inherits all the properties defined in Log (i.e., the log variable and the rule SaveIn-toLog) and thus it can use them. For instance, the authentication log policy can initialize the log with a default value. 

BasicAuth Active Policy

Listing 3.4 shows the definition of the BasicAuth policy type. This type represents a policy that implements a basic authentication protocol based on a user' username and password (e.g., the one used by HTTP protocol 10 ). As shown in the figure, the policy type (i) is composed of one rule and two variables, and (ii) can be associated to an activity of any type. The variables denote the values for username and password. The rule implements the authentication protocol by using the variables. Assuming that the policy is associated to an activity type, the policy works as follows:

• When the policy is instantiated the values for username and username are passed to the policy instance. Then the policy waits for the notification of triggering events (i.e., events of type ActivityPrepared).

• During its execution the activity will get prepared before calling its associated service operation. This causes the notification of an event of type ActivityPrepared that triggers rule r 1 .

• When r 1 is triggered, the rule uses the values in variables username and password for configuring the activity request variable. Since rule r 1 is marked as sync, the rule is executed synchronously with respect to the activity i.e., r 1 first pauses the execution of the activity, then r 1 configures the activity request variable and finally r 1 resumes the activity execution. • During execution the activity uses (internally) this request variable for calling the service operation. Since the variable now contains the user' username and password, the operation call can be identified by the service as an authorized call.

Listing 3.4 Definition of the BasicAuth Policy type

OAuth Active Policy

Open authentication (OAuth) is a protocol that allows a user to grant a third-party application access to her information, without necessarily revealing her credentials (i.e., her username and password). Figure 3.29 illustrates the steps involved in the OAuth protocol:

• The developer registers his/her application at the Service Provider (e.g., Facebook

or Twitter) for obtaining a request token (step 1).

• When the application is used for the first time, the application redirects the user to the Service Provider for granting the application to access his information (step 2).

During this step the application identifies it self by using the request token obtained. When the user grants the application, the application obtains an access token that represents the user authorization (step 3).

• When the application calls a service operation the application includes the access token as a parameter, which is used by the service provider for determining whether the application is authorized to access/update data (step 4).

• Once the access token no longer valid the application contacts the service provider for renewing the access token.

Listing 3.5 shows an implementation of the policy type OAuth using the AP Language. As you can see, the type OAuth policy is a kind of Authentication policy type that defines:

• An activity getToken that implements the logic for (i) retrieving the access token (i.e., steps 2, 3 and 4 of the OAuth protocol) and (ii) setting this value into the execution unit (i.e., the activity).

• Activity renewToken that implements the logic for renewing the access token (i.e., step 5).

• Variable token used for containing the access token.

• Rule tokenretrieval stating that, if the activity in the policy scope is prepared for execution, and the token variable does not contain a value (i.e. the variable is null), the variable token will take the value retrieved by the activity getToken. • Rule tokenrenewal stating that, if the activity in the policy scope is prepared for execution, and the token variable has expired, the variable token will take the value retrieved by the activity renewtoken.

Note that the policy type imports the types defined in the namespace OAuth. The type Token belongs to this namespace. 

Applying Active Policies to Activities

Figure 3.30 illustrates the use of the AP Language for associating the HttpAuth policy type to the Status Updater workflow. In the example the scope of the policy type is associated to activity N 5 , which represents the Update Twitter activity. Remark that the values "jane.doe" and "abc.123" are passed to the username and password policy variables, respectively. 

Conclusions

This chapter introduced the AP Model, providing types for defining active policy based workflows that ensure non-functional properties at runtime. Our approach adheres to the hypothesis that modular programming has the usual benefits associated with structured programming, information hiding and reusability. Through the notion of active policy (AP) we provide means for modeling AP oriented services' coordination as workflows in a modular way. Using our model the workflow and the AP can be defined independently. According to the AP model an AP can be associated with an entity of a workflow (simple and composite activity).

In order to couple a workflow and its policies at runtime, it is necessary to synchronize them. This synchronization is modeled using event types and ECA rules. Event types are used for representing some of the execution states of the activities of a workflow. ECA rules represent NFPs enforcement actions modeled by AP types. Finally, this chapter showed through a simple example how the AP model and the AP Language can be used for defining AP types and associating them to a workflow. The specification of specific AP types and their association to a workflow is addressed in chapter 5. These definitions can be then executed according to strategies that are presented in the following chapter.

Executing Active Policy Based Workflows

This chapter describes how active policy-based workflows behave at runtime (i.e., how instances of the Active Policy, Rule and Action types interact among them for adding nonfunctional properties to a services' coordination implemented as a Workflow). In particular this chapter describes (i) how events produced by execution units (i.e., active policies and activities) trigger active policy' rules and (ii) how action workflows (i.e., the action part of policy rules) interact with coordination workflows for enforcing non-functional property at runtime.

The chapter is organized as follows. Section 4.1 describes the behavior of Activity instances (i.e., atomic activity, control flow and workflow instances). Section 4.2 describes the behavior of Active Policy and Rule instances. In particular this section describes the execution relationship among an active policy, the policy rules and the execution entities belonging to the policy scope. Section 4.3 enumerates the interaction patterns among action workflows and coordination workflows that we identify for enforcing non-functional properties at runtime. Finally section 4.4 concludes the chapter.

Executing an Activity

Recall from chapter 2 that the AP Model considers 3 types of activities: Atomic, Control Flow and Workflow activities. Thus this section first describes the general behavior of an activity instance independently of its type. Then it details the behavior of instances of each activity type.

Activity General Behavior

The diagram of figure 4.1 describes the general behavior of an Activity instance. As shown in the diagram, when an activity instance is created, it enters the initialized state. At this point the activity has already received its input variables and prepared its local variables. Then, when the activity receives the run signal, it moves to the running state and executes its associated logic. For example, an Atomic activity executes the logic implementing a service operation call during its running state, whereas a Control Flow activity coordinates the execution of the activities composing the control flow activity during this state. If an activity terminates the execution of its logic without error, the activity moves to the completed state and sets the values for its output variables. Otherwise it moves to the failed state and stops its execution. state (exactly to the point it was before receiving the pause signal). In contrast, when the activity is a composite activity, the reception of the resume signal causes a cascade of resume signals through the activity tree (similar to the one shown in figure 4.2). And once all the activities participating in the activity tree are running again, the composite activity finally moves to the running state and continues its execution.

As shown in section 3.4, an activity instance is also an Execution Unit instance and thus it produces a series of events during its execution. An activity produces an event every time it enters a state. The event contains information (i.e., the execution environment) about the progression of its life cycle (cf. ActivityLifeCycle event type in figure 3.23).

For example, figure 4.3 illustrates the events produced by the execution of 3 activity instances named a 1 , a 2 and a 3 . As shown in the figure, the events produced by instance a 1 describe a normal execution (i.e., a 1 entered the initialized state, then it moved to the running state and finally it moved to the completed state). In contrast, the events produced by a 2 describe an abnormal execution (i.e., when a 2 was running an error was produced and thus it moved to the failed state). Finally note that the events produced by instance a 3 also describe a normal execution but in this case the instance was paused and resumed before completing its execution.

Figure 4.3 Example of events produced by the execution of an activity

Events are messages with information about the conditions in which it was produced. Event produced by activities, notify data bout the conditions in which the activity is executed (the variables' values of the activity execution state). As an example consider (i) the activity Update Facebook and (ii) the instance a 1 of the Update Facebook activity in figure 4.4. Table 4.1 illustrates the information notified by the events produced by a 1 during its life cycle. The table is interpreted as follows:

• When a 1 was initialized, it set the variable status to "Fragile -Sting" (i.e., the input) and initialized its local variables user and successfulCall to their default values (i.e., null and false respectively). Then a 1 produces the event e 1 (of type ActivityInitialized) at time t x containing as delta all the variables of a 1 (i.e., variables status, user and suc-cessfulCall and their values).

• When a 1 started running, it produces the event e 2 (of type ActivityRunning) at time t x+1 . Note that at this point the variable user was already set and thus a 1 had all the necessary values for updating a user Facebook status. • When a 1 was completed, it produced the event e 3 (of type ActivityCompleted) at time t x+2 . Note that at this point a 1 had already set the value for its variable successfulCall to true, representing the fact that there was no error during the service' operation call. 

Behavior of an Atomic Activity

As shown in the diagram of figure 4.5, an instance of an Atomic activity type passes through 3 sub-states when running:

• Preparing. During this state the activity prepares the values for the service' operation input parameters. Once the parameters are prepared, the activity moves to the invoking state.

• Invoking. During this state the activity calls the service' operation and waits for the result. If an error occurs during the operation call (e.g., the network is unavailable or the service responds with an exception), the activity moves to the failed state (see figure 4.1). Otherwise it moves to the r-processing state.

• R-Processing. During this state the activity processes the service' operation result (e.g., if a service sends its result using the XML format, the activity transforms the XML data types into AP Model data types during this state). Once the activity ends processing the result it moves to the completed state (see figure 4.1).

As an example consider the atomic activity Get Song. havior of act when executed by seq. As shown in the diagram, when act receives the run signal, it starts running and thus it moves to the preparing state. This causes the preparation of the getLastSong input parameters (i.e., the username used for retrieving the song information). When act ends preparing the parameters, it moves to the invoking state, calls the operation in the LastFM service and waits for the result. Then, once act receives the operation result (i.e., the song information), it moves to the r-processing state and processes the returned data (e.g., by transforming the song information into an AP Model string). Finally, when act ends processing the result, it moves to the completed state and notifies the environment about its completion (e.g., act notifies seq about its completion and seq can continue its execution). • An event of type ActivityPrepared representing the fact that the activity ended preparing the service' operation parameters (see event e 5 ). The event delta 1 contains the list of parameters and their values.

• An event of type ActivityInvoked representing the fact that the activity received the service' operation result (see event e 6 ). This event delta contains the operation' output in its delta.

• An event of type ActivityProcessed representing the fact that the activity finished processing the operation' result (see event e 7 ). The event delta contains the value resulted from the processing in its delta.

Finally note that the events shown in figure 4.7 illustrate the order relationship among seq and act. For example, since e 1 and e 2 are located at the same point in the timeline, this implies that both activities were initialized at the same time. Also note that e 3 was produced before e 4 . This implies that seq was running before act. Besides, since we know that act and seq belong to the same activity tree, this also implies that act is a descendent of seq. • An event of type ActivityExecuted representing the fact that the LEFT-SIDE operand was executed (see event e 5 ). This event contains the identifier of the executed activity in its delta.

• An event of type ActivityExecuted representing the fact that the RIGHT-SIDE operand was executed (see event e 9 ). • Executing B. During this state the activity executes its FALSE operand (i.e., it executes an instance of type B). If the FALSE part completes without error, the activity moves to the completed state. Otherwise it moves to the failed state.

As an example let us assume that f is an instance of the activity type IF (Θ, A, B). The diagram of figure 4.12 illustrates the behavior of f assuming that Θ evaluates to true. As shown in the diagram, when f receives the run signal, it starts running and thus it moves to the evaluating state. Since we assume that Θ evaluates to true, f moves to the executing A state and sends a run signal to a (i.e., the instance associated to its TRUE part). Finally, when a completes its execution, f moves to the completed state and notifies an event with its delta containing the execution environment specifying the completion of the execution of a. Figure 4.13 completes the previous example by showing the event trace produced by the execution of f. As shown in the figure, an if activity produces 2 events at execution-time:

• An event of type ConditionEvaluated representing the fact that the activity terminated the condition evaluation (see event e 2 ). This event delta contains the result of the condition evaluation (i.e., whether Θ evaluated to true or false).

• An event of type ActivityExecuted representing the fact that the TRUE / FALSE operand of the activity was executed (see event e 6 ). This event delta contains the identifier of the executed activity. • An event of type ConditionEvaluated representing the fact that the activity ended the condition evaluation (see event e 1 ). This event delta contains the result of the condition evaluation (i.e., whether Θ evaluated to true or false).

• An event of type ActivityInstantiated representing the fact that the activity created an instance of its DO part (see event e 2 ). This event delta contains the identifier of the new activity instance (i.e., the name of instance a i ).

• An event of type ActivityExecuted representing the fact that the activity created during the instantiation state was executed (see event e 6 ). This event delta contains the identifier of the executed activity.

Note that each time a While activity begins an iteration, a new instance of its DO part is created. In consequence a while activity may have multiple instances associated to it at runtime. For example, let us assume that w iterates 3 times. as a child (or branch) of a while activity in an activity tree. For example, since a 1 , a 2 and a 3 are children of w, they represent the 1 st , 2 nd and 3 rd iteration of w. The figure also shows that no matter how many instances w creates, only one of them is in the running state at a time (e.g., since w executes the 3 rd iteration, a 3 is the only child activity that is in the running state). 

Parallel (A, B)

As shown in the diagram of figure 4.18, an instance of a Parallel activity type passes through 2 sub-states when running:

• Executing A. During this state the activity executes its LEFT-SIDE operand (i.e., it executes an instance of type A).

• Executing B. During this state the activity executes its RIGHT-SIDE operand (i.e., it executes an instance of type B).

Note that a parallel activity enters the states Executing A and Executing B simultaneously once it starts running. In this work we assume that a parallel activity ends running either when (i) both of its operands complete or (ii) one of its operands fails. As shown in fig- ure 4.18, in the first case the activity moves to the completed state. In the second case the activity moves to the failed state. 

Executing an Active Policy

As you may recall from chapter 2, an active policy is an entity composed of a set of rules that can be associated to a set of execution units through its scope relationship. In this section we describe how instances of the Active Policy and Rule types behave at runtime. In particular we describe the relationship between the execution of an Active Policy instance and the set of Execution Unit instances composing its scope. 

Active Policy Behavior

As shown in the diagram of figure 4.22, an instance of the Active Policy type passes through 4 states during its life cycle:

• Deactivated. During this state the policy rules are "dormant" and they cannot be triggered. A policy enters this state twice during its life cycle: (i) after the creation of the policy and (ii) once all the execution units composing the policy' scope are in one of these states: completed, failed or paused. When a policy enters this state, it sends a deactivate signal to each of its rules for deactivating them.

• Activated. During this state the policy rules are "waked up" and thus they can be triggered. A policy enters this state when any of the execution units composing its scope are running and/or activated. When a policy enters this state, it sends a activate signal to each of its rules for activating them.

• Waiting. A policy enters this state once all the execution units in its scope are in a final state (i.e., in the completed or failed state). Even if no more rules can be triggered at this point, some of the rules may still be running at this point. Thus the policy waits for their completion during this state.

• Completed. This state is entered once all the policy rules completed their execution. At this point we consider that the policy finishes its execution. The main responsibility of an active policy is to activate (deactivate) its associated rules based on the life cycle of the execution units in its scope. This is illustrated in the diagram of figure 4.23, where ap is an Active Policy instance that applies to activity act. As shown in the diagram, when act starts running it produces an event of type ActivityRunning that causes ap to move to the activated state. This causes ap to send an activate signal to each of its associated rules for activating them. In a similar way, when act completes its execution it produces an ActivityCompleted event that causes ap to move to the deactivated state and thus it causes ap to send a deactivate signal to all its rules. • When the policy enters the deactivated state it produces an event of type APolicyDeactivated (see event e 4 and e 6 ).

• When the policy enters the waiting state it produces an event of type APolicyWaiting (see event e 7 ).

• When a policy enters the completed state it produces an event of type APolicyCompleted (see event e 8 ).

Figure 4.24 shows the trigger-ability interval of the rules of ap that represents the interval during which the rules can be executed. This interval corresponds exactly to the activation interval of ap. In consequence, the trigger-ability interval of the rules of a policy depends on the events produced by the policy' scope (i.e., the events produced by the execution units belonging to the policy scope). For example, in the case of ap, the trigger-ability interval of rule i is defined by 2 of the events produced by act (i.e., the scope of ap): e 3 representing the beginning of the interval and e 5 representing the end of the interval.

In general a trigger-ability interval associated to a policy is defined as follows:

• If a policy' scope is composed of a single activity act, the trigger-ability interval is delimited by the pairs of events [ActivityRunning, ActivityFailed] or [ActivityRunning, Activi-tyCompleted] produced by act.

• If a policy' scope is composed of a single active policy ap, the trigger-ability interval is delimited by the pair of events [APolicyActivated, APolicyCompleted] produced by ap.

• If a policy' scope is composed of several execution units, the trigger-ability interval is delimited by the pair of events [e x , e y ], where e x represents the first ActivityRunning / 

Event Processing Mode

The event-processing mode specifies the relationship between the notification of a t-event and the execution of a rule: instance-oriented. When a rule consumes events under the instance-oriented strategy, the rule is triggered every time a t-event is notified. Figure 4.26 shows an example of a rule with instance-oriented event consumption. In the example the execution of the activity Sequence (A, B, C) produces the events e 1 , e 2 and e 3 , which triggered the rule. When the rule receives e 1 , the rule becomes triggered for the first time. Since the rule is still processing e 1 at the reception of e 2 and e 3 , the rule puts e 2 and e 3 into a queue called Q. Once the rule ends processing e 1 , the rule gets triggered a second time when getting e 2 from Q. Finally, when the rule ends processing e 2 , the rule gets triggered a third time when getting e 3 from Q. 

Event Consumption Mode

The event-consumption mode specifies when a rule can be evaluated and A-executed with respect to the triggering policy. If a rule is immediate, it is evaluated immediately after it has been triggered. When a rule consumes the event, it is considered only for one execution of the rule and then it is not preserved for triggering other rules.

Transitions from states triggered and evaluated to states evaluable and A-executable respectively, depend precisely on the following parameters: execution mode, execution instant, and coupling mode.

Action Execution Mode

The action-execution mode specifies the relationship between the execution of the action of a rule and the entity triggering its policy. A synchronous rule pauses the execution of the activity associated before executing the action. Once the action terminates, the rule resumes the execution of the activity. When a rule is asynchronous, the execution of the action and the activity are done in parallel. .28 illustrates the execution of an asynchronous rule. In the example the rule receives the notification of e 1 and the rule starts its execution. Note that in this example the activity continuous its execution in parallel. For example, assume that the activity UpdateStatus signals a message containing publicity about a concert of the group that is currently playing, when the activity is initialized. The action can be done in parallel without any implications on the atomic management of the status of a user in her different social networks. 

Execution Instant

A trigger-able rule becomes triggered as soon as a triggering event is notified. However, a triggered rule is not necessarily evaluated immediately. Similarly, an evaluated rule is not necessarily A-executed immediately.

• Immediate: The condition (or action) is evaluated instantly interrupting the execution of the current activity.

• Deferred: The condition (action) is evaluated (executed) within the same process but not at the earliest opportunity.

Coupling Mode

The evaluation of the rule can be done within the execution of the same workflow where it is triggered or in a new workflow instance. The new process can be causally independent, i.e. the rule is processed completely asynchronously with the triggering workflow, or causally dependent, where the processing of the rule is undertaken equally in a separate process but not before the completion of the triggering workflow.

Executing Several Rules

During the execution of an active policy based workflow it is possible that multiple rules become triggered at the same time. Therefore, rules have to be scheduled based on a local execution plan. The diagram of figure 4.29 illustrates the general process used for scheduling the execution of several rules. The diagram is interpreted as follows: at certain point in time no rules are triggered (see state S 0 ). Then, once an event is notified, the scheduling process determines (i) whether the event activate/deactivate a policy and thus the rules of the policy (see AP* Management state) and (ii) whether the event is a triggering event of one or more of the activated rules (see R* Triggering state). If the event triggered more than one rule, the rules are ordered based on some criteria (see R* Ordering state). After that the process executes each of the rule actions one following the established order (A* Dispatching).

In this work we consider that triggered rules can be ordered based on the criteria shown in table 4.3:

• Priorities. Rules are ordered based on the priorities specified when defining the policies (i.e., using the priorities among rules and the priorities among policies).

• FIFO. Rules are ordered according to the order in which they were triggered.

• Parallel. Rules can be executed simultaneously (i.e., there is no order dependency among the execution of the rules).

• Mixed. Rules are ordered using Priorities/FIFO/Parallel criteria (e.g., rules can be ordered first by priorities and then all the rules having the same priority can be executed in parallel). Note that it is also possible that the execution of a rule triggers a second rule, which in turns triggers a third rule and so on (i.e., the execution of the action workflow associated to a rule may produce a cascade of triggering events). In this scenario the scheduling process determines the order among the rules based on the following strategies [Coup96]:

• Depth-first execution. Prioritizes the execution of newly triggered rules.

• Execution cycles. Prioritizes the execution of rules based on the cycle where they were triggered.

As an example consider the triggering event tree shown in figure 4.30. The figure is interpreted as follows: e 1 represents an event that triggers rules R 1 and R 2 ; e 2 represents an event produced by R 1 that triggers rules R 1a , and R 2b ; e 4 represents an event produced by R 2 that triggers rule and R 2a . When the scheduler process follows the depth-first strategy, the scheduler dispatches the rules as follows:

R 1 " R 1a " R 2b " R 2 " R 2a
In contrast, when the scheduler follows the execution cycle strategy, the scheduler dispatches the rules as follows: 

R 1 " R 2 (cycle 1) R 1b " R 1a " R 1b " R 2a (cycle 2)

Reinforcing Non-Functional Properties at Runtime

From a general point of view a workflow can be seen as a process that executes read/write operations (i.e., activities) into a memory space. For example, figure 4.31 illustrates a workflow that operates on its own memory space (i.e., activities A, B and C read/write workflow' variables v 1 , v 2 and v 3 ). In this work we consider that workflows can operate over two kinds of memory spaces: (i) the space composed of the set of variables belonging to a workflow and (ii) the space composed of the data structures representing the activities of a workflow and their order relationship (i.e., the workflow activity tree). Thus, in order to ensure a non-functional property using active policies, we have to determine what kind of relationship exist between (i) the memory space of a workflow implementing a services' coordination and (ii) the operations executed by the action workflows implementing a non-functional property (i.e., whether they read and/or write the workflow memory space). We identify 3 kinds of relationships among workflows and action workflows: non-intrusive, intrusive and control-flow and memory intrusive. 

Non-Intrusive

As shown in figure 4.32, in the non-intrusive relationship between a workflow and an action workflow, and action workflow only reads the variables of a workflow for implementing a non-functional property. For instance, let us consider that a developer wants to add logging capabilities to the Status Updater workflow (i.e., the developer wants to store into a log the values of the variables of the workflow at different moments of the workflow execution).

As shown in figure 4.33, in the Status Updater FR workflow, assume that the activity Update Facebook has an associated state management NFP for logging its state in a log. The activity starts its execution: it receives the value 'xyz' associated to the variable new_Status, and assigns the value 'abc' to the variable old_status. The Logging NFP workflow starts its execution reading these values from the execution state of the activity Update Facebook and stores them in the log. Meanwhile, the activity Update Facebook continues its execution. 

Memory Intrusive

In this case the FR workflow shares its execution state with the NFR workflow that reads and writes on it when executed. The NFR, instead, does not share its execution state with 

Control Flow and Memory Intrusive

In this case the workflows FR and NFR are synchronized by sharing their execution states in shared memory spaces and by eventually modifying the NFR control flow. Both workflows read and write on the shared memory spaces. For example, assume now that the service Facebook updates its authentication protocol and implements now an HTTP protocol, where a login and password are required. The Updater Status FR and NFR workflows are now synchronized as follows. The activity Update Facebook of the FR workflow starts creating a new request, then, provides an URI with the variable status. Doing this the control flow is now deviated for executing the authentication protocol by the workflow Authentication. It executes the activity user that requests the user login (see figure 4.37 variable username with value "john doe"), written on the execution state, and then the activity pwd for requesting the password that is also written on the execution state (see figure 4.37 variable password with value "secret"). Once executed, the control of the activity Update Facebook is resumed, and it executes the last activity send.

FR Workflow NFR Workflow

Figure 4.37 Authentication: example of control flow and memory intrusive FR and NFR workflows synchronization

Adding exception handling to the Status Updater workflow is also an example of memory and control flow intrusive NFP, where the execution of the FR workflow must be observed. Then, the NFP must modify the control flow for catching the exception produced and up- 

Conclusions

This chapter introduced the execution of the entities of the AP Model: Activity, A-Policy and Rule. It described the execution simple and complex activities specifying their execution states and the conditions in which they pass from one state to another.

Rules are executed within the execution of active policies and policies are executed within the execution of a workflow. Thus the chapter showed how to synchronize the execution of these entities among each other. It defined all the aspects that should be considered for deciding when to trigger an AP with respect to the notification of an event, and when to activate its associated rules. It also described when rules are triggered with respect to the notification of their triggering event, when to evaluate the condition and when to execute the action. The action can modify the workflow execution state or its control flow. Therefore the chapter proposed patterns showing how NFP can be reinforced.

A WF Engine and an AP Engine execute workflows and active policies, respectively. The WF Engine manages the execution lifecycle of a workflow instance (i.e., the lifecycle of a composite activity). The AP engine manages the lifecycle of a policy and it also plans the execution of several policies and policy' rules. Both engines interact synchronously and asynchronously. Chapter 6 presents the system that we proposed for executing workflow and policies. We define a reliable services' coordination as a coordination that tolerates failures at runtime. This chapter introduces our approach for adding reliability to services' coordinations using active policies. It describes how we specialize the Active Policy type for tolerating semantic and system failures. We tolerate semantic failures by adding atomicity (i.e., the principle of "all or nothing") to the execution of a coordination using the Activity Exception Management and Atomicity policy types. We tolerate system failures by persisting and recovering the execution state of a coordination using the Activity State Management and Persistency policy type. When these policies are associated to a workflow implementing a services' coordination, they form a policy tree that ensures the reliability of the workflow execution.

The chapter is organized as follows. Section 5.1 explains the basis of our approach for adding reliability to a services' coordination. Section 5.2 presents our approach for adding an atomic behavior to a coordination. In particular, this section describes the structure and use of the Activity Exception Management and Atomicity policy types. Section 5.3 presents our approach for adding persistency to a coordination. In particular, this section describes the structure and use of the Activity State Management and Persistency policy types. Finally, section 5.4 concludes the chapter.

Reliability

In this work we consider a reliable services' coordination as a coordination that tolerates failures at runtime. Failures can be of two kinds: semantic and system failures. For instance, dividing a number by zero or passing a value of a type X when a value of type Y is expected are examples of semantic failures. An application crash produced by a stack overflow is an example of a system failure.

We address semantic failures by adding atomicity to the execution of a services' coordination (i.e. by providing an atomic behavior to the workflow implementing the coordination). This strategy was first used in the database domain where the atomic behavior associates the principle of "all or nothing" to database operations (i.e., either all operations commit or fail, and if committed, they can be rolled back). In the context of workflows, activities represent the operations that must be executed atomically and thus, we implement atomicity by specifying:

• How to treat failures on a single activity. For instance, in the Status Updater workflow the information retrieved by the Get Song activity is vital for the execution of the Update Facebook and Update Twitter activities (cf. section 3.1). Thus, we specify that the Get Song activity must be retried several times in case of failures before stopping the workflow execution.

• How to provide an atomic behavior to a set of activities. For instance, we specify that the execution of the activities Update Facebook and Update Twitter depend on each other: either both activities update a user social networks or none of them.

This ensures that both social networks contain the same information (i.e., this ensures data consistency).

We address system failures by providing persistency to the execution of a services' coordination. This ensures that the coordination survives despite system failures. For this we keep track the execution history of the workflow implementing the coordination (i.e., we track the states of the activities composing the workflow and the workflow itself at different moments of the workflow execution). Key elements to consider when keeping an execution history are (i) where to store the execution history (e.g., cache or disk) and (ii) how to do the recovery process using it. Thus we implement persistency by specifying:

• How to treat persistency and recovery of single activity. For instance, if an activity can be retried, then the recovery process can re-execute the activity for bringing back the workflow to the state previous to the failure.

• How to handle the execution state of several activities. For instance, if a set of activities must be executed in an atomic way, we consider this dependency during the recovery process.

Our approach for providing atomicity and persistency to a services' coordination is based on the work of [Port06b] that implements the atomic and persistent behaviors (i) assuming a specific activity execution model, (ii) classifying workflow activities based on their exception and state management properties and (ii) associating execution strategies to the workflow activities based on their types.

The activity execution model assumed by the author is shown in figure 5.1. The diagram is interpreted as follows: after being created, an activity (i) prepares its input and local variables, (ii) starts the call to its associated service' operation, (iii) terminates the call either (with error or success) after receiving the operation result and finally (iv) commits. Note that this behavior is similar to the one found in database transactions: either the execution of an activity commits or fails. The exception and state management properties are properties inherent to all activities that can be used for guiding the implementation of the atomic and persistent behaviors. The following list enumerates the exception management properties identified by the author:

Prepared Started Commited Terminated
• Compensate-able -specifies whether an activity can be undone by compensating it with the execution of another activity. For instance, let us assume that it is impossible to delete the status of a Facebook user once it has been updated. In order to compensate the execution of the activity Update Facebook, we have to execute another activity that updates the user status to a previews value (i.e., the activity is compensated semantically).

• Side-effects -specifies whether undoing an activity generates side-effects or not. For instance, let us assume that calling a Facebook operation has a cost. Compensating the execution of the Update Facebook activity can lead to an extra cost due to the fact that the compensation requires calling the service a second time with a new status.

• Retry-able -specifies whether an activity can be executed several times. For instance, it is possible to execute several times the Get Song activity in order to obtain the information about the last played song.

Based on these properties activities are classified as follows (see table 5.1):

• Critical -represents an activity that cannot be compensated or retried (i.e., represents an activity that is vital for a workflow execution).

• Non-Vital -represents an activity that can be retried and/or compensated without producing side effects.

• Undoable -represents an activity that can be compensated without producing side effects. An undoable activity may be retried.

• Compensate-able -represents an activity that can be compensated causing side effects. A compensate-able activity may be retried.

For instance, the Get Song activity is an example of non-vital activity since it can be retried several times in order to obtain the information about the last played song and it has no need to be compensated. The Update Twitter and Update Facebook activities are examples of compensate-able activities since they can be semantically undone by executing activity that update the user status with a previews value.

Table 5.1 Classification of activities based on their Exception Management Properties

The following list enumerates the activity state management properties identified in [Port06b]:

• isStateAccesible -specifies whether the memory space manipulated by an activity can be accessed by other activities or not (e.g., the Update Facebook activity is state acces-sible because it is possible to retrieve and modify the status of a Facebook user using other activities).

• isIdempotent -determines whether executing the same activity more than once produces the same result (e.g., the GetMood activity is idempotent because the same song title will compute the same mood).

• presumedFinalState -specifies the activity final state that has to be assumed in the presence of a system failure (e.g., committed, failed or unknown).

Based on these properties activities are classified as follows (see table 5.2):

• Non-Reliable -represents an activity (i) whose memory space is inaccessible to other activities, (ii) when executed does not produces the same result and (iii) its final state is unknown in advance.

• Predictable -represents an activity that has a predicable behavior (i.e., its final state is known in advance).

• Idempotent -represents an activity (i) whose memory space is inaccessible to other activities and (ii) which can be re-executed several times producing the same result.

• Verifiable -represents an activity whose memory space can be accessed by other activities. A verifiable activity may be idempotent and its final state may be known in advance.

For instance, the Update Facebook activity is an example of a verifiable activity since (i) the memory space modified by the activity (i.e., the user status) can be accessed by other activities, (ii) when executed more that once the activity updates a user status with the same information (i.e., the activity is idempotent) and (iii) nothing can be assumed about its final state (i.e., it is unknown whether the activity fails or commit constantly).

Table 5.2 Classification of activities based on their State Management Properties

Based on the exception and state management properties and their associated activity types, we have defined a set of active policy types that implement the execution strategies identified in [Port06b] for providing atomicity and persistency to the execution of workflows. These policy types are described in the following sections.

Active Policies for Atomic Behavior

We use the Activity Exception Management and Atomicity policy types for providing atomicity to the execution of a workflow. The former defines rules for dealing with activity failures. The latter defines rules for compensating a set of committed activities (i.e., for undoing the work done by the activities). As shown in the figure, the Activity Exception Management policy type is a policy that can be associated only to atomic activities (i.e., the policy is an activity policy). In contrast, the Atomicity policy type is a policy type that can be associated to any number of exception management policies (i.e., the policy is a policy of policies). When an atomicity policy is associated to a set of exception management policies they form a policy tree where the root (i.e., the atomicity policy) ensures the atomic behavior of the tree leafs (i.e., the atomic activities). This is illustrated in figure 5.3 where the atomicity policy ap 3 ensures the atomic behavior of the Update Facebook and Update Twitter activities through the exception management policies ap 1 and ap 2 respectively.

Figure 5.3 Example of an Atomicity policy tree

When Activity Exception Management and Atomicity policies are associated to each other in a policy tree, they interact among them by producing events. Figure 5.4 illustrates the general interaction among instances of these policy types. The diagram is interpreted as follows: when an activity act belonging to the scope of an exception management policy ap ex fails, act produces an event ActivityFailed that triggers one of the rules of ap ex (see step 1). At this point ap ex tries to handle the failure locally (e.g., by retrying the activity). If ap ex does not arrive to handle the failure, ap ex produces an event CustomScopeFailure that represents the policy scope failure (see step 2).

If ap ex belongs to the scope of an atomicity policy ap atom , the notification of the event Cus-tomScopeFailure triggers the rule of ap atom in charge of ensuring the atomic behavior. For this, the rule produces an event CompensationRequest that triggers the compensation of the activities associated to all the exception management policies belonging to the scope of ap atom . Let us assume that only ap ex belongs to the scope of ap atom . Thus, the notification of the event CompensationRequest triggers a rule in ap ex that compensates act (see step 3). If act is compensated then the atomic behavior is respected. If for any reason the activity cannot be compensated (e.g., the activity is not compensate-able), ap ex produces an event CustomActivityPol-icyFailure that represents the fact that the activity compensation failed (see step 4). In turn this event triggers a rule in ap atom that notifies the environment about the failure of the compensation procedure (see step 5).

In what follows we describe the structure of the Activity Exception Management and Atomicity policy types. 

Activity Exception Management Active Policy

We use the Activity Exception Management policy type for handling (i) activity failures and (ii) compensation of committed activities. As shown in figure 5.5, we have specialized the Activity Exception Management type in the Critical, Non-Vital, Undoable and Compensate-able subtypes in order to encapsulate the logic responsible of handling failures and compensation of critical, non-vital, undoable and compensate-able activities (respectively). First, we will describe the structure of the Activity Exception Management policy type. Then, we will describe the structure of each of its subtypes. 

Activity Exception Management Policy

The definition of the Activity Exception Management policy is shown in listing 5.1:

• Line 1 defines the scope of the policy. Note that the scope is composed of a single execution unit called activity. Also note that the type of activity is Atomic Activity (i.e., an instance of an Activity Exception Management can be applied to any atomic activity).

• Line 2 defines the variable activityProperties of type ExceptionManagementProperty. This variable contains the exception management properties of activity (i.e., the variable contains the properties of the activity in the policy scope).

• Lines 3-8 define the policy constructor. Note that the constructor receives as input the exception management properties of the activity that has to be associated to the new policy instance. If these properties describe a valid scope, the constructor creates a new policy instance applying to activity. Otherwise, the constructor throws an exception.

• Line 9 defines the method isAValidScope. This method determines whether a policy instance (based on its properties) can be applied to a specific activity. For instance, if the policy is expecting a critical activity, and a developer applies the policy to a non-vital activity, the method return false. Note that this method is used inside the policy constructor.

• Lines 10-13 define the rule RetryOnFailure. follows: on the notification of an event ActivityFailed, if activity is retry-able and the event was produced by activity, the rule will execute (synchronously) an instance of the Retry workflow. Intuitively, a Retry instance proceeds as follows: first it pauses the execution of the main workflow (i.e., the workflow executing activity). Then it reexecutes the failed activity (i.e., activity). Finally, it returns the control to the main workflow (who does not notice the failure) for continuing its execution. If for any reason the Retry instance does not arrive to re-execute the activity, it produces an event CustomScopeFailure representing the activity failure (see step 2 in figure 5.4). Note that Retry receives as input (i) the id of the failed activity (i.e., the id of the event producer) and (ii) the maximum number of times that the activity can be retried.

• Lines 14-17 define the rule CompensateAndRetryWhenRequested. When an atomic policy begins the compensation process (see step 3 in figure 5.4), this rule compensates and re-executes activity (i.e., the activity in the scope of the policy). The rule works as follows: on the notification of an event CompensationRequest, if activity is retry-able and compensate-able, and the event was produced by an atomicity policy applying to the Activity Exception Management policy (i.e., produced by the ancestor of the policy in a policy tree), the rule will execute (synchronously) an instance of the CompensateAndRetry workflow. Intuitively, a CompensateAndRetry instance proceeds as follows: first it pauses the execution of the main workflow. 

Critical Active Policy

Since critical activities cannot be retried nor compensated (see table 5.1), we use the Critical policy type for notifying failures of this kind of activities. The definition of the Critical policy type is shown in listing 5.3:

• Line 1 defines the Critical type as a specialization of the Activity Exception Management type.

• Lines 2-8 redefine the method isAValidScope for ensuring that only critical activities are associated to a Critical policy instance. Recall that this method is inherited from the Activity Exception Management policy type.

• Lines 9-12 define the rule NotifyScopeFailure. When activity fails (see step 1 in figure 5.4), the rule notifies the failure to the execution environment. The rule works as follows: on the notification of an event ActivityFailed, if the event was produced by activity, the rule executes an instance of the NotifyScopeFailure workflow that produces the event CustomScopeFailure that represents the activity failure (see step 2 in fig- ure 5.4). Note that NotifyScopeFailure receives as input the id of the event producer (i.e., the id of the failed activity).

• Lines 13-16 define the rule NotifyPolicyFailure. When an atomic policy begins the compensation process (see step 3 in figure 5.4), this rule notifies that the policy cannot compensate or retry the policy scope. The rule works as follows: on the notification of an event CompensationRequest, if the event was produced by an atomicity policy applying to the Critical policy, the rule executes an instance of the NotifyActivePoli-cyFailure workflow that produces an event CustomActivePolicyFailure that represents the activity compensation failure (see step 4 in figure 5.4). Note that the NotifyActivePolicy-Failure receives as input the id of the event producer and a reference to the policy.

Listing 5.3 Definition of the Critical policy type

As an example consider the activity Update Facebook of the Status Updater workflow. Let us assume that this activity cannot be retried nor compensated. Therefore, the Update Facebook activity is an example of a critical activity. Listing 5.4 illustrates the use the Critical policy type for handling failures of the Update Facebook activity. The expression is interpreted as follows:

• Line 1 defines the variable wf that holds a reference to the Status Updater workflow.

Lines 2-7 create and assign an instance of type ExceptionManagementProperties to the variable activityProperites. This variable represents the exception management properties of the Update Facebook activity.

• Line 8 creates and assigns an instance of the policy type Critical to the variable ap.

Note that ap is applied to the activity Update Facebook. Also note that the policy constructor receives as input the variable activityProperites. 

Non-Vital Active Policy

We use the Non-Vital policy type for handling failures and compensating non-vital activities. The definition of this type is shown in listing 5.5:

• Line 1 defines the Non-Vital type as a specialization of the Activity Exception Management type.

• Lines 2-7 redefine the method isAValidScope for ensuring that only non-vital activities are associated to a Non-Vital policy instance (cf. table 5.1).

• Lines 8-11 define the rule ContinueOnFailure. When activity fails (see step 1 in figure 5.4), this rule forces the main workflow to continue its execution despite the failure. The rule works as follows: on the notification of an event ActivityFailed, if the event was produced by activity, the rule executes an instance of the workflow Continue. Intuitively, a Continue instance proceeds as follows: first it pauses the execution of the main workflow. Then, it forces the main workflow to ignore the failed activity and move to the next activity in the workflow' control flow. Finally, it resumes the main workflow for continuing its execution. Note that Continue receives as input the id of the failed activity.

• Lines 12-15 define the rule ContinueOnCompensationRequest. When an atomic policy requests the compensation of activity (see step 3 in figure 5.4), this rule simple forces the main workflow to ignore the activity and move to the next activity. The rule works as follows: on the notification of an event CompensationRequest, if the event was produced by a policy applying to the Non-Vital policy, the rule executes an instance of the workflow Continue.

As an example consider the activity Compute Mood of the Status Updater workflow. Since we assume that the mood of a user is not necessary for generating the message to be posted in a user social network, Compute Mood is an example of a non-vital activity.

Listing 5.6 illustrates the use of the Non-Vital policy type for managing failures of the Compute Mood activity. As shown in the expression, we first create an instance describing the state management properties of the Compute Mood activity. Then, we use this instance for creating a Non-Vital policy instance applied to Compute Mood. 

Undoable Active Policy

We use the Undoable policy type for handling failures and compensating undoable activities. The definition of this type is shown in listing 5.7:

• Line 1 defines the Undoable type as a specialization of the Activity Exception Management type.

• Lines 2-10 redefine the method isAValidScope for ensuring that only undoable activities are associated to an Undoable policy instance (cf. table 5.1).

• Lines 11 and 12 enable the rules RetryOnFailure and CompensateAndRetryWhen-Requested. Recall that these rules are inherited from the Activity Exception Management type (see figure 5.5).

• Lines 13-16 define the rule CompensateWithoutRetryingWhenRequested. In contrast to the rule CompensateAndRetryWhenRequested, this rule compensates the work done by activity without retrying it. The rule works as follows: on the notification of an event CompensationRequest, if activity is not retry-able and the event was

produced by a policy applied to the Undoable policy (see step 3 in figure 5.4), the rule executes an instance of the workflow Compensate which undoes (i.e., rollback) the committed activity. As an example consider the activity Update Twitter of the Status Updater workflow. Let us assume that this activity cannot be retried once it commits. Since the activity can be compensated but not retried, Update Twitter is an example of an undoable activity. Listing 5.8 illustrates the use of the Undoable policy type for managing failures of the Update Twitter activity. As shown in the expression, (i) we create an instance describing the state management properties of the Update Twitter activity and (ii) we use the instance for creating an Undoable policy instance associated to the activity Update Twitter.

Listing 5.7 Definition of the Undoable policy type Listing 5.8 Example of an Undoable policy instance

Compensate-able Active Policy

We use the Compensate-able policy type for handling failures and compensating compensate-able activities. The definition of this type is shown in listing 5.9:

• Line 1 defines the Compensate-able type as a specialization of the Activity Exception Management type.

• Lines 2-10 redefine the method isAValidScope for ensuring that only compensateable activities are associated to a Compensate-able policy instance (cf. table 5.1). • Lines 11 and 12 enable the rules RetryOnFailure and CompensateAndRetryWhen-Requested (see figure 5.5). 1 As an example consider the activity Update Facebook of the Status Updater workflow. Since this activity can be retried and compensated (with side effects), the activity is compensate-able. Listing 5.10 illustrates the use of the Compensate-able policy type for managing failures of the Update Facebook activity using the previous pattern: first we create an instance describing the state management properties of the Update Facebook activity. Then, we use this instance for creating a Compensate-able policy applying to the activity Update Facebook.

Listing 5.9 Definition of the Compensate-able policy type Listing 5.10 Example of a Compensate-able policy instance

Atomicity Active Policy

We use the Atomicity policy type for providing an atomic behavior to the execution of the activities participating in an atomicity policy tree (cf. figure 5.3). In particular, the Atomicity policy type can provide three types of atomic behaviors:

• Strict atomicity. This behavior conforms to the classical "all or nothing" principle.

1 Note that the Compensate-able policy type does not define any new rules (i.e., the functionality of this policy type resides in the rules inherited from the Activity State Management policy type). • Alternative atomicity. This behavior captures the possibility of using alternative execution paths for committing.

policy class

• Exception atomicity. This behavior indicates that if something goes wrong an exception must be launched.

Listing 5.11 shows the definition of the Atomicity policy type. The expression is interpreted as follows:

• Line 4 defines the scope of the policy. In this case, the scope can be composed of a set of execution units of type Activity Exception Management.

• Line 6 defines the variable atomicityType of type AtomicityType. This variable specifies the type of atomic behavior provided by an instance of the Atomicity policy type (e.g., strict or alternative atomicity). Line 1 shows the definition of the type Atomici-tyType.

• Lines 8-10 define the policy constructor. Note that the constructor receives as input the type of atomic behavior that has to provide the new policy instance.

• Lines 12-15 define the rule StrictBackwardRecovery. This rule implements the strict atomic behavior. The rule works as follows: on the notification of an event Custom- ScopeFailure (see step 2 of figure 5.4), if atomicityType is strict and the producer of the event is an exception management policy belonging to the policy scope (i.e., the producer is a descendent of the policy in a policy tree), the rule will execute an instance of workflow BackwardRecovery. Intuitively, a BackwardRecovery instance produces an event CompensationRequest that triggers the compensation of the activities participating in the policy tree (see step 4 of figure 5.4).

• Lines 17-21 define the rule FordwardRecovery. This rule implements the alternative atomic behavior. The rule works as follows: on the notification of an event Custom- ScopeFailure (see step 2 of figure 5.4), if (i) atomicityType is alternative, (ii) there exist an alternative path for committing and (iii) the producer of the event belongs to the policy scope, the rule will execute an instance of the FordwardRecovery workflow. Intuitively, a FordwardRecovery instance proceeds as follows: first it pauses the execution of the main workflow (i.e., the workflow executing the activities). Then it analyses the main workflow' control flow for determining the alternative path to take. Finally it executes all the activities that are in the new path until committing the workflow.

Figure 5.6 illustrates the forward recovery principle using the status updater workflow. In the example, the Update Twitter activity fails, which triggers the rule Ford-wardRecovery of ap atom . Since there is another path to commit, the rule "forces" the main workflow to follow this path.

• Lines 23-27 define the rule BackwardRecovery. In contrast to the FordwardRecovery rule, this rule undoes all the committed activities when no alternative path exist.

2 Figure 5.7 illustrates the backward recovery principle using the Status Updater workflow. In the example, the Update Twitter and Update Facebook activities both fail so there is no other path to commit. In consequence, the BackwardRecovery rule of ap atom undoes the committed activities Get Song and Compute Mood.

• Lines 29-32 define the rule NotifyException. This rule implements the exception atomicity behavior. The rule works as follows: on the notification of an event Custom- ScopeFailure, if atomicityType is exception, and the producer of the event belongs to the policy scope, the rule will execute an instance of the workflow. Intuitively, a Noti-fyException instance notifies the environment about the workflow failure and waits for instructions for treating the failure.

• Lines 34-38 define the rule NotifyPolicyFailure. This rule notifies the environment about the failure of the compensation procedure. The rule works as follows: on the notification of an event CustomActivePolicyFailure, if the event producer is the action of one of the policy rules belonging to the scope of the policy, the rule will execute an instance of the workflow NotifyActivePolicyException that notifies the compensation failure (see step 5 of figure 5.4). Recall that a compensation procedure may fail because (i) an activity cannot be compensated or (ii) its maximum number of retries is exceeded.

Listing 5.11 Atomicity policy type expression Finally note that the Atomicity policy type has lower priority than the Activity Exception Management policy type (see line 3 in listing 5.11). This ensures that, even if a developer adds rules to the exception policy type, the rules in an exception policy instance will be executed before the rules of an atomicity policy instance. This maintains the principle of our approach: atomicity is build on top of activity exception management.

As an example consider the Update Facebook and Update Twitter activities of the Status Updater workflow. Let us assume that these activities can be executed using alternative atomicity. Listing 5.12 illustrates the use of the Atomicity policy for adding an atomic behavior to these activities. In the example, (i) ap 1 is an instance of a Critical policy applying to the Update Facebook activity; (ii) ap 2 is an instance of an Undoable policy applying to the Update Twitter activity and (iii) ap n is a policy instance of type Atomicity that applies to {ap 1 , ap 2 } and which associates an alternative atomic behavior to Update Facebook and Update Twitter (see figure 5.6). Listing 5.12 Atomicity policy instance example

Active Policies for Persistence

We use the Activity State Management and Persistency policy types for providing persistency to the execution of a workflow. The former defines rules for keeping track of the execution history of an activity. The latter defines rules for (i) persisting the execution history of a set of activities into a stable storage and (ii) recovering the state of the activities in the presence of system failures. As shown in the figure, the Activity State Management policy type is a policy that can be associated only to atomic activities (i.e., the policy is an activity policy). In contrast, the Persistency policy type is a policy type that can be associated to any number of state management policies (i.e., the policy is a policy of policies). When a persistency policy is associated to a set of state management policies they form a policy tree where the root (i.e., the persistency policy) ensures the persistency and recovering the tree leafs (i.e., the atomic activities). This is illustrated in figure 5.9 where the atomicity policy ap 3 ensures the persistency of the Update Facebook and Update Twitter activities through the state management policies ap 1 and ap 2 (respectively).

Figure 5.9 Example of a Persistency policy tree

When Activity State Management and Persistency policies are associated to each other in a policy tree, they interact among them by producing events. Figure 5.10 illustrates the general interaction among instances of these policy types. The diagram is interpreted as follows: when an activity belonging to the scope of a state management policy starts (completes) its execution, the state management policy saves the initial (final) state of the activity into an internal structure (see step 1). Then, if the state management policy is already associated to the scope of a persistency policy, the persistency policy saves these states into a stable storage (e.g., disk or cache). This is done every time the rule in charge of saving the activity' state ends its execution (see step 2). When the workflow associated to the persistency policy fails, the execution environment detects the failure and produces a WorkflowFailed event that triggers the recovery process (see step 3). Then, this process recovers each of the states of the activities participating in the persistency' policy tree to the state previous to the failure (see step 4). 

WorkflowFailed

3.

Activity

In what follows we describe the structure of the Activity State Management and Persistency policy types.

Activity State Management Active Policy

We use the Activity State Management policy type for (i) constructing the execution history of an activity and (ii) recovering the state of the activity using this history. As shown in figure 5.11, we have specialized the Activity State Management type in the Non-Reliable, Predictable, Idempotent and Verifiable subtypes in order to encapsulate the logic responsible of saving and recovering the state of non-reliable, predictable, idempotent and verifiable activities (respectively). First, we will describe the structure of the Activity State Management policy type. Then, we will describe the structure of each of its subtypes. This line also defines the scope of the policy as a scope composed of a single execution unit called activity. Note that the type of activity is AtomicActivity (i.e., the state management policy type applies to any atomic activity). • Line 3 defines the boolean variables activityWasStarted and activityWasEnded. These variables are used for determining whether an activity was started or ended (respectively).

• Line 4 defines the variable activityProperties of type StateManagementProperties. This variable contains the state management properties of activity (i.e., the variable contains the properties of the activity in the policy scope). The definition of the StateManagementProperties type is shown in listing 5.14.

• Line 5 defines the variable activityStates. This variable is used for containing the set of states through which an activity goes through (i.e., the execution history of activity). Note that we use the ActivityState type for representing an activity state. The defi- nition of this type is shown in listing 5.14.

• Lines 7-13 define the policy constructor. Note that the constructor receives as input the state management properties of the activity that has to be associated to the new policy instance. If the properties correspond to the activity' properties expected by the constructor (i.e., if the activity is a valid scope), the constructor creates a new policy instance. Otherwise, it throws an exception.

• Line 15 defines the method isAValidScope, which determines whether a policy instance (based on its properties) can be applied to a specific activity or not. For instance, if the policy is expecting a predictable activity, and a developer applies the policy to a non-reliable activity, this method will return false and the constructor will not create the policy instance.

• Lines 17-25 define the rules SaveInitialState and SaveFinalState, which are responsible of saving the initial and final states of activity (respectively). The rules work as follows: on the notification of an event ActivityInitialized / ActivityCompleted, if the event was produced by activity (i.e., the activity in the policy scope), the rules will execute an instance of the SaveState workflow. Intuitively, this workflow will save the activity' current state (i.e., the values of the activity' variables when initialized) into the variable activityState. Then, the rule will set the variable activityWasStarted / activity-WasEnded to true.

Note that the Activity State Management policy type is an abstract type (see listing 5.13). Recall that this implies that the policy type cannot be instantiated. Thus we only use it as base type for the subtypes Non-Reliable, Predictable, Idempotent and Verifiable.

Listing 5.13 Definition of the Activity State Management policy type Listing 5.14 Definition of the StateManagementProperties and ActivityState types

Non Reliable Policy

We use the Non-Reliable policy type for constructing the execution history and recovering the execution state of non-reliable activities. Listing 5.15 shows the definition of the Non-Reliable type:

• Line 1 defines the Non-Reliable type as a specialization of the Activity State Management type (i.e., an instance of the Non-Reliable policy type inherits the scope, methods, variables and rules defined in the Activity State Management policy type).

• Lines 3-10 redefine the method isAValidScope for ensuring that only non-reliable activities are associated to a Non-Reliable policy instance (see table 5.2). • Lines 15-18 define the rule RestoreCommittedActivity. On the notification of an event RecoverActivity, if the activity associated to the policy was started and ended, and the event was produced by a policy applying to the Non-Reliable policy (i.e.

produced by an ancestor of the policy in a policy tree), the rule executes an instance of the workflow Restore. Intuitively, this workflow restores an activity to a specific state. In this case, the workflow restores the activity associated to the policy to the committed state.

• Lines 20-23 define the rule ThrowException. On the notification of an event RecoverActivity, if activity is still running (i.e., activity was started but not ended), and the event producer is a policy applying to the Non-Reliable policy, the rule executes an instance of the workflow ThrowException. This workflow notifies the environment that the activity cannot be restored because the activity does not commit before the system failure.

As an example consider the activity Update Twitter of the Status Updater workflow. Let us assume that a user status on Twitter can be written but not read. Since the memory space modified by the activity Update Twitter is not accessible to other activities, the activity is not idempotent and nothing can be assumed about its final state, Update Twitter is an example of a non-reliable activity. Listing 5.16 illustrates the use of the Non-Reliable policy type for recovering the execution of the Update Twitter activity. As shown in the expression, we first create an instance describing the state management properties of the Update Twitter activity. Then, we use the instance for creating a Non-Reliable policy instance associated to the activity Update Twitter. 

Predictable Policy

We use the Predictable policy type for constructing the execution history and recovering the execution state of predictable activities. Listing 5.17 shows the definition of the Predictable type:

• Line 1 defines the Predictable type as a specialization of the Activity State Management type.

• Lines 3-9 redefine the method isAValidScope for ensuring that only predictable activities are associated to a Predictable policy instance (see table 5.2).

• Line 11 enables the rule SaveFinalState. Recall that this rule is inherited from the Activity State Management type (see figure 5.11).

• Lines 13-17 define the rule RestoreActivity. On the notification of an event RecoverActivity, if the activity associated to the policy was started, and the event was produced by a policy applying to the Predictable policy, the rule executes an instance of the workflow Restore for restoring the activity to its presumed state. In contrast, if the activity was not started, the rule restores the activity to the prepared state.

As an example consider the activity Update Facebook of the Status Updater workflow. Since we assume that this activity always commits, the activity is an example of a predictable activity. Listing 5.18 illustrates the use of the Predictable policy type for recovering the exe- cution of the Update Facebook activity. As shown in the expression, we first create an instance describing the state management properties of the Update Facebook activity. Then, we use the instance for creating a Predictable policy instance associated to the activity Update Facebook. 

Idempotent Policy

We use the Idempotent policy type for constructing the execution history and recovering the execution state of idempotent activities. Listing 5.19 shows the definition of the Idempotent type:

• Line 1 defines the Idempotent type as a specialization of the Activity State Management type.

• Lines 2-7 redefine the method isAValidScope for ensuring that only idempotent activities are associated to an Idempotent policy instance.

• Line 8 enables the rule SaveFinalState. Recall that this rule is inherited from the Activity State Management type (see figure 5.11).

• Lines 9-12 define the rule RestoreActivity. On the notification of an event RecoverActivity, if the activity associated to the policy does not complete, and the event was produced by a policy applying to the Idempotent policy, the rule executes an instance of the workflow Restore for restoring the activity to the prepared state.

As an example consider the activity Compute Mood of the Status Updater workflow. Since we assume that this activity always produces the same mood based on the music the user is currently listen to, Compute Mood is an example of an idempotent activity. List- 

Verifiable Policy

We use the Verifiable policy type for constructing the execution history and recovering the execution state of verifiable activities. Listing 5.21 shows the definition of the Verifiable type:

• Line 1 defines the Verifiable type as a specialization of the Activity State Management type.

• Line 2 defines the variable activityState of type ActivityState. This variable will contain the activity state previous to the failure.

• Lines 3-8 redefine the method isAValidScope for ensuring that only verifiable activities are associated to a Verifiable policy instance.

• Line 9 enables the rule SaveInitialState. Recall that this rule is inherited from the Activity State Management type (see figure 5.11).

• Lines 10-17 define the rule RestoreActivity. On the notification of an event RecoverActivity, if activity was started and the event was produced by a policy applying to the Verifiable policy, the rule executes a workflow that retrieves the activity' last state from the stable storage and saves this state into the variable activityState. Then, the workflow uses the value in activityState for restoring the activity to that state (e.g., if the last state was the committed state, the workflow will retrieve the committed state from the stable storage and it will restore the activity to the committed state).

In contrast, if the activity was not started, the workflow restores the activity to the prepared state.

As an example consider the activity Get Song of the Status Updater workflow. Since we assume that the information about the played songs is accessible to other activities, this activity is an example of a verifiable activity. Listing 5.22 illustrates the use of the Verifiable policy type for recovering the execution of the Get Song activity. 

Persistency Active Policy

We use the Persistency policy type for providing persistency to the execution of the activities participating in a persistency policy tree (cf. figure 5.9). In particular, the Persistency policy type can provide two types of persistent behaviors:

• Best-Effort persistency. This behavior saves the activities' execution history into fast and volatile storage unit (e.g., a cache). Since the storage unit is volatile, the execu- tion history may not be available for the recovery process in the presence of a total system failure (e.g., power outage).

• Guaranteed persistency. This behavior saves the activities' execution history into a slow and durable storage unit (e.g., a disk). Thus, in case of a total system failure, the execution history may survive and it will be available for the recovery processes.

Listing 5.23 shows the definition of the Persistency policy type. The expression is interpreted as follows:

• Line 3 defines the scope of the policy. In this case, the scope can be composed of a set of execution units of type Activity State Management.

• Line 4 defines the variable persistencyType, which determines the type of persistency that an instance of the Persistency policy implements (e.g., guaranteed persistency). The type of this variable is PersistencyType. The definition of this type is shown in line 1.

• Lines 5-7 define the policy constructor. The constructor receives as input the type of persistent behavior that must implement a new Persistency instance (i.e., best-effort or guaranteed).

• Lines 8-11 define the rule RecoverWorkflow. On the notification of an event Work-flowFailed (see step 3 of figure 5.10), if the producer of the event was produced by the workflow associated to the policy, the rule will execute an instance of the Recovery-Process workflow for recovering the state of each of the activities participating in the policy tree (see step 4 of figure 5.10).

• Lines 12-17 define the rule BestEffortStrategy. On the notification of an event Action-Executed (see step 2 of figure 5.4), if (i) the event producer belongs to the policy scope (i.e., the producer is a descendent of the policy in a policy tree), (ii) the event represents the execution of the rule SaveInitialState (or SaveFinalState) and (iii) the policy implements a best effort behavior, the rule will execute an instance of the SaveInto-Cache workflow. Intuitively, this workflow will save into cache the activity states associated to the policy producing the event. Note that the rule will execute its action asynchronously. This is due to the fact that the best effort behavior does not guarantees the durability of the execution history, thus the main workflow can continue its execution independently of the rule' action.

• Lines 22-27 define the rule GuaranteedStrategy. This rule works similar to the BestEf-fortStrategy rule except that, when the rule implements the guaranteed persistent behavior, it executes an instance of the workflow SaveIntoDisk for saving the activity states into disk. Note that this rule executes its action synchronously. This ensures that the main workflow cannot continue its execution until the activities states are truly saved on disk.

Finally note that the Persistency policy type has lower priority than the Activity State Management policy type (see line 2 in listing 5.23). This ensures that, even if a developer adds rules to the state management policy type (or one of its subtypes), the rules of the persistency poli-cy will be executed before the rules of the state management policies thus maintaining the coherence of the approach (i.e., persistency is build on top of state management).

Listing 5.23 Definition of the Persistency policy type

As an example consider the Status Updater workflow. Let us assume that we want to add a best effort persistent behavior to the Get Song and Compute Mood activities, and a guaranteed persistent behavior to the Update Twitter and Update Facebook activities. Listing 5.24 illustrates the use of the Persistency policy type for adding these behaviors to the Status Updater activities. In the example, (i) ap 1 is an instance of a Verifiable policy applying to the Get Song activity; (ii) ap 2 is an instance of an Idempotent policy applying to the Compute Mood activity; (iii) ap 3 is an instance of a Predictable policy applying to the Update Facebook activity; (iv) ap 4 is an instance of a NonReliable policy applying to the Update Twitter activity, and (v) ap bestEffort and ap guaranteed are Persistency policy instances applying to {ap 1 , ap 2 } and {ap 3 , ap 4 } respectively (see figure 5.12). 

Conclusions

This chapter described how to use the AP Model and language for defining exception handling, atomicity, state management and persistency NFP and how to associate them to a concrete service's coordination. Associating these types of AP to a service's coordination makes it reliable. According to our work a reliable service's coordination is able to maintain its functionality in unexpected situations (i.e., failures). Failures are of two kinds: semantic and system failures. Reliability is relevant due to current business oriented nature of services based applications. It provides QoS to applications by means of ensuring access to resources in a continuous way.

Several works have been devoted to provide reliability to applications using several approaches (e.g., see [ AFHL99, BhGP05, BoCR05, Bhir05, Boni00,PiBM03, SABS02, TMWD04, ViVo04, ZHMS06, DFDB05, HrWi05, LASS00, LiWe03, Lome04, NFGJ05, Oasi02b, Oasi09a, Oasi09b, ViVo04, SABS02, Wc00a]). The way in which reliability is addressed, impacts the definition itself of the aspects (i.e., the level of abstraction used for its definition) and the type of developed application (i.e., the level of adaptability, maintenance and evolution of the application). In our approach we showed that it is possible to define NFP by defining AP types and then composing them with other AP types. For example we used exception handling AP types for defining atomicity AP types. An application developer can choose to associate only exception handling to an application or atomicity, just by specifying the appropriate associations. 
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State management 6 Implementation and Validation

This chapter describes the general architecture of our system Violet for executing active based workflows. It describes the experimental validation we conducted for adding reliability and freshness to data services' coordinations at runtime using the policies we introduced in Chapter 5.

The chapter is organized as follows. Section 6.1 describe the general architecture of Violet our system for executing active policy based workflows. Section 6.2 introduces the notion of query workflow and illustrates its use through the Visual Music Player application. Finally section 6.3 concludes the chapter.

Violet: an Active Policy Based Workflow Engine

In order to execute active policy based workflows (i.e., workflow with associated active policies) we designed and implemented Violet, an active policy based workflow engine. 

Workflow Engine

As shown in the diagram of figure 6.2, the Workflow Engine is composed of three main components:

• Manager. Responsible of controlling the lifecycle of workflow instances (e.g., it can pause and resume a workflow and/or its associated activities). The Manager is also responsible of controlling the execution of the Scheduler and Tracker components (e.g., it can interrupt their execution).

• Scheduler. Responsible of executing workflows' activity instances in the appropriate order. In particular, the Manager decides when to prepare workflow' atomic activities and when to call their associated services' operations.

• Tracker. Responsible of monitoring the execution of workflow and activity instances (e.g., when a workflow produces an event the Tracker detects the event and then it forwards the event to the Event Service.

The diagram of figure 6.2 also shows that the Workflow Engine exposes several interfaces. The operations offered by each interface are shown in figure 6.3. The following list describes the Workflow Engine interfaces:

• Management Interface offers operations for (i) controlling the execution of a Workflow Engine and (ii) creating workflow instances. For instance, the operation StartEngine starts the execution of the Workflow Engine and specifies the type of the instanc- es that the Workflow Engine will execute (e.g., instances of the Status Updater workflow).

The operation CreateWorkflow creates a workflow instance of a specific Work-flowType that is uniquely identified by a WorkflowInstanceID. • Monitoring Interface offers operations for monitoring the execution of workflow instances. For instance, the operation Subscribe allows an external entity (e.g., the

Event Service) to express its will for receiving the events produced during the execution of a workflow. Then, when the Tracker detects an event, it notifies the entity by using a Callback.

Finally note that the diagram of figure 6.2 shows an interface called WorkflowEndpoint. This interface is not part of the Workflow Engine itself but an interface representing the capability of a workflow for sending and receiving messages (representing operation calls) to third party entities. For instance, using this interface a workflow can call the operations exported by a Workflow Engine for controlling the execution of another workflow in synchronous or asynchronous way. In this work we consider that any existing Workflow Engine respecting the architecture described above (the components and the interfaces) can interact with the Active Policy Engine of Violet as long as it complies with the following characteristics:

• Preemption right. This enables the interruption of the execution a workflow instance at different points in time. Thus it is possible to synchronize the execution of an active policy (and its rules) with the execution of the workflow' activity instances.

• Activity atomic execution. The execution of workflow activities is atomic (i.e., the activity either commits or fails).

• Mutable state. The execution state of the workflow can be modified arbitrarily. This is necessary because after the execution of some rule actions the workflow execution state may change (e.g., when an activity is successfully retried with different input values).

Active Policy Engine

As shown in the diagram of figure 6.4, the Active Policy Engine is composed of three main components:

• Manager. Responsible of creating active policy instances and managing their lifecycle (e.g., it activate and deactivate the policies).

• Scheduler. Responsible of processing event notifications for determining (i) whether a policy rule has to be triggered and (ii) the order of execution among the triggered rules. This component is also responsible of synchronizing the execution of a rule with the execution of the entity producing the event (e.g., if a workflow produced an event that triggered a rule, the Scheduler uses the WorkflowExecutionManagement interface for pausing the workflow execution and resuming it after the rule completes).

• Action Engine. Workflow engine responsible of executing the action of a policy rule (i.e., it executes the workflow implementing a rule' action). Note that the Active Policy Engine offers several interfaces. The following list enumerates the most important interfaces:

• Manager Interface. Offers operations for controlling the Active Policy Engine. In particular this interface is used for controlling the Manager component (e.g., using this interface it is possible to deactivate all the policies associated to a workflow).

• E-Notification Interface. Offers operations for notifying the events produced by active policies, policy' rules and workflow' action instances to the Event Service component (cf. figure 6.1).

• Monitoring Interface. Offers operations for receiving the events coming from the Event Service (cf. figure 6.1). These events are then sent to the Scheduler component for processing.

In order to execute active policies the Active Policy Engine considers the following aspects:

• When to evaluate the rule conditions with respect to the notification of an event.

• How policies triggered at the same time are ordered.

• How to interact with the execution of a workflow for executing its associated policy rules (preemption).

Based on these aspects the Active Policy Engine works as follows: given a workflow implementing a services' coordination and a set of active policies representing a non-functional property (cf. figure 6.1), the Active Policy Engine generates the code for evaluating every policy as well as the synchronization interface that interacts with the Workflow Engine. The code generation process is done by a policy compiler, which validates whether type declarations and policy expressions are well formed. The compiler also implements the transformation rules of AP Language expressions into AP Model types. The Active Policy Engine imports these types and implements evaluation strategies for executing the policies. Then it uses the Event types defined in the policy types for constructing the Monitoring and E-Notification interfaces since event detection and event notification are specified on these interfaces.

Active policies express non-functional properties that must be evaluated at execution time and within the execution of a workflow. We represent the execution of a workflow by a plan consisting of a set of execution units (i.e. activities and policies) and an order function. This plan is generated and used by the Scheduler when policies are triggered. The evaluation of a policy is done within two processes: events detection and execution strategies.

Events detection is used to observe the execution of an active policy based workflow and produce, detect and store the events produced by this execution in a log. The log stores ordered instances of events produced during the execution of a workflow. The log also represents the execution state of a workflow and is used to decide how to evaluate policies.

While a workflow is being executed, the Scheduler consumes the events that can trigger the policies associated to the workflow. Using the properties specified in these policies, the Scheduler uses the execution strategies for filtering the events and deciding which policies are triggered. Recovery actions are seen as activities that must be inserted into the execution of a workflow.

The evaluation of policies within the execution of a workflow introduces a best effort execution strategy. Indeed, the active policy evaluation is a process executed before the execution of the activities of a workflow and can lead to the cancellation, re-execution or compensation of an activity. If for any reason an event representing an exception is detected, the set of recovery actions will be triggered to treat the exception.

Visual Music Player Application

In order to validate our approach we developed the Visual Music Player application, a music player web application that offers controls for searching and playing songs and which is implemented as a set of active policy based workflows.

Figure 6.5 Visual Music Player example

Facebook

The Visual Music Player works as follows: once a user has selected the music he/she wants to play, the player starts receiving the music and its associated metadata (e.g., song title, album and artist names). Then, based on the played song metadata, the application (i) constructs and displays a slide show with images related to the artist and (ii) updates the user' social network status for informing his/her friends about his/her musical activity. For instance, if the user is listening the live version of Fill Her Up of Sting, the application will construct a slide show with images of Sting. Then, it will update the user Facebook and Twitter status with the string "Fill Her Up -Sting". This is illustrated in figure 6.5.

Architecture

Figure 6.6 shows the architecture of the Visual Music Player application. As shown in the figure, our application is a client-server application. The client (web browser) is responsible of handling the presentation logic used for displaying images and the player controls. The server is responsible of handling the application business logic (i.e., the logic that is not related with presentation aspects and that is shared among multiple clients). In particular, the client is responsible of retrieving the images used for constructing the slide-show, and the server is responsible of filtering and ordering the images as well as updating a user' social networks status. • Deezer service. Exports operations for listening music continuously. The service also provides operations for accessing metadata about the played songs (e.g., song' duration, artist and album).

• LastFM service. Exports operations for accessing and updating the history of songs played by a user on a music service (e.g., Deezer, Rdio, Spotify).

• Google and Bing services. Export operations for searching images, videos and documents based on keywords.

• Facebook and Twitter services. Export operations for accessing and updating a user profile (e.g., the status of a Facebook user). • Data Processing service. Exports operations for filtering and ordering collections. For instance, for filtering a collection of images based on their resolution.

Based on the operations used by the Visual Music Player application, these services can be classified in the data service types shown in table 6.1 (cf. section 2.1 service taxonomy). For instance, the services Google, Bing, Deezer and LastFM are examples of data provision services since the application retrieves information from them. In particular the Google, Bing and LastFM services are examples of on-demand services since access to images and to the played songs history is done explicitly every time they are required. In a similar way, the Deezer service is an example of a streaming service because it subscribes to the service before starts receiving the music. Also note that even if the Facebook and Twitter services offer operations for accessing and updating user profiles, they are classified as data administration services and not as data services. 1 This is due to the fact that the application only uses the operations intended for updating the user profiles and not for retrieving them. In contrast, the LastFM service is an example of a data service since the application retrieves and updates the user history of played songs (i.e., the application reads and writes the history). Finally note that Data Processing is the only data processing service used in the application. 

Application Logic

As stated at the beginning of the chapter, we implemented the Visual Music Player application using active policy based workflows. Figure 6.7 shows the workflows implementing the application:

• The Visualization Workflow is responsible of constructing and displaying the slide show on a client.

• The Query Workflow is responsible of filtering and ordering the images used for constructing the slide show. This workflow resides on the server side.

1 Recall that a data service is a service classified as a data provision and data administration service (i.e., a service that offers operations for reading and modifying a collection of data).

Service Data Provision Data Administration Data Processing Streaming

On-demand Google X Bing X Deezer X LastFM X X Facebook X Twitter X

Data Processing X

• The Status Updater Workflow is responsible of updating the social networks status of a user with information about the song he/she is currently listening to. This workflow also resides in the server side.

Figure 6.8 illustrates the general interaction among these workflows. The figure is interpreted as follows: once the application starts receiving the music from the Deezer service, the Visualization Workflow retrieves the metadata of the current played song using the Get Song activity. Then, using this meta-data, the workflow constructs the slide show and update the user social networks in parallel.

Figure 6.7 Workflows implementing the Visual Music Player

For updating the user social networks, the Visualization Workflow sends the song title and artist name to the Status Updater Workflow using the Update Social Network activity. 2 Then, the Status Updater Workflow uses the Facebook, Twitter and LastFM services for updating the user Facebook and Twitter profiles as well as the history of user' played song in LastFM. Once the Status Updater Workflow completes its execution, the Visualization Workflow receives a notification and continues its execution.

For constructing the slide show the Visualization Workflow retrieves the artist related images from the Google service using the Get Images activity. Then it uses the Process Images activity for sending the images to the Query Workflow. At this point the Query Workflow filters and orders the images based on their size and resolution using the Data Processing service. Then the Query Workflow sends back the processed images to the Visualization Workflow. At this point the Visualization Workflow uses the Construct Slide Show activity for constructing the slide show using the filtered and ordered images. Finally the workflow uses the Play activity for playing the slide show until the next song starts.

2 Recall that the Status Updater workflow was introduced and described in chapter 1. As shown in figure 6.8, all the logic used for filtering and ordering the images used by the application resides in Query Workflow, a special kind of workflow used for processing collections of data [Cuev11]. A query workflow has the following characteristics:

• Receives (produces) as input (output) a collection of data.

• Only coordinates calls to data processing services.

• It is composed of atomic activities called data operator activities that only call operations of data processing services (e.g., join activity, filter activity, order-by activity).

For instance, figure 6.9 illustrates the internals of Query Workflow. As shown in the figure, Query Workflow is composed of two activities: the Filter and OrderBy activities, both calling operations of the Data Processing service. The Filter activity calls the filter operation and passes as input (i) the collection of images to be filtered and (ii) a string representing the filtering condition (e.g., "image.size > screen.resolution"). The OrderBy activity calls the orderBy operation and also passes as input (i) a collection of images and a (ii) string representing the criteria used for ordering the images (e.g., "order by size asc"). Note that both operations (i.e., the filter and orderBy operations) produce as result a collection of elements of type T.

In this case T represents the filtered and ordered images received by the Filter and OrderBy activities (respectively). age.size==1024x768'). Then, the workflow passes the values of images and the conditionExp variables as input of the Filter activity. 3. When the Filter activity completes its execution (i.e., once it receives the filtered images from the filter operation), Query Workflow uses the activity output as input for the OrderBy activity. At the same time, the workflow assigns the ordering criteria to the variable orderByExp (e.g. in order to sort the images ascending order, the workflow assigns orderByExp the value "order by image.size asc"). Then it passes the value of orderByExp to the OrderBy activity. As an example, let us assume that Query Workflow receives as input a collections of images having the structure shown in listing 6.1 (i.e., a collection of images is represented as a set of values of type Image, where each value has a name, a size and a resolution). Also assume that the expressions used for filtering and ordering the images are the string values "image.resolution == 1024x768" and "order by image.size asc" respectively (i.e., Query Workflow filters images not having a resolution equal 1024x768 and it orders the resulting images based on their size: first the smaller images, then the largest). Finally assume that Query Workflow receives as input the set of values shown in listing 6.2. Listing 6.3 shows the collection of images received by Visualization Workflow once Query Workflow completes its execution In our approach, we assume that operations exported by data services are also implemented as workflows coordinating calls to services' operations. For instance, figure 6.11 shows the implementation of the filter operation exported by the Data Processing service as a workflow called Filter. As shown in the figure, Filter (i) receives as input a collection of N-Tuples and a string representing the filtering expression, and (ii) produces as output another collection of N-Tuples. The workflow works as follows: when Filter is called, the workflow uses the condition expression for determining whether a tuple in the input collection has to be filtered or not. If a tuple has to be filtered, it is just discarded and then the workflow continues with the next tuple in the input collection. Otherwise it inserts the tuple into the output collection and continues this process until all the tuples in the input collection are analyzed.

Images {

Image < name : String, uri : String, size : Number, resolution : String > }

Images {

Image < name = "P1", uri = "/Photos/P1", size = 1000, resolution = "1024x768"> , Image < name = "P2", uri = "/Photos/P3", size = 1200, resolution = "640x960"> , Image < name = "P3", uri = "/Photos/P2", size = 300, resolution = "1024x768"> }

Images {

Image < name = "P3", uri = "/Photos/P2", size = 300, resolution = "1024x768"> , Image < name = "P1", uri = "/Photos/P1", size = 1000, resolution = "1024x768"> } Figure 6.11 Workflow Implementing a Filtering Operation

Active Policies for Data Services

As shown in figure 6.7, it is possible to define active policies types for associating the following non-functional properties to the Visual Music Player.

Authentication

In order to protect users' privacy the Facebook and Twitter services restrict access to their data to authorized users by using authentication protocols. Since these services may change their protocols over time for reinforcing users' privacy, the Visual Music Player has to be able to adapt it self at runtime for coping with different authentication protocols. For instance, let us consider that Twitter has decided to change its basic authentication protocol (i.e., the protocol based on username and password) for the OAuth protocol. In order to handle the new authentication requirements, the Status Updater Workflow has to implement the OAuth protocol on the fly in order to continue working. Thus we use the OAuth policy type defined in section 3.6.3 for implementing this authentication protocol. This is illustrated in figure 6.12.

Fault Tolerance

In order to provide fault tolerance (i.e., reliability) to the Visual Music Player we address the following aspects:

• Adaptability. If for any reason the Google service is not available (e.g., due to network unavailability), the Visualization Workflow should be able to replace the service with the Bing service. For this we defined the Adaptability policy type shown in listing 6.4.

The policy works as follows: once an Adaptability policy instance is associated to the Get Images activity, the rule ReplaceGoogleService replaces the Google service with the Bing service in the presence of a failure of the Get Images activity. Figure 6.12 illustrates the association of the Adaptability policy to the Visualization Workflow. • Retry. In a similar way, if the services Twitter and Facebook are not available, the Status Updater Workflow has to postpone the update of the user' status for some time and then retry the update as many times as possible as long as the song has not ended (e.g., if the song has a duration of 5 minutes and the server retries the update every minute, the server may retry the update up to 4 times). We shown in section 5.2.1 the use of the Activity Exception Management for retrying activities in the case of failures. 

Atomicity

In order to have a consistent view about the user musical activity, the server has to ensure that the user Twitter and Facebook status contain both the same song' information. As an example assume that both status display the string "Exogenesis (Part I) -Muse" and that the server tries to update them with the string "Exogenesis (Part II) -Muse". Let us assume that due to a Twitter error only the Facebook status is updated. In this scenario the server has to undo the update in order to display the previous string in both status and assure the atomic behavior (i.e. either all of the status are updated or none of them). We already showed in section 5.2.2 how the use of the Atomicity policy type for providing different kinds of atomic behavior. Figure 6.12 illustrates the use of the Atomicity policy for providing atomicity to the Status Updater Workflow. 

Conclusions

This chapter first presented the system Violet for executing AP based workflows that consists of a WF Engine and an AP Engine. The AP Engine manages the execution of a set of AP instances and controls the execution of a WF Engine. Violet's architecture respects the separation between the executions of a-policies and the workflow. The system can work with any workflow engine as long as it provides an interface for controlling the execution of a workflow. Thus, the WF engine can be coupled with an AP engine for ensuring NFPs.

The chapter then presented the experiment we conducted for validating our approach. It focused on a web application where the operations were executed ensuring fault tolerance (exception handling and recovery properties that lead to atomicity models) and security properties. We developed a second scenario focusing on data processing ensured by coordinating services described in Appendix B. The objective was to focus on QoS properties to be ensured to data collections produced by services, and processed through workflows. For example ensuring their freshness and their validity. We showed how to use policies for ensuring these properties.

Conclusions and Perspectives

A services' coordination has associated functional (i.e. what services actually do) and non-functional properties (i.e. the expected behavior of a service at execution-time). NFPs are properties that are not directly related to the functionality offered by a service (e.g., cost, security, reliability, efficiency, complexity and adaptability). Often NFPs are associated to the communication infrastructure, the service provider or the way a service behaves at execution time. For example, message encryption for protecting the information exchanged; verification of service authenticity for identified trusted services; exception management for warrantee a minimum level of Quality of Service (QoS).

When defining an application based on services' coordination, it is fundamental to model, manage and perform the discovery, composition, negotiation and the agreement based on the NFPs. This is achieved through the specification, reinforcement and managing of agreements known as Service Level Agreements (SLAs). Respecting a set of SLAs assures that a set of services will work in an acceptable way. Besides, given the increase of services being offered by different service providers and the popularity of the Internet, it becomes necessary to have models of NFPs to construct application based on services' coordination taking into account the different SLA of each application.

The layered classification of current standards shows that functional, non-functional and communication aspects in services' coordination are implemented by combining different languages and protocols. The objectives of this work were to propose a model that could enable adding and modifying NFP without having to modify the application logic implemented by the service coordination.

Results and Contribution

In this thesis we presented the AP Model for associating non-functional properties (NFP) to a services' coordination by means of active policies. We also presented strategies for synchronizing the executions of a service coordination implemented by a workflow and its associated active policies. In particular we focused on providing reliability and properties to services coordinations. Finally we proposed a system for showing the AP policies definition and evaluation strategies at run time. As an experimental validation we implemented a reliable services coordination execution engine called Violet that adds NFPs to a given services coordination. Our results were experimentally validated in use cases where services coordinations are used for querying, processing and mashing up data. In both use cases we validated the use of Active Policy types related to fault tolerance, authentication, adaptability and QoS properties associated to the data they process (freshness, validity, durability). In our experience, using the AP Model and its associated language for specifying AP types that implement an NFP can be easy as long as the programmer knows the protocol to express: (i) the events that must be observed for triggering an AP, (ii) the conditions to be verified in the execution state of the coordination and (iii) the recovery actions to enforce the NFP. Policies provide independence of application logic and NFP and this eases the maintenance of the service coordination. This is important because services can change their interfaces and their requirements (e.g., they can change the authentication protocol used for executing operations). Having AP modularizes this aspects and help to maintain a service' coordination only by associating new policies to it.

The main contribution of our work is provide an AP Model and associated language for expressing policies that can be associated to activity oriented workflow models used for processing data and for implementing business processes. The AP model and language are also associated to strategies for executing APs and synchronizing their execution with the execution of a workflow. NFP are thereby added to service coordination without modifying their definition. NFP can be modified according to requirements associated to workflows and to the characteristics of their execution context (service modification or evolution).

Perspectives

Future work includes adding NFP to service coordinations used for implementing data management functions (e.g., querying, storage, cache, duplication).

Reliable Hybrid Query Evaluation

In the experimental validation of this work we started studying the way NFP can be added to query workflows that implement hybrid queries. Hybrid queries can be recurrent and continuous. They are implemented by query workflows that coordinate calls to data providers and data processing services. Query workflows execution for the time being are executed by an ad hoc engine called Hypatia. For the time being the hypothesis for executing query workflows is that services are available and that they do not have associated constraints regarding NFP (e.g., authentication protocols for calling data providers, exception handling, fault tolerance).

Besides, query workflows do not reason about data freshness, service unavailability, atomicity, and adaptability. Given that hybrid queries are executed under the hypothesis that no full-fledge DBMS is available for doing that. We believe that AP can be used for providing NFP to their execution. We will explore the extension of the query language HSQL [Cuev11] with our AP Language, and also the extension of the query engine Hypatia with an adapted AP execution engine. The work will require revisiting the architecture of the hybrid query and AP engines for avoiding overhead on the execution time due to the execution of APs.

Service Lookup and Recommendation

The proliferation of services available in Internet and in cloud platforms makes is difficult to have a clear idea of their purpose, exported function and quality. Building applications on top of these services is risky since the quality of the resulting system hardly depends on the quality of its components. Besides, given the autonomy of services, they can evolve or be unavailable during certain periods of time and applications using them must resist to these kinds of exceptions by replacing them. Having efficient recommendation systems that can provide abstract views of annotated services and that can help to find services is still an open issue. Developing a research on this problem can be important particularly if the "user" requirements are coupled with technical requirements for guiding the recommendation process.

Today, with the emergence of cloud platforms that use services as construction units, recommendation systems can be useful to explore available services deployed through the different levels of these platforms. Particularly, approaches that rely on service coordination for evaluating queries can benefit from this kind of systems for integrating service discovery phases in the evaluation process for example if services are not available. The challenge is to provide service recommendation strategies based on QoS measures and SLA contracts in an efficient way for avoiding overhead to the query evaluation process.

The application of such a recommendation system can go beyond business applications, it can also be integrated in the construction of value added services willing to implement data management issues.

Policy Based Cloud Services Coordination

With the popularity of cloud computing it is now necessary to understand service coordination in such a context. Today DBMS architecture has evolved to the notion of servicebased infrastructure where services are adapted and coordinated for implementing ad hoc data management functions (e.g., storage, fragmentation, replication, analysis, decision making, data mining). Services can be distributed and be made redundant by using several computers connected through a network. Having several services deployed in the cloud implies making decisions on how to coordinate them dynamically for fulfilling applications requirements considering the consumption of resources provided by the cloud. Having policies associated to services coordination can provide means to support automatic control of the execution of the service coordination. This control can ease the execution of applications on the cloud, that implies taking into consideration several variables for avoiding extra economic costs imposed by the cloud business model.

Interface 2: During the enactment of human interaction workflows, the persons involved receive work items that inform them about activities due for execution. This functionality is realized by workflow client applications, attached to the enactment service by Interface 2. The goal of standardizing Interface 2 is to allow workflow client applications of different vendors to talk to a given workflow enactment service.

Interface 3 provides the technical information to invoke applications that realize specific workflow activities. This interface should facilitate invocation of applications across heterogeneous software platforms. The reference architecture also provides an interface to other workflow enactment services.

Interface 4 is used for interoperability between different workflow enactment services. The administration and the monitoring of workflows are handled by a dedicated component, accessed by Interface 5. These interfaces are not specified in detail, and their implementations remain in the prototypical stage. ActiveVOS is built on the BPEL, BPEL4People and WS-Human Task open standards to allow developers the ability to orchestrate various systems and services. Apache ODE (Orchestration Director Engine) is a WS-BPEL 1.1 and 2.0 compliant business process management (BPM) engine that supports two communication layers: one based on Apache Axis2 (Web Services HTTP transport) and another one based on the Java Business Integration standard (using Apache ServiceMix). It is capable of Hot-deployment, and features a management interface for processes, instances, and messages. Oracle BPEL Process Manager provides a framework for easily designing, deploying, monitoring, and administering processes based on BPEL standards. BPEL Process Manager is the service orchestration solution on Oracle's SOA Suite.

Intervoice Media Exchange contains an orchestration engine that has been designed to initiate and manage media interactions. It is the industry's first commercially available product that has implemented State Chart eXtensible Markup Language (SCXML) as the framework for building complex multi-modal interactions. TIBCO BusinessWorks is an orchestration, integration and transformation tool that supports BPEL, Web Services, common integration activities and visual modeling of orchestration processes. Microsoft System Center Orchestrator contains an orchestration engine which can be used for IT Process Automation as well as Business process management (BPM), allowing developers to quickly orchestrate complex IT and business processes involving multiple disparate systems. The Orc language is an academic language for describing and implementing orchestrations. IBM WebSphere Process Server contains an orchestration engine, able to execute BPEL. Juju is a service orchestration framework for Ubuntu Linux.

Trigsflow [KaRR98, KPRR95] is a WFMS based on an active extension of the ODBMS Gemstone. In Trigsflow, activities are assigned to agents with respect to their role and/or load. Activities can be delegated to other agents. In the Brokers/Services approach, agents are brokers that execute services. Agents are specified and implemented as reactive components based on the event engine EVE [GeKT96]. Agents interact asynchronously (using events) to ensure workflow execution. CoopWARE [GaMy00, MGKS96] focuses on interaction aspects between workflow servers and agents. Different to Brokers/Services they adopt a centralized architecture where the WFMS coordinates agents.

A.1 Executing Services Coordinations

Activities can be found in the leaves of the functional decomposition. An activity model describes a set of similar activity instances, analogously to a process model describing a set of process instances with the same structure. While process models are typically expressed in graph-like notations activity models can be expressed in different forms, for instance, by plain text or by some formal specification or references to software components that implement them. Activity instances represent the actual work conducted during business processes, the actual units of work.

A.1.1 Activity Life Cycle

Each activity instance during its lifetime is in different states. These states and their respective state transitions can be represented using a state transition diagram. A simple state transition diagram is shown in figure a.2. The states that an activity instance adopts during its lifetime are described as follows: when it is created it enters the init state. By the enabled state transition the activity instance can enter the ready state.

If a particular activity instance is not required, then the activity instance can be skipped, represented by a skip state transition from the not started state to the skipped state. From the ready state, the activity instance can use the begin state transition to enter the running state. When the activity instance has completed its work, the terminate state transition transfers it to the terminated state. When an activity instance is in the terminated or the skipped state, then it is closed. When an activity instance can be started, it enters the ready state. If during the execution of a process instance certain activity instances are currently not available for execution, they can be disabled. Activity instances that are initialized, disabled, or enabled are in the not started state. Once an activity instance is ready, it can be started, entering the running state. Running activities can be temporarily suspended, to be resumed later. An activity instance can terminate either successfully or in failure. Terminated activity instances can be undone, using compensation or transactional recovery techniques.

Events and event orderings are introduced to properly represent the essence of activity instances. Events are points in time, i.e., events do not take time. The time interval in which an activity instance is in one state is delimited by two events, the event representing the state transition to enter the state and the event representing the state transition to leave the state. For example, the time interval in which the activity instance is in the running state is delimited by the begin and terminate events.

The basic idea of using events for representing activity instances is that each state transition of an activity instance is represented by an event. An event diagram for a particular activity instance is shown in figure a.4 that forms a directed acyclic graphs, where the nodes are events and the edges reflect causal ordering between events. The activity instance starts with a state transition to the init state. This state transition is represented by an initialize event in the event diagram. An enable state transition brings the activity instance in the state ready; this state transition is represented by an event enable. An activity instance in the ready state can be started, represented by the state begin transition. Finally, the state terminate transition completes the activity instance.

A.1.2 Data Patterns

Workflow data patterns formulate characteristics on how to handle data in business processes. They are organized according to the dimensions data visibility, data interaction, data transfer, and data based routing.

Data visibility is very similar to the concept of scope in programming languages because it characterizes the area in which a certain data object is available for access. The most important workflow data patterns regarding data visibility are as follows [Wesk07].

• Task data: The data object is local to a particular activity; it is not visible to other activities of the same process or other processes.

• Block data: The data object is visible to all activities of a given sub process.

• Workflow data: The data object is visible to all activities of a given business process, but access is restricted by the business process management system, as defined in the business process model.

• Environment data: The data object is part of the business process execution environment; it can be accessed by process activities during process enactment.

Data interaction patterns describe how data objects can be passed between activities and processes. Data objects can be communicated between activities of the same business process, between activities and sub processes of the same business process, and also between activities of different business processes. Data can also be communicated between the business process and the business process management system. Data transfer is the next dimension to consider. Data transfer can be performed by passing values of data objects and by passing references to data objects. These data transfer patterns are very similar to call-by-value and call by -reference, concepts used in programming languages to invoke procedures and functions [Wesk07].

In data based routing, data can have different implications on process enactment. In the simplest case, the presence of a data object can enable a process activity. Data objects can also be used to evaluate conditions in business process models, for instance, to decide on the particular branch to take in a split node. Workflow data patterns are an appropriate means to organize aspects of business processes related to the handling of data [Wesk07].

Listing B.2 Example of a mashlet definition

In a similar way M 3 defines a mashlet that presents the description of the level of alert (semaphore) and the volcano evolution during the last 24 hours. Note that this information is presented in a rectangle located at the bottom-left hand side of a page. We define two equivalent mashlets presenting the information of the quality of the air, and the meteorology service (M 4 and M 5 ).

Figure B.2 Volcano Observer Mashup

The overall mashup logic works as follows: first each mashlet interacts with a data service for retrieving data and presenting them with specific spatio-temporal properties as described before. Then, the mashup expression defined the spatio-temporal organization of each mashlet defines the mashlet positions. In our model, spatial relations among mashlets are specified using the approach proposed by [Hern94, TPSS98] and the associated semantics (e.g., centered, middle, to the right/left, on top, bottom). For example, in the Volcano Observer mashup we define that mashlet (i) M 2 is presented to the right of M 1 , (ii) M 4 is presented to the right of M 3 and M 5 is presented to the right of M 4 and (iii) M 3 , M 4 and M 5 are presented to the south of M 1 and M 2 .

B.3 Active Policies for Mashups

Besides the challenge of coordinating the data retrieval within a mashup, it is also important to consider that the quality of the data retrieved (e.g., reliability, freshness, pertinence). We handle data quality by associating management active policies to the mashlets define M1 as mashlet "https://twitter.com/john.doe" every 5 min locate at 5, 10 after 10 sec with 300px, 200px 
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  introduces a model of the concepts of business process expressed in the Unified Modeling Language (UML).
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 2 Figure 2.12 Business process conceptual model [Wesk07]

  Web services composition is the Business Process Language for Web Services, WS-BPEL, or BPEL [AAAB07]. It is the outcome of a combination of the Web Services Flow Language by IBM and XLANG [That01] by Microsoft. BPEL uses a block structuring to organize service compositions, and links can be defined to express graph-like structures [Wesk07]. Using WS-BPEL it is possible to specify an execution context (scopes) for encapsulating the application logic with logical variables, exception managers, compensation mechanisms and event detection. An execution context can be serialized for managing the concurrent access to its variables. W3C has proposed specifications for expressing choreography. WS-CDL (WS Choreography Definition Language) is a language based on XML describing the collaboration and the behavior of peer-to-peer services inspired by Pi calculus. The collaboration is expressed as a set of messages exchanged for achieving a common goal. Web Service Choreography Interface (WSCI) is an XML-based specification proposed by Intalio, Sun Microsystems, BEA Systems and SAP AG. It serves as input to the Web Service Choreography Description Language (WS-CDL). Academic proposals for service choreography languages include Let's Dance [ZBDH06], BPEL4Chor [DKLW07].
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 2 14 shows a classification of NFP protocols, provided by the WS-* family protocols proposed by the World Wide Web Consortium (W3C). These protocols suppose an underlying communication protocol. The following sections describe representative examples of the WS-* protocol-based approaches.
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  Is associated to the Get Last Song operation of the LastFM service type.6 Recall that, as any other activity subtype, the Atomic Activity type has input, output and local variables inherited from the Activity type.

  as input a single variable called UserID that is mapped to the UserID variable of the Get Last Song operation at runtime. 4. Maps the string produced by the execution of the operation to its operationResult attribute 5. Outputs the string containing the information about the song the user is currently listening to.
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  among a set of activities called operands (see figure 3.11). The AP Model considers 3 types of control flow activities (see figure 3.14): Sequence, IF and While.
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  Otherwise instance if will execute b 1 . As shown in figure 3.14, the If Activity type has the following structure: < condition: String, evaluationResult: Boolean, true: Activity, false: Activity > Its attributes are described as follows:
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  BooleanAs shown in figure 3.14, the While Activity type has the following structure:
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  Consider for example the instance a 1 of type Get Song Atomic Activity (cf. section 3.3.1). Fig-ure 3.20 shows the representation of a 1 as an execution unit that passes through two states: (i) the initial state containing the values of a 1 before the service' operation call and (ii) the final state containing the values of a 1 after the operation call. Before the call the operation-Result and output attributes have no value (i.e., they are null). Then, after the call, these attributes have specific values (i.e., the string "Sting -Fields of Gold").
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  name = "Get Song", operationResult = "Sting -Fields of Gold", output = "Sting -Fields of Gold", input = { < UserID = "johndoe"> }, local = null, }
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  Example of an active policy type definition Listing 3.3 Example of the use of inheritance in the AP Language

  10 http://en.wikipedia.org/wiki/Basic_access_authentication 1 policy class Log |[ Active Policy * ]| : Active Policy 2 this.log += EventToString ( event ) policy class AuthenticationLog |[ Authentication * ]| : Log {! AuthenticationLog ( ) {! this.log = new String ( ); } }
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  As an example let us assume that par (a, b) is an instance of the activity type Parallel (A, B). The diagram of figure 4.19 illustrates the behavior of par assuming that both of its operands (i.e., activities a and b) completes without error. As shown in the diagram, when par receives the run signal, par moves to the running state and begins the execution of a and b at the same time. Then par waits for the completion of a and b. Since b completes before a, par of b and remains in the running state. When a completes, since b already completes, par moves to the completed state and notifies an event notifying the conditions in which its execution was completed.
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 4 16 completes the example by showing the event trace produced by the execution of par. As shown in the figure, a parallel activity produces 2 events of type ActivityExecuted when running. Each event represents the fact that an activity' operand has completed its execution.
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 4 Figure 4.32 Non-intrusive FR and NFR workflows synchronization

  workflow (see figure 4.34). The synchronization of both workflows is done giving access the their respective execution state.

Figure 4 .

 4 Figure 4.34 Memory intrusive NF and NFR workflows synchronization

Figure 4 .

 4 Figure 4.35 Authentication: example of memory intrusive FR and NFR workflow synchronization

Figure 4 .

 4 Figure 4.36 Control flow and memory intrusive FR and NFR workflows synchronization

  flow for recovering from the exception: signaling the exception, reexecuting the activity that produced the exception, rolling back the execution to a state previous to the production of the exception.

Figure 4 .

 4 Figure 4.38 Exception handling: example of control flow and memory intrusive FR and NFR workflows

Figure 5 . 1

 51 Figure 5.1 Activity execution model assumed in [Port06b] (UML state machine diagram)

  Figure 5.2 shows the relationship between the Activity Exception Management and Atomicity policy types.

Figure 5 . 2

 52 Figure 5.2 Activity Exception Management and Atomicity policy types relationship (UML class diagram)

Figure 5 . 4

 54 Figure 5.4 Activity Exception Management and Atomicity policies general interaction (UML interaction diagram)

  Figure 5.5 Exception Management Active Policy type (UML class diagram)

  ap = new Critical |[ wf.activities[ "UpdateFacebook" ] ]| ( activityProperties ) ; Listing 5.5 Definition of the Non-Vital policy type Listing 5.6 Example of a Non-Vital policy instance

Figure

  Figure 5.6 FordwardRecovery principle

  Figure 5.8 shows the relationship among the Activity State Management and Persistency policy types.

Figure 5 . 8

 58 Figure 5.8 Persistency and State Management types relationships (UML class diagram)

var ap 1

 1 = new Critical |[ wf.activities[ "UpdateFacebook" ] ]| ( new ExceptionManagementProperties { compensate-able = false, retry-able = false, } ) ; var ap 2 = new Undoable |[ wf.activities[ "Update Twitter" ] ]| ( new ExceptionManagementProperties { side-effects = false, compensate-able = true, retry-able = false, } ) ; var ap n = new Atomicity |[ ap 1 , ap 2 ]| ( AtomicityType.Alternative ) ;

Figure 5 .

 5 Figure 5.10 Persistency and State Management policies general interaction (UML interaction diagram)

Figure

  Figure 5.11 Activity State Management policy type (UML class diagram)

  var wf = new StatusUpdater { ! } var ap = new NonReliable |[ wf.activities[ "Update Twitter" ] ]| ( new StateManagementProperties { stateIsAccessible = false, isIdempotent = false, presumedFinalState = ActivityState.Unknown } ) ; Listing 5.17 Definition of the Predictable policy type Listing 5.18 Example of a Predictable policy instance

Listing 5 .

 5 21 Definition of the Verifiable policy type Listing 5.22 Example of a Verifiable policy instance

••

  The diagram of figure 6.1 shows Violet general architecture. As shown in the diagram, Violet is composed of 3 components: • Workflow Engine. Responsible of executing workflow instances and controlling their execution. Active Policy Engine. Responsible of managing and executing active policy and rule instances. Event Service. Responsible of monitoring and notifying the events produced by workflow and active policy instances. Note that Violet has an external component called Definition Tool. This component is responsible of (i) receiving workflows and active policy definitions and (ii) parsing them for generating the corresponding intermediate representations used by the Workflow Engine and Active Policy Engine. Also note that the Workflow Engine and Active Policy Engine components are the main components of Violet since they are responsible of executing the AP Model execution units. In what follows we describe the architecture of these components.

Figure 6 . 1

 61 Figure 6.1 Violet general architecture (UML component diagram)

•

  WorkflowExecutionManagement Interface offers operations for controlling the execution of a specific workflow instance. For instance, the operation StartWorkflow begins the workflow instance identified by a WorkflowInstanceID. The operation PauseWorkflow stops the execution of a workflow instance identified by an ID while the operation ResumeWorkflow continues its execution from the point the workflow left before been paused.• WorkflowStateAccess Interface offers operations for retrieving and updating the execution state of workflow instances. For instance, the operation UpdateWorkflow changes the state of a workflow identified by a WorkflowInstanceID with customWorkflowChanges. The GetWorkflow operation retrieves reference to a Work-flowInstance based on its ID.

Figure

  Figure 6.2 Workflow Engine Architecture (UML component diagram)

Figure 6 . 4

 64 Figure 6.4 Active Policy Engine architecture (UML component diagram)

Figure 6 . 6

 66 Figure 6.6 Architecture of the Visual Music Player application

Figure 6 .

 6 Figure 6.10 further details the Query Workflow by showing how data flows among the workflow activities. The figure is interpreted as follows: 1. Query Workflow receives from Visualization Workflow the images to be filtered and the client' screen resolution. They are saved in the workflow images and screenResolution input variables (respectively).

  4. Finally, when the OrderBy activity completes its execution, Query Workflow takes the set of images produced by the activity (i.e. OrderBy output) and sends them back ordered to the Visualization Workflow.

Figure 6 . 9

 69 Figure 6.9 Visual Music Player Query Workflow

Figure 6 .

 6 Figure 6.12 shows the association of the Activity Exception Management to the Status Updater Workflow for implementing the required behavior. • Rollback. Since the Query Workflow in charge of filtering and ordering the images may fail, the server should be able to restart the workflow from the last stable point (i.e., last checkpoint). For instance, if the Query Workflow ends filtering the images but fails before ordering them, the workflow has to be able to restart the query workflow at the ordering stage and using the already filtered images. We shown in section 5.3.2 the use of the Persistency and Activity State Management policy types for providing persistency and recovery to the execution of a workflow. Figure 6.14 illustrate the use of these policies for implementing the persistent behavior required by the Query Workflow.

Listing 6. 4 Figure 6 .

 46 Figure 6.12 Status Updater Workflow with associated active policies

Figure A. 1

 1 Figure A.1 WFMC general architecture

Figure A. 2

 2 Figure A.2 Transition diagram of simple activity instances [Wesk07]

Figure A. 3

 3 Figure A.3 Complex activity instances state diagram [Wesk07]

Figure A. 4

 4 Figure A.4 Event diagram for the execution of an activity instance [Wesk07]

  

  Figure 2.11 already shown in the Introduction illustrates how a workflow is used for coordinating services. Activities are used to control services calls, data flow specifies data exchange, and control flow describes dependencies among them. The control flow is expressed using ordering operators such as sequence, and-split, and and-join [AHKB03].

				Twitter	update-Status ( … , … )
	S. Activity	+	C. Activity	Facebook	update-Status ( … , … )
			Parallel		
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Service

business process models, coordination models and workflow models.

DeWe07] and Open Workflow Nets [Schm05], Finite State Machines [BGGL06], Guarded Automata [BuSF06], Timed Automata [MCHP08], Pi calculus [BaWR09], Process calculi [KaPi06, QZCY07].

  

[START_REF] Su | Xiangpeng: Towards a theory of web service choreographies[END_REF]

. A set of service choreography formalisms have been proposed: Interaction Petri Nets [

•

  Six requirements for studying NFP definition approaches for service coordinations: NFP specifications, NFP actions specification, Web service subjects specification, non functional attributes execution order specification, composite Web service subjects specification, stateful non functional constraint specification.

Ac- tive Policy type.

  The main class in this group is the Activity class. It represents the Activity type. • The classes representing a non-functional property (i.e., Active Policy, Rule and Event). The main class in this group is the Active Policy class. It represents the Execution Unit and Execution State). The main class in this group is the Execution Unit class. It represents the Execution Unit type.

	• The classes used for associating non-functional properties to services' coordina-
	tions (i.e.,

Types Sub Types Instances Active Policy Authentication OAuth Basic Exception Management ap 2 ap 1 ap 3 ap 4

  

  String represents any chain of characters (e.g., "www", "James Bond", "pwd123"). The type Number represents any real or natural numbers (e.g., -1, 0, 1, 3.1416). The type Boolean represents values true and false (i.e., truth values).

		Status Updater		
		Compute		
		Mood		
		Before 1	Before 2	
		Update	Update	
		Facebook	Twitter	
		After 1	After 2	
		Type		
	Atomic		Composite	
	String	Boolean	Set <T>	N-Tuple
	Number			*
				Attribute
				Name : String
				Value : Type

  copies the value of the workflow songInfo local variable (i.e., referenced by this.local[0]) to the Get Song input variable.

		input = this.local[0]
		StatusUpdater( ) {
	2	name = "Status Updater",
	3	input = new Set<Variable>( ) {
	4	new Variable<UserID, String>( )
	5	},
	6	local = new Set<Variable>( ) {
	7	new Variable<SongInfo, String>( )
	8	},
	9	controlFlow = new WhileActivity( ) {
	10	do = new Sequence() {
	11	lefside = new GetSong() {
	12	name = "Get Song",
	13	input = this.input[0] // User ID
	14	},
	15	rigthside = new Sequence( ) {
	16	lefside = new ComputeMood( ) {
	17	name = "Compute Mood",
	18	input = this.local[0] // Song Info
	19	},
	20	rigthside = new Parallel( ) {
	21	lefside = new UpdateFacebook( ) { … },
	22	rigthside = new UpdateTwitter( ) { … }
	23	}
	24	}
	25	}
	26	}
	27 }	

  Recall that this activity is associated to a Sequence activity in the Status Updater workflow (see figure 4.2). Let us suppose that act and seq are instances of the Get Song and Sequence activities, respectively. Also suppose that act is one of the operands of seq. The diagram of figure 4.6 illustrates the be-

					Name	Type
			Input	status	String
	Update Facebook	Variables	Local	user sucessfulCall	String Boolean
			Output	-	-
		ActivityInitialized			ActivityRunning	ActivityCompleted
	eventID	e 1			e 2	e 3
	timestamp	t x			t x+1	t x+2
	producerID	a 1			a 1	a 1
		status = "Fragile Sting"	status = "Fragile Sting"	status = "Fragile Sting"
	delta	user = null succesfulCall = false		user = "john.doe" succesfulCall = false	user = "john.doe" succesfulCall = true

Table 4 .2 Parameters describing the behavior of a Rule

 4 

Table 4 .3 Order criteria for scheduling several rules

 4 

Atomic Activity Atomicity Activity Exception Management scope 1 ! * scope 1 Active Policy Activity Exception Management Atomicity Atomic Activities

  

	ap 3	
	ap 1	ap 2
	Update	Update
	Facebook	Twitter

Activity Exception Management activityProperties : ExceptionManagementProperties Active Policy Non Vital Critical Undoable Compensate-able Rules RetryOnFailure CompensateAndRetryWhenRequested Rules NotifyScopeFailure NotifyPolicyFailure Rules ContinueOnFailure ContinueOnCompensationRequest Rules enable RetryOnFailure enable CompensateAndRetryWhenRequested Rules enable RetryOnFailure enable CompensateAndRetryWhenRequested CompensateWithoutRetryingWhenRequested isAValidScope ( ) : Boolean

  

When activity fails (see step 1 in figure 5.4), this rule tries to re-execute the activity for handling the failure. The rule works as

1 Definition of the Activity Exception Management policy type Listing 5.2 Definition of the Exception Management Properties and custom Event types

  

Then, it compensates and re-executes activity, which causes activity to re-enter the committed state. Finally, it resumes the main workflow execution. If for any reason the workflow does not arrive to retry or compensate activity, it produces an event CustomActivePolicyFailure that represents the failure of the compensation process (see step 4 in figure 5.4). Note that CompensateAndRetry also receives as input (i) the id of the event producer and (ii) the maximum number of times that the activity can be retried.

Note that the Activity Exception Management policy type is an abstract type (see line 1 in listing 5.1). This implies that the policy type cannot be instantiated and thus we only use it as a base type (i.e., the Activity Exception Management policy type defines the scope, variables, methods and rules inherited by the Critical, Non-Vital, Undoable and Compensate-able subtypes). Finally note that the Activity Exception Management policy type is based on the types shown in listing 5.2. The ExceptionManagementProperties type represents the exception management properties of an activity. The CompensationRequest, CustomActivePolicyFailure and CustomScopeFail- ure represent the events produced during the implementation of the atomic behavior. Since these event types are not part of the AP Model event types (cf. figure 3.23), we define them as specializations of the type Event.

Listing 5.

Active Policy Activity State Management activityWasStarted : Boolean activityWasEnded : Boolean activityProperties : StateManagementProperties activityStates : Set < ActiviityState > isAValidScope ( ) : Boolean Scope Activity Rules SaveInitialState SaveFinalState Non Reliable Rules enable SaveInitialState enable SaveFinalState RestoreCommitedActivity ThrowException Predictable Rules enable SaveInitialState RestoreActivity Idempotent Rules enable SaveFinalState RestoreActivity Verifiable Rules enable SaveInitialState RestoreActivity activityState : ActivityState

  

Listing 5.15 Definition of the Non Reliable policy type

  

		Listing 5.
	1	policy class NonReliable : ActivityStateManagement {
	2	
	3	Boolean isAValidScope ( StateManagementProperties activityProperties ) {
	4	if ( activityProperties.stateIsAccesible == false &&
	5	activityProperties.isIdempotent == false &&
	6	activityProperties.presumedFinalState == ActivityState.Unknown )
	7	return true;
	8	else
	9	return false;
	10	}
	11	
	12	enable rule SaveInitialState
	13	enable rule SaveFinalState
	14	
	15	rule RestoreCommitedActivity
	16	on RecoverActivity
	17	if event.producedByAncestorAction( scope ) && activityWasStarted && activityWasEnded
	18	do Restore ( activity, ActivityState.Commited )
	19	
	20	rule ThrowException
	21	on RecoverActivity
	22	if event.producedByAncestorAction( scope ) && activityWasStarted && !activityWasEnded
	23	do ThrowException
	24	}

16 Example of a NonReliable policy instance

  

19 Definition of the Idempotent policy type Listing 5.20 Example of an Idempotent policy instance

  18 illustrates the use of the Idempotent policy type for recovering the execution of the Compute Mood activity using the typical pattern: first we create an instance describing the state management properties of the Compute Mood activity. Then, we use the instance for creating an Idempotent policy instance associated to the activity Compute Mood.

	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ing 5.Listing 5.policy class Predictable : ActivityStateManagement { Boolean isAValidScope ( StateManagementProperties activityProperties ) { if ( activityProperties.presumedFinalState == ActivityState.Commited || activityProperties.presumedFinalState == ActivityState.Failed ) return true; else return false; } enable rule SaveFinalState rule RestoreActivity on RecoverActivity if event.producedByAncestorAction( scope ) && activityWasStarted do Restore ( activity, activityProperties.presumedFinalState ) else do Restore ( activity, ActivityState.Prepared ) } var ap = new Predictable |[ wf.activities[ "Update Facebook" ] ]| (
	new StateManagementProperties {
	stateIsAccessible = false,
	isIdempotent = false,
	presumedFinalState = ActivityState.Committed
	}
	) ;

12 Example illustrating the Status Updater workflow with Persistency policies

  

	1	enum PersistencyType { BestEffort, Guaranteed }
	2	
	3	[ AfterPolicy ActivityStateManagement ]
	4	policy class Persistency |[ ActivityStateManagement * ]| : ActivePolicy {
	5	
	6	PersistencyType persistencyType ;
	7	
	8	Persistency ( PersistencyType persistencyType ) {
	9	this.persistencyType = persistencyType ;
	10	}
	11	
	12	rule RecoverWorkflow
	13	on WorkflowFailed
	14	if event.producedByAssociatedWorkflow( scope )
	15	do RecoveryProcess
	16	
	17	async rule BestEffortStrategy
	18	on ActionExecuted
	19	if event.producedByDescendent( scope ) && persistencyType.BestEffort
	20 21 Figure 5.	( compare( event.delta [ "Rule" ].name, "SaveInitialState" ) || compare( event.delta [ "Rule" ].name, "SaveFinalState" ) )
	22	do SaveIntoCache ( ( (ActivityStateManagement) event.producer ).activityStates )
	23	
	24	sync rule GuaranteedStrategy
	25	on ActionExecuted
	26	if event.producedByDescendent( scope ) && persistencyType.Guaranteed &&
	27	( compare( event.delta [ "Rule" ].name, "SaveInitialState" ) ||
	28	compare( event.delta [ "Rule" ].name, "SaveFinalState" ) )
	29	do SaveIntoDisk ( ( (ActivityStateManagement) event.producer ).activityStates )
	30	}

Active Policy Engine Action Engine

  

					WorkflowStateAccess	ActionEndpoint
	Management	Monitoring	WorkflowExecutionManagement	
	IManagement	ISchedule		
		IActivePolicyControl			ISend	IReceive
		Manager	Scheduler	
	<< create >>	: Active Policy << notify >> << (de) activate >>	<< trigger >> : Rule << notify >> WorkflowExecutionManagement << query >>	WorkflowStateAccess	WorkflowEndpoint
				Monitoring	
			E-Notification		

Table 6 .1 Data services used by the Visual Music Player

 6 

8 Visual Music Player workflows interaction

  

	Visualization Workflow			
		Get Song	Get Images	Status Updater	Get Song	Compute Mood	Update Twitter Update Facebook
	Update		Process			
	Social Network		Images			
			Construct			
	next song	Slide Show Figure 6.Play	Query Workflow		Filter	OrderBy
	Client				Server
	Violet				Violet

  Query Workflow computes the value for the local variable conditionExp. This variable is used for containing the images filtering condition (e.g., for filtering the images having a resolution similar to the client screen-resolution, the workflow uses the

	2. value	in	screenResolution	Visualization Client for constructing	the	expression	'im-
	Status Updater					
	Server						
				Get Song			
		in p u t					Query Workflow Server
	Song Get				Images Get		in p u t
	Compute			Update Social Network	Process Images		Filter
					Construct		
					Slide Show		OrderBy
	Update Twitter	Update Facebook					o u t p u t
			next song	Play			
		o u t p u t					

The two phase commit protocol (2PC) consist of two phases: i) during the first phase (preparation) every participant in transaction extern its response to commit or abort, and ii) in the second phase (commitment), a coordinator makes a global decision which is communicated and executed by all participants of the transaction.

 5 Most representative examples of advanced transactional models are: saga [GaSa87, GaUW00,

http://msdn.microsoft.com/en-us/library/ms996497.aspx

Intentionally left blank

http://www.lastfm.fr/api

http://developers.facebook.com

https://dev.twitter.com

http://oauth.net

http://www.deezer.com

Note that alternative atomicity is similar to strict atomicity when no other path exists to commit.
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side-effects -No No Yes retry-able No No / Yes No / Yes No / isIdempotent No No Yes No / Yes presumedFinalState No Yes No / Yes No / Yes

Data Processing

x Intentionally left blank APolicyActivated event produced by the policy' scope, and e y represents the last Activi-tyFailed / ActivityCompleted / APolicyCompleted event produced by the scope. 

Rule Behavior

As shown in the diagram of figure 4.25, an instance of the Rule type passes through 4 states during its life cycle:

• Deactivated. During this state a rule does not consume triggering events (e.g., if a triggering event is notified during this state the rule simple "ignores" the event). A rule enters this state twice during its life cycle: (i) after the creation of the rule and

(ii) once the policy where the rule belongs to become deactivated (cf. figure 4.22).

• Trigger-able. A rule enters this state when the policy where the rule belongs is activated (cf. figure 4.22). During this state a rule waits for the notification of a triggering event.

• C-Evaluation. This state is entered when a rule receives the notification of a triggering event. During this state a rule evaluates its condition Θ. If the condition is false the rule moves back to the trigger-able state. Otherwise the rule moves to the a-execution state once it receives the execute signal.

• A-Execution. During this state the rule executes its associated action (i.e., the workflow implementing the action). Once the action completes its execution, the rule returns to its trigger-able state.

There are criteria to be taken into consideration for executing a rule that are not described by the state machine. For instance:

• How does the execution of a rule is related to the notification of a triggering event?

• How is the execution of its action synchronized with the execution of an activity?

We adopt the classical behavior of rule considered in rule execution models as the one proposed in [Coup96] (see table 4.2). Some criteria can be parameterized like those concerning the execution of the action. Criteria concerning events are constant, meaning that trig-Listing 5.24 Persistency policy instance example Now let us assume an execution of the Status Updater workflow: after the execution of the Get Song activity, the song information is sent to cache according to the ap bestEffort policy. Then, when the Compute Mood ends computing the user mood, the mood is also sent to the cache according to the ap bestEffort policy. Since there were no problems during the execution of these two activities, the workflow continues with the execution of the Update Twitter and Update Facebook activities. According to their associated policies (i.e., guaranteed policies), their initial state is sent immediately to disk. Now assume that the Update Facebook activity commits but immediately after the workflow crash. This failure triggers the execution of the ap bestEffort and ap guaranteed policy and thus a crash recovery process is started. The execution state of previously executed activities is recovered according to their associated policies (e.g., the state of the activity Compute Mood is assumed to be committed. The states of the activities Update Twitter and Update Facebook are retrieved from disk). After recovering the activities, the workflow continues its execution, the Update Twitter commits and the workflow terminates. 

Server Side

Presentation Layer Violet

Client Side

HTTP

Appendix A Workflow Execution Environment

Business process management includes concepts, methods, and techniques to support the design, administration, configuration, enactment, and analysis of business processes can be enacted. The process enactment phase encompasses the actual run time of the business process. Business process instances are initiated to fulfill the business goals of a company. Initiation of a process instance typically follows a defined event. The business process management system actively controls the execution of business process instances as defined in the business process model.

Workflow management systems architectures organize the subsystems that are involved in the design and enactment of both system workflows and human interaction workflows. A generic workflow management systems architecture is shown in figure a.1. The generic workflow management systems architecture proposed by the Workflow Management Coalition. This architecture provides a high-level systems architecture blueprint for workflow management systems.

Process enactment guarantees that the process activities are performed according to the execution constraints specified in the process model. A monitoring component of a business process management system visualizes the status of business process instances. Process monitoring is an important mechanism for providing accurate information on the status of business process instances.

Interface 1: gives access to tools used for modeling workflows. The goal of this interface is to enable tools developed by different workflow system vendors to work in a standardized representation of a business process. Interface 1 is specified in the XML language XML Process Definition Language, or XPDL. This language is based on a meta-model approach, in which the concepts of interacting business processes of multiple participants are defined. The XPDL package meta-model can be used to represent business process diagrams expressed in the BPMN. The meta-model includes classes for pools, lanes, processes, participants, and message flow. The internal structure of processes is represented by a process meta-model. In addition to processes and activities, different types of activities and transitions are modeled to represent control flow in process models. The specification document also defines a serialization of process models to XML that includes conceptual information as well as graphics information used for rendering business process diagrams.

Appendix B Volcano Observer Application

In order to validate our approach in the context of data integration and presentation, we developed the application Volcano Observer, an application for integrating environmental information about the behavior of the active volcano Popocatepetl 1 in Puebla, Mexico. The objective of the application is to integrate information produced by (i) the National Centre for Preventing Disasters 2 , (ii) the Meteorology Service 3 , (iii) the Index of the Air Quality 4 and (iv) the social observation generated in Twitter and Facebook by civilians and other governmental institutions in charge of informing about the alter state evolution (e.g., the volcano is in phase 3/3).

We implemented the Volcano Observer application using the concept of Mashup [Merr06], a special kind of applications that combines data produced by different web sources and which presents it in a 2-dimensional space. A mashup is modeled using 2 concepts:

• Mashlet -minimum content unit providing a homogeneous view of data and their providers (i.e., the building block).

• Mashup -represents the spatial organization in which building blocks will be presented in a 2D space.

In our experiment we extended the notion of mashup for considering (i) data coming from data services and (ii) data presentations in a 3-dimensional space (i.e., X, Y and time). We also allow the association of active policies to mashlets and mashups. 

B.1 Spatio-Temporal Mashup Language (M-QLiST)

In order to define mashups we defined M-QLiST, a Spatio-Temporal Mashup Language [VZEC13]. Listing B.1 shows our general expression for defining a mashup. As shown in the expression, a mashup definition is composed of (i) a mashup name, (ii) a data flow expression, (iii) a spatio-temporal expression and (iv) a set of active policies expressions.

Listing B.1 M-QLIST mashup general definition expression

Dataflow specifies the dependencies between the produced and consumed data of a set of mashlets that are mashed up. The dataflow of M-QLiST is defined on top of a simple data model that includes the atomic and complex data of the AP Model (section 3.2). The data model subsumes the JSON 5 model that is widely used for retrieving data on the web (e.g., in REST architectures).

Inspired in systems like Yahoo Pipes 6 and Montage 7 , we expressed the dataflow of a mashup using data and control flow operators. Data operators are used for processing data. The following list enumerates the data operators considered in M-QLiST:

• Filter. Filters the data collection produced by a service operation call.

• Count. Counts the number of elements in a collection.

• Rename. Renames one (or several) attribute of a complex data type.

• Reverse. Reverse the order of the elements composing a data collection.

• Union. Includes all the elements of a collection A in a collection B (e.g., implements the union set operation).

• Tail. Retrieves the last element in a data collection.

• Truncate. Obtains a subset of the elements contained in a collection.

Control flow data operators define how data flow among mashlets. The following list enumerates the control flow data operators considered in M-QLiST:

• Sequence. The output of the data retrieved in a mashlet is used as input of another mashlet.

• Split. The output of a mashlet feeds two or more independent mashlets.

• Join. The output of one or several mashlets feeds a mashlet.

• Loop. Executes a set of mashlets several times considering the results of their previous execution. • Locate At. Specifies the location and size of a mashup in a 2D space (e.g., the expression Locate At 50, 50 with 300px, 300px locates the origin of the mashup at x=50, y=50 with a size of 300 pixel width/height).

• After. Specifies the instant of presentation of a mashup of the screen and the duration of the presentation (e.g., the expression After 5 sec during 10 min specifies that the mashup has to be presented (i) 5 seconds after the mashup starts running and (ii) during 10 minutes. After that the mashup is hidden).

Active-Policies define the active policy instances associated to a mashup. Policy instances are expressed using the AP Language (see chapter 2). Figure B.1 shows the order in which data is retrieved from the data services composing the Volcano Observer mashup. As shown in the figure, the application retrieves data in two parallel steps: the first one intended to retrieve in parallel the volcano tweets and posts from the Twitter and Facebook services (see activities GetVolcanoTweets and GetVolcanoAlerts); the second one retrieves data about the semaphore (activity GetSemaphore), the air quality (activity GetAirQuality) and the meteorology of the regions around the volcano (activity GetMeteorology). retrieving the data and by considering the characteristics of the services it accesses. In the case of the Visual Observer mashup the data comes from different services and Web sites that update their information with different frequency. In order to maintain a consistent view of the official information, information updates are synchronized. In contrast, social networks information is updated continuously.

B.2 Application Logic as Mashup

Figure B

.3 shows the general approach that we proposed for specifying mashup management policies to the Volcano Observer mashup. For instance, the atomicity policy applying to mashlets M 3 , M 4 and M 5 ensure that these mashlets are executed following a strict atomic behavior (cf. section 5.2.2). In a similar way, the authentication policies applying to mashlets M 1 and M 2 ensure the implementation of the authentication protocols required to access the Twitter and Facebook accounts (cf. sections 3.6.2). Listing B.3 and Listing B.4 illustrates the definition of these policy types using the AP Language adapted to the context of mashups.

The StrictAtomicityPolicy policy type defines a policy that implements the strict atomicity behavior. In general the policy works as follows: on the failure of a service call executed by a mashlet (represented by the event type ServiceCallFailure), if the number of times this call has been retried is less than a threshold, then the service is invoked again. Otherwise the mashlets that were executed without failures are compensated. We have proposed atomicity policies in other works that are applied to define the semantics of the compensation operation [PoVC06, PVGC08]. In the case of mashlets, the compensation can mean to present the data they retrieved the last time that all of them were executed correctly.

The HTTPAuthPolicy policy type defines a policy that uses the HTTP authentication protocol for calling the service operation associated to a mashlet. Note that the scope of the policy is the type Mashup. In general the policy works as follows: when the mashlet is prepared for calling the service' operation (represented by the event type ServiceCallPrepared), the policy ask the user its credentials (i.e., username and password) and injects this credentials in the code handling the operation call.